Qprégram_ Library Canadian Program Library European Program Library Program Information Dept. South American South Pacific
= Japan, Lid. IBM Canada Ltd. IBM France {BM Corporation Program Library Program Library

Systems Engineering Dept. Department 960 23, Allée-Maillasson 40 Saw Mill River Road IBM do Brasil, Ltda. IBM Australia, Ltd.
14, 1 Chome Nagata-cho 5 Yorkland Boulevard F.82-Boulogne-Billancourt Hawthorne, New York 10532 Avenida Presidente Box 3318 G.P.O.
Chiyoda-ku Willowdale, Ontario France United States . Vargas 642, 4 Andar Sydney, N.S.W.

- Tokyo, Japan Canada Caixa Postal 1830-ZC-00 Australia

Société Anonyme Au Capital de Rio de Janeiro, Brazil
620.256.000 F-R.C.
(Seine 55B-11 846)

June 26, 1972

Memorandum to: Users of the HASP II System (360D-05.1.014)

Subject: Transmittal of Version 3, Modification Level 1
of 360D-05.1.014

This letter transmits Version 3, Modification Level 1 of the
HASP II System, 360D-05.1.014.

The program materials needed to update this program to Version 3,
Modification Level 1 are enclosed.

The Basic materials distributed with this letter are:
1. An update to HASP II System Manual (replacement pages)

2. A replacement Memorandum to Users for HASP II System
Manual

3. A complete replacement of the Basic machine readable
material on one Distribution Tape Reel (DTR) recorded
at 9-track 800 or 1600 bpi, or one 7-track 800 cpi
(Data Conversion Feature required)

If you are a user of the Optional program material, it consists of:

1. A complete replacement of the Optional machine readable
material consisting of 138 - 96 column cards as a "starter
system" for a remote System/3. :

This release of HASP corrects virtually every known problem in
Version 3, Modification Level 0 of HASP. This sytem includes all
PTFs appllcable to HASP Version 3.0 through DPA5427. Following is
a list of the more significant maintenance items. ‘

The restrlctlons prohibiting any extended use of the 3211
. Forms Control Buffer have been removed.

Rotatlonal P051tlon Sen31ng for 3330 and 2305 devices is
now a HASPGEN optlon. SR

3M399A

Previously announced support for the 3505 Card Reader and
the 3525 Card Punch is included ‘

The restriction prohlbltlng operator control of HASP]Ob
flow based on 0S jobnames has been removed.

Multi-tasking jobs are no longer excluded from the execution
dynamic priority group.

The restriction prohibiting restart of the HASP execution
phase of a job has been removed.

The operator is no longer prohibited from changing a printer's
FCB or UCS when the printer is stopped for forms mounting.

For OS controlled console support, the operator's replies to
WTORs are no longer omitted from the HASP System Log.

Optionally, the user can now define names other than SPOOLn
for HASP spooling volumes.

HASPGEN efficiently accepts both the IEBUPDTE and IEBUPDAT
formats of modification cards and sequence checks them.

HASP command authority has been extended to local input devices
and is controlled by the central operator.

An optional backspace character can now be defined to support
0S controlled consoles with no backspace key.

HASP Remote Job Entry maintenance items:

The 3780 Data Communications Terminal is now supported by
HASP.

The Space Compression/Expansion feature of 2770 and 3780
terminals is supported.

Any of the three optional buffer sizes for 2770 terminals may
now be specified. Current 2770 users must respecify RMTnn
parameters prior to HASPGEN, according to the new definitions
on page 388.

HASP RMTGEN will optionally punch an 80-column card deck for
System/3 remote terminals without 5424 card readers.

This modification is supported on current OS releases;

This mémorandum should be added to your program package for future
reference.

The HASP II System has Programming Service Classification A.

Any discrepancy between the material received and the material
listed above, or any errors in reproduction, should be reported
to the Manager of the Program Library providing your programming
systems.

cc: IBM Systems Engineering Managers (no enclosures)
IBM Field Engineering Managers (no encloures)

Program Information Department

~0a7?o§rém Library Canadian Program Library European Program Library Program information Dept. South American South Pacific
M Japan, Ltd. IBM Canada Ltd. IBM France IBM Corporation Program Library Program Library

Systems Engineering Dept. Department 960 23, Allée-Maillasson 40 Saw Mili River Road IBM do Brasil, Ltda. IBM Australia, Ltd.
14, 1 Chome Nagata-cho 5 Yorkland Boulevard F.92-Boulogne-Billancourt Hawthorne, New York 10532 Avenida Presidente Box 3318 G.P.O.
Chiyoda-ku Willowdale, Ontario France United States Vargas 642, 4 Andar Sydney, N.S.W.
: Tokyo, Japan Canada Caixa Postal 1830-ZC-00 Australia
Société Anonyme Au Capital de Rio de Janeiro, Brazil

620.256.000 F-R.C.
(Seine 55B-11 846)

June 26, 1972
Memorandum to: Recipients of HASP II (360D-05. 1. 014)
Subject Replacement Memorandum for HASP II System

Manual

The attached memorandum replaces the memorandum currently
attached to the HASP II System Manual.

Attachment

Program Information Department

3M399C

IH
uu||||II
iy

w‘a—ﬁbgram Library Canadian Program Library European Program Library Program Information Dept. South American South Pacific

Japan, Ltd. IBM Canada Ltd. 1BM France IBM Corporation Program Library Program Library
Systems Engineering Dept. Department 960 23, Allée-Maillasson 40 Saw Mili River Road 1BM do Brasil, Ltda. IBM Australia, Ltd.
14, 1 Chome Nagata-cho 5 Yorkland Boulevard F.92-Boulogne-Billancourt Hawthorne, New York 10532 Avenida Presidente Box 3318 G.P.O.
Chiyoda-ku Willowdale, Ontario France United States Vargas 642, 4 Andar Sydney, N.S.W.
Tokyo, Japan Canada Caixa Postal 1830-ZC-00 Australia

Société Anonyme Au Capital de Rio de Janeiro, Brazil .

620.256.000 F-R.C.
(Seine 55B-11 846)

June 26, 1972

Memorandum to: Recipients of HASP II (360D-05.1.014)

Subject: Transmittal of Version 3, Modification Level 1 of
' 360D-05.1.014

The program materials you have ordered are enclosed. The .following
describes the contents of the Basic and Optional program packages.

Basic program material consists of:
1. The enclosed HASP II System Manual.

2. Machine-readable material on one 9-track 800 or 1600
bpi, or 7-track 800 cpi (Data Conversion Feature required)
Distribution Tape Reel (DTR). For a description of the
tape contents see the HASP II System Manual. :

If you have ordered the Optional program material, it consists of:

1. A deck of 138 - 96 column cards. This deck is a
"starter system" for the HASP MULTI-LEAVING Remote
Job Entry support for the IBM System/3 to allow a
customized workstation program to be transmitted to
the Remote System/3. See the HASP Remote Terminal
Operator's Guide for the System/3 for instruction on
the use of this deck.

Installations ordering this program to obtain the HASP MULTI-
LEAVING workstation programs for use with non-HASP systems should
refer to Section 10.4 of the HASP SYSTEM Manual for procedural
information.

The HASP-II SYSTEM has Programming Service Classification A. 1If,

in the future, a new release is made available for this program,

the period that Version 3, Modification Level 1 will remain "current"
for programming service purposes will be specified at the time of

the new release.

HASP, Version 3 Modification Level 1 incorporates all PTFs applica-
ble to HASP Version 3 Modification Level 0 through DPA5427. No

PTF before and including DPA5427 should be applied to Version 3,
Modification Level 1. Your local IBM representative will discuss
the standard error reporting (APAR) procedure.

This progran has been registered by system type and is listed under
the name and address shown on your order. Program modifications,
as and when made by IBM will be sent to this same address. Should
there be a change in your system type or in your address, we would
appreciate your notifying your local IBM branch office.

Any discrepancy between the material received and the material or-
dered, or any errors in reproduction should be reported to the
Manager of the Program Library providing your programming systems.

Enclosures

Program Information Department

Oﬁ}og?am Library
: M Japan, Ltd.

Canadian Program Library
IBM Canada Lid.

Systems Engineering Dept. Department 960
14, 1 Chome Nagata-cho 5 Yorkland Boulevard

Chiyoda-ku
- Tokyo, Japan

Willowdale, Ontario
Canada

June 26, 1972

Memorandum to:

Subject:

European Program Library Program Information Dept.
IBM France IBM Corporation

23, Allée-Maillasson 40 Saw Mill River Road
F.92-Boulogne-Billancourt Hawthorne, New York 10532
France United States

Société Anonyme Au Capital de
620.256.000 F-R.C.
(Seine 55B-11 846)

South American
Program Library
IBM do Brasil, Ltda.
Avenida Presidente
Vargas 642, 4 Andar

Caixa Postal 1830-ZC-

Rio de Janeiro, Brazil

South Pacific
Program Library
IBM Australia, Ltd.
Box 3318 G.P.O.
Sydney, N.S.W.

00 Australia

Recipients of the HASP II System (360D-05.1.014)
Version 3, Modification Level 1

New and Replacement pages for the HASP II System

Manual

Attached are new and replacement pages for the HASP II System
Manual. These pages have been reproduced in such a manner
as to easily replace their corresponding pages in the HASP II

System Manual.

Program Information Department

3M399B

THE
HASP

SYSTEM

FEBRUARY 26, 1971

TYPE III PROGRAMS WITH
SERVICE A CLASSIFICATION

Type III programs which were given Service A Classification, perform
functions which may be fundamental to the operation and maintainance
of the user's system. These programs have not been subjected to
formal test by IBM.

Until reclassified, IBM will provide for these Type III programs

the following: (a) Central Programming Service including design error
correction and automatic distribution of corrections; (b) Field
Engineering Programming Service including design error verification,
Authorized Programming Analysis Report (APAR) documentation and
submission, and application of Program Temporary Fixes or development
of an emergency by-pass when required.

IBM does not guarantee service results or represent or warrant that
all errors will be corrected. The user is expected to make the final
evaluation as to the usefulness of these programs in his own
environment.

THE FOREGOING IS IN LIEU OF ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,

HASTP

PREFACE

This document contains complete instructions for the
generation and use of the HASP SYSTEM. Also included is detailed
information concerning the internal structure and implementation
techniques of HASP to serve as an aid to systems programmers.

The various HASP OPERATOR'S GUIDES, intended for use as removable

sections, are included as Section 11 of this manual.

HASP

MAGNETIC TAPE KEY

BASIC

This volume contains two files as described below.

File 1 - Assembled object decks and JCL necessary to perform
a HASPGEN (refer to Section 10 of this manual for
information concerning use of this tape).

Records - 428, Characters/block - 80;
Records/block - 1; Blocks/file - 428.

File 2 - Source decks for HASP-II, Version 3.1.
Records - 52,705; Characters/block - 1600;
Records/block - 20, Blocks/file - 2636.

*Optional

System/3 users only - 138 96-column cards. This deck is a
"starter system" for the HASP MULTI-LEAVING Remote Job Entry
support.

*Optional material will be forwarded only when specifically
requested.

HASP

TABLE OF CONTENTS

Introduction

General Description

HASP Structure

Allocation of Main Storage

Allocation of Direct-Access Space
Allocation of Input/Output Units
Allocation of Central Processing Unit Time
Allocation of Programs

Allocation of Jobs

Allocation of Overlay Areas

HASP Processors

Input Service Processor

Execution Control Processor

Output Service Processor (Print and Punch)
Purge Processor

HASP Command Processor

Operator Console Attention Processor
Checkpoint Processor

Asynchronous Input/Output Processor
HASP Log Processor

Opérator Consble Input/Output Processor
Timer Processor

Remote Terminal Processor (STR Model 20)

12
17
20
22
24
26
29
31
32
48
62
76
77
98
99
101
102
103
105

106

Table of Contents - Page i

HAS

Section

4.13

P

Remote Terminal Processor (System/360)
Remote Terminal Processor (1130)
Execution Task Monitor Processor
Internal Reader Processor
MULTI-LEAVING Line Manager
Remote Console Processor
Execution Thaw Processor

Overlay Roll Processor

HASP SMB Writer

Priority Aging Processor

Remote Terminal Processor (System/3)
HASP Control Service Programs
HASP Dispatcher

Input/Output Supervisor

Job Queue Manager

Buffer Manager

Unit Allocator

Interval Timer Supervisor

SWTO Processing Routine

Direct Access Storage Allocator
Disastrous Error Handler
Catastrophic Error Handler

Trace Effector

WTO/WTOR Processing Routine

Console Buffering and Queueing Routines

190
193
195
197
199
200
202
204
205
243
244
246
247
250
251
252
254
255
257
258
259
262

266

Table of Contents - Page ii

HASP

Section

Input/Output Error Logging Routine

Remote Terminal Access Method

Overlay Service Routines

Miscellaneous

HASP Initialization

HASP Initialization SVC Routine

HASP Overlay Build Utility

HASP REP Routine

HASP Accounting Routine

HASP Dump Routines

HASPGEN and RMTGEN Parameters

HASPGEN Parameters

RMTGEN

RMTGEN

RMTGEN

RMTGEN

RMTGEN

RMTGEN

RMTGEN

Parameters
Parameters
Parametérs
Parameters
Parameters
Parameters

Parameters

for
for
for
for
for
for

for

System/360 Model 20 STR
System/360 Model 20 BSC
Syétem/360

1130

1130 Loader

System/3

2922

HASP Control Table Formats

HASP Communication Table Format (HCT)

Processor Control Element Format (PCE)

Buffer Format (IOB)

Console Message Buffer Format (CMB)

Device Control Table Format (DCT)

Job Queue Element Format (JQE)

Page
269
272
280
287
288
297
299
302
305
306
309
310
422
427
446
466
481
485
504
505
506
521

527
544
546

567

Table of Contents - Page iii

HAS

Section

8.7

8.15
9.0
9.1
9.2
9.3
9.4
9.5
9.6

9.7

9.8
9.9
19.10
9.11
10.0
10.1
10.2

‘10.3

P

Job Information Table Element Format (JIT)

Job Control Table Format (JCT)

Track Extent Data Table Format (TED)
Timer Qﬁeue Element Format (TQE)
OVerlay Table Format (OTB)

Data Definition Table Format (DDT)
Partition Information Table Format (PIT)
Message Allocation Conﬁrol Block (MSA)
Data Block Format (HDB)

HASP Executor Services

Buffer Services

Unit Services

Job Queue Services

Direct-Access Spacé Services
Input/Output Services

Time Services

Overlay Services
SynchfonizationvServices

Debug Services

Error Services

Coding Aid Services

HASP Maintenance Procedures
Generating a HASP System (HASPGEN)

OS SYSGEN and Installing a HASP System

Generating HASP Remote Terminal Programs

Table of Contents - Page iv

HASP

Section

10.4
11.0
11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9
11.10
12.0
12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10

12.11

Remote Generation for non-HASP Users

Operator's Guides

HASP

HASP

HASP

HASP

HASP

HASP

HASP

HASP

HASP

HASP

Operator's Guide

RTP
RTP
RIP
RTP

RTP

RTP

RTP

RTP

RTP

Operator's
Operator's
Operator's
Operator's
Operator's
Operator's
Operator's
Operator's

Operator's

Appendices

Guide
Guide
Guide
Guide
Guide
Guide
Guide
Guide

Guide

(STR Model 20)
(1978)

(1130)
(System/360)
(BSC Model 20)
(2780)

(2770)
(SYstem/B)
(3780)

Reference Listing of HASPJCL

HASP

HASP

HASP

HASP

HASP

Storage Requirements

Control Card Formats

Accounting Card Format

Print and Punch ID Formats

Coding Conventions

General HASP Restrictions

HASP JCL Processing Program

HASP/RJE Line Transmission Techniques (STR)

HASP Internal Reader

MULTI-LEAVING

Page
687
689
691
849
875
907
935
963
993
1021
1051
1074.1
1075
1076
1080
1088
1097
1098
1101
1103
1106
1122
1135

1139

Table of Contents - Page V.

HASTP

Section Page
12.12 - HASP 2770 RJE Support . 1155
12.13 - HASP Execution Batch Scheduling. 1159
12,14 - HASP Overlay Programming Rules ‘ 1163
12,15 - HASP with 0S Console Support ' 1167
12,16 - Multiple Devices on MULTI-LEAVING Remotes 1172

12.17 - 3211 Forms Control Buffer Additional Loads 1174

Table of Contents -~ Page vi

HASTP

1.0 INTRODUCTION

The HASP SYSTEM operates as a compatible extension to the MFT or
MVT options of the Operating System for System/360 and System/370
to provide specialized supplementary support in the areas of job
management, data management, and task management.

HASP appears as a transparent "front-end" processor to OS to,
via the SPOOLing functions normally associated with OS input
readers and output writers, act as an automatic scheduler

and operator of 0S. Because of this relationship between HASP
and the Operating System, varicus other functional, performance
and operational benefits can be included in HASP.

The use of HASP offers an installation the following advantages:

° IMPROVED PERFORMANCE - In many cases, because of the
singular, specialized use of resources by HASP, system
performance may be improved. Any improvement is dependent
upon the configuration and job mix and can only be deter-
mined by actual measurement. (See Section 2 of this manual
for additional details.)

® IMPROVED OPERATIONAL PROCEDURES - HASP acts as an automatic
interface between the operator and 0S, to perform various O0S
control functions previously done directly by the operator.
Readers, Writers and Initiators in OS are started and sched-
uled automatically by HASP. Also, many additional operator
commands for controlling job flow and device operation are
provided by HASP. (See Section 11 of this manual for
additional details.)

° INCREASED SYSTEM FUNCTION - The use of HASP provides certain
functions which are not otherwise available. These include
dynamic task ordering based upon CPU - I/O characteristics
(see Section 2 for additional details); the inclusion of
relevant console messages in each job's output (see Section 7
for additional details); the capability of any job to intro-
duce another job into the HASP queue via an internal reader
(see Section 12.10 for additional details); an execution
batching facility to pass jobs directly to a processing pro-
gram such as a one-step monitor (see Section 12.13 for addi~
tional details); many additional operational control functions
(see Section 11 for additional details); a priority aging
technique (see Section 4.22 for additional details); a pre-
execution volume fetch facility (see Section 11 for additional
details); and various other functional enhancements.

® RESOURCE REDUCTION - Because of the dynamic direct-access

allocation techniques utilized by HASP, installations may, in
general, reduce the number of direct-access volumes required

Introduction - Page 1.0-1

HASP

for SPOOLing functions as compared with a non-HASP SYSTEM.
The size of the 0S SYS1.SYSJOBQE data set may also be
reduced since all job queueing is performed by HASP. -

Certain installations may actually reduce system main storage
requirements (increase problem program space available) by
adding HASP to their system because of the 0S functions
replaced by HASP. In any case, the space required for the
HASP partition or region will be at least partially compen-
sated for by the elimination of duplicate functions.

° LOW-ENTRY, HIGH-PERFORMANCE REMOTE JOB ENTRY - For a nominal
increase in the size of HASP, an installation can utilize the
HASP RJE support for a wide variety of workstation devices.
Support for Binary-Synchronous, CPU workstations employs an
advanced technique called MULTI-LEAVING which provides for
simultaneous operation of all devices on a remote workstation.
A subset of the HASP operator command language is provided to
all remote sites. Workstation programs are supplied for all

supported CPU workstations. (See Section 12.11 for addition-
al details.)
) TRANSPARENT OPERATIONS - HASP is, in general, transparent to

both the Operating System and to user programs. Although

a special SYSGEN is required, no actual modifications to OS
are required to utilize HASP. Thus, the same generation of
OS may be interchangeably used with or without HASP. Because
of this transparency, HASP is generally independent of the

0S release level or options selected and can be used as a
stable base for local modifications to customize for local
operational requirements.

Most standard jobs which operate under OS can be run with
absolutely no change in a HASP environment. Most installations
can, therefore, implement HASP with little or no changes to
current user programs.

Introduction - Page 1.0-2

HASTP

2.0 GENERAL DESCRIPTION

HASP is a specialized program which operates in the same CPU
with 0S/360 to perform the perlpheral functions assoc1ated with
batch job processing.

HASP is loaded as a normal 0S/360 program and upon gaining
control enters the supervisor mode via a special SVC routine.
Control of all on-line unit record devices is assumed, the
designated intermediate storage direct-access device(s) are
initialized and job processing begins. The basic interface be-
tween HASP and 0S/360 is through the Input-Output Supervisor (IOS).
The entry point of IOS is modified so that Input-Output requests
to unit record devices are diverted to HASP rather than being
physically executed by IOS. Jobs which have been previously read
from physical input devices by HASP can now be passed to OS by
simulating a successful completion of the intercepted I/O request.
In a similar manner, print and punch output from jobs being pro-
cessed by 0S/360 can be intercepted and queued on intermediate
storage for later transcription to unit record devices.

HASP has four major processing stages which account for its four
major external functions. These are:

1. INPUT STAGE - This stage reads Jjobs simultaneously from an
essentially unlimited number of various types of on-line
card readers, tapes and remote terminals into the system.
These jobs are then entered into a priority queue by job
class to await processing by the next stage.

2. EXECUTION STAGE - This stage removes jobs based upon priority
and class from the queue established by the Input stage and
passes those jobs to 0S/360 for processing. Input cards are
supplied as required to the executing program and print and
punch records are received and written onto HASP intermediate
storage. This stage can simultaneously control an essentially
unlimited number of jobs being processed by 0S/360. At the
completion of a job, it is placed in a queue to await pro-
cessing by the next stage.

3. PRINT STAGE - The purpose of this stage is to transcribe the
printed output generated by jobs in the previous stage to
printers. An essentially unlimited number of various types
of printers and remote terminals can be operated simultaneously.

4. PUNCH STAGE - This stage transcribes the punch output generated
by jobs in the execution phase to punches. An essentially
unlimited number of various types of punches and remote
terminals can be operated simultaneously.

General Description - Page 2.0-1

HASP

All of the these processes are controlled by re-entrable code
so that no additional code is required to support multiple,
simultaneous functions. Since all of the above functions can
occur simultaneously and asynchronously, a continuous flow of
jobs may pass through the system.

Following are some of the more significant algorithms employed
by HASP to improve function and performance:

) SPECIALIZED DIRECT-ACCESS STORAGE ALLOCATION

HASP, through the use of an allocation bit map in main
storage, dynamically allocates space for intermediate
storage on a record basis, within definable track groups,
for jobs. The use of this technique offers the following
advantages:

1. Disk-arm motion and interference is minimized by
dynamically allocating space based upon the position
of the access mechanism.

2. Disk area fragmentation is automatically eliminated
by allocation of the smallest possible increment of
space.

3. The data for a single data set can be spread across

multiple direct-access volumes. In addition to further
optimizing arm motion, this capability allows for the
simultaneous use of multiple selector channels to
increase the data rate for a given job.

4. Since space is allocated only when required, there
will be no unused space as a result of over estimated
output requirements. ‘

5. The release of previously used space is accomplished
by a simple algorithm which requires no I/O operations.

° UNIT RECORD DEVICE COMMAND CHAINING

While operating any reader, printer or punch, rather than
handling each record separately, HASP constructs a chained
sequence of channel command words to pass to the channel.
Thus, instead of the overhead of an EXCP and the ensuing
interrupts for each record transmitted, only one EXCP and
associated interrupt is required for a series of records.
For example, when reading a job into the system, HASP might
chain 40 commands together to instruct a card reader. This

General Description - Page 2.0-2

HASP

would cause the next 40 cards to be read into memory without
requiring the execution of any CPU instructions.

® TRANSPARENT BLOCKING

All input, print and punch for every job is automatically
blocked by HASP to improve performance. Since all deblocking
is also done by HASP, any program even if designed to operate
with unblocked records can benefit from the blocking. Also,
because all blocking and deblocking is done by HASP, problem
programs require buffers only the size of a single card or
line. This can reduce a program's partition or region require-
ment by several thousand bytes over normal full track blocking.

® DYNAMIC BUFFER POOL

HASP maintains a dynamic area of memory which is allocated as
required. This technique allows not only multiple data sets
of a job, but multiple jobs to share this area, thereby
insuring optimum use of storage.

® EXECUTION TASK MONITOR

A significant item contributing to system performance is the
correct ordering of dispatching priorities of jobs in rela-
tion to their CPU-I/O utilization ratios. It is obviously
straightforward to manually set the dispatching priorities
of two jobs, one of which is completely I/O-bound and the
other completely CPU-bound. It becomes more difficult to
determine relative priorities of multiple jobs with varying
degrees of CPU-I/O ratios and impossible to determine prior-
ites for multiple jobs which constantly change from CPU to
I/0 bound or vice versa.

HASP provides a feature which, at frequent intervals, examines
each eligible job and dynamically re-orders the 0OS dispatching
chain based upon the measured CPU-1/0 characteristics of the
jobs during the previous interval. This capability relieves
an installation of the responsibility of attempting to assign
job dispatching priorities while insuring the optimum ordering
of jobs being processed by the Operating System.

General Description - Page 2.0-3

HASP

(The remainder of this page intentionally left blank.)

HASP

3.0 HASP STRUCTURE

The primary goal in the design of any execution support system such
as HASP must be the efficient manipulation of the varioﬁs resources
required for processing. The first design steps must then include the
determination of what resources will be required and the careful application
of sound programming design techniques to achieve an efficient and
consistent solution to the a‘llocation of these resources.

A study would reveal that HASP requires the following resources:

1. Main Storage

2. Direct-Access Space

3. Input/Output Units

4. Central Processing Unit Time

5. Input/Output Channel and Unit Time
6. Programs

7. Jobs

8. Interval Timer

Since these resources are essentially the basic facilities provided by
thé Operating System, it would at first seem that these facilities would
be sufficient to meet the requirements of HASP. Further studies show,
hoWever, that the philosophies of the Operating System's services are not

always consistent with the design requirements of a system such as HASP.

HASP Structure - Page 3.0-1

HASP

For instance, the main storage services provided by the Operating
System are very flexible and comprehensive but fail to meet the require-
ments of HASP in the following areas:

° As requests for main storage are serviced, memory becomes
fragmented in such a way that eventually a request for
storage cannot be serviced for lack of contiguous memory
even though the total amount of storage available far

exceeds the requested quantity.

° As the amount of available storage decreases, the
requestor becomes more susceptible to being placed in
an OS WAIT state or being ABENDed. These conditions are

both intolerable to HASP.

°® The primary use of main storage in HASP is for buffering
space for input/output purposes. These input/output pur-
poses require that an Input/Output Block be associated
with each segment of main storage which the Operating
System Main Storage Supervisor, only naturally, does not
provide. This means that HASP would have to construct

such a block for each main storage segment it required.

HASP Structure —Page 3.0-2

HASP

In a similar fashion the Direct-Access Device Space Manager
(DADSM) provides flexible and comprehensive services for normal
job processing requirements but fails to meet the requirements of
HASP in the following areas:

° Because of the data set concept employed by DADSM,

the "hashing" or "fragmentation" problerﬁ described
above also impacts the allocation of direct-access

space.

® The data set concept complicates the simultaneous
allocation of storage across many volumes (for

selector channel overlap).

° The DADSM limit of extents per volume tends to cause
volume switching, and the associated time delays are

intolerable to HASP.

o DADSM consists of non-resident routines which must
be loaded for each direct-access space allocation
service., Because of the frequent allocation requirements,
the associated overhead involved in the loading of these
routines would degrade the performance of HASP to a

certain extent.

HASP Structure - Page 3.0-3

HASP

Since the unit-record input/output unité which the scheduler
allocates to the jobs being processed in other partitions must be
available for use by HASP, HASP must be responsible for the allo-
cation of its own input/output units.

The Operating System Task Supervisor is responsible for the
allocation of Central Processing Unit (CPU) time to all tasks in the
system. The different functions of HASP (reading cards, printing,
punching, etc.) could be defined as individual OS tasks except

for the follbwing considerations:

° Defining each function as a separate task would
prohibit HASP from being used with anything other

than a variable-task system.

[] Inter-task communication and synchronization is
many times more complex than intra-task commu-

nication and synchronization.

The Operating System Input/Output Supervisor is responsible
for the allocation of all input/output channel and unit time. It
completely meets all requirements and is used by HASP for all

input/output scheduling.

HASP Structure - Page 3.0-4

HASP

The Operating System Interval Timer Supervisor provides complete
interval timer management services but limits these services to one
user per task. Since HASP has many functions which have simultaneous
interval timer requirements, an interface must be provided‘ which will
grant unlimited access to the OS Interval Timer Supervisor.

The following sections describe, in detail, the allocation techniques
and algorithms used in HASP to provide the allocation of the resources

listed above.

HASP Structure - Page 3.0-5

11

HASP

3.1 ALLOCATION OF MAIN STORAGE

The main storage requirements of HASP are as follows:

o Storage space for buffering card images and print lines
between intermediate direct-access storage devices
and unit-record devices.

° Storage space for normally non-resident control tables
during times when they are resident in main storage.

° Storage for console messages which have been queued
for output to or input from one or more operator consoles.

° Storage for elements which reflect the status of all jobs
which are queued for any stage of processing by HASP.

°® Storage space for non-resident pfocessing routines (over-

lays) during times when they are in main storage.

The HASP Buffer Pool

The first two requirements for main storage are provided for by the

HASP Buffer Pool, a group of buffers with the following basic format:

Allocation of Main Storage - Page 3.1-1

12

HASP

Input/OQutput
Block
(IOB)

buffer control
information

buffer
work
space

Figure 3.1.1 - The HASP Buffer

Since the use of this buffer always involves some input/output
activity, a standard Operating System Input/Output Block (IOB) is pro-
vided with each buffer for the purpose of being used to initiate this
input/output activity.

The "buffer control information" area is an extension of the IOB used
by HASP for input/output synchronization.

The "buffer work space" is a fixed-length (set by HASPGEN) area into
which data is read and/or out of which data is written.

In addition to a fixed number of buffers (set in accordance with region
or partition size)_ , the buffer pool contains a one-word control field called

the Buffer Pool Control Block which contains the address of the first avail-

able buffer in the buffer pool. Each available buffer contains the address

Allocation of Main Storage - Page 3.1-2

13

HASP

of the next available buffer with the last available buffer containing a
zero address. If no buffers are available, the Buffer Pool Control
Block contains zero.

The above technique is called "chaining," the buffers are said
to be "chained," and the field containing the address of the next
element in the chain is referred to as the "chain field." Chaining
is used throughout HASP for the maintenance of resources.

To obtain an available buffer from the buffer pool, the Buffer Pool
Control Block is tested for an available buffer. If one exists it is
removed from the available chain by moving its chain address into the
pool control block.

To release a buffer to the available chain, the contents of the
pool control block are moved to the chain field of the buffer, and the

address of the buffer is placed in the pool control block.

The Console Message Buffer Pool

The third requirement for main storage is provided for by the
Console Message Buffer Pool. This buffer pool is organized similarly
to the HASP Buffer Pool except for the format of the buffers which is

as follows:

Allocation of Main Storage - Page 3.1-3
14

HASP

chain field

work
space
7

Figure 3.1.2 — The Console Message Buffer

Since IOB's are provided for each console, it is not necessary to
provide such a control block with each buffer, |

The length of the work space is consistent with the maximum
length of a console message.

Buffers in this buffer pool are obtained and released by exactly

the same procedure used in the HASP Buffer Pool.

The HASP Job Queue

The fourth requirement is provided for by the HASP Job Queue.

For more information about this facility see section 3.6.

Allocation of Main Storage - Page 3.1-4

15

The HASP Overlay Area Pool

The HASP Overlay Area is similar to the HASP Buffer in format;
however, the size of the "work space" is set to accommodate the
largest non-resident HASP control-section (CSECT). Although the
fixed number of overlay areas (set by HASPGEN) are chained together,
control fields indicate the area status and contents for the purpose
of sharing areas containing the same CSECT or for selecting an area

to overlay with a new CSECT.

Allocation of Maih Storage - Page 3.1-5

16

HASP

3.2 ALLOCATION OF DIRECT-ACCESS SPACE

The direct-access allocation technique employed by HASP must
meet the following requirements:

It must use a minimum of CPU time.
It must not use an excessive amount of main storage.

It must not be susceptible to the "hashing" or
"fragmentation" problem.

It must be capable of allocating for any direct-access
device which is supported by Operating System/360.

It must be device transparent to the user.

It must be consistent with the checkpoint/restart
technique used by HASP.

The HASP Track Address

The standard Operating System track address is defined to be an
eight-byte field with the following format:

where:

M = Module
BB = Bin

cc = Cylinder
HH = Head

R = Record

Figure 3.2.1 - The Operating System Track Address Format

For the purpose of HASP, this track address can be reduced to a
four-byte field with the following format:

M = Module (DEB extent number)
TT = True Track Number
R = Record

Figure 3.2.2 - The HASP Track Address Format

Allocation of Direct-Access Space - Page 3.2-1

17

HASP

The reduction in the length of the track address permits it to
be kept in a single word of storage or in a general purpose
register simplifying the handling of the track address.

The HASP Master Track Group Map

The HASP Master Track Group Map is a table which represents the
sum total of all track groups or logical cylinders available on
all HASP direct-access SPOOL volumes. (A track group contains
one or more tracks which are considered a single resource.)
Each bit in the HASP Master Track Group Map represents a single
track group on one direct-access volume. If the bit is one, it
indicates that the corresponding logical cylinder is available
for allocation; if the bit is zero, the logical cylinder is not
available to HASP or has already been allocated by HASP.

The HASP Job Track Group Map

The HASP Job Track Group Map is identical to the HASP Master Track
Group Map except that one word has been added to the front to save
the last track address which was allocated to the particular job
with which the map is associated. The bits in the Job Track Group
Map represent the same track groups as the bits in the Master Track
Group Map except that a one bit indicates that the respective track
group has been allocated to the associated job and a zero lndlcates
that the group has not been allocated to the job.

last track address

track group

Figure 3.2.3 - The HASP Job Track Group
Two Job Track Group Maps are associated with each job. One repre-
sents the track groups used to contain the input data (SYSIN),

and the other represents the groups used to contain the output
data (SYSPRINT and SYSPUNCH) .

Allocation of Direct-Access Space - Page 3.2-2

18 -

HASP

Direct-Access Space Allocation Procedures

When the direct-access space allocation subroutine is entered, it
first examines the first four bytes of the appropriate Job Track
Group Map to determine if a new track group is required. A new
group is required whenever no tracks have been allocated to this
job (the last track address is zero) or if all of the tracks in
the last group allocated have been used.

If a new track group is not required, the record or head field of
the last track address is incremented to provide a new track
address.

If a new track group must be allocated, the Master Track Group

Map is scanned for an available group. When the next group to

be allocated is determined, the appropriate bit in the Master Track
Group Map is set to zero, and the corresponding bit in the Job
Track Group Map is set to one. A track address is then constructed
to represent the first track in the new group, and this track
address is saved in the first four bytes of the Job Track Group Map.

When any direct-access input/output operation is initiated by HASP,
the HASP I/O interface saves the cylinder which was referenced

by module. When a new track group must be allocated, the allo-
cation routine first tries to allocate a group corresponding to

the last cylinder referenced on each module. If these groups are
not available, the routine attempts to allocate within one cylinder
of the last references. If track groups within these cylinders are
not available, the routine tries to allocate a group within two
cylinders, and so on, until the entire track group map has been
examined.

Direct-Access Space De-Allocation Procedure

To de-allocate the direct-access space allocated to a particular
function, it is necessary only to "OR" the track group map portion
of the Job Track Group Map associated with the particular function
into the Master Track Group Map. This will reset to one all bits
in the Master Track Group Map which correspond to the track groups
which have been allocated to the particular function.

Allocation of Direct-Access Space - Page 3.2-3

19

HASP

3.3 ALLOCATION OF INPUT/OUTPUT UNITS

The HASP Device Control Table (DCT) is used by HASP to allocate

all input/output units. It has the following basic format:

status

device type

other
control
information

device name

work
space

Figure 3.3.1 — The HASP Device Control Table (DCT)

The "status" field is used to indicate whether the device is available
and whether it is in use.

The "device type" field specifies wheth,er‘ this DCT represents a card
~ reader, printer, punch, or other type of I/0 device.

The "other control information" field contains such information as
the Data Control Block (DCB) ‘address, the chain address, indications of

operator commands, and other fields for synchronization purposes.

Allocation of Input/Output Units - Page 3.3-1

20

HASP

The "device name" field contains an eight-byte EBCDIC device
name (such as READER1) which is primarily used for console fnessages.

The "work space" is a device dependent area used by some devices
for extended control of the device.

All DCT's are chained together for allocation purposes. They are
initialized by the HASP initialization phase if the associated devices
are attached to the system.

Input/Output Device allocation consists of "running" the. DCT
chain and looking for a DCT of the specified type which is available
and which has not been allocated. If one is found, the "in use" bit
is set to one to indicate that the device has been aliocated.

De-allocation consists of setting the "in use" bit to zero.

The Device Control Table is also used as a parameter list whenever

Input/Output activity is initiated through the HASP I/O interface.

Allocation of Input/Output Units - Page 3.3-2
21

HASP

3.4 ALLOCATION OF CENTRAL PROCESSING UNIT TIME

The Operating System controls the allocation of Central Processing
Unit (CPU) time to different tasks through the means of a Task Control
Block (TCB) chain. In a similar fashion, HASP controls the allocation
of CPU time to the different functions within HASP through the means
of a Processor Control Element (PCE) chain. The basic format of the

Processor Control Element is as follows:

oS
save
area

event wait field

chain field

processor
work
space

Figure 3.4.1 — HASP Processor Control Element (PCE)

Whenever a particular function is being processed, general purpose
register 13 always contains the address of the Processor Control Element
which is allocating the time to that function. For this reason the first

eighteen words of the PCE are a standard OS register save area.

Allocation of Central Processing Unit Time - Page 3.4-1

22

HASP

The "event wait field" is a two-byte field which describes the
dispatchability of the function under the control of this PCE. If this
field is zero, the function is dispatchable. If this field is non-zero,
the function is not dispatchable and the bit which is one specifies
upon what event the function is "waiting".

The "chain field" contains the address of the next PCE in the PCE
chain,

The "processor work space" is a variable length area which is used
by the program processing the function as a scratch area.

HASP searches the PCE chain looking for a PCE which is dispatchable.
When a dispatchable PCE is located, the general purpose registers are
loaded from the PCE/OS save area and control is passed to the location
specified in register 15.

When control is returned to the dispatching program, the general pur-
pose registers are saved in the PCE and the search for dispatchable PCEs
continues. If a notable event occurred since fhe last PCE dispatch such
as the freeing of a common resource or the "posting" of a specific event,

' the search starts at the beginning of the PCE chain; otherwise, it starts
with the PCE following the last dispatched. The program rétuming control
to the dispatching program must set the return address in register 15 béfore
returning.

When no PCEs are found to be dispatchable, the HASP task enters an
OS WAIT state to allow the Op.erating System to allocate CPU time to other

tasks,

Allocation of Central Processing Unit Time - Page 3.4-2

23

HASP

3.5 ALLOCATION OF PROGRAMS

The programs of which HASP is composed can be divided into

the following classifications:

° The Dispatcher

® Processors

° Control Service Programs
° Miscellaneous Programs

The Dispatcher is the dispa‘tching program described in Section
3.4. Its function is to distribute CPU time among the various processors
described below.,

Processors are programs which control‘the execution of various HASP
functions such as reading cards, printing, punching, etc. kWith each
processor is always associated at least one Processor Control Element
which c.auses‘ the dispatcher to give control to the processor and allows
the processor to synchronize with various HASP events. The PCE work
space also permits the processors to be written re-enterably such that by
defining more than one PCE for a given processor, the processor can control
an essentially unlimited number of functions simultaneously. For instance,
by defining ten ‘PCEs for the Print Processor, up to tén printers can be ser-
viced simultaneously utilizing and reoiuiring only one copy of the processing

program.

Allocation of Programs - Page 3.5-1
24 |

HASP

The Control‘ Service Programs are subroutines used by the processors
in accomplishing their functions. By using the PCE/OS save area, the
control service programs can maintain the re-enterability of the
processors.

Miscellaneous Programs are those special purpose programs which
do not fall into any of the other three categories’, such as the HASP
Initialization Program. They are executed only once and}need not be

considered in the normal HASP job flow.

Allocation of Programs - Page 3.5-2

25

HASP

3.6 ALLOCATION OF JOBS

HASP maintains its job pointers in the HASP Job Queue, a table of

elements with the following basic format:

priority

type

job number

chain address

JCT track

Figure 3.6.1 — The HASP Job Queue Element

The "priority" represents the dynamic priority of the job within the
HASP system.

The "type" represents the function for which the element is queued
or the function in which the job is currently being processed.

The "job humber" is the number sequentially assigned to each job
by HASP as it enters the system.

The "chain address"” is the address of the next element in the chain.

Allocation of Jobs -~ Page 3.6-1

26

HASP

The "JCT track" is the track address of the HASP Job Control Table
described below.

Two chains are maintained in the Job Queue. The first chain
represents those jobs which are currently awaiting processing or being
processed. Elements in this chain are chained in the order of their
priority. The second chain represents the inactive or unused gqueue
elements.

To add a job to the job queue, a queue element is obtained from
the inactive chain, initialized With the information shown in figure
3.6.1, and inserted into the active chain accordinqto its priority.

To obtain a job from the job queue, the active chain is searched
for an element of the specified type. When found, the "type" field is
modified to reflect the fact that the job is now being processed.

To return a job to the job queue, the element is moved from the
active chain to the inactive chain. Since the priority is of no concern

here, the element is placed at the head of the chain.

The HASP Job Control Table (JCT)

The HASP Job Control Tablé contains all of the information necessary

to process the associated job in the following basic format:

Allocation of Jobs - Page 3.6-2

27

HASP

data from
JOB Card

accounting
information

first input track

input job
track group map

output job
track group map

work space

output data
set tracks

Figure 3.6.2 - The HASP Job Control Table (JCT)

The HASP Job Control Table is normally resident on a direct-access
intermediate storage device. Once the HASP Job Queue Element is
obtained, the "]CT track" in the element can be used to initiate a read
into a HASP Buffer. Once this read has been completed, all information

necessary to process the job can then be obtained.

Allocation of Jobs ~ Page 3.6-3

28

HASP

3.7 ALLOCATION OF OVERLAY AREAS AND NON-RESIDENT CONTROL SECTIONS

Portions of the various programs of which HASP is composed are
organized into non-resident control sections (CSECTs) and stored
in an overlay library (OLAYLIB) on a direct-access volume. These
control sections contain HASP re-entrant subroutines and/or data
which may be requested for use by a Processor.

The user obtains an Overlay Area by requesting from the overlay
control service program for use of a non-resident CSECT. If the
CSECT requested is in main storage, the user is allowed to use

the Overlay Area for processing. If, however, the CSECT is not
already in an area, an area must be selected to hold the requested
CSECT. The requesting Processor is made to "wait" until the
requested CSECT is read from direct-access into main storage.

The algorithms for Overlay Area allocation cause multiple users

of the same CSECT to use only one area, into which that CSECT is
read. Competition for areas is resolved partially by the priority
associated with each overlay CSECT. However, a "pre-empting"
(roll) algorithm prevents any Processor from being indefinitely
delayed, even if the system has only one Overlay Area.

The user releases an Overlay Area by requesting that overlay
services remove his PCE from association with the area.

Allocation of Overlay Areas - Page 3.7-1

HASP

(The remainder of this page intentionally left biank.)

30

HASP

4.0 HASP PROCESSORS

This section contains detailed internal information about each of

the HASP Processors and is intended primarily for use by system
programmers.

HASP Processors -- Page 4.0-1

31

HASP

4.1 INPUT SERVICE PROCESSOR

-

4.1.1 INPUT SERVICE PROCESSOR - GENERAL DESCRIPTION

The functions of the Input Service Processor are as follows:
. To read card images from an input device.

. To detect and scan JOB cards, extracting parameters for

job accounting, job control, and print and punch identi-
fication.

. To detect and process other control cards such as the
PRIORITY, MESSAGE, ROUTE, SETUP, COMMAND, DD*, and DD
DATA cards.

. To assign a unique HASP job number to each job.
. To log jobs into the HASP System.

. To assign job priority based upon PRIORITY card or JOB
card parameters.

. To generate, from cards read, a JCL file and input data
files, and to record these files on direct-access storage
device(s) for later use by the Execution Control Processor
(see Section 4.2).

. To generate HASP Job Control Tables, Job Queue Entries,
and other HASP control blocks required for later job proces-
sing.

. To queue jobs for processing by the Execution Control
Processor. :

The Input Service Processor is coded re-enterably in such a
way that it can accept jobs from a number of different input
devices (with different hardware characteristics) simultane-
ously. The re-enterability is attained by retaining all
storage unique to a job in the Processor Control Element

(see figure 4.1.1) which must be unique for each input device.

4.1.2 INPUT SERVICE PROCESSOR - PROGRAM LOGIC

The Input Service Processor is divided into three phases, 13
subroutines, and three non-process exits. This section will
give a functional description of each of these phases, sub-

routines, and exits to aid the System Programmer in gaining

a working knowledge of the processor.

Input Service Processor - Page 4.1-1

32

HASP

PHASES

Phase 1 - Processor Initialization

The Initialization Phase, which is written as an overlay seg-
ment, begins by attempting to acquire an input device. If

no input device is available, the processor is placed in a
HASP SWAIT state until a device is made available; whereupon
the entire procedure is repeated until an input device is
available. Upon acquiring an available input device the
processor continues by acquiring a Device Control Table (DCT)
for the direct-access device(s) and a HASP buffer for use as
an input buffer.

If the input device is not a remote terminal, a chain of
Channel Control Words (CCW's) is then constructed in the
input buffer which will be used to read 80-byte records from
the input device into the rest of the input buffer.. These
CCWs are constructed in such a way that the input records
will be read into adjacent areas in the input buffer with as
many cards being read as the buffer will hold. The initiali-
zation of the PCE Work Area is then completed and control is
transferred to Phase 2.

If the input device is a remote terminal, transmission is
initiated by calling upon the Remote Terminal Access Method
to open the Remote Terminal Device Control Table. Control
is then passed to Phase 2.

Phase 2 -~ Main Processor

The Main Processor Phase reads cards from the input device,
scans each card to detect HASP control cards and processes
these cards as follows:

/*control card--The control card scan routine (HASPRCCS) is
called to process the control card and take any appropriate
action.

Job Card--The JOB card scan routine (HASPRJCS) is called to
terminate the previous job (if any), to scan the JOB Card,
and to initialize the PCE work area for the processing of
the following job.

DD* or DD DATA--A track address is obtained for the first
data block of the input data set. A dummy card is added to
the JCL file which contains the track address in columns 1-4.

Input Service Processor - Page 4.1-2

33

HASP

This card is differentiated from other cards by setting the
control byte (see figure 8.15.1). The DD* or DD DATA state-
ment is then added to the JCL file in normal fashion. Control
is subsequently turned back to the main processor to process
the input data.

When a hardware end-of-file is detected on the input device,
or when "$DRAIN input device" command is entered by the opera-
tor, control is given to Phase 3.

Phase 3 - Processor Termination

Upon receiving control from the Main Processor, the Processor
Termination Phase, which is written as an overlay segment,
terminates the last job (if any), issues a rewind and unload
command to the input device if it is tape, frees the input
buffer, closes the input DCT if it is a Remote Device, releases

the input and direct-access devices, and returns control to
Phase 1.

SUBROUTINES

HASPRCCS -- Subroutine to Process HASP /* Control Cards

The HASPRCCS subroutine, which is written as an overlay seg-
ment, is called whenever the Main Processor Phase encounters
a /* control card. The control card type is first determined
and then processing continues as follows:

/*COMMAND Card -- The command is listed on the opera-
tor's console and then added to the Command Processor's
input command queue.

/*PRIORITY Card =-- The previous job (if any) is termina-
ted, the priority specified is converted to binary and
saved, and the scan is continued with the next card.

If the following card is not a JOB card, the message,
"device SKIPPING FOR JOB CARD", is written on the
operator's console, the effect of the /*PRIORITY Card

is nullified, and the input stream is scanned for
another /*PRIORITY or JOB card.

/*ROUTE Card -- The appropriate routing byte is set to

the value associated with the destination indicated.

If an invalid field is encountered, an appropriate mes-
sage is issued, both to the operator and to the programmer,
and further Job processing is bypassed.

Input Service Processor - Page 4.1-3

34

HASP

/*SETUP Card -- The volumes to be mounted are listed on
the operator's console and the job is placed in "hold"
status.

/*MESSAGE Card -- Leading and trailing blanks are remcved

and the message is routed to the operator's console.

If the control card type is not recognized, the card is ignored
and treated like any other /* card.

HASPRJCS~--Subroutine to Scan and Initialize Job Control Information

The HASPRJICS subroutine, which is written as an overlay segment,
is called whenever the Main Processor Phase encounters a JOB card.
The previous job (if any) is terminated by calling the RJOBEND
subroutine. The master job number is incremented and its new
value is assigned to the current job. The job control informa-
tion in the PCE Work Area (see figure 4.1.1) is initialized by
scanning the JOB card and extracting parameters relative to job
control. The first JCL block is initiated, and control is passed
to the Job Initialization Subroutine: HASPRJBI.

RSCAN - RSCANA -- Subroutine to Scan Parameters from JOB Card

This subroutine has two entry points; the entry point: "RSCAN"

is used to scan numeric parameters from the JOB card, while the
entry point: "RSCANA" is used to scan alphameric parameters from
the JOB card. There are also two returns from the subroutine.

If return is made to the first byte following the Branch and Link
(the call) instruction, it indicates that the final parameter on
the JOB card was returned on the previous call and that there are
no more parameters., If return is made to the fourth byte follow-
ing the Branch and Link instruction, it indicates that parameter
register "R1" contains the next parameter, right—-adjusted with
leading binary zerces. If the parameter was a "null" parameter,
"R1" will be zero. If this subroutine detects an illegal char-
acter (such as a non-numeric character in a numeric field) or
more than four characters in a parameter, control is transferred
to the RBADJOBC subroutine.

RCONTNUE =-- Subroutine to Validate Continuation Cards

This subroutine validates JCL continuation cards by ensuring
that columns 1 and 2 are punched with slashes and that column 3
is blank. The start of the continuation card is located and

Input Service Processor - Page 4.1-4

35

HASTP

control is returned to the caller. If an invalid continuation
card is discovered, control is passed to the illegal job card
subroutine for further processing.

REBCDBIN -- Subroutine to Convert from EBCDIC to Binary

This subroutine expects to find numeric EBCDIC characters with
leading binary zeroes in parameter register "R1l". There are

two returns from the subroutine. If return is made to the

first byte following the Branch and Link (the call) instruction,
it indicates that the parameter register now contains the binary
equivalent of the EBCDIC input. If return is made to the fourth
byte following the Branch and Link instruction, it indicates
that the parameter register was zero (null parameter) and con-
tained no EBCDIC to translate.

HASPRJBI -- Subroutine to Initialize Job Processing

This subroutine, which is written as an overlay segment, re-
ceives control from the JOB Card Scan Routine (HASPRJCS) and
completes the initialization of the various control blocks for
input job processing. A "job on" message is issued to the
operator, the job's priority is assigned based upon JOB card

or /*PRIORITY card parameters, and the job is queued in the
active input queue. Control is then returned to the Main Proces-
sor Phase.

RBADJOBC -- HASPRIJC -- Subroutine to Process Illegal Job Cards

This subroutine notifies the operator of an illegal JOB card,
calls the subroutine: "RJOBKILL" to delete the job, and returns
control to the Main Processor Phase.

RJOBEND -- Subroutine to Complete Job Input Processing

This subroutine tests whether the Input Processor is currently
processing a job, and if it is not, returns control immediately.
The RJOBTERM subroutine is called to terminate the input proces-
sing of the job, and the job is queued for the Execution Control
Processor in the logical queue associated with the job's JOB
CLASS. Control is then returned to the calling program.

Input Service Processor - Page 4.1-5

36

HASP

RGET -- Subroutine to Get Next Card from Input Buffer

This subroutine returns the address of the next card to be pro-
cessed by the Input Service Processor in register "RPI". If

the input buffer is empty or if all the cards in the input
buffer have been processed, an 1I0S read is staged from the input
device and the subroutine places the processor in a HASP S$WAIT
state until the input buffer has been filled. If the input
device is a remote terminal, a "call" is made on the Remote
Terminal Access Method to procure the next card. If a permanent
error is detected on the input device, no action is taken until
after the last card has been processed and then the JOB currently
being processed is deleted with appropriate comments to the oper-
ator. Processing then continues by scanning the input stream

for the next JOB card.

This subroutine also processes the operator commands "$STOP
input device" and "$DELETE input device" by entering the HASP
SWAIT state and calling the subroutine RJOBKILL to delete the
job, respectively.

There are two returns from the subroutine. If return is made
to the first byte following the Branch and Link (the call) in-
struction, it indicates that the last card has been processed
and that an end-of-file has been sensed on the input device.
If return is made to the fourth byte following the Branch and
Link, it indicates that register "RPI" contains the address of
the next card.

RPUT -- RPUTOLAY -- Subroutine to Add Card to Output Buffer

This subroutine accepts 80-byte card images and blocks them
into standard HASP Data Blocks (see section 8.15). If the cur-
rent output buffer is full, it is truncated and scheduled for
output, and a new HASP buffer is acquired and used as the next
output buffer. If no output buffer exists upon entry, it indi-
cates that the processor is skipping for a JOB card and the
subroutine returns without taking any action.

RJOBKILL -- Subroutine to Delete Current Job

This subroutine tests whether the input processor is currently
processing a job, and if it is not, returns control immediately.
If a job is being processed, the operator is notified that the
job. is being deleted, the RJOBTERM subroutine is called to termi-
nate the input processing of the job, and the job is placed in
the Print Processor Queue for subsequent proce351ng. " Control is
then returned to the calling program.

Input Service Processor - Page 4.1-6

37

HASP

RJOBTERM;-- Subroutine to Terminate Job

This subroutine terminates the last output buffer and schedules
it for output. It then acquires a HASP buffer, and from infor-
mation kept in the PCE Work Area (see figure 4.1.1) constructs
the Job Control Table (JCT) and schedules it for output. Con-
trol is then returned to the calling program.

RGETBUF -- Subroutine to Initialize Output Buffers

This subroutine acquires a HASP buffer for an output buffer and
returns with the address of the buffer in register "R1".

NON-PROCESS EXITS

The following routines are used to put the Input Service Proces-
sor in a HASP S$WAIT state if a HASP resource is not available.
In all cases Reader Link Register 2 ("RL2") must have been set
to the restart address before the routine is entered.

. RNOUNIT -- A HASP Unit was not available.

. RNOCMB -- A HASP Console Message Buffer was not available.

. RNOJOB =-- The HASP Job Queue was full and a new entry
could not be added.

When the respective resource is available, the processor is
$POSTed and another attempt is made to acquire the resource.

Input Service Processor - Page 4.1-7

38

HASP

Figure 4.1.1 -- INPUT SERVICE PCE WORK AREA FORMAT

Displacement

‘Hex. Dec.
58 88
s5c 92
60 96
64 100
68 104
6c 108
70 112
74 116
78 - 120
7C 124
80 128

""""""""""""""" 4 bytes =-me=mmcemmecmcccco— e
RDRDCT
RCARDID Address of Input Device Control Table
RDADCT
RDRSW bAddress of Direct-Access DCT
RBIEND
Address of Last Card in Input Buffer
RBONEXT

Address of Next Card in Output Buffer

RBOEND
Address of End of Output Buffer
RLSAVEL
Link Register Save Word 1
RLSAVE2
Link Register Save Word 2
RLSAVE3
Link Register Save Word 3
RSAVEL
General Purpose Save Word 1
RSAVE2

General Purpose Save Word 2

Input Service Processor - Page 4.1-8

39

HASP

‘Figure 4.1.1 -- INPUT SERVICE PCE WORK AREA FORMAT (CONTINUED)
Displacement
e e 4 bytes ~=m=mmemm——cem e >
~ Hex. Dec.
80 128 RJCLTRAK
Track Address of Next JCL Block
84 132 RMESSAGE
Ny Reader Message Are N
w\ g a AN
B8 184
B8 184 v RJOB 'Address of Job Queue Element T
RQUEPRI RQUETYPE RQUEJOBN Job Number
]
BC 188 RQUEFLAG RDRDLM E
Job Queue RESERVED Input Data Set Delimiter 4
Flags M
]
co 192 RQUETRK]
=)
Track Address of Job Control Table z
o
A "
C4 196 RQUEPRTR ' RQUEFORM
Print Route Punch Route Print/Punch
; RQUECLAS Poxmo
c8 200

Input Service Processor - Page 4.1-9

40

HASTP

Figure 4.1.1 -- INPUT SERVICE PCE WORK AREA FORMAT (CONTINUED)
Displacement
ittt bbbl Dbl 4 bytes -=~m-—mrmemcm— e -
Hex. Dec.
cs 200 RJCTJOBN RJCTPRIO RJCTROUT a
Job Number (Binary) Priority Input
Route Code
ccC 204 RJCTJUOBE RJCTPNAL
Job Number (EBCDIC) Programmer's
: Name Length
DO 208 RJCTPNAM
\E Programmer's Name from Job Card :#
1
-
m
E
E4 228 RJICTINAM .
o
0
&
Z
- Job Name from Job Card - S
m
o
)
:
EC 236 RJCTACTN =
Job Accounting Number
FO 240 RJCTROOM
Programmer's Room Number
F4 244 RJCTETIM
Estimated Execution Time
F8 248 RJCTCARD
Current Input Card Count
' |
FC 252

Input Service Processor - Page 4.1-10

41

HASP

Figure 4.1.1 -- INPUT SERVICE PCE WORK AREA FORMAT (CONTINUED)

Displacement
ittt Db LD D e Dl 4 bytes ---------m-s-ommee e >
Hex. Dec.
FC 252 RJUCTESTL [}
Estimated Lines of Output
100 256 RJCTESTP
Estimated Number of Cards to be Punched
104 260 RJCTLINC RJCTCPYC RJCTLOG RJCTDDCT
Lines Print Log Option
Per Page Copy Count - Switch RJCTFLAG
108 264 RJCTFORM 3
m
Job Print Forms &
=
o)
10c 268 &
, 2
Job Punch Forms O
)
8
110 272 RJCTRDRO oy
Reader Sign-On Time g
' a
114 276 RJCTRDRT
Track Address of First JCL Block
118 280 RJCTCYMX
Maximum MTTR for Current Track Group
11cC 284 RJUCTMTTR
Last MTTR Allocated
v
120 288

Input Service Processor - Page 4.1-11

42"

HASP

Figure 4.1.1 --

INPUT SERVICE PCE WORK AREA FORMAT (CONTINUED)

Displacement
it b b LD D DD b bt 4 bytes ---------memmemm e >
Hex. Dec.
120 288 RJCTCYMA *
B4
(8]
\K h
:F Variable Length Track Allocation Map \T %
5
[a}
RTPCARD
A L
~F 80-Byte Remote Job Entry Input Card Image Area ~

Input Service Processor -~ Page 4.1-12

43

HASP

Figure 4.1.1 -- INPUT SERVICE PCE WORK AREA FORMAT (CONTINUED)

Displacement

Field Name

Bytes Field Description

Hex.

58

58

5C

5C

60

64

68

6C

70

74

Dec.

88

88

92

92

96

100

104

108

112

1lle

RCARDID

RDRDCT

RDRSW

‘RDADCT

RBIEND
RBONEXT
RBOEND
RLSAVEL
RLSAVE2
RLSAVE3

1 Type of card being processed --

Hex.

Value

Meaning

00
03
04
13
19
73

Normal Card.

Internally Generated Card.
HASP Control Card.

Illegal Control Card.

Last JCL Card.

Dummy Track Address Record.

4 Address of Reader, Tape, Internal
Reader, or Remote Device Control Table.

1 Reader Switches --

Bit

Name

Meaning

0
1

[3S]

N oYU W

4 - Address

RJOBQUED
RSYSINSW

RXBJOBSW

ROSINSW
RJCLSW

-~ RDREOFSW
RNOSCAN
RJFLUSH

Table.

4 Address
4 Address

4 Address

Job has been Queued.
Processing Internally Gener-
ated DD * Card.

Processing XEQ Batch Class
Job. : :

Processing O/S Input Data Set.

Processing JCL.

End of File Indication.

Not Scanning JCL (DD DATA).

Job Flush Message has not
been issued.

of Direct-Access Device Control

of Last Card in Input Buffer.
of Next Card in Output Buffer.

of End of Output Buffer.

4 Link Register Save Word 1.

4 Link Register Save Word 2.

4 Link Register Save Word 3.

Input Service Processor - Page 4.1-13

44

HASP

Figure 4.1.1 -~ INPUT SERVICE PCE WORK AREA FORMAT (CONTINUED)

Displaéement Field Name Bytes Field Description
Hex. Dec.

78 120 RSAVEL 4 General Purpose Save Word 1.

7C 124 RSAVE2 4 General Purpose Save Word 2.

80 128 RJCLTRAK 4 Track Address of Next JCL Block.
84 132 RMESSAGE 52 Reader Message Area.

B8 184 RJOB 4 Address of Job Queue Element

(when Job has been Queued).
B8 184 RQUEPRI 1 Job Queue Priority (Before Queueing) ==

Bits 0-3 Priority (0-15).
Bits 4-7 Zero.

B9 185 " RQUETYPE 1 Job Class -~ X'80' (Before Queueing).

BA 186 RQUEJGBN 2 Job Number (Before Queueing).
BC 188 RQUEFLAG 1 =~ Job Queue Flags --
Bits Name Meaning

0 QUEHOLDL Job Held: TYPRUN=HOLD
: or Input Device Held.

-7 Reserved.
BD 189 ' : 1 Reserved.
BE 190 RDRDLM 2 Input Data Set Delimiter
co l§2 RQUETRK 4 Track Addresé of Job-Control Table.
c4 196 RQUEPRTR 1 Print Routing: 0 = Local.
’ ‘ ‘ n = Remote n.
C5 197 1 Punch Routing: O = Local.
n = Remote n.
c6 198 RQUECLAS 1 JobVClass - X'80' (After Queueing).
c6 198 RQUEFORM 2 Job Print Forms (Before Queueing) .
c8 200 RJCTJOBN 2 Job.Number (Binary) .
CA 202 RJCTPRIQO 1 Priority from /*PRIORITY Card.

Input Service Processor - Page 4.1-14

45

HASP

- A a A TATEEYT ATITIEIT AT TATY LIA Ifel0)
Figure 4.1.1 —- INPUT SERVICE PCC WCORX AREA PORMAT (CONTIMITED)

Displacement Field Name Bytes Field Description
Hex. Dec.

RJCTROUT

CB 203 1l Input Route Code: O = Locai.
n = Remote n.
cc 204 RJCTJOBE 3 Job Number (EBCDIC).
CF 207 RJCTPNAL 1 Programmer's Name Length.
DO 208 RJCTPNAM 20 Programmer's Name from Job Card.
E4 228 RJCTINAM 8 Job Name from Job Card.
EC 236 RJCTACTN 4 Job Accounting Number.
FO 240 RJCTROOM 4 Programmer's Room Number.
F4 244 RJICTETIM . 4 Estimated Execution Time.
F8 - 248 RJCTCARD 4 Current Input Card Count.
FC 252 RJCTESTL 4 Estimated Lines of Output.
100 256 RJCTESTP 4 Estimated Number of Cards to be Punched.
104 260 RJCTLINC 1 Lines per Page.
105 261 RJCTCPYC 1 Number of Copies of Print.
106 262 RJCTLOG 1 Log Option Switch.
107 263 RJCTDDCT 1 Count of Input Data Sets SPOOLed by HASP.
107 263 RJCTFLAG ’ 1 JCT Flags.
108 264 RJCTFORM 4 Job Print Forms.
10C 268 4 Job Punch Forms.
110 272 RJCTRDRO 4 Reader Sign-On Time.
114 276 RJCTRDRT 4 Track Addréss_of First JCL Block.
118 280 RJCTCYMX 4 Maximum MTTR for Current Track Group.
11¢C 284 4 Last MTTR Allocated.

RJCTMTTR

Inputbsérvice Processor - Page 4.1-15

46

HASP

Figure 4.1.1 -- INPUT SERVICE PCE WORK AREA FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

120 288 RJCTCYMA Variable Length Track Allocation Map.

RTPCARD 80 Remote Job Entry Input Card Image Area.

Input Service Processor - Page 4.1-16

A7

HASP

4.2 EXECUTION CONTROL PROCESSOR

4.2.1 Execution Control Processor — General Description

The Execution Control Processor is responsible for the interface
between HASP and OS/360. It presents jobs to the Operating System
for eXecution and communicates with the I/O supervisor to supply SYSIN
data for a job and to accept SYSPRINT and SYSPUNCH from a job for
later printing and punching.

This Processor is re-enterably coded and has the capability to
present any number of jobs‘ to OS/360 for simultaneous execution by
maintaining unique INPUT/OUTPUT streams for each job. All storage
unique to a job is retained in the Processor Control Element (see
Figure 4.2.2) to provide re-enterability.

The Execution Control Processor is also responsible for monitoring
job limit excessions (such as time, line, or punched card estimates).
Jobs are selected for OS processing based on a logical partition structure
defined by HASPGEN. Each logical partition is controlled by a partition
information table (PIT) which indicates the eligibility of jobs for
execution by that logical partition. There is a direct correlation between
the HASP logical partition and the number of initiators active in the
system. Jobs thus selected for OS processing are passed to a single

08/360 Reader/Interpreter which remains constantly STARTed to a

Execution Control Prqcessor — Page 4.2-1

48

HASP

HASP pseudo device which appears as a 2540 card reader. Only the
Job Control Language statements of a job are passéd to the R/I.

Input stream data sets, defined by DD * or DD DATA cards have been
previously transcribed to a SPOOL disk by the HASP input service
processor. The JCL for a job is dynamically modified by HASP to

" assign pseudo unit record devices to all SYSIN and SYSOUT data sets
to permit interception by HASP. The job is interpreted by the R/T and
is placed in the OS job queue for immédiate selection by an initiator.
At the completion of a job's execution, it is placed in the OS SYSOUT
queue to be processed by an output writer.‘ Because of the assignment
of pseudo unit record devices to all SYSOUT files, the output

writer is required only to "print" the System Message Blocks from
SYS1.SYSJOBQE. These SMB's are intercepted by HASP and are stored
on the SPOOL disks as another print data set. After receiving the

last SMB, HASP terminates the XEQ phase, queues the job for the

HASP output processors and indicates that the logical partition requires
another job. All information concerning SYSIN and SYSOUT files
assigned to HASP pseudo devices is kept in Data Definition Tables
(DDT). There is a DDT for each active file of a job which indicates
buffer addresses, file status, record count, etc. and is correlated with

the proper file through the HASP pseudo device address.

Execution Control Processor — Page 4.2-2

49

HASP

4.2.2 Execution Control Processor — Program Logic

The Execution Control Processor (XEQ) consists of the three

folldwing logical phases:

PHASE 1 — Job Control — Initiaies and terminates job processing.

PHASE 2 — Asynchronous I/O Handler — Interfaces with OS/360
via the Input/Output Supervisor (IOS) to perform
SYSIN/SYSPRINT/SYSPUNCH 1/0 requests.

PHASE 3 — Synchronoﬁs I/O Handler — Performs thé SPOOL I/0

required by Phase 2.

_Figure 4.2.1 indicates the relationship between these three phases and

0S/360.

An OS execution is initiated by Phase 1 by obtaining a suitable job
from the HASP job queue and reading its Job Control Table from disk. Job
limit parameters are initialized and the status of the OS/360 R/I is interro-
gated. If the R/I is currently processing the input for another job, Phase 1
SWAITs until it has completed. A DDT describing the JCL file for the sel-
ected job is constructed and associated with the HASP pseudo 2540 used by

the R/I. The dormant R/I is then POSTed to signal the availability of

Execution Control Processor — Page 4.2-3

50

HASP

a job and control is transferred to Phase 3 to await I/O requirements
from Phase 2. The OS/360 Supervisor call table has been modified by
HASP initialization so that all I/O requests are diverted to Phase 2 of
the XEQ processor. If the I/O request thusly intercepted refers to a
HASP pseudo device, it is processed by HASP; otherwise it is passed
to the Operating System Input-Output Supervisor for normal processing.
Since XEQ has the capability to control the simultaneous execution of
many jobs, the PCE for the job issuing the I/O request to a pseudo
device must be identifiable. This is done by using a combination of
the JOB name and the TCB address (Job Step TCB for MVT). Once the
PCE is located, the DDT for this particular pseudo device is found by
the pseudo device address from the UCB. Phase 2 verifies that there
is a buffer still associated with the file and simulates the I/O request.
Each channel command word in the request is examined and, when a
data select type is recognized, the I/O operation is simulated by a
MOVE CHARACTERS to or from the current HASP buffer for that file.
Input requests are serviced by stripping (deblocking) the next card image
from the HASP buffer and moving it as indicated by the CCW. These
moves (only) are done while operating under the requesting program's
protect key to prevent an undetected protect violation by HASP, which

normally operates under protect key zero. Requirements for I/O

Execution Control Processor — Page 4.2-4

51

HASP

activities associated with Phase 2 processing are indicated by a series
of status bits in each DDT. Requests to get buffers, read buffers and
write buffers, are indicated in the appropriate DDT, Phase 3 of the
XEQ processor is $POSTed and the HASP task is POSTed. If the re-
quested activity must be completéd before an I/O request can be
satisfied by Phase 2, the I/C requestor is made to WAIT. This is done
by saving the current CCW location and using the OS WAIT routine to
hold the requestor. When the required I/O activity is complete, the
WAITing task is POSTed and the pseudo device I/O request is re-issued.
At the end of all successful I/O operations, the appropriate user
appendage (channel-end appendage, etc.) is entered, the I/O is
POSTed complete if required and a CSW is constructed to indicate the
normal I/O completion.

When Phase 3 of the Execution Processor is entered after initiation
of the job it immediately enters a HASP $WAIT state to await direction
from Phase 2. Upon being activated via a $POST from Phase 2 or by
a timer interrupt, this PHASE examines various status bits in the PCE
and DDT's to determine the required action. This action may be either
the priming of an input buffer, writing and re-initialization of an output
buffer, or the notification to the operator of expiration of the estimated

time of the job. An input buffer is primed by obtaining the track address

Execution Control Processor — Page 4.2-5

52

HASP

of the next buffer from the current buffer and issuing a read for the record.
Status bits are set in the DDT to indicate that a read is in progress on
this buffer and are reset at channel end time to indicate that the record
is available. A full output buffer from Phase 2 is scheduled for trans-
cription to disk and a new buffer is immediately obtained and initialized
for use. When the buffer is initialized a track address is acquired and
inserted as a forward chain in the buffer to be written. If Phase 3 is
for any reason tinable to get a HASP buffer, a special service called
Buffer-roll is invoked. The function of Buffer-roll is to make a HASP
buffer currently being utilized by another file (in this or another job)
available to the requestor. This is done by selecting a low frequency
"DDT which owns a buffer and forcing a "free" of that buffer. To free a
primary or secondary input buffer, a switch is set in the DDT to force
a re-read of the buffer when the input file is next required. Output
buffers are freed by terminating and writing the buffer to the SPOOL
disk. Future references to this output file will cause a new buffer to
be obtained and chained to the partial buffer.

A count of the number of logical records contained in each output
buffer is maintained by the Phase 2 routine and is used by Phase 3
upon writing a buffer to maintain the total line and card count for this

job. This accumulated figure is also compared, after each write, to

Execution Control Processor — Page 4.2-6

53

HASP

the estimated number of output records with the operator being notified
on its excession. If a job exceeds either cards, lines, or time, the
operator is so advised and a HASPGEN value is added to the originai
estimate which will cause repeated excession messages as this new
estimate is reached. The job continues through normal OS/360
processing until the end of execution is reached., The job, as part
of normal OS job termination, is then placed in the OS SYSOUT queue
for processipg by an output writer. Because of the dynamic modification
of all SYSOUT= cards to pseudo devices, the only data set to be
processed by the output writer is that containing the System Message
Blocks. The Output Writer therefore "prints" the
SMB's to a HASP pseudo device. When the last SMB is received, Phase
3 is notified (via an OS POST) to return control to Phase 1 for HASP job
termination.

The job termination section of Phase 1 must now prepare the job
for passage to the print queue. First, all partially filled output buffers
are truncated and written out, and all input buffers are freed. The
timer interval for the job is cancelled and all job execution statistics
are added to the ICAT. At this point the areas of the SPOOL disks used
to store the job input information are made available to be re-allocated

by HASP (Purged), the JCT is written to disk and the job is passed to

Execution Control Processor — Page 4.2-7

54

HASP

the print queue for printing. If no priority card was present, the job
priority is recalculated as a function of the number of lines of print
generated before the job is placed in the print queue.

A branch is then made to the beginning of XEQ to begin another
job if available, or to display a message indicating that the logical
partition is idle.

The process of dynamic examination and modification of selected
JCL statements is accomplished by invoking the standard OS Reader/
Interpreter exit list option which allows users to inspect all JCL en-
coded by the reader. A detailed discussion of the HASP processing

algorithm is contained in Appendix 12.8: HASP JCL Processing.

Execution Control Processor =~ Page 4.2-8

55

HASP

Figure 4.2.1 -- Execution Control - 0S/360 Relationship

HASP JCL
PROCESSOR
(XJCLSCAN) J
R/I
EXIT
LIST
POINTER
XEQ JOB \ N\ gsraRr | 05/360
CONTROL : s R/I
(PHASE 1) \ VIA PO TASK
\ 2,
\\\; »
VT I/0 REQUESTS
SWAIT \ 9 VIA IOS
\ B
\
\
\\
SYNCHRONOUS ASYNCHRONOUS
I/0 1/0
PROCESSOR SPOST PROCESSOR
(PHASE 3) (PHASE 2)

Execution Control Processor - Page 4.2-9

56

HASP

Figure 4.2.2 -- EXECUTION CONTROL PCE WORK AREA FORMAT

Displacement
---------------------- 4 bytes ----m--—----m-sm——omm—o -8
Hex. Dec.
58 88 XPCEECB
Job Synchronization Event Control Block Chain
5C 92 XPCEJST
Address of User Task Control Block
60 96 XPCEJOB
Address of Job Queue Entry
64 100 XPCEWAIT
Reader Unit Allocation Event Control Block

68 104 XPCEJOBN

Job Name —
70 112 XPCEDCT

XPCESTAT Address of Direct-Access DCT
74 116 XPCEDDB
Start of Data Definition Table Chain

78 120 XPCESTEP

-Step Name —
80 128

Execution Control Processor - Page 4.2-10

57

HASP

Figure 4.2.2 -- EXECUTION CONTROL PCE WORK AREA FORMAT (CONTINUED)

Displacement

Hex. Dec.
80 128
88 136
8C 140
90 144
94 148
98 152
9cC 156
A0 160
A4 l64

vAB 168

Procedure Step Name -

XPCEPRT
Current Output Line Count
Estimated Lines of Output
Line Estimate Excession Amount
EBCDIC Constant -~ "LINE"
XPCEPUN

Current Output Card Count

Estimated Punched Cards

‘Card Estimate Excession Amount

EBCDIC Constant =-- "CARD"

Execution Control Processor - Page 4.2-11

58

HASP

Figure 4.2.2 -- EXECUTION CONTROL PCE WORK AREA FORMAT (CONTINUED)

Displacement
Hex. Dec.
A8 168
AC 172
B8 184
BC 188
co 192

——————————————————————— 4 bytes --=----mmmmm e
XPCEPIT
Address of Partition Information Table
XSTQE
Execution Timer Queue Element
—
XXSTIME
Time Estimate Excession Amount
XPCEJSIB
Address of User JSTCB (MVT) or PIB (MFT)

Execution Control Processor — Page 4.2-12

59

5
HASP

Figure 4.2.2 —- EXECUTION CONTROL PCE WORK AREA FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

58 88 XPCEECB 4 Job Synchronization Event Control Block
Chain.
5C 92 XPCEJST 4 Address of User Task Control Block.
60 96 XPCEJUB 4 Address of Job Queue Entry.
64 100 XPCEWAIT 4 Reader Unit Allocation Event Control Block.
68 104 XPCE JOBN 8 Job Name.
70 112 XPCESTAT 1 Status --
Bit Name Meaning
0-1 Reserved.
2 XPOSTBIT POST Reguest for XTHAW.
3 XRDRACT Reserved.
4 XEOJMES End Execution Message Sent.
5 XDUPBIT Job with Duplicate Job Name

Waiting.
XUCBDDB UCB/DDT Required by
Execution Interface.
7 XEOJBIT End of Job Flag.

[o)]

70 112 XPCEDCT 4 Address of Direct-Access DCT.

74 116 XPCEDDB 4 Start of Data Definition Table Chain.

78 120 XPCESTEP 8 Step Name.

80 128 8 Procedure Step Name.

88 136 XPCEPRT 4 Current Output Line Count.

8C 140 4 Estimated Lines of Output. '
90 144 4 Line Estimate Excession Amount.

94 148 4 EBCDIC Constant -- "LINE".

98 152 XPCEPWN 4 Current Output Card Count.

9C 156 4 Estimated Punched Cards.

Execution Control Processor - Page 4.2-13

60

HASP

Figure 4.2.2 -- EXECUTION CONTROL PCE WORK AREA FORMAT (CONTINUED)

Displacement Field Name

Bytes Field Description

Hex.

AQ

A4

A8

AC

B8

BC

Dec.

160

164

168

172

184

188

XPCEPIT
XSTQE
XXSTIME

XPCEJSIB

4 Card Estimate Excession Amount.

4 EBCDIC Constant -- "CARD".

4 Address of Partition Information Table.
12 Execution Timer Queue Element.

4 Time Estimate Excession Amount.

4 MVT -- Address of Job Step Task Control Block.
MFT -- Address of Partition Information Block.

Execution Control Processor - Page 4.2-14

61

OUTPUT SERVICE PROCESSOR (PRINT AND PUNCH)

OUTPUT SERVICE PROCESSOR - GENERAL DESCRIPTION

The functions of the Output Service Processor are as follows:

To convert the print and punch output generated by the
Execution Control Processor to hard copy.

To provide for the unique identification of both print
and punch output to facilitate collection and delivery.

To provide for the routing of special data sets to printers
and punches reserved for special forms processing.

To produce multiple copies of print output upon request.
To count print lines and produce automatic page overflow.

To translate all illegal print characters to blanks (option-
al). ‘

To load the Universal Character Set Buffer (optional).
To load the Forms Control Buffer (optional).

To provide additional information for checkpoint which
allows print to continue in the event of a "warm start".

‘'To punch a Job Accounting Card (optional).

To process all printer and punch I/0O errors with automatic
error recovery (no operator intervention).

To respond to all operator commands directed toward any
printer or punch.

To queue jobs for the next stagé of processing when the
current print/punch function has been completed.

The Output Service Processor is coded re-enterably in such a
way that it can deliver output to a number of different output
devices simultaneously. The re-enterability is attained by
retaining all storage unique to a job in the Processor Control
Element (see figure 4.3.1) which must be unique for each output
device.

Output Service Processor - Page 4.3-1

62

HASP

4.3.2 OUTPUT SERVICE PROCESSOR - PROGRAM LOGIC

The Output Service Processor is divided into three phases,
nine subroutines, and two non-process exits. This section
will give a functional description of each of these phases,
subroutines, and exits to aid the system programmer in gaining
a working knowledge of the processor.

PHASES

Phase 1 -- Processor Initialization

The Initialization Phase begins by attempting to get an out-
put unit. TIf an output unit is not available, the processor
enters a HASP $WAIT state until a device is made available
and then the process is repeated.

Next, an output function is determined. If the device ac-
quired is a remote printer, the appropriate entry in the
Remote Message Table is examined to determine if any remote
messages have been queued, and if so processing continues.
The general purpose register: "JCT" is set to zero to indi-
cate that remote messages are being processed.

If the device is not a remote printer, or if there are no
messages queued, an attempt is made to obtain a job from the
Job Queue which matches the type, routing and special forms

of the device obtained. If no jobs are queued which fit these
qualifications, the special forms processing type is checked

to see if the forms requirement can be dropped. If so, another
attempt is made to obtain a job from the Job Queue which
matches the type and routing specifications only.

If a job cannot be found, then the output unit is released
and control is returned to the start of the Initialization
Phase.

If the output device is a remote terminal, output activity is
initiated by calling upon the Remote Terminal Access Method
(RTAM) to "open" the Remote Device Control Table.

The processor then acquires a direct-access Device Control
Table (DCT) and a HASP buffer into which the Job Control

Table (JCT) is then read. A message is sent to the operator
notifying him that a particular job is now on the respective
device and the initialization of the Processor Control Element
Work Area (see figure 4.3.1) is completed.

Output Service Processor - Page 4.3-2

63

HASP

If the processor is processing print output, and if the output
is not a data set which has been routed for special forms, %
the PRINTID subroutine is called to generate the print identi-:
fication header and control is transferred to Phase 2.

If the processor is processing punch output, and if the output
is not a data set which has been routed for special forms,

the Punch ID Card is generated for later punching, and control
is transferred to Phase 2.

Phase 2 - Main Processor.

The function of the Main Processor is to read the data blocks
which are produced by the Execution Control Processor and build
a channel program to print or punch the data. The PRDBUF and
PRDCHK subroutines are used to read the data blocks, the PPPUT
subroutine is used to construct the channel program and the

< PPWRITE and PPCHECK subroutines are used to initiate and check
the execution of the channel program.

If the processor is processing print output, the "Control
Byte" fields of the Data Block (see figure 8.15.1) are used
to build the CCW operation codes. These control bytes are
also used to count the actual lines of paper spaced and when
this line count exceeds the parameter JCTLINCT, an eject is
inserted to force a new page and the count is restarted. If
an illegal control byte is encountered, or if the operator
has entered a "$T PRTn,C=1" command, a single-space CCW is
generated and used rather than the one provided in the data
block. 1In such cases line counting continues and automatic
page overflow is still provided.

If the processor is processing punch output, a "Punch, Feed,
and Select Stacker P2" command is generated.

When the last data block has been printed or punched, control
is transferred to Phase 3.

Phase 3 - Processor Termination

The Processor Termination Phase first reads the Job Control
Table and scans the Peripheral Data Description Blocks (see
figure 8.8.1) for the next data set to be processed. If
another data set is encountered, control is returned to Phase

2 for processing. If no more data sets are to be processed, :
the termination phase then proceeds depending upon the type of
output which is being processed. .

Output Service Processor - Page 4.3-3

64

"HASP

If the processor is processing print output, the "Print Copy
Count" field in the JCT (see figure 8.8.1) is compared witk .
the current number of copies which have been printed. If

more copies are needed, control is transferred to Phase 1 for
the production of another copy. If no more copies are required,
the PRINTID subroutine is called to generate the print idénti-
fication trailer.

If the processor is processing punch output, the job accounting
subroutine is called, and the accounting card is punched fol-
lowed by a blank card to clear the punch and check the punchlng
of the Job Accounting Card.

The Job Control Table is then re-written, the Job Queue Element
is passed to the next processor gqueue, the Device Control
Tables are released, and control is transferred to the start

of Phase 1.

SUBROUTINES

PLOADUCS =-- Subroutine to Load the UCSB and FCB

This subroutine determines the Universal Character Set Type
from the Printer Device Control Table. The UCSB Table is then
searched and the corresponding UCS image (if one is found) -is
$LOADed and moved into a HASP buffer. The UCS Buffer is then
loaded using the PPPUT, PPWRITE, and PPCHECK subroutines.

If the output device type specifies a 3211 printer, then the

Forms Control Buffer is loaded in a manner similar to the. UCS

Buffer. After loading the FCB, the FCB type is reset so that
no more FCB loads will occur until the operator specifies that
‘the buffer should be re-loaded.

PRINTID -- Subroutine to Generate Print Identification

This subroutine builds up the line image which is used to pro-
duce the Print Identification Page from information in the Job -
Control Table and information passed to the subroutine at the
time it is called. This line image is built up in the "Job
Accounting Storage" section of the Job Control Table (see fig-
ure 8.8.1). The subroutine then builds a channel program
which starts with an eject command and follows with enough
print commands to completely fill a page with print identifi-
cation lines. The channel program is then executed and checked
and control is returned to the calling program. The PPPUT
subroutine is used to construct the channel program, and the
- PPWRITE and PPCHECK subroutines are used to initiate and check
the executlon of the channel program.

Output Service Processor - Page 4.3-4

65

HASP

PPFORMCK -- Subroutine to Mount Forms

This subroutine compares the forms being requested with the
forms currently mounted on the associated device. If a match
is found, the subroutine returns immediately. Otherwise, a
forms mount message is issued to the operator and the sub-
routine $WAITs for a "$Sdevice" command to be entered. The
DCT Forms field is then set to reflect the new forms type and
processing continues.

PRCOMENT -- Subroutine to Add Comment to Printer Qutput

This subroutine constructs and adds to the printer output

(using the PPPUT, PPWRITE, and PPCHECK subroutines) a comment
of the form:

PRINT xxxxxxxxx BY OPERATOR.

"xxxxxxxxx" is specified at subroutine entry by parameter
register "R1" and will be one of the following:

DELETED
RESTARTED
REPEATED
BACKSPACED
FWD~SPACED
SUSPENDED

PRDBUF -- Subroutine to Initiate Read from Direct Access Storage

This subroutine initiates a read from the track address speci-
fied by register "PNP" into the appropriate HASP buffer.

PRDCHK -- Subroutine to Check Read from Direct Access Storage

This subroutine checks the read initiated by the PRDBUF sub-
routine. If the read is not complete, the processor is placed
into a HASP SWAIT state until the read is completed. If an

I/0 error is detected, a "SIOERROR" macro-instruction is issued
and the processing of the rest of the data set is deleted.

This subroutine also checks for any operator command which
would cause the Main Processing Phase to be completed and forces

any indicated completion by zeroing the chain track in the data
block just read. o

Output Service Processor - Page 4.3-5

66

HASP

PPPUT -- PPUTOLAY -- Subroutine to Build a Channel Program

This subroutine accepts a CCW from the calling program and,
if the output device is not a remote terminal, constructs a
channel program in the Processor Control Element Work Area
(see figure 4.3.1). Each command is examined and if it is an
immediate printer space or skip, and if the previous command
was a "Write, No Space", the two commands are combined into
one. When the channel program storage area is full, this sub-
routine calls the PPWRITE subroutine to initiate the execution
of the channel program. Upon the next entry, the execution

of the channel program is checked by calling the PPCHECK sub-
routine.

If the output device is a remote terminal, the Remote Terminal
Access Method is "called" to process the output line or card.
Control is then given to the PPCHECK subroutine to test for
operator commands.

PPWRITE--Subroutine to Initiate Execution of the Channel Program

If the output processor is being deleted by operator action,
this subroutine returns immediately. Otherwise a write is
~initiated on the respective output device, using the channel
program developed by the PPPUT subroutine.

PPCHECK--Subroutine to Check the Execution of the Channel Program

This subroutine checks for the successful completion of the
channel program execution initiated by the PPWRITE subroutine.
If the execution has not yet completed, the subroutine enters
the processor into a $WAIT condition until the output has

been completed, If an unsuccessful completion is detected,
the subroutine performs the error recovery described in the
paragraph below. This subroutine also interprets all operator
commands directed at the processor and initiates appropriate
action.

NON-PROCESS ‘EXITS

The following routines are used to place the Output Service
Processor into a HASP SWAIT state if a HASP resource is not
available. In both cases the non-process register ("PNP")
must have been set to the restart address before the routine
is entered.

OQutput Service Processor - Page 4.3-6

67

HASP

. PNOUNIT -~ A HASP unit was not available.
. DPNOBUF -- A HASP buffer was not available.

When the respective resource is made available, the processor
is $POSTed and another attempt is made to acquire the resource.

PRINTER "WARM START" LOGIC

When the Output Service Processor is successful in acquiring a
job from the print queue, the print checkpoint area is searched
for an available Print Checkpoint Element (see figure 4.3.2).
This element is thereafter used to record the job number, copy
count, and line and page counts.

In the event of a "warm start"”, the elements are searched and
each Print Checkpoint element is moved into the Job Control
Table for the job which it represents.

When the job is printed, the JCT is examined, and if the Print

Checkpoint Element is present, the processor continues printing
from the point when the last checkpoint was taken.

OUTPUT PROCESSOR BUFFER LOGIC

The buffer logic that the output processor employs is determined

by the HASPGEN parameters: $PRTBOPT, $PUNBOPT, $RPRBOPT, and
$RPUBOPT.

Buffer Option = 1

One buffer will be obtained at the beginning of output proces-
sing and will be used through the entire processing of a job's
output. A read for the following data block will not be ini-
tiated until the current data block has completed its output.
Periods of high Input/Output activity could cause the printers
and punches to operate at less than their maximum rate when
this option is used.

Buffer Option = 2

Two buffers will be obtained at the beginning of output pro-
cessing and will be used through the entire processing of a
job's output. A read for the following data block will be

. Output Service Processor - Page 4.3-7

68

HASP

initiated as soon as the previous data block has completed
its output and will be performed while the current data block
is completing its output. This option represents the most
efficient utilization of the output devices.

PRINT AND PUNCH ERROR RECOVERY

Print Errors

The operator will be informed of all printer errors, but they
will be ignored by the Output Service Processor.

Punch Errors

The card which causes a punch check and the card following
this card are selected automatically into the reject stacker.
The Output Service Processor will attempt to punch these two
cards correctly until no error occurs or the operator deletes
the job. Since all normal punch output is selected to another
stacker, no operator intervention will be required to clear
the punch. Every error will be recorded on the operator's
console.

Output Service Processor - Page 4.3-8

69

HASTP

Figure 4.3.1 -- bUTPUT'SERVICE'PCE WORK AREA FORMAT

Displacement
pudatnitete bt b b D D LD b Lt 4 bytes -~r----cecmememme—m— e R
Hex. Dec.
58 88 PDCT
PPFLAG Address of Print/Punch/Remote DCT
sc 92 PDADCT
PDCTFLAG Address of Direct-Access DCT
60 96 PJOB
Address of Job Queue Entry
64 100 PRCHKPTE Address of Print Checkpoint Element
PUERRPT Address of Punch Error CCW
68 104 PTIMEON
Print/Punch Sign-On Time
6C 108 PBUFSAVE
Address of Next Print/Punch Buffer
70 112 PCCWPT
Address of Last.Print/Punch CCW Set Up
74 116 PCCWEND
Address of Last Possible Print/Punch CCW
78 120 PMESSAGE
~ . L
~ Print/Punch Message Area ~
8cC 140

Output Service Processor - Page 4.3-9

70

HASP

Figure 4.3.1 -- OUTPUT SERVICE PCE WORK AREA FORMAT (CONTINUED)

Displacement
e e — - 4 bytes ---------rmccmmmm e >

Hex. Dec.
8C 140 PDDBSKIP PPRCFLAG ~ PPRCPYCT

Count of Pages to Skip R Checkpoint ‘Copy Count

~ Flags

90 144 PDDBDISP | popmPGCT

Current PDDB Displacement Current PDDB Page Count
94 148 PPLNCDCT

Current Line or Card Count

98 152 | PRPAGECT
» Current Pége Count
9C 156 PDEVTYPE
PBUFOPT Print/Punch Device Type
A0 160 PLSAVE
Link Register Save Word
A4 164 PRLINECT
Maximum Lines per Page
A8 168 PCCWCHN
:: Variable Length Print/Punch CCW Chain Ny

Output Service Processor - Page 4.3-10

71

" HASP

‘Figure 4.3.1 -- OUTPUT SERVICE PCE WORK AREA FORMAT (CONTINUED)

Displacement Field Name Bytes

Field Description

Hex. Dec.

58 88
58 88
5C 92
5C 92
60 96
64 100
64 100
68 104
6C 108

PPFLAG

PDCT

PDCTFLAG

PDADCT

. PJOB

PRCHKPTE

PUERRPT
PTIMEON

PBUFSAVE

1

Print/Punch Synchronization Flags =--

Bit Name Meaning
0 PPWSW Write has been Initiated.
1 PPDELSW FPunction has been Deleted.
2 PPNOJOB No Job is Active.
3 PRDELSW Print was Deleted by
Operator.
4 PRRSTSW Print was Restarted by
Operator.
5 PPRDERR Function Terminated by
Read Error.
6-7 Reserved for Future Use.

Address of Print/Punch/Remote
Device Control Table.

Print/Punch/Remote Operator Commands =--

Bit Name Meaning

0 DCTSTOP $Z ($STOP) Command.

1 DCTDELET $C (SDELETE) Command.

2 DCTRSTRT S$E (SRESTART) Command.
3 DCTRPT $N (SREPEAT) Command.

4 DCTBKSP $B ($BACKSPACE) Command.
5 DCTSPACE $T...,C=1 Command.
2+4 $I Command.
6-7 Reserved.

Address of Direct-Access Device Control
Table.

Address of Job Queue Entry.

Print Only: Address of Print Checkpoint

Element.
Punch Only: Address of Punch Error CCW.
Print/Punch Sign-On Time.

Address of Next Print/Punch Buffer.

Output Service Processor - Page 4.3-11

72

HASP

Figure 4.3.1 -- OUTPUT SERVICE PCE WORK AREA FORMAT (CONTINUED)

Address of Last Print/Punch CCW Set Up.

Address of Last Possible Print/Punch CCW.

0 PRCHKUSE Checkpoint Element Assigned.
1 PRCHKJOB Job Active Indication.

Device Type from UCB (UCBTYP).

Displacement Field Name Bytes Field Description
Hex. Dec.
70 112 PCCWPT 4
74 116 PCCWEND 4
78 120 PMESSAGE 20 Print/Punch Message Area.
8C 140 PDDBSKIP 2 Count of Pages to Skip.
8E 142 PPRCFLAG 1 Checkpoint Flags =--
Bit Name Meaning
2-7 Reserved.
8F 143 PPRCPYCT 1 Current Copy Count.
90 144 PDDBDISP 2 Current PDDB Displacement.
92 146 PDDBPGCT 2 Current PDDB Page Count.
94 148 PPLNCDCT 4 Current Line or Card Count.
98 152 PRPAGECT 4 Current Page Count.
oc 156 PBUFOPT 1 Buffering Option —-
Value Meaning
1 Single Buffering.
2 Double Buffering.
9Cc 156 PDEVTYPE 4
A0 160 PLSAVE 4 Link Register Save Word.
A4 164 PRLINECT 4 Maximum Lines per Page.
A8 1le8 PCCWCHN

Variable Length Print/Punch CCW Chain.

Output Service Processor - Page 4.3-12

73

HASP

vFigure 4.3.2 ~- PRINT CHECKPOINT ELEMENT FORMAT

,Displacement

Hex. Dec.

0 0
4 4
8 8
C 12
10 16

----------------------- 4 bytes --------mmemm—m e -
PRCJOBNO PRCFLAGS PRCCPYCT
Checkpoint Job Number Checkpoint Checkpoint
Flags Copy Count
PRCPDDBD PRCPDDBP
Checkpoint PDDB Displacement Checkpoint PDDB Page Count

PRLINCT

. Checkpoint Total Line Count

PRPAGCT

Checkpoint Total Page Count

Output Service Processor - Page 4.3-13

74

HASEP

Figure 4.3.2 -- PRINT CHECKPOINT ELEMENT FORMAT (CONTINUED)

Displacement Field Name Bytes

Field Description

Hex.
0

2

Dec.
0

2

12

PRCJOBNO

PRCFLAGS

PRCCPYCT
PRCPDDBD
PRCPDDBP
PRLINCT

PRPAGCT

Job Number.
Checkpoint Flags --

Bit Name Meaning

0 PRCHKUSE Checkpoint Element in Use.
1 PRCHKJOB Job Active Indication.
2-7 Reserved for Future Use.
Current Copy Count.
Current PDDB Displacement.
Current PDDB Page Count.

Total Line Count.

Total Page Count.

Output Service Processor - Page 4.3-14

75

4.4.2

PURGE PROCESSOR

PURGE PROCESSOR - GENERAL DESCRIPTION

The Purge processor frees the job's acquired HASP direct-access
space and removes the Job Queue Element from the system,

PURGE PROCESSOR - PROGRAM LOGIC

The processor first acquires a Job Queue Element and issues the
SACTIVE macro to inform the HASP Dispatcher that the processor
is active. Then a direct-access Device Control Table (DCT) and
a HASP buffer are acquired and initialized so that the job's
Job Control Table (JCT) may be read into the buffer from the
SPOOL disk. If a DCT or buffer is not available this processor
will be placed in a HASP $WAIT state until a DCT or buffer can
be acquired. If no permanent I/0 errors occur while reading
the JCT, a $PURGE macro instruction is then issued to return
the job's direct access tracks. If a permanent I/O error occurs
while the JCT is being read, the DISASTROUS error routine is
called and the $PURGE macro instruction is not executed. Next,
the Job Queue Element is removed from the HASP Job Queue and
the following message is issued to the operator:

JOB xxx IS PURGED
Finally, the buffer and DCT are freed, and the $DORMANT macro
instruction is issued to indicate to the HASP Dispatcher that

the processor is inactive and control is returned tc the start
of the routine for the processing of the next job to be purged.

Purge Processor - Page 4.4-1

76

HASP

4.5 HASP COMMAND PROCESSOR

4.5.1 - HASP Command Processor - General Description

The HASP Command Processor receives all HASP commands entered
from acceptable local or remote HASP input sources. The Processor
is responsible for decoding each command and performing the pro-

cessing necessary to cause appropriate action to the operator's
request.

4.5.2 HASP Command Processor - Program Logic

The HASP Command Processor is initially entered at the beginning
of the Control Section (CSECT) HASPCOMM which is a part of the
resident portion of HASP. Subsequent re-entries are returns from
the various command sub-processors with optional requests for the
displaying of the "OK" message or other message contained in the
COMMAND area of the PCE. After displaying any requested replies
the HASP Console Message Buffer queue $COMMQUE is examined for
the presence of the next command to process. If no buffer is
queued, the Command Processor waits on WORK. When $POSTed or if

a buffer is present upon entry, the Command Edit Routine is
entered via SLINK macro.

Command Edit Routine - HASPCOME

VERB CONVERSION - The Command Edit Routine converts the command

text from the long form to the standard single character verb form.
The data portion of the Console Message Buffer up to the first

comma (,) or apostrophe (') is made upper case and non-blank
characters are shifted to the left. The resulting text is compared
against arguments in the VERB CONVERSION TABLE. If a match is

found, the corresponding standard form of the command is substituted.

COMMAND EDIT AND BREAK OUT - The information in the HASP Console
Message Buffer is moved to the COMMAND field in the PCE work area.
The two bytes CMBFLAGS and CMBCONS of the buffer are moved to the
COMFLAGS and COMROUTE fields of the PCE workarea. These two
bytes when combined with the two succeeding bytes in the PCE form
the list form of the $WTO used for all responses to the operator
from the Command Processor.

The COMMAND area of the PCE is primed with blanks and the buffer
is scanned. Solid characters are ORed (moved with upper casing)
into the COMMAND area. Blanks encountered in the buffer will

HASP Command Processor - Page 4.5-1

77

HASP

normally be skipped (blank elimination); however, if an apostrophe

" .is encountered, blanks will not be skipped until the next apos-

trophe. Double apostrophe characters will cause the blank com-
pression status to remain as previously set; however, the second
apostrophe of the pair will be eliminated.

As each comma is encountered an entry of the next available
character position is.made in the COMPNTER area of the PCE. (The
first entry is the address of the character after the verb. The
second is the address of the second operand, etc.) When the
COMPNTER area is full, recording is discontinued. Upon completion
of the scan, the buffer is released, the COMNULOP field in the

PCE is set to the address of the second character beyond the last
solid character (null operand), and the operand pointers are
shifted down adjacent to the COMMULOP field (see Figures 4.5.1

to 4.5.3). Control registers are set as follows:
WD = address of the first operand pointer in the COMPNTER field
WE = 4
WF = address of the last operand pointer in the COMPNTER field

SELECTING THE COMMAND SUB-PROCESSOR -~ The SELECTION TABLE is used
to determine the appropriate command sub-processor which must be
entered. Starting with the first element, the SELECTION TABLE is
scanned for a matching verb. When the verb is located, the first
character of the first operand is then used for comparing. If a
match is found on the operand or if the table entry contains an
X'FF' for operand argument, the table entry for the command is
considered "located". If the end of the entries is encountered
for the verb or table, the command is considered invalid and the
edit routine returns to the main processor with INVALID COMMAND
message in the COMMAND area for display. (See $COMTAB macro in
Section 4.5.4 for format of the SELECTION TABLE element.)

VALIDATING THE SOURCE AND ENTERfNG THE SUB-PROCESSOR - Each entry
of the SELECTION TABLE may have restriction indicators as follows:

COMRMT = 1 - Reject remote sources

COMS = 1 - Reject consoles which are restricted from
entering SYSTEM COMMANDS

COMD = 1 - Reject consoles which are restricted from
entering DEVICE COMMANDS

COoMJ = 1 - Reject consoles which are restricted from

entering JOB COMMANDS

The restriction indicators correspond with the restriction indi-
cators which appear in the COMFLAGS field. The COMFLAGS indicator
is previously set from the CMBFLAGS field of the HASP Console
Message Buffer which in turn is set by other HASP processors as
follows:

1. CMBFLAGS when set by the remote console processor or
remote reader processors will contain the remote
indicator. This indicator corresponds to COMRMT bit
in the SELECTION TABLE.

HASP Command Processor - Page 4.5-2

78

HASP

2. CMBFLAGS when set by the local console support routines
will contain the restriction flags assigned to the
Console Device Control Table. (Restriction is the
opposite of authority which is set by the operator
command $TCONn,A=authority or by the system programmer.)

3. CMBFLAGS when set by the 0OS console interface is
the OS authority indicators inverted with the
Exclusive Or Immediate (XI) instruction.

The restriction indicators are used as the second operand of a
Test Under Mask (TM) instruction. If any restriction indicator
in the COMFLAGS field corresponds to any restriction indicator

in the SELECTION table entry, the command is rejected as invalid.
Otherwise Register 1 is set with the value in the SELECTION TABLE
entry COMTOFF field and control is passed to the CSECT indicated
by the Overlay Constant ($SOCON) field of the SELECTION TABLE
element via the $XCTL macro.

Command Sub-Processor Control Sections

The Entry routine of each command sub-processor control section
will, if applicable, use the offset value in register 1 (set by
the edit routine) to determine the "relative" entry point for the
designated sub-processor. Normally the sub-processor is entered
directly by the special Command Processor macro: "Branch

Relative Register" on Rl ($BRR Rl). However, some control section
entry routines will pre-process the operands of the command prior
to entering the sub-processor. Each sub-processor performs the
desired functions and returns to the main command processor for
the next command.

HASP Command Processor - Page 4.5-3

79

HASP

4.5.3 HASP Command Processor Organization

The HASP Command Processor is created by a single assembly with
multiple Control Sections (CSECT). The main CSECT HASPCOMM is
the only portion of the Command Processor that is part of the
HASP resident load module. It contains all V type address
constants required by the sub-command processors and all "BASE2"
service routines. The Command Edit Routine HASPCOME receives
control from the main processor and determines which COMMAND
SUB-PROCESSOR CSECT to enter for processing of the command entered.
One or more of the various COMMAND SUB-PROCESSOR CSECTs are used
~in processing each HASP operator command. Although the physical
CSECTs are organized in accordance with the size of the overlay
work area , the logical organizational grouping is as follows:

JOB QUEUE COMMANDS

JOB LIST COMMANDS
MISCELLANEOUS JOB COMMANDS
DEVICE LIST COMMANDS

SYSTEM COMMANDS

MISCELLANEOUS DISPLAY COMMANDS
REMOTE JOB ENTRY COMMANDS

HASP Command Processor Workarea

The HASP Command Processor PCE workarea shown in Figure 4.5.1 is
the primary workarea for the processor and is the only area which
may be used to save information in the event a $WAIT is issued by
the processor or any of the "BASEl" service routines on behalf of
the processor. The fields are generally used as described in the
following paragraphs.

COMFLAGS to COMCLASS - This field contains a list form of the S$WTO
macro. The $WTO is referred to by a single execute form of the
SWTO located within the resident portion of the Command Processor
which is used for all operator messages generated by any routine
within the processor. The CMBFLAGS and CMBCONS fields of the HASP
Console Message Buffer for each command is inserted into the
COMFLAGS and COMROUTE cells and are used to provide correct route
codes for replies. The three low order bits of COMFLAGS are
restriction indicators and are set to zero prior to each $WTO reply.

COMEWORK -~ This field is used as a workarea and by function routines
identified by the macro instructions as follows:

HASP Command Processor - Page 4.5-4

80

HASP

macro contents upon exit from routine

$CFCVE last character is blank

$CFDCTL first four characters of requested device name
$CFJIDCT address of HASP job queue element for requested job
$CFIMSG same as $CFCVE

COMDWORK - This field is aligned on a double word boundary and is

used as a workarea and by function routines identified by the macro
instructions as follows:

macro contents upon exit from routine

$CFCVE five character number in EBCDIC with leading blanks
$CFDCTL last four characters of requested device name
$CFIMSG same as S$CFCVE

COMMAND - This field contains the compressed form of the operator
command with trailing blanks at the time each command sub-processor
is entered. The command is overlayed by the reply message text for
all SWTO messages issued by any Command Processor routine. Some
command sub-processors use the area as scratch areas and in some
cases the right end for storage of critical information while
message replies are generated in the left end of the area.

COMPNTER-COMNULOP - These fields are set by the Command Edit
Routine and are used to locate the beginning of each of the
specified operands in the command currently being processed.
COMNULCOP contains a pointer to the second character beyond the
last operand specified, i.e., points to a non-existant or "null"
operand. Operand 1 through n pointers are right adjusted in
COMPNTER so that operand n pointer is adjacent to the "null"
pointer (see Figures 4.5.2 and 4.5.3 for illustrations). Command
sub-processors use these areas for additional workspace after the
operand pointers are no longer needed. Examples of other uses
are listed as follows:

1. Job queue command $DN and $DQ commands place queue
scanning control elements in the COMPNTER area.

2. Job list commands place the job range numbers (j-jj)
in the corresponding operand pointer element area.

3. $DR uses the right end of the COMMAND area and

COMPNTER-COMNULOP area to hold the reply ID numbers.

HASP Command Processor - Page 4.5-5

81

HASTP

Figure 4.5.1 -- HASP COMMAND PCE WORK AREA FORMAT

Displacement

- e ece e ——— 4 bytes —--—----mmenemmmm e s
Hex. Dec.
58 88 COMFLAGS COMROUTE COMLNGTH COMCLASS

List Form of S$WTO

5C 92 COMEWORK
Function Work Area
60 96 COMDWORK
=~ Function Work Area -
68 104 ' COMMAND COMVERB COMOPRND

Message Area Command Verb | First Operand

N Command Text and Message Area i*

EO 224 COMPNTER

Address of n-4 Operand

E4 228

Address of n-3 Operand
E8 232

Address of n-2 Operand
EC 236

HASP Command Processor - Page 4.5-6

82

HASTP

Figure 4.5.1 -- HASP COMMAND PCE WORK AREA FORMAT (CONTINUED)

Displacement

Hex.

EC

FO

F4

F8

Dec.

236

240

244

248

Address of n-1 Operand

Address of n Operand

COMNuULOP

Address of n+l Operand

HASP Command Processor - Page 4.5-7

83

HASP

Figure 4.5.2 COMMAND - COMNULOP Areas With Single Operand Command

COMMAND - $P€Rleb
T
COMPNTER - - - - not used Upon exit of Edit Routine,
Registers WD, WE and WF
not used are set for testing
instructions:
not used BXLE WD,WE,loop
t a (for next operand)
not use BXH WD,WE,exit
WD, WF . operand 14— (if no more)
COMNULOP -~ = -~ - null 4

Figure 4.5.3 COMPNTER -COMNULOP Areas With Five Operand Commands

COMMAND - $PPRTl,PRT2,€UN1,RDR1,RD2b?

COMPNTER - WD - operand 1+

operand 2+

operand 3%

operand 4+

WF > operand 54

COMNULOP - - - - null 4

NOTE: b = blank character Upon exit of Edit Routine,
Registers WD,WE and WF
are set for testing

~instructions:

BXLE WD,WE, loop

(for next operand)
BXH WD,WE,exit

(if no more)

HASP Command Processor - Page 4.5-8

84

HASP

Coding Conventions

The symbols with the command processor conform to the following
conventions:

l.

2.

3.

All main processor, Edit Routine, and PCE workarea symbols
start with the characters "COM".

All Function macro generated symbols start with "COF".

All command sub-processors have entry point symbols
of the following form:

form example command comments
Cvo CDN SDN v = the verb of the command

o = the first operand character
Cv CB $B device single character identifier
Cvxx CD7D $D'jobname' apostrophe is hexadecimal 7D

All symbols created for the support of the command will start
with characters which identify the entry point (CDNxxXxxx
identifies a location which was originally written for the
$DN command). Commands with no unique operand character
symbol have the character "x" as the third character.
(CBX..... identifies a location which was originally written
for the $B device command.) These conventions may be altered
in cases where the command identification characters are
redefined after original development. '

The main processor CSECT is HASPCOMM, all other CSECTs are
defined via the symbol field of the $COMGRUP macro; specified
starting with the characters "HASPC".

HASP Command Processor - Page 4.5-9

85

HASP

Register Conventions

The Command Edit Routine passes control to the control section
(CSECT) which contains the appropriate command sub-processor.
At the point the Command group entry routine receives control,
the registers will contain the following:

reg contents

RO unpredictable

Rl entry offset from the Command entry offset
WA unpredictable

WB unpredictable

wC unpredictable

WD first operand pointer (zero if no operand)
WE 4

WF last operand pointer

BASE3 base for CSECT

BASEl HCTDSECT address

BASE?2 beginning of main Command Processor

SAVE PCE address

LINK unpredictable

R15 unpredictable

If more than one command appears within the group, the value of
register Rl will be set by the $COMGRUP entry routine to a value
so that a $BRR Rl will enter the command sub-processor.

HASP Command Processor - Page 4.5-10

86

HASP

4.5.4 HASP COMMAND PROCESSOR MACROS

To facilitate flexibility in the development and possible modi-
fication of the Command Processor a macro package is included
within the assembly source deck. This section is intended to
supplement the HASP Command Processor Source listings obtainable
from the HASP generation and assembly process in assisting the user
to understand the generated code as specifically used in the
current HASP as distributed.

Each HASP Command Processor macro may be dependent upon the
definitions contained within the Command Processor source deck as

well as other members of the HASP source library. These macros
are catagorized as follows:

ORGANIZATIONAL - Macros which provide basic definitions and
; are closely associated with the organlzatlon
of the processor.

BASE2 SERVICES - Macros which call upon the main Command
Processor to perform a service (display a
reply).

CONDITIONAL IN-LINE FUNCTIONS - Macros which perform the functlon
in-line or links to a routine which performs
the desired function.

RELOCATABILITY AIDS - Macros which assist in keeping the overlay
CSECT relocatable around $WAIT or implied
SWAIT situations.

The macros which are supplied under each category are summarized

in Table 4.5.4. The following conventions are used in specifying
parameter requirements: :

"parameter=** -" - keyword parameter is required

"parameter=text -" - the assumed value if the keyword parameter
: is not specified

"parameter - - the parameter is an optional positional

n
parameter
"parameter - Required" - the parameter is a required pos;tlonal
parameter. ,

HASP Command Processor - Page 4.5-11

87

'HASP

Table 4.5.4 Command Processor Macro Summary
Op-Code Definition:
ORGANIZATIONAL:
$COMWORK COMMAND PROCESSOR WORKAREA (symbolic definitions)
$COMGRUP DEFINE GROUP OF COMMAND SUB- PROCESSORS
SCOMTAB ' DEFINE COMMAND_TABLE ELEMENT
BASE2 SERVICES: L
SCRET RETURN TO MAIN COMMAND PROCESSOR
SCWTO WRITE TO OPERATOR '
CONDITIONAL IN-LINE FUNCTIONS: L
$CFCVB CONVERT TO BINARY
$CFCVE CONVERT TO EBCDIC
$CFDCTD DEVICE CONTROL TABLE. DISPLAY
SCFDCTL DEVICE CONTROL TABLE LOCATE
$CFINVC REPLY INVALID COMMAND
SCFINVO REPLY INVALID OPERAND - ’
S$CFJDCT FIND JOB'S DEVICE CONTROL TABLE
$CFJMSG DISPLAY JOB' INFORMATION MESSAGE
S$CFJSCAN SCAN JOB QUEUE ASSISTANCE
" $CFSEL SELECT A ROUTINE BASED ON CHARACTER
$CFVQE , ' VERIFY CONSOLE CONTROL OVER JOB
RELOCATIBILITY AIDS: ,
$ARR ADD RELATIVE REGISTER
$BRR ’ BRANCH RELATIVEiREGISTER e
SSRR : SUBTRACT RELATIVE REGISTER

_ HASP Commaﬂd~Proce536f - Page 4.5-12

88

HASP

Organizational Macros

SCOMWORK - COMMAND PROCESSOR WORKAREA (symbolic definitions)
This macro adds to the PCEDSECT definitions for
fields located in the Command Processor PCE workarea.
Additional symbolic constants for BASE2 services

and some externally defined parameters are defined.

SCOMGRUP - DEFINE GROUP OF COMMAND SUB-~PROCESSORS
This macro defines the Command Processor overlay
control section via the $OVERLAY macro. It provides
an optional entry point routine which locates the
command sub-processor for the commands which belong
to the group and sets register R1 to the relative
address. (The symbol field must be specified for
this macro.)

n positionals - Each positional specifies the command
identification characters for the corresponding
command sub-processor located within the group.

Example:
specification command sub-processor entry point name
AA SAA o CAA
DA $DA CchAa
B $B device CB
C ' $C device cc
P40 $P Cpr40
sS40 $S Cs40
-D7D $D' jobname' CD7D

PRTY=** - Priority of the HASP overlay defined by
the macro.

DELAY=NO - The sub-processor will be entered via
SBRR Rl macro instruction. If "YES" is specified

Rl will contain the appropriate relative entry point
address and control will be given to the statement
following the macrc statement. (More than one posi-
tional must be specified if Rl is to be set or the
branch is to be executed.)

HASP Command Processor - Page 4.5-13

89

"HASP

- $COMTAB

*# DEFINE COMMAND TABLE ELEMENT S
“This macro defines an element in the command
'SELECTION TABLE which is used by the Command Edit

Routine for identifying legal commands, eliminating
unauthorized input sources, and enterlng the correct

Qcammand group CSECT.

verb - Required - The command identification

character (s) corresponding to the $COMGRUP positional

parameter specification for the command. No two
$COMTAB macro statements may specify the same iden-
tification character string. All macro statements

-creating entries for the same command verb will

appear in consecutive statements with the statement
which specifies a single 1dent1£1cat10n character
last.

roup - Requlred - The exact characters used in the
specification in the symbol field of the appropriate
$COMGRUP macro statement.

REJECT= - The command source rejection mask. One or
more of the following symbols may be specified as
follows:

"COMRMT" - reject command if entered from a
~remote
"COMS" - reject command if entered from a
console not authorized for SYSTEM
control
"CoMD" - reject command if entered from a
' console not authorized for DEVICE
- control
"coMJ" - reject command if entered from a

console not authcrlzed for JOB
' control :
Rejectlcn of either a remote or a console not:
authorized for SYSTEM appears - as follows~
"REJECT=COMRMT+COMS" = U

HASP Command Processor - Page 4.5-14

90

HASP

Figure 4.5.5 - Selection Table Element

(variable) COMTOFF | COMTFL | COMTVB
overlay constant ' identifiers
COMTOFF = Offset for the overlay control section to

locate the command sub-processor entry point.

COMTFL = Rejection flags.

COMTVB = Command identification characters. Verb with:
1. First character of the first operand.
2. X'FF'

If X'FF' is specified all commands which
have not been specified by the previous
entries in the table will be considered
"selected".

HASP Command Processor - Page 4.5-15

91

HASP

BASEZ_Servioee

$CRET _ -

_ $CWTO -

RETURN TO MAIN COMMAN””éROCEssoR

MSG= - "Address" of ‘tt message to be moved to
COMMAND area for dlsplay. (L=operand of a. g
non-register form is required.) "MSG=OK" indi-
cates that the maln processor is to dlsplay the
OK message. , N S , :

L= - "Value" representlng the length of the message
that is to be moved or has already been moved

WRITE TO OPERATOR
REGISTERS USED: RO Rl WA, LINK, R15

MSG— - "Address" of the message to be moved to
COMMAND area and displayed. (Lnoperand of a non-
register form 1s requ1red) o

L=*% -b"Value" representlng the length of the mes-
sage that is to be moved or has already been moved.

_HASP Command Processor - Page 4.5-16

92

HASP

Conditional In-Line Functions

The HASP Command Processor as distributed provides for the
ability of the author of the command sub-processor to specify
whether or not the code which performs the function is in-line or
out of line. If an out of line routine is used the name and
location of the subroutine must be defined. This is accompllshed
with parameters standard for all function macro instructions

with the exception of $CFJSCAN as follows:

TYPE=CALL - The macro statement is not a definition form of

the macro. "TYPE=DEF", the macro statement defines the
subroutine form of the function and return linkage must be
provided.

SYMBOL=address - The address of the "TYPE=DEF" version of
the macro instruction. This indicates that only linkage
to the "TYPE=DEF" version is to be provided. If neither
"TYPE=DEF" or "SYMBOL=" parameters are specified the code
will be generated in-line with no return linkage.

$CFCVB - CONVERT TO BINARY

This macro converts the numeric portion of a

command operand to one or two numeric values.

REGISTERS USED: RO, R1l, LINK, RI15

RO - contains the last number converted.

Rl - contains the next to last number converted
(last number if the only one or the last is
smaller than the previous).

POINTER=(R1l) - The address of the COMPNTR field
which addresses the operand containing one or more
numerical values separated by dash (-).

NUM=2 -~ return two values. "NUM=1l", one value is
sufficient (Rl will be unpredictable on return).

NOK=** - Address of the error exit routine if the
operand does not contain a number or if the number
is too large.

$CFCVE - CONVERT TO EBCDIC
This macro converts the number in register (R0O) to
printable EBCDIC and sets the five resulting digits
in the first five characters of the PCE area
COMDWORK.
REGISTERS USED: RO, LINK

VALUE=(R0) - The positive binary half-word value
to convert to EBCDIC. If the register form is not
used, the value is contained within the addressed
half-word.

HASP Command-Processor - Page 4.5-17

93

"HASP

$CFDCTD

SCFDCTL

‘$CFINVC

SCFINVO

SDFJDCT

~ DEVICE CONTROL TABLE DISPLAY

- This macro dlsplays the device name, unlt address,i
and status of the DCT requested ‘
REGISTERS USED' RO, Rl WA, LINK, RlS

DCT=(R1) - The address of the DCT to dlsplay

- DEVICE CONTROL TABLE LOCATE :

This macro converts the abbreviated form of the
device name to the long form (if abbreviated form
is specified) and searches the DCT chain for a
matching device. =
REGISTERS USED: RO Rl R15, LINK

Rl - contains the address of the DCT found or zero

if no DCT found

POINTER =(Rl) - The address of the COMPNTER field
which addresses the operand contalnlng the device
name (abbrev1ated) :

- REPLY INVALID COMMAND v .
This macro returns to the Main Command Processor and
causes - the dlsplay "INVALID COMMAND“

- REPLY INVALID OPERAND
This macro moves eight characters, startlng with
the first character of the "current" operand to
the COMMAND area and returns to the Main Command
Processor cau51ng the dlsplay of "operand INVALID
OPERAND" o

YOPERAND=(R1)~- ThebaddreSS of the operand to display.

- FIND JOB S DEVICE CONTROL TABLE

This macro. searches the DCT chain for an active
printer, punch, or reader DCT which is assigned

to a procesor whose PCE contains a pointer to the
HASP job gueue entry belonging to the desired job.
If the device is not found exit will be to the
instruction immediately follow1ng the $CFJDCT state-
ment (in-line code version); otherwise, exit will be
to the instruction plus 4 (NSTI+4).
REGISTERS USED: Rl,vLINK R15

JOBQE=(R1) - Thé'address of the HASP job queue
entry for the desired job.

HASP Command Processor - Page 4.5-18

94

HASP

SCFJIMSG

SCFJSCAN

- DISPLAY JOB INFORMATION MESSAGE

This macro sets into the COMMAND area of the PCE
the information required for the JOB INFORMATION
MESSAGE and displays the message.

REGISTERS USED: RO, R1, WA, LINK, R15

JOBQE=(R1) - The address of the HASP job queue
entry for the desired job.

JDCT= - The address of the $CFJDCT TYPE=DEF macro
which may be used to locate the job's DCT. Register
form is prohibited.

CVE= - The address of the S$SCFCVE TYPE=DEF macro
which may be used to convert numeric information
to EBCDIC. Register form is prohibited.

JOB= - This parameter may be ignored by the macro;
however, if specified as "JOB=SET" the text "JOBj"
is assumed by the expanded routine to have been set
in the COMMAND area for the desired job.

OPT= - This parameter may be ignored by the macro;
however, if specified as "JOB=Q" all jobs given to
the macro expansion are queued (not active) or

if specified as "JOB=A" all jobs given to the
expansion are active.

SCAN JOB QUEUE ASSISTANCE

This macro is used to assist in scanning the job
queue, As each entry is located the user's PROCESS
routine is entered. The user examines the entry,
performs whatever function desired on the entry,
and returns to the symbol specified by the "NEXT="
operand. When the end of the queue is encountered,
control is given to the instruction following the
macro instruction. An optional feature of the macro
is to allow the PROCESS routine an "IGNORE' entry
to the generated code to indicate the current job
entry is not acceptable to the PROCESS routine. If
the "IGNORE=" option is specified the corresponding
"EMPTY=", option is required. Register 1 is the
scan register and is assumed to be unaltered by the
user PROCESS routine. The "TYPE=DEF" option is not
permitted for this macro.

REGISTERS USED: R1, BASE2

Rl - scan register

BASE2 - found/not found switch (in addition to
processor base.

HASP Command Processor - Page 4.5-19

95

HASP

SCFSEL

$CFVQE

PROCESS=** - Address of the user's job queue element
processing routine. Register form prohibited.

IGNORE= - Symbol to be used to define the entry to
continue scan when the current job entry is not
of the desired type.

NEXT=** - The symbol to be used to define the entry
to continue scan when the current job entry is
of the desired type. '

EMPTY= - The name of the user exit routine desired
to be entered when the job queue is found to be
empty of jobs of the desired type. Register form is
prohibited.

SELECT A ROUTINE BASED ON CHARACTER

This macro matches the designated input character
against a list of arguments and transfers control to
the routine designated by the corresponding address.
If no match is found, the next sequential instruction
is entered.

REGISTERS USED: R1, LINK, R15

n positionals of form: (character, address) - Each
positional "character" sub-parameter specifies an
argument to compare against. The corresponding
address sub-parameter indicates the address of

the desired routine to enter if the character matches
the argument. Register form is prohibited.

OPERAND=(R1l) - The address of the designated input
character to examine.

VERIFY CONSOLE CONTROL OVER JOB

This macro tests COMFLAGS field of the PCE to deter-
mine if the input source is a remote. If the source
is a remote, the not OK routine will be entered
unless either the print or punch route codes for the
indicated job specify the remote. Otherwise the OK
routine will be entered.

REGISTERS USED: R1l, LINK

JOBQE=(R1) - The address of the HASP job queue entry
for the desired job.

OK= - Address of the routine desired to be entered
if the console has control over the job. The
address may be the symbolic register containing the
address if specified as "OK=(register,BCR)" or
"OK=(relative register,$BRR).

HASP Command Processor - Page 4.5-20

96

HASP

NOK= - Address of the routine desired to be entered
if the console does not have control over the job.
The address may be the symbolic register containing =
the address if specified as "NOK=(Register,BCR)" or
"NOK=(relative register,$BRR). Either "OK=" or
"NOK=" parameters must be specified.

Relocatability Aids

$ARR - ADD RELATIVE REGISTER
This macro instruction is used in conjunction with
$SRR to restore the specified register to refer to
the true address of relocated information.
register - Required - The symbolic register contain-
ing the address to be made true.

SBRR - BRANCH RELATIVE REGISTER
This macro instruction is used in conjunction with
SCOMGRUP to enter a sub-processor routine using the
offset provided by the $COMGRUP routine.
condition - Condition required to be met in order
to branch. 1If this parameter is omitted, no comma
should be written to signify its omission. "Condi-
tion code" may be specified by the character
strings: (E, NE, H, L, NH, NL, Z, NZ, P, M,
NP, NM, O or NO).
Register - Required - The symbolic register con-
taining the offset.

S$SSRR - SUBTRACT RELATIVE REGISTER

This macro instruction is used to make an address
pointer relative for possible relocation before
next referral to the information contained at

the address.

register - Required - The symbolic register con-
taining the address to be made relative.

HASP Command Processor - Page 4,5-21

97

HASP

4.6 OPERATOR CONSOLE ATTENTION PROCESSOR

This processor is included in HASP only if the value of the
HASPGEN variable &NUMCONS is greater than 0 (see Section 7.1).
The HASP interface to OS Console Support if &NUMCONS=0, is
described in Appendix 12.15.

4.6.1 Operator Console Attention Processor - General Description

The function of this processor is to stage a read on a console
whenever an attention is received from that console.

4.6.2 Operator Console Attention Processor - Program Logic

During HASP initialization, the first three words of the OS ansole
Attention Routine (IEEBAl) are overlayed with instructions which

cause IOS to enter the HASPATTN routine of this processor whenever an
attention interrupt occurs.

When an attention request is signalled by a console device, HASPATTN
saves the device address in the processor's PCE workarea, S$POSTs
the PCE, and POSTs HASP.

When the Attention Processor is dispatched, it locates the physi-
cal console whose address is in the processor's PCE workarea and

links to the SWTO Processing Routine (see Section 5.7) to queue
a read on. that console.

Console Attention Processor - Page 4.6-1

98

HASP

4.7 CHECKPOINT PROCESSOR

4.7.1 CHECKPOINT PROCESSOR - GENERAL DESCRIPTION

The purpose of this processor is to write the necessary infor-
mation onto disk to affect a subsequent restart of the system.
This processor will write the information at a predefined time
increment and at the completion of each stage of each job.

4.7.2 CHECKPOINT PROCESSOR - PROGRAM LOGIC

The first entry into the Checkpoint Processor is into a sec-
tion which initializes the processor. This section issues a
&GETUNIT macro-instruction to obtain a DCT for a disk and
completes this DCT by inserting the event wait field address,
track to be written, and the buffer address.

The information to be checkpointed consists of the Job Queue
which contains the status of each job in the system, the track
allocation map which indicates the track groups of each disk
that have been assigned, a save area which contains added in-
formation as to the status of the system, the print checkpoint
table which is used to effect a warm start of the jobs being
printed, and (if generated) the Job Information Table which
contains additional information concerning each job in the
system. The Job Queue and the Job Information Table reside
within the checkpoint buffers, but the remaining fields must
be moved into these buffers.

The track allocation map is the first to be moved and the

track groups that have been reserved for the jobs that are
currently executing and reading in are returned to the track
allocation map to avoid loss of tracks in case of an emergency
restart. Next the write buffers are completed by moving the
save area and the print checkpoint tables. An $EXCP is issued
to write the checkpoint buffers and a $WAIT on I/O is initiated.

The Job Information Table (if generated) is written with CCW's
which are chained to the CCW's used to write the rest of the
checkpoint information. The Job Information Table is not
written with each checkpoint but only when the processor
which requests the checkpoint indicates that he wishes the

JIT to be written. This indication is made by setting the
"JITJCKPT" bit in the "S$JITSTAT" field to one.

Checkpoint Processor - Page 4.7-1

99

HASP

At the completion of the I/O operation, the HASP ECB is posted
and the timer is reset to a predefined time increment that was
specified as a HASPGEN parameter. A test is now executed to
determine if the previous write was successful and if so, a
SWAIT macro-instruction is issued to place the processor into
an inactive state until the time increment has expired or a
stage of a job is completed.

If the previous write was unsuccessful, a message is issued
to indicate to the operator that a restart is needed and a

permanent HASP $WAIT state is entered so that no further check-
point will be attempted.

'Checkpoiht'Processor - Page 4.7—25

100

ASYNCHRONOUS INPUT/OUTPUT PROCESSOR

ASYNCHRONOUS INPUT/OUTPUT PROCESSOR - GENERAL DESCRIPTION

Since the completion of all HASP I/O operations are signalled
asynchronously with HASP operation via IOS channel-end appen-
dages, these completions must be queued by the appendage
until all HASP processors can be synchronized to receive the
notification. The purpose, then, of the Asynchronous Input/
Output Processor ($ASYNC) is to, at non-interrupt time,
notify all processors of their I/O completions which were
indicated by the 0S I/O supervisor at interrupt time.

ASYNCHRONOUS INPUT/OUTPUT PROCESSOR - PROGRAM LOGIC

The buffers (and respective IOBs) associated with I/O channel-
ends are chained, by the HASP channel-end appendages, for
later processing by $SASYNC. In addition to the POST of the
HASP task by IOS on any I/O completion, the channel-end appen-
dages also S$POST the Asynchronous Input/Output Processor to
initiate its processing when the HASP task receives control.
When $ASYNC receives control, it dequeues the first buffer
from its chain of work (operating disabled, for this operation
only, since its chain is updated at interrupt time). The
Device Control Table entry (DCT) associated with this buffer
is located and the active I/0 count for the device is reduced
by one. Next the user's EWF address is extracted from the
buffer and interrogated, and action is taken according to the
following algorithm:

EWF = 0 User does not want notification of completion
of I/0 operation (always a write). The buf-
fer will be returned to the HASP buffer pool
by $ASYNC.

EWF > 0 SPOST the "I/O" bit in the EWF specified and
take no further action.

EWF < O Enter a user provided routine at the address
specified by the absolute value of the EWF
field. Addressability for the processor
routine is established and the address given
is entered via the Branch and Link instruction
with the buffer address in register "R1."

No further action is taken upon return by the
processor.

After performing the indicated action, $ASYNC returns to dequeue
the next buffer from its chain and the above procedure is re-
peated. When the end of the chain is reached, S$SASYNC enters

the S$WAIT state until additional I/O completions occur.

Asynchronous Input/Output Processor - Page 4.8-1

101

HASP

4.9 HASP LOG PROCESSOR

4.9.1 HASP Log Processor - General Description

The function of the HASP Log Processor is to construct output
buffers for eventual processing as part of each Job's printed
output. Input to the Log Processor is through a queue of CMBs
associated with the queue pointer S$LOGQUE which is defined in
the HCT. The nature of the information in the input queue, and
consequently the printed output, varies as a function of the
HASPGEN Parameters &NUMCONS and &WTLOPT.

4.9.2 HASP Log Processor - Program Logic

Log processing of a message buffer is started by locating the
corresponding execution PCE. PCEs for output buffers are found
by using the job number in the buffer, and "reply" message PCEs
are located by using the TCB address which is placed into bytes
six through eight of the buffer by the Operator Console Input/
Output Processor's asynchronous exit. Reply message processing
is valid only for &NUMCONS>O0.

A test is made to ascertain if the message will fit in the HASP
buffer currently being used by the job for log output. If space
is available, the message is placed in the HASP buffer and the
CMB is processed as follows: If the CMB status bits indicate a
"read" or a "log only" condition, then the CMB is returned to
the free queue via the routine $FREEMSG. The "log only" condi-
tion is used when &NUMCONS=0. "Read" and "Write" have meaning
only when &NUMCONS>0. If the status bits indicate a "write"

condition, then the CMB is queued for display via the $WQUEBUF
subroutine.

HASP Log Processor - Page 4.9-1

102

HASP

4.10 OPERATOR CONSOLE INPUT/OUTPUT PROCESSOR

This processor and associated routines are included in HASP only
if the value of &NUMCONS is greater than 0 (see Section 7).

The HASP interface to the 0OS console support which is included
if &NUMCONS=0, is described in Appendix 12.15.

4.10.1 Operator Console Input/Output Processor - General Description

The function of the Operator Console Input/Output Processor is to
process all I/O activity on all operator consoles. The processor
also processes all console errors, making a number of retries.

If the error continues, the message is ignored.

4.10.2 Operator Console Input/Output Processor - Program Logic

The Operator Console Input/Output Processor examines each entry

in the console message buffer I/0 queue, $BUSYQUE. Each bit in

the console byte is tested for an available console. If one is
found the appropriate operation is initiated with a $EXCP macro-
instruction and testing of the queue is resumed. When all avail-
able consoles have been processed, the processor enters a $WAIT
condition until an I/O interrupt is received on one of the consoles,
or until another console message is added to the queue.

Console Input/Output Processor - Page 4.10-1

103

HASP

4.10.3 Operator Console Input/Output Appendage - Program Logic

The Operator Console Input/Output Processor's asynchronous exit

is entered from the Asynchronous Post Processor following the com-
pletion of an I/O operation on a console device. The IOB completion
code is tested for abnormal end, and if an error exists, an error
routine is entered to retry the operation.

If the completion is normal the appropriate physical console bit

is shut off and the console byte is tested to see if the operation
is complete on all consoles. If any bits are still on the Operator
Console Input/Output Processor is $POSTed and an exit is taken.

If all bits are now off and the operation code is a write, a link

is made to $FREEMSG, the Input/Output Processor is $POSTed and an
exit is taken.

If the completed operation is a read, the response is processed
according to type. If the buffer contains a HASP command (i.e.,
an input message whose first character is a dollar sign ($)), it
is chained to the end of a queue for the Command Processor
($SCOMMQUE) , the processor is $POSTed, and an exit is made with a
$POST of the Input/Output Processor.

If the message is a "reply", the reply number is converted to
binary and the corresponding entry in $WTORQUE is located. Using
the information in the entry, the message is moved to the WTOR's
reply area and the WTOR's ECB is POSTed. The reply queue entry
is merged into the free queue ($SWTORFRE), and a link is made to
the Log Queuing Routine. The Input/Output Processor is $POSTed
and -exit is made.

If the message is not a "reply" or a HASP command, it is assumed
to be an 0OS command. The message buffer is set to the proper
format for the Master Command Routine and an SVC 34 is issued.
When control is returned from the Master Command Routine, the

buffer is released, the Input/Output Processor is $POSTed and an
exit is made.

Console Input/Output Processor - Page 4.10-2

104

HASP

4.11 TIMER PROCESSOR

4.11.1 TIMER PROCESSOR - GENERAL DESCRIPTION

The function of this processor is to reset the 0OS interval
timer after a timer interrupt has occurred.

4.11.2 TIMER PROCESSOR - PROGRAM LOGIC

This processor calls the IPOSTIT and ISETINT subroutines in

the $STIMER/S$TTIMER Control Service Routine (see Section 5.6),
which causes the expired TQEs to be POSTed and the time inter-
val specified in the first TQE in the TQE chain to be set

into the 0S interval timer. The processor then waits for
another timer interrupt to occur. When the next timer interrupt
is processed, the asynchronous exit routine $POSTs this pro-
cessor and the above procedure is repeated.

Timer Processor - Page 4.11-1

105

HASP

4.12 REMOTE TERMINAL PROCESSOR (360/20-STR)

4.12.1 Remote Terminal Processor (360/20) - General Description

The Remote Terminal Processor (RTP), although not a part of HASP
proper, can be considered in the same catagory as other HASP processors.
RTP is created by HASPGEN to operate as an extension of HASP on a
System 360 Model 20 used as a remote terminal to HASP. RTP, in
the Model 20, maintains constant communications with HASP at the
central computer site via several classes of telephone lines to 1) encode
and transmit jobs submitted at the remote site to HASP for execution on
the central computer, and 2) print and/or punch the output from
jobs thus submitted as the output become‘s available. Various techniques
are utilized by RTP and HASP to obtain maximum performance of both
1;he Model 20 devices and the communication lines used. RTP currently
requires an 8K Model 20 with any reader and printer attached. The
program can be made to operate iﬁ a 4K environment at a somewhat
degraded performance. with reduced ease of operation.

RTP has been designed to allow the addition of '"background" functions
to operate in a multiprogrammed environment with normal remote terminal

processing.

Remote Terminal Processor (360/20) — Page 4.12-1

106

HASP

4.12.2 Remote Terminal Processor (STR Model 20) - Program Logic

Upon completion of the loading of the RTP program deck, control is
transferred to the initialization phase of the program to prepare for job
processing. Initialization first checks the card reader for the presence
of patch (REP) cards and, if present, makes the appropriate patches
(the RTP REP card format is identical to the HASP REP card as described
in Section 6.4). Encountering a /*SIGNON card within the REP cards,
will cause initialization to replace the default remote SIGN-ON identification
and password by the contents of the ‘card. After loading REPs, or if no REP
~cards are present, the dynamic configuration card (which follows REPs if
present) is decoded and appropriate commands for the system punch
selected are established. (The formats of the SIGN-ON and dynamic
configuration card are given in the Model 20 Operator's Guide-Section 11.2).
The final process of initialization is the dynamic construction of the buffer
pool. Bﬁffers are built, according to the HASPGEN parémeter &TPBFSIZ
until the memory size of thg machine is reached or the assembly parameter
&NUMBUTFS is reached. Construction of the buffer pool overlays the complete

initialization routine. Control is then passed to the processing section of RTP.

Remote Terminal Processor (360/20) — Page 4.12-2

107

HASP

The proceéaing phase of the program consists of four principal processors
and a communications adapter (CA) I/O supervisor. Allocation of CPU
time to the various processors is accomplished via a commutator. A
processor is entered into contention for CPU time by changing its commu-
tator entry from a NOP to a BRANCH command. Through the use of the
WAIT macro, a processor may await the occurrence of a certain event

and be enteréd, via the commutator, below the wait instruction upon

completion of the event.

Remote Terminal Processor (360/20) — Page 4.12-3

108

HASP

PROCESSORS

Card Read Processor

Upon initial entry, this processor checks the system card reader
for ready status. If the device is not ready, HASP is notified, via a
SEND EOT, of the lack of jobs to transmit, the CA receive processor
is activated, the card read processor is deactivated, and entry is made
to the commutator. If the card reader was ready, the transmission phase
is immediately begun. Cards are read (double buffered) and are passed
to the ENCODE subroutine which compresses and translates the card
for transmission. The encoded card images are blocked in a buffer
obtained from the dynamic buffer pool until the capacity of the buffer is
reached. The buffer is then chained into a queue of buffers av\vaiting
transmission by the CA transmission processor to HASP in the central
computer. Another buffer, if available, is obtained from the buffer pool
and is processed in a like manner. When, and if, the supply of buffers
is exhausted, the reader processor enters a WAIT state to await the freeing
of a transmitted buffer by the CA transmission processor. When the
last card of the job stack has been read, a SEND EOT (zero word count
buffer) is queued for transmission and the steps described previously

are done to terminate transmission and activate reception. In order to

Remote Terminal Processor (360/20) — Page 4.12-4

109

HASP

minimize CPU utilization, the card read processor-compression routine
only compresses ''n'"' or more blank characters (where ''n' is the value

of the assembly parameter &CCT). The format of transmission records

to HASP is described in Section 12, 9, 3.

Remote Terminal Processor (360/20) - Page 4.12-5

110

HASP

Communications Adapter Transmission Processor

The CA Transmission processor removes buffers from an ordered
queue, dynamically being built by the Card Read Processor, and trans-
mits their contents to HASP in the central computer. All transmissions
are via the Communications Adapter-I/O Supervisor (CAIOS) which pro-
vides for line re-instruct at interrupt time to make optimum use of the
line (See CAIOS description). As posting of successfully completed
writes occurs, the buffers are returned to the free buffer chain for
reuse by another proceséor. This processor continues to dequeue and
transmit buffers, as they become available, until a buffer with a trans-
mission word count of zero is encountered. An EOT is then sent to HASP
to indicate the end of the input stream, the CA Transmission Processor is

deactivated and return is made to the commutator.

Remote Terminal Processor (360/20) — Page 4.12-6

111

HASP

Communications Adapter-Receive Processor

The CA Receive Processor is activated by the Card Read Processor
when it is determined that no jobs are available to transmit to the central
computer. Upon being entered, CA Receive establisheé vcommunication
with HASP in the central computer to await the output of a previously
submitted job. The lack of jobs to transmit is indicated by HASP with an
immediate EOT signal to the Model 20. When this EOT is received, the
CA Receive Processor deactivates itself and activates the Card Read
Processor to again check for the presence of jobs to send to HASP.

If a job is avialable to be printed or punched, the CA Receive
Processor activates the Print/Punch processor and immediately begins
reading transmittal records into buffers obtained from the dynamic
buffer pool. Buffers, thus filled, are placed in an ordered queue to
await processing by the Print/Punch Processor. All CA reads are
via the Communications Adapter I/O Supervisor (CAIOS) which provides
for line re-instruct at interrupt time to make optimum use of the line
(see CAIOS description). Processing continues, as buffers and/or
transmittal rec?rds become availablé, until an EOT signal is received
from HASP indicating end-of-job. A buffer with a word count of zero

is added to the queue to inform the Print/Punch processor of the end-

‘'of-job.

Remote Terminal Processor (360/20) — Page 4.12-7

112

HASP

Communication is then, once again, established with HASP to
ascertain if additional output for this job is available (i.e. the punch
output of the job which has just completed printing). After the additional
output has been processed, or if none existed, the CA Receive Processor
is deactivated, the Card Read Processor is activated, and return is
made to the commutator. Note that this logic, of activating the Card
Read Processor prior to beginning processing output from the next job,
allows the Model 20 Operator to interrupt print/punch processing, at

a job boundary, to transmit a job to the central computer.

Remote Terminal Processor (360/20) — Page 4.12-8

113

HASP

Print/Punch Processor

When activated, the Print/Punch Processor begins dequeuing and
processing buffers from the queue (being) created by the CA Receive
Processor. Records to be punched are indicated by '"carriage control"
characters of X'0FOF' and are routed to the punch section of the pro-
cessor. In order to minimize CPU requirements, the print processor
does not provide for 1-7/8 encoding of print characters (see Section 12.9).
The 16 4 of 8 characters normally reserved for 1-7/8 encoding are re-
defined for print records only, as additional print characters, thus
yielding a 64 character print set.

After reconstructing and printing or punching all records in a buffer,
that buffer is returned to the buffer pool for use by another processor.
When a buffer with a zero word count is encountered in the queue (indi-
cating end-of-job), the Print/Punch Processor is deactivated, unless
records from the next job have already been queued, and return is made
to the commutator.

If a dynamic configuration card described the system punch unit as
DUMMY, the punch section of the processor is dynamically altered (by
initialization) to immediately free all punch buffer encountered in the
Print/Punch buffer queue. This results in eliminating punched output;

however, punch records are still transmitted to the Model 20,

Remote Terminal Processor (360/20) — Page 4.12-9

114

HASP

By setting the assembly parameter & PUNCH to 0, all code concerned
with processing punched output will be eliminated from RTP. The
appropriate HASPGEN must be done on the central system to force all

punch output for a '""punchless' terminal to be processed locally.

Remote Terminal Processor (360/20) — Page 4.12-10

115

HASP

Comrﬁunications Adapter 1/0 Supérvisor

The primary purpoée of CAIOS ié to assufe the kmaximum possible
communication vline utilization by fe-inétructing the line ai: the earlliest.
possible moment after completion of a previous gener;atioﬁ.

All requests to read and/or write the communication line are passed
to CAIOS for execution by the CA processors. Upon receipt of an 1/0O
request, CAIOS immediately initiates the operation if the line is dormant,
or queues the request to await completion of the currently active opera-
tion.

The completion of a CA I/O operation causes an interrupt which
immediately transfers control to CAIOS. If the operation indicated as
complete by the interrupt was successful (error free), any queued I/O
reéuest is immediately initiated. The Event Control Block of the re-
questor of the just completed 1/0 opex“ation is posted (with a X'7F') to
indicate the successful completion of the request. Return is then méde
to the interrupted processor. CAIOS recognizes and attempts to
correct all transmission errors encountered on any CA I/O operation.
Since both CA processors are designed to double buffer I/0 requests,

CAIOS insures virtually total line utilization during transmission periods.

Remote Terminal Processor (360/20) — Page 4.12-11

116

HASP

4.12.3 Remote Terminal Processor (360/20)-Assembly Parameters

The following indicates the variable name and function of certain RTP
assembly parameters which can be of general use.
&TPBFSIZ - defines the size of the buffers used for
tfansmission to and from the HASP system.
(Since this variable must exactly agree with
the corresponding variables in the HASP
system, the values of both are automatically

set at HASPGEN time.

&NUMBUFS - limits the number of CA buffers created
dynamically at initialization time. - Initial-
ization will create buffers until the capacity
of memory, or the value of &«NUMBUFS is
reached. It is suggested that this value be
made large enough to allow sufficient buffering

(hence line load-leveling) to occur.

&CCT . - represents the minimum number of consecutive
blank characters which will be compressed
by the Card Read Processor. This value

should never be less than 4 and, significantly

Remote Terminal Processor (360/20) — Page 4.12=12

117

HASP

reduces CPU requirements by the Card Read |
Processor as it is increased. A valﬁe of 80.
will effectively prevent all blank compression |
(except on totally blank cards). The value of
&CCT mé,y never exceed 80,

&PUNCH - controls the existance of code within RTP to
process punch output received from HASP.
If &PUNCH=1, punching capabilities will exist
in RTP.
&PUNCH=0, no punching capabilities will be
created in RTP (NOTE: the HASPGEN of the
central computer system must agree with this
option.)

&MACHINE - defines the Model of SYSTEM/360 on which
RTP is to operate. This value must presently
be set to 20, This option can subsequently be

used to assemble RTP, at HASPGEN time, for

any Model of SYSTEM/360 being utilized as a
HASP remote terminal. Although certain parts
of this feature are currently in RTP, it is

incomplete and totally untested.

Remote Terminal Processor (360/20) — Page 4. 12-13

118

HASP

4.13 REMOTE TERMINAL PROCESSOR (SYSTEM/360-BSC)

The following sections outline the bééic logic flow of the MULTI-LEAVING
Rehiote Terminal Processor program for System/360 (including Model 20)
workstations utilizing Binary Synchrd‘nous communications devices. The same
workstation.brogram is utilized for both the Model 20 and System/360 work-

stations with generation parameters for the machine type.

4.13.1 General Description

| The MULTI-LEAVING Remote Terrhinal Processor program is created by
HASPGEN to operate as an extenshion of HASP on any Model of SYSTEM/360
used as a remote workstation for HASP. This terminal program maintains
constant communicatvions with HASP at the central site via several classes
of telephone lines to (1) encode and transmit jobs submitted at the remote
site for OS/360 processing oh t’he central computer, and (2) print and/or
punch the output from jobs thus submitted as the output becomes available.
Optionally, if an operator console is attached to the remote system,
informational and control facilities are provided. All of .the above functions
may occur simultaneously. Various techniques are utiliied by HASP and
the workstation program to obfain maximdm performance of the remote
devices and the communications line. Figure 4.13.1 indicates the basic

information flow through the system.

Remote Terminal Processor (System/360) — Page 4.13-1

119

HASP

Figure 4.13.1 MULTI-LEAVING Information Flow Diagram

HASP
A
. $COMSUP
Y
$COMSUP | CBUFFER $COMSUP
$COMSUP
$OUTBUF | " $BUFFER
Queue Pool
. A
$TPPUT
OACTBUFF ;‘$TPPUT $TPGET TCTBUFER
Queue
A
. $TPPUT . $TPGET
Y
Device $TANKPOL STPGET o | TCTTANK
-Tank Pool < ‘ Queue
$PRTNG '
' ' $URTNL :
. $RRTNL $WRTNL . $PRTNL
. $WRTNL | . $URTNL
. . $WRTNL
INPUT DEVICE Notes: OUTPUT DEVICE

Solid lines indicate buffer or decompression tank flow with or without data.
Broken lines indicate data flow only.

Line comments indicate processor responsible.

Remote Terminal Processor (System/360) — Page 4.13-2
120

HASP
4.13.2 Program Logic

The MULTI-LEAVING Remote Terminal Processor consists of an initialization
section, four'principal processofs , three communications interface'processors
and a communications INPUT/OUTPUT supervisor. Allocation of CPU time to
the various processors- is accomplished through a basic program commutator.

A processor is entered into contention for CPU time by changing its commutator
entry from a NOP to a BRANCH command. A single control block, the Total
Control Table (TCT) is utilized by allAprocessors to provide for synchronization
of concurrent operations, processor status information,re-enterability and both
infer and intra processor communication.

The following sections discuss the basic logic flow of the various

components of the program.

Communications Interface Processor - Output ($TPPUT)

This processor serves as the inf:erface between the various input processors
and the communications INPUT/OUTPUT supervisor. Its function is to compress
and encode records for subsequent transmission to HASP at the central site.
$TPPUT is utilized as a éubroutine by the various input processors and relieves
the input routines of the respohsibility of data compression and transmission
buffer management. As records are submitted for transmission, $TPPUT

compresses the records according to a compression type generation parameter

Remote Terminal Processor (System/ 360) — Page 4.13-3

121

HASP

(&CMPTYPE) and add the encoded record to its current output buffer.
When the current buffer is filled or terminated, it is chained in
an ordered queﬁe for transmission to HASP by theccommuniCations
4INPUT/OUTPUT supervisor and a new buffer obtained. Details of the
compression and encoding technique utilized by $TPPUT are included

as an appendix to this manual.

Communications Interface Processor - Input (STPGET)

This processor serves as the interface between the various cutput
processors (Print, Punch; Console, etc;) and the Communications
INPUT/OUTPUT processor. Its function is toudecode and uncoﬁpress
transmission buffers received from HASP aﬁd to queué the decompressed
records to the appropriate processor for processing.‘ $TPGET is en-
tered from the commutator and processes buffers from a ordered queue
of received buffers cstablished by the Communications INPUT/OUTPUT
sﬁpervisor. Records received are deblocked into "decompression
tanks"vand péssed to the appropriate processor. SYnchronization énd
passage of the tanks ﬁo the prccessors is accomplished through the
Total Control Table (TCT) for each processor. S$TPGET additionally
is.respcnsible for metering the flow of each type of record from
HASP. This also is accomplished by utilizing‘the‘various buffer and

tank limits indicated in'the TCT for each processor.

e
e

Control Record Processor (SCONTROL)

This processor provides synchronization between the various processing

Remote Terminal Processor (System/360) - Page 4.13-4

122

HASP

functions at the workstation and the HASP SYSTEM at the central site, Control
Records frdm HASP (i.e. Request to start a function, etc) are quéued on this
processor by the $STPGET proce.ssor. SCONTROL fhen processes the control
record, franémits a fésponse, in require'd,through STPPUT .and initializes the

required functional processor.

Communications INPUT/QUTPUT Supervisor (COMSUP)

COMSUP maintains communications with HASP in the central CPU at all
times and is respohs‘ible for the transmisi;ion of all data to and from the remote
" -gite. The data proceésed by COMSUP is always in combressed buffer form
and passes to and from COMSUP via ordered queues establishe\d by STPPUT
and for STPGET.

'The communications I/0 is primarily interrupt driven and is completely
maintained by COMSUP (i.e. COMSUP is bofh the initiator and executor
Qf communications i/O) . During periods requiring no data transmission,
COMSUP‘maintains’ a "handshaking" cycle with HASP at approximatély 2
second intervals to insure full bi-directional capabilities and to avoid
unprog‘r.ammed "time-outs" of the adap'ter.

In additvion COMSUP maintains, verifies and corrects (if necessary)
the MULTI— LEAVING‘biock sequence checking fevature and detects, logs

and retries all communications errors.

Remote Terminal Processor (System/360) — Page 4.13-5

123

HASP

Initialization Processor

The Initialization Processor receives control from the loader and

initializes the remote terminal program as follows:

1'

If the CPU is not Model 20’_, general registers 1, 2, and 3

are loaded to establish 16 K addressability.

Replacement (REP) cards are read from READER 1 for possible

modifications to the program. The format of the REP card

is as follows:

Col. 2-4 REP

Col. 9-12 Replacement address - hexadecimal address
of the first half word of storage to replace
(if blank the previous REP card is continued)

Col. 17-n XXXX , XKXXK, o o o XXXX replacemént data -
one or more half word groups of hexadecimal
data separated by commas

Col. n+l blank - terminator for the replacement data

Col. n+2-80 comments - any text

Each REP card is printed on PRINTER 1 when read as a record of program

- modification. REP reading is terminated when either a blank card (blank in

Col. 1-5) or a /*SIGNON card is encountered.

3.

The HASP ENVIRONMENT RECORDING ERROR PRINTOUT (HEREP)

is printed if the recording table is intact from the last execution

Remote Terminal Processor (System/360) — Page 4.13-6

124

HASP

of the program; otherwise, a new table is created for future
recording and print out.
4, Interrupt PSW's are set for non Model 20 CPU's.
5. The communication adapter is enabled and communications
established with HASP as follows:
a. Write SOH-ENQ to HASP

b. Read for DLE-ACKO from HASP

If I/O errors occur or HASP responses do not match the expected
sequence, the sequence is repeated.

6. The processor constructs a buffer pool over itself and queues
the SIGN-ON record for transmission to HASP.

7. 1/0 PSW's are set (I/O old points to commutator) and control

is passed to the communication adapter interrupt routine.

Print Service Processor - S$PRTN1

The Print Service Processor's major functions are dequeuing decompression
tanks containing print information from the printer Total Control Table,
examining the sub-record controL byte for carriage céntrol information,
performing required’ carriage control, printing the information on the designated
printer, and releasing the used decompression tank to the pool. The processor
also provides event control upon dequeuing and releasing the "tanks". If
no console typewriter is attached to the system and the value of the user |
option &PRTCONS is not zero, the processor will set status information

Remote Terminal Processor (System/360) — Page 4.13-7

125

HASP

at the end of each print data set which allows the console processor to queue

operator messages for printing.

Iffput Service Processor - $RRINI

The Input Service Processor supports various card readers used for the
purpose of submitting job streams to HASP and in the case of Model 20
DUAL 2560 MFCM serves the functions of punch service processor. ‘ The
processor provides error analysis and recovery for supported devices.
Execution begins with the initial read routine which continuously atfcempts
to read cards from the designated card reader. In the case of a DUAL 2560
control is passed to the punch routine if the primary feed is empty. If reader
is a DUAL 2520 or 1442 the routine will check the first card for blank and
if so pass control to the punch preparation routine; otherwise subroutine
STPOPEN is callved ‘which sends a request to send a j‘ob streém to HASP.
When permission is received the job stream submission routine is entered
which réads cards into one of two decompression tanks calling the STPPUT
processor which compresses the data and schedules transmission to HASP.
At end-of-file $TPPUT is used to signal HASP and control is passed to the
initial read routine.

The DUAL 2560 punch routine attempts to dequeue a decompression tank
from the Total Control Table. If successful the card image is punched and

the used "tank" is released to the pool. The routine continues to dequeue

- and punch for a maximum of 100 cards; this time tests are made to determine

Remote Terminal Processor (System/360) — Page 4.13-8

126

HASP

the existance of cards in the primary feed. The tests are also made in the
event of no tanks available for dequeuing. If the tests are negative the
processor continues to punch cards; otherwise control is passed to the
read routine following the initial read. The processor provides event control
upon dequeuing and releasing decompression tanks.
DUAL 2520/1442 punch preparation routine tests for:
1. Operator signal - changing of the data dials, .SRl command,
or unsolicited device end. (Depends upon configuration).
2. Presence of Decompression tanks for punching.
If the operator signals, the routine passes control to the initial read
routine. If a "tank" is queued to the device Total Control Table control ‘

is passed to the Punch Service Processor (SURTN1).

Punch Service Processor - SURTNI1

The Punch Service Processor's major functions are dequeuin‘g decompression
tanks containing print .nformation from the punch Total Control Table, punching
the information into cards on the designated punch, and releasing thé used
"tanks" to the pool. The processor also provide event control upon de-
queuing and releasing the "tanks" in addition to error recovery upon
erroneous punching of data. If the device is'a DUAL 2520 or 1442 control
is passed to the Input Service Processor (SRRTN1) after servicing output

"tank".

Remote Terminal Processor (System/360) — Page 4.13-9

127

HASP

Console Service Processor - SWRTNI1

If the remote terminal has an attached operator printer keyboard, the
console process’or performs the following functions:

1. Reads operator commands from the console keyboard.

2. | Examines the input for local commands (Model 20 only)
passing local commands to the command processor and
passing all other commands to HASP.

3. Type operator messages contained in decompression tanks
queued to the console Total Control Table.

4. Convert codes in the error message log table to readable form
and type the resulting messages.

Execution begins with the processor testing for an operator command
in the console input "tank" waiting to be transmitted to HASP. If so the
console read in function ié skipped and an attempt is made to send the
command to HASP. Control is passed to the console output routine which
tests for output messages. If so, the processor dequeues the tank, types
the message, and releases the tank. Control is then passed to the beginning
of the processor. If no output messages aré pending the console logging
routine is entered which converts, types the message, and passes control
to the beginning of the processor. The consqle read routine tests for
operator requests and if so, reads the command from the keyboard, calls
the $TPPUT processor to compress the data and transmit the command to

HASP, and passes control to the console output routine. If the remote
Remote Terminal Processor (System/360) — Page 4.13-10

128

HASP

terminal is a Model 20 the read routine tests for local commands and
calls the command processor which in case of ".S" command , posts the
appropriate Service Processor and returns. Local commands are not
transmitted to HASP.

The Console Service Processor without a console keyboard exists only
when the value of the user option &PRTCONS is not zero. Execution begins
with a test for printer availability. If available, any console messages are
removed from the console output queue by the dequeue routine and attached to
the printer queue, allowing the Print Service Processor to print the message.
If no console messages are queued the processor will convert any log messages
into readable form, move the resulting message into a "tank" obtained from
the pool, queue it to the console output queue and pass control to the con-
sole dequeue routine. If thé value of &PRTCONS is one and the printer is
not available console messages are allowed to accumulate to a maximum
queue limit. If the limit is reached prior to the printer becoming otherwise
available the printer is forced available and the messages are queued to the
printer with the sub-record control byte of the first message set to skip to
channel 1 before print. If the value of &PRTCONS is two and the printer
is not available to the console the processor will dequeue console tanks

and release them to the pool.

Remote Terminal Processor (System/360) — Page 4.13-11

129

HASP

Total Control Table (TCT)

The Total Control Table is the major working storage area for the unit
record processors and is customized for each configuration and device supported
by the remote terminal program. Each basic TCT field may be referred to by using
symbols defined in the DSECT named TCTDSECT, however, each processor has
the option of uniquely referting to the fields directly by using the alternate
three character prefix to eaéh field name as follows:
TCT = General TCT prefix

CCT = Control record TCT

1l

PCT Printer TCT

RCT

Reader TCT

UCT = Punch TCT

WCT = Console TCT
Appropriate DSECT's are provided by generation macros in the event more
than one TCT of a given type is supported by the system. Basic control
fields appearing only in systems with model numbers above the Model 20
are as follows:

NAME DESCRIPTION

$pCTCOMn TCT addressability field - The commutator
branches to this field to give control to the
appropriate processor - the field contains a

BALR R7,0 instruction which sets up TCT

Remote Terminal Processor (System/360) — Page 4.13-12

130

HASP

NAME

TCTSTRT

TCTENTY

TCTRTN

TCTCCW

TCTDATA

DESCRIPTION

addressability for the processor - symbol
characters "p" and "n" uniquely identify the

TCT for the commutator

First two characters of unconditional branch

instruction

"S" type address constant pointing to the
appropriate processor - the field completes the
branch instruction which passes control to the

processor at the desired entry point

Return to next entry in commutator - each
processor waits by branching to this field
of the TCT which in turn branches to the

commutator

Actual CCW op-code used in last I/O on the
device - set by the processor and unit record

IOS

Address of data area used for last I/O transfer

or address of input "tank" currently being

Remote Terminal Processor (System/360) — Page 4.13-13

121

HASP

NAME

TCTFLAG

TCTOPCOD

TCTCCWCT

TCTSENSE

TCTUCB

TCTECB

DESCRIPTION
compressed for transmission to HASP
CCW flags

Op-code which will be inserted into the
TCTCCW field upon normal entry to unit record

108

CCW count field - length of data last trans-

ferred or to be transferred

Sense information - set by unit record I1I0S

for error diagnostic purposes

Device Address - contains hexadécimal

device address for SIO and interrupt recognition
purposes - the high order bit of the field is set
on by the processor when waiting for HASP to

authorize job submission

Event Control Block - contains all bits stored
in CSW byte 4 since the last SIO instruction for
the device - busy bit is set at SIO and when

the processor desires to wait for unsolicited

v

Remote Terminal Processor (System/360) — Page 4.13-14

132

HASP

NAME DESCRIPTION

device end - busy bit is reset at device end

TCTALTOP Alternate op-code for DUAL reader/punch
devices - processors requiring alternate op-
codes have the option of setting the TCTCCW
field with the contents of this field prior to

entry to unit record I0S

TCTSAV1 Save area for the processor subroutine LINK

register

Basic fields which may appear in remote terminal programs for all

360 models are as follows:

TCTNEXT Next TCT in the chain of TCTs

TCTFCS Function Control Sequence Mask - used by
STPGET processor to setup the FCS transmitted

to HASP for backlog control

TCTRCB Record Control Byte ~ records from HASP which
have RCB bytes identical to this field will be

queued for output on the corresponding device

Remote Terminal Processor (System/360) — Page 4.13-15

133

HASP

NAME DESCRIPTION
TCTSTAT Status Flags - each bit has one or more meanings

which are dependant upon the processor
involved:

bit 0

TCTOPEN - always off indicating

device is in use by HASP output

(as appropriate)

bit 1 = TCTACT - used by STPGET to
determine which output devices
need more data - procéssors set bit
1 when dequeuing output "tanks"

bit 2 = TCTSTOP - device has been stopped
and is awaiting ‘a-start command.

bit 3 = TCT1052, TCT2152 - console
device identifier

bit 4 - PCT only = TCT1403, TCT1443,
TCT2203, TCTPRTSW - indicates the
status of the corresponding printer -

'

if setthe printer is available for
printing operator messages

bit 4 - WCT only = TCTREQ - console request -

operator desires to enter a command

Remote Terminal Processor (Sysbtem/360) — Page 4.13-16

134

HASP

NAME DESCRIPTION

bit 4 - TUCT only = TCT1442 - the device is a
1442 with single stacker pocket

bit 5 - RCT orUCT = TCT2540 - TCT is for
a 2540

bit 5 - WCT only = TCTREL - release requested -
an unsuccessful attempt has been made
to obtain a buffer for command trans-
mission to HASP - the command is in
compressed forim in the consoles "tank"
waiting for a free buffer

bit 6 - RCT/UCT = TCT14420, TCT25600 -
TCT is for a DUAL 1442 Reader Punch
or DUAL 2560 MFCM

bit 7 - RCT/UCT = TCT25200 - TCT is for a

DUAL 2520 Reader Punch device
TCTCOM Pointer to corresponding commutator entry

TCTID Optional field - two character identification

for local command processors

TCTINRCB Optional field - exists when DUAL devices are

attached to the system - identifies the Input

Remote Terminal Processor (System/360) — Page 4.13-17

135

HASP

NAME

DESCRIPTION

Service Processor function as opposed to the
Punch Service Processor function identified by
TCTRCB - TCTINRCB is equated to TCTRCB if

no DUAL devices are attached

The following fields are normal device extensions and do not exist for

card reader devices when DUAL devices are not attached to the remote

terminal:

TCTTANK

TCTBUFER

TCTTNKLM

TCTINKCT

TCTBUFLM

Beginning of output "tank" queue - output records

appear in unit record image form

Beginning of output buffer queue - contains
records in compressed form waiting for de-

compression into tanks

.Tank limit - maximum number of "tanks" which

may be placed in the "TCTTANK queue

Tank count - actual number of "tanks" queued

to the TCT

Buffer limit - maximum number of output buffers

which may be placed in the TCTBUFER queue

Remote Terminal Processor (System/360) — Page 4.13-18

136

HASP
NAME DESCRIPTION

before signalling HASP to suspend sending the

streams - limit is ignored for WCT ',

TCTBUFCT Buffer count - actual number of buffers queued

to the TCT

Reader and console TCT's have extensions which are used as "tanks"
for records which are transmitted to HASP. These "tanks" belqng.td; the
device (2 for readers and 1 for the console) and are not released to the'.""tahk’f'

pool. The following field symbols are only defined for the TCT's with

prefix designators. RCT, WCT, and with DUAL deviceis':'jl‘JCT:
" RCTTANK1, RCTTANK2 “Tank" origin and’working: stéra‘.ée
RCTTRCBI, RCITRCE2 Input RCB for HASP identiﬁca"cﬁi(kﬁnb -
| RCTTSRCl, RCTTSRC2 Sub-record control byte = X'80°
RCTTC’fl, RCTTCTZ Count field — length of data poriion :

RCTTDTAL, RCTTDTAZ Data area - input card or operator command -

will be blank for the DUAL 2520 and 1442

while in output sitatus

}Remote Terminal Processor (System/360) ‘--?-_Page_4.13-»1_9:‘

137

HASP

TABLE OF CONTENTS

SECTION PAGE
4.14 Remote Terminal Programs (1130) 4.14-1
Introduction ' 4.14-1
4.14.1 Remote Terminal Processor (RTP1130) 4.14-3
Introduction 4.14-3
Commutator Processors 4,14-4
TPIOX - SCA I/0 Control 4.14-6
TPGET - TP Buffers From HASP 4,14-6
TPPUT - TP Buffers To HASP 4.14-6
RDTFO - 2501 Card Reader 4.14-7
RPFFT - 1442 Reader Punch 4.14-7
PRFOT - 1403 Printer 4,14-7
PRETT - 1132 Printer 4.14-8
- CONSL - Console Keyboard/Printer 4.14-8
RTPET ~ Initialization 4,14-9
System Subroutines 4,14-10
SGETQEL - Dequeue An Element 4.14~11
SPUTFQL - Enqueue A Free Element 4,14-11
SPUTAQL - Enqueue An Active Element 4.14~11
STPOPEN - Initiate Control Record 4.14-11
‘SSRCHB - Search UFCB Chain 4,14-12
SWTOPR - Type Message 4,14-12
SLOGSCA - Log SCA Error 4,14-12

"8SMOVE - Move A Variable Number Of Words 4,14-13
SXPRESS - Convert Card Code To EBCDIC 4,14-13
SXCPRNT - EBCDIC To Console Print 4.14-13
SXPPRNT - Convert EBCDIC To 1403 Print 4.14-13
SXCPNCH - Convert EBCDIC To Card Code 4.,14-13

STRACE - Trace Machine Registers 4,14-13
SSDUMP - System Core Dump 4.14-13
Processor Subroutines . 4.,14-16
BSXIOS - SCA I/0 Supervisor 4.14-17
DBLOCK ~ Deblock Data From HASP 4.14-17

. TPCOMPR -~ Construct Output To HASP 4.14-18
DBUGSCAL - Trace SCA Interrupts 4.14-18
TPBUILD -~ Build TP Buffers: 4.14-20

HASP Remote Terminal Processor (1130) - Page 4.14-1
138

HASP

TABLE OF CONTENTS

(Continued)
SECTION : PAGE
4.14.1 Control Block And Data Formats 4,14-21
Continued Chained List General Format 4.,14-21
UFCB - Unit-Function Control Block 4,14-22
TPBUF - TP Buffer Format 4.14-25
Output Element (Tank) Format 4.14-27
Object Deck Format 4,14-28
REP Card Format 4.14-29
4,14.2 Remote Terminal Main Loader (RTPLOAD) 4,14-32
4.14.3 Remote Terminal Bootstrap (RTPBOOT) 4.14-33
4.14.4 Remote Terminal Program 360 Processirig 4.,14-38
(LETRRIP)
4,14,
4,14.5 1130 Instruction Macros 4.14-39
4, 14, 6 General Information 4.,14-44
"Variable Internal Parameters 4.14-44

HASP Remote Terminal Processor (1130) - Page 4.14-ii

139

HASP

4.14 REMOTE TERMINAL PROGRAMS (1130)

Introduction

The 1130 MULTI-LEAVING terminal program is designed to operate on a
system with 8K words which contains the standard Binary Synchronous Com-
munications Adapter.

The unit-record equipment supported may include any or all of the following

devices:
° 1442 Reader/Punch or Punch
® 2501 Reader
® 1132 Printer
° 1403 Printer
] Console keyboard/Printer

Programs developed for the 1130 in conjunction with the HASP Remote Job
Entry feature are assembled using the OS/360 Assembler. The 1130 instruction
set is generated thru the use of macro instructions (See Section 14.4.5) corres-
ponding to the actual 1130 hardware commands. Additionally, pseudo (assembler)
operations are available to aid in the development of 1130 programs on the System
360.

The object decks produced by the OS Assembler are subjected to further
processing by a program (LETRRIP) which condenses and changes the format of

the EBCDIC decks to facilitate 1130 loading.

HASP Remote Terminal Processor (1130) - Page 4.14-1
140

HASP

The remote terminal system for the 1130 is composed of several programs

briefly described in the following paragraphs:

RTPBOOT - A bootstrap loader consisting of a single "load mode" format
card and several column binary and EBCDIC program cards. The function
of RTPBOOT is to "b ootstrap" an EBCDIC format loader (RTPLOAD) into

1130 core. RTPBOOT will load from either a 1442 or a 2501 card reader.

RTPLOAD - Loads into the upper segment of defined 1130 core and then
loads the main terminal program (RTP1130) into the lower extent of 1130
core. RTPLOAD also processes REP cards and performs the initial pro-

cessing of /*SIGNON control cards.

RTP1130 - The main terminal processing program which provides the

MULTI-LEAVING support for the 1130.

The following sections provide more detailed information on the design

and implementation of the above programs.

HASP Remote Terminal Processor (1130) - Page 4.14-2

141

HASP

4.14.1 Remote Terminal Processor (RTP1130)

Introduction

The subsequent sections present the basic structure of the terminal program
for the 1130. Included, are descriptions of the commutator logié and associated
processors; system subroutines; processor subroutines; control block férmats
and data block general formats.

The documentation presented is intended to be introductory in nature.

The user intending to modify the system should use the documentation in con-

junction with a program listing which contains commentary in much greater detail.

HASP Remote Terminal Processor (1130) - Page 4.14-3

142

HASP

Commutator Processors

Distribution of CPU time to the processors concerned with the functions
necessary to support terminal devices is through programmed commutator
logic. Each processor which needs CPU time and is dependent on external
I/0 device rates is represented by a commutator entry. The commutator
entry consists of the following basic elements:

e A named commutator "gate" which takes the form of a branch to

the next commutator entry (gate closed) or a "NOP" if the entry
is active (gate open).

® A long form branch to the active commutator main ~outine used if

the gate is open.

° A named return point for reference by the main commutator routine.

e A named end to the commutator entry which is the address of the

next commutator entry.

The basic structure as defined may also contain register save-restore
sequences to be used for each entry-exit cycle through the commutator.

The processors entry from the commutator (gate open) usually provides
for a method of setting a variable entry to the segments of the processor

which are involved with waiting for I/O to complete or some system resource

to become available.

HASP Remote Terminal Processor (1130) - Page 4.14-4

143

HASP

The general operation of the commutator involves the opening and closing
of processor gates, the setting of variable entry points within the processors,
the initiation and associated wait period for I/O operations and the return to
the commutator to "share" the CPU during wait periods. The last instruction
in the commutator is a branch to the "top" or first instruction in the commutator
which initiates the next cycle. The current system does not provide for a
priority relationship among commutator processors.

The main commutator processors contained in the RTP1130 system and

briefly described in the following sections.

HASP Remote Terminal Processor (1130) - Page 4.14-5

144

HASP N

TPIOX - SCA Input/Output Control Processor

Controls the transmission of data and/or control records between HASP
and RTP1130 via the SCA. All adapter I/0 is initiated using the SCA I/O

Supervisor - BSXIOS.

TPGET - Processor for TP Buffers From HASP

Processes data received from HASP in the form of TP buffers or control
records preprocessed by TPIOX. Control record processing is in fhe form
of "Request to start” or "Permission to send" functions.

Data buffers are deblocked, decompressed, converted to appropriate
codes (1403 printer, 1442 punch, etc.) and qpeued for the specified com-
mutator I/O processors.

Control information pertinent to the unique requirements of each data

type is provided through the associated UFCB.

TPPUT ~ Processor For Data Destined For HASP

Acquires a TP buffer from the free chain and collects data from defined
sources (card reader(s), console keyboard, etc.) to be processed (con-
-verted, truncated, compressed, etc.) and inserted into the buffer which is

queued for TPIOX transmission to HASP.

HASP Remote Terminal Processor (1130) - Page 4.14-6

145

HASP

RDTFO ~ 2501 Card Reader Processor

A conditionally assembled processor which supports the 2501 card
reader as a job entry device. The functions of monitoring for a 2501 "ready"
condition; reading cards; requesting permission to transmit to HASP; waiting
for permission to send; queueing data for TPPUT; transmitting "end-of-file"

conditions and device error recovery are contained in this processor.

RPFFT ~ 1442 Reader And/Or Punch Processor

A conditionally assembled processor which supports the 1442 - 5, 6 or 7
as a card reader, card reader/punch or as a cafd punch only. The functions
to be performed are controlled by the assembly variables chosen and the use
of local operator commands, when applicable. The reader sections of code
monitor for a "ready" condition; reads cards for tfansmission to HASP via
TPPUT; processes "end-of-file" communications and provide error recovery.
The punch sections of code wait for data to be punched through interrogétion
of a queue developed by the TPGET processor and provide error recovery and

and punch termination procedures.

PRFOT - 1403 Printer Processor

A conditionally assembled processor which supports the 1403 printer
as a terminal output device. The functions of monitoring for input to be

printed; simulating carriage control operations; processing "end-of-file"

HASP Remote Terminal Processor (1130) - Page 4.14-7

146

HASP

- conditions; setting UFCB status information and error recovery are included

in this processor.

PRETT - 1132 Printer Processor

A conditionally assembled processor which supports the 1132 printer as
a terminal output device. The functions of monitoring for input to be printed;
initialization of interrupt processing routines for the 1132 print scan opera-
tions; simulation of carriage control operations; processing "end-of-file"
conditions; setting UFCB status information and error recovery are con-

tained in this processor.

CONSL - Console Keyboard/Printer Processor

Processes console keyboard input and prints on the typewriter messages
originating from HASP or intérnal sources.

Keyboard input is initiated by activation of the "INT REQ" key and by
the interrupt routine which sets a flag and opens the console routine gate.
Note: The position of the "keyboard/console" switch is not interrogated and
input is assumed to be from the keyboard. The value of the console entry keys
is read every communtato; cycle and, if key o is on, stored in location
SENTKEYS. All non-control character input is printed and the card code value
stored for investigation at EOF time. If the first character of inputis "."

(period) then the data is assumed to be a local command. All other data is

transmitted to HASP for action as a HASP operator command.

HASP Remote Terminal Processor (1130) - Page 4.14-8

147 .

HASP

Print input is obtained from a queue which originates locally and/or

from HASP. Data to be printed may be EBCDIC or tilt-rotate code and

black or red ribbon.

RTPET - Initialization Processor

This special commutator processor is responsible for the initialization

functions necessary for the commencement of the 1130 terminal operation

in conjunction with HASP. The major functions performed are:

Sets the interrupt transfer vectors for RTP1130 operation.
Dynamically builds the TP buffer pool using the defined extent

of 1130 core; the end of the 1130 program and the defined TP
buffer size.

Builds a TP buffer containing the sign-on information processed by
RTPLOAD for transmission to HASP.

Establishes SCA communications with HASP and prepares TPIOX
for "sign-on".

Opens the commutator gates for all SCA and input processors.
Disconnects initialization from the commutator.

Branches to commutator which initiates MULTI-LEAVING operation.

HASP Remote Terminal Processor (1130) - Page 4.14-9

110

HASP

System Subroutines

The following are brief descriptions of the major subroutines contained
in the RTP1130 program. These subroutines are available for use by any
system commutator processor with the restriction that they may not be used
at interrupt time. Detailed information concerning the calling sequences,

input values, etc. may be found in the listing of the RTP1130 program.

HASP Remote Terminal Processor (1130) - Page 4.14-10

149

HASP

SGETQEL - Dequeue An Element From a Chained List

Given the address of a chained list, SGETQEL returns the address of the
first element available in the lisf and removes the element and rechains the
list. The chain field of the dequeued element is set to zero before returning.

If the chain is null, an indication is returned to the user.

SPUTFQL - Enqueue An Element In A Free Element Chain

Given the address of a free element chain pointer and the address of an
element to be returned to the free chain, the element is returned to the free
chain. The construction of the free chain is in random order depending on

system processor utilization of the free element chain.

SPUTAQL - Enqueue An Element In An Active Chained List

The address of an element supplied by the caller is used to build a

chained list in first-in, first-out order.

STPOPEN - Initiate Control Record Transmission

Control record communications with HASP in the form of "Request to
start" and "Permission to send" sequences is the function of this routine.
Input includes an indication of the control record type and a pointer to the

UFCB for the device being processed.

HASP Remote Terminal Processor (1130) - Page 4.14-11

18n

HASP

SSRCHB - Search UFCB Chain For Matching RCB

The RCB code supplied by the user is used to search the UFCB chain
for a UFCB with a matching RCB code. An indication of the status of the

search is returned to the caller.

SWTOPR - Type Message On Console Typewriter

The caller supplies the address of a message in EBCDIC and with
control information indicating red or black ribbon and the number of char-
acfers to be typed. The address of a routine to be given control in the
event that the message cannot be processed immediately must also be
supplied.

-The message is queued for processing by the console typewriter

commutator routine.

SLOGSCA - Log SCA Error Messages On Console Typewriter

Error conditions associated with the SCA operation are logged on the
console typewriter for information and possible remedial purposes. The
format of the message logged is:

SCA LOG X{OOXKXX

Where the value of "XXXXXXXX" is determined by the caller and is in

fact the E:ontents of the ACC and EXT on entry to the routine.

An indication of the status of the request to log is returned to the caller.

HASP Remote Terminal Processor (1130) - Page 4.14-12

151

HASP

SMOVE - Move A Variable Number Of Words

This routine provides for the moving of a specified number of words

from a source block to a target block.

SXPRESS - Convert Card Code To EBCDIC

The card code (12 bit) input is converted to EBCDIC using a high
speed conversion algorithm in conjunction with a minimal conversion table.
Special consideration is given to "blank" conversion under the assumption

that most cards are dense with "blank" data.

SXCPRNT ~ EBCDIC To Console Printer Code Conversion

Converts a single EBCDIC character to the equivalent console printer

Tilt-Rotate code using a table look-up method.

SXPPRNT - EBCDIC To 1403 Printer Code Conversion

Converts a single EBCDIC character to the equivalent 1403 printer 6 bit

with parity code using a table look-up method.

SXCPNCH - EBCDIC To Card Code Conversion

Converts a single EBCDIC character to the equivalent 12 bit card code

using a table look-up method andk céniiérsiori algorithm;

HASP Remote Terminal Processor (1130) - 4.14-13

152

HASP

STRACE - Trace Machine Registers

Stores the information shown below in a table of variable length, Each
entry is the result of the execution of the linkage created by the STRACE
macro. The trace table created at assembly time is circular.

Trace table entry :

Word Description

1 Count of the number of entries for this STRACE
2 Location +1 of caller to $TRACE

3 - Contents of ACC

4 Contents of EXT

5 Contents of XR1

6 Contents of XR2

7 Contents of XR3

The count of the number of entries is also stored in the STRACE
macro linkage.

The assembly of STRACE isa function of the variable &TRACE.

SSDUMP - System Core Dump

A conditionally assembled subroutine which allows post-mortem or
dynamic dumps on either the 1»1 32 or 1403 printer. SSDUMP is assembled if

&DEBUG SETA 1 is included in the RTP1130 source deck. Linkage to SSDUMP

HASP Remote Terminal Processor (1130) - Page 4.14

153

HASP

via location 0 is also established so that a post-mortem dump may be
taken by pressing sysfem reset and sfart.

The linkage to use this subroutine dynamically is contained in the
system listing. Note: The logic of the subroutine does not allow concurrent

operation of the selected printer and other devices.

HASP Remote Terminal Processor (1130) - Page 4.14-15

154

HASP

Processor Subroutines

The following are brief descriptions of the major subroutines which
may be used by commutator processors subject to the restrictions that these
routines are processor dependent in their operation. For example, the SCA
1/0 Supervisor (BSXIOS) is used at initialization time and by the TP buffer

manager but cannot be simultaneously used by these commutator processors.

HASP Remote Terminal Processor (1130) - Page 4.14-16

155

HASP

BSXIOS - Low Speed BSCA Input/Output Supervisor

Processes requests for transmit, receive or program timer functions
on the low speed binary synchronous communications adapter. BSXIOS
initiates the requested function and prepares the interrupt programs for the
assbciated interrupt processing of the desired functions.

The status of the function performed by BSXIOS is contained in a com-
munication cell which is addressed by a variable pointer word. A commu-
nication cell is defined for both read (receive) and write (transmit) operations.
Various completion codes stored in the cells provide the status of the function
with respect to normal or abnormal termination.

BSXIOS expects the caller to provide the address of an appendage routine
to be entered at the termination (interrupt time) of every write operation. The
purpose of the write end-of-operation appendage is to allow re-instruct (read
operation) of the communications adapter as soon as possible after the write

completion,

HASP Remote Terminal Processor (1130) - Page 4.14~17

18&

HASP

DBLOCK - Deblock, Decompress, Convert and Store Data From HASP

Locates a record (defined by RCB) in a TP buffer as specified by a
given UFCB, decompresses, edits and moves data to a selected target
area. The target area must have the same format as described under
"Qutput Element (Tank) Description".

The operation of DBLOCK includes the priming of the output tank
with an initialization value supplied by the user (usually the value of
a blank for the associated device); the updating of control information in
the UFCB; the setting of control information in appropriate fields of the
output tank; the automatic entry to conversion and store roufines unique
to the device associated with the UFCB supplied and the communication
of the status of the buffer being processed (end-of-file, end-of-block

conditions).

HASP Remote Terminal Processor (1130) - Page 4.14-17.1

157

HASP

TPCOMPR - Construct Records For Insertion In TP Buffers

Constructs a logical record consisting of a physical input record .
attached 1130 devices (6ard reader(s), console, etc.). The logical record
constructed consists of the original input after code translation, data trun-
cation and/or compression (optionally) and attachment of the control bytes
necessary for HASP processing. The control bytes are per the standard HASP
MULTI-LEAVING conventions.

The options listed below are set at assembly time to generate the
supporting code.

) No compression or truncation

‘e Trailing blank elimination iny (truncation)

° Blank and duplicate compression and blank truncation
The current version of TPCOMPR assumes card code input.

DBUGSCAL ~ Trace Routine For Low Speed SCA

This routine is conditionally assembled as a function of "&DEBUG"
and provide’s a‘frace of all SCA’ interrupts in theiforn‘l" shown below. Entry
is from BSXIOS interrupt proceSSing fbﬁﬂnes. Exfemal disabling of thé SCA
‘trace function is provided through'k th’ke entry‘ke‘ys. The fracé tablé limité are
preset to uysé’the upper 8K ofk a lek 1130 and must be chahgéd éither by
a‘ssemb‘h; or by the appropriate ""REP.". : Seek the p:jvoygr'kam liSﬂng and refer to

locations DBUGSTRT and DBUGSTND.

~ HASP Remote Terminal Processor (1130) - Page 4.14-18

158

HASP

The trace table format is:

Word Description

1 Operation type (BSXIOPT)

2 DSW at interrupt time

3 BSXIOS Completion Code (BSXOPF)
4 Location of interrupt

5 Data received/transmitted

6 Data transfer count

7 Read or write sequence index

8 Spare word

HASP Remote Terminal Processor (1130) - Page 4.14-19

159

HASP

TPBUILD - Constructs TP Buffers

Constructs TP buffers for TPIOX transmission to HASP. Data to be
inserted and length of insert are provided by user. TPPUT initializes this
routine by providing the buffer to be used and setting po.tnters and variables.

The data to be inserted is us\ually in the form a logical record as con-

structed by TPCOMPR.

HASP Remote Terminal Processor (1130) - Page 4.14-20

160

HASP

RTP1130 Control Block And Data Formats

Chained List General Format

All queues maintained within RTP1130 are of the chained list form and
consist of free queues and free queue pointers and active queues and active
queue pointers. Free queues are chained in a random fashion while active
queues are maintained in a first-in, first-out order. The general form of

a queue is:

QUEUE POINTER | Address of next element chain word.
> Set to zero if no element.

ELEMENT CHAIN WORD) ¢ + = Variable length element.

QELEMENT CHAIN WORD>0 » ¢ Variable length element.

G

Examples of chained lists are: TP buffers, console message tanks,

O jo9e

s ¢ ¢Tast variable length element
(Chain Word Set to zero).

printer data tanks, punch data tanks. The size and number of elements in

the queue is variable according to the nature of the queue.

HASP Remote Terminal Processor (1130) - Page 4.14-21

161

HASP

UFCB = Unit-Function Control Block Description

Each device which transmits data to or from HASP via the communications
adapter processors must be represented by a unit-function control block.

The general format of a UFCB is:

REFERENCE WORD DESCRIPTION

UFCBCNW 0 Chain word to next UFCB
UFCBNFO 1 Information word...
Input: Byte 0 = Reserved
Byte 1 = Input Code
= 0 for IBM Card
=1 for PITC/8

= 2 for EBCDIC

UFCBSAR 2 Status and RCB Code...

Byte 0 = Status of unit-function

= X'90"' if request to start sent from
input unit-function or if request to

start received for output unit-function

I-IASP"T'Remote Terminal Processor (1130) - Page 4.14-22

‘gl62

HASP

= X'A0' If permission to start
received for input unit-function or
if permission to start sent for output
unit-function.

Byte 1 =RCB code associated ‘with this UFCB

UFCBFCS 3 Function control sequence bit associated with this

UFCB (and RCB)

UFCBCOM 4 Address of commutator processor gate address for

processor associated with this UFCB

UFCBFQP 5 Tank free queue pointer for output devices or

address of input element for input devices

UFCBBFP 6 Queue pointer for active TP buffers for output

devices or end-of-file flag for input devices

UFCBBFC 7 Count of active TP buffers for associated device
UFCBBFL 8 Limit of active TP buffers for associated device
UFCBPBP 9 Buffer address of current buffer being processed

by TPGET processor

UFCBPBA 10 Address of next RCB in buffer being processed

HASP Remote Terminal Processor (1130) - Page 4.14-23

163

HASP

UFCBPBS

UFCBPWD

UFCBPRO

UFCBSTO

11

12

13

14

Position indicator for next RCB in buffer being
processed. Set to 0 if RCB right justified. Set

to 1 if RCB left justified.

Output device width = 2*W/P where W = actual
width in characters and P = 2 for packed output

tanks or P = 1 for unpacked output tanks.

Address of data processing routine (usually a con-

version program) for each character processed by $DEBLOCK .

Address of routine to store data processed by

"UFCBPRO" program.

HASP Remote Terminal Processor (1130) - Page 4.14-24

l64

HASP

TPBUF - TP Buffer Element Description

All data transmitted to or from HASP is contained in variable length buffers

(variable at generation time) with the following general format:

REFERENCE WORD

DESCRIPTION

TPBUFCW
TPBUFST

TPBUFCB

TPBUFDT

TPBUFHD

0

1

2

3

3

Chain word to next TP buffer

Re.served

Buffer control word

Byte 0 = 0 (Reserved)

Transmit function...

Byte 1 = Number of bytes to be tra‘risvmitted min»us_ 2
for end sequence which is inserted by,-BS)(IQPS,,'
Receive function... |
Byte 1 = Number of bytes received -

Timer function...

Byte 1 = Number of program time inte;‘rqpts_ processed
before endixig timer operati}on |

Start of data area of length defined by "&TPBUFSZE"
which includes. ..

BSC header value indicating the function (Read, wr%te,

timer) to be performed as defined by ‘SCA.,furiction‘ indicators

HASP Remote Terminal Processor {1130) - Page 4.14-25

165

HASP

"TPBUPBP 4 - Control sequence...
Byte 0 = BCB |
Byte 1 = first byte of FCS
| TPEUFPR | 5 Control sequence...

Byte 0 = Second byte of FCS

Byte 1 = RCB

TPBUFSR 6 Control sequence...
Byte 0 = SRCB
Byte 1 = SCB \

HASP Remote Terminal Processor (1130) - Page 4.14-26

166

HASP

Output Element (Tank) Description

Local terminal output devices (printers, punch, etc.) receive data via
elements or tanks which are built by the commutator routine responsible for
processing TP buffers transmitted by HASP. The general format of these tanks

is described below.

REFERENCE WORD DESCRIPTION

TANKWRDA 0 Chain word to next tank
TANKWRDB 1 Reserved
TANKWRDC 2 Control word

Byte 0 = Reserved for device use
Byte 1 = SRCB from record received
TANKWRDD 3 Control word
Byte 0 = Reserved for device use
Byte 1 = Actual tank data count
TANKWRDE 4 Start of variable length data area determined at

generation time

Note: The element chain word and the data area must start on even

1130 word boundaries.

HASP Remote Terminal Processor (1130) - Page 4.14-27

167

HASP

Object Deck Format

The following is the format of the object decks (RPT1130, RTPLOAD)

produced from OS/360 assembler output by LETRRIP.

Text Card

Column (s) Description

1 'T* for text card :lderitification‘
2-3 Absolute 1130 load address
4 Word count of data field
5-72 Data field (maximum of 34 words)
73-74 Checksum of columns 1-72

~ 75-76 Identification
77-80 Sequence number

End Card

‘Columr;(s) Description

| 'E' for end card identification
2-3 Entry point to program loaded
4-72 | Reserved

73-74 Checksum of columns 1-72
75~76 | Identification

77-80 Sequence number

' HASP Remote Terminal Processor (1130) - Page 4.14-28

168

HASP

REP Card Format

Column{s)

8-11
12

13
14-17

18

Description

Any legal EBCDIC punch

"REP" |

Blank

Load address format field:

"L" for listing option where the specified load address
corresponds to the OS/360 assembler listing.

"X" for absolute 1130 core address

Currently unused but usually punched "0" for continuity
Load address for first data word and is incremented by 1
for each additional data word. REP cards may be con-
tinued by leaving this field blank

Blank |

Format field for data following. Subject to same definition
as column 6.

Data field to be loaded in the location computed as a

function of columns 8-11

n n
1

HASP Remote Terminal Processor (1130) - Page 4.14-29

169

HASP

Colu'n;ns’ 19 through 78 in the same format as columns 13-18 with the
exceptioh of column 78 which must be blank. A blank in columns 18, 24,...72
terminatest the scan of i:he card.

Note: The "L" option causes the specified data to be divided by 2

for conversion from 360 byte data to 1130 word data.

- HASP Remote Terminal Processor (1130) - Page 4.14-30

170

HASP

Examples of REP Cards

1. The following cards:

Col
0 00 1l
1 56 23

RREP L02208 X4C00,LO04E X4400,X000F
RREP XT4FF y X00004X7101

Would result in the code represented below starting in 1130 core

location 1104 (Hex):

1104 $B 399L
1106 $TSL 15
1108 $MDM 0y-1
11.0A $MDX 1,1

2. | The following cards’

Col
0O 00 11
1 56 23

RRER LOL772 X4C18,X1LFF8

Would be ignored because columns 2-4 not equal to "REP"

HASP Remote Terminal Processor (1130) - Page 4.14-31

171

HASP

4.14.2 Remote Terminal Main Loader (RTPLOAD)

RTPLQAD is an EBCDIC format ’loader which is loaded by RTPBOOT

into the ﬁpp’er part of defined 1130 core. The 1130 core definition (which

is a RMTGEN variable) is used to specify the origin of RTPLOAD. The format

of RTPLOAb (and RTP1130) is given in Section 4.14.1 under Control Blocks

and Data Formats.

RTPLOAD also reads and processes "REP" cards as well as the optional

/* SIGNON control card.

The major functions of RTPLOAD are:

Clears core from location 0 to "&RTPLORG-1"

Tests for a 2501 or 1442 card reader and initializes the card

read routine for the appropriate device.

Reads RTP1130 program cards, performing the conversion from
card code to EBCDIC and loading the data into the specified locations.
Sets up the entry to RTP1130 when the end card is processed.
Reads and processes REP cards, if they exist.

Reads, converts Lat’1d stbr,es ‘/*SIGNON and’sets indicator for
RTP1130 signalling existance if /*SIGNON encountered.

Transfers control to RTP1130

HASP Remote Terminal Proéessor (1130) ~ Page 4.14-32

172

HASP

4.14.3 Remote Terminal Bootstrap (RTPBOOT)

The bootstrap loader distributed in object form as shown in the subsequent
pages is specifically constructed to "bootstrap” the EBCDIC main loader
(RTPLOAD) into the core 1ocations defined by "&RTPLORG" at RMTGEN time.
RTPBOOT loads into lower 1130 core via the load-mode format first card and
following binary program cards and EBCDIC conversion table cards. RTPBOOT
will load fromy a 2501 or 1442 card reader which is wired for the load-mode

sequence initiated by the console "LOAD" button.

HASP Remote Teminal Processor (1130) - Page 4.14-33

173

HASP

~ Figure 4.14.3 - Remote Terminal Bootstrap Card Format

Card
Col. Card No. 1 Card No. 2 Card No. 3 Card No. 4
111412-11-7 12 12-11-1-2-3-4-5 12-11-1
2 | {1-2~9 11-0-3-5 blank 12
31(12-11~1-8 11 5 12-11-2-3-4-5
4 | 112-11-7-8-9 blank 11-0-~1-5 12-11~-1
5 11-0-1-6-9 5 4 15 ‘
6 | |0-2-6 11-0-1-5 11-0-1-5 11-0-1-5 »
7 | 14-7-8-9 12-11-0-1-2-4-5 |0-1-2-3-4 12-11-0-2-3~4-5
8 | |[blank 12-11 11 11-0-1
9 4-6 blank blank blank
10 | [{0-1-2 12-11-1-5 12-11-1-4 11-0-3-5
11 { |blank 5 5 0-3
12 11-2-5 1-2 11-0-1-4 5
13 | |4-5-9 12-11-0-1-4-5 12-11-0~1~2-3-4-5 |{blank
14 | {12-0-1-2-5-6 12-11-1 11-0-1-4-5 12-1-5
15 1-2-8 blank 12-11-0-1-2-4 5
16 | |12-11-1-3~4~5-6-8~9 (12-11-3 11-0-1 12-1-5
17 12-11~3-4-5-6-7 5 12-3-4-5 12-11-2
18 | {1-2-8-9 blank 12-11 12-11-1
19 { |12-11-1-3-4-5-6-8 12-11-0-1~2~3-4-5]12-0-3 1-5
20 | {12~3-4-5~7-9 11-0-1-3 11-0-1 11
21 | |12-11~1-3-4~5~7 11-2-4-5 blank 12-11-3-4
22 | |12-11-4~7 blank 12-11-3 12-11-0-1
23 | |1-6 12~11-3-4-5 12-11-1-2~-3 1-2
24 | |12-11-1-4-8 11-0-1 blank 11-2-3
25 | 112-4-7-8 2=-3-4-5 blank 11-0-2-3-4-5
26 | (12-11-1-4~7-9 11-0-1-3 11-0-3-4~5 blank
27 12-4-8 ’ 11-2-4 2-3-4-5 12-11-0-1-2-3-4~-5
28 | {12-11-1-4-9 blank 4 11-0-1
29 | |12-11-3-4-6-9 12-11-3 0-2-4 5
30 {]1-6-9 11-0-1 11 11-0-1-4-5
31 | |12-11-1-3-4-6 3-5 5 12-11-0-1-2-3-4~5
32 | |1-2-6 11-0-5 11-0-1 11-0-1-4
33 |112-11-1-4-6-7-9 3-4-5 3-4 12-11-0-2
34 | {12-11~-1-5-6-7-8 11-0-1-3 11-0-1 11-0-1
35 | {12-11-1-5-6-8-9 11-2-4 blank 12-11-0-1-2-3-4-5
36 ||12-11-1-3-4-8 blank 11-0~-3~4-5 11-0-1
37 12-11-1-3~-4-7-9 blank 12-11-0-1-5 5
38 | |2-3-5-6-7-8 11-0-3-4 5 blank
39 |12-3~-5-6~7-8-9 11-0-2-4-5 0-3-5 blank
40 |111-0-1-3-4-5-6-7-8-9 |4 11 12-11-0-1-4-5

HASP Remote Terminal Processor (1130) - Page 4.14-34

174

HASP

Figure 4.14.3(CONT) - Remote Terminal Bootstrap Card Format

Card
Col. Card No. 1 Card No. 2 Card No. 3 Card No. 4
41 9 1-3 12-11-0-1-4-5 0
42 2-3-4-8 11-0-1-3 11-0-1 11-2-3
43 12-11-3-5-6-7-8-9 2-3 11-2-3-4-5 12-0-1-3-5
44 12-8~9 blank. 11-0-1-3 blank
45 12-11-1-3-5-6-7-9 12-0-1 12-0-2-5 |5
46 2~3-5-6-7 11-0-1-4 blank 11-0-1-3
47 11-2-3-4-5-6 12-0-4-5 1 12-0-2-3-4-5
48 9 11-0-2-4 1-2 blank
49 11-0-1-3-4-5~-6-7-8-9 |12-1-2-3-4 12-11-1-2-3-4-5 |blank
50 9 11-0-2-4 12-11-1 12-11-0-1-4-5
51 12-11-6-7-9 11-2-3-4-5 12-0-1-3-4 12
52 12-3-4-5~-6-8~9 12-11 11-0-5 11-2-3
53 12-11-1-6-8-9 blank blank 12-0-2-3-4-5
54 12-11-6 12-11-1-4 12-11-3-5 blank
55 12-3-4-5-6 12-11-0-1-2-3-4-5 |0~-3~4 11-1
56 12-11-1-8-9 11-0-1-5 5 blank
57 12-3-4-5-7-8 12-0-1-2-5 blank v blank
58 12-11-1-7 11-0-1 11-0-3-4-5 12-11-5
59 3~7 1-2-4-5 0-2-3 2
60 | blank 11-0-1-3 5 1
61 1-2-6 11-2-4 blank 5
62 1-2 blank 11-0-3-4 12-11-0-2-5
63 | [blank 12-0-1-3-4 blank 12
64 1 11-0-1 5 11-2-3
65 blank blank 1-2 12-0~-1-2
66 12-11-7-8-9 11-0-3-5 11 blank
67 12-1-3-4-6-7 12-11-1-2-3-5 1-4-5 blank
68 12-11-1-7-9 blank 11-0-1 11-0-3-5
69 11-2-4 11-3-4 blank 12-11-1-2-3-5
70 11-0-1~3-4-6-7 11 12-11-3 blank
71 | |2-3-7-9 blank 4-5 12-11-0-1-3-4-5
72 2-3 12-11-1-5 blank 11
73 11-2-3-4-5-6 12 12-11-0-1~2 5
74 | 14-7-8-9 11-0-3-4 12-1 12-11-1
75 11-0-1-7 12-11-1-2~3-5 blank blank
76 8 ' blank 12-11-1-3-5 111-2-3
77 | |blank 12 0-3-4 blank
78 | |blank 11-0-3-4-5 15 blank
79 0 0 0 0
80 1 2 3 4

\ HASP Remote Terminal Processor (1130) - Page 4.14-35

175

8

Card No.

7

Card No.

6

Card No.

Card No. 5

Card

Figure 4.14.3 (CONT) - Remote Terminal Bootstrap Card Format
Col.

HASP

DN OONO N O ™ NN T N O~
LI R R A L N VO O OV OV O 1 1
NN O N0 1 eloNol (oo No oo
i 0 1 1pl 1 1] 00jdd 00 0O 00 00100 NS 1N O ™ O [
i e R s B B B B T I T R T I L [© r4 00 00 00jC0 OO v r~i
~ord o e A H N O N OIS OOl OCOOlt = I | {11l et
(SR R O N N T U T T O U U O I TN O P I S loagtunihors |11
NANANAaNaANNNNNSeE A A A S A o AA A A A A AN L NN
N AT A A A A A A A A A A A OO A A A A~ A O~ O O OO O ™~
i
ol NSE N O SO0 AN SN
00 00 00 00 00 00J00 1 1 I 1|
t I L1111 OO OO0 0 O0O0jo0O0 00
M AN O TINNO~NONNMNTNNOIS T L LS L R N L |
I I e [B R B B L]
AR AR AR AR CROROR0R0! CAOR AR KA A
e o e e e e H NN NN NANNANNNNNNNINNNNN
mEala el sl e e R L e R R s B Bin M B § s B B W0 .Y i B B
[=al =N W o) Fo)
USSR AL R |
TR
PR G
LTI
~ o o -
Lo B B B B} K B =1
L L LN U . . °
NN NN NN -
O~ ANMIFINOMN O N o~~~ 0
FHANNNOTNNONOAOOHNNTNNONOANAOIHNNTNNONOANAD|HANNTNNONDONO
rfrd e e A A A NN NN A NANANNNNN OO ONNNOONOO ST

12-7-8-9
12-11-1-8-9
11-1-9
11-2-9
11-3-9

'HASP Remote Terminal Processor (1130) - Page 4.14-36
176

8

Card No.

7

Card No.

Card No. 6

5

Card No.

Card
Col.

o
|
o0
]
—
I O\ Oy O O OV O\ O
oo\ O\ O et
[NN T tN\O I~ 00 00 00|00 00 0O GO O
G\ 00 00 00 00 Jo0 00 cO onovovon Ml oL b rr e e
Pl . 1 1 11 flooo0o0oolooo-dan o~
NN ON~N I jooononaoonlononoowjoowoooo wlt 1 1 1 e 1t v] 11 1
SRR T 1NN NNNNNN S
cooooloocoAHAlNMNMITITNOINOANNITN O~ Ot Hed o o mded A A
) 00}o0 cO 00 00 00
(] 00 CO 00 00 | (R
| L1 1§t unho ~0 o N 1O~
ANl MO~ L L LD L e
oy o1 R ke ial aEkaialialal aEa R R R]
ooloocooc oo OO0 O mmrrAre rdlrd o = Hjrd -~
0o I tjI I 1 1 1 R BN S U N SOt At N Ut I N |
It tNNjNNNNS N R D R RS K K S RS] NN N A
N O~ A = o ot et o e e e e e e
o oy Oy OV OV
N O\ OV [N UL AjonON O OY ON
[00 o000 o0 oo © oo
00 00 00 ol ot o o0jco a0 0 00 ©
T N NN O~ 1 [
N O~ N N T | — Nlen < O~
10 =~ —~ 0]t Pl 1o
coo0OoHaNNnTNOINDAAHMlH A=~ | |O oclooocoo
Tl e ler ey]t T NjiNoagnjor~oo Y L1 L
N NN et rd rd Al A NN NNN =L At A A
A A A A A A A AA A A A AA A A A O OO OO 0O O -
-~
n N
[] o o o o ol o & o o o o e o o ol e o o o ef e o o o o
-
0
NN TNONOAS|HANNITNONDODRNO|~-ANMIT OO OO~ NN
R e e R R A M R a AR a R a e R a N a N a R (Y- RV-RV- V-1 (Vo RV-IEV-JAVCT0 o | S ol ol

Figure 4.14.3 (CONT) - Remote Terminal Bootstrap Card Format

HASP

HASP Remote Terminal Processor (1130) - Page 4.14-37
177

HASP

Figure 4.14.3 (CONT) - Remote Térr‘ninalﬁBobtstrap Card Pbrmat

CARD 1
//:*Il i ll‘llll TongEn 1 REANA (11} II-IIIII'k “’ Ill)
1m BRI R R RN RNIEE " 1 III i 1

uounlluoo|oou|ununaoonnuuuouuuononnunuulnounnuoulononoouocouounnuunnaluouoloonlu
12345678 910N123M 156 718132021222324252627282830 31323334353637383940 41424344454647 48495051 525354555667 585960 6162836465656768697071727374757677 787980
(LRI RRRRIRRETIIRTIRIRIIRIRIRITIII] IV ERI RERST RREI RRRI RRI RV RRELRI RBY) BE ERAR] RRRA |
2|222|zzz|2|zllzzlzz22222222222|22222||zzl222llzzz2222222222II222222I2III2222222
333333333333333|I3l!|3333333I3lsssslllll3llslll3l33l33l3l3l3333333l3sliﬂlsaassss
444444l4I444I44II4IIII4IIIIII4l4l44ll44l4I4444!4I44l44l4l44444@444!4!!440!444444*
55555555555|||5||slllssssssssssssll55III55I5IBI5I55Isslslsss555555555555I5555555
sescMNcsMsscsMsNNsNecchocsscHNRNNANGsBANsoHsNNEcHsNNNENcscosHoscosHosHcsBesscsss
l71l77l777117777|77lll77Il771711Il71IIII77I7II17I7I77777III71771illl7ll77ﬂl77771
XY | EEY RRRERREY 1 EF I RRREL [K3 CXXRREI 10 BT 11 BT LI KRR RE1 1 R¥1 | ERRRERRRE ERREEXRL ES ERRE

afls Ilelss Y K slslslssssslslllsslslsl9I!I9IIBs9lll!lls9lsssssse°9l9lssl99l999999
12

SEW:_G 910 |121 L4 IS!8!718ISZDZ!2423242526272»29403!a2J334353637383940‘l4243«454541484950.’"52535455555758555”EYG"EJS‘SS»SS)GBESW7)727374757677767960 ‘
\ WL

. CARD 2

/l T 10 I [B K B ||||||| 11 [l_n’l,ll\

Mmooy ni Mmmmmnni TR | T T I | [[] Rl RERRRRRE X
o|uuo||uuunnloonuo||nonlulooolololooolluuloualilulaouolllloloullhlodhuonolounllo
12345678 9101121314 1516171819207 22232425 26 27 23 23 39 21 323334 35 365 37 38:39 40 41 42 43 44 45 45 47 4849 50 51 52153 54 5556 5758 5960.61 62 63 €4 656567686970 N 2 B3 4 B 187930 -
11111||11|1|||1111||111|1|111|111|111111||11||11I1111IIHIIII11II11l11|1I|1I1111|
222222|222zlzzzzzzlzlzzzlzlzzzzzzzl222[2z’!zzzzl!llzz2I2Iz.2l22222I2222222I2222l
3l3333333333333|33||33l3||33|3|3||33al33ll|33333l3I333l3333l33l33ll3l3333!l33l33
444444l44444l44444l4l4I4I4I44444I4I44lll44444llllll44ll444I4I4I44444l4444l444i4¢
sls5lll55|l5|5sslslsl5l5|ssssslllssssslssssss5l5ssl555lll5Issssssllsssslsslsslss
ss
17711771771771117171171771777771771771777177717771711771771111177177717717771177

8880888!888888888888888&8888888880888!

9 999999 99999999999899999999999999999399999999999999999999999999399999999993
T13es eI 0 :uwnnwmnznnuﬁnnnnmuvnmﬁnnuanuuuﬁwo«uwmﬁnﬂﬁwwwammnnunﬁmuawnrnunnnnnu‘/
(. Q ; ,

'HASP Remote Terminal Processor (1130) - Page 4.14-37.1

:178

HASP

Figure 4.14.3 (CONT) - Remote Terminal Bootstrap Card Format

CARD 3

//: 1 11 n i1 §F 1 m11 1 i

RN il miy 11 1t L1

ofBoococENEANooRRoooooNcoBooBoBoBBoBoBBoBBoooooBBooBocHRooNoooooBooocHooolaollo
TR R T Rk AR R R Rk KAkt R R L LR K s L B e
B222220222220202222222022202022222222222220 202200 2222222220222220222222202222222
B33333033333033303033M033BN333330333ah3a3hBazaahalashlashlaslaazazsalssasallash
O N I r Ry Ry M Ay R RRWS PYYRI PYYI FRURYY POV
BsEEsHs55sAsMEssMs5555555HMsss5Ms5ssMUNAsNsBsHssshsshsBshshshssshsshssslssss@shss
66
1111117011010 710 000000110110 10 7079000700711 711171712171111271100111111111111111111

8883868888833888883888888888388888888088868888883888338888883888888838888888888888838

1

00
12
| R

-— s D

999 9 999999999999999999999599999999999999999999999999949¢ 99999 99999999999993939993
1234056 78 91011121316 1595 17 1819202122232 2526 27 2829 30 31 32 33 34 3535 37 38 33 40 4142 4344 45 45 47 4849 50 51 5253 54 55 55 £ 58 5960 61 62 83 64 6566 67 69 6970 71 1273 147575 71 73 79 80
\L | ol 4/

CARD 4
et 1 1t n T 111 11 1 i i nmi 111

fanmanl ° IR RERERRRMEDDERD BRD D DR no1nmmni

ooocoNBBoNBoocooococoBooNoNBoRNNNNERoooRBoBooRBooRoocBooooooooBooNooNooRoooocaele
12345678 3101M121314151617183132021222324252627282920 213223334 352637383540 414243444546 4743495051 5251545556 57585960 61626364656667636970 N 7273747576 77787380
(T RI BT RRRERI RY R RBI I RRRI I BRI 11 BRI 1 I RER] BRI BRI RER! RRRE! RRRRT RERET ERE1 51 EB) ERARE RN
22|222|222222252|2g222|||2|222|zlzlzzzzzzlzzzzlzzzzllzzzzzlzz]zllzzzlzzzzzzlzzzz
33033303300 3333333330330N3R333033303333330B33MB33330033333333330333HB30333303333
44044088484 44444448044a0alaalRNaaResaaRaassasBasBoalassaasssasasansaaladaassssl
SSRsSHABSSAsHsHANssRsssssHsNsHRAssshslsshsslshslsslsshsssshsshlsss55BBsAsMs555555
66
171711711191117717117111711199171711971977771111111711117111117111171111711111111111111

888888888888888888888888888888888383888§888888888888888888888888888!888888888888

99999999999999999999939999999999999999999999993999999999999999999999999999999999839 -
\‘lz 581891012 ISI6 N 181820712220 742526 20 202030 30 32 3334 3536 30 3839 404142 5.4 4546 47 45495051 5252 545556 5758 5960 61 62 63,64 65 6667 6463 10 7 za«nnnnusJ/

"HASP Remote Terminal Pfocessor (1130) - Page 4.14-37.2

179

HASP

Figure 4.14.3 (CONT) - Remote Terminal Bootstrap Card Format

CARD 5
/// 1T |
TTHT
IGUODU0000|||l||00!0!000000000
12345678 910NM1213163516171619202122232625262728293031323334235363723838404142434445454748495051 5253545556 5758 S36061626364656667686370 1727376757677 1787560
I RRRRER R R ER AR B AR R R R R RRR R R R

22022222220222
3330333333303332333333
$44ala0a0a4alia0d00040000400808080444448080004000448440404844440444448440844040844
5555505555555055
666666H6666666F666665666
1T R I IR I I 1111111111717177111111111111
88308083 sNEANNNG82583088888688888008808888888880688833888888888888388888088888838
999999393 RNANANN0995999990599999996999999955999999599999999999999999999999999999

\ 89 sz 12131415 96 17 1819 2 42 3 2425 26 27 28 29 30 31 32 33 34 35 36 37 38 33 40 41 42 43 44 45 45 47 4849 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 €6 67 62 69 70] 7t7s7snmsauj
raar.!
CARD 6
/// ERANCRGNDOREEECORAEARAEENRRRRRER BREEER
AENOARAGENNNNRUOREORRNRARNAREEER NEROEERGEERRNRRN § AOORER

IIIIIIIIHIIIIIIIIIIIIIII!IIIIIIIIuuouououoll!lllluuoonoouooouuoulliﬁil!ﬂﬂ!liﬂlll
12345678 8:01112131415161718192021222324252627282830 31323334 353637383840 414243464546 4748495051 5253545556 5758 5260616256364656567626370 N 1213 4757677782380
I ERRRRR AR EE] | RRARRRR R R R RN R AR R AR AR RE! RERRRRRARRRREAE! IRERRRRERRRERE!
220222222202222222822222220222222202222222B2222222022222220222220202222222022222
333023333330333333303333333823333338322223383323333832333233033333330333333303333
4444004400 a440aaaBa04a0aaBa040044B4040044B0044044B4404448M0440444H00404440044
5555505555555055555550555555505555555H5555555M5555555055555550555555505555555053
666666M6666666H6666666Ns666666Hc666666Mocc666cHssscocoMsscssooloccococHoscsnsolls
IRRRRER] SRRRRRR] CRRRRRNI RRRRRRS) RARERRR! RRECRER] RRRRRRR] RRRRRRR] SRRRRREE ERRRARAL
Iaasasaslalllllllasésasslsllllllssassasslailllllsa8ssssslslllllllasasassﬂa!ﬂ!ﬂll

K‘ssssssssslssss99999999999!999sssssessssssillllllssassss9slllllllslsassseslﬁlllll
12345674839

011121314 151617 13192021 222324252627 282930 31 3233 34 3526 37383940 41 42 4344 4546 47 48495051 5253 54 5556 57 58 S35 61 €2 63 84 65 CSETBZC3 70 N 7273 74 7576 17 78 79 60 /
4 EDHY

HASP Remcté Terminal Processor (1130) - Page 4.14-37.3

180

HASP

Figure 4.14.3 (CONT) - Remote Terminal Bootstrap Card Format

CARD 7
//QIIIHIIII 1 TagaERang HOQGUERERANRINOUNANNERRROARECAND
IRRNERRRDRNANRED NRRENED) (LIRELER] BEODARRCEEARADAN

0000000000000000 0 WANENRRERoRBRRRNREEEERES 000000 cEEBBEEERDEBBNNER0000000000000000
123456 78 9101121314156 171813202022232425262725293031323334303637 2232845 41424244454647 424950515253 5455565753 5350 £ 62 6364¢C56667€86370 71 727374757677 187380
| ERRRREE! RRREERR] ERERARE] RRRRRERI RRRRERE! ARRRERI | ARREREARRERRRE! | ERRERERRERRRER
22022222220222222202222222222222228222222202222222022222220222222202222222022222
333033333330323333330333333383333333833333330333333383333333033333330333333303333
YT FYYYYYYS FYRYYYY) FYYYRYRI FYRYYUY] FRRYYOY] FYRRIRY] FYPYVEN) FRYPVRYE] FYRYRIY] NV
ssssslssssssslssssss5|sssssss!ssssssslss55555]5555555!555555slssssssslssssssslss
ss6cccBcce6666HcoccccccMocccc66Hoc66666Hcco666cBoeo6666Mcc66s6cMcoc66666Mc666666Ms
IRRRRRRI RRRRARE] RRRARRE] RARRERR] RERRAREI RRRRRRE] RARRAAR] RARRRRRL RARREARAL RARRRER] |
88 soRANEEANNcesseasscHNeHANNNsesscaschARNOBANRecscssc e RN UNANNesessssHoHORENE

8888
sRBRNARAN23999999oHNRNANNssss99 oW ANNAREN299999999999939309999939999399999H99994939
1 3456867

'\ 2 SOOI IBIEITIBI320202273742526272825302132233435363738394041 424349454647 48495051 5253545556 5758 30 T E2€3 6465666765630 M 127349575 7) 167380

J/

CARD 8

//:llllllllllllllll i BERGEAROROEGHAN
ARRECHRERERERNNNR i
B0000000000000000000000000000000REBNEREEENERRRBERo0000000000c000oHENARBAR 000000
12345678 2101121314151617181920321222324252627282930 39323334 3535373835640 4142 4344454647 48495051 525354 555657585360 6162 6364656667686910 717273 74 7516 71.78 79 BO
[| ARRRRER] RRRRARI | RRRRRRRI RRRREE! | ARRARAER! RRRRAR! | RRERRRR! RRRERER] ERERRAREI ARRERE!
22022222220222222202222222022222220222222282222222022222220222222202222222022222
333033333330333333303333333833333330833333338333333383333333033333330333333303333
4444044044440 44404aa02444442030444440 004404404845 444B40a0044080404400as4a2440444
55555055555550555555505555555055555550555555505555555M5555555055555550M5555555055
c66666066666ccHcce66666Mcccc6c6cMeo66666Mcccc666cMecoc666M6c6666cHec6c6666Me6656568s
IRRRERE] RRRRRRE) RRRRRRR] RRRRRRE) RRRREREE] RARRRRE] RRRRREEI RRRRRAR] RRARREEE RRRRARE]
|asasasalllllllllasasssslllllllllssssss&lllllllllasssaasllllllllaasséass!lllllll

\‘lllIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIlllllllllllllll!lllllllllIlalil!li!ls999999

123456 7 8 9101012131 1516 47 1813 20 21 222324 2526 27 2323 30 31 32 33 34 2535 37 3833 4G 4142 4344 45 45 47 4848 50 51 52 53 54 55 56 57 58 59 63 61 62 65 54 656567 683 75 11 1273 14 7536 77 18 79 80
Co76Can)

/

HASP Remote Terminal Processor (1130) - Page 4.14-37

181

.4

HASP

4.14.4 Remote Terminal Program 360 Processing (LETRRIP)

LETRRIP (Loader for Eleven-Thirty Relocatable Remote Interleaving Processor)
is a 360 program executed under OS/360 as part of the RMTGEN procedure.
The purpose of this program is to condense the object deck produced by the
360 assembler; relocate address constants according to the requirements of the

1130 and to produce a new object deck in the format as described in Section

4.14.1.

" HASP Remote Terminal Processor (1130) - Page 4.14-38

182

HASP

4,14.5 1130 Instruction Macros

The 0S/360 Assembler Macro instructions listed on the following
pages are used to assemble the RTP1130 and RTPLOAD programs as a
part of the RMTGEN process necessary to create the 1130 workstation
program. ' :

The general format of the instructions to be assembled with the
macros is:

LABEL $OP ADDR,TAG,FMT,MOD

Where:

"LABEL" is the statement label subject to the 0S/360 assembler
rules and restrictions.

"SOP" is a macro from the set listed at the end of this section.
"ADDR" is the address field of the 1130 instruction.

"TAG" is the index register (TAG) field of the 1130 inétruction.
"FMT" is the format indicator for the 1130 instruction:

FMT=L for long form

FMT=I for long form indirect address

FMT=X for short form absolute address
FMT='blank' for short form relative address

"MOD" is the modifier bits field required for some 1130 instruc-
tions.

Listed below are some of the conventions which must be followed to
successfully use the macro package in producing a program for
operation on an 1130. .

1. All symbols starting with the character "$" are deemed to be
absolute in value.

2. The symbols WA, WB and WC are assumed to define absolute values.
Note: WA, WB and WC cannot be used as the first two characters
of any relocatable symbols.

3. All other symbols are assumed to be relocatable as defined by
the 0S/360 assembler SRIL. -

4. Parenthetical expressions are considered to be relocatable if
contained in an instruction, e.qg.,
SAXT (*-%*),WA,L '
is considered relocatable, where .
$AXT *-* ,WA,L
is considered absolute.

HASP Remote Terminal Processor (1130) - Page 4.14-39

183

HASP

1130 Instruction Macros

Macro Form

$LD
$LDD
$STO

$STD

$LDX

SLXA

SAXT
$STX
$STS
$1LDS
SA
$AD
$S
$SD
$M
$D
$AND
$OR

$EOR

ADD, TAG,FMT
ADD, TAG,FMT
ADD, TAG, FMT
ADD, TAG, FMT
ADD, TAG,FMT

ADD, TAG

ADD, TAG, FMT
ADD, TAG,FMT
ADD, TAG, FMT
ADD, TAG

ADD, TAG, FMT
ADD, TAG,FMT
ADD, TAG,FMT
ADD, TAG,FMT
ADD, TAG, FMT
ADD, TAG, FMT
ADD, TAG,FMT
ADD, TAG, FMT

ADD,TAG,FMT

Desgcription And Notes

Load ACC

Load double (ACC,EXT)

Store ACC

Store double (ACC,EXT)

Load index

Load index from address. A variation of $LDX
withF=1andIA=1.

Address to index true. Identical to $LDX.
Store index

Store status

Load status

Add

Add double

Subtract

Subtract double

Multiply

Divide

Logical AND

Logical OR

Logical Exclusive OR

HASP Remote Terminal Processor (1130) - Page 4.14-40

184

HASP

Macro Form Description And Notes

$SLA ADD, TAG Shift left ACC

$SLCA ADD,TAG Shift left and count ACC

$SLC ADD, TAG Shift left and count ACC and EXT
$SRA ADD, TAG Shift right ACC

$SRT ADD, TAG Shift right ACC and EXT

$RTE ADD, TAG Rotate right ACC and EXT

$BSC ADD, TAG,FMT, MOD Branch/S8kip on condition

$BOSC ADD, TAG,FMT,MOD Branch/Skip and reset interrupt

$BP ADD, TAG,FMT Branch ACC positive (long)
$BNP ADD, TAG,FMT Branch ACC not positive (long)
$BN ADD, TAG,FMT Branch ACC negative (long)
$BNN ADD, TAG,FMT Branch ACC not negative (long)
$BZ ADD, TAG,FMT Branch ACC zero (long)

SBNZ ADD, TAG,FMT Branch ACC not zero (long)
$BC ADD, TAG,FMT Branch on carry (long)

$BO ADD, TAG,FMT Branch on overflow (long)
$BOD ADD, TAG,FMT Branch ACC odd (long)

$SKPP Skip ACC positive (short).
$SKPN Skip ACC non-zero (short)
$SKPZ E Skip ACC zero (short)

$SKPO | Skip overflow off (short) .

HASP Remote Terminal Processor (1130) - Page 4.14-41

185

HASP

Macro Form ' Description And Notes

$SKPC Skip carry off (short)

$SKPX Skip ACC not equal zero and carry off (short)

$B ADD, TAG,FMT Branch unconditionally. FMT = L or I generates
long form $BSC with MOD = 0, |
FMT = X or blank generates SMDX ADD, TAG,FMT

$BSI ADD, TAG, FMT, MOD Branch conditionally and store IAR

$TSL ADD, TAG,FMT Transfer and store location counter. Assembled
as a $BST with FMT = L, MOD = 0 (long form
unconditional branch‘ and store IAR).

$MDX ADD, TAG, FMT Modify index and skip

$STL ADD,FMT Store location counter. Assembles as $STX
ADD, 0,FMT.

$MDM ADD,VALUE ‘Modify memory.

SWAIT Wait for interrupt

$XIO ADD, TAG,FMT Execute 1/O

$BSS N,X Block started by symbol

| | N = ;ipmber of words.

X ,=-'_E:<f_or even storage; |

$BES N.X | qu:c:kiéndedi by symbol
N = number of words

2 for even storage

al Processor (1130) - Page 4.14-42

HASP

Macro Form Description and Notes
SNULL Null operation for symbol definition
SADCON ADDR Address constant. Assembles as an

absolute 1130 address. "ADDR" must
be a relocatable symbol by the OS
assembler definition.

SNOP No operation. Assembles as $SLA 0

$ZAC Clear ACC. Assembles as $SRA 16

HASP Remote Terminal Processor (1130) ~ Page 4.14~-43

187

HASP

4.14.6

GENERAL INFORMATION

0S/360 ASSEMBLY OUTPUT

If the value of &FULLIST is set to 1 at the time of generation
of RTP1130 or RTPLOAD then the listing produced by the 0S/360
Assembler will contain the following information:

1. The location counter value for each 1130 instruction or
storage location in terms of bytes. The actual 1130
location in terms of words can be determined by dividing
the displayed value by 2. The REP facility allows a
specification of either byte or word form. ’

2. The 1130 instruction is printed in 1130 format. The long

form address is in terms of 1130 words and the short form
is true relative format.

VARIABLE INTERNAL PARAMETERS

The generation of the RTP1130 program using RMTGEN provides
the user with a simple and flexible means of changing common
parameters germane to the configuration of the 1130. Addi-
tional internal parameters may be varied by using the source
file update feature of the RMTGEN program.

Listed below are the major parameters, with a brief descrip-
tion of each, which the user might consider altering as a
function of hardware and software performance considerations.

VARIABLE DESCRIPTION

&DEBUG Conditionally assembles the RTP1130 internal
core dump program ($SDUMP) and the BSC adapter
trace routine (DBUGSCAL). Default value
inhibits the assembly of these debugging
programs.

&CNPSIZE Maximum console printer message size. Default
value is 120 bytes per message. ’

&CONINSZ Maximum console keyboard input buffer size.
Default value is 120 characters per command.

&PRFOTKL Number of 1403 printer buffers (tanks) provided
at assembly time. Default value is 2. The
TPGET processor will build up to the value of
&PRFOTKL and then suspend operation for the 1402
until the count of buffers falls below &PRFOTKL

HASP Remote Terminal Processor (1130) ?-Page’4.l4-44n

188

HASTP

VARIABLE

&PRETTKL.

&PUNFTKL

&CONSTKL

&PRFOBFL

&PRETBFL
&PUNFBFL
&CNSPBFL

&NPTFBFL

DESCRIPTION

Number of 1132 printer buffers (tanks) provided
at assembly time. Default value is 2. See
&PRFOTKL for TPGET action.

Number of 1442 punch buffers (tanks) provided
at assembly time. Default value is 2. See
&PRFOTKL for TPGET action.

Number of console printer buffers (tanks) pro-
vided at assembly time. Default value is 5.
See &PRFOTKL for TPGET action.

Maximum number of TP buffers containing data
destined for the 1403 printer which will be
accepted by TPIOX before setting the trans-
mission suspension bit defined in the FCS for
the 1403. HASP will suspend transmission of
1403 print data until the FCS bit is reset
when the number of 1403 TP buffers becomes

less than the value of &PRFOBFL. Default value
is 2.

Same definition as &PRFOBFL except it applies
to the 1132 printer. Default value is 2.

Same definition as &PRFOBFL except it applies
to the 1442 punch. Default value is 2.

Same definition as &PRFOBFL except it applies
to the console printer. Default value is 1.

Maximum number of TP buffers allotted to input
devices collecting data to be sent to HASP.
Default value is one greater than the number
of card readers defined for RTP1130.

HASP Remote Terminal Processor (1130) - Page 4.14-45

189

HASP

4.15 EXECUTION TASK MONITOR

4.15.1 Execution Task Monitor - General Description

The Execution Task Monitor is a processor which periodically ex-
amines the CPU utilization of user tasks within a dynamic priority
group and rearranges the 0S/360 task dispatching chain giving
higher priority to those tasks, within the group, which use the
least amount of CPU time. Tasks above and below the dynamic pri-
orlty group are not affected by the rearrangement of the dispatch-
ing chain. Tasks with all of the following characteristics are

 included within the dynamic priority group:

1. The task belongs to a job scheduled by HASP.
2. The current diSpatching priority of the task is

a. equal to priority of the dynamic group as specified
by the value of the &XZPRTY parameter for MVT or

b. not greater than the wvalue &XZMFTH and not less than
the value of &XZMFTL for MFT.

3. The HASPGEN parameter &XZMULT is set to "YES" or if not
"YES" the task is a job step with no daughters.

The interval between the periodic examinations is controlled by the
value of the &MONINTV parameter. Setting &MONINTV value to a posi-
tive integer will cause the processor to be generated. 0S/360 must
support Job Step Timing and must not have a Time Slicing Group De-
fined at the priority level(s) correspondlng to the priority range
of the dynamic group. Users must not use TIME=1440 on Job or
Execute cards for jobs to be correctly adjusted w1th1n the dynamic
group.

Execution Task Monitor Processor - Page. 4.15-1

190

HASP

4.15.2 Execution Task Monitor - Algorithm

The Execution Task Monitor determines the CPU utilization history (h¢ p)
for each task within the dynamic priority group using the following formula:

hy n=cpug nthi-1,n- Hy/N

where: H; = cpuy, 1thig , 1+cput, othi_) 2t.. °cPut,N+ht-l N

= Total CPU counts observed for the N tasks being
monitored plus the sum of the previous history values.
N = The number of tasks being monitored at the end of
the time interval.
h - = The history of CPU utilization for task (n) during
the current time interval.
hy_1,n = The history of CPU utilization for task (n) taken at
the previous time interval.

New tasks , entering the monitored group, will be assigned a history
value of zero and temporarily placed at the low priority end of the group.
Task with continuous low values of CPU counts will have (h) values which
become increasingly negati\‘/e. The (h) values will be prevented from falling
below the range of one time interval; thus prpviding responsiveness to
erratic changes bin the corresponding task's CPU utilization.

Low values -of h indicate the 1;ask (1) has not been able to utilize the

CPU time given to it because of waiting for events such as I/0 or (2)

Execution Task Monitor Processor — Page 4.15-2

191

HASP

has not been given the opportunity to utilize the CPU. High values
of h indicate the task has had the opportunity and has utilized the
CPU. The Execution Task Monitor performs a partial sort and rechains
the monitored tasks, insuring that the task with the largest history
of CPU utilization will have the lowest effective priority within the
dynamic priority group during the next time interval. This will by
default raise the effective priority of other tasks in the group.

When HASPGEN parameter &XZMULT is set to "YES" all tasks for a job-
step falling within the priority group are ordered as a single unit
allowing each task to maintain the same relative priority with
other monitored tasks within the jobstep. In MVT systems, a task
within the group that changes 0OS dispatching priority is removed
from the group. '

-In MFT systems, all monitored tasks are assigned an OS dispatching
priority specified by the &XZMFTL parameter. A CHAP or ATTACH that
specifies a change in priority will have the effect of changing
relative priority; however, as long as the task remains within the
range &XZMFTH and &XZMFTL the assigned priority will be changed to
&XZMFTL at the end of the monitor interval &MONINTV. A CHAP in an
MFT system may therefore not produce the intended result.

Execution Task Monitor Processor - Page 4.15-3

192

HASP

4.16 INTERNAL READER

4.16.1 Internal Reader - General Description

The Internal Reader Processor is an Input Service Processor which
reads card images from any system or user task running under OS/360.
The Internal Reader recognizes, through the use of Execution Control
Processor interface routines, an attempt by other tasks running under OS/360
to punch informatibn into "cards" on pseudo 2520 punch devices, performs
the function of the Input Service Processor on each card, and via OS/360

POST macro signals completion of I/0O to the éubmitting task.

4.16.2 Internal Reader - Program Logic

The Internal Reader uses the code of the Input Service AProcessor with
modifications in the following areas.

1. Processor Initialization - The Internal Reader attempts to
obtain an internal reader device control table (DCT) which
contains an 80 byte buffer axfea rather than a normal
reader DCT. When a ’device is received the processor
continues by acquiring a direct-access DCT and passes.

. control i:o the main processor.
2. Maih Processor - The Internal Reader RGET routine tests

for the existance of a submitting task punch channel program.

Internal Reader Processor — Page 4.16-1

193

HASP

If no channel program exists the Processor will wait for
WORK. If a channel program exists RGET will simulate the
punching of one card into the 80 byte DCT buffer area (no
data chaining). If the channel command represents the

end of the channel program RGET posts completion of I/O
and resets channel program indicators. RGET returns to
the main processor passing the card image for processing
or in the event the "card" has "/*EOF" in columns 1 to 5
returns indicating end of file.

Processor Termination - Termination of the Internal Reader
involves terminating the last job (if any), reieasing the
direct—accessvand internal reader device DCT's, and passing

control to the processor initialization routines.

The Internal Reader requires supporting routines in the Execution Control

Processor Asynchronous I/0O Handler which perform the following functions:

1.

Recognize EXCP macro references to designated internal readers
as setup by HASP initialization.

Make the internal reader available tb the Input Service Processor
on first use.

FSet up the first channel command word and IOB bointers .

Force the submitting task in the wait state if required.

Post the Input Service Processor for WORK.

Internal Reader Processor — Page 4.16-2

194

HASP

4.17 MULTI-LEAVING LINE MANAGER

4,17.,1 MULTI-LEAVING Line Manager — General Description

The function of this processor is to control all line activity with remote
terminals. This includes line initiation/termination, remote terminal
synchronization, line error recovery, and sign-on/sign-off processing.
This processor interfaces very closely with the Remote Terminal Access

Method described in section 5.15.

4,17.2 MULTI-LEAVING Line Manager — Program logic

When this processor receives control from the dispatcher it first
determines whether an I/0O operation has completed. If not, it then scans
each line (via the line Device Control Tables) to check for requested
processing. When all processing has been completed the processor then
returns control to the dispatcher (S$WAIT's) until such time as more work
becomes available.

When a channel end is detected, the channel end routine determines
the sequence type of the Channel Corﬁmand Word chain and branches to the
appropriate section to analyze the channel end and initiate any error
recovery procedures required.

The line Device Control Tables (DCT's) are scanned and when one is

found to be available the Line Initiation routine is entered which acquires

MULTI-LEAVING Line Manager — Page 4.17-1

195

HASP

the DCT, acquires a TP buffer, constructs an initial CCW chain, and
initiates I/O on the line.
A single timer queue element is maintained by the Line Manager to
initiate delays in line processing. This facility provides the capability
of delaying a null response to a remote terminal and decreases the
associated degradation. Various other timer queue elements are maintained
by individual line processors to initiate other delays of varying intervals.
The code in this processor is assembled conditionally such that only

the instructions required to process a given configuration will be generated.

MULTI-LEAVING Line Manager — Page 4.17-2

196

HASP

4.18

S 4.18.1

4.18.2

REMOTE CONSOLE PROCESSOR

Remote Console Processor - General Description

The function of this processor is to process all console
messages to and from remote terminals. This routine
optionally saves messages to remotes which are not "signed
on" MULTI-LEAVING terminals for later printing on the
remote terminal printer.

Remote Console Processor - Program Logic

This processor receives control whenever a console message
is queued for a remote terminal or whenever a console mes-
sage is received from a remote terminal. The processor
first examines the output queue of messages and upon en-
countering a message queued for a remote terminal examines
the current status of the terminal. If the terminal is
not an active BSC MULTI-LEAVING terminal the message is
purged (the console message buffer is returned to the
available queue) or the message is saved on the SPOOL1
volume if operator message SPOOLING is requested.

If the message is to be written, a Remote Console Device
Control Table is constructed for the specific remote termi-
nal, the DCT is chained onto the other DCTs for this
remote, the DCT is "OPENed" by calling the Remote Terminal
Access Method, all messages which are queued are written

to the terminal, and the DCT is "CLOSEd" and unchained.

If the message to be written is for a currently inactive

or for a non-MULTI-LEAVING active remote and HASP operator
message SPOOLING space is specified (&SPOLMSG # 0), an at-
tempt to save the message on the SPOOL1l volume for later
printing at the remote by printer support routines is made.
The remote MESSAGE SPOOLING QUEUE ($SMSPOOLQ) element for
the designated remote is examined for a queue HEADER entry
of zero. If zero, a record is allocated from the MESSAGE
ALLOCATION ($SMSALLOC) Table, and the corresponding MTTR for
the record is placed in both HEADER and TRAILER entries

for the remote. (Non-zero but equal HEADER and TRAILER
entries signify that the queue exists; however, since the
last record of each remote element is always empty no data
is currently queued). A record is allocated from the
S$MSALLOC table to represent the new end of message queue
and the associated MTTR is placed in the chain field of the
current HASP buffer. The HASP buffer is then filled with
the operator message and any more messages for the same
remote currently queued and written on the SPOOLl volume

Remote Console Processor - Page 4.18-1

197

HASP

at the record location designated by the TRAILER MTTR for
the remote. Upon completion of I/O the chain field replaces
the TRAILER MTTR. The above process is repeated for addi-
tional buffers as required to empty the console message
queue for the remote.

In the process of allocating message records the $MSALLOC
table bit map is used. Each bit in the map when on repre-
sents a free record on the SPOOLl volume. Allocation con-
sists of finding the highest numbered bit that is on,
turning the bit off, and converting to a corresponding MTTR.
When all bits in the map are off indicating that no records
are available, the messages are purged.

If an input message is to be read, a Remote Console Device
Control Table is constructed and the Remote Terminal Access
Method is utilized to "GET" the message. The message is
written to the local console and then queued for the Command
Processor.

Remote'Cop501e Processor - Page 4.18-2

198

"HASP

4.19

4.19.1

4.19.2

(1) Examines the XPCEECB fleld of the XTHA“

v‘EXECUTION THAW PROCESSOR

EXECUTION THAW‘PROCESSOR - GENERAL DESCRIPTION

XTHAW is a companion to the main Execution processor I10S

interface routineé called XFREEZE. XTHAW is respon31ble for:

discovering which tasks have been forcibly placed in an 0S-
WAIT state by XFREEZE (frozen) and should now be' actlvated .
(thawed) thru the 0OS POST ECB mechanism.’

EXECUTION THAW PROCESSOR - PROGRAM LOGICk

XTHAW uses an IOB (HASP buffer) chain constructed thru the.
XTHAW PCE or the Execution Processor PCE(s) in the XPCEECB
field of the PCE work area. The chain is constructed u81ng
the XTHAW or an Execution PCE depending on the reason for
invoking XFREEZE. If the IOS interface section is entered
while an Execution processor is active, then the XTHAW PCE,
is used. If an I/0 request cannot be. prOeassed and an
Execution processor is not active at the time of “the request,
then the PCE controlling the caller is used to bulld the)
chaln.

XTHAW is activated ($POSTed) by the Execution Processor
whenever a Job or the HASP controlled OS Reader/Interpreter
is active and just prlor to $WAITing for work. A special
status bit (XPOSTBIT) in the XPCESTAT field of an Execution
PCE is used as the primary test for processing the;IQB chaln.
This bit is not turned on when the OS Reader/Int T
is active and assigned to a PCE but does not have a]Ob to
process. This prevents unnecessary activation (thaw1ng) of
the Reader/Interpreter when no Jobs are. avallable for 1n1t1a-‘
tion. :

XTHAW performs the following major functio'

If this field is non-zero, it is used a

to a chain of IOBs (HASPhuffers) ‘which ¢

to be POSTed (thawed) and the HASP /O

(WPOSTECB) is used to perform the PQ

address for the IOBs is contained in thi

which is set to zero for the last IOQB.

(2) Next, the Execution PCEs are searqhed,

condition and the XPCEECB field is: PL

- scribed in Step 1, .if the XPOSTBIT is st ’

(3) XTHAW $WAITs for work after processing all PCEs as-
described.

‘Execution THAW Processor - Page 4.19-1

199

HASP

4.20 OVERLAY ROLL PROCESSOR

4.20.1 Overlay Roll - General Description

This Processor operates in conjunction with the Overlay Service
Routines. Description of them in Section 5.16 should be read to
provide proper background to understanding of Overlay Roll. The
objective of this Processor is to prevent system lockout due to
SWAITs in overlay routine coding.

4.20.2 Overlay Roll - Program Logic

This Processor's PCE is placed lowest on the HASP Dispatcher chain
and it SWAITs on ABIT when idle. This means that all Processors
with their requested overlay routine in an Overlay Area will have
at least one chance to execute code or otherwise use their overlay
routine before the Overlay Area containing that routine is taken
for other use. Overlay Roll does not receive control unless all
other HASP Processors are in a $SWAIT state, i.e., HASP is ready

to relinquish control to OS by WAIT. Overlay Roil always receives
control, just before WAIT is executed.

Overlay Roll has local addressability provided in BASE2 and also
establishes the base address for Overlay Service in register WC so
that its subroutines and tables may be used. On each entry, the
Queue beginning with $WAITACE (see 5.16.2) of PCEs waiting for an
Overlay Area is tested. If empty, SWAIT ABIT is used to exit.
Otherwise, the following attempts are made to secure one or more
Overlay Areas and begin reading a requested routine into them.

For each group of one or more waiting PCEs requesting the same over-
lay routine, all Overlay Areas are searched to find a suitable one.
If a read operation to load an overlay routine is in process, the
area is never taken. Users of that routine are allowed at least

one chance to execute after read completion is processed by Overlay
$ASYNC Exit (see 5.16.9).

For each Overlay Area which does not have read in process, the
OACEPRIO field is examined and the chain of all current users
(beginning at OACEPCE) is searched to determine if any user is
SWAITing on I/0. This would be I/O other than an overlay read
operation, would be expected to complete "soon", and would, there-
fore, make it less desirable to pre—empt that area. The lowest
prlorlty area with no user $WAIT1ng I/0 is chosen, 1f any, other-
wise the lowest priority area is chosen. :

Since an overlay routine is "refreshable" at $WAIT time, it is not
necessary to literally "roll", i.e., write to disk, a pre-empted
Overlay Area. Each PCE on the chain of current users (OACEPCE) is

Overlay Roll Processor - Page 4.20-1"

200

HASP

processed to prevent further use of the pre-empted area by it.

The re-entry address (PCER15) is "sized" to determine if it points

into the Overlay Area and if so is relativized by subtracting the

- Overlay Area address. The PCE is forced into a $WAIT OROL state,
in addition to the other $WAIT conditions present. When other

$WAIT conditions have been $POSTed, the Dispatcher (see 5.1.2)

detects the PCE $WAITing OROL only and sets it to call on Overlay

Service. OLOD subroutine (see 5.16.8) is eventually called to

refresh the routine, either directly, or if the PCE gets into the

SWAITACE Queue, by OEXIT subroutine (see 5.16.7) or by Overlay Roll.

The area thus pre-empted is used to read in a new overlay routine,
to be used by the highest priority PCE group on $WAITACE. The OLOD
subroutine (see 5.16.8) is called to begin the read operation.

If there are more PCE groups on the $WAITACE Queue, the above actions
are repeated. When Overlay Roll finally exits by S$WAIT ABIT, the
SWAITACE Queue is either empty or all Overlay Areas have an overlay
read operation started, to be posted by Overlay $ASYNC Exit.

Overlay,Réll Processor - Page 4.20-2
201

HASTP.

4.21 HASP SMB WRITER (HASPWTR)

4.21.1 HASP SMB Writer - General Description

The primary function of this program is to read System Message
Blocks (SMBs) from the data set SYS1.SYSJOBQE and "print" them to
HASP. The process signals the end of the 0S execution phase of a
job's processing and makes the messages (JCL, JCL diagnosis,
allocation/disposition, SMF, etc.) available to HASP, to be later
printed with print data sets of the job previously SPOOLed by HASP.

This program is used as an attached task, in the HASP region or
partition, if the HASPGEN parameter &WTRPART is set to "*"., Other-
wise, the standard OS Output Writer is used to fulfill the same
functions and is started by HASP in a separate partition, using a
procedure named HOSWTR. The requeueing feature described below is
only available when using HASPWTR.

The program HASPWTR depends upon OS Queue Management structures
(QCR, LTH, SMB, no-work ECB) as documented in 0S5/360 MVT Job Man-
agement PLM. Functions such as enqueue, dequeue or delete of a
job; ENQ/DEQ to control access to Queue Management resources; con-
version of record addresses between NN, TTRO, and MBBCCHHR forms;
and computation of sector numbers when SYS1.SYSJOBQE is on an RPS
direct access device are all performed in a manner consistent with
that described for the standard OS Job Management modules.

Microfiche listings for IEFQDELQ, IEFQMDQQ, and IEFSD086 were con-

sulted as examples during the development of HASPWTR. However, no
actual Job Management modules are executed by HASPWTR.

4.21.2 HASP SMB Writer - Program Logic

On initial entry after being ATTACHed, the program saves three ad-
dresses passed to it by HASP Initialization: memory address of

the pseudo 1403 UCB designated by the HASPGEN parameter &WTR, ad-
dress of a HASP subroutine to be called to signal end-of-job, and
address of an ECB which will be posted by HASP if the operator en-
ters the command $P HASP. After signalling HASP (via a POST) that
ATTACH was successful and setting up addressability to the OS Queue
Manager resident DCB and DEB for SYS1.SYSJOBQE, the program enters
its major processing loop.

The major processing loop is driven by inspection of a list of ECBs.
One is the $P HASP ECB which, if posted, causes the program to ter-
minate as described below. All other ECBs are each part of an
eight byte no-work element. One such element is present for each
SYSOUT (MSGCLASS) to be processed, as indicated by the list of

HASP SMB Writer (HASPWTR) - Page 4.21-1

202

HASP

classes assigned to the HASPGEN parameter &WTRCLAS. If an ECB is
posted, the Queue Control Record (QCR) for that class is read and

"a job is dequeued, if present. The dequeued job's last Logical
Track Header (LTH) must be read to perform the dequeue. The updated
QCR is re-written. If there were no jobs to dequeue or the one
dequeued was the only one, the class ECB is cleared and the no-work .
element is chained from the QCR before re-writing.

If a job was dequeued, its SMBs are read, messages are formatted
into print lines, and the lines are "printed" to HASP using the
pseudo 1403 UCB. If non-SMB blocks such as Data Set Blocks (DSBs)
are encountered, they are simply skipped. The data sets they
represent are not printed or scratched. When the end of the job
is reached, a small subroutine in HASP is called to signal end-of-
job to HASP. :

The HASPGEN parameter &WCLSREQ controls the disposition of the job
after processing. If the position in the list &WCLSREQ, correspond-
ing to the position of the job's original class in the list &WTRCLAS,
is a valid SYSOUT class then the job is re-queued in the QCR for
that new class. Any tasks (e.g., other system writers for perhaps
CRBE, CRJE, TSO, CPS, etc.) whose no-work elements are chained from
that QCR are POSTed. The re-queue action always places the job in
the new QCR chains at highest priority.

If S&WCLSREQ does not indicate re-queuing ("*" in a list position
instead of a class), the job's tracks in SYS1.SYSJOBQE are released
by chaining them to the chain of free space beginning in the Master
QCR, POSTing any tasks waiting for Job Queue space, and re-writing
the Master QCR.

The major processing loop is repeated until no ECBs are found posted.
An 0OS multiple WAIT is executed and when any ECB is posted by another
task (usually an 0S Job Terminator), the major processing loop is
resumed.

If the operator enters $P HASP, HASP will POST an ECB to signal
termination actions to this program. All QCRs for processed classes
(&WTRCLAS) are read, the no-work chain of each is zeroed, then the
QCR is re-written. HASPWTR exits with a zero completion code.

If permanent I/O errors occur during any I/0 on the SYS1.SYSJOBQE
data set, an error message is always written to the operator. For
write operations, no further special action is taken and processing
continues. For read operations, an attempt is made to minimize
system damage. No input from an incorrect read is ever used for
processing. If the error occurs in reading a QCR or LTH while
attempting to de-queue a job, the ECB is set so that no further pro-
cessing of that class will be attempted. If there is an SMB read
error, end-of-job is signalled to HASP and no further blocks on that
job's chain are read. If a QCR read error occurs during a re-queue
attempt, the job is deleted (tracks are released).

HASP SMB Writer (HASPWTR) - Page 4.21-2

203

HASP

4.22 PRIORITY AGING PROCESSOR

4.22.1 Priority Aging Processor -- General Description

The function of the Priority Aging Processor is to regularly
increase the priority of a job in such a way that its position
in the HASP Job Queue is enhanced with the passage of time.
This is accomplished by regularly passing through the HASP Job
Queue and incrementing the priority field of all Job Queue
Elements whose priority falls between upper and lower limits.
These limits, as well as the time interval, are HASPGEN
parameters and can be specified to fit the needs of an
installation.

4,22.2 Priority Aging Processor -- Program Logic

When this processor is dispatched, it searches through the HASP
Job Queue until it encounters a Job Queue Element whose priority
field "QUEPRIO" (see figure 8.6.1l) is less than the HASPGEN
parameter: &PRIHIGH. For that Job Queue Element and every Job
Queue Element after that (until the HASPGEN parameter &PRILOW

is reached), the priority field is incremented by one. The
Interval Timer is then reset and the processor enters a HASP
SWAIT until the timer interval expires.

Since the priority of the Job Queue Element is represented by
the four high-order bits of "QUEPRIO", adding one to this field
has no immediate effect on the priority. After repeating this
operation sixteen times, however, the actual value of the
priority will be increased by one. The value of the time
interval is actually only one-sixteenth of the interval implied
by the HASPGEN parameter: &PRIRATE. This effect tends to smooth

out the process of priority aging by creating less impact when
an interval expires.

In order to minimize CPU utilization, this processor discontinues
operation whenever the HASP Job Queue is empty and does not
continue until a new job enters the system.

Priority Aging Processor -- Page 4.22-1

204

HASP

4.23 SYSTEM/3 REMOTE TERMINAL PROCESSOR PROGRAM LOGIC

The HASP System/3 Remote Terminal Program is assembled on a
System/360 or System/370 computer under 0OS, using Assembler F
(IEUASM) . The advantages of assembling under OS are: the .
System/3 program can be assembled as part of a standard HASPGEN
or RMTGEN; a System/3 program can be customized to the particular
System/3 configuration and HASP System being generated, since
Assembler F can handle conditional assembly statements; and macros
can be used.

To allow assembly of System/3 code, a set of macros is included
as part of the System/3 source code, HRTPSYS3. Most of these
macros are designed to generate machine language code for the
System/3; a few additional macros, such as SWAIT and $FB, provide
for in-line functions and control blocks. The former macros will
be discussed first; they are called the machine-language macros.

The machine-language macros consist of a set of macros whose names
correspond to the mnemonic System/3 operation codes defined in the
publication "Card and Disk System Components Reference Manual"
(Order Number GA21-9103) and the extended System/3 assembler
mnemonics defined in the publication "Disk System Basic Assembler
Program Reference Manual" (Order Number SC21-7509), with the fol-
lowing exceptions: each mnemonic operation code is prefixed by a
dollar sign; no macros are provided for the instructions ZAZ, AZ,
" and SZ; additional extended mnemonics $NOPB and $NOPJ are provided;
and the form and order of the operands is such as to be convenient
to Assembler F.

When a machine-language macro refers to a location in core, the
operand is coded either "address" or "(displacement,register)".
Thus one might write "$MVC X'1234',b (0,REG2) ,LENGTH" to move LENGTH
bytes to core location X'l1234' (and succeeding lower-addressed
bytes) from the core location pointed to by REG2 (and succeeding
lower—-addressed bytes).

There are ten forms of machine-language outer macros. These are:

1. The two-address form exemplified by "$MVC adrl,adr2,length".
The operands "adrl" and "adr2" are as explained above. The
operand "length" is assembled as "length-1" unless it is
omitted or is literally "*-*" (in which case it is assembled
as zero) or the opcode is $MVX, in which case it is assembled
as "length". The opcodes MVC, SSALC, $ED, $ITC, $CLC, and
$MVX belong to this form. The extended mnemonics $MZZ,;$MZN,
$MNZ, and $MNN may be used. : ' .

2. The one-address form exemplified by "$L reg,adr" and 1nclud1ngi‘
$L, A, SSLA, and S$ST.

- 3. The one-address form exempllfled by "$MVI adr,lmmedlate" and
including $MVI, $CLI, $SBN, $SBF, $TBN, ‘and $TBF.

System/3 Remote Terminal Erocéssor - Page 4.23-1;.

205

HASP

4, The Jump instruction, written as either "$JC adr,cc" or
"$JIxxx adr", where $JxxxX is one of the extended mnemonics.
In this case, "adr" may not be specified as
" (displacement,register)" and must be within a positive dis-
placement of 256 bytes from the last byte of the Jump
instruction.

5. The Branch instruction, written as either "$BC adr,cc" or
"S$Bxxx adr" where $Bxxx is one of the extended mnemonics.

6. The one-address I/0 forms, exemplified by "$LIO da,m,n,adr"
and including LIO, STIO, and $SNS.

7. The instruction $SIO, written as "$SIO da,m,n,cc".

8. The instruction $APL, written as "$APL da,m,n".

9. The instruction $HPL, written as "S$HPL cc", where each "c"

is either the actual character to be displayed as a halt code
or the character "*", indicating a byte of zeros. For exam-
ple, one might write "$HPL EJ".

10. The assembler instructions $DC and $DS, vhere the statement
label (if any) is assigned the address of the last byte of
the last operand specified.

In addition to the machine-language macros, a $USING and a $DROP
macro are provided to enable Assembler F DSECTs to be used more
easily. The form of the SUSING macro is "$USING expression,reg-
ister" where "expression" is a one-to-eight-character expression
with the location counter reference symbol "*" either not used or
used as the first character, and "register" is a one-to-eight-
character absolute expression. No more than two different
SUSINGs (two $USINGs with different arguments "register") may be
outstanding at any time. S$USING works as follows: from the time
the SUSING is issued, for any address-type machine~language macro
which contains an address specification of "(displ,reg)", the
character string "reg" is compared with the string "register" of
each outstanding $SUSING. If no match is found, the displacement
is assembled as YL1l(displ). If a match is found, the displacement
is assembled as YL1(displ- (expression)), where "expression" is
taken from the corresponding $USING.

The form of $DROP is "$DROP register" where "register" is a char-
acter string that appeared as the second operand of a previous
and outstanding $USING. The form "$DROP register,register" is
also allowable. ‘

The assembly listing generated by Assembler F contains the macro-
expansion for each macro used, in order to provide a printed copy
of the generated text of each machine instruction and the address
at which it will be loaded in System/3 storage. The expansion
of each of the machine-instruction macros is typically contained
in one print line, and the text of the generated instruction is

System/3 Remote Terminal Processor - Page 4.23-2
206

HASP

always contained in hexadecimal on one print line.

The object deck produced by Assembler F is used as input to the
translation program SYS3CNVT, called automatically by RMTGEN.
SYS3CNVT reads the object deck via either ddname SYSLIN, or -
ddname SYSGO if SYSLIN is absent. First, SYS3CNVT punches on
SYSPUNCH a System/3 one-card loader. Then it reads from SYSLIN

or SYSGO, ignoring all but TXT cards and the END card. For each
TXT card, SYS3CNVT creates one System/3 96-column load-mode card
image, suitable for reading by the System/3 one-card loader. Each
such 96-column card image contains 64 bytes of information as
follows:

° bytes 1-5 contain a System/3 $MVC instruction of the form
"S$MVC load-adr, (column-number,l),length-1" where load-adr
is the absolute load address of the rightmost byte of text
on the corresponding 80-column Assembler F object deck TXT
card, column-number is the number minus one of the 96-card
column in which appear the low-order six bits of the right-
most byte of text, the digit "1" refers to the System/3's
register 1, and length is the number of bytes of text on

the card; :

° bytes 6-61 contain a maximum of 56 bytes of text, starting
in column 6; and

° bytes 62-64 contain a three-digit card sequence number.

.When the object deck's END card is detected, or when a TXT card
appears that was generated by the $END macro (whose optional key-
word operand START= specifies the starting execution address of

a segment of text), a 96-column load-mode card image is constructed
whose 64 bytes are as follows:

) bytes 1-4 contain a System/3 $B instruction of the form "$B

‘ address" where address is either the first byte of the text
segment just loaded (if the S$END macro does not specify
START=, or if the END card of the assembly has no operand) or
the address specified in the START= parameter of the S$END

: macro or the operand field of the END card;

° bytes 62-64 contain a three-~digit card sequence number.

After the object deck's END card has been processed, SYS3CNVT
creates a 96-column card image of which columns 2-4 are "EOR"
(this is the rep terminator card, End-of-reps) and columns 62-64
contain a three-digit card sequence number.

Certain of these 96-column card images contain descriptive infor-
mation in bytes 33-64: these are the one-card loader, which is
captioned "FIRST CARD"; the card created from a $END macro, which
is captioned "PSEUDO-END"; and the card created from an END card,
which is captioned "LAST CARD".

After it has created each 96-column card image (including that for

the one-card loader), SYS3CNVT breaks the image in half and punches
two BO-column cards from it. Each 80-column card punched by

System/3 Remote Terminal Processor - Page 4.23-3

207

HASP

SYS3CNVT contains the following fields:

) columns 1-2 are blank;.

) columns 3-50 contain the first (if column 80 is odd) or the
last (if column 80 is even) 48 bytes of a System/3 card
image;

° columns 51-72 are blank;

) column 73 contains the punch combination for X'80', an

indicator to any System/3 Remote Terminal Program generated
with &S396COL=1 that two 80-column cards are to be combined
and punched as one 96~-column card (the System/3 Starter System
is generated with &S396COL=1) ;

° columns 74-80 contain the remote terminal identifier and card
sequence number, in the form "Rmmnnnn", where nnnn is 0001 on
the first card punched.

The punched output of SYS3CNVT may be routed directly to a System/3
which is running the Starter System or other suitable System/3 Re-
mote Terminal Program; the resulting 96-column punched deck of
cards is immediately ready for loading into a System/3 of the
proper configuration. Alternatively, SYS3CNVT's punched output

may be punched on 80-column cards for later transmittal to a
System/3. Each 80-column card is suitable for data transmission

in either transparent or non-transparent mode.

System/3 Remote Terminal Processor - Page 4.23-4

208

HASYP

The following pages constitute the Program Logic manual for the
System/3 Remote Terminal program.

The program consists of processors, interrupt routines, and system™
subroutines. There is a processor for each logical function to
be performed by the program; each processor is controlled by a
Function Block (somewhat analogous to a TCB in 0S). Interrupt
routines are provided for those devices (BSCA, 5471, and 5475)
which are capable of interrupting the CPU; other devices are
operated by processors. For example, the MFCU processor operates
a hopper of the 5424 MFCU; it becomes associated with either a
logical reader processor or a logical punch processor, depending
upon the state of the hopper.

The various routines of the System/3 Remote Terminal program
are described in the order in which they appear in the listing.

System/3 Remote Terminal Processor - Page 4.23-5

209

HASTP
IHEREP - HASP Environmental Recdrdingyand'Error Processor

IHEREP prints at program load time the error statistics gathered
from the prev1ous running of the System/3 Remote Terminal pro-
gram. - IHEREP is then overlald and the Remote Termlnal program’
contlnues to load. : .

First, IHEREP loads the 5203 forms length reglster and selects
the correct print chain image according to the printer's status
information. Then it checks the log area for validity. If the
log area is valid, the characters 'HASP' will appear immediately
before the log area. If these characters do not appear, IHEREP -
prints the message R

HEREP COUNTERS HAVE BEEN ALTERED
and branches to zero to cause program loading to resume.

If the log area is intact, it contains eight two-byte counters

for each status byte which can contain unit check information

for a device. IHEREP prints a title line and then, for each

status byte, a subtitle line and as many as eight detail lines.

A subtitle line contains device description and status byte number.
A detail line contains status bit descrlptlon, bit number, and
count of bit occurrences in decimal.

Control of IHEREP.resides in the table of subtitles and detail
descriptors, and control of the two-byte bit counters is by a
bit string (starting at symbol IHBIT1l) containing one-bits

for the counters to which correspond detail descriptors. The
table of subtitles and detail descriptors is made up of SIHMSG
macros; if the first operand of this macro is 'T', the macro
defines a subtitle, and if the first operand is an integer
between 0 and 7, it specifies a detail descriptor for the bit
whose bit number is the first operand. The table entries are
used in order, and a byte of zero defines the end of the table.

‘When the HASP Environmental Recording and Error Printout is com-
plete, the counters are zeroed out and IHEREP branches to zero
to continue program loading.

:Syetem/3‘Remote TerminalkProcessor,—*Page'4.23—6

210

HASP

SCOM - Commutator

The Commutator gives control in turn to the various processors
which comprise the System/3 Remote Terminal program, based upon
the status of the various Function Blocks (FBs).

If the Event Wait Field (FBEWF) of an FB has zeroes in the bit
positions defined by EWFALL, the function is said to be dispatchable.
$COM loads register one from field FBREGl of the FB (register two
points to the FB) and gives control to the associated processor by
loading the Instruction Address Register (IAR) from field FBENT.

When the processor has completed its work, it returns to the com-
mutator with register two pointing to its FB. It may return to
$COMRET, where $COM will save both the Address Recall Register (ARR)
as the processor's next entry point and the value of register one;
SCOMRETA, where $COM will save the value of register one; or
SCOMRETB, where $COM will assume that both the value FBENT and

the value FBREGl are correct.

Then $COM chains to the next FB (or starts again with the first
FB if the chain field FBNEXT is zero) and repeats the above process.

System/3 Remote Terminal Processor - Page 4.23.7

211

HASP
SMFCU - 5424 MFCU Processor

$MFCU operates under two FBs and two Hopper Control Areas (HCAs) -
one for each MFCU hopper. The routine contains four levels of
subroutines.

SMFCU begins by calling first-level subroutine HREAD to read a
card. HREAD sets up a read $SIO instruction from information

in the HCA and calls second-level subroutine HEXCP. HEXCP calls
fourth-level subroutine HTIO, which returns condition code equal
if the hopper described by the HCA is ready and condition code
unequal if it is not. If condition code unequal is returned,
HEXCP returns to the commutator; it will regain control again at
the call to HTIO.

If the hopper is ready, HEXCP calls third-level subroutine HSIO
to perform I/0O on the hopper. HSIO first checks for various
exceptional conditions. If error recovery is in progress (for
the other hopper), HSIO returns immediately with condition code
unequal. It returns similarly if the MFCU is busy reading,
printing, or punching. If error recovery is not in progress and
the MFCU is not busy, HSIO tests the "hurry" switch (which is set
if one hopper is active and the other hopper becomes ready with

a read $SIO pending for it). If the hurry switch is set and the
current $SIO is not a read-only $SIO, HSIO returns condition code
‘false.

If all the above tests are passed, HSIO checks the stacker request
associated with the current $SIO. If the stacker request is dif-
ferent from that for the previous $SI0O, the feed path is checked
to make sure it is clear. If the feed path is not clear, HSIO
returns condition false; in addition, if the $SIO is read-only,

it sets the "hurry" switch. But if the feed path is clear, HSIO
resets the hurry switch, sets the new stacker number, and proceeds
as if the stacker request for the current $SI0O were the same as
that for the previous $SIO.

If no stacker change is indicated, HSIO moves the current $SIO

to an in-line position from the HCA and examines it. If the $SIO
indicates print (interpreting), HSIO attempts to select one of two
print buffers into which to move the punch information for the
$SI0. If unsuccessful, HSIO returns condition code unequal. But
if one of the print buffers is free (as indicated by the MFCU
print-buffer-busy status bits) HSIO copies the punch data into
the print buffer and modifies the $SIO instruction to indicate
the print buffer being used. Then, or if the $SIO is read-only,
HSIO loads the MFCU's read and punch data address registers.
After a call to HTIO to insure that the hopper is still ready,
HSIO issues the $SIO instruction, sets condition code equal, and
returns to its caller, HEXCP.

System/3 Remote Terminal Processor - Page 4.23.8

212

HASP

HEXCP examines the condition code returned to it. If the condition
code is unequal, HEXCP non-process exits, exactly as it did for
HTIO above. But if the condition code is equal, HEXCP non-process
exits to be entered again at a $TIO which continues to non-process
exit until the MFCU ceases being busy; then HEXCP calls third-level
subroutine HSNS to determine the completion of the I/O operation.

HSNS calls HTIO to see if a unit check condition exists. If that

is the case, HSNS reads the MFCU status bytes. If all status bits
in the error status byte are off (or if no unit check condition
existed) HSNS returns condition code equal; if only the no-op status
bit is on, HSNS returns condition code unequal.

If other error status bits are on, HSNS calls system subroutines
$MSG and S$LOG to add a message to the error trace table and to
count the error bits for HEREP, respectively. Then HSNS checks
the error bits further. If the only error bits on are punch
invalid or print check, HSNS returns condition code equal; these
are regarded as user data errors (punch invalid) or trivial errors
(print check).

But if other error bits are on, HSNS sets the error-recovery-in-
progress flag in HSIO (to prevent other $SIO instructions from
resetting the error bits) and non-process exits until a SNS in-
struction shows that all error bits (except no-op) have been reset
by the operator (who must do a non-process run-out on the MFCU).
Then HSNS returns condition code unequal.

HEXCP returns to its caller (which was HREAD in this case) the
condition code it received from HSNS.

HREAD examines the condition code returned to it by HEXCP. If
unequal was returned, HREAD again calls HEXCP; otherwise first-
level subroutine HREAD returns control to mainline $MFCU (in
this case, at its second instruction).

Having read the first card from its hopper, $MFCU now tests that
card for blanks, via first-level subroutine HBLANK. If the card
is blank, the hopper is assumed to contain blank cards to be
punched. Otherwise, the hopper is assumed to contain a job
stream and the MFCU awaiting-read routine HAR attempts to asso-
ciate the hopper with a free logical reader FB, using subroutine
HGET. HGET returns condition code equal if it succeeds (it also
posts the logical reader's FB for UNIT), and condition code
unequal if the hopper becomes not ready (and therefore dormant
rather than awaiting-read); otherwise, HGET non-process exits
until one of the above two conditions happens.

If HGET returns condition code equal, the MFCU reading routine,

HRD, signals to the now-associated logical reader that the read
buffer for the associated hopper is busy; then HRD non-process

System/3 Remote Terminal Processor - Page 4.23.9

213

HASP

exits until the logical reader frees the read buffer. When the
read buffer is free, HRD checks the EOF flag, set by the logical
reader when it encounters a /*EOF control card. If the EOF flag
is on, HRD makes the hopper dormant by branching to the first
instruction of S$MFCU; otherwise HRD calls first-level subroutine
HREAD as above to read the next card and, on return, again sets
the read buffer busy. '

If on the other hand $MFCU finds a blank card in a dormant hopper
it gives control to HAP, the awaiting-punch routine, which tries
to find (via HGET) a logical punch FB of which HASP has requested
permission to send a punch stream. Having found such a logical
punch, HAP gives control to HPU, the MFCU punch routine.

HPU non-process exits until the associated logical punch processor
sets either the EOF flag or the punch-buffer-busy flag in the

flag byte of its hopper control area. If the EOF flag is set,

HPU makes the hopper dormant.

But if the punch-buffer-busy flag is set, HPU punches and prints
a card and reads the next card (to insure that only blank cards
are punched). HPU sets up a read-punch-print $SIO and calls
second-level subroutine HEXCP. If HEXCP returns condition code
unequal and the MFCU status indicates any of the errors no-op,
punch check, hopper check, or feed check, the punch buffer is not
marked free; otherwise it is marked free and set to blanks. The
MFCU status is checked again; if neither read check nor no-op is
indicated, the card is examined to determine if it is completely
blank. Otherwise, or if the card now in the wait station is not
blank, another card is read (via subroutine HREAD). When a blank
card has been read successfully, HPU again checks for punch-
buffer-busy as above. '

System/3 RemoteyTerminal Processor - Page 4.23.10

214

HASP
$1442 - 1442 Card Reader - Punch Processor

The $1442 processor is assembled if RMTGEN parameter &S31442 has
been set to 1. 1Its logic is similar to that of S$MFCU but simpler,’
since only one hopper need be controlled. $1442 uses some of the
subroutines of S$MFCU; for this reason, and since its interface to
the logical reader and logical punch is the same, the 1442 hopper
control area is similar to (but not identical with) the HCAs of
the MFCU.

$1442 starts by reading a card from the 1442 via entry point

GSIORD of subroutine GSIO. If the card is blank, GAP (awaiting-
punch) calls HGET just as does HAP in $MFCU; if the card is non-
blank, GAR (awaiting-read) calls HGET just as does HAR in $MFCU.

When a logical reader or logical punch has been associated with
the 1442, GRD or GPU gains control and proceeds with I/O as indi-
cated by the read-buffer-busy and punch-buffer-busy flags. 1In
addition to recognizing the EOF flag set by the logical reader,
GRD also recognizes the last-card status bit from the 1442 and
sets the last-card flag, recognized by the logical reader.

Subroutine GSIO performs I/0 on the 1442. Entry point GSIORU

sets a feed command in the $SIO and branches to common code. Entry
point GSIORD sets a read-EBCDIC command in the $SIO and loads the
.data address register; it branches to common code. Entry point
GSIOPU sets up a punch-and-feed command, loads the data address
register and the punch count register, and falls through to

common code.

GSIO's common code non-process exits on a $TIO until the hopper
is ready. Then it issues the constructed $SIO and non-process
exits until the 1442 is not busy. If entry was from GSIORU,
GSIO returns condition code equal; otherwise it tests for unit
check (via subroutine HTIO) and reads the 1442 status bytes. If
no unit check occurred, GSIO returns condition code equal.

But if the 1442 had a unit check or otherwise became not ready,
GSIO uses subroutines $MSG and $LOG to add a message to the
error trace table and to count the error bits for HEREP,
respectively; then it checks the status bytes. If no error bit
is on, GSIO returns condition code equal; otherwise GSIO returns
condition code unequal. '

System/3 Remote Terminal Processor - Page 4.23.11
215

HASP
$5203 - 5203 Printer Processor

The 5203 Printer Processor non-process exits until another
processor has marked the printer data area busy. Then it com-
pletes the Q-byte and CC-byte of a $SIO instruction from an

SRCB furnished it by either S$PRINTER or S$CONP. After a $TIO
shows that the 5203 is ready, $5203 loads the printer image
address register and the printer data address register and
issues the $SIO. $5203 then non-process exits until the printer
is not busy.

When the printer operation has ended, $5203 checks for errors.
If any of the error incrementer failure check, hammer echo
check, or any hammer on check has occurred, $5203 attempts to
reprint the line. Otherwise it clears the print line to blanks,
shows the print buffer free, and again non-process exits until
a processor sets the print buffer busy.

Additionally, whenever a unit check occurs, $5203 calls sub-
routines $MSG and $LOG to produce an error message and to
count the one-bits in the printer status bytes.

System/3 Remote Terminal Processor - Page 4.23.12
216 ‘

HASP
SREADER - Logical Reader Processor

SREADER waits for one of the physical reader routines to post it
for UNIT. When posted, it sends to HASP a request-permission
control sequence (via subroutine $REQ) and waits to be posted for
PERM by $BSCA when the system receives from HASP the appropriate
permission-granted sequence.

When it has received permission, $READER non-process exits unless
the read-buffer-busy flag is on, indicating a card is ready to be
processed. Then it examines the card. If the card's columns 1-5
are "/*EOF", S$SREADER sends to HASP an end-of-file control sequence
(via subroutine S$LEOF), which is merely a zero-length record. It
then waits again for UNIT, and continues as above when posted.

The same end-of-file processing occurs if the reader is a 1442 and
the last-card flag was set by the 1442 physical reader routine.
1442 code is absent unless &S531442=1.

If there is no end-of-file indication, $READER processes the card
further. If object deck processing was not specified at RMTGEN
time, S$READER transmits the first 80 columns of the card to HASP
by calling subroutine $CMPR. On return, $READER resets the read-
buffer-busy flag of the appropriate hopper control area and non-
process exits until the read-buffer-busy flag is again set by the
physical reader routine. Then it continues as above.

However, if object deck processing was indicated at RMTGEN time by
the specification &S30BJDK=1 and if the physical reader device is a
5424, SREADER first checks column 81 of the 96-column card image
for the character "1". 1If the comparison is unequal, S$READER
processes the card normally, as above. But if column 81 equals
"1", the card is the first card of a two-card hexadecimal image of
a full-EBCDIC 80-column card. In this case, $READER compresses

the first 80 columns of the card into the first 40 bytes of the
same device's punch buffer, shows the read buffer free, and non-
process exits until the read buffer is again busy. Then it checks
the new card image for a "2" in column 81. If column 81 does not
contain a "2", SREADER treats the newly-read card as a normal card,
and the previous card is lost. If the new card contains a "2" in
column 81, SREADER compresses its first 80 columns to the second

40 bytes of the same device's punch buffer and transmits the con-
structed card image to HASP, using subroutine $CMPR. Then it
resets the read-buffer-busy bit and non-process exits as above.

Subroutine RDSQUEZE performs the above-mentioned compression. It
creates a single sink byte from a pair of source bytes each of

which is assumed, without validity-~checking, to contain the

EBCDIC representation of one of the sixteen hexadecimal characters.
For example, it would compress the byte pair "FO0C6" to the byte "OF".

System/3 Remote Terminal Processor - Page 4.23.13

217

HASP
$PRINTER - Logical Printer Processor

$PRINTER waits for HASP to send a request-permission control
sequence. When $BSCA finds such a sequence, it posts $PRINTER
for permission. $PRINTER then checks the printer availability
flag. It non-process exits until this flag becomes zero; then it
sets this same flag to show that the printer is in use. It sends
a permission-granted control record to HASP (via subroutine S$PERM)
and then, if the print buffer is free, calls subroutine $DCOM to
request a print line be decompressed into the print buffer.

On return from $DCOM, $PRINTER recognizes two or three conditions:
normal return, end-of-file return, and (optionally) forms mount
message.

For the forms mount message case, the SRCB (carriage-control byte,
in the case of print records) will be X'8E'. $PRINTER makes the
carriage control byte a print-and-space-three, shows the print
buffer busy, and non-process exits until the print buffer becomes
free; then it sets a carriage-control byte of space-three-immediate
(so that the forms mount message will be visible on the printer
without operator intervention) and continues as in the normal case.
This code is assembled only if &S35471=0.

For the normal-return case, $PRINTER moves the SRCB returned by

$DCOM to the printer control area as the carriage control byte,

sets the print-buffer-busy bit, and non-process exits until the

print-buffer-busy bit is off. Then it again calls $DCOM for the
next print line.

For the end-of-file case, $PRINTER resets the printer availability
flag and checks to see if HASP had again sent a request-permission.
If so, S$PRINTER again sets the printer availability flag, sends to
HASP permission-granted (via subroutine $PERM) and continues as
above. Otherwise S$PRINTER waits for HASP to send request-permission.

System/3 Remote Terminal Processor - Page 4.23.14

218

HASTP
$PUNCH - Logical Punch Processor

$PUNCH waits for HASP to send a request-permission control sequence.
When $BSCA finds such a sequence, it posts $PUNCH for PERM, where-
upon $PUNCH waits for UNIT. When posted for UNIT by a physical
device routine, $PUNCH sends a permission-granted control record

to HASP (via subroutine $PERM) and non-process exits until the
appropriate punch buffer is free. Then it calls subroutine $DCOM
to decompress a card image into the punch buffer.

If $DCOM returned a card image (rather than end-of-file) the image
is processed in various ways, depending upon the type of the punch
device and options selected at RMTGEN time. If the punch is a
1442, SPUNCH calculates the number of bytes to punch, subtracts it
from 128, places the difference in the 1442 hopper control area,
and shows the punch buffer busy. It then non-process exits, as
above, until the punch buffer becomes free.

If the device is a 5424, $PUNCH first checks column 1 of the card
image.

If column 1 is X'6A', the card image is assumed to be a HASP job
separator card. S$PUNCH extracts the job number from columns 52,
62 and 72, ignores the rest of the image, and punches a card of

which columns 1-32 are:

hhkkkkkkkkk JOB nnn kkkkkkhkkkxk

It causes this card to be punched as usual, that is, by marking the
punch buffer busy; then it non-process exits until the punch buffer
becomes free.

If the device is a 5424 and RMTGEN specified &S396COL=1, $PUNCH
checks column 73 of the card image. If that column is X'80',
SPUNCH checks column 80. If column 80 is odd, S$PUNCH saves in a
work area in its Function Block the 48 columns starting at column
3 and again calls $DCOM to get the next card, as above. If column
80 is even, $PUNCH moves columns 3-50 of the card image to columns
49-96, moves the first 48 bytes from its work area to columns 1-48,
and causes the card to be punched.

If the device is a 5424 and RMTGEN specified &S30BJDK=1, $PUNCH
checks column 1. If that column is X'02', S$PUNCH saves the
rightmost 40 columns of the 80-column card image in its work area
and expands the leftmost 40 columns to 80 columns by substituting
for each byte two EBCDIC characters; for example X'02' becomes
C'02'. It sets the character "1" in column 81 and causes the card
to be punched. S$PUNCH then repeats this process for the saved 40
columns, sets the character "2" in column 81, and causes the card

System/3 Remote Terminal Processor - Page 4.23.15

219

HASP

to be punched.

If none of the above situations apply, $PUNCH merely marks the
punch buffer busy, non-process exits until it becomes free again, .
and then calls $DCOM to get the next card.

$DCOM may return an end-of-file indication rather than a card
image. S$PUNCH sets the end-of-file flag in the hopper control
area and checks for a subsequent request-permission from HASP.
If HASP has requested permission again, $PUNCH waits again for
UNIT, as above; otherwise $PUNCH waits for PERM, as above.

System/3 Remote Terminal Processor - Page 4.23.16

220

HASP
5471 Console Interrupt Routine

CINT, the 5471 console interrupt routine, gains control upon an
interrupt from either the 5471 printer or the 5471 keyboard. A
keyboard interrupt may occur due to the End key, the Return key,
the Cancel key, the Request key, or a Data key. A printer inter-
rupt may occur either after completion of printing a character or
after a carriage return.

At an End key interrupt CINT starts a carriage return, posts the
console processor, and exits by starting the keyboard. If a
request is pending, the Start-I/O instruction sets the request
light on and disables interrupts from all keys; otherwise it sets
both lights off and enables interrupts from the request key.

A Return key interrupt causes the same functions as an End key
interrupt.

A Cancel key interrupt causes CINT to print an asterisk and set a
flag which will cause a carriage return at the next printer inter-
rupt. CINT then resets the buffer pointer to point to the first
byte of the buffer and exits by issuing a SIO which leaves the
same lights on and interrupts enabled as before the interrupt.

At a Request key interrupt, CINT posts the console processor if
an inspection of the console status byte CCFLG shows that neither
input nor output is currently in process. In any case, it sets
the request-pending bit and exits by issuing a SIO which turns on
the request-pending light, disables request key interrupts, and
leaves the proceed light and. other key interrupt indicators as
they were before the interrupt.

For a Data key interrupt, CINT saves the keyed character in the
buffer byte pointed to by the buffer pointer; then it increments

the buffer pointer by one. It issues a SIO to the printer so that
the keyed character will be printed. If the buffer pointer now
falls outside the buffer, CINT turns on the carriage-return request
bit and performs all the functions of the End key except for issuing
a carriage return. Otherwise it exits by issuing to the keyboard a
SIO which leaves the same lights on and interrupts enabled as

before the interrupt.

On a printer interrupt due to end of either printing or carriage
return, CINT tests the carriage return request bit. If that bit
is on, CINT resets it and exits by issuing a SIO for carriage
return.

If there is no carriage return request pending, CINT tests the out-
put-in-process bit. If output is not in process, CINT exits by
disabling printer interrupts. But if output is in process, CINT
checks whether the final output character has been printed. If so
it resets the output-in-process flag, posts the console processor,
and exits by starting a carriage return. If not, it selects and

System/3 Remote Terminal Processor - Page 4.23.17

221

HASP

loads the next character to print and exits by issuing a SIO
to print that character.

Whenever CINT posts the console processor, it also turns on the
action-required flag, CFACT. This flag is tested and reset by
the console processor.

System/3 Remote Terminal Processor - Page 4.23.18

222

HASUP
5471 Console Processor

The 5471 console processor, $CON, non-process exits until posted;
then it checks to find what caused it to be posted.

If input is complete, $CON replaces in the MULTI-LEAVING buffer
pool the buffer it stole when it acknowledged the request key.
Then it sends the operator command to HASP by calling subroutine
$CMPR, unless the input length is zero. In any case, it continues
by checking for request-pending.

If a keyboard request is pending, $CON first steals a buffer from
the MULTI-LEAVING buffer pool, to avoid a potential buffer lock-out
problem. If no buffers are available, it leaves the request pending
and checks for queued buffers containing messages to print on the
5471 printer. But if the MULTI-LEAVING buffer steal was successful
SCON resets the 5471 buffer pointer, resets the action-required and
request-pending flags, sets the input-in-process flag, and issues

a’' SIO which turns on the proceed light and enables all keyboard
interrupts. Then it non-process exits until posted.

If $CON was not posted for the above reasons, it investigates out-
put possibilities. If either input or output is in process, it
cannot start output; it again non-process exits until posted. But
if neither input nor output is in process, and if there is no end-
" of-forms indication from the 5471, $CON checks for output. First
it checks the error message table, a circular table, to see if any
error messages are outstanding. If so, it expands a four-byte coded
error message to the equivalent eight-character hexadecimal repre-
sentation in the 5471 buffer, sets the output-in-process flag, and
issues a SIO to start printing the first character; then it non-
process exits until posted, while CINT prints the remaining char-
acters.

If no error messages are outstanding, $CON checks for messages from
HASP. If there are some, SCON calls subroutine $DCOM to decompress
a message. In order not to be forced into a wait condition on sub-
sequent calls to $DCOM, S$CON then checks whether the MULTI-LEAVING
buffer from which the message was decompressed contains more
messages; if not, SCON frees it by calling subroutine $FREEBUF.
Then $CON initiates printing of the message by setting the output-
in-process flag and issuing a SIO to print the message's first
character. Then $CON non-process exits until posted.

System/3 Remote Terminal Processor - Page 4.23.19

223

HASP
5475 Console Interrupt Routine

Upon an interrupt from the 5475 Data Entry Keyboard, the 5475
Console Interrupt Routine (CINT) checks the cause of the inter-
rupt. An interrupt may be caused by a data key, the field-erase
function key, the release function key, the error-reset function
key, any other function key or switch, or the multipunch key. A
multipunch key interrupt is treated as an error and requires the
operator to depress the error-reset key; all function keys and
switches other than those mentioned are treated as no-operation
keys.

A data key interrupt causes CINT to place the keyed character in
the 5475 buffer. CINT then increments the buffer pointer by

one; if the buffer pointer now points outside the buffer, CINT
performs the release key function. Otherwise CINT adds one to the
column indicated and exits. The exit process consists of issuing
a LIO for the column indicators and a SIO for the keyboard.

An interrupt from the field-erase key causes CINT to reset the
buffer pcinter, set the column indicators to display "O0l1", and
exit.

An interrupt from the release key causes CINT to post the 5475
console processor for work, set the SIO in CINT to disable the
keyboard, and exit. \
Any of several error situations causes CINT to turn on the error
light. It does this by setting its SIO to X'23', which also

locks all data keys. When an interrupt other than from the error-
reset key occurs and the error light is on, CINT exits without
further processing. But if the interrupt was from the error-reset
key, CINT resets the SIO to its normal value of X'4F' and exits.
Conditions which cause the error light to come on are a multipunch
interrupt indication, no interrupt indication, or two or more of
the interrupt conditions data key, function key, and multipunch
key. i

System/3 Remote Terminal Processor - Page 4.23.20
224

HASP
" 5475 Input Console Processor

When posted for WORK by CINT, the
(SCON) sends the operator command
$CMPR, unless the input length is
the column indicator save area to

5475 Input Console Processor
to HASP by calling subroutine
zero. In any case, it resets
"0l", resets the 5475 buffer

pointer, and sets to X'4F' the SIO in CINT. Then S$CON turns
off the column indicator display (to avoid burning out the lights),
issues a SIO to unlock the keyboard and enable interrupts, and

again waits for WORK.

System/3 Remote Terminal Processor - Page 4.23.21

. 225

HASP
$CONP - 5203 Output Console Processor

When posted for WORK, $CONP checks the printer-availability flag.
This flag is on if $PRINTER is currently printing a job. If the
flag is on and RMTGEN specified &PRTCONS=2, $SCONP frees all
MULTI-LEAVING buffers currently queued on its Function Block
(using subroutine $FREEBUF) and again waits for WORK. But if
RMTGEN specified &PRTCONS=1, S$CONP checks to see if it should
force messages to be printed on the 5203. It does this by com-
paring the number of MULTI-LEAVING buffers currently gqueued on its
Function Block with a maximum number. If the comparison is low,
it non-process exits until either the comparison is not low or
the printer-availability flag is off; if the comparison is not
low, it performs a page eject before starting to print messages.

To print messages, SCONP first prevents the logical printer routine
$PRINTER from using the 5203 simultaneously; to prevent this, it
sets the UNIT wait bit in $PRINTER's Function Block. Then $CONP
attempts to find an outstanding four-byte coded error message; if
it finds one, it expands the message to eight bytes and causes it
to be printed.

If no error messages are outstanding, $CONP checks for messages
from HASP. If there are some, it calls $DCOM to decompress a
message. In order not to be forced into a wait condition on sub-
sequent calls to $DCOM, S$CONP then checks whether the MULTI-LEAVING
buffer from which the message was decompressed contains more mes-
sages; if not, it calls $FREEBUF to free the buffer. Then S$CONP
causes the message to be printed, by marking the print buffer busy
and non-process exiting until it again becomes free. All messages
printed by S$CONP are single-spaced.

Finally, if no messages remain to be printed, SCONP examines the
printer-available bit to determine if it interrupted a job to print
messages. If so, SCONP does a page eject. 1In any case, $CONP
resets the UNIT wait bit to unlock $PRINTER and waits for work
again.

System/3 Remote Terminal Processor - Page 4.23.22

226

HASP
BSCINT - BSCA Interrupt Routine

The BSCA Interrupt Routine, BSCINT, processes all interrupts and
performs all error recovery for the Binary Synchronous Communications
Adapter. Processing is always initiated by one of three types of
op-end interrupts - end-of-transmit, end-of-receive, and 2-second-
timeout. ' ’ '

For an end-of-transmit interrupt, BSCINT gains control at BSXOPE.
If no hardware errors have occurred, it starts a receive operation;
otherwise it uses subroutine BIDISCON to recover from a possible
disconnect and, on return, attempts to re-transmit.

For an end-of-receive interrupt, a great deal more is done. After
having computed the number of received bytes, BIRCV checks for
hardware errors; if any occurred, it uses subroutine BIDISCON and
then transmits a negative acknowledgment (NAK) to HASP.

If no hardware error occurred, the starting sequence is checked at
BCROK - it is valid if it is a NAK or a DLE-ACKO or if its second
byte is STX and the last byte received is ETB. If none of these
is the case, BCROK sets up an error message of 03SSSS00 (where
SSSS is the starting sequence) and then transmits a NAK to HASP.

The section of code responsible for transmitting a NAK first checks
whether the wait-a-bit (WAB) sequence had been transmitted most
‘recently; if so, it transmits the WAB sequence again rather than a
NAK. If not, it determines if more than five bytes had been
received. Since the buffer used for a receive is the same as that
used for a transmit, the receive operation may have overlaid some
or all of the transmitted data; since the starting or ending se-
guence was incorrect or a hardware error occurred, BSCINT has not
yet received a positive acknowledgment for the transmitted data.
To alleviate this problem, the first five bytes of the transmit
data were saved before the buffer was transmitted. If the receive
operation overlaid more than these bytes, the buffer cannot again
be transmitted; the first two saved bytes are replaced with a
DLE-ACKO and the transmit ending address is set to the starting
address plus two. Then the routine transmits a NAK to HASP.

If the received starting sequence was a NAK, the interrupt routine
sets up an error message of 02000000 (NAK received), refreshes the
first five bytes of the buffer and the transmit ending address, and
re-transmits the buffer to HASP.

If the received sequence was DLE-ACKO, BSCINT sets flags to show
$BSCA that a transmit-receive operation has completed; then it

exits by starting a two-second timeout. If the two-second timeout
completes before $BSCA has cancelled it, BSCINT sets the two-second-
timeout-complete flag and exits by disabling BSCA interrupts.

System/3 Remote Terminal Processor - Page 4.23.23

227

HASP

If the second byte of the received starting sequence was STX and
the ending byte was ETB, BSCINT validates the Block Control Byte
. (a HASP control byte which contains a modulo-16 received-block
count) and saves the two-byte HASP Function Control Sequence. If
the BCB is as expected, interrupt processing concludes as for
DLE-ACKO. Otherwise the STX is changed to X'FF' as a signal to
$BSCA to throw the buffer away and the difference between the
received BCB and the expected BCB is examined. If the modulo-16
difference is -2 or -1, BSCINT tolerates the error; otherwise it
sets up an error message of 02rree00 to display the received and
expected BCB's, and it builds and transmits to HASP a BCB-error
control sequence.

System/3 Remote Terminal Processor - Page 4.23.24

228

HASP

$BSCA - Communlcatlons Adapter Processor

$BSCA non-process ex1ts until BSCINT posts it with an indication
that either an error message awaits synchronous processing, a re-
ceive operation has completed without error, or a two-second time-
out has occurred.

If an error message was produced by BSCINT, it must be placed in
the circular error message trace table by a synchronous processor
rather than an interrupt routine, since the $MSG subroutine is not
re-entrant. $BSCA calls the $MSG subroutlne to add the error mes-
sage to the trace table.

If a receive operation has ended without error, $BSCA processes

the received buffer, which is always the first buffer on $BSCA's
buffer chain. If the buffer does not contain text, $BSCA frees it
immediately. Otherwise $BSCA inspects the buffer's first RCB (or
first SRCB if the RCB indicates a MULTI-LEAVING control record).

If the RCB is zero (typical when HASP sends wait-a-bit) $BSCA frees
the buffer. Otherwise $BSCA compares the RCB (or SRCB) with the
field FBRCB in all FB's eligible to receive buffers; if there is

no match, it frees the buffer. But if a match is found, $BSCA
again determines if the first record in the buffer is a control
record. If so, it posts the subject FB for PERM and resets its
POST bit to indicate a possible early post (the POST bit is turned
on by subroutine $PERM); then it frees the buffer. But if the buf-
- fer contains data records, $BSCA dequeues the buffer from its own
FB and queues it onto the subject FB, in the process reducing its
own buffer count by one, increasing that of the subject FB by one,
and, if the subject FB's buffer count (FBBCT) becomes equal to or
greater than the subject FB's maximum buffer count (FBBMX), reset-
ting the appropriate bit in the master Function Control Sequence
$FCS by using FBFCS.

If $BSCA turned off an FCS bit, it turns on flag BFCSOFF. Whether
or not $BSCA turned off an FCS bit, it inspects the subject FB's
flags; if flag BFCSON is on in FBFLG, $BSCA resets that flag and
its own BFCSON flag. Flag BFCSON expedltes transmission of a re-
sponse and flag BFCSOFF delays transmission. The effect of the
above manipulation is to avoid an unnecessary line turnaround when
a prlnter or punch is temporarily at its buffer limit.

Having processed the received buffer, or if a two-second timeout
occurred, $BSCA determines what and when it is to transmit. It
transmlts a response immediately under ‘any of the following
conditions:

@ Wait-a-bit was received from HASP

e A teit buffer (see Figure 4.23-1) is ready to send

'System/3 Remote Terminal Processor - Page 4.23.25

229

HASP

e Flag BFCSON is set and there is a free buffer

e Text was received from HASP, flag BFCSOFF is not set, and

there is a free buffer

® Two seconds have passed since end-of-receive.

The response transmitted is one of the following:

e Text, if a text buffer is ready to send

@ A Function Control Sequence, if there is a free buffer and
the FCS has changed

e DLE-ACKO,
changed from when it was last transmitted

if there is a free buffer and the FCS has not

® Wait-a-bit (indluding FCS) if there are no free buffers.

&MLBFSIZ

Ptr to next buffer

Ptr to 3d-to-last byte (ETB-2)

First RCB
First SRCB text . . .
"EOB (X'00"') ETB (X'26"')

$BSCA overlays these
5 bytes with DLE (SOH),
STX, BCB, FCS1l, FCS2.

ETB is not necessarily
the last byte.

Figure 4.23-1 Multi-Leaving Buffer

To get a free buffer $BSCA uses subroutine BSGBUF, which queues the
buffer on $BSCA's buffer chain (FBBUF) in last-in, first-out fashion

and increments its buffer count (FBBCT) by one.

Additionally, a

’ part of BSGBUF sets up the transmit starting address, receive start-
ing address, and receive ending address, and may be called separately

from BSGBUF.

System/3 Remote Terminal Processor - Page 4.23.26

230

HASP

SCMDSCAN - Local Command Subroutine

If RMTGEN parameter &S3CMDS is set to 1, code is assembled to pro-
vide a local command facility. Code appears in four places:

e SCMDSCAN, to process the commands

e SCVB, used by $CMDSCAN to convert decimal command operands to
binary '

® SMFCU, to allow SCMDSCAN to check non-blank cards from dbrmant
hoppers ($CMDSCAN returns condition code equal if a card con-
tained a command; the hopper remains dormant)

® 51442, with the same functions as $MFCU

SCMDSCAN receives a pointer to a card in index register 1. It ex-
amines the card for a valid command and branches to the proper com-
mand routine, or returns to its caller with condition code not-
equal.

Each command routine processes the command's operands as necessary,
and exits to one of three labels:

® CMDEND (normal end) to print ‘CODEO00O’

e CMDSYN (syntax error) to print 'CODEOOOQOL’

e CMDOPD (operand error) to print 'CODE00O2'.
A command routine may use the $CVB subroutine to convert an operand
from decimal to binary. Index register 1 must point to the deci-
mal operand's high-order byte. If this byte is not numeric, $CVB
will branch to CMDSYN; otherwise, on return from $CVB, the binary
result will be right-justified in bytes $CVBANS and $CVBANS-1, and

index register 1 will point one byte past the low-order digit of
the decimal operand.

~ System/3 Remote Terminal Processor - Page 4.23.26.1

230.1

HASP

(The remainder of this page intentionally left blank.)

230.2

HASP
SLEOF, $PERM, SREQ - Control Sequence Subroutines

These subroutines transmit to HASP certain control sequences
required for proper operation of HASP MULTI-LEAVING Remote Job
Entry: logical end-of-file, permission-granted, and request-
permission. '

SLEOF sends the sequence RCB, SRCB, SCB where RCB is taken from
the FB pointed to by register 2 (FBRCB), SRCB is X'80', and SCB
is X'00' (a string control byte of X'00' is an end-of-logical-

- record SCB; occurring immediately after an SRCB, such an SCB
indicates a zero-length record).

SPERM sends the sequence RCB, SRCB, EOB where RCB is X'AO' (per-
mission-granted for function described in SRCB), SRCB is taken
from FBRCB of the FB pointed to by register 2, and EOB is X'00'
(a zero RCB indicating logical-end-of-transmission-block).

SPERM also sets the bit EWFPOST in the field FBEWF; this "early-
post" bit is reset by $BSCA when it finds any permission-type
control record whose SRCB matches FBRCB.

$REQ sends the sequence RCB, SRCB, EOB where RCB is X'90' (request-
permission for function described in SRCB) and SRCB and EOB are as
described for $PERM.

Code common to all three routines requests from S$SCKLEN three bytes
of space in a MULTI-LEAVING buffer, moves the three-byte sequence,

and calls $BFLUSH to truncate the buffer and queue it on $BSCA's
buffer chain. ‘

System/3 Remote Terminal Processor - Page 4.23.27

231

HASP

$DCOM - Decompression Subroutine

¢

$DCOM is called by one of the output processors (such as $PRINTER)
to decompress a logical record from a MULTI-LEAVING buffer into
an area whose starting address is supplied by the caller. (HASP
transmits all data records to MULTI-LEAVING terminals in a com-
pressed and truncated format). If decompression is successful,
$DCOM returns to the caller at an offset of three bytes; if $DCOM
recognized a logical-end-of-file, it returns at an offset of zero.

To decompress a logical record, $DCOM first examines the address
in FBCURL, a two-byte field in the caller's FB reserved for the
use of $DCOM. If that field is non-zero, it has previously been
set by $SDCOM to point to the RCB following the last-decompressed
logical record in the current buffer. If that RCB is not X'00',
$DCOM decompresses to the caller's area (which must be two bytes
longer than the maximum record length) the record following the
RCB, moves the SRCB to FBSRCB, saves the address of the next RCB
in FBCURL, and returns to the caller as explained above.

But if FBCURL is zero, $DCOM checks if more buffers are gqueued on
the caller's FB. (If FBCURL is non-zero but the RCB to which it
points is zero, $DCOM first frees the current buffer and then pro-
ceeds as if FBCURL were zero.)

If one or more buffers are queued, $DCOM selects the first buffer,
points to its first RCB, and decompresses a logical record as
above. But if no buffers are queued, $DCOM waits for WORK, to be
posted by $BSCA when the next buffer for the same output device
is received. .

The output'buffer's address is specified by the caller in field
FBAREA; on return, $DCOM replaces this field by the address of
the last-plus-one output byte.

System/3 Remote Terminal Processor - Page 4.23.28

232

HASP
$CMPR - Compression Subroutine

$CMPR compresses data from a user-specified input area to a local
workarea and transmits it to HASP by calling subroutine $CKLEN.

When called, S$CMPR examines the status of its local workarea. If
the workarea is busy, $CMPR has been called by some other proces-
sor and has in turn called $CKLEN; $CKLEN is non-process exiting
until it can find sufficient bytes in a MULTI-LEAVING buffer to
allocate to $CMPR. In this case, $CMPR non-process exits until
its workarea becomes free.

When the workarea is free, $CMPR compresses into it the text pointed
to by FBAREA. Compression consists of either full compression

and truncation, only truncation, or neither compression nor trun-
cation, as selected by the setting of the RMTGEN variable &COMP=.
Once the record is compressed, S$SCMPR calculates its compressed
length and calls $CKLEN with a request for the number of bytes it
requires in a MULTI-LEAVING buffer. When $CKLEN returns, SCMPR
moves the compressed record, shows its workarea free, and returns

to the caller.

System/3 Remote Terminal Processor - Page 4.23.29

233

HASP
$CKLEN - MULTI-LEAVING Buffer Allocation Subroutine

$CKLEN returns to its caller the address in a MULTI-LEAVING buffer
of the rightmost byte of an area whose length is specified by the
caller.

The caller specifies a length in register one. If S$SCKLEN has a
current buffer, its current buffer pointer points to the last-
allocated byte. It adds to this the caller's specified length.

If the resultant address is lower than two bytes before the end of
the buffer, $CKLEN saves this address as its current buffer pointer
and returns this address to the caller in register one. But if the
resultant buffer address is not lower than two bytes before the end
of the current buffer, S$CKLEN truncates the buffer, queues it on
$BSCA's buffer chain, and posts $BSCA by turning on flag BFPOST

in byte BCFl. To truncate a buffer, S$CKLEN moves the current buf-
fer pointer to its first two bytes and the sequence EOB, ETB
(X'0026') to the two bytes after the byte pointed to by the current
buffer pointer.

After having truncated and queued the current buffer or if on entry
there was no current buffer, but not if entered via entry point
$BFLUSH (in which case $CKLEN returns immediately after truncation
and queuing), $CKLEN attempts to get another buffer to satisfy the
caller's request; if no buffer is free, it non-process exits until
one comes free. It initializes the current buffer pointer to point,
to what will eventually be the buffer's FCS2 byte. It initializes
a pointer to the last byte available in the buffer, and it saves
the address of the buffer's chain word in a third pointer. Then

it allocates space for the caller and returns, as above.

System/3 Remote Terminal Processor - Page 4.23.30

234

HASP

SFREEBUF - MULTI-LEAVING Buffer Free Subroutine

$FREEBUF dequeues the first buffer from the buffer chain word FBBUF
of the FB addressed by register two upon entry; subtracts one from
FBBCT, the count of buffers enqueued upon that FB; and compares the
new count with FBBMX. If the compare is low, $FREEBUF OR's the two-
byte field FBFCS into the two-byte field $FCS, posts the $BSCA
processor, and sets flag BFCSON in both the subject FB's flags and
the BSCA flag byte. (See the $BSCA processor description for a
discussion of BFCSON.) :

In any case, S$SFREEBUF queues the just-dequeued buffer on chain word
.$MLPOOL in last-in, first-out sequence. If the system was generated
for a 5471 console, S$FREEBUF posts $CON, the console processor. Then
SFREEBUF returns to its caller. '

System/3 Remote Terminal Processor - Page 4.23.31

235

HASP
ABEND - Core Dump Subroutine

ABEND produces a core dump on the 5203 printer. The code for
ABEND is assembled only if the RMTGEN specification &DEBUG=1l
has been used. &DEBUG=1 also causes the generation of extra
debugging code throughout the terminal program; some of the
extra sequences of code generated contain conditional branches
to ABEND. ABEND may also be called from the CE panel of the
System/3 by setting the IAR to its address.

Each line produced by ABEND consists of a four-character address,
64 characters representing the 32 bytes starting at that address,
and their printable equivalent in 32 more characters, bounded at
the left and the right by a single asterisk; or four asterisks

in the address position followed by blanks, to indicate that all
of core up to the next line's address or the end of core would
have printed the same as the previous line. The ABEND dump rou-
tine requires a printer with at least 120 print positions; if a
96-print-position printer is used, not all of the EBCDIC portion
of the line will be printed.

The first six bytes of printed core contain the address recall

register, register one, and register two as of the time ABEND
gained control; the remainder of core is intact.

System/3 Remote Terminal Processor - Page 4.23.32

236

HASP
$LOG - HASP Error Recording Subroutine

$LOG is a re-entrant subroutine which maintains in-core error
recording counters. Each counter is two bytes long and has a
maximum count of 65535. There are eight counters for each of the
following bytes:

1442 status Byte
1442 Status Byte
BSCA Status Byte

2 (if &S31442=1)

1

2
5203 Status Byte 2

1

1

(if &S31442=1)

5203 Status Byte
5424 Status Byte

The counters are captioned, printed, and reset by IHEREP at
program load time and thus form a permanent record of unit checks

associated with the above devices. Only those counters which
represent unusual unit checks are printed by IHEREP.

System/3 Remote Terminal Processor - Page 4.23.3:

237

HASP
$MSG - Error Message Tracing Subroutine

$MSG adds the four-byte coded entry addressed by register one to
the circular trace table of error messages. This table is examined
by the 5471 console processor and under certain conditions by the
5203 output console processor; $MSG posts whichever of these pro-
cessors has been generated.

The various error messages supplied to this routine by its callers
are explained in the System/3 Operator's Guide.

System/3 Remote Terminal Processor - Page 4.23.34

HASP
SINIT - Initialization Routine

$INIT gains control when program loading is complete. It sets
the print chain image, reads and processes REP cards, sets the
5203 forms length register, sets the 5424 print buffer register,
establishes communication, sets up buffers, and exits to the
commutator.

To set up the print chain image, $INIT reads the printer status
bytes. 1If the 48-character-set bit is on, it moves the LC
image to the image area; otherwise it moves the PN image. Then
$SINIT starts processing reps.

The format of a REP card is

column 2 9 17
REP addr rep-data

where "addr" must be a valid hexadecimal core address of exactly
four characters (or four blanks) and "rep-data" is a sequence of
one or more replacement groups with the last group terminated by

a blank and all others terminated by commas. A replacement group
is a string of 2n (n any integer) hexadecimal characters. The
blank after the last replacement group may be followed by comments.

Starting at the address specified by "addr", the REP routine will
store bytes one at a time corresponding to byte pairs of the "rep-
data" taken from left to right. If the "addr" specification is
blank, bytes will be stored starting at the first byte after the
byte last used by the preceding REP card (or at zero if there was
no preceding REP card). A REP card whose "rep-data" field con-
tains no data is valid; its "addr" field (if any) specifies the
address of the first byte to be repped if the next REP card's
"addr" field is blank.

To process reps, $INIT reads a card from the primary hopper of the
MFCU; a read error will give an F3 halt. If the card image con-
tains "REP" in columns 2-4, it is processed according to the above
specifications, with absolutely no validity-checking, and $INIT
reads another card, as above.

If the card image contains "&MLBFSIZ=" starting in column 1, SINIT
converts to binary the specified decimal buffer size (which must
immediately follow the equal sign and be terminated by a blank)

and substitutes the result for the default buffer size. Then $INIT
reads the next card, as above.

If the card image contains "/*SIGNON" starting in column 1, $INIT
overlays the default sign-on card with it and continues as if the
card were an EOR card.

System/3 Remote Terminal Processor - Page 4.23.3

239

HASP

If the card image contains "EOR" (end-of-reps) in columns 2-4,

$INIT terminates rep processing, loads the 5203 print forms lengtk
register and the 5424 print buffer address register, and establishes
communications.

To establish communications, SINIT first disables and then enables
the BSCA. Next, it examines the sign-on card to see if dialing
information was specified. If so, it determines the starting and
ending addresses for the telephone number (which is not checked

for validity) and loads these values into the current and stop
address registers after first ensuring that the data line is unoc-
cupied. (If the data line is occupied, $INIT assumes the operator
dialed and waits for the data set to become ready.) After starting
an auto-call operation and looping until an op-end interrupt occurs,
$INIT checks for timeout status; if so, the auto-call unit returned
an abandon-call-and-retry signal and a CA halt (call-aborted) occurs.
When the operator resets the halt, the entire logic starting with
disable-BSCA will be re-executed. But if the timeout bit is off,
$INIT assumes the call was successful and loops until a dataset-
ready indication occurs, as above.

When the data set becomes ready, $INIT transmits the two-byte
sequence SOH-ENQ, a sequence recognized by HASP as a request from
a MULTI-LEAVING terminal. If the receive part of this transmit/
receive command ends with timeout, the operation is repeated; if
it ends with any other abnormal status, one of two things occurs.
.If the system was generated with &DEBUG=1 and the address knobs
on the System/3 console are set to any odd address, the System/3
halts; the halt indicators display a hexadecimal image of the
BSCA error status byte. Otherwise, and when the operator resets
the halt, the entire logic. starting with disable-BSCA will be
re-executed.

If the receive operation ended normally, the two received bytes
should be DLE-ACKO. If they are not, the transmit/receive opera-
tion is performed.

If DLE-ACKO was received correctly, the message "COMMUNICATION
ESTABLISHED" is printed on the 5203. If a 5471 was specified when
the system was generated, its interrupts are enabled and the same
message is printed on it. If a 5475 was specified, its interrupts
are enabled. S$INIT now performs buffer initialization.

Buffer initialization consists of three steps and overlays the
initialization code with MULTI-LEAVING buffers. As the first

step, the value of MULTI-LEAVING buffer size is set in the various
locations throughout the program that requires it; it may have

been changed by the &MLBFSIZ control card. Step two moves the
actual buffer initialization code to low core, where it is executed

System/3 Remote Terminal Processor - Page 4.23.36

24n

HASP

as step three. Execution consists of chaining together all
buffers but the first buffer (which contains the sign-on record
and is afterward queued to the $BSCA processor) with the chain
origin at $MLPOOL.

When buffer chaining is complete, the sign-on buffer is queued

as mentioned and control passes to the commutator. $COM gives

control in its turn to the $BSCA processor, which as a special,
first-time function transmits to HASP the buffer containing the
sign-on card image.

System/3 Remote Terminal Processor - Page 4.23.37

241

(The remainder of this page intentionally left blank.)

242

HASP

5.0 HASP CONTROL SERVICE PROGRAMS

This section contains detailed internal information about each of
the HASP Control Service Programs and is intended primarily for
use by systems programmers.

HASP Control Service Programs =-- Page 5.0-1

243

HASP

5.1 HASP DISPATCHER

5.1.1 = HASP Dispatcher - General Information

The HASP Dispatcher is responsible for the allocation of the CPU
time used by the HASP Task to each of the HASP Processors.

5.1.2 HASP Dispatcher - Program Logic

The HASP Dispatcher receives control each time the HASP task is
dispatched by the Operating System and utilizes an ordered queue
of Processor Control Elements (PCE's) to distribute the CPU time
among the HASP Processors. The Event Wait Field (EWF) in each

PCE (see Figure 8.2.1) is a two byte field which is used to control
the dispatchability of the Processors. Any Processor or Control
Service Routine may issue a $WAIT macro-instruction at any time
which turns on a particular bit in the EWF corresponding to the
event $WAITed on and returns control to the HASP Dispatcher to
allow other processors to be dispatched. The Processor (or
Service Routine) will not be given control again until some other
system function issues a $POST to its EWF for the event $WAITed on.

The events reflected by the EWF fall into two categories: the
-first of which is the synchronization of the use of common system
resources such as buffers, direct-access space, etc. With the
exception of the general $POST bit SEWFPOST, the bits in the first
byte of the EWF field are used to indicate the particular resource
being $WAITed on and corresponds exactly to the Event Completion
Field (ECF) in the Dispatcher. The ECF is $POSTed whenever a
resource becomes available and is propagated through all processor
EWF's by the Dispatcher. Thus, if a track becomes available on a
direct-access device, every processor (PCE) which has issued a
SWAIT for a track will be put in contention for CPU time to try

to obtain the track or tracks that have been released.

The second byte of the EWF is used to synchronize a processor with
respect to a specific event, applicable only to that processor,
such as a particular I/O completion. This section of the EWF must
be $POSTed directly by the system routine performing the required
function (additional details regarding $WAIT/$SPOST events may be
found in Section 9.38).

When scanning the PCE chain, the HASP Dispatcher, upon discovering
a zero EWF (no events being $WAITed on), will enter the code
controlled by the PCE immediately below the prior $WAIT which had
returned control to the Dispatcher. All registers of a processor
which issues a $SWAIT are preserved in the PCE and are reloaded
prior to entering the processor (register "R15" is destroyed by
the $WAIT macro to provide the address of the $WAIT, i.e., the
resume point). A processor may return control to the Dispatcher

' HASP Dispatcher - Page 5.1-1

244

HASP

only by means of the $WAIT macro. In the event any $POST macro
was executed by the processor dispatched or by any of the HASP
asynchronous service routines the Dispatcher's ECF field will be
altered to reflect the $POST. The general $POST bit represents

a $POST of a specific processor (second byte of the EWF). If the
ECF field indicates no $POST has occurred, the HASP Dispatcher
continues to scan down the PCE chain starting with the next PCE.
However, if the ECF field indicates $POSTs have occurred, the
SPOST for the general $POST is removed and scanning is resumed

at the beginning of the PCE chain, after promulgating any remaining
ECF S$POST indicators.

Upon reaching the end of the PCE chain, the Dis-
patcher examines the processor active count to determine if any
jobs are being processed. If an active job is in the system
(active count # 0) an OS WAIT state is entered to wait for some
external event (I/O interrupt, etc.) to activate HASP again. This
WAIT allows use of the CPU by other tasks in the system. If no
jobs are active, the message

"ALL AVAILABLE FUNCTIONS COMPLETE"

is sent to all operator consoles and HASP is placed into the WAIT
state.

When scanning the PCE chain, the Dispatcher detects the special
case of a PCE which is not dispatchable (PCEEWF is not zero) but
is $WAITing only on the OROL bit. This situation is created when,
while the PCE was $WAITing on other event(s), the Overlay Area
being used by the PCE is preempted by the Overlay Roll Processor
for other use (see Section 4.20). Subsequently, the other event(s)
being $WAITed on are $POSTed allowing the Dispatcher to detect the
"OROL only". The Processor in such a condition is not entered but
is made to call Overlay Service. The actions performed are iden-
tical to those described for SLINK Service in Section 5.16.2,
beginning with the fourth paragraph describing search of Overlay
Areas. The Processor will be entered by Overlay Service if the
requested routine is in memory, or will be $WAITed on OLAY
allowing the Dispatcher to continue its PCE scan.

HASP Dispatcher - Page 5.1-2

245

HASP

5.2 INPUT/OUTPUT SUPERVISOR

5.2.1 Input/Output Supervisor - General Description

The HASP Input/Output Supervisor ($EXCP) is used to interface all
HASP Input/Output requests with the Operating System Input/Output
Supervisor. Through the use of $EXCP the HASP processors can
remain "device independent" through the wide range and number of
HASP direct-access devices. In addition, $EXCP also provides all
required I/0O appendages for 0OS I0OS and for the $POST1ng of I/0
completions to each processor.

5.2.2 Input/Output Supervisor - Program Logic

The only interface between the HASP Input/Output Supervisor and
the using processors is the Device Control Table element (DCT),
which is passed via the $EXCP macro-instruction when I/0 is
requested. (Additional information concerning the DCT and the
SEXCP macro may be found in Sections 8.5 and 9.5 respectively.)
Upon entry to S$EXCP the address of the buffer to be used is
obtained from the DCT and the IOB (appended to every buffer) is
initialized. The user's Event Wait Field (EWF) address is moved
- from the DCT to the buffer and a pointer to the DCT is placed in
the buffer. If the DCT is a direct-access type, the coded track
address from the DCT is used to compute MBBCCHHR.

The IOB is now scheduled for I/O through the use of the standard
OS Execute Channel Program macro-instruction (EXCP) and immediate
return is made to the caller. Each I/0 request issued by HASP
has an I/O appendage list specified which causes the appropriate
channel end appendage in $EXCP to be entered upon termination of
the I/0. Since these appendages are entered asynchronously with
HASP operation, the buffer associated with the completed I/0 is
scheduled for synchronous HASP proce551ng by the Asynchronous -
Input/Output Processor. The HASP task is POSTed, and immediate-
return is made to IOS. (The action taken by the Asynchronous
Input/Output Processor is explained in Section 4.8.)

A separate channel end appendage is provided for remote terminal
operations. This appendage correlates the channel end conditions

with the commands executed and provides special proce551ng of con-
ditions unique to the teleproceSSLng.

Input/Output Supervisor - Page 5.2-1

24K

HASP

If HASPGEN parameter &RPS was set to YES, additional code is in-
cluded to support rotational position sensing.

RPS support causes each HASP EXCP to be analyzed at Start-I/0 time.
If the EXCP was to a direct-access device with the RPS feature, a
SIO appendage will insert into the channel program a set-sector
command. The sector number supplied with this command will be ex-
tracted from a table on the basis of record number, extent number,
and the channel program's data length (in IOBCCW3).

Assembled into the SIO appendage are CCW sets, one for each extent
of the HASP direct-access DEB. (The last extent is always for the
overlay library.) Each CCW set consists of a set-sector and a
‘transfer-in-channel. The set-sector data address points to the
unused byte (byte 5) of the set-sector CCW; this byte is filled in
at SIO-appendage time. The transfer-in-channel data address is
filled in at SIO-appendage time, as follows: starting at the ad-
dress specified by the channel address word (CAW), CCWs are in-
spected until a TIC is found. These CCWs constitute the direct-
access start-data-transfer channel program, and the TIC is to the
HASP channel program. The SIO appendage makes the start-data-
transfer TIC point to the appropriate set-sector command and the
set-sector TIC point to the HASP channel program.

The last four bytes of the set-sector TIC, unused by the. channel,
contain a pointer to set-sector values for the corresponding ’Yextent,
indexable by record number. These sector number tables are built
by HASPINIT at the end of direct-access initialization, using the
resident sector convert routine, IECOSCR1l, in the nucleus, An ex-
tent's table is built only if that extent's UCB specifies the RPS
feature. Tables for the first &NUMDA extents are built on the basis
of a record length of &BUFSIZE; the last extent's table is based on
a record length of &OLAYSIZ.

RPS support for SYS1.SYSJOBQE in HASPWTR is described in Section
4.21.

Input/Output Supervisor - Page 5.2-1.1

246.1

HASP

(The remainder of this page intentionally left blank.)

246.2

HASP

5.3 JOB QUEUE MANAGER

5.3.1 Job Queue Manager - General Information

Jobs being processed or awaiting processing by a HASP phase are
represented in an ordered queue by a Job Queue Element (see
Figure 8.6.1).

The Job Queue Management routines are used by the HASP Processors
to insert, alter, locate, and remove Job Queue Elements. The
Queue Elements are maintained in priority at all times with the
highest priority element at the top of the active chain. There
are six Job Queue Element routines which are called by issuing
the following macros: $QADD, S$QREM, S$QGET, $QPUT, $QLOC, and
$QSIZ (see Section 9.3). The Job Queue Elements are arranged

in two chains. The active chain contains the Job Queue Elements
for all the jobs in the system at a given time. The free chain
contains all the Queue Elements which are not in use.

5.3.2 $QADD Routine - Program Logic

The $QADD routine is called whenever a Queue Element is to be added
to the active queue. If the Checkpoint Processor is waiting for
the checkpointed information to be written onto the SPOOLl disk,
this routine enters a HASP $WAIT state. Whenever the Checkpoint
Processor's I/0 is complete, the free queue chain is tested to see
if any free Queue Elements are available. If none are available,
control is returned to the caller with a condition code of zero.

If a Queue Element is available, the correct slot within the active
~queue chain is located by comparing the priority of the element to
be added with the priorities of the elements in the active chain.
When the priority of the new element is higher than the priority

of the element in the active chain, the free Job Queue Element is
extracted from the free queue chain and inserted into the active
chain. All the information for the new Job Queue Element is moved
from the location pointed to by register "R1" into the new Job
Queue Element. Then the HASP Dispatcher's Event Control Field is
SPOSTed to indicate that a Job Queue Element is available. The
Checkpoint Processor's PCE is also $POSTed so that it will be given
control to write the updated Job Queue onto the SPOOL1l disk. The
condition code is set non-zero and control is returned to the
caller. Upon return, register "RO" contains the address of the
associated Job Information Table Entry.

Job Queue Manager - Page 5.3-1
247

HASP

5.3.3 SQREM Routine - Program Logic

The S$SQREM routine is entered to remove a Job Queue Element from
the active chain. It will enter the calling Processor into a
HASP S$WAIT state if the Checkpoint Processor's I/O is not complete.
When the Checkpoint Processor's I/O is complete, the Job Queue
Element that is to be removed is located by comparing its job
number with the job numbers of the queue elements in the active
chain. If an equal comparison is not found, control is returned
to the caller with the condition code set to zero. If a match

is found, the Job Queue Element is removed from the active chain
and added to the top of the free chain by updating all the chain
pointers. The Checkpoint Processor's PCE is $POSTed so that it
will be given control to checkpoint the Job Queue. Then control
is returned to the caller with the condition code set non-zero to
indicate that the Queue Element was successfully removed.

5.3.4 SQGET Routine - Program Logic

The $QGET routine is entered to acquire a Job Queue Element in a
specified queue so that the job may be processed. The active queue
chain is searched for a Job Queue Entry of the specified type (e.g.,
execution, print, punch, or purge) which is not in hold status and
not presently acquired. If such a job is not present, control is
returned to the caller with the condition code set to zero. If

an acceptable queue element is found, the QENTBY bit is turned on
in the queue element to show that the element has been acquired,

and control is returned to the caller with the condition code set
non-zero, register "R1l" pointing to the job queue element that was
acquired, and register "RO" pointing to the associated Job Infor-
mation Table Entry. Whenever the system is in a drained status,
this routine will be crippled such that control will ‘always be
returned to the caller with the condition code set to zero to
indicate that no available Job Queue Elements are present.

5.3.5 $QPUT Routine - Program Logic

The $QPUT routine is entered to return a previously acquired Job
Queue Element to the active chain, but with a new queue type. It
will enter the calling Processor into a HASP $WAIT state if the
Checkpoint Processor's I/0 is not complete. When the Checkpoint
Processor's I/O is complete, the job number of the queue element

to be returned is compared with the job numbers of the queue ele-
ments in the active queue. If the job number is not found, control
is returned to the caller with the condition code set to zero. 1If
a match is found, the new queue type is set, the HASP Dispatcher's

Job Queue Manager - Page 5.3-2
. 248

HASP

Event Control Field is posted to indicate that a Job Queue
Element is available to be acquired, and the Checkpoint Proces-
sor's PCE is $POSTed so that it will be given control to write

the updated Job Queue onto the SPOOLl1l disk. If the QUEPURGE bit
is on in the queue element (indicating that the job has been
deleted), the job queue element is placed in the punch queue by
moving the punch queue type into the queue element's QUETYPE
field. If the QUEPURGE bit is not on, the job queue element is
placed in the queue indicated by register "RO" upon entry to

this routine. The QENTBY bit is turned off to indicate that this
queue entry has been returned, the condition code is set non-zero,
and control is returned to the caller. Upon return, register "R1"
contains the address of the Job Queue Entry just returned and
register "RO" contains the address of the associated Job Infor-
mation Table Entry.

5.3.6 SQLOC Routine - Program Logic

The $QLOC routine is entered to obtain the Job Queue Element address

- when the job number is known. The job number is compared with the

job numbers in the active chain. If a match is not found, control
is returned to the caller with the condition code set to zero. If
a match is found, the condition code is set non-zero, and control
is returned to the caller with register "Rl" containing the lo-
cated Job Queue Element's address and register "RO" containing the
-associated Job Information Table Entry address.

5.3.7 - $QSIZ Routine - Program Logic

The $QSIZ routine is entered to obtain the number of Job Queue
Elements in a given queue type, route, class; and forms. The num-
ber of jobs of the specified type (excluding jobs in hold status)
are counted, and control is returned to the caller with register
"R1" containing this count. 1If register "R1l" is non-zero, the con-
dition code is set non-zero, and if it is zero, the condition code
is set to zero. Whenever the system is in a drained status, this
routine is crippled so that control is always returned to the
caller with register "R1l" zeroed, and the condition code set to
zero to indicate that no jobs are available in the specified job
queue.

~ Job Queue Manager - Page 5.3-3

249

HASP

5.4 BUFFER MANAGER

5.4.1 Buffer Manager - General Description

The Buffer Management routines are responsible for the allocation
of the dynamic memory area (Buffer Pool) of HASP. Fixed-size buf-
fers in this area are allocated and de-allocated to HASP Processors
and Routines via the S$GETBUF and S$FREEBUF macro-instructions (see
Section 9.1).

5.4.2 Buffer Manager - Program Logic

The $GETBUF routine consists of two programs which allocate HASP
Buffers or RJE Buffers respectively. Both programs function iden-
tically as follows: The appropriate free buffer pointer is tested,
and if no buffers are available, control is returned to the caller
with the condition code set to zero. If a free buffer is present,
the free buffer pointer is updated to point to the next free buffer;
or, if this is the last available buffer, the pointer is zeroed.
Then, if the debug indicator is on, a buffer validity checking rou-
tine is entered to assure that the buffer is within the buffer chain.
If it is not in the chain, the catastrophic error routine is entered;
otherwise, control is returned to the $GETBUF routine. The condition
code is set non-zero and control is returned to the caller with the
buffer address in register "R1".

The S$FREEBUF routine enters the buffer validity checking routine if
the debug indicator is on, the buffer to be freed is inserted back
into the appropriate free buffer chain (depending upon whether the
buffer is a HASP Buffer or anRJE buffer), and the IOBSTART field is
updated with the address of the buffer's channel program: IOBCCW1
(see Figure 8.3). The HASP Dispatcher's Event Control Field is
$POSTed to show that a buffer is available and control is returned
to the caller.

Buffer Manager - Page 5.4-1

250

HAS P

5.5 UNIT ALLOCATOR

5.5.1 " Unit Allocator - Generai Description

The Unit Allocation routines are responsible for the allocation
and de-allocation of the Input/Output units which have been
assigned to HASP. Device Control Tables (DCTs) are allocated and
de-allocated to HASP Processors and Routines via the $GETUNIT and
SFREUNIT macro-instructions (see Section 9.2). :

5.5.2 Unit Allocator - Program Logic'

The S$GETUNIT routine scans the Device Control Table (DCT) chain

in an attempt to find an available DCT of the requested type. If
none are found, control is returned to the caller with the condition
‘code set to zero. If an available DCT of the requested type is
“found, it is set "not available" and control is returned to the
caller with the condition code set non-zero. The address of the

DCT is returned in register "R1". ‘

The SFREUNIT routine first examines the "Active Buffer Count" field
of the DCT (see Figure 8.5) to see if there are any buffers involved
in active I/O with the associated unit. If the "Active Buffer
Count" is. non-zero, the Processor is placed in a HASP $WAIT state
until this count is reduced to zero. When the count is zero, the
DCT is made available and control is returned to the caller.

 Unit Allocator - Page 5.5-1
251 o |

HASP

5.6 INTERVAL TIMER SUPERVISOR

5.6.1 Interval Timer Supervisor - General Description

The Interval Timer Supervisor is used by the various HASP Proces-
sors to record the passage of a specified period of time and to
notify the requesting Processor upon expiration of the interval.
This routine uses the standard 0S/360 timer features (STIMER &
TTIMER) but has the additional capability to simultaneously monitor
an unlimited number of intervals.

5.6.2 Interval Timer Supervisor -Program Logic

All uses of the Interval Timer Supervisor are through the HASP
macro-instructions $STIMER and $TTIMER which are described in Sec-
tion 9.6. Each user of $STIMER is required to provide a 1l2-byte
(three-word) HASP Timer Queue Element (TQE), passed via parameter
register "R1" (see Section 8.10). S$STIMER maintains a chain of all
active TQEs in ascending order of interval magnitudes, with the
shortest requested interval (first TQE) set on the O0S STIMER queue
(via a normal STIMER macro). Upon being entered with a new interval
request, SSTIMER first cancels the active 0S timer element with a
TTIMER CANCEL, and reduces the interval specified in all chained
TQEs by the elapsed portion of this interval. The requestor's TQE
is then, after converting the requested interval to OS timer units
(26 usec units), inserted into the appropriate place on the TQE
chain using the first word of the TQE as a chain field. The OS
timer is now re-activated with the interval in the first TQE in the
chain and return is made to the caller.

When the current 0OS interval elapses, the asynchronous exit routine
in $STIMER is entered to record the expiration. The asynchronous
routine first reduces the intervals of all queued TQEs by the size
of the just-elapsed interval, then $POSTs the TIMER Processor, POSTs
the HASP task, and returns to 0S8. The TIMER Processor, when dis-
patched, will $POST the appropriate Processors and reset the 0S
Timer to the interval specified in the first TQE in the chain by
issuing an STIMER macro.

HASP Processors which have previously set an interval through
$STIMER may obtain the time remaining in the interval and optionally
cancel this interval through the use of the $TTIMER macro. When
entered, S$TTIMER cancels the active 0S interval and reduces all
queued TQE intervals by the elapsed portion of that interval. The
requestor's TQE is then located in the queue by comparing the ad-
dress of the TQE passed by the macro in register "R1" to each TQE

in the chain. When the correct TQE is found, the remaining time

Interval Timer Supervisor - Page 5.6-1

252

HASP

in the interval is loaded in register "R0" for return to the
caller. The use of the CANCEL option on the $TTIMER macro,
which is indicated by register "R1l" containing the complement of
the TQE address rather than the true address, causes the TQE
to be dequeued from the chain. The 0S timer is re-activated
with the interval from the first TQE on queue and return is made
to the caller. NOTE: A S$TTIMER for a TQE which is not active
has no effect and a zero value is returned in register "RO" as
the time remaining.

Interval Timer Supervisor - Page 5.6-2

.. 253

HASP

5.7 $WTO PROCESSING ROUTINE

5.7.1 $WTO Processing Routine — General Description

This routine services the $WTO macro-instruction (see Section 9. 5)
by queuing the associated message for the Operator Console Input/Output -

Processor.

5.7.2 $WTO Processing Routine — Program Logic

This routine tests for a free message buffer. If none are available,
it causes the requesting processor to be placed in a $WAIT condition until
a message buffer is released. Otherwise it links to the Console Buffering

Routine to process the message.

$WTO Processing Routine — Page 5.7-1

254

HASP

5.8 DIRECT ACCESS STORAGE ALLOCATOR

5.8.1 Direct Access Storage Allocator - General Information

This routine allocates tracks for the SPOOL volumes that were
on-line at IPL time. The track information is stored in the Job
Control Table (JCT) and is also returned to the caller in register
"R1". The track allocation algorithm is designed to reduce seek
time as much as possible. ~

5.8.2 Direct Access Storage Allocator - Program Logic

The status of each SPOOL volume is recorded and maintained in
track group bit maps. A map is present for each module (available
SPOOL volume). Each bit in the track group bit map represents a
track group. If the bit is on, the track group is available to be
allocated, and if the bit is off, the track group has already been
allocated. Track group bit maps are also maintained in each JCT,
but the bit definitions are opposite. Thus, if a bit is on in

the JCT, the track group has been allocated to the JCT.

Track groups on the SPOOL volumes are allocated whenever the JCT
has not previously acquired any tracks or whenever all the tracks
in the current track group which is allocated to the JCT have been
acquired. If the JCT has already been allocated a track group,
but all the available tracks in that track group have not been
acqulred, the next available sequential track in the track group
is allocated to the requestor. When this happens, the track
information in the JCT is updated and loaded into register "R1",
and control is returned to the caller with the condition code set
to one. This track information is recorded in the JCT in the
following format: MTTR, where M is the module number (one byte),
TT is the track number relative to cylinder 0 track 0 (two bytes),
and R is the record number (one byte). The JCT track group bit
map is also updated whenever a new track group is acquired. The
update consists of ORing in the appropriate bit for the acquired
track group in the JCT track group bit map.

When a new track group has to be acquired, seek time is reduced
by searching for the nearest track group + or - eight track
groups from the last-used track group. The last-used track group
for each track group bit map is updated each time a $EXCP is
issued to the volume. Each track group bit map is searched for
an available track group at the last-used track group. Then each
track group bit map is searched for an available track group -
one track group from the last-used track group, then + one from
the last-used track group and this progression continues until an

Direct-Access Storage Allocator - Page 5.8-1

255

HASP

available track group is found or the + eight track group is
searched. If an available track group is found, the JCT track
information is updated and loaded into register "R1l", and control
is returned to the caller with the condition code set to one.

The JCT track group bit map is also updated. If a track group is
not available within + or - eight of the last-used track group,
another search routine is entered which inspects each byte of the
track group maps, starting with the first byte. This search will
continue until an available track group is found or until all of
the active track group bit maps have been searched. If an available
track group is found, the JCT track information is updated and
loaded into register "R1", and control is returned to the caller
with the condition code set to one. The JCT track group bit map
is also updated. If an available track group is not found, the
operator is notified of the out-of-track condition by the fol-
lowing message:

SPOOL VOLUMES ARE FULL

Then control is returhed to the caller with the condition Code set
to zero and register "R1" zeroed.

5.8.3 Direct Access Storage Purge Routine - Program Logic

- This routine frees all of the SPOOL volume tracks that the job has
acquired and informs the system that these tracks are available
to be re-acquired.

The track group bit map in the job's Job Control Table is ORed
into the main track group bit map to return the job's tracks back
to the system. Then the track group bit map in the JCT is 2zeroed
to indicate that this job does not have any tracks allocated to
it. The HASP dispatcher's Event Control Field is posted to show
that tracks are available to be acquired, and control is returned
to the caller. '

Direct-Access Storage Allocator - Page 5.8-2

256

HASP

5.9 DISASTROUS ERROR HANDLER

5.9.1 Disastrous Error Handler - General Description

This routine is entered from a Processor whenever a critical SPOOL
disk error is detected. The operator is notified of the error, and
processing continues, although the operator should re-IPL the sys-
tem with a cold start as soon as possible.

5.9.2 Disastrous Error Handler - Program Logic

When this routine is entered, a $WTO is issued to notify the operator
of the error, and control is returned to the calling Processor. The
message to the operator is as follows:

DISASTROUS ERROR - COLD START SYSTEM ASAP

Disastrous Error Handler - Page 5.9-1
257

HASP

5.10 CATASTROPHIC ERROR HANDLER

5.10.1 Catastrophic Error Handler - General Description

This routine is entered whenever an unrecoverable error is dis-
covered by HASP. The operator is informed of the error and given
an error code, and the system enters a one instruction disabled
loop. The error codes and their meanings are listed in the HASP
Operator's Guide (see Section 1ll1l). For more information, refer

to Section 9.10.1.

5.10.2 Catastrophic Error Handler - Program Logic

When this routine is entered, register "RO" contains the address
of a four byte field containing the three character error code
left justified. After the system is disabled, the four byte error
code field is moved into the operator message. This message is
then written on the operator's console defined by the HASPGEN

parameter "$PRICONA":
$ HASP SYSTEM CATASTROPHIC ERROR. CODE = XXX

After this message is typed, all registers are restored so that
they will be intact, and a one instruction loop is executed.

Catastrophic Error Handler -- Page 5.10-1
258

HASP

5.11 TRACE EFFECTOR

5.11.1 Trace Effector — General Description

The Trace Program is a debug facility used in HASP which is completely
independent of the OS trace facility. This program will insert the contents
of the general purpose registers into a special trace table (assembled into
the HASP module) each time it is called and thereby aid in the determin-

ation of HASP problems.

5.11.2 Trace Effector — Program Logic

The Trace Program is called by any Routine or Processor in HASP
by the insertion of a $TRACE macro-instruction (see Section 9.9.1). If the
HASPGEN parameter ”&TRACE". is set non-zero, the macro-instruction
will expand into an instruction which will cause a unique specification pro-
gram interrupt. All program interrupts are fielded by the HASP Trace
Progr'am and the instruction which caused the interrupt is tested to deter-
mine if it is the unique instruction inserted by the $TRACE macro-instruction.
If the interrupt was caused by a true program interrupt, the request is sent

to the first level interrupt handler, to be handled in the ncrmal way.

Otherwise a sixteen word trace entry is inserted into the HASP trace table.

Trace Effector — Page 5,11-1

259

HASP

The sixteen word trace entry has the following format:
First Byt€...veeeeeeeeeeseees . STRACE count
First Word...................3TRACE storage location
Second Word..eeeeveeee......Register 0
Third Word....eveeeveesees...Registerl
Fourth Word. .. eieeveveeans .Régister 2
Fifth Word.....eeeeeeses..... Register 3
Sixth Word..,....evevevev.....Register 4
Seventh Word..eeeeeeeeeees .. .Register 5
Eighth Word.eeeeceeeeeeeess.. Register 6
Ninth Word..eveeeveseeesse.. Register 7
Tenth Word...................Register 8
Eleventh Word..eeeveeeese.... Register 9
Twelfth Word.‘. seeesseesssssss Register 10
Thirteenth Word.....c.covvee .Register 12
Fourteenth Word...............Register 13
Fifteenth Word.eeeeveeoees....Register 14
Sixteenth Word. eesessesesesss REgister 15
After the trace table entry has been inserted and the pointers updated,
the count of the number of times this particular $TRACE macro-instruction

‘has been executed is inserted into the first byte of the first word of the

Trace Effector — Page 5.11-2

260

HASP

| the trace entry and also into the last half of the $TRACE "inétruction. "
All registers are then restored and return is made by loading the Program ‘
Old PSW which restores the condition code to its original value before
the $TRACE macro-instruction was executed.

The symbolic location "$TRACETB" in HASP identifies a three-word
‘table with the following format: the first_: word is the address of the
last entry which was made in the trace table; the second word is the
address of the first byte of the trace table; and the thirci word is the

address of the last byte of the trace table + 1 .

Trace Effector -~ Page 5.11-3
261

HASP

5.12 WTO/WTOR PROCESSING ROUTINE

5.12.1 WTO/WTOR Processing Routine - General Description

The function of this routine is to process all OS WIO's and WTOR's.
If a console buffer is not available for the message the requesting
task is placed in an 0OS WAIT state until a buffer becomes available
to process the request. This routine is not included if the HASP
interface to 0S Console Support is generated (&NUMCONS=0, see
Appendix 12.15). '

5.12.2 WTO/WTOR Processing Routine - Program Logic

The WTO/WTOR Processing Routine is entered from the Execution Con-
trol Processor whenever an SVC 35 or optionally SVC 36 is issued.
The routine performs the following functions:

1. HASP is forced dispatchable and a task switch is‘sighalled
when appropriate.

2. Standard HASP $WTO parameters are set up for 0S and LOG
operator consoles. If the entry is for SVC 36 the 0S and
LOG operator console request is deleted allowing only
logging to the HASP SYSTEM LOG. The number of output
lines desired is set to 1.

3. If the SVC is for WTOR a check is made to insure that
both a Console Message Buffer and Reply Element are avail-=
able before further processing occurs. When facilities
are available the parameter list is checked, the reply
number assigned to the Reply Element is assigned to the
message, the Reply Element filled out and queued, and
normal WTO processing is resumed at step 6 below.

4. If the WIO is a multi-line WTO the format of the parame-
ter list is determined (see Figure 5.12.3) and number of
output lines desired is set as specified in the parameter

list.
5. The text of the message is examined for possible elimina-
© tion and/or identification of the OS jobname for use in
step 6.
6. 0S control blocks are searched for the purpose of associ-

ating the message with a current HASP controlled job. If
an association is made the $WTO parameters will reflect

a request for the job number to appear with the message
and the HASP SYSTEM LOG is to contain a copy of the
message.

*

WTO/WTOR Processing Routine - Page 5.12-1

262

HASP

7. A check is made to insure that a Console Message Buffer
is available before continuing. (For WTOR one will be
available at this point.)

8. The parameter list is altered to show request not S$WTO
and the Console Buffering and Queueing Routine is called
upon to queue the message.

9. If the number of output lines was more than 1 additional
lines are set up for each succeeding line by re-executing
steps 7 to 8 above until all lines are queued.

10. Upon completion of all lines, the routine returns to 0S
via register 14.

A list of lines is terminated if a line length is zero, the first
line is eliminated by message type elimination, or the DE or E line
type parameter is encountered. If facilities are not sufficient to
handle the SVC 35 or 36 request immediately and it is determined
that the task can not wait or there are no WIO/WTOR Task Wait Ele-
ments (Figure 5.12.1l) available, the SVC 35 or 36 request . is ignored.
MCS flags in the WTO/WTOR parameter lists are examined to determine
the format of the parameter 1list only. The acceptable formats and

- MCS flag settings examined are listed in Figure 5.12.3.

WTO/WTOR Processing Routine - Page 5.12-2

263

HASP

Figure 5.12.1 =~ WTO/WTOR TASK WAIT ELEMENT

Displacement - ! v
e recn - ——meecnee- § bytes - - - - - - . - - - - = e - - - o o
Hex. Dec. :
0 0
Address of Next Task Wait Element
4 4
X'FF'
if Address of User's WTO(R)
Reply Wait
8 8
PCE ID , Address of Task Control Block
C 12
User Parameter List Save Area
10 16

WTO/WTOR Processing Routine — Page 5.12-3
264

HASP

Figure 5.12.2 -- WTOR REPLY ELEMENT

. Displacement

Hex. Dec.
0 0
a 4
8 8
c 12
10 16

Address of Next WTOR Reply Element

Reply Number

Address of Event Control Block

PCE ID

Address of Task Control Block

Reply Length

Address of Reply Area

WTO/WTOR Processing Routine —— Page 5.12-4
265 '

HASP

Figure 5.12.3 -- WIO/WTOR PARAMETER LIST FOR HASP CONSOLE SUPPORT

Displacement
aadutaiabedele b bbbl L b L bl 4 bytes —---—-eeceem e >
Hex. Dec.
-8 -8)
' S S
Reply Length Address of Reply Area by
[
-4 -4 o
o
Address of Event Control Block g
¥
0 0 [}
Zero Length of MCS Flags
Linel + 4
4 4
Y Linel Text L
™~ "\ .
)
g
O
5]
w
o
» e
Descriptor Codes Route Codes =
(optional) (optional) >
2]
=
Message-Type Flags Line Type for Linel
(optional)
' Area Type No. of Lines
-

WIO/WTOR Processing Routine -- Page 5.12-5

265.1

HASTP

Figure 5.12.3 -- WPO/WTOR PARAMETER LIST (CONTINUED)

Z2ero Length of
Line"n" + 4

Line Type for Line "n"

'y

7/
L

7/

Line "n" Text

For Each Additional Line ’

MULTI-LINE WTO EXTENSION

je—

WTO/WTOR Processing Routine -- Page 5.12-6

265.2

HASP

5.13

5.13.1

5.13.2

5.13.3

CONSOLE BUFFERING AND QUEUING ROUTINES

The following routines are responsible for the queuing and
de-queuing of all console and log messages.

CONSOLE BUFFERING ROUTINE - PROGRAM LOGIC

The Console Buffering Routine is used to prepare a message
buffer with the information required to process a console
message. At entrance registers zero and one contain the infor-
mation shown in figure 5.13.1. '

The routine makes use of three tables comprised of one-byte
entries. The bits in each byte specify the physical consoles
which are to be used for the respective entry. 1In the first
(SWCONTBL) each byte corresponds to one of eight consoles.
The bytes are ORed for each specified symbolic console to

set the physical byte for a write operation.

A second table ($SWCLASTB) has an entry for each of the six-
teen possible message classes. The appropriate byte is ANDed
with the physical consoles byte to screen out consoles with
the class set too high.

In addition to setting the console routing byte, the Console
Buffering Routine supplies the other information shown in
figure 8.4.1. Prior to returning to the caller, the routine
places the message in the log queue (non-HASP messages with
a job number), or in the queue of messages to be processed
by the Console Input/Output Processor (all other output
messages and all reads).

CONSOLE QUEUING ROUTINE - PROGRAM LOGIC

This routine places a console buffer into a queue of messages,
according to priority, to be processed by the Operator Console
Input/Output Processor and $POSTs that processor.

LOG QUEUING ROUTINE - PROGRAM LOGIC

This routine places a console buffer at the end of the queue
of messages to be processed by the HASP Log Processor and
$POSTs that processor.

Console Buffering and Queueing Routines - Page 5.13-1
266 | |

CONSOLE BUFFER FREEING ROUTINE - PROGRAM LOGIC

This routine places the console buffer in the free queue.
The Attention Processor's PCE is examined to determine if
the Attention Processor is $WAITing for a console buffer,
and if it is, the Attention Processor is $P0OSTed and exit
is made. If the Attention Processor is not SWAITing, the
SWTORQUE is tested and the first task found is POSTed. 1If

no tasks are waiting, the HASP Event Control Field is $POSTed
and exit is made.

Console Bufféring and Queueing Routihes - Page 5.13-2

267

HASTP

Figure 5.13.1 -- CONSOLE BUFFERING ROUTINE PARAMETER REGISTERS

Displacement

Hex. Dec.

0 0
4 4
8 8

------------------------ 4 bytes -~----~---r--mme e
(RO)
Flags Consoles Message Priority
Specified Length & Class
(R2)
X'00' = $WTO ' Message Address (or Zero for Read)
X'80' = WTO

Console Buffering and Queueing Routines - Page

268

~

3.

13-3

HASP

5.14 INPUT/OUTPUT ERROR LOGGING ROUTINE

5.14.1 Input/Output Error Logging Routine -- General Description

This routine is entered whenever an unrecoverable Input/Output error
occurs on a HASP direct~access intermediate storage device, or whenever
line errors occur which may require the attention of the operator. A
message is generated describing the error and this message is routed to
the operator via the operator's console. The routine then returns without

taking any further action.

5.14.2 Input/Output Error Logging Routine — Program Logic

When this routine is entered, register "R1" contains the address of
the Input/Output Block (IOB) which is associated with the Input/Output
operation in error. The channel stétus, channel command code, sense
information, track address, and line status are retrieved from the IOB
and formatted;’ the unit address and volume serial are obtained from the
Unit Control Block (UCB); the device name (if applicable) is acquired
from the Device Control Table (DCT); and the messagé is written to the
operator's console.

The format of the message describihg a direct-access error is as

follows:

Input/Output Error Logging Routine — Page 5.14-1

269

HASP

I/O ERROR ON SPOOLn uuu,cc,ssss,iiii,bbcchhr

where:
n — identifies the SPOOL disk in error
uuu — unit address of disk
cc — channel command code being executed
SSss — channel status code |
iiii — unit sense information
bbcchhr — track address as follows:
bb — bin (always 'gero)
cc — cylinder ‘
hh — head
r — record

The format of the message desc