
J> rog ram, Library
Japan, Ltd.

Canadian Program Library
IBM Canada Ltd.
Department 960

European Program Library
IBM France

Program Information Dept.
IBM Corporation

South American
Program Library

South Pacific
Program Library
IBM Austraiia, Ltd.
Box 3318 G.P.D.
Sydney, N.S.W.
Australia

Systems Engineering Dept.
14,1 Choma Nagata-cho
Chiyoda-ku

5 Yorkland Boulevard
Willowdale, Ontario
Canada

23, Allee-Maillasson
F.92-Bouiogne-Billancourt
France

40 Saw Mill River Road
Hawthorne, New York 10532
United States

IBM do Brasil, Ltda.
Avenida Presidente
Vargas 642, 4 Andar
Caixa Postal 1830-ZC-00
Rio de Janeiro, Brazil

Tokyo, Japan

June 26, 1972

Societe Anonyme Au Capital de
620.256.000 F-R.C.
(Seine 55B-11 846)

Memorandum to: Users of the HASP II System (360D-05.1.0l4)

Subject: Transmittal of Version 3, Modification Levell
of 360D-05.1.014

This letter transmits Version 3, Modification Level 1 of the
HASP II System, 360D-OS.1.014.

The program materials needed to update this program to Version 3,
Modification Level 1 are enclosed.

The Basic materials distributed with this letter are:

1. An update to HASP II System Manual (replacement pages)

2. A replacement Memorandum to Users for HASP II System
Manual

3. A complete replacement of the Basic machine readable
material on one Distribution Tape Reel (DTR) recorded
at 9-track 800 or 1600 bpi, or one 7-track 800 cpi
(Data Conversion Feature required)

If you are a user of the Optional program material, it consists of:

1. A complete replacement of' the Optional machine readable
material consisting of 138 - 96. column cards as a "starter
system" for a remote System!3.

This release of HASP corrects virtually every known problem in
Version 3, Modification Level 0 of HASP. This sytem includes all
PTFs applicable to HASP Version 3.0 through DPA5427. Following is
a list of the more significant maintenance items.

The restrictions prohibiting any extended use of the 3211
Forms Control Buffer have been removed.

Rotational Position Sensing for 3330 and 2305 devices is
now a HASPGEN option.

3M399A

Previously announced support for the 3505 Card Reader and
the 3525 Card Punch is included.

The restriction prohibiting operator control of HASP job
flow based on OS jobnames has been removed.

Multi-tasking jobs are no longer excluded from the execution
dynamic priority group.

The restriction prohibiting restart of the HASP execution
phase of a job has been removed.

The operator is no longer prohibited from changing a printer's
FCB or DCS when the printer is stopped for forms mounting.

For as controlled console support, the operator's replies to
WTORs are no longer omitted from the HASP System Log.

Optionally, the user can now define names other than SPOOLn
for HASP spooling volumes.

HASPGEN efficiently accepts both the IEBUPDTE and IEBUPDAT
formats of modification cards and sequence checks them.

HASP command authority has been extended to local input devices
and is controlled by the central operator.

An optional backspace character can now be defined to support
as controlled consoles with no backspace key.

HASP Remote Job Entry maintenance items:

The 3780 Data Communications Terminal is now supported by
HASP.

The Space Compression/Expansion feature of 2770 and 3780
terminals is supported.

Any of the three optional buffer sizes for 2770 terminals may
now be specified. Current 2770 users must respecify RMTnn
parameters prior to HASPGEN, according~the new definitions
on page 388.

HASP RMTGEN will optionally punch an 80-column card deck for
System/3 remote terminals without 5424 card readers.

This modification is supported on current as releases.

This memorandum should be added to your program package for future
reference.

The HASP II System has Programming Service Classification A.

Any discrepancy between the material received and the material
listed above, or any errors in reproduction, should be reported
to the Manager of the Program Library providing your programming
systems.

cc: IBM Systems Engineering Managers (no enclosures)
IBM Field Engineering Managers (no encloures)

Program Information Department

I

Q... a p~~g~~m Library
M Japan, Ltd.

European Program Library
IBM France

Program Information Dept.
IBM Corporation

South American
Program Library

Systems Engineering Dept.
14, 1 Chome Nagata-cho
Chiyoda-ku

Canadian Program Library
IBM Canada Ltd.
Department 960
5 Yorkland Boulevard
Willowdale, Ontario
Canada

23, Allee-Maillasson
F.92-Boulogne-Billancourt
France

40 Saw Mill River Road
Hawthorne, New York 10532
United States

IBM do Brasil, Ltda.
Avenida Presidente
Vargas 642, 4 Andar
Caixa Postal 1830-ZC-00
Rio de Janeiro, Brazil

Tokyo, Japan

June 26, 1972

Societe Anonyme Au Capital de
620.256.000 F-R.C.
(Seine 55B-11 846)

Memorandum to: Recipients of HASP II (360D-05. 1.014)

Subject Replacement Memorandum for HASP II System
Manual

The attached memorandum replaces the memorandum currently
attached to the HASP II System Manual.

Attachment

Program Information Department

South Pacific
Program Library
IBM Australia, Ltd.
Box 3318 G.P.O.
Sydney, N.S.W.
Australia

3H399C

.1I;p~ogr~m Library '-1M J~pan, Ltd.
Canadian Program Library
IBM Canada Ltd.
Department 960

European Program Library
IBM France
23, Allee-Maillasson
F.92-Boulogne-Billancourt
France

Program Information Dept.
IBM Corporation
40 Saw Mill River Road
Hawthorne, New York 10532
United States

South American
Program Library
IBM do Brasil, Ltda.
Avenida Presidente
Vargas 642, 4 Andar
Caixa Postal 1830-ZC-00
Rio de Janeiro, Brazil

South Pacific
Program Library
IBM Australia, Ltd.
Box 3318 G.P.O.
Sydney, N.S.w.
Australia

Systems Engineering Dept.
14, 1 Chome Nagata-cho
Chiyoda-ku

5 Yorkland Boulevard
Willowdale, Ontario
Canada Tokyo,Japan

June 26, ·1972

Societe Anonyme Au Capital de
620.256.000 F-R.C.
(Seine 55B-11 846)

Memorandum to: Recipients of HASP II (360D-05.l.0l4)

Subject: Transmittal of Version 3, Modification Levell of
360D-05.l.0l4

The program materials you have ordered are enclosed. The .following
describes the contents of the Basic and Optional program packages.

Basic program material consists of:

1. The enclosed HASP II System Manual.

2. Machine-readable material on one 9-track 800 or 1600
bpi, or 7-track 800 cpi (Data Conversion Feature required)
Distribution Tape Reel (DTR). For a description of the.
tape contents see the HASP II System Manual.

If you have ordered the Optional program material, it consists of:

1. A deck of 138 - 96 column cards. This deck is a
"starter system" for the HASP MULTI-LEAVING Remote
Job Entry support for the IBM System/3 to allow a
customized workstation program to be transmitted to
the Remote System/3. See the HASP Remote Terminal
Operator's Guide for the System/3 for instruction on
the use of this deck.

Installations ordering this program to obtain the HASP MULTI­
LEAVING workstation programs for use'with non-HASP systems should
refer to Section 10.4 of the HASP SYSTEM Manual for procedural
information.

The HASP-II SYSTEM has Programming Service Classification A. If,
in the future, a new release is made available for this program,
the period that Version 3, Modification Levell will remain "current"
for programming service purposes will be specified at the time of
the new release.

HASP, Version 3 Modification Levell incorporates all PTFs applica­
ble to HASP Version 3 Modification Level 0 through DPA5427. No
PTF before and including DPA5427 should be applied to Version 3,
Modification Levell. Your local IBM representative will discuss
the standard error reporting (APAR) procedure.

This program has been registered by system type and is listed under
the name and address shown on your order. Program modifications,
as and when made by IBM will be sent to this same address. Should
there be a change in your system type or in your address, we would
appreciate your notifying your local IBM branch office.

Any discrepancy between the material received and the material or­
dered, or any errors in reproduction should be reported to the
Manager of the Program Library providing your programming systems.

Enclosures

Program Information Department

~. a p~og~am Library
~ Japan, Ltd.

European Program Library
IBM France

Program Information Dept.
IBM Corporation

--- ---------- - --- ----- ------ ----- ---- - ---- - - ------------------ _.-

South American
Program Library

Systems Engineering Dept.
14,1 Chome Nagata-cho
Chiyoda-ku

Canadian Program Library
IBM Canada Ltd.
Department 960
5 Yorkland Boulevard
Willowdale, Ontario
Canada

23, Allee-Maillasson
F.92-Boulogne-Billancourt
France

40 Saw Mill River Road
Hawthorne, New York 10532
United States

IBM do Brasil, Ltda.
Avenida Presidente
Vargas 642, 4 Andar
Caixa Postal 1830-ZC-00
Rio de Janeiro, Brazil

South Pacific
Program Library
IBM Australia, Ltd.
Box 3318 G.P.O.
Sydney, N.SW.
Australia Tokyo,Japan

June 26, 1972

Memorandum to:

Subject:

Societe Anonyme Au Capital de
620.256.000 F-R.C.
(Seine 55B-11 846)

Recipients of the HASP II System (360D-05.1.0l4)
Version 3, Modification Levell

New and Replacement pages for the HASP II System
Manual

Attached are new and replacement pages for the "HASP II System
Manual. These pages have been reproduced in such a manner
as to easily replace their corresponding pages in the HASP II
System Manual.

Program Information Department

3M399B

THE

HAS P

S Y S T E M

FEBRUARY 26, 1971

TYPE III PROGR~lS WITH
SERVICE A CLASSIFICATION

Type III programs which were given Service A Classification, perform
functions which may be fundamental to the operation and maintainance
of the user's system. These programs have not been subjected to
formal test by IBM.

Until reclassified, IBM will provide for these Type III programs
the follovling: (a) Central Programming Service including design error
correction and automatic distribution of corrections; (b) Field
Engineering Programming Service including design error verification,
Authorized Programming Analysis Report (APAR.) documentation and
submission, and application of Program Temporary Fixes or development
of an emergency by-pass when required.

IBM does not guarantee service results or represent or warrant that
all errors will be corrected. The user is expected to make the final
evaluation as to the usefulness of these programs in his own
environment.

THE FOREGOING IS IN LIEU OF ALL WARRANTIES, EXPRESS OR IHPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRl~NTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

HAS P

PREFACE

This document contains complete instructions for the

generation and use of the HASP SYSTEM. Also included is detailed

information concerning the internal structure and implementation

techniques of HASP to serve as an aid to systems programmers.

The various HASP OPERATOR'S GUIDES, intended for use as removable

sections, are included as Section 11 of this manual.

HAS P

MAGNETIC TAPE KEY

BASIC

This volume contains two files as described below.

File 1 - Assembled object decks and JCL necessary to perform
a HASPGEN (refer to Section 10 of this manual for
information concerning use of this tape).
Records - 428; Characters/block - 80;
Records/block - 1; Blocks/file - 428.

File 2 - Source decks for HASP-II, Version 3.1.

*Optional

Records - 52,705; Characters/block - 1600;
Records/block - 20; Blocks/file - 2636.

System/3 users only - 138 96-column cards. This deck is a
"starter system" for the HASP MULTI-LEAVING Remote Job Entry
support.

*Optional material will be forwarded only whe~ specifically
requested.

HAS P

TABLE OF CONTENTS

Section

1.0 - Introduction

2.0 - General Description

3.0 - HASP Structure

3.1

3.2

3.3

3.4

3.5

3.6

- Allocation

- Allocation

- Allocation

- Allocation

- Allocation

- Allocation

of

of

of

of

of

of

Main Storage

Direct-Access Space

Input/Output units

Central Processing

Programs

Jobs

unit Time

Page

1

3

7

12

17

20

22

24

26

3.7 - Allocation of Overlay Areas 29

4.0 - HASP Processors 31

4.1 - Input Service Processor 32

4.2 - Execution Control Processor 48

4.3 - Output Service Processor (Print and Punch) 62

4.4 - Purge Processor 76

4.5 - HASP Command Processor 77

4.6 - Operator Console Attention Processor 98

4.7 - Checkpoint Processor 99

4.8 - Asynchronous Input/Output Processor 101

4.9 - HASP Log Processor 102

4.10 - Operator Console Input/Output Processor

4.11 - Timer Processor

4.12 - Remote Terminal Processor (STR Model 20)

103

105

106

Table of Contents - Page i

..
HAS P

section

4.13 - Remote Terminal Processor (System/360)

4.14 - Remote Terminal Processor (1130)

4.15'- Execution Task Monitor Processor

4.16 - Internal Reader Processor

4.17 - MULTI-LEAVING Line Manager

4.18 - Remote Console Processor

4.19 - Execution Thaw Processor

4.20 - Overlay Roll Processor

4.21 - HASP 5MB Writer

4.22 - Priority Aging Processor

4.23 - Remote Terminal Processor (System/3)

5.0 - HASP Control Service Programs

5.1 - HASP Dispatcher

5.2 - Input/Output Supervisor

5.3 - Job Queue Manager

5.4 - Buffer Manager

5.5 - unit Allocator

5.6 - Interval Timer Supervisor

5.7 - $WTO Processing Routine

5.8 - Direct Access Storage Allocator

5.9 - Disastrous Error Handler

5.10 - Catastrophic Error Handler

5.11 - Trace Effector

5.12 - WTO/WTOR Processing Routine

5.13 - Console Buffering and Queueing Routines

Page

119

138

190

193

195

197

199

200

202

204

205

243

244

246

247

250

251

252

254

255

257

258

259

262

266

Table of Contents - Page ii

HAS P

Section

5.14 - Input/Output Error Logging Routine

5.15 - Remote Terminal Access Method

5.16 - Overlay Service Routines

6.0 - Miscellaneous

6.1 - HASP Initialization

6.2 -. HASP Initialization SVC Routine

6.3 - HASP Overlay Build Utility

6.4 - HASP REP Routine

6.5 - HASP Accounting Routine

6.6 - HASP Dump Routines

7.0 - HASPGEN and RMTGEN Parameters

7.1 - HASPGEN Parameters

7.2 - RMTGEN Parameters for System/360 Model

7.3 - RMTGEN Parameters for System/360 Model·

7.4 - RMTGEN Parameters for System/360

7.5 - RMTGEN Parameters for 1130

7.6 - RMTGEN Parameters for 1130 Loader

7.7 - RMTGEN Parameters for System/3

7.8 - RMTGEN Parameters for 2922

8.0 - HASP Control Table Formats

8.1 - HASP Communication Table Format (HCT)

8.2 - Processor Control Element Format (PCE)

8.3 - Buffer Format (IOB)

8.4 - Console Message Buffer Format (CMB)

8.5 - Device Control ~able Format (OCT)

8.6 - Job Queue Element Format (JQE)

20 STR

20 BSC

Page

269

272

280

287

288

297

299

302

305

306

309

310

422

427

446

466

481

485

504

505

506

521

527

544

546

567

Table of Contents - Page iii

HAS P

Section

8.7 - Job Information Table Element Format (JIT)

8.8 - Job Control Table Format (JeT)

8.9 - Track Extent Data Table Format (TED)

8.10 - Timer Queue Element Format (TQE)

8.11 - Overlay Table Format (OTB)

8.12 Data Definition Table Format (DDT)

8.13 - Partition Information Table Format (PIT)

8.14 - Message Allocation Control Block (MSA)

8.15 - Data Block Format (HOB)

9.0 - HASP Executor Services

9.1 - Buffer, Services

9.2 - unit Services

9.3 - Job Queue Services

9.4 - Direct-Access Space Services

9.5 - Input/Output Services

9.6 - Time Services

9.7 - Overlay Services

9.8 - Synchronization Services

9.9 - Debug Services

9.10 - Error Services

9.11 - Coding Aid Services

10.0 - HASP Maintenance Procedures

Page

569

570

578

579

580

582

585

588

589

591

600

602

604

613

615

622

625

632

638

640

643

651

10.1 - Generating a H..Z\.SP System (HASPGEN) 652

10.2 - OS SYSGEN and Installing a HASP System 666

10.3 - Generating HASP Remote Terminal Programs 676

Table of Contents - Page iv

HAS P

Section

10.4 - Remote Generation for non-HASP Users

11.0 - Operator's Guides

11.1 - HASP Operator's Guide

11.2 - HASP RTP Operator's Guide (STR Model 20)

11.3 - HASP RTP Operator's Guide (1978)

11.4 - HASP RTP Operator's Guide (1130)

11.5 - HASP RTP Operator's Guide (System/360)

11.6 - HASP RTP Operator's Guide (BSC Model 20)

11.7 - HASP RTP Operator's Guide (2780)

11.8 - HASP RTP Operator's Guide (2770)

11.9 - HASP RTP Operator's Guide (System/3)

11.~0 - HASP RTP Operator's Guide (3780)

12.0 - Appendices

12.1 - Reference Listing of HASPJCL

12.2 - HASP Storage Requirements

12.3 - HASP Control Card Formats

12.4 - HASP AC,counting Card Format

12.5 - HASP Print and Punch ID Formats

12.6 - HASP Coding Conventions

12.7 - General HASP Restrictions

12.8 - HASP JCL Processing Program

12.9 - HASP /RJE 'Line Transmission Techniques (STR)

12.10 - HASP Internal Reader

12.11 - MULTI-LEAVING

Page

687

689

691

849

875

907

935

963

993

1021

1051

1074.1

1075

1076

1080

1088

1097

1098

1101

1103

1106

11'22

1,135

1139'

Table of Contents - Page v

HAS P

Section

12.12 - HASP 2770 RJE Support

12.13 - HASP Execution Batch Scheduling

12.14 - HASP Overlay Programming Rules

12.15 - HASP with OS Console Support

12.16 - Multiple Devices on MULTI-LEAVING Remotes

12.17 - 3211 Forms Control Buffer Additional Loads

Page

1155

1159

1163

1167

1172

1174

Table of Contents - Page vi

HAS P

1.0 INTRODUCTION

The HASP SYSTEM operates as a compatible extension to the MFT or
MVT options of the Operating System for System/360 and System/370
to provide specialized supplementary support in the areas of job
management, data management, and task management.

HASP appears as a transparent "front-end" processor to OS to,
via the SPOOLing functions normally associated with OS input
readers and output writers, act as an automatic scheduler
and operator of Os. Because of this relationship between HASP
and the Operating System, various other functional, performance
and operational benefits can be included in HASP.

The use of HASP offers an installation the following advantages:

• IMPROVED PERFORMANCE - In many cases, because of the
singular, specialized use of resources by HASP, system
performance may be improved. Any improvement is dependent
upon the configuration and job mix and can only be deter­
mined by actual measurement. (See Section 2 of this manual
for additional details.)

• IMPROVED OPERATIONAL PROCEDURES - HASP acts as an automatic
interface between the operator and OS, to perform various OS
control functions previously done directly by the operator.
Readers, Writers and Initiators in OS are started and sched­
uled automatically by HASP. Also, many additional operator
commands for controlling job flow and device operation are
provided by HASP. (See Section 11 of this manual for
additional details.)

• INCREASED SYSTEM FUNCTION - The use of HASP provides certain
functions which are not otherwise available. These include
dynamic task ordering based upon CPU - I/O characteristics
(see Section 2 for additional details); the inclusion of
relevant console messages in each job's output (see Section 7
for additional details); the capability of any job to intro­
duce another job into the HASP queue via an internal reader
(see Section 12.10 for additional details); an execution
batching facility to pass jobs directly to a processing pro­
gram such. as a one-step monitor (see Section 12.13 for addi~
tional details); many additional operational control functions
(~ee Section 11 for additional details); a priority aging
technique (see Section 4.22 for additional details); a pre­
execution volume fetch facility (see Section 11 for additional
details); and various other functional enhancements.

• RESOURCE REDUCTION - Because of the dynamic direct-access
allocation techniques utilized by HASP; installations may, in
general, reduce the number of direct-access volumes required

Introduction - Page 1.0-1

1

II ASP

for SPOOLing functions as compared with a non-HASP SYSTEM.
The size of the OS SYSI.SYSJOBQE data set may also be
reduced since all job queueing is performed by HASP.

Certain installations may actually reduce system main storage
requirements (increase problem program space available) by
adding HASP to their system because of the OS functions
replaced by HASP. In any case, the space required for the
HASP partition or region will be at least partially compen­
sated for by the elimination of duplicate functions.

• LOW-ENTRY, HIGH-PERFORMANCE REMOTE JOB ENTRY - For a nominal
increase in the size of HASP, an installation can utilize the
HASP RJE support for a wide variety of workstation devices.
Support for Binary-Synchronous, CPU workstations employs an
advanced technique called MULTI-LEAVING which provides for
simultaneous operation of all devices on a remote workstation.
A subset of the HASP operator command language is provided to
all remote sites. Workstation programs are supplied for all
supported CPU workstations. (See Section 12.11 for addition­
al details.)

• TRANSPARENT OPERATIONS - HASP is, in general, transparent to
both the Operating System and to user programs. Although
a special SYSGEN is required, no actual modifications to as
are required to utilize HASP. Thus, the same generation of
OS may be interchangeably used with or without HASP. Because
of this transparency, HASP is generally independent of the
OS release level or options selected and can be used as a
stable base for local modifications to customize for local
operational requirements.

Most standard jobs which operate under as can be run with
absolutely no change in a HASP environment. Most installations
can, therefore, implement HASP with little or no changes to
current user programs.

Introduction - Page 1.0-2

2

HAS P

2.0 GENERAL DESCRIPTION

HASP is a specialized program which operates in the same CPU
with OS/360 to perform the peripheral functions associated with
batch job processing.

HASP is loaded as a normal OS/360 program and upon gaining
control enters the supervisor mode via a special SVC routine.
Control of all on-line unit record devices is assumed, the
designated intermediate storage direct-access device(s) are
initialized and job processing begins. The basic interface be­
tween HASP and OS/360 is through the Input-Output Supervisor (lOS).
The entry point of lOS is modified so that Input-Output requests
to unit record devices are diverted to HASP rather than being
physically executed by lOS. Jobs which have been previously read
from physical input devices by HASP can now be passed to OS by
simulating a successful completion of the intercepted I/O request.
In a similar manner, print and ~unch output from jobs being pro­
cessed by OS/360 can be intercepted and queued on intermediate
storage for later transcription to unit record devices.

HASP has four major processing stages which account for its four
major external functions. These are:

1. INPUT STAGE - This stage reads jobs simultaneously from an
essentially unlimited number of various types of on-line
card readers, tapes and remote terminals into the system.
These jobs are then entered into a priority queue by job
class to await processing by the next stage.

2. EXECUTION STAGE - This stage removes jobs based upon priority
and class from the queue established by the Input stage and
passes those jobs to OS/360 for processing. Input cards are
supplied as required to the executing program and print and
punch records are received and written onto HASP intermediate
storage. This stage can simultaneously control an essentially
unlimited number of jobs being processed by OS/360. At the
completion of a job, it is placed in a queue to await pro­
cessing by the next stage.

3. PRINT STAGE - The purpose of this stage is to transcribe the
printed output generated by jobs in the previous stage to
printers. An essentially unlimited number of various types
of printers and remote terminals can be operated simultaneously.

4. PUNCH STAGE - This stage transcribes the punch output generated
by jobs in the execution phase to punches. An essentially
unlimited number of various types of punches and remote
terminals can be operated simultaneously.

General Description - Page 2.0-1

3

HAS P

All of the these processes are controlled by re-entrable code
so that no additional code is required to support multiple,
simultaneous functions. Since all of the above functions can
occur simultaneously and asynchronously, a continuous flow of
jobs may pass through the system.

Following are some of the more significant algorithms employed
by HASP to improve function and performance:

• SPECIALIZED DIRECT-ACCESS STORAGE ALLOCATION

HASP, through the use of an allocation bit map in main
storage, dynamically allocates space for intermediate
storage on a record basis, within definable track groups,
for jobs. The use of this technique offers the following
advantages:

1. Disk-arm motion and interference is minimized by
dynamically allocating space based upon the position
of the access mechanism.

2. Disk area fragmentation is automatically eliminated
by allocation of the smallest possible increment of
space.

3. The data for a single data set can be spread across
multiple direct-access volumes. In addition to further
optimizing arm motion, this capability allows for the
simultaneous use of multiple selector channels to
increase the data rate for a given job.

4. Since space is allocated only when required, there
will be no unused space as a result of over estimated
output requirements.

5. The release of previously used space is accomplished
by a simple algorithm which requires no I/O operations.

• UNIT RECORD DEVICE COMMAND CHAINING

While operating any reader, printer or punch, rather than
handling each record separately, HASP constructs a chained
sequence of channel command words to pass to the channel.
Thus, instead of the overhead of an EXCP and the ensuing
interrupts for each record transmitted, only one EXCP and
associated interrupt is required for a series of records.
For example, when reading a job into the system, HASP might
chain 40 commands together to instruct a card reader. This

General Description - Page 2.0-2

4

HAS P

would cause the next 40 cards to be read irito memory without
requiring the execution of any CPU instructions.

• TRANSPARENT BLOCKING

All input, print and punch for every job is automatically
blocked by HASP to improve performance. Since all deblocking
is also done by HASP, any program even if designed to operate
with unblocked records can benefit from the blocking. Also,
because all blocking and deblocking is done by HASP, problem
programs require buffers only the size of a single card or
line. This can reduce a program's partition or region require­
ment by several thousand bytes over normal full track blocking.

• DYNAMIC BUFFER POOL

HASP maintains a dynamic area of memory which is allocated as
required. This technique allows not only multiple data sets
of a job, but multiple jobs to share this area, thereby
insuring optimum use of storage.

• EXECUTION TASK MONITOR

A significant item contributing to system performance is the
correct ordering of dispatching priorities of jobs in rela­
tion to their CPU-I/O utilization ratios. It is obviously
straightforward to manually set the dispatching priorities
of two jobs, one of which is completely I/O-bound and the
other completely CPU-bound. It becomes more difficult to
determine relative priorities of multiple jobs with varying
degrees of CPU-I/O ratios and impossible to determine prior­
ites for multiple jobs which constantly change from CPU to
I/O bound or vice versa.

HASP provides a feature which, at frequent intervals, examines
each eligible job and dynamically re-orders the OS dispatching
chain based upon the measured CPU-I/O characteristics of the
jobs during the previous interval. This capability relieves
an installation of the responsibility of attempting to assign
job dispatching priorities while insuring the optimum ordering.
of jobs being processed by the Operating System.

General Description - Page 2.0-3

5

HAS P

(The remainder of this page intentionally left blank.)

6

HASP

3 .0 HASP STRUCTURE

The primary goal in the design of any execution support system such

as HASP must be the efficient manipulation of the various resources

required for processing. The first design steps must then include the

determination of what resources will be required and the careful application

of sound programming design techniques to achieve an efficient and

consistent solution to the allocation of these resources.

A study would reveal that HASP requires the following resources:

1 . Main Storage

2 • Direct-Access Space

3 • Input/Output Units

4. Central Processing Unit Time

5. Input/Output Channel and Unit Time

6. Programs

7. Jobs

8. Interval Timer

Since these resources are essentially the basic facilities provided by

the Operating System I it would at first seem that these facilities would

be sufficient to meet the requirements of HASP. Further studies show,

however, that the philosophie-s of the Operating System's services are not

always consistent with the deSign requirements of a system such as HASP.

HASP Structure - Page 3.0-1

7

HASP

For instance I the main storage services provided by the Operating

System are very flexible and comprehensive but fail to meet the require­

ments of HASP in the following areas:

• As requests for main storage are serviced I memory becomes

fragmented in such a way that eventually a request for

storage cannot be serviced for lack of contiguous memory

even though the total amount of storage available far

exceeds the requested quantity.

• As the amount of available storage decreases I the

requestor becomes more susceptible to being placed in

an OS WAIT state or being ABENDed. These conditions are

both intolerable to HASP.

• The primary use of main storage in HASP is for buffering

space for input/output purposes. These input/output pur­

poses require that an Input/Output Block be associated

with each segment of main storage which the Operating

System Main Storage Supervisor I only naturally I does not

provide. This means that HASP would have to construct

such a block for each main storage segment it required.

HASP Structure -Page 3.0-2

8

HASP

In a similar fashion the Direct-Access Device Space Manager

(DADSM) provides flexible and comprehensive services for normal

job processing requirements but fails to meet the requirements of

HASP in the following areas:

• Because of the data set concept employed by DADSM,

the "hashing" or "fragmentation" problem described

above also impacts the allocation of direct-access

space.

• The data set concept complicates the simultaneous

allocation of storage acros s many volumes (for

selector channel overlap).

• The DADSM limit of extents per volume tends to cause

volume switching, and the as sociated time delays are

intolerable to HASP.

• DADSM consists of non-resident routines which must

be loaded for each direct-access space allocation

service. Because of the frequent allocation requirements,

the associated overhead involved in the loading of these

routines would degrade the performance of HASP to a

certain extent.

HASP Structure - Page 3.0-3

9

HASP

Since the unit-record input/output units which the scheduler

allocates to the jobs being processed in other partitions must be

available for use by HASP I HASP must be responsible for the allo­

cation of its own input/output units.

The Operating System Task Supervisor is responsible for the

allocation of Central Processing Unit (CPU) time to all tasks in the

system. The different functions of HASP (reading cards I printing I

punching, etc.) could be defined as individual OS tasks except

for the following considerations:

• Defining each function as a separate task would

prohibit HASP from being used with anything other

than a variable-task system.

• Inter-task communication and synchronization is

many times more complex than intra-task commu­

nication and synchronization.

The Operating System Input/Output Supervisor is responsible

for the allocation of all input/output channel and unit time. It

completely meets all requirements and is used by HASP for all

input/output scheduling.

HASP Structure - Page 3.0-4

HASP

The Operating System Interval Timer Supervisor provides complete

interval timer management services but limits these services to one

user per task. Since HASP has many functions which have simultaneous

interval timer requirements, an interface must be provided which will

grant unlimited access to the OS Interval Timer Supervisor.

The following sections describe, in detail, the allocation techniques

and algorithms used in HASP to provide the allocation of the resources

listed above.

HASP Structure - Page 3.0- 5

11

HAS P

3.1 ALLOCATION OF MAIN STORAGE

The main storage requirements of HASP are as follows:

• Storage space for buffering card images and print lines

between intermediate direct-access storage devices

and unit-record devices.

• Storage space for normally non-resident control tables

during times when they are resident in main storage.

• Storage for console messages which have been queued

for output to or input from one or more operator consoles.

• Storage for elements which reflect the status of all jobs

which are queued for any stage of processing by HASP.

• Storage space for non-resident processing routines (over­

lays) during times when they are in main storage.

The HASP Buffer Pool

The first two requirements for main storage are provided for by the

HASP Buffer Pool, a group of buffers with the following basic format:

Allocation of Main Storage - Page 3.1-1

HAS P

Input/Output
Block
(IOB)

buffer control
information

buffer
work
space

Figure 3. 1 • 1 - The HASP Buffer

Since the use of this buffer always involves some input/output

activity I a standard Operating System Input/Output Block (lOB) is pro-

vided with each buffer for the purpose of being used to initiate this

input/output activity.

The "buffer control information ll area is an extension of the lOB used

by HASP for input/output synchronization.

The "buffer work space" is a fixed-length (set by HASPGEN) area into

which data is read and/or out of which data is written.

In addition to a fixed number of buffers (set in accordance with region

or partition size) I the buffer pool contains a one-word control field called

the Buffer Pool Control Block which contains the address of the first avail-

able buffer in the buffer pool. Each available buffer contains the addres s

Allocation of Main Storage - Page 3. 1-2

13

HASP

of the next available buffer with the last available buffer containing a

zero address. If no buffers are available, the Buffer Pool Control

Block contains zero.

The above technique is called .II chaining, II the buffers are said

to be "chained," and the field containing the addres s of the next

element in the chain is referred to as the "chain field. II Chaining

is used throughout HASP for the maintenance of resources.

To obtain an available buffer from the buffer pool, the Buffer Pool

Control Block is tested for an available buffer. If one exists it is

removed from the available chain by moving its chain address into the

pool control block.

To release a buffer to the available chain, the contents of the

pool control block are moved to the chain field of the buffer I and the

addres s of the buffer is placed in the pool control block.

The Console Message Buffer Pool

The third requirement for main storage is provided for by the

Console Message Buffer Pool. This buffer pool is organized similarly

to the HASP Buffer Pool except for the format of the buffers which is

as follows:

Allocation of Main Storage - Page 3.1-3

14

HASP

chain field

work
space

/

Figure 3.1.2 - The Console Message Buffer

Since rOB's are provided for each console, it is not necessary to

provide such a control block with each buffer.

The length of the work space is consistent with the maximum

length of a console message.

Buffers in this buffer pool are obtained and released by exactly

the same procedure used in the HASP Buffer Pool.

The HASP Job Queue

The fourth requirement is provided for by the HASP Job Queue.

For more information about this facility see section 3.6.

Allocation of Main Storage - Page 3.1-4

15

The HASP Overlay Area Pool

The HASP Overlay Area is similar to the HASP Buffer in format;

however I the size of the "work space" is set to accommodate the

largest non-resident HASP control-section (CSECT). Although the

fixed number of overlay areas (set by HASPGEN) are chained together I

control fields indicate the area status and contents for the purpose

of sharing areas containing the same CSECT or for selecting an area

to overlay with a new CSECT.

Allocation of Main Storage - Page 3. 1- 5

16

HAS P

3.2 ALLOCATION OF DIRECT-ACCESS SPACE

The direct-access allocation technique employed by HASP must
meet the following requirements:

• It must use a minimum of CPU time.

• It must not use an excessive amount of main storage.

• It must not be susceptible to the "hashing" or
"fragmentation" problem.

• It must be capable of allocating for any direct-access
device which is supported by Operating System/360.

• It must be device transparent to the user.

• It must be consistent with the checkpoint/restart
technique used by HASP.

The HASP Track Address

The standard Operating System track address is defined to be an
eight-byte field with the following format:

where: M = Module
BB = Bin
CC = Cylinder
HH = Head
R = Record

Figure 3.2.1 - The Operating System Track Address Format

For the purpose of HASP, this track address can be reduced to a
four-byte field with the following format:

where: M
TT
R

= Module (DEB extent number)
= True Track Number
= Record

Figure 3.2.2 - The HASP Track Address Format

Allocation of Direct-Access Space - Page 3.2-1

17

HAS P

The reduction in the length of the track address permits it to
be kept ina single word of storage or in a general purpose
register simplifying the handling of the track address.

The HASP Master Track Group Map

The HASP Master Track Group Map is a table which represents the
sum total of all track groups or logical cylinders available on
all HASP direct-access SPOOL volumes. (A track group contains
one or more tracks which are considered a single resource.)
Each bit in the HASP Master Track Group Map represents a single
track group on one direct-access volume. If the bit is one, it
indicates that the corresponding logical cylinder is available
for allocation; if the bit is zero, the logical cylinder is not
available to HASP or has already been allocated by HASP.

The HASP Job Track Group Map

The HASP Job Track Group Map is identical to the HASP Master Track
Group Map except that one word has been added to the front to save
the last track address which was allocated to the particular job
with which the map is associated. The bits in the Job Track Group
Map represent the same track groups as the bits in the Master Track
Group Map except that a one bit indicates that the respective track
group has been allocated to the associated job and a zero indicates
that the group has not been allocated to the job.

last track address

track group

Figure 3.2.3 - The HASP Job Track Group

Two Job Track Group Maps are associated with each job. One repre­
sents the track groups used to contain the input data (SYSIN),
and the other represents the groups used to contain the output
data (SYSPRINT and SYSPUNCH).

Allocation of Direct-Access Space - Page 3.2-2

.18

HAS P

Direct-Access Space Allocation Procedures

When the direct-access space allocation subroutine is entered, it
first examines the first four bytes of the appropriate Job Track
Group Map to determine if a new track group is required. A new
group is required whenever no tracks have been allocated to this
job (the last track address is zero) or if all of the tracks in
the last group allocated have been used.

If a new track group is not required, the record or head field of
the last track address is incremented to provide a new track
address.

If a new track group must be allocated, the Master Track Group
Map is scanned for an available group. When the next group to
be allocated is determined, the appropriate bit in the Master Track
Group Map is set to zero, and the corresponding bit in the Job
Track Group Map is set to one. A track address is then constructed
to represent the first track in the new group, and this track
address is saved in the first four bytes of the Job Track Group Map.

When any direct-access input/output operation is initiated by HASP,
the HASP I/O interface saves the cylinder which was referenced
by module. When a new track group must be allocated, the allo­
cation routine first tries to allocate a group corresponding to
the last cylinder referenced on each module. If these groups are
not available, the routine attempts to allocate within one cylinder
of the last references. If track groups within these cylinders are
not available, the routine tries to allocate a group within two
cylinders, and so on, until the entire track group map has been
examined.

Direct-Access Space De-Allocation Procedure

To de-allocate the direct-access space allocated to a particular
function, it is necessary only to "OR" the track group map portion
of the Job Track Group Map associated with the particular function
into the Master Track Group Map. This will reset to one all bits
in the Master Track Group Map which correspond to the track groups
which have been allocated to the particular function.

Allocation of Direct-Access Space - Page 3.2-3

19

HASP

3.3 ALLOCATION OF INPUT/OUTPUT UNITS

The HASP Device Control Table (DCT) is used by HASP to allocate

all input/output units. It has the following basic format:

status

device type

other
control

information

device name

work
space

Figure 3.3.1 - The HASP Device Control Table (DCT)

The "status II field is used to indicate whether the device is available

and whether it is in use.

The "device type" field specifies whether this DCT represents a card

reader I printer I punch I or other type of I/O device.

The "other control information" field contains such information as

the Data Control Block (DCB) address I the chain address I indications of

operator commands I and other fields for. synchronization purposes.

Allocation of Input/Output Units - Page 3.3-1

20

HAS P

The "device name" field contains an eight-byte EBCDIC device

name (such as READER1) which is primarily used for console messages.

The "work space" is a device dependent area used by some devices

for extended control of the device.

All DCT's are chained together for allocation purposes. Theyare

initialized by the HASP initialization phase if the associated devices

are attached to the system.

Input/Output Device allocation consists of "running" the DCT

chain and looking for a DCT of the specified type which is available

and which has not been allocated. If one is found, the" in use" bit

is set to one to indicate that the device has been allocated.

De-allocation consists of setting the II in use" bit to zero.

The Device Control Table is also used as a parameter list whenever

Input/Output activity is initiated through the HASP I/O interface.

Allocation of Input/Output Units - Page 3.3- 2
21

HASP

3 .4 ALLOCATION OF CENTRAL PROCESSING UNIT TIME

The Operating System controls the allocation of Central Processing

Unit (CPU) time to different tasks through the means of a Task Control

Block (TCB) chain. In a similar fashion, HASP controls the allocation

of CPU time to the different functions within HASP through the means

of a Processor Control Element (PCE) chain. The basic format of the

Processor Control Element is as follows:

as
save
area

event wait field

chain field

processor
work

space

Figure 3.4.1 - HASP Processor Control Element (PCE)

Whenever a particular function is being processed, general purpose

register 13 always contains the address of the Processor Control Element

which is allocating the time to that function. For this reason the first

eighteen words of the PCE are a standard as register save area.

Allocation of Central Proc'es sing Unit Time - Page 3.4'""1

22

HAS P

The "event wait field" is a two-byte field which describes the

dispatchability of the function under the control of this PCE. If this

field is zero, the function is dis patchable. If this field is non- zero,

the function is not dispatchable and the bit which is one specifies

upon what event the function is "waiting ".

The "chain field" contains the addres s of the next PCE in the PCE

chain.

The" processor work space" is a variable length area which is used

by the program processing the function as a scratch area.

HASP searches the PCE chain looking for a PCE which is dispatchable.

When a dispatchable PCE is located, the general purpose registers are

loaded from the PCE/OS save area and control is passed to the location

specified in register 15.

When control is returned to the dispatching program I the general pur­

pose registers are saved in the PCE and the search for dispatchable PCEs

continues. If a notable event occurred since the last PCE dispatch such

as the freeing of a common resource or the "posting" of a specific event,

the search starts at the beginning of the PCE chain; otherwise, it starts

with the PCE following the last dispatched. The program returning control

to the dispatching program must set the return address in register 15 before

returning.

When no PCEs are found to be dispatchable I the HASP task enters an·

as WAIT state to allow the Operating System to allocate CPU time to other

tasks.

Allocation of Central Processing Unit Time - Page 3.4-2

23

HAS P

3.5 ALLOCATION OF PROGRAMS
i

The programs of which HASP is composed can be divided into

the following classifications:

• The Dispatcher

• Processors

• Control Service Programs

• Miscellaneous Programs

The Dispatcher is the dispatching program described in Section

3.4. Its function is to distribute CPU time among the various processors

described below.

Processors are programs which control the execution of various HASP

functions such as reading cards I printing, punching, etc. With each

processor is always associated at least one Processor Control Element

which causes the dispatcher to give control to the-processor and allows

the processor to synchronize with various HASP events. The PCE work

space also permits the processors to be written re-enterably such that by

defining more than one PCE for a given processor, the processor can control

an essentially unlimited number of functions simultaneously. For instance,

by defining ten PCEs for the Print Processor I up to ten printers can be ser-

viced simultaneously utilizing and requiring only one copy of the processing

program.

Allocation of Programs - Page 3.5-1

24

HASP

The Control Service Programs are subroutines used by the processors

in accomplishing their functions. By using the peE/OS save area, the

control service programs can maintain the re-enterability of the

proces sors .

Miscellaneous Programs are those special purpose programs which

do not fall into any of the other thre.e categories I such as the HASP

Initialization Program. They are executed only once and need not be

considered in the normal HASP job flow .

Allocation of Programs - Page 3.5-2

25

HASP

3.6 ALLOCATION OF JOBS

HASP maintains its job pointers in the HASP Job Queue, a table of

elements with the following basic format:

priority

type

job number

chain address

JCT track

Figure 3.6. 1 - The HASP Job Queue Element

The "priority" represents the dynamic priority of the job within the

HASP system.

The "type" represents the function for which the element is queued

or the function in which the job is currently being processed.

The "job number" is the number sequentially assigned to each job

by HASP as it enters the system.

The "chain address" is the address of the next element in the chain.

Allocation of Jobs. - Page 3. 6-1

26

HASP

The" JCT track II is the track address of the HASP Job Control Table

described below.

Two chains are maintained in the Job Queue. The first chain

represents those jobs which are currently awaiting processing or being

processed. Elements in this chain are chained in the order of their

priority. The second chain represents the inactive or unused queue

elements.

To add a job to the job queue I a queue element is obtained from

the inactive chain I initialized with the information shown in figure

3.6.1, and inserted into the active chain according to its priority.

To obtain a job from the job queue, the active chain is searched

for an element of the specified type. When found I the "type" field is

modified to reflect the fact that the job is now being processed 8

To return a job to the job queue I the element is moved from the

active chain to the inactive chain c Since the priority is of no concern

here I the element is placed at the head of the chain.

The HASP Job Control Table {JCTl

The HASP Job Control Table contains all of the information neces sary

to process the associated job in the following basic format:

Allocation of Jobs - Page 3.6-2

27

HAS P

data from
JOB Card

accounting
information

first input track

input job
track group map

output job
track group map

work space

output data
set tracks

Figure 3.6.2 - The HASP Job Control Table (JCT)

The HASP Job Control Table is normally resident on a direct-access

intermediate storage device. Once the HASP Job Queue Element is

obtained I the "JCT track II in the element can be used to initiate a read

into a HASP Buffer. Once this read has been completed I all information

necessary to process the job can then be obtained.

Allocation of Jobs - Page 3. 6- 3

28

HAS P

3.7 ALLOCATION OF OVERLAY AREAS AND NON-RESIDENT CONTROL SECTIONS

Portions of the various programs of which HASP is composed are
organized into non-resident control sections (CSECTs) and stored
in an overlay library (OLAYLIB) on a direct-access volume. These
control sections contain HASP re-entrant subroutines and/or data
which may be requested for use by a Processor.

The user obtains an Overlay Area by requesting from the overlay
control service program for use of a non-resident CSECT. If the
CSECT requested is in main storage, the user is allowed to use
the Overlay Area for processing. If, however, the CSECT is not
already in an area, an area must be selected to hold the requested
CSECT. The requesting Processor is made to "wait" until the
requested CSECT is read from direct-access into main storage.

The algorithms for Overlay Area allocation cause multiple users
of the same CSECT to use only one area, into which that CSECT is
read. Competition for areas is resolved partially by the priority
associated with each overlay CSECT. However, a "pre-empting"
(roll) algorithm prevents any Processor from being indefinitely
delayed, even if the system has only one Overlay Area.

The user releases an Overlay Area by requesting that overlay
services remove his PCE from association with the area.

Allocation of Overlay Areas - Page 3.7-1

'10

HAS P

(The remainder of this page intentionally left blank.)

30

HAS P

4.0 HASP PROCESSORS

This section contains detailed internal information about each of
the HASP Processors and is intended primarily for use by system
programmers.

HASP Processors -- Page 4.0-1

31

HAS P

4.1 INPUT SERVICE PROCESSOR

4.1.1 INPUT SERVICE PROCESSOR - GENERAL DESCRIPTION

The functions of the Input Service Processor are as follows:

To read card images from an input device.

To detect and scan JOB cards, extracting parameters for
job accounting, job control, and print and punch identi­
fication.

To detect and process other control cards such as the
PRIORITY, MESSAGE, ROUTE, SETUP, COMMAND, DD*, and DD
DATA cards.

To assign a unique HASP job number to each job.

To log jobs into the HASP System.

To assign job priority based upon PRIORITY card or JOB
card parameters.

To generate, from cards read, a JCL file and input data
files, and to record these files on direct-access storage
device(s) for later use by the Execution Control Processor
(see Section 4.2).

To generate HASP Job Control Tables, Job Queue Entries,
and other HASP control blocks required for later job proces­
sing.

To queue jobs for processing by the Execution Control
Processor.

The Input Service Processor is coded re-enterably in such a
way that it can accept jobs from a number of different input
devices (with different hardware characteristics) simUltane­
ously. The re-enterability is attained by retaining all
storage unique to a job in the Processor Control Element
(see figure 4.1.1) which must be unique for each input device.

4.1.2 INPUT SERVICE PROCESSOR - PROGRAM LOGIC

The Input Service Processor is divided into three phases, 13
subroutines, and three non-process exits. This section will
give a functional description of each of these phases, sub­
routines, and exits to aid the System Programmer in gaining
a working knowledge of the processor.

Input Service Processor - Page 4.1-1

32

H. ASP

PHASES

Phase 1 - Processor Initialization

The Initialization Phase, which is written as an overlay seg­
ment, begins by attempting to acquire an input device. If
no input device is available, the processor is placed in a
HASP $WAIT state until a device is made available; whereupon
the entire procedure is repeated until an input device is
available. Upon acquiring an available input device the
processor continues by acquiring a Device Control Table (DCT)
for the direct-access device(s) and a HASP buffer for use as
an input buffer.

If the input device is not a remote terminal, a chain of
Channel Control Words (CCW's) is then constructed in the
input buffer which will be used to read 80-byte records from
the input device into the rest of the input buffer. These
CCWs are constructed in such a way that the input records
will be read into adjacent areas in the input buffer with as
many cards being read as the buffer will hold. The initiali­
zation of the PCE Work Area is then completed and control is
transferred to Phase 2.

If the input device is a remote terminal, transmission is
initiated by calling upon the Remote Terminal Access Method
to open the Remote Terminal Device Control Table. Control
is then passed to Phase 2.

Phase 2 - Main Processor

The Main Processor Phase reads cards from the input device,
scans each card to detect HASP control cards and processes
these cards as follows:

/*control card--The control card scan routine (HASPRCCS) is
called to process the control card and take any appropriate
action.

Job Card--The JOB card scan routine (HASPRJCS) is called to
terminate the previous job (if any), to scan the JOB Card,
and to initialize the PCE work area for the processing of
the following job.

DD* or DD DATA--A track address is obtained for the first
data block of the input data set. A dummy card is added to
the JCL file which contains the track address in columns 1-4.

Input Service Processor - Page 4.1-2

33

HAS P

This card is differentiated from other cards by setting the
control byte (see figure 8.15.1). The DD* or DD DATA state­
ment is then added to the JCL file in normal fashion. Control
is subsequently turned back to the main processor to process
the input data.

When a hardware end-of-file is detected on the input device,
or when "$DRAIN input device" command is entered by the opera­
tor, control is given to Phase 3.

Phase 3 - Processor Termination

Upon receiving control from the Main Processor, the Processor
Termination Phase, which is written as an overlay segment,
terminates the last job (if any), issues a rewind and unload
command to the input device if it is tape, frees the input
buffer, closes the input DCT if it is a Remote Device, releases
the input and direct-access devices, and returns control to
Phase 1.

SUBROUTINES

HASPRCCS -- Subroutine to Process HASP /* Control Cards

The HASPRCCS subroutine, which is written as an overlay seg­
ment, is called whenever the Main Processor Phase encounters
a /* control card. The control card type is first determined
and then processing continues as follows:

/*COMMAND Card -- The command is listed on the opera­
tor's console and then added to the Command Processor's
input command queue.

/*PRIORITY Card -- The previous job (if any) is termina­
ted, the priority specified is converted to binary and
saved, and the scan is continued with the next card.
If the following card is not a JOB card, the message,
"device SKIPPING FOR JOB CARD", is written on the
operator's console, the effect of the /*PRIORITY Card
is nullified, and the input stream is scanned for
another /*PRIORITY or JOB card.

/*ROUTE Card -- The appropriate routing byte is set to
the value associated with the destination indicated.
If an invalid field is encountered, an appropriate mes­
sage is issued, both to the .operator. and to the programmer,
and further job processing is bypassed.

Input Service Processor - Page 4.1-3

34

HAS P

/*SETUP Card -- The volumes to be mounted are listed on
the operator's console and the job is placed in "hold"
status.

/*MESSAGE Card -- Leading and trailing blanks are removed
and the message is routed to the operator's console.

If the control card type is not recognized, the card is ignored
and treated like any other /* card.

HASPRJCS--Subroutine to Scan and Initialize Job Control Information

The HASPRJCS subroutine, which is written as an overlay segment,
is called whenever the Main Processor Phase encounters a JOB card.
The previous job (if any) is terminated by calling the RJOBEND
subroutine. The master job number is incremented and its new
value is assigned to the current job. The job control informa­
tion in the PCE Work Area (see figure 4.1.1) is initialized by
scanning the JOB card and extracting parameters relative to job
control. The first JCL block is initiated, and control is passed
to the Job Initialization Subroutine: HASPRJBI.

RSCAN - RSCANA -- Subroutine to Scan Parameters from JOB Card

This subroutine has two entry points; the entry point: "RSCAN"
is used to scan numeric parameters' from the JOB card, while the
entry point: "RSCANA" is used to scan alphameric parameters from
the JOB card. There are also two returns from the subroutine.
If return is made to the first byte following the Branch and Link
(the call) instruction, it indicates that the final parameter on
the JOB card was returned on the previous call and that there are
no more parameters. If return is made to the fourth byte follow­
ing the Branch and Link instruction, it indicates that parameter
register "RI" contains the next parameter, right-adjusted with
leading binary zeroes. If the parameter was a "null" parameter,
"RI" will be zero. If this subroutine detects an illegal char­
acter (such as a non-numeric character in a numeric field) or
more than four characters in a parameter, control is transferred
to the RBADJOBC subroutine.

RCONTNUE -- Subroutine to Validate Continuation Cards

This subroutine validates JCL continuation cards by ensuring
that columns I and 2 are punched with slashes and that column 3
is blank. The start of the continuation card is located and

Input Service Processor - Page 4.1-4

H. ASP

control is returned to the caller. If an invalid continuation
card is discovered, control is passed to the illegal job card
subroutine for further processing.

REBCDBIN -- Subroutine to Convert from EBCDIC to Binary

This subroutine expects to find numeric EBCDIC characters with
leading binary zeroes in parameter register "RI". There are
two returns from the subroutine. If return is made to the
first byte following the Branch and Link (the call) instruction,
it indicates that the parameter register now contains the binary
equivalent of the EBCDIC input. If return is made to the fourth
byte following the Branch and Link instruction, it indicates
that the parameter register was zero (null parameter) and con­
tained no EBCDIC to translate.

HASPRJBI -- Subroutine to Initialize Job Processing

This subroutine, which is written as an overlay segment, re­
ceives control from the JOB Card Scan Routine (HASPRJCS) and
completes the initialization of the various control blocks for
input job processing. A "job on" message is issued to the
operator, the job's priority is assigned based upon JOB card
or /*PRIORITY card parameters, and the job is queued in the
active input queue. Control is then returned to the Main Proces­
sor Phase.

RBADJOBC -- HASPRIJC -- Subroutine to Process Illegal Job Cards

This subroutine notifies the operator of an illegal JOB card,
calls the subroutine: "RJOBKILL" to delete the job, and returns
control to the Main Processor Phase.

RJOBEND -- Subroutine to Complete Job Input Processing

This subroutine tests whether the Input Processor is currently
processing a. job, and if it is not, returns control immediately.
The RJOBTERM subroutine is called to terminate the input proces­
sing of the job, and the job is queued for the Execution Control
Processor in the logical queue associated with the job's JOB
CLASS. Control is then returned to the calling program.

Input Service Processor - Page 4.1-5

36

HAS P

RGET -- Subroutine to Get Next Card from Input Buffer

This subroutine returns the address of the next card to be pro­
cessed by the Input Service Processor in register "RPI". If
the input buffer is empty or if all the cards in the input
buffer have been processed, an lOS read is staged from the input
device and the subroutine places the processor in a HASP $WAIT
state until the input buffer has been filled. If the input
device is a remote terminal, a "call" is made on the Remote
Terminal Access Method to procure the next card. If a permanent
error is detected on the input device, no action is taken until
after the last card has been processed and then the JOB currently
being processed is deleted with appropriate comments to the oper­
ator. Processing then continues by scanning the input stream
for the next JOB card.

This subroutine also processes the operator commands n$STOP
input device" and "$DELETE input device" by entering the HASP
$WAIT state and calling the subroutine RJOBKILL to delete the
job, respectively.

There are two returns from the subroutine. If return is made
to the first byte following the Branch and Link (the call) in­
struction, it indicates that the last card has been processed
and that an end-of-file has been ~ensed on the input device.
If return is made to the fourth byte following the Branch and
Link, it indicates that register "RPI" contains the address of
the next qard.

RPUT -- RPUTOLAY -- Subroutine to Add Card to Output Buffer

This subroutine accepts 80-byte card images and blocks them
into standard HASP Data Blocks (see section 8.15). If the cur­
rent output buffer is full, it is truncated and scheduled for
output, and a new HASP buffer is acquired and used as the next
output buffer. If no output buffer exists upon entry, it indi­
cates that the processor is skipping for a JOB card and the
subroutine returns without taking any action.

RJOBKILL -- Subroutine.to Delete Current Job

This subroutine tests whether the input processor is currently
processing a job, and if it is not, returns control immediately.
If a job is being processed, the operator is notified that the
job is being deleted, the RJOBTERM subroutine is called to termi­
nate the input processing of the job, and the job is placed in
the Print Processor Queue for subsequent processing. Control i~
then returned to the calling program.

Input Service Processor - Page 4.1-6

37

HAS P

RJOBTERM-- Subroutine to Terminate Job

This subroutine terminates the last output buffer and schedules
it for output. It then acquires a HASP buffer, and from infor­
mation kept in the PCE Work Area (see figure 4.1.1) constructs
the Job Control Table (JCT) and schedules it for output. Con­
trol is then returned to the calling program.

RGETBUF -- Subroutine to Initialize Output Buffers

This subroutine acquires a HASP buffer for an output buffer and
returns with the address of the buffer in register "Rl".

NON-PROCESS EXITS

The following routines are used to put the Input Service Proces­
sor in a HASP $WAIT state if a HASP resource is not available.
In all cases Reader Link Register 2 ("RL2") must have been set
to the ,restart address before the routine is entered.

RNOUNIT -- A HASP Unit was not available.

RNOCMB

RNOJOB

A HASP Console Message Buffer was not available.

The HASP Job Queue was full and a new entry
could not be added.

When the respective resource is available, the processor is
$POSTed and another attempt is made to acquire the resource.

Input Service Processor - Page 4.1-7

38

HAS P

Figure 4.1.1 -- INPUT SERVICE PCE WORK AREA FORMAT

Displacement r----------------------- 4 bytes ----------------~-------1 Hex. Dec. -- --
58 88 RDRDCT

RCARDID I
Address of Input Device Control Table

5C 92 RDADCT

RDRSW I
Address of Direct-Access OCT

60 96 RBI END

Address of Last Card in Input Buffer

64 100 RBONEXT

Address of Next Card in Output Buffer

68 104 RBOEND

Address of End of Output Buffer

6C 108 RLSAVEl

Link Register Save Word 1

70 112 RLSAVE2

Link Register Save Word 2

74 116 RLSAVE3

Link Register Save Word 3

78 120 RSAVE:L

General Purpose Save Word 1

7C 124 RSAVE2

General Purpose Save Word 2

80 128

Input Service Processor - Paqe 4.1-8

39

HAS P

Figure 4.1.1 -- INPUT SERVICE PCE WORK AREA FO~T (CONTINUED)

Displacement

Hex. Dec. r----------------------- 4 bytes ------------------------1

80 128 RJCLTRAK

Track Address of Next JCL Block

84 132 RME$SAGE

........ Reader Message Area

r 1
B8 184

B8 184 RJOB Address of Job Queue Element

RQUEPRI RQUETYPE RQUEJOBN Job Number

BC 188 RQUEFLAG RDRDLM

Job Queue RESERVED I.nput Data Set De11.miter
Flags

co 192 RQUETRK

Track Address of Job Control Table

I
C4

C8

RQUEPRTR RQUEFORM

Print Route Punch Route
RQUECLAS -I Print/Punch

Forms

196

200

Input Service Processor - Page 4.1-9

40

HAS P

Figure 4.1.1 -- INPUT SERVICE PCE WORK AREA FORMAT (CONTINUED)

Displacement

Hex. Dec.

C8 200

CC 204

DO 208

E4 228

EC 236

FO 240

F4 244

F8 248

FC 252

~-----------------------
I

------------------------., 4 bytes

RJCTJOBN RJCTPRIO

Job Number (Binary) Priority

RJCTJOBE

Job Number (EBCDIC)

RJCTPNAM

Programmer's Name from Job Card

RJCTJNAM

Job Name from Job Card

RJCTACTN

Job Accounting Number

RJCTROOM

Programmer's Room Number

RJCTETIM

Estimated Execution Time

RJCTCARD

Current Input Card Count

RJCTROUT

Input
Route Code

RJCTPNAL

programmer's
Name Length

I

.........

.... '"

-

t:il
H
IJ:l
~
~

H
0
~
~
Z
0
U

IJ:l
0
~

>t

~
~
a

Input Service Processor - Page 4.1-10

41

HAS P

Figure 4.1.1 -- INPUT SERVICE PCE WORK AREA FORMAT (CONTINUED)

Displacement

Hex. Dec.

FC 252

100 256

104 260

108 264'

lDC 268

110 272

114 276

118 280

llC 284

120 288

~----------------------- 4 bytes ------------------------~
RJCTESTL

Estimated Lines of Output

RJCTESTP

Estimated Number of Cards to be Punched

RJCTLINC RJCTCPYC RJCTLOG RJCTDDCT

Lines Print Log Option RJCTFLAG Per Page Copy Count Switch

RJCTFORM

Job Print Forms

Job Punch Forms

RJCTRDRO

Reader Sign-On Time

RJCTRDRT

Track Address of First JCL Block

RJCTCYMX

Maximum MTTR for Current Track Group

RJCTMTTR

Last MTTR Allocated

Input Service Processor - Page 4.1-11

42

HAS P

Figure 4.1.1 -- INPUT SERVICE PCE WORK AREA FORMAT (CONTINUED)

Displacement ~_______________________ 4 bytes

Hex. Dec. I ------------------------~
120 288

1 RJCTCYMA

Variable Length Track Allocation Map

I
1
Jl L-______________ ~------________________________________ ~

1 RTPCARD 1
r

aD-Byte Remote Job Entry Input Card Image Area I

'-------------..IJ

Input Service Processor - Page 4.1-12

43

HAS P

Figure 4.1.1 -- INPUT SERVICE PCE WORK AREA FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

58 88 RCARDID 1

58 88 RDRDCT 4

5C 92 RDRSW 1

SC 92 RDADCT

60 96 RBI END 4

64 100 RBONEXT 4

68 104 RBOEND 4

6C 108 RLSAVEl 4

70 112 RLSAVE2 4

74 116 RLSAVE3 4

Type of card being processed --

Hex.
Value Meaning

00 Normal Card.
03 Internally Generated Card.
04 HASP Control Card.
13 Illegal Control Card.
19 Last JCL Card.
73 Dummy Track Address Record.

Address of Reader, Tape, Internal
Reader, or Remote Device Control Table.

Reader Switches --

Bit

o
1

2

3
4
5
6
7

Name

RJOBQUED
RSYSINSW

RXBJOBSW

ROSINSW
RJCLSW
RDREOFSW
RNOSCAN
RJFLUSH

Meaning

Job has been Queued.
Processing Internally Gener­
ated DO * Card.

Processing XEQ Batch Class
Job.

Processing O/S Input Data Set.
Processing JCL.
End of File Indication.
Not Scanning JCL (DO DATA) •
Job Flush Message has not

been issued.

Address of Direct-Access Device Control
'fable.

Address of Last Card in Input Buffer.

Address of Next Card in Output Buffer.

Address of End of Output Buffer.

Link Register Save Word 1.

Link Register Save Word 2.

Link Register Save Word 3.

Input Service Processor - Page 4.1-13

44

HAS P

Figure 4.1.1 -- INPUT SERVICE PCE WORK AREA FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

78 120

7C 124

80 128

84 132

B8 184

B8 184

B9 185

BA 186

BC 188

BD 189

BE 190

co 192

C4 196

C5 197

C6 198

C6 198

C8 200

CA 202

RSAVEl 4

RSAVE2 4

RJCLTRAK 4

RMESSAGE 52

RJOB 4

RQUEPRI 1

Bits 0-3
Bits 4-7

RQUETYPE 1

RQUEJOBN 2

RQUEFLAG 1

1

RDRDLM 2

RQUETRK 4

RQUEPRTR 1

1

RQUECLAS 1

RQUEFORM 2

RJCTJOBN 2

RJCTPRIO 1

General Purpose Save Word 1.

General Purpose Save Word 2.

Track Address of Next JCL Block.

Reader Message Area.

Address of Job Queue Element
(when Job has been Queued) •

Job Queue Priority (Before Queueing)

Priority (0-15).
Zero.

Job Class - X'80' (Before Queueing).

Job Number (Before Queueing) •

Job Queue Flags

Bits Name Meaning

o QUEHOLDl Job Held: TYPRUN=HOLD
or Input Device Held.

1-7 Reserved.

Reserved.

Input Data Set Delimiter

Track Address of Job Control Table.

Print Routing: 0 = Local.
n = Remote n.

Punch Routing: 0 = Local.
n = Remote n.

Job Class - X'80' (After Queueing).

Job Print Forms (Before Queueing) •

Job Number (Binary) •

Priority from /*PRIORITY Card.

Input Service Processor - Page 4.1-14

45

HAS P

I "'''''1'T1 T"TTT14''n , , --.. _--,

Displacement Field Name Bytes Field Description
Hex. Dec.

CB 203

CC 204

CF 207

DO 208

E4 228

EC 236

FO 240

F4 244

F8 248

FC 252

100 256

104 260

105 261

106 262

107 263

107 263

108 264

10C 268

110 272

114 276

118 280

11C 284

RJCTROUT

RJCTJOBE

RJCTPNAL

RJCTPNAM

RJCTJNAM

RJCTACTN

RJCTROOM

RJCTETIM

RJCTCARD

RJCTESTL

RJCTESTP

RJCTLINC

RJCTCPYC

RJCTLOG

RJCTDDCT

RJCTFLAG

RJCTFORM

RJCTRDRO

RJCTRDRT

RJCTCYMX

RJCTMTIR

1 Input Route Code: 0 = Local.
n = Remote n.

3 Job Number (EBCDIC).

1 Programmer's Name Length.

20 Programmer's Name from Job Card.

8 Job Name from Job Card.

4 Job Accounting Number.

4 Programmer's Room Number.

4 Estimated Execution Time.

4 Current Input Card Count.

4 Estimated Lines of Output.

4 Estimated Number of Cards to be Punched.

1 Lines per Page.

1 Number of Copies of Print.

1 Log Option Switch.

1 Count of Input Data Sets SPOOLed by HASP.

1 JCT Flags.

4 Job Print Fonns.

4 Job Punch Forms.

4 Reader Sign-On Time.

4 Track Address of First JCL Block.

4 Maximum MTTR for Current Track Group.

4 Last MTTR Allocated.

Input Service Processor - Page 4.1-15

46

HAS P

Figure 4.1.1 -- INPUT SERVICE PCE WORK AREA FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

120 288 RJCTCYMA Variable Length Track Allocation Map.

RTPCARD 80 Remote Job Entry Input Card Image Area.

Input Service Processor - Page 4.1-16

A7

HASP

4.2 EXECUTION CONTROL PROCESSOR

4.2.1 Execution Control Processor - General Description

The Execution Control Processor is responsible for the interface

between HASP and OS/360. It presents jobs to the Operating System

for execution and communicates with the I/O supervisor to supply SYSIN

data for a job and to accept SYSPRINT and SYSPUNCH from a job for

later printing and punching.

This Processor is re-enterably coded and has the capability to

present any number of jobs to OS/360 for simultaneous execution by

maintaining unique INPUT/OUTPUT streams for each job. All storage

un"ique to a job is retained in the Processor Control Element (see

Figure 4.2.2) to provide re-enterability.

The Execution Control Processor is also responsible for monitoring

job limit excessions (such as time, line, or punched card estimates).

Jobs are selected for OS processing based on a logical partition structure

defined by HASPGEN. Each logical partition is controlled by a partition

information table (PIT) which indicates the eligibility of jobs for

execution by that logical partition. There is a direct correlation between

the HASP logical partition and the number of initiators active in the

system. Jobs thus selected for 08 processing are passed to a single

08/360 Reader/Interpreter which remains constantly STARTed to a

Execution Control Processor - Page 4.2-1

48

HASP

HASP pseudo device which appears ClS a 2540 card reader. Only the

Job Control Language statements of a job are passed to the R/I.

Input stream data sets I defined by DD * or DD DATA cards have been

previously transcribed to a SPOOL disk by the HASP input service

processor. The JCL for a job is dynamically modified by HASP to

assign pseudo unit record devices to all SYSIN and SYSOUT data sets

to permit interception by HASP. The job is interpreted by the R/I and

is placed in the OS job queue for immediate selection by an initiator.

At the completion of a job t s execution I it is placed in the OS SYSOUT

queue to be processed by an output writer. Because of the assignment

of pseudo unit record devices to all SYSOUT files I the output

writer is required only to "print" the System Message Blocks from

SYSI 0 SYSJOBQE. These 5MB· s are intercepted by HASP and are stored

on the SPOOL disks as another print data set. After receiving the

last 5MB I HASP terminates the XEQ phase I queues the job for the

HASP output processors and indicates that the logical partition requires

another job. All information concerning SYSIN and SYSOUT files

assigned to HASP pseudo devices is kept in Data Definition Table s

(DDT). There is a DDT for each active file of a job which indicates

buffer addresses I file status I record count I etc. and is correlated with

the proper file through the HASP pseudo device address.

Execution Control Processor - Page 4.2-2

49

HASP

4.2.2 Execution Control Processor - Program Logic

The Execution Control Processor (XEQ) consists of the three

following logical phases:

PHASE 1

PHASE 2

Job Control - Initiates and terminates job processing.

Asynchronous I/O Handler - Interfaces with OS/360

via the Input/Output Supervisor (lOS) to perform

SYSIN/SYSPRINT/SYSPUNCH I/O requests.

PHASE 3 - Synchronous I/O Handler - Performs the SPOOL I/O

required by Phase 2.

_ Figure 4.2. 1 indicates the relationship between these three phases and

OS/360.

An as execution is initiated by Phase 1 by obtaining a suitable job

from the HASP job queue and reading its Job Control Table from disk. Job

limit parameters are initialized and the status of the OS/360 R/I is interro­

gated. If the R/I is currently processing the input for another job, Phase 1

$WAITs until it has completed. A DDT describing the JCL file for the sel­

ected job is constructed and associated with the HASP pseudo 2540 used by

the R/I. The dormant R/I is then POSTed to signal the availability of

Execution Control Processor - Page 4.2-3

50

HASP

a job and control is trans ferred to Phase 3 to await I/O requirements

from Phase 2. The OS/360 Supervisor call table has been modified by

HASP initialization so that all I/O requests are diverted to Phase 2 of

the XEQ processor ~ If the I/O request thusly intercepted refers to a

HASP pseudo device I it is processed by HASP; otherwise it is passed

to the Operating System Input-Output Supervisor for normal processing.

Since XEQ has the capability to control the simultaneous execution of

many jobs I the PCE for the job issuing the I/O request to a pseudo

device must be identifiable. This is done by using a combination of

the JOB name and the TCB address (Job Step TCB for MVT). Once the

PCE is located I the DDT for this particular pseudo device is found by

the pseudo device address from the UCB. Phase 2 verifies that there

is a buffer still associated with the file and simulates the I/O request.

Each channel command word in the request is examined and I when a

data select type is recognized I the I/O operation is simulated by a

MOVE CHARACTERS to or from the current HASP buffer for that file.

Input requests are serviced by stripping (deblocking) the next card image

from the HASP buffer and moving it as indicated by the CCW. These

moves (only) are done while operating under the requesting program's

protect key to prevent an undetected protect violation by HASP I which

normally operates under protect key zero. Requirements for I/O

Execution Control Processor - Page 4.2-4

51

HASP

activities associated with Phase 2 processing are indicated by a series

of status bits in each DDT. Requests to get buffers, read buffers and

write buffers, are indicated in the appropriate DDT, Phase 3 of the

XEQ processor is $POSTed and the HASP task is POSTed. If the re­

quested activity must be completed before an I/O request can be

satisfied by Phase 2, the l/C requestor is made to WAIT. This is done

by saving the current CCW location and using the as WAIT routine to

hold the requestor. When the required I/O activity is complete, the

WAITing task is POSTed and the pseudo device I/O request is re-issued.

At the end of all successful I/O operations, the appropriate user

appendage (channel-end appendage, etc.) is entered, the I/O is

POSTed complete if required and a CSW is constructed to indicate the

normal I/O completion.

When Phase 3 of the Execution Processor is entered after initiation

of the job it immediately enters a HASP $WAIT state to await direction

from Phase 2. Upon being activated via a $POST from Phase 2 or by

a timer interrupt, this PHASE examines various status bits in the PCE

and DDT's to determine the required action. This action may be either

the priming of an input buffer, writing and re-initialization of an output

buffer, or the notification to the operator of expiration of the estimated

time of the job. An input buffer is primed by obtaining the track address

Execution Control Processor - Page 4.2- 5

52

HASP

of the next buffer from the current buffer and issuing a read for the record.

Status bits are set in the DDT to indicate that a read is in progress on

this buffer and are reset at channel end time to indicate that the record

is available. A full output buffer from Phase 2 is scheduled for trans­

cription to disk and a new buffer is immediately obtained and initialized

for use. When the buffer is initialized a track address is acquired and

inserted as a forward chain in the buffer to be written. If Phase 3 is

for any reason unable to get a HASP buffer I a special service called

Buffer-roll is invoked. The function of Buffer-roll is to make a HASP

buffer currently being utilized by another file (in this or another job)

available to the requestor. This is done by selecting a low frequency

. DDT which owns a buffer and forcing a II free II of that buffer. To free a

primary or secondary input buffer I a switch is set in the DDT to force

a re-read of the buffer when the input file is next required. Output

buffers are freed by terminating and writing the buffer to the SPOOL

disk. Future references to this output file will cause a new buffer to

be obtained and chained to the partial bu ffer •

A count of the number of logical records contained in each output

buffer is maintained by the Phase 2 routine and is used by Phase 3

upon writing a buffer to maintain the total line and card count for this

job. This accumulated figure is also compared I after each write I to

Execution Control Proces sor - Page ,4.2 - 6

53

HASP

the estimated number of output records with the operator being notified

on its exces sion • If a job exceeds either cards, lines, or time, the

operator is so advised and a HASPGEN value is added to the original

estimate which will cause repeated excession messages as this new

estimate is reached. The job continues through normal OS/360

processing until the end of execution is reached. The job, as part

of normal 08 job termination, is then placed in the OS 8Y80UT queue

for processing by an output writer. Because of the dynamic modification

of all SYSOUT= cards to pseudo devices, the only data set to be

processed by the output writer is that contqining the System Message

Blocks. The Output Writer therefore II prints II the

8MB's to a HASP pseudo device. When the last 5MB is received, Phase

3 is notified (via an OS POST) to return control to Phase 1 for HASP job

termina tion •

The job termination section of Phase 1 must now prepare the job

for passage to the print queue. First, all partially filled output buffers

are truncated and written out, and all input bu ffers are freed. The

timer interval for the job is cancelled and all job execution statistics

are added to the JCT. At this point the areas of the SPOOL disks used

to store the job input information are made available to be re-allocated

by HASP (Purged) I the JCT is written to disk and the job is passed to

Execution Control Processor - Page 4.2-7

54

HASP

the print queue for printing. If no priority card was present I the job

priority is recalculated as a function of the number of lines of print

generated before the job is placed in the print queue.

A branch is then made to the beginning of XEQ to begin another

job if available I or to display a message indicating that the logical

partition is idle.

The process of dynamic examination and modification of selected

JCL statements is accomplished by invoking the standard as Reader/

Interpreter exit list option which allows users to inspect all TCL en­

coded by the reader. A detailed discussion of the HASP processing

algorithm is contained in Appendix 12.8: HASP JCL Processing.

Execution Control Processor - Page 4.2-8

55

HAS P

Figure 4.2.1 -- Execution Control - OS/360 Relationship

HASP
TASK

\
\

L----.,.._---' \

HASP JCL
PROCESSOR
(XJCLSCAN)

XEQ JOB
CONTROL

(PHASE 1)

$WAIT

SYNCHRONOUS
I/O

PROCESSOR
(PHASE 3)

\~
\~
\~

\
\
\
\
\
\
\ START OS/360

~----------~ R/I
\ VIA PO T TASK
\~
\~

\
\ ~
\ 0
\~

\ ../
\
\

I/O REQUESTS
VIA lOS

\ r----...I.---"-'

$POST

ASYNCHRONOUS
I/O

PROCESSOR
(PHASE 2)

R/I
EXIT
LIST
POINTER

Execution Control Processor - Page 4.2-9

56

HAS P

Figure 4.2.2 -- EXECUTION CONTROL PCE WORK AREA FORMAT

Displacement ~_______________________ 4 bytes ________________________ ..

Hex. Dec. I
58 88 XPCEECB

Job Synchronization Event Control Block Chain

5C 92 XPCEJST

Address of User Task Control Block

60 96 XPCEJOB

Address of Job Queue Entry

64 100 XPCEWAIT

Reader Unit Allocation Event Control Block

68 104 XPCEJOBN

I- Job Name -

70 112 XPCEDCT

XPCESTAT I
Address of Direct-Access OCT

74 116 XPCEDDB

Start of Data Definition Table Chain

78 120 XPCESTEP

- . Step Name -

80 128

Execution Control Processor - Page 4.2-·10

57

HAS P

Figure 4.2.2 -- EXECUTION CONTROL PCE WORK AREA FORMAT (CONTINUED)

Displacement

Hex. Dec.

80 128

88 136

8C 140

90 144

94 148

98 152

9C 156

AO 160

A4 164

A8 168

~----------------------- 4 bytes ------------------------~

- Procedure step Name -

XPCEPRT

Current Output Line Count

Estimated Lines of Output

Line Estimate Excession Amount

EBCDIC Constant -- "LINE"

XPCEPUN

Current Output Card Count

Estimated Punched Cards

Card Estimate Excession Amount

EBCDIC Constant -- "CARD"

Execut£on Control Processor - Page 4.2-11

58

HAS P

Figure 4.2.2 -- EXECUTION CONTROL PCE WORK AREA FORMAT (CONTINUED)

Displacement

Hex. Dec.

A8 168

AC 172

B8 184

BC 188

CO 192

~----------------------- 4 bytes ------------------------~
XPCEPIT

Address of Partition Information Table

XSTQE

I- -

Execution Timer Queue Element

t- -

XXSTIME

Time Estimate Excession Amount

XPCEJSIB

Address of User JSTCB (MVT) or PIB (MFT)

Execution Control Processor - Page 4.2-12

59

" HAS P

Figure 4.2.2 -- EXECUTION CONTROL PCE WORK AREA FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

58

5C

60

64

68

70

70

74

78

80

88

8C

90

94

98

9C

88

92

96

100

104

112

112

116

120

128

136

140

144

148

152

156

XPCEECB

XPCEJST

XPCEJOB

XPCEWAIT

XPCEJOBN

XPCESTAT

XPCEDCT

XPCEDDB

XPCESTEP

XPCEPRT

XPCEPLN

4

4

4

4

8

1

4

4

8

8

4

4

4

4

4

4

Job Synchronization Event Control Block
Chain.

Address of User Task Control Block.

Address of Job Queue Entry.

Reader Unit Allocation Event Control Block.

Job Name.

Status

Bit

0-1
2
3
4
5

6

7

Name

XPOSTBIT
XRDRACT
XEOJMES
XDUPBIT

XUCBDDB

XEOJBIT

Meaning

Reserved.
POST Request for XTHAW.
Reserved.
End Execution Message Sent.
Job with Duplicate Job Name
Waiting.

UCB/DDT Required by
Execution Interface.

End of Job Flag.

Address of Direct-Access DCT.

Start of Data Definition Table Chain.

Step Name.

Procedure Step Name.

Current Output Line Count.

Estimated Lines of Output.

Line Estimate Excession Amount.

EBCDIC Constant -- "LINE".

Current Output Card Count.

Estimated Punched Cards.

Execution Control Processor - Page 4.2-13

60

HAS P

Figure 4.2.2 -- EXECUTION CONTROL PCE WORK AREA FORMAT (CONTINUED)

Dis12lacement Field Name B;ttes Field DescriEtion
Hex. Dec.

AO 160 4 Card Estimate Excession Amount.

A4 164 4 EBCDIC Constant -- "CARD".

A8 168 XPCEPIT 4 Address of Partition Information Table.

AC 172 XSTQE 12 Execution Timer Queue Element.

B8 184 XXSTIME 4 Time Estimate Excession Amount.

BC 188 XPCEJSIB 4 MVT Address of Job Step Task Control Block.
MFT Address of Partition Information Block.

Execution Control Processor - Page 4.2-14

61

HAS P

4.3 OUTPUT SERVICE PROCESSOR (PRINT AND PUNCH)

4.3.1 OUTPUT SERVICE PROCESSOR - GENERAL DESCRIPTION

The functions of the Output Service Processor are as follows:

To convert the print and punch output generated by the
Execution Control Processor to hard copy.

To provide for the unique identification of both print
and punch output to facilitate collection and delivery.

To provide for the routing of special data sets to printers
and punches reserved for special fOrms processing.

To produce multiple copies of print output upon request.

To count print lines and produce automatic page overflow.

To translate all illegal print characters to blanks (option­
al) •

To load the Universal Character Set Buffer (optional).

To load the Forms Control Buffer (optional).

To provide additional information for checkpoint which
allows print to continue in the event of a "warm start".

'To punch a Job Accounting Card (optional).

To process all printer and punch I/O errors with automatic
error recovery (no operator intervention).

To respond to all operator commands directed toward any
printer or punch.

To queue jobs for the next stage of processing when the
current print/punch function has been completed.

The Output Service Processor is coded re-enterably in such a
way that it can deliver output to a number of different output
devices simultaneously. The re-enterability is attained by
retaining all storage unique to a job in the Processor Control
Element (see figure 4.3.1) which must be unique for each output
device.

Output Service Processor - Page 4.3-1

62

HAS P

4.3.2 OUTPUT SERVICE PROCESSOR - PROGRAM LOGIC

The Output Service Processor is divided into three phases,
nine subroutines, and two non-process exits. This section
will give a functional description of each of these phases,
subroutines, and exits to aid the system programmer in gaining
a working knowledge of the processor.

PHASES

Phase 1 -- Processor Initialization

The Initialization Phase begins by attempting to get an out­
put unit. If an output unit is not available, the processor
enters a HASP $WAIT state until a device is made available
and ,then the process is repeated.

Next, an output function is determined. If the device ac­
quired is a remote printer, the appropriate entry in the
Remote Message Table is examined to determine if any remote
messages have been queued, and if so processing continues.
The general purpose register: "JCT" is set to zero to indi­
cate that remote messages are being processed.

If the device is not a remote printer, or if there are no
messages queued, an attempt is made to obtain a job from the
Job Queue which matches the type, routing and special forms
of ' the device obtained. If no jobs are queued which fit these
qualifications, the special forms processing type is checked
to see if the forms requirement can be dropped. If so, another
attempt is made to obtain a job from the Job Queue which
matches the type and routing specifications only.

If a job cannot be found, then the output unit is released
and control is returned to the start of the Initialization
Phase.

If the output device is a remote terminal, output activity is
initiated by calling upon the Remote Terminal Access Method
(RTAM) to "open" the Remote Device Control Table.

The processor then acquires a direct-access Device Control
Table (OCT) and a HASP buffer into which the Job Control
Table (JCT) is then read. A message is sent to the operator
notifying him that a particular job is now on the respective
device and the initialization of the Processor Control Element
Work Area (see figure 4.3.l) is completed.

Output Service Processor - Page 4.3-2

63

HAS P

If the processor is processing prin~ output, and if the output:
is not a, data set which has been routed for special forms, .
the PRINTID subroutine is called to generate the print identi-~
fication header and control is 'transferred to Phase 2.

If the processor is processing punch output, and if the output
is not a dat'a set which has been 'routed for special forms,
the Punch ID Card is generated for later punching, and control
is transferred to Phase 2.

Phase 2 - Main Processor

The function of the Main Processor is to read the data blocks
which are produced by the Execution Control Processor and build
a channel program to print or punch the data. The PRDBUF and
PRDCHK subroutines are used to read the data blocks, thePPPUT
subroutine is used to construct the channel program and the
PPWRITE and PPCHECK subroutines are used to initiate and check
the execution of the channel program.

If the processor is processing print output, the "Control
Byte" fields of the' Data Block (see figure 8.15.1) are used
to build the CCW operation codes.' These control bytes are
also used to count the actual lines of paper spaced and when
:this line count exceeds the parameter JCTLINCT, an eject is
inserted to force a new page and the count is restarted. If
an illegal control byte is encountered, or if the operator
has entered a n$T PRTn,C=l" command, a single-space CCW is
generated and used rather than the one provided in the data
block. In such cases line counting continues and automatic
page overflow is still provided.

If the processor is processing punch output, a "Punch, Feed,
and Select Stacker P2" command is generated.

When the last data block has been printed or punched, control
is transferred to Phase 3.

Phase 3 - Processor Termination

The Processor Termination Phase first reads the Job Control
Table and scans the Peripheral Data Description Blocks (see
figure 8.8.1) for the next data set to be processed. If
~nother data set is encountered, control is returned to Phase
2 for processing. If no more data sets are to be processed,
the termination phase then proceeds depending upon the type of
output which is being processed.

Output Service Processor - Page 4.3-3

64

HAS. P

If the processor is processing print output, the "PrintCoP¥'
Count" field in the JCT (see figure 8. 8.1) is compared Vii tq .;
the current number of copies which have been printed. If
more copies are" needed, control is transferred, to Phase 1 fOJ:" $

the production of another copy. If no more copies are required,'
the PRINTID subroutine is called to generate the print idcinti­
fication trailer.

If the processor is processing punch output, the job acc6unting
subroutine is called, and the accounting-card is punched fol­
lowed by a blank card to clear the punch and check the punching
of the Job Accounting Card.

The Job Control Table is then re-written, the Job Queue Element
is passed to the next proce~sor queue, the Device Control
Tables are released, and control is transferred to the start
of Phase 1.

SUBROUTINES

PLOADUCS -- Subroutine to Load the UCSBand FCB

This subroutine determines the Universal Character Set Type
from the Printer Device Control Table. The UCSB Table is then
searched and the corresponding ues image (if one is found) is
$LOADed and moved into a HASP buffer. The UCS Buffer is then
loaded using the PPPUT, PPWRITE, and PPCHECK subroutines.

If the output device type specifies a 3211 printer, then the'
Forms Control Buffer is loaded in a manner similar to the UC~
Buffer~ After loading the FCB, the FCB type is reset so that
no more FCB loads will occur until the operator specifies that
the buffer should be re-loaded.

PRINTID -- Subroutine to Generate Print Identification

This subroutine builds up the line image which is used to pro­
duce the Print Identification ~age from information in the Job
Control Table and information passed to the subroutine at the
time it is called. This line image is built up in the "Job
Accounting Storage" section of the Job Control, Table (see fig­
ure 8.8.1). The subroutine then builds a channel program
which starts with an eject command and follows with enough
print commands to completely fill a page with print identifi­
cation lin~s. The channel program is then executed and checked
and contrpl is returned to the calling program. The PPPUT
subroutin~ is used to construct the channel program, and the
PPWRITE arid PPCHECK subroutines are used to initiate and check
the ~xecution of the channel program.

Output Service Processor - Page 4.3-4

65

HAS P

PPFORMCK -- Subroutine to Mount Forms

This subroutine compares the forms being requested with the
forms currently mounted on the associated device. If a match
is found, the subroutine returns immediately. Otherwise, a
forms mount message is issued to the operator and the sub­
routine $WAITs for a "$Sdevice" command to be entered. The
DCT Forms field is then set to reflect the new forms type and
processing continues.

PRCOMENT -- Subroutine to Add Comment to Printer Output

This subroutine constructs and adds to the printer output
(using the PPPUT, PPWRITE, and PPCHECK subroutines) a comment
of the form:

PRINT xxxxxxxxx BY OPERATOR.

"xxxxxxxxx" is specified at subroutine entry by parameter
register "RI" and will be one of the following:

DELETED
RESTARTED
REPEATED
BACKSPACED
FWD-SPACED
SUSPENDED

PRDBUF -- Subroutine to Initiate Read from Direct Access Storage

This subroutine initiates a read from the track address speci­
fied by register "PNP" into the appropriate HASP buffer.

PRDCHK -- Subroutine to Check Read from Direct Access Storage

This subroutine checks the read initiated by the PRDBUF sub­
routine. If the read is not complete, the processor is placed
into a HASP $WAIT state until the read is completed. If an
I/O error is detected, a "$IOERROR" macro-instruction is issued
and the processing of the rest of the data set is deleted.

This subroutine also checks for any operator command which
would cause the Main Processing Phase to be completed and forces
any indicated completion by zeroing the chain track in the data
block just read.

Output Service Processor - Page 4.3-5

66

HAS P

PPPUT -- PPUTOLAY -- Subroutine to Build a Channel Program

This subroutine accepts a CCW from the calling program and,
if the output device is not a remote terminal, constructs a
channel program in the Processor Control Element Work Area
(see figure 4.3.1). Each command is examined and if it is an
immediate printer space or skip, and if the previous command
was a "Write, No Space", the two conunands are combined into
one. When the channel program storage area is full, this sub­
routine calls the PPWRITE subroutine to initiate the execution
of the channel program. Upon the next entry, the execution
of the channel program is checked by calling the PPCHECK sub­
routine.

If the output device is a remote terminal, the Remote Terminal
Access Method is "called" to process the output line or card.
Control is then given to the PPCHECK subroutine to test for
operator commands.

PPWRITE--Subroutine to Initiate Execution of the Channel Program

If the output processor is being deleted by operator action,
this subroutine returns immediately. Otherwise a write is
initiated on the respective output device, using the channel
program developed by the PPPUT subroutine.

PPCHECK--Subroutine to Check the Execution of the Channel Program

This subroutine checks for the successful completion of the
channel program execution initIated by the PPWRITE subroutine.
If the execution has not yet completed, the subroutine enters
the processor into a $WAIT condition until the output has
been completed,. If an unsuccessful completion is detected,
the subroutine performs the error recovery described in the
paragraph below. This subroutine also interprets all operator
commands directed at the processor and initiates appropriate
action.

NON-PROCESS ·EXITS

The following routines are used to place the Output Service
Processor into a HASP $WAIT state if a HASP resource is not
available. In bot;h cases the non-process register ("PNP")
must have been set to the restart address before the routine
is entered.

Output Service Processor - Page 4.3-6

67

HAS P

PNOUNIT -- A HASP unit was not available.

PNOBUF -- A HASP buffer was not available.

When the respective resource is made available, the processor
is $POSTed and another attempt is made to acquire the resource.

PRINTER "WARM START" LOGIC

When the Output Service Processor is successful in acquiring a
job from the print queue, the print checkpoint area is searched
for an available Print Checkpoint Element (see figure 4.3.2).
This element is thereafter used to record the job number, copy
count, and line and page counts.

In the event of a "warm start", the elements are searched and
each Print Checkpoint element is moved into the Job Control
Table for the job which it represents.

When the job is printed, the JCT is examined, and if the Print
Checkpoint Element is present, the processor continues printing
from the point when the last checkpoint was taken.

OUTPUT PROCESSOR BUFFER LOGIC

The buffer logic that the output processor employs is determined
by the HASPGEN parameters: $PRTBOPT, $PUNBOPT, $RPRBOPT, and
$RPUBOPT.

Buffer Option = 1

One buffer will be obtained at the beginning of output proces­
sing and will be used through the entire processing of a job's
output. A read for the following data block will not be ini­
tiated until the current data block has completed its output.
Periods of high Input/Output activity could cause the printers
and punches to operate at less than their maximum rate when
this option is used.

Buffer Option = 2

Two buffers will be obtained at the beginning of output pro­
cessing and will be used through the entire processing ofa
job's output. A read for ~he following data block will be

output Service Processor - Page 4.3-7

68

HAS P

initiated as soon as the previous data block has completed
its output and will be performed while the current data block
is completing its output. This option represents the most
efficient utilization of the output devices.

PRINT AND PUNCH ERROR RECOVERY

Print Errors

The operator will be informed of all printer errors, but they
will be ignored by the Output Service Processor.

Punch Errors

The card which causes a punch check and the card following
this card are selected automatically into the reject stacker.
The Output Service Processor will attempt to punch these two
cards correctly until no error occurs or the operator deletes
the job. Since all normal punch output is selected to another
stacker, no operator intervention will be required to clear
tpe punch. Every error will be recorded on the operator's
console.

Output Service Processor - Page 4.3-8

69

HAS P

Figure 4.3.1 -- OUTPUT SERVICE PCE WORK AREA FORMAT

Displacement

Hex. !2!£. r------------------------ 4 bytes ------------------------~
58 88 PDCT

PPFLAG I
Address of Print/Punch/Remote OCT

SC 92 PDADCT

PDCTFLAG I
Address of Direct-Access OCT

60 96 PJOB

Address of Job Queue Entry

64 100 PRCHKPTE Address of Print Checkpoint Element

PUERRPT Address of Punch Error CCW

68 104 PTIMEON

Print/Punch Sign-On Time

6C 108 PBUFSAVE

Address of Next Print/Punch Buffer

70 112 PCCWPT

Address of Last Print/Punch CCW Set Up

74 116 PCCWEND

Address of Last Possible Print/Punch CCW

78 120 PMESSAGE

....,

1~ _________________ p_r_~_n_t_/_p_u_n_c_h_M __ e_ss_a_g_e __ A_r_e_a ________________ ~J
8C 140

Output Service Processor - Page 4.3-9

70

HAS P

Figure 4.3.1 -- OUTPUT SERVICE PCE WORK AREA FORMAT (CONTINU~)

Displacement ~_______________________ 4 bytes ________________________ ~

Hex. Dec. I '
8C 140

90 144

94 148

98 152

9C 156

AO 160

A4 164

A8 168

PDDBSKIP

Count of Pages to Skip

PDDBDISP

PPRCFLAG

Checkpoint
Flags

PDDBPGCT

PPRCPYCT

Copy Count

Current PooB Displacement Current PoDB Page Coun~

PPLNCDCT

Current Line or Card Count

PRPAGECT

Current Page Count

PDEVTYPE

P:SUFOPT I
Print/Punch Device Type

PLSAVE

Link Register Save Word

PRLINE~T

Maximum Lines per Page

PCCWCHN

........

1~ ___________ v_a_r_1_a_b_l_e_,_L_e_n_g_th ___ p_r_1n __ t_/p_u_n_C_h __ C_C_W ___ Ch __ a_1n ____________ ~r

Output Service Processor - Page 4.3-10

71

H. ASP

::Figure 4.3.1 -- OUTPUT SERVICE PCE WORK AREA FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

58 88

58 88

5C 92

5C 92

60 96

64 100

64 100

68 104

6C 108

PPFLAG

PDCT

PDCTFLAG

PDADCT

PJOB

PRCHKPTE

PUERRPT

PTIMEQ\J

PBUFSAVE

1

4

1

4

4

4

4

... 4

4

Print/Punch Synchronization Flags --

Bit Name

a PPWSW
1 PPDELSW
2 PPNOJOB
3 PRDELSW

4 PRRSTSW

5 PPRDERR

6-7

Meaning

Write has been Initiated.
Function has been Deleted.
No Job is Active.
Print was Deleted by

Operator.
Print was Restarted by
Operator.

Function Terminated by
Read Error.

Reserved for Future Use.

Address of Print/Punch/Remote
Device Control Table.

Print/Punch/Remote Operator Commands --

Bit

a
1
2
3
4
5

2+4
6-7

Name

DCTSTOP
DCTDELET
DCTRSTRT
DCTRPT
DCTBKSP
DCTSPACE

Meaning

$Z ($STOP) Command.
$C ($DELETE) Command.
$E ($RESTART) Command.
$N ($REPEAT) Command.
$B ($BACKSPACE) Command.
$T ... ,C=l Command.
$1 Command.
Reserved.

Address of Direct-Access Device Control
Table.

Address of Job Queue Entry.

Print Only: Address of Print Checkpoint
Element.

Punch Only: Address of Punch Error CCW.

Print/Punch Sign-On Time .

Address of Next Print/Punch Buffer.

Output Service Processor - Page 4.3-11

72

HAS P

Figure 4.3.1 -- OUTPUT SERVICE PCE WORK AREA FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

70 112

74 116

78 120

8C 140

8E 142

8F 143

90 144

92 146

94 148

98 152

9C 156

9C 156

AO 160

A4 164

A8 168

PCCWPT

PCCWEND

PMESSAGE

PDDBSKIP

PPRCFLAG

PPRCPYCT

PDDBDISP

PDDBPGCT

PPLNCDCT

PRPAGECT

PBUFOPT

PDEVTYPE

PLSAVE

PRLINECT

PCCWCHN

4

4

20

2

1

1

2

2

4

4

1

4

4

4

Address of Last Print/Punch CCW Set Up.

Address of Last possible Print/Punch CCW.

Print/Punch Message Area.

Count of Pages to Skip.

Checkpoint Flags --

Bit

o
1

2-7

Name

PRCHKUSE
PRCHKJOB

Meaning

Checkpoint Element Assigned.
Job Active Indication.
Reserved.

Current Copy Count.

Current PDDB Displacement.

Current PDDB Page Count.

CUrrent Line or Card Count.

Current Page Count.

Buffering Option

Value Meaning

1 Single Buffering.
2 Double Buffering.

Device Type from UCB (UCBTYP).

Link Register Save Word.

Maximum Lines per Page.

Variable Length Print/Punch CCW Chain.

output Service Processor - Page 4.3-12

73

HAS P

Figure 4.3.2 -- PRINT CHECKPOINT ELEMENT FORMAT

,Displacement l.----------------------- 4 bytes ------------------------J
~. Dec. I . I

o 0 PRCJOBNO PRCFLAGS PRCCPYCT

Checkpoint Job Number Checkpoint Checkpoint
Flags Copy Count

4 4 PRCPDDBD PRCPDDBP

Checkpoint PDDB Displacement Checkpoint PDDB Page Count

8 8 PRLINCT

Checkpoint Total Line Count

C 12 PRPAGCT

Checkpoint Total Page Count

10 16

output Service Processor - Page 4.3-13

74

HAS P

Figure 4.3.2 -- PRINT CHECKPOINT ELEMENT FORMAT (CONTINUED)

Dis12lacement Field Name B:ites Field Descri12tion
Hex. Dec.

0 0 PRCJOBNO 2 Job Number.

2 2 PRCFLAGS 1 Checkpoint Flags

Bit Name Meaning

0 PRCHKUSE Checkpoint Element in Use.
1 PRCHKJOB Job Active Indication.

2-7 Reserved for Future Use.

3 3 PRCCPYCT 1 Current Copy Count.

4 4 PRCPDDBD 2 Current PDDB Displacement.

6 6 PRCPDDBP 2 Current PDDB Page Count.

8 8 PRLINCT 4 Total Line Count.

C 12 PRPAGCT 4 Total Page Count.

Output Service Processor - Page 4.3-14

75

4.4.1 PURGE PROCESSOR - GENERAL DESCRIPTION

The Purge processor frees the job's acquired HASP direct-access
space and removes the Job Queue Element from the system.

4.4.2 PURGE PROCESSOR - PROGRAM LOGIC

The processor first acquires a Job Queue Element and issues the
$ACTIVE macro to inform the HASP Dispatcher that the processor
is active. Then a direct-access Device Control Table (DCT) and
a HASP buffer are acquired and initialized so that the job's
Job Control Table (JCT) may be read into the buffer from the
SPOOL disk. If a DCT or buffer is not available this processor
will be placed in a HASP $WAIT state until a DCT or buffer can
be acquired. If no permanent I/O errors occur while reading
the JCT, a $PURGE macro instruction is then issued to return
the job's direct access tracks. If a permanent I/O error occurs
while the JCT is being read, the DISASTROUS error routine is
called and the $PURGE macro instruction is not executed. Next,
the Job Queue Element is removed from the HASP Job Queue and
the following message is issued to the operator:

JOB xxx IS PURGED

Finally, the buffer and DCT are freed, and the $DORMANT macro
instruction is issued to indicate to the HASP Dispatcher that
the processor is inactive and control is returned to the start
of the routine for the processing of the next job to be purged.

Purge Processor- Page 4.4-1

76

HAS P

4.5 HASP COMMAND PROCESSOR

4.5.1 HASP Command Processor - General Description

The HASP Command Processor receives all HASP commands entered
from acceptable local or remote HASP input sources. The Processor
is responsible for decoding each command and performing the pro­
cessing necessary to cause appropriate action to the operator's
request.

4.5.2 HASP Command Processor - Program Logic

The HASP Command Processor is initially entered at the beginning
of the Control Section (CSECT) HASPCOMM which is a part of the
resident portion of HASP. Subsequent re-entrles are returns from
the various command sub-processors with optional requests for the
displaying of the "OK" message or other message contained in the
COMMAND area of the PCE. After displaying any requested replies
the HASP Console Message Buffer queue $COMMQUE is examined for
the presence of the next command to process. If no buffer is
queued, the Command Processor waits on WORK. When $POSTed or if
a buffer is present upon entry, the Command Edit Routine is
entered via $LINK macro.

Command Edit Routine - HASPCOME

VERB CONVERSION - The Command Edit. Routine converts the command
text from the long form to the standard single character verb form.
The data portion of the Console Message Buffer up to the first
comma (,) or apostrophe (') is made upper case and non-blank
characters are shifted to the left. The resulting text is compared
against arguments in the VERB CONVERSION TABLE. If a match is
found, the corresponding standard form of the command is substituted.

COMMAND EDIT AND BREAK OUT - The information in the HASP Console
Message Buffer is moved to the COMMAND field in the PCE work area.
The two bytes CMBFLAGS and CMBCONS of the buffer are moved to the
COMFLAGS and COMROUTE fields of the PCE workarea.These two
bytes when combined with the two succeeding bytes in the PCE form
the list form of the $WTO used for all responses to the operator
from the Command Processor. ---

The COMMAND area of the PCE is primed with blanks and the buffer
is scanned. ~olid characters are ORed (moved with upper casing)
into the COMMAND area. Blanks encountered in the buffer will

HASP Command Processor - Page 4.5-1

77

HAS P

normally be skipped (blank elimination); however, if an apostrophe
vis encountered, blanks will not be skipped until the next apos­
trophe. Double apostrophe characters will cause the blank com­
pression status to remain as previously set; however, the second
apostrophe of the pair will be eliminated.

As each comma is encountered an entry of the next available
character position is,made in the COMPNTER area of the PCE. (The
first entry is the address of the character after the verb. The
second is the address of the second operand, etc.) When the
COMPNTER area is full, recording is discontinued. Upon completion
of the scan, the buffer is released, the COMNULOP field in the
PCE is set to the address of the second character beyond the last
solid character (null operand), and the operand pointers are
shifted down adjacent to the COMMULOP field (see Figures 4.5.1
to 4.5.3). Control registers are set as follows:

WD = address of the first operand pointer in the COMPNTER field
WE = 4
WF = address of the last operand pointer in the COMPNTER field

SELECTING THE COMMAND SUB-PROCESSOR - The SELECTION TABLE is used
to determine the appropriate command sub-processor which must be
entered. Starting with the first element, the SELECTION TABLE is
scanned for a matching verb. When the verb is located, the first
character of the first operand is then used for comparing. If a
match is found on the operand or if the table entry contains an
X'FF.' for operand argument, the table entry for the command is
considered "located". If the end of the entries is encountered
for the verb or table, the command is considered invalid and the
edit routine returns to the main processor with INVALID COMMAND
message in the COMMAND area for display. (See $COMTAB macro in
Section 4.5.4 for format of the SELECTION TABLE element.)

VALIDATING THE SOURCE AND ENTERING THE SUB-PROCESSOR - Each entry
of the SELECTION TABLE may have restriction indicators as follows:

COMRMT = 1 - Reject remote sources
COMS = 1 - Reject consoles which are restricted from

entering SYSTEM COMMANDS
COMO = 1 - Reject consoles which are restricted from

entering DEVICE COMMANDS
COMJ = 1 - Reject consoles which are restricted from

entering JOB COMMANDS

The restriction indicators correspond with the restriction indi­
cators which appear in the COMFLAGS field. The COMFLAGS indicator
is previously set from the CMBFLAGS field,of the HASP Console
Message Buffer which in turn is set by other HASP processors as
follows:

1. CMBFLAGS when set by the remote console processor or
remote reader processors will contain the remote
indicator. This indicator corresponds to COMRMT bit
in the SELECTION TABLE.

HASP Command Processor - Page 4.5-2

78

HAS P

2. CMBFLAGS when set by the local console support routines
will contain the restriction flags assigned to the
Console Device Control Table. (Restriction is the
opposite of authority which is set by the operator
command $TCONn,A=authority or by the system programmer.)

3. CMBFLAGS when set by the OS console interface is
the OS authority indicators inverted with the
Exclusive Or Immediate (XI) instruction.

The restriction indicators are used as the second operand of a
Test Under Mask (TM) instruction. If any restriction indicator
in the COMFLAGS field corresponds to any restriction indicator
in the SELECTION table entry, the command is rejected as invalid.
Otherwise Register 1 is set with the value in the SELECTION TABLE
entry COMTOFF field and control is passed to the CSECT indicated
by the Overlay Constant ($OCON) field of the SELECTION TABLE
element via the $XCTL macro.

Command Sub-Processor Control Sections

The Entry routine of each command sub-processor control section
will, if applicable, use the offset value in register 1 (set by
the edit routine) to determine the "relative" entry point for the
designated sub-processor. Normally the sub-processor is entered
directly by the special Command Processor macro: "Branch
Re-lative Register" on Rl ($BRR Rl). However, some control section
entry routines will pre-process the operands of the command prior
to entering the sub-processor. Each sub-processor performs the
desired functions and returns to the main command processor for
the next command.

HASP Command Processor - Page 4.5-3

79

HAS P

4.5.3 HASP Command Processor Organization

The HASP Command Processor is created by a single assembly with
multiple Control Sections (CSECT). The main CSECT HASPCOMM is
the only portion of the Command Processor that is part of the
HASP resident load module. It contains all V type address
constants required by the sub-command processors and all "BASE2"
service routines. The Command Edit Routine HASPCOME receives
control from the main processor and determines which COMMAND
SUB-PROCESSOR CSECT to enter for processing of the command entered.
One or more of the various COMMAND SUB-PROCESSOR CSECTs are used
in processing each HASP operator command. Although the physical
CSECTs are organized in accordance with the size of the overlay
work area, the logical organizational grouping is as follows:

JOB QUEUE COMMANDS
JOB LIST COMMANDS
MISCELLANEOUS JOB COMMANDS
DEVICE LIST COMMANDS
SYSTEM COMMANDS
MISCELLANEOUS DISPLAY COMMANDS
REMOTE JOB ENTRY COMMANDS

HASP Command Processor Workarea

The HASP Command Processor PCE workarea shown in Figure 4.5.1 is
the primary workarea for the processor and is the only area which
may be used to save information in the event a $WAIT is issued by
the processor or any of the "BASEl" service routines on behalf of
the processor. The fields are generally used as described in the
following paragraphs.

COMFLAGS to COMCLASS - This field contains a list form of the $WTO
macro. The $WTO is referred to by a single execute form of the
$WTO located within the resident portion of the Command Processor
which is used for all operator messages generated by any routine
within the processor. The CMBFLAGS and CMBCONSfields of the HASP
Console Message Buffer for each command is inserted into the
COMFLAGS and COMROUTE cells and are used to provide correct route
codes for replies. The three low order bits of COMFLAGS are
restriction indicators and are set to zero prior to each $WTO reply.

COMEWORK - This field is used as a workarea and by function routines
identified by the macro instructions as follows:

HASP Command Processor - Page 4.5-4

80

HAS P

macro

$CFCVE
$CFDCTL
$CFJDCT
$CFJMSG

contents upon exit from routine

last character is blank
first four characters of requested device name
address of HASP job queue element for requested job
same as $CFCVE

COMDWORK - This field is aligned on a double word boundary and is
used as a workarea and by function routines identified by the macro
instructions as follows:

macro

$CFCVE
$CFDCTL
$CFJMSG

contents upon exit from routine

five character number in EBCDIC with leading blanks
last four characters of requested device name
same as $CFCVE

COMMAND - This field contains the compressed form of the operator
cqmmand with trailing blanks at the time each command sub-processor
is entered. The command is overlayed by the reply message text for
all $WTO messages issued by any Command Processor routine. Some
command sub-processors use the area as scratch areas and in some
cases the right end for storage of critical information while
message replies are generated in the left end of the area.

COMPNTER-COMNULOP - These fields are set by the Command Edit
Routine and are used to locate the beginning of each of the
specified operands in the command currently being processed.
COMNULOP contains a pointer to the second character beyond the
last operand specified, i.e., points to a non-existant or "null"
operand. Operand 1 through n pointers are right adjusted in
COMPNTER so that operand n pointer is adjacent to the "null"
pointer (see Figures 4.5.2 and 4.5.3 for illustrations). Command
sub-processors use these areas for additional workspace after the
operand pointers are no longer needed. Examples of other uses
are listed as follows-:

1. Job queue command $DN and $DQ commands place queue
scanning control elements in the COMPNTER area.

2. Job list commands place the job range numbers (j-jj)
in the corresponding operand pointer element area.

3. $DR uses the right end of the COMMAND area and
COMPNTER-COMNULOP area to hold the reply ID numbers.

HASP Command Processor - Page 4.5-5

81

II ASP

Figure 4.5.1

Displacement

Hex. Dec.

58 88

5C 92

60 96

68 104

EO 224

E4 228

E8 232

EC 236

HASP COMMAND PCE WORK AREA FORMAT

r------------------------ 4 bytes ------------------------~
COMFLAGS COMROUTE COMLNGTH COMCLASS

List Form of $WTO

COMEWORK

Function Work Area

COMDWORK

~ Function Work Area -

COMMAND COMVER:B COMOPRND

Message Area Command Verb First Operand

-

.....

..... :--
...... ,.. Command Text and Message Area

COMPNTER

Address of n-4 Operand

Address of n-3 Operand

Address of n-2 Operand

HASP Command Processor - Page 4.5-6

82

HAS P

Figure 4.5.1 -- HASP COMMAND PCE WORK AREA FORMAT (CONTINUED)

Displacement

Hex. Dec.

EC 236

FO 240

F4 244

F8 248

~----------------------- 4 bytes ------------------------.j

Address of n-l Operand

Address of n Operand

COMNULOP

Address of n+l Operand

HASP Command Processor - Page 4.5-7

83

HAS P

Figure 4.5.2 COMMAND - COMNULOP Areas With Single Operand Command

COMMAND-

COMPNTER - - - - not used

not used

not used

not used

WD,WF -+ operand It

COMNULOP - - - - null t

$PPRTlb b

t--

Upon exit of Edit Routine,
Registers WD, WE and WF
are set for testing
instructions:

BXLE WD,WE,loop
(for next operand)

BXH WD,WE,exit
(if no more)

Figure 4.5.3 COMPNTER -COMNULOP Areas With Five Operand Commands

COMMAND - $PPRTl,PRT2,PUNl,RDRl,RD2bb

COMPNTER - WD -+ operand

operand

operand

operand

WF -+ operand

COMNULOP null

NOTE: b = blank character

It

2t

3 t

4t

5t

t

Upon exit of Edit Routine,
Registers WD,WE and WF
are set for testing
instructions:

BXLE WD,WE,loop
(for next operand)

BXH WD,WE,exit
(if no more)

HASP Command Processor - Page 4.5-8

84

HAS P

Coding Conventions

The symbols with the command processor conform to the following
conventions:

1. All main processor, Edit Routine, and PCE workarea symbols
start with the characters "COM".

2. All Function macro generated symbols start with "COF".

3. All command sub-processors have entry point symbols
of the following form:

form
Cvo

Cv
Cvxx

example
CON

CB
C070

command
$ON

$B device
$O'jobname '

comments
v = the verb of the command
o = the first operand character
single character identifier

apostrophe is hexadecimal 70

4. All symbols created for the support of the command will start
with characters which identify the entry point (CONxxxxx
identifies a location which was originally written for the
$ON command). Commands with no unique operand character
symbol have the character "x" as the third character.
(CBX• identifies a location which was originally written
for the $B device command.) These conventions may be altered
in cases where the command identification characters are
redefined after original development.

5. The main processor CSECT is HASPCO~~, all other CSECTs are
defined via the symbol field of the $COMGRUP macro; specified
starting with the characters "HASPC".

HASP Command Processor - Page 4.5-9

85

HAS P

Register Conventions

The Command Edit Routine passes control to the control section
(CSECT) which contains the appropriate command sub-processor.
At the point the Command group entry routine receives control,
the registers will contain the following:

reg
RO
Rl
WA
WB
WC
WD
WE
WF
BASE3
BASEl
BASE2
SAVE
LINK
RIS

contents
unpredictable
entry offset from the Command entry offset
unpredictable
unpredictable
unpredictable
first operand pointer (zero if no operand)
4
last operand pointer
base for CSECT
HCTDSECT address
beginning of main Command Processor
PCE address
unpredictable
unpredictable

If more than one command appears within the group, the value of
register Rl will be set by the $COMGRUP entry routine to a value
so that a $BRR Rl will enter the command sub-processor.

HASP Command Processor - Page 4.5-10

86

HAS P

4.5.4 HASP COMMAND PROCESSOR MACROS

To facilitate flexibility in the development and possible modi­
fication of the Command Processor a macro package is included
within the assembly source deck. This section is intended to
supplement the HASP Command Processor Source listings obtainable
from the HASP generation and assembly process in assisting the user
to understand the generated code as specifically used in the
current HASP as distributed.

Each HASP Command Processor macro may be dependent upon the
definitions contained within the Command Processor source deck as
well as other members of the HASP source library. These macros
are catagorized as follows:

ORGANIZATIONAL Macros which.provide basic definitions and
are closely associated with the organization
of the processor.

BASE2 SERVICES Macros which call upon the main Command
Processor to perform a service (display a
reply) •

CONDITIONAL IN-LINE FUNCTIONS - Macros which perform the function
in-line or links to a routine which performs
the desired function.

RELOCATABILITY AIDS - Macros which assist in keeping the overlay
CSECT relocatable around $WAIT or implied
$WAIT situations.

The macros which are supplied under each cateqory are summarized
in Table 4.5.4. The following conventions are used in specifying
parameter requirements:

"parameter=** -"

"parameter=text -"

"parameter _"

keyword parameter is required

the assumed value if the keyword parameter
is not specified

the parameter is an optional positional
parameter

"parameter - Required" the parameter is a required positional
parameter.

HASP Command Processor - Page 4.5-11

87

HAS P

Table 4.5.4 Command Processor Macro Summary

Op-Code

ORGANIZATIONAL:
$COMWORK
$COMGRUP
$COMTAB

BASE2 S~RVICES:
$CRET
$CWTO

Definition

COMMANDPROCESSORWPRKAREA (symbolic (iefinitions)
DEFINE GROUP OF COMMAND SUB-PROCESSORS
DEFINE COMMAND TA~LE ELEMENT

RETURN TO MAIN COMMAND PROCESSOR
WRITE TO OPERATOR

CONDITIONAL
$CFCVB
$CFCVE
$CFDCTD
$CFDCTL
$CFINVC
$CFINVO
$CFJDCT
$CFJMSG
$CFJSCAN
$CFSEL
$CFVQE

IN-LINE FUNCTIONS:

REL0C,ATIBILITY AIDS:

CONVERT TO BINARY
CONVERT TO EBCDIC
DEVICE CONTROL TABLE DISPLAY
DEVICE CONTROL TABLE LOCATE
REPLY INVALID COMMAND
REPLY INVALID OPERAND
FIND JOB'S DEVICE CONTROL TABLE
DISPLAY JOB INFORMATION MESSAGE
SCAN JOB QUEUE ASSISTANCE
SELECT A ROUTINE BASED ON CHARACTER
VERIFY CONSOLE CONTROL OVER JOB

$ARR ADD RELATIVE· REGISTER
$BRRBRANCH RELATIVE REGISTER
$SRR SUBTRACT RELATIVE REGISTER

HASP Command processor - Page 4.5-12

88

HAS P

Organizational Macros

$COMWORK

$COMGRUP

- COMMAND PROCESSOR WORKAREA (symbolic definitions)
This macro adds to the PCEDSECT definitions for
fields located in the Command Processor PCE workarea.
Additional symbolic constants for BASE2 services
and some externally defined parameters are defined.

- DEFINE GROUP OF COMMAND SUB-PROCESSORS
This macro defines the Command Processor overlay
control section via the $OVERLAY macro. It provides
an optional entry point routine which locates the
command sub-processor for the commands which belong
to the group and sets register Rl to the relative
address. (The symbol field must be specified for
this macro.)

n positionals - Each positional specifies the command
identification characters for the corresponding
command sub-processor located within the group.
Example:

specification
AA
DA
B
C
P40
S40

·D7D

command
$AA
$DA
$B device
$C device
$p
$S
$D I jobname I

sub-processor
CM
CDA
CB
CC
CP40
CS40
CD7D

entry point name

PRTY=** - Priority of the HASP overlay defined by
the macro.

DELAY=NO - The sub-processor will be entered via
$BRR Rl macro instruction. If "YES" is specified
Rl will contain the appropriate relative entry point
address and control will be given to the statement
following the macro statement. (More than one posi­
tional must be specified if Rl is to be set or the
branch is to be executed.)

HASP Command Processor - Page 4.5-13

89

HAS P

$COMTAB· l)EFlNECOMMAND TABLE ELEMENT
'rphiarntiloro defines an e:Lement in.the command
. SELECTION TABLE which is \1sedby the Command Edit.
Routine for identifyingle.gal cQmmands, eliminating
u~authorized input sources, . and entering the correct

...• command group CSECT". .

verb- Required. - The .command identification
character(s) corresponding to the $COMGRUP positional
parameter. specific~t;.ionfor the command. No two
$COMTAB macro staternentsmay specify the same iden­
tificationcharacter string. All macro statements
creating entries for the same command verb will
appeaX' in consecut.i.y~ statements with the statement
which specifies a single identification character
last.

2roue -:-.Re9uir7d -.The exact c::haracters used in ~he
spec~f~cat~on ~n the sytnbolf~eld of the appropr~ate
$COMGRUP macro statement.

REJECT= - The command source rejection mask. One or
more of the following symbols may be specified as
follows:

"COMRMT" - reject command if entered from a
remote .

"COMS" - reject command if entered from a
console not authorized for SYSTEM
control

"COMO" - reject command if entered from a
console not authorized for DEVICE
control .

"COMJ" - reject conunand if entered from a
console not authorized for JOB
control

Rejection of either a remote or a console not
authorized for SYSTEMappear$'as follows;

naEJECT=COMRM'r+COMS"

HASP Command ~roQ~ssor -Page 4.5-14

90

HAS P

Figure 4.5.5 - Selection Table Element

(variable)

overlay

COMTOFF =

COMTFL =

COMTVB =

COMTOFF COMTFL COMTVB

constant identifiers

Offset for the overlay control section to
locate the command sub-processor entry point.

Rejection flags.

Command identification characters. Verb with:

1. First character of the first operand.

2. " X' FF'
If X'FF' is specified all commands which
have not been specified by the previous
entries in the table will be considered
"selected" .

HASP Command Processor - Page 4.5-15

91

BASE2 Services

$CRET

$CWTO

.... RETURN TO MAINCOMMi\NP'PROCESSOR
"/:' : '.:.':':<~'::';"': '

MSG= "Addressu~i~~heIllesSage to be moved to
COMMAND area fordispl.ay,.(I,.::::Qperand, of a
non-register fOrrnis reqUi+ed.) uMSG=OK" indi­
cates that themai:n.processori.st6display the
OK mes S. age • ' ,

L= "Value" reptesen'tingthe len.gth of the message
that is to be mcrV'ed or has already been moved.

- WRITE TO OPERATOR
REGISTERS USED: RO,Rl, WA, LINK, Rl5

MSG:::: - "Address" of the message to be moved to
COMMAND area and d;L~pJ.C1yed. (L=operandof a non­
register form is required.)

L=** -,"Value" representing the length of the mes­
sage that is to be moved or has a1re~dybeen moved.

HAst? Co~~ndProce$SQ):,'~ ,Page 4.5 16

92

HAS P

Conditional In-Line Functions

The HASP Command Processor as distributed provides for the
ability of the author of the command sub-processor to specify
whether or not the code which performs the function is in-line or
out of line. If an out of line routine is used the name and
location of the subroutine must be defined. This is accomplished
with parameters standard for all function macro instructions
with the exception of $CFJSCAN as follows:

TYPE=CALL - The macro statement is not a definition form of
the macro. "TYPE=DEF", the macro statement defines the
subroutine form of the function and return linkage must be
provided.

SYMBOL=address - The address of the "TYPE=DEF" version of
the macro instruction. This indicates that only linkage
to the "TYPE=DEF" version is to be provided. If neither
"TYPE=DEF" or "SYMBOL=" parameters are specified the code
will be generated in-line with no return linkage.

$CFCVB

$CFCVE

- CONVERT TO BINARY
This macro converts the numeric portion of a
command operand to one or two numeric values.
REGISTERS USED: RO, Rl, LINK, Rl5
RO - contains the last number converted.
Rl - contains the next to last number converted

(last number if the only one or the last is
smaller than the previous).

POINTER=(Rl) - The address of the COMPNTR field
which addresses the operand containing one or more
numerical values separated by dash (-). .

NUM=2 - return two values. "NUM=l", one value is
sufficient (Rl will be unpredictable on return) .

NOK=** - Address of the error exit routine if the
operand does not qontain a number or if the number
is too large.

- CONVERT TO EBCDIC
This macro converts the number in register (RO) to
printable EBCDIC and sets the five resulting digits
in the first five characters of the PCE area
COMDWORK.
REGISTERS USED: RO, LINK

VALUE=(RO) - The positive binary half-word value
to convert to EBCDIC. If the register form is not
used, the value is contained within the address~
half-word.

HASP Command Processor - Page 4.5-17

93

HAS P

$CFDCTD

$CFDCTL

$CFINVC

$CFINVO

$DFJDCT

'- DEVICE CONTROL TABLE DISPLAY
This macro di~playsthedevice name, unit address,
and status Of thfiiDCT"requested.
REGISTERS USED: RO,Rl, w~, LINK, Rl5

DCT=(RI) - The address of ,theDCT to displaYL

- DEVICE CONTROL TABLE LOCATE
This macro converts the abbreviated form of the
device name to the long form (if abbreviated form
is specified) and searches the OCT chain for a
matching device. ,
REGISTERS USED: RO,Rl, R15, LINK
RI - contains the'address of the DCT found or zero

if no DCT found.

POINTER =(RI) - The address of theCOMPNTER field
which addresses the operand containing the device
name (abbreviated).

-REPLY INVALID COMMAND
This macro returns to the Main Command Processor and
causes the display "tNYJ\LID COMMAND".

- REPLY INVALID OPERAND
This macro move:seight characters, starting with
the first character'of the "current" operand to
the COMMAND area and returns to the Main Command
Processor caus:i.ng the display of "operand INVALID
OPERAND"

OPERAND=(RI) -The address of the operand to display.

- FIND JOB'S DEVICE CONTROL TABLE
This macro searches the DCTchain for an active
printer, punch, or reader DCT which is assigned
to a procesor who~e PCE contains a pointer to the
HASP, job queue entry belonging to the desired job.
If the device is not found exit will be to. the
instruction inullediately follOwing the $CFJDCT state­
ment(in-line codever~ion);otherwise, exit will be
to the instruction plus 4 "(NSI+4).
REGISTERS USED: aI, LINK, Rl5

JOBQE= (Rl) -< The address of the HASP job queue
entry for, the desired job.

HASP .Command Processor' - Paqe 4.5-18

94

HAS P

$CFJMSG

$CFJSCAN

- DISPLAY JOB INFORMATION MESSAGE
This macro sets into the COMMAND area of the PCE
the information required for the JOB INFORMATION
MESSAGE and displays the message.
REGISTERS USED: RO, Rl, WA, LINK, R15

JOBQE=(Rl) - The address of the HASP job queue
entry for the desired job.

JDCT= - The address of the $CFJDCT TYPE=DEF macro
which may be used· to locate the job's DCT. Register
form is prohibited~

CVE= - The address of the $CFCVE TYPE=DEF macro
which may be used to convert numeric information
to EBCDIC. Register form is prohibited.

JOB= - This parameter may be ignored by the macro~
however, if specified as "JOB=SET" the text "JOBj"
is assumed by the expanded routine to have been set
in the COMMAND area for the desired job.

OPT= - This parameter may be ignored by the macro~
however, if specified as "JOB=Q" all jobs given to
the macro expansion are queued (not active) or
if specified as "JOB=A" all jobs given to the
expansion are active.

- SCAN JOB QUEUE ASSISTANCE

This macro is used to assist in scanning the job
queue. As each entry is located the user's PROCESS
routine is entered. The user examines the entry,
performs whatever function desired on the entry;
and returns to the symbol specified by the "NEXT="
operand. When the end of the queue is encountered,
control is given to the instruction following the
macro instruction. An optional feature of the macro
is to allow the PROCESS routine an "IGNORE' entry
to the generated code to indicate the current job
entry is not acceptable to the PROCESS routine. If
the "IGNORE=" option is specified the corresponding
"EMPTY=", option is required. Register 1 is the
scan register and is assumed to be unaltered by the
user PROCESS routine. The "TYPE=DEF" option is not
permitted for this macro.
REGISTERS USED: Rl, BASE2
RI - scan register
BASE2 - found/not found switch (in addition to
processor base.

HASP Command Processor - Page 4.5-19

95

HAS P

$CFSEL

$CFVQE

PROCESS=** - Address of the user's job queue element
processing routine. Register form prohibited.

IGNORE= - Symbol to be used to define the entry to
continue scan when the current job entry is not
of the desired type.

NEXT=** - The symbol to be used to define the entry
to continue scan when the current job entry is
of the desired type.

EMPTY= - The name of the user exit routine desired
to be entered when the job queue is found to be
empty of jobs of the desired type. Register form is
prohibited.

- SELECT A ROUTINE BASED ON CHARACTER
This macro matches the designated input character
against a list of arguments and transfers control to
the routine designated by the corresponding address.
If no match is found, the next sequential instruction
is entered.
REGISTERS USED: Rl, LINK, Rl5

n positionals of form: (character, address) - Each
positional "character" sub-parameter specifies an
argument to compare against. The corresponding
address sub-parameter indicates the address of
the desired routine to enter if the character matches
the argument. Regi'ster form is prohibi ted.

OPERAND=(Rl) - The address of the designated input
character to examine.

- VERIFY CONSOLE CONTROL OVER JOB
This macro tests COMFLAGS field of the PCE to deter­
mine if the input source is a remote. If the source
is a remote, the not OK routine will be entered
unless either the print or punch route codes for the
indicated job specify the remote. Otherwise the OK
routine will be entered.
REGISTERS USED: Rl, LINK

JOBQE=(Rl) - The address of the HASP job queue entry
for the desired job.

OK= - Address of the routine desired to be entered
if the console has control over the job. The
address may be the symbolic register containing the
address if specified as "OK=(register,BCR)" or
"OK=(relative register,$BRR).

HASP Command Processor - Page 4.5-20

96

HAS P

NOK= - Address of the routine desired to be entered
if the console does not have control over the job.
The address may be the symbolic register containing
the address if specified as ''NOK=(Register,BCR)" or
"NOK=(relative register,$BRR). Either "OK=" or
"NOK=" parameters must be specified.

Relocatability Aids

$ARR

$BRR

$SRR

- ADD RELATIVE REGISTER
This macro instruction is used in conjunction with
$SRR to restore the specified register to refer to
the true address of relocated information.

register - Required - The symbolic register contain­
ing the address to be made true.

- BRANCH RELATIVE REGISTER
This macro instruction is used in conjunction with
$COMGRUP to enter a sub-processor routine using the
offset provided by the $COMGRUP routine.

condition - Condition required to be met in order
to branch. If this parameter is omitted, no comma
should be written to signify its omission.-"Condi­
tion code" may be specified by the character
strings: (E, NE, H, L, NH, NL, Z, NZ, P, M,
NP, NM, 0 or NO) .

Register - Required - The symbolic register con­
taining the offset.

- SUBTRACT RELATIVE REGISTER
This macro instruction is used to make an addr~~s
pointer relative for possible relocation before
next referral to the information contained at
the address.

register - Required - The symbolic register con­
taining the address to be made relative.

HASP Command Processor - Page 4.5-21

97

HAS P

4.6 OPERATOR CONSOLE ATTENTION PROCESSOR

This processor is included in HASP only if the value of the
HASPGEN variable &NUMCONS is greater than 0 (see section 7.1).
The HASP interface to OS Console Support if &NUMCONS=O, is
described in Appendix 12.15.

4.6.1 Operator Console Attention Processor - General Description

The function of this processor is to stage a read on a console
whenever an attention is received from that console.

4.6.2 Operator Console Attention Processor - Program Logic

During HASP initialization, the first three words of the OS Console
Attention Routine (IEEBA1) are overlayed with instructions which
cause lOS to enter the HASPATTN routine of this processor whenever an
attention interrupt occurs.

When an attention request is signalled by a console device, HASPATTN
saves the device address in the processor's PCE workarea, $POSTs
the PCE, and POSTs HASP.

When the Attention Processor is dispatched, it locates the physi­
cal console whose address is in the processor's PCE workarea and
links to the $WTO Processing Routine (see Section 5·.7) to queue
a read on. that console.

Console Attention Processor - Page 4.6-1

98

HAS P

4.7 CHECKPOINT PROCESSOR

4.7.1 CHECKPOINT PROCESSOR - GENERAL DESCRIPTION

The purpose of this processor is to write the necessary infor­
mation onto disk to affect a subsequent restart of the system.
This processor will write the information at a predefined time
increment and at the completion of each stage of each job.

4.7.2 CHECKPOINT PROCESSOR - PROGRAM LOGIC

The first entry into the Checkpoint Processor is into a sec­
tion which initializes the processor. This section issues a
&GETUNIT macro-instruction to obtain a DCT for a disk and
completes this DCT by inserting the event wait field address,
track to be written, and the buffer address.

The information to be checkpointed consists of the Job Queue
which contains the status of each job in the system, the track
allocation map which indicates the track groups of each disk
that have been assigned, a save area wh"ich contains added in­
formation as to the status of the system, the print checkpoint
table which is used to effect a warm start of the jobs being
printed, and (if generated) the Job Information Table which
contains additional information concerning each job in the
system. The Job Queue and the Job Information Table reside
within the checkpoint buffers, but the remaining fields must
be moved into these buffers.

The track allocation map is the first to be moved and the
track groups that have been reserved for the jobs that are
currently executing and reading in are returned to the track
allocation map to avoid loss of tracks in case of an emergency
restart. Next the write buffers are completed by moving the
save area and the print checkpoint tables. An :;iEXCP is issued
to write the checkpoint buffers and a $WAIT on I/O is initiated.

The Job Information Table (if generated) is written with CCW's
which are chained to the CCW's used to write the rest of the
checkpoint information. The Job Information Table is not
written with each checkpoint but only when the processor
which requests the checkpoint indicates that he wishes the
JIT to be written. This indication is made by setting the
"JITJCKPT" bit in the n$JITSTAT" field to one.

Checkpoint Processor - Page 4.7-1

99

HAS P

At the completion of the I/O operation, the HASP ECB is posted
and the timer is reset to a predefined time increment thqt was
specified as a HASPGEN parameter. A test is now executed to '
determine if the previous write was successful and if so, a
$WAIT macro-instruction is issued to place the processor into
an inactive state until the time increment has expired or a
stage of a job is completed.

If the previous write was unsuccessful, a message is issued
to indicate to the operator that a restart is needed and a
permanent HASP $WAIT state is entered so that no further check­
point will be attempted.

Checkpoint Processor ~ Page 4.7~2

100

4.8 ASYNCHRONOUS INPUT/OUTPUT PROCESSOR

4.8.1 ASYNCHRONOUS INPUT/OUTPUT PROCESSOR - GENERAL DESCRIPTION

Since the completion of all HASP I/O operations are signalled
asynchronously with HASP operation via lOS channel-end appen­
dages, these completions must be queued by the appendage
until all HASP processors can be synchronized to receive the
notification. The purpose, then, of the Asynchronous Input/
Output Processor ($ASYNC) is to, at non-interrupt time,
notify all processors of their I/O completions which were
indicated by the OS I/O supervisor at interrupt time.

4.8.2 ASYNCHRONOUS INPUT/OUTPUT PROCESSOR - PROGRAM LOGIC

The buffers (and respective lOBs) associated with I/O channel­
ends are chained, by the HASP channel-end appendages, for
later processing by $ASYNC. In addition to the POST of the
HASP task by lOS on any I/O completion, the channel-end appen­
dages also $POST the Asynchronous Input/Output Processor to
initiate its processing when the HASP task receives control.
When $ASYNC receives control, it dequeues the first buffer
from its chain of work (operating disabled, for this operation
only, since its chain is updated at interrupt time). The
Device Control Table entry (OCT) associated with this buffer
is located and the active I/O count for the device is reduced
by one. Next the user's EWF address is extracted from the
buffer and interrogated, and action is taken according to the
following algorithm:

EWF = 0

EWF > 0

EWF < 0

User does not want notification of completion
of I/O operation (always a write). The buf­
fer will be returned to the HASP buffer pool
by $ASYNC.

$POST the !'1/O!! bit in the EWF specified and
take no further action.

Enter a user provided routine at the address
specified by the absolute value of the EWF
field. Addressability for the processor
routine is established and the address given
is entered via the Branch and Link instruction
with the buffer address in register "Rl."
No further action is taken upon return by the
processor.

After performing the indicated action, $ASYNC returns to dequeue
the next buffer from its chain and the above procedure is re­
peated. When the end of the chain is reached, $ASYNC enters
the $WAIT state until additional I/O completions occur.

Asynchronous Input/output Processor - Page 4.8-1

101

HASP

4.9 HASP LOG PROCESSOR

4.9.1 HASP Log Processor - General Description

The function of the HASP Log Processor is to construct output
buffers for eventual processing as part of each Job's printed
output. Input to the Log Processor is through a queue of CMBs
associated with the queue pointer $LOGQUE which is defined in
the HCT. The nature of the information in the input queue, and
consequently the printed output, varies as a function of the
HASPGEN Parameters &NUMCONS and &WTLOPT.

4. 9 • 2 HASP Log Processor - Program Logic

Log processing of a message buffer is started by locating the
corresponding execution PCE. PCEs for output buffers are found
by using the job number in the buffer, and "reply" message PCEs
are located by using the TCB address which is placed into bytes
six through eight of the buffer by the Operator Console Input/
Output Processor's asynchronous exit. Reply message processing
is valid only for &NUMCONS>O.

A test is made to ascertain if the message will fit in the HASP
buffer currently being used by the job for log output. If space
is available, the message is placed in the HASP buffer and the
CMB is processed as follows: If the CMB status bits indicate a
"read" or a "log only" condition, then the CMB is returned to
the free queue via the routine $FREEMSG. The IIlog onlyll condi­
tion is used when &NUMCONS=O. "Read" and "Write" have meaning
only when &NUMCONS>O. If the status bits indicate a IIwrite ll

condition, then the CMB is queued for display via the $WQUEBUF
subroutine.

HASP L~g Processor - Page 4.9-1

102

HAS P

4.10 OPERATOR CONSOLE INPUT/OUTPUT PROCESSOR

This processor and associated routines are included in HASP only
if the value of &NUMCONS is greater than 0 (see Section 7).
The HASP interface to the OS console support which is included
if &NUMCONS=O, is described in Appendix 12.15.

4.10.1 Operator Console Input/Output Processor - General Description

The function of the Operator Console Input/Output Processor is to
process all I/O activity on all operator consoles. The processor
also processes all console errors, making a number of retries.
If the error continues, the message is ignored.

4.10.2 Operator Console Input/Output Processor - Program Logic

The Operator Console Input/Output Processor examines each entry
in the console message buffer I/O queue,$BUSYQUE. Each bit in
the console byte is tested for an available console. If one is
found the appropriate operation is initiated with a $EXCP macro­
instruction and testing of the queue is resumed. When all avail­
able consoles have been processed, the processor enters a $WAIT
condition until an I/O interrupt is received on one of the consoles,
or until another console message is added to the queue.

Console Input/Output Processor - Page 4.10-1

103

HAS P

4.10.3 Operator Console Input/Output Appendage - Program Logic

The Operator Console Input/Output Processor's asynchronous exit
is entered from the Asynchronous Post Processor following the com­
pletion of an I/O operation on a console device. The lOB completion
code is tested for abnormal end, and if an error exists, an error .
routine is entered to retry the operation.

If the completion is normal the appropriate physical console bit
is shut off and the console byte is tested to see if the operation
is complete on all consoles. If any bits are still on the Operator
Console Input/Output Processor is $POSTed and an exit is taken.

If all bits are now off and the operation code is a write, a link
is made to $FREEMSG, the Input/Output Processor is $POSTed and an
exit is taken.

If the completed operation is a read, the response is processed
according to type. If the buffer contains a HASP command (i.e.,
an input message whose first character is a dollar sign ($)), it
is chained to the end of a queue for the Command Processor
($COMMQUE), the processor is $POSTed, and an exit is made with a
$POST of the Input/Output Processor.

If the message is a "reply", the reply number is converted to
binary and the corresponding entry in $WTORQUE is located. Using
the information in the entry, the message is moved to the WTOR's
reply area and the WTOR's ECB is POSTed. The reply queue entry
is merged into the free queue ($WTORFRE), and a link is made to
the Log Queuing Routine. The Input/Output Processor is $POSTed
and exit is made.

If the message is not a "reply" or a HASP command, it is assumed
to be an OS command. The message buffer is set to the proper
format for the Master Command Routine and an SVC 34 is issued.
When control is returned from the Master Command Routine, the
buffer is released, the Input/Output Processor is $POSTed and an
exit is made.

Console Input/Output Processor - Page 4.10-2

104

HAS P

4.11 TIMER PROCESSOR

4.11.1 TIMER PROCESSOR - GENERAL DESCRIPTION

The function of this processor is to reset the OS interval
timer after a timer interrupt has occurred.

4.11.2 TIMER PROCESSOR - PROGRAM LOGIC

This processor calls the IPOSTIT and ISETINT subroutines in
the $STlMER/$TTlMER Control Service Routine (see Section 5.6),
which causes the expired TQEs to be POSTed and the time inter­
val specified in the first TQE in the TQE chain to be set
into the OS interval timer. The processor then waits for
another timer interrupt to occur. When the next timer interrupt
is processed, the asynchronous exit routine $POSTs this pro­
cessor and the above procedure is repeated.

Timer Processor - Page 4.11-1

105

HASP

4.12 REMOTE TERMINAL PROCESSOR (360/20-STR)

4. 12. 1 Remote Terminal Processor (360/20) - General Description

The Remote Terminal Processor (RTP), although not a part of HASP

proper, can be considered in the same catagory as other HASP processors.

RTP is created by HASPGEN to operate as an extension of HASP on a

System 360 Model 20 used as a remote terminal to HASP. RTP, in

the Model 20, maintains constant communications with HASP at the

central computer site via severalclas se s of telephone line s to 1) encode

and transmit jobs submitted at the remote site to HASP for execution on

the central computer, and 2) print and/or punch the output from

jobs thus submitted as the output becomes available. Various techniques

are utilized by RTP and HASP to obtain maximum performance of both

the Model 20 devices and the communication line s used. RTP currently

requires an 8K Model 20 with any reader and printer attached. The

program can be made to operate in a 4K environment at a somewhat

degraded performance, with reduced ease of operation.

RTP has been designed to allow the addition of "background" functions

to operate in a multiprogrammed environment with normal remote terminal

proces sing.

Remote T'erminal Processor (360/20) - Page 4.12-1

106

HASP

4.12.2 Remote Terminal Processor (STR Model 20) - Program Logic

Upon completion of the loading of the RTP program deck, control is

transferred to the initialization phase of the program to prepare for job

processing. Initialization first checks the card reader for the presence

of patch (REP) cards and, if present, makes the appropriate patches

(the RTP REP card format is identical to the HASP REP card as described

in Section 6.4). Encountering a /*SIGNON card within the REP cards I

will cause initialization to replace the default remote SIGN-ON identification

and password by the contents of the card. After loading REPs, or if no REP

cards are present I the dynamic configuration card (which follows REPs if

present) is decoded and appropriate commands for the system punch

s.elected are established. (The formats of the SIGN-ON and dynamic

configuration card are given in the Model 20 Operator's Guide-Section 11.2).

The final proces s of initialization is the dynamic construction of the buffer

pool. Buffers are built, according to the HASPGEN parameter &TPBFSIZ

until the memory size of the machine is reached or the assembly parameter

&NUMBUFS is reached. Construction of the buffer pool ov·erlays the complete

initialization routine. Control is then passed to the processing section of RTP.

Remote Terminal Processor (360/20) -" Page 4.12-2

107

HASP

The processing phase of the program consists of four principal processors

and a communications adapter (CA) I/O supervisor. Allocation of CPU

time to the various processors is accomplished via a commutator. A

p.roce s sor is entered into contention for CPU time by changing its commu­

tator entry from a NOP to a BRANCH command. Through the use of the

WAIT macro, a processor may await the occurrence of a certain event

and be entered, via the commutator, below the wait instruction upon

completion of the event.

Remote Terminal Processor (360/20) - Page 4.12-3

108

HASP

PROCESSORS

Card Read Proce s sor

Upon initial entry, this proces sor checks the system card reader

for ready status. If the device is not ready, HASP is notified, via a

SEND EOT, of the lack of jobs to transmit, the CA receive processor

is activated, the card read processor is deactivated, and entry is made

to the commutator. If the card reader was ready, the transmission phase

is immediately begun. Cards are read (double buffered) and are passed

to the ENCODE subroutine which compre s se sand tran slate s the card

for transmission. The encoded card images are blocked in a buffer

obtained from the dynamic buffer pool until the capacity of the buffer is

reached. The buffer is then chained into a queue of buffers awaiting

transmission by the CA transmission processor to HASP in the central

computer. Another buffer, if available, is obtained from the buffer pool

and is processed in a like manner. When, and if, the supply of buffers

is exhausted, the reader proce s sor enter s a WAIT state to await the freeing

of a transmitted buffer by the CA transmis sion proce s sor. When the

last card of the job stack has been read, a SEND EOT (zero word count

buffer) is queued for transmission and the steps described previously

are done to terminate transmission and activate reception. In order to

Remote Terminal Processor (360/20) - Page 4.12-4

109

minimize CPU utilization, the card read processor-compression routine

only compresses "n" or more blank characters (where I'n" is the value

of the assembly parameter &CCT). The format of transmission records

to HASP is described in Section 12. 9. 3.

Remote Terminal Processor (360/20) - Page 4. 12-5

110

HASP

Communications Adapter Transmission Processor

The CA Transmission processor removes buffers from an ordered

queue, dynamically being built by the Card Read Processor, and trans­

mits their contents to HASP in the central computer. All transmissions

are via the Communications Adapter-I/O Supervisor (CAIOS) which pro­

vides for line re-instruct at interrupt time to make optimum use of the

line (See CAlOS description). As posting of successfully completed

writes occurs, the buffers are returned to the free buffer chain for

reuse by another processor. This processor continues to dequeue and

transmit buffers, as they become available, until a buffer with a trans­

mission word count of zero is encountered. An EOT is then sent to HASP

to indicate the end of the input stream, the CA T ransmis sion Proce s sor is

deactivated and return is m.ade to the comm.utator.

Remote Terminal Processor (360/20) - Page 4.12-6

III

HASP

Communications Adapter-Receive Processor

The CA Receive Processor is activated by the Card Read Processor

when it is determined that no jobs are available to transmit to the central

computer. Upon being entered, CA Receive establishes communication

with HASP in the central computer to await the output of a previously

submitted job. The lack of jobs to transmit is indicated by HASP with an

immediate EOT signal to the Model 20. When this EOT is received, the

CA Receive Processor deactivates itself and activates the Card Read

Proce s sor to again check for the pre sence of job s to send to HASP.

If a job is avialable to be printed or punched, the CA Receive

Processor activates the Print/Punch processor and immediately begins

reading transmittal records into buffers obtained from the dynamic

buffer pool. Buffers, thus filled, are placed in an ordered queue to

await processing by the Print/Punch Processor. All CA reads are

via the Communications Adapter I/O Supervisor (CAIOS) which provides

for line re -instruct at interrupt time to make optimum use of the line

(see CAlOS description). Processing continues, as buffers and/or

transmittal records become available, until an EOT signal is received

from HASP indicating end-of-job. A buffer with a word count of zero

is added to the queue to inform the Print/Punch processor of the end­

of-job.

Remote Terminal Processor (360/20) - Page 4.12-7

112

HASP

Communication is then, once again, established with HASP to

ascertain if additional output for this 121> is available (i. e. the punch

output of the job which has just completed printing). After the additional

output has been processed, or if none existed, the CA Receive Processor

is deactivated, the Card. Read Proce s sor is activated, and return is

made to the commutator. Note that this logic, of acti~ating the Card

Read Processor prior to beginning processing output from the next job,

allows the Model 20 Operator to interrupt print/punch processing, at

a job boundary, to transmit a job to the central computer.

Remote Terminal Processor (360/20) - Page 4. 12-8

113

HASP

Print/Punch Processor

When activated, the Print/Punch Proce s sor begins dequeuing and

processing buffers from the queue (being) created by the CA Receive

Processor. Records to be punched are indicated by "carriage control"

characters of X'OFOF' and are routed to the punch section of the pro­

cessor. In order to minimize CPU requirements, the print processor

does not provide for 1-7/8 encoding of print characters (see Section 12.9).

The 16 4 of 8 character s normally re se rved for 1-7/8 encoding are re­

defined for print records only, as additional print characters, thus

yielding a 64 character print set.

After reconstructing and printing or punching all records in a buffer,

that buffer is returned to the buffer pool for use by another processor.

When a buffer with a zero word count is encountered in the queue (indi­

cating end-of-job), the Print/Punch Processor is deactivated, unless

records from the next job have already been queued, and return is made

to the commutator.

If a dynamic configuration card described the system punch unit as

DUMMY, the punch section of the proce s sor is dynamically altered (by

initialization) to immediately free all punch buffer encountered in the

Print/Punch buffer queue. This results in eliminating punched output;

however, punch records are still transmitted to the Model 20.

Remote Terminal Processor (360/20) - Page 4. 12-9

114

HASP

By setting the assembly parameter &PUNCH to 0, all code concerned

with processing punched output will be eliminated from RTP. The

appropriate HASPGEN must be done on the central system to force all

punch output for a "punchless ll terminal to be processed locally.

Remote Terminal Processor (360/20) - Page 4.12-10

115

HASP

Communications Adapter I/O Supervisor

The primary purpose of CAIOS is to assure the maximum possible

communication line utilization by re-instructing the line at the earliest

possible moment after completion of a previous generation.

All requests to read and/or write the communication line are passed

to CAIOS for execution by the CA processors. Upon receipt of an I/O

request I CAIOS immediately initiates the operation if the line is dormant I

or queues the request to await completion of the currently active opera­

tion.

The completion of a CA I/O operation causes an interrupt which

immediately transfers control to CAIOS. If the operation indicated as

complete by the interrupt was successful (error free) I any queued I/O

request is immediately initiated. The Event Control Block 6f the re­

questor of the just completed I/O operation is posted (with a X' 7F') to

indicate the successful completion of the request. Return is then made

to the interrupted processor. CAIOS recognizes and attempts to

correct all transmission errors encountered on any CA I/O operation.

Since both CA processors are designed to double buffer I/O requests I

CAIOS insures virtually total line utilization during transmission periods.

Remote Terminal Processor (360/20) - Page 4.12-11

116

HASP

4. 12.3 Remote Terminal Processor (360/20)-Assembly Parameters

The following indicates the variable name and function of certain RTP

assembly parameters which can be of general use.

&TPBFSIZ

&NUMBUFS

&CCT.

defines the size of the buffers used for

transmission to and from the HASP system.

(Since this variable must exactly agree with

the corre sponding variable s in the HASP

system, the value s of both are automatically

set at HASPGEN time.

limits the number of CA buffers created

dynamically at initialization time. Initial­

ization will create buffers until the capacity

of memory, or the value of &NUMBUFS is

reached. It is suggested that this value be

made large enough to allow sufficient buffering

(hence line load-leveling) to occur.

represents the minimum number of consecutive

blank characters which will be compressed

by the Card Read Processor. This value

should never be less than 4 and, significantly

Remote Terminal Processor (360/20) - Page 4. 12 .. 12

117

HASP

&PUNCH

&MACHINE

reduces CPU requirements by the Card Read

Processor as it is increased. A value of 80.

will effectively prevent all blank compre s sion

(except on totally blank cards). The value of

&CCT may never exceed 80.

controls the existance of code within RTF to

process punch output received from HASP.

If &Pu.NCH= 1, punching capabilitie s will exist

in RTP.

&PUNCH=O, no punching capabilities will be

created in RTP (NOTE: the HASPGEN of the

central computer system must agree with this

option.)

defines the Model of SYSTEM/360 on which

RTP is to operate. This value must presently

be set to 20. This option can subsequently be

used to assemble RTP, at HASPGEN time, for

any Model of SYSTEM/360 being utilized as a

HASP remote terminal. Although certain parts

of this feature are currently in RTP, it is

incomplete and totally unte sted.

Remote Terminal Processor (360/20) - Page 4. 12·-13

118

HASP

4.13 REMOTE TERMINAL PROCESSOR (SYSTEM/360-BS~

The following sections outline the basic logic flow of the MULTI-LEAVING

Remote Terminal Processor program for System/360 (including Model 20)

workstations utilizing Binary Synchronous communications devices. The same

workstation program is utilized for both the Model 20 and System/360 work-

stations with generation parameters for the machine type.

4 • 13 • 1 General Description

The MULTI-LEAVING Remote'Terminal Processor program is created by

HASPGEN to operate as an extension of HASP on any Model of SYSTEM/360
~ .

used as a remote workstation for HASP. This terminal program maintains

constant communications with HASP at the central site via several classes

of telephone line~ to (1) encode and transmit jobs submitted at the remote

site for OS/360 processing on the central computer I and (2) print and/or

punch the output from jobs thus submitted as the output becomes available.

Optionally I if an operator console is attached to the remote system I

informational and control facilities are provided. All of the above functions

may occur simultaneously. Various techniques are utilized by HASP and

the workstation program to obtain maximum performance of the remote

devices and the communications line. Figure 4. 13. 1 indicates the basic

information flow through the system.

Remote Terminal Processor (System/360) - Page 4. 13-1

119

HASP

Figure 4.13.1 MULTI-LEAVING Information Flow Diagram

$OUTBUF
Queue

.. ~

$TPPUT

OACTBUFF

A

• $TPPUT

Device
Tank

• $RRTNl
• $WRTN:L

INPUT DEVICE

$COMSUP ..
r'

... $TPPUT -

HASP
A

• $COMSUP

y

CBUFFER

~~

$COMSUP

$BUFFER
Pool

~~

$TANKPOL
Pool oJ -

N.otes:

$COMSUP

$TPGET

$TPGET ..

$PRTNl
$URTNl
$WRTNla

--

~,

TCTBUFER
Queue

·
· $TPGET ,

TCTTANK
Queue

· $PRTNl
• $URTNl
• $WRTNl ,

OUTPUT DEVICE

Solid lines indicate buffer or decompression tank flow with or without data.

Broken lines indicate data flow only.

Line comments indicate process~r responsible.

Remote Terminal Processor (System/360) - Page 4.13-2

120

HASP

4.13.2 Program Logic

The MULTI-LEAVING Remote Terminal Processor consists of an initialization

section I four principal processors I three communications interface processors

and a communications INPUT/OUTPUT supervisor. Allocation of CPU time to

the various processors is accomplished through a basic program commutator.

A processor is entered into contention for CPU time by changing its commutator

entry from a NOP to a BRANCH command. A single control block I the Total

Control Table (TCT) is utilized by all processors to provide for synchroni'zatlon

of concurrent operations I processor status information1re-enterabllity and both

inter and intra processor communication.

The following sections discuss the basic logic flow of the various

components of the program.

Communications Interface Processor - Output ($TPPUT)

This processor serves as the interface between the various input processors

and the communications INPUT/OUTPUT supervisor. Its function is to compress

and encode records for subsequent transmission to HASP at the central site.

$TPPUT is utilized as a subroutine by the various input processors and relieves

the input routines of the responsibility of data compression and transmission

buffer management. As records are submitted for transmission I $TPPUT

compresses the records according to a compression type generation parameter

Remote Terminal Proces sor (Sys tem/3 60) - Page 4. 13-3

121

HAS P

(&CMPTYPE) and add the encoded record to its current output buffer.

When the current buffer is filled or terminated, it is chained in

an ordered queue for transmission to. HASP by the communications

INPUT/OUTPUT supervisor and a new buffer obtained. Details of the

compression and encoding technique utilized by $TPPUT are included

as an appendix to this manual.

Communications Interface Processor -.Input ($TPGET)

This proces'sor serves as the interface between the various output

processors (Print, Punch, Console, etc.) and the Communications

INPUT/OUTPUT processor. Its function is to decode and uncompress

transmission buffers received from HASP and to queue the decompressed

records to the appropriate processor for processing. $TPGET is en­

tered from the commutator and processes buffers from a ordered queue

of received buffers established by the Communications INPUT/OUTPUT

supervisor. Records received are deblocked into "decompression

tanks" and passed to the appropriate processor. Synchronization and

passage of the tanks to the processors is accomplished through the

Total Control Table (TCT) for each processor. $TPGET additionally

is responsible for metering the flow of each type of record from

HASP. This also is accomplished by utilizing the various buffer and

tank limits indicated in the TCT for each processor.

Control Record Processor ($CONTROL)

This processor provides synchronization between the various processing

Remote Terminal Processor (System/360) - Page 4.13-4

122

HASP

functions at the workstation and the HASP SYSTEM at the central site. Control

Records from HASP (i. e. Request to start a function I etc) are queued on this

processor by the$TPGET processor. $CONTROL then processes the control

record I transmits a response I if required, through $TPPUT and initializes the

required functional proces sor.

Communications INPUT/OUTPUT Supervisor (COMSUP)

COMSUP maintains communications with HASP in the central CPU at all

times and is responsible for the transmission of all data to and from the remote

site. The data processed by COMSUP is .always in compressed buffer form

and passes to and from COMSUP via ordered queues esta0lished by $TPPUT

and for $TPGET.

The communications I/O is primarily interrupt driven and is completely

maintained by COMSUP (i. e. COMSUP is both the initiator and executor

of communications I/O). During periods requiring no data transmission I

COMSUP maintains a ."handshaking" cycle with HASP at approximately 2

·second intervals to insure full bi-directional capabilities and to avoid

unprogrammed II time-outs II of the adapter.

In addition COMSUP maintains I verifies and corrects (if necessary)

the MULTI-LEAVING block sequence checking feature and detects I logs

and retries all communications errors •

Remote, Terminal Processor (System/360) - Page 4.13-5

123

HASP

Initialization Processor

The Initialization Processor receives control from the loader and

initializes the remote terminal program as follows:

1 . If the CPU is not Model 20, general registers 1, 2, and 3

are loaded to establish 16 K addressability.

2 . Replacement (REP) cards are read from READER 1 for possible

modifications to the program. The format of the REP card

is as follows:

Col. 2-4 REP

Col. 9-12 Replacement address - hexadecimal address

of the first half word of storage to replace

Col. 17-n

Col. n+1

(if blank the previous REP card is continued)

XXXX I xxxx I ••• xxxx replacement data -

one or more half word groups of hexadecimal

data separated by commas

blank - terminator for the replacement data

Col. n+2 - 8 0 comments - any text

Each REP card is printed on PRINTER 1 when read as a record of program

modification. REP reading is terminated when either a blank card (blank in

Col. 1-5) or a /*SIGNON card is encountered.

3. The HASP ENVIRONMENT RECORDING ERROR PRINTOUT (HEREP)

is printed if the recording table is 1ntact from the last execution

Remote Terminal Processor (System/360) - Page 4.13-6

124

HASP

of the program; otherwise, a new table is created for future

recording and print out.

4. Interrupt PSW' s are set for non Model 20 CPU's.

5. The communication adapter is enabled and communications

established with HASP as follows:

a. Write SOH-ENQ to HASP

b. Read for DLE-ACKO from HASP

If I/O errors occur or HASP responses do not match the expected

sequence I the sequence is repeated.

6. The proces sor constructs a buffer pool over itself and queues

the SIGN-ON record for transmission to HASP.

7 . I/O PSW' s are set (I/O old points to commutator) and control

is passed to the communication adapter interrupt routine.

Print Service Processor - $PRTN1

The Print Service Processor's major functions are dequeuing decompression

tanks containing print information from the printer Total Control Table,

examining the sub-record control byte for carriage control information,

performing required carriage control, printing the information on the designated

printer, and releasing the used decompression tank to the pool. The processor

also provides event control upon dequeuing and releasing the "tanks". If

no console typewriter is attached to the system and the value of the user

option &PRTCONS is not zero, the processor will set status information

Remote Terminal Processor (System/360) - Page 4.13-7

125

HASP

at the end of each print data set which allows the console processor to queue'

operator messages for printing.

Input Service Processor - SRRTNI

The Input Service Processor supports various card readers used for the

purpose of submitting job streams to HASP and in the case of Model 20

DUAL 2560 MFCM serves the functions of punch service processor. The

processor provides error analysis and recovery for supported devices.

Execution begins with the initial read routine which continuously attempts

to read cards from the designated card reader. In the case of a DUAL 2560

control is passed to the punch routine if the primary feed is empty. If reader

is a DUAL 2520 or 1442 the routine will check the first card for blank and

if so pass control to the punch preparation routine; otherwise subroutine

$TPOPEN is called which sends a request to send a job stream to HASP.

When permission is received the job stream submission routine is entered

which reads cards into one of two decompression tanks calling the $TPPUT

processor which compresses the data and schedules transmission to HASP.

At end-of-file $TPPUT is used to signal HASP and control is passed to the

initial read routine.

The DUAL 2560 punch routine attempts to dequeue a decompression tank

from the Total Control Table. If successful the card image is punched and

the used "tank" is released to thp. pool. The routine continues to dequeue

and punch for a maximum of 100 cards; this time tests are made to determine

Remote Terminal Processor (System/3.60) - Page 4.13-8

126

HASP

the existance of cards in the primary feed. The tests are also made in the

event of no tanks available for dequeuing. If the tests are negative the

processor continues to punch cards; otherwise control is passed to the

read routine following the initial read. The processor provides event control

upon dequeuing and releasing decompression tanks.

DUAL 2520/1442 punch preparation routine tests for:

1 . Operator Signal - changing of the data dials, . SRI command,

or unsolicited device end. (Depends upon configurati6n).

2 . Presence of Decompression tanks for punching.

If the operator signals, the routine passes control to the initial read

routine. If a II tank II is queued to the device Total Control Table control

is passed to the Punch Service Processor ($URTNl).

Punch Service Processor - $URTNI

The Punch Service Processor's major functions are dequeuing decompression

tanks containing print .:.rlformation from the punch Total Control Table I punching

the information into cards on the designated punch I and releasing the used

II tanks II to the pool. The proces sor also provide event control upon de-

queuing and releasing the "tanks II in addition to error recovery upon

erroneous punching of data. If the device is a DUAL 2520 or 1442 control

is passed to the Input Service Processor ($RRTNl) after servicing output

"tank" .

Remote Terminal Processor (System/360) - Page 4.13-9

127

HA,SP

Console Service Processor - $WRTN1

If the remote terminal has an attached operator printer keyboard I the ..
console processor performs the following functions:

1 . Reads operator commands from the console keyboard.

2 • Examines the input for local commands (Model 20 only)

passing local commands to the command processor and

pas sing all other commands to HASP.

3. Type operator messages contained in decompression tanks

queued to the console Total Control Table.

4 . Convert codes in the error mes sage log table to readable form

and type the resulting mes sages.

Execution begins with the processor testing for an operator command

in the console input II tank II waiting to be transmitted to HASP. If so the

console read in function is skipped and an attempt is made to send the

command to HASP. Control is passed to the console output routine which

tests for output messages. If so I the processor dequeues the tank I types

the message I and releases the tank. Control is then passed to the beginning

of the proces sor . If no output mes sages are pending the console logging

routine is entered 'which converts, types the message, and passes control

to the beginning of the processor. The console read routine tests for

operator requests and if so, reads the command from the keyboard I calls

the $TPPUT processor to compress the data and transmit the command to

HASP, and passes control to the console output routine. If the remote

Remote Terminal Processor (System/360) - Page 4.13-10

128

HASP

terminal is a Model 20 the read routine tests for local commands and

calls the command processor which in case of ". S" command , posts. the

appropriate Service Processor and retur"ns. Local commands are not

transmi tted to HASP.

The Console Service Processor without a console keyboard exists only

when the value of the user option &PRTCONS is not zero. Execution begins

with a test for printer availability. If available, any console messages are

removed from the console output queue by the dequeue routine and attached to

the printer queue, allowing the Print Service Processor to print the message.

If no console messages are queued the processor will convert any log messages

into readable form, move the resulting message into a II tank II obtained from

the pool, queue it to the console output queue and pass control to the con-

sole dequeue routine. If the value of &PRTCONS is one and the printer is

not available console messages are allowed to accumulate to a maximum

queue limit. If the limit is reached prior to the printer becoming otherwise

available the printer is forced available and the messages are queued to the

printer with the sub-record control byte of the first message set to skip to

channel 1 before print. If the value of &PRTCONS is two and the printer

is not available to the console the processor will dequeue console tanks

and release them to the pool.

Remote Terminal Processor (System/360) - Page 4.13-11

129

HASP

Total Control Table (TCT)

The Total Control Table is the major working storage area for the unit

record processors and is customized for each configuration and device supported

by the remote terminal program. Each basic TCT field may be referred to by using

symbols defined in the DSECT named TCTDSECT, however, each processor has

the option of uniquely referting to the fields directly by using the al terna te

three character prefix to each field name as follows:

TCT = General TC T prefix

CCT = Control record TCT

PCT = Printer TCT

RCT = Reader TCT

UCT = Punch TCT

WCT = Console TCT

Appropria te DSEC T' s are provided by generation macros in the event more

than one TCT of a given type is supported by the system. Basic control

fields appearing only in systems with model numbers above the Model 20

are as follows:

NAME

$pCTCOMn

DESCRIPTION

TCT addressability field - The commutator

branches to this field to give control to the

appropria te proces s or - the field contains a

BALR R7 ,0 instruction which sets up TCT

Remote Terminal Processor (System/360) - Page 4.13-12

130

HASP

NAME

TCTSTRT

TCTENTY

TCTRTN

TCTCCW

TCTDATA

DESCRIPTION

addressability for the processor - symbol

characters "p" and "n" uniquely identify the

TCT for the commutator

First two characters of unconditional branch

instruction

.. S" type address constant pointing to the

appropriate proces sor - the field completes the

branch instruction which passes control to the

processor at the desired entry pOint

Return to next entry in commutator - each

processor waits by branching to this field

of the TCT which in turn branches to the

commutator

Actual CCW op-code used in last I/O on the

device - set by the processor and unit record

lOS

Address of data area used for last I/O transfer

or address of input "tank" currently being

Remote Terminal Processor (System/360) - Page 4.13-13

1 ') 1

HASP

NAME

TCTFLAG

TCTOPCOD

TCTCCWCT

TCTSENSE

TCTUCB

TCTECB

DESCRIPTION

compressed for transmission to HASP

CCW flags

Op-code which will be inserted into the

TCTCCW field upon normal entry to unit record

IDS

CCW count field - length of data last trans­

ferred or to be transferred

Sense information - set by unit record IDS

for error diagnostic purposes

Device Address - contains hexadecimal

device address for SID and interrupt recognition

purposes - the high order bit of the field is set

on by the proces sor when wa.iting for HASP to

authorize job submission

Event Control Block - contains all bits stored

in CSW byte 4 since the last SID instruction for

the device - busy bit is set at SID and when

the processor desires to wait for unsolicited

Remote Terminal Processor (System/360) - Page 4.13-14

132

HASP

NAME

TCTALTOP

TCTSAV1

DESCRIPTION

device end - busy bit is reset at device end

Alternate op-code for DUAL reader/punch

devices - processors requiring alternate op­

codes have the option of setting the TCTCCW

field with the contents of this field prior to

entry to unit record lOS

Save area for the processor subroutine LINK

register

Basic fields which may appear in remote terminal programs for all

360 models are as follows:

TCTNEXT

TCTFCS

TCTRCB

Next TCT in the chain of TCTs

Function Control Sequence Mask - used by

$TPGET processor to setup the FCS transmitted

to HASP for backlog control

Record Control Byte - records from HASP which

have RCB bytes identical to this field will be

queued for output on the corresponding device

Remote Terminal Processor (System/360) - Page 4.13-15

133

HASP

NAME

TCTSTAT

DESCRIPTION

Status Flags - each bit has one or more meanings

which are dependant upon the processor

involved:

bit 0 = TCTOPEN - always off indicating

device is in use by HASP output

(as appropriate)

bit 1 = TCTACT - used by $TPGET to

determine which output devices

need more data - proces sors set bi t

1 when dequeuing output "tanks"

bit 2 = TCTSTOP - device has been stopped

and is awaiting a· start command.

bit 3 = TCT1052, TCT2152 - console

device identifier

bit 4 - PCT only = TCT1403, TCT1443,

TCT2203, TCTPRTSW - indicates the

status of the corresponding printer -

if set the printer is available for

printing operator mes sages

bit 4 - WCTonly =: TCTREQ - console request -

operator desires to enter a command

Remote Terminal Processor (System/360) - Page 4.13-16

134

HASP

NAME

TCTCOM

TCTID

TCTINRCB

DESCRIPTION

bit 4 - UCT only = TCT1442 - the device is a

1442 with single stacker pocket

bit 5 - RCT or UCT = TCT2540 - TCT is for

a 2540

bit 5 - WCT only = TCTREL - release requested -

an unsuccessful attempt has been made

to obtain a bu ffer for command trans­

mission to HASP - the command is in

compressed form in the consoles "tank ll

waiting for a free buffer

bit 6 - RCT/UCT = TCT14420, TCT25600 -

TCT is for a DUAL 1442 Reader Punch

or DUAL 2560 MFCM

bit 7 - RCT/UCT = TCT25200 - TCT is for a

DUAL 2520 Reader Punch device

Pointer to corresponding commutator entry

Optional field - two character identification

for local command processors

Optional field - exists when DUAL devices are

attached to the system - identifies the Input

Remote Terminal Processor (System/360) - Page 4.13-17

135

HASP

NAME DESCRIPTION

Service Processor function as opposed to the

Punch Service Processor function identified by

TCTRCB - TCTINRCB is equated to TCTRCB if

no DUAL devices are attached

The following fields are normal device extensions and do not exist for

card reader devices when DUAL devices are not attached to the remote

terminal:

TCTTANK

TCTBUFER

TCTTNKLM

TCTTNKCT.

TCTBUFLM

Beginning of output "tank" queue - output records

appear in unit record image form

Beginning of output buffer queue - contains

records in compressed form waiting for de­

compression into tanks

Tank limit - maximum number of "tanks" which

may be placed in the "TCTTANK queue

Tank count - actual number of "tanks II queued

to the TCT

Buffer limit - maximum number of output buffers

which may be placed in the TCTBUFER queue

Remote Terminal Processor (System/360) - Page 4.13-18

136

HASP

NAME

TCTBUFCT

DESCRIPTION

before signalling HASP to suspend sending the

streams - limit is ignored for WCT

Buffer count - actual number of buffers queued

to the TCT

Reader and console TCT's have extensions which are used as "tanks"

for records which are transmitted to HASP. These "tanks" belong to: the

device (2 for readers and 1 for the console) and are not released to the. fltank~'

pool. The following field symbols are only defined for theTCT 's with.

prefix designators. RCT, WeT I and with DUAL devicesptJOT:

RCTTANK1, RCTTANK2 II Tank" origin and working storage

RCTTRCB1, RCTTRCB2 Input RCB for HASP identification

RCTTSRC1, RCTTSRC2 Sub-record control byte = X'SO'

RCTTCT1, RCTTCT2 Count field - length of data portion

RCTTDTA1, RCTTDTA2 Data area - input card or operator command -

will be blank for the DUAL 2520 and 1442

while in output status

Remote Terminal Processor (System/360) -Page 4.13'"'!19

137

HASP

SECTION

4.14

4.14.1

TABLE OF CONTENTS

Remote Terminal Programs (1130)
Introduction

Remote Terminal Processor (RTPl130)
Introduction

PAGE

4.14-1
4.14-1

4.14-3
4.14-3

Commutator Processors 4.14-4
TPIOX - SCA I/O Control 4.14-6
TPGET ... TP Buffers From HASP 4.14-6
TPPUT - TP Buffers To HASP 4.·14 - 6
RDTFO - 2501 Card Reader 4.14-7
RPFFT - 1442 Reader Punch 4.14-7
PRFOT - 1403 Printer 4.14-7
PRETT - 1132 Printer 4.14-8
CONSL - Console Keyboard/Printer 4.14-8
RTPET - Initializ.ation 4.14-9

System Subroutines 4.14-10
SGETQEL - Dequeue An Element 4.14-11
SPUTFQL - Enqueue A Free Element 4.14-11
SPUTAQL - Enqueue An Active Element 4.14-11
STPOPEN - Initiate Control Record 4.14-11
'8SRCHB - SearchUFCB Chain 4.14-12
SWTOPR - Type Message 4.14-12
SLOGSCA - Log SCA Error 4 • 14 -12
SMOVE - Move A Variable Number Of Words 4.14-13
SXPRESS - Convert Card Code To EBCDIC 4.14-13
SXCPRNT - EBCDIC To Console Print 4.14-13
8XPPRNT - Convert EBCDIC To 1403 Print 4.14-13
SXCPNCH - Convert EBCDIC To Card Code 4.14-13
STRACE - Trace Machine Registers 4.14-13
SSDUMP - System Core Dump 4.14-13

Processor Subroutines 4.14-16
BSXIOS - SCA I/O Supervisor 4.14-17
DBLOCK - Deblock Data From HASP 4.14-17
TPCOMPR - Construct Output To HASP 4.14-18
DBUGSCAL - Trace SCA Interrupts 4.14-18
TPBUILD - Build TP Buffers· 4.14-20

HASP Remote Terminal Processor (1130) - Page 4.14-1

138

HASP

TABLE OF CONTENTS
(Continued)

SECTION PAGE

4.14.1 Control Block And Data Formats 4.14-21
Continued Chained List General Format 4.14-21

UFCB - Unit-Function Control Block 4.14-22
TPBUF - TP Buffer Format 4.14-25
Output Element (Tank) Format 4.14-27
Object Deck Format 4.14-28
REP Card Format 4.14-29

4.14.2 Remote Terminal Main Loader (RTPLOAD) 4.14-32

4.14.3 Remote Terminal Bootstrap (RTPBOOT) 4.14-33

4.14.4 Remote Terminal Program 360 Processing 4.14-38
(LETRRIP)

4.14.
4.14.5 1130 Instruction Macros 4.14-39

4.14.6 General Information 4.14-44
Variable Internal Parameters 4.14-44

HASP Remote Terminal Processor (1130) - Page 4. 14-ii

139

HASP

4.14 REMOTE TERMINAL PROGRAMS (1130)

Introduction

The 1130 MULTI-LEAVING terminal program is designed to operate on a

system with 8K words which contains the standard Binary Synchronous Com-

munications Adapter.

The unit-record equipment supported may include any or all of the following

devices:

• 1442 Reader/Punch or Punch

• 2501 Reader

• 1132 Printer

• 1403 Printer

• Console keyboard/Printer

Programs developed for the 1130 in conjunction with the HASP Remote Job

Entry feature are assembled using the OS/360 Assembler. The 1130 instruction

set is generated thru the use of macro instructions (See Section 14.4.5) corres-

ponding to the actual 1130 hardware commands. Additionally, pseudo (assembler)

operations are available to aid in the development of 1130 programs on the System

360.

The object decks produced by the as Assembler are subjected to further

processing by a program (LETRRIP) which condenses and changes the format of

the EBCDIC decks to facilitate 1130 loading ..

HASP Remote Terminal Processor (1130) - Page 4.14-1

140

HASP

The remote terminal system for the 1130 is composed of several programs

briefly described in the following paragraphs:

RTPBOOT - A bootstrap loader consisting of a single "load mode" format

card and several column binary and EBCDIC program cards. The function

of RTPBOOT is to lib ootstrap" an EBCDIC format loader (RTPLOAD) into

1130 core. RTPBOOT will load from either a 1442 or a 2501 card reader.

R TPLOAD - Loads into the upper segment of defined 1130 core and then

loads the main terminal program (RTP1130) into the lower extent of 1130

core. RTPLOAD also processes REP cards and performs the initial pro­

cessing of /*SIGNON control cards.

RTP1130 - The main terminal processing program which provides the

MULTI-LEAVING support for the 1130.

The following sections provide more detailed information on the design

and implementation of the above programs.

HASP Remote Terminal Processor (1130) - Page 4.14-2

141

HASP

4.14.1 Remote Terminal Processor (RTP1130)

Introduction

The subsequent sections present the basic structure of the terminal program

for the 1130. Included, are descriptions of the commutator logic and associated

processors; system subroutines; processor subroutines; control block formats

and data block general formats.

The documentation presented is intended to be introductory in nature.

The user intending to modify the system should use the documentation in con­

junction with a program listing which contains commentary in much greater detail.

HASP Remote Terminal Processor (1130) - Page 4.14-3

142

HASP

Commuta tor Proces sors

Distribution of CPU time to the processors concerned with the functions

necessary to support terminal devices is through programmed commutator

logic. Each proces sor which needs CPU time and is dependent on external

I/O device rates is represented by a commutator entry. The commutator

entry consists of the following basic elements:

• A named commutator "gate" which takes the form of a branch to

the next commutator entry (gate closed) or a "NOP" if the entry

is active (ga te open).

• A long form branch to the active commutator main ·':>utine used if

the gate is open.

• A named return pOint for reference by the main commutator routine.

• A named end to the commutator entry which is the address of the

next commutator entry.

The basic structure as defined may also contain register save-restore

sequences to be used for each entry-exit cycle through the commutator.

The processors entry from the commutator (gate open) usually provides

for a method of setting a variable entry to the segments of the processor

which are involved with waiting for I/O to complete or some system resource

to become available.

HASP Remote Terminal Processor (1130) - Page 4. 14-4

143

HASP

The general operation of the commutator involves the opening and closing

of processor gates I the setting of variable entry pOints within the processors I

the initiation and associated wait period for I/O operations and the return to

the commutator to "share" the CPU during wait periods. The last instruction

in the commutator is a branch to the "top" or first instruction in the commutator

which initiates the next cycle. The current system does not provide for a

priority relationship among commutator processors.

The main commutator processors contained in the RTP1130 system and

briefly described in the following sections.

HASP Remote Terminal Processor (1130) -Page 4.14-5

144

HASP

TPIOX - SCA Input/Output Control Processor

Controls the transmission of data and/or control records between HASP

and RTPl130 via the SCAt All adapter I/O is initiated using the SCA I/O

Supervi Bor - BSXIOS.

TPGET - Processor for TP Buffers From HASP

Processes data received from HASP in the form of TP buffers or control

records preprocessed by TPIOX. Control record processing is in the form

of "Request to start" or "Permission to send" functions.

Da ta buffers are deblocked, decompres sed, converted to appropriate

codes (1403 printer, 1442 punch, etc.) and queued for the specified com­

m·uta tor I/O proces sors •

Control information pertinent to the unique requirements of each data

type is provided through the associated UFCB.

TPPUT - Processor For Data Destined For HASP

Acquires a TP buffer from the free chain and collects data from defined

sources (card reader(s), console keyboard, etc.) to be processed (con­

,verted, truncated, compressed, etc.) and inserted into the buffer which is

queued for TPIOX transmis sion to HASP.

HASP Remote Terminal Processor (1130) - Page 4. 14-6

145

HASP

RDTFO - 2501 Card Reader Processor

A conditionally assembled processor which supports the 2501 card

reader as a job entry device. The functions of monitoring for a 2501 "ready"

condition; reading cards; requesting permission to transmit to HASP; waiting

for permission to send; queueing data for TPPUT; transmitting "end-of-file"

conditions and device error recovery are contained in this processor.

RPFFT - 1442 Reader And/Or Punch Processor

A conditionally assembled processor which supports the 1442 - 5, 6 or 7

as a card reader, card reader/punch or as a card punch only. The functions

to be performed are controlled by the assembly variables chosen and the use

of local operator commands, when applicable. The reader sections of code

monitor for a "ready" condition; reads cards for transmission to HASP via

TPPUT; processes "end-of-file" communications and provide error recovery.

The punch sections of code wait for data to be punched through interrogation

of a queue developed by the TPGET processor and provide error recovery and

and punch termination procedures.

PRFOT - 1403 Printer Processor

A conditionally assembled processor which supports the 1403 printer

as a terminal output device. The functions of monitoring for input to be

printed; simulating carriage control operations; processing II end-of-file"

HASP Remote Terminal Processor (1130) - Page 4. 14-7

146

HASP

. conditions; setting UFCB status information and error recovery are included

in this processor.

PRETT - 1132 Printer Processor

A conditionally assembled processor which supports the 1132 printer as

a terminal output device. The functions of monitoring for input to be printed;

initialization of interrupt processing routines for the 1132 print scan opera­

tions; simulation of carriage control operations; processing "end-of-file"

conditions; setting UFCB status information and error recovery are con­

tained in this processor.

CONSL - Console Keyboard/Printer Processor

Proces s es console keyboard input and prints on the typewriter mes sage s

originating from HASP or internal sources.

Keyboard input is initiated by activation of the "INT REQ" key and by

the interrupt routine which sets a flag and opens the console routine gate.

Note: The position of the "keyboard/console" switch is not interrogated and

input is assumed to be from the keyboard. The value of the console entry keys

is read every communtator cycle and, if key 0 is on, stored in location

$ENTKEYS. All non-control character input is printed and the card code value

stored for investigation at EOF time. If the first character of input is ". II

(period) then the data is assumed to be a local command. All other data is

transmi tted to HASP for action as a HASP opera tor command.

HASP Remote Terminal Processor (1130) - Page 4. 14-8

147

HASP

Print input is obtained from a queue which originates locally and/or

from HASP. Data to be printed may be EBCDIC or tilt-rotate code and

black or red ribbon.

RTPET - Initialization Processor

This special commutator processor is responsible for the initialization

functions necessary for the commencement of the 1130 terminal operation

ih conjunction with HASP. The major functions performed are:

• Sets the interrupt transfer vectors for RTPl130 operation.

• Dynamically builds the TP buffer pool using the defined extent

of 1130 core; the end of the 1130 program and the defined TP

buffer si z e .

• Builds a TP buffer containing the sign-on information processed by

RTPLOAD for transmission to HASP.

• Establishes SCA communications with HASP and prepares TPIOX

for II sign-on II •

• Opens the commutator gates for all SCA and input processors.

• Disconnects ini tializa tion from the commutator.

• Branches to commutator which initiates MULTI-LEAVING operation.

HASP Remote Terminal Processor (1130) - Page 4.14-9

, A 0

HASP

System Subroutines

The following are brief descriptions of the major subrou tines contained

in the RTPl130 program. These subroutines are available for use by any

system commutator processor with the restriction that they; may not be used

at interrupt time. Detailed information concerning the calling sequences I

input values I etc. may be found in the listing of the RTPl130 program.

HASP Remote Terminal Processor (1130) - Page 4.14-10

149

HASP

SGETQEL - Dequeue An Element From a Chained List

Given the address of a chained list, SGETQEL returns the address of the

first element available in the list and removes the element and rechains the

list. The chain field of the dequeued element is set to zero before returning.

If the chain is null, an indication is returned to the, us er.

SPUTFQL - Enqueue An Element In A Free Element Chain

Given the address of a free element chain pOinter and the address of an

element to be returned to the free chain I the element is returned to the free

chain. The construction of the free chain is in random order depending on

system processor utilization of the free element chain.

SPUTAQL - Enqueue An Element In An Active Chained List

The address of an element supplied by the caller is used to build a

chained list in first-in, first-out order.

RTPOPEN - Initiate Control Record Transmission

Control record communications with HASP in the form of "Request to

start ll and IIPermission to send II sequences is the function of this routine.

Input includes an indication of the control record type and a pOinter to the

UFCB for the device being processed.

HASP Remote Terminal Processor (1130) - Page 4.14-11

1 ~ ()

HASP

SSRCHB - Search UFCB Chain For Matching RCB

The RCB code supplied by the user is used to search the UFCB chain

for a UFCB with a matching RCB code. An indication of the status of the

search is returned to the caller.

SWTOPR - Type Message On Console Typewriter

The caller supplies the address of a message in EBCDIC and with

control information indicating red or black ribbon and the number of char­

acters to be typed. The addres s of a routine to be given control in the

event that the message cannot be processed immediately m'.lst also be

supplied.

-The message is queued for processing by the console typewriter

commutator routine.

SLOGSCA - Log SCA Error Messages On Console Typewriter

Error conditions associated with the SCA operation are logged on the

console typewriter for information and possible remedial purposes. The

format of the message logged is:

SCA LOG XXXXXXXX

Where the value of "XXXXXXXX II is determined by the caller and is in

fact the contents of the ACC and EXT on entry to the routine.

An indication of the status of the request to log is returned to the caller.

HASP Remote Terminal Processor (1130) - Page 4.14-12

151

HASP

SMOVE - Move A Variable Number Of Words

This routine provides for the moving of a specified number of words

from a source block to a target block.

RXPRESS - Convert Card Code To EBCDIC

The card code (12 bit) input is converted to EBCDIC using a high

speed conversion algorithm in conjunction with a minimal conversion table.

Special consideration is given to "blank" conversion under the assumption

that most cards are dense with "blank" data.

SXCPRNT - EBCDIC To Console Printer Code Conversion

Converts a single EBCDIC character to the equivalent console printer

Tilt-Rotate code using a table look-up method.

SXPPRNT - EBCDIC To 1403 Printer Code Conversion

Converts a single EBCDIC character to the equivalent 1403 printer 6 bit

wi th parity code using a table look-up method.

SXCPNCH - EBODIC To Card Code Conversion

Converts a single EBCDIC character to the equivalent 12 bit card code

using a table look-up method and conversion algorithm.

HASP Remote Terminal Processor (1130) ... 4.14-13

IS?

HASP

STRACE - Trace Machine Registers

Stores the information shown below in a table of variable length. Each

entry is the result of the execution of the I inkage created by the STRACE

macro. The trace table created at assembly time is circular.

Trace table entry:

Word

1

2

3

4

5

6

7

Description

Count of the number of entries for this $ TRACE

Location +1 of caller to $TRACE

Contents of ACC

Contents of EXT

Contents of XR1

Contents of XR2

Contents of XR3

The count of the number of entries is also stored in the STRACE

macro linkage.

The assembly of srRACE is a function of the variable &TRACE.

~SDUMP - System Core Dump

A condition311y assembled subroutine which allows post-mortem or

dynamic dumps on either the 1132 or 1403 printer. SSDUMP is assembled if

&DEBUG SETA 1 is included in the RTP1130 source deck. Linkage to SSDUMP

HASP Remot~ Terminal Processor (1130) - Page 4.14

153

HASP

via location 0 is also established so that a post-mortem dump may be

taken by pressing system reset and start.

The linkage to use this subroutine dynamically is contained in the

system listing. Note: The logic of the subroutine does not allow concurrent

operation of the selected printer and other devices.

HASP Remote Terminaf Processor (1130) - Page 4. 14 -15

1 '14

HASP

Processor Subroutines

The following are brief descriptions of the major subroutines which

may be used by commutator processors subject to the restrictions that these

routines are processor dependent in their operation. For example I the SeA

I/O Supervisor (BSXIOS) is used at initialization time and by the TP buffer

manager but cannot be simultaneously used by these commutator processors.

HASP Remote Terminal Processor (1130) - Page 4.14-16

155

HAS P

BSXIOS - Low Speed BSCA Input/Output Supervisor

Processes requests for transmit, receive or program timer functions

on the low speed binary synchronous communications adapter. BSXIOS

initiates the requested function and prepares the interrupt programs for the

associated interrupt processing of the desired functions.

The status of the function performed by BSXIOS is contained in a com­

munication cell which is addressed by a variable pOinter word. A commu­

nication cell is defined for both read (receive) and write (transmit) operations.

Various completion codes stored in the cells provide the status of the function

with respect to normal or abnormal termination.

BSXIOS expects the caller to provide the address of an appendage routine

to be entered at the termination (interrupt time) of every write operation. The

purpose of the write end-of-operation appendage is to allow re-instruct (read

operation) of the communications adapter as soon as possible after the write

completion.

HASP Remote Terminal Processor (1130) - Page 4. 14-17

HASP

DBLOCK - Deblock, Decompress, Convert and Store Data From HASP

Locates a record (defined by RCB) in a TP buffer as specified by a

given UFCB, decompresses I edits and moves data to a selected target

area. The target area must have the same format as described under

II Output Element (Tank) Description II •

The operation of DBLOCK includes the priming of the output tank

with an initialization value supplied by the user (usually the value of

a blank for the associated device); the updating of .control information in

the UFCB; the setting of control information in appropriate fields of the

output tank; the automatic entry to conversion and store routines unique

to the device associated with the UFCB supplied and the communication

of the status of the buffer being processed (end-of-file I end-of-block

conditions) •

HASP Remote Terminal Processor (1130) - Page 4.14-17.1

157

HASP

TPCOMPR- Construct Records For Insertion In TP Buffers

Constructs a logical record consisting of a physical input record ..

attached 1130 devices (card reader(s) I console I etc.). The logical record

constructed consists of the original input after code translation, data trun­

cation and/or compression (optionally) and attachment of the control bytes

necessary for HASP processing. The control bytes are per the standard HASP

MULTI-LEAVING conventions.

The options listed below are set at assembly time to generate the

supporting code.

• No compression or truncation

• Trailing blank elimination only (truncation)

• Blank and duplicate compression and blank truncation

The current version of TPCOMPR assumes card code input.

DBUGSCAL - Trace Routine For Low Speed SCA

This routine is conditionally assembled as a function of II &DEBUG II

and provides a trace of all SCAinterrupts in the form shown below. Entry

. is from BSXIOS .interrupt processing routines. External disabling of the SeA

trace function is provided through the entry keys. The trace table 11mi ts are

preset to use the upper 8K of a 16K 1130 and must be changed either by

assembly or by the appropriate II REP " • See the program listing and refer to

locations DBUGSTRT and DBUGSTND •

. HASP Remote Terminal Processor (1130) - Page 4.14-18

158

HASP

The trace table format is:

Word

1

2

3

4

5

6

7

8

Description

Operation type (BSXIOPT)

DSW at interrupt time

BSXIOS Completion Code (BSXOPF)

Loca tion of interrupt

Data received/transmitted

Data transfer count

Read or write sequence index

Spare word

HASP Remote Terminal Processor (1130) - Page 4.14-19

159

HASP

TPBUILD - Constructs TP Buffers

Constructs TP buffers for TPIOX transmission to HASP. Data to be

inserted and length of insert are provided by user. TPPUT initializes this

routine by providing the buffer to be used and setting pointers and variables.

The data to be inserted is usually in the form a logical record as con­

structed by TPCOMPR.

HASP Remote Terminal Processor (1130) - Page 4.14-20

160

HASP

RTP 1130 Control Block And Data Formats

Chained List General Format

All qu~ues maintained within RTPl130 are of the chained list form and

consist of free queues and free queue pOinters and active queues and active

queue pointers. Free queues are chained in a random fashion while active

queues are maintained in a first-in, first-out order. The general form of

a queue is:

QUEUE POINTER ...-__

ELEMENT CHAIN WaR

Address of next element chain word.
Set to zero if no element.

• • '. Variable length element.

ELEMENT CHAIN WORD • , • Variable length element •

•
•
o • • • La st variable length element

(Chain Word Set to zero).

Examples of chained lists are: TP buffers, console message tanks,

printer data tanks, punch data tanks. The size and number of elements in

the queue is variable according to the nature of the queue.

HASP Remote Terminal Processor (1130) - Page 4.14-21

161

HASP

UFCB - Unit-Function Control Block Description

Each device which transmits data to or from HASP via the communications

adapter processors must be represented by a unit-function control block.

The general format of a UFCB is:

REFERENCE

UFCBCNW

UFCBNFO

UFCBSAR

WORD

o

1

2

DESCRIPTION

Chain word to next UFCB

Informa tion word •••

Input: Byte 0 = Reserved

Byte 1 = Input Code

= 0 for IBM Card

= 1 for PTTC/8

= 2 for EBCDIC

Sta tus and RCB Code •••

B~eO=Sta~scluni~fuootioo

= X'90' if request to start sent from

input unit-function or if request to

start received for output unit-function

HASP Remote Terminal Processor (1130) - Page 4.14-22

162

HASP

UFCBFCS 3

UFCBCOM 4

UFCBFQP 5

UFCBBFP 6

UFCBBFC 7

UFCBBFL 8

UFCBPBP 9

UFCBPBA 10

= X'AO I If permission to start

received for input unit-function or

1f permission to start sent for output

uni t-function.

Byte 1 = RCB code associated with this UFCB

Function control sequence bit associated with this

UFCB (and RCB)

Address of commutator processor gate address for

processor associated with this UFCB

Tank free queue pointer for output devices or

address of input element for input devices

Queue pOinter for active TP buffers for output

deVices or end-of-file flag for input devices

Count of active TP buffers for associated device

Limit of active TP buffers for associated device

Buffer address of 'current buffer being processeca

by TPGET proces sor

Addres s of next RCB in buffer being proces s ed

HASP Remote Terminal Processor (1130) - Page 4.14-23

163

HASP

UFCBPBS 11

UFCBPWD 12

UFCBPRO 13

UFCBSTO 14

Position indicator for next RCB in buffer being

processed. Set to 0 if RCB right justified. Set

to 1 if RCB left justified.

Output device width = 2*W/P where W = actual

width in characters and P = 2 for packed output

tanks or P = 1 for unpacked output tanks.

Address of data processing routine (usually a con-

version program) for each character processed by $DEBLOCK .

Address of routine to store data processed by

"UFCBPRO" program.

HASP Remote Terminal Processor (1130) - Page 4.14-24

164

HASP

TPBUF - TP Buffer Element Description

All data transmitted to or from HASP is contained in variable length buffers

(variable at generation time) with the following general format:

REFERENCE WORD DESCRIPTION

TPBUFCW 0 Chain word to next TP buffer,

TPBUFST 1 Reserved

TPBUFCB 2 Buffer control word

Byte 0 = 0 (Reserved)

Transmi t function •••

TPBUFDT 3

TPBUFHD 3

Byte 1 = Number of bytes to be transmitted minus 2

for end sequence which is inserted bySSXI()S .• '

Receive function •••

Byte 1 = Number of bytes received"

Tim er function .•.

Byte 1 = Number of program tim$ 1ntenvpts processed

before ending timer operation

Start of data~rea of length d~f1ne4 QY .·;&TPStJF$~ti'

which includes •••

BSC header value indicating the function (Read,write,

timer) to be performed as defined bySCAfunCtion' indicators

HASP Remote Terminal Processor -{l'l~ct - Page 4.14-25

165

HASP

TPBUFBF 4

TPBUFFR 5

TPBUFSR 6

Controls equence •••

Byte 0 = BCB

Byte 1 = first byte of FCS

Control sequence •••

Byte 0 = Second byte of FCS

Byte 1 = RCB

Control sequence •••

Byte 0 = SRCB

Byte 1 = SCB

HASP Remote Terminal Processor (1130) - Page 4.14-26

166

HASP

Output Element (Tank) Description

Local terminal output devices (printers, punch, etc.) receive data via

elements or tanks which are built by the commutator routine responsible for

proces sing TP buffers transmitted by HASP. The general format of thes e tanks

is described below.

REFERENCE WORD DESCRIPTION

TANKWRDA 0 Chain word to next tank

TANKWRDB 1 Reserved

TANKWRDC 2 Control wOlid

Byte 0 = Reserved for device use

Byte 1 = SRCB from record received

TAN KWRD D 3 Control word

Byte 0 = Reserved for device use

Byte 1 = Actual tank data count

TANKWRDE 4 Start of variable length data area determined at

generation time

Note: The element chain word and the data area must start on even

1130 word boundaries.

HASP Remote Terminal Processor (1130) - Page 4.14-27

167

HASP

Object DeS(k Format

The following is the format of the object decks (RPT1130" RTPLOAD)

produced from OS/360 assembler output by LETRRIP.

Text Card

Qolumn(s)

1

2-3

4

5-72

73-74

75-76

77-80

End Card

Columrt(s)

1

2-3

4-72

73-74

75-76

77-80

Description

'T' for text card identification

Absolute 1130 load address

Word count of data field

Da ta field (maximum of 34 words)

Checksum of columns 1-72

Identifica tion

Sequence number

Description

1£' for end card identification

Entry point to program loaded

Reserved

Checksum of columns 1-72

Identification

Sequenc,e number

HASP Remote Terminal Processor (1130) - Page 4.14-28

168

HASP

REP Card Format

Column(s) Description

1 Any legal EBCDIC punch

2-4 II REP II

5 Blank

6 Load address format field:

IIL" for listing option where the specified load address

corresponds to the OS/360 assembler listing.

"X" for absolute 1130 core addres s

7 Currently unused but usually punched "0 II for continuity

8-11 Load address for 'first data word and is incremented by 1

12

13

14-17

18

•
•
•

for each additional data word. REP cards may be con-

tinued by leaving this field blank

Blank

Format field for data following. Subject to same definition

as column 6.

Data field to be loaded in the location computed as a

function of columns 8-11

II II
I

HASP Remote Terminal Processor (1130) - Page 4.14-29

169

HASP

Columns 19 through 78 in the same format as columns 13-18 with the

exception of column 78 which must be blank. A blank in columns 18, 24, ••• 72

terminates the scan of the card.

Note: The "L" option causes the specified data to be divided by 2

for conversion from 360 byte data to 1130 word data.

HASP Remote Terminal Processor (1130) - Page 4.14-30

170

HASP

Examples of REP Cards

1. The following cards:

o 00 J,1,
], 56 23

RREP L02208 X4C00,L004E,X4400,XOOOF

RREP X74FF,XOOOO,X7],0],

Would result in the code represented below starting in 1130 core

location 1104 (Hex):

],],04

J,1,06

],],08

J,1,OA

2. The following card:'

o 00 J,1,
], 56 23

$B

$TSL

$MDM

$MDX

39, ,L

],5

0,-]'

RRER LO]'772 X4C],S,X],FFS

Would be ignored because columns 2-4 not equal to "REP"

HASP Remote Terminal Processor (1130) - Page 4.14-31

171

HASP

4. 14. 2 Remote Terminal Main Loader (RTPLOAD)

RTPLOAD is an EBCDIC format loader which is loaded by RTPBOOT

into the upper part of defined 1130 core. The 1130 core definition (which

is a RMTGEN variable) is used to specify the origin of RTPLOAD. The format

of RTPLOAD (and RTP1130) is given in Section 4.14.1 under Control Blocks

and Da ta Forma ts •

RTPLOAD also reads and processes "REP" cards as well as the optional

/*SIGNON control card.

The major functions of RTPLOAD are:

• Clears core from location 0 to "&RTPLORG-1"

• Tests for a 2501 or 1442 card reader and initializes the card

read routine for the appropriate device.

• . Reads RTPl130 program cards I performing the conversion from

card code to EBCDIC and loading the data into the specified locations.

• Sets up the entry to RTPl130 when the end card is processed.

• Reads and processes REP cards I if they exist.

• Reads I converts and stores/*SIGNON and sets indicator for

RTP1130 signalling existance if /*SIGNON encountered.

• Transfers control to RTPl130

HASP Remote Terminal Processor (1130) - Page 4.14-32

172

HASP

4.14.3 Remote Terminal Bootstrap (RTPBOOT)

The bootstrap loader distribut~d in object form as shown in the subseq~ent

pages is specifically constructed to "bootstrap" the EBCDIC main loader

(RTPLOAD) into the core locations defined by "&RTPLORG" at RMTGEN time.

RTPBOOT loads into lower 1130 core via the load-mode format first card and

following binary program cards and EBCDIC conversion table cards. RTPBOOT

will load from a 2501 or 1442 card reader which is wired for the load-mode

sequence initiated by Ule console "LOAD" button.

HASP Remote TeJrnina1 Processor (1130) - Page 4.14-33

173

HASP

Figure 4.14.3 -Remote Terminal Bootstrap Card Format

Card
Col. Card No. 1 Card No 2 . Card No. 3 Card No. 4

1 12-11-7 12 12-11-1-2-3-4-5 12-11-1
2 1-2-9 11-0-3-5 blank 12
3 12-11-1-8 11 5 12-11-2-3-4-5
4 12-11-7-8-9 blank 11-0-1-5 12-11-1
5 11-0-1-6-9 5 4 5
6 0-2-6 11-0-1-5 11-0-1-5 11-0-1-5
7 4-7-8-9 12-11-0-1-2-4-5 0-1-2-3-4 12-11-0~2-3~4-5

8 blank 12-11 11 11-0-1
9 4-6 blank blank blank

10 0-1-2 12-11-1-5 12-11-1-4 11-0-3-5
11 blank 5 5 0-3
12 11-2-5 1-2 11-0-1-4 5
13 4-5-9 12-11-0-1-4-5 12-11-0-1-2-3-4-5 blank
14 12-0-1-2-5-6 12-11-1 11-0-1-4-5 12-1-5
15 1-2-8 blank 12-11-0-1-2-4 5
16 12-11-1-3-4-5-6-8-9 12-11-3 11-0-1 12-1-5
17 12-11-3-4-5-6-7 5 12-3-4-5 12-11-2
18 1-2-8-9 blank 12-11 12-11-1
19 12-11-1-3-4-5-6-8 12-11-0-1-2-3-4-5 12-0-3 1-5
20 12-3-4-5-7-9 11-0-1-3 11-0-1 11
21 12-11-1-3-4-5-7 11-2-4-5 blank 12-11-3-4
22 12-11-4-7 blank 12-11-3 12-11-0-1
23 1-6 12-11-3-4-5 12-11-1-2-3 1-2
24 12-11-1-4-8 11-0-1 blank 11-2-3
25 12-4-7-8 2-3-4-5 blank 11-0-2-3-4-5
26 12-11-1-4-7-9 11-0-1-3 11-0-3-4-5 blank
27 12-4-8 11-2-4 2-3-4-5 12-11-0-1-2-3-4-5
28 12-11-1-4-9 blank 4 11-0-1
29 12-11-3-4-6-9 12-11-3 0-2-4 5
30 1-6-9 11-0-1 11 11-0-1-4-5
31 12-11-1-3-4-6 3-5 5 12-11-0-1-2-3-4-5
32 1-2-6 11-0-5 11-0-1 11-0-1-4
33 12-11-1-4-6-7-9 3-4-5 3-4 12-11-0-2
34 12-11-1-5-6-7-8 11-0-1-3 11-0-1 11-0-1
35 12-11-1-5-6-8-9 11-2-4 blank 12-11-0-1-2-3-4-5
36 12-11-1-3-4-8 blank I 11-0-3-4-5 11-0-1
37 12-11-1-3-4-7-9 blank 12-11-0-1-5 5
38 2-3-5-6-7-8 11-0~3-4 5 blank
39 2-3-5-6-7-8-9 11-0-2-4-5 0-3-5 blank
40 11-0-1-3-4-5-6-7-8-9 4 11 12-11-0-1-4-5

HASP Remote Terminal Processor (1130) - Page 4.14-34

174

HASP

Figure 4.14.3 (C ON T) - Remote Terminal Bootstrap Card Format

Card
Col. Card No. 1 Card No. 2 Card No. 3 Card No. -4

41 9 1-3 12-11-0-1-4-5 0
42 2-3-4-8 11-0-1-3 11-0-1 11-2-3
43 12-11-3-5-6-7-8-9 2-3 11-2-3-4-5 12-0-1-3-5
44 12-8-9 blank 11-0-1-3 blank
45 12-11-1-3-5-6-7-9 12-0-1 12-0-2-5 5
46 2-3-5-6-7 11-0-1-4 blank 11-0-1-3
47 11-2-3-4-5-6 12-0-4-5 1 12-0-2-3-4-5
48 9 11-0-2-4 1-2 blank
49 11-0-1-3-4-5-6-7-8-9 12-1-2-3-4 12-11-1-2-3-4-5 blank
50 9 11-0-2-4 12-11-1 12-11-0-1-4-5
51 12-11-6-7-9 11-2-3-4-5 12-0-1-3-4 12
52 12-3-4-5-6-8-9 12-11 11-0-5 11-2-3
53 12-11-1-6-8-9 blank blank 12-0-2-3-4-5
54 12-11-6 12-11-1-4 12-11-3-5 blank
55 12-3-4-5-6 12-11-0-1-2-3-4-5 0-3-4 11-1
56 12-11-1-8-9 11-0-1-5 5 blank
57 12-3-4-5-7-8 12-0-1-2-5 blank blank
58 12-11-1-7 11-0-1 11-0-3-4-5 12-11-5
59 3-7 1-2-4-5 0-2-3 2
60 blank 11-0-1-3 5 1
61 1-2-6 11-2-4 blank 5
62 1-2 blank 11-0-3-4 12-11-0-2-5
63 blank 12-0-1-3-4 blank 12
64 1 11-0-1 5 11-2-3
65 blank blank 1-2 12-0-1-2
66 12-11-7-8-9 11-0-3-5 11 blank
67 12-1-3-4-6-7 12-11-1-2-3-5 1-4-5 blank
68 12-11-1-7-9 blank 11-0-1 11-0-3-5
69 11-2-4 11-3-4 blank 12-11-1-2-3-5
70 11-0-1-3-4-6-7 11 12-11-3 blank
71 2-3-7-9 blank 4-5 12-11-0-1-3-4-5
72 2-3 12-11-1-5 blank 11
73 11-2-3-4-5-6 12 12-11-0-1-2 5
74 4-7-8-9 11-0-3-4 12-1 12-11-1
75 11-0-1-7 12-11-1-2-3-5 blank blank
76 8 blank 12-11-1-3-5 11-2-3
77 blank 12 0-3-4 blank
78 blank 11-0-3-4-5 5 blank
79 0 0 0 0
80 1 2 3 4

, HASP Remote Terminal Processor (1130) - Page 4. 14-35

175

HASP

Figure 4.14.3 (CONT) - Remote Terminal Bootstrap Card Format

Card
Col. Card No. 5 Card No. 6 Card No. 7 Card No.8

1 0 11-0-1-8 12 12-0-1-8-9
2 1 11-0-1 12-11-1-9 12-1-9
3 2 11-0-2 12-11-2-9 12-2-9
4 3 11-0-3 12-11-3-9 12-3-9
5 4 11-0-4 12-11-4-9 12-4-9
6 5 11-0-5 12-11-5-9 12-5-9
7 6 11-0-6 12-11-6-9 12-6-9
8 7 11-0-7 12-11-7-9 12-7-9
9 8 11-0-8 12-11-8-9 12-8-9

10 9 11-0-9 11-1-8 12-1-8-9
11 12-11-0-2-8-9 11-0-2-8 11-2-8 12-2-8-9
12 12-11-0-3-8-9 11-0-3-8 11-3-8 12-3-8-9
13 12-11-0-4-8-9 11-0-4-8 11-4-8 12-4-8-9
14 12-11-0-5-8-9 11-0-5-8 11-5-8 12-5-8-9
15 12-11-0-6-8-9 11-0-6-8 11-6-8 12-6-8-9
16 12-11-0-7-8-9 11-0-7-8 11-7-8 12-7-8-9
17 blank 12-11-0-1-8 11 12-11-1-8-9
18 · 12-11-0-1 0-1 11-1-9
19 · 12-11-0-2 11-0-2-9 11-2-9
20 · 12-11-0-3 11-0-3-9 11-3-9
21 · 12-11-0-4 11-0-4-9 11-4-9
22 · 12-11-0-5 11-0-5-9 11-5-9
23 · 12-11-0-6 11-0-6-9 11-6-9
24 · 12-11-0-7 11-0-7-9 11-7-9
25 · 12-11-0-8 11-0-8-9 11-8-9
26 · 12-11-0-9 0-1-8 11-1-8-9
27 · 12-11-0 2-8 12-11 11-2-8-9
28 · 12-11-0-3-8 0-3-8 11-3-8-9
29 · 12-11-0-4-8 0-4-8 11-4-8-9
30 · 12-11-0-5-8 0-5-8 11-5-8-9
31 · 12-11-0-6-8 0~6-8 11-6-8-9
32 · 12-11-0-7-8 0-7-8 11-7-8-9
33 · 12-0 12-11-0 11-0-1-8-9
34 · 12-1 12-11-0-1~9 0-1-9
35 · 12-2 12-11-0-2-9 0-2-9
36 · 12-3 12-11-0-3-9 0-3-9
37 · 12-4 12-11-0-4-9 0-4-9
38 · 12;"5 12-11-0-5-9 0-5-9
39 · 12-6 12-11-0-6-9 0-6-9
40 · 12-7 12-11-0-7-9 0-7-9

HASP Remote Terminal Processor (1130) - Page 4.14-36

176

HASP
,"

Figure 4 .14.3 (CONT) - Remote Terminal Bootstrap Card Format

Card
Col. Card No. 5 Card No 6 . Card No 7 . Card No. 8

41 blank 12-8 12-11-0-8-9 0-8-9
42 · 12-9 1-8 0-1-8-9
43 · 12-0-2-8-9 2-8 0-2-8-9
44 · 12-0-3-8-9 3-8 0-3-8-9
45 · 12-0-4-8-9 4-8 0-4-8-9
46 · 12-0-5-8-9 5-8 0-5-8-9
47 · 12-0-6-8-9 6-8 0-6-8-9
48 · 12-0-7-8-9 7-8 0-7-8-9
49 · 11-0 12-0-1-8 12-11-0-1-8-9
50 · 11-1 12-0-1 1-9
51 · 11-2 12-0-2 2-9
52 · 11-3 12-0-3 3-9 '
53 · 11-4 12-0-4 4-9
54 · 11-5 12-0-5 5-9
55 · 11-6 12-0-6 6-9
56 · 11-7 12-0-7 7-9
57 · 11-8 12-0-8 8-9
58 · 11-9 12-0-9 1-8-9
59 · 12-11-2-8-9 12-0-2-8 2-8-9
60 · 12-11-3-8-9 12-0-3-8 3-8-9
61 · 12-11-4-8-9 12-0-4-8 4-8-9
62 · 12-11-5-8-9 12-0-5-8 5-8-9
63 · 12-11-6-8-9 12-0-6-8 6-8-9
64 · 12-11-7-8-9 12-0-7-8 7-8-9
65 · 0-2-8 12-11-1-8 blank
66 · 11-0-1-9 12-11-1 12-0-1-9
67 · 0-2 12-11-2 12-0-2-9
68 · 0-3 12-11-3 12-0-3-9
69 · 0-4 12-11-4 12-0-4-9
70 · 0-5 12-11-5 12-0-5-9
71 · 0-6 12-11-6 12-0-6-9
72 · 0-7 12-11-7 12-0-7-9
73 · 0-8 12-11-8 12-0-8-9
74 · 0-9 12-11-9 12-1-8
75 · 11-0-2-8-9 12-11-2-8 12-2-8
76 · 11-0-3-8-9 12-11-3-8 12-3-8
77 · 11-0-4-8-9 12-11-4-8 12-4-8
78 · 11~O-5-8-9 12-11-5-8 12-5-8
79 · 11-0-6-8-9 12-11-6-8 12-6-8
80 blank 11-0-7-8-9 12-11-7-8 12-7-8

HASP Remote Terminal Processor (1130) - Page 4.14-37

177

HASP

Figure 4.14.3 (CONT) - Remote Terminal Bootstrap Card Format

CARD 1

I II 1111 1I1I1I I 1I11I III 11I111I1 III

I II I II I I II I 111I1 I I I I I I II 1 I I III I I
000011000100010000000000000000000000000100000000100000ooooo~oooooooooloooolooolo
12345&189ro"UQ"B~O~"~~nn~~unu~~~n~~~~VD~~~~u«a«~~a~~~~~ ~~~~"~~~~M~~"~~ronnnMmnnnn"

111111 1 1 111 1 11111111111111111111111111 11 1 1 1 111 1 11 11 11 1 11 111111111 1111.111 1 1111 J 11

21222122212121122122222222222221222221122122211222222222222211222221121.12222222

33333333333313311311133333331313333111113113111313313313131333333313311113333333

44444414144414411411114111111414144114414144441414414414144444444414114411444444

55555555555111511511155555555555511551115515181515515515155555555555555515555555

6 6 6 6116 616 6 6 61611616 6 616 6 6 6 sllllilis 6111 6 sl 6111 61 6111116 6 6 6 61 6 6.66616 61s 616 6 6 6 6 66

17717717777117171771117711717177117711117717111117177777111771717111711711171777

8811s81S888t8S11811818811s1888888111a1118111888818sl.ssl18888888tl88888881al8888

sl911919 9 9 9 91991sIs19 9 99 919111991 91 919111sIIIs 91 a 1IIIs91s 9 9 9 9 9 S9 9.191.9919 919 9 9 9 9 9
1 2 3 4 5 6 7 8 9 to II 12 13 14 15 16 111819 20 21 2t 23 24 25 26 27 2i 29 SO 31 ;'2 33 34 35363138394041 42 ~3« 454641 484950 51 ~253 54 55 56 51 58.59 SCEl 62 63 S4 5~ 06 61 68€g 70 11 12 13 74 15 16 n 78 1960

[3i""'-tC'!'D

I

II
II I

III I

II I

II I
I I I

III II II III II

CARD 2

I I I I II I I I II I I

II I I 11I111I1111I1 II I II I
o I 0 0 0 II 0 0 0 0 0 I 0 00 0 0 110 0 0 I 0 I 0 0 01 0 I 0 I 0 0 0 II 0 o. 0 0 IIII 0 I 00 0 0 III1 0 I 0 0 110 I 0 0 0 0 0 0 0 I 0 0 0 II 0
123456189ro"U~"BqOq~~~nD~~uDn~~~n~~~~UD~~~~u«a~~~~~~~~~~$~~~~~~~U~~UMUMnnn~mnnnn"

1 1 1 1111 1 111111 1 1 1 J II 1 1 1111 111111 11 1 1 J 1 1111 1111 1 11 1 1 1 11111111 1 111 111 1 1 1 11 1 11111 1 1

2 2 2 2 221 22221 2 2 2 2 221212 2 2.1 212 2 2 2 2 2 21 2 2 212 2 212 2 2 21111 22 21.212! 21 2 2 2 2 212 2 2 2 2 2 212 2 2 21

31 3 3 3 3 3 333 33 3 3313 3113 31 3113 3131311. 3 3 31·3 311133 3331313 3313 33·31 3313311313 3 3 3113 313 3

44444414444414444414141414144444141441114444411111144114441414144444144441444144

515 51115 511515 5515151 51515555 51115 5 5 5 5155 55 5 5 515551 555.111515 5 5 5 5 51155 5515515 5155

6 6 6 6 6 6 6 6 6 6666 6 6 666 6 6666 6 66 6 66 6 6 6 66 66 66 6 6 66 6 6 66 6 6 666 6 686 6 66 66 6 6 66 6 6 6 66 6 6 6 6 6 6 6 66 6 6

777 1177 1 711 7J 1177 777177117777777 17 7 11 7 71 7 7777 7 7 77 171 711 7 1117 J 7 771177 177 11 7 7 7 17 7 7

8 8 8 8 8 8 8 8 88 8 8 8 8 8 8 8 88 8 8 8 8 8 8 8 8 a. 8 888 8 88 8 8 i 8 8 8 88 8 8 8 8 8 88 8 88 8.8 8 8 8 a88 8 8 8 88 888.8 8 88 8 8 8 88 I

999999999999999999999999999 9't9 9 99 9 9 9999999999999999999999999999999.99999999999999
1 2 3 4 5 • J 9 9 10 l1J213 14.1516 11 18 13 20 ~ 2hl2~ 252621 ZU930 31 n 3334 3536 U 38 3940 41 42 4344 45 4647 4849 5051 5~ 535455 565J 585t&0 61 62 SHHS SHI U 69 liHI n 73 74 1576 n 7.1910 Q:tEJillITJ •

. HASP Remote Terminal Processor (1130) ~Page4.14-37.1

178

HASP

Figure 4.14.3 (CONT) - Remote Terminal Bootstrap Card Format

I I I III II
I I I I I 11111 I I II I

CARD 3

I I I

I I I II 1I111

III I
II I I I I

I II I
I I I I I

00010110000111110011000001001001010110101101100000110010011001000001000010001010
1 2 3 4 5 6 1 I 9 10 11 12 13 14 15 16 11 18 19 2021 222324 25 26 21 2829 30 31 323334 35363138 394J 41 42 4344 45 46 47 48495051 525354 55 ~5 ~~ ~.: 5960 61 ~2 63 64 &HUH8 E9 70 71 72 73 74 15 76 7111 19 10

I 1 11 111 1 11 111111 1 1 11 1 11 1 1 1 1 1 1 1 11 11 1 11 1 1 111 11 1 111111 1 1 1 1 1 1 1 1 1 1 1 1 111 D I 1 1 1 111 111 1 1 1

12222212222212122222221222121222222222222212122112222222221222221222222212222222

13333313333313331313311331133333133133133311333313133113311331333333313333311331

14441414414111141444444441111444144144441414444414144414414441444414441444441444

15115155551511551555555551155515555111151515155515515151515155515515551555515155

66

771777171711711711117177711771777117

8 8' 8 8 8 ! 8

99~99999999999
1 2 3 4 5 6 1 8 9 10 11 12 13 14 15 15 11 18 192021 n 23 24252627 l8 29 3031 32333435363738394041424344 45 46 47 4849 SO 51 ~2 53 54 5: !.; :: ~ 5300616263 64 SHU) EH9 7J i! 12 7l 74 75)5 71 13 ;g 80

G~~~EJ

11I1 I

I II III I

CARD 4

I III II I I I I
II III II II 1111111

I I I II I I
I I I I I I I

II I
I I·

I I I
II II I I

00000111011000000000010010110111111100011010011001001000000001001001001000000010
123456 7891011UUU~~n~"~21nn~~nnn~~~HD~§~V~~W~a044~~O«~~~~~~~~~~~W~~6364~~U~"ron1271U15nnnnR

11

22122212222222221222221112122212121222222122221222211222221221211222122222212222 . .

33133313311333333333133113133313331333333113311333311333333333313331131333313333

44144414444444444444144414144111441444414444441441441444444444444444441444444441

55151115515151115515555515151115551515515515151551551555515511555551151515555555

66

11777777177177111777171771111177771777717777171177777777771771717777171777777177

888888888888888888888888888888888888888~88

99
123456 1S91011UU~~~na"~~nn~~~n3~~~nD~§~V~~o~ao«~~o«~~~~~~~~~~~~~~~~~~uunron72n~~nnnn~

O~14 5uoD.

;HASP Remote Terminal Processor (1130) - Page 4.14-37.2

179

HASP

Figure 4.14.3 (CONT) - Remote Terminal Bootstrap Card Format

CARD 5

111III

111111

100000000011111100
123456189W"~UK~~n~a~~nn~ll~n~n~~~nM~~~~~U.~Q«~~na~~~~~~ ~~~~~~~~~~~"~u~ronn»~~nnnn~

1 I 1 1 lIt 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 .1 tIt lIt 1 tIl 1 1 1 1 1 1 1 1 1 1 1 lIt

22122222221222

33313333333133 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 333 3 3 3 3 3 3 3 3

4444144444441444

5555515555555155

6 6 6 6 6 61 6 6 6 6 6 6 61 6

777777711777777111771777

883888881811111188

9 9 9 9 9 9 9 9 9 1IIIIII 9
1 2 3 4 5 & 1 8 9 lr !1 12 13 14 15 16 11 18 192021 n 23 24252. 2728233031 323334353637383940414243« 45 464748495051 5253 S4 55 5657 58 ~9 6061626364 G5 €6 616a 6970 11 n 73 14 1576 n 131980

L<':'5_"-'lJ

CARD 6

III1II111IIIII111111111111111111 III11I
I111IIIIII1I11I11111111111111111 II11III1IIII1I11 I IIII1I

111111110111111111111111111111111000000000111111100000oooooooooolllllllDDllllBl1
123456 789;0"UUM~~nmaW21nn~~~Vnn~~Hn~~~n~~~~~~«~~~~~~~~~~~~n~~ro~~~M~~u~~mnnn~nnnnn~

11

22122222221222222212222222122222221222222212222222122222221222221212222222122222

333133333331333333313333333113333331333!3~31333333313333333133333331333333313333

44441444444414444444144444441444444414444444144444441444444414444444144444441444

55555155~55551555555515555555155555551555555515555555155555551555555515555555155

66666616666666166666661666666616666666166666661666666616666666166666661666666616
77777771717777717771777177171171717777717117717177777771777777717177777177777771

18888888181111111888888818111111888888881811111188888888181111111388888818111111

91999999919999999999999991999999999999999111111199999999911111119199999991111111
1 2 3 4 5 6 7 8 9 :0 11 12 13 14 15 16 17 1. 192021 222324252621 2829 3031 3233343536373839404142434445464148495051 52 ~3 ~ 5S SCi 51 S3 59&: 61 €2 6;5$ 6~ i:H16~ £970 n 72 il 74 i516 17 iB ;9 80

L'.~·" ~~f!.'J

HASP Remote Terminal Processor (1130) - Page 4.14-37.3

180

HASP

Figure 4.14.3 (CONT) - Remote Terminal Bootstrap Card Format

11I1I1111 I
11111I1111111111 1111111 I

CARD 7

11II111I1
1I1111111

11111111111111111111111100110111
IIIIIIIIIBIIIDII

00000000000000000111111111011111111111111000000011111111111111110000000000000000
1 2 3 4 5 & 7 •• 10 1\ 12 13 14 15 16 17 18 19 20 21 222324 2!J 26 21 ;.:; 29 30 31 32 33 34 3~ 3& :i1 3! 3~ 4~ 41 42 4344 45 46 41 4a 49 ~O ~l ~2 53 ~4 55 56 51 sa 59 i;} f' t: 6364 t5 66 67 68 6910 n 72 7l 74 15 i6 n 111980

til t 1 t 11

22122222221222222212222222222222221222222212222222122222221222222212222222122222

33313333333133333331333333313333333133333331333333313333333133333331333333313333

44441444444414444444144444441444444414444444144444441444444~14444444144444441444

55555155555551555555515555555155555551555555515555555155555551555555515555555155
"

66666616666666166666661666666616666666166666661666666616666566166666661666666616

77777771777777717777777177117771717177711117777171777171771777717777717171771771

88888838111111118888888811811111888888881111111118888888181111111888888818111111
91111111199999999911111119999999911111111999999999999999919999999999999991999999
1 2 3 4 5 6 1 ~ 9 10 11 12 13 14 15 16 11 18 192021 2:::3;,25262728 2S 30 ~I 32 3334353637 :is 39 40 4142434445464748495051 525354555657 Sd 51 j.: " f2 £3 G4 65 66 61 LS 63 70 n 7< Jj ,4751;; n 161980

!3"'-'.'·(;'!...1

I111III11I11I1111
1II1I1I1III111111

CARD 8

I

I

IIIIIIIIIBIIIII

10000000000000000000000000000000111111111111111110000000000000000111111110000000
1 2 3 4 5 & 1 8 9 10 1\ 12 13 14 1516 1118192:121 2223242526 2128 29 30 313233343535 37 ~ 3. 404142434445464748495051 525354 55 56 57 sa 5960 61 &2 63 646566 67 68 69 70 n 72 73 74 75 J5 n.ll 19 80

11

2 21 2 2' 2 2 2 2 21 2 2 2 2 2 2 21 2 2 2 2 2 2 21 2 2 2 2 2 2 21 2 2 2 2 2 2 21 2' 2 2 2 2 2 21 2 2 2 2 2 2 21 2 2 2 2 2 2 21 2 2 2 2 2 2 21 2 2 2 2 2

33313333333133333331333333313333333133333331333333313333333133333331333333313~33

44441444444414444444144444441444444414444444144444441444444414444444144444441444

55555155555551555555515555555155555551555555515555555155555551555555515555555155

6666661666666616666666166666661666666616666666166666661666666£166666661666666616

11111111177177717117777117117171117111717777717171771771717717117177777117777771

188888881111111118888888111111111888888~1111111118888888111111118888888811111111

11'111111111111119111111119999999
1 2 3 4 5 C 7 8 9 Iv 11 12 13 14 15 16 11 18 I. <0 21 2. <J 24 .:i 26 n n 2~ JO 3\ 32 3j 34 3~ lS 37.833 4G 4\ 42 4344 4!> 4.41 48 49 ~o 51 525354 S5 565158 5. 5~ 61 i. ~ •• &5 6S 61 SS £3 ;: 11 J2)) 74 7576 1118 79 80

@:.~

HASP Remote Terminal Processor (1130) - Page 4.14-37.4

181

HASP

4.14.4 Remote Terminal Program 360 Processing (LETRRIP)

LETRRIP (Loader for Eleven-Thirty Relocatable Remote Interleaving Processor)

is a 360 program executed under OS/360 as part of the RMTGEN procedure.

The purpose of this program is to condense the object deck produced by the

360 assembler; relocate address constants according to the requirements of the

1130 and to produce a new object deck in the format as described in Section

4.14.1.

HASP Remote Term1nalProcessor (1130) - Page 4. 14-38

182

HAS P

4.14.5 1130 Instruction Macros

The OS/360 Assembler Macro instructions listed on the following
pages are used to assemble the RTPl130 and RTPLOAD programs as a
part of the RMTGEN process necessary to create the 1130 workstation
program.

The general format of the instructions to be assembled with the
macros is:

LABEL $OP ADDR,TAG,FMT,MOD

Where:

"LABEL" is the statement label subject to the OS/360 assembler
rules and restrictions.

n$OP" is a macro from the set listed at the end of this section.

"ADDR" is the address field of the 1130 instruction.

"TAG" is the index register (TAG) field of the 1130 instruction.

"FMT" is the format indicator for the 1130 instruction:

FMT=L for long form
FMT=I for long form indirect address
FMT=X for short form absolute address
FMT='blank' for short form relative address

"MOD" is the modifier bits field required for some 1130 instruc­
tions.

Listed below are some of the conventions which must be followed to
successfully use the macro package in producing a program for
operation on an 1130.

1. All symbols starting with the character "$" are deemed to be
absolute in value.

2. The symbols WA, WB and we are assumed to define absolute values.
Note: WA, WB and we cannot be used as the first two characters
of any relocatable symbols.

3. All other symbols are assumed to be relocatable as defined by
the OS/360 assembler SRL.

4. Parenthetical expressions are considered to be relocatable if
contained in an instruction, e~g.,

$AXT (* - *) , WA , L
is considered relocatable, where.

$AXT *-*,WA,L
is considered absolute.

HASP Remote Terminal Processor (1130) - Page 4.14-39

183

HASP

1130 Instruction Macros

Macro Form

$LD ADD, TAG, FMT

$LDD ADD,TAG,FMT

$STO ADD, TAG, FMT

$STD ADD, TAG, FMT

$LDX ADD, TAG, FMT

$LXA ADD, TAG

$AXT ADD, TAG, FMT

$STX ADD,TAG,FMT

$STS ADD, TAG, FMT

$LDS ADD, TAG

$A ADD, TAG, FMT

$AD ADD,TAG,FMT

$S ADD, TAG,FMT

$SD ADD, TAG, FMT

$M ADD, TAG, FMT

$D ADD,TAG,FMT

$AND ADD,TAG,FMT

$OR ADD, TAG, FMT

$EOR ADD, TAG,FMT

Description And Notes

Load ACC

Load double (ACC, EXT)

Store ACC

Store double (ACC, EXT)

Load index

Load index from address. A variation of $LDX

with F= 1 and IA = 1.

Address to index true. Identical to $LDX.

Store index

Store status

Load status

Add

Add double

Subtract

Subtract double

Multiply

Divide

Logical AND

Logical OR

Logical Exclusiv~ OR

HASP Remote Terminal Processor (1130) - Page 4.14-40

184

HASP

Macro Form

$SLA

$SLCA

$SLC

$SRA

$SRT

$RTE

ADD, TAG

ADD, TAG

ADD, TAG

ADD, TAG

ADD, TAG

ADD, TAG

Description And Notes

Shift left ACC

Shift left and count ACC

Shift left and count ACC and EXT

Shift right ACC

Shift right ACC and EXT

Rotate right ACC and EXT

$BSC ADD, TAG, FMT,MOD Branch/Skip on condition

$BOSC ADD, TAG, PMT, MOD Branch/Skip and reset interrupt

$BP

$BNP

'$BN

$BNN

$BZ

$BNZ

$BC

$BO

$BOD

$SKPP

$SKPN

$SKPZ

$SKPO

ADD, TAG, PMT

ADD, TAG, PMT

ADD, TAG, PMT

ADD, TAG, PMT

ADD, TAG, FMT

ADD,TAG,FMT

ADD, TAG, FMT

ADD,TAG,FMT

ADD, TAG, FMT

Branch ACC positive (long)

Branch ACC not positive (long)

Branch ACC negative (long)

Branch ACe not negative (long)

Branch ACC zero (long)

Branch ACC not zero (long)

Bra nch on carry (long)

Branch on overflow (long)

Branch ACC odd (long)

Skip ACC positive (short).

Skip ACC non-~ero (short)

Skip ACC zero (short)

Skip overflow off (short) .

HASP Remote Terminal Processor (1130) - Page 4. 14-41

185

HASP

Macro Form

$SKPC

$SKPX

$B ADD, TAG,FMT

Description And Notes

Skip carry off (short)

Skip ACC not equal zero and carry off (short)

Branch unconditionally. FMT = L or I generates

long form $BSC with MOD = 0.

FMT = X or blank generates $MDX ADD, TAG, FMT

$BSI ADD, TAG, FMT,MOD Branch conditionally and store IAR

$TSL ADD, TAG,FMT

$MDX ADD, TAG, FMT

$STL ADD,FMT

$MDM ADD ,VALUE

$WAIT

$XIO

$BSS

$BES

ADD, TAG, FMT

N,X

N,X

Transfer and store location counter. Assembled

as a $BSI with FMT = L, MOD = ° (long form

unconditional branch and store IAR).

Modify index and skip

Store location counter. Assembles as $STX

ADD,O,FMT.

·Modify memory.

Wai t for interrupt

Execute I/O

Block started by symbol

N = number of words.

X =E ..for even storage.

Block. ended by symbol

·~·.=='nUmbetof·words

iC==~Af6t evens torage

:Btr'R~~~~:;·T.fiR.trial'W&cess()r (1130) -Page 4.14-42

~1$6;

HAS P

Macro Form

$NULL

$ADCON

$NOP

$ZAC

ADDR

Description and Notes

Null operation for symbol definition

Address constant. Assembles as an

absolute 1130 address. "ADDR" must

be a relocatable symbol by the as

assembler definition.

No operation. Assembles as $SLA 0

Clear ACC. Assembles as $SRA 16

HASP Remote Terminal Processor (1130) - Page 4. 14-43

187

HAS P

4.14.6 GENERAL INFORMATION

OS/360 ASSEMBLY OUTPUT

If the value of &FULLIST is set to 1 at the time of generation
of RTPl130 or RTPLOAD then the listing produced by the OS/360
Assembler will contain the following informatio~:

1. The location counter value for each 1130 instruction or
storage location in terms of bytes. The actual 1130
location in terms of words can be determined by dividing
the displayed value by 2. The REP facility allows a
specification of either byte or word form.

2. The 1130 instruction is printed in 1130 format. The long
form address is in terms of 1130 words and the short form
is true relative format.

VARIABLE INTERNAL PARAMETERS

The generation of the RTPl130 program using RMTGEN provides
the user with a simple and flexible means of changing common
parameters germane to the configuration of the 1130. Addi­
tional internal parameters may be varied by using the source
file update feature of the RMTGEN program.

Listed below are the major parameters, with a brief descrip­
tion of each, which the user might consider altering as a
function of hardware and software performance considerations.

VARIABLE

&DEBUG

&CNPSIZE

&CONINSZ

&PRFOTKL

DESCRIPTION

Conditionally assembles the RTPl130 internal
core dump program ($SDUMP) and the BSC adapter
trace routine (DBUGSCAL). Default value
inhibits the assembly of these debugging
programs.

Maximum console printer message size. Default
value is 120 bytes per message.

Maximum console keyboard input buffer size.
Default value is 120 characters per command.

Number of 1403 printer buffers (tanks) provided
at assembly time. Default value is 2. The
TPGETprocessor.will buildup to the value of
&PRFOTKL and then suspend operation for the l40J
until the count of buffers falls below &PRFOTKL

HASP Remote Terminal Processor (1130) - Page 4.14-44

188

HAS P

VARIABLE

&PRETTKL

&PUNFTKL

&CONSTKL

&PRFOBFL

&PRETBFL

&PUNFBFL

&CNSPBFL

&NPTFBFL

DESCRIPTtON

Number of 1132 printer buffers (tanks) provided
at assembly time. Default value is 2. See
&PRFOTKL for TPGET action.

Number of 1442 punch buffers (tanks) provided
at assembly time. Default value is 2. See
&PRFOTKL for TPGET action.

Number of cons~le printer buffers (tanks) pro­
vided at assembly time. Default value is 5.
See &PRFOTKL for TPGET action.

Maximum number of TP buffers containing data
destined for the 1403 printer which will be
accepted by TPIOX before setting the trans­
mission suspension bit defined in the FCS for
the 1403. HASP will suspend transmission of
1403 print data until the FCS bit is reset
when the number of l4-03TP buffers becomes
less than the value of &PRFOBFL. Default value
is 2.

Same definition as &PRFOBFL except it applies
to the 1132 printer. Default value is2.

Same definition as &PRFOBFL except it applies
to the 1442 punch. Default value is'2.

Same definition as &PRFOBFL except it applies
to the console printer. Default value is 1.

Maximum number of TP buffers allotted to input
devices collecting data to be sent to HASP.
Default value is one greater than the number
of card readers defined for RTP1l30.

HASP Remote Terminal Processor (1130) - Page 4.14-45

189

I

I

HAS P

4.15 EXECUTION TASK MONITOR

4.15.1 Execution Task Monitor - General Description

The Execution Task Monitor is a processor which periodically ex­
amines the CPU utilization of user tasks within a dynamic priority
group and rearranges the OS/360 task dispatching chain giving
higher priority to those tasks, within the group, which use the
least amount of CPU time. Tasks above and below the dynamic pri­
ority group are not affected by the rearrangement of the dispatch­
ing chain. Tasks with all of the following characteristics are
included within the dynamic priority group:

1. The task belongs to a job scheduled by HASP.

2. The current dispatching priority of the task is

3.

a. equal to priority of the dynamic group as specified
by the value of the &XZPRTY parameter for MVT or

b. not greater than the value &XZMFTH and not less than
the value of &XZMFTL for MFT.

The HASPGEN parameter &XZMULT is set to "YES n or if not
"YES" the task is a job step with no daughters.

The interval between the periodic examinations is controlled by the
value of the &MONINTV parameter. Setting &MONINTV value to a posi­
tive integer will cause the processor to be generated. OS/360 must
support Job Step Timing and must not have a Time Slicing Group De­
fined at the priority 1evel(s) cor;esponding to the priority range
of the dynamic group. Users must not use TlME=1440 on Job or
Execute cards for jobs to be correctly adjusted within the dynamic
group.

Execution Task Monitor Processor - Page 4.15-1

190

HASP

4.15.2 Execution Task Monitor - Algorithm

The Execution Task Monitor determines the CPU utilization history (ht , n)

for each task within the dynamic priority group using the following formula:

ht I n=cPUt, n +ht - 1 , n - Ht/N

= Total CPU counts observed for the N tasks being

monitored plus the sum of the previous history values.

N = The number of tasks being monitored at the end of

the time interval.

h = The history of CPU utilization for task (n) during t, n

the current time interval.

ht - 1 , n = The history of CPU utilization for task (n) taken at

the previous time interval.

New tasks, entering the monitored group, will be assigned a hi-story

value of zero and temporarily placed at the low priority end of the group.

Task with continuous low values of CPU counts will have (h) values. which

become increasingly negative. The (h) values will be prevented from falling

below the range of one time interval; thus providing responsiveness to

erratic changes in the corresponding task's CPU utilization.

Low values of h indicate the task (1) has not been able to utilize the

CPU time given to it because of waiting for events such as I/O or (2)

Execution Task Monitor Processor - Page 4.15-2

191

HAS P

has not been given the opportunity to utilize the cpu. High values
of h indicate the task has had the opportunity and has utilized the
cpu. The Execution Task Monitor performs a partial sort and rechains
the monitored tasks, insuring that the task with the largest history
of cpu utilization will have the lowest effective priority within the
dynamic priority group during the next time interval. This will by
default raise the effective priority of other tasks in the group.

When HASPGEN parametsf:' &XZMULTis set to "YES" all tasks for a job­
step falling within the priority group are ordered as a single unit
allowing each task to maintain the same relative priority with
other monitored tasks within the jobstep. In MVT systems, a task
within the group that changes OS dispatching priority is removed
from the group.

In MFT systems, all monitored tasks are assigned an as dispatching
priority ~pecified by the &XZMFTL parameter. A CHAP or ATTACH that
specifies a change in priority will have the effect of changing
relative priority; however, as long as the task remains within the
range &XZMFTH and &XZMFTL the assigned priority will be changed to
&XZMFTL at the end of the monitor interval &MONINTV. A CHAP in an
MFT system may therefore not produce the intended result.

Execution Task Monitor Processor - Page 4.15-3

192

HASP

4 . 16 INTERNAL READER

4. 16 . 1 Internal Reader - General Description

The Internal Reader Processor is an Input Service Processor which

reads card images from any system or user task running under OS/3 60 .

The Internal Reader recognizes I through the use of Execution Control

Processor interface routines I an attempt by other tasks running under 08/360

to punch information into "cards" on pseudo 2520 punch devices I performs

the function of the Input Service Processor on each card I and via OS/360

POST macro signals completion of I/O to the submitting task.

4 . 16 .2 Internal Reader - Program Logic

The Internal Reader uses the code of the Input Service Processor with

modifications in the following areas.

1. Processor Initialization - The Internal Reader attempts to

obtain an internal reader device control table (DCT) which

contains an 80 byte buffer area rather than a normal

reader DCT. When a device is received the processor

continues by acquiring a direct-accessDCT and passes

. control to the main processor.

2 • Main Processor - The Internal Reader RGET routine tests

for the existance of a submitting task punch channel program.

Internal Reader Processor - Page 4.16-1

193

HASP

If no channel program exists the Processor will wait for

WORK. If a channel program exists RGET will simulate the

punching of one card into the 80 byte OCT buffer area (no

data chaining). If the channel command represents the

end of the channel program RGET posts completion of I/O

and resets channel program indicators. RGET returns to

the main processor passing the card image for processing

or in the event the "card lf has If/*EOF" in columns 1 to 5

returns indicating end of file.

3 • Processor Termination - Termination of the Internal Reader

involves terminating the last job (if any), rei.easing the

direct-access and internal reader device OCT's, and passing

control to the processor initialization routines.

The Internal Reader requires supporting routines in the Execution Control

Proces sor Asynchronous I/O Handler which perform the following functions:

1. Recognize EXCP macro references to designated internal readers

as setup by HASP initialization.

2. Make the internal reader available to the Input Service Processor

on first use.

3 • Set up the first channel command word and lOB pointers.

4. Force the submitting task in the wait state if required.

5. Post the Input Service Processor for WORK.

Internal Reader Processor - Page 4. 16-2

194

HASP

4. 17 MULTI- LEAVING LINE MANAGER

4. 17. 1 MULTI- LEAVING Line Manager - General Description

The function of this proces sor is to control all line activity with remote

terminals. This includes line initiation/termination, remote terminal

synchronization, line error recovery I and sign-on/sign-off processing.

This processor interfaces very closely with the Remote Terminal Access

Method described in section 5.15.

4. 17. 2 MULTI- LEAVING Line Manager - Program Logic

When this processor receives control from the dispatcher it first

determines whether an I/O operation has completed. If not, it then scans

each line (via the line Device Control Tables) to check for requested

processing. When all processing has been completed the processor then

returns control to the dispatcher ($WAIT' s) until such time as more work

becomes available.

When a channel end is detected, the channel end routine determines

the sequence type of the Channel Command Word chain and branches to the

appropriate section to analyze the channel end and initiate any error

recovery procedures required.

The line Device Control Tables (DCT's) are scanned and when one is

found to be available the Line Initiation routine is entered which acquires

MULTI- LEAVING Line Manager - Page 4. 17-1

195

HASP

the DCT, acquires a TP buffer, constructs an initial CCW chain I and

initiates I/o on the line.

A single timer queue element is maintained by the Line Manager to

initiate delays in line processing. This facility provides the capability

of delaying a null response to a remote terminal and decreases the

associated degradation. Various other timer queue elements are maintained

by individual line processors to initiate other delays of varying intervals.

The code in this processor is assembled conditionally such that only

the instructions required to process a given configuration will be generated.

MULTI-LEAVING Line Manager - Page 4.17-2

196

HAS P

4.18 REMOTE CONSOLE PROCESSOR

4.18.1 Remote Console Processor - General Description

The function of this processor is to process all console
messages to and from remote terminals. This routine
optionally saves messages to remotes which are not "signed
on" MULTI-LEAVING terminals for later printing on the
remote terminal printer.

4.18.2 Remote Console Processor - Program Logic

This processor receives control whenever a console message
is queued for a remote terminal or whenever a console mes­
sage is received from a remote terminal. The processor
first examines the output queue of messages and upon en­
countering a message queued for a remote terminal examines
the current status of the terminal. If the terminal is
not an active BSC MULTI-LEAVING terminal the message is
purged (the console message buffer is returned to the
available queue) or the message is saved on the SPOOLI
volume if operator message SPOOLING is requested.

If the message is to be written, a Remote Console Device
Control Table is constructed for the specific remote termi­
nal, the DCT is chained onto the other DCTs for this
remote, the DCT is "OPENed" by calling the Remote Terminal
Access Method, all messages which are queued are written
to the terminal, and the DCT is "CLOSEd" and unchained.
If the message to be written is for a currently inactive
or for a non-MULTI-LEAVING active remote and HASP operator
message SPOOLING space is specified (&SPOLMSG ~ 0), an at­
tempt to save the message on the SPOOLI volume for later
printing at the remote by printer support routines is made.
The remote MESSAGE SPOOLING QUEUE ($MSPOOLQ) element for
the designated remote is examined for a queue HEADER entry
of zero. If zero, a record is allocated from the MESSAGE
ALLOCATION ($MSALLOC) Table, and the corresponding MTTR for
the record is placed in both HEADER and TRAILER entries
for the remote. (Non-zero but equal HEADER and TRAILER
entries signify that the queue exists; however, since the
last record of each remote element is always empty no data
is currently queued). A record is allocated from the
$MSALLOC table to represent the new end of message queue
and the associated MTTR is placed in the chain field of the
current HASP buffer. The HASP buffer is then filled with
the operator message and any more messages for the same
remote currently queued and· written on the SPOOLI volume

Remote Console. Processor - Page 4.18-1

197

HAS P

at the record location designated by the TRAILER MTTR for
the remote. Upon completion of I/O the chain field replaces
the TRAILER MTTR. The above process is repeated for addi­
tional buffers as required to empty the console message
queue for the remote.

In the process of allocating message records the $MSALLOC
table bit map is used. Each bit in the map when on repre­
sents a free record on the SPOOLI volume. Allocatron con­
sists of finding the highest numbered bit that is on,
turning the bit off, and converting to a corresponding MTTR.
When all bits in the map are off indicating that no records
are available, the messages are purged.

If an input message is to be read, a Remote Console Device
Control Table is constructed and the Remote Terminal Access
Method is utilized to "GET" the message. The message is
written to the local console and then queued for the Command
Processor.

Remote Console Proc"essor - Page 4.18-2

198

HAS 'P,'

4.19 'EXECUTION THAW PROCESSOR

4.19.1 EXECUTION THAW PROCESSOR - GENERAL DESCRIPTION

XTHAW is a companion to the main Executionp'to:ces.~cjriIC)S;
interface routine called XFREEZE. XTHAW is,res:ponsible :fot
discovering which tasks have been forcibly placed iri '(in: 'OS
WAIT state by XFREEZE (frozen) and should 'now ,be activClted
(thawed) thru the OS POST ECB mechanism. '

4.19.2 EXECUTION THAW PROCESSOR - PROGRAM LOGIC

XTHAW uses an lOB (HASP buffer) chain constJ:'ucte~'thrutn.e
XTHAW PCE or the Execution Processor PCE(s) ,in the 'XPCEECa
field of the PCE work area. The chain iscohstructedusing
the XTHAW or an Execution PCE depending on the reason fqr
invoking XFREEZE. If the lOS interface $ection J..s'~ntered
while an Execution processor is active, th~n, theXTHAW PCE
is used. If an I/O request cannot be, proc~$'sedClnd an
Execution processor is not active at the tiITl;~ 9f"1;.he'req'uest:"
then the PCE controlling the caller is used 'to' build the
chain.

XTHAW is activated ($POSTed) by the Execution Processor
whenever a Job or the HASP controlled OS ;Reader/Interpreter
is active and just prior to $WAITing f()r.wor~ •. A spe¢~Cll
status bit (XPOSTBIT) in the XPCESTAT field., 'of ail ,Execution
PCE is used as the primary test for processingeh:~:\q~~Bcl'l.ail1.
This bit is not turned on when the OS ReaderlIIl~E!t"pr~'te'~ , .
is active and assigned to a PCE but does nothav~ajob to
process. This prevents unnecessary activ~ti~Il(th4~ing).of
the Reader/Interpreter when noJobsare.av~i~apl'c!'::~for,' j,.niti:a-
tion.· .. " ' ,

XTHAW performs the. following major funci:i()~~::~~:';;

(1)

(2)

(3)

!;~': ':: .".

Examines theXPCEECB field of,the·Xw~w'pr()ceSl$or. '
If this field ianon-zero, itiS'\ls~d·~,:'~p.e,.,~.q,;l.nt~r
to a chain of. ,lOBs (HASP b.tffers) Wl'li'?tl<:QQntr~~~i;::I:Ca'S
t9 be POSTed' (thawed) and the HASl?/(JS"'~cg~,+,) .• :\ibi9.ij~ine
(WPOSTECB) is used ~o perform ,the .POS~4!?,:~'Tfle,i:cb~in
aSldress for ~he lOBs is contained'in.th@;.lOJa~,$W< £l~ld
which is set to zero for the last I013.-.,;:-" .,:~ .. ",,,,>.: ..

Next, . the ,Exepution PCEs are sea;r:',c;h~4::<';9.~,);;,tbex~o~~lJIT
condition ,and the XPCEECB field is, Pr.9<?~,~~(!d·as.d"e~:'
scribed inStep 1" if the XPOSTBITl.s.p~·'~·''
XTHAW $WAlTs for ~~ork after processing:~a.J.J. PC$,s a§
described.'"

Execution THAW.l'rocess().t~,~a9,e 4,.19-1

199

HAS P

4.20 OVERLAY ROLL PROCESSOR

4.20.1 Overlay Roll - General Description

This Processor operates in conjunction with the Overlay Service
Routines. Description of them in Section 5.16 should be read to
provide proper background to understanding of Overlay Roll. The
objective of this Processor is to prevent system lockout due to
$WAITs in overlay routine coding.

4.20.2 Overlay Roll - Program Logic

This Processor's peE is placed lowest on the HASP Dispatcher chain
and it $WAITs on ABIT when idle. This means that all Processors
with their requested overlay routine in an Overlay Area will have
at least one chance to execute code or otherwise use their overlay
routine before the Overlay Area containing that routine is taken
for other use. Overlay Roll does not receive control unless all
other HASP Processors are in a $WAIT state, i.e., HASP is ready
to relinquish control to OS by WAIT. Overlay Roil always receives
control, just before WAIT is executed.

Overlay Roll has local addressability provided in BASE2 and also
establishes the base address for Overlay Service in register we so
that its subroutines and tables may be used. On each entry, the
Queue beginning with $WAITACE (see 5.16.2) of peEs waiting for an
Overlay Area is tested. If empty, $WAIT ABIT is used to exit.
Otherwise, the following attempts are made to secure one or more
Overlay Areas and begin reading a requested routine into them.

For each group of one or more waiting PCEs requesting the same over­
lay routine, all Overlay Areas are searched to find a suitable one.
If a read operation to load an overlay routine is in process, the
area is never taken. Users of that routine are allowed at least
one chance to execute after read completion is processed by Overlay
$ASYNC Exit (see 5.16.9).

For each Overlay Area which does not have read in process, the
OACEPRIO field is examined and the chain of all current users
(beginning at OACEPCE) is searched to determine if any user is
$WAITing on I/O. This would be I/O other than an overlay read
operation, would be expected to complete "soonll, and would, there­
fore, make it less desirable to pre empt that area. The lowest
priority area with no user $WAITing I/O is chosen, if any, other­
wise the lowest priority area is chosen.

Since an overlay routine is "refreshable" at $WAIT time, it is not
necessary to literally "roll", i.e-., write to disk, a pre-empted
Overlay Area. Each PCE on the chain of current users (OACEPCE) is

Overlay Roll Processor - Page 4.20-1 .

200

HAS P

processed to prevent further use of the pre-empted area by it.
The re-entry address (PCER15) is "sized" to determine if it points
into the Overlay Area and if so is relativized by subtracting the
Overlay Area address. The peE is forced into a $WAIT OROL state,
in addition to the other $WAIT conditions present. When other
$WAIT conditions have been $POSTed, the Dispatcher (see 5.1.2)
detects the peE $WAITing OROL only and sets it to calIon Overlay
Service. OLOD subroutine (see 5.16.8) is eventually called to
refresh the routine, either directly, or if the PCE gets into the
$WAITACE Queue,· by OEXIT subroutine (see 5.16. 7) or by Overlay Roll.

The·area thus pre-empted is used to read in a new overlay routine,
to be used by the highest priority PCE group on $WAITACE. The OLOD
subroutine (see 5.16.8) is called to begin the read operation.

If there are more PCE groups on the $WAITACE Queue, the above actions
are repeated. When Overlay Roll finally exits by$WAIT ABIT, the
$WAITACEQueue is either empty or all Overlay Areas have an overlay
read operation started, to be posted by Overlay $ASYNC Exit.

Overlay Roll Processor Page 4.20-2

2.01

HASP

4.21 HASP 5MB WRITER (HASPWTR)

4.21.1 HASP 5MBWriter - General Description

The primary function of this program is to read System Message
Blocks (SMBs) from the data set SYSl.SYSJOBQE and "pri'nt" them to
HASP. The process signals the end of the OS execution phase of a
job's processing and makes the messages (JCL, JCL diagnosis,
allocation/disposition, SMF, etc.) available to HASP, to be later
printed with print data sets of the job previously SPOOLed by HASP.

This program is used as an attached task, in the HASP region or
partition, if the HASPGEN parameter &WTRPART is set to "*". Other­
wise, the standard OS Output Writer is used to fulfill the same
functions and is started by HASP in a separate partition, using a
procedure named HOSWTR. Therequeueing feature described below is
only available when using HASPWTR.

The program HASPWTR depends upon OS Queue Management structures
(QCR, LTH, 5MB, no-work ECB) as documented in OS/360 MVT Job Man­
agement PLM. Functions such as enqueue, dequeue or delete of a
job; ENQ/DEQ to control access to Queue Management resources; con­
version of record addresses between NN, TTRO, and MBBCCHHR forms;
and computation of sector numbers when SYSl.SYSJOBQE is on an RPS
direct access device are all performed in a manner consistent with
that described for the standard OS Job Management modules.

Microfiche listings for IEFQDELQ, IEFQMDQQ, and IEFSD086 were con­
sulted as examples during the development of HASPWTR. However, no
actual Job Management modules are executed by HASPWTR.

4.21.2 HASPSMB Writer - Program Logic

On initial entry after being ATTACHed, the program saves three ad­
dresses passed to it by HASP Initialization: memory address of
the pseudo 1403 UCB designated by the HASPGEN parameter &WTR, ad­
dress of a HASP subroutine to be called to signal end-of-job, and
address of an ECB which will be posted by HASP if the operator en­
ters the command $P HASP. After signalling HASP (via a POST) that
ATTACH was successful and setting up addressability to the dS Queue
Manager resident DCB and DEB for SYSl.SYSJOBQE, the program enters
its major processing loop.

The major processing loop is driven by inspection of a list of ECBs.
One is the $P HASPECB which, if posted, causes the program to ter­
minate.as described below. All other ECBs are each part of an
eight byte no-work element. One such element is present for each
SYSOUT (MSGCLASS) to be processed, as indicated by the list of

HASP 5MB Writer (HASPWTR) - Page 4.21-1

202

HAS P

classes assigned to the HASPGEN parameter &WTRCLAS'. If an ECB is
posted, the Queue Control Record (QCR) for that class is read and

, a job is dequeued, if present. The dequeued job's last Logical
Track Header (LTH) must be read to perform the dequeue. The updated
QCR is re-written. If there were no jobs to dequeue or the one
dequeued was the only one, the class ECB is cleared and the no-work
element is chained from the QCR before re-writing.

If a job was dequeued, its 5MBs are read, messages are formatted
into print lines, and the lines are "printed" to HASP using the
pseudo 1403 UCB. If non-SMB blocks such as Data Set Blocks (DSBs)
are encountered, they are simply skipped. The data sets they
represent are not printed or scratched. When the end of the job
is reached, a small subroutine in HASP is called to signal end-of­
job to HASP.

The HASPGEN parameter &WCLSREQ controls the disposition of the job
after processing. If the position in the list &WCLSREQ, correspond­
ing to the position of the job's original class in the list &WTRCLAS,
is a valid SYSOUT class then the job is re-queued in the QCR for
that new class. Any tasks (e.g., other system writers for perhaps
CRBE, CRJE, TSO, CPS, etc.) whose no-work elements are chained from
that QCR are POSTed. The re-queue action always places the job in
the new QCR chains at highest priority.

If &WCLSREQ does not indicate re-queuing ("*" in a list position
instead of a class), the job's tracks in SY51.SYSJOBQE are released
by chaining them to the chain of free space beginning in the Master
QCR, POSTing any tasks waiting for Job Queue space, and re-writing
the Master QCR.

The major processing loop is repeated until no ECBs are found posted.
An OS multiple WAIT is executed and when any ECB is posted by another
task (usually an OS Job Terminator), the major processing loop is
resumed.

If the operator enters $P HASP, HASP will POST an ECB to signal
termination actions to this program. All QCRs for processed classes
(&WTRCLAS) are read, the no-work chain of each is zeroed, then the

QCR is re-written. HASPWTR exits with a zero completion code.

If permanent I/O errors occur during any I/O on the SYSl.SYSJOBQE
data set, an error message is always written to the operator. For
write operations, no further special action is taken and processing
continues. For read operations, an attempt is made to minimize
system damage. No input from an incorrect read is ever used for
processing. If the error occurs in reading a QCR or LTH while
attempting to de-queue a job" the ECB is set so that no further pro­
cessing of that class will be attempted. If there is an 5MB read
error, end-of-job is signalled to HASP and no further blocks on that
job's chain are read. If a QCR read error occurs during are-queue
attempt, the job is deleted (tracks 'are released).

HASP 5MB Writer' (HASPwTR) - Page 4.21-2

203

HAS P

4.22 PRIORITY AGING PROCESSOR

4.22.1 Priority Aging Processor -- General Description

The function of the Priority Aging Processor is to regularly
increase the priority of a job in such a way that its position
in the HASP Job Queue is enhanced with the passage of time.
This is accomplished by regularly passing through the HASP Job
Queue and incrementing the priority field of all Job Queue
Elements whose priority falls between upper and lower limits.
These limits, as well as the time interval, are HASPGEN
parameters and can be specified to fit the needs of an
installation.

4.22.2 Priority Aging Processor -- Program Logic

When this processor is dispatched, it searches through the HASP
Job Queue until it encounters a Job Queue Element whose priority
field "QUEPRIO" (see figure 8.6.1) is less than the HASPGEN
parameter: &PRIHIGH. For that Job Queue Element and every Job
Queue Element after that (until the HASPGEN parameter &PRILOW
is reached), the priority field is incremented by one. The
Interval Timer is then reset and the processor enters a HASP
$WAIT until the timer interval expires.

Since the priority of the Job Queue Element is represented by
the four high-order bits of "QUEPRIO", adding one to this field
has no immediate effect on the priority. After repeating this
operation sixteen times, however, the actual value of the
priority will be increased by one. The value of the time
interval is actually only one-sixteenth of the interval implied
by the HASPGEN parameter: &PRIRATE. This effect tends to smooth
out the process of priority aging by creating less impact when
an interval expires.

In order to minimize CPU utilization, this processor discontinues
operation whenever the HASP Job Queue is empty and does not
continue until a new job enters the system.

Priority A9in9 Processor -- Page 4.22-1

204

HAS P

4.23 SYSTEM/3 REMOTE TERMINAL PROCESSOR PROGRAM LOGIC

The HASP System/3 Remote Terminal Program is assembled on a
System/360 or System/370 computer under OS, using Assembler F
(IEUASM). The advantages of assembling under OS are: the,
System/3 program can be assembled as part of a standard liASPGEN
or RMTGEN; a System/3 program can be customized to the particular
System/3 configuration and HASP System being generated, since
Assembler F can handle conditional assembly statements; and macros
can be used.

To allow assembly of System/3 code, a set of macros is included
as part of the System/3 source code, HRTPSYS3. Most of these
macros are designed to generate machine language code for the
System/3; a few additional macros, such as $WAIT and $FB, provide
for in-line functions and control blocks. The former macros will
be discussed first; they are called the machine-language macros.

The machine-language macros consist of a set of macros whose names
correspond to the mnemonic System/3 operation codes defined in the
publication "Card and Disk System Components Reference Manual"
(Order Number GA2l-9l03) and the extended System/3 assembler
mnemonics defined in the publication "Disk Syst8m Basic Assembler
Program Reference Manual" (Order Number SC2l-7509), with the fol­
lowing exceptions: each mnemonic operation code is prefixed by a
dollar sign; no macros are provided for the instructions ZAZ, AZ,
and SZ; additional extended mnemonics $NOPB and $NOPJ are provided;
and the form and order of the operands is such as to be convenient
to Assembler F.

When a machine-language macro refers to a location in core, the
operand is coded either "address" or "(displacement,register)".
Thus one might write "$MVC X'l234' ,(0,REG2) ,LENGTH" to move LENGTH
bytes to core location x'1234' (and succeeding lower-addressed
bytes) from the core location pointed to by REG2 (and succeeding
lower-addressed bytes).

There are ten forms of machine-language outer macros. These are:

1. The two-address form exemplified by "$MVC adrl,adr2,length".
The operands "adrl" and "adr2" are as explained above. The
operand "length" is assembled as "length-I" unless it is
omitted or is literally "*-*,, (in which case it is assembled
as zero) or the opcode is $MVX, in which case it is assembled
as "length". The opcodes $MVC, $ALC, $ED, ,', $ lTC, $CLC, and
$MVX belong to this form. The extended mnemonics $l1ZZ, $MZN,
$MNZ, and $MNN may be used.

2. The one-address form exemplified by "$L reg,adr" and includ.ing
$L, $A, $LA, and $ST.

'3. The one-address form exemplified by "$MVI adr,irnm~diate" and
including $MVI, $CLI, $SBN, $SBF, $TBN, and $TBF.

System/3 Remote Terminal Processor- Page 4.23-1'

205

HAS P

4. The Jump instruction, written as either "$JC adr,cc" or
"$Jxxx adr" , where $Jxxx is one of the extended mnemonics.
In this case, "adr" may not be specified as
"(displacement,register)" and must be within a positive dis­
placement of 256 bytes from the last byte of the Jump
instruction.

5. The Branch instruction, written as either "$BC adr,cc" or
"$Bxxx adr" where $Bxxx is one of the extended mnemonics.

6. The one-address I/O forms, exemplified by "$LIO da,m,n,adr"
and including $LIO, $TIO, and $SNS.

7. The instruction $SIO, written as "$SIO da,m,n,cc".

8. The instruction $APL, written as "$APL da,m,n".

9. The instruction $HPL, written as "$HPL cc", where each "c"
is either the actual character to be displayed as a halt code
or the character "*", indicating a byte of zeros. For exam­
ple, one might write "$HPL EJ".

10. The assembler instructions $OC and $OS, ~here the statement
label (if any) is assigned the address of the last byte of
the last bperand specified.

In addition to the machine-language macros, a $USING and a $OROP
macro are provided to enable Assembler F OSECTs to be used more
easily. The form of the $USING macro is "$USING expression,reg­
ister" where "expression" is a one-to-eight-character expression
with the location counter reference symbol "*" either not used or
used as the first character '. and "register" is a one-to-eight­
character absolute expression. No more than two different
$USINGs (two $USINGs with different arguments "register") may be
outstanding at any time. $USING works as follows: from the time
the $USING is issued, for any address-type machine-language macro
which contains an address specification of "(displ,reg)", the
character string "reg" is compared with the string "register" of
each outstanding $USING. If no·match is found, the displacement
is assembled as YLl(displ). If a match is found, the displacement
is assembled as YLI(displ-(expression)), where "expression" is
taken from the corresponding $USING.

The form of $OROP is "$DROP register" where "register" is a char­
acter string that appeared as the second operand of a previous
and outstanding $USING. The form "$DROP register,register" is
also allowable.

The assembly listing generated by Assembler F contains the macro­
expansion for each macro used, in order to provide a printed copy
of the generated text of each machine instruction and the address
at which it will be loaded in System/3 storage. The expansion
of each of the machine-instruction macros is typically contained
in one print line, and the text of the ~enerated instruction is

System/3 Remote Terminal Processor - Page 4.23-2

206

HAS P

always contained in hexadecimal on one print line.

The object deck produced by Assembler F is used as input to the
translation program SYS3CNVT, called -automatically by RMTGEN.
SYS3CNVT reads the object deck via either ddname SYSLIN, or
ddname SYSGO if SYSLIN is absent. First, SYS3CNVT punches on
SYSPUNCH a System/3 one-card loader. Then it reads from SYSLIN
or SYSGO, ignoring all but TXT cards and the END card. For each
TXT card, SYS3CNVT creates one System/3 96-column load-mode card
image, suitable for reading by the System/3 one-card loader. Each
such 96-column card image contains 64 bytes of information as
follows:

• bytes 1-5 contain a System/3 $MVC instruction of the form
"$MVC load-adr, (column-nwnber,l) ,length-l" where load-adr
is the absolute load address of the rightmost byte of text
on the corresponding 80-column Assembler F object deck TXT
card, column-nunmer is the number minus one of the 96-card
column in which appear the low-order six bits of the right­
most byte of text, the digit "1" refers to the System/3's
register 1, and length is the number of bytes of text on
the card;

• bytes 6-61 contain a maximum of 56 bytes of text, starting
in column 6; and

• bytes 62-64 contain a three-digit card sequence number .

. When the object deck's END card is detected, or when a TXT card
appears that was generated by the $END macro (whose optional key­
word operand START= specifies the starting execution address of
a segment of text), a 96-column load-mode card image is constructed
whose 64 bytes are as follows:

• bytes 1-4 contain a System/3 $B instruction of the form "$B
address" where address is either the first byte of the text
segment just loaded (if the $END macro does not specify
START=, or if the END card of the assembly has no operand) or
the address specified in the START= parameter of the $END
macro or the operand field of the END card;

• bytes 62-64 contain a three-digit card sequence number.

After the object deck's END card has been processed, SYS3CNVT
creates a 96-column card image of which columns 2-4 are "EOR"
(this is the rep terminator card, End-of-reps) and columns 62-64
contain a three-digit c~rd sequence number.

Certain of these 96-column card images contain descriptive infor­
mation in bytes 33-64: these are the one-card loader, which is
captioned "FIRST CARD"; the card created from a $END macro, which
is captioned "PSEUDO-END"i and the card created from an END card,
which is captioned "LAST CARD".

After it has created each 96-column card image (including that for
the one-card loader), SYS3CNVT breaks the image in half and punches
two aD-column cards from it. Each 80-column card punched by

System/3 Remote Terminal Processor - Page 4.23-3

207

HAS P

SYS3CNVT.contains the following fields:

• columns 1-2 are blank;-
• columns 3-50 contain the first (if column 80 is odd) or the

last (if column 80 is even) 48 bytes of a System/3 card
image;

• columns 51-72 are blank;
• column 73 contains the punch combination for X'80', an

indicator to any System/3 Remote Terminal Program generated
with &S396COL·=1 that two 80-column cards are to be combined
and punched as one 96-column card (the System/3 Starter System
is generated with &S396COL=1);

• columns 74-80 contain the remote terminal identifier and card
sequence number, in the form "Rmmnnnn", where nnnn is 0001 on
the first card punched.

The punched output of SYS3CNVT may be routed directly to a System/3
which is running the Starter System or other suitable System/3 Re­
mote Terminal Program; the resulting 96-column punched deck of
cards is immediately ready for loading into a System/3 of the
proper configuration. Alternatively, SYS3CNVT's punched output
may be punched on 80-column cards for later transmittal to a
System/3. Each 80-column card is suitable for data transmission
in either transparent or non-transparent mode.

System/3 Remote Terminal Processor- Paqe4.23-4

208

HAS P

The following pages constitute the Program Logic manual for the
System/3 Remote Terminal program.

The program consists of processors, interrupt routines, and system'"
subroutines. There is a processor for each logical function to
be performed by the program; each processor is controlled by a
Function Block (somewhat analogous to a TCB in aS). Interrupt
routines are provided for those devices (BSCA, 5471, and 5475)
which are capable of interrupting the CPU; other devices are
operated by processors. For example, the MFCU processor operates
a hopper of the 5424 MFCUi it becomes associated with either a
logical reader processor or a logical punch processor, depending
upon the state of the hopper.

The various routines of the System/3 Remote Terminal program
are described in the order in which they appear in the listing.

System/3 Remote Terminal Processor - Page 4.23-5

209

HAS P

IHEREP - HASP Environmental Recording and Error Processor

IHEREP prints at program load time the error statistics gathered
from the previous running of the System/3 Remote Terminal pro­
gram. IHEREPis then overlaid and the Remote Terminal program
continue~ to load.

First, IHEREP loads the 5203 forms length register and selects
the correct print chain image according to the printer 1 s status
information. Then it checks the log area for validity. If the
log area is valid, the characters 'HASP' will appear immediately
before the log area. If these characters do not appear, IHEREP
prints the message

HEREP COUNTERS HAVE BEEN ALTERED

and branches to zero to cause program loading to resume.

If the log area is intact, it contains eight two-byte counters
for each status byte which can contain unit check information
for a device. IHEREP prints a title line and then, for each
status byte, a subtitle line and as many as eight detail lines.
A subtitle line contains device description and status byte number.
A detail line contains status bit description, bit number, and
count of bit occurrences in decimal.

Control of IHEREP resides in the table of subtitles and detail
descriptors, and control of the two-byte bit counters is by a
bit string (starting at symbol IHBITl) containing one-bits
for the counters to which correspond detail descriptors. The
table of subtitles and detail descriptors is made up of $IHMSG
macros; if the first operand of this macro is 'T', the macro
defines a subtitle, and if the first operand is an integer
between 0 and 7, it specifies a detail descriptor for the bit
whose bit number is the first operand. The table entries are
used in order, and a byte of zero defines the end of the table.

When the HASP Environmental Re~ording and Error Printout is com­
plete, the counters are zeroed out and IHEREP branches to zero
to continue program loading.

System/3 Remote Terminal Processor - Page 4.23-6

21.0

HAS P

$COM - Commutator

The Commutator gives control in turn to the various processors
which comprise the System/3 Remote Terminal program, based upon
the status of the various Function Blocks (FBs).

If the Event Wait Field (FBEWF) of an FB has zeroes in the bit
positions defined by EWFALL, the function is said to be dispatchable.
$COM loads register one from field FBREGl of the FB (register two
points to the FB) and gives control to the associated processor by
loading the Instruction Address Register (IAR) from field FBENT.

When the processor has completed its work, it returns to the com­
mutator with register two pointing to its FB. It may return to
$COMRET, where $COM will save both the Address Recall Register (ARR)
as the processor's next entry point and the value of register one;
$COMRETA, where $COM will save the value of register one; or
$COMRETB, where $COM will assume that both the value FBENT and
the value FBREGl are correct.

Then $COM chains to the next FB (or starts again with the first
FB if the chain field FBNEXT is zero) and repeats the above process.

System/3 Remote Terminal Processor - Page 4.23.7

211

H A 8 P

$MFCU - 5424 MFCU Processor

$MFCU operates under two FBs and two Hopper Control Areas (HCAs) -
one for each MFCU hopper. The routine contains four levels of
subroutines.

$MFCU begins by calling first-level subroutine HREAD to read a
card. HREAD sets up a read $SIO instruction from information
in the HCA and calls second-level subroutine HEXCP. HEXCP calls
fourth-level subroutine HTIO, which returns condition code equal
if the hopper described by the HCA is ready and condition code
unequal if it is not. If condition code unequal is returned;
HEXCP returns to the commutator; it will regain control again at
the call to HTIO.

If the hopper is ready, HEXCP calls third-level subroutine H8IO
to perform I/O on the hopper. H8IO first checks for various
exceptional conditions. If error recovery is in progress (for
the other hopper), H8IO returns immediately with condition code
unequal. It returns similarly if the MFCU is busy reading,
printing, or punching. If error recovery is not in progress and
the MFCU is not busy, H8IO tests the "hurry" switch (which is set
if one hopper is active and the other hopper becomes ready with
a read $810 pending for it). If the hurry switch is set and the
current $SIO is not a read-only $810, H8IO returns condition code
'false.

If all the above tests are passed, H8IO checks the stacker request
associated with the current $810. If the stacker request is dif­
ferent from that for the previous $810, the feed path is checked
to make sure it is clear. If the feed path is not clear, H8IO
returns condition false; in addition, if the $810 is read-only,
it sets the "hurry" switch. But if the feed path is clear, H8IO
resets the hurry switch, sets the new stacker number, and proceeds
as if the stacker request for the current $810 were the same as
that for the previous $810.

If no stacker change is indicated, H8IO moves the current $810
to an in-line position from the HCA and examines it. If the $810
indicates print (interpreting), H8IO attempts to select one of two
print buffers into which to move the punch information for the
$810. If unsuccessful, HSIO returns condition code unequal. But
if one of the print buffers is free (as indicated by the MFCU
print-buffer-busy status bits) H8IO copies 'the punch data into
the print buffer and modifies the $810 instruction to indicate
the print buffer being used. Then, or if the $810 is read-only,
H8IO loads the MFCU's read and punch data address registers.
After a call to HTIO to insure that the hopper is still ready,
H8IO issues the $810 instruction, sets condition code equal, and
returns to its caller, HEXCP.

System/3 Remote Terminal Processor - Page 4.23.8

212

HAS P

HEXCP examines the condition code returned. to it. If the con~ition
code is unequal, HEXCP non-process exits, exactly as it did for
HTIO above. But if the condition code is equal, HEXCP non-process
exits to be entered again at a $TIO which continues to non-process
exit until the MFCU ceases being busy; then HEXCP calls third-level
subroutine HSNS to determine the completion of the I/O operation.

HSNS calls HTIO to see if a unit check condition exists. If that
is the case, HSNS reads the MFCU status bytes. If all status bits
in the error status byte are off (or if no unit check condition
existed) HSNS returns condition code equal; if only the no-op status
bit is on, HSNS returns condition code unequal.

If other error status bits are on, HSNS calls system subroutines
$MSG and $LOG to add a message to the error trace table and to
count the error bits for HEREP, respectively. Then HSNS checks
the error bits further. If the only error bits on are punch
invalid or print check, HSNS returns condition code equal; these
are regarded as user data errors (punch invalid) or trivial errors
(print check).

But if other error bits are on, HSNS sets the error-recovery-in­
progress flag in HSIO (to prevent other $SIO instructions from
resetting the error bits) and non-process exits until a SNS in­
struction shows that all error bits (except no-op) have been reset
by the operator (who must do a non-process run-out on the MFCU).
Then HSNS returns condition code unequal.

HEXCP returns to its caller (which was HREAD in this case) the
condition code it received from HSNS.

HREAD examines the condition code returned to it by HEXCP. If
unequal was returned, HREAD again calls HEXCP; otherwise first­
level subroutine HREAD returns control to mainline $MFCU (in
this case, at its second instruction).

Having read the first card from its hopper, $MFCU now tests that
card for blanks, via first-level subroutilie HBLANK. If the card
is blank, the hopper is assumed to contain blank cards to be
punched. Otherwise, the hopper is assumed to contain a job
stream and the MFCU awaiting-read routine HAR attempts to asso­
ciate the hopper with a free logical reader FB, using subroutine
HGET. HGET returns condition code equal if it succeeds (it also
posts the logical reader's FB for UNIT), and condition code
unequal if the hopper becomes not ready (and therefore dormant
rather than awaiting-read); otherwise, HGET non-process exits
until one of the above two conditions happens.

If HGET returns condition code equal, the MFCU reading routine,
HRD, signals to the now-associated logical reader that the read
buffer for the associated hopper is busy; then HRD non-process

System/3 Remote Terminal Processor - Page 4.23.9

?11

HAS P

exi ts until t.he logical reader frees the read buffer. When the
read buffer is free, HRD checks the EOF flag, set by -the logical
reader when it encounters a /*EOF control card. If the EOF flag
is on, HRD makes the hopper dormant by branching to the first
instruction of $MFCU; otherwise HRD calls first-level subroutine
HREAD as above to read the next card and, on return, again sets
the read buffer busy.

If on the other hand $MFCU finds a blank card in a dormant hopper
it gives control to HAP, the awaiting-punch routine, which tries
to find (via HGET) a logical punch FB of which HASP has requested
permission to send a punch stream. Having found such a logical
punch, HAP gives control to HPU, the MFCU punch routine.

HPU non-process exits until the associated logical punch processor
sets either the EOF flag or the punch-buffer-busy flag in the
flag byte of its hopper control area. If the EOF flag is set,
HPU makes the hopper dormant.

But if the punch-buffer-busy flag is set, HPU punches and prints
a card and reads the next card (to insure that only blank cards
are punched). HPU sets up a read-punch-print $SIO and calls
second-level subroutine HEXCP. If HEXCP returns condition code
unequal and the MFCU status indicates any of the errors no-op,
punch check, hopper check, or feed check, the punch buffer is not
marked free; otherwise it is marked free and set to blanks. The
MFCU status is checked again; if neither read check nor no-op is
indicated, the card is examined to determine if it is completely
blank. Otherwise, or if the card now in the wait station is not
blank, another card is read (via subroutine HREAD). When a blank
card has been read successfully,HPU again checks for punch­
buffer-busy as above.

System/3 Remote Terminal Processor - Page 4.23.10

214

HAS P

$1442 - 1442 Card Reader - Punch Processor

The $1442 processor is assembled if RMTGEN parameter &S3l442 h~s"
been set to 1. Its logic is similar to that of $MFCU but simpler,
since only one hopper need be controlled. $1442 uses some of the
subroutines of $MFCU; for this reason, and since its interface to
the logical reader and logical punch is the same, the 1442 hopper
control area is similar to (but not identical with) the HCAs of
the MFCU.

$1442 starts by reading a card from the 1442 via entry point
GSIORD of subroutine GSIO. If the card is blank, GAP (awaiting­
punch) calls HGET just as does HAP in $MFCU; if the card is non­
blank, GAR (awaiting-read) calls HGET just as does HAR in $MFCU.

When a logical reader or logical punch has been associated with
the 1442, GRD or GPU gains control and proceeds with I/O as indi­
cated by the read-buffer-busy and punch-buffer-busy flags. In
addition to recognizing the EOF flag set by the logical reader,
GRD also recognizes the last-card status bit from the 1442 and
sets the last-card flag, recognized by the logical reader.

Subroutine GSIO performs I/O on the 1442. Entry point GSIORU
sets a feed command in the $SIO and branches to common code. Entry
point GSIORD sets a read-EBCDIC command in the $810 and loads the

.data address register; it branches to common code. Entry point
GSIOPU sets up a punch-and-feed command, loads the data address
register and the punch count register, and falls through to
common code.

GSIO's common code non-process exits on a $TIO until the hopper
is ready. Then it issues the constructed $SIO and non-process
exits until the 1442 is not busy. If entry was from GSIORU,
GSIO returns condition code equal; otherwise it tests for unit
check (via subroutine HTIO) and reads the 1442 status bytes. If
no unit check occurred, GSIO returns condition code equal.

But if the 1442 had a unit check or otherwise became not ready,
GSIO uses subroutines $MSG and $LOG to add a message to the
error trace table and to count the error bits for HEREP,
respectively; then it checks the status bytes. If no error bit
is on, GSIO returns condition code equal; otherwise GSIO returns
condition code unequal.

System/3 Remote Terminal Processor - Page 4.23.11

215

H A 8 P

$5203 - 5203 Printer Processor

The 5203 Printer Processor non-process exits until another
processor has marked the printer data area busy. Then it com­
pletes the Q-byte and CC-byte of a $S10 instruction from an
8RCB furnished it by either $PRINTER or $CONP. After a $T10
shows that the 5203 is ready, $5203 loads the printer image
address register and the printer data address register and
issues the $810. $5203 then non-process exits until the printer
is not busy.

When the printer operation has ended, $5203 checks for errors.
If any of the error incrementer failure check, hammer echo
check, or any hammer on check has occurred, $5203 attempts to
reprint the line. Otherwise it clears the print line to blanks,
shows the print buffer free, and again non-process exits until
a processor sets the print buffer busy.

Additionally, whenever a unit check occurs, $5203 calls sub­
routines $MSG and $LOG to produce an error message and to
count the one-bits in the printer status bytes.

System/3 Remote Terminal Processor - Page 4.23.12
216

HAS P

$READER - Logical Reader Processor

$READER waits for one of the physical reader routines to post it
for UNIT. When posted, it sends to HASP a request-permission
control sequence (via subroutine $REQ) and waits to be posted for
PERM by $BSCA when the system receives from HASP the appropriate
permission-granted sequence.

When it has received permission, $READER non-process exits unless
the read-buffer-busy flag is on, indicating a card is ready to be
processed. Then it examines the card. If the card's columns 1-5
are "/*EOF", $READER sends to HASP an end-of-file control sequence
(via subroutine $LEOF), which is merely a zero-length record. It
then waits again for UNIT, and continues as above when posted.
The same end-of-file processing occurs if the reader is a 1442 and
the last-card flag was set by the 1442 physical reader routine.
1442 code is absent unless &S3l442=1.

If there is no end-of-file indication, $READER processes the card
further. If object deck processing was not specified at RMTGEN
time, $READER transmits the first 80 columns of the card to HASP
by calling subroutine $CMPR. On return, $READER resets the read­
buffer-busy flag of the appropriate hopper control area and non­
process exits until the read-buffer-busy flag is again set by the
physical reader routine., Then it continues as above.

However, if object deck processing was indicated at RMTGEN time by
the specification &S30BJDK=l and if the physical reader device is a
5424, $READER first checks column 81 of the 96-column card image
for the character "1". If ·the comparison is unequal, $READER
processes the card normally, as above. But if column 81 equals
"1", the card is the first card of a two-card hexadecimal image of
a full-EBCDIC 80-column card. In this case, $READER compresses
the first 80 columns of the card into the first 40 bytes of the
same device's punch buffer, shows the read buffer free, and non­
process exits until the read buffer is again busy. Then it checks
the new card image for a "2" in column 81. If column 81 does not
contain a "2", $READER treats the newly-read card as a normal card,
and the previous card is lost. If the new card contains a "2" in
column 81, $READER compresses its first 80 columns to the second
40 bytes of the same device's punch buffer and transmits the con­
structed card image to HASP, using subroutine $CMPR. Then it
resets the read-buffer-busy bit and non-process exits as above.

Subroutine RDSQUEZE performs the above-mentioned compression. It
creates a single sink byte from a pair of source bytes each of
which is assumed, without validity-checking, to contain the
EBCDIC representation of one of the sixteen hexadecimal characters.
For example, it would compress the byte pair "FOC6" to the byte "OF".

System/3 Remote Terminal Processor - Page 4.23.13

217

HAS P

$PRINTER - Logical Printer Processor

$PRINTER waits for HASP to send a request-permission control
sequence. When $BSCA finds such a sequence, it posts $PRINTER
for permission. $PRINTER then checks the printer availability
flag. It non-process exits until this flag becomes zero; then it
sets this same flag to show that the printer is in use. It sends
a permission-granted control record to HASP (via subroutine $PERM)
and then, if the print buffer is free, calls subroutine $DCOM to
request a print line be decompressed into the print buffer.

On return from $DCOM, $PRINTER recognizes two or three conditions:
normal return, end-of-file return, and (optionally) forms mount
message.

For the forms mount message case, the SRCB (carriage-control byte,
in the case of print records) will be X'SE'. $PRINTER makes the
carriage control byte a print-and-space-three, shows the print
buffer busy, and non-process exits until the print buffer becomes
free; then it sets a carriage-control byte of space-three-irnrnediate
(so that the forms mount message will be visible on the printer
without operator intervention) and continues as in the normal case.
This code is assembled only if &S35471=0.

For the normal-return case, $PRINTER moves the SRCB returned by
$DCOM to the printer control area as the carriage control byte,
sets the print-buffer-busy bit, and non-process exits until the
print-buffer-busy bit is off. Then it again calls $DCOM for the
next print line.

For the end-of-file case, $PRINTER resets the printer availability
flag and checks to see if HASP had again sent a request-permission.
If so, $PRINTER again sets the printer availability flag, sends to
HASP permission-granted (via subroutine $PERM) and continues as
above. Otherwise $PRINTER waits for HASP to send request-permission.

System/3 Remote Terminal Processor - Page 4.23.14

218

HAS P

$PUNCH - Logical Punch Processor

$PUNCH waits for HASP to send a request-permission control sequence.
When $BSCA finds such a sequence, it posts $PUNCH for PERM, where­
upon $PUNCH waits for UNIT. When posted for UNIT by a physical
device routine, $PUNCH sends a permission-granted control record
to HASP (via subroutine $PERM) and non-process exits until the
appropriate punch buffer is free. Then it calls subroutine $DCOM
to decompress a card image into the punch buffer.

If $DCOM returned a card image (rather than end-of-file) the image
is processed in various ways, depending upon the type of the punch
device and options selected at RMTGEN time. If the punch is a
1442, $PUNCH calculates the number of bytes to punch, subtracts it
from 128, places the difference in the 1442 hopper control area,
and shows the punch buffer busy. It then non-process exits, as
above, until the punch buffer becomes free.

If the device is a 5424, $PUNCH first checks column 1 of the card
image.

If column 1 is X'6A ' , the card image is assumed to be a HASP job
separator card. $PUNCH extracts the job number from columns 52,
62 and 72, ignores the rest of the image, and punches a card of
which columns 1-32 are:

********** JOB nnn **********

It causes this card to be punched as usual, that is, by marking the
punch buffer busy; then it non-process exits until the punch buffer
becomes free.

If the device is a 5424 and RMTGEN specified &S396COL=1, $PUNCH
checks column 73 of the card image. If that column is X'80',
$PUNCH checks column 80. If column 80 is odd, $PUNCH saves in a
work area in its Function Block the 48 columns starting at column
3 and again calls $DCOM to get the next card, as above. If column
80 is even, $PUNCH moves columns 3-50 of the card image to columns
49-96, moves the first 48 bytes from its work area to columns 1-48,
and causes the card to be punched.

If the device is a 5424 and RMTGEN specified &S30BJDK=1, $PUNCH
checks column 1. If that column is X' 02', $PUNCH saves the
rightmost 40 columns of the 80-column card image in its work area
and expands the leftmost 40 columns to 80 columns by substituting
for each byte two EBCDIC characters; for example X'02' becomes
C'02'. It sets the character "I" in column 81 and causes the card
to be punched. $PUNCH then repeats this process for the saved 40
columns, sets the character "2" in column 81, and causes the card

System/3 Remote Terminal Processor - Page 4.23.15

219

HAS P

to be pun,ched.

If none of the above situations apply, $PUNCH merely marks the
punch buffer busy, non-process exits until it becomes free again,
and then calls $DCOM to get the next card.

$DCOM ma,y return an end-of-file indication rather than a card
image. $PUNCH sets the end-of-file flag in the hopper control
area and checks for a subsequent request-permission from HASP.
If HASP has requested permission again, $PUNCH waits again for
UNIT, as above; otherwise $PUNCH waits for PERM, as above.

System/3 Remote Terminal Processor - Page 4.23.16

220

HAS P

5471 Console Interrupt Routine

CINT, the 5471 console interrupt routine, gains control upon an
interrupt from either the 5471 printer or the 5471 keyboard. A
keyboard interrupt may occur due to the End key, the Return key,
the Cancel key, the Request key, or a Data key. A printer inter­
rupt may occur either after completion of printing a character or
after a carriage return.

At an End key interrupt CINT starts a carriage return, posts the
console processor, and exits by starting the keyboard. If a
request is pending, the Start-I/O instruction sets the request
light on and disables interrupts from all keys; otherwise it sets
both lights off and enables interrupts from the request key.

A Return key interrupt causes the same functions as an End key
interrupt.

A Cancel key interrupt causes CINT to print an asterisk and set a
flag which will cause a carriage return at the next printer inter­
rupt. CINT then resets the buffer pointer to point to the first
byte of the buffer and exits by issuing a SIO which leaves the
same lights on and interrupts enabled as before the interrupt.

At a Request key interrupt, CINT posts the console processor if
a~ inspection of the console status byte CCFLG shows that neither
input nor output is currently in process. In any case, it sets
the request-pending bit and exits by issuing a SIO which turns on
the request-pending light, disables request key interrupts, and
leaves the proceed light and. other key interrupt indicators as
they were before the interrupt.

For a Data key interrupt, CINT saves the keyed character in the
buffer byte pointed to by the buffer pointer; then it increments
the buffer pointer by one. It issues a SIO to the printer so that
the keyed character will be printed. If the buffer pointer now
falls outside the buffer, CINT turns on the carriage-return request
bit and performs all the functions of the End key except for issuing
a carriage return. Otherwise it exits by issuing to the keyboard a
SIO which leaves the same lights on and interrupts enabled as
before the interrupt.

On a printer interrupt due to end of either printing or carriage
return, CINT tests the carriage return request bit. If that bit
is on, CINT resets it and exits by issuing a SIO for carriage
return.

If there is no carriage return request pending, CINT tests the out­
put-in-process bit. If output is ·not in process, CINT exits by
disabling printer interrupts. But if output is in process, CINT
checks whether the final output character has been printed. If so
it resets the output-in-process flag, posts the console processor,
and exits by starting a carriage return. If not, it selects and

System/3 Remote Terminal Processor - Page 4.23.17

221

HAS P

loads the next character to print and exits by issuing a 810
to print that character.

Whenever CINT posts the console processor, it also turns on the
action-required flag, CFACT. This flag is tested and reset by
the console processor.

System/3 Remote Terminal Processor - Page 4.23.18

222

HAS P

5471 Console Processor

The 5471 console processor, $CON, non-process exits until posted;
then it checks to find what caused it to be posted.

If input is complete, $CON replaces in the MULTI-LEAVING buffer
pool the buffer it stole when it acknowledged the request key.
Then it sends the operator command to HASP by calling subroutine
$CMPR, unless the input length is zero. In any case, it continues
by checking for request-pending.

If a keyboard request is pending, $CON first steals a buffer from
the MULTI-LEAVING buffer pool, to avoid a potential buffer lock-out
problem. If no buffers are available, it leaves the request pending
and checks for queued buffers containing messages to print on the
5471 printer. But if the MULTI-LEAVING buffer steal was successful
$CON resets the 5471 buffer pointer, resets the action-required and
request-pending flags, sets the input-in-process flag, and issues
a' SIO which turns on the proceed light and enables all keyboard
interrupts. Then it non-process exits until posted.

If $CON was not posted for the above reasons, it investigates out­
put possibilities. If either input or output is in process, it
cannot start output; it again non-process exits until posted. But
if neither input nor output is in process, and if there is no end­
of-forms indication from the 5471, $CON checks for output. First
it checks the error message table, a circular table, to see if any
error messages are outstanding. If so, it expands a four-byte coded
error message to the equiyalent eight-character hexadecimal repre­
sentation in the 5471 buffer, sets the output-in-process flag, and
issues a SIO to start printing the first character; then it non­
process exits until posted, while CINT prints the remaining char­
acters.

If no error messages are outstanding, $CON checks for messages from
HASP. If there are some, $CON calls subroutine $DCOM to decompress
a message. In order not to be forced into a wait condition on sub­
sequent calls to $DCOM, $CON then checks whether the MULTI-LEAVING
buffer from which the message was decompressed contains more
messages; if not, $CON frees it by calling subroutine $FREEBUF.
Then $CON initiates printing of the message by setting the output­
in-process flag and issuing a SIO to print the message's first
character. Then $CON non-process exits until posted.

System/3 Remote Terminal Processor - Page 4.23.19

223

HAS P

5475 Console Interrupt Routine

Upon an interrupt from the 5475 Data Entry Keyboard, the 5475
Console Interrupt Routine (CINT) checks the cause of the inter­
rupt. An interrupt may be caused by a data key, the field-erase
function key, the release function key, the error-reset function
key, any other function key or switch, or the multipunch key. A
mUltipunch key interrupt is treated as an error and requires the
operator to depress-the error-reset key; all function keys and
switches other than those mentioned are treated as no-operation
keys.

A data key interrupt causes CINT to place the keyed character in
the 5475 buffer. CINT then increments the buffer pointer by
one; if the buffer pointer now points outside the buffer, CINT
performs the release key function. Otherwise CINT adds one to the
column indicated and exits. The exit process consists of issuing
a LIO for the column indicators and a SIO for the keyboard.

An interrupt from the field-erase key causes CINT to reset the
buffer pointer, set the column indicators to display "01", and
exit.

An interrupt from the release key causes CINT to post the 5475
console processor for work, set the SIO in CINT to disable the
keyboard, and exit.

Any of several error situations causes CINT to turn on the error
light. It does this by setting its SIO to X'23', which also
locks all data keys. When an interrupt other than from the error­
reset key occurs and the error light is on, CINT exits without
further processing. But if the interrupt was from the error-reset
key, CINT resets the SIO to its normal value of X' 4F' and exits.
Conditions which cause the error light to come on are a multipunch
interrupt indication, no interrupt indication, or two or more of
the interrupt conditions data key, function key, and multipunch
key. -

System/3 Remote Terminal Processor - Page 4.23.20

224

HAS P

5475 Input Console Processor

When posted for WORK by CINT, the 5475 Input Console Processor
($CON) sends the operator command to HASP by calling subroutine
$CMPR, unless the input length is zero. In any case, it resets
the column indicator save area to "01", resets the 5475 buffer
pointer, and sets to X'4F' the SIO in CINT. Then $CON turns
off the column indicator display (to avoid burning out the lights),
issues a SIO to unlock the keyboard and enable interrupts, and
again waits for WORK.

System/3 Remote Terminal Processor - Page 4.23.21

.225

HAS P

$CONP - 5203 Output Console Processor

When posted for WORK, $CONP checks the printer-availability flag.
This flag is on if $PRINTER is currently printing a job. If the
flag is on and RMTGEN specified &PRTCONS=2, $CONP frees all
MULTI-LEAVING buffers currently queued on its Function Block
(using subroutine $FREEBUF) and again waits for WORK. But if
RMTGEN specified &PRTCONS=l, $CONP checks to see if it should
force messages to be printed on the 5203. It does this by com­
paring the number of MULTI-LEAVING buffers currently queued on its
Function Block with a maximum number. If the comparison is low,
it non-process exits until either the comparison is not low or
the printer-availability flag is off; if the comparison is not
low, it performs a page eject before starting to print messages.

To print messages, $CONP first prevents the logical printer routine
$PRINTER from using the 5203 simultaneously; to prevent this, it
sets the UNIT wait bit in $PRINTER's Function Block. Then $CONP
attempts to find an outstanding four-byte coded error message; if
it finds one, it expands the message to eight bytes and causes it
to be printed.

If no error messages are outstanding, $CONP checks for messages
from HASP. If there are some, it calls $DCOM to decompress a
message. In order not to be forced into a wait condition on sub­
sequent calls to $DCOM, $CONP then checks whether the MULTI-LEAVING
buffer from which the message was decompressed contains more mes­
sages; if not, it calls $FREEBUF to free the buffer. Then $CONP
causes the message to be printed, by marking the print buffer busy
and non-process exiting until it again becomes free. All messages
printed by $CONP are single-spaced.

Finally, if no messages remain to be printed, $CONP examines the
printer-available bit to determine if it interrupted a job to print
messages. If so, $CONP does a page eject. In any case, $CONP
resets the UNIT wait bit to unlock $PRINTER and waits for work
again.

System/3 Remote Terminal Processor - Page 4.23.22

226

HAS P

BSCINT - BSCA Interrupt Routine

The BSCA·Interrupt Routine, BSCINT, processes all interrupts and
performs all error recovery for the Binary Synchronous Communications
Adapter. Processing is always initiated by one of three types of
op-end interrupts - end-of-transmit, end-of-receive, and 2-second­
timeout. :

For an end-of-transmit interrupt, BSCINT gains control at BSXOPE.
If no hardware errors have occurred, it starts a receive operation;
otherwise it uses subroutine BIDISCON to recover from a possible
disconnect and, on return, attempts to re-transmit.

For an end-of-receive interrupt, a great deal more is done. After
having computed the number of received bytes, BIRCV checks for
hardware errors; if any occurred, it uses subroutine BIDISCON and
then transmits a negative acknowledgment (NAK) to HASP.

If no hardware error occurred, the starting sequence is checked at
BCROK - it is valid if it is a NAK or a DLE-ACKO or if its second
byte is STX and the last byte received is ETB. If none of these
is the case, BCROK sets up an error message of 03SSSS00 (where
SSSS is the starting sequence) and then transmits a NAK to HASP.

The section of code responsible for transmitting a NAK first checks
whether the wait-a-bit (WAB) sequence had been transmitted most
'recently; if so, it transmits the WAB sequence again rather than a
NAK. If not, it determines if more than five bytes had been
received. Since the buffer used for a receive is the same as that
used for a transmit, the receive operation may have overlaid some
or all of the transmitted data: since the starting or ending se­
quence was incorrect or a hardware error occurred, BSCINT has not
yet received a positive acknowledgment for the transmitted data.
To alleviate this problem, the first five bytes of the transmit
data were saved before the buffer was transmitted. If the receive
operation overlaid more than these bytes, the buffer cannot again
be transmitted; the first two saved bytes are replaced with a
DLE-ACKO and the transmit ending address is set to the starting
address plus two. Then the routine transmits a NAK to HASP.

If the received starting sequence was a NAK, the interrupt routine
sets up an error message of 02000000 (NAK received), refreshes the
first five bytes of the buffer and the transmit ending address, and
re-transmits the buffer to HASP.

If the received sequence was DLE-ACKO, BSCINT sets flags to show
$BSCA that a transmit-receive operation has completed; then it
exits by starting a two-second timeout. If the two-second timeout
completes before $BSCA has cancelled it, BSCINT sets the two-second­
timeout-complete flag and exits by disabling BSCA interrupts.

System!) Remote Terminal Processor - Page 4.23.23

227

HAS P

If the second byte of the received starting sequence was STX and
the ending byte was ETB, BSCINT validates the Block Control Byte

"", ,(a HASP control byte which contains a modulo-16 received-block
count) and saves the two-byte HASP Function Control Sequence. If
the BCB is as expected, interrupt processing concludes as for
DLE-ACKO. Otherwise the STX is changed to X'FF' as a signal to
$BSCA to throw the buffer away and the difference between the
received BCB and the expected BCB is examined. If the modulo-16
difference is -2 or -1, BSCINT tolerates the error; otherwise it
sets up an error message of 02rreeOO to display the received and
expected BCB's, and it builds and transmits to HASP a BCB-error
control sequence.

System/3 Remote Terminal Processor - Page 4.23.24

228

HAS P

$BSCA - Communications Adapter Processor

$BSCA non-process exits until BSCINT posts it with an indication
that either an error message awaits synchronous processing, a re­
ceive operation has completed without error, or a two-second time­
out has occurred.

If an error message was produced by BSCINT, it must be placed in
the circular error message trace table by asynchronous processor
rather than an interrupt routine, since the $MSG subroutine is not
re-entrant. $BSCA calls the $MSG subroutine to add the error mes­
sage to the trace table.

If a receive operation has ended without error, $BSCA processes
the received buffer, which is always the first buffer on $BSCA's
buffer chain. If the buffer does not contain text, $BSCA frees it
immediately. Otherwise $BSCA inspects the buffer's first RCB (or
first SRCB if the RCB indicates a MULTI-LEAVING control record) •
If the RCBis zero (typical when HASP sends wait-a-bit) $BSCA frees
the buffer. Otherwise $BSCA compares the RCB (or SRCB) with the
field FBRCB in all FB's eligible to receive buffers; if there is
no match, it frees the buffer. But if a match is found, $BSCA
again determines if the first record in the buffer is a control
record. If so, it posts the subject FB for PERM and resets its
POST bit to indicate a possible early post (the POST bit is turned
on by subroutine $PERM); then it frees the buffer. But if the buf­
fer contains data records, $BSCA dequeues the buffer from its own
FB and queues it onto the subject FB, in the proce.ss reducing its
own buffer count by one, increasing that of the subject FB by one,
and, if the subject FB's buffer count (FBBCT) becomes equal to or
greater than the subject FB's maximum buffer count· (FBBMX), reset­
ting the appropriate.bit in the master Function Control Sequence
$FCS by using FBFCS.

If $BSCA turned off an FCS bit, it turns on flag BFCSOFF. Whether
or not. $BSCA turned off an FCS bit, it inspects the subject FB's
flags~ if flag BFCSON is on in FBFLG, $BSCA resets that flag and
its own BFCSON flag. Flag BFCSON expedites transmission of a re­
sponse and flag BFCSOFF delays transmission. The effect of the
above manipulation is to avoid an unnecessary line tur.naround when
a printer or punch is temporarily at its buffer limit.

Having processed the received buffer, or if a two-second timeout
occurred, $BSCA determines what and when it is to transmit. It
transmits a response immediately under any of the following
conditions:

• Wait-a-bit was received from HASP

• A text buffer (see Figure 4.23-1) is ready to send

System/3 Remote Terminal Processor - Page 4.23.25

229

HAS P

• Flag BFCSON is set and there is a free buffer

• Text was received from HASP, flag BFCSOFF is not set, and
there is a free buffer

• Two seconds have passed since end-of-receive.

The response transmitted is one of the following:

• Text, if a text buffer is ready to send

• A Function Control Sequence, if there is a free buffer and
the FCS has changed

• DLE-ACKO, if there is a free buffer and the FCS has not
changed from when it was last transmitted

• Wait-a-bit (including FCS) if there are no free buffers.

&MLBFSIZ

Ptr to next buffer

Ptr to 3d-to-last byte (ETB-2)

First RCB

First SRCB text . . .

EOB (X'OO') ETB (X'26')

!$BSCA overlays these
5 bytes with DLE (SOH),
STX, BCB, FCSl, FCS2.

ETB is not necessarily
the last byte.

Figure 4.23-1 Multi-Leaving Buffer

To get a free buffer $BSCA uses subroutine BSGBUF, which queues the
buffer on $BSCA's buffer chain (FBBUF) in iast-in, first-out fas~ion
and increments its buffer count (FBBCT) by one. Additionally, a
part of BSGBUF sets up the transmit starting address, receive start­
ing address, and receive ending address, and mai be called separately
from BSGBUF.

System/3 Remote Terminal Processor - page 4.23.26

230

HAS P

$CMDSCAN - Local Command Subroutine

If RMTGEN parameter &S3CMDS is set to 1, code is assembled to pro­
vide a local command facility. Code appears in four places:

• $CMDSCAN, to process the commands

• $CVB, used by $CMDSCAN to convert decimal command operands to
binaty

• $MFCU, to allow $CMDSCAN to check non-blank cards from dormant
hoppers ($CMDSCAN returns condition code equal if a card con­
tained a command; the hopper remains dormant)

• $1442, with the same functions as $MFCU

$CMDSCAN receives a pointer to a card in index register 1. It ex­
amines the card for a valid command and branches to the proper com­
mand routine, or returns to its caller with condition code not­
equal.

Each command routine processes the command's operands as necessary,
and exits to one of three labels:

• CMDEND (normal end) to print 'CODEOOOO'

• CMDSYN (syntax error) to print 'CODEOOOl'

• CMDOPD (operand error) to print 'CODE0002'.

A command routine may use the $CVB subroutine to convert an operand
from decimal to binary. Index register 1 must point to the deci~
mal operand's high-order byte. If this byte is not numeric, $CVB
will branch to CMDSYN; otherwise, on return from $CVB, the binary
result will be right~justified in bytes $CVBANS and $CVBANS-l, and
index register 1 will point one byte past the low-order digit of
the decimal operand.

System/3 Remote Terminal Processor - Page 4.23.26.1

230.1

HAS P

(The remainder oT this page intentionally left blank.)

230.2

HAS P

$LEOF, $PERM, $REQ - Control Sequence Subroutines

These subroutines transmit to HASP certain control sequences
required for proper Dperation of HASP MULTI-LEAVING Remote Job
Entry: logical end-of-file, permission-granted, and request-
permission. .

$LEOF sends the sequence RCB, SRCB, SCB where RCB is taken from
the FB pointed to by register 2 (FBRCB), SRCB is X'80', and SCB
is X'OO' (a string control byte of X'OO' is an end-of-logical­
record SCBi occurring immediately after an SRCB, such an SCB
indicates a zero-length record).

$PERM sends the sequence RCB, SRCB, EOB where RCB is X'AO' (per­
mission-granted for function described in SRCB) , SRCB is taken
from FBRCB of the FB pointed to by register 2, and EOB is X'OO'
(a zero RCB indicating logical~end-of-transmission-block).
$PERM also sets the bit EWFPOST in the field FBEWFi this "early­
post" bit is reset by $BSCA when it finds any permission-type
control record whose SRCB matches FBRCB.

$REQ sends the sequence RCB, SRCB, EOB where RCB is X'90' (request­
permission for function described in SRCB) and SRCB and EOB are as
described for $PERM.

Code common to all three routines requests from $CKLEN three bytes
of space in a MULTI-LEAVING buffer, moves the three-byte sequence,
and calls $BFLUSH to truncate the buffer and queue it on $BSCA's
buffer chain.

System/3 Remote Terminal Processor - Page 4.23.27

231

HA S P

$DCOM - Decompression Subroutine

$DCOM is called by one of the output processors (such as$PRINTER)
to decompress a logical record from a MULTI-LEAVING buffer into
an area whose starting address is supplied by the caller. (HASP
transmits all data records to MULTI-LEAVING terminals in a com­
pressed and truncated format). If decompression is successful,
$DCOM returns to the caller at an offset of three bytes; if $DCOM
recognized a logical-end-of-file, it returns at an offset of zero.

To decompress a logical record, $DCOM first examines the address
in FBCURL, a two-byte field in the caller's FB reserved for the
use of $DCOM. If that field is non-zero, it has previously been
set by $DCOM to point to the RCB following the last-decompressed
logical record in the current buffer. If that RCB is not X'QQ',
$DCOM decompresses to the caller's area (which must be two bytes
longer than the maximum record length) the record following the
RCB, moves the SRCB to FBSRCB, saves the address of the next RCB
in FBCURL, and returns to the caller as explained above.

But if FBCURL is zero, $DCOM checks if more buffers are queued on
the caller's FB. (If FBCURL is non-zero but the RCB to which it
points is zero, $DCOM first frees the current buffer and then pro­
ceeds as if FBCURL were zero.)

It one or more buffers are queued, $DCOM selects the first buffer,
points to its first RCB, and decompresses a logical record as
above. But if no buffers are queued, $DCOM waits for WORK, to be
posted by $BSCA when the next buffer for the same output device .
is received.

The output buffer's address is specified by the caller in field
FBAREA; on return, $DCOM replaces this field by the address of
the last-pIus-one output byte.

System/3 Remote Terminal Processor - Page 4.23.28

232

HAS P

$CMPR - Compression Subroutine

$CMPR compresses data from a user-specified input area to a local
workarea and transmits it to HASP by calling subroutine $CKLEN.

When called, $CMPR examines the status of its local workarea. If
the workarea is busy, $CMPR has been called by some other proces­
sor and has in turn called $CKLEN~ $CKLEN is non-process exiting
until it can find sufficient bytes in a MULTI-LEAVING buffer to
allocate to $CMPR. In this case, $CMPR non-process exits until
its workarea becomes free.

When the workarea is free, $CMPR compresses into it the text pointed
to by FBAREA. Compression consists of either full compression
and truncation, only truncation, or neither compression nor trun­
cation, as selected by the setting of the RMTGEN variable &COMP=.
Once the record is compressed, $CMPR calculates its compressed
length and calls $CKLEN with a request for the number of bytes it
requires in a MULTI-LEAVING buffer. When $CKLEN returns, $CMPR
moves the compressed record, shows its workarea free, and returns
to the caller.

System/3 Remote Terminal Processor - Page 4.23.29

233

T

HAS P

$CKLEN - MULTI-LEAVING Buffer Allocation Subroutine

$CKLEN returns to its caller the address in a MULTI-LEAVING buffer
of the rightmost byte of an area whose length is specified by the
caller.

The caller specifies a length in register one. If $CKLEN has a
current buffer, its current buffer pointer points to the last­
allocated byte. It adds to this the caller's specified length.
If the resultant address is lower than two bytes before the end of
the buffer, $CKLEN saves this address as its current buffer pointer
and returns this address to the caller in register one. But if the
resultant buffer address is not lower than two bytes before the end
of the current buffer, $CKLEN truncates the buffer, queues it on
$BSCA's buffer chain, and posts $BSCA by turning on flag BFPOST
in byte BCFl. To truncate a buffer, $CKLEN moves the current buf­
fer pointer to its first two bytes and the sequence EOB, ETB
(X'0026') to the two bytes after the byte pointed to by the current
buffer pointer.

After having truncated and queued the current buffer or if on entry
there was no current buffer, but not if entered via entry point
$BFLUSH (in which case $CKLEN returns immediately after truncation
and queuing), $CKLEN attempts to get another buffer to satisfy the
caller's request; if no buffer is free, it non-process exits until
one comes free. It initializes the current buffer pointer to poin~
to what will eventually be the buffer's FCS2 byte. It initializes
a pointer to the last byte available in the buffer, and it saves
the address of the buffer's chain word in a third pointer. Then
it allocates space for ~he caller and returns, as above.

System/3 Remote Terminal Processor - Page 4.23.30

234

HAS P

$FREEBUF - MULTI-LEAVING Buffer Free Subroutine

$FREEBUF dequeues the first buffer from the buffer chain word FBBUF
of the FB addressed by register two upon entry; subtracts one from
FBBCT, the count of buffers enqueued upon that FBi and compares the
new count with FBBMX. If the compare is low, $FREEBUF OR's the two­
byte field FBFCS into the two-byte field $FCS, posts the $BSCA
processor, and sets flag BFCSON in both the subject FB's flags and
the BSCA flag byte. (See the $BSCA processor description for a
discussion of BFCSON.)

In any case, $FREEBUF queues the just-dequeued buffer on chain word
$MLPOOL in last-in, first-out sequence. If the system was generated
for a 5471 console, $FREEBUF posts $CON, the console processor. Then
$FREEBUF returns to its caller.

System/3 Remote Terminal Processor - Page 4.23.31

235

HAS P

ABEND - Core Dump Subroutine

ABENDprGduces a core dump on the 5203 printer. The code for
ABEND is assembled only if the RMTGEN specification &DEBUG=1
has been used. &DEBUG=1 also causes the generation of extra
debugging code throughout the terminal program; some of the
extra sequences of code generated contain conditional branches
to ABEND. ABEND may also be called from the CE panel of the
System/3 by setting the IAR to its address.

Each line produced by ABEND consists of a four-character address,
64 characters representing the 32 bytes starting at that address,
and their printable equivalent in 32 more characters, bounded at
the left and the right by a single asterisk; or four asterisks
in the address position followed by blanks, to indicate that all
of core up to the next line's address or the end of core would
have printed the same as the previous line. The ABEND dump rou­
tine requires a printer with at least 120 print positions; if a
96-print-position printer is used, not all of the EBCDIC portion
of the line will be printed.

The first six bytes of printed core contain the address recall
register, register one, and register two as of the time ABEND
gained control; the remainder of core is intact.

System/3 Remote Terminal Processor - Page 4.23.32

236

HAS P

$LOG - HASP Error Recording Subroutine

$LOG is a re-entrant subroutine which maintains in-core error
recording counters. Each counter is two bytes long and has a
maximum count of 65535. There are eight counters for each of the
following bytes:

1442 Status Byte 2 (if &S31442=1)
1442 Status Byte 1 (if &S31442=1)
BSCA Status Byte 2
5203 Status Byte 2
5203 Status Byte 1
5424 Status Byte 1

The counters are captioned, printed, and reset by IHEREP at
program load time and thus form a permanent record of unit checks
associated with the above devices. Only those counters which
represent unusual unit checks are printed by IHEREP.

System/3 Remote Terminal Processor - Page 4.23.3:

237

HAS P

$MSG - Error Message Tracing Subroutine

$MSGadds the four-byte coded entry addressed by register one to
the circular trace table of error messages. This table is examined
by the 5471 console processor and under certain conditions by the
5203 output console processor; $MSG posts whichever of these pro­
cessors has been generated.

The various error messages supplied to this routine by its callers
are explained in the System/3 Operator's Guide.

System/3 Remote Terminal Processor - Page 4.23.34

HAS P

$INIT -Initialization Routine

$INIT gains control when program loading is complete. It sets
the print chain image, reads and processes REP cards, sets the
5203 forms length register, sets the 5424 print buffer register,
establishes communication, sets up buffers, and exits to the
commutator.

To set up the print chain image, $INIT reads the printer status
bytes. If the 48-character-set bit is on, it moves the LC
image to the image area; otherwise it moves the PN image. Then
$INIT starts processing reps.

The format of a REP card is

column 2 9 17
REP addr rep-data

where "addr" must be a valid hexadecimal core address of exactly
four characters (or four blanks) and "rep-data" is a sequence of
one or more replacement groups with the last group terminated by
a blank and all others terminated by commas. A replacement group
is a string of 2n (n any integer) hexadecimal characters. The
blank after the last replacement group may be followed by comments.

Starting at the address specified by "addr", the REP routine will
store bytes one at a time corresponding to byte pairs of the "rep­
data" taken from left to right. If the "addr" specification is
blank, bytes will be stored starting at the first byte after the
byte last used by the preceding REP card (or at zero if there was
no preceding REP card). A REP card whose "rep-data" field con­
tains no data is valid; its "addr" field (if any) specifies the
address of the first byte to be repped if the next REP card's
"addr" field is blank.

To process reps, $INIT reads a card from the primary hopper of the
MFCU; a read error will give an F3 halt. If the card image con­
tains "REP" in columns 2-4, it is processed according to the above
specifications, with absolutely no validity-checking, and $INIT
reads another card, as above.

If the card image contains "&MLBFSIZ=" starting in column 1, $INIT
converts to binary the specified decimal buffer size (which must
immediately follow the equal sign and be terminated by a blank)
and substitutes the result for the default buffer size. Then $INIT
reads the next card, as above.

If the card image contains "/*SIGNON" starting in column 1, $INIT
overlays the default sign-on card with it and continues as if the
card were an EOR card.

System/3 Remote Terminal Processor - Page 4.23.3:

239

HAS P

If the card image contains "EOR" (end-of-reps) in columns 2-4,
$INIT terminates rep processing, loads the 5203 print forms length
register and the 5424 print buffer address register, and establishes
communications.

To establish communications, $INIT first disables and then enables
the BSCA. Next, it examines the sign-on card to see if dialing
information was specified. If so, it determines the starting and
ending addresses for the telephone number (which is not checked
for validity) and loads these values into the current and stop
address registers after first ensuring that the data line is unoc­
cupied. (If the data line is occupied, $INIT assumes the operator
dialed and waits for the data set to become ready.) After starting
an auto-call operation and looping until an op-end interrupt occurs,
$INIT checks for timeout status; if so, the auto-call unit returned
an abandon-call-and-retry signal and a CA halt (call-aborted) occurs.
When the operator resets the halt, the entire logic starting with
disable-BSCA will be re-executed. But if the timeout bit is off,
$INIT assumes the call was successful and loops until a dataset­
ready indication occurs, as above.

When the data set becomes ready, $INIT transmits the two-byte
sequence SOH-ENQ, a sequence recognized by HASP as a request from
a MULTI-LEAVING terminal. 'If the receive part of this transmit/
receive command ends with timeout, the operation is repeated; if
it ends with any other abnormal status, one of two things occurs.
If the system was generated with &DEBUG=1 and the address knobs
on the System/3 console are set to any odd address, the System/3
halts; the halt indicators display a hexadecimal image of the
BSCA error status byte. Otherwise, and when the operator resets
the hal t, the entire logic, starting wi th disable-BSCA will be
re-executed.

If the receive operation ended normally, the two received bytes
should be DLE-ACKO. If they are not, the transmit/receive opera­
tion is performed.

If DLE-ACKO was received correctly, the message "COMMUNICATION
ESTABLISHED" is printed on the 5203. If a 5471 was specified when
the system was generated, its interrupts are enabled and the same
message is printed on it. If a 5475 was specified, its interrupts
are enabled. $INIT now performs buffer initialization.

Buffer initialization consists of three steps and overlays the
initialization code with MULTI-LEAVING buffers. As the first
step, the value of MULTI-LEAVING buffer size is set in the various
locations throughout the program that requires it; it may have
been changed by the &MLBFSIZ control card. Step two moves the
actual buffer initialization code to low core, where it is executed

System/3 Remote Terminal Processor - Page 4.23.36

?LI.f"I

HAS P

as step three. Execution consists of chaining together all
buffers but the first buffer (which contains the sign-on record
and is afterward queued to the $BSCA proc.!3,ssor) with the chain
origin at $MLPOOL. .

When buffer chaining is complete, the sign-on buffer is queued
as mentioned and control passes to the commutator. $COM gives
control in its turn to the $BSCA processor, which as a special,
first-time function transmits to HASP the buffer containing the
sign-on card image.

System/3 Remote Terminal Processor - Page 4.23.37

241

{The remainder of this page intentionally~ieft blank.}

242

HAS P

5.0 HASP CONTROL SERVICE PROGRAMS

This section contains detailed internal information about each of
the HASP Control Service Programs and is intended primarily for
use by systems programmers.

HASP Control Service Programs -- Page 5.0-1

243

HAS P

5.1 HASP DISPATCHER

5.1.1 HASP Dispatcher - General Information

The HASP Dispatcher is responsible for the allocation of the CPU
time used by the HASP Task to each of the HASP Processors.

5.1.2 HASP Dispatcher - Program Logic

The HASP Dispatcher receives control each time the HASP task is
dispatched by the Operating System and utilizes an ordered queue
of Processor Control Elements (PCE's) to distribute the CPU time
among the HASP Processors. The Event Wait Field (EWF) in each
PCE (see Figure 8.2.1) is a two byte field which is used to control
the dispatchability of the Processors. Any Processor or Control
Service Routine may issue a $WAIT macro-instruction at any time
which turns on a particular bit in the EWF corresponding to the
event $WAITed on and returns control to the HASP Dispatcher to
allow other processors to be dispatched. The Processor (or
Service Routine) will not be given control again until some other
system function issues a $POST to its EWF for the event $WAITed on.

The events reflected by the EWF fall into two categories: the
-first of which is the synchronization of the use of common system
resources such as buffers, direct-access space, etc. With the
exception of the general $POST bit $EWFPOST, the bits in the first
byte of the EWF field are used to indicate the particular resource
being $WAITed on and corresponds exactly to the Event Completion
Field (ECF) in the Dispatcher. The ECF is $POSTed whenever a
resource becomes available and is propagated through all processor
EWF's by the Dispatcher. Thus, if a track becomes available on a
direct-access device, every processor (PCE) which has issued a
$WAIT for a track will be put in contention for CPU time to try
to obtain the track or tracks that have been released.

The second byte of the EWF is used to synchronize a processor with
respect to a specific event, applicable only to that processor,
such as a particular I/O completion. This section of the EWF must
be $POSTed directly by the system routine performing the required
function (additional details regarding $WAIT/$POST events may be
found in Section 9.8).

When scanning the PCE chain, the HASP Dispatcher, upon discovering
a zero EWF (no events being $WAITed on) , will enter the code
controlled by the PCE immediately below the prior $WAIT which had
returned control to the Dispatcher. All registers of a processor
which issues a $WAIT are preserved in the peE and are reloaded
prior to entering the processor (register "R15" is destroyed by
the $WAIT macro to provide the address of the $WAIT, i.e., the
resume point). A processor may return control to the Dispatcher

HASP Dispatcher - Page 5.1-1

?..1L1.

HAS P

only by means of the $WAIT macro. In the event any $POST macro
was executed by the processor dispatched or by any of the HASP
asynchronous service routines the Dispatcher's ECF field will be
altered to reflect the $POST. The general $POST bit represents
a $POST of a specific processor (second byte of the EWF). If the
ECF field indicates no $POST has occurred, the HASP Dispatcher
continues to scan down the PCE chain starting with the next PCE.
However, if the ECF field indicates $POSTs have occurred, the
$POST for the general $POST is removed and scanning is resumed
at the beginning of the PCE chain, after promulgating any remaining
ECF $POST indicators.

Upon reaching the end of the PCE chain, the Dis­
patcher examines the processor active count to determine if any
jobs are being processed. If an active job is in the system
(active count ~ 0) an OS WAIT state is entered to wait for some
external event (I/O interrupt, etc.) to activate HASP again. This
WAIT allows use of the CPU by other tasks in the system. If no
jobs are active, the message

"ALL AVAILABLE FUNCTIONS COMPLETE"

is sent to all operator consoles and HASP is placed into the WAIT
state.

When scanning the PCE chain, the Dispatcher detects the special
case of a PCE which is not dispatchable (PCEEWF is not zero) but
is $WAITing only on the OROL bit. This situation is created when,
while the PCE was $WAITing on other event(s), the Overlay Area
being used by the PCE is preempted by the Overlay Roll Processor
for other use (see Section 4.20). Subsequently, the other event(s)
being $WAITed on are $POSTed allowing the Dispatcher to detect the
"OROL only". The Processor' in such a condition is not entered but
is made to call Overlay Service. The actions performed are iden­
tical to those described for $LINK Service in Section 5.16.2,
beginning with the fourth paragraph describing search of Overlay
Areas. The Processor will be entered by Overlay Service if the
requested routine is in memory, or will be $WAITed on OLAY
allowing the Dispatcher to continue its peE scan.

HASP Dispatcher - Page 5.1-2

245

HAS P

5.2 INPUT/OUTPUT SUPERVISOR

5.2.1 Input/Output Supervisor - General Description

The HASP Input/Output Supervisor ($EXCP) is used to interface all
HASP Input/Output requests with the Operating System Input/Output
Supervisor. Through the use of$EXCP the HASP processors can
remain "device independent" through the wide range and number of
HASP direct-access devices. In addition, $EXCP also provides all
required I/O appendages for OS 105 and for the $POSTing of I/O
completions to each processor.

5.2.2 Input/Output Supervisor - Program Logic

The only interface between the HASP Input/Output Supervisor and
the using processors is the Device Control Table element (DCT) ,
which is passed via the $EXCP macro-instruction when I/O is
requested. (Additional information concerning the DCT and the
$EXCP macro may be found in Sections 8.5 and 9.5 respectively.)
Upon entry to $EXCP the address of the buffer to be used is
obtained from the DCT and the lOB (appended to every buffer) is
initialized. The user's Event Wait Field (EWF) address is moved
from the DCT to the buffer and a pointer to the DCT is placed in
the buffer. If the OCT is a direct-access type, the coded track
address from the DCT is used to compute MBBCCHHR.

The lOB is now scheduled fo~ I/O through the use of the standard
OS Execute Channel Program macro-instruction (EXCP) and immediate
return is made to the caller. Each I/O request issued by HASP
has an I/O appendage list specified which causes the appropriate
channel end appendage in $EXCP to be entered upon termination of
the I/O. Since these appendages are entered asynchronously with
HASP operation, the buffer associated with the completed I/O is
scheduled for synchronous HASP processing by .the Asynchronous
Input/Output Processor. The HASP task is POSTed, and immediat.e
return is made to lOS. (The action taken by the Asynchron0tls
Input/Output Processor is explained in Section 4.8.)

A separate channel end appendage is provided for remote terminal
operations. This appendage correlates the channel end conditions
with the commands executed and provides special processing of con-
ditions unique to the teleprocessing. .

Input/Output Supervisor - Page 5.2-1

?A.h

HAS P

If HASPGEN parameter &RPS was set to YES, addi tio'nal code is in­
eluded to support rotational position sensing.

RPS support causes each HASP EXCP to be analyzed at Start-I/O time.
If the EXCP was to a direct-access device with the RPS feature, a
SIO appendage will insert into the channel program a set-sector
command. The sector number supplied with this command will be ex­
tracte~ from a table on the basis of record number, extent number,
and the channel program's data length (in IOBCCW3) •

Assembled into the SIO appendage are CCW sets, one for each extent
of the HASP direct-access DEB. (The last extent is always for the
overlay library.) Each CCW set consists of a set-sector and a
·transfer-in-channel. The set-sector data address points to the
unused byte (byte 5) of the set-sector CCW; this byte is filled in
at SIO-appendage time. The transfer-in-channel data address is
filled in at SIO-appendage time, as follows: starting at the ad­
dress specified by the channel address word (CAW), CCWs are in­
spected until a TIC is found. These CCWs constitute the direct­
access start-data-transferchannel program, and the TIC is to the
HASP channel program. The SIO appendage makes the start-data­
transfer TIC point to the appropriate set-sector command and the
set-sector TIC point to the HASP channel program.

The last four bytes of the set-sector TIC, unused by the channel,
contain a pointer to set-sector values for the corresponding ~xtent,
indexable by record number. These sector number tables are built
by HASPINIT at the end of direct-access initialization, using the
resident sector convert routine, IECOSCR1, in ~henucleus, An ex­
tent's table is built only if that extent's UCB specifies the RPS
feature. Tables for the first &NUMDA extents are built on the basis
of a record length of &BUFSIZEj the last extent's table is based on
a record length of &OLAYSIZ.

RPS support for SYS1.SYSJOBQE in HASPWTR is described in Section
4.21.

Input/Output Supervisor - Page 5.2-1.1

2·46.1

HAS P

(The remainder of this page intentionally left blank.)

246.2

HAS P

5.3 JOB QUEUE MANAGER

5.3.1 Job Queue Manager - General Information

Jobs being processed or awaiting processing by a HASP phase are
represented in an ordered queue by a Job Queue Element (see
Figure 8.6.1).

The Job Queue Management routines are used by the HASP Processors
to insert, alter, locate, and remove Job Queue Elements. The
Queue Elements are maintained in priority at all times with the
highest priority element at the top of the active chain. There
are six Job Queue Element routines which are called by issuing
the following macros: $QADD, $QREM, $QGET, $QPUT, $QLOC, and
$QSIZ (see Section 9.3). The Job Queue Elements are arranged
in two chains. The active chain contains the Job Queue Elements
for all the jobs in the system at a given time. The free chain
contains all the Queue Elements which are not in use.

5.3.2 $QADD Routine - Program Logic

The $QADD routine is called whenever a Queue Element is to be added
to the active queue. If the Checkpoint Processor is waiting for
the checkpointed information to be written onto the SPOOLl disk,
this routine enters a HASP $WAIT state. Whenever the Checkpoint
Processor's I/O is complete, the free queue chain is tested to see
if any free Queue Elements are available. If none are available,
control is returned to the caller with a condition code of zero.
If a Queue Element is available, the correct slot within the active
queue chain is located by comparing the priority of the element to
be added with the priorities of the elements in the active chain.
When the priority of the new element is higher than the priority
of the element in the active chain, the free Job Queue Element is
extracted from the free queue chain and inserted into the active
chain. All the information for the new Job Queue Element is moved
from the location pointed to by register "Rl" into the new Job
Queue Element. Then the HASP Dispatcher's Event Control Field is
$POSTed to indicate that a Job Queue Element is available. The
Checkpoint Processor's PCE is also $POSTed so that it will be given
control to write the updated Job Queue onto the SPOOLl disk. The
.condition code is set non-zero and control is returned to the
caller. Upon return, register '''RO u contains the address of the
associated Job Information Table Entry.

Job Queue Manager - Page 5.3-1

247

HAS P

5.3.3 $QREM Routine - Program Logic

The $QREM routine is entered to remove a Job Queue Element from
the active chain. It will enter the calling Processor into a
HASP $WAIT state if the Checkpoint Processor's I/O is not complete.
When the Checkpoint Processor's I/O is complete, the Job Queue
Element that is to be removed is located by comparing its job
number with the job numbers of the queue elements in the active
chain. If an equal comparison is not found, control is returned
to the caller with the condition code set to zero. If a match
is found, the Job Queue Element is removed from the active chain
and added to the top of the free chain by updating all the chain
pointers. The Checkpoint Processor's PCE is $POSTed so that it
will be given control to checkpoint the Job Queue. Then control
is returned to the caller with the condition code set non-zero to
indicate that the Queue Element was successfully removed.

5.3.4 $QGET Routine - Program Logic

The $QGET routine is entered to acquire a Job Queue Element in a
specified queue so that the job may be processed. The active queue
chain is searched for a Job Queue Entry of the specified type (e.g.,
execution, print, punch, or purge) which is not in hold status and
not presently acquired. If such a job is not present, control is
-returned to the caller with the condition code set to zero. If
an acceptable queue element is found, the QENTBY bit is turned on
in the queue element to show that the element has been acquired,
and control is returned to_the caller with the condition code set
non-zero, register "RI" pointing to the job queue element that was
acquired, and register "RO" pointing to the associated Job Infor­
mation Table Entry. Whenever the system is in a drained status,
this routine will be crippled such that control will 'always be
returned to the caller with the condition code set to zero to
indicate that no available Job Queue Elements are present.

5.3.5 $QPUT Routine - Program Logic

The $QPUT routine is entered to return a previously acquired Job
Queue Element to the active chain, but with a new queue type. It
will enter the calling Processor into a HASP $WAIT state if the
Checkpoint Processor's I/O is not complete. When the Checkpoint
Processor's I/O is complete, the job number of the queue element
to be returned is compared with the job numbers of the queue ele­
ments in the active queue. If the job number is not found, control
is returned to the caller with the condition code set to zero. If
a match is found, the new queue type is set, the HASP Dispatcher's

Job Queue Manager - Page 5.3-2

: 248

HAS P

Event Control Field is posted to indicate that a Job Queue
Element is available to be acquired, and the Checkpoint Proces­
sor's PCE is $POSTed so that it will be given control to write
the updated Job Queue onto the SPOOLI disk. If the QUEPURGE bit
is on in the queue element (indicating that the job has been
deleted), the job queue element is placed in the punch queue by
moving the punch queue type into the queue element's QUETYPE
field. If the QUEPURGE bit is not on, the job queue element is
placed in the queue indicated by register "RO" upon entry to
this routine. The QENTBY bit is turned off to indicate that this
queue entry has been returned, the condition code is set non-zero,
and control is returned to the caller. Upon return, register "RI"
contains the address of the Job Queue Entry just returned and
register "RO" contains the address of the associated Job Infor­
mation Table Entry.

5.3.6 $QLOC Routine - Program Logic

The $QLOC routine is entered to obtain the Job Queue Element address
when the job number is known. The job number is compared with the
job numbers in the active chain. If a match is not found, control
is returned to the caller with the condition code set to zero. If
a match is found, the condition code is set non-zero, and control
is returned to the caller with register "RI" containing the 10-
catedJob Queue Element's address and register "RO" containing the

"associated Job Information Table Entry address.

5.3.7 $QSIZ Routine - Program Logic

The $QSIZ routine is entered to obtain the number of Job Queue
Elements in·a given queue type, route, class, .and forms. The num­
ber of jobs of the specified type (excluding jobs in hold status)
are counted, and control is returned to the caller with register
"RI" containing this count. If register "RI" is non-zero, the con­
dition"code is set non-zero, and if it is zero, the condition code
is set to zero. Whenever the system is in a drained status, this
routine is crippled so that control is always returned to the
caller with register "RI" zeroed, and the condition code set to
zero to indicate that no jobs are available in the specified job
queue.

Job Queue Manager- Page 5.3-3

249

HAS P

5.4 BUFFER MANAGER

Buffer Manager - General Description

The Buffer Management routines are responsible for the allocation
of the dynamic memory area (Buffer Pool) of HASP. Fixed-size buf­
fers in this area are allocated and de-allocated to HASP Processors
and Routines via the $GETBUF and $FREEBUF macro-instructions (see
Section 9.1).

5.4.2 Buffer Manager - Program Logic

The $GETBUF routine consists of two programs which allocate HASP
Buffers or RJE Buffers respectively. Both programs function iden­
tically as follows: The appropriate free buffer pointer is tested,
and if no buffers are available, control is returned to the caller
with the condition code set to zero. If a free buffer is present,
the free buffer pointer is updated to point to the next free buffer;
or, if this is the last available buffer, the pointer is zeroed.
Then, if the debug indicator is on, a buffer validity checking rou­
tine is entered to assure that the buffer is within the buffer chain.
If it is not in the chain, the catastrophic error routine is entered;
otherwise, control is returned to the $GETBUF routine. The condition
code is set non-zero and control is returned to the caller with th~
buffer address in register "Rl".

The $FREEBUF routine enters the buffer validity checking routine if
the debug indicator is on, the buffer to be freed is inserted back
into the appropriate free buffer chain (depending upon whether the
buffer is a HASP Buffer or anRJE buffer), and the IOBSTART field is
updated with the address of the buffer's channel program: IOBCCWI
(see Figure 8.3). The HASP Dispatcher's Event Control Field is
$POSTed to show that a buffer is available and control is returned
to the caller.

Buffer Manager - Page 5.4-1

250

HAS P

5.5 UNIT ALLOCATOR

,5".5.1 , Unit Allocator - General Description

The Unit Allocation routines are responsible for the allocation
and de-allocation of the Input/Output units which have been
assigned t6 HASP. Device Control Tables (OCTs) are allocated and
de-allocated to HASP Processors and Routines via the $GETUNIT and
$FREUNIT macro-instructions (see Section 9.2).

5.5.2 Unit Allocator - Prog;ram Locaic

The $GETUNIT routine scans the Device Control Table (OCT) chain
in an attempt to find an available DCT of the requested type. If
none are found, control is returned to the caller with the condition
code set to zero. If an available OCT of the requested type is
found, it is set "not available" and control is returned to the
caller with the condition code set non-zero. The address of the
OCT is returned in register "R1".

The $FREUNIT routine first examines the "Active Buffer Count" field
of the OCT (see Figure 8.5) to see if there are any buffers involved
in active I/O with the associated unit. If the "Active Buffer
Count".isnon-zero, the Processor is placed in a HASP $WAIT state
until this count is reduced to zero. When the count is zero, the
OCT is made available and cont.rol is returned to the caller.

Unit Allocator - Paqe 5.5-1
251

HAS P

5.6 INTERVAL TIMER SUPERVISOR

5.6.1 Interval Timer Supervisor - General Description

The Interval Timer Supervisor is used by the various HASP Proces­
sors to record the passage of a specified period of time and to
notify the requesting Processor upon expiration of the interval.
This routine uses the standard OS/360 timer features (STIMER &
TTIMER) but has the additional capability to simultaneously monitor
an unlimited number of intervals. .

5.6.2 Interval Timer Supervisor -Program Logic

All uses of the Interval Timer Supervisor are through the HASP
macro-instructions $STIMER and $TTIMER which are described in Sec­
tion 9.6. Each user of $STIMER is required to provide a 12-byte
(three-word) HASP Timer Queue Element (TQE) , passed via parameter
register "RI" (see Section 8.10). $STIMER maintains a chain of all
active TQEs in ascending order of interval magnitudes, with the
shortest requested interval (first TQE) set on the as STIMER queue
(via a normal STIMER macro). Upon being entered with a new interval
request, $STIMER first cancels the active as timer element with a
TTIMER CANCEL, and reduces the interval specified in all chained
TQEs by the elapsed portion of this interval. The requestor's TQE
is then, after converting the requested interval to as timer units
(26 usec units), inserted into the appropriate place on the TQE
chain using the first word ot the TQE as a chain field. The as
timer is now re-activated with the interval in the first TQE in the
chain and return is made to the caller.

When the current as interval elapses, the asynchronous exit routine
in $STIMER is entered to record the expiration. The asynchronous
routine first reduces the intervals of all queued TQEs by the size
of the just-elapsed interval, then $POSTs the TIMER Processor, POSTs
the HASP task, and returns to as. The TIMER Processor, when dis­
patched, will $POST the appropriate Processors and reset the as
Timer to the interval specified in the first TQE in the chain by
issuing an STIMER macro.

HASP Processors which have previously set an interval through
$STIMER may obtain the time remaining in the interval and optionally
cancel this interval through the use of the $TTIMER macro. When
entered, $TTIMER cancels the active OS interval and reduces all
queued TQE intervals by the elapsed portion of that interval. The
requestor's TQE is then located in the queue by comparing the ad­
dress of the TQE passed by the macro in register "Rl" to each TQE
in the chain. When the correct TQE is found, the remaining time

Interval Timer Supervisor - Page 5.6-1

HAS P

in the interval is loaded in register "RO" for return to the
caller. The use of the CANCEL option on the $TTIMER macro,
which is indicated by register "RI" containing the complement of
the TQE address rather than the true address, causes the TQE
to be dequeued from the chain. The OS timer is re-activated
with the interval from the first TQE on queue and return is made
to the caller. NOTE: A $TTIMER for a TQE which is not active
has no effect and a zero value is returned in register "RO" as
the time remaining.

InterVat Timer Supervisor - Page 5.6-2

253

HASP

5.7 $WTO PROCESSING ROUTINE

5.7.1 $WTO Processing Routine - General Description

This routine service s the $WTO macro-instruction (see Section 9. 5)

by queuing the associated message for the Operator Console Input/Output

Processor.

5. 7. 2 $WTO Proce s sing Routine - Program Logic

This routine tests for a free message buffer. If none are available,

it cause s the reque sting proce s sor to be placed in a $W AIT condition until

a message buffer is released. Otherwise it links. to the Console Buffering

Routine to proce s s the me s sage.

$WTO Processing Routine - Page 5. 7~1

254

HAS P

5.8 DIRECT ACCESS STORAGE ALLOCATOR

5.8.1 Direct Access Storage Allocator - General In£ormation

This routine allocates tracks for the SPOOL volumes that were
on-line at IPL time. The track information is stored in the Job
Control Table (JCT) and is also returned to the caller in register
"RI". The track allocation algorithm is designed to reduce seek
time as much as possible.

5.8.2 Direct Access Storage Allocator - Program Logic

The status of each SPOOL volume is recorded and maintained in
track group bit maps. A map is present for each module (available
SPOOL volume). Each bit in the track group bit map represents ~
track group. If the bit is on, the track group is available to be
allocated, and if the bit is off, the track group has already been
allocated. Track group bit maps are also maintained in each JCT,
but the bit definitions are opposite. Thus, if a bit is on in
the JCT, the track group has been allocated to the JCT.

Track groups on the SPOOL volumes are allocated whenever the JCT
.has not previously acquired any tracks or whenever all the tracks
in the current track group which is allocated to the JCT have been
acquired. If the JeT has already been allocated a track group,
but all the available tracks in that track group have not been
acquired, the next available sequential track in the track group
is allocated to the requestor. When this happens, the track
information in the JCT is updated and loaded into register "Rl" ,
and control is returned to the caller with the condition code set
to one. This track information is recorded in the JCT in the
following format: MTTR, where M is the module number (one byte) ,
TT is the track number relative to cylinder 0 track 0 (two bytes) ,
and R is the record number (one byte). The JeT track group bit
map is also updated whenever a new track group is acquired. The
update consists of ORing in the appropriate bit for the acquired
track group in the JeT track group bit map.

When a new track group has to be acquired, seek time is reduced
by searching for the nearest track group + or - eight track
groups from the last-used track group. The last-used track group
for each track group bit map is updated each time a $EXCP is
issued to the volume. Each track group bit map is searched for
an available track group at the last-used track group. Then each
track group bit map is searched for an available track group -
one track group from the last-used track group, then + one from
the last-used track group and this progression continues until an

Direct-Access Storage Allocator - Page 5.8-1

255

HAS P

available track group is found or the + eight track group is
searched. If an available track group is found, the JCT track
information is updated and loaded into register "RI", and control
is returned to the caller with the condition code set to one.
The JeT track group bit map is also updated. If a track group is
not available within + or - eight of the last-used track group,
another search routine is entered which inspects each byte of the
track group maps, starting with the first byte. This search will
continue until an available track group is found or until all of
the active track group bit maps have been searched. If an available
track group is found, the JCT track information is updated and
loaded into register "RI", and control is returned to the caller
with the condition code set to one. The JCT track group bit map
is also updated. If an available track group is not found, the
operator is notified of the out-of-track condition by the fol­
lowing message:

SPOOL VOLUMES ARE FULL

Then control is returned to the caller with the condition code set
to zero and register "RI" zeroed.

5.8.3 Direct Access storage Purge Routine - Program Logic

This routine frees all of the SPOOL volume tracks that the job has
acquired and informs the system that these tracks are available
to be re-acquired.

The track group bit m~p in the job's Job Control Table is ORed
into the main track group bit map to return the job's tracks back
to the system. Then the track group bit map in the JCT is zeroed
to indicate that this job does not have any tracks allocated to
it. The HASP dispatcher's Event Control Field is posted to show
that tracks are available to be acquired, and control is returned
to the caller. .

Direct-Access Storage Allocator - Page 5.8-2

256

HAS P

5.9 DISASTROUS ERROR HANDLER

5.9.1 Disastrous Error Handler - General Description

This routine is entered from a Processor whenever a critical SPOOL
disk error is detected. The operator is notified of the error, and
processing continues, although the operator should re-IPL the sys­
tem with a cold start as soon as possible.

5.9.2 Disastrous Error Handler - Program Logic

When this routine is entered, a $WTO is issued to notify the operator
of the error, and control is returned to the calling Processor. The
message to the operator is as follows:

DISASTROUS ERROR - COLD START SYSTEM ASAP

Disastrous Error Handler - Page 5.9-1
257

HAS P

5.10 CATASTROPHIC ERROR HANDLER

5.10.1 Catastrophic Error Handler - General Description

This routine is entered whenever an unrecoverable error is dis­
covered by HASP. The operator is informed of the error and given
an error code, and the system enters a one instruction disabled
loop. The error codes and their meanings are listed in the HASP
Operator's Guide (see Section 11). For more information, refer
to Section 9.10.1.

5.10.2 Catastrophic Error Handler - Program Logic

When this routine is entered, register "RO" cont,ains the address
of a four byte field containing the three character error code
left justified. After the system is disabled, the four byte error
code field is moved into the operator message. This message is
then written on the operator's console defined by the HASPGEN
parameter n$PRICONA":

$ HASP SYSTEM CATASTROPHIC ERROR. CODE = xxx

After this message is typed, all registers are restored so that
they. will be intact, and a one instruction loop is executed.

Catastrophic Error Handler -- Page 5.10-1
258

HASP

5. 11 TRACE EFFECTOR

5. 11. 1 Trace Effector - General De scription

The Trace Program is a debug facility used in HASP which is .completely

independent of the OS trace facility. This program will insert the contents

of the general purpose registers into a special trace table (assembled into

the HASP module) each time it is called and thereby aid in the determin­

ation of HASP problems.

5. 11. 2 Trace Effector - Program Logic

The Trace Program is called by any Routine or Processor in HASP

by the insertion of a $TRACE macro-instruction (see Section 9.9.1). If the

HASPGEN parameter "&TRACE" is set nOD-zero, the macro-instruction

will expand into an instruction which will cause a unique specification pro­

gram interrupt. All program interrupts are fielded by the HASP Trace

Program and the instruction which caused the interrupt is tested to deter­

mine if it is the unique instruction inserted by the $TRACE macro-instruction.

If the interrupt was caused by a true program interrupt, the reque st is sent

to the first level interrupt handler, to be handled in the normal way.

Otherwise a sixteen word trace entry is inserted into the HASP trace table.

T race Effector - Page 5. 11-1

259

HASP

The sixteen word trace entry has the following format:

First Byte ••..••••••••••..•••• $ TRACE count

First Word ••••••••••••••••••• $ TRACE storage location

Second Word ••••••••••••••••• Register 0

Third Word ••••••••••••••••••• Register 1

Fourth Word ••..••••••••.••••• Register 2

Fifth Word ••••••••••••••••••• Register 3

Sixth Word ••••••••••••••••••• Register 4

Seventh Word ••••.•••••.•••••• Register 5

Eighth Word ••••.••••••••••••• Register 6

Ninth Word •••••••••.•••.•••.. Register 7

Tenth Word ••••••••••••••••••• Register 8

Eleventh Word •••••••.•••••••• Register 9

Twelfth Word ••••••••••••.• ~ •• Register 10

Thirteenth Word •••.••.•••.•••• Register 12

Fourteenth Word ••••••••••••••• Register 13

Fifteenth Word ••••••••••••••.• Register 14

Sixteenth Word •••••••••••••••• Register 15

After the trace table entry has been inserted and the pOinters updated I

the count of the number of times this particular $TRACE macro-instruction

has been executed is inserted into the first byte of the first word of the

Trace Effector - Page 5. 11-2

260

HASP

the trace entry and also into the last half of the $TRACE II instruction. II

All registers are then restored and return is made by loading the Program

Old PSW which restores the condition code to its original value before

the $ TRACE macro- instruction was executed.

The symbolic location "$TRACETB" in HASP identifies a three-word

table with the following format: the first word is the addres s of the

last entry which was made in the trace table; the second word is the

address of the first byte of the trace table; and the third word is the

address of the last byte of the trace table + 1.

Trace Effector - Page 5. 11-3

261

HAS P

5.12 WTO/WTOR PROCESSING ROUTINE

5.12.1 WTO/WTOR Processing Routine - General Description

The function of this routine is to process alIOS WTO's and WTOR's.
If a console buffer is not available for the message the requesting
task is placed in an OS WAIT state until a buffer becomes available
to process the request. This routine is not included if the HASP
interface to OS Console Support is generated (&NUMCONS=O, see
Appendix 12.15).

5.12.2 WTO/WTOR Pr.ocessing Routine - Program Logic

The WTO/WTOR Processing Routine is entered from the Execution Con­
trol Processor whenever an SVC 35 or optionally SVC 36 is issued.
The routine performs the following functions:

1. HASP is forced dispatchable and a task switch is signalled
when appropriate.

2. Standard HASP $WTO parameters are set up for OS and LOG
operator consoles. If the entry is for SVC 36 the as and
LOG operator console request is deleted allowing only
logging to the HASP SYSTEM LOG. The number of output
lines desired is set to 1.

3. If the SVC is for WTOR a check is made to insure that
both a Console Message Buffer and Reply Element are avail~
able before further processing occurs. When facilities
are available the parameter list is checked, the reply
number assigned to the Reply Element is assigned to the
message, the Reply Element filled out and queued, and
normal WTO processing is resumed at step 6 below.

4. If the WTO is a multi-line WTO the format of the parame­
ter list is determined (see Figure 5.12.3) and number of
output lines desired is set as specified in the parameter
list.

5. The text of the message is examined for possible elimina­
tion and/or identification of the OSjobname for use in
step 6.

6. as control blocks are searched for the purpose of associ­
ating the message with a current HASP controlled job. If
an association is made the $WTO parameters will reflect
a request for the job number to appear with the message
and the HASP SYSTEM LOG is to contain a copy of the
message.

WTO/WTOR Processing Routine - Page 5.12-1

262

HAS P

7. A check is made to insure that a Console Message Buffer
is available before continuing. (For WTOR one will be
available at this point.)

8. The parameter list is altered to show request not $WTO
and the Console Buffering and Queueing Routine is called
upon to queue ,the message.

9. If the number of output lines was more than 1 additional
lines are set up for each succeeding line by re-executing
steps 7 to 8 above until all lines are queued.

10. Upon completion of all lines, the routine returns to OS
via register 14.

A list of lines is terminated if a line length is zero, the first
line is eliminated by message type elimination, or the DE or Eline
type parameter is encountered. If facilities are not sufficient to
handle the SVC 35 or 36 request immediately and it is determined
that the task can not wait or there are no WTO/WTOR Task Wait Ele­
ments (Figure 5.12.1) available, the SVC 35 or 36 request is ignored.
MCS flags in the WTO/WTOR parameter lists are examined to determine
the format of the parameter list only. The acceptable formats and
MCS flag settings examined are listed in Figure 5.12.3.

WTO/WTOR Processing Routine - Page 5.12-2

263

HASP

Figure 5.12.1 -- WTO/WTOR TASK WAIT ELEMENT

Displacement 1.----------------------- 4 bytes ---~--------------------.t
~. ~. I . I

o 0

4 4
X'FF'
if

Reply Wait

8 8

PCE ID

C 12

10 16

Address of Next Task Wait Element

Address of User's WTO(R)

Address of Task Control Block

User Parameter List Save Area

WTO/WTOR Processing Routine - Page 5.12-3

264

HASP

Figure 5.12.2 -- WTOR REPLY ELEMENT

Displacement 1.----------------------- 4. bytes· ------------------------.
Hel(. Dec. I

o 0

4 4

8 8

C 12

10 16

Address of Next WTOR Reply Element

Reply Number

PCE ID

Reply Length

Address of Event Control Block

Address of Task Control Block

Address of Reply Area

WTO/WTOR Processing Routine - Page 5.12-4

265

HAS P

Figure 5.12.3 -- WTO/WTOR PARAMETER LIST FOR HASP CONSOLE SUPPORT

Displacement

Hex. Dec.

-8 -8

-4 -4

o 0

4 4

~----------------------- 4 bytes ----------------.--------..

Reply Length Address of Reply Area

Address of Event Control Block

Zero Length of MCS Flags
Linel + 4

Linel Text ..
"- i'

Descriptor Codes Route Codes
(optional) (optional)

Message-Type Flags Line Type for Linel
(optional)

Area Type No. of Lines

WTO/WTOR Processing Routine -- Page 5.12-5

265.1

HAS P

.
Figure 5.12.3 -- WTO/WTOR PARAMETER LIST (CONTINUED)

~----------------------- 4 bytes ------------------------~

Zero Length of
Line"n" + 4

Line Type for Line "n"

~
Z Q)
o ~
H·,-l
CfJH
Z
li::!r-t
E-t I'd
:><: ~
Ii::! 0

.,-l

O+J
E-t .,-l

~ro
'0

Ii::!~
Z H...c::
H U

lL-________________ ~-----L-1-.n-e--'-'n--"-T-e-x-t----------------------~r ~~~

WTO/WTOR Processing Routine -- Page 5.12-6

265.2

HAS P

5.13 CONSOLE BUFFERING AND QUEUING ROUTINES

The following routines are responsible for the queuing and
de-queuing of all conso·le and log messages.

5.13.1 CONSOLE BUFFERING ROUTINE - PROGRAM LOGIC

The Console Buffering Routine is used to prepare a message
buffer with the information required to process a console
message. At entrance registers zero and one contain the infor­
mation shown in figure 5.13.1.

The routine makes use of three tables comprised of one-byte
entries. The bits in each byte specify the physical consoles
which are to be used for the respective entry. In the first
($WCONTBL) each byte corresponds to one of eight consoles.

The bytes are ORed for each specified symbolic console to
set the physical byte for a write operation.

A second table ($WCLASTB) has an entry for each of the six­
teen possible .message classes. The appropriate byte is ANDed
with the physical consoles byte to screen out consoles with
the class set too high.

In addition to setting the console routing byte, the Console
Buffering Routine supplies the other information shown in
figure 8~4.l. Prior to returning to the caller, the routine
places the message in the log queue (non-HASP messages with
a job number); or in the queue of messages to be processed
by the Console Input/Output Processor (all other output
messages and all reads).

5.13.2 CONSOLE QUEUING ROUTINE - PROGRAM LOGIC

This routine places a console buffer into a queue of messages,
according to priority, to be processed by the Operator Console
Input/Output Processor and $POSTs that processor.

5.13.3 LOG QUEUING ROUTINE - PROGRAM LOGIC

This routine places a console buffer at the end of the queue
of messages to be processed by the HASP Log Processor and
$POSTs that processor.

Console Buffering and Queueing Routines- Page 5.13-1

266

HAS P

5.13.4 CONSOLE BUFFER FREEING ROUTINE - PROGRAM LOGIC

This routine places the console buffer in the free queue.
The Attention Processor's PCE is examined to determine if
the Attention Processor is $WAITing for a console buffer,
and if it is, the Attention Processor is $POSTed and exit
is made. If the Attention Processor is not $WAITing, the
$WTORQUE is tested and the first ,task found is POSTed. If
no tasks are waiting, the HASP Event Control Field is $POSTed
and exit is made.

Console Buffering and Queueing Routines - Page 5.13-2

267

HAS P

Figure 5.13.1 -- CONSOLE BUFFERING ROUTINE PARAMETER REGISTERS

Displacement

Hex. Dec.

o 0

4 4

8 8

r------------------------ 4 bytes ------------------------~
(RO)

Flags Consoles Message Priority
Specified Length & Class

(RJ')

XI 00 I = $WTO Message Address (or Zero for Read)
X ' 80 ' = WTO

Console Buffering and Queueing Routines - Page 5.13-3

268

HASP

5.14 INPUT/OUTPUT ERROR LOGGING ROUTINE

5 . 14. 1 Input/Output Error Logging Routine -- General Description

This routine is entered whenever an unrecoverable Input/Output error

occurs on a HASP direct-access intermediate storage device I or whenever

line errors occur which may require the attention of the operator. A

message is generated describing the error and this message is routed to

the operator via the operator's console. The routine then returns without

taking any further action.

5. 14.2 Input/Output Error Logging Routine - Program Logic

When this routine is entered I register" RI" contains the address of

the Input/Output Block (lOB) which is as sociated with the Input/Output

operation in error. The channel status I channel command code I sense

information I track address I and line status are retrieved from the lOB

and formatted; the unit address and volume serial are obtained from the

Unit Control Block (UCB); the device name (if applicable) is acquired

from the Device Control Table (DCT); and the message is written to the

operator's console.

The format of the message describing a direct-access error is as

follows:

Input/Output Error Logging Routine - Page 5.14-1

269

HASP

I/O ERROR ON SPOOLn uuu, cc, ssss, iiii, bbcchhr

where:

n - identifies the SPOOL disk in error

uuu - unit address of disk

cc - channel command code being executed

ssss - channel status code

iiii - unit sense information

bbcchhr - track addre s s a s follows:

bb bin (always -zero)

cc cylinder

hh head

r record

The format of the message describing a line error is as follows:

I/O ERROR ON LINEm uuu,cc,ssss,iirr,ttee

where:

m - line number

uuu - unit addres s of line

cc - channel command code being executed

ssss - channel status code

ii - unit sense information

Input/Output Error Logging Routine - Page 5.14-2

270

HASP

where:

rr

tt

ee

- STR - sense information

sse - terminal response

- internal sequence and command code

STR - alway s blank

sse - expected response

Input/Output Error Logging Routine - Page 5.14-3

271

HASP

5.15 REMOTE TERMINAL ACCESS METHOD (RTAM)

5.15.1 Remote Terminal Access Method -- General Description

The Remote Terminal Access Method provides an interface between the

HASP Processor and the Remote Terminal. RTAM provides blocking/deblocking,

compression/decompression, and synchronization with the remote terminal

in such a way that the processor need not be concerned with the character­

istics of the remote with which he is communicating. The MULTI-LEAVING

Line Manager synchronizes very closely with RTAM through a series of

subroutines, the more important ones, of which, are briefly described

below .

. 5.15.2 Remote Terminal Access Method -- Program Logic

The Remote Terminal Access Method consists of four main sections

and some miscellaneous subroutines. This section discusses the four

main sections: OPEN, GET, PUT, and CLOSE. The primary subroutines

are discussed in Section 5.15.3 below.

OPEN

The OPEN routines convert the line from an idling mode of opera tion

to a transmit or receive mode of operation. In the case of the MULTI­

LEAVING interface, this routine also generates the request or permission

to begin a new function.

Remote Terminal Acces s Method -- Page 5. 15-1

272

HASP

The GET routines convert data received from the line into EBCDIC

images suitable for processing by the HASP processors. This conversion

includes deblocking, decompression, and conversion from line code to

EBCDIC.

The PUT routines convert data from EBCDIC into a form ready to be

transmitted to the remote terminal. This conversion includes compression,

blocking, and conversion from EBCDIC to line code.

CLOSE

The CLOSE routines convert the line from a transmit or receive mode

of operation to an idling mode of operation.

5. 15. 3 Remote Terminal Acces s Method -- Subroutines

This section describes the primary subroutines used by the Remote

Terminal Access Method and the MULTI-LEAVING Line Manager.

MSIGNON -- Sign-On Card Processor

This subroutine is passed the address of a /*SIGNON card in register

"Rl". If the line from which the Sign-On Card was read was defined to be a

"leased" line, the Sign-On Card is ignored and the subroutine returns immed­

iately. If the line is a "dial" line, the MABORT and MDISCON subroutines

are called to disconnect any other remote which may have been attached to

Remote Terminal Access Method -- Page 5. 15-2

273

HASP

this line. The password is then checked and if not valid, an error message

is issued and the subroutine returns. If the password is valid the specified

Remote Terminal's DC T' s are loca ted and examined. If the specified remote

is already attached to another line or if the specified remote is not locatable,

the subroutine issues an error message and returns. Otherwise, the specified

remote is attached to the line and a confirmation message is issued.

MCCWINIT -- Channel Command Word Sequence Setup Subroutine

This subroutine is passed a sequence type in bits 24-27 of register

"Rl". The subroutine then constructs a CCW chain based upon this value

and returns. Figure 5.15.1 depicts the various CCW sequences which can

be constructed by the subroutine.

MINITIO -- MULTI-LEAVING Input/Output Interface

This subroutine analyzes t}:le status of a MULTI-LEAVING Remote Terminal

and takes appropriate action to minimize degradation while insuring maximum

line throughput. The subroutine first establishes the status of every pro-

cessor currently active on the MULTI-LEAVING line. Then, based upon the

active input processor count, the active output processor count, the status

of the remote terminal, and the status of input and output buffers queued

wi thin HASP either transmits an ACKO to the terminal, transmits a text buffer

to the terminal, or initiates a one-second delay.

Remote Terminal Access Method -- Page 5.15-3

274

HASP

MEXCP -- Remote Terminal Input/Output Interface

This subroutine interfaces the Remote Terminal Access Method with

the standard HASP" $EXCP" Input/Output Interface. In addition to initiating

I/O I this subroutine also provides the MULTI-LEAVING Block Control Byte

sequence count I and the BSC 2770/2780 parity check (ACKO-ACK1)

conversion.

Remote Terminal Access Method -- Page 5.15-4

275

HASP

Figure 5. 15. 1 - HASP Remote Terminal CCW Sequences

STR Hardware Terminal Prepare Sequence (code = 4)

INTERNAL
CCW COMMAND DATA ADDRESS FLAGS CODE BYTE COUNT

IOBCCW:L DISABLE 0 60 40 1

IOBCCW2 SET MODE LCBMCB 60 4:L 2

IOBCCW3 ENABLE 0 60 42 1

IOBCCW4 TEST SYNCH 0 60 43 15

IOBCCW5 SEND INQUIRY 0 20 4A 6

S TR CPU Terminal Prepare Sequence (code = 5)

INTERNAL
CCW COMMAND DATA ADDRESS FLAGS CODE BYTE COUNT

IOBCCW:L DISABLE 0 60 50 1

IOBCCW2 SET MODE LCBMCB 60 51 2

IOBCCW3 ENABLE 0 60 52 1

IOBCCW4 TEST SYNCH 0 60 53 15

IOBCCW5 SEND EOT 0 60 5B 6

IOBCCW6 PREPARE 0 60 57 1

IOBCCW7 READ TPBUFST 20 54 STPBFSIZ

'Remote Terminal Access Method -- Page 5. 15-5
276

HASP

Figure 5. 15. 1 (continued) - HASP Remote Terminal CCW Sequences

S TR Read Sequence (code = 0: Hardware; code = 1: CPU)

INTERNAL
CCW CQ\1MAND DATA ADDRESS FLAGS CODE BYTE COUNT

IOBCCW:L TEST SYNCH 0 60 03/1.3 1.5

IOBCCW2 PREPARE 0 60 07/1.7 '1.

IOBCCW3 READ TPBUFST 20 04/1.4 &TPBFSIZ

IOBCCW4 STEP COUNT 0 60 00/1.0 1

IOBCCW5 ERRCR 0 60 00/:L0 1

IOBCCW6 TIC IOBCCW3 00 00/10 0

S TR Write Seguence (code = 2: Hardware; code = 3: CPU)

INTERNAL
CCW COMMAND DATA ADDRESS FLAGS CODE BYTE COl,J\JT

IOBCCW1. TEST SYNCH 0 60 23/33 1.5

IOBCCW2 SEND INQUIRY 0 60 2A/3A 6

IOBCCW3 WRITE TPBUFST 20 28/38 *-*

Remote Terminal Access Method -- Page 5.15-6

277

HASP

Figure 5.15. 1 (continued) - HASP Remote Terminal eew Sequences

Bse Prepare Sequence (code = C)

INTERNAL
CCW CCl-1MAND DATA ADIRESS FLAGS CODE BYTE COUNT

IOBCCWJ, DISABLE 0 60 CO :L

IOBCCW2 SET MODE LCBMCB 60 CJ, :L

IOBCCW3 ENABLE 0 60 C2 :L

IOBCCW4 NOP MBSCSYN 60 CA 4

IOBCCW5 NOP/WRITE MBSCENQ/MBSCEOT 60 CA :L

IOBCCW6 READ LCBRCB 20 C6 2

Bse MULTI-LEAVING Terminal Seguence (code = 9)

CCW COMMAND

IOBCCWJ, ENABLE

IOBCCW2 NOP

IOBCCW3 WRITE

IOBCCW4 READ

IOBCCW5 NOP

IOBCCW6 WRITE

IOBCCW7 WRITE

IOBCCW8 READ

INTERNAL
DATA ADDRESS FLAGS CODE BYTE COUNT

0 60 92 :L

MBSCSYN 60 99 4

LCBRCB 60 99 2

TPBUFST 20 94 &TPBFSIZ

MBSCSYN 60 98 4

TPBUFST 60/AO 98 *-*
METBSEQ 60 98 2

TPBUFST 20 B4 &TPBFSIZ

Remote Terminal Access Method -- Page 5.15-7

278

HASP

Figure 5. 15. 1 (continued) - HASP Remote Terminal eew Sequences

Bse Hardware Terminal Read Seguence (code = 8)

INTERNAL
CCW COMMAND DATA ADDRESS FLAGS CODE BYTE COUNT

IOBCCW:L ENABLE 0 60 82 :L

IOBCCW2 NaP MBSCSYN 60 89 4

IOBCCW3 WRITE LCBRCB 60 89 2

IOBCCW4 READ TPBUFST 20 84 &TPBFSIZ

Bse Hardware Terminal Write Sequence (code = A)

INTERNAL
CCW CO'1MAND DATA ADDRESS FLAGS CODE BYTE COUNT

IOBCCW:L ENABLE 0 60 A2 :L

IOBCCW2 Nap MBSCSYN 60 AA 4

IOBCCW3 WRITE MBSCENQ 60 AA :L

IOBCCW4 READ LCBRCB 20 A6 2

IOBCCWS NaP MBSCSYN 60 A8 4

IOBCCW6 WRITE TPBUFST 60 A8 *-*
IOBCCW7 WRITE METBSEQ 60 A8 2

IOBCCW8 READ LCBRCB 20 AS 2

Remote Terminal Access Method -- Page 5.15-8

279

HAS P

5.16 OVERLAY SERVICE ROUTINES

5.16.1 Overlay Service - General Description

These routines, together with the Overlay Roll Pr6cessor des­
cribed in Section 4.20, respond to calls from other HASP Processors
when the macros $LINK, $ LOAD , $XCTL, $ RETURN , and $DELETE are
executed in HASP coding. This enables certain executable and table
portions of HASP coding (assembly control sections created by use
of the $OVERLAY macro) to be brought into main storage from their
normal direct access residence for use during HASP execution.

Major objectives of Overlay Service and Roll logic are: to allow
multiple Processors to use a single copy of the same overlay routine
simultaneously, and to prevent any system lockout due to SWArTs in
overlay routine coding.

The overlay data set is constructed as part of HASP installation
by the HASP Overlay Build utility, described in Sections 10.2.2
and 6.3, and is referred to by the ddname OLAYLIB in the job which
invokes HASP.

All Overlay Service and Roll Processor coding is located in module
HASPNUC. Service entry points are addressable by register BASEl
and are referenced by macro expansions through the HASP Communica­
tion Table.

Actions necessary to initialize HASP Overlay Service are contained
in module HASPINIT and are de~cribed in Section 6.1.2.

See Sections 8.3.3, 9.7, and 12.14 for descriptions of Overlay
Area(s) format, macros mentioned above, and coding rules relating
to use of overlay routines.

5.16.2 $LINK Service - Program Logic

On entry, register "RIS" contains the address of the next instruc­
tion after $LINK and register "LINK" contains the called routine's
Ocon. An Ocon is an index into the HASP Overlay Table, which is
the control section HASPOTAB created by the HASP Overlay Build
utility, whose individual entries are defined in OTBDSECT, created
by the $OTB macro.

The calling Processor's registers "RO-WC" are saved in the caller'$
PCE. Overlay Service base address is established in register "WC".
Register "RIS" is saved in PCEORTRN. "RIS" is set to the relative
displacement of the calJed routine entry point from the beginning
of an' Overlay Area lOB, i.e., OACEPROG-BUFDSECT. The called
routine Ocon is saved in PCEOCON, then used to compute the address
of the Overlay Table entry for the called routine. If &DEBUG is set

Overlay Service Routines - Page 5.16.1

280

HAS P

to YES, field OTBCALLS is incremented by one. The called routine's
priority is moved to PCEOPRIO.

If the Overlay Table indicates that the called routine was made a
permanent part of the HASP Load Module at Overlay Build time,
register BASE3 is loaded with the address of a theoretical Overlay
Area containing the res~dent routine (BUFSTART-BUFDSECT bytes prior
to the routine itself), caller's "RO-WC" are reloaded, and control
is passed to the called routine at its entry point.

If the called routine is not permanently resident, a search is made
of all Overlay Areas in the system. If the called routine is found
in an area (PCEOCON equal to area's OACEOCON), the caller's PCE is
added to the chain of all active users of the area. This chain
begins at OACEPCE and continues through PCEOPCE of each PCE, if
several user~ are on the chain, and ends with a zero chain word. A
test is made for illegal nested $LINK if &DEBUG is set to YES, see
Operator's Guide for error message. If the called routine is in
process of being read into the area from direct-access, the calling
Processor is made to $WAIT on OLAY, to be later activated by the
Overlay $ASYNC Exit (see 5.16.9). Otherwise, caller's "RO-WC" are
reloaded and control is passed to the called routine entry point,
with register BASE3 containing the address of the Overlay Area lOB
for use as the overlay routine base address.

If the called routine is not found while searching all Overlay Areas,
the search attempts to find an Overlay Area which is not currently
in use. It may contain an overlay routine but may not have active
users (OACEPCE must be zero). The inactive area containing the rou­
tine of lowest priority (OACEPRIO) will be used, subroutine OLOD
(see 5.l6.8) will be called to start reading the called routine from
direct-access, and the calling Processor will be $WAITed on OLAY,
to be later activated by Overlay $ASYNC Exit (see 5.l6.9).

If no inactive areas are found, the calling PCE is placed on a Queue
waiting for an Overlay Area. The Queue be-gins at the word $WAITACE,
continues in descending priority order by PCEOPRIO using chain word
PCEBASE3, and ends with a zero chain word. If several PCEs are on
the Queue requesting the same overlay routine (PCEOCONs equal), only
the first PCE is on the above chain, the others are chained from it
using word PCEOPCE. All PCEs in the Queue are $WAITed on OLAY.
This Queue is emptied by the Overlay Roll Processor, as described in
Section 4.20, or by the OEXIT subroutine, as described in 5.16.7.

Overlay Service Routines - Page 5.16.2

281

HAS P

5.16.3 $LOAD Service - Program Logic

$LOAD shares almost all logic with $LINK (see 5.16.2). Entry
register conditions are identical to those for $LINK.

"R15" is not saved in PCEORTRN. "R15" is not set to the relative
entry point of the called routine.

When the called routine is found in an Overlay Area or read into
one by later system actions, "R15" still contains the address of
the next instruction after $LOAD. subsequent use of "RI5" as an
absolute entry point results in control being returned to the caller
with the routine in an actual or theoretical area, addressable by
BASE3 as with $LINK.

5.16.4 $XCTL Service - Program Logic

$XCTL logic shares almost all logic with $LINK (see 5.16.2). Entry
register conditions are identical to those for $LINK.

"R15" is not saved in PCEORTRN. $XCTL is legal only when it logi­
cally follows another $XCTL or an original $LINK. Subsequent
$RETURN uses PCEORTRN as stored by the original $LINK to return
control from Overlay Service to the original caller.

Before doing entry actions for the new called overlay routine, the
OEXIT,subroutine is called (see 5.16.7) to remove the calling
Processor's PCE from the cha~n of users of the current overlay
routine.

5.16.5 $RETURN Service - Program Logic

On entry, register LINK points to the next instruction after $RETURN
and also contains the condition code and program mask as set by a
BAL instruction. BASE3 points to an actual or theoretical area con­
taining the current overlay routine.

Caller's "RO-We" are saved in the PCE. Overlay Service base address
is established in WC.

The OEXIT subroutine is called (see 5.16.7) to remove caller's PCE
from the chain of users of the current overlay routine.

Returned condition code is re-established using an SPM instruction.
Caller's "RO-WC" are reloaded. Control is returned to the address
previously saved in PCEORTRN by $LINK.

Overlay Service Routines - Page 5.16.3

282

HAS P

5.16.6 $DELETE Service - Program Logic

$DELETE is nearly identical to $ RETURN , except that it is used to
release control of an overlay routine previously $LOADed.

On entry, register LINK points to the next instruction after $DELETE.
This is stored in PCEORTRN and all actions described for $RETURN
are performed.

5.16.7 OEXIT Subroutine - Program Logic

This subroutine is used by service routines for $XCTL, $RETURN, and
$DELETE to release use of the current overlay routine by the calling
Processor. On entry, register WA contains the subroutine return
address and register BASE3 contains the address of an actual or
t~eoretical (permanently resident routine) Overlay Area containing
the current overlay routine.

If the current overlay routine is permanently resident, OEXIT returns
immediately. Otherwise, the chain of all users of the area (begin­
ning at OACEPCE and continuing through PCEOPCE) is searched and the
caller's PCE is removed. If other Processors are still using the
area, OEXIT returns.

If the above actions result in the Overlay Area becoming inactive
(OACEPCE equal zero), the $WAITACE Queue (see 5.16.2) is inspected.
If PCE(s) are waiting, the top priority group of one or more request­
ing the same overlay routine i~ de-queued, the address of the first
such PCE is placed in register "RI", and OEXIT simply falls through
to 'the OLOD subroutine (5.16.8), which eventually returns to the
caller of OEXIT.

5.16.8 OLOD Subroutine - Program Logic

This subroutine is used by service routines for $LINK, $ LOAD , $XCTLi
by the Overlay Roll Processor (see Section 4.20); and indirectly
by users of the OEXIT subroutine (5.16.7). Its purpose is to start
a read for a requested overlay routine from the direct-access device
containing the overlay data set. On entry, register WA contains the
subroutine return address, register BASE3 contains the address of an
actual Overlay Area to be used, and register "Rl" contains the ad­
dress of the first of a group of one or more PCEs requesting the
same overlay routine, chained from the first PCE by PCEOPCE.

OACEPCE of the Overlay Area is pointed to the first PCE. OACEPRIO
and OACEOCON are set to indicate the routine which will reside in

Overlay Service Routines - Page 5.16.4

283

HAS P

the area. The Overlay Table entry for the requested routine is
accessed and, if &DEBUG is set to YES, field OTBLODS is in~remented
by one.

The relative T and R in the overlay data set of the requested
routine is obtained from the Overlay Table. The address of the
Overlay DCT is loaded into register "Rl". If the overlay data set
is on any SPOOL volume (device type DA in the DCT} , an absolute
form of MTTR is computed and stored in DCTSEEK. This conforms to
$EXCP requirements for SPOOL volumes (see S.8) and allows $EXCP to
remember SPOOL arm positions. If the overlay data set is on a
non-SPOOL direct-access volume, the standard OS form of MBBCCHHR
is computed and stored in IOBSEEK. See Section 6.1.2 for initiali­
zation of the Overlay DCT and data set.

Hardware read operation is requested by using the $EXCP macro. The
Overlay DCT specifies that when the read operation is complete,
Overlay $ASYNC Exit is to be entered. All PCEs chained from
OACEPCE are already $WAITing o LAY , to be later activated by Overlay
$ASYNC Exit (see S.16.9). OLOD then returns to its caller or caller
of OEXIT.

5.16.9 Overlay $ASYNC Exit - Program Logic

This routine is entered when under control of the Asynchronous Input/
Output Processor ($ASYNC) PCE (see Section 4.8) an overlay read opera.
tion (started by OLOD subroutine, see 5.16.8) is posted complete.
On entry, register "RI" points to the Overlay Area. BASE2 is set
to the base value for the Oyerlay Roll Processor, which is used for
local addressability. "RlS" contains the return address to $ASYNC.

The chain of all users of the overlay routine just read (begins at
OACEPCE, continues through PCEOPCE) is processed. Each PCE's
re-entry address ("RlS", now stored in PCER15) is absolutized by
adding the address of the Overlay Area, if the value in PCERlS is
determined to be relative. The address of the Overlay Area is also
stored in each PCEBASE3, to provide addressability when the Dis­
patcher activates each Processor. The function $POST for OLAY is
performed on each PCE to make it dispatchable.

If OS lOS has posted the read complete with a permanent I/O error,
each PCE's (on OACEPCE chain) re-entry address (PCERlS) is pointed
to a routine which types the message "UNREADABLE OVERLAY "
and enters a permanent $WAIT. The Overlay Area is freed for other
use.

If &OREPSIZ is set to zero, this Exit returns to $ASYNC. Other­
wise, the Overlay REP storage area is examined to see if any REPs
were read during HASP Initialization (see 6.4) which may apply to

Overlay Service Routines -.Page 5.16.5

284

HAS P

this overlay routine. REPs whose CSECT name (last four characters)
match OACENAME are applied. The assembly origin (OACEASMO) of the
routine is subtracted from the REP address and the BUFSTART address
of this Overlay Area is added, to determine the memory location to
be patched.

Return is finally made to $ASYNC to allow other processing to con­
tinue. The Dispatcher will enter each Processor using the overlay
routine just read.

Overlay Service Routines - Page 5.16.6

285

HAS P

(The remainder of this page intentionally left blank.)

286

H.A S 1)

6. () iv1ISCELLANEOUS

This section contains d.::tai.led internal inf·;rrnation about miscel1aneou:;

routine S 1nl.bedded in 0:1' i.nvulved w'ith the HAS Sv f3tern an(1 is intended

primarily for use by sy ~·;tenH~ r,l :)grarnrner s.

Miscellaneous -_. Fag, (). . l

287

HAS P

6.1 HASP INITIALIZATION

6.1.1 HASP Initialization - General Description

The purpose of HASP initialization is to initialize for HASP job
processing. Initialization builds the required control blocks and
makes modifications to the Operating System nucleus which allows
HASP to monitor the execution of jobs.

HASP Initialization is designed to provide either a "cold" or "warm"
starting capability. A "cold" start is one which starts the system
anew. Only those jobs which are entered after a "cold" start will
be processed. A "cold" start does not have any requirements as to
configuration except as defined in the HASP generation parameters.
A "warm" start is a restart. Checkpointed information is read from
the SPOOLl volume and the queued jobs and data from the last pro­
cessing are recovered. This type of start requires, as a minimum,
that the SPOOL volumes that were used during the previous execution
be on-line. Extra SPOOL volumes, up to a total of &NUMDA volumes,
may be added.

6.1.2 HASP Initialization - Program Logic

Initialization begins with the issuing of the HASP Supervisor Call
which turns control over to the HASP Initialization SVC Routine. On
return the HASP task will be in the Su~ervisor State with protect
key of zero. Register I points to a 11st of resolved nucleus
addresses and a return point for resetting HASP to problem state.
These addresses are moved into the HASP Communication Table (HCT)
for later use by the system.

Since HASP Initialization resides in the same area as the main HASP
buffer pool as designated by the HASP parameter &NUMBUF and portions
of the initialization routines are executed from overlay control
sections, all HASP processors except those required for initiali­
zation and console processing are placed in the hold status. The
command processor peE is altered to tefer to the Root Segment of
HASP Initialization, which resides in the data portion of the
first buffer used for HASP SPOOLING. The HASP Initialization WTOR
is then displayed via OS WTOR facilities. Initialization then waits
for the operator to respond with the desired options. The options
are then compared again'st the Initialization Options table and the
appropriate bits in the' $OPTSTAT field in the HCT are set or reset
in accordance with the options specified. If any option is incor­
rectly entered, an error message is issued and the $OPTSTAT field
is set to the default option configuration. (Refer to STARTING THE
HASP JOB Section of the HASP Operator's Guide.)

HASP Initialization - Page 6.1.1

288

HAS P

The HASP REP routine (described in Section 6.4) is entered for
optional alteration of the resident portions of the Operating
System or HASP (resident or overlay control sections) a

Preparation Of. Overlay Service

The Overlay OCT is prepared by indicating that it is in use, usc,'
only for reading, that Overlay $ASYNC Exit is to be entered on
completion of any operation which was started by using Overlay
DCT, and that Overlay Roll Processor is the owner of the DCT.

The overlay data set is described by a DO card having ddname of
OLAYLIB. DEVTYPE and OPEN macros are used to determine the num­
ber of tracks/cylinder of the overlay volume and data set extent.,
which is placed as the last (&NUMDA+l) extent in HASP's single
multi-extent direct-access DEB. The overlay data .set is closed,
since HASP uses its own constructed I/O control blocks.

The overlay data set ueB address is stored in a table used to
withdraw or abort HASP and the ueB is made allocated, permanently
resident, and private.

The number of tracks/cylinder and extent are used to compute a
beginning absolute TT of the overlay data set, which is stored

. in the Overlay OCT for later use by the OLOD subroutine (see
Section 5.16.8).

Locating Spool Volumes

AlIOS ueBs are searched via the DCB lookup table and direct-acee 2

volumes with volume serials of SPOOLx are examined for use for HASP
SPOOL volumes. As each device is examined, the ueB is allocated
by turning on the private, reserved, permanently resident, and
allocation indicators. The UCB locations and sixth volume serial
character are saved in a temporary workarea for later reference.
If during the ueB search multiple volumes with the same serial'
or too many SPOOLx volumes are found, an error message is displayed/
SPOOL volume ueBs are deallocated and the HASP job is terminated 0

Upon completion of a successful allocation of SPOOL volumes, con­
trol is passed to Direct-Access Initialization.

HASP Initialization - Page 6.1.2

289

HAS P

Direct-Access Initialization

Direct-Access Initialization (NGDAINIT) gains control after all
Spool devices have been found by initialization; initialization has
built a table of six-byte entries (NSPOOLLI) describing the direct­
access devices upon which Spool disks are mounted, of which each
entry appears as follows:

o 1 2 4

I dev I vol lueB I unused

where:

dev is the low-order byte of the direct-access
device type;

vol is the low-order byte of the volume serial
number; and

UCB is the device1s UCB address.

Before checking for warm start, NGDAINIT establishes where the
checkpoint record is to be placed on SPOOL1. To do this, it first
calls the DEB/TED setup routine to establish certain statistics
about all mounted Spool volumes and then issues an OBTAIN macro­
instruction for SYSl.HASPACE on SPOOLl. The checkpoint information
will reside on the first track of this data set (the first two
tracks if &JITSIZE is not zero); accordingly, NGDAINIT sets up
the necessary channel programs using the OBTAINed information.

WARM START

If the operator requested a warm start, NGWARM reads the checkpoint
information directly into the area from which the checkpoint
processor will write it; the information consists of the HASP job
queue, the track group map, printer checkpoint information, mis~
cellaneous status information (including direct access checkpoint
information) and, optionally, the job information table (JIT).
The direct access checkpoint information, $DACKPT, consists of
&NUMDA six-byte entries of the following form:

0 1 2 4

Idev I vol Is s s s Ie e e e

where:

dev is the low-order byte of the direct-access device type;

vol is the low-order byte of the volume serial number;

HASP Initialization - Page 6.1.3

290

HAS P

ssss is the starting absolute track number of data set
SYSI.HASPACE on the indicated SPOOL volume; and

eeee is the ending absolute track number of the first
extent of data set SYSI.HASPACE on the indicated
SPOOL volume.

For SPOOLl, the starting track number excludes the checkpoint
tracks.

NGWARM insures that each volume specified in the direct-access
checkpoint is mounted and, with the help of subroutine NGALLOC,
that its extents are unchanged. If not all volumes are mounted,
or if any extents have been changed, or if a cursory check of
a volume shows that it is not properly formatted, NGWARM writes
a message and sets a quit switch to cause HASP to quiesce.

If all volumes specified by the direct-access checkpoint are
correct, NGWARM checks for (and formats if necessary) newly­
mounted volumes. Then it again calls subroutine NGDEBSET to
allow for the possibility that the order of Spool volumes in
NSPOOLLI (by unit address) may not have been the same as in $DACKPT;
the final order is that of $DACKPT.

Now NGWARM relocates the HASP job queue, if necessary. The job
queue as recorded in the checkpoint record contained main storage
addresses; if HASP does not now occupy the same core locations as
it did before, each main storage address in the HASP job queue (and
in pointers to the job queue) must be adjusted to reflect the cur­
rent main storage location of the job queue.

After relocation, NGWARM scans the job queue to check the busy bit
of each active entry and to reset certain flags. If a busy bit is
on, NGWARM turns it off and issues a WTO to inform the operator
that the job was reading,- executing, printing, or punching. Addi­
tionally, if the job was reading, NGWARM uses HASP queue manage­
ment routine $QREM to delete the job's queue entry.

At the end of the job queue, NGWARM gives control to NGEXIT,
which assembles and format-writes the checkpoint information;
restores the HASP appendage table pointer in $DADEBl, the HASP
multi-extent direct access DEB; counts the number of allocated
track groups (one-bits) in the track group map; and gives control
to NINITWTO.

COLD/FORMAT START

If the operator specified cold or format start, NGCOLD first zeros
out the track group map. Then NGCOLD processes each mounted SPOOL
volume.

For each volume, NGCOLD uses subroutine NGALLOC to process the DSCB
for SYSI. HASPACE. This subroutine issues, the OBTAIN macro-instruc­
tion to retrieve the DSCB; if OBTAIN's return code is not zero, an
appropriate error message is printed via WTO. If the return code is

HASP Ini tia'lization - Page 6.1.4

291

HAS P

zero, NGALLOC computes and saves lower and upper absolute track
numbers.

If NGALLOC operated normally, NGCOLD now tests for an operator
specification of COLD; if the test is positive, NGCOLD calls sub­
routine NGREADCT to read and validate the count field of the first
record of the last track of the first extent of SYSI.HASPACE on the
volume. If the count field is invalid, or if the operator specified
FORMAT, NGCOLD calls NGFORMAT to format the first extent. NGFORMAT
issues an unconditional GETMAIN for core in which to build a for­
matting channel program and data, builds them, and formats each
track by calling NGEXCP, which merely issues an EXCP and a WAIT
and checks the post code.

After the volume has been inspected (and formatted if necessary),
NGCOLD calls NGMAP to calculate the number of track groups in this
volume and the track group number of the first track group. NGCOLD
increments the overall number of track groups available for alloca­
tion by the quantity returned from NGMAP and then calls NGBITMAP
which turns on in the master track group map the bits corresponding
to available track groups on this volume. Then NGCOLD processes
the next volume.

When all volumes have been processed NGCOLD refreshes certain
checkpoint information (the HASP job queue, the print checkpoint
information, and some miscellaneous checkp'oint information) and
gives control to NGEXIT, as above.

The DEB initialization subroutine, NGDEBSET, initializes certain
HASP and OS control blocks and allows a great degree of SPOOL
device independence.

When called,
HASP TCBi it
the standard
by NGEXIT.)
not found.

NGDEBSET first puts into $DADEBI the address of the
also changes the DEB appendage address to point to
lOS appendage. (The appendage address is restored
It checks for SPOOL I and quiesces HASP if SPOOL I is

Then NGDEBSET processes the Spool volumes.

For each volume, NGDEBSET calculates number of records per track
using information from the device characteristics table IECZDTAB
in the OS nucleus and the formula given with the DEVTYPE macro­
instruction in the OS System Programmer's Guide. Then it sets up
certain information in an entry of the Table of Extent Data (TED).

Then, after setting the UCB address in $DADEBI, NGDEBSET performs
the same functions for the remaining volumes and returns to the
caller.

HASP Initialization - Page 6.1.5

292

HAS P

Activation of Overlay

If the overlay data set is contained on a SPOOLx volume, the
Overlay Device Control Table is adjusted so that $EXCPs done by
the OLOD subroutine (see 5.16.8) will use MTTR addresses and M
which refers to the DEB extent for the SPOOLx volume rather
than the overlay data set extent. The first Processor Control
Element (PCE) in the HASP chain is connected to the as save area
chain and, with register 13 pointing to the first PCE, Initiali­
zation enters the HASP DISPATCHER as though the first processor
had executed a $WAIT macro. The HASP DISPATCHER will run the PCE
chain and dispatch the Initialization ROOT segment. The ROOT
segment will $LINK to the first overlay control section HASPIOVA~

Unit Record Initialization -HASPIOVA

The OS UCBs are scanned for unit record devices. Devices which
are on-line on a DUAL Processor Model 65 system, have OS
scheduled I/O activity, or answer positively to a TID instruction
are considered real devices. Otherwise the devices are con­
sidered pseudo devices.

PSEUDO DEVICE INITIALIZATION - Pseudo devices are initialized by
flagging the UCB for later identification by the HASP Execution,
Processor SVC 0 intercept routines and are varied on-line.

Pseudo 2540 reader, 1442 special forms punch, and 1443 special
forms printer devices are especially noted and counts are maintained
for the HASP Execution Processor Device Allocation Routine. Pseudo
1403 Printer UCS feature is removed from the UCB. Pseudo 2520
devices are identified and matched with an internal reader INTRDR
Device Control Table which is initialized for processing.

REAL UNIT RECORD DEVICE INITIALIZATION - Each device is matched with
a corresponding Device Control Table which is initialized for pro­
cessing. If the device is allocated by as, the DCT will remain
in the drained status causing HASP not to use the device unless
the operator starts the device by command. Automatic starting
reader and (as appropriate) HASP console UCB attention index values
are set to four allowing HASP to recognize the readying of the
readers or the pressing of the enter key(s). (At least one HASP
console device is reserved for a 1052 type of device.) If more
real unit record devices of each particular type are found than
available DCTs, an error message is displayed and the additional
devices are ignored.

Control is then passed to the Remote Job Entry or console initiali­
zation routines as appropriate via a $XCTL macro.

HASP Initialization - Page 6.1.6

293

HAS P

. Remote Job Entry Initialization - HASPIOVR

LINE INITIALIZATION - The OS UCBs are scanned for Synchronous
Communication Adapter devices. The UCBs found are first matched
with one or more DCT and corresponding line descriptions (LINEmm
HASP Generation Parameters). Any DCT with a line description
which specifically designates the UCB will be initialized for the
UCB. If no line description designates the UCB, tests are made
to determine if the adapter is physically on-line and, if so,
a DCT with a line description with "***" specified will be located
and initialized. Line devices will not automatically be started.

REMOTE DEVICE INITIALIZATION - Remote Device Control Tables are
connected and initialized with information contained in the corres­
ponding remote description (RMTnn HASP Generation Parameter). Each
group of RMr.RDn, ... ,RMr.PRn, ... ,RMr.PUn, ... for a given remote
are chained together for control by the MULTI-LEAVING-line manager
and RTAM. In addition the printer and punch DCTs are removed from
the chain of all HASP DCTs and reinserted directly behind the
reader DCT for the corresponding terminal. The device description
is converted to internal flags and placed in each of the corres­
ponding DCTs. If the line number is designate·i in the description
the line DCT is located, DCTs are chained together, and flags are
set to indicate non-signon remote.

-The HASP Remote Job Entry Buffer Pool is initialized and control
is passed to the remote console initialization routine or console
(local) initialization routine as appropriate by $XCTL.

Remote Console Initialization - HASPIOVS

The Operator Message Space is allocated and control blocks are ini­
lialized. The Remote Console Processor PCE and a direct-access DCT
are connected (the OCT is flagged IN USE). The origin of the first
available track in the SYSI.HASPACE data set of the SPOOLI volume
and the base track address for operator message record allocation
is set into the MSAMTTR field of the MESSAGE ALLOCATION ($MSALLOC)
Table in the form: OTTI (TT is the first track available for
messages). The number of records per track for the mounted SPOOLI
volume is inserted into the MSARPTRK field. If "cold" start was
performed by direct-access initialization, the Cylinder map for
SPOOLl is altered to reflect the allocation of sufficient adjacent
track groups starting with the group of the base track. The num­
ber of the last group is saved in the checkpoint records for
future "warm" starts. If a "warm" start was performed by direct­
access initialization, a check is made against the checkpoint record
to insure that the space required is within the allocated space.
Control is given to the console (local) initialization routine
by $XCTL.

HASP Initialization - Page 6.1.7

294

HAS P

Console Initialization - HASPIOVB

OS CONSOLE INITIALIZATION - Information is extracted from the OS
UCM and the Console processor is made ready for interfacing with
OS.

HASP CONSOLE INITIALIZATION - The Console DCTs are initialized
for HASP console support. Each DCT that was matched with.. a UCB
by the unit record initialization routine is initialized for I/O
processing. The corresponding authorization for each console
is converted to console restrictions and set into the DCT. The
operator command $S console is simulated.

Control is passed to the intercept initialization routine via $XCTL.

Intercepts Initialization - HASPIOVC

The following intercepts are made in accordance with the, type of
the HOST Operating System MVT or MFT and the HASP generation
options as follows:

SVC 0 - EXCP interface used for control of user I/O
SVC 6 - LINK interface used to recognize events within as
SVC 7 - XCTL interface used to recognize events within OS

and to interface with OS console support
SVC 35 - WTO interface for console support
SVC 36 - WTL interface for write to log support.

start Initiator, reader, and writer (optional) commands are issued
which start the procedures contained on SYSl.PROCLIB. The reader
will be directed to the pseudo device & RDR and the writer will be
directed (if started) to the pseudo device &WTR.

In the event the HASP writer is selected in lieu of the OS writer,
the HASP writer module "HASPWTR" is attached. If OS console sup­
port is selected, the HASP communications task is attached, via the
attaching of module "HASPBRl" which enters the console processor.

Control is passed to the HASP buffer building routine via $XCTL.

HASP Initialization - Page 6.1.8

295

HAS P

Buffer Build - HASPIOVD

An OS variable GETMAIN is issued to obtain storage for the alternate
buffer pool from the hierarchy as designated by the &BUFHICH
generation parameter. The actual amount of core is reduced by the
amount of reserved core (&RESCORE*1024) and used to determine the
number of buffers which may be created in the alternate buffer
pool along with the actual amount of storage needed. Extra core
if any is released via OS FREEMAIN. The number of buffers which
may be created in the alternate pool is compared against the
expression of generation parameters:

&MINBUF - &NUMBUF where &MINBUF ~ &NUMBUF = number of buffers
in the main buffer
pool

If the alternate buffer pool will not contain at least the number
of buffers specified by the expression a warning is issued.

The origin of the main and alternate buffer pools are examined to
determine which has the lower storage address. The pool with the
lowest address is created and chained to the $BUFPOOL chain of
buffers. The pool remaining is then created and chained to the
end of the first.

The operator is then asked to ENTER HASP REQUESTS (optional) and
the ROOT segment of HASP INITIALIZATION is entered via the $RETURN
ma~ro.

Activation Of Normal Processing

The ROOT SEGMENT returns the PCE to the Command Processor and, if
the operator specified REQ in the WTOR, enters the Command Proces­
sor. If NOREQ was specified by the operator, all HASP Processors
are $POSTed and the Command Processor is entered.

HASP Initialization - Page 6.1.9

296

HAS P

6.2 HASP INITIALIZATION SVC ROUTINE

6.2.1 HASP Initialization SVC Routine - General Description

This program is a Type-I SVC routine which resides in the Operating
System Nucleus and provides the following basic functions:

1. For HASP:

• To give HASP a zero storage protection key.
• To place HASP in supervisor state.
• To return the address of key symbols in the nucleus

which are required for HASP processing.
• To guard against recursive entries in order to prohibit

mUltiple copies of HASP from being initiated.
• To provide the address of an entry which will cause

the SVC routine to be reset for HASP withdrawal and
cause the PSW to be reset to its initial value.

2. For the HASP Reader/Interpreter Appendage:

• To place the HASP JCL Exit routine in supervisor
state.

• To return the left half of the PSW which was in use
when the SVC was invoked.

3. For the non-HASP program:

•

6.2.2

To give an indication to any other program as to
whether HASP is currently active or not.

HASP Initialization SVC Routine - Program Logic

This program is a Type-I OS SVC routine. It must be link-edited
with the nucleus to resolve the external address constants required
for HASP processing.

Upon entry, register 1 is compared with the EBCDIC characters "HASplI.
If the register does not compare, a condition code is returned to
the user in register 15 as follows:

Rl5 = 0 - HASP has not been initiated and is not currently
active.

R15 ~ 0 - HASP has been initiated and is currently active.

HASP Initialization - Page 6.2.1

297

HAS P

If register I contains "HASP", a test is made to determine if
HASP has been invoked. If not, then this switch is set to
indicate that HASP is now active and the left half of the PSW
is saved for the "reset entry".

If HASP has been invoked, the protect key of the caller is
interrogated. If this protect key is non-zero, the caller
is ABENDed with an appropriate ABEND code.

The SVC OLD PSW is modified so that the return to HASP will
place HASP in the supervisor state and give HASP a zero storage
protection key. Register I is then loaded with the address of
a table of address constants of key nucleus addresses and return
is made through the os SVC FLIH. At this time register 0 con­
tains the left half of the PSW which was in use when the SVC
was invoked.

One of the addresses in the nucleus address table is the address
of the SVC reset routine. When this routine is entered, it
resets the switch to indicate that HASP is no longer active. It
then returns to the user by loading a PSW constructed by con­
catenating the left half of the original PSW with register 14.

HASP Initialization - Page 6.2.2

298

HAS P

6.3 HASP OVERLAY BUILD UTILITY

6.3.1 HASP OVERLAY BUILD - GENERAL DESCRIPTION

The purpose of this program is to process the object deck
output from the ten primary HASP assemblies. Overlay CSECTs
are extracted and written (each as a single record) to the
sequential overlay data set (ddname OLAYLIB), all references
to overlays from resident and overlay routines are resolved,
and all resident CSECTs (even if programmed as overlayable)
are passed to the OS Linkage Editor in a sequential data set
(ddname SYSLIN). Optional control cards are processed which
allow changing the status of any overlayable CSECT from actual
overlay to permanently resident and vice-versa.

The use of this program to install HASP (control cards, list­
ings produced, etc.) is described in section 10.2.2.3, which
should be read as background to this description. Overlay
sJicvices and Roll logic, and Overlay Programming Rules are
de~cribed in sections 5.16, 4.20, and 12.14 respectively.

6.3.2 HASP OVERLAY BUILD - PROGRAM LOGIC

On initial entry, the time is sampled. A truncated "time­
like" value is saved. This value will be placed into one
resident CSECT and one overlay CSECT. During HASP Initiali­
zation, if these two values do not match, an error message
is produced and HASP terminates.

All data sets are OPENed and the listing title line is printed.
If the control card data set is present (ddname SYSIN), cards
are read, printed, and processed until end-of-file is encoun­
tered. Each card contains an overlayable CSECT name beginning
in column 1, which must begin with "HA$". A SYM table entry
is made for each such name. An Oeon (index into the Overlay
Table, HASPOTAB) is assigned and a priority, if present in
column 16 of the card, is remembered. This 'information is
later used to override the normal processing of that CSECT,
when encountered in the object decks. A listing header line
is printed at the end of control card processing.

All objects decks are p'rocessed as a single sequential input
data set (ddname SYSOBJ). Only the four object card types
ESD, TXT, RLD, and END; as documented in OS/360 Loader PLM,
Y28-6714, Figures 30-34; are processed. All other cards are
wiitten directly to SYSLIN. If an object card with a valid
ESID number greater than the program's table limits (internal
assembly variable &MAXESID) is encountered, the program abends
with a UOlOl code.

HASP Overlay Build Utility - Page 6.3.1

299

HAS P

ESO card processing is essentially the construction of two
Tables from ESO information. The SYM table contains the
names of and information about any external names under over­
lay control (i.e. beginning with "HA$"). It is a global
table covering all object decks together. A name is entered
when a reference to it or CSECT definition of it is first
encountered, or during control card processing as previously
described. An overlay name in an ESO card item is first
searched for in the SYM table, and if found, changes are
made to the'existing entry. An error message is produced
for each duplicate definition of a previously defined over­
lay CSECT name and only the first definition is used. An
Ocon is assigned to each entry. When a name becomes a de­
fined CSECT, if the fourth character is "0", the overlay
routine is actually to be made disk resident, and storage
is assigned to load its text.

The ESIO table is cleared at the beginning of each object
deck and constructed as ESO items are encountered, under
control of SYM table contents. It is a table of words, in
order by ESID number. TXT and RLD card processing access
this table only. It contains relocation values, Ocons, and
flags controlling the disposition of text and RLD items.

ESO items, for references to overlays or for definitions of
overlay CSECTs which are to be disk resident or are dupli­
cated, are eliminated from an ESO card when processed, before
the ESO card is written to SYSLIN. This elimination is done
by changing them to type NULL or, if type LO, by physically
removing them and compacting the card.

TXT card processing has "three possible results. Text be­
longing to an actual overlay is loaded into memory, subject
to relocation according to storage assigned by ESD proces­
sing. Text of any overlay CSECTwhich is a duplicate of one
encountered previously is discarded. Text of non-overlay
CSECTs or overlays being made permanently resident is written
un-altered to SYSLIN.

RLD card processing concerns individual RLO items, as follows.
If an item applies to a discarded duplicate overlay CSECT, it
is eliminated. If an item references a non-overlay CSECT,
it is left un-altered. An overlay reference item describes
a 2 byte Q type constant assembled in the expansion of the
$LINK, $LOAD, $XCTL, and $OCON macros. The reference is
resolved by substituting the Ocon value assigned to the ref­
erenced overlay routine, and the item is eliminated. If the
Q constant exists in an actual overlay routine, the Ocon value
is simply moved to the proper address of the text already load­
ed in memory. If the Q constant exists in a non-overlay CSECT
or overlay being made resident, a new TXT card containing the
Ocon value is created and written to SYSLIN. Eliminated items
are physically removed and the RLD card compacted before.
writing to SYSLIN.

HASP Overlay Build Utility - Page 6.3.2

300

HA S P

I

END card processing is really end-of-object-deck processing.
The card is written unchanged to SYSLIN. The entire SYM table
is then scanned for selected processing. Each actual overlay
whose text was loaded from the most recent object deck is
written to OLAYLIB as a fixed length record of length &OLAYSIZ
(internal assembly variable set to 1024 bytes in unmodified
HASP). A listing line is printed for each overlay CSECT de­
fined in the most recent deck, with its length and assigned
OCON value. Priority and disk address in two forms are printed
for actual overlays. An error message is printed if an actual
overlay length exceeds &OLAYSIZ~

Processing of multiple object decks continues as above until
end-of-file for SYSOBJ is signalled. The entire SYM table is
then processed to produce the Overlay Table, which is written
to SYSLIN as a new object deck (did not exist in the input)
containing a single resident CSECT, HASPOTAB •. An error mes­
sage is printed for any name in the SYM table which is ·still
not defined as a CSECT.

Each entry in HASPOTAB is 4 bytes or, if &DEBUG is set to YES,
12 bytes. The last 4 characters 'of the CSECT name are included
if entries are 12 bytes, to facilitate identification in a mem­
ory dump. If a routine is actual overlay (disk resident), the
TR (relative form) of disk address and the priority are placed
into the table entry for that routine. If an overlay routine
was written to SYSLIN by previous processing (to become per­
manently resident in the HASP load module), aV type constant
is created in its table entry. An appropriate RLD item refer­
encing the CSECT name is created.

When HASPOTAB is complete, an END card for it is written to
SYSLIN, all data sets are CLOSEd and the program terminates.
Completion code 0 is returned normally, 4 if duplicate CSECTs
were encountered, and 8 if any overlays were too long or
undefined.

HASP Overlay Build Utility - Page 6.3.3

301

HAS P

6.4 HASP REP ROUTINE

This routine gives the systems programmer the capability of
applying absolute or relocatable value patches to HASP, at
absolute or relocatable memory addresses, as part of the HASP
Initialization process.

6.4.1 REP Card Format

Columns
1
2-5
6
7-12

13-16
l7-blank

Contents
Any identification - ignored by REP routine
CSECT name, "REP", or "ABS"
Blank
Address at which to apply patch (6 hex digits)
or blank
Blank
Half word absolute value patches, 4 hex digits

each, separated by commas, patch data
terminated by first blank,

or one full word (8 hex digit) relocatable
-value patch, followed by a comma and the

name of the resident CSECT which defines the
relocatable part of the value

The above format allows patches to be applied at any absolute
memory location (by use of REP or ABS beginning in column 2) or
at addresses in HASP CSECTs (resident or overlay), subject to
relocation. Relocatable addresses should be taken directly from
a HASP assembly listing containing the CSECT to be patched. A
blank address field is interpretted as one greater than the last
address patched by the previous card, but the card will be used
only if columns 2-5 match those of the previous card.

The patches may be absolute values or one relocatable word per
card, whose value is relative to any resident HASP CSECT.
Relocatable values should be punched as if they were the assembled
value of an A type constant in the CSECT which defines the
referenced relocatable symbol.

Use of the term "CSECT name" in the above description means the
fifth and following characters of a HASP CSECT name, as taken from
the External Symbol Dictionary of a HASP assembly listing.

A deck of one or more REP cards should be terminated by a card
having "1*" punched in columns 1-2.

HASP REP Routine - Page 6.4.1

302

HAS P

6.4.2 REP Routine - Program Logic

REP cards, as described in Section 6.4.1, are read from the card
reader, whose address is given by the HASPGEN parameter $REPRDR,
immediately after the operator replys to HASP's initial WTOR, if
the operator specifies "REP" in the reply options. Each card is
listed on the printer, whose address is given by the HASPGEN
parameter $REPWTR, unless the operator specifies "NOLIST" in the
reply options. All I/O is performed using CPU instructions SIO
and TIO with the CPU disabled for all interruptions. Cards are
read and processed until a card having "/*" in columns I and 2
is encountered or until the card reader signals unit exception.

The value or data portion of each card is processed first. If
the value is relocatable (indicated by comma in column 25), eight
hex digits beginning in column 17 are converted to a binary, value.
The CSECT name (last four characters beginning in column 26) is
located in an internal table of standard resident module names.
A value is taken from this table which is the memory address at
which the resident module is loaded. This value is added to the
value taken from the card.

If the value portion is absolute, groups of four hex digits (sep­
arated by commas) beginning in column 17 are converted to binary
values until a blank is encountered instead of an expected comma .

. ~he values are concatenated to form a single variable length
binary value.

The address portion of the card is processed next. If non-blank,
six hex digits beginning in-column 7 are converted to a binary
address. An attempt is made to locate the to-be-patched CSECT
name (last four characters beginning in column 2) in the standard
resident module name table. If located, the loaded memory address
of the resident module is added to the address taken from the card.
If the CSECT name is not in the standard resident module name
table, the overlay table is searched to determine if the CSECT is
an overlay which was made permanently resident. If so, the non­
zero assembly origin of the overlay CSECT is subtracted from and
the loaded memory address is added to the address taken from the
card. In both of the above cases, the patch value as previously
computed is applied by moving it to the memory address determined
by one of the two methods described.

If the CSECT name is not located by either search just described,
it is assumed to be an overlay CSECT which is not permanently resi­
dent. The name, unrelocated address, and value are saved in a
reserved area, to be applied each time the overlay is read from
direct access during HASP operation.

If the address field of the card is blank, the to-be-patched CSECT
name is compared with that from the 'preceeding card. If they are
not equal, the card is ignored. Otherwise, the card is considered

HASP REP Routine - Page 6.4.2

303

HAS P

to be a continuation of the preceeding card and the patch value
is applied at the next higher memory address or saved as appro­
priate.

If no area was reserved to save patch information for application
to non-resident overlays (HASPGEN parameter &OREPSIZ=O) or if the
capacity of the reserved space is exceeded, the operator message
"OVERLAY REPPING ERROR" is issued and HASP operation is abortively
terminated.

HASP REP Routine - Page 6.4.3

304

HAS P

6.5 HASP ACCOUNTING ROUTINE

6.5.1 HASP Accounting Routine - General Description

The Accounting Routine accumulates statistics for each job at the
completion of the Punch phase and produces the HASP Account Card
(see Section 11) which is punched by the Punch Processor. This
feature is optional and may be deleted at HASPGEN time.

6.5.2 HASP Accounting Routine - Program Logic

The HASP Accounting Routine is a separately assembled overlay seg­
ment which gains control at the end of the Punch phase. Its func­
tion is to construct an accounting card such that the Punch
Processer can punch this card upon return.

Upon entry, the following registers contain the following information:

Register 1 - Address of the HASP Job Queue Entry Priority Byte.

Register 2 - Address of the Accounting Card Image Area.

Register 10 - Address of the HASP Job Control Table.

Register 14 - Return Address.

All registers must be saved and restored before return to HASP.

This routine blanks out the Accounting Card Image Area and then
extracts information from the HASP Job Control Table and HASP Job
Queue Entry and constructs the Accounting Card Image in the Account­
ing Card Image Area. Special consideration is made for the clock
passing midnight. In such cases the elapsed time is negative and
a correction factor (24 hours) must be added.

The accounting card which is normally punched when this routine
returns to the punch processor may be deleted by setting the
condition code to zero before returning.

HASP Accounting Routine - Page 6.5.1

305

HAS P

6.6 HASP DUMP ROUTINES

HASP provides two dump routines which are optionally included as
debugging aids. The HASP Dump Routine for printer formatted dumps
and the HASP High Speed Dump to Tape Routine are discussed in the
following sections.

6.6.1 HASP Dump Routine - General Description

The $Dump routine is available as a debugging aid (effective only
if &DEBUG=YES) and will, when the console PSW RESTART key is de­
pressed, dump memory according to specified limits.

6.6.2 HASP Dump Routine - Program Logic

This routine gains control via the PSW RES~ART key on the console.
Upon activation of the key, a specially formatted HASP PSW is loaded
from location HEX'O'. The format is HEX'0004000F' for the first
word; where· 0004 is the mask that allows only· a machine check inter­
rupt, and OOOE is the address of the printer that is referenced in
the routine. The second word will contain the address of the $Dump
routine of HASP. .

.once activated, $Dump will reference the low core address of HEX'34'
for its beginning limit. This limit defaults to a value that will
dump all of the memory unless the operator changes the limit prior
to pushing the PSW RESTART key. If· a change is desired, the limit
should be entered at its location in the following format:
HEX'OOXXXXXX'. Also, if an operator should care· to change the limit
while $Dump is activated, the routine will immediately note a change,
will immediately stop the previous dump, and will start dumping mem­
ory from the new limit. It should be noted at this point that a
machine check will destroy the limit values within their position
in core. To avoid undetected machine checks, however, the dump pro­
gram is, at all times, enabled for machine check interrupts.

The routine also allows the operator to route the printing to a
printer with an address other· than HEX'OOE'. A change of the
printer address in the HASP preformatted PSW, prior to activation
of $Dump, will accomplish this.

At the normal end of the routine, the system will be placed in a
"wait" state via the LPSW command. At this point in time, the reg­
isters will have been restored back to their values prior to $Dump
and the default limits of $Dump will have been returned to their
respective values.

HASP Dump Routines - Page 6.6.1

306

HAS P

6.6.3 HASP HIGH SPEED DUMP TO TAPE ROUTINE - GENERAL DESCRIPTION

The High Speed Dump to Tape Routine, available as an optional
debugging aid, dumps all of main storage to tape for post
processing by the IBM System/360 Operating System Service
Aids program IMDPRDMP or an equivalent processor.

6 .6. 4 HASP HIGH SPEED DUMP TO TAPE ROU'l'INE - PROGRAM LOGIC

ENTRY TO IDMTAPE - If the system programmer sets the HASPGEN
parameter &DMPTAPE to the address of an attached magnetic tape
drive the High Speed Dump to Tape Routine (IDMTAPE) will be
created to write on the specified drive when entered. Initial­
ization will display on the operator's console the message
"SET RESTART PSW TO 0004000000aaaaaa FOR TAPE DUMP" where
"aaaaaa" is the address of the entry point IDMTAPE. This
message not only verifies that the routine is present; it is
sufficient information for the operator to manually activate
the dump. Via the REP processing routine or via manual key
entries the system programmer or operator is able to insert
code within the system to detect errors and cause dumps by
program entry to the routine simulating the loading of the
requested PSW. (Example: set program new PSW as directed to
dump on the first program check.)

IDMTAPE assumes that the device generated is an appropriate
tape drive to use, that the tape is at load point ready for
writing, and that the recording mode status is correctly set.
If these conditions are not true unpredictable results will
occur.

CHANGING THE TAPE ADDRESS - The halfword located in storage
at IDMTAPE-4 contains the address of the tape drive upon which
the routine will write when entered. This address may be
altered manually to any other tape drive address as appropriate
prior to executing the routine.

PROGRAM LOGIC - The general registers and selected fixed
storage areas are saved in location 84 hexadecimal to be
compatible with the OS Service Aids dump program.

HASP control section locator elements are moved into low
storage adjacent to the fixed area information. These elements
contain the last four characters of the "HASPxxxx" control
section names of basic assembly modules. Following each CSECT
identification is the address of the beginning of the identi­
fied CSECT. (HASP control sections may then be easily located
in the dump after post processing.) Location 80 hexadecimal

HASP Dump Routines - Page 6.6.2

307

HAS P

is set to the negative of address 2048. Location 80 hexadecimal
for 4 bytes is written followed by 2048 bytes of storage (first
part of which contains saved data).

Each succeeding record is written by adding the address 2048
to the address in location 80 (hex), storing the memory protect
key in the high byte, "and writing 2052 bytes of storage (four
from location 80 (hex) and 2048 from the designated address) .
When the address is greater than zero the program new PSW is
set to provide an end of storage exit which, when entered,
will cause the writing of EOF, a rewind unload, and the loading
of a wait state PSW.

HASP Dump Routines- Page 6.6.3

308

HAS P

7.0 HASPGEN AND RMTGEN PARAMETERS

This section.describes the parameters used to specify
the HASP System,' HASP MULTI-LEAVING Remote Terminal
Programs, and the System/360 Model 20, STR Remote
Terminal Program.

Generation of the HASP System is. called HASPGEN, and
generation of the HASP MULTI-LEAVING Remote Terminal
Programs and the System/360 Model 20 STR Program
for HASP Remote Job Entry is called RMTGEN. Both
generation processes are described in Section 10.

HASPGEN and RMTGEN Parameters - Page 7.0.1

309

H. ASP

7.1 HASPGEN PARAMETERS

Generation of a HASP System invplves specification
of cer~ain parameters, called HASPGEN parameters.
With these parameters, the installatiqn system
p~ogrammer specifies the characteristics of the
System/360 or System/370 with which he will use
HASP and the optional HASP features he wishes to b~
included in the generated HASP System.

The following pages describe ~he HASPGEN parameters.
For each parameter there is an explanat~on, the de­
fault value, and frequently notes which expand upon
the explanation and refer to related HASPGEN
parameters.

The H~SPGEN parameters are given in alphabetical order
(neglecting the first character if it is & or $)
except for parameter $$x, which appears last.

HASPGEN Parameters - Page 7.1.1

310

HAS P

&ACCTNG

&ACCTNG

Explanation: Variable symbol &ACCTNG specifies the
HASP job accounting option. If it is specified as
YES, HASP will call the HASP accounting routine and
punch a HASP,accounting card for each job processed
by HASP. The specification must be either YES or NO.

Default: &ACCTNG=YES

Notes:
1. The HASP accounting routine and the HASP ac­

counting card are dis6ussed in other sections
of this manual.

2. If &NUMPUNS=O, parameter &ACCTNG should he
set to NO.

HASPGEN Parameters - Page 7.1.2

311

HAS P

&~UTORDR

&AUTORDR

Explanation: Variable symbol &AUTORDR specifies
the inclusion or exclusion of code in HASP to recog­
nize automatically when a physical card reader
available to HASP becomes ready. The specification
must be either YES or NO.

Default: &AUTORDR=YES

Notes:
1. If &AUTORDR=NO, HASP's physical card readers

remain in the INACTIVE state when they become
ready; the operator must issue a $SRDRn command
to cause HASP to begin reading cards from
READERn.

HASPGEN Parameters - Page 7.1.3

312

HAS P

&BSCCPU.

&BSCCPU

Explanation: Variable symbol &BSCCPU specifies inclusion
or exclusion in the HASP Remote Terminal Access Method
of support for HASP MULTI-LEAVING Remote Job Entry.

Default: &BSCCPU=NO

HASPGEN Parameters - Page 7.1.4

313

HAS P

&BSC2770

&BSC2770

Explanation: Variable symbol &BSC2770 specifies inclu­
sion or exclusion in the HASP Remote Terminal Access
Method of Remote Job Entry support for the 2770 Data
Communication System. The specification must be either
YES or NO.

Default: &BSC2770=NO

HASPGEN Parameters - Page 7.1.5

314

HAS P

&BSC2780

&BSC2780

E~lanation: Variable symbol &BSC2780 specifies inc1u-
810n or exclusion in the 'HASP Remote Terminal Access
Method of Remote Job Entry support for the 2780 Data
Transmission Terminal. The specification must be
either YES or NO.

Default: &BSC2780=NO

HASPGEN Parameters - Page 7.1.6

315

HAS P

&BSC3780

&BSC3780

Explanation: Variable symbol &BSC3780 specifies
inclusion or exclusion in the HASP Remote Terminal
Access Method of Remote Job Entry support for the
3780 Data Communications Terminal. The specifica-
tion must be either YES or NO. .

Default: &BSC3780=NO

HASPGEN Parameters - Page 7.1.6.1

315.1

HAS P

&BSHPRES

&BSHPRES

Explanation: Variable symbol &BSHPRES specifies
inclusion or exclusion in the HASP Remote Terminal
Access Method of support for the Space Compression/
Expansion feature of 2770 and 3780 terminals. The
specification must be either YES or NO.

Default: &BSHPRES=NO

Notes:
1. This support must be included if any terminal

will transmit to HASP using the Space
Compression/Expansion feature.

2. Use of this support for 'output to any termi­
nal is controlled by specification in the
RMTnn parameter for that terminal.

HASPGEN Parameters - Page 7.1.6.2

315.2

HAS P

&BSHPRSU

&BSHPRSU

Explanation: Variable symbol &BSHPRSU specifies inclu­
sion or exclusion of the HASP Remote Job Entry Printer
Interrupt feature for binary synchronous hardware
terminals. If this feature is included, the Remote
Terminal operator may interrupt printing to transmit
jobs or HASP commands to HASP. The specification
must be either YES or NO.

Default: &BSHPRSU=YES

Notes:
1. If &BSHPRSU=YES, HASP will recognize certain

control characters from the binary synchronous
hardware terminal which indicate that the printer
has stopped. The HASP Remote Terminal Operator's
Manual for hardware terminals contains more infor­
mation.

HASPGEN Parameters - Page 7.1.7

316

HASP

&BSHTAB

&BSHTAB

Explanation: Variable symbol &BSHTAB specifies in­
clusion or exclusion in the HASP Remote Terminal
Access Method of support for the Printer Horizontal
Format Control feature of 2770, 2780, and 3780 ter­
minals. The specification must be either YES or NO.

Default: &BSHTAB=YES

Notes:
1. Use of this support for any terminal is con­

trolled by specification in the RMTnn param­
eter for that terminal.

HASPGEN Parameters - Page 7.1.7.1

316.1

HAS P

$BSPACE·

$BSPACE

Explanation: Ordinary symb.ol $BSPACE specifies the
character which will be interpreted as the 360 hard­
ware defined hackspace character X'16'. The $BSPACE
character when entered on any OS controlled system
operator console will be removed from the command
text along with the previously entered character (if
any). Characters following the $BSPACE character
will be shifted ,left to replace the removed charac­
ters. The $BSPACE-edit is performed on all commands
entered via OS system operator command input sources
regardless of its position within the text of the
data entered. $BSPACE is active only for HASP Sys­
tems using the &NUMCONS=O option and does not apply
to HASP card reader or remote workstation sources.
$BSPACE is specified using the two hexadecimal digit
representation of the EBCDIC character.

Default: $BSPACE=5F

Notes:
1. The default specification indicates that the

EBCDIC character "~" is to be used to back­
space command entry on OS controlled system
operator consoles.

2. The character selected for the backspace func­
tion must be chosen with extreme caution since
it eliminates the use of that character (except
as a backspace operation) in all commands and
replies to WTORs.

HASPGEN Parameters - Page 7.1.7.2

316.2

HAS P

&BSVBOPT

&BSVBOPT

Explanation: Variable symbol &BSVBOPT specifies inclu­
sion or exclusion in the HASP Remote Terminal Access
Method of code to recognize an EM (End of Media) punch
in card images transmitted nontransparently by the
2780 Data Transmission Terminal. The specification
must be either YES or NO.

Default: &BSVBOPT=NO

HASPGEN Parameters - Page 7.1.8

317

HAS P

&BUFHICH

&BUFHICH

Explanation: Variable symbol&BUFHICH specifies the
storage hierarchy for which HASP initialization will
issue a GETMAIN in an attempt to get more than &NUMBUF
buffers for HASP. The specification must be either
o or 1.

Default: &BUFHICH=l

Notes:
1. &BUFHICH has meaning only with OS storage hier­

archy support.
2. See HASPGEN parameters &NUMBUF, &MINBUF and

&RESCORE for additional information concerning
the use of this parameter.

HASPGEN Parameters - Page 7.1.9

318

HAS P

&BUFSIZE

&-8 U FS I Z E

Explanation: Variable symbol &BUFSIZE specifies the
size in bytes of each HASP buffer. If the value
specified is not a multiple of eight, HASPGEN will
adjust it upward to a multiple of eight. The speci­
fication must be an integer not larger than the track
size of any SPOOL device and not smaller than the
number given by

300+2*&NUMDA*&NUMTGV/8+5*S+8*F
where S = maximum allowable number of SYSOUT

speci~ications per job, including
special' forms requests

F = maximum allowable number of special
forms requests per job.

Default: &BUFSIZE=688

Notes:
1. The above formula is. the approximate size of a

HASP control block called the JCT. &BUFSIZE is
the data length of each physical record on the
portion of a SPOOL volume used by HASP, and
JCTs are written on SPOOL volumes. A JCT's ini­
tial size is about 300 + 2*&NUMDA*&NUMTGV/8; it
increases in size as a job is being executed.
When HASP recognizes a job step change, the JCT
is increased in size by five bytes for each n6n­
special-forms SYSOUT data set, or by thirteen
by~es for each speci~l-forms SYSOUT data set,
that was written upon since the previously­
recognized step change. But if an increase of
five (or thirteen) bytes would cause the JCT
size to become greater than &BUFSIZE, HASP in­
stead writes to operator the me'ssage

JeT OVERFLOW--OUTPUT LOST
for the SYSOUT data set, and its output is lost.

2. The default &BUFSIZE of 688 is optimized for the-
2314 track size. If &NUMTGV and &NUMDA are left
at their default values of 400 and 2, the
&BUFSIZE default allows a maximum of 37-- (no
speoia1 forms>' and a minimum of 14 (all special
forms) SYSOtiT data sets per job. A good value
of &BUFSIZE optimized for the 3330 would be 736.

3. &BUFSIZE must be 416 or greater if &XBATCHC is
altered from its default null value.

4~ &BUFSIZE must be 536 or greater if 3211 printers
are used by HASP.

HASPGEN Parameters - Page 7.1.10

319

HAS P

$CKPTlME

$CKPTIME

Explanation: Ordinary symbol $CKPTIME specifies the
interval, in seconds, at which certain HASP informa­
tion will be checkpointed for warm start purposes·.

Default: $CKPTlME=60

Notes:
1. The time interval specified is a maximum. Check­

points are also taken when a job changes its
status in the HASP job queue.

2. The section of this manual describing the HASP
checkpoint processor describes the checkpoint
information.

HASPGEN Parameters - Page 7.1.11

320

HAS P

&CLS(n)

Explanation: Subscripted variable symbols &CLS(n)
specify HASP job classes. The nth HASP logical
partition may select for OS execution a job from
the HASP job queue only if the job's class (specified
by the user in the CLASS=parameter of the JOB card,
or defaulted to A) is one of the characters specified
in the &CLS(n) parameter or specified by the operator
in the set command, $T Imm,list (where &PID(n)=mm).
Each specification must be a 1- to 8-character string
of valid HASP job classes. The same HASP job class
may be specified in two or more specifications.

Default: &CLS(l)=A

Notes:

&CLS(2)=BA
&CLS(3)=CBA
&CLS(4)=DCBA
&CLS(S)=EDCBA
&CLS(6)=FEDCBA
&CLS(7)=GFEDCBA
&CLS(8)=HGFEDCBA
&CLS(9)=IHGFEDCB
&CLS(lO)=JIHGFEDC
&CLS(ll)=KJIHGFED
&CLS(12)=LKJIHGFE
&CLS(13)=MLKJIHGF
&CLS(14)=NMLKJIHG
&CLS(15)~ONMLKJIH

1. Only the first &MAXPART specifications, &CLS(l)
through &CLS(&MAXPART), will be used.

2. If &MAXCLAS is specified less than 8, only the
first &MAXCLAS characters of each specification
&CLS(n) will be used.

&CLS(n)

HASPGEN Parameters - Page 7.1.12

321

HAS P

&CONAUTH

&CONAUTH

Explanation: Variable symbol &CONAUTH specifies the
HASP command authorization of each of the eight possible
HASP physical consoles when HASP console support is
included in the generated HASP system. The specifi­
cation must be a string of up to eight numeric digits,
each of which may range from 0 to 7 and is the sum
of the desired authorizations for its respective
console (leftmost digit for CONSOLE 1, next digit
for CONSOLE2, etc.) as follows:

1 - System Control (including OS) Commands
2 - Device Control Commands
4 - Job Control Commands.

Default: &CONAUTH=77777777

Notes:
1. Any HASP console's command authorization may be

changed from a console with System Control
Command authority.

2. If &NUMCONS=O, parameter &CONAUTH is not used.
3. All HASP consoles are authorized for the issuance

of Display Commands.

HASPGEN Parameters - Page 7.1.13

322

Ii ASP

&DEBUG.

&DEBUG

Explanation: Variable symbol &DEBUG specifies in­
clusion or exclusion of debugging code in the gen­
erated HASP system. The specification must be either
YES or NO.

Default: &DEBUG=NO

Notes:
1. The &DEBUG option is independent of the &TRACE

option.
2. If &DEBUG is specified as YES, HASP includes,

in addition to other debugging code, a core
dump routine.

HASPGEN Parameters - Page 7.1.14

323

HAS P

$DELAYCT

I

$DELAYCT

Explanation: Ordinary symbol $DELAYCT specifies a
delay factor to be applied by the HASP Remote Termi­
nal Access Method when transmitting to a Multi-Leaving
System/360 Model 20 Submodel 2 or 4 Remote Terminal
over a high-speed (19,200 baud or greater) teleproc­
essing line, to avoid the possibility of certain line
errors. The specification must be an integer greater
than zero. Recommended values for some central CPUs
are:

Model
Model
Model
Model
Model
Model
Model
Model
Model
Model
Model

195 -
91 -
85 -

165 -
75 -
65 -

155 -
50 -

145 -
135 -

40 -

8000
4000
3000
3000

500
256
256
100
100

50
1

Values for other CPUs may be interpolated based on
CPU speed.

Default: $DELAYCT=256

HASPGEN Parameters - Page 7.1.15

324

HAS P

&DMPTAPE

&DMPTAPE

Exelanation: Variable symbol &DMPTAPE specifies a
un~t address to be used with the HASP dump program.
The specification must be a valid unit address. If
the specification is not 000, the address is assumed
to be that ofa tape drive and the generated HASP
system will include a dump-to-tape program for that
tape drive. The tape produced by this program may
be printed using FE Service Aid IMDPRDMP.

Default: &DMPTAPE=OOO

Notes:
1. This parameter does not affect inclusion of the

HASP dump-to-printer program, which is always
assembled if &DEBUG=YES. To use the dump-to-tape
program the operator must set location 0 as in­
dicated in an operator message produced by HASP
initialization, make the tape drive ready for
writing, and push PSW RESTART.

2. This facility is provided as an aid to the
system programmer and may not operate correctly
in all environments or with other than the
IMDPRDMP program provided with Release 19 of
as. No maintenance will be provided for this
facility. Installations unable to utilize this
support as distributed should utilize the service
aid IMDSADMP to produce dump tapes.

HASPGEN Parameters - Page 7.1.16

325

HAS P

$ESTIME

$ESTIME

Explanation: Ordinary symbol $ESTlME specifies
the default estimated execution time, in minutes,
for a job. The specification must be an integer
greater than zero.

Default: $ESTlME=2

Notes:
1. If a user does not specify in the accounting

field of his job card a value for estimated
execution time, the value $ESTIME is used.

2. All timings performed by HASP are in real
time. The timing for estimated execution
time begins when HASP allows its OS Reader/
Interpreter to start reading the job.

HASPGEN Parameters - Page 7.1.17

326

HAS P

$ESTLNCT

$ESTLNCT

Explanation: Ordinary symbol $ESTLNCT specifies
the default estimated print line count, in thou­
sands of lines, for a job. The specification must
be an integer greater than zero.

Default: $ESTLNCT=2

Notes:
1. If a user does not specify in the accounting

field of his job card a value for estimated
print line count, the value $ESTLNCT is used.

HASPGEN Parameters - Page 7.1.18

327

HAS P

$ESTPUN

$ESTPUN

Explanation: Ordinary symbol $ESTPUN specifies
the default estimated punched card count, in cards,
for a job. The specification must be an integer
greater than zero.

Default: $ESTPUN=lOO

Notes:
1. If a user does not specify in the accounting

field of his job card a value for estimated
card count, the value $ESTPUN is used.

HASPGEN Parameters - Page 7.1.19

328

HAS P

&FCBV

Explanation: Variable symbol &FCBV specifies in­
clusion or exclusion of the 3211 Variable Forms
Control Buffer loading capability. If set to YES,
the "V" specified FCB image is generated and the
code to support the $TF ..• command is included.
The specification must be either YES or NO.

Default: &FCBV=NO

HASPGEN Parameters - Page 7.1.19.1

328.1

&FCBV

HAS P

(The remainder of this page intentionally left blank.)

328.2

HAS P

&INITSVC

&INITSVC

Explanation: Variable symbol &INITSVC specifies the
SVC number of the HASP SVC. The specification must

·be an integer between 200 and 255, inclusive.

Default: &INITSVC=255

Notes:
1. The specification for &INITSVC must correspond

to a use at SYSGEN time of the OS SYSGEN macro­
instruction SVCTABLE. The HASP SVC is a type-l
SVC and must be included in the OS Nucleus before
HASP can be used. After HASPGEN has completed,
the object deck for the HASP SVC is member
HASPSVC of partitioned data set SYS1.HASPOBJ.
For further discussion, see the section on in­
stalling HASP.

HASPGEN Parameters - Page 7.1.20
329

HAS P

&JITSIZE

I

&JITSIZE

E~anation: Variable symbol &JITSIZE specifies the
n er of bytes per entry of the HASP job information
table. The specification must be an integerrgreater
than or equal to 8, or equal to 0, but never so large
that the value

&MAXJOBS*&JITSIZE

is greater than the track size of the device upon
which SPOOLI is mounted.

If &JITSIZE=O, the HASP commands with OS job names
as operands will be inoperative.

Default: &JITSIZE=O

Notes:
1., The recommended specifications for &JITSIZE are

\ 0 and 8. If &JITSIZE is set greater than 8,
the additional space generated in the job in­
formation table will not be used by HASP.

2. If &JITSIZE is specified greater than zero, the
job information table will be checkpointed on
SPOOLI whenever it changes.

HASPGEN Parameters - Page 7.1.21

330

HAS P

$LINECT

$LINECT

Explanation: Ordinary symbol $LINECT specifies the
default maximum number of lines to be printed per
page of a job's printed output.

Default: $LINECT=61

Notes:
1. If a user does not specify in the accounting

field of his job card a value for line count,
the value $LINECT is used.

2. Setting $LINECT=O will cause automatic page
overflow, normally provided by HASP, to be sup­
pressed unless overridden by the job card ac­
counting parameter (see note 1) .

3. If a print data set 1S generated without any
ejects (no skips to any channel in the carriage
tape), and if $LINECT=O or if the "linect"
parameter on the job card of the job producing
the data set is zero, then that data set will
be treated as one page when forward spaced,
backspaced, interrupted, or warm started while
printing.

HASPGEN Parameters - Page 7.1.22

331

HAS P

LINEmm

Code Letters

nun

aaa

1

1

c

LINEmm

Explanation: Ordinary symbols LINEmm specify the
characteristics of teleprocessing lines to be used
by HASP Remote Job Entry. Lines must be defined con­
secutively, starting with LINEOI. Each specification
must be a 5-character string of the form

LINEmm=aaalc
where the letters represent the following:

Range

01-99

OOO-FFF

0-5

0-5

0-3

Descript.ion

Line Number

STR or BSC Adapte'r Address (See Note 2)

Line Description as follows:

STR Lines

0 = Interface A - 2 wire Half-Duplex
1 = Interface A - 4 wire Half-Duplex
2 = Interface A - Full-Duplex
3 = Interface B - 2 wire Half-Duplex
4 = Interface B - 4 wire Half-Duplex
5 = Interface B - Full-Duplex

BSC Lines

0 = Interface A - Half-Duplex (1200-9600
baud) .

1 = Interface A - Full-Duplex (1200-9600
baud)

2 = Interface A - Full Duplex (19.2-230.4
k-baud)

3 = Interface B - Half-Duplex (1200-9600
baud)

4 = Interface B - Full-Duplex (1200-9600
baud)

5 = Interface B - Full-Duplex (19.2-230.4
k-baud)

Clock/Code as follows:

STR Lines

0 = Internal Clock X
1 = Internal Clock y
2. = Internal Clock Z
3 = External Clock

HASPGEN Parameters - Page 7.1.23

332

HAS P

Code Letters Range DescriEtion

0-7 BSC Lines

0 .- Code A - EBCDIC - No Transparency
1 = Code A - EBCDIC - Transparency
2 = Code A - USASCII - No Transparency
3 = Code A - USASCII - Transparency
4 = Code B - EBCDIC - No Transparency
5 = Code B - EBCDIC - Transparency
6 = Code B - USASCII - No Transparency
7 = Code B - USASCII - Transparency

Default: LINEmm=***Ol

Notes:
1. Parameter &NUMLNES must specify the number of

specifications LINEmm to be included in the gene­
rated HASP system.

2. The unit address aaa may be specified as ***.
HASP initialization will assign unit addresses
to lines whose unit addresses are specified as
*** by scanning the OS UCBs. A teleprocessing
UCB whose device type field specifies a 2701
STR adapter, a 2701 BSC adapter, or a 2703 BSC
adapter will be recognized as a UCB defining a
line. If the unit address of such a UCB is not
specified explicitly in' any of the first &NUMLNES
line definitions LINEmm, HASP initialization
will assign the UCB to the first line number
whose unit .address is specified *** and will
change the *** to the EBCDIC address specified
in theUCB, unless no line definition remains whose
unit address is ***, or if (except for M65MP and
a2-CPU multiprocessor) a TIO shows the line riot
operational, or if (for M65MP and a 2-CPU multi­
processor) the UCB is marked off-line: in that
case HASP will not use the line.

3. If a line specification LINEmm designates USASCII,
that line cannot be used with any but 2770 and
2780 USASCII terminals. HASP will translate each
record it receives into EBCDIC, and each record
it transmits into USASCII before transmission.

HASPGENParameters - Page 7.1.24

333

HAS P

&LOGOPT

&LOGOPT

Explanation: Variable symbol &LOGOPT specifies in­
clusion or exclusion of code to support the HASP
System Log feature. The specification should be
either YES or NO.

Default: &LOGOPT=YES

Notes:
1. The HASP System Log is a listing included in

each user's output of console messages that
were produced during processing of the job and
of replies to WTORs issued during processing
of the job.

2. If &LOGOPT=YES, the HASP System Log may be
suppressed on an individual job basis through
a parameter in the accounting field of the
job card.

3. If ·the HASP System Log is suppressed, the HASP
statistics information normally printed with
the job is also suppressed.

HASPGEN Parameters - Page 7.1.25

334

HAS P

&MAXCLAS

Explanation: Variable symbol &MAXCLAS specifies
the maximum number of job classes which may be
specified via the HASP command $T In,list for a
HASP logical partition. The specification must
be an integer from 1 to 64, inclusive.

Default: &MAXCLAS=8

Notes:
1. If &MAXCLAS is specified as less than 8, then

no more than &MAXCLAS characters may be speci­
fied for each of the parameters &CLS(n).

&MAXCLAS

HASPGEN Parameters - Page 7.1.26

335

HAS P

&MAXJOBS

&MAXJOBS

Explanation: Variable symbol &MAXJOBS specifies the
maximum number of jobs that can be in the HASP System
at any given time., The specification must be an
integer greater than zero.

Default: &MAXJOBS=lOO

Notes:
1. This variable does not affect the range of

HASP job numbers, which is 1 to 999.
2. This variable strongly influences the size of

the HASP checkpoint record(s). The size of
the first checkpoint record is

16* (&MAXJOBS+&NUMPRTS+&NUMTPPR) +
&NUMDA*((&NUMTGV+7)/8)+40.

The size of the second checkpoint record is
&MAXJOBS*&JITSIZE.

If either checkpoint is longer than. the track
size of the device on which SPOOLl is mounted,
HASP will not warm start correctly.

HASPGEN Parameters - Page 7.1.27

336

H ~ S P

&MAXPART

&MAXPART

Explanation: Variable symbol &MAXPART specifies,
for both MFT and MVT, the number of HASP logical
partitions to be defined. The specification must
be an integer between 1 and 15, inclusive.

Default: &MAXPART=&MAXXEQS

Notes:
1. The nth logical partition is further defined

by the specifications &PRI(n), &OSC(n), and
&CLS(n) •

HASPGEN Parameters - Page 7.1.28

337

HAS P

&MAXXEQS

&MAXXEOS

Explanation: Variable symbol &MAXXEQS specifies
the maximum number of jobs which may concurrently
be active in the HASP Execution phase. The speci­
fication must be an integer greater than zero.

Default: &MAXXEQS=3

Notes:
1. See also &MAXPART, the variable which deter­

mines the number of HASP logical partitions.

HASPGEN Parameters - Page 7.1.29

338

HAS P

&MINBUF

&MINBUF

Explanation: This variable is provided to allow instal­
lations, which depend on the dynamic buffer construction
feature of HASP, to detect the condition where sufficient
buffers for proper operation cannot be obtained. The
specification should be an integer value representing
the minimum number of buffers determined as necessary
for the installation (see &NUMBUF).

Default: &MINBUF= 3*&MAXXEQS+2*&NUMRDRS
+&NUMINRS+2*&NUMPRTS+&NUMPUNS
+&NUMTPBF

Notes:
1. HASP wiil automatically attempt to utilize, via a

variable GETMAIN, any free space in its region or
partition (hierarchy indicated by &BUFHICH) as
additional buffers. If .the number of buffers so
obtained when added to the variable &NUMBUF is less
than the value of &MINBUFthe warning message

&MINBUF BUFFERS NOT AVAILABLE
will be issued during HASP initialization and pro­
cessing will continue.

2. Since the changing of HASPGEN options, local
modifications and/or OS changes can affect the
number of HASP buffers, proper setting of this
variable can prevent a possible undetected perfor­
mance degradation.

3. See the des.cription of HASPGEN parameters &NUMBUF,
&BUFHICH and &RESCORE for related information.

HASPGEN Parameters - Page 7.1.30

339

HAS' P

&MLBFSIZ

&MLBFSIZ

Explanation: Variable symbol &MLBFSIZ specifies the
size in bytes of each HASP Multi-Leaving buffer.
The specification for &MLBFSIZ must be a positive
integer no larger than &TPBFSIZ.

Default: &MLBFSIZ=400

Notes:
1. The value specified for &MLBFSIZ automatically

becomes the Multi-Leaving buffer size in each
HASP Multi-Leaving Remote Terminal program.

2. Satisfactory support of one device of each type
(reader, printer, punch, console) on 8K termi­
nal CPUs is based on the assumption that
&MLBFSIZ=400 or less. If the supported termi­
nals include any 8K CPUs, it is recommended
that &MLBFSIZ not be increased above 400, even
if support of a non-programmable terminal re­
quires increasing &TPBFSIZ to 512.

HASPGEN Parameters - Page 7.1.31

340

HAS P

&MONINTV

&MONINTV

Explanation: Variable symbol &MONINTV specifies the
interval in seconds at which the HASP Execution Task
Monitor will examine CPU utilization characteristics
and, if necessary, modify dynamically the order in
the TCB chain, of all HASP-controlled job step tasks
which fit Execution Task Monitor criteria. The speci­
fication should be an integer between 0 and 10 inclu­
sive. If &MONINTV is specified as zero, the Execution
Task Monitor is excluded from the generated HASP
system.

Default: &MONINTV=5

Notes:
1. See also parameters &XZPRTY (for MVT), &XZMFTL,

and &XZMFTH (for MFT).
2. as Time Slice Groups must not be assigned to

the priority level or partitions monitored by
the Execution Task Monitor.

3. Users must not specify TIME=1440 in job or
execute cards. Such specifications will cause
the jobstep TQE not to be created by OS thus
forcing the job HIGH in the dynamic group.

HASPGEN Parameters - Page 7.1.32

341

HAS P

&NOPRCCW

&NOPRCCW

Explanation: Variable symbol &NOPRCCW specifies the
maximum number of channel command words per channel
program for local printers.

Default: &NOPRCCW=lS

HASPGEN Parameters - Page 7.1.33

342

HAS P

&NOPUCCW

&NOPUCCW

Explanation: Variable symbol &NOPUCCW specifies the
maximum number of channel command words per channel
program for local punches.

Default: &NOPUCCW=lO

HASPGEN Parameters - Page 7.1.34

343

HAS P

&NUMBUF

&NUMBUF

Explanation: This variable symbol indicates the number
of INPUT/OUTPUT buffers to be included in the HASP
load module and should normally be set by each instal­
lation, according to the formulae below, to reflect the
total number of buffers required for proper operation
of HASP. However, since HASP will automatically utilize
free space in its region or partition to dynamically
construct additional buffers, there are circumstances
when &NUMBUF may be set to a value less than the actual
number of buffers required for proper HASP operation.
In this case, it is assumed that sufficient additional
buffers will be dynamically obtained from free storage
in the HASP region/partition to provide an adequate
total number of buffers (see &MINBUF and &RESCORE).
This facility could be used, for example, to allow
additional buffers to reside in a storage hierarchy
different from that of the HASP load module (see &BUFHICH)
or to provide a HASP whose size (and performance and
function) can be controlled by the ~etting of the region
or partition size.

Default: &NUMBUF=IS

Notes:
1. In order to utilize all the dynamic storage con­

tained in the" HASP load module for the initialization
process, the value of &NUMBUF must never be less
than the value

1+6000/(80+&BUFSIZE)
2. Since all HASP .buffers are maintained in a dynamic

pool until required by an active function, instal­
lation should determine the appropriate number of
buffers for HASP based on predicted simultaneity
of the various functions required at the installa­
tion. The following indicates the number of buffers
required for each logical function. A defined
function which is inactive requires no buffers.

Each local input function
Each internal reader
Each Remote Input function
Each local print function
Each remote print function
Each local punch function
Each remote punch function
Each OS job execution

--2
--1
--1
--2 (I if $PRTBOPT=l)
--1 (2 if $RPRBOPT=2)
--1 (2 if $PUNBOPT=2)
--1 (2 if $RPUBOPT=2)
--2 (minimum value)

HASPGEN Parameters - Page 7.1.35

344

HAS P

For performance reasons, additional buffers must
be available to sustain periods of hiqh SYSIN/
SYSOUT activity by jobs being processed by os.
It is therefore recommended that additional buffers
(beyond the, requirements indicated above) be inclu­
ded corresponding to the value: l+&MAXXEQS.

SEVERE PERFORMANCE AND/OR DEVICE DEGRADATION CAN
OCCUR IN A SYSTEM CONTAINING INSUFFICIENT BUFFERS
TO PERFORM THE REQUIRED FUNCTIONS.

3. To avoid a complete system failure caused by a
buffer "lock-out" condition, the number of available
buffers must never be less than the value

. &MAXXEQS+&NUMRDRS+&NUMTPES+l
+&NUMPRTS*($PRTBOPT-l)
+&NUMPUNS*($PUNBOPT-l)
+&NUMTPPR*($RPRBOPT-l)
+&NUMTPPU*($RPUBOPT-l)

HASPGEN Parameters - Page 7.1.36

345

HAg. P

&NUMCONS

&NUMCONS

Explanation: Variable symbol &NUMCONS specifies the
type of console support to be provided by HASP. Two
options are available: console support controlled
totally by HASP or a HASP interface to the standard
OS Console processors.

The specification &NUMCONS=n (n an integer between
one and eight) causes HASP to support directly as
many as n consoles. The devices which may be used
as consoles are 1052, 1053, 3210, 3215, 2260 and
1443. The 1053s and 2260s must be attached locally
via a 2848.

The specification &NUMCONS=O causes HASP to interface
with the OS console support, including the MeS op­
tion. All devices available with the OS console
routines are supported through this interface.

Default: &NUMCONS=O

Notes:
1. If &NUMCONS=O is specified, then all HASP func­

tions with the exception of those listed below
are provided.

a. Non-HASP Message, e.g., problem program
WTOs, will appear on the console(s) with­
out time tags or HASP Job numbers. A copy
of the message which includes the Job num­
ber and time tag is placed in the HASP
System Log.

b. WTORs issued by the problem program will
be included in the HASP Log without the
OS assigned reply identification number.

c. Only the first line of multi-line WTOs
isiued by pr6blem programs running under
HASP will be included in the HASP Systems
Log.

2. If OS Multiple Console Support or M65MP or the
Time Sharing Option have been SYSGENed and are to
be used with HASP, then &NUMCONS should be speci­
fied as -zero.

HASPGEN Parameters - Page 7.1.37

346

HAS P

I

3. If &NUMCONS greater than zero is specified and if
HASP initialization finds more than &NUMCONS de­
vices of the type supported then the message

MAXIMUM OF &NUMCONS CONSOLE(S) EXCEEDED

is issued and HASP uses as consoles the devices
with the lowest unit addresses starting with the
first 1052, 3210 or 3215 and continuing with the
next &NUMCONS-1 devices.

4. 2260 and 1053 support (&NUMCONS greater than
zero) is dependent on additional specifications
via the variables &SIZ2260 and &SPD2260.

5. If &NUMCONS is specified greater than zero, HASP
will intercept and process all WTOs and WTORs,
ignoring all MCS information. In particular,
HASP will ignore all routing codes. Thus, for
example, a WTO with ROUTCDE=ll will be written
on HASP consoles and on the HASP System Log but
not in an as System Message Block.

6. See parameter &CONAUTH, &WTLOPT and &LOGOPT for
additional information.

7 • See Chapter 12, Section 12.7.2, for other re­
strictions on &NUMCONS>O.

HASPGEN Parameters - Page 7.1.38

347

HAS P

&NUMDA

&NUMDA

Explanation: Variable symbol &NUMDA specifies
the maximum number of direct-access volumes which
may be mounted concurrently as SPOOL volumes. The
specification must be an integer greater than zero.

Default: & NUMDA=2

Notes:
1. All direct-access devices except 2321s are

eligible for use as SPOOL devices.
2. Specifying &NUMDA greater than the default may

require increasing the value of &BUFSIZE.
3. If HASP initialization finds mounted more than

&NUMDA direct-access volumes whose volume
serials begin with the characters SPOOL, it
will write to operator the message

MAXIMUM OF &NUMDA SPOOL VOLUME(S) EXCEEDED
and HASP will quiesce.

4. This variable influences the size of the HASP
checkpoint record; see Note 2 of variable
&MAXJOBS.

5. An associated variable is &NUMTGV.

HASPGEN Parameters - Page 7.1.39

348

HAS P

&NUMDDT

&NUMDDT

Explanation: Variable symbol &NUMDDT specifies the
number of Data Definition Tables (DDTs) to be assem-­
bled into HASP. The specification should be an
integer between 3 and 256, and equal to

2 + &MAXXEQS + A + B + C + D + E
where

A = number of pseudo-2540 readers defined at
SYSGEN time

B = number of pseudo-2540 punches defined at
SYSGEN time

C = number of pseudo-1403 printers defined at
SYSGEN time

D = number of pseudo-1442 punches defined at
SYSGEN time

E = number of pseudo-1443 printers defined at
SYSGEN time

Default: &NUMDDT=20

Notes:
1. Pseudo-units for &RDR and &WTR need not be

counted in &NUMDDT.

HASPGEN Parameters - Page 7.1.40

349

\>

HAS P

&NUMINRS

&NUMINRS

Explanation: Variable symbol &NUMINRS specifies
the number of 2520 pseudo-punches to be used by the
generated HASP System as internal readers.

Default: &NUMINRS=O

Notes:
1. If &NUMINRS is specified as or defaulted to

zero, code to support the HASP internal reader
feature will be deleted from the generated
system.

2. If more than &NUMINRS 2520 pseudo-punches have
been specified at SYSGEN time, only the first
&NUMINRS 2520 pseudo-punches can be used. It
is permissible to specify &NUMINRS greater
than the number of 2520 pseudo-punches speci­
fied at SYSGEN time.

3. The count of 2520 pseudo-punches is not
included in HASPGEN variable &NUMDDT.

HASPGEN Parameters - Page 7.1.41

350

HAS P

&NUMLNES

&NUMLNES

Explanation: Variable symbol &NUMLNES specifies
the largest teleprocessing line identi·fication
number (nun in LINEmm) and thus the number of line
definitions which are to be used by the generated
HASP System. The specification must be an integer
between Q and 99 inclusive. The specification for
&NUMLNES automatically becomes the specification
for &NUMRJE, unless &NUMRJE is specified explicitly.

Default: &NUMLNES=Q

Notes:
1. See also the HASPGEN variable LINEmm.
2. If &NUMLNES is set to or left at zero, all

other Remote Job Entry parameters should
be left at their default values.

HASPGEN Parameters - Page 7.1.42

351

HAS P

& NUMOACE

&NUMOACE

Explanation: Variable symbol &NUMOACE specifies the
. number of overlay areas to be provided for the standard

HASP Overlay feature. The specification must be an
integer greater than zero.

Default: &NUMOACE=l

Notes:
1. It is judged that more than two overlay areas

will benefit only a system with high performance
orientation (a ~ery fast CPU or a work load con­
sisting of a large number of short jobs).

2. See also parameter &OLAYLEV.

HASPGEN Parameters - Page 7.1.43

352

HAS P

&NUMPRTS

I

&Nl1MPRTS

Explanation: Variable symbol &NUMPRTS specifies th~
maximum number of physical printers HASP may use to
print the printed output of jobs. HASP supports 1403
and 3211 printers. Th:e specification must be an
integer greater than zero.

Default: &NUMPRTS=2

Notes:
1. If HASP initialization finds more than &NUMPRTS

1403 and 3211 printers, it writes to operator
the message

MAXIMUM OF &NUMPRTS PRINTER(S) EXCEEDED
and continues normally, using as printers only
the &NUMPRTS printers with lowest unit
addresses. •

2. Regardless of the number specified for &NUMPRTS,
HASP will use only those 1403 and 3211 printers
which are operational (as.shown by a TIO) or
on-line (for M65MP only) when HASP is started.

3. Handling of special forms by printer, the op­
tional 1403 UCS buffer, and the 3211 UCS and
Forms Control buffers are explained as part of
the $T operator command.

4. This variable influences the size of the HASP
checkpoint record; see Note 2 of variable
·&MAXJOBS.

5.&BUFSIZE must be 536 or greater if 3211 printers
are used by HASP.

HASPGEN Parameters - Page 7.1.44

353

&NUMPUNS

&N UMP UN S

Explanation: Variable symbol &NUMPUNS specifies
the maximum number of physical punches which will
be used by HASP to punch the punched output of
jobs. HASP s~pports 3525, 2540, 2520, and 1442
card punches. The specification must be an integer
greater than or equal to zero.

Default: &NUMPUNS=l

Notes:
1. If HASP initialization finds more than &NUMPUNS

3525, 2540, 2520 and 1442 punches, it writes to
operator the message

MAXIMUM OF &NUMPUNS PUNCH(S) EXCEEDED
and continues normally, using as printers only
the &NUMPUNS punches with lowest unit addresses.

2. Regardless of the number specified for &NUMPUNS,
HASP will use only those 3525, 2540, 2520 and
1442 punches which are operational (as shown by
a TIO) or on-line (for M65MP only) when HASP is
started.

3. If &NUMPUNS=O, parameter &ACCTNG should be set
to NO.

HASPGEN Parameters - Page 7.1.45

354

HAS P

&NUMRDRS

I

I

I

&NUMRDRS'

Explanation: Variable symbol &NUMRDRS specifies the
maximum number of physical card readers HASP may use
to read OS job streams. HASP supports 3505, 2540
and. 2501 card readers. The specification must be an
integer greater than zero.

Default: &NUMRDRS=l

Notes:
1. If HASP initialization finds more than &NUMRDRS

3505, 2540 and ·2501 card readers, it writes to
operator the message

MAXIMUM OF &NUMRDRS READER(S) EXCEEDED
and continues normally, using as readers only
the &NUMRDRS readers with lowest unit addresses.

2. Regardless of the number specified for &NUMRDRS,
HASP will use only those 3505, 2540 and l 250l
readers which are operational (as shown by a
TIO) . or on -line (for M6 5r~p only) when HASP is
started.

HASPGEN Parameters - Page 7.1.46

355

HAS P

&NUMRJE

&NUMRJE

Explanation: Variable symbol &NUMRJE specifies the
largest remote terminal identification number
(nn in RMTnn) and thus the number of remote terminal
definitions which are to be used by the generated
HASP System. The specification must be an integer
bet~een 0 and 99 inclusive.

Default: &NUMRJE=&NUMLNES

Notes:.
1. See also the HASPGEN variable RMTnn.
2. If this variable is not specified and if

&NUMLNES is specified as an integer greater
than zero, the first &NUMLNES remote terminal
definitions RMTnn are used by the generated
HASP System, whether they are specified
explicitly or by default.

HASPGEN Parameters - Page 7.1.47
356

HAS P

& NUMTGV

&NUMTGV

Explanation: Variable symbol &NUMTGV specifies the
number of units (track groups) into which each SPOOL
volume will be divided for HASP allocation purposes.
The specification must be a positive integer no
greater than the number of tracks on the SPOOL device
with the fewest tracks.

Default: &NUMTGV=400

Notes:
1. The user should decide upon the number of tracks

he requires in a track group and then divide by
that number the total number of tracks (except
alternate tracks) on a typical SPOOL device type
at the installation. For example, to obtain a
track group size of-five tracks on a 2311, the
division would yield a quotient of 400; the user
would specify &NUNTGV=400. If the same instal­
lation occasionally used a 2314 as a SPOOL
device, the track group size for the 2314 would
automatically become ten tracks.

2. Specifying a large &NUMTGV may require increasing
the value of &BUFSIZE.

3. For each SPOOL volume it finds, HASP initializa­
tion calculates number of tracks per group by
dividing 'the total number of tracks on the volume
by &NUMTGV. It then marks unavailable all track
groups which lie partially or wholly outside
the first extent of data set SYSl.HASPACE on
that volume. HASP initialization also computes
the number of HASP buffers of length &BUFSIZE
which will fit on a track of the SPOOL volume
for each SPOOL volume mounted.

HASPGEN Parameters - Page 7.1.48

357

, (

HAS P

&NUMTPBF

&NUMTPBF

Explanation: Variable symbol &NUMTPBF specifies
the number of HASP Teleprocessing buffers for HASP
Remote Job Entry to be assembled into the generated
HASP system. The specification must be an integer
greater than or equal to zero.

Default: &NUMTPBF=&NUMLNES

Notes:
1. Each signed-on HASP Multi-Leaving terminal re­

quires at least two HASP Teleprocessing buffers;
each other signed-on terminal requires at least
one buffer. If &NUMTPBF is specified too small,
HASP RJE may not work correctly.

2. See also parameters &TPBFSIZ and &MLBFSIZ.

HASPGEN Parameters - Page 7.1.49

358

HAS P

&NUMTPES

&NUMTPES

Explanation: Variable symbol &NUMTPES specifies
the maximum number of tape drives HASP may use
simultaneously to read OS job streams. The speci­
fication must be an integer greater than or equal
to zero.

Default: &NUMTPES=l

Notes:
1. If &NUMTPES=O is specified, code required to

support tapes as readers is omitted from the
generated HASP System.

2. Since the operator specifies a unit address
when issuing the start command to a tape drive
(e.g., $S TPEl,182) , there is rarely a need to
specify for &NUMTPES a number greater than one.

3. Tapes should be equivalent to the JCL specifi­
cation LABEL=(1,NL),DCB=(RECFM=FB,LRECL=80 1

BLKSIZE=nnnnn) where nnnnn is not greater than
(lO*&BUFSIZE)/11. For seven-track tape, use
the additional DCB specification DEN=2,TRTCH=C.

HASPGEN Parameters - Page 7.1.50

359

HAS P

&NUMTPPR

&NUMTPPR

Explanation: Variable symbol &NUMTPPR specifies the
maximum number of HASP Remote Terminal (including Multi­
Leaving) printed-output streams that can simultaneously
be active. The specification must be an integer greater
than or equal to zero.

Default: &NUMTPPR=&NUMLNES

Notes:
1. If any remote terminal is to receive printed

output, &NUMTPPR must not be zero.

HASPGEN Parameters - Page 7.1.51

360

HAS P

&NUMTPPU

Explanation: Variable symbol &NUMTPPU specifies the
maximum number of HASP Remote Terminal (including
Multi-Leaving) punched-output streams that can
simultaneously be active. The specification must
he an integer greater than or equal to zero.

Default: &NUMTPPU=&NUMLNES

Notes:
1. If any remote terminal is to receive punched

output, &NUMTPPU must not be zero.

&NUMTPPU

HASPGEN Parameters - Page 7.1.52

361

HAS P

&NUMTPRD

&NUMTPRD

Explanation: Variable symbol &NUMTPRD specifies the
maximum number of HASP Remote Terminal (including
Multi-Leaving) input streams that can simultaneously
be active. The specification must be an integer
greater than or equal to zero.

Default: &NUMTPRD=&NUMLNES

Notes:
1. If any remote terminal is to read cards (including

the /*SIGNON and /*SIGNOFF control cards) &NUMTPRD
must not be zero.

HASPGEN Parameters - Page 7.1.53

362

HAS P

&NUMWTOQ

&NUMWTOQ

Explanation: Variable symbol &NUMWTOQ specifies
the number of message buffers to be provided in
HASP. The specification must be an integer greater
than two.

Default: &NUMWTOQ=15

Notes:
1. If &NUMCONS is specified greater than zero

additional message buffers are needed. '
2. If Remote Job Entry is used, more message

buffers are needed. This is especially true
with console support for MULTI-LEAVING
terminals.

3. Serious system degradation can be caused by
specifying too few message buffers.

4. During periods of high console activity, when
no message buffers are available, certain non­
critical HASP messages will be discarded rather
than delaying the associated process. These
include certain RJE oriented messages (such
as communication line error messages), execution
time/line/card excession messages (continued
excession will be noted when a message buffer
becomes available), and certain I/O error mes­
sages on HASP-controlled devices. Additionally,
when no message buffers are available in a sys­
tem in which &NUMCONS is greater than zero,
messages from the OS error task are queued only
to a depth of one which can result in the loss
of some of these messages.

HASPGEN Parameters - Page 7.1.54

363

HAS P

&OLAYLEV

&OLAYLEV

Explanation: Variable symbol &OLAYLEV specifies a
HASP overlay level to be used for assembly of the
various HASP control sections. Any potential overlay
code defined (by the $OVERLAY macro) with a residence
factor greater than &OLAYLEV will be assembled as
resident code rather than overlay code. The specifi­
cation for &OLAYLEV must be an integer between ° and
IS, inclusive.

Default: &OLAYLEV=lS

Notes:
1. HASP uses only residence factors 4, 8, 12 and (for

HASP initialization only) 0.
2. If &OLAYLEV=lS, all potential overlay code will

be assembled as overlay code.
3. If &OLAYLEV=O, all potential overlay code except

that in HASP initialization will be assembled
as resident code. HASP main storage requirements
will be increased by approximately 24K over
the case &OLAYLEV=IS.

4. Regardless of the setting of &OLAYLEV, the instal­
lation systems programmer may use control cards
for the HASP Overlay Builder after the HASPGEN
process is .complete to specify that a particular
section of potential overlay code be made either
resident code or overlay code.

HASPGEN Parameters - Page 7.l.S5

364

HAS P

&OREPSIZ

&OREPSIZ

Explanation: Variable symbol &OREPSIZ specifies the
size in bytes of a table in HASP to be used to hold
REP data for true overlay code. The REPs associated
with a particular section of true overlay .code will
be applied to that code every time it is brought into
main storage from the HASP overlay library. The
specification for &OREPSIZ must be either 0 or an
integer not less than 10.

Default: &OREPSIZ=O

Notes:
1. Each entry in the HASP Overlay REP table consists

of 8+n bytes (2:::; n :::; 256) where n is the number
of contiguous bytes to be changed in a section
of overlay code.

2. The table is used only if the operator specifies
to HASP initialization that REPs are to be used
and if some of the REPs are for sections of true
overlay code.

3. If the HASP Overlay REP table is too small to
handle all true overlay REPs, HASP initialization
writes to operator the message

OVERLAY REPPING ERROR
and HASP quiesces.

4. See also Sectio'n 6.4 of this manual.

HASPGEN Parameters - Page 7.1.56

365

HAS P

&OSC(n)

Explanation: Subscripted variable symbols &OSC(n)
specify OS job classes. A job selected by HASP
logical partition n will be submitted to OS with the
job class &OSC(n). Each specification must be a
single unique letter between A and 0, inclusive.
No two specifications may be the same.

Default: &OSC(l)=A

Notes:

&OSC(2)=B
&OSC(3)=C
&OSC(4)=D
&OSC(5)=E
&OSC(6)=F
&OSC(7)=G
&OSC(8)=H
&OSC(9)=I
&OSC(lO)=J
&OSC(ll)=K
&OSC(12)=L
&OSC(13)=M
&OSC(14)=N
&OSC(15)=0

1. Only the first· &MAXPART specifications, &OSC (1)
through &OSC(&MAXPART) will be used.

2. In an MVT system, HASP initialization issues
the &MAXPART commands

S INIT. HOSINIT&OSC (1) , , , &OSC (1)

&OSC(n)

S INIT.HOSINIT&OSC(&MAXPART) ",&OSC(&MAXPART).
3. In an MFT system, HASP initialization issues the

single command
S INIT.ALL;

thus the classes of the MFT partitions to be
controlled by HASP must have already been defined.
Each such partition must be defined with only
one job class; that job class must match one and
only one of the &MAXPART job classes &OSC(l),
&OSC (&MAXPART) .

HASPGEN Parameters - Page 7.1.57

366

HAS P

&OSINOPT

I

I

&OSINOPT

Explanation: Variable symbol &OSINOPT specifies in­
clusion or exclusion of the HASP OS Input Spooling
option. The specification must be either YES or NO.
If &OSINOPT=YES and a DD * (or DD DATA) statement
specifies the DeB keyword, HASP will pass the DD
statement and the data following it to the OS Reader/
Interpreter; OS will perform input spooling. If
&OSINOPT=NO, or if &OSINOPT=YES and no DeB parameter
is specified on the DD * (or DD DATA) statement, HASP
will SPOOL the input data as usual.

Default: &OSINOPT=NO

Notes:
1. If the DLM parameter is specified on a DD * (or

DD DATA) statement, HASP will SPOOL the input
data regardless of the setting of &OSINOPT or
the inclusion of DeB parameters.

HASPGEN Parameters - Page 7.1.58

367

HAS P

&OUTPOPT

&OUTPOPT

Explanation: Variable symbol &OUTPOPT specifies the
action to be taken when a job exceeds its estimated
print lines or punched cards of output. The speci­
fication must be one of the integers 0, 1 or 2. For
&OUTPOPT=2, output excession causes the job to be
cancelled with a dump. For &OUTPOPT=l, output ex­
cession causes the job to be cancelled without a
dump. For &OUTPOPT=O, output excession does not
cause the job to be cancelled.

Default: &OUTPOPT=O

Notes:
1. Regardless of the specification for &OUTPOPT,

output excession causes messages to be written
to the operator. See also Notes 1 and 2 of
$OUTXS.

2. If &OUTPOPT=2 is specified, users should use
SYSUDUMP or SYSABEND DD cards if a storage dump
is desired on output excession.

3. For &OUTPOPT=l or 2, the job will not be
cancelled if, at the time of output excession,
the calling task is normally or abnormally ter­
minating. Therefore, if this terminating task
is not the job step task, job termination may
not occur unless provided for by the program
or unless the operator cancels the job.

HASPGEN Parameters - Page 7.1.59

368

HAS P

$OUTXS

Explanation: Ordinary symbol $OU'llXS specifies
the interval, in print lines/punched cards, at
which messages will be written to the operator
informing him that a job's print line count or
punch card count has been exceeded. The speci­
fication must be an integer greater than zero.

Default: $OUTXS=2000

Notes:

$OUTXS

1. The first print line excession message will
be written to the operator when the job's
estimated print line count has been exceeded.

2. The first punched card excession message
will be written to the operator when the
job's estimated punched card count has been
exceeded.

HASPGEN Parameters - Page 7.1.60

369

HAS P

&PID (n)

Explanation: Subscripted variable symbols &PID(n)
specify the identifiers to be used with the HASP
logical partitions. Each specification must be
a unique 1- or 2-character string.

Default: &PID(l)=l

Notes:

&PID(2)=2
&PID(3)=3
&PID(4)=4
&PID(S)=S
&PID(6)=6
&PID(7)=7
&PID(8)=8
&PID(9)=9
&PID(lO)=lO
&PID(ll)=ll
&PID(l2)=12
&PID(13)=13
&PID(14)=14
&PID(lS)=lS

1. Only the first &MAXPART specifications, &PID(l)
through &PID(&MAXPART), will be used.

2. The identifiers &PID(n) are used in messages
to and commands from the operator. For example,
when an operator uses the set command $T Imm,list
he is referring not to logical partition rom but
to logical partition n, where &PID(n)=mm.

&PID(n)

HASPGEN Parameters - Page 7.1.61

370

HAS P &PRI(n)

Explanation: Subscripted variable symbols &PRI(n)
specify as job priorities. A job selected by HASP
logical partition n will be submitted to as with the·
job priority &PRI(n). Each specification must be
an integer between 1 and 15, inclusive.

Default: &PRI(1)=7

Notes:

&PRI(2)=7
&PRI (3) =7
&PRI(4)=7
&PRI(5)=7
&PRI(6)=7
&PRI (7) =7
&PRI(8)=7
&PRI(9)=7
&PRI(lO)=7
&PRI(II)=7
&PRI(12)=7
&PRI(13)=7
&PRI(14)=7
&PRI(l5)=7

1. The defaults are all the same as &XZPRTY. This
allows the HASP Execution Task Monitor to regu­
late all job steps under the control of HASP.
See also parameters &XZPRTY and &MONINTV.

2. These parameters have no effect in MFT.
3. The priorities defined by &PRI(n) affect only

as execution. The priority of a job in the
HASP Job Queue is determined by parameters
&RPRT(m), &RPRI(m), &XLIN(m), and &XPRI(m).

4. Only the first &MAXPART specifications, &PRI(I)
through &PRI(&MAXPART), will be used.

HASPGEN Parameters - Page 7.1.62

371

HAS P

$PRICONA

$PRICONA

Ex~lanation: Ordinary symbol $PRICONA specifies the
un1t address of a 1052, 3210, 3215, 1443, or 1403 to
which HASP will issue a SIO in the event of a catas­
trophic error. The message HASP writes to this device
is:

HASP CATASTROPHIC ERROR. CODE=xxx.
The specification must be a valid unit address.

Default: $PRICONA=OlF

Notes:
1. When HASP is operating with M65MP in a 2-CPU

multiprocessor environment, the device specified
by $PRICONA must be operational to both CPUs
when a HASP catastrophic error occurs.

HASPGEN Parameters - Page 7.1.63

372

HAS P

$PRIDCT

Explanation:. Ordinary symbol $PRIDCT specifies the
number of print lines to appear on each HASP job
separator page for local printers. The specification
must be an integer greater than or equal to zero. If
the specification is zero, no separator page will be
produced on local printers.

Default: $PRIDCT=6l'

Notes:
1. The equivalent HASPGEN parameter for remote

terminal printers is $TPIDCT.

$PRIDCT

HASPGEN Parameters - Page 7.1.64

373

HAS P

&PRIHIGH

&PRIHIGH

Explanation: Variable symbol &PRIHIGH specifies a
HASP priority to be associated with the HASP Priority
Aging feature. A job will not be priority-aged if
its HASP priority is (or becomes) greater than or
equal to &PRIHIGH. The specification must be an
integer between 0 and 15, inclusive.

Default: &PRIHIGH=lO

Notes:
1. If &PRIRATE=O, parameter &PRIHIGH is not used.
2. See also parameters &PRIRATE and &PRILOW.

HASPGEN Parameters - Page 7.1.65

374

HAS P

&PRILOW

&PRILOW

Explanation: Variable symbol &PRILOW specifies a
HASP priority to be associated with the HASP Priority
Aging feature. A job will not be priority-aged by
HASP unless its HASP priority is initially at least
&PRILOW. The specification must be an integer between
o and 15, inclusive.

Default: &PRILOW=5

Notes:
1. If &PRlRATE=O, parameter &PRILOW is not used.
2. See also parameters &PRIRATE and &PRIHIGH.

HASPGEN Parameters - Page 7.1.66

375

HAS P

&PRlRATE

&PRIRATE

Explanation: Variable symbol &PRlRATE specifies the
amount by which a job's HASP priority will be incre­
mented in 24 hours by the HASP Priority Aging feature.
For example if &PRIRATE=3 then a job's priority will
be incremented by one for every eight hours it remains
in the system. But a job's priority will not be incre­
mented unless it is at least &PRILOW; nor will a job's
priority be incremented above &PRIHIGH. The specifi­
cation must be an integer greater than or equal to
zero. If zero is specified, Priority Aging is excluded
from the generated HASP system.

Default: &PRIRATE=O

Notes:
1. If &PRIRATE=O, parameters &PRILOW and &PRIHIGH

are not used.
2. See also parameters &RPRT(n), &RPRI(n}, &XLIN(n),

and &XPRI (n) .
3. If a job's priority is specified on the /*PRIORITY

control card, the job will be priority-aged if
its priority is eligible.

HASPGEN Parameters - Page 7.1.67

376

HAS P

$PRTBOPT

$PRTBOPT

Explanation: Ordinary symbol $PRTOPT specifies the
printer buffering option to be used for local HASP
printers. The specification must be either 1 (for
single buffering) or 2 (for double buffering) .

Default: $PRTBOPT=2

HASPGEN Parameters - Page 7.1.68

377

HAS P

&PRTRANS

&PRTRANS

Explanation: Variable symbol &PRTRANS specifies
translation for lines of print. The specification
must be either YES or NO.

Default: &PRTRANS=YES

Notes:
1. If &PRTRANS is specified as YES, each line to

be printed by HASP is first translated. Trans­
lation changes lower-case letters to upper-case
letters and characters invalid on a PN train to
blanks.

2. If any print train is to be used on any HASP­
controlled pr-inter which has characters not
equivalent to those on a PN train or a Pll train,
&PRTRANS must be specified as NO.

HASPGEN Parameters - Page 7.1.69

378

HAS P

&PRTUeS

&PRTUCS

Explanation: Variable symbol &PRTUeS specifies the
name of the print chain or print train which HASP
initially assumes is mounted on every local 1403
printer SYSGENed with the ues feature, and on every
local 3211 printer. The ues identifier can be modi­
fied by the operator individually by printer. The
specification should be either AN, HN, PN, QN, RN,
UN, All, Hll, Pll, Ull, or O.

Default: &PRTUeS=O

Notes:
1. A specification of zero causes HASP to bypass

the ues loading procedure on all local printers
until the ues type of each printer is specified
by the operator. .

2. Only the first character of &PRTUeS is interro­
gated. That is to say, an AN specification is
equivalent to an All specification, an Hll
specification is equivalent to an HN specifica­
tion, etc.

3. If a ues specification is encountered which is
not valid for the type of printer being addressed,
the ues loading procedure will be bypassed.

4. The UN and Ull specifications are provided for
installation use to support other type of print
chains.

HASPGEN Parameters - Page 7.1.70

379

HAS P

$PUNBOPT

$PUNBOPT

Explanation: Ordinary symbol $PUNBOPT ~ecifies the
punch buffering option to be used for local HASP
punches. The specification must be either 1 (for
single buffering) or 2 (for double buffering).

Default: $PUNBOPT=l

HASPGEN Parameters - Page 7.1.71.

380

HAS P

&RDR

&RDR

Explanation: Variable symbol &RDR specifies the
unit address of a pseudo-2540 reader to be used with
HOSRDR to supply jobs to os. The specification must
be a valid unit address which has been specified at
SYSGEN time as a pseudo-2540 reader.

Default: &RDR=OFC

HASPGEN Parameters - Page 7.1.72

381

HAS P

&RDRPART

&RDRPART"

Explanation: Variable symbol &RDRPART specifies for
MFT systems the identifier field of an OS START
command issued by HASP initialization for the OS
reader/interpreter HOSRDR. The complete START command
is

S HOSRDR.&RDRPART,&RDR.
The specification must be a valid identifier field
for an OS START reader command, as described in the
OS Operator's Guide.

Default: &RDRPART=S

Notes:
1. If HASP initialization detects an MVT system,

this parameter is not used.

HASPGEN Parameters - Page 7.1.73

382

HAS P

$REPRDR

$REPRDR

Explanation: Ordinary symbol $REPRDR specifies the
unit address of a physical 2540 or 2501 card reader
from which HASP initialization will read REP cards
if requested by the operator. The specification
must be a valid unit address.

Default: $REPRDR=OOC

Notes:
1. When REP cards are to be read and HASP is

operating with M65MP in a 2-CPU multiprocessor
environment, the device specified by $REPRDR
must be operational to both CPUs.

HASPGEN Parameters - Page 7.1.74

383

HAS P

$REPWTR

$REPWTR

Exelanation: Ordinary symbol $REPWTR specifies the
un1t address of a physical 1403 or 1443 on which
each REP card read is to be printed, if printing
of REP cards is requested by the operator. The
specification must be a valid unit address.

Default: $REPWTR=OOE

Notes:
1. When REP cards are to be printed and HASP is

operating with M65MP in a 2-CPU multiprocessor
environment, the device specified by $REPWTR
must be operational to both CPUs.

HASPGEN Parameters - Page 7.1.75

384

HAS P

&RESCORE

&RESCORE

Explanation: Variable ·symbol &RESCORE specifies a
storage size, in multiples of 1024 bytes. HASP will
always issue a GETMAIN for additional storage for
HASP buffers; all such storage but &RESCORE*1024
bytes will be used for buffers.

The specification must be an integer greater than or
equal to zero.

Default: &RESCORE=O

Notes:
1. MFT users should set &RESCORE=l or larger if

80A or 804 abends occur during HASP operation.
This is normally not required for unmodified
HASP with MVT, because of its 2K block storage
management technics.

2. &RESCORE only prevents HASP from using all
available storage for butfers. It will not
cure abends due to inadequate partition si2e.

HASPGEN Parameters - Page 7.1.76

385

HAS P

&RJOBOPT

&RJOBOPT

Explanation: Variable symbol &RJOBOPT specifies
whether or not an illegal HASP JOB card is to prevent
execution of the associated job. The specification
must be either YES or NO.

Default: &RJOBOPT=NO

Notes:
1. If &RJOBOPT=YES and HASP reads a JOB card whose

accounting field does not match the specifica­
tions required by HASP, the job 1S flushed by
HASP and an appropriate message is written to
the operator.

HASPGEN Parameters - Page 7.1.77

386

HAS P

RMTnn

Code Letters

nn

mm

00

pp

ii

11

w

t

RMTnn

Explanation: Ordinary symbols RMTnn specify the
characteristics of remote terminals to be used with
HASP Remote Job Entry. Terminals must be defined
consecutively, starting with RMTOI. Each specifi­
cation must be a l4-character string of the form

RMTnn=mmooppiillwtdf
where the letters represent the following:

Range

01-99

01-99

00-99

00-99

00-15

00-15

0-6

0-6

Description

Remote Number

Line Number (**indicates /*SIGNON
assignment)

Print Routing (Remote Number)

Punch Routing (Remote Number)

Priority Increment for this Remote

Priority Limit for this Remote

Printer Width as follows:
o = 80 characters
1 = 100 characters
2 = 120 characters
3 = 132 characters
4 = 144 characters
5 = 150 characters
6 = 96 characters

Terminal Type as follows:
o = 1009, 2770
1 = 1978, 2780, 7702
2 = 2922, 5360/20 Sub-Model 2, 4
3 = System 360/20 Sub-ModelS, 6
4 = System 360/22, 25, 30, 40,

etc.
5 = 1130
6 = System/3
7 = 3780

HASPGEN Parameters - Page 7.1.78

387

HAS P

d 0-4

f

0-9

O-@

f

0
1
2
3
4
5
6
7
8
9

@

Data Format as follows:
o = Unblocked fixed length
1 = Blocked fixed length
2 = Unblocked variable length

(Note ~ use this for basic
2770 terminals.)

3 = Blocked variable length
(Note - use this for all
3780, 2780,· and 1978 ter­
minals, and for 2770 ter­
minals with Buffer Ex­
pansion.)

4 = Programmable Interface
(Note - use this for all
STR 20 and BSC MULTI­
LEAVING interfaces.)

Terminal Features as. follows:

3780 Terminal Features

Compress Horizontal Trans-
f EXEand Format Control Earenc~

0 No No No
1 No No Yes
4 No Yes No
5 No Yes Yes
8 Yes No No
9 Yes No Yes

2770 Terminal Features

Horizontal Additional
Compress Format Buffer Trans-

EX12and Control EX12ansion parencl

No No No No
No No No Yes
No No Yes No
No No Yes Yes
No Yes No No
No Yes No Yes
No Yes Yes No
No Yes Yes Yes
Yes No No No
Yes . No No Yes
Yes No Yes No
Yes No Yes Yes

HASPGEN Parameters - Page 7.1.79

388

HAS P

0-7 2780 Terminal Features

Horizontal Multiple
Format Record

f Control Feature TransEarency

0 No No No
1 No No Yes
2 No Yes No
3 No Yes Yes
4 Yes No No
5 Yes No Yes
6 Yes Yes No
7 Yes Yes Yes

0-3 MULTI-LEAVING Terminal Features

Console
f SUEEort TransEarenc~

0 No No
1 No Yes'
2 Yes No
3 Yes Yes

Default: RMTnn=**nn0000153131

Notes:
1. Parameter &NUMRJE must specify the number of

specifications RMTnn to be included in the
generated HASP system.

2. No two specifications RMTnn may specify the
same line number (rom). If ** is specified in­
stead of a line number for rom, the associated
remote terminal may connect to HASP via any
suitab1~ line. HASP will logically connect
the terminal with the line when it recognizes
the /*SIGNON control card. If line number is
specified explicitly, the associated terminal
need not use a /*SIGNON card.

3. The line number specification rom refers to line
specification LINEmm, which in turn specifies
the unit address of the line.

4. For print and punch routing, a specification of
00 causes output from jobs submitted at the Re­
mote Terminal to be printed/punched locally,
unless re-routed.

HASPGEN Parameters - Page 7.1.80

389

HAS P

5. Priority increment is the value to be added to
the priority of a job submitted from the Remote
Terminal.

6. Priority limit is the maximum value of priority
for any job submitted from the Remote Terminal.

7. If any Multi-Leaving work'station is to utilize
·more than one reader, printer or punch, see
Section 12.16 for additional information.

8. For a basic 2770 (128 byte buffers), Printer
Width must be specified as 120 characters or
less.

9. Printed and non-transparent punched output to
a basic 2770 will be variable-blocked up to the
limit of the 128 byte buffers, even though the
Data Format must be specified as variab1e­
unblocked.

10. The following table gives minimum values of
&TPBFSIZ required to support various non­
programmable terminals:

Minimum
&TPBFSIZ

128
256
328
400
512

512

Terminal Type, Features

2770 basic
2770 with Buffer Expansion
1978
2780
2770 with Buffer Expansion

and Additional Buffer
Expansion

3780

See also parameters &TPBFSIZ and &MLBFSIZ.

HASPGEN Parameters - Page 7.1.80.1

389.1

HAS P

(The remainder of this. page intentionally left blank.)

389.2

HAS P

$RPRBOPT

$RPRBOPT

Exelanation: Ordinary symbol $RPRBOPT specifies the
pr1nter buffering option to be used for all printers
at HASP Remote Terminals. The specification must be
either 1 (for single buffering) or 2 (for double
buffering) •

Default: $RPRBOPT=l

Notes:
1. The specification refers to HASP regular buffers,

not to HASP Teleprocessing buffers.

HASPGEN Parameters - Page 7.1.81

390

HAS P

&RPRI(n)

&RPRI(n)

Explanation: Subscripted variable symbols &RPRI(n)
specify tentative job priorities corresponding to
intervals defined by subscripted variable symbols
&RPRT(n). If a user specifies in the accounting
field of his job card an estimated execution time
of t minutes, the job's tentative priority will
be &RPRI(n) where

&RPRT (n-l).< ts; &RPRT (n) .
Each specification must be an integer between 0 and
15 inclusive.

Default: &RPRI(1)=9

Notes:

&RPRI(2)=8
&RPRI(3)=7
&RPRI(4)=6
&RPRI(5)=5
&RPRI(6)=4
&RPRI(7)=3
&RPRI(8)=2
&RPRI(9)=1

1. The values &RPRI(n) will normally be in
opposite order from the subscripts n.

2. See also Notes 1 and 2 for &RPRT(n).

HASPGEN Parameters - Page 7.1.82

391

HAS P

&RPRT (n)

&RPRT(n)

Explanation: Subscripted variable symbols
&RPRT(n) specify estimated execution times in
minutes. If a user specifies in the accounting
field of his job card an estimated execution time
of t minutes, and if t satisfies the relation

&RPRT(n-l) <tS&RPRT(n)
then &RPRI(n) will be the tentative priority of
the job. If t is less than &RPRT(l) or greater
than &RPRT(9) , value &RPRI(l) or zero will be
the tentative priority of the job. Each specifi­
cation must be an integer between 1 and X'FFFFFF'/60
inclusive.

Defaults: &RPRT(l)=2

Notes:

&RPRT(2)=S
&RPRT(3)=lS
&RPRT(4)=X'FFFFFF'/60
&RPRT(S)=X'FFFFFF'/60
&RPRT(6)=X'FFFFFF'/60
&RPRT(7)=X'FFFFFF'/6G
&RPRT(8)=X'FFFFFF'/60
&RPRT(9)=X'FFFFFF'/60

1. Priority &RPRI(n) is overridden by HASP
conirol card /~PRIORITY.

2. fhe tentative priority defined above is adjusted
according to &XLIN(m) and the estimated print
lines specified in the accounting field of
the user's JOB card. If the user estimated
p print lines, and if p satisfies the relation

&XLIN(m) <pS&XLIN(m+l)
then the t~ntative priority is reduced by m.

3. The values &RPRT(n) should be in the same
order as the subscripts n.

HASPGEN Parameters - Page '7.1. 83

392

HAS P

&RPS

Explanation: Variable symbol &RPS specifies inclu­
sion or exclusion of Rotational Position Sensing
for all HASP channel programs directed to 3330 and
2305 devices. The specification must be either YES
or NO.

Default: &RPS=NO

Notes:
1. Regardless of the setting of &RPS, HASP will

correctly operate with any supported direct­
access device or combination of devices.

HASPGEN Parameters - Page 7.1.83.1

392.1

&RPS

HAS P

(The remainder of this page intentionally left blank.)

392.2

HAS P

$ RPUBOPT

I

$RPUBOPT

Explanation: Ordinary symbol $RPUBOPT specifies the
punch buffering option to be used for all punches at
HASP Remote Terminals. The specification must be
either 1 (for single buffering) or 2 (for double
buffering) •

Default: $RPUBOPT=l

Notes:
1. The specification refers to HASP regular buffers,

not to HASP Teleprocessing buffers.

HASPGEN Parameters - Page 7.1.84

393

HAS P

&RQENUM

&RQENUM

Explanation: Variable symbol &RQENUM specifies the
number of WTOR reply buffers to be provided in the
generated HASP system. The specification must be
an integer greater than zero.

Default: &RQENUM=5

Notes:
1. This parameter is ignored if &NUMCONS=O.
2. If &NUMCONS is not specified as zero, no more

than &RQENUM replies can be outstanding at any
time.

HASPGEN Parameters - Page 7.1.85

394

HAS P

&SIZ2260

&SIZ2260

Explanation: Variable symbol &SIZ2260 specifies
screen width in characters for local 2260s (attached
via 2848) to be used as HASP operator consoles. The
specification must be either 0, 40, or 80. If 0 is
specified, support for local 2260s and local 1053s
(attached via 2848) will be excluded from the gener-
ated HASP system.

Default: &SIZ2260=0

Notes:
1. This parameter is not used if &NUMCONS=O.
2. See also parameter &SPD2260.
3. 2260 and 1053 console errors are retried, but

are not recorded by the ERP and LOGREC func­
tions of OS.

HASPGEN Parameters - Page 7.1.86

395

HAS P

&SPD2260

&SPD2260

Explanation: Variable symbol &SPD2260 specifies roll
rate in hundredths of a second for local 2260s (attached
via 2848) to be used as HASP operator consoles. If
new messages are pending for display ona HASP 2260
console, they will be displayed (and old messages will
be deleted, if the screen is full) ~t the rate of one
message every &SPD2260/l00 seconds.

Default: &SPD2260=50

Notes:
1. This parameter is not used if &NUMCONS=O or if

&SIZ2260=O.

HASPGEN Parameters - Page 7.1.87

396

HAS P

&SPOLMSG

&SPOLMSG

Explanation: Variable symbol &SPOLMSG specifies the
number of physical records in the first extent of
SYSl.HASPACE on SPOOLl which are to be reserved for
holding operator and HASP messages for HASP Remote
Terminals. Each physical record is capable of holding
one or more messages for a single remote terminal.
Messages are held if they are directed to:

· any terminal not signed on;
• any signed-on hardware terminal which is cur­

rently processing an input or output stream;
· any signed-on computer terminal that is not a

Multi-Leaving terminal with a console.

If a message is to be held but no space is available
to hold it, the message is thrown away without operator
notification.

The specification for &SPOLMSG must be an integer
greater than or equal to zero. If &SPOLMSG is speci­
fied as zero, no messages will be sent to hardware
terminals.

Default: &SPOLMSG=lO*&NUMRJE

Notes:
1. Only the $DM command can generate messages to a

terminal not signed on.
2. For signed-on terminals, messages are generated

for job-on-reader, by $DM, and as responses to
commands from the terminal.

3. Each message to a terminal (except to a Mu1ti­
Leaving remote defined with a console) is
held until it can be printed, or until HASP is
restarted. .

HASPGEN Parameters - Page 7.1.88

397

HAS P

&SPOOL

&SPOOL

Explanation: Variable symbol &SPOOL specifies the
first 5 characters of the volume serial of each
mounted direct-access volume to be used for spool­
ing by HASP. The specification must be exactly five
characters and valid as a volume serial.

Default: &SPOOL=SPOOL

Notes:
1. If this variable is changed from its default,

certain HASP messages will vary from their
documentation in Chapter 11.

2. With the default, HASP requires that at least
SPOOLI be mounted. If, for example,
&SPOOL=$-#-@, then HASP would require at least
$-#-@l be mounted.

3. The requirement for "SPOOL "in the HOSRDR
procedure, as documented in Section 10.2.2.2,
is not affected by the setting of &SPOOL.

HASPGEN Parameters - Page 7.1.88.1

397.1

{The remainder of this page intentionally left blank.}

397.2

HAS P

&STRCPU

&STRCPU

Explanation: Variable symbol&STRCPU specifies inclu­
sion or exclusion in the HASP Remote Terminal Access
Method of Remote Job Entry support for the System/360
Model 20 with a Synchronous Transmit-Receive (STR)
adapter and the associated HASP Remote Terminal program.
The specification must be either YES or NO.

Default: &STRCPU=NO

HASPGEN Parameters - Page 7.1. 89:

398

HAS P

&STRl978

&STR1978

Explanation: Variable symbol &STRl978 specifies inclu­
sion or exclusion in the HASP Remote Terminal Access
Method of Remote Job Entry support for-Synchronous
Transmit-Receive (STR) hardware terminals such as the
1978. The specification must be either YES or NO.

Default: &STRl978=NO

HASPGEN Parameters - Page 7.1.90

399

HAS P

&TlMEOPT

I

&TIMEOPT

Explanation: Variable symbol &TlMEOPT specifies the
actIon to be taken when a job's estimated execution
time is exceeded. The specification must be one of
the integers 0, 1, 2 or 4. For &TlMEOPT=4, the job's
time limits will not be monitored. For &TlMEOPT=2,
time excession causes the job to be cancelled with a
dump. For &TlMEOPT=l, time excession causes the job
to be cancelled without a dump. For &TlMEOPT=2,
&TlMEOPT=l, or &TlMEOPT=O, time excession causes
messages to be written to the operator.

Default: &TlMEOPT=4

Notes:
1. See also Notes 1 and 2 of $ESTlME, which apply

for &TlMEOPT=O, &TlMEOPT=l, and &TlMEOPT=2.
2. For &TlMEOPT=l or 2, the job will not be

cancelled if, when time is exceedecr;-the job's
task which last called HASP for I/O service is
normally or abnormally terminating. Therefore,
if this terminating task is not the job step
task, job termination may not occur unless pro­
vided for by the program or unless the operator
cancels the job.

HASPGEN Parameters -Page 7.1.91

400

HAS P

$TIMEXS

$TIMEXS

Explanation: Ordinary symbol $TIMEXS specifies
the interval, in minutes, at which messages will
be written to the operator informing him that a
job's execution time is exceeded. The specifica­
tion must be an integer greater than zero.

Default: $TlMEXS=l

Notes:
1. The first time excession message is written

to the operator when the job's estimated
execution time has been exceeded.

2. If &TIMEOPT is specified greater than 2,
$TIMEXS is not used.

3. See also Note 2 of $ESTIME.

HASPGEN Parameters - Page 7.1.92

401

HAS P

&TPBFSIZ

I

I

&TPBFSIZ

Explanation: Variable symbol &TPBFSIZ specifies the
size in bytes of each HASP Teleprocessing buffer.
The specification must be a positive integer.

Default: &TPBFSIZ=400

Notes:
1. The value of &TPBFSIZ is the maximum size of

any HASP Teleprocessing buffer. See also pa­
rameter &MLBFSIZ, which may never be specified
larger than &TPBFSIZ.

2. The HASP Remote Terminal program for the
System/360 Model 20 with an STR communications
adapter (HRTPSM20) uses a teleprocessing buffer
size of &tPBFSIZ; all other HASP Remote Termi­
nal programs are Multi-Leaving programs, and
use &MLBFSIZ.

3. The parameter &TPBFSIZ is specified only once,
at HASPGEN time; it is conveyed automatically
to the requisite Remote Terminal programs by
HASPGEN.

4. See Note 9 under RMTnn for minimum &TPBFSIZ
required when HASP .supports non-programmable
terminals.

HASPGEN Parameters - Page 7.1.93

402

HAS P

$TPIDCT

$TPIDCT

Explanation: Ordinary symbol $TPIDCT specifies the
number of print lines to appear on each HASP job
separator page for jobs whose printed output is directed
to any HASP Remote Terminal. The specification must
be an integer greater than or equal to zero. If the
specification is zero, no separator page will be pro­
duced on remote printers.

Default: $TPIDCT=6

Notes:
1. The equivalent HASPGEN parameter for local printers

is· $PRIDCT.

HASPGEN Parameters - Page 7.1.94

403

HAS P

&TRACE

&TRACE

Explanation: Variable symbol &TRACE specifies inclu­
sion or exclusion of a facility for event-tracing
and statistics-gathering in the generated HASP system.
It also specifies the number of entries to be genera­
ted in the HASP trace table. The specification must
be an integer greater than or equal to zero.

Default: &TRACE=Q

Notes:
1. Inclusion of the HASP Trace facility causes the

as program interrupt exit (SPIE) mechanism to
work incorrectly. For this reason, the HASP
Trace should not be included in any generated
HASP system desIgned for normal production.

2. The &TRACE option is independent of the &DEBUG
option.

HASPGEN Parameters - Page 7.1.95

404

HAS P

&USASCII

&USASCII

Explanation: Variable symbol &USASCII specifies inclu­
sion or exclusion in the HASP Remote Terminal Access
Method of the capability to use USASCII line control
characters as well as EBCDIC line control characters.
If any line specification LINEmm for a BSC line has
value c set to 2, 3, 6 or 7, &USASCII should be set
to YES; otherwise, &USASCII should be set to NO.

Default: &USASCII=NO

HASPGEN Parameters - Page 7.1.96

405

HAS P

$WAITIME

$WAITfME

Explanation: Ordinary symbol'$WAITIME specifies a
time interval, in seconds. For hardware terminals,
the HASP Remote Terminal Access Method will wait
$WAITIME seconds at the completion of processing of
any input stream, printed output stream, or punched
output stream, to allow the operator time to alter
the normal sequence of Remote Job Entry operations.
For example, the operator may wish to transmit another
job to HASP after a previous job has finished printing
rather than wait till the previous job has finished
punching.

The specification for $WAITIME must be an integer
greater than zero.

Default: $WAITIME=l

HASPGEN Parameters - Page 7.1.97

406

HAS P

&WCLSREQ

&WCLSREO

Explanation: Variable symbol &WCLSREQ specifies optional
requeueing for OS output classes specified by &WfRCLAS.
The values assigned &WCLSREQ are effective only if
&WTRPART=*.

If &WTRPART=*, then the HASP writer subtask (load module
HASPWTR) processes jobs queued in the OS output queues
defined by &WTRCLAS. At the end of processing a job
whose output class is the nth character of &WTRCLAS,
HASPWTR examines the nth character of &WCLSREQ. If the
nth character of &WCLSREQ is *, HASPWTR deletes the
job from the OS Job Queue. But if the nth character
of &WCLSREQ is an OS Output class, HASPWTR requeues
the job in the OS Output queue specified by the nth
character of &WCLSREQ (which must be different from
any class specified in &WTRCLAS).

The specification must be a string of one to eight char­
acters each of which is either * or a unique valid OS
output class different from any specified in &WTRCLAS.
If more characters are specified than were specified
for &WTRCLAS, the excess characters are unused.

Default: &WCLSREQ=********

Notes:
1. The output requeueing option is useful for providing

an extra copy of a job's system messages to, for
example, a conversational programming terminal.

2. A requeued job is not referenced by HASP, but must
be accessed by a standard OS Output Writer or other
suitable means.

3. A requeued job may contain a mixture of system
messages and sysout data sets of the same class,
if the sysout data sets were spooled by as (see
HASPGEN parameter $$x). The module HASPWTR does
not process the sysout data sets, but requeues the
entire job containing them in the new class specified
by &WCLSREQ. The system messages and sysout data
sets are then available to a standard OS Output
Writer which is processing the new class.

HASPGEN Parameters - Page 7.1.98

407

H A 8 P

4. Any DD statements in the system messages of a
requeued job, which are originally coded as DD*
or DD DATA and are not subject to 08 spooling (see
HA8PGEN parameter &OSINOPT) ,·areavailable to a
Writer processing a &WCL8REQ class as DD$ and
DD CATA respectively. They are prj.nted as DD$ and
DD CATA unless the Writer is programmed to change
them to their original form.

HASPGEN Parameters - Page 7.1.99

408

HA S p.

&WTLOPT

&WTLOPT

Explanation: Variable symbol &WTLOPT specifies in­
clusion or exclusion of code to cause HASP to inter­
cept the WTL SVC (SVC 36) and to add to a job's
output any log messages associated with it. The
messages will be written on the HASP System Log for
the job. The specification for &WTLOFT must be
either YES or NO.

Default: &WTLOPT=NO

Notes:
1. If &WTLOPT is set to YES and &NUMCONS is set

non-zero, no messages will be recorded on the
OS log data sets and the OS WRITELOG command
must not be used.

2. If in addition to the conditions of Note 1
above, &LOGOPT is set to NO, all WTL messages
will be thrown away.

HASPGEN Parameters - Page 7.1.100

409

HAS P

&WTR

&WTR

Ex~lanation: variable symbol &WTR specifies the
un~t address of a pseudo-1403 printer to be used
by a writer to retrieve from the OS Job Queue System
Message Blocks (SMBs) for jobs controlled by HASP.
The specification must be a valid unit address which
has been specified at SYSGEN time as a pseudo-1403
printer.

Default: &WTR=OFE

Notes:
1. The unit address assigned to this parameter must

not be assigned a symbolic unit name at SYSG~
time, as described for other pseudo-1403 printers.

HASPGEN Parameters - Page 7.1.101

410

HAS P

&WTRCLAS

&WTRCLAS

Explanation: Variable symbol &WTRCLAS specifies the
as System Output classes to be processed by HASP.
The output writer started by HASP initialization (and
selected by the &WTRPART Parameter) is intended to
process only those System Message Blocks (SMBs)
created by as jobs submitted to and controlled by
HASP. If other as writers are to be used concurrently
with the writer started by HASP, none of them may
process any of the output classes specified in &WTRCLAS.

The specification for &WTRCLAS must be one to eight
unique characters that are valid as output classes.

Default: &WTRCLAS=HA

Notes:
1. HASP examines the MSGCLASS parameter of every

JOB card it sends to as. If MSGCLASS is not
specified or is not one of the classes specified
by &WTRCLAS, HASP adds the MSGCLASS parameter
to the JOB card,using as a class the leftmost
character of &WTRCLAS.

2. If a job submitted to as by HASP has certain
errors on the JOB card, as will fail the job and
change its MSGCLASS to A. It is therefore
recommended that class A be specified in &WTRCLAS.
If class A is not specified and such an error
happens, HASP may not operate correctly. .

3. See also HASPGEN parameter $$x.

HASPGEN Parameters - Page 7.1.102

411

HAS P

&WTRPART

&WTRPART

Explanation: Variable symbol &WTRPART specifies the
method HASP will use to retrieve from the as Job
Queue System Message Blocks for jobs controlled by
HASP.

For &WTRPART=*, HASP initialization creates a subtask
to interface directly between HASP and the as Job
Queue.

If &WTRPART is not specified as *, HASP initializa­
tion starts an as writer (using procedure HOSWTR)
to interface between HASP and the OS Job Queue. In
particular, for MFT systems HASP initialization
issues the as command

S HOSWTR.&WTRPART,&WTR,,&WTRCLAS

The specification for &WTRPART must be either * or,
for MVT, any other character string of one to eight
characters or, for MFT, a valid identifier for an
OS START writer command, as described in the OS
Operator's Guide.

Default: &WTRPART=*

Notes:
1. For an as MFT system, the default specification

requires that, during SYSGEN, the SUPRVSOR macro
include ATTACH in the OPTIONS=keyword.

2. If &WTRPART is not specified as *, it is
recommended for an MFT system that HOSWTR
be assigned the partition immediately below
HASP in priority. That is, if HASP were to
be assigned PO, &WTRPART would be specified as
Pl.

HASPGEN Parameters - Page 7.1.103

412

HAS P

&XBATCHC

&XBATCHC

Explanation: Variable symbol &XBATCHC specifies a
list of job classes to be used with the HASP Execution
Batch Scheduling featpre. The specified classes are
excluded from running;'jobs outside of Execution
Batch Scheduling. Th~ specification for &XBATCHC
is a string of one to eight characters (letters and
numbers) which specify valid unique HASP job classes.
If &XBATCHC is left at its default, the generated
HASP system will not include Execution Batch Scheduling.

Default: &XBATCHC=[null string]

Notes:
1. For further information, see the section of this

manual on the Execution Batch Scheduling feature.
2. If &XBATCHC is not specified, then &XBATCHN is

not used.

HASPGEN Parameters - Page 7.1.104

413

HAS P

&XBATCHN

&XBATCHN

Explanation: Variable symbol &XBATCHN specifies the
first five characters of the name of each as job to
be started internally by HASP when required for the
execution of a user "job" under the HASP Execution
Batch Scheduling feature. The specification must be
a five-character string of which the first character
is alphabetic or national and the remaining four
are alphameric or national.

Default: &XBATCHN=$$$$$

Notes:
1. For further information, see the section of this

manual on the Execution Batch Scheduling feature.
2. If &XBATCHC is specified, then HASP will reject

all user submitted jobs whose jobnames start
with the five characters &XBATCHN.

HASPGEN Parameters - Page 7.1.105

414

HAS P

&XLIN(n)

&XLIN(n)

Explanation: Subscripted variable symbols
&XLIN{n) specify estimated line counts. If a
user specifies in the accounting field of his
job card an estimated line count of l=p/lOOO,
then the tentative job priority computed on the
basis of his estimated execution time will be
reduced by n, where

&XLIN(n)<p~&XLIN(n+l) .
Each specification must be an integer between 1
and 16,777,215. &XLIN(9) must be 16,777,215.

Default: &XLIN(l)=2000

Notes:

&XLIN(2)=5000
&XLIN(3)=15000
&XLIN(4)=X'FFFFFF'
&XLIN(5)=X'FFFFFF'
&XLIN(6)=X'FFFFFF'
&XLIN(7)=X'FFFFFF'
&XLIN(8)=X'FFFFFF'
&XLIN(9)=X'FFFFFF'

1. The values &XLIN(n) must be in the same
order as the subscript n.

2. See also Note 2 for &RPRT(n).
3. These values are not used if the job uses a

/*PRIORITY HASP control card.
4. See also the description of &XPRI(n), used

with &XLIN(n) to determine a job's printing
priority.

HASPGEN Parameters - Page 1.1.106

415

HAS P

&XPRI(n)

&XPRl(n)

Explanation: Subscripted variable symbols &XPRI(n)
specify job priorities for printing which cor­
respond to intervals defined by subscripted
variable symbols &XLIN(n). If a user does not sup­
ply a /*PRIORITY control card with his job, the
job's priority is recomputed after execution based
upon the actual number of print lines it produced.
If the job produced p print lines then its priority
for printing and punching will become &XPRI(n),
where n is the smallest number for which

pS;&XLIN(n) .
Each specification must be an integer between 0 and
15.

Default: &XPRI(l)=9
&XPRI(2)=8
&XPRI(3)=7
&XPRI(4)=6
&XPRI(5)=5
&XPRI(6)=4
&XPRI(7)=3
&XPRI(8)=2
&XPRI(9)=1

HASPGEN Parameters - Page 7.1.107

416

HAS P

&XZMFTH

&XZMFTH

Explanation: Variable symbol &XZMFTH specifies the
dispatching priority of the highest-priority MFT task
to be included in the group of tasks analyzed by the
HASP Execution Task Monitor. Each MFT HASP-controlled
job step task without subtasks whose dispatching
priority falls within the range &XZMFTL through &XZMFTH
is examined by the HASP Execution Task Monitor every
&MONINTV seconds. In order to balance the CPU utili­
zation characteristics of these tasks, the Execution
Task Monitor resets the dispatching priority of each
of them to &XZMFTL and, if necessary, changes their
order on the TCB ready chain. The specification for
&XZMFTH must be one or two hexadecimal characters
ranging from 00 to FF.

Default: &XZMFTH=FF

Notes:
1. If &XZMFTH is specified as 00, Execution Task

Monitor support for MFT is excluded from the
generated HASP system.

2. If &XZMFTH is specified as 00 and &XZPRTY is
specified as 0-1, then &MONINTV must be specified
as O.

HASPGEN Parameters - Page 7.1.108

417

HAS P

&XZMFTL

&XZMFTL

Explanation: Variable symbol &XZMFTL specifies the
dispatching priority of the lowest-priority MFT task
to be included in the group of tasks analyzed by the
HASP Execution Task Monitor. Each MFT HASP-controlled
job step task without subtasks whose dispatching
priority falls within the range &XZMFTL through &XZMFTH
is examined by the HASP Execution Task Monitor every
&MONINTV seconds. In order to balance the CPU utiliza­
tion characteristics of these tasks, the Execution
Task Monitor resets the dispatching priority of each
of them to &XZMFTL and, if necessary, changes their
order on the TCB ready chain. The specification for
&XZMFTL must be one or two hexadecimal characters
ranging from 00 to FF.

Default: &XZMFTL=OO

Notes:
1. If &XZMFTH is specified as 00, &XZMFTL is not

used and Execution Task Monitor support for MFT
is excluded from the generated HASP system.

HASPGEN Parameters - Page 7.1.109

418

HAS P

&XZMULT

Explanation: Variable symbol &XZMULT specifies
whether or not tasks which are part of a multi­
tasking jobstep are to be included in the group
of tasks analyzed by the Execution Task Monitor.
A specification of YES indicates that all tasks
for jobs controlled by HASP running at eligible

&XZMULT

OS dispatching priorities will be monitored. Tasks
within a jobstep will maintain relative priorities
as assigned by ATTACH and CHAP macros. A specifi­
cation of NO indicates that multi-tasking jobstep
tasks are not to be monitored. The specification
must be either YES or NO.

Default: &XZMULT=YES

Notes:
1. In an MFT system all monitored tasks are as­

signed an OS dispatching priority specified
by the &XZMFTL parameter. A CHAP or ATTACH
specifying a change in priority will have the
effect of changing relative priority; however,
as long as the task remains within the range
&XZMFTH and &XZMFTL the assigned priority will
be changed to &XZMFTL at the end of the monitor
interval &MONINTV.

HASPGEN Parameters - Page 7.1.109.1

418.1

HAS P

{The remainder of this page intentionally left blank.}

418.2

HAS P

&XZPRTY

&XZPRTY

EXJi>lanation: Variable symbol &XZPRTY specifies a
pr~ority value used by the HASP Execution Task Monitor
for MVT systems. The Execution Task Monitor periodi­
cally analyzes each MVT HASP-controlled job step task,
without subtasks', whose dispatching priority is
&XZPRTY*16+ll. In order to balance the CPU utiliza­
tion characteristics of these tasks, the Execution
Task Monitor may re-order these tasks on the TCB
ready chain. The specification for &XZPRTY must be
an integer between 0 and 15 inclusive, or the expres­
sion "0-1". The latter value should be used when the
Execution Task Monitor is to operate for MFT but not
for MVT.

Default: &XZPRTY=7

Notes:
1. If &MONINTV=O, the value of &XZPRTY is not used.
2. If &XZPRTY is specified as 0-1 and &XZMFTH is

specified as 0, then &MONINTV must be set to O.

HASPGEN Parameters"; Page 7.1.11Q

419

HAS P

$$x

$$x

Explanation: Ordinary symbol $$x specifies the
destination for an output data set designated in the
user's JCL as SYSOUT=x. The specification for each
of these ordinary symbols must be one of the charac­
ters A, B, 1, 2, or *.

For $$x=A, associated SYSOUT data sets will be
printed with the user's job.

For $$x=B, associated SYSOUT data sets will be
punched with the user's job.

For $$x=l, associated SYSOUT data sets will be
added to the HASP special forms queue, to be printed
with other SYSOUT data sets requiring the same
forms.

For $$x=2, associated SYSOUT data sets will be
added to the HASP special forms queue, to be punched
with other SYSOUT data sets requiring the same
forms.

For $$x=*, associated SYSOUT data sets will be
processed entirely by OS. In this case, HASP will
add the specification UNIT=SYSDA to the JCL, unless
the user has himself specified UNIT=information.

Default: $$A=A
$$B=B
$$C=A
$$D=A
$$E=A
$$F=A
$$G=A
$$H=A
$$I=A
$$J=l
$$K=2
$$L=A
$$M=A
$$N=A
$$O=A
$$P=A
$$Q=A
$$R=A

420

$$S=A
$$T=A
$$U=A
$$V=A
$$W=A
$$X=A
$$Y=A
$$Z=A
$$l=A
$$2=A
$$3=A
$$4=A
$$5=A
$$6=A
$$7=A
$$8=A
$$9=A
$$O=A

HASPGEN Parameters - Page 7.1.111

HAS P

Notes:
1. For any output class x, regardless of the value

specified for $$x, a four-digit special forms
number can be coded as the third positional
parameter of the SYSOUT=keyword. The specifi­
cation is converted to a packed number (unless
$$x=*) i that is, forms number 0001 is the same
as forms number 01.

2. For an output class x for which $$x=*, the
SYSOUT=parameter may be coded as described in
the OS Job Control Language Reference manual.

3. A user SYSOUT specification which includes the
second positional parameter (program name) will
be processed entirely by OS, regardless of
whether the associated $$ parameter was specified
as *.

4. If a given output class x is one of the classes
assigned to &WTRCLAS, it must not be used in a
SYSOUT specification to be processed by OS
(caused if $$x=*, or if the second parameter
of SYSOUT is used), unless that class x is
subject to requeueing as described under the
parameter &WCLSREQ.

HASPGEN Parameters - Page 7.1.112

421

HAS P

7.2 RMTGEN PARAMETERS FOR SYSTEM/360 MODEL 20 STR

This section describes the parameters used in assembly
of the System/360 Model 20 STR Remote Terminal Program
for HASP Remote Job Entry. The parameters are used
during RMTGEN to specify hardware configuration and
software options.

For each parameter there is an explanation, the default
value, and frequently notes which expand upon the
explanation.

The parameters are listed in alphabetical order.

STR-20 RMTGEN Parameters - Page 7.2.1

422

HAS P

&CCT

&CCT

Explanation: Variable symbol &CCT specifies the
degree of text compression to be provided in the
program. For text transmission to HASP, the program
will compress strings of &CCT or more identical
characters. The specification must be an integer
between 3 and 80 inclusive.

Default: &CCT=4

Notes:
1. Low values of &CCT cause creation of highly

compact records, increasing effective line speed
at the expense of CPU

STR-20 RMTGEN Parameters - Page 7.2.2

423

HAS P

&CORESIZ

&CORESIZ

Explanation: Variable symbol &CORESIZ specifies the
amount of main storage available to the program in
K bytes. The specification must be "an integer greater
than O.

Default: &CORESIZ=8.

STR-20 RMTGEN Parameters - Page 7.2.3

424

HAS P

&NUMBUFS

&NUMBUFS

Explanation: Variable symbol &NUMBUFS specifies the
maximum number of buffers to be used by the program.
The specification must be an integer greater than or
equal to 2.

Default: &NUMBUFS=10

Notes:
1. The length of each buffer is given by HASPGEN

parameter &TPBFSIZ.

STR-20 RMTGEN Parameters - Page 7.2.4

425

HAS P

&PUNCH

&PUNCH

Explanation: Variable symbol &PUNCH specifies inclu­
sion(&PUNCH=l) or exclusion (&PUNCH=O) of support
for a card punch attached to the Model 20. The speci­
fication must be either 0 or 1.

Default: &PUNCH=1

Notes:
1. The program supports 1442, 2520, and 2560 card

punches interchangeably.

STR-20 RMTGEN Parameters - Page 7.2.5

426

11 ASP

7.3 RMTGEN PARAMETERS FOR SYSTEM/360 MODEL 20 Bse

This section describes the parameters used in assembly
of the System/360 Model 20 BSe Rempte Terminal Program
for HASP MULTI-LEAVING Remote Job Entry. The parameters
are used during RMTGEN to specify hardware configuration
and software options.

For each parameter there is an explanation, the default
value, and frequently notes which expand upon the
explanation.

The parameters are listed in alphabetical order.

BSC-20 RMTGEN Parameters - Page 7.3.1

427

HAS P

&CCT

&CCT

Explanatidn:Variable symbol &CCT specifies for all
text compression but trailing blank compression the
minimum number ox characters to be compressed. A
duplicate character string of fewer than &CCT charac­
ters will be treated as a string of non-duplicate
characters for compression purposes. The specification
m:ust be an integer between 3 and 31, inclusive.

Default: &CCT=4

Notes:
1. See also &CMPTYPE. The value of &CCT is not

used if &CMPTYPE=l.
2. A smaller value of &CCT increases efficiency

of communication line usage at the expense of
compute time required for compression.

BSC-20 RMTGEN Parameters - Page 7.3.2

428

HAS P

&CMPTYPE

&CMPTYPE

Explanation: . Variable symbol &CMPTYPE specifies the
type of compression to be applied to all text trans­
mitted from the Model 20 to the central computer.
The specification must be either 1, 2, or 3. The
value 1 specifies trailing blank compression: 2 speci­
fies compression of leading, embedded, and trailing
blanks, and 3 specifies compression of all duplicate
character strings.

Default: &CMPTYPE=2

Notes:
1. See also &CCT.

BSC-20 RMTGEN Parameters - Page 7.3.3

429

HAS P

&CORESIZ

&CORESIZ

Explanation: Variable symbol &CORESIZ specifies the
size of Model 20 main storage ,in Kbytes (1 Kbyte =
1024 bytes). The specification must be an integer
between 8 and 32 inclusive.

Default: &CORESIZ=8

BSC-20 RMTGEN Parameters - Page 7.3.4

430

HAS P

&ERRMSGN

&ERRMSGN

Explanation: Variable symbol &ERRMSGN specifies the
number of four-byte entrie,s to be assembled in the
Model 20 ~emote Terminal program as an error message
log table. The specification must be an integer not
less than 8.

Default: &ERRMSGN=10

BSC-20 RMTGEN Parameters - Page 7.3.5

431

HAS P

&LINESPD

&LINESPD

Explanation: Variable symbol &LINESPD specifies the
speed, in baud, of the communication line to be used
between the Model 20 and the central computer. The
specification must be a positive integer.

Default: &LINESPD=2000

BSC-20 RMTGEN Parameters - Page 7.3.6

432

HAS P

&NUMBUFS

&NUMBUFS

Explanation: Variable symbol &NUMBUFS specifies number
of teleprocessing buffers to be constructed by the
Model 20 Remote Terminal program. The specification
must be an integer no less than given by the formula

2*X+l
where

X=l if either a 2520 or a 2560 is to be used as
both a reader and a punch, or

o otherwise.

Default: &NUMBUFS=8

Notes:
1. The length of each buffer is &MLBFSIZ+5 bytes

(rounded up to the next full word); the value
of HASPGEN parameter &MLBFSIZ is automatically
propagated to RMTGEN.

2. If &NUMBUFS specifies more buffers than can be
built in available storage, the Remote Terminal
program will build as many buffers as it can.

3. It is recommended that at least two buffers be
furnished for each output device and for the
communication adapter.

BSC-20 RMTGEN Parameters - Page 7.3.7

433

HAS P

& NUMTANK

&NUMTANK

Explanation: Variable symbol &NUMTANK specifies the
number of decompression buffers ("decompression tanks")
to be assembled in the Model 20 Remote Terminal program.
The specification should be an integer not less than 2.

Default: &NUMTANK=8

Notes:
1. The length of each decompression tank is &PRTSIZE+6.
2. It is recommended that at least two tanks each be

provided for the printer and the punch.
3. For an 8K Model 20, specification of &NUMTANK

greater than 8 may cause the Remote Terminal
program to assemble larger than X'lFOO' bytes
(8K-256); the resultant program will fail to
load.

BSC-20 RMTGEN Parameters - Page 7.3.8

434

HAS P

&PDEV (1)

&PDEV(l)

Explanation: Subscripted variable symbol &PDEV(l)
specifies device type for the Model 20 printer. The
specification must be either 1403 or 2203.

Default: &PDEV(1)=2203

BSC-20 RMTGEN Parameters - Page 7.3 .,g

435

HAS P

&PRTCONS

&PRTCONS

Explanation: Variable symbol &PRTCONS specifies the
degree of use of the printer as an output console
and is dependent upon the specifications used in the
generation of the HASP System pertaining to the han­
dling of messages for the remote as follows:

1. If HASP is told that the remote has a console
via the RMTnn HASPGEN parameter, &PRTCONS has
the following meanings:

&PRTCONS=O - Error logging and display will be
suppressed and operator messages
created while the remote is on­
line to HASP will be discarded.

&PRTCONS=l - The printer will be used as an
output console when sufficient
operator messages from HASP have
been queued for output at the
remote. If the printer is busy
with job stream output, that out­
put will be interrupted for the
printing of operator messages
from HASP and error messages from
the remote error log. When the
console queue is empty, job stream
output will continue.

&PRTCONS=2 - The printer will be used as an
output console but will not inter­
rupt the printing of jobs. Opera­
tor messages received from HASP
while jobs are being printed will
be discarded.

2. If HASP is told that the remote does not have
a console via the RMTnn HASPGEN parameter and
HASP does not have message SPOOLing capability
as determined by the &SPOLMSG HASPGEN parameter
&PRTCONS has the following meanings:

&PRTCONS=O - Error logging and display will be
suppressed and no operator messages
will be displayed.

&PRTCONS=l - Error log messages will be displayed
when the printer is free to print
them (no job interruptions).

&PRTCONS=2 - Same as &PRTCONS=l

BSC-20 RMTGEN Parameter - Page 7.3.10

436

HAS P

3. If HASP is ·told· that the remote does not have
a console via the RMTnn HASPGEN parameter and
HASP does have message SPOOLing capability as
determined by &SPOLMSG HASPGEN parameter
&PRTCONS takes on the same meanings as 2 above
with the additional capability of printing op­
erator messages queued for the remote by HASP
and transmitted to the remote when the printer
is free and is set to receive messages by the
$TRMr.PRl command.

Settings for &PRTCONS must be 0, 1, or 2.

Default: &PRTCONS=O

Notes:
1. If &WDEV(l) is not zero &PRTCONS should be set

to zero.
2. See HASPGEN parameters RMTnn and &SPOLMSG.
3. Regardless of the settings of the &WDEV(l) and

&PRTCONS parameters error messages resulting
from loggab1e errors detected by the remote
will be discarded when the errors occur at a
rate faster than the output device can display
them.

BSC-20 RMTGEN Parameter - Page 7.3.10-1

436.1

'H ASP

(The remainder of this page intentionally left blank.)

436.2

a ASP

&PRTSIZE

&PRTSIZE

Exp.lanation: Variable symbol &PRTSIZE,specifies the
length in bytes of' the' text portion of each decompres­
sion tank. Each'tank must be long enough to hold a
maximum-length output record to either the printer,
the punch, or the operator console. The specification
must be an integer that is the largest of 80 (if &UDEV(l)
is not zero), 120 (if &WDEV(l) is not zero), and the
line width of the printer.

Default: &PRTSIZE=120

BSC-20 RMTGEN Parameters - Page 7.3.11

437

HAS P

&RADR(l)

&RADR(1)

Explanation: Subscripted variable symbol &RADR(l)
specifies, the unit address of the Model 20 card
reader. The specification, must correspond to the
specification for &RDEV (1) as follows,:

&RDEV (1)
2501
2520
2560

Default: &RADR(l)~l

&RADR(l)
1
2
2

BSC-20 RMTGEN Parameters - Page 7.3.12

438

HAS P

&RDEV (1)

&RDEV(1)

Explanation: Subscrip"ted variabl~ symbol &RDEV (1)
specifies device type for the Model 20 card reader.
The specification must be either 2501, 2520, or 2560.

Default: &RDEV(1)=2501

Notes:
1. See also &RADR(l)

BSC-20 RMTGEN Parameters - Page 7.3.13

439

HAS P

&SUBMOD

&SUBMOD

Explanation: Variable symbol &SUBMOD specifies the
Submodel number of the System/360 Model 20 for the
specified Remote Terminal. The specification must
be a valid System/360 Model 20 Submodel number.

Default: &SUBMOD=2

BSC-20 RMTGEN Parameters - Page 7.3.14

440

HAS P

&UADR (1)

&UADR(1)

Explanation: Subscripted variable symbol &UADR(l)
specifies· the unit address of the t-1odel 20 card punch.
The specification must correspond to the specification
for &UDEV(l) as follows:

&UDEV (1)
1442
2520
2560

o

Default: &UADR(1)=3

&UADR(l)
3
2
2

not used

BSC-20 RMTGEN Parameters - Page 7.3.15

441

HAS P

&UDEV(l)

&UDEV(l)

Explanation: Subscripted variable symbol &UDEV(l)
specifies device type for the Model 20 card punch.
The specification must be either 1442, 2520, 2560,
or O. Specification 0 is used when the Model 20
does not include a card punch.

Default: &UDEV(1)=1442

Notes:
1. See also &UADR(l), unless &UDEV(l)=O.

BSC-20 RMTGEN Parameters - Page 7.3.16

442

HAS P

&WDEV (1)

&WDEV(l)

Explanation: Subscripted variable symbol &WDEV(l)
specifies device type for the Model 20 console.
The specification must be either 2152 (if a console
is present) or 0 (if no console is present).

Default: &WDEV(l)=0

Notes:
1. If &WDEV(1)=1, console support must be indicated

for this Remote Terminal at HASPGEN time. See
HASPGEN parameter RMTnn.

BSC-20 RMTGEN Parameters - Page 7.3.17

443

HAS P

&WTOSIZE'

I

&WTOSIZE

Explanation: Variable symbol &WTOSIZE specifies the
maximum length in bytes ofa HASP operator command
to be transmitted from the Model 20 to the central
computer. The specification must be a positive in­
teger not greater than 120.

Default: &WTOSIZE=120

Notes:
1. If &WDEV (1) =0, this parameter ,is not used.

BSC-20 RMTGEN Parameters - Page 7.3.18

444

HAS P

&XPARENT

&XPARENT

Explanation: Variable symbol &XPARENT specifies presence
or absence of the text transparency feature. If the
Binary Synchronous Communication Adapters at both the
Model 20 and the central computer have the text trans­
parency feature, YES should be specified; otherwise NO
should be specified.

Default: &XPARENT=YES

BSC-20 RMTGEN Parameters - Page 7.3.19

445

HAS P

7.4 RMTGEN PARAMETERS FOR SYSTEM/360 (EXCEPT MODEL 20) BSC

This section describes the parameters used in assembly
of the System/360 BSC Remote Terminal Program for HASP
MULTI-LEAVING Remote Job Entry. The parameters are
used during RMTGEN to specify hardware configuration
and software options.

For each parameter there is an explanation, the default
-va-l-ue-, -a-n-6.~r-re-(:rt1-e-nt-l-y--no-t-e-s-Vlhi-c-h---expana- upon the
explanation.

The parameters are listed in alphabetical order.

BSC-360 RMTGEN Parameters - Page 7.4.1

446

HAS P

&ADAPT

&ADAPT

Ex~lanation: Variable symbol &ADAPT specifies the
unl.t address of the Binary Synchronous Communication
Adapter to be used by the System/360 Remote Terminal
to communicate with HASP at the central computer.
The specification must be a valid unit address.

Default: &ADAPT=020

BSC-360 RMTGEN Parameters - Page 7.4.2

447

HAS P

&CCT

&CCT

Explanation: Variable symbol &CCT specifies for all
text compression but trailing blank compression the
minimum number of characters to be compressed. A
duplicate character string of fewer than &CCT charac­
ters will be treated as a string of non-duplicate
characters for compression purposes. The specification
must be an integer between 3 and 31, inclusive.

Default: &CCT=4

Notes:
1. See also &CMPTYPE. The value of &CCT is not

used if &CMPTYPE=l.
2. A smaller value of &CCT increases efficiency

of communication line usage at the expense of
compute time required for compression.

BSC-360 RMTGEN Parameters - Page 7.4.3

448

HAS P

&CMPTYPE

&CMPTYPE

Explanation: Variable symbol &CMPTYPE specifies type
of compression to be applied to all text transmitted
from the System/360 Remote Terminal to the central
computer. The specification must be either 1, 2, or
3. The value 1 specifies trailing blank compression;
2 specifies compression of leading, embedded, and
trailing blanks, and 3 specifies compression of all
duplicate character strings.

Default: &CMPTYPE=2

Notes:
1. See also &CCT.

BSC-360 RMTGEN Parameters - Page 7.4.4

449

HAS P

&CORESIZ

&CORESIZ

Explanation: Variable symbol &CORESIZ specifies the
size of main storage for the System/360 Remote Termi­
nal in K bytes (lK byte = 1024 bytes). The specifica­
tion must be an integer between 8 and 32 inclusive.
Ifthe~SystemI36-0~is largerthan-32K bytes, &CORESIZ
must be specified as 32.

Default: &CORESIZ=8

BSC-360 RMTGEN Parameters - Page 7.4.5

450

HAS P

&ERRMSGN .

I

&ERRMSGN

E~anation: Variable symbol &ERRMSGN specifies the
n er of four-byte entries to be assembled in the
System/360 Remote Terminal as an error message log
table. The specification must be an integer not less
than 8.

Default: &ERRMSGN=lO

BSC-360 RMTGEN Parameters - Page 7.4.6

451

HAS P

&LINESPD

&LINESPD

Explanation: Variable symbol &LINESPD specifies the
speed, in baud, of the communication line to be used
between the System/360 Remote Terminal and the central
computer •. The specification must be a positive integer.

De£-ault: & LINESP D= 2 0 00

BSC-360 RMTGEN Parameters - Page 7.4.7

452

HAS P

&MACHINE

&MACHINE

Explanation: Variable symbol &MACHINE specifies the
model number of the System/360to be used as a HASP
Remote Terminal. The specification must be a valid
System/360 model number for a System/360 which includes
the standard instruction set and the decimal instruction
set.

Default: &MACHINE=30

BSC-360 RMTGEN Parameters - Page 7.4.a

453

11 l~ f:, P

SiNUMI3UFS

&NUMBUFS

Explanation: Variable symbol &NUMBUFS specifies number
of teleprocessing buffers to be constructed by the
System/360 Remote Terminal program. The specification
must be an integer no less than given by the formula

2*X+l
where

X=l if either a 2520 or a 1442 is to be used as
both a reader and a punch, or

o otherwise.

Default: &NUMBUFS=8

Notes:
1. The length of each buffer is &MLBFSIZ+5 bytes

(rounded up to a multiple of 4); the value of
HASPGEN parameter &MLBFSIZ is automatically
propagated to RMTGEN.

2. If &NUMBUFS specifies more buffers than can be
built in available storage, the Remote Terminal
program will build as many buffers as it can.

3. It is recommended that at least two buffers be
furnished for each output device and for the
communication adapter.

,)3SC-360 RMTGEN Parameters - Page 7.4.9

454

HAS P

&NUMTANK

I

&NUMTANK

Explanation: Variable symbol &NUMTANK specifies the
number of decompression buffers ("decompression
tanks") program. The specification· should be an in­
teger not less than 2.

Default: &NUMTANK=5

Notes:
1. The length of each decompression tank is

&PRTSIZE+6.
2. It is recommended that at least two tanks be

provided for each printer and each punch (3 for
a 2540 punch).

BSC-360 RMTGEN Parameters - Page 7.4;10

455

HAS P

. &PADR (n)

&PADR(n)

Explanation: Subscripted variable symbols &PADR(n)
specify unit addresses for the printe'rs defined by
&PDEV(~). For each &PDEV(n) not specified as zero,
the corresponding symbol &PADR(n) must specify the
device's 3-character hexadecimal unit address.

Default: &PADR(l)=OOE
&PADR(2)=OOF
&PADR(3)=FFF
&PADR(4)=FFF
&PADR(5)=FFF
&PADR(6)=FFF
&PADR(7)=FFF

-BSC-;;.-)-o-O---RMTGEN . -Parame-ters-------Page---7--.-4-.-i-l

456

HAS P

&PDEV(n)

&PDEV(n)

Explanation: Subscripted variable symbols &PDEV(n)
specify the existence and device types of the Remote
Terminal printers. Each specification must be either
1403, 1443, or O. A specification of 0 indicates that
the associated printer does not exist.

Default: &PDEV(1)=1403

Notes:

&PDEV(2)=0
&PDEV(3)=0
&PDEV(4)=0
&PDEV(5)=0
&PDEV(6)=O
&PDEV(7)=0

1. If &PDEV(n) is specified as a device type, then
&UDEV(8-n) must be specified as zero.

2. If &PDEV(n+l) is specified as a device type, then
&PDEV(n) must be specified as a device type.

3. If more than one printer is specified, a Device
Control Table (DCT) for each additional printer
must be added to the HASP System.

BSC-360 RMTGEN Parameters - Page 7.4.12

457

HAS P

&PRTSIZE

&PRTSIZE

Explanation: Variable symbol &PRTSIZE specifies the
length in bytes of the text portion of each decompres­
sion tank. Each tank must be long enough to hold a
maximum-length output record to either a printer, a
punch, or the operator console. The specification
must be an integer that is the larger of 120 and the
line width of the widest printer.

Default: &PRTSIZE=132

BSC-360 RMTGEN Parameters - Page 7.4.13

458

HAS P

&RADR(n)

&RADR(n)

Explanation: Subscripted variable symbols &RADR(n)
specify unit addresses for the readers defined by
&RDEV(n). For each &RDEV(n) not specified as zero,
the corresponding symbol &RADR(n) must specify the
device's 3-character hexadecimal unit address.

Default: &RADR(l)=OOC
&RADR(2)=FFF
&RADR(3)=FFF
&RADR(4)=FFF
&RADR(5)=FFF
&RADR(6)=FFF
&RADR(7)=FFF

BSC-360 RMTGEN Parameters - Page 7.4.14

459

HAS P

&RDEV(n)

&RDEV(n)

Explanation: Subscripted variable symbols &RDE"V (n)
specify the existence and device types of the Remote
Terminal readers. Each specification must be either
2540, 2501, 2520, 1442, or O. A specification of 0
indicates that the associated reader does not exist.

Default: &RDEV(1)=2540

Notes:

&RDEV(2)=0
&RDEV (3) =0
&RDEV(4) =0
&RDEV(5) =0
&RDEV(6)=0
&RDEV(7) =0

1. If &RDEV(n+l) is specified as a device type, then
&RDEV(n) must be specified as a device type.

2. If more than one reader is specified, a Device
Control Table (DCT) for each additional reader
must be added to the HASP System.

BSC-360 RMTGEN Parameters - Page 7.4.15

460

HAS P

&UADR(n)

&UADR(n)

Explanation: Subscripted varlable symbols &UADR(n)
specify unit addresses for the punches defined by
&UDEV(n). For each &UDEV(n) not specified as zero,
the corresponding symbol &UADR(n) must specify the
device's 3-character hexadecimal unit address.

Default: &UADR(l)=OOD
&UADR(2)=FFF
&UADR(3)=FFF
&UARD(4)=FFF
&UARD(5)=FFF
&UARD(6)=FFF
&UARD(7)=FFF

BSC-360 RMTGEN Parameters - Page 7.4.16

461

HAS P

&UDEV(n)

&UDEV(n)

Explanation: Subscripted variable symbols &UDEV(n)
specify the existence and device types of the Remote
Terminal punches. Each specification must be either
2540, 2520, 1442, or O. A specification of 0 indicates
that the associated punch does not exist.

Default: &UDEV(I)=2540

Notes:

&UDEV(2)=0
&UDEV(3)=0
&UDEV(4) =0
&UDEV(5) =0
&UDEV(6)=0
&UDEV(7)=0

1. If &UDEV(n) is specified as a device type, then
&PDEV(8-n) must be specified as zero.

2. If &UDEV(n+l) is specified as a device type, then
&UDEV(n) must be specified as a device type.

3. If more than one punch is specified, a Device
Control Table (OCT) for each additional punch must
be added to the HASP System.

BSC-360 RMTGEN Parameters - Page 7.4.17

462

HAS P

&WADR (1)

&WADR(l)

Explanation: Subscripted variable symbol &WADR(l) specifies
the unit address of the 1052 operator console on the
System/360 Remote Terminal. The specification must
be a 3-character hexadecimal unit address.

Default: &WADR(l)=OlF

BSC-360 RMTGEN Parameters - Page 7.4.18

463

HAS P

&WTOSIZE

I

&WTOSIZE

Explanation: Variable symbol &WTOSIZE specifies the
maximum length in bytes of a HASP operator command
to be transmitted from the System/360 Remote Terminal
to the central computer. The specification must be
a positive integer not greater than 120.

Default: &WTOSIZE=120

BSC-360 RMTGEN Parameters - Page 7.4.19

464

HAS P

&{(PARENT

&XPARENT

Explanation: Variable symbol &XPARENT specifies
presence or absence of the text transparency feature.
If the Binary Synchronous Conununication Adapters at
both the System/360 Remote Terminal and the central
computer have the text trqnsparency feature, YES .
should be specified: otherwise NO should be specified.

Default: &XPARENT=YES

BSC-360 RMTGEN Parameters - Page 7.4.20

465

HAS P

7.5 RMTGEN PARAMETERS FOR 1130

This section describes the parameters used in assembly
of the ll30Remote Terminal Program for HASP MULTI­
LEAVING Remote Job Entry. The parameters are used
during RMTGEN to specify hardware configuration and
software options.

For each parameter there is an explanation, the default
value, and frequently notes which expand upon the
explanation.

The parameters are listed in alphabetical order.

RTPll30 RMTGEN Parameters - Page 7.5.1

II ASP

&CLOCK

&CLOCK

Explanation: The varidLlc~IYIL ,. i &CLOCK is used to
specify the type of communication adapter clocking
qvailable on the 1130 to be used by the workstation
program. The specification of &CLOCK~O is interpreted
to mean that data set clocking is being used. The
value &CLOCK=l specifies internal (1130) clocking.

Default: &CLOCK=O

Notes:
1. The rate of insertion of the synchronous idle

sequence in the transmitted data is determined
by the variables &CLOCK, &LINESPD and &TRANPRN.
The relationship of these variables to the inser­
tion rate is:

&CLOCK

o
o
1
1

&TRANPRN

o
1
o
1

INSERTION EVERY:

&LINESPD/8
&LINESPD/8

70
&LINESPD/8

characters
characters
characters
characters

2. The equation used for the insertion rate is:
(&LINESPD/8)*T

where T is 1.00 second which is the nominal 2701
timer value.

RTPl130 RMTGEN Parameters - Page 7.5.2

At:"7

HAS P

&CMPTYPE

&CMPTYPE

Explanation: The variable symbol &CMPTYPE is used to
'specify the compression technique that is to be applied
to the data transmitted to the central HASP system.
The choices for &CMPTYPE are:

&CMPTYPE=Q for no compression of duplicate char­
acters or truncation of trailing blanks,

&CMPTYPE=l for trailing blank truncation only.

&CMPTYPE=2 for full compression: trailing blank
truncation and encoding of duplicate
characters.

Default: &CMPTYPE=2

Notes:
1. The process of compressing input data offers optimum

performance with respect to efficient line utiliza­
tion. However, the factors of line speed, CPU
availability, buffer size, line turn-around time,
nature of the data to be compressed, etc., are
variables which contribute to the overall operation
of the workstation program. Since compression and
truncation require considerable CPU time, the user
may decide, on the basis of the other variables,
to respecify the compression technique.

RTPl130 RMTGEN Parameters - Page 7.5.3

468

HAS P

&DELAY

&DELAY

Explanation: The variable symbol &DELJ\Y is used to
define the number of intervals of time that RTPl130
will delay, in transmitting a "handshaking" sequence
(DLE-ACKO) to the central HASP site. The hardware
program timer ,clock is used to measure the delay and
'is assumed to be set to a nominal value of .35 seconds.

Default: &DELAY=3

Notes:
1. &DELAY=3 results in a delay of 1.05 seconds,

assuming a timer interval of .35 seconds.
2. The purpose of the delay when "handshaking" is

to minimize CPU processing at the central HASP
computer when no dat~ is being transmitted.

3. The value of &DELAY must not be set to such a
large increment that the delay will be greater
than the timeout period of the central sit~
2701/2703.

RTPl130 RMTGEN Parameters - Page 7.5.4

469

H A 8 P

&FULLI8T

&FULLIST

Explanation: The variable symbol &FULLIST is used
to specify the type of assembly listing which is pro­
duced by the 08/360 assembler during the RMTGEN process.
If the value of &FULLI8T is set to 0, then the assembly
listing produced will be according to the PRINT NOGEN
stipulation of the assembler. If the value of &FULLI8T
is set to 1, the .listing will be produced according to
the PRINT GEN stipulation.

Default: &FULLIST=l

Notes:
1. since most of the code in RTPl130 and RTPLOAD

is created by Macro instructions, the specifica­
tion of &FULLIST=O will essentially produce a
source listing (cross referenced) without the
1130 assembled instructions. Error messages
will not appear on the listing.

RTPl130 RMTGEN Parameters - Page 7.5.5

470

HAS P

&LINESPD

&LINESPD

Explariation: Th~.vari~ble symbol &LINESPD is used
to specify the baud rate for the communication line
interface to the workstation program. The value should
correspond to the selected setting of the baud rate
switch on the 1130 SCA control panel: 1200,2000, ... ,etc.

Default: &LINESPD=2000

Notes:
~. The rate"of insertion of the synchronous idle

sequertce (DLE~SYN or SYN-SYN) in the transmitted
data is determined by the variables &CLOCK,
&LINESPD and&TRANPRN. See note 1 of &CLOCK
description.

RTPl130 RMTGEN Parameters - Page 7.5.6

471

HAS P

&MACHSIZ

&MACHSIZ

Explanation: Variable symbol &MACHSIZ specifies the
amount of 1130 core to be ~sed by RTPl130. The value·
of &MACHSIZ is in ~nits of 1130 words.

Default: &MACHSIZ=8192

Notes:
1. The value of &MACHSIZ is interpreted to mean that

"&MACHSIZ" number of words, starting at locqtion
0, are available for the workstation program con~
sisting of RTPBOOT, RTPLOAD and RTPll30.

2. The same variable symbOl must be defined for
RTPLOAD and should have the same value.

3. The value of &MACH$IZ may be less than the actual
available storage but must not be greater.

RTPl130 RMTGEN Parameters - Page 7.5.7

472

HAS P

&PN1442

&PN1442

Explanation: The variable symbol &PN1442 is used to
define a 1442 pu'nch. If the variable is set to 1,
thenRTPl130 will include support for punched card
output produced by jobs at the Central HASP site.
If the variable is set to 0, no support for the 1442
punch will be provided. See &RD1442 for the defini­
tion of a reader function on the 1442.

Default: &PN1442=1

RTPl130 RMTGEN Parameters - Page 7.5.8

473

HAS P

&PRFOTLW

&PRFOTLW

Explanation: The value of the variable symbo1&PRFO'I'LW
is used to define the line width of the 1403 printer
specified by &PR1403. The choices are 120 or 132
character lines.

Default: &PRFOTLW=120

Notes:
1. The definition of the line width for all printers

on a particular remote is a HASPGEN requirement.
See HASPGEN parameter RMTnn.

RTPl130 RMTGEN Parameters - Page 7.5.9

474

HAS P

&PRl132

&PRl132

Explanation: The variable symbol &PRl132 is used to
'define an 1132 printer. If the variable is set to
1, then RTP1l30 will include support for the 1132 to
print job output. If the variable is set to 0, no
support will be included in RTPl130 for the 1132.

Default: &PRl132=0

RTPl130 RMTGEN Parameters - Page 7.5.10

475

HAS P

&PR1403

&PR1403

Explanation: The variable symbol &PR1403 is used to
define a 1403 printer for use as an output device.
If the value of &PR1403 is 1, then the 1403 function
will be included in RTPl130. If the value is 0, the
function is deleted from RTPl130.

Default: &PR1403=1

Notes:
1. See &PRFOTLW for specifying the line width of

the 1403.

RTPl130 RMTGEN Parameters - Page 7.5.11

476

1I ASP

&RD1442

&RD1442

Explanation: The variable symbol &RD1442 is used to
define a 1442 as a card reader. If the variable is
set to 1, then RTPl130 will be assembled with all
necessary control blocks and support routines to pro­
vide job input from the 1442. If the variable is set
to 0, no support for the 1442 reader will be provided
in RTPl130. See &PN1442 for a definition of the
punch function on the 1442.

Default: &RD1442=1

Notes:
1. If the variable &RD1442 is set to 1 and a 1442

reader does not exist then the operation of the
workstation program may be unpredictable.

RTPl130 RMTGEN Parameters - Page 7.5.12

477

HAS P

&RD2501

&RD2501

Explanation: The variable symbol &RD2501 is used to
define a 2501 card reader. If the variable is set
to 1, then RTPl130 will be assembled with all necessary
control block and subroutines to support the 2501 as
a job input device. If the variable is set to 0,
no support for the 2501 will be included in RTPl130.

Default: &RD2501=0

Notes:
1. If the variable &RD2501 is set to 1 and a 2501

does not exist then the operation of the work­
station program will be unpredictable and usually
unproductive.

RTPll30 RMTGEN Parameters - Page 7.5.13

478

HAS P

&RTPLORG

&RTPLORG

Explanation: The variable symbol &RTPLORGdefines
the origin in 1130 storage of the program loader
RTPLOAD which is used to load RTPl130.

Default: &RTPLORG=2*(&MACHSIZ-I024)

Notes:
1. The value of the above expression, assuming

&MACHSIZ=8192, is 14336 (which is twice the
actual 1130 storage address because the value
is used in an ORG operation and must be in terms
of bytes not 1130 words.

2. The RTPLOAD program must origin ih the storage
available between the end of RTPl130 (beginning
of buffer pool) and the end of defined (&MACHSIZ)
storage MINUS the length of RTPLOADs The default
value of &RTPLORG allows for an RTPLOAD of 1024
words in size.

RTPl130 RMTGEN Parameters - Page 7.5.14

HAS P

&TRANPRN

&TRANPRN

Explanation: The variable symbol &TRANPRN is used to
define the simulation of the Binary Synchronous
Transparency feature. If the value of &TRANPRN is set
to 1, then RTPl130 will simulate the transparency
feature in the same manner as the 2701 SDA-II adapter
equipped with the transparency feature. If the
variable is set to 0, no simulation will occur and
therefore data which contains transparent characters
cannot be properly processed by RTPl130.

Default: &TRANPRN=1

Notes:
1. If &TRANPRN=O is specified, the conversion of

card code data is monitored and all BSC control
characters are converted to hexadecimal O. This
prevents mispunched data from causing an infinite
error retrytt the central site does not have
transparency.

2. See &LINESPD and &CLOCK for additional influence
of &TRANPRN.

3. If &TRANPRN=l, the generated Remote Terminal
program will communicate only with a 2701 or 2703
adapter which has the text transparency feature.

RTPl130 RMTGEN Parameters - Page 7.5.15

·480

HAS P

7.6 RMTGEN PARAMETERS FOR 1130 LOADER

This section describes the parameters used in assembly of
RTPLOAD, the 1130 Loader Program. RTPLOAD is used to load
the 1130 Remote Terminal Program. RTPLOAD's three parameters
specify machine size, loader origin, and an assembler list
option.

For each parameter there is an explanation, the default value,
and frequently notes which expand upon the explanation.

The RMTGEN processes produce the object decks for RTPLOAD
and RTPl130. The bootstrap loader (RTPBOOT) cannot be pro­
duced on a System 360 and must be punched by keypunch as
indicated in Section 4.14.3.

The parameters are listed in alphabetical order ..

RTPLOAD RMTGEN Parameters - Page 7. 6 .. 1

481

HAS P

&FULLIST

&FULLIST

Explanation: The variable symbol &FULLIST is used
to specify the type of assembly listing which is pro­
duced by the OS/360 assembler during theRMTGEN process.
If the value of"&FULLIST is set to 0, then the assembly
listing produced will be according to the PRINT NOGEN
stipulation of the assembler. If the value of &FULLIST
is set to 1, the listing will be produced according to
the PRINT GEN stipulation.

Default: &FULLIST=l

Notes:
1. Since most of the code in RTPll30 and RTPLOAD

is created by Macro instructions, the specifica­
tion of &FULLIST=O will essentially produce a
source listing (cross referenced) without the
1130 assembled instructions. Error messages
will not appear on the listing.

RTPLOAD RMTGEN Parameters - Page 7.6.2

482

HAS P

&MACHSIZ

&MACHSIZ

Explanation: Variable symbol &MACHSIZ specifies the
amount of 1130 core to be used by RTPLOAD. The value
of &MACHSIZ is in units of 1130 words.

Default: &MACHSIZ=8192

Notes:
1. The value of &MACHSIZ is interpreted to mean that

"&MACHSIZ" number of words, starting at location
0, are available for the workstation program con­
sisting of RTPBOOT, RTPLOAD and RTP1130.

2. The same ~ariable symbol must be defined for
RTPll30 and should have the same value.

3. The value of &MACHSIZ may be less than the actual
available sto~age but must not be greater.

RTPLOAD RMTGEN Parameters - Page 7.6.3

483

HAS P

&RTPLORG

&RTPLORG

Explanation: The variable symbol &RTPLORG defines
the origin in 1130 storage of the program loader
RTPLOAD which is used to load RTPl130.

Default: &RTPLORG=2*(&MACHSIZ-I024)

Notes:
1. The value of the above expression, assuming

&MACHSIZ=8192, is 14336 (which is twice the
actual 1130 storage address because the value
is used in an ORG operation and'must be in terms
of bytes not 1130 words.

2. The RTPLOAD program must origin in the storage
available between the end of RTPl130 (beginning
of buffer pool) and the end of defined (&MACHSIZ)
storage MINUS the length of RTPLOAD. The default
value of &RTPLORG allows for an RTPLOAD of 1024
words in size.

RTPLOAD RMTGEN Parameters - Page 7.6.4

484

HAS P

7.7 RMTGEN PARAMETERS FOR SYSTEM/3

This section describes the parameters used in assembly
of the System/3 Remote Terminal Program for HASP MULTI­
LEAVING Remote Job Entry. The parameters are used
during RMTGEN to specify-hardware configuration and
software options.

For each parameter there is an explanation, the default
value, and frequently notes which expand upon the
explanation.

The parameters are listed in alphabetical order.

System/3 RMTGEN Parameters - Page 7.7.1

485

HAS P

&COMP

&COMP

Explanation: Variable symbol &CO~1P specifies degree
of text compression to be provided for all text trans­
mitted from the System/3 to HASP. The specification
must be either 0, 1, or 2.

For &COMP=O, neither compression nor truncation is
performed.

For &COMP=l, trailing blanks are truncated from each
logical record before it is transmitted.

For &COMP=2, compression takes place after truncation.
Strings of from two to 31 blanks are compressed to a
single byte; strings of from three to 31 duplicate
characters are compressed to two bytes.

Default: &COMP=2

System/3 RMTGEN Parameters - Page 7.7.2

486

HAS P

&DEBUG

&DEBUG

Explanation: Variable symbol &DEBUG specifies inclusion
or exclusion of certain validity tests and a core dump
program in the System/3 Remote Terminal Program. The
specification must be either 0 or 1.

Default: &DEBUG=O

System/3 RMTGEN Parameters - Page 7.7.3

487

HAS P

&DIAL, &DIALI

&DIAL

Explanation: Variable symbols &DIAL and &DIALI specify
the telephone number to be used during the initializa­
tion process. The values will be included on the
default /*SIGNON card assembled into the System/3
Remote Terminal Program and preceded by the keyword
DIAL (unless the parameters are left at their defaults) .
Each specification is a string of from one to eight
decimal digits. If the telephone number is eight or
fewer digits long, it should be specified by &DIAL.
If the telephone number is longer than eight digits,
its leftmost eight digits should be specified by &DIAL
and the remaining digits by &DIALI.

Default: &DIAL=[null string]
&DIALl=[null string]

System/3 RMTGEN Parameters - Page 7.7.4

488

HAS P

&MACHSIZ

&MACHSIZ

Explanation: Variable symbol &MACHSIZ specifies the
size of System/3 Core storage. The specification
should be either 8192, 12288, 16384, 24576, or 32768
for core storage sizes of 8K, 12K, 16K, 24K or 32K
respectively.

Default: &MACHSIZ=8192

System/3 RMTGEN Parameters - Page 7.7.5

489

HAS P

&PASSWD

&PASSWD

Explanation: Variable symbol &PASSWD specifies a
password to be used during the SIGNON process. The
value will be included on the default /*SIGNON card
assembled into the System/3 Remote Terminal Program.
The specification must be a character string of from
one to eight characters. If blanks are desired, no
specification may be made.

Default: &PASSWD=[null string]

System/3 RMTGEN Parameters - Page 7.7.6.

490

HAS P

&PC(n)

&PC(n)

Explanation: Subscripted variable symbols -&PC(n)
specify skip information for the 5203 printer. The
value to which &PC(n) is set will be the print line
number to which paper will be skipped when the System/3
Remote Terminal Program simulates the 1403" command
"Skip to Channel n". Each specification must be an
integer between 0 and &S3FORML, inclusive. A specifi­
cation of 0 causes no forms movement.

Default: &PC(l)=l
&PC(2)=0
&PC(3)=0
&PC(4)=0
&PC(5)=0
&PC(6)=0
&PC(7)=0
&PC(8)=0
&PC(9)=0
&PC(lO)=O
&PC(ll)=O
&PC(12)=&S3FORML-5

System/3 RMTGEN Parameters - Page 7.7.7

491

"r

HAS P

&PRTCONS

&PRTCONS

Exelanation: Variable symbol &PRTCONS specifies
ut~lization of the 5203 printer as an operator's
output console. The specification must be 0, 1,
or 2.

For &PRTCONS=O, the 5203 printer will never be used
as an operator's output console.

For &PRTCONS=l, the System/3 Remote Terminal Program
will attempt to hold operator messages from HASP un­
til a job has completed printing. However, if two
or more MULTI-LEAVING buffers are received contain­
ing HASP operator messages, the 5203 will eject a
page (skip to channell), print the HASP operator
messages, eject another page, and resume printing
its job.

For &PRTCONS=2, the System/3 Remote Terminal Program
will throwaway all operator messages while the 5203
is printing a job. While the 5203 is dormant, it
will print any received messages.

Default: &PRTCONS=2

Notes:
1. If &S3547l=1, the value of&PRTCONS is ignored

and assumed to be zero.
2. Regardless of the setting of &PRTCONS, messages

temporarily saved on disk for a remote terminal
will be printed to the terminal as a job. Thus,
they will always appear on the printer, even if
another console exists. See also HASPGEN param­
eter.&SPOLMSG.

3. If &PRTCONS is specified greater than zero,
MULTI-LEAVING console support should be speci­
fied in HASPGEN parameter RMTnn for this remote.

System/3 RMTGEN Parameters - Page 7.7.8

492

HAS P

&S3CMDS

&S3CMDS

Explanation: Variable symbol &S3CMDS specifies in­
clusion or exclusion, local to the System/3, of a
command facility and commands to assist the System/3
operator. The specification must be either 0 or 1.

Default: &S3CMDS=O

Notes:
1. Commands available with this facility are ex­

plained in the System/3 Operator's Guide.

System/3 RMTGEN Parameters - Page 7.7.8.1

492.1

HAS P

(The remainder of this page intentionally left blank.)

492.2

HAS P

&S3FORML

&S3FORML

Explanation: Variable symbol &S3FORML specifies the
number of print lines on a page of the continuous
forms which will be used in the 5203 printer. The
specification must be an integer not less than 6.

Default: &S3FORML=66

System/3 RMTGEN Parameters - Page 7.7.9

493

HAS P

&S3NPUNS

&S3NPUNS

Explanation: Variable symbol &S3NPUNS specifies the
maximum number of jobs that can be punching simultaneously
at the System/3 Remote Terminal. The. specification must
be 1, 2, or 3. (A value of 3 allows simultaneous opera­
tion of both 5424 hoppers and the 1442 hopper as punches.)

Default: &S3NPUNS=1

Notes:
1. If &S3NPUNS is set to 2 or 3, extra device control

tables must be added for the appropriate remote to
the HASP System at HASPGEN time.

System/3 RMTGEN Parameters - Page 7.7.10

494

HAS P

&S3NRDRS

&S3NRDRS

Explanation: Variable symbol &S3NRDRS specifies the
maximum number of job streams that can be reading
simultaneously from the System/3 Remote Terminal.
The specification must be 1, 2, or 3. (A value of
3 allows simultaneous operation of both 5424 hoppers
and the 1442 hopper as readers.)

Default: &S3NRDRS=l

Notes:
I. If &S3NRDRS is set to 2 or 3, extra device control

tables must be added for the appropriate remote to
the HASP System at HASPGEN time.

System/3 RMTGEN Parameters - Page 7.7.11

495

HAS P

&S30BJDK

&S30BJDK

Explanation: Variable symbol &S30BJDK specifies inclu­
sion of a facility to punch Operating System object
decks. Text transparency should be present. The
specification should be 0 or 1.

If &S30BJDK=1, each card of an OS object deck will be
expanded and punched into two 96-column cards. These
cards will be recognized when later read by a System/3
Remote Terminal program for which &S30BJDK=1, and for
each two 96-column cards read an OS object deck card
image will be transmitted.

Default: &S30BJDK=O

System/3 RMTGEN Parameters - Page 7.7.12

496

HAS P

&S3SIP

&S3SIP

Explanation: Variable symbol &S3SIP specifies usage
of those bytes of System/3 core storage between X'lOO'
and X'IFF', inclusive. The specification must be either
O.or 1. For &S3SIP=l, the System/3 Remote Terminal
Program will not use the bytes; their values will be
preserved for the use of the System/3 Card System
Initialization Program.

Default: &S3SIP=Q

System/3 RMTGEN Parameters - Page 7.7.13

497

HAS P

&S3TRACE

&S3TRACE

Explanation: Variable symbol &S3TRACE specifies the
number of four-byte entries in the System/3 Remote
Terminal Program's internal error message table. The
specification must be an integer greater than 1.

Default: &S3TRACE=lO

System/3 RMTGEN Parameters - Page 7.7.14

498

HAS P

&S3XPAR

&S3XPAR

Explanation: Variable symbol &S3XPAR specifies presence
or absence of the EBCDIC text transparency feature. The
specification should be 1 if both the central computer's
communications adapter and the System/3 BSCA have the
EBCDIC text transparency feature; otherwise the specifi­
cation should be O.

Default: &S3XPAR=O

System/3 RMTGEN Parameters - Page 7.7.15

AOO

H A 8 P

&831442

&S31442

Explanation: Variable symbol &831442 specifies inclu­
sion or exclusion of support for the 1442 Card Reader­
Punch (RPQ). The specification must be 1 for inclusion
and 0 for exclusion of 1442 support.

Default: &831442=0

Notes:
1. If &831442=1, the resultant 8ystem/3 Remote Termi­

nal Program requires that a 1442 be present on
the 8ystem/3.

System/3 RMTGEN Parameters - Page 7.7.16

500

HAS P

&S35424

&S35424

Explanation: Variable symbol &S35424 specifies in­
clusion or exclusion of support for the' 5424 Multi­
Function Card Unit. The specification must be 1
for inclusion or 0 for exclusion of 5424 support.

Default: &835424=1

Notes:
1. If &S35424 is specified as 0, then &S31442 must

be specified as 1.
2. See Chapter 10.3 for RMTGEN considerations for

&S35424=0.
3. See the System/3 Operator's Guide in Chapter

11.9 for program loading considerations for
&S35424=0.

System/3 RMTGEN Parameters - Page 7.7.16.1

.500.1

HAS P

(The remainder of this page intentionally left blank.)

500.2

H A 8 P

&835471

&535471

Explanation: Variable symbol &835471 specifies
presence or absence of a 5471 Printer-Keyboard on
the 8ystem/3. The 5471 will be used as an operator's
input/output console. The specification must be 1
if a 5471 is present; otherwise it must be O.

Default: &835471=0

Notes:
1. If console support is desired, HA8PGEN parameter

RMTnn for this remote must specify MULTI-LEAVING
console support.

2. Regardless of the setting of &835471, messages
from HA8P can print on the printer. See RMTGEN
parameter &PRTCONS, note 2, and HASPGEN param­
eter &SPOLMSG.

System/3 RMTGEN Parameters - Page 7.7.17

501

HAS P

&S35475

&535475

Explanation: Variable symbol &S35475 specifies
presence or absence of a 5475 Data Entry Keyboard
on the System/3. The 5475 will be used as an oper­
ator's input console. The specification must be 1
if a 5475 is present; otherwise it must be O.

Default: &S35475=0

Notes:
1. If &S35471=1, this parameter is ignored.
2. If console support is desired, HASPGEN param­

eter RMTnn for this remote must specify MULTI­
LEAVING console support.

3. For output console specification, see RMTGEN
parameter &PRT.CONS.

System/3 RMTGEN Parameters - Page 7.7.18

5.02

HAS P

&S396COL

&S396COL

Explanation: Variable symbol &S396COL·specifies inclu­
sion or exclusion of the System/3 load-mode punch option.
The specification must be either 0 or 1. If &S396COL
is specified, the resultant System/3 Remote Terminal
Program will be capable of receiving correctly the
punched output of a System/3 RMTGEN.

Default: &S396COL=O

System/3 RMTGEN Parameters - Page 7.7.19

503

HAS P

7.8 RMTGEN PARAMETERS FOR 2922

To generate a 2922 Remote Terminal Program for HASP MULTI-LEAVING
RJE, the parameters and procedures documented in Sections 7.3 and
10.3 for the System/360 Model 20 BSC should be used, subject to
the following discussion.

Some parameters should be specifically set. They are:

&PDEV(l) =1403
&PRTSIZE=l32
&UDEV(l) =0
&WDEV(l)=2l52, if the optional typewriter console is installed
&XPARENT=NO, if optional transparency is not installed
&LINESPD=xxxx (the actual line speed used)

Some parameters should not be altered from their default values.
They are:

&CORESIZE
&SUBMOD

&RADR(l)
&UADR(l)

&RDEV(l)

All other Model 20 BSC parameter's may be allowed to default or may
be altered as desired, according to the description in Section 7.3.

2922 RMTGEN Parameters - Page 7.8.1

504

Ii ASP

8.0 HASP CONTROL TABLE FORMATS

Tllis sections contains block diagrams which depict the formats
of the HASP Control Tables which are not described in other
sections of this manual.

HASP Control Table Formats -- Page 8.0-1

505

HAS P

Figure 8.1.1 -- HASP COMMUNICATION TABLE FORMAT

Displacement

Hex. Dec.

o o

8 8

C 12

10 16

14 20

18 24

lC 28

20 32

24 36

28 40

~----------------------- 4 bytes ------------------------~

$VERSION

HASP Version -

SWAIT

Entry to HASP Dispatcher

SGETBUF

Entry to HASP Buffer "GET" Routine

$GETPBUF

Entry to HASP RJE Buffer "GET" Routine

$FREEBUF

Entry to HASP Buffer "FREE" Routine

$GETUNIT

Entry to HASP Unit "GET" Routine

$FREUNIT

Entry to HASP Unit "FREE" Routine

$QADD

Entry to HASP Job Queue Element "ADD" Routine

$QGET

Entry to HASP Job Queue Element "GET" Routine

HASP Communication Table Format -.~ Page 8.1-1

506

1I ASP

Figure 8.1.1 -- HASP COMMUNICATION TABLE FORMAT (CONTINUED)

Displacement

Hex. Dec.

28 40

2C 44

30 48

34 52

38 56

3C 60

40 64

44 68

48 72

4C 76

50 80

~----------------------- 4 bytes ------------------------~I

$QPUT

Entry to HASP Job Queue Element "PUT" Routine

$QREM

Entry to HASP Job Queue Element "REMOVE" Routine

$QSIZ

Entry to HASP Job Queue "SIZE" Routine

$QLOC

Entry to HASP Job Queue Element "LOCATE" Routine

$QJITLOC

Entry to HASP JIT Element "LOCATE" Routine

$TRACK

Entry to HASP Track Allocation Routine

$PURGER

Entry to HASP Track Purge Routine

$EXCP

Entry to HASP Input/Output Supervisor

SEXTPOPE

Entry to HASP RTAM Open Routine

SEXTPGET

Entry to HASP RTAM Get Routine

HASP Communication Table Format -- Page 8.1-2

507

HAS P

Figure 8.1.1 -- HASP COMMUNICATION TABLE FORMAT (CONTINUED)

Displacement

Hex. Dec.

50 80

54 84

58 88

5C 92

60 96

64 100

68 104

6C 108

70 112

74 116

78 120

1----------------------- 4
bytes -----------------~------1

$EXTPPUT

Entry to HASP RTAM Put Routine

$EXTPCLO

Entry to HASP RTAM Close Routine

$RESTORE

Entry to HASP RTAM Restore Routine

$ODEL

Entry to HASP Overlay $DELETE Routine

$ORET

Entry to HASP Overlay $RETURN Routine

$OLINK

Entry to HASP Overlay $LINK Routine

$OXCTL

Entry to HASP Overlay $XCTL Routine

$OLOAD

Entry to HASP Overlay $LOAD Routine

$WTO

Entry to HASP Write-to-Operator Routine

$FREEMSG

Entry to HASP Console Message Buffer Free Routine

HASP Communication Table Format -- Page 8.1-3

J;()Q

II ASP

Figure 8.1.1 -- HASP COMMUNICATION TABLE FORMAT (CONTINUED)

Displacement

Hex. Dec.
~----------------------- 4 bytes ------------------------~

78 120 $STIMER

Entry to HASP Set Interval Timer Routine

7C 124 $TTIMER

Entry to HASP Test Interval Timer Routine

80 128 $IOERROR

Entry to HASP Input/Output Error Logging Routine

84 132 $ERROR

Entry to HASP Catastrophic Error Routine

88 136 $DISTERR

Entry to HASP Disastrous Error Routine

BC 140 $SYSTYPE $OPTSTAT $STATUS

System Type Initialization HASP RESERVED
MFT or MVT Options Status

90 144 $HASPECF MHASPECB $XEQACT $ACTIVE

Master Event RJE Event O/S Execution Active
Control Field Control Field Count Count

94 148 $ENBALL $DISALL $DISINT

Enable All Disable All Disable Int RESERVED
Mask Mask Timer Mask

98 152 $PSRDRCT $PSPRFCT $PSPUFCT

Pseudo Reader Pseudo Printer Pseudo Punch RESERVED
Count (2540) Count (1443) Count (1442)

9C 156 $EXCPCT $COMMCT

Active I/O Count Active Command Count

AO 160

HASP Cornmunicatiol1(Table Format -- Page 8.1-4

509

II ASP

Figure 8.1.1 -- HASP COMMUNICATION TABLE FORMAT (CONTINUED)

Displacement

Hex. Dec.

AD 160

A4 164

A8 168

AC 172

BO 176

B4 180

B8 184

BC 188

CO 192

C4 196

C8 200

~----------------------- 4 bytes ------------------------~

$CKPTRAK

Checkpoint Track RES E R V E D

$HASPTCB

Address of HASP Task Control Block

$PCEORG

Address of First HASP Processor Control Element

$BUFPOOL

Address of First Available HASP Buffer

$TPBPOOL

Address of First Available HASP RJE Buffer

$DCTPOOL

Address of First HASP Device Control Table

$JITABLE

Address of HASP Job Information Table

$CYLMAP

Address of First HASP Cylinder Module Map

$TEDADDR

Address of First Track Extent Data Table

$DCBLIST

Address of HASP Direct Access DCB

HASP Communication Table Format -- Page 8.1-5

510

HAS P

Fiqurc 8.1.1 -- HASP COMMUNICATION TABLE FORMAT (CONTINUED)

Displacement

Hex. Dec.

C8 200

CC 204

DO 208

D4 212

D8 216

DC 220

~----------------------- 4 bytes ------------------------~

$FREEQUE

Address of First Free HASP Console Message Buffer

$BUSYQUE

Console Message Buffers Queued for I/O

$LOGQUE

Console Message Buffers Queued for Log Processor

$COMMQUE

HASP Commands Queued for Command Processor

$PRCHKPT

Address of HASP Print Checkpoint Table

HASP Communication Table Format -~ Page 8.1-6

511

HAS P

Figure 8.1.1 -- HASP COMMUNICATION TABLE FORMAT (CONTINUED)

Displacement

Hex. Dec.
~----------------------- 4 bytes ------------------------~

DC 220 $SVCRELT

Address of MFT SVC Relocation Table

EO 224 $SVCTABF

Address of MFT SVC Table

E4 228 $SVCTABV

Address of MVT SVC Table

E8 232 $IOSENT

Entry to O/S Input/Output Supervisor

EC 236 $ATTNENT

Entry to lOS Attention Appendage

FO 240 $XSMFENT

Entry to SMF EXCP Counting Routine

F4 244 $SVRSET

Entry to HASP SVC Reset Routine

F8 248

HASP Communication Table Format -- Page 8.1-7

512

II /\ S P

Figure B.l.l -- HASP COMMUNICATION TABLE FORMAT (CONTINUED)

Displacement \.. _______________________ 4 bytes ___________________ ~----..

Hex. Dec. I

FB 24B $WAITENT

Entry to IGCOOl "(WAIT)

FC 252 $LINKENT

Entry to IGC006 (LINK)

100 256 $XCTLENT

Entry" to IGC007 (XCTL)

104 260 $TIMENT

Entry to IGCOll (TIME)

lOB 264 $SVCIOS

Address of EXCP SVC Table Entry

10C 268 $SVCLINK

Address of LINKSVC Table Entry

110 272 $SVCWTO

WTO/WTOR SVC Table Entry

114 276 $SVCWTL

WTL SVC Table Entry

IlB 2BO $ATTNSAV

......

1~ ___________ 1_2_-_B_y_t_e ___ A_t_t_e_n_t_1_o_n __ A __ p_p_e_n_d_a_g_e __ S_a_v_e __ A_r_e_a ____________ ~J __ ~~
124 292

HASP Communication Table Format ~- Page 8.1-8

513

HAS P

Figure 8.1.1 -- HASP COMMUNICATION TABLE FORMAT (CONTINUED)

r------------------------ 4 bytes ------------------------~ Di~placement

Hex. Dec.

--~-

124 292 $JOBQPTR

Address of HASP Job Queue

128 296 $JQFREE

Beginning of Free Job Queue Element Chain

12C 300 $JQENT

Beginning of Active Job Queue Element Chain

130 304 $XEQTOTL

Cumulative Estimated Execution Time

134 308 $PRTTOTL

Cumulative Lines to be printed

138 312 $PUNTOTL

Cumulative Cards to be Punched

13C 316 $JOBNO $MSGRPNO

HASP Job Number Last Console Track

140 320 $DACKPT

1~ _____________ v_a_r_l_a_b_l_e __ L_e_n_g __ th ___ DA ___ C_h_e_c_k_p_O_l_n_t __ A_r_e_a ____________ ~r ____ ~

HASP Communication Table Format -- Page 8.1-9

514

HAS P

Figure 8.1.1 -- HASP COMMUNICATION TABLE FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

0 0 $VERSION 8 HASP Version (" V v.m ") .

8 8 $WAIT 4 Entry to HASP Dispatcher.

C 12 $GETBUF 4 Entry to HASP Buffer "GET" Routine.

10 16 $GETPBUF 4 Entry to HASP RJE Buffer "GET" Routine.

14 20 $FREEBUF 4 Entry to HASP Buffer "FREE" Routine.

18 24 $GETUNIT 4 Entry to HASP unit "GET" Routine.

lC 28 $FRELNIT 4 Entry to HASP Unit "FREE" Routine.

20 32 $QADD 4 Entry to HASP Job Queue Element "ADD" Routine.

24 36 $QGET 4 Entry to HASP Job Queue Element "GET" Routine.

28 40 $QPUT 4 Entry to HASP Job Queue Element "PUT" Routine.

2C 44 $QREM 4 Entry to HASP Job Queue Element "REMOVE"
Routine.

30 48 $QSIZ 4 Entry to HASP Job Queue "SIZE" Routine.

34 52 $QLOC 4 Entry to HASP Job Queue Element "LOCATE"
Routine.

38 56 $QJITLOC 4 Entry to HASP Job Information Table Element
"LOCATE" Routine.

3C 60 $TRACK 4 Entry to HASP Track Allocation Routine.

40 64 $PURGER 4 Entry to HASP Track Purge Routine.

44 68 $EXCP 4 Entry to HASP Input/Output Supervisor.

48 72 $EXTPOPE 4 Entry to HASP RTAM Open Routine.

4C 76 $EXTPGET 4 Entry to HASP RTAM Get Routine.

50 80 $EXTPPUT 4 Entry to HASP RTAM Put Routine.

54 84 $EXTPOPE 4 Entry to HASP RTAM Close Routine.

58 88 $RESTORE 4 Entry to HASP RTAM Restore Routine.

HASP Communication Table Format -- Page 8.1-10

II ASP

Fiqurc 8.1.1 -- HASP COMMUNICATION TABLE FORMArI' (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

SC 92 $oDEL 4 Entry to HASP Overlay $DELE'I'E Routine.

60 96 $oRET 4 Entry to HASP Overlay $RETURN Routine.

64 100 $oLINK 4 Entry to HASP Overlay $LINK Routine.

68 104 $oXCTL 4 Entry to HASP Overlay $XCTL Routine.

6C 108 $0 LOAD 4 Entry to HASP Overlay $ LOAD Routine.

70 112 $WTo 4 Entry to HASP Write-to-Operator Routine.

74 116 $FREEMSG 4 Entry to HASP Console Message Buffer
Free Routine.

78 120 $STIMER 4 Entry to HASP Set Interval Timer Routine.

7C 124 $TTIMER 4 Entry to HASP Test Interval ;rimer Routine.

80 128 $IoERRoR 4 Entry to HASP Input/Output Error Logging
Routine.

84 132 $ERRoR 4 Entry to HASP Catastrophic Error Routine.

88 136 $DISTERR 4 Entry to HASP Disastrous Error Routine.

8C 140 $SYSTYPE 1 System Type --

Hex.
Value Meaning

10 MVT
14 MPS
20 MFT

8D 141 $oPTSTAT 1 Initialization Options --

Bit Name Meaning

0 $oPTFMT FORMAT.
1 $oPTCOLD COLD.
2 $OPTREQ REQ.
3 $OPTREP REP.
4 $OPTLIST LIST.
S $OPTRACE TRACE.

6-7 Reserved for Future Use.

HASP Communication Table Format -- Page 8.1-11

516

HAS P

Figure 8.1.1 -- HASP COMMUNICATION TABLE FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

8E 142

8F 143

90 144

91 145

$STATUS 1

1

$HASPECF 1

MHASPECF 1

HASP Status --

Bit

o
1

2
3
4

5

6-7

Name

$RDRPEND
$ALMSGSW

$DRAINED
$CKPTACT
$JITCKPT

$SYSEXIT

Meaning

O/S Reader is Pending.
ALL AVAILABLE FUNCTIONS

COMPLETE Message has been
Issued.

System has been $DRAINed.
Checkpoint is in Progress.
Job Information Table (JIT)
is to be Checkpointed.

HASP System is in termination
process.

Reserved for Future Use.

Reserved for Future Use.

Master Event Control Field

Bit

o
1
2

3

4
5
6

7

Name

$EWFPOST
$EWFBUF
$EWFTRAK

$EWFJOB

$EWFUNIT
$EWFCKPT
$EWFCMB

$EWF8

Meaning

A PCE has been $POSTed.
A Buffer has been Released.
A Direct-Access Track has
been Released.

A Job Queue Element has
Changed Status.

A HASP Unit has been Released.
A HASP Checkpoint has Completed.
A Console Message Buffer has
been Released.

Reserved for Future Use.

Remote Job Entry Line Manager Event
Control Field

Bit Name

0-2
3 $EWFJOB

4-7

Meaning

Reserved - Must be Zero.
A Job Queue Element has

Changed Status.
Reserved - Must be Zero.

HASP Communication Table Format -- Page 8.1·-12

517

HAS P

Figure 8.1.1 -- HASP COMMUNICATION TABLE FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

92 146

93 147

94 148

95 149

96 150

97 151

98 152

99 153

9A 154

9B 155

9C 156

9E 158

AO 160

A2 162

A4 164

A8 168

AC 172

BO 176

B4 180

B8 184

BC 188

co 192

$XEQACT

$ACTIVE

$ENBALL

$DISALL

$DISINT

$PSRDRCT

$PSPRFCT

$PSPUFCT

$EXCPCT

$COMMCT

$CKPTRAK

$HASPTCB

$PCEORG

$BUFPOOL

$TPBPOOL

$DCTPOOL

$JITABLE

$CYLMAP

$TEDADDR

1

1

1

1

1

1

1

1

1

1

2

2

2

2

4

4

4

4

4

4

4

4

Count of Jobs in O/S Execution Phase.

Count of Active Processors.

$ENABLE ALL Mask (X'FF').

$DISABLE ALL Mask (XIOO').

$DISABLE INT Mask (X'FE').

Reserved for Future Use.

Count of Pseudo 2540 Readers.

Count of Pseudo 1443 Printers.

Count of Pseudo 1442 Punches.

Reserved for Future Use.

count of Active I/O Operations.

Number of Console Message Buffers which
are not Queued for the HASP Command Processor.

Checkpoint Track.

Reserved for Future Use.

Address of HASP Task Control Block.

Address of First HASP Processor Control
Element.

Address of First Available HASP Buffer.

Address of First Available HASP RJE Buffer.

Address of First HASP Device Control Table.

Address of HASP Job Information Table.

Address of First HASP Track Allocation Map.

Address of First Track Extent Data Table.

HASP Communication Table Format -- Page 8.1-13

518

HAS P

Figure S.l.l -- HASP COMMUNICATION TABLE FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

C4 196 $DCBLIST 4 Address of HASP Direct Access DCB.

CS 200 $FREEQUE 4 Address of First Free HASP Console
Message Buffer.

CC 204 $BUSYQUE 4 Address of First Console Message Buffer
which is Queued for I/O.

DO 20S $LOGQUE 4 Address of First Console Message Buffer
which is Queued for the Log Processor.

D4 212 $COMMQUE 4 Address of First Console Message Buffer
which is Queued for the Command Processor.

DS 216 $PRCHKPT 4 Address of HASP Print Checkpoint Table.

DC 220 $SVCRELT 4 Address of MFT SVC Relocation Table.

EO 224 $SVCTABF 4 Address of MFT SVC Table.

E4 22S $SVCTABV 4 Address of MVT SVC Table.

ES 232 $IOSENT 4 Address of Entry to O/S Input/Output
Supervisor.

EC 236 $ATTNENT 4 Address of Entry to lOS Attention Appendage.

FO 240 $XSMFEMT 4 Address of Entry to SMF EXCP Counting
Routine.

F4 244 $SVRSET 4 Address of Entry to HASP SVC Reset Routine.

F8 248 $WAITENT 4 Address of Entry to IGCOOI (WAIT) .

FC 252 $LINKENT 4 Address of Entry to IGC006 (LINK) .

100 256 $XCTLENT 4 Address of Entry to IGC007 (XCTL) .

104 260 $TIMENT 4 Address of Entry to IGCOll (TIME) .

108 264 $SVCIOS 4 Address of EXCP SVC Table Entry.

10C 268 $SVCLINK 4 Address of LINK SVC Table Entry.

HASP COITnllunication Table Format --- Page 8.1-14

519

II ASP

Figure 8.1.1 -- HASP COMMUNICATION TABLE FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

110 272 $SVCWTO 4 WTO/WTOR SVC Table Entry.

114 276 $SVCWTL 4 WTL SVC Table Entry.

118 280 $ATTNSAV 12 Attention Appendage Save Area.

124 292 $JOBQPTR 4 Address of HASP Job Queue.

128 296 $JQFREE 4 Beginning of Free Job Queue Element Chain.

l2C 300 $JQENT 4 Beginning of Active Job Queue Element Chain.

130 304 $XEQTOTL 4 Cumulative Estimated Execution Time.

134 308 $PRTTOTL 4 Cumulative Lines to be Printed.

138 312 $PLNTOTL 4 Cumulative Cards to be Punched.

l3C 316 $JOBNO 2 HASP Job Number.

13E 318 $MSGRPNO 2 Last Remote Console Message Queueing Track.

140 320 $DACKPT . Variable Length Direct Access Checkpoint Area.

HASP Communication Table Format -- Page 8.1-15

520

HAS P

Figure 8.2.1 -- PROCESSOR CONTROL ELEMENT FORMAT

Displacement

Hex. Dec.

o 0

4 4

8 8

C 12

10 16

14 20

18 24

lC 28

20 32

24 36

28 40

~----------------------- 4 bytes ------------------------~

PCESAVEA

RES E R V E D

PCEPREV

Address of Previous Processor Control Element

PCENEXT

Address of Next Processor Control Element

PCELINK

Processor Register 14 (LINK) Storage

PCER15

Processor Register 15 Storage

PCERO

Processor Register 0 Storage

PCER1

Processor Register 1 Storage

PCEWA

Processor Register 2 (WA) Storage

PCEWB

Processor Register 3 (WB) Storage

PCEWC

Processor Register 4 (WC) Storage

Processor Control Element Format -- Page 8.2-1

521

HAS P

Figure 8.2.1 -- PROCESSOR CONTROL ELEMENT FORMAT (CONTINUED)

Displacement

Hex. Dec.
~----------------------- 4 bytes ------------------------~

28 40 PCEWD

Processor Register 5 (WD) Storage

2C 44 PCEWE

Processor Register 6 (WE) Storage

30 48 PCEWF

Processor Register 7 (WF) Storage

34 52 PCEWG
PCEBASE3

Processor Register 8 (WG or BASE 3) Storage

38 56 PCER9

Processor Register 9 Storage

3C 60 PCEJCT

Processor Register 10 (JCT) Storage

40 64 PCEBASEJ.

Processor Register 11 (BASEl) Storage

44 68 PCEBASE2

Processor Register 12 (BASE2) Storage

48 72 PCEEWF PCEID

Event Wait Field Processor Type

4C 76 PCEOPRIO PCEOCON

RESERVED Overlay Overlay Routine OCON
Priority

50 80

Processor Control Element Format -- Page 8.2-2

II ASP

Figure 8.2.1 -- PROCESSOR CONTROL ELEMENT FORMAT (CONTINUED)

Displacement

Hex. Dec.
~----------------------- 4 bytes ------------------------~

50 80 PCEORTRN

Overlay Supervisor Register ,14 (LINK) Storage

54 84 PCEOPCE

Chain of PCEs Using Same Overlay Routine

58 88 PCEWORK

, Variable Length Processor Work Area '

1 ________ ----'1

Processor Control Element Format -- Page 8.2-3

523

II ASP

Figure 8.2.1 -- PROCESSOR CONTROL ELEMENT FORMAT (CONTINUED)

Dis12lacement Field Name Bytes Field Description
Hex. Dec.

0 0 PCESAVEA 4 Reserved.

4 4 PCEPREV 4 Address of Previous Processor Control
Element.

8 8 PCENEXT 4 Address of Next Processor Control Element.

C 12 PCELINK 4 Processor Register 14 (LINK) Storage.

10 16 PCER15 4 Processor Register 15 Storage.

14 20 PCERO 4 Processor Register 0 Storage.

18 24 PCERl 4 Processor Register 1 Storage.

1C 28 PCEWA 4 Processor Register 2 (WA) Storage.

20 32 PCEWB 4 Processor Register 3 (WB) Storage.

24 36 PCEWC 4 Processor Register 4 (We) storage.

28 40 PCEWD 4 Processor Register 5 (WD) Storage.

2C 44 PCEWE 4 Processor Register 6 (WE) Storage.

30 48 PCEWF 4 Processor Register 7 (WF) Storage.

34 52 PCEWG 4 Processor Register 8 (WG or BASE3)
PCEBASE3 Storage.

38 56 PCER9 4 Processor Register 9 Storage.

3C 60 PCEJCT 4 Processor Register 10 (JCT) Storage.

40 64 PCEBASEl 4 Processor Register 11 (BASEl) Storage.

44 68 PCEBASE2 4 Processor Register 12 (BASE2) Storage.

Processor Control Element Format -- Page 8.2-4

HAS P

Figure S.2.1 -- PROCESSOR CONTROL ELEMENT FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

4S 72 PCEEWF 2 Event Wait Field --

Hex.
Value Name Meaning

Byte 1 so $EWFPOST Reserved.
40 $EWFBUF Waiting for a Buffer.
20 $EWFTRAK Waiting for HASP

Direct-Access Space.
10 $EWFJOB Waiting for a Job.
OS $EWFUNIT Waiting for a Unit.
04 $EWFCKPT Waiting for the completion

of a HASP Checkpoint.
02 $EWFCMB Waiting for a Console

Message Buffer.
01 $EWF8 Reserved for Future Use.

Byte 2 SO $EWFOPER Waiting for Operator
Response.

40 $EWFIO Waiting for the Completion
of I/O.

20 $EWFWORK Waiting to be Re-directed.
10 $EWFHOLD Waiting for a $S Command.
OS $EWFDDB Waiting for a DDT or UCB.
04 $EWFOLAY Waiting for an Overlay Area.
02 $EWF15 Reserved for Future Use.
01 $EWFOROL Relinquished Overlay Area.

4A 74 PCEID 2 Processor Type

Bit Name Meaning

Byte 1 0 PCEPRSID Print Processor.
1 PCEPUSID Punch Processor.

2-4 Reserved for Future Use.
S PCEINRID Internal Reader Processor.
6 PCERJEID Remote Terminal Processor.
7 PCELCLID Local Processor.

Processor Control Element Format -- Page 8.2-5

525

HAS P

Figure 8.2.1 -- PROCESSOR CONTROL ELEMENT FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

4C 76

4D 77

4E 78

50 80

54 84

58 88

Byte 2

1

PCEOPRIO 1

PCEOCON 2

PCEORTRN 4

PCEOPCE 4

PCEWORK

Processor Type (continued) --

Hex.
Value Name Meaning

00 PCEASYID ASYNCH Processor.
01 PCERDRID Input Service Processor.
03 PCEXEQID Execution Service Processor.
04 PCETHWID Execution Thaw Processor.
05 PCEXZMID Execution Task Monitor.
07 PCEPRTID Print Processor.
08 PCEPUNID Punch Processor.
09 PCEPRGID Purge Processor.
OA PCECONID Console Processor.
OB PCEMLMID Line Manager Processor.
OC PCETIMID Timer Processor.
OD PCECKPID Checkpoint Processor.
OE PCEGPRID Priority Aging Processor.
OF PCEOROID Overlay Roll Processor.

Reserved for Future Use.

Priority of Current Overlay Routine.

Overlay Constant (OCON) of Current Overlay
Routine.

Overlay Supervisor Register 14 (LINK) Storage.

Chain of PCEs Using Same Overlay Routine.

Variable Length Processor Work Area.

Processor Control Element Format --~ Page 8.2-6
526

HAS P

Figure 8.3.1 -- BUFFER FORMAT

Displacement

Hex. Dec.

o o

4 4

8 8

10 16

14 20

18 24

lC 28

20 32

28 40

r----------------------- 4 bytes ---------------------:.--1
10BFLAG:L

I/O Flags

10BECBPT

IOBECBCC

IOBFLAG3

I/O Flags

10BSTART

10BSI0CC

10BDCBPT

10BFLAG2

I/O Flags

IOBSENSO

First
Sense Byte

10BSENSl

Second
Sense Byte

Address of HASP Event Control Block

IOBCSW

Channel Status Word

Address of Channel Program

-

Address of Data Control Block

IOBRESTR

IOBREPM Restart Address of Channel Program

10DINCAM 10BERRCT

Block Count Increment Error Count

10BXTENT 10BSEEK

Extent Index

Seek Address {Direct-Access Only} -

Buffer Format -- Page 8.3-1

527

HAS P

Figure 8.3.1 -- BUFFER FORMAT (CONTINUED)

Displacement

Hex. Dec.

28 40

2C 44

30 48

34 52

38 56

40 64

48 72

50 80

~----------------------- 4 bytes ------------------------~

BUFCHAIN

BUFECBCC
I

Buffer Chain Field

BUFDCT

BUFTYPE
I

Address of Device Control Table

BUFEWF

Event Wait Field or Post Address

RES E R V E D

IOBCCWl.

f- Channel Command Word 1 -

IOBCCW2

- Channel Command Word 2 -

IOBCCW3

- Channel Command Word 3 -

Buffer Format -- Page 8.3-2

528

HAS P

Figure 8.3.1 -- BUFFER FORMAT (CONTINUED)

Hex. Dec.
~----------------------- 4 bytes ------------------------..

Displacement

50 80

1
~UFSTART 1

Variable Length Buffer

1L-.-__ ---'J

Buffer Format -- Page 8.3-3

529

11 ASP

Figure 8.3.1 -- BUFFER FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

o o IOBFLAGl

1 1 IOBFLAG2

2 2 IOBSENSO

3 3 IOBSENSl

4 4 IOBECBCC

4 4 IOBECBPT

8 8 IOBFLAG3

9 9 IOBCSW

10 16 IOBSIOCC

10 16 IOBSTART

14 20 IOBDCBPT

18 24 IOBREPM

18 24 IOBRESTR

lC 28 IOBINCAM

IE 30 IOBERRCT

20 32 IOBXTENT

1

1

1

1

1

4

1

7

1

4

4

1

4

2

2

1

standard OS/360 lOB Flag Byte.

standard OS/360 lOB Flag Byte.

First Sense Byte (Device Dependent) .

Second Sense Byte (Device Dependent) .

Completion Code for I/O Event.

Address of HASP Event Control Block:
$HASPECB.

I/O Supervisor Error Routine Flag Byte
(Device Dependent) .

Low-Order Seven Bytes of the Last CSW
that Reflects the Status of the
Last Request.

Condition Code Returned after Execution
of SIO Instruction for Last Request.

Address of Channel Program to be
Executed.

Address of Data Control Block Associated
with this lOB.

Operation Code Used by I/O Supervisor
Error Routines for Repositioning
Procedures.

Restart Address of Channel Program Used
by I/O Supervisor Error Routines During
Error Correction.

Value used to Increment Block Count
Field in DCB for Magnetic Tape.

Used by r/o Supervisor Error Routines
to Count Temporary Errors during Retry.

The Number of the DEB Extent to be
Used for this Request.

Buffer Format -- Page 8.3-4

530

Figure 8.3.1 -- BUFFER FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

21 33 IOBSEEK

28 40 BUFECBCC

28 40 BUFCHAIN

2C 44 BUFTYPE

2C 44 BUFDCT

30 48 BUFEWF

34 52

38 56 IOBCCWl

40 64 IOBCCW2

48 72 IOBCCW3

50 80 BUFSTART

7

1

4

1

4

4

4

8

8

8

Seek Address Required for this I/O
Request (Direct-Access Only).

Completion Code for I/O Event --

Hex.
Value Meaning

00 The I/O Event has not Completed.
7F The I/O Event has Completed

Successfully.
other The I/O Event has Completed

Unsuccessfully.

Buffer Chain Field.

Buffer Type --

Hex.
Value Name Meaning

00 HASPBUF HASP Buffer

Address of Device Control Table Associated
with this I/O Request.

Event wait Field or Post Address.

Reserved for Future Use.

Channel Command Wo.rd 1.

Channel Command Word 2.

Channel Command Word 3.

Variable Length Buffer.

Buffer Format -- Page 8.3-5

HAS P

Figure 8.3.2 -- REMOTE JOB ENTRY BUFFER FORMAT

Displacement

Hox. Dec.
~----------------------- 4 bytes ------------------------~

o 0 IOBFLAG1 IOBFLAG2 IOBSENSO IOESENS1

I/O Flags I/O Flags First Second
Sense Byte Sense Byte

4 4 IOBECBPT

IOBECBCC Address of HASP Event Control Block

8 8 IOBCSW

RESERVED

Channel Status Word

10 16 IOBSTART

IOBSIOCC Address of Channel Program

14 20 IOBDCBPT

Address of Data Control Block

18 24 IOBRESTR

Address of First ccw in Channel Program

lC 28 TPBMXREC

Maximum RES E R V E D
Record Count

20 32 TBPLCCAD

TPBLCCC Address of Last Remote Carriage Control

24 36 TPBFDATA

TPBRECNT Remote nata Pointer

28 40

Buffer Formqt -- Page 8.3-6

HAS P

Figure 8.3.2 -- REMOTE JOB ENTRY BUFFER FORMAT (CONTINUED)

Displacement

Hex. Dec.
~----------------------- 4 bytes ------------------------~

28 40 BUFCHAIN

BUFECBCC Buffer Chain Field

2C 44 BUFDCT

BUFTYPE Address of Line DCT

30 48 BUFEWF

Address of Event Wait Field

34 52 LCBMCB LCBACK LCBRCB

Mode Byte Next Response Control Block
Acknowledge

38 56 IOBCCWl

"- Channel Command Word 1 -

MSEQTYPE

40 64 IOBCCW2

I- Channel Command Word 2 -

48 72 IOBCCW3

r- Channel Command Word 3 -

50 80

Buffer Format -- Page 8.3-7

533

HAS P

Figure 8.3.2 -- REMOTE JOB ENTRY BUFFER FORMAT (CONTINUED)

Displacement

Hex. Dec.

50 80

58 88

60 96

68 104

70 112

78 120

~----------------------- 4 bytes ------------------------~
IOBCCW4

r- Channel Command Word 4 -

IOBCCW5

r- Channel Command Word 5 -

IOBCCW6

- Channel Command Word 6 -

IOBCCW7

r- Channel Command Word 7 -

IOBCCW8

~ Channel Command Word 8 -

Buffer Format -- Page 8.3-8

534

HAS P

Figure 8.3.2 -- REMOTE J"OB ENTRY BUFFER FORMAT (CONTINUED)

Displacement

Hex. Dec.

78 120

~----------------------- 4 bytes

-------------------------1

I
1

TPBUFST

Variable Length Buffer

J

Buffer Format -- Page 8.3-9

535

II ASP

Figure 8.3.2 -- REMOTE JOB ENTRY BUFFER FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

o o IOBFLAGl

1 1 IOBFLAG2

2 2 IOBSENSO

3 3 IOBSENSl

4 4 IOBECBCC

4 4 IOBECBPT

8 8

9 9 IOBCSW

10 16 IOBSIOCC

10 16 IOBSTART

14 20 IOBDCBPT

18 24 IOBRESTR

lC 28 TPBMXREC

lD 29

20 32 TPBLCCC

20 32 TPBLCCAD

24 36 TPBRECNT

24 36 TPBFDATA

28 40 BUFECBCC

28 40 BUFCHAIN

1

1

1

1

1

4

1

7

1

4

4

4

1

3

1

4

1

4

1

4

Standard OS/360 lOB Flag Byte.

Standard OS/360 lOB Flag Byte.

First Sense Byte (Device Dependent).

Second Sense Byte (Device Dependent) .

Completion Code for I/O Event.

Address of HASP Event Control Block:
$HASPECB.

Reserv'ed.

Low Order Seven Bytes of the Last CSW
that Reflects the Status of the Last
Request.

Condition Code Returned after Execution
of SIO Instruction for Last Request

Address of Channel Program to be Executed.

Address of Data Control Block Associated
with this lOB.

Address of Normal Channel Program to be
Executed.

Maximum Output Record Count.

Reserved for Future Use.

Last Output Channel Command Operation.

Address of Last Remote Carriage Control.

Current Output Record Count.

Address of Next Data in Buffer.

Completion Code for I/O Event.

Buffer Chain Field.

Buffer Format -- Page 8.3-10

HAS P

Figure 8.3.2 -- REMOTE JOB ENTRY BUFFER FORMAT (CONTINUED)

Displacement Field Name Bytes Field DescriEtion
Hex. Dec.

2C 44 BUFTYPE I Buffer Type --

Hex.
Value Name Meaning

80 TPBUF Remote Job Entry Buffer

2C 44 BUFDCT 4 Address of Line Device Control Table
Associated with this I/O Request.

30 48 BUFEWF 4 Address of Event Wait Field.

34 52 LCBMCB I Mode Byte Used to Set SDA Mode.

35 53 LCBACK I BSC: Next Acknowledgement Character
(Expected or to be Sent).

STR: Second Mode Byte.

36 54 LCBRCB 2 BSC: Response Control Block.
STR: Unused.

38 56 IOBCC\~l 8 Channel Command Word 1.

3D 61 MSEQTYPE 1 Sequence and Command Type,,--

Bits 0-3 Sequence Type

Bit Name Value Meaning

0 MBSCSEQ 0 STR Sequence.
1 BSC Sequence.

1 MPREPSEQ 0 Text Sequence.
1 Prepare Sequence.

2 MWRITSEQ 0 Read Sequence.
1 write Sequence.

3 MCPUSEQ 0 Hardware Sequence.
1 CPU Sequence.

Buffer Format ._- Page 8.3-11

537

HAS P

Figure 8.3.2 -- REMOTE JOB ENTRY BUFFER FORMAT (CONTINUED)

Displacement Field Name Bytes Fi~ld Description
Hex. Dec.

Sequence and Command Type (continued) --

Bits 4-7 Command Type

Hex.
Value Name Meaning

0 MDISCMD Disable Command.
1 MSETMCMD Set Mode Command.
2 MENBCMD Enable Command.
3 MTSYNCMD Test Synch Command.
4 MREADCMD Read Text Command.
5 MRRSPCMD Read Response (Normal) .
6 MRREQCMD Read Response (To ENQ) .
7 MPREPCMD Prepare Command.
8 MWRITCMD write Text Command.
9 MWRSPCMD write Response Command.
A MWENQCMD Send Inquiry Command.
B MSEOTCMD Send EOT Command.

40 64 IOBCCW2 8 Channel Command Word 2.

48 72 IOBCCW3 8 Channel Command Word 3.

50 80 IOBCCW4 8 Channel Command Word 4.

58 88 IOBCCW5 8 Channel Command Word 5.

60 96 IOBCCW6 8 Channel Command Word 6.

68 104 IOBCCW7 8 Channel Command Word 7.

70 112 IOBCCW8 8 Channel Command Word 8.

78 120 TPBUFST Variable Length Buffer.

Buffer Format -- Page 8.3-12

538

HAS P

Figure 8.3.3 -- OVERLAY AREA FORMAT

Displacement

Hex. Dec.

o o

4 4

8 8

10 16

14 20

18 24

lC 28

20 32

28 40

~----------------------- 4 bytes ------------------------1
IOBFLAGl

I/O Flags

10BECBPT

10BECBCC

IOBFLAG3

I/O Flags

10BSTART

10BSI0CC

10BDCBPT

10BRESTR

IOBREPM

RE S E

IOBXTENT

Extent Index

IOBFLAG2

I/O Flags

IOBSENSO

First
Sense Byte

IOBSENSl

Second
Sense Byte

Address of HASP Event Control Block

IOBCSW

Channel Status Word

Address of Channel Program

Address of Data Control Block

I
Restart Address of Channel Program

IOBERRCT

R V E D Error Count

IOBSEEK

Seek Address

-

-

Buffer Format -- Page 8.3-13

539

HAS P

Figure 8.3.3 -- OVERLAY AREA FORMAT (CONTINUED)

Displacement

Hex. Dec.
~-----------------~----- 4 bytes ------------------------~

28 40 BUFCHAIN

BUFECBCC Buffer Chain Field

2C 44 BUFDCT

BUFTYPE Address of OLAY OCT

30 48 BUFEWF

Address of Overlay Service Asynchronous Exit

34 52 OACECHN

Overlay Area Chain Word

38 56 IOBCCWl

- Channel Command Word I -

40 64 IO:aCCW2

Channel Command Word 2

44 68 OACEPRIO OACEOCON

RESERVED Overlay Overlay Call Constant
Priority

48 72 IOBCCW3

I- Channel Command Word 3 -

50 80

Buffer Format -- Page 8.3-14

540

HAS P

Figure 8.3.3 -- OVERLAY AREA FORMAT (CONTINUED)

Displacement

Hex. Dec. r----------------------- 4 bytes ------------------------1
50 80 OACENAME

Name of Overlay Routine

54 84 OACEASMO

Assembly Origin of Overlay Routine

58 88 OACEPROG

Entry Point of Overlay Routine

5C 92

'" Var1able Length Overlay Area

OACEPCE

Chain of peEs Using Overlay Area

Buffer Format -- Page 8.3-15

541

HAS P

Figure 8.3.3 -- OVERLAY AREA FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

o o IOBFLAGl

1 1 IOBFLAG2

2 2 IOBSENSO

3 3 IOBSENSl

4 4 IOBECBCC

4 4 IOBECBPT

8 8 IOBFLAG3

9 9 IOBCSW

10 16 IOBSIOCC

10 16 IOBSTART

14 2Q IOBDCBPT

18 24 IOBREPM

18 24 IOBRESTR

lC 28

IE 30 IOBERRCT

20 32 IOBXTENT

21 33 IOBSEEK

1

1

1

1

1

4

1

7

1

4

4

1

4

2

2

1

7

standard OS/360 lOB Flag Byte.

standard OS/360 lOB Flag Byte.

First Sense Byte (Device Dependent) .

Second Sense Byte (Device Dependent) .

Completion Code for Overlay Read.

Address of HASP Event Control Block:
$HASPECB .

I/O Supervisor Error Routine Flag Byte
(Device Dependent).

Low Order Seven Bytes of the Last CSW
that Reflects the Status of the Last Read.

Condition Code Returned After the Execution
of the SIO Instruction for the Last Read.

Address of the Channel Program to be
Executed.

Address of the Data Control Block Associated
with this lOB.

Operation Code Used by I/O Supervisor
Error Routines for Repositioning Procedures.

Restart Address of Channel Program Used by
I/O Supervisor Error Routines During Error
Correction.

Reserved.

Used by I/O Supervisor Error Routines
to Count Temporary Errors During Retry.

The Number of the DEB Extent to be Used
for this Read.

The Seek Address for the Requested Overlay
Routine.

Buffer Format -- Page B.3-16

542

H l\ S P

Fiqure 8.3.3 -- OVERLAY AREA FORMAT (CONTINllliD)

Displacement Field Name Bytes Field Description
Hex. Dec.

28 40 BUFECBCC

28 40 BUFCHAIN

2C 44 BUFTYPE

2C 44 BUFDCT

30 48 BUFEWF

34 52 OACECHN

38 56 IOBCCWl

40 64 IOBCCW2

44 68

45 69 OACEPRIO

46 70 OACEOCQ\J

48 72 IOBCCW3

50 80 OACENAME

54 84 OACEASMO

58 88 OACEPROG

OACEPCE

1

4

1

4

4

4

8

8

1

1

2

8

4

4

4

Completion Code for Overlay Read --,

Hex.
Value Meaning

00 The Read,has not Completed.
7F The Read has Completed Successfully.

other The Read has Completed Unsuccessfully.

Buffer Chain Field.

Buffer Type --

Hex.
Value ,Name Meaning.

40 OLAYBUF Overlay Area.

Address of Overlay Device Control Table.

Address of Overlay Service Asynchronous Exit.

Overlay Area Chain Word.

Channel Command Word 1.

Channel Command Word 2.

Reserved for Future Use.

Priority of Current Overlay Routine.

Overlay Constant (OeON) of Current Overlay
Routine.

Channel Command Word 3.

Name of Overlay Routine.

Assembly Origin of Overlay Routine.

Entry Point of Overlay Routine.

Variable Length Overlay Area

Chain of PCEs Using Overlay Area.

Buffer Format -- Page 8.3-17

543

HAS P

Figure 8.4.1 -- CONSOLE MESSAGE BUFFER FORMAT

Displacement

Hex. Dec.
~----------------------- 4 bytes ------------------------~

o 0 CMBCHAIN

Address of Next Console Message Buffer

4 4 CMBFLAGS CMBCONS CMBMSGL CMBPRIO
CMBCLASS

Flags Consoles Message
Specified Length Prio & Class

8 8 CMBMSG CMBMARK CMBTIME

Start of Attention
Message Indicator

-
C 12

Time of Day

f.-

10 16 CMBJOBNO

-
14 20

Job Number

I-

18 24 CMBTEXT

-
lC 28

...... -

1~ _________________ 1_1_2 __ B_y_t_e __ M_e_s_s_a_g_e ___ T-ex--t--A-r-e_a _________________ l~
8C 140

Console Message Buffer Format -- Page 8.4-1

544

HAS P

Figure 8.4.1 -- CONSOLE MESSAGE BUFFER FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

o o

4 4

5 5

6 6

7 7

8 8

9 9

A 10

13 19

lB 27

CMBCHAIN 4

CMBFLAGS 1

CMBCONS 1

CMBMSGL 1

CMBCLASS 1

Bits 0-3

CMBPRIO

Bits 4-7

CMBMSG 132

CMBMARK 1

CMBTIME 9

CMBJOBNO 8

CMBTEXT 112

Address of Next Console Message;Buffer.

Console Buffer Flags --

Bit

o

1
2
3
4
5
6
7

Name

WCMBFD

WCMBFH
WCMBFE
WCMBFF
WCMBFG
WCMBFA
WCMBFB
WCMBFC

Meaning

CMBCONS Contains Physical
Consoles.

Operation Type.
Message for HASP Log Only.
CMBCONS Contains UCMID.
CMBCONSContains Remote No.
Reserved for

Command
Processor.

Console Specifications or Remote Number.

Message Length.

Message Class

Value

1
3
5

7

Name

$TRIVIA
$NORMAL
$ACTI(J\J

$ALWAYS

Message Priority

Value

1
4
7

Name

$LO
$ST
$HI

Message Area.

Meaning

Non-Essential Messages.
Normal Messages.
Messages Requiring

Operator Action.
Essential Messages.

Meaning

Low Priority.
Standard Priority.
High Priority.

Asterisk (*) if Message Class is 5 or More.

Time of Day (HH.MM.SS).

Job Number (If Applicable) .

Message Text Area.

Console Message Buffer Format -- Page 8.4-2

545

HAS P

Figure 8.5.1 -- DIRECT-ACCESS DEVICE CONTROL TABLE FORMAT

Displacement .J
Hex. Dec. ~----------------------- 4 bytes ------------------------- I

o 0 DCTPCE

DCTSTAT Address of Processor Control Element

4 4 DCTBUFAD

Current Buffer Address

8 8 DCTSEEK

Current Track Address

C 12 DCTEWF

Event Wait Field or Post Address

10 16 DCTBUFCT DCTDEVTP DCTIOTYP

Active RESERVED Device Input/Output
Buffer Count Type Request Type

14 20 DCTCHAIN

Address of Next Device Control Table

18 24

Device Control Table Format -- Page 8.5-1

546

1i i\ S P

Figure 8.5.1 -- DIRECT-ACCESS DEVICE CONTROL TABLE FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

o o DCTSTAT

o DCTPCE

4 4 DCTBUFAD

8 8 ·DCTSEEK

C 12 DCTEWF

10 16 DCTBUFCT

11 17

12 18 DCTDEVTP

13 19 DCTIOTYP

14 20 DCTCHAIN

1

4

4

4

4

1

1

1

1

4

DCT Status --

Bit Name Meaning

o DCTINUSE DCT is In Use.
1-7 Reserved.

Address of Processor Control Element.

Address of Current Buffer.

Current Track Address.

Event Wait Field or Post Address.

Number of I/O Requests Outstanding.

Reserved for Future Use.

Device Type --

Hex.
Value Na:me Device Type

00 DCTDA Direct~Access Device.

Input/Output Request Type

Bit

o
1

2-7

Name

DCTREAD
DCTWRITE

Meaning

Read Request.
Write Request.
Reserved for Future Use.

Address of Next Device Control Table.

Device Control Table Format -- Page 8.5-2

547

HAS P

Figure 8.5.2 -~ OVERLAY DEVICE CO~TROL TABLE FORMAT

Displacement

Hex. Dec. r----------------------- 4 bytes ------------------------1

o 0 DCTPCE

DCTSTAT Address of Overlay Roll PCE

4 4 DCTBUFAD

Address of Current Overlay Area

8 8 DCTSEEK

Overlay Track Address

C 12 DCTEWF

Address of Overlay Service Asynchronous Exit

10 16 DCTBUFCT DCTDEVTP DCTIOTYP

Active RESERVED Device Input
Buffer Count Type Request Type

14 20 DCTCHAIN

Address of Next Device Control Table

18 24 DCTDEVN

EBCDIC Device Name -- "OLAY"

lC 28 DCTOTC DCTOTT

Number of Tracks/Cylinder Overlay Extent Origin

20 32

Device Control Table Format -- Page 8.5-3

548

HAS P

Figure 8.5.2 -- OVERLAY DEVICE CONTROL TABLE FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

o o DCTSTAT

o o DCTPCE

4 4 DCTBUFAD

8 8 DCTSEEK

C 12 DCTEl.JF

10 16 DCTBUFCT

11 17

12 18 DCTDEVTP

13 19 DCTIOTYP

14 20 DCTCHAIN

18 24 DCTDEVN

lC 28 DCTOTC

lE 30 DCTOTT

1

4

4

4

4

1

1

1

1

4

4

2

2

DCT Status --

Bit Name Meaning

o DCTINUSE DCT is In Use.
1-7 Reserved.

Address of Overlay Roll PCE.

Address of Current Overlay Area.

Overlay Track Address.

Address of Overlay Service Asynchronous
Exit.

Number of I/O Requests Outstanding.

Reserved for Future Use.

Device Type --

Hex.
Value Name

00 DCTDA

01 DCTOLAY

Meaning

Overlay Data Set Resides
on SPOOL Disk.

Overlay Data Set does not
Reside on SPOOL Disk.

Input Request Type --

Bit

o
1-7

Name

DCTREAD

Meaning

Read Request.
Reserved for Future Use.

Address of Next Device Control Table.

EBCDIC Device Name -- "OLAY".

Number of Tracks per Cylinder on Overlay
Direct-Access Device.

Overlay Extent Origin.

Device Control Table Format -- Page 8.5-4

549

H A' S P

Figure 8.5.3 -- UNIT RECORD DEVICE CONTROL TABLE FORMAT

Displacement

Hex. Dec.

o o

4 4

8 8

C 12

10 16

14 20

18 24

20 32

20 32

24 36

~----------------------- 4 bytes ------------------------~

-

DCTPCE

DCTSTAT

D.CTBUFAD

DCTDCB

DCTEWF

DCTBUFCT

Active
Buffer Count

DCTCHAIN

DCTFLAGS

DCTDEVN

Address of Processor Control Element

Current Buffer Address

Address of Data Control Block

Event Wait Field or Post Address

DCTNO

OCT
Number

DCTDEVTP

Device
Type

DCTIOTYP

Device
Type

Address of Next Device COllt::,Q.,l Table

EBCDIC Device Name

DEVICES OTHER THAN PRINTERS AND PUNCHES

DCTPRINT DCTPUNCH DCTPRINC DCTPRLIM

Print Punch Priority Priority
Destination Destination Increment Limit

-

Device Control Table Format -- Page 8.5-5

HAS P

Figure 8.5.3 -- UNIT RECORD DEVICE CONTROL TABLE FORMAT (CONTINUED)

Displacement r----------------------- 4 bytes ------------------------1
Hex. Dec. -- --

PRINTERS AND PUNCHES

20 32 DCTFORMS

Current Forms Type (Packed) Carriage Tape UCS Type

I

24 36

INTERNAL READERS

24 36 RIDUC:B

Address of Internal Reader UCB

28 40 RIDFLAGS RIDTJID

Synchronization Flags RESERVED

2C 44 RIDEC:B

Address of Internal Reader ECB

30 48 RIDTC:B

Address of Internal Reader TCB

34 52 RIDDATA

I
80-Byte Internal Reader Data Area

]
84 L32

Device Control Table Format -- Page 8.5-6

551

HAS P

Figure 8.5.3 -- UNIT RECORD DEVICE CONTROL TABLE FORMAT (CONTINUED)

Di.S
P

1acement r----------~------------ 4 bytes ------------------------,. .
Hex. Dec. - -

PUNCHES

1
24 36

1
DCTWORK

SO-Byte Error Recovery Save Area

I r
74 116

Device Control Table Format -- Page 8.5-7

552

HAS P

Figure 8.5.3 -- UNIT RECORD DEVICE CONTROL TABLE FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

o o DCTSTAT

o o DCTPCE

4 4 DCTBUFAD

8 8 DCTDCB

C 12 DCTEWF

10 16 DCTBUFCT

11 17 DCTNO

12 18 DCTDEVTP

13 19 DCTIOTYP

1

4

4

4

4

1

1

1

1

DCT Status --

Bit

o
1
2

3-7

Nam~

DCTINUSE
DCTDRAIN
DCTHOLD

Meaning

DCT is In Use~
DCT is Drained.
DCT is Held.
Reserved.

Address of Processor Control Element.

Current Buffer Address~

Address of Data Control Block
for this Unit.

Event Wait Field or Post Address.

Number of I/O Requests Outstanding.

Device Number.

Device Type --

Hex.
Value Name

10 DCTRDR
11 DCTTPE
14 DCTINR
20 DCTPRT
30 DCTPUN
40 DeTCON

Device Type

Card Reader.
Input Tape.
Internal Reader.
Printer.
Punch.
Console.

Device Type and Console Restrictions

Bit

0-1
2
3
4
5
6
7

Name

DCT1053
DCT2260
DCTREJRM
DCTREJJB
DCTREJDV
DCTREJSY

Meaning

Reserved.
1053 Console.
2260 Console.
Reserved.
Job Command Restriction.
Device Command Restriction.
System Command Restriction.

Device Control Table Format -- Page 8.5-8

553

HAS P

Figure 8. 5 . 3 -- UNIT RECORD DEVICE CONTROL TABLE FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

14

14

18

20

21

22

23

20

22

23

20

20

24

32

33

34

35

32

34

35

DCTFLAGS

DCTCHAIN

DCTDEVN

DCTPRINT

DCTPLNCH

DCTPRINC

OCTPRLIM

DCTFORMS

1

4

8

1

1

1

1

2

1

1

Operator Command Flags --

Bit

o
1
2
3
4

5

2+4
6-7

Name

DCTSTOP
DCTDELET
DCTRSTRT
DCTRPT
DCTBKSP

DCTHOLDJ
DCTSPACE

Command

$Z ($STOP)
$C ($DELETE)
$E ($RESTART)
$N ($REPEAT)
$B ($BACKSPACE)
$F
$T ••• ,H
$T ••. ,C=l
$1
Reserved for Future Use.

Address of Next Device Control Table.

EBCDIC Device Name.

Print Destination.

Punch Destination.

Priority Increment.

Priority Limit.

Current Forms Type (Packed).

Carriage Tape

Bit Name Meaning

o DCTFSPEC Special Forms Routing.
1 DCTFOPER. Operator Controlled Forms.

2-7 Carriage Tape Type.

Universal Character Set --

Bit

o
1

2-7

Name

DCTIDSEP
DCTOPACT

Meaning

Generate Separator Page/Card.
Operator Action Allowed.
UCS Type.

Device Control Table Format -- Page 8.5-9

554

I

I

HAS P

Figure 8.5.3 -- UNIT RECORD DEVICE CONTROL TABLE FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

24 36 RIDUCB

28 40 RIDFLAGS

2A 42 RIDTJID

2C 44 RIDECB

30 48 RIDTCB

34 52 RIDDATA

24 36 DCTWORK

4

2

Byte 1

Byte 2

2

4

4

80

80

Address of Internal Reader UCB.

Synchronization Flags --

Bit

o
1

2-7

Name

RIDPOST
RIDBUSY

Meaning

User Waiting for POST.
I/O Simulation in Progress.
Reserved for Future Use.

Reserved for Future Use.

Reserved for Future Use.

AddresS of Internal Reader ECB.

Address of Internal Reader TCB.

Internal Reader Data Area.

~unch Error Recovery Save Area.

Device Control Table Format -- Page 8.5-10

555

HAS P

Figure 8.5.4 -- LINE DEVICE CONTROL TABLE FORMAT

Displacement

Hex. Dec. r----------------------- 4 bytes ------------------------~
o 0 DCTPCE

DCTSTAT Address of Line Manager PCE

4 4 DCTBUFAD

Address of Line RJE Buffer

8 8 DCTDCB

DCTPSTAT Address of Line Data Control Block

C 12 MDCTOBUF

MDCTOPCT RJE Output ·Buffer Chain Field

10 16 DCTBUFCT MDCTATTN DCTDEVTP DCTPCODE

Active Attention Device Line
Buffer Count Indicator Type Type

14 20 DCTCHAIN

DCTFLAGS Address of Next Device Control Table

18 24 DCTDEVN

I- EBCDIC Device Name -

20 32 MDCTCODE

Address of RJE Code Table

24 36 MDCTFCS MDCTERCT DCTPLINE

Function Control Sequence Error Count Mode Byte

28 40

Device Control Table Format -- Page 8.5-11

556

HAS P

Figure 8.5.4 -- LINE DEVICE CONTROL TABLE FORMAT (CONTINUED)

Displacement

Hex. Dec.

28 40

2C 44

30 48

38 56

~----------------------- 4 bytes ------------------------~
MDCTDCT

Address of First Remote DCT Attached to this Line

MDCTRSEQ

Receive
Sequence

MDCTPSWD

MDCTTSEQ

Transmit
Sequence

Line Password

RES E R V E D

-

Device Control Table Format -- Page 8.5-12

557

II ASP

Figure 8.5.4 ~- LINE DEVICE CONTROL TABLE FORMAT (CONTINUED)

Displacement Field Name B:ltes Field Descri}2tion
Hex. Dec.

0 0 DCTSTAT 1 DCT Status --

Bit Name Meaning

0 DCTINUSE DCT is In Use.
1 DCTDRAIN DCT is Drained.

2-7 Reserved.

0 0 DCTPCE 4 Address of Line Manager PCE.

4 4 DCTBUFAD 4 Address of Line RJE Buffer.

8 8 DCTPSTAT 1 Line Flags

Bit Name Meaning

0 DCTLOGAL Log Every Channel End.
1 DCTLEASE Leased Line.
2 DCTETX An ETX has been Received.
3 DCTSOFF A /*SIGNOFF Card has been

Processed.
4-7 Reserved for Future Use.

8 8 DCTDCB 4 Address of Line Data Control Block.

C 12 MDCTOPCT 1 MULTI-LEAVING Terminal Open Count.

C 12 MDCTOBUF 4 RJE Output Buffer Chain Field.

10 16 DCTBUFCT 1 Number of I/O Requests Outstanding.

11 17 MDCTATTN 1 Line Attention Requests --

Bit Name Meaning

0 MDCTIMER Timed Action Requested.
1 MDCTPAWS Line Pause Requested.
2 MDCT JOBl Job Post Indicator 1.
3 MDCTJOB2 Job Post Indicator 2.

2+3 MDCTJOB Job Post Indication.
4-7 Reserved for Future Use.

Device Control Table Format -- Page 8.5-13

558

II ASP

Figure 8.5.4 -- LINE DEVICE CONTROL TABLE FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

12 18 DCTDEVTP

13 19 DCTPCODE

14 20 DCTFLAGS

14 20 DCTCHAIN

18 24 DCTDEVN

20 32 MDCTCODE

24 36 MDCTFCS

26 38 MDCTERCT

27 39 DCTPLINE

28 40 MDCTDCT

1

1

1

4

8

4

2

1

1

4

Device Type --

Hex.
Value Name

02 DCTLNE

Line Type --

Bit

o

1

2

3
4-5

6

7

Name

DCTPBSC

DCTPTRSP

DCTPASCI

DCTPHASP

DCTPWIDE

DCTPHALF
DCTPFULL

Device Type

Line.

Value Meaning

o STR Line.
1 BSC Line.
o
1
o

No Transparency.
Transparency.
EBCDIC Code.

1 USASCII Code.

o
1
o
1

Reserved.
Reserved.
Low-Speed Line.
Wide-Band Line.
Half-Duplex Line.
Full-Duplex Line.

Operator Command Flags

Bit Name Command

0-1 Reserved.
2 DCTRSTRT $E ($RESTART) -- Abort.

3-7 Reserved.

Address of Next Device Control Table.

EBCDIC Device Name.

Address of RJE Code Table.

Last Function Control Sequence Received.

Line Error Count/Indicator.

SDA Mode Byte.

Address of First Remote DCT Attached to
this Line.

Device Control Table Format -- Page 8.5-14

559

HAS P

Figure 8.5.4 -- LINE DEVICE CONTROL TABLE FORMAT (CONTINUED)

Displacement Field Name B~tes Field Description
Hex. Dec.

2C 44 MDCTRSEQ I Receive Block Sequence Count.

2D 45 MDCTTSEQ I Transmit Block Sequence Count.

2E 46 2 Reserved for Future Use.

30 48 MDCTPSWD 8 Line Password.

Device Control Table Format -- Page 8.5-15

560

HAS P

Figure 8.5.5 -- REMOTE DEVICE CONTROL TABLE FORMAT

Displacement

Hex. Dec. r------------------------ 4 bytes -----------------------~~
o 0 DCTPCE

DCTSTAT Address of Processor Control Element

4 4 DCTBUFAD

Address of Current RJE Buffer

8 8 DCTDCB

DCTPSTAT Address of Line Device Control Table

C 12 DCTEWF

Address of Event Wait Field

10 16 DCTNO DCTDEVTP DCTPCODE

RESERVED Remote Device Remote
Number Type Code

14 20 DCTCHAIN

DCTFLAGS Address of Next Device Control Table

18 24 DCTDEVN

- EBCDIC Device Name -

20 32

REMOTE READERS AND REMOTE CONSOLES

20 32 DCTPRINT DCTPUNCH DCTPRINC DCTPRLIM

Print Punch Priority Priority
Destination Destination Increment Limit

24 36

Device Control Table Format -- Page 8.5-16

561

HAS P

Figure 8.5.5 -- REMOTE DEVICE CONTROL TABLE FORMAT (CONTINUED)

Displacement

Hex. Dec. ~----------------------- 4 bytes ------------------------~

REMOTE PRINTERS AND REMOTE PUNCHES

20 32 DCTFORMS

Current Forms Type (Packed) Flags

24 36

ALL REMOTE DEVICES

24 36 MDCTFCS DCTPRLEN DCTPLINE

Function Control Sequence Remote Remote
Printer Width Characteristics

28 40 MDCTDCT

MDCTRCB I
Address of Next DCT for this Remote

2C 44

Device Control Table Format -- Page 8.5-17

562

I

HAS P

Figure 8.5.5 -- REMOTE DEVICE CONTROL TABLE FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

o

o

4

8

8

C

10

11

12

o

o

4

8

8

, 12

16

17

18

DCTSTAT

DCTPCE

DCTBUFAD

DCTPSTAT

DCTDCB

DCTEWF

DCTNO

DCTDEVTP

1

4

4

I

4

4

1

1

1

OCT Status --

Bit

o
1
2

3-7

Name·

DCTINUSE
DCTDRAIN
DCTHOLD

Meaning

OCT is In Use.
OCT is Drained.
OCT is Held.
Reserved.

Address of Processor Control Element.

Address of Current RJE Buffer.

Remote Flags --

Bit

0-2
3
4
5
6
7

Name

DCTEOF
DCTSIN(]'tJ
DCTPOST
DCTABORT
DCTPBUF

Meaning

Reserved for Future Use.
An EOF has been Detected.
OCT is Attached to Line OCT.
I/O Complete Flag.
Transmission was Aborted.
Remote has Output Buffer.

Address of Line Device Control Table.

Address of Event Wait Field.

Reserved -- Must be zero.

Remote Number.

Device Type -.-

Hex.
Value Name

12 DCTRJR
22 DCTRPR
32 DCTRPU
42 DCTRC(]\J

Meaning

Remote Reader.
Remote Printer.
Remote Punch.
Remote Console.

Device Control Table Format -- Page 8.5-18

563

I

HAS P

Figure 8.5.5 -- REMOTE DEVICE CONTROL TABLE FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

13

14

14

18

20

21

22

23

19

20

20

24

32

33

34

35

DCTPCODE

DCTFLAGS

DCTCHAIN

DCTDEVN

DCTPRINT

DCTPLNCH

DCTPRINC

DCTPRLIM

1

1

4

8

1

1

1

1

Remote Code --

Bit

o
1
2
3

4
5
6
7

Name

DCTPTRSP
DCTPPRES
DCTPCON
DCTPMRF

DCTPTAB
DCTPROG
DCTPVAR
DCTPBLK

Meaning

Reserved.
Terminal Transparency.
Hardware Compress Feature.
Terminal Console.
Multiple Record Feature.
Buffer Expansion, Additional.
Horizontal Format Control.
Programmable Interface.
Variable Length Records.
Blocked Records.
Buffer Expansion Feature.

Operator Command Flags --

Bit Name Command

o DCTSTOP $Z ($STOP)
1 DCTDELET· $C ($DELETE)
2 DCTRSTRT $E ($RESTART)
3 DCTRPT $N ($REPEAT)
4 DCTBKSP $B ($BACKSPACE)

5

2+4
6-7

DCTHOLDJ
DCTSPACE

$F
$T ••• ,H
$T ••• ,C=l
$I
Reserved for Future Use.

Address of Next Device Control Table.

EBCDIC Device Name.

Print Destination.

punch Destination.

Priority Increment.

Priority Limit.

Device Control Table Format -- Page 8.5-19

564

HAS P

Figure 8.5.5 -- REMOTE DEVICE CONTROL TABLE FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex •. Dec.

20 32

22 34

24 36

26 38

27 39

DCTFORMS 2

2

Byte 1

Byte 2

MDCTFCS 2

Byte 1

Byte 2

OCTPRLEN 1

OCTPLINE 1

Bits 0-3

Current Forms Type (Packed).

Flags

Bit Name Meaning

o DCTFSPEC Special Forms Routing.
1 DCTFOPER Operator Controlled Forms.

2-7 Reserved for Future Use.

Bit Name Meaning

o
1

2-7

DCTtDSEP
DCTOPACT

Generate Separator Page/Card.
Operator Action Allowed.
Reserved for Future Use.

Function Control Sequence Mask --

Bit Meaning

0-3 Reserved.
4 Reader 1 or Printer 1.
5 Reader 2, Printer 2, or Punch 7.
6 Reader 3, Printer 3, or Punch 6.
7 Reader 4, Printer 4, or Punch 5.

o Reserved.
1 Remote Console.

2 - 3 Reserved.
4 Reader 5, Printer 5, or Punch 4.
5 Reader 6, Printer 6, or Punch 3.
6 Reader 7, Printer 7, or Punch 2.
7 Punch 1.

Remote Printer width and Remote Input Size.

Remote Characteristics --

Adapter/Terminal Characteristics

Bit

o

1

2

3

Name Value

DCTPBSC 0
1

DCTPTRSP 0
1

DCTPASCI 0
1

Meaning

STR Adapter.
BSC Adapter.
No Transparency.
Transparency.
EBCDIC Code.
USASCI I Code.
Reserved.

Device Control Table Format -- Page 8.5-20

565

HAS P

Figure 8.5.5 -- REMOTE DEVICE CONTROL TABLE FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

Bits 4-7

28 40 MDCTRCB 1

28 40 MDCTDCT 4

Remote Characteristics (continued) --

Terminal Type

Hex.
Value Name Terminal Type

0 DCTP2770 2770, 3780, 1009.
1 DCTPHARD 2780, 1978.
2 DCTP20 360/20 Sub-ModelS,
4 DCTP360 360/22, 25, 30, 40,
6 DCTP20S2 360/20 Sub-Model
8 DCTP:L:L30 1130.
A DCTPSYS3 System/3.

Record Control Byte

Bits Meaning

o Always One.
1-3 Device Number.
4-7 Device Type --

Value Device Type

1 Output Console.
2 Input Console.
3 Reader.
4 Printer.
5 Punch.

2,

Address of Next DCT for this Remote.

6.
etc.
4.

Device Control Table Format ~- Page 8.5-21

566

HAS P

Figure 8.6.1 -- JOB QUEUE ELEMENT FORMAT

Displacement

Hex. Dec.

o 0

4 4

8 8

C 12

10 16

r-----------------------4 bytes ------- -~ --.--------- ----,

QUEPRIO QUE TYPE QUEJOBNO

Priority Queue Type Job Number (Binary) ,

QUECHAIN

QUEFLAGS Address of Next Job Queue Element

QUETRAK

Disk Address of Job Control Table

QUEPRTRT QUEPUNRT QUECLASS I QUEREGSZ

Print Route Punch Route QUE FORMS

Job Queue Element Format -- Page 8.6-1

567

HAS P

Figure 8.6.1 -- JOB QUEUE ELEMENT FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Pee.

o o

1

2 2

4 4

4 4

8 8

C 12

D 13

E 14

E 14

F 15

QUEPRIO 1

Bits 0-3
Bits 4-7

QUETYPE

QUEJOBNO

QUE FLAGS

QUECHAIN

QUETRAK

QUEPRTRT

QUEPUNRT

QUECLASS

QUE FORMS

QUEREGSZ

1

2

1

4

4

1

1

1

2

1

Queueing Priority

Priority (O-lS).
Reserved.

Queue Type

Binary
Value

1xxxxxxx
xlcccccc

xOlOOOOO
x0000100
xOOOOOlO
xOOOOOOO

Name

QENTBY
$XEQ

$INPUT
$PRINT
$Pl,.NCH
$PURGE

Meaning

Queue Entry is In Use.
Ex~cution --

cccccc = Job Class - X'CO'.
Input Queue.
Print Queue.
Punch Queue.
Purge Queue.

Job Number (Binary)

Queue Flags --

Bit

o
1
2
3

4-7

Name

QUEHOLDA
QUEHOLDl
QUEHOLD2
QUEPURGE
QUEUSECT

Meaning

Job Held ($H A)
Job Held (Single Job)
Job Held (Duplicate Job Name) .
Job Deleted.
Entry Use Count.

Address of Next Job Queue Element.

Track Address of Job Control Table.

Print Routing: 0 = Local.
n = Remote n.

Punch Routing: 0 Local.
n = Remote n.

Sub-Class -- Unused.

Forms Code (Packed).

Region Size -- Unused.

Job Queue Element Format -- Page 8.6-2

568

HAS P

Figure 8.7.1

Displacement

Hex. Dec.

o o

8 8

Displacement
Hex. Dec.

o o

~OB INFORMATION TABLE ELEMENT FORMAT

~~-----.-----------------I ' , 4 byte.s ,. '1 ------------------------
. .

JITJNAME

Job Name -

Field Name Bytes
)

Field Description

JITJNAME 8 Job Name.

Job Information Table Element Format - Page 8.7-1

569

HAS P

Fi9ure8~8~1 -~ JOB CONTROL TABLE FORMAT

Displac;:ement

Hex. Dec. r------------------------ 4 bytes ------------------------~
50 80 JCTPCE

JCTID I AdQress of Processor Control Element

54 84 JCTJOBNO JCTPRIO JCTROUTE

Job Number (Binary) Priority Input
Route Code

58 88 JCTJOBEB JCTPNAML

Job Number (EBCDIC) Programmer's
Name Length

5C 92 JCTPNAME

- -

- -

Programmer's Name from Job Card

- -

- -

70 112 JCTJNAME

r- Job Name from Job Card -

78 120

Job Control Table Format -- Page 8.8-1

570

HAS P

Figure 8.8.l -- JOB CONTROL TABLE FORMAT (CONTINUED)

Displacement

Hex. Dec.
~--------------------~-- 4 -----~------------------1· bytes

78 120 JCTACCTN

Job A9counting Number

7C 124 JCTROOMN ,.

Programmer's Room Number

80 128 JCTETIME

Estimated Execution Time

84 132 JCtCARDS

Number of Input Cards

88 136 JCTESTLN

Estimated Lines of Output

8C 140 JCTlINES

Current Lines of Output

90 144 JCTESTPU

Estimated Number. of Cards to be Punched

94 148 JCTPUNc'H

Current Output Card Count

98 152 JCTlINCT JCTCPYCT JCTlOG JCTFlAGS

Lines Print Log Option Miscellaneous
Per PQge Copy Count Switch Flags

9C 156 JCTFORMS ..

Job Print Forms

AO 160·

Job Control Table Format -- Page 8.8-2

571

HAS P

Figure 8.8.1

Displacement

Hex. Dec.

AO 160

A4 164

A8 168

AC 172

BO 176

B4 180

B8 184

BC 188

CO 192

C4 196

C8 200

JOB CONTROL TABLE FORMAT (CONTINUED)

~----------------------- 4 bytes ------------------------~

Job Punch Forms

JCTPRTCT

Current Number of Lines Printed

JCTPAGCT

Current Number of P~ges Printed

JCTPUNCT

Current Number of Cards Punched

JCTRDRON

Reader Sign-On Time

JCTRDROF

Reader Sign-Off Time

JCTXEQON

Execution Sign-On Time

JCTXEQOF

Execution Sign-Off Time

JCTPRTON

Printer Sign-On Time

JCTPRTOF

Printer Sign-Off Time

Job Control Table Format -- Page 8.e-3

572

HAS P

Figure 8.8.1 -- JOB CONTROL TABLE)~'ORMAT (CONT.I:NUED)

Displacement _I.----------_-~----------- 4 bytes ________________ , ___ -_____ J,
Hex.' Dec. I" . ..~". -I

C8 200

CC 204

DO 208

D4 212

D8 216

DC 220

EO 224

'

. JCTPUNON

Punch Sign-On Time

JCTPUNOF

Punch Sign-Off Time

JCTPRC

Checkpoint
Flags

Checkpoint
Copy Count

Checkpoint PDDB Displacement

Checkpoint PDDB Page Count Checkpoint Total Line Count

Checkpoint Total Line Count Checkpoint Total Page Count
(continued)

"

Checkpoint Total Page COunt
(continued) .,

JCTRDRTR
First Reader Track

JCTCYSAV
, .,

I n p ut File T rae k Allo c a tion Bit Ma p S ave Area

JCTCYMXM'

Maximum MTTR for Current Track Group

. JCTMTTR

Last MTTR Allocated

' ...

Job Control ~~ble Format -- Page 8.8-4

573

BAS P

Figure 8.8.~ -- JOB CONTROL TABLE FORMAT (CONT1NUED)

Displacement

Hex. Dec.
~----------------------- ----------------~-------~ 4 bytes

1
JCTCYMAP

1 Variable Length Track Allocation Bit Map

JCTACCT

'r-
l32-Byte Job Accounting Information Area

"~

JCTPDDB .
JCTLPDDB

HASP System Log PDOB
~

JCTSPDDB

System Message Block (SMB) PDDB

-

' "

11... ____ pe.-r_._l.p_h_e_r_a_l-...D_a_t_a~D-e-f-1.-n-1.-t-1.-o-n_B_l_O_C_k __ (P_D_D_B_)_A_r_e_a ___ --'J

Job Control Table Format -- Page 8.8-5

574

l~ ASP

Figure 8.8.1 -- JOB CONTROL TABLE FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

50 80 JCTID 1 JCT Identification -- XfFF'.

5-0 80 JCTPCE 4 Address of Processor Control Element.

54 84 JCTJOBNO 2 Job Number (Binary).

56 86 JCTPRIO 1 Priority from /*PRIORITY Card.

57 87 JCTROUTE 1 Route Code of Input Device: 0 Local.
n = Remote n.

58 88 JCTJOBEB 3 Job Number (EBCDIC).

5B 91 JCTPNAMl 1 Length of Programmer's Name.

5C 92 JCTPNAME 20 Programmer's Name from Job Card.

70 112 JCTJNAME 8 Job Name from Job Card.

78 120 JCTACCTN 4 Job Accounting Number.

7C 124 JCTROOMN 4 Programmer's Room Number.

80 128 JCTETIME 4 Estimated Execution Time.

84 132 JCTCARDS 4 Number of Input Cards.··

88 136 JCTESTLN 4 Estimated Lines of Output.

8C 140 JCTlINES 4 Generated Lines of Output.

90 144 JCTESTPU 4 Estimated Number of Cards to be Punched.

94 148 JCTPUNCH 4 Number of Output Cards Generated.

98 152 JCTlINCT 1 Lines per Page.

99 153 JCTCPYCT 1 Number of Copies of Print.

9A 154 JCTlOG i Log Option Switch --

EBCDIC
Va1~e Meaning

L Produce HASP SYSTEM LOG.
N Do not Produce HASP SYSTEM LOG.

Job Control Table Format -- Page 8.8-6

,575

HAS P

Figure 8.8.1 -- JOB CONTROL TABLE FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

9B 155 JCTFLAGS

9C 156 JCTFORMS

AO 160

A4 164 JCTPRTCT

A8 168 JCTPAGCT

AC 172 JCTPUNCT

BO 176 JCTRDRON

B4 180 JCTRDROF

B8 184 JCTXEQON

BC 188 JCTXEQOF

co 192 JCTPRTON

C4 196 JCTPRTOF

C8 200 JCTPUNON

CC 204 JCTPUNOF

DO 208 JCTPRC

DC 220 JCTRDRTR

EO 224 JCTCYSAV

JCTCYMXM

JCTMTTR

JCTCYMAP

1

4

4

4

4

4

4

4

4

4

4

4

4

4

14

4

4

4

Miscellaneous Flags --

Bit

o
1-7

Name

JCTDSRT

Job Print Forms.

Job Punch Forms.

Meaning

Processing Special Forms.
Count of Input Data Set$

SPOOLed by HASP.

Number of Lines Printed.

Number of Pages Printed.

Number of Cards Punched.

Reader Sign-On Time.

Reader Sign-Off Time.

Execution Sign-On Time.

Execution Sign-Off Time.

Print Sign-On Time.

Print Sign-Off Time.

Punch Sign-On Time.

Punch Sign-Off Time.

Print Checkpoint Element.

First Reader Track.

Variable Length Input File
Track Allocation Bit Map Save Area.

Maximum MTTR for Current Track Group.

Last MTTR Allocated.

Variable Length Track Allocation Bit Map.

Job Control Table Format -- Page 8.8-7

576

HAS P

Figure 8.8.1 -- JOB CONTROL TABLE FORMAT (CONTINUED)

Displacement
Hex. Dec.

Field Name Bytes

JCTACCT

JCTPDDB

JCTLPDDB

JtTSPDDB

132

5

5

Field Description

Job Accounting Information Area.

Peripheral Data Definition Block (PDDB) Area.

HASP System Log PDDB.

System Message Block (SMB) PDDB.

Job Control Table Format -- Page 8.8-8

577

HAS P

Figure 8.9.1 -- TRACK EXTENT DATA TABLE FORMAT

Displacement

Hex. Dec.
~----------------------- 4 bytes ------------------------~

o 0 TNCH

MTTR For Most Recent $EXCP on this Module

4 4 TNTC

Number of Tracks per Cylinder on this Device

8 8 TNMD TNRT

DEB Extent Number Number of HASP
(times 256) Buffers per Track

C 12 TNGE TNTG

Number of Groups/Extent Number of Tracks/Group

10 16 TNMO TNMB

Offset of this Map Number of Bytes
from First Map in this Map

14 20

Displacement Field Name Bytes Field DescriEtion
Hex. Dec.

0 0 TNCH 4 MTTR for Most Recent $EXCP on this Module.

4 4 TNTC 4 Number of Tracks per Cylinder on this Device.

8 8 TNMD 2 DEB Extent Number (times 256).

A 10 TNRT 2 Number of HASP Buffers per Track.

C 12 TNGE 2 Number of Track Groups per Extent.

E 14 TNTG 2 Number of Tracks per Track Group.

10 16 TNMO 2 Offset of This Map from First Map.

12 18 TNMB 2 Number of Bytes in This Map.

Track Extent Data Table Format -- Page 8.9-1

578

HAS P

Figure 8.10.1 -- TIMER QUEUE ELEMENT

DisPlacement~ _______________________ 4

Hex. Dec. I bytes
",., ,

--~--~~-------------~--~

o 0 ICHAIN

Address of Next HASP Timer Queue Element

4 4 ITIME

Specified Interval

8 8 IPOST

Address of Event Wait Field to be Posted

C 12

Displacement Field Name Bytes Field Description
Hex. Dec.

o o ICHAIN 4 Address of Next HASP Timer Queue Element.

4 4 ITIME 4 Timer Interval.

8 8 I POST 4

Byte 1 Flag Byte --

o 0 Timer Interval has not Expired.
1 Timer Interval has Expired.

1-7 Reserved.

Bytes 2-4 Address' of Event wait Field to be Posted.

Timer" Queue Element Format -- Page 8.10-1

579

HAS P

Figure 8.11.1 -- OVERLAY TABLE FORMAT

Displacement

Hex. Dec.

o o

o 0

4 4

8 8

C 12

~----------------------- 4 bytes ------------------------~

&DEBUG = NO

OTBADDR Address of Resident Overlay Module

OTBPRIO I RESERVED I OTBTRAK Relative TTR

&DEBUG YES

OTBNAME

Overlay Module Name (Last Four Characters)

OTBADDR Address of Resident Overlay Module

OTBPRIO I RESERVED OTBTRAK Relative TTR

OTBCALLS OTBLODS

Count of PCE Requests Count of Times Loaded

Overlay Table Format -- Page 8.11-1

580

HAS P

Figure 8.11.1 -- OVERLAY TABLE FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

o o OTBADDR 4 Address of Resident Overlay Module'.

Byte 1 X'FF' .

Bytes 2-4 Addressability Address of Resident
Overlay Module -- Assembly Origin - X'50'.

o o OTBPRIO 1

1 1 1

2 2 OTBTRAK 2

0 a OTBNAME 4

8 8 OTBCALLS 2

A la, OTBLODS 2

Priority of Overlay Module.

Reserved for Future Use.

Relati ve Track and Record Address o,f
Overlay Module.

Last Four Characters of Overlay Module

Number of Times This Overlay Module
was Requested.

Number of Times This Overlay Module
was Loaded.

Name.

Overlay Table Format -- Page 8.11-2

,581

HAS P

Figure 8.12.1 -- DATA DEFINITION TABLE FORMAT

Dise1acernent r
Hex. Dec. . . 4 bytes ------------------------~
-- --

o 0 DDBCHAIN

Address of Next Data Definition Table

4 4 DDBTYPE DDBUNIT

Data Set Type unit Address (EBCDIC)

8 8 DDBSTATl DDBSTAT2 DDBUFPTR
(XS)

Status Byte 1 Status Byte 2 Current Buffer Pointer

C 12 DDBPBUF

Address of Primary Buffer or TTR

10 16 DDBSBUF Address of Secondary Buffer (Input)

DDBFORMS
r- -

Special Forms Type (Output)

18 24 DDBTTR

Next Track Address (Input Data Sets)
First Track Address (Output Data Sets)

1C 28 DDBCOUNT

Output Record Count RES E R V E D

20 32 DDBPCE

Address of Processor Control Element

24 36

Data Definition Table Format -- Page 8.12-1

582

HAS P

Figure 8.12.1 -- DATA DEFINITION TABLE .FORMAT. (CONTI~UED)

Displacement Field Name Bytes Field Definition
Hex. Dec.

o o

4 4

5 5

8 8

9 9

DDBCHAIN

DDBTYPE

DDBLl'JIT

DDBSTATl
(XS)

DDBSTAT2

4

1

3

I

I

Address of Next Data Definition Table.

Data Set Type --

Hex.
Value

01
02
04
08
10
40
80

Name

XSPROUTE
XPRTDDB
XPUNDDB
XPLOTDDB
X LOGDDB
XNULLDDB
XINDDB

Data Set Type

Special Route SYSOUT.
Print.
Punch.
Plot.
Log.
Dummy (Null).
Input.

unit Address (EBCDIC).

Status Byte 1

Bit

o
I
2
3
4
5
6
7

Name

XSEOD
XSIOA
XSIO
XNSB
XPEOD
XPIOA
XPIO
XNPB

Status Byte 2

Bit

o
I
2
3
4
5
6
7

Name

XACT

XLOGHEAD
XOPEN
XUCB
XIOC
XROLL
XTERM

Meaning

End of Data on Secondary.
I/O Active on Secondary.
I/O Required on Secondary.
No Secondary Buffer.
End of Data on Primary.
I/O Active on Primary.
I/O Required on Primary.
No Primary Buffer.

Meaning

Action Required on This DDT.
Reserved for Future Use.
Log Title Switch.
DDT has been Used.
Allocatable UCB Exists.
I/O Error on Read.
Roll Output Buffer.
Terminate DDT.

Data Definition Tab1~ For~at -- Page 8.12-2

583

HAS P

Figure 8~12.1 -- DATA DEFINITION TABLE FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex.' Dec.

A 10 DDBUFPTR

e 12 DDBPBUF

lO 16 DDBSBUF

10 16 DDBFORMS

18 24 DDBTTR

Ie 28 DDBCOLI'JT

lE 30

20 32 DDBPCE

2

4

4

8

4

2

2

4

Current Displacement of Data in
Primary Buffer.

Address of Primary Buffer -- Or TTR
if No Primary Buffer.

Address of Secondary Buffer (Input Only) .

Special Forms Type (Output Only) .

Input: Next Track Address.
Output: First Track Ad~ress.

Output Record Count.

Reserved for Future Use.

Add~ess of Processor Cont~ol Element.

Data Definition Table Format -- Page 8.12-3

584

HAS P

Figure 8.13.1 -- PARTITION· INFORMATION T.ABLE.' FORMAT

D:::~ac:::~t ~--"'---~--~--------~---~_4bYteS.--------------------"~--:
o 0 PITSTAT PITICLAS PITPATID

Status Byte Ini tiator .' Logical' Parti tiort
, Class Identification

, :> "

4 4 PITSIZE PITPRIO ; . ,

Logical Partition Size Logical Partition PRTY

WITH EXECUTION JOB BATCHING

8 8 PITBECB

Batching Program Frozen ECB Chain

C 12 PITBJST

Address of Batching Program TCB

10 16 PITBCLAS PITBUNIT

~ctive Batching Batching Program Input Unit
Class

14 20 PITBUCBA PITCLASS

Batching Input UCB Address

-

"- "

1
Var1able Number of Log1cal Part1t10n Classes

J

Parti tio.n Informati,on Table Format -~ Page 8.13-1

5'85

Ii ASP

Fig~re 8.13.1 -- PARTITION INFORMATION TABLE FORMAT (CONTINUED)

. Rex. Dec. r----------------".------ 4 l1ytes ---------,..--------------1

8

WITHOU~ EXECU~ION JOB BATCHING

8j

1

PITCLASS

Vari~ble Number of Logic?l Partition Classes I
J

Pa~tition Information Table Format -- Page 8.13-2

586

HAS P

Figure 8.13.1 -- PARTITION INFORMATION TABLE FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

o o

1 1

2 2

4 4

6 6

8 8

c .12

10 16

11 17

14 20

PITSTAT 1

PITICLAS 1

PITPATID 2

PITSIZE 2

PITPRIO 2

PITBECB 4

PITBJST 4

PITBCLAS 1

PITBUNIT 3

PITBUCBA 2

PITCLASS

Status Byte --

Bit

o
1
2
3

4-6
7

Name

PITHOLDA
PITHOLDl
PITBUSY
PITIDLE

PITLAST

Meaning

PIT is Drained ($p I).
PIT is Drained ($p In).
Partition Busy Indicator.
PIT Idle Message Switch.
Reserved for Future Use.
Last PIT Indicator.

O/S Initiator Class.

Logical Partition Identification.

Logical Partition Size (Unused).

Logical Partition PRTY.

Batching Program Frozen ECB Chain.

Address of Batching Program TCB.

Active Batching Class.

Batching Program Input Unit.

Batching Input unit Control Block (UeB)
Address.

variable Number of Logical Partition
Classes.

Partition Information Table Format -- Page 8.13-3

587

H 'A S P

Figure 8.14.1 -- MESSAGE ALLOCATION CONTROL BLOCK

Hex. Dec.
~----------------------- 4 bytes ------------------------~ Displacement

o o MSAMTTR

Base SPOOL Record Pointer

4 4 MSARPTRK MSABITS

Number of Records/Track

-

...

I
Variable Length Allocation Bit Map

J

Dis}2lacement Field Name B:ites Field De~criEtion
Hex. Dec.

0 0 MSAMTTR 4 Base SPOOL Record Pointer.

4 4 MSAPTRK 2 Number of Records/Track.

6 6 MSABITS Variable Length Allocation Bit Map.

Message Allocation Control Block Format -- Page 8.14-1

588

HAS P

Figure 8.15.1 -- DATA BLOCK FORMAT

Displacement

Hex. Dec.

50 80

54 84

~-----------~----------- 4, bytes ---------.:..---"-----------.

HDBNXTRK

'Track Address of Next Data Block

HDBSTART
Control

Record Byte
Length

-
... ,

"'" Variable Length Data Area '!'-

....

....

....

f-

Record
Length

. Block
Terminator

Record Control
Length Byte

Var~able Length Data Area

Control
Byte

Variable Length Data Area

-

"

-

-

) Unused t
1L--,-_____ ------lJ

Data Block Format -- ,Page 8.15-1

589

Ii ASP

Figure 8.15.1 -- DATA BLOCK FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

50 80

. 54 84

HDBNXTRK

HDBSTART

Record
Length

Control
Byte

Data
Area

Block
Terminator

'4 Track Address of Next Data Block.

Start of Data Block .

1 Length of Data Area (0-254).

1 .Control Byte --

Input Data Sets

Hex.
Value Meaning

00 Normal Record.
03 Internally Generated Card.
04 HASP Control Card.
13 Illegal HASP Control Card.
19 Last JCL Card.
73 Dummy Track Address Record.

Print Data Sets Carriage Control.

Punch Data Sets Stacker Select.

Variable Length Data Area.

Record Length of 255 (X'FF').

Data Block Format -- Page 8.15-2

590

HAS P

9.0 HASP EXECUTOR SERVICES

The HASP Control Service Programs provide a comprehensive set of
services which aid the HASP Processors in performing their respec­
tive tasks in an efficient manner without burdening the processor
programmer down with endless detail. These services are requested
by the processor through the use of HASP macro instructions. The
services are subdivided in this publication, as follows:

• Buffer Services, which provide for the acquisition and release
of HASP buffers.

• Unit Services, which provide for the acquisition and release
of HASP Input/Output units.

• Jqb Queue Servides, which provide the.processors. with an
interface with the HASP JobQueue~

• Direct Access Space Services, which provide for the allocation
and de-allocation of HASP direct-access s·tor-age space.

• Input/Output Services, which provide all communication with
the Operating System Input/Output Supervisor

• Time Services, which provide for the setting and interrogation
of the interval timer.

• Overlay Services, which provide the capability to define and
utilize sections of HASP that may optionally be made resident
on direct-access storage and fetched into a dynamic area
within HASP whenever required.

• Synchronization Services, which provide synchronization and
communication between HASP processors,the HASP dispatcher,
and the Operating System.

• Debug Services, which provide' facilities for aid in debugging
HASP.

• Error Services, which provide a uniform way of processing
detected errors.

• Coding Aid Services, which provide the HA.SP progranuner with
coding aids not usually available in the Operating System,
but useful in coding HASP routines.

Some of the above services are provided by "in-line" code expansion
wherever the macro instruction is used. The remainder of the ser­
vices are provided by routines which are integral parts of the
Control Service Programs. For more information about these rou­
tines refer to Section 5. These routines are "linked to" by code
generated wherever the macro instruction is used.

HASP Executor Services - Page 9.0-1

591

HAS P

At execution time, the macro-expansion passes information to the
control program ~outine to specify the exact nature of the service
to be performed., This information is broken down into parameters
and, in general, is passed to the routine through general purpose
registers called parameter registers.

The macro-expansion can contain load instructions (LA,L,LH,etc.)
that form parameters in parameter registers, and/or it can contain
instructions which load parameter registers from registers loaded
by the processor. The processor can also load parameters directly.
Registers "RI" and "RO" are generally used as parameter registers.

Each parameter resulting from the expansion of a macro-instruction
is either an address or a value.

ADDRESS PARAMETER: An address parameter is a standard 24-bit
address. It is always located in the three low-order bytes of a
parameter register. The high-order byte in the parameter register
should ~ontain all zeros. Any exception to this rule will be stated
in the individual macro-instruction description.

An address parameter is always an effective ~ddress. The Control
Service Programs is never given a 16-bit or 20-bit explicit address
of the form D(B) or D(B,X) and then required to form an effective
address. Whe·n an effective address is to be resolved, it is formed
either by the macro-expansion or before the macro-instruction is
issued.

VALUE PARAMETER: A value parameter is a field of data other than
an address. It is of variable length, and is usually in the low­
order bits of a parameter register. The value parameter will always
have a binary format. The high-order unused bits in the parameter
register should contain all zeros. Any exception to this rule will
be stated in the individual macro-instruction description.

Certain value parameters can be placed in a register along with
another parameter, which can either be an address or a value
parameter. In this case, a value parameter will be in other than
the low-order bits. Two or more parameters in the same register
are called packed parameters.

OPERANDS: Parameters are specified by operands in the
macro-instruction. An address parameter can result from a relo­
catable expression or, in certain macro-instructions, from an
implied or explicit address. A value parameter can result from an
absolute expression or a specific character string. Address and
value parameters can both be specified by operands written as an
absolute expression enclosed in parentheses. This operand form is
called register notation. The value of the expression designates
a register into which the specified parameter must be loaded by the
processor before macro-instruction is issued. The contents of this
register are then placed in a parameter register by the macro-expan­
sion.

HASP Executor Services - Page 9.0-2
592

HAS P

Types of Macro-Instruction Operands

The processor programmer writes operands in a HASP macro-,instruction
to specify the exact nature of the service to be performed. Operands
are of two types: positional and keyword.

POSITIONAL OPERANDS: A positional operand is written as a string
of characters. This character string can be an expression, an im­
plied or explicit address, or some special operand form allowed in
a particular macro-instruction.

positional operands must be written in a specific order. If a posi­
tional operand is omitted and another positional operand is written
to the right of it, the comma that would normally have preceded the
omitted operand must be written. This comma should be written only
if followed by a positional operand; it need not be written if it .
would be followed by a keyword operand or a blank.

In the following examples, EXI has three positional operands. In
EX2, the second of three positional operands is omitted, but must
still be delimited by commas. In EX3, the first and third operands
are omitted; n9 comma need be written to the right of the second
operand.

EXI $ EXAMP

EX2 $ EXAMP

EX3 $EXAMP

KEYWORD OPERANDS:
immediately followed

A,B,C

A, ,C

,B

A
by an

keyword operand is written as a keyword
equal sign and an optional value.

A keyword consists of one through seven letters and digits, the.
first of which must be a letter. It must be written exactly as
shown in the macro-instruciton description.

An optional value is written as a character string in the same way
as a positional operand.

Keyword operands can be written in any order, but they.must be
written to the right of any positional operands in the macro-instruc­
tion.

In the following examples, EXI shows two keyword operands. EX2 shows
the keyword operands written in a different order and to the right
of any positional operands. In EX3, the second and third positional
operands are omitted; they need not be delimited by commas, because
they are not followed by any positional operands.

HASP Executor Services - Page 9·.0-3

HAS P

EXl, $EXAMP KWl=X,KW2=Y

EX2 $ EXAMP A,B,C,KW2=Y,KWl=X

EX3 $ EXAMP A,KWl=X,KW2=Y

REQUIRED AND OPTIONAL OPERANDS: Certain operands are required in
a macro-instruction, if the macro-instruction is to make a meaning­
ful request for a HASP executor service. Other operands are optional,
and can be omitted. Whether an operand is required or optional is
indicated in 'the macro-instruction descriptions.

9.0.1 BASIC NOTATION USED TO DESCRIBE MACRO-INSTRUCTIONS

HASP macro-instructions are presented in this section by means of
macro-instruction descriptions, each of which contains an illustra­
tion of the macro-instruction format. This illustration is called
,a format description. An example of a format description is as
follows:

[symbol] $ EXAMP namel-value mnemonic,name2-CODED VALUE,

KEYWDl=value mnemonic,KEYW~2=CODED VALUE

Operand representations in format descriptions contain the following
elements:

• An operand name, which is a single mnemonic word used to
refer to the operand. In the case of a keyword operand, the
keyword is the name. In the case of a positional operand,
the name is merely a reference. In the above format descrip­
tion, namel, name2, KEYWDl, and KEYWD2 are operand names.

• A value mnemonic, which is a mnemonic used to indicate how
the operand should be written, if it is not written as a coded
value. For example, addr is a value mnemonic that specified
that an operand or optional value is to be 'written as either
a relocatable expression or register notation.

• A coded value, which is a character string that is to be
written exactly as it is shown. For example, RDR is a coded
value.

The format description also specifies when single operands and
combinations of operands should be written. This information is
indicated by notational elements called metasymbols. For example,
in the preceding format description, the brackets around "symbol"
indicate that a symbol in this field is optional.

HASP Executor Services - Page 9.0-4

594

HAS P

Operand Representation

Positional operands are represented in format descriptions in one
of two ways:

• By a three-part structure consisting of an operand name,
a hyphen, and a value mnemonic. For example: namel-addr.

• By a three-part structure consisting of an operand name,
a hyphen, and a coded value. For example: namel-RDR.

Keyword operands are represented in format descriptions in one of
two ways:

• By a three-part structure consisting of a keyword, an equal
sign, and a value mnemonic. For example: KEYWDl=addr.

• By a three-part structure consisting of a keyword, an equal
sign, and a coded value. For example: KEYWDl=RDR.

The most significant characteristic of an operand representation
is whether a value mnemonic or coded value is used; these two
cases are discussed below.

Operands with Value Mnemonics

When a keyword operand is represented by:

KEYWORD=value mnemonic

the programmer first writes the keyword and the equal sign, and
then a value of one of the forms specified by the value mnemonic.

When a positional operand is represented by:

name-value mnemonic

the programmer writes only a value of one of. the forms specified
by the value mnemonic. The operand name is merely a means of
referring to the operand in the format description; the hyphen
simply separates the name from the value mnemonic. Neither is
written.

The following general rule applies to the interpretation of operand
representations in a format description; anything shown in upper~
case letters must be written exactly as shown; anything shown in
lower-case letters is to be replaced with a value provided by the
programmer. Thus, in the case of a keyword operand, the keyword
and equal sign are written as shown, and the value mnemonic is
replaced. In the case of a positional operand, the entire
representation is replaced.

HASP Executor Services - Page 9.0-5

595

HAS P

VALUE MNEMONICS: ,The value mnemonics listed ,below specify most
of the ,allowable operand forms that can be written in HASP macro­
instructions. Other value mnemonics, which are rarely used, are
defined in individual macro-instruction descriptions.

• symbol the operand can be written as a symbol.

• relexp the operand can be written as a relocatable
expression.

• addr -- the operand can be written as (1) a relocatable
expression, or (2) register notation designating a register
that contains an address in its three low order bytes. The
designated register must be one of the registers 2 through
12, unless special, register notation is used. (Refer to
Section 9.0.2: Special Register Notation.)

• addrx -- the operand can be written as (1) an indexed or
nonindexed implied or explicit address, or (2) register
notation designating a register that contains an address in
its three low-order bytes. An explicit address must be
written as in the RX form of an assembler language instruction.

• adval -- the operand can be written as (1) an indexed or
nonindexed impl~ed or explicit address, or (2) register
notation designating a register that contains a value. An
explicit address must be written as in the RX form of an
assembler language instruction.

• absex}2

• value
i

s~on,

tains

the operand can be written as an absolute expression.

the operand can be written as (1) an absolute expres­
or (2) register notation designating a register that con­
a value in its three low-order bytes.

• text -- the operand can be 'written as a character constant
as in a DC data definition instruction. The format description
shows explicitly if the character constant is to be enclosed
in single quotation marks.

• code -- the operand can be written as one 'of a large set of
coded values; these values are defined in the macro-instruction
description.

Coded Value Operands

Some operands are' not represented in format descriptions by value
mnemonics. Instead, they are represented by one or more upper-case
character strings that show exactly how the operand should be written.
These character strings are called coded values, and the operands
for which they are written are called coded value operands.

HASP Executor Services -- Page 9.0-6

596

HAS P

A coded value operand results in either a specific value pa.
or a specific sequence of executable instructions.

If a positional operand can be written as anyone of two or
coded values, all possible coded values are listed and are set
by vertical stroke indicating -that only one of the values is <to'
used.

Metasymbols

Metasymbols are symbols that convey information to the prograrr~er,
but are not written by him. They assist in showing the programmer
how and when an operand should be written. The metasymbols used
in this section are:

• I

• {l

. []

9.0.2

This is a vertical stroke and means "or". For example,
AlB means either the character A or the character B.
Alternatives are also indicated by being aligned verti­
cally (as shown in the next paragraph).

These are braces and denote grouping. They are used most
often to indicate alternative operands~ ~or example:

.IYEsINoj or {~~s}
The two examples above are equivalent; either YES or NO
must be written .

These are brackets and denote options. Anything enclosed
in brackets can either be omitted or written once in the
macro instruction. For example:

[YES I NO 1 or ~~sJ
The two examples above are equivalent; YES, or NO, or
neither can be written. The underlining indicates that,
if neither is written, YES is ;'assumed. Braces used for
grouping inside brackets are redundant.

SPECIAL REGISTER NOTATION

If an operand of a HASP macro-instruction is written using register
notation, the resulting macro-expansion loads the parameter contained
in the designated register into either parameter register "RI" or
parameter register "RO".

HASP Executor Services - Page 9.0-7

597

p,

example, if an operand is written as (RI5) , and {f the cor­
obnding parameter is to be passed to the control program in
'."Iter "RI", the macro-expansion couid contain the instruction:

LR RI,RI5

rrhe processor can load parameter registers directly, before the
execution of the macro-expansion; this is called preloading.
-The progranuner specifies that preloading will occur by wri ting an
operand' as ei ther II (Rl)" or "(RO) "'; -":tllis is called special register
notation. This, not'ation is special 'for two reasons-:

• The register notation ,designation of registers "RI" and "RO"
is generally not allowed.

• The designation must be mad~ by, the sp~fic four characters
" (RI)" or "(RO)", ratherthq.n' by the gerl'eralf.orm of an
absolute expressi6n enclosed i~,parentheses. For example,
even though the absolute symbol RON'E could be equated to 'RI,
"(RONE)" must not be ,written instead of "(RI)" if special
register notation is intended. If this were done, the macio­
expression would contain a useless instruction:

LR RI,RONE.
-.'"'t.

The format desc:r:iption shows whether special register notation can
be used" and for which operands. 'This is demonstrated by the
following example:

[symbol] $ EXAMP { ab6-~ddrxl !def-addrxj
(RI) '(RO)

Both oper'ands can b~ wri tten in the addrx form, and therefore can
be written using register notation. Ordinary register notation
indidates that the param~ter register should be loaded from the
d~signated register by the macro-expansion.' The format description
also:shows that the abc operand can be written as "(RI)", and the
def Qperand can be written as :"(RO)"., If either of these special
registerno1;:ations is used, the processor must have loaded the
desigh~t~d par~~eter register'before the execution of the macro­
instruction.

HASP Executor Services - Page 9.0-8

598

HAS P

9.0.3 REGISTER TRANSPARENCY

.'. '- . ,.~ :~.;'.~
In general, the following registers cannot be c0nsidered transpar¢nt.
across a HASP macro expansion 'and the assoc.iate4·.link to the Control

'Service Program:

• LIN~

• Rl4

• RlS

• RO

• Rl

All other registers will be ttahsparent unless'specifically stated'
in the individual macro-instruction description.

HASP Executor Services -Page 9.0-9

599

HAS P

9.1 BUFFER SERVICES

9.1.1 $GETBU~ - Acquire a HASP Buffer fro~ the HASP Buffer
Po.o.l o.r RJE Buffer fro.m the·RJE Buffer Po.o.l

The .$GETBUFmaCro.-instruction o.btaihs a buffer fro.m the HASP
o.r RJE bUffer pool and returns the address of this buffer in
register "Rl".

Fo.rmat Descriptio.n:

no.ne

[symbo.l] $GETBUF [no.ne-relexp] [,TYPE=TP] [,OLAY=YES]

specifies a locatio.n to.. which co.ntro.l will be returned if
there are no.·buffer~ available.

If this o.perand is 'o.mitted, the co.nditio.n code wi:}..l be set
to reflect the availability o.f a buffer as fo.llo.ws:

CC=O - no. buffer is available.
CC;;tO. - "Rl ", contains the address of the buffer.

TYPE=TP
specifies that the buffer is to. be o.btained from the RJE
buffer ·po.o.l rather .than the HASP buffer pool.

OLAY=YES
must be specified'if the $GETBUF macro-instruction is
coded physically within an o.verlay segment.

Buffer Services - Page 9.1-1

600

HAS P

9.1.2 $FREEBUF - Return a HASP Buffer to the HASP Buffer
Pool or RJE Buffer to the RJE Buffer Pool

The $FREEBUF macro-instruction is used to return a HASff:buf~.t:~',r'
to the HASP buffer pool or RJE buffer to the RJE buffer:pool.

Format Description:

[symbol] $FREEBUF

buffer

{
buffer-addrx} [,OLAY=YES]
(Rl)

specifies either a pointer to a buffer or the address of
a buffer to be returned to the buffer pool as follows:

If "buffer" is written as an address, then it represents
the address of a full word which contains the address of
the buffer to be returned in its three low order bytes.
This word must be located on a full-word boundary in core.

If "buffer" is written using register notation (either
regular or special register notation), then it represents
the address of the buffer to be returned.

If register notation is used, the address must have been
loaded into the designated register before the execution
of this'macro-instruction.

OLAY=YES,
must be specified'if the $FREEBUF macro-instruction is
coded physically within an overlay segment.

CAUTION: The specified buffer must have been obtained by a
$GETBUF macro-instruction. The action of the macro-instruction
as well as future $GETBUF and $FREEBUF macro-instructions is
unpredictable in other cases.

Buffer Services - Page 9.1-2

601

9.2 UNIT SERVICES

9~2.1 $GETUNIT - Acquire a Unit Device Control Table (DCT)

The $GETUNIT macro-instruction obtains a Device Control Table
(DCT) for a sp~cified type of unit, and returns the address of
this DCT in register "RI".

Format Description:

type

none

[symbol] $GETUNIT type-code [,none-relexp] [,OLAY=YES]

specifies the type of unit for which a DCT is to be obtained.
The values for this operand and their meanings are:

DA - Direct Access DCT
LNE - Line DCT
RDR - Card Reader DCT
TPE - Input Tape DCT
RJR - Remote Reader DCT
INR - Internal Reader DCT
PRT - Printer DCT
RPR - Remote Printer DCT
PUN - Punch DCT
RPU - Remote Punch DCT
CON - Console DCT

specifies a location to which control will be returned if
there are no available Device Control Tables for the
specified device. If this operand is omitted, the condi­
tion code will be set to reflect the availability of a
DCT as follows:

CC=O - no DCT is available.
CC~O - "RI" contains the address of a DCT of the

specified type.

OLAY=YES
must be specified if the $GETUNIT macro-instruction is
coded physically within an overlay segment.

Unit Services - Page 9.2-1

602

HAS P

9.2.2 $FREUNIT - Release a Unit Device Control Table (DCT)

The $FREUNIT macro-instruction is used to release a Device
Control Table (DCT).

Format Description:

dct

[symbol] $FREUNIT
{
dct-addrx} [,OLAY=YES]
(Rl)

specifies either a pointer to a DCT or the address of a
OCT ,to be released as follows:

If "dct" is written as an address, then it represents the
address of a fu~l word which contains the addre~S of the
OCT to be released in its three low order bytes. This
word must be located on a full-word boundary, in core.

If "dct" is written using register notation (either
regular or special register notation), then it represents
the address of the OCT to be released.

If register notation is used, the address must have been
loaded into the designated register before the execution
of this macro-instruction.

OLAY=YES
must be specified if, the $FREUNIT macro-instruction is
coded physically within an overlay segment.

CAUTION: The specified DCT must have been obtained by a ,
$GETUNIT macro-instruction. The action of the macro-instruction
is unpredictable in other cases.

unit Services - page 9.2-2

,603

HAS P

9.3 JOB QUEUE SERVICES

The HASP Job Queue consists of a chain bf Job Queue Elements .
and can be divided into five logical queues. These five logical
queues are represented by" the follow;'Q.g~symbolic names:

Table 9.3.1 - Symbolic Representation of the Logical Job Queues

Symbolic Name Logical Job Queue

$INPUT Queue of jobs in . input processing

$XEQ Queue of jobs awaiting O/S Execution

$PRINT Queue of jobs a,waiting Print phase

$PUNCH Queue of jobs awaiting- Punch phase

$PURGE Queue of jobs awaiting Purge phase

For more information concerning the formats of the HASP Job
Queue Element and the HASP Job Information Table Element,
refer to sections 8.6 and 8.7 of this manual.

phase

Job Queue Services - Page 9.3-1

604

HASP

9.3.1 $QADD - Add Job Queue Element to the HASP Job Queue

The $QADD macro-instruction adds an element to the HASP Job Queue,
placing it in the specified logical queue. The address of the
associated Job Information Table Entry is returned in register
"RO".

Format Description:

[symbol] $QADD {
element-addrx}
(RI) " {

queUe-value}
(RO)

.~I

[,full-relexp]" [,OLAY=YES]

element

queue

full

specifies the address of an Element which is to be added
to the HASP Job Queue.

If register notation is used, the address must ha~e been
loaded into the designated register before the execution
of this macro-instruction.

specifies the logical queue in which the Job Queue Element
is to be placed. This value must always be one of the
values listed in table 9.3.1.

I£ register notation is used, one of these values' must
have been loaded into the designated register before the
execution of this macro-instruction. , ~

specifies a location to which control will be returned if
the HASP Job Queue is full.

If this operand is omitted, the condition code will b~.set
to reflect the status of the HASP Job Queue as follow~S

CC=O - the queue is full and the element cannot be
accepted 0

CC~O - the Element was successfully added to the qJeue.
"RO" contains the address of the associated
JIT Entry.

OLAY=YES
mus"t be specified if the $QADD macro-instruction is coded ,~
physically within an overlay segment.

Job Queue Se~vices - Page 9.3",

605

HAS P

9.3.2 $QGET - Obtain'Job Queue Element from the HASP Job Queue

The $QGET macro-instruction obtains a Job Queue Element from the
specified logical queue of the HASP Job Queue and returns the
address 'of this element in register "RI". The address of the
associated Job Information Table Entry is returned in register
"RO".

Format Description:

queue

none

[symbol] $QGET Iqueue-valuej [,none-relexp]
(Rl)

[,PRROUTE=YES] [,PUROUTE=YES]

[,CLASS=YES] [,FORMS=YES] [,OLAY=YES]

specifies the logical queue from which the Job Queue Element
is to be obtained. This value must always be one of the
values listed in table 9.3.1.

If register notation is used, one of these values must have
been loaded into the designated register before the
execution of this macro-instruction.

specifies a location to which control will be returned
if the specified logical queue is empty.

If this operand is om~£ted, the condition code will be
set as follows: '

CC=O - the specified logical queue is empty.
CC~O - "Rl" contains the address of a Queue Element

from the specified logical queue and "RO"
contains the address of the associated
JIT Entry.

PRROUTE=YES
specifies that bits 0-7 of register "RO" contain a route
code which must match the route code (QUEPRTRT) of the
Job Queue Element obtained.

PUROUTE=YES
specifies that bits 8-15 of register "RO" contain a route
code which must match the route code (QUEPUNRT) of the
Job Queue Element obtained.

CLASS=YES
specifies that bits 16-23 of register "RO" contain a class
code which must match the class code (QUECLASS) of the Job
Queue Element obtained.

Job Queue Services - Page 9.3-3

606

HAS P

FORMS=YES
specifies that bits 16-31 of register "RO" contain a forms
type which must match the forms type (QUEFORMS) of the
Job Qu~ue Element obtained.

If no job is found which meets all· of the requirements
/ speci-fied, and one or more jobs are found which meet all

of the reguirements except for the forms specification;­
then the address of the highest priority Job Queue Element
which meets all of the requirements except for the forms
specification is returned in register "RO". If no job
is found in the specified queue which meets the routing
and class requirements alone, then register "RO" is zero.

OLAY=YES
must be specified if the $QGET macro-instruction is coded
physically within an overlay segment.

Job Queue Services - Page 9.3-4

607

HAS P

9.3.3 $QPUT - Return Job Queue Element to the HASP Job Queue

The $QPUT macro-instruction returns a Job Queue Element to the
HASP Job Queue, placing it in the specified logical queue. The
address of the associated Job Information Table Entry is returned
in register, "RQ".

Format Description:

[symbol] $QPUT ! element-addrx} ,
(Rl) ,

[,OLAY=YES]

fqueue-value}
t (RQ)

element
specifies the address of an Element which is to be returned
to the HASP Job Queue.

" If register notation is used, the address must have been
loaded into the designated register before the execution
of this macro-instruction.

queue
specifies the logical queue in which the Job Queue Element
is to be placed. This value must always be one of the
values listed in table 9.3.1.

If register notation is used, one of these values must have
been loaded into the designated register before the
execution of this macro-i'nstruction.

OLAY=YES
must be specified if the $QPUT macro-instruction is coded
physically within an overlay segment.

CAUTION: The specified Job Queue Element must have been
previously obtained with a $QGET macro-instruction or the
action of the $QPUT macro-instruction is unpredictable.

PROGRAMMING NOTE: The $QPUT macro-instruction cannot be used to
change the priority of a Job Queue Element. If a change of
priority is desired, the $QREM and $QADD macro-instructions
must be used.

Job Queue Services - Page 9.3-5

608

HAS P

9.3.4 $QREM - Remove Job Queue Element from the HASP Job Queue

The $QREM macro-instruction removes a specified Job Queue Element
from the HASP Job Queue.

Format Description:

[symbol] $QREM

element

{
element-addrx}
(Rl) [,OLAY=YES]

specifies the address of an Element which is to be removed
from the HASP Job Queue.

If register notation is used, the address must have been
loaded into the designated register before the execution
of this macro-instruction.

OLAY=YES
must be specified if the $QREM macro-instruction is coded
physically within an overlay segment.

CAUTION: The specified Job Queue Element must have been
previously obtained with a $QGET macro-instruction or the
action of the $QREM macro-instruction is unpredictable.

Job Queue Services - Page 9.3-6

609

HAS P

9.3.5 $QSIZ - Determine Number of Elements in a L~gical Queue

The $QSIZ macro-instruction determines the number ,of Job Queue
Elements in a specified logical queue of the HASP Job dueue and
returns this value in register "Rl".

Format Description:

queue

none

[symbol] $QSIZ {
queUe-value} [,none-relexp]
(Rl)

[, PRROUTE=YES] [, PUROUTE=YES]

[,CLASS=YES] [,FORMS=YES] [,OLAY=YES]

specifies the logical queue which is to be counted. This
value must always be one of the values listed in table 9.3.1.

If register notation is used, one of these values must have
been loaded into the designated register before the
execution of this macro-instruction.

specifies a location to which control will b~' returned if­
the specified logical queue is empty.

If this operand is omitted, the condition code will be set
to reflect the status of the specified logical queue
as follows:

CC=O - the specified queue is empty (Rl=O).
CC~O - the specified queue contains at least one

Job Queue Element (Rl = number of Elements
in queue) .

PRROUTE=YES
specifies that bits 0-7 of register "RO" contain a route
code which must match the route code (QUEPRTRT) of all
jobs counted.

PUROUTE=YES
specifies that bits 8-15 of register "RO" contain a route
code which must match the route code (QUEPUNRT) of all
jobs counted,.

CLASS=YES
specifies that bits 16-23 of register "RO" contain a class
code which must match the class code (QUECLASS) of all
jobs counted.

Job Queue Services - Page 9~3-7

610

HAS P

FORMS=YES
specifies that bits 16-31 of register "RO" contain q forms
type which must match the forms type (QUEFOID1S) of all jobs
counted.

OLAY=YES
must be specified if the $QSIZ macro-instruction -is coded
physically within an ove~lay segment.

Job Queue Services - Page 9.3-8

61,1

HAS P

9.3.6 $QLoe - Locate Job Queue Element for Specific Job

The $QLOe macro-instruction locates the Job Queue Element
associated with the job with the specified job number and
returns the address of this Element in register "RI". The
address of the associated Job Information Tahle Entry, is
returned in register "RO". '

Format Description:

jobno

none

[symbol] $QLoe ,!jObnO-adval}
(Rl) ,

[, OLAY=YES]

[,none-relexp]

specifies the binary job number associated with the job
for which the Job Queue Element is being searched.

If an address is used it specifies the address of a half­
word that contains the binary job number. This half-word
must be located on a half-word boundary.

If register notation is used, the binary job 'number must
have been loaded into the designated register before the
execution of this macro-instruction.

specifies a location to which control will be returned if
the specified job number is not locatable in the HASP
Job Queue.

If this operand is omitted, the condition code will be set·
to reflect the status of register "RI" as follows:

ee=o - the specified job is not locatable.
ee~o - the specified job is locatable and "RI" con­

tains the address of the associated Job Queue
Element, and "RO" contains the address of the
associated JIT Entry.

OLAY=YES
must be specified if the $QLOe macro-instruction is coded
physically within an overlay segment.

Job Queue Services - Page 9.3-9

612

HAS P

9.4 DIRECT ACCESS SPACE SERVICES

9.4.1 .$TRACK - Acquire a Direct-Access T~a~ Address

The $TRACK macro--instruction obtains a tr~ck address on a HASP
committed direct access device and returns this track address,
in register "Rl".

Format Description:

[symbol] $ TRACK [OLAY=YES]

OLAY=YES
must be specified if the $TRACK macro-instruc~ion is coded
physically within an overlay segment.

CAUTION: The JeT register must be loaded with the address of a
Job Control Table before the execution of this macro-instruction
or the 'action of the maoro-instruction will be unpredictable.

Direct-Access Space Services - Page 9.4-1

613

HAS P

9.4.2 $PURGE - Return Direct-Access Spac-e

The $PURGE macro-instruction is used to return the direct-acces~
space which has been allocated-for- a given job.

Format Description:

[symbol] $PURGE,

aliocmap

{
allocmap-addrxj
(RI) [,OLAY=YES]

specif~es the address of a track allocation map containing
the direct-access space to be returned.

If register notation is used, the address must have been
loaded into the designat~d register before the execution
of this macro-instruction.

OLAY=YES
must be specified if the $PURGE macro-instruction is coded
physically within an overlay segment~

Direct-Acces~ Space Services - Page 9.4-2

614

HAS P

9.5 INPUT/OUTPUT SERVICES

9.5.1 $EXCP - Execute HASP Channel Program

The $EXCP macro-instruction initiates HASP. Input/Output
activity.

Format Description:

dct

[symbol] $EXCP
{
dct-addrx} [,OLAY=YES]
(Rl)

specifies either a pointer to a Device Control Table (OCT)
or the address of a DCT which represents a device upon
which Input/Output activity is to be initiated.

If "dct" is written as an address, then it represents the
address of a full word which contains the address of the
OCT in its three low-order bytes. This word must be
located on a full-word boundary.

If "dct" is written using register notation (either regular
or special.register notation), then it represents the
address of the DCT.

If register notation is used, the address must have been
lo~ded into the designated register before the execution
of this macro-instruction.

OLAY=YES
must be specified if the $EXCP macro-instruction is coded
physically within an overlay segment.

Input/Output Services - Page 9.5-1

615

HAS P

9.5.2 $EXTP - Ini tiate Remote Terminal Input/Ou~ut. Operation

The $EXTP macro-instruction initiates an Input/Output Action or
Operation.

Format Description:

type

dct

loc

[symbol] $EXTP {
dct-addrx} type-code, (Rl)

[,OLAY=YES]

specifies the type of operation as follows:

fioc-addrxl
L(RO) J

OPEN - Initiate Remote Terminal processing.
GET -Receive one record from the Remote Terminal.
PUT - Send one record to the Remote Terminal.
CLOSE - Terminate Remote Terminal proc~ssing.

specifies either a pointer to a DCT or the address of a
DCT which represents the Remote Terminal Device.

If "dct" is written as an address, then it represents the
address of a full word which contains the address of the

. Remote Termin~l Device DCT in its three low-order bytes.
This. word must be located on a.full-word boundary in core.

If "dct" is written using register notation '(either regular
or sp~cial register notation), then it represents the
address of the Remote Terminal Device DCT.

If register notation is used, the address must have been
loaded into the designated register before the execution
of this macro-instruction.

If "type" specifies either "OPEN" or "CLOSE" this parameter
should not be specified.

If "type" specifies "GET" this parameter specifies the
address of an area into which the input record will be
placed. The input area must be defined large enough to
contain the largest record to be received.

If "type" specifies "PUT" this parameter specifies the
address of a CCW which contains the carriage control (or
stacker select>, address, and length of the record to'be
written.

If register notation is used, the appropriate address must
have been loaded into the designated register before the
execution of this macro-instruction.

Input/Output Services - Page 9.5-2

616

HAS P

OLAY~YES

must be specified if the $EXTP macro-instruction is coded
physically within an overlay segment.

Input/Output Services - Page 9.5-3

617

HAS P

9.5.3 $WTO - HASP Write to·Operator

The$WTO macro-instruction inifiates·output activlty on one or
more of the devices de.·signated as operator consoles.

Format Description - Standard Form:

[symbol] $WTO
{

message-addrx} {le.ngth-value}
(Rl) '(RO)

[
YES] [YES] [YES] . ' JOB=NO ' WA~T=NO. ' CONVERT=NO

. [,ROUTE=code] [,CLASS=code] [,PRI=code]

Format Description - Execute Form:

[symbol] . $WTO {7~~)~ge-ad~rx} [len. gth-value] ~.,1F- (E) (RO) ,! ~ ,name

Formatqescription - List Form:

[name] $WTO [, length-value,] HF=L

['JOB=~~S] [WAIT=~~S] [CONVERT=~~SJ
[, ROUTE=code] [, CLASS=code] [, PRI=code]

message
specifies the address of a message which is to be written
on the designated console(s).

If register notation is used, the address must have been
loaded into the designated register before the execution
of this macro-instruction.

length.
specifies the length of the above message.

If register notation is used, the value must have been
load~d in~o the low-order byte of the designated register
before the execution of the macro-instruction. ·The rest
of the register must be zero unless the message is being
sent to·,a· remote terminal (see below) .

-' ~' r

NOTE:. When using the Execute and List forms of the macro­
instruction, the length can be specified on either form
but mus't not be specified on both.

Il1put/Output Services - Page 9.5-4

618

HAS P

JOB

WAIT

specifies whether the characters "lJOB nnn" will be appended
to the start of the message as follows:

YES - The job number will be appended to the start of
the message.

NO -- The job number will not b~ appended to the
message.

If this operand is omitted, JOa=YES will be assumed.

CAUTION: Unless JOB=NO is specified, the JCT register must
be loaded with the address of the Job Control Table before
the execution of this macro-instruction or the job number
printed will be unpredictable.

specifies the action to be taken in the event no Console
Message Buffers are available as follows:

YES - Return will not be made until a Console Message
Buffer has become available and the message has
been queued.

NO - An immediate return will always be made with the
condition code set as follows:

CC=O - No Console Message Buffers were avail­
able. The message was not accepted
and the macro-instruction must be
re-issued.

CC~O - The message was accepted.

If this operand is omitted, WAIT=YES will be assumed.

NOTE: Unless WAIT=NO is specified, the message to be issued
must be constructed in a re-e"nterable area of storage.

CAUTION: WAIT=NO must be specified if the $WTO macro­
instruction is coded physically within an overlay s~gment.

CONVERT
specifies the type of consoles indicated as follows:

. YES - Logical Consoles have been specified (e.g., $LOG)
and these must be converted to physical consoles
by the Control Service Program.

NO - Physical Consoles have been specified and no
conversion is necessary.

If this operand is omitted, CONVERT=YES will be assumed.

Input/Output Services - Page 9.5-5

619

HAS P

ROUTE

CLASS

specifies the console or consoles on which the above
message is to be written. The code consists of the
absolute sum of one or more of the Logical Console
designations in the' following list:

Designation

$LOG

$ERR

SUR

$TP

$TAPE

$MAIN

$OS

$ALL

$ REMOTE

Console Specified

System Log Console(s)

Error Console(s)

unit Record operations area

Teleprocessing operations area

Tape operations area

Chief Operator's area

OS Message Console(s)

All of the above Consoles

Remote Terminal Console

NOTE: If "$REMOTE" is specified, no other consoles should
be specified, the register form of "length" must be
specified, and the remote terminal number must be loaded
into bits 16-23 of the register used to specify the length
before the execution of the macro-instruction. Bits 0-15
of this register must be zero.

If no ROUTE is specified, the "$LOG" console will be assumed.

CAUTION: The designation "$ALL" should not be used in
conjunction with any other console but should be specified
alone. Failure to observe this rule will give unpredict~
able results.

specifies the class of the message as one of £he following:
$ALWAYS- The message should always be written.
$ACTION - The message requires operator action.
$NORMAL - The message is considered essential to

normal computer operations.
$TRIVIA - The message is considered non-essential

to normal computer operations.

If no CLASS is specified, $NORMAL will be assumed.

Input/Output Services - Page 9.5-6

620

HAS P

PRI
specifies the priority of the message as one of t~e
following:

, $HI - High Priority.
SST - standard Priority.
$LO - Low Priority.

If no PRI is specified, $S1 priority will be assumed.

Input/Output Services - Page 9.5-7

621 .

HAS P

9.6 TIME SERVICES

9. 6.~ $TIME- Request Time of~,

The $TIME macro-instruction obtains the time bf day and returns
this time in register "RO". The time is returned as an unsigned
32-bi t binary number in' which the least significant bi t has :'a
value of 0.01 second.

Format Description:

[symbol] $TIME [OLAY=YES]

OLAY=YES
must be specified if the $TIME macro-instruction is coded
physically within an overlay segment.

The time returned is the time of day based on a 24-hour clock.

Time Services - Page 9.6-1

622 ,',

HAS P

9.6.2 $STIMER - Set Interval Timer

The $STIMER macro-instruction 'sets an interval into a pr'ogramrned
interval timer.

Format Description:'

loc

[symbol] $STIMER
{
loc-addrx j- [,OLAY=YES]
(Rl)

specifies the address of a HASP Timer Queue Element.
Before this macro-instruction is executed, t~e Timer
Queue Element must be initialized as follows:

ITIME must be initialized with the interval to be
set in the following manner:

If "x" seconds are desired, then ITIME should
be set to "x"; OR
If "y" hundredth-seconds (0.01 seconds) are
desired, then ITIt-1E should beset to the
two's complement of "y".

IPOST must be initialized with the address of the
Event Wait Field to be posted.

If register notation is used, the address must have been
loaded into the designated register before the execution
of this macro-instruction.

For more information, refer to section 8.10: HASP Timer
Queue Element Format.

QLAY=YES
must be specified if the $STIMER macro-instruction is coded
phy~ically within an overlay segment.

PROGRAMMING NOTE: An unlimited number of independent $STIMER
time intervals can be active at any time provided that each
has been furnished with a unique HASP Timer Queue Element.

Time Services - Page 9.6-2

623

HAS P

9.6.3 $TTIMER - Test Interval Timer
. -

The $TTIMER macro-instruction obtains the time remainipg in the
assoclated time interval that was previously set with a $STIMER
macro-instruction. The value of the time interval ,remainder is
returned in register "RO" in seconds (rounded to the nearest
second). The $TTIMER macro-instruction can also be used to can­
cel the associated time interval.

Format Description:

loc

[symbol] $TTIMER !loc-addrx-}
(Rl) [,CANCEL] [, OLAY=YES]

specifies the address of the timer queue element.

If register notation is to be used, the address must have
been loaded into the designated register before the execu­
tion of this macro-instruction.

CANCEL
specifies that the interval in effect should be cancelled.

If this operand is omitted, processing continues with the
unexpired portion of the interval still in effect.

If the interval expired before the $TTIMER macro-instruction
was executed, the CANCEL operand has no effect.

OLAY=YES
must be specified· if the $TTIMER macro-instruction is coded
physically within an overlay segment.

Time Services - Page 9.6-3

624

HAS P

9.7 OVERLAY SERVICES

9.7.1 $OVERLAY·- Define ·Overlay Segment'

The $OVERLAY macro-instruction defines the. instructions which
follow it as an overlay segment and defines the name, priority,
and residence susceptibility factor of this' overlay segment'.

Format Description:

HASPname-symbol $ OVERLAY prio-value [,resfact-value]

HASP name

prio

specifies the name to be assigned to the 'overlay segment.
The first four characters must be the characters "HASP".
The last four characters can be any unique combination of
alphameric characters.

specifies the priority of the overlay segment as follows:
o - Lowest P~iority
&LOW - Low Priority
&MED - Medium Priority
&HIGH - High Priority

res fact
specifies the residence susceptibility factor of the
overlay segment as follows:

o - Never Resident
&LOW - Resident only if &OLAYLEV<4
&MED - Resident only if &OLAYLEV<8
&HIGH - Resident only if &OLAYLEV<12

If this parameter is omitted, a residence factor of 0 will
be used.

NOTE: This parameter may be overridden at the time that
the overlay library is built.

Overlay Services - Page 9.7-1

625

HAS P

9 .7. 2 $OCON - Define Overlay Constant

The $OCON macro-instruction defines an overlay constant (aCON)
for use in conjunction with other overlay mqcro-instruct~ons.

Format Description:

[symbol] $OCON HASPname-symbol

HASP name
specifies the name of an overlay segment~

Overlay Services - Page 9.7-2

626

HAS P

9.7.3 $L~NK- Link to an Overlay Segment

The $LINK macro·-instruction is used to link to an overlay segment
from a non-overlay segment.

Format Description:

[symbol] $LINK

HASPname
{
HAspname-symbol}
(register)

specifies the name of the overlay segment to which control
is to be transferred.

If register notation is used, the register specified must
be loaded with the qddress of an overlay constant (OeON)
which represents the overlay segment to which control is
to be transferred.

Overlay Services - Page 9.7-3

h?7

HAS P

9 .7. 4 $XCTL - Transfer Control to A~other Ov~rlay Segment

The $XCTL macro-instruction is used to transfer control from
one overlay segment to another.

Format Description:

[symbol] $XCTL

HASPname
!HAspname-symbolj

(register)

specifies the name of the overlay segment to which control
is to be transferred.

If register notation is used, the register specified must
be loaded with the address of an overlay constant (OCON)
which represents the overlay segment to which control is
to be transferred.

Overlay Services - Page 9.7-4

628

HA S P

9.7.5 $R~TURN Return from an.Overlay Se<J.men~

The $RETURN macro-instruction is used to return control from
an overlay segment to a non overlay segment.

Format D~scription:

[symbol] $ RETURN

Overlay Services - Page 9.7-5

629

HAS P

9.7.6 $LOAD - Load an Overlay Segment

The $LOAD macro-instruction is used to load an overlay segment
from a non-overlay segment. The address of the overlay area
into which the overlay segment has been loaded is returned in
register "BASE3".

Format Description:

[symbol] $ LOAD

HASP name
{

HAspname-SYmbOlj
(register)

specifies the name of the overlay segment to be loaded.

If register notation is used, the register specified must
be loaded with the address of an overlay constant (OeON)
which represents the overlay segment to be loaded.

Overlay Services - Page 9.7-6

630

HAS f>

9.7.7 $DEL~TE - De~ete a Loaded Over.~ Segment

The PELTE ma~ro instruction is used to d~lete an ov~rlay
segment Which has been loaded with a $I..OADmacro-instruction.

Format Desqription:

[symbol] $DELETE

Overlay Services - Page 9.7-7

631

HAS P

9.8 SYNCHRONIZATION SERVICES

9.8.1 $ACTIVE - Specify Processor is Active

The $ACTIVE macro-instiuction indicates to the' HASP Disp~tcher
that the associated processor is processing a job or task.

Format Description:

R

[symbol] $ACTIVE [R=register]

specifies the register which is to be used by the $ACTIVE
macro-instruction.

if R is omitted, register "Rl" will be used.

Synchronization Services - Page 9.8-1

632

HAS P

9.8.2 $DORMANT - Specify Processor is Inactive

The $DORMANT macro-instruction indicates to the HASP Dispatcher
that the associated processor has completed the processing of a
job or task and is now going into a "dormant" state.

Format Description:

R

[symbol] $ DORMANT IR=register]

specifies the register which is to be used by the $DORMANT
macro-instruction.

If R is omitted, register "RI" will be used.

CAUTION: The $DORMANT macro-instruction should never be executed
unless a corresponding $ACTIVE has been executed for the same
processor.

Synchronization Services - Page 9.8-2

633

HA S P

9.8.3
J

$WAIT - wait for a HASP Event

The $~AIT macro-instruction places the associated processor in
a HASP wait condition and specifies the event upon which the
processor is waiting in the Processor Control Element Event
Wait Field.

Format Description:

event

[symbol] $WAIT event-code [,ENABLE] [,OLAY=YES]

specifies the event upon which the processor is waiting
as one of the following:

BUF - waiting for a HASP Buffer.
TRAK waiting for a direct-access track address.
JOB waiting for a job.
UNIT waiting for a Device Control Table.
CKPT waiting for the completion of a HASP checkpoint.
CMB waiting for a Console Message Buffer.
OPER - waiting for an operator response.
10 waiting for the completion of an Input/Output

WORK
HOLD
DDB

operation.
waiting to be re-directed.
waiting for a $S operator command.
waiting for a Device Definition Table or Unit
Control Block.

ABIT - waiting for the next HASP dispatch.

ENABLE
specifies that the system mask in the PSW should be set to
all ones prior to returning to the HASP Dispatcher.

OLAY=YES
must be specified if the $WAIT macro-instruction is coded
physically within an overlay segment.

Synchronization Services - Page 9.8-3

634

HAS P

9.8.4 $POST - Post a HASP Event Complete

The $POST macro-instruction indicates a HASP event is complete
by turning off the specified bit in the indicated Event Wait
Field.

Format Description:

ewf

event

[symbol] $POST ewf-relexp,event-code

specifies the address of the event wait field which is to
be posted. This operand can also be written in the form
D (B) •

specifies the event which is to be posted as one of the
following:

BUF - a HASP Buffer has been returned.
TRAK - direct-access space has been released.
JOB - a HASP Job Queue Element has changed status.
UNIT - a Device Control Table has been released.
CKPT - a HASP checkpoint has completed.
CMB - a Console Message Buffer has been returned.
OPER - an operator has responded.
10 - an Input/Output operation has completed.
WORK - a processor has been re-directed.
HOLD - an operator has entered a $S command.
DDB - a Device Definition Table or a Unit Control

Block has been released.

CAUTION: The $POST macro-instruction should not be executed
unless addressability to the HASP Communication Table (HCT) has
been established.

Synchronization Services - Page 9.8-4

635

HAS P

9.8.5 $ENABLE - Enable Interrupts

The $ENABLE macro-instruction causes the specified interrupts
to be enabled.

Format Description:

mask

[symbol] $ ENABLE mask-code [,OLAY=YES]

specifies the interrupts to be enabled as follows:
ALL - Enable all interrupts.
JCL - Enable the interrupts which were enabled when

the Reader/Interpreter appendage was entered.
NOTE: This code can be specified only in the
Reader/Interpreter appendage.

OLAY=YES
must be specified if the $ENABLE macro-instruction is coded
physically within an overlay segment.

Synchronization Services - Page 9.8-5

636

HAS P

9.8.6 $D~SABLE - Disable Interrupts

The $DISABLE macro-instruction causes the specified interrupts
to be disabled.

Format Description:

[symbol] $DISABLE mask-code [,OLAY=YES]

mask
specifies the interrupts to be disabled as follow~:

ALL - Disable all interrupts.
INT - Disable Interval Timer Interrupt.

OLAY=YES
must be specified if the $DISABLE" macro-instruction is 'coded
physically within an overlay segment.

Synchronization Services - Page 9.8-6

HAS P

9.9 DEBUG SERVICES

9.9.1 $TRACE - Make Entry in the HASP Trace Table

IThe $TRACE macro-instruction makes an entry in the HASP trace
table if the &TRACE option is set non-zero. If the &TRACE
option is set to zero, this macro-instruction does not gerierate
any code.

Format Description:

[symbol] $TRACE

P.ROGRAMMING NOTE: The $TRACE macro-expansion and associated
Control Service Program preserve all registers and the condition
code. For more information concerning the HASP trace table,
refer to Section 5.11.

Debug Services - Page 9.9-1
638

HAS P

9.9.2 $'COUNT - Count Selected Occurrences

The $COUNT macro-instruction increments a counter every time
the macro-instruction is executed and can be used to determine
the number of times a particular event occurs or a particular
section of code is entered. The counter is a half-word counter
(modulo 65,536) which is located fourteen bytes deep in the macro
expansion (symbol+14).

Format Description:

R

[symbol] $COUNT [R=register]

specifies a register to be used in performing the counting
operation.

If this parameter is omitted, register "RI" will be used.

Debug Services - Page 9.9-2

639

HAS P

9.10 ERROR SERVICES

9.10.1 $ERROR - Indicate Catastrorhic Er~or

The $ERROR macro-instruction is used to indicate that a catastro­
phic error has occurred, one that prevents any further processing
by HASP. The macro-instruction causes the following message to
be printed out on the console specified by HASPGEN parameter
$PRICONA:

$ HASP SYSTEM CATASTROPHIC ERROR. CODE = symbol

Format Description:

symbol $ERROR

symbol
consists of a four-character symbol indicating the type
of error which occurred.

This operand usually consists of a letter, two digits; and
trailing blanks, and will be printed as the error code in
the message which is printed.

NOTE: This operand must be present.

Error Services - Page 9.10-1

640

HAS P

9.10.2 $DISTERR - Indicate Disastrous Error

The $DISTERR macro-instruction is used to indicate that a
disastrous error has occurred. The macro-instruction causes
the following message to be printed out on the $ERR and $LOG
consoles:

DISASTROUS ERROR - COLD START SYSTEM ASAP

Format Description:

[symbol] $DISTERR [OLAY=YES]

OLAY=YES
must be specified if the $DISTERR macro-instruction is coded
physically within an overlay segment.

Error Services - Page 9.10-2

641

HAS P

9.10.3 $IOERROR -Log Input/Output Error

The $IOERROR macro-instruction is used to log an Input/Output
Error on the operator's console.

Format Description:

[symbol] $ IOERROR

buffer
!buffer-addrx} [,OLAY=YES]

(Rl)

specifies either a pointer to a HASP buffer or the address
of a buffer which has been associated with a HASP Input/
Output. error.

If "buffer" is written as an address then it represents the
address of a full-word which contains the address of the
buffer in error in its three low order bytes. This word
must be located on a full-word boundary in core.

If "buffer" is written using register notation (either
regular or special register notation), then it represents
the address of the buffer in error.

If register notation is used, the address must have been
loaded into the designated register before the execution
of the macro-instruction.

OLAY=YES
must be specified if the $IOERROR macro-instruction is
coded physically within an overlay segment.

Error Services - Page 9.10-3

642

HAS P

9.11 CODING AID SERVICES

9.11.1 $GLOBAL - Define GLOBAL Symbols

The $GLOBAL argument on a COpy instruction causes all HASP
GLOBAL 'Symbols to be defined. This COpy instruction must be
the first instruction in an assembly (except for TITLE, EJECT,
and SPACE operations) to function correctly.

Format Description:

COpy $ GLOBAL

Coding Aid Services - Page 9.11-1

643

HAS P

9.11.2 $HASPGEN - Define HASPGEN Parameters

The $HASPGEN argument on a COpy instruction causes all general
HASPGEN parameter values to be defined. This COpy instruction
may be placed anywhere in an assembly but must follow the
COpy $GLOBAL instruction.

Format Description:

COpy $HASPGEN

Coding Aid Services - Page 9.11-2

644

HAS P

9.11.3 NULL - Define a Symbol

The NULL macro-instruction defines the symbol in the name field,
if any, as haVing the eurrent value of the lOcation counter
rounded ~p, if necessary, to a half-word boundary.

Format Description:

[symbol] NULL

Coding Aid Services - Page 9.11-3

HAS P

9.11.4 $HASPCB - Generate HASP Control Blo<?ks

The $HASPCB macro-instrtiction'causes the~pecified HASP Control
Block definitions and, optionally, 'doc';lrnentation for those
control blocks to be generated.

Format Description:

$HASPCB cbl-code [, cb2-code] ... [, cb24-codeJ [, DOC=YES J

cbl-cb24
specifies the control block definitions to be generated
as follows:

HCT
PCE
BUFFER
CMB
DCT
JQE
JIT
JCT
TED
TQE
OTB
DDT
PIT
PRC
MSA
CVT
TCB
RB
DCB
DEB
UCB
RDRWORK
XEQWORK
PPPWORK

- HASP Communication Table DSECT (or CSECT)
- HASP Processor Control Element DSECT
- HASP Buffer DSECT
- HASP Console Message Buffer DSECT
- HASP Device Control Table DSECT
- HASP Job Queue Element Definitions
- HASP Job Information Table Definitions
- HASP Job Control Table DSECT
- HASP Track ,Extent Data Table DSECT
- HASP Timer Queue Element Definitions
- HASP Overlay Table DSECT
- HASP Data Definition Table DSECT
- HASP Partition Information Table Definitions
- HASP Print Checkpoint Element Definitions
- HASP Message Allocation Control Block DSECT
- as Communication vector Table DSECT
- as Task Control Block DSECT
- OS Request Block DSECT
- as Data Control Block DSECT
- as Data Extent Block DSECT
- as Unit Control Block DSECT
- HASP Input Processor PCE Work Area DSECT

HASP Execution Processor PCE Work Area DSECT
HASP Print/Punch PCE Work Area DSECT

These arguments can be specified in any combination with the
following exceptionsg

···DOC=YES

1) If JCT is specified, BUFFER must be specified as a
prior argument.

2) If RDRWORK, XEQWORK, or PPPWORK is specified, PCE
must be specified as a prior argument.

specifies that documentation of the control blocks is desired.

~oding Aid Services - Page 9.11-4

646

HAS P

9.11.5 $XXC - Variable Core to Core Opera~ion

The $XXC macro-instruction generates a variable number of core­
to-core operations such that there is virtually no restriction
on the length of such an operation. The $XXC is especially
useful when the length of a core-to-core operation is dependent
upon the value of an assembly parameter which may cause the
number of operations needed to varYe

Format Description:

op

to

from

[symbol] $XXC op-code,to-relexp,from-relexp

[,length-integer]

specifies the core-to-core operation as one of the
following: .

NC - AND
XC - Exclusive OR
MVC - Move
MVN - Move Numerics
MVZ - Move Zones
OC - OR
TR - Translate

specifies the address of the first field.

This operand may optionally be written as two absolute
expressions separated by a comma and enclosed in paren­
theses. The first expression will be interpreted as a
displacement and the second as a base register.

specifies the address of the second field.

This operand may optionally be written as two absolute
expressions separated by a comma and enclosed in paren­
theses. The first expression will be interpreted as a
displacement and the second as a base register.

length
specifies the total number of bytes in the field.

If this operand is omitted, the length attribute of the
first field will be used.

Coding Aid Services ~ Page 9.11-5

647

HAS P

9.11.6 $PATCHSP - Generate Patch Space

The $PATCHSP macro-instruction causes a specified number of
bytes of patch space to be generated. This patch space will be
divided into half words and listed in the assembly in such a way
that both the assembly location (for REPing and SUPERZAPing) and
the Base-Displacement (in the form BDDD) will be printed for each
half word.

Format Description:

[symbol] $PATCHSP length-number

length
specifies the length of the patch space in bytes.

CAUTION: Local addressability is required for this macro­
instruction to assemble correctly.

Coding Aid Services - Page 9.11-6

648

HAS P

9.11.7 $DLENGTH - Compute Decimal Length

The $DLENGTH macro-instruction causes the length of a CSECT
(or DSECT) to be computed and that length to be printed in
decimal.

Format Description:

symbol $DLENGTH IHEADER=character]

symbol
specifies a name to which the decimal length of the CSECT
(or DSECT) will be assigned. This must be unique for each
use of the $DLENGTH macro-instruction.

HEADER
specifies a one-character header which will insure unique
internally generated symbols. This must be specified differ­
ently for each use of the $DLENGTH macro-instruction.

If this operand is omitted, the character ilL" will be used.

Coding Aid Services - Page 9.11-7

649

HAS P

9.11.8 $RTAMDEF - Remote Terminal Access Method Definitions

The $RTAMDEF argument on a COpy instruction causes certain Remote
Terminal Access Method Symbols to be defined.

Format Description:

COpy $RTAMDEF

Coding Aid Services - Page 9.11-8
650

HAS P

9.11.9 $FCB - Define 3211 Forms Control Buffer Load

The $FCB macro-instruction causes the creation of an overlay csect
containing a forms control buffer load for the 3211. It may be
used in CSECT HASPPRPU to create a new FCB load or, in a stand­
alone assembly to be included later in HASP via the overlay-build
process, to replace an existing FCB load.

Format Description:

x

inch

page

chan

line

FCBx $FCB inch,page,chan-line[,line •.•]·
[,chan-line] [,line •••] •••

specifies the character by which the FCB load will be ref­
erenced by the operator, using the command $TPRTrt,C=x. The
character must be numeric or alphabetic and cannot be 1 or V.

specifies lines per inch. It must be 6 or 8.

specifies lines per page. It must be 180 or less.

specifies carriage channel number. It must be greater than
0, not greater than 12, and followed by a hyphen.

specifies line number at which the carriage channel punch is
to appear. It must not be greater than lines per page.

Coding Aid Services - Page 9.11-9

650.1

HAS P

(The remainder of this page intentionally left blank.)

650.2

HASP

10. 0 HASP MAINTENANCE PROCEDURES

This section describes various maintenance procedures for the HASP

System and is intended primarily for use by systems programmers.

HASP Maintenance Procedure s - Page 10. 0 - 1

651

I

HAS P

10.1 GENERATING A HASP SYSTEM (HASPGEN)

To generate a HASP System which conforms to the needs of a particular
installation, it is necessary to allocate and catalog several data
sets, build a tailored version of the HASP source coding in one of
the data sets, assemble several of the HASP source modules, and do
a few other utility functions.

10.1.1 Data Set Requirements for HASPGEN

Table 10.1.1 lists the data sets required for HASPGEN and their con­
tents at the end of the full HASPGEN process.

Figure 10.1.2 shows a sample job which will allocate and catalog the
required data sets on two 2314 disk volumes. UNIT and SPACE param­
eters should be changed as appropriate if other direct-access de~
vices are used. VOLUME parameter may be changed as desired. Data
sets SYS1.UTl and/or SYS1.UT2 may be assigned to labeled tape(s)
if desired •.

Generating a HASP SYSTEM - Page 10.1-1

652

HAS P

Table 10.1.1 - HASPGEN Data Set Description

Data Set Name

1 SYS1.HASPSRC
(HASP Source
Coding)

I
SYSl.HASPOBJ
(HASP Object,
Decks)

Member Names

• $ACTIVE thru $XXC
CVT
HASPACCT
HASPBRI
HASPCOMM
HASPCON
HASPINIT
HASPJCL
HASPMISC
HASPNUC
HASPOBLD,
HASPPRPU
HASPRDR
HASPRTAM
HASPSVC
HASPWTR
HASPXEQ
HRTPB360

HRTPLOAD
HRTPOPTS

HRTPSM20
HRTPSYS3
HRTPl130
IEFUCBOB
NULL

HASPBRI
HASPNUC
HASPRDR
HASPXEQ
HASPPRPU
HASPACCT
HASPMISC
HASPCON
HASPRTAM
HASPCOMM
HASPINIT
HASPSVC
HASPWTR
HASPOBLD

Description

75 HASP Macros
as CVT Macro
Accounting Routine
Return Module
Command Processor
Console Support
Initialization Routine
Sample Install Jobs
Miscellaneous Routines
HASP Nucleus
Overlay Build Utility
Print/Punch Processor
Input Processor
Remote Support
SVC Routine
5MB Writer
Execution Processors
360 and M20 BSC Remote
Program

1130 Loader Program
RMTGEN Standard Option
Lists

M20 STR Remote Program
System/3 Remote Program
1130 Remote Program
OS OCB Macro
HASP Macro'

Same as SYS1.HASPSRC

Generating A HASP SYSTEM - Page 10.1-2

653

HAS P

Data Set Name

SYS1.HASPMOD
(HASP Load
Modules)

SYS1.UTl

SYS1.UT2

SYS1.UT3
(Sequential Scratch
Data Sets)

Member Name·

HASPGEN
EXRMTGEN
RMTGEN
GENRMT
LETRRIP
SYS3CNVT
HASPOBLD

Description

HASPGEN Program
Initial RMTGEN Program
RMTGEN Control Program
RMTGEN Effector Program
1130 RMTGEN Post-Processor
System/3 RMTGEN Post-Processor
Overlay Build Utility

Generating A HASP SYSTEM - Page 10.1-3

654

I

I

HASP

Figure 10.1.2 - Sample Job to Catalog Data Sets for HASPGEN

IICATALOG JOB (0000,0000) ,'HASP DATA SETS',MSGLEVEL=l
IISCRATCH EXEC PGM=IEHPROGM
IITWOSPACK DD UNIT=2314,VOLUME=SER=222222,DISP=OLD
IIHASP DD UNIT=2314,VOLUME=SER=HASP,DISP=OLD
IISYSPRINT DD SYSOUT=A
IISYSIN DD *

UNCATLG DSNAME=SYS1.HASPSRC
UNCATLG DSNAME=SYS1.HASPOBJ
UNCATLG DSNAME=SYS1.HASPMOD
UNCATLG DSNAME=SYS1.UT1
UNCATLG DSNAME=SYS1.UT2
UNCATLG DSNAME=SYS1.UT3
SCRATCH VTOC,VOL=2314=222222,PURGE
SCRATCH VTOC,VOL=2314=HASP,PURGE

1*
I IALLQ_C~T EXEC PGM=IEHPROGM
IISYSIN- DD
IISYSPRINT DD
IIHASPSRC DD

DUMMY
DUMMY
DSNAME=SYSl.HASPSRC,UNIT=2314,VOLUME=SER=HASP,
DISP= (,CATLG) ,SPACE= (CYL, (35 ,5,5)) , II

II
IIHASPOBJ
II
II
IIHASPMOD
II
IIUT1
II
IIUT2
II
IIUT3
II

DCB=(RECFM=FB,LRECL=80,BLKSIZE=3360)
DD DSNAME=SYS1.HASPOBJ,UNIT=2314,VOLUME=SER=HASP,

DISP=(,CATLG) ,SPACE=(CYL,(5,5,5»,
DCB=(RECFM=FB,LRECL=80,BLKSIZE=400)

DD DSNAME=SYS1.HASPMOD,UNIT=2314,VOLUME=SER=HASP,
DISP=(,CATLG) ,SPACE=(CYL,(5,5,5»

DO DSNAME=SYSl.UT1,UNIT=2314,VOLUME=SE;R=222222,
DISP=(,CATLG) ,SPACE=(CYL,{20,5»

DD DSNAME=SYS1.UT2,UNIT=2314,VOLUME=SER=HASP,
OISP={,CATLG) ,SPACE=(CYL,(20,5»

DO DSNAME=SYS1. UT3, UNIT=2314, VOLUME=SER=222222,'
OISP= (, CATLG) , SPACE= (CYL, (20 ,5))

Generating A HASP SYSTEM - Page 10.1-4

655

HAS P

10.1.2 HASPGEN Parameter Cards

All HASPGEN parameters and their default values are discussed in
Section 7. After the desired value for each parameter has been
determined, the values of those which are to be changed from the
default values are usually punched into cards, to be read by the
HASPGEN utility program.

Each parameter should be punched in the format: "option=value",
beginning in column 1 of a card, where "option" represents a
HASPGEN parameter and "value" represents a permissible value for
'that parameter, as described in Section 7. The above format must
not contain embedded blanks. The first blank terminates the
"value" field and the ,rest of the card may contain comments.

HASPGEN parameter cards may occur in a deck in any order. If the
same parameter occurs more than once, the last occurrence determines
the parameter's value. A deck of one or more HASPGEN parameter
cards is usually terminated by a card with "END" punched in
columns 1-3. If symbolic updates (PTFs or user modifications)
are to be applied, then the "END" card should be replaced by an
"UPDATE" card (seelO.l.3). Alternate methods of entering HASPGEN
parameters are discussed in 10.1.5.

Generating A HASP SYSTEM - Page 10.1-5

656

I

HAS P

10.1.3 HASPGEN Update Cards

Source coding of any member in SYSl.HASPSRC (see Table 10.1.1) may
be updated by cards punched according to the formats acceptable to
the IEBUPDTE or IEBUPDAT as utility programs. This is the method
used to apply Official HASP Maintenance Changes (PTFs, etc.) and
user modifications to HASP, if any. Updates are placed following
the HASPGEN parameter deck, immediately after a card with "UPDATE"
punched in columns 1-6 (see 10.1.2).

All IEBUPDTE and IEBUPDAT control cards are defined for use with
the HASPGEN Update except the ./ ALIAS .•. detail statement.
The ./ NUMBER .•• and ./ NUMBR ••• detail statements
will be accepted but will be ignored. Only the NAME, SEQl, and
SEQ2 keywords (and equivalent IEBUPDAT positional parameters) will
be interpreted for meaning. Other keyword and posit).onal parameters
are ignored and may be omitted. IEBUPDTE and IEBUPDAT control ca.rds
may be intermixed as desired.

A card without "./" in columns 1 and 2 replaces an existing-source
card (if columns 73-80 match an existing card in the member) or is
inserted between existing source cards, according to ascending
collating sequence based on columns 73-80. Cards which are blank
in columns 73-80 are inserted immediately following the last modi­
fication card which was in ascending collating sequence. Update
cards which do not maintain an ascending collating sequence in col­
umns 73-80 and are not blank will terminate the HASPGEN with an
update error.

All PTFs (and user modifications, if any) which apply to one source
module must be integrated into a single deck, beginning with a
CHANGE (or CHN~E) card naming that module, in ascending sequence
number order. If more than one module is updated, the decks must
be placed together so that the module names on CHANGE (or CHNGE) .
cards are in ascending collating sequence, as listed in Table lD~l~l
under SYS1.HASPSRC.

The last source update card must be followed by a ~/ ENDUP
control card and a /* delimiter card. Figure 10 .. 1.3 shows a com­
posite deck of HASPGEN parameters and source updates in correct
order.

Generating A HASP SYSTEM - Page 10.1-6

657

HAS P

Figure 10.1.3 - Sample HASPGEN Parameter and Update Deck

Columns
1 10 16
&NUMLNES=l
&BSCCPU=YES
LINEOl=020l1
RMT01=01010100l53643
UPDATE
./ CHANGE NAME=HASPMISC

(modifications

./ CHNGE HASPWTR

73 80

(END if no source updates follow)

to module HASPMISC) nnnnnnnn

(modifications to modute HASPWTR) mmmmmmmm

./ ENDUP
/*

Generating A HASP SYSTEM - Page 10.1-7

658

HAS P

10.1.4 Standard Complete HASPGEN Process

For most installations, a complete standard HASPGEN may be
performed (if the required data sets are allocated and cataloged)
simply by using the first file of the distributed HASPGEN tape
as an as input stream and executing, in order, all the jobs it
contains. Table 10.1.4 lists the jobs, steps, and functions of
each, in the order they occur in the first file of the tape.

The first file of the tape may be executed directly, under
HASP with MFT or MVT, by starting a HASP input tape (TPEn) using
a tape drive as the input unit.

If PCP or PCP Starter System is used, the first file of the tape
must be punched or copied to another tape, then read as a job stream.
This is because the first job will read the second file of the tape
which contains the entire HASP source coding. It would not be
possible to read the first and second 'files from a single tape
simultaneously, which is what a PCP system would attempt to do.

If MFT or MVT without HASP is used, then the first file of the tape
must be punched and the first job (HASPGEN) run to completion before
other jobs are read by the as Reader/Interpreter. During subsequent
generations with the same as system, the first file may be processed
directly by the as RDR.

During the first job (HASPGEN) the HASPGEN utility program will
write the following WTOR message on the console:

nn ENTER HASPGEN OPTION CHANGES (option=value), CARDS,
UPDATE, OR END.

The composite HASPGEN parameter and update deck (example
Figure 10.1.3) should be placed in the 2540 card reader and the
following reply should be entered:

REPLY nn,' cards'

The listing output of the HASPGEN job includes:

All HASPGEN parameters with their default values
User changes to HASPGEN parameters
Source changes made to modules by HASPGEN Update

In multi-programming systems, care should be taken that the jobs
as listed in Table 10.1.4 execute in sequential order under a
single initiator.

If HASPGEN parameters (&BSCCPU or &STRCPU) are set to include
programmable Remote Job Entry support, then job HRMTGEN will
issue another WTOR console message, which allows optional
generation of Remote Terminal Programs as part of the full HASPGEN
process. Refer to Section 10.3.2 for further details.

Generating A HASP SYSTEM - Page 10.1--8

659

HAS P

If all jobs in the first file of the HASPGEN tape are executed
successfully, all data sets and members as listed in Table 10.1.1
will be completed and the punched card output will contain:

Any Remote Terminal Programs created by HRMTGEN (optional,
see 10.3.2)

HASPJCL,the deck of sample jobs to install HASP (described
in 10.2.2)

Generating A HASP SYSTEM - Page 10.1-9

660

HAS P

Table 10.1.4 - HASPGEN Tape First File Job Description

Job Step (if multi-step) Function

HASPGEN LNK

HASPGEN

PROCS

HASMBRl
HASMNUC
HASMRDR
HASMXEQ
HASMPRPU
HASMACCT
HASMMISC
HASMCON
HASMRTAM
HASMCOMM
HASMINIT
HASMSVC
HASMWTR
HASMOBLD OBLD

LNKOBLD

. HRMTGEN

HASPJCL PRINT

PUNCH

Link Edits object decks for
HASPGEN, EXRMTGEN, RMTGEN,
GENRMT, LETRRIP, and SYS3CNVT
into SYSl.HASPMOD

Executes HASPGEN program which
reads all source code from second
file of tape, applies user·
HASPGEN parameter modifications
and (optionally) source code
modificationsj and builds each
source member in SYSl.HASPSRC

Adds procedures ASMHASP, HASPGEN,
and RMTGEN to SYSl.PROCLIB,
if not already there

Assembles source module HASPBRI
Assembles source module HASPNUC
Assembles source module HASPRDR
Assembles source module HASPXEQ
Assembles source module HASPPRPU
Assembles source module HASPACCT
Assembles source module HASPMISC
Assembles source module HASPCON
Assembles source module HASPRTAM
Assembles source module HASPCOW1
Assembles source module HASPINIT
Assembles source module HASPSVC
Assembles source module HASPWTR
Assembles source module HASPOBLD
Link Edits object deck HASPOBLD

into sySl.HASPMOD
Performs optional initial RMTGEN

for one or more HASP Remote
Terminal Programs (see 10.3.2)

Prints source member" HASPJCL
(sample jobs to install HASP,
see 10.2.2)

Punches source member HASPJCL

Generating A HASP SYSTEM - Page 10.1-10

661

HAS P

10.1.5 Some HASPGEN variations

An installation may find it necessary or desirable to vary some
of the standard HASPGEN process described previously. A few of
the 'possibilities are given below. -

T~e necessity of punching or copying the first file of the HASPGEN
tape, in order to generate under a system without HASP, is discussed
in 10.1.4. The installation's requirements for particular job card
accounting fields or classes, or the absence of a 2540 card reader,
may also require the first file to be punched, listed, and used
as an input stream after appropriate modifications to the JCL.

During the execution of the HASPGEN utility, responses to the WTOR
message other than 'cards' may be used. Individual HASPGEN para­
meters may be entered by -using a reply text of 'option=value',
where these terms have- the same meaning as described for HASPGEN
parameter cards in 10.1.2. Lower case may be used, but no blanks
or comments are allowable. Each HASPGEN parameter entered from
the console is acknowledged by a message if correct or else by
a diagnostic, with- opportunity to re-enter a correct form. The
same parameter may be entered repeatedly; only the last value
entered will be used. The 'cards' reply~ay be entered a~ any
time to cause further parameter reading from the 2540 card reader._
If all parameters are entered from the console, a reply text of
'update' may be entered to cause reading of an update deck only
(all c~rds after UPDATE in Figure 10.1.3) from the 2540 card
reader. If all parameters are entered from the console and there

-are no updates, a reply text of 'end' may be used to terminate
all entry to HASPGEN.

If all the actions of the HASPGEN job (Table 10.1.4) are performed
once and-the three partitioned data sets SYSl.HASPSRC, OBJ, MOD
are pres~rved on a disk pack, then later full or partial HASP GENs
may be pe_rformed under a production batch system by using jobs
such:as the examples given in Figure 10.1.5. Execution of the
HASPGEN proc invokes only the HASPGEN utility, with a PARM field
causing the WTOR and reply to be omitted so that parameters and
updates are read directly from the input stream. The data set

-SYSl.HASPSRC would normally be scratched and re~allocated prior
to running this job. If all 14 assemblies (Table 10e1.4) are to
be done, SYSl.HASPOBJ should also be scratched and re-allocated.
Figure 10.1.5 shows how to use the ASMHASP proc to do assemblies.
If HASPOBLD is assembled, a step should be added to link edit it
from SYSl.HASPOBJ into SYSl.HASPMOD.

Partial HASPGEN may be used to save processing time, if only
minor changes are made to HASPGEN parameters or only a small
number of modules are changed by updates. The recommended process

Generating A HASP SYSTEM - Page 10.1-11

662

HAS P

is to scratch and reallocate SYS1.HASPSRC only, then to use the
HASPGEN proc and full parameter/update deck to recreate SYS1.HASPSRC.
Only required assemblies are performed, using ASMHASP proc, with
decks replacing those of same name in SYS1.HASPOBJ.

A module must be reassembled if a HASPGEN parameter(s) is changed,
compared to the previous HASPGEN, and Table 10.1.6 indicates that
the module depends upon the parameter(s). If a changed parameter
is used as a default value for another parameter, then that other
parameter is changed also, and all modules depending on it must be
reassembled. For example, if &NUMTPPR is allowed to default, then
changing &NUMLNES will cause· &NUMTPPR to change. A change in the
lipdate portion of the deck for a module,' compared to the previous
HASPGEN, also requires that the module be reassembled. If in any
case reassembly requirements are doubtful (e.g., changes in update
deck for any member of SYSl.HASPSRC other than one of the 14 assem­
bly modules), all 14 modules must be reassembled.

The module HASPBRl does not actually depend on any generation param­
eter. However, it contains the most complete commented documenta­
tion of all HASP Control Blocks which does depend on various HASPGEN,
parameters. Therefore HASPBRI should be reassembled periodically to
provide listing documentation current with operational HASP.

Table 10.1.6 refers to the assembly modules by using a single alpha­
betic character for each, according to the following 'equivalences.

H = HASPNUC
R = HASPRDR
X = HASPXEQ
P = HASPPRPU
A = HASPACCT
V = HASPMISC
W = HASPCON
M = HASPRTAM
C = HASPCOMM
N = HASPINIT
S = HASPSVC
T = HASPWTR
0 = HASPOBLD

Generating A HASP SYSTEM - Page 10.1-12

663

HAS P

Figure 10.1.5 -- Sample Batch HASPGEN Jobs

//HASPGEN JOB
//JOBLIB DD DSN=SYS1.HASPMOD,DISP=SHR
//GEN EXEC HASPGEN
//HASPGEN.OPTIONS DO *

(deck as in Figure 10.1.3)
/*
/ /HASMNUC JOB •••.
//NUC EXEC ASMHASP,MODULE=HASPNUC
//HASPINIT JOB
//INIT EXEC ASMHASP,MODULE=HASPINIT

Generating A HASP SYSTEM - Page 10.1-13

664

HAS P

Tab Ie 10. 1 • 6 - Module Dependencies on HASPGEN Parameters

&ACCTNG -HPA I &NUMPRTS-HPVCN &SPOOL -N
&AUTORDR-WCN &NUMPUNS-HPVN &STRCPU -M
&BSCCPU -PM &NUMRDRS-HWN &STR1978-M
&BSC2770-M &NUMRJE -MCN &TlMEOPT-X
&BSC2780-M &NUMTGV -HRXPAVWCN $TlMEXS -x

I &BSC3780-M &NUMTPBF-N &TPBFSIZ-HMN
&BSHPRES-M &NUMTPES-HN $TPIDCT -P

.&BSHTAB -M &NUMTPPR-HPVN &TRACE -HXVWN
&BSHPRSU-M &NUMTPPU-HPMN &USASCII-M

I $BSPACE -W &NUMTPRD-H $WAITlME-M
&BSVBOPT-M &NUMWTOQ-HN &WCLSREQ-T
&BUFHICH-N &OLAYLEV-RXPAVMCN &WTLOPT -CN
&BUFSIZE-HRXPMN &OREPSIZ-HN &WTR -XWCN
$CKPTIME-V &OSC(n) -x &WTRCLAS-XNT
&CLS(n) -X &OSINOPT-R &WTRPART-WCN
&CONAUTH-N &OUTPOPT-X &XBATCHC-RXWCN
&DEBUG -HXVCNO $OUTXS -x &XBATCHN-RXWC
$DELAYCT-M &PID(n) -x &XLIN(n)-RX
&DMPTAPE-N &PRI(n) -x &XPRI(n)-X
$ESTlME -R $PRICONA-H &XZMFTH -V
$ESTLNCT-R $PRIDCT -P &XZMFTL -V
$ESTPUN -R &PRIHIGH-V &XZMULT -V

I &FCBV -PC &PRILOW -V &XZPRTY -XV
&INITSVC-XNS &PRlRATE-HV $$x -x
&JITSIZE-HRXVCN $PRTBOPT-P
$LINECT -R &PRTRANS-PM
LINEmm -N &PRTUCS -N
&LOGOPT -x $PUNBOPT-P
&MAXCLAS-XCN &RDR -XN
&MAXJOBS-VN &RDRPART-N
&MAXPART-X $REPRDR ·-N

1 &MAXXEQS-HXVWCN $REPWTR -N
&MINBUF -N &RESCORE-N
&MLBFSIZ-M &RJOBOPT-R
&MONINTV-HXV RMTnn -N
&NOPRCCW-HPC $RPRBOPT-P
&NOPUCCW-HPC &RPRI(n)-R
&NUMBUF -N &RPRT(n)-R
&NUMCONS-HXWCN I &RPS -HNT
& NUMDA -HRXPAVWMCN $RPUBOPT-P
&NUMDDT -RX· &RQENUM -w
&NUMINRS-HRXN &SIZ2260-WN
&NUMLNES-HRPWMN &SPD2260-W
&NUMOACE-N &SPOLMSG-PMN

Generating A HASP SYSTEM - Page 10.1-14

665

HAS P

10.-1.6 Compatible HASP SPOOL Volumes

There are two levels of SPOOL volume compatiblity between two dif­
ferent HASP generations: the compatibility level which allows one
~ASP System to use another SPOOL volume without requiring complete
reformatting of the SPOOL data sets; and the compatibility level:
which allows one HASP System to continue another system's job proc­
essing with job data contained on the SPOOL data set "warm start".

If a new release of HASP, or official HASP modification requires a
reformat or prohibits a "warm start" the release documentation will
inform the installation of this fact and will therefore not be dis­
cussed in this section. However, certain HASPGEN parameters whe~
altered between HASP generations of the same release may also pro­
duce incompatible SPOOL volumes. The HASPGEN parameters that (when
altered) require reformatting of the SPOOL volumes between systems
are as follows:

&BUFSIZE

The HASPGEN Parameters that (when altered) prohibit "warm start."
between systems are as follows:

&NUMDA
&NUMTGV
&MAXJOBS
&JITSIZE

&NUMPRTS
&NUMTPPR
&SPOLMSG

Many of these parameters are assigned values automatically by
HASPGEN based on the assignment of other parameters and must be
overriden to provide compatibility. For example: &SPOLMSG depends
upon the number of remote terminals capable of communicating with
HASP (&NUMRJE) which in turn depends upon the number of lines
(&NUMLNES) unless overriden by .a user specification.

Generating A HASP SYSTEM - Page 10.1-15

665.1

HAS P

(The remainder of this page intentionally left blank.)·

665.2

I
I

HAS P

10.2.1 as SYSGEN REQUIREMENTS FOR HASP

In order to utilize HASP, the following additions should be made to
the standard installation as SYSGEN STAGE 1 input deck.

,10.2.1.1 Pseudo Devices

Pseudo readers, printers and punches should be generated according
to the following formulas.

Number
Number
Number
Number
Number
Number

Where:

INDD
PRDD
PUDD
SFPRDD

SFPUDD

of
of
of
of
of
of

&MAXXEQS
&NUMINRS

pseudo 2540 readers = INDD*&MAXXEQS+l
pseudo 1403 printers = PRDD*&MAXXEQS+1
pseudo 2540 punches = PUDD*&MAXXEQS
pseudo 1443 printers = SFPRDD*&MAXXEQS
pseudo 1442 punches = SFPUDD*&MAXXEQS
pseudo 2520 punches = &NUMINRS

= maximum number of DD * (or DD DATA) cards per job
= maximum number of print data sets per step
= maximum number of punch data sets per step
= maximum number of print data sets requiring special

forms or special routing per job
= maximum number of punch data sets requiring special

forms or special routing per job
= maximum number of simultaneous Job executions
= number of Internal Reader interfaces

If a job requires more pseudo devices than the total number generated,
it may be deleted from the system (with an appropriate message) or
some of its special forms requests may be ignored.

It should be noted that the term "Pseudo Device" implies a physi­
cally non-existent device. An address chosen for a pseudo device
may be any device address acceptable to as and it must not match
the address of any existent device ~ other pseudo device.

10.2.1.2 Additional Symbolic Unit Names

The symbolic unit name "An should be assigned to all pseudo 1403
printers, except the one identified ~the HASPGEN larameter &WTR.
The symbolic unit name-""B" should be asSIgned to a1 pseudo 2'S40
punches.

as SYSGEN Requirements for HASP ~ Page 10.2.1-1

666

I
I

I

HAS P

The Pseudo Device and Symbolic Unit Name requirements are satisfied
by using the SYSGEN macros CHANNEL, IOCONTRL, IODEVICE, and UNITNAME.
The following examples give a simple method of generating the re­
quired devices and names for OS Release 18 and later releases.

Pseudo 2540 Reader
IODEVICE UNIT=DUMMY,ADDRESS=xxx,DEVTYPE=5000080l

Pseudo 1403 Printer (except &WTR)
IODEVICE UNIT=DUMMY,ADDRESS=xxx,DEVTYPE=50000808
UNITNAME NAME=A,UNIT=xxx

Pseudo 1403 Printer (for &WTR)
IODEVICE UNIT=DUMMY,ADDRESS=xxx,DEVTYPE=10000808

Pseudo 2540 Punch
IODEVICE UNIT=DUMMY,ADDRESS=xxx,DEVTYPE=50000802
UNITNAME NAME=B,UNIT=xxx

. Pseudo 1443 Printer
IODEVICE UNIT=DUMMY,ADDRESS=xxx,DEVTYPE=5000080A

Pseudo 1442 Punch
IODEVICE UNIT=DUMMY,ADDRESS=xxx,DEVTYPE=50000803

Pseudo 2520 Punch Ii
IODEVICE UNIT=DUMMY,ADDRESS=xxx,DEVTYPE=50000805

Because UNIT=DUMMY is used, control unit macros are not required.
However, for hardware reasons, the channel and control unit digits
in the addresses used for pseudo devices should not match an ex..;.
istent channel and control unit. For example, if the system. has
a 2314 using addresses 130 through 137, then no pseudo device
should be generated with an address l3x.

The pseudo 2520 punches may be given a descriptive symbolic unit
name, as in the following example. This will make allocation easier
for programmers using the Internal Reader feature of HASP.

UNITNAME UNIT=(301,302, •••) ,NAME=INTRDR

10.2.1.3 Position for the HASP Type I SVC

The following card must be included in SYSGEN input to reserve a
posl tion for ins·ta1lation of the HASP Type ISVC. For "nnn", the
value assigned to the HASPGEN parameter &INITSVC is used.

SVCTABLE SVC-nnn-T1-S0

OS SYSGEN Requirements for HASP - Page 10.2.1-2

667

HAS P

10.2.1.4 Installation of the HASP SVC at SYSGEN Time

If HASPGEN has been completed prior to SYSGEN, it is possible to
cause the installation of the HASP SVC in the OS Nu'cleus during
STAGE 2 of SYSGEN. ,The data set SYSl.HASPOBJ must be cataloged
in the generating system and the following card must be included
in the STAGE 1 SYSGEN input.

RESMODS PDS=SYSl.HASPOBJ,MEMBERS=HASPSVC

10.2.1.5 MFT Partitions

Consideration should be given, when generating MFT Systems, to set­
ting partition sizes and classes properly. This will minimize
required operator, actions when HASP is invoked.

HASP will normally reside in PO, but this is not mandatory. Size
of PO (or partition in which HASP resides) should be sufficient to
contain the HASP load modules whose size may be determined from the
link edit described under Section 10.2.2.3.

If the &WTRPART HASPGEN parameter is not set to
(normally PI) will be needed for the OS Writer.

u*" a partition

Other job processing partitions should be generated, each with only
one eligible job class. These classes should be unique and 'match
the classes assigned to the HASPGEN parameters &OSC(n). One OS
partition should be eligible for Class A jobs, to allow processing
of any job with a JCL error so severe that the OS R/I defaults it
to Class A.

The following is an example of compatible HASPGEN parameters and
SYSGEN PARTITNS macro.

&OSC(l)=A'
&OSC(2)=B
&OSC(3)=C

PARTITNS

&PID(1)=2
&PID(2)=3
&PID(3)=4

&WTRPART=Pl

PO (C-H , S - 50 K) , P 1 (C - W , S -10K) , P 2 (C -A , S -100 k) ,
P3 (C-B ,S-lOOK) ,P4 (C-C ,S~100K)

The &PID(n) parameters are only used to make HASP operator messages
correspond to actual physical partitions. If&WTRPART=*, then PI
may be eliminated or allocated zero storage, which will allow later
optional use 'of the OS Writer.

OS SYSGEN Requirements for HASP - Page lO.2.l~3

668

HAS P

10.2.1.6 MFT Features

Any MFT system used with HASP must have a four byte SVC table and
resident SVC capability. This is specified by including "TRSVCTBL"
in the OPTIONS parameter and "TRSVC" in the RESIDNT parameter of,
the SUPRVSOR macro. It is not necessary to make any type 3 or 4
SVCs actually resident. Thrs-may be prevented, if desired, by ap­
propriate changes to SYSl.PARMLIB and/or operator action during
OS IPL.

Certain features of HASP, when used with an MFT System, require
that the MFT System be OS Release 19 or a later release and that
certain optional MFT features be specified in the SYSGEN.

If HASPGEN parameters are specified (or defaulted) so that
&WTRPART=* and/or &NUMCONS=O and/or &MONINTV is greater than zero,
then the MFT System must include the multitasking capability. This
is specified by including "ATTACH" in the OPTIONS parameter of the
SUPRVSOR macro. It is not necessary or beneficial for HASP's pur­
poses to make ATTACH resident, which Would require additional fixed
storage.

·10.2.1. 7 Timer Requirement

Use of HASP requires that OS have certain software support for the
hardware interval timer. The TIMER parameter of the SUPRVSOR macro
must specify "INTERVAL" or "JOBSTEP". The specification of
"JOBSTEP" is required if the HASPGEN parameter &MONINTV is greater
than zero.

as SYSGEN requirements as stated above in Sections 10.2.1.1, 2, 3,
rand 7 ~ mandatory if the System is to be used with HASP. Other
requirements stated above may be satisfied at a later time (SVC may
be installed later if position has been reserved; partitions may be
set at IPL) or are optional depending upon use of optional features
in HASP.

OS SYSGEN Requirements for HASP - Page 10.2.1-4

669

I

HAS P

10.2.2 INSTALLING HASP IN AN MFT OR MVT SYSTEM

To install HASP, it is necessary to perform some or all of the fol­
lowing four proce.sses, after HASPGEN has been completed. Four
sample jobs, one for each process, are printed and punched from the
source member HASPJCL when HASPGEN is performed as described previ­
ously in Section 10.1.4. These jobs are also listed in Section 12.1'
for reference.

It must be emphasized that the sample jobs are just samples. If
run exactly as punched, they will probably produce incorrect re­
sults. Each process is discussed below with comments about what
modifications to the sample job may be necessary.

10.2.2.1 Install HASP SVC

This process is not necessary if the SVC was installed during OS
SYSGEN as described previously under Section 10.2.1.4. If not done
then, the sample job HASPSVC may be used.

The three step job HASPSVC scratches a second OS Nucleus data set
named SYS1.OLDNUC or SYS1.NEWNUC, link edits the standard Nucleus
with the HASP SVC into a newly created SYSl.NEWNUC, then performs
renaming so that the new Nucleus becomes the standard SYS1.NUCLEUS
data set.

All references in the sample job to volume YYYYYY should be changed
to the volume serial of the system residence volume. The unit and
space allocation for SYSl.NEWNUC should be made to agree with that
used for SYSl.NUCLEUS during SYSGEN. Only two of the first three
INSERT cards should be used, as indicated by comments on the cards.
The fourth INSERT card is required if the OS Nucleus contains the
Channel Check Handler. INSERT cards actually used should match
those shown on the listing of the OS Nucleus link edit during
SYSGEN. .

Alternative procedures may be used to install the HASP SVC, includ­
ing use of alternate members within the single data set SYS1.NUCLEUS
if space permits. Naming of these members and IPL procedures are
described in. appropriate OS documentation.

Installing HASP in an MFT or MVT System - Page 10.2.2-1

670

HAS P

10.2.2.2 Install HASP Procs

The sample job HASPROCS should be used to add necessary cataloged
procedures (members) to the system's SYS1.PROCLIB data set. The
members are described below.

Region specifications in all of the members may be modified up or
down to fit actual minimum storage required in a particular MVT
System, as determined by OS Storage Estimates or actual experience
with a particular OS Release. Values given in the samples are ap­
propriate for Release 20.7 with proclib ~locked 400.

Member HASP - HASP is invoked when the operator types the OS START
command, as described in the Section 11.1 Operator's Guide, para­
graph 2.2. This starts an OS Reader/Interpreter which reads the
member STRTHASP that, in turn, invokes the HASP System. The BLKSIZE
parameter on card 00900000 should be changed, if necessary, to agree
with the blocking of SYSl.PROCLIB.

Member STRTHASP - The member STRTHASP is an OS job which, when read
and executed, invokes the HASP System. ForMFT Systems, the parti­
tion specified on card 01060000 should be changed if HASP will not
reside in partition zero (PO). For MVT Systems the region size on
card 01020000 should be changed to a size sufficient to contain the
HASP load modules, whose size is given by the link edit described
under 10.2.2.3.

The DD card 01040000 should refer to the cataloged HASP overlay'
data set produced during.the build step described under 10.2.2.3.
A STEPLIB DD card may be added to STRTHASP, if the HASP load mod­
ules do not reside in SYSl.LINKLIB.

Others versions of the STRTHASP member may be constructed which in­
voke alternate HASP Systems, for purposes of changing device con­
figuration, HASP features, etc. If these are placed in SYSl.PROCLIB
under other member names, they may be invoked by using the keyword
",JOB=membername" in the initial operator START HASP conunand.

Installing HASP in an MFT or MVT System - Page 10.2.2-2

671

HAS P

Member HOSRDR - The member HOSRDR is used by HASP to invoke the
single OS Reader/Interpreter necessary to send jobs to OS for ex­
ecution. Two versions are given in the sample job, but only one
should be installed. Either veorsion may be used with MVT but only
the one identified by comm~nts as STD RDR may be used with MFT.

In both versions of HOSRDR, the EXEC PARM field may be modified if
desired; however, the "ssssssss" field must not be modified from
the specification "SPOOL " Also, the DCB field of the IEFRDER
DD statement must not be modified. The IEFDATA statement maybe
modified to fit installation requirements, but this will have ef­
fect only if the HASPGEN parameter &OSINOPT=YES and a DD * or DD
DATA card with DCB parameters is encountered in an input stream
read by HASP_.

If the ASB version of HOSRDR is used in an MVT System, the fixed
core requirement for the OS R/I is reduced from approximately 52K
to 18K. However, the ASB Interpreter will dynamically acquire a
region (76K in the sample) when HASP sends it a job for OS execu­
tion. The last character in the ASB Reader EXEC PARM field, called
"K", must be removed if using OS Release 18.

Member HOSWTR - The member HOSWTR is needed only if the HASPGEN pa­
rameter &WTRPART is not set to "*". However, it should be installed
even if unused so that &WTRPART can be later changed without requir­
ing installation then.

HASP uses its own module HASPWTR as an attached task, or it uses an
as Output Wri ter invoked by the member HOSWTR, to retrieve as Sys-­
tern Messages from SYS1.SYSJOBQE at the end of job execution.

I

Installing HASP in an MFT or MVT System - Page 10.2.2-3

672

I

I

HAS P

10.2.2.3 Install HASP Program

The HASP Program consists of one primary load module made up of
resident CSECTs from each of ten object modules, two other smaller
load modules each from a single object module, and several overlay
CSECTs taken from some of the above object modules. Each overlay
CSECT exists as a single record in a sequential data set on a di­
rect access device, d~ring HASP operation.

The three step sample job HASPHASP shows how the above components
of the HASP Program are constructed from the object decks produced
by HASPGEN. The first step simply scratches the overlay data set
to be later allocated and built.

The 'second step executes a utility called HASPOBLD whose primary
input is ten object modules from SYSI.HASPOBJ as shown. The over-'
lay csects are written to SYSl.HASPOLIB and all references to them
in other overlays or in resident CSECTs are resolved. Resident
CSECTs are written to the SYSLIN DD temporary data set as input to
the third step.

The third st,p uses the OS Linkage Editor to resolve all external
references between resident CSECTs and produce the primary load
module, HASP. The two smaller load modules, HASPBRI and HASPWTR,
are also produced from their respective object modules.

It must be remembered that the three load modules and the overlay
data set produced by this job belong together and should be invoked
as a single entity by the proclib member STRTHASP, as described un­
der 10.1.4.2. Load modules must not be used with overlay data sets
produced by different executions of this job, etc. .

All uses of ZZZZZZ in the.sample job as a volume label should be
changed to the volume of the overlay data set, which may be any di­
rect access volume including of the SPOOL volumes. The data

. set should be considered a high activity system data set j~st like
SYSl.SVCLIB and placed accord;i.ngly for optiml.lIn performance. Space
allocation must bea single extent and less than 128 tracks. The
example shows space for 60 records of 1024 bytes, a comfortable
quantity for an unmodified HASP System with HASPGEN parameter
&OLAYLEV set for maximum overlay. The overlay data set may be
moved, after being originally written by HASPOBLD, but only to
another volume of the same device type.

If it is·desired to execute HASP in a hierarchy storage environment,
appropriate changes should be made to the LKED step. "HIAR" should
be added to the PARM field and HIARCHY control cards should be added
to the input prior to the first NAME card, to control the location
of various resident CSECTs. Consult documentation of the OS Linkage
Editor for more details.

Installing HASP in an MFT or MVT System - Page 10.2.2-4

673

HAS P

Any CSECT which is progranuned for overlay (third character of name
is a U$") may be changed from resident to overlay or vice versa dur­
ing execution of HASPOBLD, by reading control cards from the·SYSIN
DD file (shown as empty in the sample). The CSECT name is punched
in column 1 of a control card, beginning with "HA$". The fourth
character is punched "0" to make the CSECT overlay, or "P" to make
it resident. Fifth and following characters are taken from the
CSECT name as givn in the appropriate assembly External Symbol list­
ing. If a CSECT is being made overlay, a priority number in the
range 0-15 may be punched beginning in column 16, to change the
priority.

An information listing is produced by HASPOBLD. Any control cards
are listed first. Then each "HA$" CSECT name is listed, with its
length and OCON or relative position in the overlay supervisor ref­
erence table. For actual overlay CSECTs, the relative and absolute
record address is given, and the priority for use of overlay resources.
The CCHHR is especially useful when using IMASPZAP to inspect or
change a particular overlay CSECT on direct access.

Self-explanatory error messages "TOO LONG", "DUPLICATE", or "UNDEFINED"
may be produced with any listed CSECT name. They should not occur un­
less erroneous user modifications to HASP have been made. Too long
CSECTs are truncated to 1024 bytes. This condition may be temporarily
circumvented by making the CSECT resident by use of a control card as
described above. Duplicate CSECTs are ignored. The first copy en­
countered in HASPOBLDinput is used.

Completion code 0 is returned normally, 4 if duplicate CSECTs were
encountered, and 8 if any overlays were too long or undefined. Sample
job HASPHASP prevents the link edit step if a completion code greater
than 4 is returned.

If object module input to HASPOBLD causes overflow of any internal
tables, the program will terminate with a UOlOl ABEND after printing
the last card read.

10.2.2.4 Allocate SPOOL Direct Access Space

For direct access space, HASP requires one or more volumes whose vol­
ume serial numbers begin with the characters SPOOL. (It is assumed
that HASPGEN parameter &SPOOL has been left at the value 'SPOOL'.)
One and only one of these volumes must be labeled SPOOLI. Each SPOOL
volume must have a data set named SYSl.HASPACE; HASP will use the
first extent of this data set for SPOOLing space. SPOOL volumes may
reside on any combination of direct;:.-access device types except 2321.
HASP sets up an individual parameter list for each SPOOL volume, thus
insuring full use of all allocated space.

Installing H~SP in an MFT or MVT System - Page 10.2.2-5

674

I

HAS P

It is strongly recommended that each SPOOL volume be entirely de­
voted to HASP usage. To allocate other, frequently-referenced data
sets on a SPOOL volume would degrade the efficiency of HASP's direct­
access allocation algorithm. The sample job HASPOOLS shows full­
volume allocation; it assumes one-track VTOCs on cylinder 0, track 1.
If full-volume allocation is used, the following comments in this
section may be ignored.

If the installation requires that other data sets be allocated on a
SPOOL volume, a simple example will show how to allocate the
SYSl.HASPACE data set so it contains no dead space. HASP's unit of
direct-access allocation is the track group; the number of tracks
ina track group is obtained by dividing the total number of tracks
on a volume by the number &NUMTGV (number of track groups per vol­
ume). For example, the number of tracks for a 2311 volume is 2000
(regardless of the size of the SYSl.HASPACE allocation); if &NUMTGV
was set to 500 at HASPGEN time, the number of tracks per track group
is 2000/500 = 4. HASP will use only those track groups that fall
completely within the SYSl.HASPACE allocation; therefore, an im­
properly allocated SYSl.HASPACE could have dead space at its begin­
ning and end.

For allocation, use the JCL specification

SPACE= (ABSTR, (quantity ,address)) •

To allocate any SPOOL volume but SPOOLl, use both "quantity"·and
"address" as integral mutiples of number of tracks per track group.
For example, specify SPACE=(ABSTR,(1000,20)) if number of tracks
per group is 4.

To allocate SPOOLl, follow the above procedure, but add 2 to
"quanti ty" and subtract 2 from "address II. HASP uses the first two
tracks of the SPOOLI allocation for checkpoint information. For
example, specify SPACE=(ABSTR,(1002,18)). This would allocate the
1002 tracks beginning with track 18 and ending with track 1019.
HASP would use tracks 18 and 19 for checkpoint information; it
would use the 250 track groups beginning with track group 5 (which
starts on track 20 and extends through track 23) and ending with
track group 254 (which starts on track 1016 and extends through
track 1019. It would make the other 250 track groups on this 2311
as permanently unavailable for HASP SPOOL data sets.

Installing HASP in an MFT or MVT System - Page 10.2.2-6

675

HAS P

10.3 GENERATING HASP REMOTE TERMINAL PROGRAMS (RMTGEN)

This section describes the process of generating the HASPrernote terminal

programs described in the HASP Remote Terminal Operator's Guides I

10.3.1 HASPGEN Preparations For RMTGEN

HASPGEN inserts the RMTGEN procedure into the central operating system I s

SYSI. PROCLIB and builds appropriate members of the "HASP libraries SYSl1 HASPMOD

and SYS1. HASPSRC. These data sets along with the procedure required for

RMTGEN should be retained in the system for (1) the initial HASP Remote

Terminal Program generation run, and (2) subsequent Batch HASP Remote

Terminal Program generation runs I Table 10.3. 1 lists the data sets and

members required for the above generation runs I

Each new HASPGEN will recreate the HASP libraries and will require that

new Remote Terminal Programs be·regenerated ·when anyone of the following

conditions exist:

1. Official HASP modifications are used in updating the remote

terminal program source deck.s on SYS 1. HASPSRC (see Section

10 12 - Modifying the HASP SYSTEM) •

2 I Installation HASPGEN parameters are changed which affect the

HASP remote terminal interface (see Section 7).

3. Local modifications are made to HASP and/or the Remote source

programs which affect the remote terminals.

Generating HAsp Remote Terminal Programs - Page. 10. 3- 1

676

HASP

Table 10.3. 1 - RMTGEN Data Sets

DSNAME DSORG

SYS 1 . PROCLIB PO

SYSl.HASPMOD PO

SYS 1 • HASPSRC PO

MEMBERS DESCRIPTION

Systems Procedure Library

RMTGEN RMTGEN procedure

HASP Load Module Library

RMTGEN RMTGEN main module

GENRMT RMTGEN source deck preparatio.n and
update module

EXRMTGEN HASPGEN RMTGEN executor module

LETRRIP Post-processor for 1130· remote terminal
programs

SYS3CNVT Post-processor for System/3 remote
terminal programs

HASP System Source Library.

HRTPOPTS HASP Remote Terminal Standard Options

HRTPB360 Source deck for HASP 360 and M20
BSC Remote Terminal Program s

HRTPSM20 Source deck for HASP M20 STR
Remote Terminal Programs

HRTPLOAD Source deck for HASP 1130 BSC loader

HRTPl130 Source deck for HASP 1130 BSe
Remote Terminal Programs

HRTPSYS3 Source deck for· HASP System/3 BSC
Remote Terminal Programs

All named data sets must be cataloged in the System Catalog .. The initial

RMTGEN run will use data sets SYS 1. UTI, UT2 ,UT3 allocated for HASPGEN.

Generating HASP Remote Terminal Programs - Page 10. 3- 2

677

HASP

Installations should create and maintain RMTGEN option decks for the

purpose of recreating the revised remote terminal programs when necessary

after each new HASPGEN. (Note RMTGEN runs may be required even though

no changes to the RMTGEN option decks are required.)

10.3.2 Initial HASP Remote Terminal Program Geneneration Run

(performed as part of HASPGEN)

If CPU remote terminals are indicated in the HASPGEN parameters I the

job named HRMTGEN will type the message II PLACE RMTGEN OPTIONS IN

UNIT XXX AND REPLY 'GO' I OR REPLY 'CANCEL' II. XXX is the address of

the OS allocated 2540 card reader attached to the system. The operator

should make sure the named 2540 card reader is not being used for any

other function Ii. e . I HASP reader; clear any cards remaining in the reader;

load the reader with RMTGEN options for all desired remotes; and reply I

IIGOII using the OS/360 reply format. If no remote generations are desired

initially the operator should reply I "CANCELli.

10.3.3 Batch HASP Remote Terminal Program Generation Run

RMTGEN runs may be made as a normal batch stream job. Figure 10.3.2

shows an example job stream for a Batch RMTGEN. The user options and

control cards are the same as for an initial RMTGEN run.

Generating HASP Remote Terminal Programs - Page 10.3- 3

678

HASP

10.3.4 RMTGEN PROGRAM EXECUTION

RMTGEN expects its input stream to contain one or more remote terminal

program descriptions. Each terminal program is described by card entries

in the following order:

1 . HASP Remote terminal program identification card.

2. User RMTGEN option cards.

3. $. UPDATE control card (optional).

. 4. Update cards if $. UPDATE card is used.

5 . $ • RMTEND end of remote description.

The above description format is repeated for each terminal to be generated.

Descriptions do not affect any following descriptions either in the current run

or succeeding runs.

The following procedures are followed in the generation of each HASP

Remote terminal program.

1 . RMTGEN reads the card input stream for the remote terminal

program identification I selects the appropriate STANDARD OPTIONS

list for the desired remote terminal program I and prints the

default values on the SYSOUT=A device.

Generating HASP Remote Terminal Programs - Page 10.3-4

679

HASP
"

Figure 10.3.2 Example of Batch RMTGEN Run

IIRMTGENJB JOB (0000,0000) ,'GEN REMOTE PROGRAMS',MSGLEVEL=l

IIJOBLIB DD DSNAME=SYS1.HASPMOD,DISP=SHR

IIRMTGEN EXEC RMTGEN

IIRMTGEN.OPTIONS DD *
$.RMTM20,2

&RDEV(1)=2560

&RADR(1)=2

&UDEV(1)=2560

&UADR(1)=2

&WDEV(1)=2152

&NUMTANK=5

$.RMTEND

$.RMT360,3

&CMPTYPE=3

&PDEV(2)=:L403

&ADAPT=030

&WADR=009

&NUMTANK=7

&CORESIZ=16

$.RMTEND

1*

Generating HASP Remote Terminal Programs - Page 10. 3- 5

680

HAS P

2. RMTGEN reads the overriding options from the card input
stream and changes the current values. Overriding op­
tions are printed on the SYSOUT=A device as they are en­
countered. (See Section 7 for RMTGEN option specifica­
tions.)

3. When $.UPDATE or $.RMTEND is encountered, the remote
terminal program source deck is copied to a scratch data
set (ddname=SYSIN) for the assembler. During the trans­
fer the final options as specified are used to update the
source. If update is specified, data from the card input
stream will be used to modify the source deck.

4. After the update the assembler is invoked to assemble the
remote terminal program and, except for 1130 and System/3
programs, punch self loading object decks on the SYSOUT=B
data set. 1130 or System/3 assembly places the object
deck on a scratch data set.

5. On return from the assembler, if the program is for the
1130 or System/3, RMTGEN invokes a post-processor
(LETRRIP or SYS3CNVT) which creates a load deck image
on the SYSOUT=B data set. The resultant cards are:

• For 1130, the RTPLOAD or RTPl130 deck.

• For System/3 without 5424, a complete load deck.

• For System/3 with 5424, a deck to be further proc­
essed as described in Section 10.3.6.

6. If more cards are' in the card input stream RMTGEN repeats
the above procedures~

All listings produced by RMTGEN and the assembler will have the
remote terminal SIGN-ON identification number at the top of each
page. With the exception of loader bootstrap cards, all object
deck cards will have the

Generating HASP Remote Terminal Programs - Page 10.3-6

681

HASP

identification number punched in columns 75-76.

10.3.5 RMTGEN Input Card Specifications

RMTGEN accepts four basic input card groups. (1) RMTGEN control cards,

(2) User options, (3) Update control cards, (4) Update cards.

RMTGEN Control Cards

CARD FORMAT: Col. 1- 2 $. control card identification

Col. 3-71 operands variable length separated
by comma with no blanks
allowed.
(last operand mus t be
followed by blank)

Col. 73-80 ignored

The first card of a Remote terminal program description is the HASP

Remote terminal program identification card. It serves two functions:

1. - Selects the appropriate standard options group and source member

from the library.

2 • Sets the remote terminal identification number.

CARD FORMAT $.name,n where: name=the name specified in
Table 10.3.3 for the remote
terminal program to be generated.

n= 1 or 2 digit terminal number
followed by blank.

Generating HASP Remote Terminal Programs - Page 10. 3-7

:682.

HASP

RMTGEN has two additional control cards:

$. UPDATE which sets the update mode and causes following

cards to be used to modify the remote program source deck

for the current generation description.

$. RMTEND which signals the end of the remote generation

description.

USER OPTIONS

CARD FORMAT: Col. 1-n Name=value where: name = a legal option
specified in the
appropriate remote
terminal program options
section. (see section 7).

value = a character string
of up to 17 characters -
ending in blank. Blanks
must not appear anywhere
on the card except after
the value.

User options may appear in any order after the Remote terminal program identi-

. fication card. Each option may occur more than once. The last value for

each option overrides previous values and is used in generating the remote

terminal program. See Section 7 for defauit option values.

UPDATE CONTROL CARDS

CARD FORMAT: Col. 1-2

Col. 10-14

.1

verb

control identification

DELET for delete source
cards indicated
ENDUP for terminate update

Generating HASP Remote Terminal Programs - Page 10.3-8

683

HAS P

Col. 16-23

24

25-32

CARD FORMAT:

Col. 1-2
·Col. 3-n
Col. (n+l) - (n+6)

Col. (n+7)-m

Col. (m+l) - (m+13)
Col. (m+l4)
Col. (m+l5) - (m+27)

serial 1

serial 2

./
blank
DELETE

blank

SEQl=serial 1
,
SEQ2=serial 2

starting card serial number
(DELET only)

(DELET only)

ending card serial number
(DELET only)

control identification
o to 44 blanks
verb for delete source
cards indicated
I to (45-number of previous
blanks)
starting card serial number

ending card serial number

Update control cards may be used only during an update run i.e. af­
ter $.UPDATE card. The DELET/DELETE card is used to delete one or
more source cards from the source deck for the described remote
terminal program as it is being prepared for the assembler. The
DELET/DELETE card may be mixed with insertion and replacement cards
containing new source statements for the assembler. All library
source cards starting with serial 1 through and including serial 2
will be omitted from the assembler input source. ENDUP terminates
the remote terminal program description. It may pe replaced by
$.RMTEND which also serves this function. .

UPDATE CARDS

Update cards are assembly language source cards and allow the format
described in the OS/360 assembler manuals. Each card may be seri­
alized in cols. 73-80 or may have all blanks in 73-80. Cards with
blank serials will be inserted imrnediatelyin the source deck after
the last serialized input card or, if following a DELET/DELETE con­
trol card, in place of the deleted source cards. Serialized cards
will replace current source program cards if the serial numbers are
equal to existing source cards or will be inserted in the source
deck in the appropriate location based on the serial number.

Generating HASP Remote Terminal Programs - Page 10.3-9

684

HASP

All serialized input (including update DELET cards) must indicate ascending

order serial numbers.

10.3.6 System!3 96-Column Card RMTGEN Output

As described under 10.3.4 I RMTGEN for System/3 invokes the post-processor

SYS3CNVT to produce the System/3 load deck image on the SYSOUT=B data set.

The cards thus created are 80-column cards which I if routed (by use of a /*ROUTE

card or the $R operator command) to a System/3 Remote Terminal utilizing the

System/3 Starter System I will be punched as full 96-column System/3 load mode

cards. Th~y may also be punched locally or remotely as 80-column cards

together with the punched outputs of other RMTGENs and later be separated and

routed to a System/3 Starter System as the punched output of an 80/80 card­

to-punch job. The IBM data set utilities IEBPTPCH or IEBGENER might I for

example I be used. See the HASP System/3 Operator's Guide for a System/3

Starter System description.

System/3 96-column load mode cards must be punched as described above

in order to use the output of a RMTGEN on a System/3. 80-column cards are

not loadable on a System/3 I even if the supported RPQ 1142 card reader is

attached.

Instead of the System/3 Starter System I any HASP System/3 Remote

Terminal Processor program generated with the option &S396COL set to 1 may

be used to punch RMTGEN output routed to a System/3 as described above.

Generating HASP Remote Terminal Programs - Page 10.3-10

685

HAS P

Table 10.3.3 - RMTGEN Terminal Program Identification Cards

HASP Remote Terminal
Processor program for

360/20 STR
360/20 BSC
360/25, 30, 40, etc.
1130 Loader
1130
System/3

Terminal Program Identification Card
(1st card of each remote description)

$.HRTP,n
$.RMTM20,n
$.RMT360,n
$.RTPLOAD,n
$.RTP1130,n
$;. RMTSYS 3 ,n

n= remote SIGNON number

Generating HASP Remote Terminal Programs - Page 10.3-11

686

HAS P

, 10.3.7 RMTGEN Completion Codes

RMTGEN determines the highest completion codes returned by
any of the HASP supplied generation modules or the assembler
used for object deck cr~ation and returns that code to the
system. HASP supplied RMTGEN modules detect and return
completion codes as follows:

1) ABEND 20 - RMTGEN - A module read to end of
data on the CARDIN data
set without" setting
RMTGEN module's EODAD
exit. The load modules
on the Job or Step library
are not correct and should
be restored.

2) Completion Code 24 - EXRMTGEN - The operator replied can­
cel to the request to
place cards in the CARDIN
data set or the generation
of remotes was surpressed
based upon HASPGEN param­
eters (no HASP worksta­
tion decks are generated).

3) Completion Code 24 - GENRMT - An error was detected by
GENRMT module and a mes­
sage was displayed on the
SYSPRINT data set as
follows:

A. ****INVALID" SELECTION CARD****

1. The program identification card named an
unsupported remote.

2. The format of the identification card was
incorrect.

3. The numeric field was not numeric.

The card in error is displayed preceding the error
message and the generation of the requested remote
is suppressed.

Generating HASP Remote Terminal Programs - Page 10.3-12

686.1

HAS P

B. ****OPTION SPECIFICATION ERROR****

1. The specified RMTGEN paramter was misspelled ..
2. The format of the card is incorrect.
3. Card sequence numbers are not in ascending

order.
4. Invalid./ card.
5. A $. card other than $.RMTEND was encoun­

tered during the update process.
6. A /* card was encountered within a remote

description deck.

The card in error is displayed preceding the er­
ror message and the generation of the requested
remote is suppressed.

C. ****UNEXPECTED END OF CARD INPUT****

1. The last card of the CARDIN data set was
not $.RMTEND or in case of updating opera­
tions "./.ENDUP".

The generation of the requested remote is sup­
pressed.

D. ****HASP SOURCE LIBRARY ERROR****

1. An internal control card on the GENPDS
data set member HRTPOPTS is incorrect or
missing.

2. An overflow of the GENRMT standard options
table has occurred.

The generation of the requested remote is sup­
pressed. The user should check the spelling
on his selection card and if spelling is correct
recreate the HASP source library using standard
HASP generation procedures.

4) Completion Code 24 - LETRRIP - An error was detected
by the 1130 post proc­
essor and appropriate
message displayed as
follows:

A. ***REMOTE id DECK INCOMPLETE***

B. *** REMOTE id EXCEEDS AVAILABLE 1130 STORAGE***

Generating HASP Remote Terminal Programs - Page 10.3-13

686.2

HAS P

< .

5) Completion Code 12 - SYS3CNVT - Unexpected or missing
end-of-file indication
on the input dataset.
The message displayed
on the operator console
and in the HASP System
Log is:

S3CNVT - UNEXPECTED OR MISSING END-OF-DATA

6) Completion Code 16 - SYS3CNVT - Unable to open one or
both data sets. The
message displayed on
the operator console and
in the HASP System Log
is:

S3CNVT - UNABLE TO OPEN ONE OR BOTH DATASETS

Generating HASP Remote Terminal Progra~s - Page 10.3-14

68~ ..• 3.

HAS P

(The remainder of this page intentionally left blank.)

686.4

HAS P

,10.4 REMOTE- :GENERATION, FOR'~'NON-HASP USERS

This section outlines the procedures required to generate
HASP remote workstation programs without, installing the
complete HASP Sys·te'm.::'

PREPARATION - The remote generation (RMTGEN) process re­
quires creation of appropriate data sets as discussed in
Section 10.3.1 of this manual. The requirements may be
satisfied using the following procedures:

1) Allocate and catalog the data sets:
SYSl.HASPMOD - for HASPGEN and RMTGEN load modules
SYSl.HASPSRC - for HASP and workstation source decks
SYSl.UT3 - for Linkage Editor utility data set

Refer to Figure 10.1.2 - Sample Job to Catalog Data
Sets for HASPGEN.

2) Mount the HASP distribution tape on an appropriate
drive and start a reader to the tape. DO NOT allow
the jobs to begin executing. (The format and blocksize
of the tape is listed in the front of this manual).

3) Cancel all jobs read in from the tape except the first
job (job name HASPGEN) .

4) Allow the HASPGEN job to execute. This will cause the
required workstation source decks, RMTGEN object modules,
and RMTGEN procedures to be added to the system.

5) The HASPGEN job will request that the operator .enter
modifications to the default options (see section
10.1.4 - Standard Complete HASPGEN Process). The
remote workstation programs are dependent upon the
following two HASPGEN options which are described in
section 7 of this manual.

&TPBFSIZ
&MLBFSIZ

The value of &MLBFSIZ is the maximum size record which
may be transmitted over the communication line '.
This parameter must be set to the size which has been
specified at the central CPU with which the workstation
is to communicate.

If official modifications are required for the remote
workstation programs, these modifications should be
inserted into the 2540 card reader behind the option
modification cards and the UPDATE card as described
in section 10.1.3 of this manual .

. " 'Remote Generation For Non-HASP Users - Page 10.4- 1

687

HAS P

When the HASPGEN job completes successfully the data
sets required are ready for the remote generation
RMTGEN process.

EXECUTING RMTGEN - Upon completion of the HASPGEN job
one or more RMTGEN jobs may be submitted in accordance
with seqtion 10.3.3.

~emote Generation For Non-HAS~ U$ers ... Page 10.4-2

688

HASP

11. 0 OPERATOR'S GUIDES

ThIS section consists of the various operator's guides needed for the

efficient operation of the various HASP components. Each operator's guide

is a self-contained package, capable of being separated from. the rest of

the documentation and used as a teaching aid for operator classes and/or

for operator reference while operating the respective com.ponents.

Operator's Guide - Page 11.0-1

. 689

(The remainder of this page intentionally left blank.)

690

HAS P

THE

HAS P

S Y S T E M

OPERATOR'S GUIDE

691

HAS P

TABLE OF CONTENTS

INTRODUCTION

1.0 HASP OPERATOR COMMANDS

1.1 ENTERING HASP COMMANDS

1.2 COMMAND DESCRIPTION SYNTAX

1.3 STANDARD RESPONSES

1.4 JOB QUEUE COMMANDS

1.5 JOB LIST COMMANDS .

1.6 MISCELLANEOUS JOB COMMANDS

1.7

1.8

DEVICE LIST CONMANDS

SYSTEM COMMANDS . . .

.

. . .

.
.

. . .,

1.9 MISCELLANEOUS DISPLAY COMMANDS

1.10 REMOTE JOB ENTRY COMMANDS

2.0 STARTING THE HASP SYSTEM .

2.1 PREPARATION

. .
.
.

2.2 STARTING THE HASP JOB

3.0 ABBREVIATED WTOR REPLY
4.0 HASP MESSAGES AND CODES

4.1 HASP INITIALIZATION MESSAGES
4.2 HASP SYSTEM CATASTROPHIC ERROR CODES.

4.3 HASP PROCESSING MESSAGES. • . • • • • .

PAGE

1

3

4

11

12

16

24

30

33

60

71

76

80

80

81

85

86

86

98

102

HASP Operato~'s Guide - Page i

692

HAS P

5.0

6.0

7.0

PAGE

CONSOLE SUPPORT · · · · · · · · · 122

5.1 HASP CONSOLE SUPPORT · · · · · · 122 ..
5.2 OS CONSOLE SUPPORT · · · · · · · 130

READER SUPPORT · · · · · 132

6.1 CONTROLLING HASP READERS · · · · · · 133

6.2 HASP INPUT STREAM · · · · · · · 136

6.3 LOCAL READER ERROR PROCEDURES · · · 142

PRINTER AND PUNCH SUPPORT · · " · · · · · 143

7.1 CONTROLLING HASP PRINTER AND PUNCH DEVICES 144

7.2 HASP OUTPUT ROUTING · · · · · · · · 147

7.3 HASP SPECIAL FORMS ROUTING · · · · · · · 148

7.4 HASP PRINT AND PUNCH OUTPUT FORMATS · · · · 151

7.5 LOCAL PRINTER AND PUNCH ERROR PROCEDURES 154

HASP Operator's Guide- Page ii

·693 '

HAS P

INTRODUCTION

HASP is a program which, when started by the operator, assumes
control of selected devices and portions of the Operating System
(OS) for the purpose of managing the subsequent flow of jobs
submitted for execution. Under normal processing, jobs flow
through five distinct major functions of HASP as follows:

1. INPUT

2. EXECUTION

3. PRINT

4. PUNCH

5. PURGE

Jobs are read into the system:
Each job, made up of JOB CONTROL
LANGUAGE (JCL) and optional input data
cards, enters the system and is saved
on direct access storage (SPOOL volumes)
for later high speed retrieval.

Jobs are submitted to OS for execution:
As each job is selected for execution,
the JCL cards are retrieved and submitted
to an as READER/INTERPRETER for initiation
by os. During execution, each job is
monitored; input data is provided and
print/punch data created by the job,
along with SYSTEM messages, is saved
on the SPOOL volumes for later out-
put.

Print output for jobs is printed:
The SYSTEM messages and print data sets
created during execution are printed.

Punch output for jobs is punched:
The punch data sets created during execu­
tion are punched.

Jobs are removed from the system:
Upon completion of all processing required
for a job, the SPOOL volume space and all
HASP resources associated with the job are
made 'available for re-use.

Although each job enterirtg the system passes sequentially through
each function, one function at a time, all HASP functions may run
concurrently when sufficient jobs are available for processing.

HASP Operator's Guide - Page I

694

HAS P

PRIORITY QUEUEING AND SCHEDULING

As each HASP function completes processing a job, the job is
placed in a queue in order of HASP scheduling priority along
with other jobs to wait for the next function. A new job to
process is then selected from the queue of eligible jobs.
Since jobs are in priority order on the queue, high priority
jobs will be selected for processing in preference to lower
priority jobs. The net effect is that high priority jobs will
spend less time in the system than low priority jobs.

To illustrate HASP processing of jobs, the following example
traces a job through the system:

Job A enters the system and is assigned HASP job number 100.
Jobs 1 through 99 have entered the system previously and are
being processed by other functions, queued for processing, or
have been deleted from the system. Assuming that job 100 is
placed in the Class A execution queue along with jobs 97, 98,
and 99 and is highest priority, the HASP initiator will select
job 100 for OS execution when the next Class A job is selected.

Job 100 is placed in the print queue upon completion of execution.
Again assuming that the queue contains jobs 70, 71, 73, 80, and 92
and job 100 is highest priority, job 100 will be selected for printing
when the printer is free from processing the previous job. After '
being printed, job 100 is then queued for punch. If the punch
queue is empty and the punch is available, the job will be
immediately selected for punching. After all punching for job
100 has completed, the job is then queued for purging and, when
selected, is removed from the system.

HASP Operator's Guide - Page 2

695

HAS P

1.0 HASP OPERATOR COMMANDS

Through the use of HASP operator commands the operator may com­
municate with the HASP SYSTEM for the purpose of displaying
information, controlling the flow of jobs within the system, and
controlling HASP SYSTEM facilities which are used in processing
of jobs. Each HASP command falls into one of the following
categories:

1.

2.

3.

4.

5.

6.

7.

JOB QUEUE COMMANDS - Commands which search the HASP
job queue and display or alter
the status of jobs without regard
for the job identity.

JOB LIST COMMANDS

MISCELLANEOUS JOB
COMMANDS

DEVICE LIST
COMMANDS

SYSTEM COMMANDS

MISCELLANEOUS
DISPLAY COMMANDS

REMOTE JOB ENTRY
COMMANDS

Commands which search the HASP
job queue and display or alter the
status of jobs based upon the
identj._tsof the jc~ (s) .

Job commands which apply to a
single job by identity.

~ Commands which control the HASP
peripheral devices.

Commands which control the status
of the HASP SYSTEM or the submis­
sion of jobs to OS/360 for
execution.

Commands which provide informative
responses but do not belong to the
other categories.

Commands associated almost exclu­
sively with HASP remote job entry.

The following sections provide sufficient information for operator
_ control of the HASP SYSTEM for that time period after the initial

response to the HASP request for initialization options.

HASP Operator's Guide - Page 3

696

HAS P

1.1 ENTERING HASP COMMANDS - GENERAL

HASP commands have the following form:

$verb

Where:

$ =

operandl,operand2 ... ,operandn

HASP command identification character--all commands
to the HASP SYSTEM start with the $ character.

verb = HASP command verb--a single character verb which
describes the general action which is to be taken
(see TABLE 1.1.1). A longer form of the verb may
be used which is partially compatible with former
versions of the HASP SYSTEM (see TABLE 1.1.2).

operands = HASP command operands--operands are used to modify
the verb of the command or identify the job or
system facility to be acted upon. Cormnas are used
to separate operands when more than one operand
is used.

NOTE: If more operands are entered than the command is
designed to handle, the additional operands will
either be ignored or be concatenated to the last
acceptable operand and handled as one.

The HASP command structure allows for a great amount of "flexibility
in entering the text of the command. The following rules apply:

1. FOR TEXT OUTSIDE PAIRED APOSTROPHES:

A. All alphabetic characters may be entered in upper
or lower case.

B. Blanks may be inserted at any point in the command
after the initial $ for operator convenience.

C. Apostrophes may appear in the text of the command
as a text character; however, each apostrophe text
character must appear in duplicate.

HASP Operator's Guide - Page 4
697

HAS P

2. FOR TEXT INSIDE PAIRED APOSTROPHES:

All characters must appear as required by the individual
command. Text apostrophes must appear in duplicate.

3. Key words for operands may, for the most part, be mis­
spelled. It is only necessary to enter enough infor­
mation to identify the job or facility desired.

The following examples illustrate the above rules:

1. $r all, rmt 4, local
$~LL,~T4,~OCAL

2. $dm4,'If your job' 's output is deleted, resubmit'
$D~4,~IF YOUR JOB'S OUTPUT IS DELETED, RESUBMIT'

3. $a all or $a a
$M

NOTE: The first line of each example represents the
operator's input. The second line represents
the internal meaningful representation with the
first character of each operand underlined.

HASP Operator's Guide - Page 5

698

HAS P

Normally 'an operator must correct command input via printer keyboard
devices by cancelling the entry and re-entering the entire corrected
command. During HASP job processing HASP provides backspace editing
of all commands (HASP and OS) entered via OS controlled consoles.
Since most printer keyboards do not have the backspace key the facil­
ity is simulated via a "substitute" backspace character, defined here
for the purposes of illustration as the "not" character " ... " The in­
stallation selects the actual "substitute" backspace at HASP genera­
tion time. Rules concerning the " ... " character follows:

The

1. Although the entry of " ... " does not physically move the
printer position backward, the command text character pre­
ceding the " ... " and the " ... " character itself are removed
from the internal image of the command.

2. The backspace edit is unconditional; therefore, " ... " cannot
be entered for the purpose of contributing to the text of
the message regardless of HASP or OS command entry
specifications.

3. Multiple " ... " entries causes a logical backspace for each
" ... " entered. (Backspacing beyond the beginning of the
line is prevented.)

following examples illustrate the above rules:

Entr~ Result

$DN"'Q $DQ

$DJ4 CJ4 $CJ4

$D'ABE"'C' $D'ABC'

$C' C ABC C ABC

HASP Operator's Guide - Page 5.1

698.1

HAS P

(The remainder of this page intentionally left blank.)

698.2

HAS P

TABLE 1.1.1 HASP COMMAND VERBS

COMMAND

$A
$B
$C
$D

I $E

$F
$H
$1
$N
$p

$R
$S
$T

$Z

DEFINITION

RELEASE
BACKSPACE
CANCEL
DISPLAY

RESTART

FORWARD SPACE
HOLD
INTERRUPT
REPEAT
STOP

(AFTER CURRENT
FUNCTION)

ROUTE OUTPUT
START
SET

HALT
(IMMEDIATE)

OPERAND TYPES

ALL JOBS OR SPECIFIC JOBS
PRINTERS
DEVICE FUNCTIONS OR JOBS
DISK, UNITS, LINES, REMOTES,
MESSAGES, JOBS, QUEUES, ACTIVITY,
INITIATORS, OR OUTSTANDING REQUESTS
DEVICE FUNCTIONS,OR JOBS IN
EXECUTION
PRINTERS
ALL JOBS OR SPECIFIC JOBS
PRINTERS
DEVICE FUNCTION
DEVICE, INITIATOR, SYSTEM, OR
JOB

BY ROUTING GROUP OR JOB
DEVICE, INITIATOR, OR SYSTEM
DEVICE, INITIATOR, JOB, FCB IMAGE,
OR SYSTEM JOB NUMBER BASE
DEVICE

HASP Operator's Guide - Page 6

699

HAS P

TABLE 1.1.2 ALTERNATE HASP COMMAND VERBS

ALT FORM SHORT *

$ALTER $T

$BACKLOG $DQ
$BACKSPACE $B
$DEFINEI $TI
$DEFINE $01

$DELETEJ $PJ

$DELETE $C

$DISPLAY $0

$DRAIN $p

$LIST $T

$LOCATE $D

$HOLO $H

$IDJ $0

$RELEASE $A

$REPEAT $N

$RESTART $E

$ROUTE $R
$SETJOBNO.TO $TJ

$SPACE $T

SAMPLE INPUT - comments

$ALTER JOB4,P=+4 - up JOB 4 priority
by 4

$BACKLOG - display number of queued jobs
$BACKSPACE ··PRTl - backspace printer 1
$DEFINE II,ABC - set initiator classes
$DEFINE - list all initiator status

information
$DELETE JOB 4 - purge JOB 4 after

current activity
$DELETE PRT2 - cancel currerit output

on PRINTER 2
$DISPLAY DISKS -
$DISPLAY UNITS -
$DISPLAY RMTS -
$DRAIN I - stop all further execution
$DRAIN 12 - stop further execution

with INITIATOR 2
$DRAIN PRTI - stop printing on PRINTER 1

after current job
$LIST CONl,15 - all only messages

classes above 15
$LOCATE JOB 4 - display job information

about JOB 4
$HOLD ALL - prevent all jobs from

beginning activity
$HOLD JOB 4 - prevent JOB 4 from

beginning activity
$IDJ JOB 3 - display job information

about JOB 3
$IDJ 'ABCJOB' - display job information

about all jobs with
name 'ABCJOB'

$RELEASE ALL - release all jobs in queue
if held by $HOLO ALL

$RELEASE ·JOB 6 - release JOB 6
$REPEAT PRTI - repeat the current

function on PRINTER 1
$RESTART LNE3 - abort current activity

and start over
$ROUTE ALL,RMT3,LOCAL remote output
$SET JOB NO. TO 4 - set system generated

job number base
$SPACE PRTl,C=l - single space each line

on printer until next
job

HASP Operator's Guide - Page 7

700

HAS P

TABLE 1.1.2 ALTERNATE HASP COMMAND VERBS (continued)

ALT FORM SHORT * SAMPLE INPUT - comments

$ START $5 $START - start job processing
$START LNE3,QXZ3 - start line with

password

$STATU5
$STOP

$DA
$Z

$START TP~1,180 - start input tape
using uni t. 180

$STATUS - list current activity
$STOP PRTI - suspend operations until

$ START

* The short form listed in this table is the character string to
which the ALTERNATE FORM is converted. Thus verbs such as:
$IDJ, $LOCATE, $DI5PLAY are all converted to $D and are therefore
equivalent.

The syntax of each command is checked after the short form has
been generated. Therefore the operator should attempt to use
the short form of the command in preference to the long form.

HASP Operator's Guide - Page 8

701

HAS P

TABLE 1.1.3 HASP COMMAND SUMMARY

COMMAND

JOB QUEUE
$AA
$DA
$DF

$DN

$DQ
$HA

JOB LIST
$A job list
$C job list
$D job list

$E job list
$H job list
$P job list

REMOTE SOURCE

IF
IF
IF

IF
IF

NO
OK
OK

OK

OK
NO

OWNER
OWNER
OWNER

NO
OWNER
OWNER

MISCELLANEOUS JOB
$A 'job name' IF
$C 'job name' IF
$D : job name'

OWNER
OWNER
OK

$E 'job name' NO

$H 'job name' IF OWNER
$P 'job name' IF OWNER
$T Jx ... j,operand NO

$T Jx ... j

DEVICE LIST
$B device list
$C device list
$E device list
$F device list
$I device list

$N device list
$P device list

NO

IF OWNER
IF OWNER
IF OWNER
IF OWNER
IF OWNER

IF OWNER
IF OWNER

COMMENTS

Release all jobs
Display active jobs
Display number of queued jobs
awaiting forms

Display job information on queued
jobs

Display number of queued jobs
Hold all jobs currently in the

system

Release specified job(s)
Cancel specified job(s)
Display job information on specified

job(s)
Restart execution of specified job(s)
Hold specified job(s)
Stop specified job(s) after cur~~pt
activity

Release job by OS job name
Cancel job by OS job name
Display job information on job(s)
Restart execution of job by OS job

name
Hold job by OS job name
Stop job by OS job name
Set job class or priority - c=class
or p=priority

Set HASP internal job number

Backspace device(s)
Cancel current function on device(s)
Restart current function on device(s)
Forward space device(s)
Interrupt the current function on
printer(s)

Repeat current function on device(s)
Stop the device(s)

HASP Operator's Guide - Page 9

702

HAS P

Table 1-.1.3 HASP COMMAND SUMMARY (continued)

COMMAND REMOTE SOURCE

DEVICE LIST (continued)
$S device list IF OWNER
$T device IF OWNER
$Z device list IF OWNER

SYSTEM
$D1 YES

$P1 NO

$S1 NO
$TI NO
$P NO
$PHASP NO
$S NO
$TF NO

MISCELLANEOUS DISPLAY
$DD YES
$Dline n YES
$DR YES

$DRM YES
$DU YES

REMOTE JOB ENTRY
$DM YES
$R IF OWNER

COMMENTS

Start device(s)
Set device
Halt device(s) (suspend operation)

Display initiator(s), classes and
status

Stop initiator(s) after current
activity

Start initiator(s)
Set initiator classes
Stop system
Terminate HASP job
Start system
Set FCB image for 3211 carriage
control C=V

Display Direct Access devices
Display HASP remote job entry line
Display outstanding reply
identification

Display devices on remote(s)
Display local unit record devices

Display message
Route output for specified job or
device group to another device
group

Only the characters required to recognize the uniqueness of each
command are defined in this table. For complete entry format, see
the individual command description.

HASP Operator's Guide - Page 10

703

HAS P

1.2 COMMAND DESCRIPTION SYNTAX

The following conventions are used to describe the format
requirements and options of the various HASP commands:

1. Upper case characters -

2. Lower case keyword

3. Braces { }

4. Brackets []

5. character string x ••. -

6. character(s) j or jj

7. character(s) r or rr

8.

the exact characters should be
used wh~n selecting the option

appropriate text should be inserted
to replace the keyword

one of the options -enclosed by the
braces must be selected, unless
part of-an-unselected option

one of the options enclosed by
the brackets may be selected

the character preceeding the x is
sufficient to identify the option
and any alphabetic characters
following are optional; i.e.,
Jx ... indicates that the single
character "J" is sufficient to
identify the operand, however,
"JOB", "JOBS", or any other
alphabetic character strings will
be accepted as long as they begin
with the character "J".

a job number is desired

a routing code is desired (routing
codes refer to local [r=O] or remote
terminal [r=l to &MAXRJE] output
routing of job print or punch)

a device number is desired

9. character(s) j-jj or r-rr - a range of numbers is desired,
indicating the ability of the
command to operate on one or more
jobs or routing codes

HASP Operator's Guide - Page 11

704

HAS P

1.3 STANDARD RESPONSES

It is a basic philosophy of the HASP System to display a response
to each HASP command entered during normal job processing. In
keeping with this philosophy the processing of each command entered
into the HASP System results in one or more ~esponses, which are
displayed upon the requesting console or, in the event of card
input, upon an associated console device.

OK RESPONSE

The response "OK" is used in many commands to signify that action
requested has been taken or that the request has been noted and
action will be taken by the system when appropriate. The "OK"
response, when issued, is the last message issued as a d~rect
response to the operator; however, many commands will cause action
by components of the system which will issue information
messages to the central operator console devices.

JOB INFORMATION RESPONSE

Many HASP commands will display job information as a response to
the operator. The format of the response is as follows:

1. Jobs queued and waiting for processing:

JOB j [name] AWAITING!EXEC Class! PRIO priority ~OLD > J' .'
PURGE PURGE
PRINT r DUPLICATE
PUNCH r

2. Jobs being processed (active):

JOB j [name] {EXECUTING ClaSS} PRIO priority~OLDl
IS PURGING ~URGEJ
ON device name

HASP Operator's Guide - Page 12

705

HAS P

Where:

j

name

class

r

device na~e

priority

HOLD

PURGE

DUPLICATE

= the HASP assigned job number

= the OS job name assigned by the programmer
(displayed only if requested by the installation
at HASPGEN time)

= the job class specified on the job card or set by
the operator with the $T JOB command

= the remote terminal to receive the output for
which the job is queued (if r=O the job is queued
for local printing)

= the device that is ready, printing or punching
data associated with the job. If the operator has
repeated the output of a job, the lowest numbered
device will be listed.

= the HASP queueing priority

= the job is in HOLD status and must be released to
continue to flow through the system

= the job has been flagged for purge and will be
deleted from the system

= the job is waiting for OS execution and another
job is currently executing with the same as job
name

HASP Operator~s Guide - Page 13

706

HAS P

Examples:

JOB 12
JOB 13
JOB 14
JOB 13
JOB 15
JOB 16

JOHNSJB
JOHNSJB
PUNCHJOB'
TESTOUT
ASMJOB
UNIQUE

EXECUTING A PRIO 9
AWAITING EXEC B PRIO 8 DUPLICATE
ON RMl.PUl PRIO 7
ON PRINTERI PRIO 8
AWAITING PRINT 1 PRIO 6'
AWAITING PUNCH 0 PRIO 6

HASP Operator's Guide - Page 14

707

· HAS P

STANDARD ERROR RESPONSES

The following standard messages will be returned in response to
invalid SYNTAX in command entry:

1. xxxxxxxx INVALID COMMAND - The command identified by the
eight characters displayed was not found in the
HASP command verb table. No action has been taken.

2. xxxxxxxx INVALID OPERAND - The input stream identified by
the eight characters displayed was not recognized
as a valid operand. With exception of device list
commands no action has been taken. In the case of
device list commands action has been taken on
operands preceding the INVALID OPERAND.

HASP Operator's G~ide - Page 15

708

HAS P

1.4 JOB QUEUE COMMANDS

Definition:

Action:

Responses:

Examples:

$A Ax •.• RELEASE ALL JOBS

Any jobs in the system held by the $HA command
will be released and processing allowed

OK - one or more jobs have been
released

QUElJE. No.T HELD - no jobs have been released

1. user
system

2. user
,system

3. user
system

- $A ALL
- OK

- $A A
-.0:«

- $A.A
-,; QUEUE· NOT. HELD ..

HASP Operator's Guide - Page 16

709

U .M. u r

Definition:

Action:

Responses:

Examples:

Comments:

$D Ax ... DISPLAY ACTIVE JOBS

Job infor~ation for each active job in the
system will be displayed.

Job information messages - (see section 1.3)

NO ACTIVE JOBS

LIST INCOMPLETE

1. user - $D A

- no active jobs were
found

- the last job listed
was removed from the
HASP job queue while all
HASP WTO buffers were in
use.

system - JOB 3 ASSEMBLY EXECUTING A PRIO 5

2. user - $D ACTIVE
system - JOB 20 LISTALL ON PRINTER 2 PRIO 6

The LIST INCOMPLETE response shoul¢ be extremely
rare when s-q,fficient WTO buffers have been
generated to handle the message traffic.

HASP Operator's Guide - Page 17

710

HAS P

Definition:

Action:

Responses:

Examples:

$D, Fx ... [, r-rr]

DISPLAY NUMBER OF JOBS QUEUED ON FORMS

The number of jobs queued for special forms printers
and special forms pu~ches will be summarized and
displayed for the local or remote workstations
specified by the route codes (r~rr). If the route
code ranges are not specified, only the local queues
are displayed.

jjj FORM ffff PRT rrr

,jjj FORM ffff PUN rrr

1. user - $D F
system - 4 FORM 0030

3 FORM 0132
1 FORM 0011

2. user $D F, 3-'4
system - 2 FORM 6431

1 FORM 7346
3 FORM 0563
1 FORM 7346

- one response for each
form/route code combination
with jobs queued for special
f6rms printer output meaning:
jjj j6bs are queued for form
ffff at a printer located
at the local or remote sta-
tion as indicated by rrr.

- one response for each
form/route code combination
with jobs queued for special
forms punch output.

PRT 0
PRT 0
PUN 0

PRT 3
PRT 3
PRT 4
PRT 4

HASP Operator's Guide - Page 18

711

HAS P

Definition:

Where:

Ac~ion:

$D Nx ... f,{r-rr} [,queue]]
lqueue

DISPLAY JOB INFORMATION ON QUEUED JOBS·

queue = XEQ - only jobs waiting for execution are
to be displayed in order by class
(A I B, C, etc.)

= XEQ class - only jobs waiting for execution in
the designated class are to be
displayed

= PRT

= PUN

= HOLD

- only jobs waiting for print are to
be displayed in order by route
code (0, I, 2, etc.)

- only jobs waiting for punch are to
be displayed in order by route
code (0, I, 2, etc.)

- only jobs waiting for any activity
and in hold status are to be
displayed

If routing and/or queue type restriqtions are not
specified, job information will be displayed for-all
jobs queued for execution (XEQ), print (PRT), and
punch (PUN); destined for output at local and all
remote terminal printer-punch unit record groups.
If the routing restriction is specified in operand 2,
only the jobs with output destined to the terminals
designated will be displayed. If the queue type is
specified in operand 2 or 3, only jobs in the
selected queue with the appropriate routings will be
displayed.

In addition to displaying job information, the per­
centage of spool disk utilization will be displayed
following the search for queued jobs.

HASP Operatorts Guide - Page 19

712

HAS P

Responses:

Examples:

Comments:

Job information message - , (see section 1. 3)

xx PERCENT SPOOL UTILIZAT.ION - the last response

LIST INCOMPLET~, - the last job listed
prior to this mes­
sage was removed from
the HASP job queue
while all HASP WTO
buffer~ere in use

.1. user - $D N,4 ,PRT

2.

3.

system - JOB 6 PRINTJOB AWAITING PRINT 4 PRIO 6
JOB 8 ASSEMBLY AWAITING PRINT 4 PRIO 5
25 PERCENT SPOOL UTILIZATION

1J.se1=' - $D N, 0-2, XEQ
system - JOB 3 UNIQUE AWAITING EXEC A PRIO 9 DUPLICATE

,J.QB 6 JOHNSJB AWAITING EXEC A PRIO 9
JOB 2 BILLSJB AWAITING EXEC A PRIO 8
30 PERCENT SPOOL UTILIZATION

user - $D N,PUN
system - JOB 6 XYZJOB AWAIT:rNG PUNCH 9 PRIO 9

JOB. 7 XYZJOB AWAITING PUNCH 9 PRIO 8
JOB 12 JOBXYZ AWAITING PUNCH 1 PRIO 13
JOB 15 JOBXYZ AWAITING PUNCH 1 PRIO 8
JOB '5 JOBJOB AWAITING PUNCH 3 PRIO 10

.35 PERCENT SPOOL UTILIZATION

In exampl'e 1 the operator has requested that only jobs
with output to remote 4 and wait,ing for print to be
displayed. .

In example 2 the operator has requested information
on jobs waiting for execution with output to local,
remote 1, or~rem6te 2 device~.

HASP Operator's Guide - Page 20

713

HAS P

Definition:

Where:

Action:

$D QX ••• [{r-rr} [,queue]l
,queue J

DISPLAY NUMBER OF JOBS QUEUED

queue = XEQ - only jobs waiting for execution
are to be counted and summarized
in ordeT of class (A, B, C, etc.)

= XEQ class - only jobs waiting for execution
in the designated class are to
be counted and summarized

= PRT

= PUN

== HOLD

- only jobs wqiting for print are
to be counted and summarized in
order by route code (0, 1, 2, etc.)

only jobs waiting for punch are
to be counted and summarized in
order by route code (0, 1, 2, etc.)

- only jobs waiting for any acti vi ty
and in ~old status are to be
displayed

If routing and/or queue type restrictions are not
specified, the number of jo.bs queued for execution

. (XEQ) , print (PRT) , and punch (PUN); destined for
output at local and all remote terminal printer~
punch unit record groups will be displayed. If
the routing restriction ts specified in operand 2,
only the count of jobs with output destined to the
terminals designated will be displayed. If the
queue type is specified in operand 2 or 3, only the
count of jobs in the selected queue with the appro~
priate routings will be displa¥ed.

In addition to displaying number of jobs queued,
the percentage of spool disk utilization will be
displayed following the search for queued jobs.

HASP Operator's Guide - Page 21

714

HAS P

Responses:

Examples:

Comments:

nn queue type - number of jobs in
designated queue type-­
one line for each queue
type

xx P~RCENT SPOOL UTILIZATION - the last response

1. user - $D Q,4,PRT
system - 2 PRT 4

25 PERCENT SPOOL UTILIZATION

2. user - $D Q,O-2,XEQ A
system - 3 XEQ A

30 PERCENT SPOOL UTILIZATION

3. user - $D Q,PUN
system - 2 PUN 0

2 PUN 1
1 PUN 3
35 PERCENT SPOOL UTILIZATION

In example 1 the operator has requested that the
number of jobs with output to remote 4 and waiting
for print to be displayed.

In example 2 the operator has requested that the
number of jobs waiting for execution class A with output
to local, remote 1, or remote 2 devices

In example 3 the operator has requested that the
number of jobs waiting for punch be displayed. The
response shows two jobs waiting for punch at remote
1 (route code 1) ~ ~nd one job wa~ting for punch at
remote 3 (route code 3).

HASP Operator's Guide - Page 22

71S

HAS P

Definition:

Action:

Response:

Examples:

$H Ax ... HOLD ALL JOBS CURRENTLY IN THE SYSTEM

All jobs currently in the system will be placed in
the HOLD status and" further processing will be
prevented. Any new jobs entering the system sub­
sequent to $HA command will not be held. The
$A ALL command may be used to negate the effect
of the $HA command or the $A JOB command may be
used to negate the effects for specific jobs.

OK - all jobs currently in the system have been
placed in the hold status

1. user - $H ALL
system - OK

2. user - $H A
system - OK

HASP Operator's Guide - Page 23

716

HAS P

1.5 JOB LIST COMMANDS

JOB LISTS

All job list commands accept requests for action for one or
moie jobs. The following format i~ used for entry of job list
commands:

Each operand requests action upon a range of job numbers;
i.e., if "1-300" were specified for an operand, action
would be attempted on jobs 1, 2, 3, ... 300. If a single
job is desired, the "-jj" may be omitted or entered with
a value equal to the first value of the range. If the
second value of the range is not greater than the first,
only the job corresponding to the second value will be
operated upon.

Limitations:

The maximum of five (5) range groups may be entered; any
entries beyond operand five will be ignored.

HASP Operator's Guide - Page 24

717

HAS P

Definition:

Action:

Response:

Examples:

Comments:

$A job list RELEASE SPECIFIED JOB(S)

Specified jobs will be released from the HOLD
status if held by $H ALL, $H JOB, or JCL
TYPRUN=HOLD.

JOBj RELEASED
JOB(S) NOT FOUND

JOBj NOT HELD

- one response for each job released
- none of the specified job(s) were

found
- one re$ponse for each job indicated

but not in the hold status

1. user - $A JOB 3
system - JOB 3 RELEASED

2. user - $A JOBS 4-6
system - JOB 4 RELEASED

JOB 6 NOT HELD

In example 2 job 5 was not found.

HASP Operator's Guide - Page 25

718

HAS P

Definition:

Action:

Limitations:

Response:

Examples:

$C job list CANCEL SPECIFIED JOB(S)

Specified jobs will be flagged for PURGE, if NOT
in OS--execution will have its activity deleted
and be queued for purging. If the job is queued
for execution, or being read into the system it
will have its JCL queued for print prior to purging.

If the job is on an output device which has been re­
peated, multiple $C commands may be necessary to purge
the job.

Job information response - one response for each
job cancelled

JOB(S) NOT FOUND - none of the specified
jobs were found

1. user - $C'JOB 7
system - JOB 7 YOURJOB AWAITING PUNCH 0

PRIO 7 PURGE

HASP Operator's Guide - Page 26

719

HAS P

Definition:

Response:

Examples:

Comments:

$D job list DISPLAY JOB INFORMATION ON SPECIFIED JOB(S)

Job information response·

JOB(S) NOT FOUND

1. user - $D JOBS 1-10

- one response for each
specified job found in
the system

- none of the specified jobs
were found

system - JOB 2 YOURJOB EXECUTING A PRIO 13
JOB 3 YOURJOB AWAITING EXEC A PRIO 13 DUPLICATE
JOB 6 ANOTHER ON PRINTERl PRIO 12
JOB 7 JOHNSJB AWAITING PRINT 0 PRIO 12 HOLD

In example 1 jobs 1, 4, 5, 8, 9 and 10 were not found.

If the $D job list conunand is entered fre/m a remote
terminal, only those jobs belonging to the remote will
be displayed.

HASP Operator's Guide - Page 27

720

HAS P

Definition:

Action:

Note:

Response:

Examples:

Comments:

$E job list RESTART EXECUTION OF SPECIFIED JOB(S)

Each specified job found in the system and currently
in OS execution will have its HASP execution con­
troller flagged to restart the job. Upon completion
of OS execution (normal or abnormal) the controller
will place the job back on the HASP execution queue.

This command requires job and system command author­
ity and is not available to HASP remote operators.

Job information response - one response for each
specified job in execution
which has been flagged for
re-execution

JOBj NOT RESTARTABLE - one response for each
specified job found in the
system which cannot cur­
rently be restarted

JOB(S) NOT FOUND -'none of the specified jobs
were found

1. user - $E J6
system - JOB 6 ANY EXECUTING A PRIO 8

2. user - $E J3
system - JOB 3 MYJOB EXECUTING A PRIO 6
user - C MYJOB
OS - accepted message

In example 1 the operator desires to let job 6 run
to completion before requeueing for execution.

In example 2 the operator desires to abort current
execution of job 3 and requeue for execution.

HASP Operator's Guide - Page 27.1

720.1

HAS P

(The remainder of this page intentionally left blank.)

720.2

HAS P

Definition:

Action:

Response:

Examples:

$H job list HOLD SPECIFIED JOB(S)

Each specified job found in the system will
be placed in the HOLD status.

Job information response - one response for each job
held

JOB(S) NOT FOUND

1. user - $H J4

- none of the specified jobs
were found

system - JOB 4 YOURJOB AWAITING PRINT 0
PRIO 4 HOLD

HASP Operator's Guide - Page 28

721

HAS P

Definition:

Action:

Response:

Examples:

$p job list STOP SPECIFIED JOB(S) AFTER CURRENT
ACTIVITY

Specified jobs will be flagged for PURGE and, if
not active, will be queued for purging. Jobs
which are active will be queued for purging upon
completion of current activity. Jobs awaiting
execution will be queued for printing of JCL prior
to purging.

Job information response - one response for each
job which will be stopped

JOB(S) NOT FOUND - none of the specified jobs
were found

1. user - $p J7
system - JOB 7 JOHNSJB ON PRINTER2 PRIO 4 PURGE

HASP Operator's Guide - Page 29

722

HAS P

1. 6 MISCELLANEOUS JOB COMMANDS

Definition:

Where:

Limitations:

Action:

Response:

Examples:

$A'jobname' RELEASE JOB SPECIFIED BY OS JOBNAME

'jobname' = the OS job name appearing on the user's
job card enclosed by apostrophes. The
name may be upper or lower case alpha­
meric characters, but must not contain
blanks.

This command is valid only if requested by the in­
stallation at HASPGEN time.

The HASP job queue is searched for the single job
with the specified job name and the action of the
$A job list command is performed as though that
command had been entered for the job. If the job
is not found or if more than one job with the spec­
ified name is encountered, no action is taken and
an appropriate diagnostic is displayed.

JOBj RELEASED - the job specified has
been released

jobname NOT FOUND - the job named is not
in the system

JOBj NOT HELD - the specified job was
not in hold status

MULTIPLE JOBS WITH jobname - more than one job with
the specified name is
in the system

- messages compatible
with $D 'jobname' will
follow

1. user - $A'MYJOB'
system - JOB 4 RELEASED

HASP Operator's Guide - Page 30

723

HAS P

Definition:

Where:

Limitations:

Action:

Responses:

Example:

$C'jobname' CANCEL JOB SPECIFIED BY OS JOBNAME

'jobname' = the OS job name appearing.on the user's
job card enclosed by apostrophes. The
name may be upper or lower case alpha­
meric characters, but must not contain
blanks.

This command is valid only if requested by the in­
stallation at HASPGEN time.

The HASP job queue is searched for the single job
with the specified job name and the action of the
$C job list command is performed as though that
command had been entered for that job. If the job
is not found or if more than one job with the spec­
ified name is encountered, no action is taken and
an appropriate diagnostic is displayed.

Job information response - response listing the
current status of the
job after command action

jobname NOT FOUND- - the job named is not in
the system

MULTIPLE JOBS WITH jobname - more than one job with
the specified name is in
the system

1. user - $C'YOURJOB'

- messages compatible with
$D'jobname' will follow

system - JOB 82 YOURJOB AWAITING PRINT 0

HASP Operator's Guide - Page 30.1

723.1

HAS P

Definition:

Where:

Limitations:

Response:

Examples:

$D'jobname' DISPLAY JOB INFORMATION ON JOB SPECIFIED
BY OS JOBNAME

'jobname' = the OS job name appearing on the 'user's
job card enclosed by apostrophes. The
name may be upper or lower case alpha­
meric characters, but must not contain
blanks.

This command is valid only if requested by the in­
stallation at HASPGEN time.

Job information response - one response for each job
in the system with the OS
job name specified

LIST INCOMPLETE - the last job listed was
removed from the HASP job
queue while all HASP WTO
buffers were-rn use

jobname NOT FOUND - the job named is not in
the system

user - $0 'my job ,
system - JOB 4 MYJOB ON PRINTER 1 PRIO 13

JOB 5 MYJOB AWAITING PRINT 0 PRIO 13
JOB 6 MYJOB EXECUTING A PRIO 13
JOB 7 MYJOB AWAITING EXEC A PRIO 13 DUPLICATE

HASP Operator's Guide - Page 30.2

723.2

HAS P

Definition:

Where:

Limitations:

Action:

Note:

Responses:

Examples:

Comments:

$E'jobname' RESTART EXECUTION OF JOB SPECIFIED BY
OS JOBNAME

'jobname' = the OS job name appearing on the user's
job card enclosed by apostrophes. The
name may be upper or lower case alpha­
meric characters, but must not contain

·blanks.

This command is valid only if requested by the in­
stallation at HASPGEN time.

The HASP job queue is searched for the single job
with the specified job name and the action of the
$E job list command is performed as though that
command had\been entered for that job. If the job
is not found or if more than one job with the spec­
ified name is encountered, no action is taken and
an appropriate diagnostic is displayed.

This command requires job and system command author­
ity and is not available to HASP remote operators.

Job information response - response listing the
current status of the
job (the job's execution
controller has been
flagged to restart the
job)

JOBj NOT RESTARTABLE - the specified job is not
currently in execution

jobname NOT FOUND - the job·named is not in
the system

MULTIPLE JOBS WITH jobname - more than one job with
the specified name is in
the system

1. user
system

2. user
system
user
OS

- messages compatible with
$D'jobname' will follow

- $E 'ANY'
- JOB 6 ANY EXECUTING A PRIO 8
- $E 'MYJOB'
- JOB 3 MYJOB EXECUTING A PRIO 6
- C MYJOB
- accepted message

In example 1 the operator desires to let job "ANY"
run to completion before requeueing for execution.

In example 2 the operator desires to abort current
execution of job "MYJOB" and requeue for execution.

HASP Operator's Guide - Page 30.3

723.3

HAS P

Definition:

Where:

Limitations:

Action:

Responses:

Example:

$H'jobname' HOLD JOB SPECIFIED BY OS JOBNAME

'jobname' = the OS job name appearing on the user's
job card enclosed by apostrophes. The
name may be upper or lower case alpha-­
meric characters, but must not contain
blanks.

This command is valid only if requested by the in­
stallation at HASPGEN time.

The HASP job queue is searched for the single job
with the specified job name and the action of the
$H job list command is performed as though that
command had been entered for the job. If the job
is not found or if more than one job with the spec­
ified name is encountered, no action is taken and
an appropriate diagnostic is displayed.

Job information response - response listing the
current status of the
job after command action

jobname NOT FOUND - the job named is not in
the system

MULTIPLE JOBS WITH jobname - more than one job with
the specified name is in
the system

1. user - $H 'ANYJOB'

- messages compatible with
$D'jobname ' will follow

system - JOB 302 ANYJOB AWAITING EXEC A PRIO 4
HOLD

HASP Operator's. Guide - Page 30.4

723.4

HAS P

Definition:

Where:

Limitations:

Action:

Responses:

Example:

$P'jobname' STOP JOB SPECIFIED BY OS JOBNAME

'jobname' = the OS job name appearing on the user's
job card enclosed by apostrophes. The
name may be upper or lower case alpha­
meric characters, but must not contain
blanks.

This command is valid only if requested by the in­
stallation at HAS~GEN time.

The HASP job queue is searched for the single job
with the specified job name and the action of the
$P job list command is performed as though that
command had been entered for the job. If the job
is not found or if more than one job with the spec­
ified name is encountered, no action,is taken and
an appropriate diagnostic is displayed.

Job information response - the job specified has
been stopped

jobname NOT FOUND - the job named is not
in the system

MULTIPLE JOBS WITH jobname - more than one job with
the specified name is
in the system

1. user - $P 'UNIQUE'

- messages compatible with
$D'jobname' will follow

system - JOB 31 UNIQUE ON PRINTER 2 PRIO 6 PURGE

HASP Operator's Guide - Page 30.5

723.5

HAS P

(The remainder of this page intentionally left blank.)

723.6

HAS P

Definition:

Where:

Action:

Limitation:

Responses:

Examples:

$T ~Tx ... j , {p=priori ty } SE'T JOB CLASS OR PRIORITY
. P=+priority .

P=-priority
C=clas's

priority = a numeric value 0 through 15 which indi­
cates the HASP queuing priority desired
for the specified job.

+priority = a numeric value which is to be added to
the present HASP queuing priority of the
specified job.

-priority = a numeric value which is to be subtracted
from the present HASP queuing priority of
the specified job.

class = a single character (A,B,C---Z,O,1---9)

1.

representing the new execution class of
the specified job. (Lower case characters
will be made upper case.)

PRIORITY SETTING
The specified job's priority will be adjusted
as indicated; however, if the resulting priority
is outside the range 0-15, the final priority is
adjusted to 0 or 15 as appropriate.

2. CLASS SETTING
The specified job's execution class will be set
to the indicated plass.

No action will be taken on a job that is currently
active.

If a job's class is execution batching (one of the
classes specified by HASPGEN parameter &XBATCHC) it
should not be changed to a non-batching class. Sim­
ilarly,-a-non-batching class should not be changed
to a batching class. Such actions will cause the
job to execute incorrectly.

Job information response--response for the job being
set.

1. user - $TJ4,P=14
system - JOB 4 ANYJOB AWAITING EXEC A PRIO 14

2. user - $TJ6,C=Z
system - JOB 6 YOURS AWAITING EXEC Z PRIO 3

HASP Operator's Guide- Page 31

724

HAS P

Definition:

Where:

Action:

Responses:

Examples:

Comments:

$T Jx ... n SET HASP INTERNAL JOB NUMBER

n = the new base number for automatic job number
assignments.

The new base number will be set causing the next
job number assignment to be "JOB n" or the first
number beyond n that is not currently held by a job.

OK - indicates that the.new job number base has
been set.

1. user - $TJl
system - OK

2. user - $TJOBIOO
system - OK

In example 1 assume that jobs 1, 3 and 4 are
currently in the system when the input service
processors read the next job. An attempt to
assign the value of "1" to the new job will fail;
however, the job will be assigned the value of "2".
Subsequent jobs will be assigned the value of 5, 6, 7 ...
If, however, the jobs 1, 3 and 4 are not in the
system, new jobs entering the system will receive
job number 1, 2, 3, 4 ...

HASP Operator's Guide - Page 32

725

HAS P

1.7 DEVICE LIST COMMANDS

Unless the format of the acceptable device list required by a com­
mand is explicitely specified, all device list commands accept en­
tries of the following form:

$verb device l ,device2 , ... ,devicen

Each operand specifies a single device that is to be acted upon by
the HASP System. The device may be specified by its full name or
abbreviated name as "follows:

CONSOLEn - CONn (abbreviation must be used)
INTRDRn - RDIn (abbreviation must be used)
LINEn - LNEn
PRINTERn - PRTn
PRINTRn - PRTn (used when more than 9 printers· are on the

system)
PUNCHn - PUNn (abbreviation must be used)
READERn - RDRn
RMr .PRn·
RMr.PUn
RMr.RDn
TAPEn

Limitations:

- TPEn

(no abbreviation)
(no abbreviation)
(no abbreviation)

A maximum of five (5) operands may be specified in a single
device list command. Operands which are in excess of the
maximum allowed will be considered part of the fifth operand.

HASP Operator's Guide - Page 33

726

HAS P

NOTES:

1. Device list commands generally perform operations which occur
after the response to the command entered; i.e., the OK
response to a device list command signifies that the command
has been a~cepted and an attempt to perform the requested
action will be made for all devices listed.

Additional messages will be displayed on the operator's con­
sole when the action requested is either in process or has
been completed as appropriate. See Messages and Codes
section of this manual for the format and meanings of these
messages.

2. An error response to a device list command indicates that the
action requested by the previous operands will be attempted
but the operand in error and all following operands will be
ignored.

3. Many commands will accept operands as being valid even though
the devices specified are unable to perform the function
requested. Table 1.7~l identifies the devices affected by
each device list command.

HASP Operator's Guide - Page 34

727

HAS P

TABLE 1.7.1 DEVICES AFFECTED BY DEVICE LIST COMMANDS

$B $C $E $F $I $N $P $S $T $Z

LINE y ·4 y y y7 y7

LOCAL READER y2 Y Y y Y

INPUT TAPE y2 Y Y Y Y

REMOTE READER y2 y5 Y Y y

INTERNAL READER y2,3 y6 Y y y7

LOCAL PRINTER y Y Y Y Y Y Y y y y

REMOTE PRINTER Y Y Y Y Y Y Y Y Y Y

LOCAL PUNCH yl Y Y yl yl y y y y Y

REMOTE PUNCH yl y y yl yl y y y y Y

LOCAL CONSOLE Y Y Y

lRESTARTS FUNCTION

2DELETES CURRENT JOB

3SIMULATES EOF IF NO CURRENT EXCP

4DRAIN AFTER SIGNOFF OR $E IF REMOTE ACTIVE

5DRAIN AT EOF AS OPPOSED TO END OF FUNCTION FOR CURRENT JOB

6AUTOMATICALLY STARTED BY USER PROGRAM

7COMMAND ACCEPTED BUT WILL HAVE NO EFFECT

HASP Operator's Guide - Page 35

728

HAS P

Definition:

Where:

Action:

I Note:

Responses:

Examples:

Comments:

$B device [page~ Dx •• j aACKSPACE DEVICE(S)

device = HASP printer device desired to perform the
backspace

pages = the number of pages (up to 9999) to back­
space (optional for the last device of the
list, mandatory for the other devices)

DX ••• = backspace to beginning of data set

The designated printer will, if ACTIVE, back up the
designated number of pages in the current data set
and resume printing. If the beginning of the data
set is encountered during the backspace process, the
printer will resume printing at the beginning of the
data set. If the number of pages is not specified,
the count of one (1) will be assumed for the last
device in the list.

A $B directed to a punch will have the effect of re­
starting the current function.

OK - the specified printer(s) will be backspaced

1. user - $B PRT1,lO
system - OK

2. user - $B PRTl
system - OK

3. user - $B PRTl,5,PRT2

In example 1 printer 1 is to be backspaced ten pages.

In example 2 printer 1 is to be backspaced one page.

In example 3 printer 1 is to be backspaced five
pages (the count for printer 1 must be specified),
and printer 2 is to be backspaced one page.

HASP Operator's Guide - Page 36

729

HAS P

Definition:

Where:

Action:

Note:

Responses:

Examples:

$C device list CANCEL CURRENT ACTIVITY ON DEVICE(S)

device = HASP reader, printer, and punch devices

The current activity on the designated devices will
be terminated. In the case of printer and punch
devices, the highest priority job eligible for out­
put on the device will be selected and printing or
punching will resume for the new job. In case of
input reader devices, the current job will be queued
for print and reading will continue. In case of in­
ternal reader devices an end of file maybe simulated
based upon the instantaneous status of the device.

A $C directed to an internal reader should only be
used when the reader has been left active by a sub­
mitting task that has terminated (ie., the job that
submitted the input stream terminated without freeing
the internal reader).

OK - the activity on the specified device(s) will
be cancelled.

1. user - $C PRTI
system - OK

HASP Operator's Guide - Page 37

730

HAS P

. Definition:

Where:

Action:

Response:

Examples:

$E device list RESTART CURRENT ACTIVITY ON DEVICE(S)

device = HASP line, printer, and punch devices

The current activity on the designated devices will
be terminated. In case of printer/punch devices the
job will be returned to the appropriate print or punch
queue in order of priority and made eligible for
selection. In case of remote job entry lines, the
HASP System will, upon completion of the current
line I/O, abort all activities on the line.

OK - the specified device will be restarted

1. user - $E PRTl,PRT2
system - OK

2. user - $E LNE2
system - OK

HASP Operator's Guide - Page 38

731

HAS P

Definition:

Where:

Action:

I Note:

Responses:

Examples:

$F device [pages] FORWARD-SPACE PRINTER DEVICE (S)
DX .•.

device = HASP printer device desired to perform
the forward-space

pages = the number of pages (up to 9999) to
forward-space (optional for last device
of list, mandatory for the other devices)

DX ... = forward-space to end of data set

The designated printer will, if ACTIVE, skip forward
the designated number of pages and resume printing.
If the end of the data set is encountered during the
forward-space, printing will resume on the next data
set if present. If the number of pages is not speci­
fied for the last device in the list, the count of
one (1) will be assumed.

A $F directed to a punch device will have the effect
of restarting the current function.

OK - the specified printer(s) will be forward-spaced

1.

2.

user - $F PRT1,999
system - OK

user $F PRT1,DS

HASP Operator's Guide - Page 39

732

HAS P

Definition:

-Where:

Action:

I Note:

Responses:

Examples:

$1 device list INTERRUPT CURRENT ACTIVITY ON
PRINTER DEVICE(S)

device = HASP printer devices

The current-activity on the designated printer(s)
will, if ACTIVE, be checkpointed and terminated.
The job will be returned to the HASP SYSTEM job
queue and made available for selection. Any printer
selecting the job for output will resume printing
the job after the backspacing of one (1) page.

A $Idirected to a punch device will have the effect
of restarting the current function.

OK - the specified printer(s) will be interrupted

1. user
system

= $I PRTl
= OK

HASP Operator's Guide - Page 40

HAS P

Definition:

Where:

Action:

I

Responses:

Examples:

$N device list REPEAT CURRENT ACTIVITY ON DEVICE(S)

device = HASP printer and punch devices

The current activity on the designated printer and/or
punch devices will be repeated. This operation will
not terminate the activity in process but will place
the job back on the HASP job queue and make it avail­
able for otner devices to output. Once a device has
been repeated additional commands to repeat or inter­
rupt the device will be ignored until the device has
completed operation on the ,current copy of the out­
put. A restart,$E directed to a repeated device will
have the effect of cancelling the output.

OK - the specified printer and/or punch device(s) will
be repeated if the device(s) are eligible

1. user - $N PRTI
system - OK

HASP Operator's Guide - Page 41

734

HAS P

DEVICE STATUS

A device controlled by the HASP System will be in one of four
status conditions as follows:

ACTIVE

INACTIVE

DRAINING

DRAINED

- The device is actively performing a function.

- The device is available to perform a function,
however, no jobs are available for the device.

- The device is actively performing a function,
but upon completion of that function will not
begin a new activity.

- The device is not performing a function and will
not do so until the operator starts the device.

The operator controls the ability of a HASP device to select jobs
for processing via the following commands:

$p - stop the device
$S - Start the device

HASP Operator's Guide - Page 42

735

HAS P

Definition:

Action:

Responses:

Examples:

Comments:

$Pdevice list STOP (DRAIN) DEVICE(S)

The specified devices will be prevented from
starting any new activity. If a device is INACTIVE,
the device will be immediately stopped (DRAINED).
If a device is ACTIVE, the device status will be
DRAINING and will revert to the DRAINED status upon
completion of the current activity.

OK - the device(s) have been placed in the DRAINED
OR DRAINING status

1. user - $P PRTl,PRT2,PUNl
system - OK

When the device enters the DRAINED status, the HASP
message

"device IS DRAINED"
will be displayed on the operator's console.

If a VARY CPUx,OFFLINE command is to be issued to
stop a CPU in the Model 65 Multiprocessor configura­
tion, the operator must first insure that ~ll
devices accessible only from the CPU to be varied
offline are in the HASP DRAINED status.

HASP Operator's Guide - Page 43

71f,;

HAS P

Definition:

Note:

$S I device
line ,password
input tape,address
console

[,additional deVices] START DEVICE (S)

The explanation of this command is complex and is
separated into the definitions which follow.

HASP Operator's Guide - Page 44

737

HAS P

Definition:

Where:

Action:

Responses:

Examples:

$S device list START DEVICE(S)

device = HASP card reader, printer, and punch
devices

The devices listed will be placed in the ACTIVE
or INACTIVE status. If the device is INACTIVE,
an attempt to select and process a job will be
made. Each device started will be placed into
the OS off-line status to prevent inadvertent
OS alloGation of an active device.

OK - the device(s) listed have been started

1. user - $S PRTl,PRT2,PUNl,RDRl
system - OK

2. user - $S PRTI
system - OK

HASP Operator's Guide - Page 45

738

HAS P

Definition:

Where:

Action:

Responses:

Examples:

$S line,password START DEVICE(S)

line
password

= HASP remote job entry line device
= 0 to 8 character security password

required for remote workstation SIGNON

The specified line(s) will be started unless
allocated by OS to another activity or the desig­
nated adapter is off-line. The password will be
set for the line and be used to reject unauthorized
terminals attempting to use the line without per­
mission from the central installation. If the line
is ACTIVE, the command has the effect of setting a
new password to be used for future terminal SIGNON.

OK - the specified line(s)
will be started

device name IN USE - the line listed is
assigned by OS

device name INVALID OPERAND - the line listed, if
spelled correctly,
has not been assigned
a hardware address

1. user - $S LNEl"LNE2
system - OK

2. user - $S LNEl,XZQ,LNE2,XZZ
system - OK

HASP Operator's Guide - Pagei 46

739

HAS P

Definition:

Where:

Action:

Note:

Responses:

Examples :.

Comments:

$S input tape, address START DEVICE(S)

input = HASP input tape device
address = three digit hardware address for the

device

The specified HASP input tape device will be made
ACTIVE and will read the input stream data from
the assigned tape unit.

The unit address is used for the purpose of assign­
ing a physical device to the HASP logical device.
Once this assignment has been made succeeding $S
commands directed to the device should be made
omitting the unit specification and associated
comma.

OK - the designated tape(s) have
been started

device name IN USE - the device is currently ACTIVE
or the unit has been assigned
by OS

1. user - $S TPEl,182
system - OK

2. user - $S TAPEl,TAPE2
system - OK

In example 2 the operator has previously set tapes 1 .
and 2 to place all jobs in the hold status and now
wishes to reverse that action.

HASP Operator's Guide - Page 47

740

H A 5 P

Definition:

Where:

Action:

Responses:

Examples:

$5 console START DEVICE(S)

device = HASP console device(s)

The specified HASP consoles will be started for
all logical console classes of messages with all
levels of importance (see CONSOLE SUPPORT for
classes and levels of messages) .

OK - the HASP console(s) have been started

1. user - $5 CONl,CON2
system - OK

HASP Operator'~ Guide - Page 48

741

HAS P

Definition:

Note:

$T reader, /A=authority I
Hx ...

/
printerl
punch

console

,C= I~arriagel
,F= ! Rx ••. I Sx .••

Ax .••
n

,T= { train }

/Yx ••• I Nx ...
,S=

!
,level I ,class [,class, •..]
, Rx. • • .
,A=authority

CON,level,class[,class, ...]

SET DEVICE

The explanation of this command is complex and is
separated into the definitions which follow.

HASP Operator's Guide - Page 49

742

HAS P

Definition:

Where:

Action:

Notes:

Responses:

Examples:

$T reader,
{

Hx. • · l
A=authority J SET DEVICE

reader = HASP reader device

If Hx •.• is specified the designated reader will
be set to place all jobs subsequently read by the
reader into the execution HOLD queue. Jobs placed
into the HOLD queue may be released for execution
by use of the $AJOB command. A successful $S com­
mand directed to the reader will negate the effects
of the "$T reader,H" command causing the reader to
revert to normal reading and queueing of jobs~

If A~authority is specified the HASP command au­
thority of the designated local, tape, or internal
reader is set to allow HASP command entry as follows:

1.

2.
3.
4.

5.

6.

o - display only
1 - system control
2 - device control
4 - job control

A reader may not be used to set the command
authority of a reader device.
See CONSOLE SUPPORT section of this manual.
See $TCON and $TCONn commands.
The $S command does not negate the effects of
the "$T reader, A=authority" command.
A=authority operand requires device and system
authority.
If a specification is in error, that specifica­
tion and all succeeding specifications in the
command are rejected. Previous specifications
will be acted upon.

OK - The specified reader has been set to HOLD sub­
sequent jobs and/or its HASP command authority
has been set.

1. user - $T RDRl,HOLD
system - OK

2. user - $T RDRl,H
system - OK

3. user - $T RDRl,A=O
system - OK

HASP Operator's Guide - Page 50

743

HAS P

Definition:

Where:

$T lprinter}
punch

SET DEVICE ;arriagel

I
,C=

,F= Rx ...

1

Rx ...

Sx

Sx ...
Ax ...
n

,T= train
,s=lyx ...

lNx .. · I
= space the printer one line after each

print line; i.e., single space the printer
ignoring problem program carriage control

= set the printer or punch to output jobs
using standard forms (STD.) allowing
changing of forms on a DEMAND basis

= set the printer to print special forms
data sets using standard (STD.) forms
which the operator has loaded into the
device

Ax... = set the printer or punch to output jobs
using special forms under HASP AUTOMATIC
forms assignment

n = a one to four digit number specifying the
forms which the operator has loaded into
the device

train = the two character train or chain identi-
fication (AN, HN, PN, QN, RN, or UN).

carriage = the single character 3211 carriage tape
identification (6, 8, or U)

yx... = set the printer or punch to provide
HASP separator pages or cards between
data sets of different jobs.

Nx... = set the printer or punch not to provide
HASP separators and (in case of a non­
console remote workstation) not to
provide operator messages on the printer.

HASP Operator's Guide - Page 51

744

HAS P

Action:

Notes:

Limitations:

·The specified printer will be set to handle the
carriage control (C=), forms (F=), and train/chain
(T=) as specified or the specified eunch will be
set to handle the forms (F=) specif~ed. If the
specified printer has the UCS feature installed,
the UCS buffer will be loaded with the print train/
chain image prior to the printing of each job.

1. The effect of C=l will be negated by entry of
a successful $S command directed to the printer.

2. Multiple settings directed to the same device
using the same command entry are permitted.

3. The specification F=R will cause the printer
to print the normal batch stream jobs using the
installation's standard forms. However, a job
requesting special forms in a data set to be
printed with the rest of the job will cause a
forms mount before printing the data set and a
forms mount to STD upon completion of print­
ing this data set.

4. The specification C=V should be used in conjunc­
tion with the $TF command discussed in the
SYSTEM COMMANDS section of this manual.

1. The setting of forms, train/chain, or carriage
is valid only when the appropriate device is
not being used. It is recommended that the op­
erator enter "$P device name" and wait for it
to enter the DRAINED status. When HASP has is­
sued a forms load and is waiting for the opera­
tor to enter $S for the device, the device may
be considered inactive for the purpose of set­
ting train/chain or carriage for local printers.

2. Train/chain settings directed to remote printers
or local printers without DCS will be ignored.

3. The (T=) operand is defined only for local
printers. The remote CPU workstation operator
must load DCS buffers via means other than
through the HASP central system.

4. The (C=carriage) operand is defined only for lo­
cal printers. The remote CPU workstation opera­
tor must load the carriage buffers via means
other than through the HASP central system.

HASP Operator's Guide - Page 52

745

HAS P

Responses:

Examples:

Comments:

OK - the settings requested have been made

1. user - $T PRTl,C=l
system - OK

2. user - $T PRTI,F=AUTO,T=PN
system - OK

3. user - $T PUNl,F=4732
system - OK

4 . user - $T PRT2,F=R,T=HN
system - OK

In example 1 the operator discovers the problem pro­
gram is skipping to carriage tape channels which
violate the installation procedures. The entry of
$T PRTl,C=l causes the printer to single space after
each line printed to the end of the data set.

In example 2 the operator desires to use the printer
to print all jobs queued for special forms allowing
HASP to select the special forms to be mounted. The
printer has been loaded with a PNtrain to be used
with the special forms.

In example 3 the operator desires to use the punch
to punch only those data sets in the system which
have specified forms type '4732'.

In example 4 the operator desires to use the printer
to print the normal batch output using standard forms
and the HN print train.

HASP Operator's Guide - Page 53

746

HAS P

Definition:

Where:

Comments:

$T console

console
level

class

SET DEVICE
,level ! ,class[,class, •.•]
, Rx •••
,A=authority

= HASP console device
= a number, 0-15, which specifies the

highest operator message level to
eliminate for the designated console.
A value of a will allow all messages for
the designated console to be displayed.
A value of 15 will eliminate all mes­
sages. The following list indicates the
general levels of messages displayed by
the HASP system:
1 - non-essential messages
3 - normal messages
4 - messages requiring operator action
7 - essential messages

= the logical console class of messages
the specified console is to display in
addition to current classes ..
Specify class as follows:
LOG - log console messages
ERROR - error messages
UR - unit record messages
TP - HASP RJE line messages
TAPE - tape console messages
MAIN - main operator console messages
OS - OS WTO messages

When using the VARY CPUx,OFFLINE command in a Model
65 Multiprocessor system with HASP Console Support,
the operator must first issue the HASP command

$T console,R

for the console on the CPU to be varied offline, and
wait until the console stops printing messages.

HASP Operator's Guide - Page 54

747

HAS P

Notes:

Rx ••• = RESET--indicating the level value is to
be set to 15 to eliminate all output
based upon importance and the class
settings are to be reset to eliminate
all output based upon logical console
class.

Authority = a number, 0-7, representing one or more
command authority groups as follows:

1.
2.

o - display only console
1 - system control console
2 - device control console
4 - job control console
Under HASP mUltiple console support,
console authority may be set to allow
controlling commands to be entered from
consoles which have the authority to
control the designated function. Multiple
settings are accomplished by the operator
adding the authority group numbers together
and entering the result; i.e., 7 indicates
authority 1+2+4 (zero is assumed).

See CONSOLE SUPPORT section of this manual.
The entry console for A=authority operands
must be authorized for system control (authority
1, 3, 5 or 7)and the device specified must not
be the entry console.

HASP Operator's Guide - Page 55

748

HAS P

Action:

Responses:

Examples:

f

Comments:

The specified console is set to the appropriate list
"level" logical console "class" and "authority" in­
dicated by the operands. Each operand is handled in­
dividually and completely starting with the second
operand. If an operand is determined to be in error,
previous operands will take effect and the operand
in error, along with succeeding operands will be ig­
nored. If the RESET operand is used, it is assumed
to be the last of the list.

OK - the settings requested have been made

1. user - $T CON1,15
system - OK

2. user $T CON1,4
system - OK

3. user - $T CON1,RESET
system - OK
user - $T CON1,O,MAIN
system - OK

4. user - $T CON 3 ,A=O
system - OK

In example 3 all output to console 1 is turned off
(console level set to 15 and class set for no logi­
cal classes). Then the console is set to display all
messages for the MAIN console.

HASP Operator's Guide - Page 56

749

HAS P

Definition:

Where:

Notes:

$T CON,level,class [,class, ...] SET DEVICE

CON = CON--indicating that HASP is to set the
level of message output for the logical
console classes passed to OS consoles.

level = a number, 0-15, which specifies the highest
operator message level to eliminate for the
designated logical console class specified
in the succeeding operands. A value of 0
will allow all H~SP messages for the desig­
nated logical console class to be displayed
on the OS console(s) assigned to display
the message class. A value of 15 will
eliminate all HASP messages of the specified
class. The following list indicates the
general levels of messages displayed by
the HASP system:
1 - non-essential messages
3 - normal messages
4 - messages requiring operator action
7 - essential messages

class = the logical console class of the messages
given to OS for display purposes.
Specify as follows:
LOG - log console messages
ERROR - error messages
UR - unit record messages
TP - HASP RJE line messages
TAPE - tape console messages
MAIN - main operator console messages

1. See CONSOLE SUPPORT section of this manual.

2. Responses to HASP commands will always be
displayed at the console of entry regardless
of the logical console class or level settings.

HASP Operator's Guide - Page 57

750

HAS P

Action:

Responses:

Examples:

The display "level" of the logical console classes
will be set to the level specified. Each logical
console class is set independently from the others
starting with the first listed, operand 3. If
an error is detected in the list, the operands
pre~eding the operand in error will be acted
upon and the operand in error and all succeeding
operands will be ignored.

OK - the logical console classes have been
set to the display level specified.

1. user - $T CON,4,MAIN,LOG
system - OK

HASP Operator's Guide - Page 58

751

HAS P

Definition:

Where:

Action:

Responses:

Examples:

$Z device list HALT (STOP) DEVICE

device = HASP reader, printer, punch, and
console devices

The specified devices will be HALTED after the
current scheduled operations complete. In case
of HASP consoles, all logical console classes and
levels of importance will be RESET so that, except
for direct responses to commands entered from
the console, no new messages will be directed to
the device. The effects of the $Z command may
be negated by use of the $S command.

OK - the device(s) has been set to HALT
operations

1. user - $Z PRTl,PRT2,RDRl,PUNl
system - OK

HASP Operator1s Guide - Page 59

752

HAS P

1.8 SYSTEM COMMANDS

Syst,(~m commands control the abili ty of the HASP System to
process jobs through OS and may be broken down into two groups:

INITIATOR COMMANDS

HASP SYSTE.M COMMANDS

- those cornmandswhich control
the actual selection and sub­
mission of jobs from HASP to OS
for processing.

Those commands which control
the ability of the HASP System
to process jobs for 'any function.

In the following descriptions, a parameter lin" is referred to as
the initiator identification. This identification is assigned
by the systems programmer during the HASPGEN process. However,
it is assumed in this manual that the initiator identifications
are one or two character numeric digits 1, 2, 3, eo.; in MFT the
values correspond to the partition numbers.

HASP Operator's Guide - Page 60

753

HAS P

INITIATOR STATUS CONDITIONS

An initiator's ability to process jobs depends upon the availability
of jobs in the input queue of corresponding classes and t~e status
of the initiator. These status conditions are as follows~~ I

ACTIVE - the initiator is currently processing a job and ha$ the
ability to continue processing.

INACTIVE - the initiator has the ability to process jobs but no
job of the initiator's current classes is ready for
execution.

DRAINING the initiator is currently processing a job but will not
select another upon completion of the current job.

DRAINED - the initiator is not processing a job and will not
attempt to select any job.

HASP Operator's Guide - Page 61

754

HAS P

JOB SELECTION FOR as EXECUTION

'~vhen the HASP Sys'tem completes reading card' images ctssociated wi th
an OS job, the job is placed into one of the HASP logical execution
queues. The appropriate execution queue is selected based ~ppn the
job class as specified by:

"

:J "

CLASS=class parameter on tti~ as job card submitted by
the prog-r amrner $

$T ~JOBn,C=class HASP command entered by the' operator after
previous queueing based upon the job card.

CLASS=A default specification in lieu of other
specifications~

Each job is placed in the appropriate execution queue in order by
priority so that higher priority jobs within the queue will be
selected for execution before jobs of lower priority and that jobs
of the same priority will be selected in order first in - first out.
J"on selection priority is determined from the following sources:

1" The time and line
the as job card:

$T ,JOBn p J.ority

estimate in the HASP accounting field of
Although the correlation of time
estimate with priority is determined
at HASPGEN time, it is normally set
to give the shortest running jobs
highest priority.

ca.rd "vhich may appear preceding the
job card. This card overrides the
time and line estimate priority setting.

HASP command entered by the operator
after previous queueing.

HASP Operator's Guide - Page 62

755

HAS P

When an initiator enters the INACTIVE status, it will attempt
to select ready jobs from the HASP job queue in a manner
directly controllable by the operator. An initiator will search
the logical ex~cution queues for jobs in order by class. If
the operator has set the initiator to execute classes "ABX" in
that order, the initiator will initiate only Class A jobs
so long as there are Class A jobs ready for execution. When
there ar~ no Class A jobs ready, the initiator will initiate
only Class B jobs or, if no Class B jobs, Class X jobs. The
operator, therefore, by altering the initiation classes controls
the selection of jobs based upon the job class. By appropriate
job classing and setting of initiator class selection lists,
jobs with complementary characteristics will tend to be in execu­
tion concurrently.

\

HASP Operator's Guide - Page 63

756

HAS P

Definition:

Where:

Action:

Responses:

Examples:

$D I[n] DISPLAY INITIATOR(S)

n = the identification of the initiator to be
displayed

The status and eligible classes for the initiator(s)
indicated will be displayed. If n is not specified,
all initiators will be assumed. If an Execution
Batch Processing Program is in main storage under
control of a logical initiator, its as jobname will
also be displayed.

INIT n (I. DRAINING I) = classes - one response for
DRAINED each initiator re-
ACTIVE quested
INACTIVE

1. user - $DIl
system - INIT 1 (ACTIVE)=ABCD

2. user - $OI
system - INIT 1 (ACTIVE)=ABCD

INIT 2 (ORAINING)=BCDA
INIT 3 (INACT lVE) =WDAB $$$$$W3
INIT 4 (ORAINED)=DABC

HASP Operator's Guide - Page 64

757

HAS P

Definition:

Where:

Action:

Responses:

Examples:

$p I[n] STOP (DRAIN) INITIATOR{S)

n = the identification of the initiator
to be stopped

The designated initiator will be prevented from
selecting additional jobs for processing. If a
specified initiator is actively processing a job
(ACTIVE), its status will be changed to (DRAINING)
until the current job terminates. If a specified
initiator is not actively processing a job
(INACTIVE) or upon completion of processing, the
status of the initiator will be (DRAINED).

If the optional identification is not specified,
all initiators will be stopped. ---

If the system contains the Execution Batch Scheduling
feature (see section 12.13 of HASP Systems Manual),
this command will cause a batch program(s) under
control of the designated initiator(s) to be cancelled
when the initiator(s) becomes DRAINED, thereby re­
leasing memory for other processing.

OK - the specified initiator(s) are or
will be stopped

1. user - $PI3
system - OK

2. user - $PI
system - OK

758

"HASP Operator I s Guide - Page 65

HAS P

Def$n,ti..iQiJ;

·Where:

Action:

:Response:S'l

Examples:

.:f&<···.·.:t [n] STARTINITIATOR(S)

n = the identification of the iriitiator
to be star1:~d

The designated initiator, will be allowed to select
jobs of :the appropriate job classes acceptable to
the initiator. It the identification "n" is
omitted, all initiators which were not stopped by
a $'PI command with the initiator specified will
be started. If the initiator is DRAINING, its

. status will become ACTIVE; if DRAINED, its status
will become INACTIVE and. an immediate attempt
to select a job will be made.

OK - the specified· initiator(s) are started

1>. 'u;se~ - $513
.ystem-.OK

~~ user - $SI
s'yate. - OX

HAS P

Definition:

Where:

Action:

Examples:

$T In,list SET INITIATOR C~ASSES

n ~ the identification of the initiator
to be set

list = li~~ of acceptable job classes for
the ~pec~fie~ i~itiator. Each class
is ,listed in order o£ selection
pr{oritydesi~ed~or. the initiator.
The maximuni length of the list is
specified by the system programmer
atHASPGEN time,.,

. The new clas~ list is".ins~rte(i' without inspection
into the sp~cified i1)i tiator'"s cl'ass selection
list. All future job ~election for the initiator
will be done based upon the new l+st. ~'. _"

1. user - $TI1,ABC
system - OK

2. user - $TI2,~~A
system - OK

3. user - $TI3,CAB
system - OK

HASP Operator's Guide - Page 67

760

HAS P

Definition:

Action:

Responses:

Examples:

$p STOP SYSTEM

All HASP job processing will be stopped. The
HASP initiators, printers, and punches will not
begin any new functions. The effects of $P
under normal conditions may be negated by the
$S command. .

OK - current functions will be allowed to
complete and the system will become
dormant

1. user - $p
system - OK

HASP Operator's Guide - Page 68

761

·H ASP

Definition:

Action:

Note:

Responses:

Note:

Examples:

$P HASP STOP HASP

The $P command will be simulated and, if HASP is in
a dormant status (no job processing is in process,
and all HASP devices are DRAINED or INACTIVE), the
HASP SYSTEM will withdraw from control of the Opera­
ting System.

If the system contains the Execution Batch Scheduling
feature (see section 12.13 of HASP Systems Manual),
it is recommended (but not required) th~t the $F I
operator command be issued and system activity be
allowed to quiesce prior to issuing the $P HASP com­
mand. This will allow any batch programs to be
cleared from the OS Job Queue prior to withdrawal of
HASP.

HASP NOT DORMANT - response when HASP is unable to
withdraw.

Since HASP loses control of the system during with­
drawal, a response is not issued by HASP. However,
reader closed and initiator waiting for work may be
issued by OS as an indication of HASP job completion.

1. user - $P HASP
OS - reader closed/initiator waiting for work

HASP Operator's Guide - Page 69

762 .

HAS P

. Definition:

Action:

Responses:

Examples:

$S START SYSTEM

All HASP job processing functions which are
otherwise ready for activity will become ACTIVE.
If the system is already processing jobs, it will
continue to do so.

OK - the HASP System functions will begin
or continue.

1. user - $S
system - OK

763

HASP Operator's Guide - Page 70

HAS P

Definition:

Where:

Action:

$ [6J [,L=n J TF .•. 8 ,c=list

SET FCB IMAGE FOR 3211 CARRIAGE CONTROL C=V

6 = Indicator for six lines/inch (default if
six or eight omitted)

8 = Indicator for eight lines/inch
L=n = Number of lines per page (may be specified

only once per command)
Acceptable numeric values for n range from
2 to 180 (default settings L=66-for 6 lines/
inch and L=88 for 8 lines/inch)

c=list = Specifications for one or more printer
carriage control channels. The "c" speci­
fication may take values 1 through 12 rep­
resenting the channel number. List items
identify the line(s) to which a correspon­
ding printer skip command is to position
the page. List items are separated by
commas. No two list items within the com­
mandmay designate the same line number.
Acceptable values for list items range from
2 to 180.

Notes: 1) The normal operand limit specified for
HASP commands does not apply with this
command.

2) List items are not inspected to insure
specified lines are within the L=n spec­
ification or the default if L is not
specified.

3) This command is defined only when se­
lected by the installation at HASPGEN
time by &FCBV parameter.

The FCB image used for setting carriage control via
$T printer,C=V is reset and created in accordance
with the operands of the command. If the last char­
acter of the first operand is not "8", the image is
set for six lines/inch. If the L=n operand is omitted,
a default of 66 lines/page is assumed for six lines/
inch forms and" 88 lines/page is assumed for eight
lines/inch forms.

For each channel "c=list" specified, the carriage
channel is set so that a "skip to channel" command
addressed to the printer will cause the page to be

HASP Operator's Guide - Page 70.1

763.1

II ASP

Responses:

Examples:

Comments:

Notes:

positioned at the line indicated in the list items
(see 3211 component description manuals for hardware
details). If invalid characters, invalid lines· or
channel values, or mutually exclusive parameters are
specified, the image is reset and six or eight lines
per inch null parameters are as·sumed.· Carriage
channel 1 is always set for line 1 representing the
first print line on the page. This setting must not
appear as a list item for channell.

Starting at the bottom of the page for as many lines
as possible, channels which are omitted from the
specifications are assigned automatically.

OK - the settings requested have been made.

1.

2.

user - $T FCB
system - OK
user - $T FCB8,L=40,2=20,4=10,30
system - OK

In example 1, the user desires the default six
lines/inch carriage control image of channel i at
line 1 with 66 lines/page.

In example 2, the user desires eight lines/inch with
40 lines/page. Channel 2·is to allow skipping to
line 20 while channel 4 is to allow skipping to line
10 and 30 on the page.

1.

2.

This command requires console authority for
both device and system commands.
The null FCB image settings are as follows:

6 lines/inch 8 lines/inch
line channel line channel

1 1 1 1

56 2 78 2
57 3 79 3
58 4 80 4
59 5 81 5
60 6 82 6
61 7 83 7
62 8 84 8
63 10 85 10
64 11 86 11
65 9 87 9
66 12 88 12

HASP Operator's Guide - Page 70.2

763.2

I

HAS P

1.9 MISCELLANEOUS DISPLAY COMMANDS

Definition:

Action:

Limitations:

Responses:

Examples:

$D Dx ... DISPLAY DIRECT ACCESS DEVICES

The device addresses and volume serials of all on­
line direct access storage devices will be
displayed.

The 2321 cell is not included.

aaa serial - one message for each device found

1. user - $D DISKS
system - 190 IPLRES

- 191 LNKRES
- 192 NO ID
- 193 SPOOLI

2. user - $DD
system - 190 IPLRES

- 191 LNKRES
193 SPOOLI

HASP Operator's Guide ~ Page 71

764

HAS P

Definition:

Where:

Action:

Responses:

Note:

Examples:

$D line DISPLAY DEVICES ON RJE LINE

line = HASP RJE line devices (see device
list commands for specification)

The status of the s~ecified line along with the
hardwa~e device address assignment will be
displayed. If no address is assigned, the address
will be filled with n***". If·the line is
ACTIVE and associated wi th a HASP .remote work­
station, the HASP status of each device on the
remote terminal will be displayed. See device
list commands for status definitions.

LINEn aaa status - status of the specified line
RMr.devn aaa status - one response for each device

associated with the line (aaa
is the address of the line}

LINEn NOT FOUND - HASP has no record of the
line specified

Remote console devices will not be displayed.

1. user - $D LINEl
system - LINEl 031 ACTIVE

- RM3.RDl 031 INACTIVE
- RM3.PRl 031 ACTIVE
- RM3.PUl 031 DRAINED

2~ user - $DLNE2
system - LINE2 032 DRAINED

HASP Op.era.tor's Guide ""!' Page 72

765

HAS P

Definition:

Action:

Note:

Responses:

Examples:

$D R DISPLAY OUTSTANDING REPLY IDS

All outstanding WTOR reply identification numbers
will be displayed.

This command is not defined if OS con~ole support
is being used-.- ---

REPLY IDS: id,id, ..• id

NO OUTSTANDING REPLY IDS

1. user - $0 R

- one line for each 10
reply ids

- no reply ids were
found

system - REPLY IDS: 0, 1, 14, 11

HASP Operator's Guide - Page 73

766

HAS P

Definition:

vJhere:

Action:

I Note:

Responses:

Note:

Examples:

$D RMx ... [r] DISPLAY REMOTE(S)

r = the number of the remote. If r is omitted,
all remotes will be assumed.

If the designated remote is currently associated
with a HASP RJE line, the HASP status of the line
and devices attached to the remote will be dis­
played. If the remote is not associated with a
line, only the HASP status of the devices attached
to the remote are displayed. If the remote number
is not specified in the command, the HASP status.
of. all remote devices will be displayed.

If there are no HASP remote devices $DR command
will be assumed.

LINEn aaa status - status of the associated line
RMr.devn aaa status - status of each device on the

remote (aaa is the address of
the line)

Remote console devices will not be displayed.

1. user - $D RM3
system - LINE 1 031 ACTIVE

- RM3.RDl 031 INACTIVE
- RM3.PRI 031 ACTIVE
- RM3.PUI 031 DRAINED

2 • user - $D RMTS
- RMl.RDl *** DRAINED
- RMl.PRl *** DRAINED
- RMl.PUl *** DRAINED
- RM2.RDI 021 DRAINED
- RM2.PRI 021 ACTIVE
- RM2.PUl 021 INACTIVE
- RM3.RDl 031 ACTIVE
- RM3. PRI 031 ACTIVE
- RM3.PUl 031 INACTIVE

HASP Operator's Guide - Page 74

767

HAS P

Definition:

Action:

Note:

Responses:

Examples:

$D Ux ••• DISPLAY UNITS

The status of all HASP controlled, non-direct
access devices attached to the local system will
be displayed along with the corresponding hard­
ware address of the device.

If HASP multiple consoles are present, the ACTIVE
'status message will also display console authority.

device aaa status - one line for each HASP device

1. user - $D UNITS
system - READERI

- PRINTERI
- PRINTER2
- PUNCHI
- TAPEl
- CONSOLE

DOC INACTIVE
ODE ACTIVE
OOF DRAINED
000 INACTIVE
*** DRAINED
OlF ACTIVE

HASP Operatorts Guide - Page 75

768

HAS P

1.10 REMOTE JOB ENTRY COMMANDS

Definition:

Where:

Notes:

Action:

Responses:

$D Mr-rr,message DISPLAY MESSAGE AT REMOTE
TERMINAL(S)

r-rr = range of remote terminals--all remote
terminals from r through rr are to
receive the message.

= single remote number--the remote
specified by r is to receive the·message.

(1) A remote specification of zero (0) indicates
that the message is to be displayed at the central
operator's console.

(2) If a range of remote terminals is specified by
a remote terminal operator only the last remote
specified will receive the message.

message = the text of the message desired to be
displayed at the designated remote
terminals. If the message is enclosed
by apostrophes, the message will be
upper cased and transmitted along with
the apostrophes to the remote terminals
indicated; otherwise, the text will be
made upper case and blanks removed.

The message will be transmitted to the indicated
remote terminal if the terminal is capable of
receiving the message.

OK - the message has been queued for
transmission to eligible remote
terminals.

HASP Operator's Guide - Page 76

769

HAS P

Examples:

1. user - $D M4,Jobs rema~n~ng after 5PM will be purged
at remote -0,JOBSREMAININGAFTER5PMWILLBEPURGED

2. user - $D M4,'Jobs remaining after 5PM will be purged'
at remote -0, 'JOBS REMAINING AFTER 5PM WILL BE PURGED'

Note: The value zero (0) at the beginning of the message indicates
that the message originated at the central site. If the
message originated from a remote the value would be the
remote number.

HASP Operator's Guide - Page 77

770

HAS P

Definition: $R type,for-id,to-id ROUTE JOB(S) OUTPUT

Where:

Notes: 1 •.

type

for-id

to-id

= ALL--all output for the specified
job(s) is to be routed

= PRT--print output for the specified
job(s) is to be routed

= PUN--punch output for the specified
job(s) is to be routed

= JOBj--the designated output for job j
is to be routed ---

= LOCAL--the designated output for all
jobs currently in the system and routed
for LOCAL devices is to be routed

= device--the designated output for all
jobs currently in the system and routed
for this device is to be routed

= RMx ... r--the designated output for all
jobs currently in the system and routed
for remote r is to be routed

= LOCAL--job(s) are to be routed to local
devices --

= device--job(s) are to be routed to this
device --

= RMx ... r--job(s) are to be routed to
remote r

It is possible to route a job to a remote that
does not exist.

2. In an unmodified HASP System device routing has no
meaning and will be equivalent to specifying LOCAL
or RMTr as appropriate.

3. RMTO is equivalent to specifying LOCAL.

HASP Operator's Guide - Page 78

771

HAS P

Action:

Responses:

Examples:

The routing for print and punch data sets will be
altered for the job specified or for all jobs
currently in the system and routed for the output
device group specified by the second operand to
the routing as specified by the third operand.

OK - the job output specified has been
routed

1. user - $R ALL,J4,RMT6
system - OK

2. user - $R PUN,RM3,LOCAL
system - OK

HASP Operator t $ Guid~ -P~ge 79

772

HAS P

2.0 STARTING THE HASP SYSTEM

HASP runs as a job under OS 360 in the MVT or MFT environment.
Although jobs in the installation may be submitted to OS inde­
pendently of HASP, it is assumed that all production jobs run
by OS will be under the control of HASP
and that HASP and OS have been tailored during the generation
processes to minimize operator action required to start the system.

2.1 PREPARATION

The Operating System must be started and running correctly prior
to any attempt to start HASP. AlIOS readers, writers and initi­
ators should be stopped. If an OS "warm start" is performed,
messages which indicate that the HASP System has abnormally ter­
minated should be ignored; these messag~s result from the cleaning
out of the OS queues from the last IPL of the system.

HASP requires that direct access volumes be mounted for the purpose of
queueing JCL cards along with input data awaiting OS execution and
for saving the job output for later output to the various printer
and punch devices. One of these volumes will be labeled "SPOOLI".
The additional volumes, if present, will be labeled "SPOOLx" where
the last character "x" is an alphabetic character or numeric digit
(other than 1); no two volumes may have the same volume serial.
The maximum number of volumes to mount is determined by the instal­
lation during the generation of HASP. If the volumes are on-line
and ready at OS IPL time and OS has not requested that they be
removed, the SPOOL volumes are ready for the starting of HASP.
However, if the above is not true, the operator should use the OS
mount command to insure all SPOOL volumes are known to OS.

If HASP is to be "warm started", the exact physical volumes which
we're used during the last running of the system should be mounted.
It is not necessary that the volumes be mounted on the same drives;
the criteria is that all of the volumes be present and that the
data set SYSl.HASPACE has not been altered. Additional SPOOL
volumes may be added if desired.

All unit record and console devices which are to be used by HASP
must be on-line to the CPU and should be in the ready status. If
the unit record devices are not on-line at the time HASP is started,
they will be unusable for any purpose until the next starting of
HASP. If HASP Remote Job Entry is to be used, the line adapters
should be on-line and ready with dial data sets on AUTO and non-dial

HASP Operator's Guide - Page 80

773

if 1! ~ -~ the ready condition. (I f HASP has been generated wi th
,~Lof the hardware addresses of,the line adapters, the adapt­

, ,..::led not be on-line until an attempt is made to use them.)

2.2 STARTING THE HASP JOB

With the operating system otherwise dormant and ready for job proc­
essing, the direct access SPOOL volumes mounted and known to the
operating system, the unit record, console, and line devices on­
line, the operator starts the HASP job by' entering the OS command:

S .HASP
S HASP.Pn

S HASP.S

- MVT start command
- MFT start command where n is the partition number

of the HASP partition (normally 0)
- MFT start command if HASP partition is not large

enough to contain the MFT RDR.

The start command causes OS to read the procedure "HASP" from
SYSl.PROCLIB. The "HASP" procedure is an OS reader procedure which
reads the HASP job from a direct access data set and starts an ini­
tiator to class H. The initiator will load the HASP executable mod­
ule into storage and pass control to HASP.

HASP will issue an initial WTOR requesting directions from the op­
erator. The WTOR message will appear as follows:

fInn $ SPECIFY HASP OPTIONS -- HASP-id VERSION x.x"

The operator should respond to this message using the standard OS
reply format with the corresponding reply number "nn". The text
portion of the reply must be one or more options selected from
table 2.2.1. Each option may be entered in either upper or lower
case. A comma must be used to separate.the options. Blanks are
not permitted. If two options are entered which are considered
opposite, the latter option overrides the former. The FORMAT op­
tion, when used, has the effect of COLD starting regardless of the
WARM/COLD specification.

WARM STARTING HASP

When HASP is "warm started", it will require that all SPOOL volumes
which were up during the last execution of HASP be present and
available. HASP will assume that the volumes are intact and that
no FORMATTING will be required to run with the volumes. If a new

HASP Operator's Guide - Page 81

774

HAS P

volume with a "SPOOLx" label is present, HASP will make a few.
basic checks to determine if it has been pre-formatted, and format
the volume if necessary. It is recommended, however, that only
pre-formatted volumes be added at HASP warm start time.

Jobs which were in execution at the time the CPU was stopped will,
on a HASP "warm start", be scheduled for execution again .. For
this reason, the operator should enter as a reply to the HASP mOR:

ROO, ' WARM, REQ ' (assuming'OO is the current reply number)

HASP will list the activity in process at the time the CPU was
stopped and wait for the operatoi to enter requests. The wait for
HASP REQUESTS serves the following purposes:

1. It allows OS to flush the interrupted jobs from the
OS queues.

2. It allows the operator to examine each job listed to
determine whether or not:

A. to allow the job to be automatically
re-executed by HASP

B. to hold the job for further investigation

C. to cancel the job allowing it to be purged
from the system

3. It allows the operator to examine the activity on the
output devices to determine what action to take prior
to starting normal job processing.

4. It allows the operator to change tqe default status of
HASP initiators and devices as well as modify the status
of jobs in the HASP queue.

HASP Operator's Guide - Page 82

775

H A 8 P

When the operator has determined that the system is ready for
job processing, he should enter "$8" on the console~

The following examples list the console messages and reply
sequence expected during HA8P initialization~

1. user - S HASP
system - 00 $SPECIFY HASP OPTIONS -- HASP id VERSION x~x
user - R 00, 'COLD ,FORMAT ,
system - SPOOL! IS BEING FORMATTED
system - ENTER HASP REQUESTS
user - $S

2. user - S HASP.PO
system - 00 $SPECIFY HASP OPTIONS -- HASP id VERSION x.x
user - R OO,'U'
system - ENTER HASP REQUESTS
user - $S

HASP Operatorts Guide - Page 83

776

HAS P

TABLE 2.2.1

OPTION

FORMAT
NOFMT

COLD

WARM

REP

NQREP
REQ

NOREQ

LIST

NOLIST
TRACE

NOTRACE

NONE
U

HASP INITIALIZATION OPTIONS

OPPOSITE

NOFMT
FORMAT

WARM

COLD

NOREP

REP
NOREQ

REQ

NOLIST

LIST
NOTRACE

TRACE

MEANING

All SPOOL volumes are to be formatted.
No SPOOL volume is to be formatted
unless HASP determines necessary.
Any job data contained on the SPOOL
volumes is to be ignored.
HASP is to continue processing where
it left off during the previous IPL.
Replacement cards are to be used for
temporary modifications to HASP for
this IPL. This option should be
specified only under the direct super­
vision of the system programmer
responsible for the replacement cards.
No replacement cards are to be used.
HASP is to stop and wait for a $S
command before beginning job processing
HASP is to begin job processing when
ready to do so.
HASP is to list on a designated printer
any replacement cards read.
HASP is not to list replacement cards.
Allow tracing of HASP internal execu­
tion; this option is not active ori a
system generated for production.
Cut off the tracing of HASP internal
execution.
Take all default options.
Take all default options.

Note: The options underlined are the normal default options.

HASP Operator's Guide - Page 84

777

HAS P

3.0 ABBREVIATED WTOR REP~¥

2.

3.

4. The

nn ,.' text'

nntext
nn,text

a.

b.

.. ,.
'oJ .• '.";,

" .,':. '";

nteJ[t!:.,t:::.:::;::·~;/:.;
n Itel(~•.... ':'
n'text." ':.
n··,·t~~;"<:

" .

·ij~SP Opex:a~pr;!,·Sli:";·G~i.;~"\~ ··~~.g:~;,··;85
778

HAS P

4.0 HASP MESSAGES AND CODES

The following sections list those messages originating from HASP
which are not direct responses to HASP operator commands.

4.1 HASP INITIALIZATION MESSAGES

All HASP Initialization Messages are displayed by OS WTO or WTOR
requests and are listed as follows:

CORRECT THE ABOVE PROBLEMS AND RESTART HASP

Explanation: This message occurs following one or
more messages which describe why HASP direct-access
initialization could not complete normally.

System action: The HASP job will terminate.

Operator response: Self-explanatory.

EXTENT ERROR ON SPOOLx

Explanation: The operator did a HASP warm start.
HASP has found that the first extent of data set
SYSl.HASPACE on SPOOLx is different from what it
was previous to the warm start. This could be due
to the wrong SPOOLx volume having been mounted, a
different HASP system havin~ been started, or
SYSl.HASPACE having been scratched and reallocated.

System action: After attempting to verify the re­
maining required SPOOL volumes, the HASP job
terminates.

I HASP MFT SUPPORT REQUIRES RESIDENT SVC OPTION (TRSVC)
SPECIFICATION AT SYSGEN TIME - HASP TERMINATED

Explanation: The MFT System does not contain the
proper format SVC table (four byte entries) for
use with HASP. See HASP manual section 10.1.

System action: The HASP job will terminate.

Operator response: Notify System Programmer.

HASP Operator's Guide - Page 86

779

HAS P

HASP module ATTACH ERROR - code

Explanation: HASP has attempted to attach a
sub-task which is required for the running of the
system. The module name indicates the ECaDIC name
of the sub-task entry module and code is the as
completion code returned. If the system is
allowed to continue processing, the results will
be unpredictable but will cause general malfunction
as follows:

Module HASPWTR Jobs upon completion of as execu­
tion will remain on the as job queue arid HASP will
not become aware of the user job termination.

Module HASPBRl - HASP WTO message facility will be
inactive eventually causing HASP to become inter­
locked attempting to use the as console interface.

System action: HASP will attempt to process jobs.

Operator response: Probable user error. Stop HASP,
refer to· the OS messages and completion codes manual,
and correct the problem as indicated.

INVALID UNIT RECORD DEVICE CONTROL TABLES

Explanation: An inconsistency has been detected in
the HASP control section HASPINIT. Unit record
device control tables have been improperly generated.

System action: The HASP job will terminate.

System programmer response: Check the assembly of
HASPINIT for improperly applied modifications and
insure the correct HASP overlay data set corresponds
with the current HASP resident module. Reassemble
HASPINIT, recreate the HASP overlay data set, and
LINKEDIT the HASP module as required.

HASP Operator's Guide - Page 87

780

HAS P

JOB j WAS

I READING ! EXECUTING
PRINTING
PUNCHING

Explanation: The operator did a HASP warm start.
At the time of system stop, the job numbered j
was in the process of reading, executing, printing,
or punching.

System action: If the job was reading, it is now
purged. If the job was executing, HASP will restart
its execution at the first job step. If the job was
printing, HASP will restart its print phase back a
few pages. If the job was punching, HASP will re­
start its punching from the beginning.

Operator response: If the job was reading, it
should be read in again. If the job was executing,
printing, or punching, no operator response is
necessary if the default HASP action is desired.

MAXIMUM OF n SPOOL VOLUME(S) EXCEEDED

Explanation: More direct-access volumes with labels
SPOOLx have been found ·on-line than HASP has been
generated to handle (x is any alphameric character).

System action: The HASP job will terminate.

Operator response: Probable user error. Check the
volume labels of all direct-access volumes and
remove all but "n" volumes.. Restart HASP.

HASP Operator's Guide - Page 88
781

rI ASP

MAXIMUM OF n device type EXCEEDED

Explanation: HASP found more reader, printer, punch,
or console devices physically on-line to the CPU than
the installation indicated for HASP to support.

System action: The first n devices of the specified
type will be used by HASP: the additional devices
of the specified type will be ignored.

System programmer actio~: Check the OS generation
to insure that the hardware devices correctly reflect
the system configuration and that the additional
pseudo devices generated in as for HASP do not
address a HARDWARE device or control unit on the
system.

DUNT SPOOLx ON A yyyy

Explanation: The operator did a HASP warm start.
HASP has found that not all SPOOL volumes are mounted
which were mounted prior to the warm start. In the
message, x completes the SPOOL volume serial number
and yyyy is the device type upon which the volume
had been mounted.

System action: After attempting to verify the
remaining required SPOOL volumes, the HASP job
will terminate.

Operator response: Probable user error. Mount the
required volume(s) on the required devices and do a
HASP warm start, or merely a HASP cold start.
This message could also mean that the wrong SPOOLl
volume was mounted.

HASP Operator's Guide - Page 89
782

HAS P

OBTAIN FAILED ON SPOOLx WITH CC nn

Explanation: The operator did a HASP warm, cold,
or format start. HASP used the OBTAIN supervisor
service to get information about data set
SYS1.HASPACE on volume SPOOLx, but OBTAIN did not
work as expected. OBTAIN returned condition code
nn to indicate the problem.

• nn = 4 - SPOOLx was not mounted. This error
should not occur.

• nn = 8 - SYS1.HASPACE was not allocated on
SPOOLx.

• nn = 12 - A permanent input/output error was
found during OBTAIN processing.

• nn = 16 - This error should not occur.

• nn = 20 - This error should not occur.

System action: After attempting to verify the
remaining SPOOL volumes, the HASP job will
terminate.

Operator response: Probable user error. If nn = 8,
allocate a data set named SYS1.HASPACE on SPQOLx and
do a HASP warm start. If nn = 12, use the IBM
utility program IEHDASDR or IBCDASDI to re-initialize
the SPOOLx volume and then follow the procedure for
nn = 8.

HASP Operator's Guide - Page 90

783

HAS P

OLAYLIB DOES NOT MATCH RESIDENT HASP

Explanation: The job used to start HASP (normally
in SYSl.PROCLIB when HASP is started by usual
method) referenced a load module (from SYSl.LINKLIB
or a JOBLIB or STEPLIB) which was not created from
the output of the same execution of HASPOBLD which
created the referenced OLAYLIB.

System action: The HASP job will terminate.

Operator response: Probable user error. Verify that
the correct start command and direct-access volumes
which contain parts of the HASP System are being used.
Restart HASP. If unsuccessful, notify system
programmer.

System programmer resEonse: Verify that procedures
HASP and STRTHASP (or their equivalents, see Section
10.1.4.2 of the HASP Manual) are correctly installed
in SYS1.PROCLIB and that data sets they reference
are cataloged and mounted, etc. If difficulty per­
sists, re-do the install HASP program actions (sample
job HASPHASP) as described in Section 10.1.4.3.

OPERATOR MESSAGE SPACE NOT AVAILABLE

EXElanation: HASP has attempted to reserve tracks
from SPOOLI volume for remote operator message
queuing and found:

1. The first extent of SYSl.HASPACE was not large
enough for the requested number of spool records.

2. During HASP "warm start" the SPOOLl volume was
found incompatible with the loaded copy of HASP.

System action: The HASP job will terminate.

Operator response: If HASP "warm start", match the
SPOOLl volume with the HASP load module used during
the "cold start". If "cold start" consult the system
programmer.

System programmer response: Insure the HASP generation
parameter &SPOLMSG has been correctly applied to the
system and check the extents of SYSl.HASPACE on SPOOLl
for requested space.

HASP Operator's Guide - Page 91

784

HAS P

OVERLAY REPPING ERROR

Explanation: REP card intended for resident CSECT
may be mispunched or REP card intended for overlay
CSECT cannot be processed because no space exists to
save it. HASPGEN parameter &OREPSIZ was not set
large enough to hold amount of overlay REP information
currently being processed or &OREPSIZ was set to zero
which eliminates capability of applying REP cards to
overlay CSECTs.

System action: The HASP job will terminate.

Operator response: Probable user error. Verify that
REP cards are those intended for the HASP System which
was started. Restart HASP and attempt to use correct
REP cards. If unsuccessful, notify system programmer.

System programmer response: Verify that REP cards
are punched correctly according to format described
in Section 6.4.1 of the HASP Manual and/or re-HASPGEN
with parameter &OREPSIZ set larger to reserve more
space for overlay REPs.

P~RM I/O ERR ON SPOOLx WHILE FORMATTING

Explanation: HASP was unable to complete formatting
the first extent of SYSl.HASPACE on SPOOLx. This may
be because a hardware error occurred or because the
SPOOL volume is not properly initialized.

System action: After attempting to process the
remaining SPOOL volumes, the HASP job will terminate.

Operator response: If the message was caused by a
hardware malfunction, have it corrected. If not,
the SPOOL volume may need to be reinitialized;
reinitialize it using the IBM utility program
IEHDASDR or IBCDASDI.

HASP Operator's Guide - Page 92

785

HAS P

PERM I/O ERR READING HASP CKPT

Explanation: The operator did a HASP warm start.
HASP was unable to read the checkpoint record on
SPOOLI. This may be because the wrong SPOOLI was
mounted, a different HASP System was started, or
the checkpoint record had been destroyed.

System action: The HASP job will terminate.

Operator response: Probable user error. Mount the
correct SPOOLI volume and do a HASP warm start using
a HASP System compatible with the old HASP checkpoint.
If this fails, do a HASP cold start.

PERM I/O ERR WRITING HASP CKPT

Explanation: HASP failed to format-write correctly
the HASP checkpoint record on SPOOLI. This could
be because of a hardware malfunction or because the
HASPGEN variables used to generate HASP created a
checkpoint record too long to be written on the type
of device upon which SPOOLI is mounted.

System action: The HASP job will terminate.

Operator response: If the message was caused by a
hardware malfunction, have it corrected. If the
message was caused by too long a checkpoint record,
and if the installation has devices which can support
longer records, prepare a SPOOLI volume for one of
these devices. Otherwise it is necessary to do
another HASPGEN, specifying parameters which will
create a smaller checkpoint record.

HASP Operator's Guide - Page 93
786

HAS P

SET RESTART PSW TO 0004000000aaaaaa FOR TAPE DUMP

Explanation: The special tape dump feature
has been generated by the system programmer.
The entry point to the dump routine is indicated
by the hexadecimal address aaaaaa.

Operator Response: In the event a STAND ALONE
DUMP is necessary, the operator may use the HASP
tape dump feature by using the following procedures:
1. Ready the designated tape drive with a scratch

tape at load point with ring in. (The device
address is determined by the system programmer,
but may be altered by over storing the half­
word aaaaaa-4 with the new tape address.)

2. Stop the CPU and press system reset (this
sets the tape mode) .

3. Store the displayed PSW in location 0-7.
4. Press PSW RESTART
~. IPL arunable system and execute IMDPRDMP as

prescribed by 08/360 SERVICE AIDS manual or
equivalent post processor.

HASP Operator's Guide - Page 94

787

HAS P

PREVIOUSLY-MOUNTED VOL SPOOLx IS UNFORMATTED

Explanation: The operator did a HASP warm start.
HASP has found that the length of the first record
of the last track of the first extent of
SYSI.HASPACE on SPOOLx is incorrect. This could be
due to its having been overwritten, a different
HASP system having been started, or the wrong
SPOOLx volume having been mounted.

System action: After attempting to verify the
remaining required SPOOL volumes, the HASP job
will terminate.

Operator response; Probable user error. If the
wrong SPOOLx volume was mounted, mount the correct
volume and do a HASP warm start. Otherwise do a
HASP cold start; any SPOOL volumes that are not
correctly formatted .. will automatically be re-formatted
on a HASP cold start.

SPOOL VOLUMES HAVE DUPLICATE LABELS

Explanation: Multiple direct-access volumes have
been found with identical SPOOLx labels (x is any
alphameric character).

System action: The HASP job will terminate.

Operator response: Probable user error. Check the
volume labels of all direct-access volumes on the
system and remove the required volumes. Restart
HASP.

SPOOLx IS BEING FORMATTED

Explanation: The operator did a HASP warm, cold,
or format start. HASP detected an unformatted SPOOL
volume which it could format and is now formatting
the volume.

S¥stem action: H~.SP will format unformatted new SPOOL
volumes on a warm start, all unformatted SPOOL
volumes on a cold start, and all SPOOL volumes on a
format start.

HASP Operator's Guide - Page 95

788

HAS P

SPOOLI IS NOT MOUNTED

Explanation: The operator did a HASP warm, cold, or
format start, and HASP could not find a non-232l
direct-access UCB with" volume serial SPOOL. The
SPOOLI volume is required to be mounted and on-line
when HASP is started~

System action: The HASP job will terminate.

Operator response: Probable user error. Make sure
that SPOOLI is mounted, ready, and on-line. Then
restart HASP.

I n BUFFERS AVAILABLE

Explanation: HASP has not been able to allocate
enough dynamic storage to build the minimum number
of buffers required to run the system as specified
by the HASP generation parameter &MINBUF.

System action: An attempt will be made to run with
the available buffers.

Operator response: Probable user error. Take one
of the following actions depending upon installation
procedure:

1. Stop enough HASP functions to allow running with
less than &MINBUF buffers.

2. Stop the HASP System, change the HASP region or
partition size, and restart HASP.

nn $SPECIFY HASP OPTIONS--HASP-id, VERSION x.x

Explanation: HASP has been given control and is re­
questing instructions from the operator.

System action: Wait for REPLY.

Operator response:" Read the section STARTING THE
HASP JOB and enter the desired options using the OS
reply format.

HASP Operator's Guide - Page 96

789

HAS P

nn $SYNTAX ERROR -- RESPECIFY OPTIONS

Explanation: HASP does not recognize one or more
of the initialization options entered by the
operator.

System action: Reset to default responses and wait
for REPLY.

Operator response: Probable user error. Read the
section STARTING THE HASP JOB and carefully enter
the desired options.

HASP Operator's Guide - Page 97

HAS P

4.2 HASP SYSTEM CATASTROPHIC ERROR CODES

All HASP System catastrophic errors are considered so extremely
serious in nature that HASP is unable to continue processing.
The message will be displayed on a single 1052 console, designated
by the HASP generation parameter $PRICONA, using a hardware START
I/O instruction. HASP will then go into a single instruction loop.

SYSTEM PROGRAMMER RESPONSE

A storage dump should be taken by STAND-ALONE utility and saved
for later analysis. A careful check of the HASP generation pro­
cess should be made to insure that HASP modules·are assembled
properly (modifications are correctly entered and no errors
occurred during assembly), that the overlay library has been
properly created, that the linkage editor created a correct HASP
resident module, and that the HASP execution JCL corresponds to
the data sets designated by the generation JCL. If any doubt
exists that the HASP generation process is other than perfect, a
new complete HASP generation should be undertaken.

AOI

BOI

Explanation: HASP has detected more channel end
indications for a device than expected. Only one
channel end indication· should be received from lOS
for each Input/Output operation which HASP has
initiated.

System action: Continuous Loop.

Operator response: Take a STAND-ALONE DUMP and
notify system programmer.

Explanation: Probable user error. Either (1) an
attempt has been maqe to return an invalid HASP
buffer to the buffer pool, or (2) the free buffer
chain has been destroyed.

System action: Continuous Loop.

Operator response: Take a STAND-ALONE DUMP and
notify system programmer.

HASP ope~ator's Guide - Page 98

791

HAS P

EOl

KOl

MOl

M02

Explanation: The total number of channel end
indications from lOS has exceeded the total number
of Input/Output operations which HASP has initiated
(i.e., the total number of outstanding Input/Output
operations has gone negative).

System action: Continuous Loop.

Operator response: Probable user error. Take a
STAND-ALONE DUMP and notify system programmer.

Explanation: The Checkpoint Processor has dis­
covered that some track groups are both free and
allocated.

System action: Continuous Loop.

Operator action: Take a STAND-ALONE DUMP and
notify system programmer.

Explanation: HASP has detected more channel end
indications for an RJE line than expected. Only
one channel end indication should be received from
lOS for each Input/Output operation which HASP has
initiated.

System action: Continuous Loop.

Operator response: Take a STAND-ALONE DUMP
notify system programmer.

Explanation: An attempt has been made to initiate
an Input/Output operation on an RJE line before the
previous operation has completed.

System action: Continuous Loop.

Operator response: Take a STAND-ALONE DUMP and
notify system programmer.

HASP Operator's Guide - Page 99

792

HAS P

001

VOl

X03

X04

Explanation: A HASP Processor already logically
executing under overlay control has issued another
call ($LINK or $LOAD) to Overlay Service without
exiting from overlay control ($RETURN and $DELETE).
Test for this condition is performed only if the
HASPGEN parameter &DEBUG is set to YES.

System action: Continuous Loop.

Operator response: Take STAND-ALONE DUMP and
notify system programmer.

System programmer response: Probable user error.
Check any local modifications to HASP for the errors
described above. Consult IBM Customer Engineer if
problem remains undetermined.

Explanation: The Purge Processor has discovered
that some track groups to be freed were already
free.

System action: Continuous Loop.

Operator response: Take a STAND-ALONE DUMP and
notify system programmer.

Explanation: The Execution Processor routine
XTERMIN8 which deallocates DDBs discovered a
non-existent UCB entry in the DDB being deallocated.

System action: Continuous Loop.

Operator response: Take a STAND-ALONE DUMP and
notify system programmer.

Explanation: T~e Execution Processor DDB Service
routine (XDDBCONT) which maintains the DDB frequency
table was unable to match the action DDB with the
frequency table entry.

System action: Continuous Loop.

Operator response: Take a STAND-ALONE DUMP and
notify system programmer.

HASP Operator's Guide - Page 100

793

HAS P

xos

HOI

ABND

Explanation: The HASP Reader/Interpreter appendage
initialization routine (XJCLTEST) could not identify
the JCL keyword value provided on the first entry
to the appendage. The first entry is presumed to
be a JOB statement and the keyword value must be
X'65' (Release 18 and prior releases) or X'B4'
(Release 19 and subsequent releases).

System action: Continuous Loop.

Operator response: Take a STAND-ALONE DUMP and
notify system programmer.

,Exelanation: A HASP Control Service Program function
WhlCh was not generated was requested by a HASP
processor.

System action: Continuous Loop.

Operator response: Take a STAND-ALONE DUMP and
notify system programmer.

System programmer response: Probable user error.
Validate HASPGEN parameters for consistency across all
modules. Verify local modification dependency on
HASPGEN parameters.

Explanation: The HASP abnormal exit (STAE) routine
has been entered, indicating that the HASP SYSTEM
has been abnormally terminated. The OS code indicating
the reason for the ABEND may be found in the HASP
TCB completion code field.

System action: Continuous Loop.

Operator response: Take a STAND-ALONE DUMP ,and
notify system programmer.

HASP Operator's Guide - Page 101

794

HAS P

4.3 HASP JOB PROCESSING MESSAGES

Messages displayed during HASP job processing 'reflect conditions
which range from informational to serious errors .and are listed
as follows:

ALL AVAILABLE FUNCTIONS COMPLETE

Explanation: All HASP job processors have become
dormant and no HASP RJE lines are active.

device BACKSPACED

device command

device DELETED

Explanation: Output processing on the indicated
printer is being backspaced.

System Action: The requested number of pages are
backspaced. Then processing continues. If the
start of the data set is encountered while back­
spacing, processing continues at the start of that
data set.

Explanation: The displayed command has been entered
from the device indicated.

System Action: The command is passed to the command
processor for further action.

Explanation: Output processing on the indicated
device has been deleted.

System Action: 'The job being processed on the indi­
cated device will be queued for the next processing
phase. Output processing will be terminated.

HASP Operator's Guide - Page 102

795

HAS P

device FWD-SPACED

Explanation: Output processing on the indicated
printer is being forward-spaced.

System Action: The requested number of pages are
skipped without printing. Then processing continues.
If the end of a data set is encountered while skip­
ping, processing continues with the beginning of the
next data set.

device IS DRAINED

Explanation: The operator has entered a $p device
command directed to the named device and the device
has entered the DRAINED status.

f deVice) lJOB j message

device REPEATED

Explanation: The Input Service Processor has
detected a /*MESSAGE control card in the input stream.

System Action: None

Operator Response: Observe the message and take any
action which may be appropriate.

Explanation: Output processing on the indicated
device has been repeated.

System Action: Thejob being processed on the
indicated device will be re-queued. Output proces­
sing will continue.

HASP Operator's Guide - Page 103

796

HAS P

device RESTARTED

Explanation: Output processing on the indicated
device has been restarted.

System Action: The job being processed on the
indicated device will be re-queued. Output pro­
cessing for the job will be terminated.

device SKIPPING FOR JOB CARD

Explanation: The Input Service Processor is now
scanning the input stream for a Job Card.

System Action: The Input Service Processor will
continue to read the input stream until a Job Card
is encountered or until an end-of-data condition
is recognized.

device SUSPENDED

Explanation: Output processing on the indicated
printer is being interrupted.

System Action: The job. being processed on the indi­
cated printer will be re-queued in suc~ a way that
when it is processed again, printing will begin one
page before the current point or at the beginning
of the data set, whichever is less. Output proces­
sing will be terminated.

HASP Operator's Guide - Page 104

797

HAS r

DISASTROUS ERROR - COLD START SYSTEM ASAP

Explanation: A critical I/O error has occurred
on the SYSI.HASPACE data set. A corresponding I/O
error message will accompany this message giving
details of the error.

System Action: HASP will continue processing jobs
using unaffected facilities~

Operator Response: Prevent new jobs from entering
the system, prepare all jobs in the HASP execution
queue for resubmission when HASP is restarted, allow
HASP to complete all current jobs in execution and
all output activity depleting the output queues,
and stop HASP. The cause of the error should be
determined before COLD starting HASP.

DISASTROUS ERROR DURING CHECKPOINT - RESTART ASAP

Explanation: An I/O error has occurred while
attempting to write checkpoint information, thus
preventing any possibility of performing a future
HASP WARM start. An associated I/O error message
will accompany this message.

System Action: HASP will discontinue the checkpointing
of critical information on direct access.

Operator Response: Prevent new jobs from entering the
system, prepare all jobs in the HASP execution queue
for resubmission when HASP is restarted, allow HASP
to complete all current jobs in execution and all
output activity depleting the output queues, and stop
HASP. The cause of the error should be determined
before COLD starting HASP.

HASP Operator's Guide - Page 105

798

HAS P

HASPWTR - PERM I/O ERR OS JOBQ

Explanation: The separate l'oad module HASPWTR,
which retrieves OS System Messages for HASP before
the end of job execution, has received a permanent
error indication while attempting I/O on the data
set SYSI.SYSJOBQE, after all standard OS direct
access error recovery actions have been attempted.

System Action: If the operation is a write, pro­
cessing continues but later attempts to read the
record may fail or read incorrect information. If
the operation is a read, HASPWTR does not use the
incorrect information. Processing of the single
job, whole sysout MSGCLASS, or re-queue action is
terminated (depending upon when the I/O error
occurred) and other processing continues.

Operator Response: Use the $p command to prevent
any new functions from starting. When all current
functions have completed (except perhaps one or
more jobs which may not finish execution if HASPWTR
has stopped processing a MSGCLASS), re-IPL the
system, cold start OS (this re-formats SYS1.SYSJOBQE
by writing every record on it), and if no errors are
indicated, warm start HASP to continue processing.
If unsuccessful, notify system programmer.

System Programmer Response: The direct access volume
containing SYS1.SYSJOBQE should be analyzed with an
appropriate utility and/or the direct access device
changed to localize possible machine malfunction.
The IBM customer engineer should be notified if
difficulties persist.

HASP Operator's Guide - Page 106
799

HAS P

I/O ERROR ON device uuu,cc,ssss,iiii,bbcchhr

Explanation: An INPUT/OUTPUT error has occurred
on the indicated HASP device where:

device = HASP device name or volume serial if

uuu
cc
ssss
iiii
bb
cc
hh
r

DIRECT ACCESS
= hardware address
= CCW op-code used at the time of error
= CSW status code
= sense information
= bin as appropriate
= cylinder as appropriate
= head as appropriate
= record as appropriate

Associated error messages may be displayed as a
result of the error. For direct access the following
could be causes of the error:

1. The channel, control unit, or device is
malfunctioning. This may be determinable
by moving the volume (if movable) to a new
drive, control unit, or channel and restarting
HASP.

2. The recording surface is bad. This may be
indicated by the nature of the error and
distribution of the bbcchhr information
(A reinitialization with assignment of
alternate tracks followed by HASP FORMAT
start may be desirable).

3. The data set SYSl.HASPACE may have been over­
written by improper data set assignment and
protection procedures. This may be indicated
by wrong length record indications. (A
HASP FORMAT start is required).

System action: HASP will continue job processing
and submit additional error messages indicating the
severity of the error to the system.

Operator response: Determine the cause of the error
and take appropriate action.

HASP Operator's Guide - Page 107

800

HAS P

I/O ERROR ON LINEn uuu,cc,ssss,iirr,xyee

Explanation: An error has been detected on the
indicated HASP RJE line or on a device attached
to that line wnere:

n = HASP RJE line number
uuu = line adapter address

cc = CCW op-code used at the time of error
ssss = CSW status code if no Block Sequence Check

= 0000 - Indicator for normal channel end
with a Block Sequence Check at the

central CPU
= FFFF - Indicator for normal channel end

with a Block Sequence Check at
the remote site

ii = sense information if ssss=OEOO
= last character received if ssss=OCOO

and xy=94 or B4
rr = additional sense information (if STR

and ssss=OEOO)
= remote device first response character

if BSC
x = HASP CCW internal sequence identification
y = HASP CCW internal sequence command type

ee = expected response if BSC
= blank if STR

Notes:
1. This message may also occur as an informational

message when maintenance personnel have set
HASP internal flags to log all channel ends on
the line device.

2. The appropriate IBM Component Description System
Reference Library manual describes the status
and sense information in detail.

HASP Operator's Guide - Page 108

801

HAS P

System Action: HASP will for most line errors at­
tempt to recover and continue processing usin~ the
line.

Operator Responses: The console log should be saved
for maintenance personnel (even if recovery is suc­
cessful). Additional responses depend upon the
nature of the problem.

Specific Messages and Explanations: For STR termi­
nals, the "IBM 2701 Data Adapter unit Component De­
scription" (GA22-6864) should be consulted for a
complete discussion of status and sense bit meanings.
For BSC terminals that employ the USASCII transmis­
sion code, the following substitutions should be
made in response fields:

In
as

Res}2onse EBCDIC USASCII

EOT 37 04
NAK 3D 15
ACKI 61 31
ACKO 70 30

the following messages, conventions observed are
follows:

UPPER CASE LETTERS AND NUMBERS--indicate fields
which will appear on the error log exactly as
described.

LOWER CASE LETTERS--indicate fields which have
not been described in any previous example ex­
actly the way that they appear in the error
log.

ASTERISKS (**)--indicate fields which should be
ignored as they do not contribute to the meaning
of the message.

HASP Operator's Guide - Page 109

802

HAS P

I/O ERROR ON LINEn uuu ,02 ,0000 ,00rr, { ~! } ee.

Explanation: A block sequence error has been de­
tected by HASP while communicating with a MULTI­
LEAVING terminal. This indicates that one or more
transmission blocks have been lost. "rr" indicates
the count received and "ee" indicates the count
expected.

System Action: Any job reading in will be deleted
and must be resubmitted.

Operator Action: This represents a very serious
error. Control records may have been lost which
could cause partial loss of terminal function.
The line should be drained ($P) and restarted ($S)
as soon as practical.

I/O ERROR ON LINEn UUU ,02 ,oeoo ,0001 , { ~~ }**

Explanation: A 2770 or 2780 terminal has discon­
nected without signing off and a MULTI-LEAVING ter­
minal has subsequently connected to the same line
and is attempting to sign on.

System Action: The previous terminal will be signed
off and the line disconnected.

Operator Action: The remote terminal operator must
re-dial and attempt to sign "on again.

HASP Operator's Guide -Page 110

803

HAS P

I/O ERROR ON LINEn uuu ,02 ,oeoo ,003D.5 H\l ... ** t B4 '

Explanation: A NAK has been received from the re­
mote terminal indicating an error was detected at
the terminal.

System Action: Normal error recovery procedures
.are invoked.

I/O ERROR ON LINEn

I/O ERROR ON LINEn

UUU ,02 ,oeoo ,0061 , { ~~ } 70

UUU ,02 ,oeoo ,0070, { ~~ } 61

Explanation: HASP has received an incorrect acknowl­
edgementfrom a 2770 or 2780 terminal. This may in­
dicate that an output device (printer or punch) at
the remote terminal has become not ready. It may
also indicate that an output block has been lost.

System Action: The last block is retransmitted.

Operator Action: The remote terminal operator should
check (to any extent possible) for missing or dupli­
cate output and request a backspace or restart if the
output looks questionable.

I/O ERROR ON LINEn uuu,02,OCOO,OOrr,84**

Explanation:
2770 or 2780.
byte received.

System Action:
invoked.

Invalid data has been received from a
"rr" indicates the first significant

Normal error recovery procedures are

HASP Operator's Guide - Page III

804

HAS P

I/O ERROR ON LINEn uuu,02,OCOG,OOrr,****

Explanation: An invalid response has been received
from the remote terminal. "rr" indicates the first
significant byte of the response.

System Action: Normal error recovery procedures are
invoked.

I/O ERROR ON LINEn uuu,02,OCOO,;; {~~}, {~!} **

Explanation: An invalid termination character was
received from a MULTI-LEAVING terminal. "ii" indi­
cates the termination character received.

System Action: Normal error recovery procedures are
invoked.

I/O ERROR ON LINEn uuu,02,ODOO,0037,84**

Explanation: The card reader on a 2770 or 2780 has
become not ready. This may be caused by a card feed
error or by the failure of the remote operator to
activate the END-OF-FILE switch or button.

System Action: The system waits for the reader to
be made ready and transmission to continue.

Operator Action: The remote terminal operator should
correct the problem and ready the card reader (insur­
ing that the END-OF-FILE switch or button is
activated) .

HASP Operator's Guide - Pagelll.l

804.1

HAS P

I/O ERROR ON LINEn UUU ,02,0000 ,0037 ,{ ~:} **
. . C6

Explanation:' HASP has received an unexpected EOT.

System Action: Normal error recovery procedures are
invoked.

I/O ERROR ON LINEn uuu,**,OEOO,ii**,****

Explanation: A Unit Check has been detected by HASP
on the Communications Adapter. For more detailed
information concerning the exact nature of the error,
the "IBM 2701 Data Adapter Unit Component Descrip­
tion" (GA22 6864) and/or the "System/360 Component
Description--2703 Transmission Control" (GA27-2703)
publications should be consulted. Table 4.3.1 gives
an explanation of the sense bits.

HASP Operator's Guide - Page 111.2

804.2

HAS P

I/O ERROR ON LINEn UUU ,02 ,FFFF ,OOrr, { ~4 } ee

Explanation: A block sequence error has been de­
tected by a MULTI-LEAVING terminal. This indicates
that one or more transmission blocks have been lost.
"rr" indicates the count that was received at the
remote terminal and "ee" indicates the count that
was expected.

System Action: Any job printing on the terminal will
be interrupted, and any job punching on the terminal
will be restarted.

Operator Action: This represents a very serious er­
ror. Control records may have been lost which could
cause partial loss of terminal function. The line
should be drained ($P) and restarted ($S) as soon as
practical.

I/O ERROR ON LINEn uuu,cc,ssss,ii**,****

Explanation: ·An unusual channel end condi tion has
been detected by HASP on the Communications Adapter.
For more detailed information concerning the exact
nature of the error, the appropriate hardware com­
ponent description manuals should be consulted.

System Action: The line is automatically restarted.

HASP Operator's Guide - Page 111.3

804.3

HAS P

Table 4.3.1 HASP RJE Typical Sense Information on 2701

ii Meaning

80 Command Reject--"Abortive Disconnect" option of the
2701/2703 has been selected and the remote terminal
has disconnected without signing off.

40 Intervention Required--Remote terminal has discon­
nected without signing off and abortive disconnect
is not selected.

20 Bus Out Check--Hardware error.

10 Equipment Check--Hardware error.

08 Data Check--Line error or hardware error.

04 Overrun--Hardware error or deficiency.

02 Lost Data--Synchronization error.

01 Timeout--Expected terminal response not received
by HASP.

Table 4.3.2 HASP BSC MULTI-LEAVING Data Stream Control Sequences

rr

01
02
2D
3D

70

sequence

SOH-STX-data-ETB
DLE-STX-data-DLE-ETB
SOH;""ENQ
NAK

DLE-ACKO

comments

non-transparent data transfer
transparent data transfer
initial sequence (prior to SIGN ON)
remote did not receive last trans­
mission correctly
last transmission received correctly
but remote has no data to transmit

Note: The display of control sequences has meaning only when
(ssss=OCOO) •

HASP Operator's Guide - Page 111.4

804.4

HAS P

Table 4.3.3 Command Codes utilized by HASP RJE

cc command

01 WRITE
02 READ
03 NOP
06 PREPARE (STR only)
07 STEP COUNT (STR only)
08 TRANSFER IN CHANNEL
17 ERROR (STR only)
23 SET MODE
27 ENABLE
2F DISABLE
33 TEST SYNCH (STR only)
37 SEND EOT (STR only)
3B SEND INQUIRY (STR only)

Table 4.3.4 HASP RJE CCW Internal Sequence Identifiers

x sequence identification

o
1
2
3
4
5
8
9
A
B
C

STR Hardware Remote Read Sequence
STR CPU Remote Read Sequence
STR Hardware Remote Write Sequence
STR CPU Remote Write Sequence
STR Hardware Remote Prepare Sequence
STR CPU Remote Prepare Sequence
BSC Hardware Remote Read Sequenc,e
BSC CPU MULTI-LEAVING Remote Write-Read Sequence
BSC Hardware Remote Write Sequence
BSC CPU MULTI-LEAVING Remote Write-Read Sequence
BSC Prepare Sequence

Table 4.3.5 HASP RJE CCW Internal Sequence Command Types

~ command type

o Disable
1 Set Mode
2 Enable
3 Test Synch
4 Read Text
5 Read Response (normal)
6 Read Response (to ENQ)
7 Prepare
8 Write Text
9 Write Response
A Send Inquiry (Write ENQ)
B Send EOT

HASP Operator's Guide - Page 112

805

HAS P

Explanation: INIT/PART "i" is idle because the
Execution Processor discovered that no jobs of the
class (es) identified by "c ... " were available in the
HASP job queue.

System Action: The execution processor will activate
the INIT/PART when jobs of the class(es) become
available.

JOB DELETED BY HASP OR CANCELLED BY OPERATOR BEFORE EXECUTION

JOB j

Explanation: The job was either deleted by the
Input Service Processor of HASP or cancelled by an
operator before OS Execution Processing.

System Action: The JCL is printed and the job is
purged.

Note: This message appears only in the printed
output stream for the job.

EXCESSIVE INPUT STREAM DATA SETS

Explanation: The Input Service Processor has detected
an excessive number of "DD *" or "DD DATA" JCL statements
for a single job. Either the total number of Pseudo 2540
Units or the number of HASP Data Definition Tables was
exceeded.
System Action: The job will be deleted.

Pro~rammer Response: Divide the job into a number
of Jobs such that no one job contains too many input
stream data sets.

System Programmer Response: Increase the number of
Pseu~o 2540 Units generated and/or increase the
number of HASP Data Definition Tables generated
(see HASPGEN Parameter &NUMDDT).

HASP Operator's Guide - Page 113

806

HAS P

JOB j -- ILLEGAL JOB CARD

JOB j

JOB j

Explanation: The Job Card for the indicated job
was found to be invalid by the Input Service"
Processor.

System Action: Input Service Proce?sing is
terminated for this job.

Programmer Response: Correct the Job Card and
resubmit the job.

System Programmer Response: The HASPGEN Parameter
&RJOBOPT, if set to "NO", will allow jobs with
illegal job cards to be processed.

ILLEGAL /*ROUTE CARD

Explanation: The Input Service Processor has
encountered an invalid /*ROUTE control card.

System Action: Input Service Processing for the
job is terminated.

Programmer Response: Correct the /*ROUTE card and
re-submit the job.

jobname -- BEGINNING EXEC - {;~~} i-CLASS c

Explanation: Job" j ", named "j obname ", is
beginning the execution phase in the INIT/PART
"i" as a Class "e" job.

HASP Operator's Guide - Page 114

807

HAS P

JOB j AWAITING HASP ALLOCATION

Xx-lTafia-fic'-fi-:-rns-ufficfr-e-nrliASP~re-sfo,rrce-sfefre~avaTI­

able to process the specified job (j). The Execu­
tion Processor is unable to find an available DDB or
UCB needed to service the indicated job's I/O
request .•

System Action: Processing of the specified job will
continue when a DDB or UCB becomes available. Note:
If insufficient DDBs or UCBs (pseudo devices) have
been defined for the system, a permanent lockout
condition can occur.

Operator Response: If a single job is being proc-.
essed by HASP, then a permanent lockout caused by
insufficient DDBs has occurred. Notify system pro­
grammer.

If multiple jobs are being processed under control
of HASP, then DDBs or UCBs can be made available by
OS cancelling a job which did not cause the
condition.

Sfistem Programmer Resaonse: Frequent occurrence of
t is message is an in ication of insufficient re­
sources (ODBs or UeBs) for proper system performance.
See the HASP Manual, Sections 7.1 and 10.2 for guide-
lines on DDB and UCB definitions. .

HASP Operator's Guide - Page 115

808

HAS P

JOB j BUFFER ROLL UNSUCCESSFUL ••• VERIFY NUMBER OF BUFFERS

JOB j DELETED

Explanation: An insufficient number of HASP buffers
is available to process the specified job.

The Execution Processor BUFFER GET/ROLL routine was
unable to find a DDB with a HASP buffer eligible
for the buffer roll process.

System Action: Processing of the specified job
will continue when a buffer becomes available from
another HASP processor.

Operator Response: Notify system programmer.

System Programmer Response: If this message appears
frequently, the number of buffers defined for HASP
is insufficient for proper performance.

Note: This message is eligible for output only if the
HASPGEN variable &DEBUG was selected at HASPGEN time.

Explanation: The Input Service Processor has deleted
the indicated job.

System Action: Thejob is routed to the Print phase
for appropriate action~ then the job is purged.

JOB j DUPLICATE JOB NAME - JOB DELAYED

Explanation: The specified job was delayed for
execution because a job of the same name was already
executing.

System Action: The indicated job Tllill be executed
when the job with the same name terminate? execution.

JOB j END EXECUTION

Explanation: The specified job has completed
execution processing.

System Action: The specified job is queued for action
by the Print/Punch Processor.

HASP Operator's Guide - Page 116

809

HAS P

I JOB j ESTIMATED f LINES l EXCEEDED BY xxxxxx
~ CARDS f

Explanation: The indicated job has exceeded its
estimated number of lines/cards by xxxxxx lines/
cards.

System Action: The action taken by the system is
dependent upon the HASPGEN variable &OUTPOPT. See
Section 7.2. Either the job will be cancelled (with
or without a dump) or no further action "will be
taken.

JOB j ESTIMATED TIME EXCEEDED BY xx MINUTES

JOB j HELD

Explanation: The indicated job has exceeded its
estimated real time in the HASP Execution Phase· by
xx minutes.

System Action: The action taken by the system is
dependent upon the HASPGEN variable &TIMEOPT. See
Section 7.2. The job will either be cancelld (with
or without a dump) or no further action will be
taken.

Explanation: The lndicated job has been placed in
HASP Hold Status for one of the following reasons:

1. The Job Card specified "TYPRUN=HOLD".

2. The device from which the job was read was
set to hold all jobs.

System Action: None.

Operator Response: The reason why the job was placed
in HASP Hold Status should be determined and the job
should be released when appropriate for further
processing.

HASP Operator's Guide - Page 117

810

HAS P

JOB j HELD FOR THE FOLLOWING VOLUMES --

text
Explanation: The job indicated has been placed in
HASP Hold Status pending availability of the volumes
indicated by "text".

System Action: The job is placed in HASP Hold
Status and input processing continues.

Operator Response: Insure that the requested volumes
are available to be mounted and release the job.

JOB j IS PURGED

Explanation: HASP has completely finished
processing the designated job and all HASP facilities
belonging to the job are made available for reuse.

JOB j JCT OVERFLOW - OUTPUT LOST

Explanation: The indicated job generated more output
data sets than were provided for by HASPGEN. See
Section 7.2. The Execution Processor discovered
that the JCT for the indicated job could not hold
another PDDB representing additional SYSOUT data.

System Action: The job will continue to process
nQrmally except those data sets in excess of the
maximum will not be printed or punched.

Operator Response: Notify system programmer of
condition.

HASP Operatorts Guide - Page 118

811

HAS P

JOB j LOAD 'xxxx' FORMS IN device

1::'.. J. t' mh' d' I ... ,,-, d . 1- " ~ \.. " " ---L.IAp ana- lOn: :.1.:_ e J n lCa..J.-e ~)-oS.J---re-q-U1res~w-!-a-t--'.'.-x-x-x-x
type forms be mounted in the indicated device before
output processing can continue.

System Action: Output processing is halted on the
specified device until an appropriate operator
response is received.

Operator Response: The operator should load the
requested forms (or verify that the requested forms
are loaded) and enter a start ($S) command for the
indicated device. If the operator does not wish to
continue processing at this time, either the restart
($E) command, the interrupt ($I) command, or the
delete ($C) command will be accepted at this time
and the output processor will assume that the re­
quested forms have not been mounted.

JOB j ON device -- jobname programmername

Explanation: A Job Card has been detected in the
input stream from the indicated device and the
associated job has been assigned a HASP Job Number
of "j". The jobname and programmername displayed
are the job name and programmer name from the Job
Card.

System Action: The previous job (if any) is queued
for the execution phase and input service processing
is initiated for the new job.

{
PRINTINGj ,

JOB j PUNCHING ON devlce

Explanation: The indicated job is now being pro­
cessed by the Output Service Processor.

HASP Operator's Guide - Page 119

812

HAS P

JOB j TERMINATED

Explanation: A permanent I/O error, while reading
input from a SPOOL volume for the specified job,
was encountered. The nature of the error was dis­
played by a previous "I/O ERROR ... " message.

System Action: The indicated job is cancelled
automatically.

Operator Response: Notify system programmer.

LINEn -- INVALID PASSWORD

Explanation: A Remote attempted to sign-on the
specified line with an invalid password.

s!stem Action: The attempted sign-on is not
a lowed and the line is left in an inactive
status.

Operator Action: The remote operator should
determine the valid password and correct the
sign-on card to reflect this information.

LINEn -- INVALID SIGNON

Explanation: A Remote attempted to sign-on the
specified line with an invalid sign-on card. A
sign-on

1.
2.

3.

4.

card may be invalid if:
The Remote name is spelled incorrectly.
The Remote specified has not been
generated.
The Remote specified is attached to
another line.
The remote name aoes not begin in column 16

System Action: The attempted sign-on is not
allowed and the line is left in an inactive
status.

Operator Action: The remote operator should verify
the spelling of the Remote. If the Remote is
attached to another line, steps should be taken
to correct this conflict in Remote assignments.

System Programmer Action: If the required Remote
has not been generated another HASPGEN will be
required to correct this situation.

HASP Operator's Guide - Page 120

813

HAS P

r, . message from operator

Explanation: The operator at a central console
(r=O) or at a remote terminal identified by the
value r has entered the displayed message via the
$DM (display message) command.

UNREADABLE OVERLAY--REBUILD OLAYLIB AND WARM START

Explanation: The HASP Overlay Service Routines have
received a permanent error indication while attempt­
ing to read from the data set whose ddname is
OLAYLIB, after all standard OS direct-access error
recovery actions have been performed.

System Action: The HASP Processor which requested
the overlay module is placed on a permanent $WAIT
state. Other processors continue to function.

Operator Response: Notify the systems programmer.
Enter $p to prevent new functions from starting.

System Programmer Response: Re-install HASP as de­
scribed in section 10.2.2.3. Ask the operator to
warm start HASP to continue. processing.

HASP Operator's Guide - Page 121

814

HAS P

5. 0 CONSOLE SUPPORT

HASP provides the installation the option of allowing either HASP
or OS to control the local operator console devices. Although the
format of the entry of OS and HASP commands is the same regardless
of the option selected by the installation, the physical control of
the devices differs. The section HASP CONSOLE SUPPORT provides suf­
ficient information for the operator to control HASP console devices,
and the section OS CONSOLE SUPPORT provides sufficient supplementary
information to the OS Operator's Guide for control of OS consoles.

5.1 HASP CONSOLE SUPPORT

Up to eight locally attached devices may be used as HASP consoles.
The following devices may be used as consoles for the type of
input-output listed:

1052
1053
1443
2260

printer keyboard
printer (on local 2848)
printer
display (on local 2848)

- input and output
- output
- output
- input and output

Each console device will be assigned a HASP physical device identi­
fication which is used to reference the device via HASP commands;
the identifications are: CONI, CON2, •••.

The $DU (DISPLAY UNITS) command may be used to determine the HASP
physical device with the hardware address assigned to the device.

HASP Operator-s Guide - Page 122

815

HAS P

CONTROLLING CONSOLE MESSAGE OUTPUT

When HASP is started, all local consoles will be set to display
all messages generated by OS, including problem program WTO and
WTOR messages, as well as those generated from within HASP.
Depending upon the system, it is possible for a large volume of
messages to be displayed upon the console devices. A large message
volume not only makes it difficult for an operator handling a part
of the operator work load to quickly identify messages intended for
his use, but it tends to tie up the system waiting on the speed of
the slowest console device. HASP provides a means of classifying
messages so that each operator can cause only desired messages to
be displayed at his console. Each message has one or more logical
console classifications:

LOG
ERROR
UR
TP
TAPE""'
MAIN­
OS

Each message will

1
3
4
7

log console messages
error messages
unit record messages
HASP RJE line messages
tape console messages
main operator's console messages
OS WTO messages
also have an associated level of importance:

non-essential messages
normal messages
messages requiring action
essential messages

HASP Operator's Guide - Page 123

816

HAS P

By appropriate setting of the output classifications of a given
HASP console, the operator is able to select only those messages
he desires to see. As an example, CONI is a 1052 and CON2
is a 1443. Because the 1443 is a high speed device, it is allowed
to display all ,messages generated within the system. However, the
1052 is set to display only messages to the main operator, MAIN,
at a level of importance above 3. The setting for the 1052 would
be accomplished using the following commands:

$T CONl,RESET
$T CONl,3,MAIN

- turn off all output
~ set level of importance and

logical console class

If it is desired to assign a console to more than one logical
console class, the following command sequences could be used:

1.

2.

$TCONl,RESET
$T CONl,3,MAIN
$T CONI, ERROR

$T CONl,RESET
$T CONl,3,MAIN,ERROR

- turn off all output
- set level and logical class
- add an additional logical class

- turn off all output
- set level and both logical classes

Setting the HASP console output characteristics applies equally well
with multiple or single console options. The only difference is the
flexibility achievable in mUltiple console configurations.
Resetting a console although preventing console message output will
not, however, prevent responses to HASP commands from being displayed;
HASP command responses will always be displayed on the console upon
which the command was entered. TABLE 5 .1.1 lists the classifications
for each message originating from HASP.

In addition to the $T command, the following commands may be used
to control console output:

$Z CONn
$S CONn

- turn off all output to console (same as RESET)
- turn on all output to console (same as level 0

and specifying all of the logical console
classes)

HASP Operator's Guide - Page 124

817

HAS P

TABLE 5.1.1 HASP MESSAGE CLASSIFICATIONS

MESSAGE

"ERROR" CONSOLE MESSAGES

ALL AVAILABLE FUNCTIONS COMPLETE
DISASTROUS ERROR - COLD START SYSTEM ASAP
DISASTROUS ERROR DURING CHECKPOINT - RESTART ASAP
I/O ERROR ON device uuu,cc,ssss,iiii,bbcchhr
I/O ERROR ON LINEn uuu,cc,ssss,iirr,xyee

"UR" CONSOLE MESSAGES

ALL AVAILABLE FUNCTIONS COMPLETE
SPOOL VOLUMES A~E FULL
JOB j LOAD 'xxxx' FORMS IN device
JOB j ON device -- jobname programmername
device BACKSPACED
device command (excluding remote console devices)
device DELETED
device FWD-SPACED
device REPEATED
device RESTARTED
device SKIPPING FOR JOB CARD
device SUSPENDED
JOB j HELD
device IS DRAINED
JOB j -- ILLEGAL JOB CARD
JOB j -- ILLEGAL /*ROUTE CARD
JOB j DELETED
JOB jlPRINTINGjON device

PUNCHING
JOB j PURGED

"TP" CONSOLE MESSAGES

ALL AVAILABLE FUNCTIONS COMPLETE
I/O ERROR ON device uuu,cc,ssss,iiii,bbcchhr
I/O ERROR ON LINEn uuu,cc,ssss,iirr,xyee
r, message from operator (at remote r)
device command
LINEn ~- INVALID PASSWORD
LINEn -- INVALID SIGNON
REMOTEr DISCONNECTED
REMOTEr STARTED ON LINEn
device IS DRAINED

LEVEL

7
7
7
7
7

7
7
5
5
3
3
3
3
3
3
3
3
3
1
1
1
1
1

1

7
7
7
7
3
3
3
3
3
1

HASP Operator's Guide - Page 125

818

HAS P

"TAPE" CONSOLE MESSAGES

ALL AVAILABLE FUNCTIONS COMPLETE

{device} message
JOB j
JOB j HELD FOR THE FOLLOWING VOLUMES--

"MAIN" CONSOLE MESSAGES

ALL AVAILABLE FUNCTIONS COMPLETE
JOB j BUFFER ROLL UNSUCCESSFUL--VERIFY
JOB j JCT OVERFLOW - OUTPUT LOST

NUMBER OF BUFFERS

JOB j TERMINATED
SPOOL VOLUMES ARE FULL

{
device} message
JOB j

{
INIT} i IDLE - CLASS = classes
PART
JOB j DUPLICATE
JOB j ESTIMATED

JOB NAME - JOB DELAYED

{
LINES} EXCEEDED BY xxxxxx
CARDS

JOB
JOB
JOB
JOB
JOB
JOB
JOB

j ESTIMATED TIME EXCEEDED BY xx MINUTES
j HELD FOR THE FOLLOWING VOLUMES--
j -- jobname -- BEGINNING EXEC - {INIT}
j AWAITING HASP ALLOCATION PART
j HELD
j -- EXCESSIVE INPUT STREAM DATA SETS
j END EXECUTION

"OS" CONSOLE MESSAGES

ALL AVAILABLE FUNCTIONS COMPLETE

i-class c

(alIOS and problem program WTO and WTOR requests)
HASPWTR - PERM I/O ERR OS JOBQ
UNREADABLE OVERLAY - REBUILD OLAYLIB AND WARM START

"REMOTE" CONSOLE MESSAGES

JOB j ON device--jobname programmer name
device SKIPPING FOR JOB CARD
JOB j LOAD 'xxxx' FORMS IN device
r, message from operator (at remote r)

"LOG" CONSOLE MESSAGES

(All messages routed to any other console)

7
5

5

7
7
7
7
7
5

5

5
5

5
5
3
3
3
1
1

7
5
5
5

HASP Operator's Guide - Page 126

I

HAS P

CONTROLLING COMMAND ENTRY

All correctly entered commands will be accepted for action when en­
tered upon the central console of a single console system. However,
when multiple local input consoles are available, some of which are
accessible to large numbers or inexperienced personnel, it is de­
sirable to limit the authority of one or more of the consoles to
control the various functions of the system. HASP consoles may,
therefore, be assigned one or more authority groups as follows:

o
1
2
4

display only
system control
device control
job control

Any console may be used to enter HASP display commands; these com­
mands are not deemed to be harmful to the system. However, to con­
trol the system from a given console, that console must be author­
ized for entry of the command; if not, the entry will be rejected
with an INVALID COMMAND response or INVALID OPERAND if the command
is generally acceptable but use of the operand is unauthorized.
"System Control" authorization is required for the entry of any OS
command or any command which attempts to alter the authorization
of a console.

At HASP initialization each console is given 'a default authorization:
by use of the $DU (DISPLAY UNITS) command each console will be listed
and if ACTIVE the sum of the authorizations will be displayed (appli­
cable only for multiple consoles). If a console is eligible for full
control, the authorization value is 7 (1+2+4). If a console is eli­
gible for control of jobs and devices, the authorization value is
6 (2+4).,

Because HASP local readers (card, tape, and internal) may be used
for command entry, these devices have an associated command authority
with the default setting of 7 (full authority).

CHANGING CONSOLE AUTHORIZATION

I An operator via a HASP local console or reader device authorized
for system control may alter the authority of any other local HASP ·
console in the system via the "$T CONn,A=value" command (value is
the sum of the desired authority group numbers). As long as author­
ization changes are made from HASP consoles, no combination of com­
mands can be entered which will cause all consoles to be unauthorized
as a "system control" console.

HASP Operator's Guide - Page 127

820

HAS P

CHANGING READER AUTHORIZATION

An operator via an OS console or HASP local console with System and
Device authority may change the command authority of any local HASP
reader in the system via the "$T reader device, A=value" command.
The operator must not use an authorized reader to turn off the Sys­
tem authority of a HASP console while that console has sufficient
commands pending which will turn off the System authority of all
HASP readers and other consoles on the system. This sequence of
events will result in loss of operational control of the system.

HASP Operator's Guide - Page 127.1

820.1

HAS P

(The remainder of this page intentionally left blank.)

820.2

HAS P

HASP 2260 OPERATION

HASP 2260 consoles operate in "roll mode" such that available
messages replace displayed messages at a specified predetermined
rate. In order to enter commands through 22605, the following
procedure must be used:

1. Press SHIFT and ENTER

2. When MI (Manual Input Symbol) appears at the beginning of
one of the display lines, the system is ready to accept
commands. The console is interlocked such that no
further display messages will be processed until the
command is entered.

3. Enter the desired command through the 2260 keyboard.

4. To send the command to the system, press SHIFT and ENTER.
The command will be read by HASP, the screen made avail­
able for display messages.

If mistakes are made during command entry, use the BKSP key and
re-type over the incorrect portions, space the cursor beyond the
last command character if necessary, then do step 4. To cancel
a command without entering it, backspace the cursor until it is
immediately to the right of the MI symbol, then do step 4.

The screen should not be cleared by use of the keyboard ERASE when
the MI symbol is on the screen. If this is done, the usual symptom
will be that the system will not respond with MI when ENTER is
pressed. The following special recovery procedure should be used:

1. Re-clear the screen by pressing SHIFT and ERASE.

2. Press SHIFT and START to manually produce the MI symbol.

3. Continue as above from step 3 to enter a command.

HASP Operator's Guide - Page 128

821

HAS P

HASP 1052 OPERATION

HASP 1052 consoles normally operate in the output mode. The system
is free to print messages to the operator whenever a message is
ready. In order to enter commands through 1052s, the following
procedure must be used:

1. Press the REQUEST key at the right end of the keyboard.

2. When the PROCEED light located above the keyboard glows, enter
the desired command using the 1052 keyboard.

3. Upon completion of command entry, enter EOB to indicate com­
pletion of entry. (Press top row keys ALTN CODING and numeric
5 simultaneously for EOB)

If mistakes are made during entry, enter CANCEL and do steps 2 and
3 again. (Press top row keys ALTN CODING and numeric 0 simul­
taneously for CANCEL). To cancel a command after one or more char­
acters have been entered, enter CANCEL and then enter EOB when the
proceed light glows.

HASP Operator's Guide - Page 129

822

H'A S P

"5.2 OS CONSOLE SUPPORT

HASP utilizes standard OS facilities for displaying information on
the. OS controlled consoles and accepts HASP commands from OS by
monitoring the console inputs. All devices supported by OS continue
to. be supported when HASP is running in the system.

CONTROLLING CONSOLE MESSAGE OUTPUT

In the process of controlling devices and jobs, HASP originates
messages to be displayed on one or more OS consoles. Depending upon
the system, it is possible for a large volume of messages to be dis­
played upon the console devices. A large message volume not only
makes it" difficult for an operator handling a part of the operator
work load to quickly identify messages intended for his use, but
tends to tie up the system waiting on the speed of the slowest de­
vice. HASP utilizes the OS Multiple Console Support and provides
to OS message group routing codes for each HASP originated message
(see OS Operator's Guide). TABLE 5.1.1 lists all HASP originated
messages with the appropriate HASP logical console classifications.
The equivalent OS routing codes are as follows:

LOG - MASTER CONSOLE INFORMATION
ERROR - SYSTEM ERROR MAINTENANCE
UR - UNIT RECORD POOL
TP - TELEPROCESSING CONTROL
TAPE - TAPE LIBRARY, DISK LIBRARY, TAPE POOL, DIRECT

ACCESS POOL
MAIN - MASTER CONSOLE ACTION, MASTER CONSOLE INFORMATION

Each HASP message will also have an associated level of importance:

1 - non-essential messages
3 - normal messages
5 - messages requiring action
7 - essential messages

By appropriate setting of the output routings of the console device,
the operator is able to select only the OS messages as well as HASP
messages desired. The operator should refer to the OS 360 Operator's
Guide for correct use of the OS "VARY unit,CONSOLE" command. The
HASP "$T" CON" command may be used to set the desired level of im­
portance for HASP originated messages.

HASP Operator's Guide - Page 130

823

HAS P

CONTROLLING COMMAND ENTRY

In a system running with OS Multiple Console Support, consoles
may be physically available to unauthorized personnel. OS pro­
vides a facility by which each console is given authorization to
enter selected groups of commands. HASP will, when accepting a
command from OS, examine the entry console authorization and
reject unauthorized entry as an INVALID COMMAND or INVALID OPERAND
as appropriate. The OS command authority groups and the HASP
equivalents are as follows:

OS GROUP

o
1
2
3

INFO
SYS
IO
CONS

HASP

DISPLAY ONLY
JOB CONTROL
DEVICE CONTROL
SYSTEM

The OS "VARY unit,CONSOLE,AUTH" conunand may be used for the control
of the command entry authorization of the OS controlled consoles.

HASP Operator's Guide - Page 131

824

HAS P

6.0 READER SUPPORT

HASP supports numerous types of devices for entry of Operating
System commands, HASP commands, control cards, and user
jobs to be executed under control of the HASP/OS environment. Via
local attachment to the central CPU the following device types
are supported:

IBM 2501 Card Reader
IBM 2540 Card Reader
IBM 24xx Tape Drive (using non-labeled tape with maximum

block size set at HASP generation time--if seven
track tape written with 800 BPI, odd parity, data
convert on)

HASP provides an additional local reader interface enabling pro­
grams and system routines to submit commands, control cards, and
jobs to HASP as though submitted through a physical reader device.
This device-like interface is known as an internal reader (INTRDR)
and is controllable through OS and HASP commands in a manner
similar to 2540 reader devices. Devices which are connected
to HASP remote work stations and supported as readers allow
for entry of as commands, user jobs, and a subset of the HASP
commands.

HASP Operator's Guide - Page 132

825

HAS P

6.1 CONTROLLING HASP READERS

-'Ph~r-ough----t-h-e-us-e------o-f--HA-S-P-op-erator-command~s------t1re-op-e~rator-c-o~n-e-ro-Ts-trlE~­

HASP reader devices. Operators at remote work stations may control
only those HASP readers which are attached to the remote work station.
Commands which control HASP readers are as follows:

Command

$C reader

$P reader

$S reader

$T reader,HOLD -

$T reader,A=a

$Z reader

General Use

Cancel the current job being read on the
reader thus causing the reader to skip for
the next job or HASP control card.
Stop HASP from using the reader device for
future job streams.
Start HASP use of the reader device for
future job stream input.
Set the reader device to place input jobs
in the HOLD status--reset by $S reader
Set the command authority for the local
reader device
Halt the reader device until $S reader is
entered

The formal definitions of these commands may be found in the HASP
OPERATOR COMMANDS section of this manual.

The following paragraphs discuss special methods of controlling lo­
cal readers. The remote operator should refer to the operator's .
guide provided for the supported work station.

HASP LOCAL CARD READERS

Each 2540 or 2501 Card Reader on the system is assigned a HASP name
at HASP initialziation time; responses to the $DU command display
the HASP reader names along with the corresponding hardware addresses.

STARTING HASP LOCAL CARD READERS - There are three methods of causing
HASP to begin using a HASP card reader device:

1. Enter the $S reader command when the device is halted,
drained, or inactive.

2. Ready the reader with cards prior to replying to the ini­
tialization WTOR. This is equivalent to entering a $S
reader command.

3. If the Automatic Starting Reader feature is selected by
the installation, ready the reader with cards at any time
unless the $P reader command has been entered.

HASP Operator's Guide - Page 133

826

HAS P

If OS has allocated the card reader for other functions when HASP
is initialized, there will be no attempt to use the reader for
reading jobs unless a $S reader command is entered. To prevent
inadvertent OS allocation of the reader to other jobs, HASP simu­
lates an OS vary off-line command prior to its initial use of the
device and when each $S reader command is entered.

SHARING HASP LOCAL CARD READERS WITH OS JOBS - Because HASP is a
long running job it is desirable for HASP not to prevent OS from
allocating the card reader devices to other jobs within the system.
The operator is then able to start OS readers to a HASP card reader
or enter jobs which require direct reading from a card reader. The
operator should observe the following precautionary rules when
other jobs are to use HASP reader devices:

1) Enter a HASP $P command for the device and allow the
device to become drained before varying the device
on-line or replying to OS allocation requests.

2) Insure that the job has finished reading cards and will
not attempt to read more cards prior to entering a HASP
$S command for the device.

HASP INTERNAL READER

Although the HASP internal readers are not real devices on the
system, they may be controlled by the operator in much the same
way as real devices. If the operator desires to prevent problem
program submission of jobs to HASP, he should enter the as command:

VARY unit,OFFLINE

once for each internal reader. Each unit specified is the
three digit address for an internal reader obtainable from HASP
when $DU command is entered. as will issue an allocation request
when a user job desires the unit. The operator then has the option
of cancelling the job or allowing the device to be assigned.

In addition to the control of as allocation, the operator can cause
all jobs submitted via the internal reader to be placed in the HOLD
status via the command:

$Tinternal reader,HOLD

This allows problem programs to submit jobs to HASP but prevents
the submitted jobs from executing until the operator specifically
releases them.

HASP Operator's Guide - Page 134

827

HAS P

To prevent the problem program from entering HASP commands via an
internal reader, the operator may restrict the command authority
of the device by entering:

$T internal reader,A=O

In order to prevent as commands from taking effect the system pro­
grammer must have properly restricted the as reader procedure used
by HASP to pass jobs to as.

HASP LOCAL TAPE READERS

HASP support of local tape readers differs from that of the card
reader devices in that the tape drive address assignment to a HASP
TAPE is specified by the operator by the command:

$S tape reader,unit

Because of speed and characteristics of tape drives HASP does not
allow sharing of the tape device with problem programs; therefore,
HASP will not start a tape that is allocated to another function
and will prevent as allocation while in use by HASP.

HASP Operator's Guide - Page 135

828

HAS P

6.2 HASP INPUT STREAM

The input job streams submitted to the Operating System via HASP
follow the conventions and format described in the OS/360 Job
Control Language manual. Within these conventions HASP requires
that some cards be specified in a particular manner and provides
for optional control cards which would appear as comments to the Oper­
ating System in systems without HASP. This section discusses
the use, format, and placement of these cards.

HASP JOB CARD

The JOB card is a variable-field control card which defines the
beginning of a job (and, of course, the end of the previous job if
there is one) within the input stream. In addition, certain para­
meters are passed to HASP and to the Operating System via fields
and subfields punched into the JOB card.

The format of the JOB card is basically as defined in the Job
Control Language Manual. In particular, HASP requires that the
accounting information field be punched in the following format:

(pano,room,time,lines,cards,forms,copies,log,linect)

where:

pano = Programmer's accounting number. This subfield
MUST BE PRESENT and must consist of one to four
alphameric characters. (Example: "4301 ,,-) - ---

room = Programmer's room number. This subfield MUST BE
PRESENT and must consist of from one to four
alphameric characters. (Example:---",E30~

time = Estimated execution time in minutes. This subfield
is optional and may consist of ~ to four numeric
digits. If omitted, a standard value will be
assumed. (Example: " ,30" for 30 minutes)

lines = Estimated line count in thousands of lines. This
subfield is optional and may consist of ~. to four
numeric digits. If omitted, a standard number of
lines will be assumed. (Example: ",5" for 5000 lines)

. cards = Estimated number of cards to be punched. This sub­
field is optional and may consist of up to four
numeric digits. If omitted, a standard number of
cards will be assumed. (Example: ",200" for 200
cards to be punched) .

HASP Operator's Guide - Page 136

829

I

HAS P

forms = Special forms for printing entire job. This sub­
field is optional and may consist of ~ to four ~­
meric characters. If omitted, standard forms "STD."
will be assumed. (Example: ",5" for 5-part forms)

copies =

log =

Number of times the print output is to be printed.
This subfield is optional and may consist of ~ to
two numeric digits. If omitted, one copy will be as­
sumed. (Example: ",2" for two copies) This count
applies only to data sets printed on job forms and
demand forms. Only one copy of data sets indicated
as specially routed data sets will be produced.

HASP System Log option. This subfield is optional
and may consist of one character. If this character
is an "N", the HASP System Log will not be produced.
If any other character, or if omitted, the log will
be produced.

linect = Lines to be printed per page. This subfield is op­
tional and may consist of ~ to two numeric digits.
If coded as "0" (zero) no automatic overflow will be
produced. If omitted, a standard value will be as­
sumed. (Example: ",34" for 34 lines per page)

The other fields on the JOB card are also interpreted for accounting
purposes and Job control.

The job card may be continued in accordance with the Operating Sys­
tem Job Control Language specifications.

To omit a specific subfield, the comma normally punched following
the subfield should be punched in the first column of the subfield.
To omit the remainder of the subfields, the closing right parenthe­
sis should be punched following the last subfield entered.

The following would be a typical JOB card:

IIORBIT
II

JOB (7808,E305,,2,200), CONTINUED
'J. Jackson' ,MSGLEVEL=l,CLASS=B

In this case:

pano = 7808

room = E305

time = 2 minutes (assumed value)

lines = 2000 lines

cards = 200 cards

HASP Operator's Guide - Page 137

830

HAS P

forms

copies

log

linect

=

=

=

=

standard forms (assumed)

1 copy (assumed value)

yes (assumed value)

standard value (assumed)

HASP PRIORITY CARD

The PRIORITY card is a fixed-field control card used to aqsign
a set priority to a job. The format of the card is as follows:

Columns 1 - 10
11 - 15
16 - 17
18 - 80

/*PRIORITY
blank
p(left justified)
ignored

where "p" is either a number (between 0-15) or the character "*".
If "p" is a number, the value of "p" will be assigned as the priority
of the job following the PRIORITY card. If "p" is the character
"*", or if the PRIORITY card is not present, the priority of the
job will then be determined by the estimated execution time and the
estimated lines on the JOB card.

The PRIORITY card must immediately precede the JOB card. If it
does not, the PRIORITY card will be ignored and the input stream
will be flushed until a job card (or another PRIORITY card) is
found.

HASP ROUTE CARD

The ROUTE card is a fixed-field control card which allows the user to
specify the location to which his output is to be printed or punched.
The format of the card is as follows:

Columns 1 - 7
8 - 9

10 - 14
15

/*ROUTE
blank
PRINT or PUNCH
blank

HASP Operator's Guide - Page 138

831

HAS P

16 - 23

24 - 80

one of the following device
specifications:

LOCAL Any local device

REMOTEn Remote Terminal "n"

PRINTERn Printer "n"*

PUNCHn Punch "n"*

ignored

A single ROUTE card can be used to direct either the print or punch
routing but not both. If both print and punch are to be routed,
two cards must be used.

The ROUTE cards should be placed immediately after the JOB card.

* NOTE: The PRINTERn and PUNCHn specifications are the same
as LOCAL unless the specified printer or punch is
subject to local print/punch routing. .

HASP MESSAGE CARD

The MESSAGE card is a fixed-field control card which permits the
user to send messages to the operator via the operator console at
HASP job input time. ·The format of the card is as follows:

Columns 1 - 9
10 - 11
12 - 71
72 - 80

/*MESSAGE
blank
message to be written
ignored

All leading and trailing blanks are removed from the message before
writing it on the console.

If MESSAGE cards are included as part of a job they should be
placed immediately following the JOB card (or after any ROUTE
cards). In such cases the· job number is appended on the front
,of the message(s).

If a MESSAGE card is not included within the boundaries of a job,
the input device name is appended on the front of the message.

HASP Operator's Guide - Page 139

832

I

HAS P

HASP SETUP CARD

The SETUP card is a variable-field control card which p_ermi ts the
. user to indicate the need for certain volumes during the execution
phase of his job. The format of the card is as follows:

Columns: 1 - 7
8 - 15

16 - 71

72 - 80

/*SETUP
blank
volume identifiers separated by commas
(i.e., vvvvvv, wwwwww, xxxxxx, .•.)
ignored

The volumes required are listed on the console at the time that the
job enters the system. The job is then placed in "hold" status
pending subsequent release by the operator when the required volumes
are available.

The SETUP card should be continued with MESSAGE cards and placed
with the ROUTE and other MESSAGE cards after the JOB card.

HASP COMMAND CARD

The COMMAND card is a "variable-field" control card used to enter
HASP operator commands into the system. The format of the card is
as follows:

Columns: 1 - 3
4 - 71

72

73 - 80

/*$
operator command verb and operands
If "N" the command will not be repeated
on the operator's console.
ignored

Restrictions concerning commands which can be entered from remote
terminals are listed under the HASP OPERATOR COMMANDS section of
this manual.

All COMMAND cards must be placed in the input stream prior to any
JOB card. COMMAND cards within jobs will be ignored.

HASP Operator's Guide - Page 140

833

HAS P

OS COMMAND CARD

The OS command card is a variable-field control card, the format
of which is described in the 05/360 Operator's Guide. This card,
if submitted through the HASP input stream, must fall within a job
of the input stream and is passed to OS at the time the job is sub­
mitted for OS execution. The acceptability of the OS COM}~ND CARD
is determined by the system programmer when creating the HASP
reader procedure on the SYSI.PROCLIB data set.

HASP Operator's Guide - Page 141

834

HAS P

6.3 LOCAL READER ERROR PROCEDURES

Unrecoverable ~rrors encountered. while. reading jobs and SPOOLING
the data to direct access de~ices Will result in an error message
to the operator and the deletion of the job being read. The
operator should re-submit any job so deleted in its entirety to
HASP.

Errors on local readers such as read checks, feed stops, etc.
will be processed by the Operating System. The operator should
follow the procedures described in the appropriate component des­
cription manual for the device as supplemented by the 08/360
Operator's Guide. Since HASP selects cards read by the IBM 2540
in pocket 2, cards which are non-processed run out (NPRO) will
be separated from those read, the last card in pocket 2 being the
card in error on data and validity checks.

HASP Operator's Guide - Page 142

HAS P

7.0 PRINT AND PUNCH SUPPORT

HASP supports numerous printer and punch devices for the output
of HASP System Log messages, Operating System messages and
problem program SYSOUT data sets. Via local attachment to the
central CPU the following devices are supported as printer or
punch devices as appropriate:

IBM 1403 PRINTER
IBM 3211 PRINTER
IBM 2540 PUNCH
IBM 1442 PUNCH
IBM 2520 PUNCH

HASP Operator's Guide - Page 143

836

HAS P

7.1 CONTROLLING HASP PRINTER AND PUNCH DEVICES

Through the use of HASP operator commands the operator controls
the HASP printer/punch devices. Operators at remote work stations
may control only those HASP printer/punch devices which are attached
to the remote work station. Commands which are defined for direct
control of HASP printer/punch devices are as follows:

command

$B printer

$C device

$E device

$F printer

$I printer

$N device

$p device

$S device

$T device

$Z device

general use

Backspace the printer the designated number of
pages or to the beginning of the current data
set.

Cancel the current job output on the indicated
printer or punch.

Restart the job output currently printing or
punching on the indicated device, placing the
job back on the corresponding queue for selec­
tion by the indicated device or other printer
or punch, as appropriate.

Forward-space the indicated printer the desig­
nated number of pages or to the end of the
current' data set.

Interrupt the current job output on the indicated
printer, allowing the output to be continued by
the indicated or other printer as appropriate.

Repeat the job output currently printing or
punching on the indicated device, placing the
job back on the corresponding queue for selec­
tion by the indicated device or other printer
or punch as appropriate while allowing the
current job output to continue.

Stop the printer or punch after completion of
the current job output.

Start the printer or punch device.

Set device characteristics.

Halt the printer or punch device until $5
device is entered.

HASP Operator's Guide - Page 144

837

I

HAS P

The formal defin'i tions of these commands may be found in the HASP
OPERATOR COMMANDS section of this manual.

STR as well as non-MULTI-LEAVING BSC remote workstation operators
will find that for practical purposes only the $P, $S, and $T com­
mands are available for direct control of printer or punch devices
from the workstation. Commands entered from these workstations can
only be entered when the printer and punch devices are not ACTIVE.
This is true even when the non-MULTI-LEAVING BSC workstation printer
is manually interrupted simulating the $I device command.

CONTROLLING HASP LOCAL PRINTER AND PUNCH DEVICES

Each printer and punch on the system is assigned a HASP name at
HASP initialization time; responses to the $DU command display the
HASP printer and punch device names along with the corresponding
hardware addresses.

STARTING HASP LOCAL PRINTER AND PUNCH DEVICES - There are two meth­
ods of causing HASP to begin using a HASP printer or punch device:

1. Enter the $S device command when the device is halted or
drained.

2. Ready the printer or punch device prior to replying to
the HASP initialization WTOR. This is equivalent to
entering a $S device.

If OS has allocated the device for other functions when HASP is
initialized, there will be no attempt to use the device for job
output unless a $S device command is entered. To prevent inadver­
tent OS allocation of the printer or punch to other jobs, HASP
simulates an OS vary off-line command prior to its initial use of
the device and when each $S device command is entered for the
printer or punch.

The operator should align printer forms setting printer FCB images,
non-standard UCB images, and non-standard forms via the $T command
prior to allowing HASP to begin job processing on printer devices.

SHARING HASP LOCAL PRINTER AND PUNCH DEVICES - Because HASP is a
long running job, it is desirable for HASP not to prevent OS from
allocating the printer or punch to other jobs within the system.
The operator is then able to start OS writers to a HASP printer '
or punch device or enter jobs which require direct output. The
operator should observe the following precautionary rules when
other jobs are to use HASP printer or punch devices:

HASP Operator's Guide - Page 145

838

HAS P

1. Enter a HASP $P command for the device and allow the de­
vice to become drained before varying the device on-line
or replying to the as allocation requests. This may be
supplemented by the $I printer or $E device command to
insure rapid termination of the current job activity.

2. Insure that the job has finished with the device and will
not attempt to output more data prior to entering a HASP
$S command for the device.

SETTING THE 3211 PRINTER FCB IMAGES - The 3211 printer carriage
control tape--Forms Control Block (FCB)--is internally set by HASP.
The installation system programmer creates several FCB images at
HASP generation time and will inform the operator which image should
be used on the various printers. The operator sets the FCB image by
entering the following command:

$T printer,C=x - where x is the installation defined image id
character.

Image char~cter "V" may be designated by the installation as a var­
iable image and, if so designated, may be changed by the operator.
This single image may· then be used by operators to set desired
printer FCB images by the command:

$T printer,C=V

An operator may create the "V" image by entering the $TF command
from an as console, HASP local console, or reader with device and
system HASP command authority.

HASP Operator·'s Guide - Page 146

839

HAS P

7.2 HASP OUTPUT ROUTING

Under the standard HASP System, output routing has meaning only
when the HASP remote job entry feature is being used. Under this
environment each group of printer or punch devices is considered
a pool of output devices identifiable by routing codes. All local
printer and punch devices are assigned route code zero (0), all
printer and punch devices at work station REMOTEI (RMI.PRn,RMI.PUn)
are assigned route code one (1), etc. A job which has its print
output destined to local printers will be printed on any of the
local printers. Likewise, a job which has its print output destined
to remote 4 will be printed on any of the printers assigned to
REMOTE4 (RM4.PRI,RM4.PR2,etc.)

HASP will automatically assign print and punch output routings to
each job as it enters the system. This assignment is determined
by the system programmer at HASP generation time. Normally all
output for jobs entering local devices will be routed to the local

"device pool and all output for jobs" entering a remote reader will
be routed to the corresponding remote output devices. This may be
altered so that, for example, remotes without~punch devices will
have punch data routed to the local punch pool or to a remote
convenient to the submitting work station.

Routing of print and punch output may be directly assigned by the
programmer via /*ROUTE control cards (see READER SUPPORT) or by
the operator after the job has entered the system via the $R
(ROUTE) command. Although the central operator has complete routing
control over jobs, the remote work station operator may only route
jobs which belong to the remote, i.e., jobs which have the print or
punch routings destined for Qutput at the remote. The following
sample command sequence allows the operator to redirect the print
output for a job after printing of the data sets is in progress:

1. $R PRT,JOB25,LOCAL - Sets the print routing for job 25
to the central printer pool.

2. One of the following (assume job 25 is printing on
remote 3 printer 1):

A. $I RM3.PRI

B. $E RM3.PRI

c. $N RM3.PRI

- Interrupt print output and requeue
for continuing the print by a LOCAL
printer.

- Restart print output and requeue
for printing by a LOCAL printer.

- Repeat the print allowing a LOCAL
printer to print a copy.

HASP Operator's Guide - Page 147

840

HAS P

7.3 HASP SPECIAL FORMS ROUTING

At HASP initialization HASP assumes that the printer and punch de­
vices are loaded with the standard forms paper or cards as appro­
priate. Normal operation of the devices calls for each printer or
punch device to select the highest priority job in the appropriate
print or punch queue and begin outputting. Assuming that the in­
stallation selects SYSOUT Class A to be standard print output and
SYSOUT Class B to be standard punch output, all "SYSOUT=A" data sets
will be printed on the standard forms paper and "SYSOUT=B" data sets
will be punched on the standard forms cards (see OS JOB CONTROL LAN­
GUAGE manual for the meanings of SYSOUT=A or SYSOUT=B). Occasionally
the programmer will desire to have a data set printed or punched
using special forms and submits a "SYSOUT=(A"form#)" or "SYSOUT=
(B"form#)" parameters for the Data Definition (DD) card describing
the data set. When the data set is encountered during output HASP
will stop the printer or punch and display a forms load message on
the operator's console. This allows the operator to load the forms
desired and enter a $S device command to signify that the device is
ready. When output of the data set is complete, HASP will request
that standard forms be loaded and wait for the operator as before.
The normal mode of operation is therefore the loading of forms on a
DEMAND basis.

Occasionally the programmer will decide that all print data ~s to be
printed on special forms and instead of specifying the forms on ·the
"SYSOUT=A" parameter of the DD card, he specifies the forms in the
HASP accounting field of the JOB card (see HASP INPUT STREAM section
of this manual). This causes the forms designated to be made stand~
ard for the printing of the job.

SUBMISSION OF SPECIAL FORMS DATA SE.TS

Processing special forms on a DEMAND basis, while convenient when
occasional need for special forms exists, will cause poor printer
or punch utilization when a large number of data sets require spe­
cial forms. Assuming that the installation selects SYSOUT Class J
to be special forms print and SYSOUT Class K to be special forms
punch, all "SYSOUT=(J"form#)" and "SYSOUT=(K"form#)" data sets
will not be printed or punched with the standard output for the
job. The programmer therefore designates special forms on theap­
propriate DD cards in the job input stream. HASP will print the
normal print data sets and queue the job for the printing of the
first special forms data set. When this data set has been printed
the job will be queued for the printing of the next special forms
data set (if any). This process will continue until all special
forms data sets have been processed. The data sets will be queued
in the order of the collating sequence of the special forms designa­
tions. After the special forms printer(s) complete all special forms
printing, the job will proceed to special forms data set punching
(again in collating sequence), and then, if appropriate,.to standard
job punching.

HASP Operator's Guide - Page 148

841

HAS P

ASSIGNING SPECIAL FORMS TO A PRINTER OR PUNCH

The operator may determine the number of jobs with output for
special forms by entering the command:

$0 F Display Number of Jobs Queued
on Forms

When sufficient output is awaiting special forms, the operator
may choose to activate one of two types of special forms control
by command as follows:

$T device,F=AUTO Activate printer or punch special
forms allowing HASP to determine
which special forms should be
loaded

Activate printer or punch special
forms using the forms indicated and
loaded by the operator (operator­
controlled)

If the device is a printer, special forms jobs (forms indicated
in the JOB card) along with data sets which have been disassociated
from other jobs will be selected for printing. If a normal SYSOUT
class (SYSOUT=A as described previously) with a special forms
specification is encountered a DEMAND load for the forms is
requested, requiring the operator to cancel the print or load the
forms and enter $8 device.

Printing and punching of output will proceed until the queue for
the forms indicated by the operator or asked for by HASP is empty.
If AUTO was indicated by the operator HASP will select jobs await­
ing another special forms for the device, ask for the loading of
the new forms, and attempt to exhaust the queue of the new forms
upon receiving the appropriate $S device command.

The operator may cause the device to revert to standard output
by entering:

$T device,F=RESET

NOTES: 1. The command $T device,S=YES or $T device,8=NO
may be used to indicate separator pages or cards
between job output on the device.

HASP Operator's Guide - Page 149

842

HAS P

2. The non-MULTI-LEAVING remote workstation operator
will find that the $S command may not be entered
from the remote to signal that forms have been loaded
and that no messages to the operator will be printed
on a printer set to output special forms. Therefore
the following rules are recommended:

a. Use only operator-controlled special forms.

b. Prevent users from requesting DEMAND loading
of forms.

c. After exhausting a special forms queue enter $T
device, S=Y (if required), enter a $DF command
and, after receiving all messages, set to the
next forms type desired.

3. For safe forms changing operations when using opera­
tor controlled forms, the operator should stop the
device ($P device), load the new forms, tell HASP
($T device), and then start the device ($S device).

4. The operator is permitted to change carriage tapes
and print trains/chains while HASP is waiting for
the $S command following a request for forms load.
This change may be activated by entering $T device
operands C=carriage or T=train as appropriate.

HASP Operator's Guide - Page 150

843

HAS P

7.4 HASP PRINT AND PUNCH OUTPUT FORMATS

HASP PRINT FORMAT

The format for standard print output for each job stream is as
follows:

1. HASP START JOB SEPARATOR PAGE
2. HASP SYSTEM LOG (OPTIONAL)
3. HASP STATISTICS
4. OPERATING SYSTEM MESSAGES
5. DATA SETS CREATED BY T.HE JOB
6. HASP END JOB SEPARATOR PAGE

HASP START JOB and END JOB separator pages consist of a single
line of information duplicated a number of lines as specified
by each installation. The format of the information line is as
follows:

columns

1 - 17
18 - 22
23 - 31

32 - 35
36 - 40

41 - 51

52 - 61
62 - 65
66 - 69
70 - 74
75 - '78
79 - 86
87 - 90

contents

HASP identification
periods (.)
START JOB
.CONT JOB
.. END JOB
job number assigned by HASP
periods (.)

time of printing

date of printing
periods (.)
ROOM
room number
periods (.)
as jobname
periods (.)

the page in

the page in

form: hh.mm.ss AM
PM

form: day month year

91
116

-115
-132

programmers name padded with trailing periods (.)
HASP identification

The HASP statistics is a single printed line which contains the
following information:

1. cards read
2. lines printed
3. cards punched
4. execution time (real time)

HASP Operator's Guide - page 151

844

HAS P

ijASP PUNCH FORMAT

The format for standard local IBM 2540 punch output for each
job stream is as follows:

1. HASP PUNCH ID CARD - in pocket 2
2. DATA SETS CREATED BY JOB - in pocket 2
3. HASP JOB ACCOUNTING CARD - in pocket 3
4. BLANK CARD - in pocket 1 (also will contain error cards)

Columns

1 - 20

21 - 24

25 - 27

28 - 31

32

33 - 35

36 - 38

39 - 40

41 - 43
44 - 45

46 - 48

49 - 51

52 54

55 - 57

58 - 65

66 - 71

72

73 - 74

75 - 77

78 - 80

HASP JOB ACCOUNTING CARD FORMAT

Contents

Programmer's name

Room number

Spares

P. A. number

Job priority number

Job input time in hundredths of a second

Job output time in hundredths of a second

Number of cards read in

Number of output lines

Number of output cards

Total reader time in hundredths of a second

Mode

EBCDIC

EBCDIC

N/A

EBCDIC

BINARY

BINARY

BINARY

BINARY

BINARY

BINARY

BINARY

Total execution time in hundredths of a second BINARY

Total print time in hundredths of a second

Total punch time in hundredths of a second

Job name

Sp~res

Identifier (X'FF')

Year

Days

Job number

BINARY

BINARY

EBCDIC

N/A

BINARY

EBCDIC

EBCDIC

EBCDIC

HASP Operator's Guide - Page 152

845

HAS P

HASP PUNCH 10 CARD FORMAT

Each job's punch output will be preceded by an identification card
containing the programmer room number Clnd interIlal job nUlJlPer.
To make the card easy to identify, it has an ll-pun~hand a
l2-punch punched in all 80 columns. To make the room nu.~ber
and job number easy to read, each digit is ext$ndedoverten
columns. Alphabetic characters are converted to digits as
follows:

AlEhabetic Characters Numeric Punch
A or J 1
B, K, or S 2
C, L, or T 3
0, M, or U 4
E, N, or V 5
F, 0, or W 6
G, P, or X 7
H, Q, or y 8
I, R, or Z 9

Below is an example of the punch ide.ntification card which would
precede a deck punched, for eXClmple, for a programmer residing in
Room E305, and having an internal job number of 129.

111111111111111111111111111111111111111'1111111111111111"1111111111111111111111
1111111111111111111111111111111111111I111111I11111111II1I1I11I11I1I111I111111111
DOD 0 0 0 III 0 a D II 0 0 II II 111111111'11' I • II • III '1 80 I • II'" I. 811 .1 •• , 11118 I t I .• I ••• 8 •• III
I 2 J4S.' •• ~"nQ"qq"qq.ftftft~a.Daa.~.»~ •• P~ ••• UU_ •• U ••• fl.N~ •• p ••••• UN •• p •• _nn~H~~n~~.
t I , I ; 1 1 I Itt I Itt I 1 1 11 I 1 I 1 11 I I 11 1 I I • 11 I III 1 I II 1 I 1 I. ','111:1111111 • 11 1 11 I I I 1 , .. I I , I I I

, 7 2 1 1 2 2 2 2 7 2 2 2 Z 2 2 2 2 2 2 2 I , 22 2 2 2 2 2 , 2 2' '2 2 22 2 2 22 2 2 2 2 2 , 2t' 22 2 2 2 2 2 , '1111'1111 2 J 2 22 2 7 2 7 2

13333333333111111113333333333333333333333333333333J33333333333333133333333333333
•• , 4 , •• 4 4 •• 4 4 •• 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 • 4 44. 4 4 4 44 4 4 4 4 4 4 4 4 4 4 .4 .. 4 4 •• 4. 4 4 4 4 •••••• ~ •••••••••••

5111111115 5 5 5 5 5 55 5 5 5 5 5 5 5 55 5 55 $ 5'111"11" ~ 5 5 5 5 5 5 5 5 5 5 5 5 55 51'"' $,i5 t'. ~5.J 5 $ t~ 5 5 5 5 5·5 •

& I I 6 I I I • • I I &. I I I I I & I 6 I • • & • It • I •• • , II • ,'1 • • 6 • II • • & & I • II II .: •• I'>'fll' " II' '1 • I .1 II • I

, 1 1 1 I 1 I , , 1 1 1 , , 7 7 J 7 J 7 J J 7 7 J J 1 J J .1 , JI 11 J r J1J J J 7 7 17 J 77 J " J J lJ J J 1 JJ fJ 7 J r J r J , J 1 J J J J 1 J } 7

I I II I • II • I ••• 1,11, ••••• I I. I" •• '1 ., "" ••••• , • I. "11," • , ••• ,,1'1'," I •• "I •• , I 8 •••

9 ~ ! 9 I I I I I ! It' I 9 ! I t 9 9 9 9 9 I • , It I '9' II I 9 8 •• I, 9 9 9 9 9 t 9 ttl • ttt It J ,t 1* •• ft' •• , 9 t 111111119
, J , 4 5 1 ~D'- :0:'" II II 14 15 tI" "192'&2122 n24 .2I17I1",JUt. M •• 3J a414441 •• .,.4\t ... IJlU':4.$... :, , ~ ••• JI'ln U 141$11 111111.

HASP Operator'sGu.i4e....Page 153

846

HAS P

7.5 LOCAL PRINTER AND PUNCH ERROR PROCEDURES

All job printing and punching for local devices is accomplished
through Operating System facilities. OS will attempt to recover
from printer and punch errors and provide appropriate error mes­
sages to the operator. In the case of permanent errors the follow­
i~g procedures apply:

PRINTER - Permanent errors will be ignored and output will
continue. Since the accuracy of the output is de­
termined by the presence or lack of error messages,
the operator should react in accordance with the
severity of the problem.

PUNCH - Error cards are dropped in pocket 1 and punching
continues starting with the record detected to be
in error.

The appropriate hardware SRL (e.g., GA21-9033 for
the 2540, GA21-9124 for the 3525) should be con­
sulted for correct operator procedures in response
to indicator lights and sense bits displayed when
the punch stops and requires intervention.

HASP Operator's Guide - Page 154

847

HAS P

(The remainder of this page intentionally left blank.)

848

HASP

11.2 HASP REMOTE TERMINAL PROCESSOR (MODEL 20/STR)

OPERATOR'S GUIDE

The following section contains detailed instructions for operating a

360/20, equipped with a Synchronous Transmit-Receive (STR) communication

adapter, as a remote terminal system under HASP. Although intended for

use as a separate operational manual, it has been included into the HASP

SYSTEMS Manual to achieve completeness.

HASP Remote Terminal Operator's Guide (Model 20) - Page 11.2-1

849

HAS P

(The remainder of this page intentionally left blank.)

850

HASP

HAS P

REMOTE TERMINAL PROCESSOR

FOR

STR·COMMUNICATIONS

MODEL 20 OPERATOR1S GUIDE

851

HASP

Page

Section 1.0 Introduction 1. 0-1

Section 2.0 Operating Procedure s 2. 0-1

2. 1 Initial Program Load 20 1-1

2.2 Establishment of Communications Line 2.2-1

20 3 Initiating Proce s sing 2. 3-1

Section 3.0 Error Recovery 3. 0-1

3. 1 Communications Adapter Errors 3. 1-1

3.2 Unit Record Device Errors 3.2-1

3. 3 Model 20 Restart 3. 3 - 1

Section 4.0 Dynamic Configuration Specifications 4.0-1

Section 5.0 Central Computer Control 5. 0-1

Section 6.0 Operational Hints 6. 0-1

Table of Contents - Page i

852

HASP

1. 0 INTRODUCTION

The HASP System· is an automatic

spooling, priority scheduling system which, while operating in con­

junction with OS/360, operates an unlimited number of peripheral

device s simultaneously with normal job execution, to perform the

functions normally associated with off line support computers. The

function of HASP has been extended to operate, v~a several classes

of telephone lines, peripheral devices located remotely from the

central computer complex.

Through the use of the HASP Remote Job Entry feature, a user,

located perhaps thousands of miles from a particular System/360

installation, can utilize the capabilitie s of that installation much as if

it were in the local computer room. The unit record devices at a

remote station are logically operated by HASP as if they were local

readers, printers and punchers, so that HASP can simultaneously,

while operating all local unit record devices, read jobs from several

remote readers into the queue of jobs awaiting processing and upon

completion of the processing, can print and punch the results at the

remote site.

Although a variety of devices may be utilized as remote terminals,

this document discusses only the use of a System/360 model 20 as a

remote statioh.

HASP Remote Terminal Operator's Guide (Model 20) - Page 1.0-1

853

HASP

A special program has been written tor the model 20 which can

be considered as a logical extension of the HASP SYSTEM. This

program, called the HASP Remote Terminal Processor (HASP /RTP)

performs the following functions:

A. INPUT

1. Reads cards from the card reader attached to the

model 20.

2. Compresses, blocks and encodes the card images

for transmission, over telephone lines, to the

central computer facility.

3. Maintains synchronization and communication with

HASP for transmission.

B. PRINT AND/OR PUNCH

1. E stablishe s and maintains synchronization and

communication with HASP to receive transmissions

of job output.

2. Decodes and decompresses print and/or punch records

received.

3,. Interprets and executes carriage control information in

the case of print.

4. Prints and / or punche s the received data.

HASP Remote Terminal Operator's Guide (Model 20) - Page 1.0-2

854

HASP

HASP /RTP may either Read, Print orPut;lc,hbut may notperf:o~m

any two operations simultaneously.

Due to the use of blocking and character compre s sion to minimize

line transmission time, the speed at which the model 20'c;tevices are

operated is dependent on the data being transmitted. Certain jobs,

because of their data characteristics, will enable HASP /RTP;.to

operate the model 20 devices at full rated speed. Other jobs, with

less advantageous data characteristics, may cause the devices to

operate at Ie s s than full speed.

HASP Remote Terminal Operator's Guide (Model 20) - Page 1.0-3

855

HASP

2.0 OPERATING PROCEDURES

The following pages provide s~fficient information for initiating

and operating the HASP/Remote Terminal Program.

HASP Remote Terminal Operator's Guide (Model 20) - Page 2 . 0-1

856

HASP

2.1 INITIAL PROGRAM LOAD

1. Ready the HASP/RTP deck in a reader on the m.odel 20.

The deck should include as the last card an appropriate

"configuration" card as described in Section 4. O.

2. If the model 20 has multiple readers, the reader select

switch on the console should be set to indicate the reader

containing the RTP deck.

3. Ready the system printer and punch (if present).

4. Set the TIME SHARING key to the on (down) position.

5. Set the BINARY /BCD switch on the comm.unications

adapter to the BINARY position.

6. Set. the LINE SPEED key to the appropriate speed.

7. Set the AUTO-CALL key to the OFF position.

8. Verify the setting of the full duplex (FD) - half duplex

(HD) switch inside the CE console.

9. Turn the communications adapter switch to the NORMAL

positiono

10. Set the DATA KEYS to 009C.

11. Set the MODE switch to PROCESS.

12. Press the I/O CHECK RESET,' SYSTEM RESET and LOAD

key on the m.odel 20 consoleo

HASP Rem.ote Terminal Operator's Guide (Model 20) - Page 2.1-1

857

HAS P

13. If the Model 20 has less than 16,000 bytes of memor~

a program stop will occur after the loading of the

first card. When this occurs, press only the LOAD

key again to initiate loading.

14. Press the START key on the communications adapter

while the HASP/RTP deck is being loaded into memory.

15. Establish the communications line (see Section 2.2).

16. The program should now begin processing in accordance

with the algorithm given in Section 2.3.

HASP Remote Terminal Operator's Guide (Model 20) - Page 2.1-2

858

HASP

2. 2 EST ABLISHMENT OF COMMUNICATIONS LINE

1. Advise the ope rator of the central computer location

that job transmis sion is to be initiated. (The central

computer operator must authorize HASP to proces s

jobs from a given remote terminal. This authorization

must be given only once per terminal.)

2a. Leased (or private transmission lines) - place the data

set in the DATA mode.

2b. Dial-up transmis sion line s - Pre s s the TALK button

on the data switch and dial, exactly as in a normal call,

the number of the appropriate data set at the central

computer. After the "ringing" sound, a shrill sound

indicates that the phone has been answered. Immediately

upon hearing this sound, press the DATA button on the

data set and hang the telephone up.

3. The CHARACTER PHASE light on the communications

adapter should appear to indicate synchronization of the

two computers.

NOTES on communication line establishment:

a. A "busy" signal indicates that the called data set is in use.

HASP Remote Terminal Operator's Guide (Model 20) - Page 2.2-1

859

HASP

b. A line may be established by a call from the central (~om-p-uj;_e_r­

to the remote site. To receive such a call, normal initializa-

tion procedures should be followed but rather than dialing,

the AUTO button should be pre s sed and the phone hung up to

await the call.

c. On a two-wire half-duplex telephone line, a period of

several seconds may be registered to synchronize the

two computer s.

d. On the establishment of a connection other than the first,

a period of several seconds may be required to begin

transmis sion of print and/ or punch data.

HASP Remote Terminal Operator's Guide (Model 20) - Page 2.2-2

860

HASP

2.3 INITIATING PROCESSING

In order to allow the remote computer operator to select the

function the Model 20 is to perform (i. e., input or output), the

transmission of jobs to the central computer site is given priority.

At the end of the print and punch for a job,HASP /RTP te sts the system

card reader for ready status and, upon finding it ready, immediately

begins the transmission of all jobs in the reader to the HASP job

queue in the central computer. If no print or punch jobs are

available to be processed, the program maintains communications

with HASP in the central computer to await a job. During this

dormant period, the reader is tested every several seconds for

the availability of a job to transmit. Thus, the Model 20 operator

by merely placing a job (or jobs) in the card reader can cause trans­

mission to the central cOITlputer at the next "end of job" (or within

several seconds if no processing is active). The lack of jobs in the

reader will therefore cause all print and punch output froITl the central

computer to be processed as it becoITles available.

HASP Remote TerITlinal Operator's Guide (Model 20) - Page 2.3-1

861

HASP

3.0 ERROR RECOVERY

The following sections list some of the more common error
•

conditions that may arise and indicate a solution to each.

HASP Remote Te rminal Ope rator I s Guide (Model 20) - Page 3. 0 - 1

862

HASP

3.1 COMMUNICATION ADAPTER ERRORS

Any errors concerned with data transmission are indicated by

the communications adapter on the Model 20 by halting (stop light on),

sounding the audible alarm, and displaying a combination of error

indicators. Normally, an error stop indicates a line transmission

failure (after three retries). By pressing start, the transmission will

be retried thre e additional time s. If a failure still re suIt s afte r

several retries, the computing system and the telephone line should

be checked. A detailed description of the meaning of various error

indicators is given in the IBM Reference manual A26-5847.

NOTE: occasionally certain error lights on the communications

adapter will flash on for brief periods of time. No action should be

taken until the CA stop key is lighted.

HASP Remote Terminal Operator's Guide (Model 20) - Page 3. 1-1

863

HASP

3.2 UNIT RECORD DEVICE ERRORS

All error conditions on unit record devices will be indicated by

the illumination of the appropriate ATTENTION light on the Model 20

console and a program stop in the Model 20 with an indicative number

displayed in the ESTR Register. When the error condition has been

cleared (as described subsequently), the START key on the console

should be pressed to resume operation. The following sections

de scribe the error identification halt codes and the specific actions

neces sary to correct an error condition on all supported devices.

HASP Rem.ote Terminal Operator's Guide (Model 20) - Page 3.2-1

864

HASP

3. 2. I 1403/2203 Printer

SYNC CHECK/PRINT CHECK/FORMS CHECK- All printer checks

will be effectively ignored by HASP /RTP. The error co'nditi.on should be

reset and the printer put into READY status to continue printing. If

the malfunction caused the loss of print lines, the central computer

operator should be contacted and advised to BACKSPACE* or RESTART*

the print to recover the lost line s.

* See the HASP SYSTEM Operator's Guide

HASP Rem.ote Terminal Operator's Guide (Model 20) - Page 3.2-2

865

HASP

,3.2.2 2501, 2560, 1442, 2520 CARD READERS

All card reader checks are indicated by a program halt code of

0001. To retry the faulty read, the cards should be run out of the

reader and the last two cards in the receiving stacker should be placed

back into the reader.* Frace s sing may then be re sumed by depre ssing

the START keys on both the card reader and the model 20 CPU. If

the read check condition persists after several retries, the validity

of the card should be checked.

Feed Stops and other mechanical problems on card readers are

indicated by the illumination of an error light on the reader console

(along with the appropriate ATTENTION indicator on the Model 20

CPU). This condition may be corrected by running out the reader,

correcting the cause of the stop, and replacing the cards into the

reader. Note that no cards are removed from the receiving

stacker. Pressing the START key,on the card reader will cause

processing to resume.

The occurrence of both type s of error, conditions simultaneously

should be corrected by following the procedure for reader checks.

* In the case of the 2560 (primary stacker) the last THREE cards should be
placed back in the read hopper.

HASP Remote Terminal Operator's Guide (Model 20) - Page 3.2-3

866

HASP

3.2.3 2560, 1"442, 2520 CARD PUNCHES

All punch checks will be indicated by a program halt code of 0002.

To repunch the card in error, the cards in the punch should be run out

and the last two cards in the receiving stacker discarded. Blank cards

should be placed into the punch and START depressed on the punch console.

The pre s sing of the START key on the CPU will cause proce s sing to

resume.

Punch STOPS and other mechanical problems will be indicated by

an indicator light on the punch {and by the appropriate ATTENTION

indicator on the CPU console}. These conditions sho.uld be corrected

by clearing the punch and discarding all non-processed cards. Processing

will re sume when the punch is re-readied. The occurrence of both type s

of the above errors simultaneously should be corrected by following the

punch check correction procedure.

HASP Remote Terminal Operator's Guide (Model 20) - Page 3.2-4

867

HASP

3.3 MODEL 20 RESTART

In the event of an untimely interruption of Model 20 operation such

as a machine, program, communication line, or environmental failure,

the following procedures should be utilized to resume processing:

A. Model 20 transmitting at failure - HASP/RTP should be

reloaded with the complete job which was being sent at

the time of the failure immediately behind the HASP /RTP

. deck. Due to the sometimes extensive buffering of cards

by the Model 20, doubts concerning which job was being

transmitted at the time of the failure should be resolved

by contacting the operator at the Central site. The central

operator should also be advised to enter the HASP RESTART

RMT n command to delete this partially complete job from

the HASP job queue. After normal initialization procedures I

processing should resume.

B. Model 20 RECEIVING AT FAILURE - HASP/RTP should be

reloaded with NO input jobs in the card reader to force it

into the receive mode again. Since a system failure will

normally result in the loss of some amount of data, the

central computer operator should be advised to BACKSPACE or

RESTART the function in progress as required by the amount

of data lost.

HASP Remote Terminal Operator's Guide (Model 20) - Page 3.3-1

868

HASP

4.0 DYNAMIC CONFIGURATION SPECIFICATION

The HASP/Remote Terminal Processor can utilize any of the types

of peripheral I/O equipment that can normally be ordered with the

Model 20. At program load I HASP /RTP either determines or is

instructed by the operator I what devices to use. Either the 2203 or

1403 printer will automatically be used and need not be indicated.

The card reader utilized will be the one from which the RTP deck is

loaded. The punch to be used must be indicated by the following card

which must follow the program deck:

____ CARD COLUMNSu--__________ _

o
1

1
2

/ /SYSPUNCH DD

where

1
6

UNIT=XXXX
DUMMY

xxxx =

=

=

2560S
2520
1442

(MFCM Secondary station)

If the variable field contains the word DUMMY, all punch output

received from the central computer will be ignored with no indication

to the Model 20 operator.

HASP Remote Terminal Operator's Guide (Mode120) - Page 4.0-1

869

8
o

HASP

5 .0 CENTRAL COMPUTER CONTROL

Certain of the control cards recognized by HASP can be introduced

from the remote terminal site. Following is a list and meaning of these

control cards.

1
/*MESSAGE

12 71
Any Message

The data punched into columns 12-71 of this card will be displayed

on the central computer operator's console at the time the job is being

read into the system. This may be used to identify certain jobs, give

special instructions I etc. The /*MESSAGE card may be placed anywhere

within the input job stream. If this card appears within a job, the HASP

number assigned to that job will be appended to the message before

displaying it, otherwise the remote station ID. will be appended.

1
/*ROUTE

10
PRINT
PUNCH

16
LOCAL

This card, when included anywhere within a job being submitted to

the central computer, will cause the print or punch output (as indicated

in column 10) to be processed on local unit-record equipment. This

card may be used to divert large volumes of print or punch to local high

s peed devices to avoid terminal congestion. Both print and punch may

HASP Remote Terminal Operator's Guide (Model 20) - Page 5.0-1

870

HASP

be routed locally by including two /*ROUTE cards in a job.

1 16
/*PRIORITY nn

This card may be used to force the assignment of priority linn'!

to the job which immediately follows. linn!! may be any digit or digits

from 0-15. This control card when read locally by HASP is interrupted

as an absolute priority assignment to a job. However, when read from

a remote station the card is regarded as a priority assignment to this

job relative to other jobs from the same station. Thus a remote

operator can, via the /':~PRIORITY card order the sequence of jobs

submitted from only his station, for example, a /~:~PRIORITY 15

(where 15 is the highest priority) would cause its job to be the next

job from that remote station to be processed, although not necessarily

the next job to be processed by the central computer. The relative

position of the priority structure of a remote terminal with re spect

to the overall system priority structure is determined at HASPGEN

by central computer personnel.

The /*PRIORITY card must imm.ediately precede the 08/360 JOB

card of the job to which it refers.

HASP Remote Terminal Operator's Guide (Model 20) - Page 5.0-2

871

HASP

1
/*SIGNON

25
Password

This card appears at the end of the HASP/RTP program deck in front of

the //SYSPUNCH configuration card and is used to override the remote

identification number normally assigned to the HASP/RTP program deck.

For DIAL lines the /*SIGNON card may be used to submit a password which I

if correct I will allow the remote terminal acces s to the HASP system for

remote job stream processing. The value" n" must match the remote identi-

fication number assigned to the remote station by central computer personnel.

The value of the "password" must match the password assigned to the line

by the central computer operator when the communication line is .. started" .

1
/*SIGNOFF

This card is used to inform the central system that the remote terminal

operator desires to terminate a remote job stream processing session. When

submitted to the central system I HASP will, at the completion of the current

print and/or punch streams, disconnect the terminal from the system and

prepare the line for other remote stations to SIGN-ON.

1

/*command

Selected HASP commands may be submitted to the central system through

the remote terminal card reader. Commands submitted in this manner must

HASP Remote Terminal Operator's Guide (Model 20) - Page 5.0-3

872

HASP

be the first cards of a job stream (in front of the first job submitted). Commands

which can be submitted are listed in the HASP operator' s guide'~Hid must start

in column 3 of the card t i. e. the first 3 columns will be "/*$".

1
/*SETUP

12
volume-serlt volume-ser2 t ••• t volume-sern

71

The volume serials punched in columns 12-71 of the card will be

displayed on the central system console and the associated job will be placed

in HOLD status (not be scheduled for execution) until released by the central

operator. The /*SETUP card appears in the corresponding job input deck between

the OS JOB card and the first EXEC card. To continue a /*SETUP card t a

/*MESSAGE card should be used.

HASP Remote Terminal Operator's Guide (Model 20) - Page 5.0-4

873

HASP

6. 0 OPERATIONAL HINTS

1. It is suggested that the remote terminal operator become

familiar with normal HASP operating procedures at the

central computer site. The HASP OPERATOR'S GUIDE

is contained as section 11. 1 in the HASP SYSTEM

MANUAL

2. During dormant periods, the Model 20 should be allowed

to maintain communication with HASP at the central

computer site so that printing (and/ or punching) may

begin as it becomes available.

3. The communications line may be disconnected at any

time, which will cause HASP to hold all jobs awaiting

the terminal until the line is again established. This

will allow the Model 20 to be used for other purpose s

during long dormant periods.

HASP Remote Terminal Operator's Guide (Model 20) - Page 6.,0-1

874

HASP

11.3 HASP/REMOTE TERMINAL (1978) OPERATOR'S GUIDE

The following section contains detailed instructions for operating

an IBM 1978 used as a remote terminal station with the HASP SYSTEM.

Although intended for use as a separate operator l s manual, it has been

included in the HASP SYSTEMS Manual to achieve completene s s.

HASP Remote Terminal Operator l s Guide (1978) - Page 11. 3-1

875

HAS P

(The remainder of this page intentionally left blank.)

876

HA~P

THE

HASP

SYSTEM

IBM 1978 REMOTE STATION OPERATOR'S GUIDE

877

HASP

TABLE OF CONTENTS

Page

Section 1. 0 Introduction 1. 0-1

Section 2.0 Operating Procedure s 2.0-1

2. 1 Initiating Processing 2. 1-1

2.2 Establishment of Communications Line 2.2-1

Section 3.0 Error Recovery 3. 0-1

3. 1 Send Operation Error Stops 3. 1-1

3.2 Receive Operation Error Stops 3.2-1

Section 4.0 Central Computer Control 4.0-1

Section 5.0 Operational Hints 5.0-1

T able of Contents - Page i

878

HASP

The HASP System is an automatic

spooling, priority scheduling system which, while operating in con­

junction with OS/360, operates an unlimited number of peripheral

devices simultaneously with normal job execution, to perform the

functions normally associated with off line support computers. The

function of HASP has been extended to operate, via several classes

of telephone line s, periphe ral device s located remotely from the

central computer cOIT1plex.

Through the use of the HASP Remote Job Entry feature, a user

located perhaps thousands of miles from. a particular System/360

installation can utilize the capabilitie s of that installation much as

if it were in the local cOITlputer room. The unit record device s at a

reITlote station are logically operated by HASP as if they were local

readers, printers and punches, so that HASP can siITlultaneously,

while operating all local unit record devices, read jobs from several

reITlote readers into the queue of jobs awaiting processing and upon

com.pletion of the processing, can print and punch the results at the

remote site.

Although a variety of devices may be utilized as remote terminals,

this document discusses only the use of an IBM 1978 as a rem.ote station.

HASP Remote Terminal Operator's Guide (1978) - Page 1.0-1

879

HASP

Due to the use of blocking and variable length "data:'to minimize

line transmission time, the speed at which the 1978 devices are

operated is dependent on the data being transmitted. Certain jobs,

because of their data characteristics, will enable the 1978 to operate

unit record devices at full rated speed. Other jobs, with less

advantageous data characteristics, may cause the devices to operate

at Ie s s than full speed.

HASP Remote Terminal Operator's Guide (I978) - Page 1.0-2

880

HASP

2 .0 OPERAT1NG PROCEDURES

The following pages provide sufficient information for initiating

and operating the IBM 1978 as a HASP Remote Terminal.

HASP Remote Terminal Operator's Guide (1978) ~ Page 2.0-1

881

HASP

2.1 INITIATING PROCESSING

2. 1. 1 Transmission to the Central Computer

1. Establish the communication line (see Section 2. o. 2).

2. Verify that the M/D and CHAR PHASE indicator

,lights are on 2.nd that the REC T /P light is off.

3. Set the operation mode switch to the SEND BINARY

mode (see Note 1).

4. Set the mode switch to the BINARY Position.

5. Press START on the printer paneL

6. Load the cards to be transmitted into the feed

hopper.

7. Press the FEED key on the Reader /Punch.

8. Press the START key on the Reader/Punch.

9. Cards will be transmitted until the reader hopper

is emptied, at which tim.e the audible alarm will

sound and the feed check light on the Reader will

COll1.e on. Additional cards may be transmitted at

this point by, beginning with step 6 again. If there

are no more cards to be transmitted. . .

HASP Remote Terminal Operator's Guide (1978) - Page 2. 1-1

882

HASP

10. Press the STOP key on the Reader Punch and signal

HASP in the central computer of the end of input by

pre s sing the EOT key.

NOTE 1: Certain installations may, if all input card characters

are of the 64 BCD character set, direct the setting of the ope ration

mode switch to the SEND 1 st CHAR position, in order to improve

the transmis sion rate.

HASP Remote Terminal Operator's Guide (1978) - Page 2. 1-2

883

HASP

2.1.2 Reception from Central Computer

1. Establish the communications line (see Section 2.2).

2. Verify that the MID and CHAR PHASE indicator lights

are on and that the REC T Ip light is off.

3. Set the operation mode switch to the REC 1 st CHAR

position.

4. Set the mode switch to the BINARY position.

S. Load blank cards into the feed hopper of the Reader IPunch.

6. Pre s s the FEED key twice on the Reade r IPunch (only

if punching is to be done).

7. Press START on the printer panel.

8. Press START on the Reader /Punch (for punch).

9. Jobs will, as available, begin printing (and optionally

punching).

HASP Renlote Terminal Operator's Guide (1978) - Page 2. 1 -3

884

HASP

2. 1. 3 Change of Operational Mode

In order to allow the 1978 operator to select the mode of operation

HASP provides the following feature:

At the end of the output for each job (punch or print if

no punching i!!l done), HASP will automatically pause

for 28 seconds to allow the 1978 to be switched to the

send mode. To initiate the sending of a job during

this interval, the operator should follow the procedure

outlined in part 2. 1. 1, beginning with step 3. If the

1978 is not !witched to the send mode, the printing of

the next job, if available, will automatically begin

after the expiration of the 28 second period. Should

no job be ready for printing, the 1978 will enter a

dorm.ant state to await either the receipt of print or

an' operator switch to the send mode. Switching modes

while a transmission is occurring can only be done by

instructing the control computer operator to RESTART

the r,emote station.

HASP Remote Terminal Operator's Guide (1978) - Page 2. 1-4

885

HASP

2.2 ESTABLISHMENT OF COMMUNICATION LINE

1. Advise the operator of the central computer location

that job transmis sion is to be initiated. (The central

computer operator must authorize HASP to process

jobs from a given remote term.inal. This authorization

must be given only once pe r terminal.)

2a. Leased (or private transmission lines) - place the

data set in the DATA mode.

2b. Dial-up transmission lines - Press the TALK button

on the data switch and dial, exactly as in a normal call,

the number of the appropriate data set at the central

computer. After the "ringing" sound, a shrill 'sound

indicates that the phone has been answered. Immediately

upon hearing this sound, press the DATA button on the

data set and hang the telephone up.

3. The CHAR PHASE light on the controlpanel should appear

to indicate synchronization of the terminal and the central

computer.

NOTES on communication line ,e stablishment:

a. A "busy" signal indicates that the called data set is in use.

HASP Remote Terminal Operator' sGuide (1978) -Page 2. 2-1

886

H A.SP

b. A line may be established by a cal1 from the central computer

to the remote site. To receive such a call, normal initializa-

tion procedures should be followed but rather than dialing, the

AUTO button should be pressed and the phone hung up to await·

the call.

c. On a two-wire half-duplex telephone line, a period of several

seconds may be registered to synchronize the two computers.

d. On the establishment of a connection other than the fir st, a

maximum time of 28 seconds may be required to begin

transmission of print and/or punch data.

e. If the data set at the central computer is not in the AUTO

position, the operator may answer the call and, after talking

may press the DATA key. An ensuing shrill sound indicates

the computer connection has been established.

HASP Remote Terminal Operator's Guide (1978) - Page 202-2

887

HASP

3.0 ERROR RECOVERY

This section indicates most possible error conditions, their

probable cause s and procedures neces sary for correction.

HASP Remote Terminal Operator's Guide (1978) - Page 3.0-1

888

HASP

i'

3.1 Slt'ND OPERATION ERROR STOPS

Figure 3.1. 1 illustrates possible .errors wh~cp may occur while

transmitting jobs from the 1978 to the central computer.

HASP Rem.ote Terminal Operator 1s Guide (1978) - Page 3.1-1

889

HASP

Figure 3.1. 1 Send Operation Error Stops

Error and
Indication

Validity
Check
1. Alarm

sounds.
2. SRP light

is on.
3. Validity

light is
on.

4. Card
check
light
may be
on.

Po s sible Cau se s

1. Invalid card
code character.

2. Card skew.

Correction Procedures

1. Remove cards from stacke r.
2. Remove cards from hoppe r.
3. Pre ss feed key and stop key

simultaneously twice to clear
machine of cards. First card
in stacker is the error card.

4. If ne c e s s a ry , cor r e ct e r ro r -
card or set mode switch at
prope r po sition (must be
BINARY). Other records may
have been sent incorrectly if
this switch was not set cor­
rectly.

5. (a) If the Cd/Pnt Bfr light is
on, generate a machine reset
by momentarily changing the
operation switch to another
position.
NOTE: this procedure may
result in a record check at the
central compute r which will be
ignored by HASP.
(b) If the Cd/Pnt Bfr light is
off, press the check start key
to reset the error condition.

6. Place the error card and the
card following it in front of
cards removed from hopper.

7. Follow normal start procedure

HASP Remote Terminal Operator's Guide (1978) - Page 3.1-2

890

HASP

Figure 3. 1. 1 Send Operation Error Stops (Continued)

Error and
Possible Causes Correction Procedures

Indication

Card 1. Buffe r input l. Remove cards from stacke r ~
Check address error. 2. Remove cards f~om hoppe r.
l. Alarm 2. More or fewe r 3. Pre s s feed and stop key s

sounds. than 80 colum.ns simultaneously ~wice to clear
2. Card read from card machine of cards.

light is (without Trans- 4. (a) If the Cd/Pnt Bfr light is
on. mit Variable on, place the last card in the

Length Records stacker into the hopper.
special feature). (b) If the Cd/Pnt Bfr light

is off, place both of the cards
in the stacker into the hopper.

5. Replace the cards previously
removed from the hopper.

6. Pre s s check start button to
reset the error indication.

7. Follow normal start procedure

HASP Remote Terminal Operator's Guide (1978) - Page 3.1-3

891

HASP

Figure 3.1. 1 Send Operation Error Stops (Continued)

Error and
Possible Causes Correction Procedures

Indication --
Input/ 1. Buffe r output 1. Note card count in input
Output address error. counter lights to determine
Check number of cards stored in
l. Alarm buffer

sounds. 2. Remove cards from hopper.
2. I/O 3. Remove cards from stacker

check except the number indicated
light by the input counter.
is on. 4. Press feed and stop keys

3. CTR simultaneously twice to clear
light machine of cards.
is on. 5. Place cards left in stacke r

into the hopper.
6. Replace cards removed from

hopper.
7. Gene rate a machine re set by

momentarily changing to
another position with the
ope ration switch.

8. Follow normal start procedure.
NOTE: This procedure may
result in a record check at the
central computer, which will be
ignored by HASP.,

HASP Remote Terminal Operator's Guide (1978) - Page 3.1-4

892

HASP

Figure 3. 1. 1 Send Operation ErrorStops (Continu~d)

Error and
Possible Causes ,Correction Procedures

Indication

CR Check l. Bad character 1. Remove cards from stacke r.
l. Alarm out, of trans- 2. Remove cards from hopper.

sounds. lator. ' " 3. Pre ss feed and stop keys
2. CR light. simultaneously twice to clear

is on. cards from machine.
4. Place second card in stacker

into the hopper .
5. Replace cards removed from

hopper.
6. Pre ss check start button.
7. Follow normal start procedure
8. If the error occur s the second

time, perform steps 2 and 3
above again.

9. Generate a machine re set by
momentarily changing the
operation switch to another
position.

NOTE: This procedure may
result in a record check, at the
central compute r, which will be
ignored by HASP. .
IO.Place both cards in the stacker

into the hopper. Replace the
cards removed from the
hopper.

II.Follow normal start procedure.

HASP Remote Terminal Operator's Guide (1978) - Page 3. 1-5

893

HASP

Figure 3. 1. 1 Send Operation Error Stops (Continued)

Error and
Indication

Feed Check
1. Alarm

sounds.
2. SRP

light on.
3. Feed

check
light on.

Ctr
1. Alarm

sounds.
2. Ctr

light
is on.

Possible Causes

1. Hoppe r empty 0

2. Card jam.
3. Failure to

register card
at one of
stations in
transport.

4. Misfeed at
hopper area.

S. Misfeed at
stacker area.

1. Input check.

Corre ction Procedure

1. Determine cause of feed check~
2. If hopper empty, put in more

cards and pre s s feed key
unle s sat end of operation, in
which ca s e pre s s the stop key
and the EOT key.

3. If a misfeed and no cards are
in machine, reshuffle cards
in hopper and check for a
nicked card which should be
replaced. Put cards back in
hopper and press the feed key.

4. If a card jam exists, follow
the misfeed correction pro­
cedure to remove it.

5. Repair any damaged cards if
necessary.

6. Place into hopper all cards
that have not as yet passed
the read station.

7. Press the feed key.

1. Depress card read-punch key.

HASP Remote Terminal Operator's Guide (1978) - Page 3.1-6

894

HASP

3.2 RECEIVE OPERATION ERROR STOPS

Figure 3.2.1 illustrates possible error stops which may occur while

receiving print (and/ or punch) from the central computer.

HASP Remote Terminal Operator's Guide (1978) - Page 3.2-1

895

HASP . -

Figure 3.2.1 Receive Operation Error Stops

Error and
Possible Causes Correction Procedure

Indication

Input/ The 1978 requests l. Pre s s start key on card read-
Output retransmission of punch (printe r on Model 3) for
Check an error record three more attempts at
l. Alarm two time s from the transmis sian.

sounds. transm.itting ter- 2. If card check light is on,
2. I/O minal. After the follow procedure for

light three trie s the correction of a card check.
is on. machine stop s 3. If the error persists, the

3. CTR and the error System should be checked.
light indicator is
is on. turned on.

4. Output 1. Overflow of
light data (exceed-
is on. ing the 7 sub-

record limit).
2. Loss of an

addre SSe

3. Overflow of
buffer (card
check light is
also on). Maxi-
mum. of 329
characters.

4. RM/GM Check
also turns on
this light (see ex-
planation of RM/
GM to indicate
wrong length
record.

HASP Remote Terminal Operator's -Guide (1978) - Page 3.2-2

896

HASP

Figure 3. 2. 1 Receive Operation Error Stops (Continued)

Error and
Indication

Punch
Check
(Model 2
Only)
1. Alarm

sounds.
2. SRP

light
is on.

3. Punch
Check
light
is on.

Pos sible Cause s

1. Error in punch­
ing of a card.

2. Failure of card-:­
feed latch at the
of a feed cycle.

Correction Procedure

1. Flag last card in stacker.
2. Force feed one card by pres­

sing stop and feed key simul­
taneously. Operation will
continue until all sub - records
remaining in MBS at time of
error have been punched, and
then it will stop. The card in
the stacker immediately after
the last card stacked before
stop, is the error card. If
error did not occur in the last
column to be punched, the
error card has been repunched
and the corrected card follows
the error card in the stacker.
The error card can then be

. thrown away. If the er~or
occurs in the last column to be
punched the entire card will
have been punched (if not, the
columns past the error column
will be left blank), arid the last
column of the card should be
checked and corrected if neces­
sary, by manual methods.

3. If the error was due to a clutch
failure, the entire error,.card
will be blank and should. be·
discarded. In this case, the
flagged card should be che·cked
for scattered punching, and if
so, discarded and manually
corrected.

4. Pre s s start to re sume norrnal
operation. NOTE: The central
computer operator rnay be
notified to BACKSPACE or
RESTART the punch to retry.

HASP Remote ~errninal Operator1s Guide (1978) - Page 3.2-3

897

HASP

Figure 3.2.1 Receive Operation Error Stops (Continued)

Error and
Possible Causes Correction Procedure

Indication

Card 1. Address over- Punch Operation Only (Model 2
Check flow of buffer Only)

l. Alarm (transmittal l. (a) If Cd/Pnt Bfr indicator is
sounds. record too on, remove all the cards from

2. Card long). the stacke r except one fewe r
light 2. Address read than the nUITlbe r indicated by
is on. check (loss of the output counters.

3. Other an address). (b) If Cd/Pnt Bfr indicator is
lights 3. An invalid off, remove all the cards from.
may be character the stacker except the nUITlber
on. in the trans- indicated by the output counte r s.

lator or from 2. Force feed one card by pre s-
the line. sing the stop key and the feed key

simultaneously. Discard the
cards in the stacker.

3. Pre s s the check start key.
4. If Cd/Pnt Bfr indicator was on,

the first card entering the
stacker must also be discarded.

Character 1. The mode switch l. Verify the setting of the ITlode
Check is not in the switch.
1. Alarm BINARY posi- 2. Pre ss start on card read-punch

sounds. tion. (printer on Model 3) for three
2. Charac- 2. Caused by the ITlore atteITlpts at transrnis sion.

ter check transITlis sion 3. If error per sists, the trans-
light line. (directly mis sion line should be changed,
is on. or indirectly). or the ITlode of the two ITlachine s

3. CTR Three trie shave should be compared.
light been made to
is on. obtain correct

information
before the
stop and error
condition occur s.

HASP Remote Terminal Operator's Guide (1978) - Page 3.2-4

898

HASP

Figure 3.2. 1 Receive Operation Error Stops (Continued)

Error and
Possible Causes Correction Procedure

Indication

Record l. Loss of a l. Flag the deck or printed report
Check record. to indicate the approximate
l. Alarm. 2. Duplication location for future reference

sounds. of a record. if necessary.
2. Record 2. Pre s s the check start button.

light is 3. The central computer operator
on. may be notified to BACKSPACE

3. Output or RESTART the job.
light
is on.

CR Check l. Bad character 10 Follow procedure set up for
l. Alarm out of trans- correction of a card check.

sounds. lator.
2. CR light

is on.

RM/GM
l. Alarm l. Receiving 1978 l. Follow procedure for Input/

sounds. has not received Output check.
2. RM/GM a RM/GM at

light is proper position
on. in sub transmittal

30 I/O record.
light is
on.

HASP Remote Terminal Operator's Guide (1978) - Page 3.2-5

899

HASP

Figure 3. 2. 1 Receive Operation Stops (Continued)

Error and
Indication

Output
Check
1. Alarm

sounds.
2. Output

light is
on.

3. Other
check
lights
may be
on.

(Chipbox Full
Model 2
Only)
1. Alarm

sounds.
2. SRP

light on.
3. Chipbox

light on.

SYNC Check
1. Sync check

light is
on.

2. Ready
light is
off.

3. Run light
is off.

Possible Causes

1. I/O check.
2. Card check.
3. Record check.

1. Full chip box.

1. Typehar is
not inserted
correctly.

2. Printer
ribbon is
out of line.

Correction Procedure

1. Follow the procedure indicated
by the other check lights that
are on.

Z. If no other lights are on, press
the start key to re SUITle ope ra­
tion.

1. Open door on lower rear panel.
2. Remove chipbox and empty.
3. Replace chipbox and close

cover.
4. Pre ss start on card read punch

to resume operation.

10 Determine cause of error.
2. Correct according to 1443

procedure.
3. Press reset key.
4. Pre s s start on printe r (and

card read-punch on Models 1
and 2) to re sume ope ration.

HASP Remote Terminal Operator's Guide (1978) - Page 3.2-6

900

HASP

Figure 3.2.1 Receive Operation Error Stops (Continued)

Error and
Possible Causes Correction Procedure

Indication

Parity 1. Invalid character 1. Press reset key.
Check has been sent to 2. Press check start button.
1. Parity printer. 3. Pre s s start on printer '(and

check card read-punch on Models 1
light and 2) to resume operation.
is on.

2. Ready
light
is off.

3. Run
light
is off.

Form Check 1. Forms in printer 1. Realign forms in printer
1. Form check are out of line. according to 1443 procedures.

light on. 2. Pre s s the re set key.
2. Ready 3~ Pre ss start on printer (and

light card read-punch on Models 1
off. and 2) to resume operation.

3. Run 4. The print may be BACKSPACED
light or RESTARTed at the central
is off. computer to recover lost time.

HASP Rem.ote Terminal Operator's Guide (1978) - Page 3.2- 7

901

HASP

Figure 3.2.1 Receive Operation Error Stops (Continued)

-

Error and
Possible Causes Correction Procedures

Indication

End of 1. Out of printe r 1. Insert new printer forms
Form forms. according to 1443 procedure s.
l. End of 2. Pre ss start on printe r (and

form card read-punch on Models 1
light on. and 2) to resume operation.

2. Ready
light off.

3. Run
light
is off.

Carriage 1. Carriage brushes l. Correct condition.
Interlock are in a raised 2. Press start on printer (and
l. Carriage position. card read-punch on Models 1

interlock 2. 6 or 8 line linch. and 2) to resutne operation.
light is belt cover is
on. raised. '

2. Ready
light
is off.

HASP Remote Terminal Operator's Guide (1978) - Page 3.2 - 8

902

HASP

Figure 3.2.1 Receive Operation Error Stops (Continued)

Error and
Indication

Feed
Check
(Model 2
Only)
1. Alarm

sounds.
2. SRP

light
is on.

3. Feed
Check
light
is on.

Possible Causes

1. Hopper empty.
2. Card Jam
3. Failure to

register a card
at one of the
station s in the
transport.

4. Misfeed at
hopper area.

S. Misfeed at
stacker area.

Correction Procedure s

Determine cause of feed check. If
the hopper is empty, follow normal
start procedure. Otherwise:
1. Remove cards from stacke r.
2. Remove cards from hopper.
3. If a card jam, follow misfeed

correction procedure to remove
cards.

4. If not a card jaITl, pre s s feed
and stop keys siITlultaneously
twice to clear cards from
machine.

S. Examine cards cleared frorn
machine in steps 3 or 4 and
discard any damaged cards, or
any that are incorrectly or in­
.completely punched. T4e
da:.:naged cards from a card
jam will have to be duplica,ted
manually, the othe r will be
repunched. (NOTE: The.
Central Computer Operator
may be notified to BACKSPACE
or RESTART the job to recover
damag8d cards.

6. Replace cards removed from
hopper.

7. Follow normal start procedure.

HASP Remote Terminal Operator's Guide (1978) - Page 3.2-9

903

HASP

4. 0 CENTRAL COMPUTER CONTROL

Certain of the control cards recognized by HASP can be introduced

from the relTIote terminal site. Following is a list and lTIeaning of the se

control cards.

1
/;~MESSAGE

12 71
Any Message

The data punched into columns 12 -71 of this card will be displayed

on the central cOlTIputer operator's console at the tilTIe the job is being

read into the systelTI. This may be used to identify certain jobs, give

special instructions, etc. The /~cMESSAGE card lTIay be placed anywhere

within the input job stream. If this card appears within a job, the HASP

number assigned to that job will be appended to the message before displaying i.t,

otherwise the relTIote station ID will be appended.

1
/~:<ROUTE

10

PUNCH
PRINT

16
LOCAL

This card, when included anywhere within a job being sublTIitted to

the central cOlTIputer, will cause the print or punch output (as indicated

in col. 10) to be processed on local unit-record equipment. This card

HASP RelTIote Term.inal Operator's Guide (1978) - Page 4.0-1

904

HASP

may be used to divert large volumes of print or punch to local high speed

devices to avoid terminal congestion. Both print and punch may be

routed locally by including two /~:<ROUTE cards in a job.

1
/~:~PRIORITY

16
nn

This card may be used to force the assignment of priority "nn"

to the job which immediately follows. "nn" may be any digit or digits

from 0-15. This control card when read locally by HASP is interrupted

as an absolute priority assignment to a job. However, when read from

a remote station the card is regarded as a priority assignment to this

job relative to other jobs from the same station. Thus a remote

operator can, via the /~:'PRIORITY card order the sequence of jobs

submitted from only his station, for example, a />:<PRIORITY 15

(\\There 15 is the highest priority) would cause its job to be the next

job from that remote station to be processed, although not necessarily

the next job to be processed by the central computer. The relative

po sition of the priority structure of a remote te rminal with re s pe ct

to the overall system priority structure is determined at HASPGEN

by central compute r pe r sonnel.

The />.'<PRIORITY card must immediately precede the 05/360 JOB

card of the job to which it refers.

HASP Remote Terminal Operator's Guide (1978) - Page 4.0-2

905

HASP

5.0 OPERATIONAL HINTS

1. Itis_sug_geste_d that the remote terminaloperatorshecome

familiar with normal HASP operating procedures at the

central computer site. The HASP OPERATOR'S GUIDE is

contained as Section 11.1 in the HASP SYSTEMS MANUAL.

2. While HASP allows the 1978 operator to select the mode of

ope ration (i. e. send or receive) at the interval between jobs,

a particuliar mode, once begun, must normally be continued

to the end-of-job. Operator controls available at the central

computer may, however, be utilized to avoid this re striction.

3. During dormant periods, the 1978 should be left in the receive

mode so that printing (and/ or punching) may begin as it become s

available.

4. The communications line may be disconnected at any time, which

will cause HASP to hold all jobs awaiting the terminal until the

line is again established.

HASP Remote Terminal Operator's Guide (1978) - Page 5.0-1

906

HASP

11 .4 HASP REMOTE TERMINAL PROCESSOR (1130)

OPERATOR'S GUIDE

The following section contains detailed instructions for operating an

1130, equipped with a Binary Synchronous Communication Adapter, as a

HASP MULTI-LEAVING, remote workstation. Although intended for use as

a separate operational manual, it has been included in the HASP SYSTEMS

manual to achieve completenes s .

HASP Remote Terminal' Operator' s Guide (1130) - Page 11.4-1

907

HAS P

(The remainder of this page intentionally left blank.)

908

HAS P

HAS P

REMOTE TERMINAL PROCESSOR

FOR

MULTI-LEAVING BINARY SYNCHRONOUS

COMMUNICATIONS

1130 OPERATOR'S GUIDE

909

HASP

TABLE OF CONTENTS

SECTION PAGE

1.0 Introduction 1.0-1

2.0 Operating Procedures 2.0-1

2.1 Initiation of a Remote Job Stream 2.1-1
Processing Session

2.2 Remote Job Stream Processing 2.2-1

2.3 Terminating a Session 2.3-1

3.0 Error Procedures 3.0-1

3.1 Communication Adapter Errors 3.1-1

3.2 Remote Terminal Restart 3.2-1

3.3 Load Process Unusual Conditions 3.3-1

4.0 System Control Cards· 4.0-1

5.0 Message Summary 5.0-1

Table of Contents - Page i

910

HASP

1.0 INTRODUCTION

The HASP SYSTEM is an automatic spooling, priority scheduling system

which, while operating in conjunction with OS/360, operates an unlimited

number of peripheral devices simultaneously with normal job execution, to

perform the functions normally associated with off line support computers.

The function of HASP has been extended to operate, via several classes of

telephone lines, peripheral devices Ioca ted remotely from the central computer

complex.

Through the use of the HASP Remote Job Entry feature, a user, located

perhaps thousands of miles from a particular System/360 installation, can

utilize the capabilities of that installation much as if the central system

were located at the remote site. The unit record devices at a remote station

are logically opera ted by HASP as if they were local readers, printers,

punches, and consoles, so that HASP can simultaneously, while operating

all local unit record devices, read jobs from several remote readers into the

queue of jobs awaiting processing; and output to several remote printers and/or

punches results of previously entered jobs which have completed execution.

Although a variety of devices may be utilized as remote terminals, this

document discusses only the use of the 1130 with a binary synchronous

communications adapter as a remote station.

A special program has been written for the 1130 which can be con­

sidered a logical extension of the HASP System. This program referred

HASP Remote Terminal Operator's Guide (1130) - Page 1.0-1

911

HASP

to in the HASP documentation as HASP /RTPl130 performs the following

functions:

A. INPUT

1. Reads from the attached card reader(s).

2. Recognizes operator requests and reads from the attached

console.

3. Identifies, compresses I and blocks card images and commands

for transmission to HASP.

4. Queues blocked records for transmission to HASP.

B. OUTPUT

1 . Dequeues blocked records received from HASP.

2. Identifies the device required for output of the records.

3. Deblocks and decompresses output records, queueing the

images for printing, punching, or typing.

4. Prints I punches, and types the output records as required.

s. Sets status flags indicating backlog conditions on the

output devices.

C. COMMUNICATIONS

1. Establishes and maintains synchronization with HASP.

2. Dequeues blocked input records and transmits them to

HASP upon reques t from HASP"

HASP Remote Terminal Operator's Guide (1130) - Page 1.0-2

912

HASP

3. Provides backlog status flags indicating the terminal's ability

to receive the various output streams from HASP.

4. Receives output from HASP and queues the blocked records

for processing.

HASP /RTPl130 may read, print and punch data concurrently depending

upon the options selected by the installation and the capabilities of the unit

record devices.

Due to the use of blocking and character compression to minimize line

transmission time, the speed at which the 1130 unit record devices will

operate is dependent on the data being transmitted, and the number of con­

current functions. Certain job mixes, because of their data characteristics I

will enable HASP /RTPl130 to operate the unit record devices at near full

speed. Other job mixes may cause the devices to operate in short bursts

because of contention on the communication line.

HASP Remote Terminal Operator's Guide (1130) - Page 1.0-3

913

HASP

2,.0 OPERA TING PROCEDURES

The following pages provide sufficient information for initiating and

operating the HASP /RTPl130 program during the remote job stream processing

session.

HASP Remote Terminal Operator1s Guide (1130) - Page 2.0-1

914

HAS P

2.1 INITIATION OF A REMOTE JOB STREAM PROCESSING SESSION

The initiation of a remote job stream processing session involves
the initial program loading of the HASP/RTPl130 program deck, the
establishment of the communication lines, and the exchange of ini­
tial control information between HASP and the HASP/RTPl130 program.
The initial control sequence ends with the passing of the SIGN-ON
remote identification information.

2.1.1 Initial Program Load (IPL)

1. Ready the RPTl130 deck in the primary card reader (do not
place Jobs behind RTPl130 deck). If two card readers exist,
be sure the second is not ready.

2. Ready all printers.

3. Set the STR/BSC switch to BSC.

4. Set the linespeed control to the appropriate value ... 1200,
2000, 2400, etc.

5. Verify that the rotary CPU control switch is set to the "RUN"
position.

6. Press "IMM STOP", "RESET" and "PROGRAM LOAD" on the 1130 con­
sole.

7. After the last card has been read, the card reader will go
out of ready. Ready the card reader (press start on the
reader until it goes ready) and press "START" on the 1130
console. The last card should be the end card of the RTPl130
deck or a /*SIGNON card or a REP card. All unidentified cards
are ignored.

8. Establish the communications line.

9. Processing should then begin in the full MULTI-LEAVING mode.

2.1.2 Establishment of Communications Line

The procedures for establishing communications with HASP are as
follows:

1. Ready the data set. This will involve different actions based
upon the type of data set; for non-switched lines when the BSC
RDY indicator is on no action is required. Certain non-switched

HASP Remote Terminal Operator's Guide (1130) - Page 2.1-1

HAS P

lines will require the data set DATA button be pressed.
To ready a dial line data set, perform the following:

A. Press the TALK button and lift the receiver on the data
set.

B. Dial the assigned number for remote terminal.

C. If the HASP line is available, the control system will
answer with a high pitched tone. Press DATA and
hang up immediately (the data set is ready).

D. If the HASP line is in use, a busy signal will be
received. Hang up and try again later or dial an
alternate communications line number.

E. If the call is not answered, the central HASP operator
has not given the necessary command to authorize use
of that communication line.

2. When the data set is made ready, the BSC ROY indicator will
be on in addition to the REC light indicating the terminal
program is waiting for HASP to request a transmission. When
requested, RTPll30 will begin the initial control sequence.
The REC and TSM lights will alternate during normal operation.

3. When the initial sequence is complete, control information is
transmitted to HASP and "handshaking" with REC and TSM alter­
nating will continue. In addition, the message

NOTE:

"COMMUNICATION LINE ESTABLISHED"

is printed on the console typewriter.

The message "DATA SET NOT READY" is printed after the
execution of Step 7 in the IPL Procedure if that condition
exists.

HASP Remote Terminal Operator's Guide (1130) - Page 2.1-2

916

HAS P

2.2 REMOTE JOB STREAM PROCESSING

During remote job stream processing the operator is concerned with
operating the unit record devices, while submitting jobs and
controlling the output via commands to the central system.

2.2.1 Output Processing

Except as controlled by the remote terminal operator or central
system operator via commands to HASP, the printing and punching of
job output is handled automatically by the HASP/RTPl130 system.

2.2.2 Input Processing

Job submission can be initiated at any time depending upon the
capabilities of the card reader - punch combination attached to
the 1130.

The 2501 reader allows the cards to be placed in the hopper as
desired. The reader will stop after reading the last card in the
hopper and the message "INTERVENTION REQUIRED ON 2501" will be
printed on the console printer. The operator may press START on
the reader to terminate the job stream or load more cards in the
hopper, press START and continue the job stream. The intervention
message described is typed any time the 2501 goes from a "ready"
condition to a "not ready" condition.

The input reader to HASP/RTPl130 is considered always "HOT", that
is, it is continually testing the reader and attempting to read
cards.

2.2.3 Input Processing On The 1442 Reader/Punch

Operator action through the keyboard/console is required to define
the function desired for the 1442 Reader/Punch. Initially, the
1442 R/P is considered to be a card reader. When punch data is
transmitted to the 1130, a message is printed:

"PUNCH PROCESSOR WAITING FOR 1442"

The operator may then define the 1442 as a punch by entering the
command:

.DPUNCH or .DP

which specifies the definition of the 1442 as a punch.

HASP Remote Terminal Operator's Guide (1130) - Page 2.2-1

917

HAS P

The above specification is necessary for each job which causes
punch data to be transmitted to the terminal.

Once defined as a reader by issuing the command:

.DREADER or .DR

The 1442 remains so assigned until a .DPUNCH is given and operates
in the same manner as described for the 2501 card reader.

NOTES:

1. The .DPUNCH and .DREADER Commands will result in no action
if the opposite function is active at the time issued.

2. Defining the 1442 RIP as a reader with blank cards intended
for punching ready in the hopper will result in a "SKIPPING
for JOB CARD" message from HASP as the blank cards are read
and transmitted.

3. Defining the 1442 RIP as a punch with input cards in the
hopper and punch data available from HASP will result in
clobbered input cards.

2.2.4 Output Processing On The 1442 Punch

A system with the 1442 defined as a punch only device requires
no operator action other than blank cards and a "ready" condition.

HASP Remote Terminal Operator's Guide (ll30) - Page 2.2-2

918

HASP

2.3 TERMINATING A SESSION

When the remote terminal operator desires to terminate remote processing I

he should send through the card reader input stream a /*SIGNOFF card.

This tells HASP not to initiate the sending of any more job output and

release the communication line (if DIAL) when the current print and punch

streams are finished. The RDY light on the data set will go out and an SCA

LOG Message Code 3 will be issued periodically. For nonswitched lines

HASP will make the line available and thus send initial sequence requests

to the HASP /RTPl130 program. The operator should check to see if printing

and punching of output streams have successfully terminated and press STOP

on the CPU. To start a new session the operator must perform the steps

prescribed for the initialization of a remote job stream processing session.

HASP Remote Terminal Operator· s Guide (1130) - Page 2.3-1

919

HASP

2.4 COMMAND PROCESSING

Central system commands as well as local commands may be entered

into the operator's console. Any message entered into the keyboard which

is not recognized as a local command will be transmitted to HASP for action.

Although all commands transmitted to HASP may be listed on the central

system operator consoles only those designated in the HASP operator's

guide as being available to the remote user will be acted upon.

2.4.1 Entering Commands

The operator should perform the following steps when entering commands:

NOTE:

I . Press the INT REO button which is located to the right of

the console typewriter keyboard.

2. When the K. B. Select indicator comes on, type in the

command and press EOF.

3. If a typing error is noticed prior to pressing EOF, press

ERASE FIELD KEY and repeats tep 1.

The "backspace key" is processed in the same manner as the erase

field key.

HASP Remote Terminal Operator's Guide (1130) - Page 2.4-1

920

HASP

2.4.2 Local Commands

COMMAND

.DR

. DP

MEANING/COMMENTS

Define the dual 1442 Reader/Punch as

a redder. This definition remains in effect

until a II • DP" command is entered and

accepted.

Define the dual Reader/Punch as a Punch .

This definition remains in effect for one

job only. The function to be next assigned

is dependent on the enteri.ng of another

.DP or a .DR.

Commands must start in the first available type position and are identified

by a II. II period. No blanks are allowed in the body of a command. Acceptance

of a console command is signalled by the message.

"OK! II

Rejection by the message:

"WHAT?"

HASP Remote Terminal Operator's Guide (1130) - Page 2.4-2

921

HASP

3. 0 ERROR PROCEDURES

The following sections indicate some of the more common error conditions

which may arise and the necessary steps for recovery from the error.

HASP Remote Terminal Operator's Guide (1130) - Page 3.0-1

922

HAS P

3.1 COMMUNICATIONS ADAPTER ERRORS

The design of the synchronization technique for HASP remote

terminals is such that no errors are expected dtiring a processing

session. The occurrence, therefore, of any error condition is an

unusual condition resulting from either system or communication

facility malfunction or operational conditions. In general, the

displaying of 'error messages is informational only since the termi-

nal processor will automatically initiate the appropriate recovery

action.

The following is a list of error messages which may be dis-

played on the Console Printer:

MESSAGE

FFRREEOO

02DDOOOO

0300DOOO

040DDOOO

05DDDDOO

MEANING

Block Sequence Check - a
transmission block was
duplicated or lost
RR=Received block number
EE=Expected block number

Abnormal read complete.
Number of bytes requested
have been read but no end
sequence was detected.

Receive timeout while at­
tempting to synchronize
an initial sequence.

Receive timeout while
reading data.

BCC compare error after
normal read complete
condition.

ACTION TAKEN

If duplicate, the received
block will be ignored. If
lost block, HASP will be
signalled to restart the
job again.

HASP will be requested to
retransmit the record.

HASP will be requested to
retransmit the record.

HASP will be requested to
retransmit the record.

HASP will be requested to
retransmit the record.

HASP Remote Terminal Operator's Guide (1130) - Page 3.1-1

923

HA S P

06000000

07000000

08000000

09000000

OBOOOOOO

ocoooooo

OOODDOO

Data overrun error. Pro­
gram unable to read. data
before next character re­
ceived from transmission
line.

Oata set not· ready. Dis­
covered at interrupt time.

Error on ini tial read.'
First character not SOH,
OLE, ENQ or NAK .•• or •.•
SOH-STX, OLE-STX, OLE­
ACKO pair not found.

NAK received.

Single OLE found in
transparent data.

ENQ received after INITIAL
SIGN-ON Sequence.

NO PAD character following
NAK.

OOOO=Last seA Oevice Status Word received.

HASP will be requested
to retransmit the
record.

RTPl130 waits for data
set to become ready and
then resumes operation
on the line.

HASP will be requested
to retransmit the
record.

Last data record will be
retransmitted to HASP.

HASP will be requested
to retransmit the record.

HASP will be requested
to retransmit the record.

HASP will be requested
to retransmit the record.

HASP Remote Terminal Operator's Guide (1130) - Page 3.1-2

924

HAS P

3.2 REMOTE TERMINAL RESTART

In the event of an untimely interruption of the remote terminal operation

such as a machine, program, communications I or environmental failure, the

remote terminal operator should notify appropriate maintenance personnel of

the malfunction, save material which may be of use determining the source

of the failure, and with the aid of the central system operator prepare for

restarting the terminal as follows:

1 . Notify the central system operator of the failure and, if

necessary request his assistance in preparing for restart.

2 . Determine the current job being transmitted to HASP. (The

central system operator has a record of the current job being

submitted to HASP). The job stream starting with the current

job must be submitted to HASP after restart.

3 . Determine the loss of data on the output devices and inform

the central operator to BACKSPACE or RESTART the printer or

punch as necessary. (The central system's line should be

made available for a subsequent ses sion with the remote

station or other stations within the system).

4. When the remote terminal is available I perform the steps

required for initiating a "Remote Job Processing Session II •

HASP Remote Terminal Operator's Guide (1130) - Page 3.2-1

925

HAS P

3.3 LOAD PROCESS UNUSUAL CONDITIONS

The first eight cards of the 1130 remote terminal deck comprise a
"bootstrap" loader (RTPBOOT) which is used to load the main loader
(RTPLOAD) into upper 1130 storage. RTPLOAD then loads the main
terminal deck (RTPl130), processes REP cards (if any) and the
/*SIGNON card (if included).

The following tables describe the unusual conditions which may
occur in conjunction with RTPBOOT and RTPLOAD.

RTPLOAD

CONDITION INDICATION

System wait at location
'0010'. AC displays
value 'FFF3'.

System wait at location
'0010'. AC displays
value 'FFF2'.

System wait at location
'0010'. AC displays
value 'FFFl'.

CONDITION DESCRIPTION

The last REP card read
contained a format
error.

RTPLOAD computed sum
(checksum) of columns
1-72 of last RTPll30
card read does not
match value in columns
73-74 previously
computed.

This is not an error.
The last card has
been read by the
2501 or 1442 and
operation action is
required.

OPERATOR ACTION

Loading is ter­
minated perman­
ently. Note: card
in error and
notify system
programmer or
lead operator.

Loading may be
resumed by pres­
sing start on
1130 console.
UNPREDICTABLE
RESULTS MAY
OCCUR. Best
action is to
note card in
error and notify
system programmer
or lead operator

To commence
RTPl130 proces­
sing, press start
on card reader
until ready then
press start on
1130 console.

HASP Remote Terminal Operator's Guide (1130) - Page 3.3-1

926

HAS p'

RTPBOOT

CONDITION INDICATION

System loop at location
'AA' with IAR displayed
at location 'AB~.

System loop at location
'AE' with IAR
displaying location
'AF'. AC contains card
code value of column
in error. XR2 contains
2's complement of card
column number in
error.

CONDITION DESCRIPTION

RTPBOOT computed sum
(checksum) of columns
1-72 of last card
read does not match
value in columns
73-74 previously
computed during
RTPLOAD generat.ion.

RTPBOOT detected
illegal EBCDIC punch
in RTPLOAD card just
read or the last 4
cards-of RTPBOOT
contain an illegal
EBCDIC punch ..

OPERATOR ACTION

Loading of
RTPLOAD is per­
manently termi­
nated. Note card
being processed
and contact sys­
tem programmer
or lead operator
about probleme

Loading of
RTPLOAD is per­
manently termi­
nated. Note card
being processed
and contact sys­
tem programmer
or lead operator
about problem.

HASP Remote Terminal Operator's Guide (1130) - Page 3.3-2

927

HASP

4.0 SYSTEM CONTROL CARDS

Certain of the control cards recognized by HASP can be introduced from

the remote terminal site. Following is a list, with meanings, of these

control cards. Column numbers appear over the beginning character of

each section of the card.

1
/*MESSAGE

16 71
Any Message

The data punched into columns 16-71 of this card will be displayed

on the central computer operator console at the time the, job is being read

into the system. This may be used to identify certain jobs, give special

instructions I etc. The /*MESSAGE card may be placed anywhere within

the input job stream. If this card appears within a job, the HASP number

assigned to that job will be appended to the message before displaying it,

otherwise the remote station ID will be appended.

1
/*ROUTE

10
PRINT
PUNCH

16
LOCAL
REMOTEn
PRINTERn
PUNCHn

This card, when included anywhere within a job being submitted to the

central computer, will cause the print or punch output (as indicated in

column 10) to be processed on another remote workstation (REMOTEn), a

HASP Remote Terminal Operator's Guide (1130) - Page 4.0-1

HASP

specific local printer and/or punch I or the first available local printer and/or

punch (LOCAL). This card may be used to divert large volumes of print or

punch to local highs peed devices to a void terminal conge s tion . Both print

and punch may be routed locally by including two /*ROUTE cards in a job.

1 16
/*PRIORITY n

This card may be used to force the assignment of priority II n II to the

job which immediately follows. II n II may be any numerical value from 0-15.

This control card when read locally by HASP is interpreted as an absolute

priority assignment to a job. However, when read from a remote station

the card is regarded as a priority assignment to this job relative to other

jobs from the same station. Thus I a remote operator can I via the /*PRIORITY

card order the sequence of jobs submitted from only his station I for example I

a /*PRIORITY 15 (where is the highest priority) would cause its job to be

the next job from that remote station to be processed I although not

necessarily the next job to be processed by the central computer. The

relative position of th'8 priority S~rJC~llre o~ a remote terminal with respect

to the overall system priority structure is determined at HASPGEN by central

computer personnel.

The /*PRIORITY card must immediately precede the 08/360 JOB card

for the job to which it refers.

HASP Remote Terminal Operator's Guide (1130) - Page 4.0-2

929

HASP

1
/*SIGNON

16
REMOTEn

2S
Password

This card appears at the end of the HASP /RTPl130 program deck and is

used to override the remote identification number normally assigned to the

HASP/RTPl130 program deck. For DIAL lines the /*SIGNON card may be

used to submit a password which, if correct, will allow the remote terminal

access to the HASP system for remote job stream processing. The value

lin II must match the remote identification number assigned to the remote

station by central computer personnel. The value of the "password" must

match the password assigned to the line by the central computer operator

when the communication lines is "started".

1
/*SIGNOFF

This card is used to inform the central system thq,t the remote terminal

operator desires to terminate a remote job stream processing session. When

submitted to the central system, HASP will, at the completion of the current

print and/or punch streams, disconnect the terminal from the system and

prepare the line' ~or other remote stations to SIGN-ON.

1
/*command

Selected HASP commands may be submitted to the central system through

the remote terminal card reader. Commands submitted in this manner must

HASP Remote Terminal Operator's Guide (1130) - Page 4.0-3
930

HASP

be the first cards of a job stream (in front of the first job submitted). Commands

which can be submitted are listed in the HASP operator's guide and must start

in column 3 of the card Ii. e. the first 3 columns will be "/*$ II. (See Section

2.4. 1 for entering HASP commands via the console typewriter).

1
/*SETUP

16
volume-serl /volume-ser2, ... ,volume-sern

71

The volume serials punched in columns 16-71 of the card will be dis played

on the central system console and the associated job will be placed in HOLD

status (not be scheduled for execution) until released by the central operator.

The /*SETUP card appears in the corresponding job input deck between the

OS/360 JOB card and the first EXEC card.

HASP Remote Terminal Operator's Guide (1130) - Page 4.0-4

931

HAS P

5.0 MESSAGE SUMMARY

Messages which are printed on the console typewriter originate
at the central HASP SYSTEM or are generated by RTPl130 in con­
junction with the terminal operation. Messages from HASP may
be identified by the $ character prefix and the fact that they
are printed in red if the red/black typewritter ribbon is
installed.

Local messages (typed in black) are listed below along with a
more detailed explanation of each message.

MESSAGE

INTERVENTION REQUIRED
ON xxxx

PUNCH PROCESSOR
WAITING FOR 1442

EXPLANATION/ACTION

Where xxxx=1442, 2501, 1403 or 1132.
Message indicates that the indicated
device has gone from a "ready" to
"not ready" conditic" usually due to
the device being manually stopped or
because the device requires operator
action, e.g., cards or paper. The de­
vice should be serviced as required and
made ready to continue operation.

Issued whenever punch data is received
fora system equipped with a combina­
tion 1442 read/punch. If the 1442 is
defined as a reader, it must complete
the read function before it may be de­
fined as a punch. If the 1442 is de­
fined as a punch, no further action
(other than providing blank cards and
making the device ready) is necessary
(see Section 2.2.3).

HASP Remote Terminal Operator's Guide (1130) - Page 5.0-1

932

HAS P

MESSAGE

DATA SET NOT READY

SCA LOG xxxxxxOO

COMMUNICATION LINE
ESTABLISHED

WHAT?

OK!

EXPLANATION/ACTION

Issued when the communications adapter
signals the workstation program that
the attached telephone data sets is in
a "not ready" condition. The program
will not attempt to use the Communica­
tion Adapter until a "ready" condition
is detected. All other functions (card
input, typewriter, etc.) will continue
up to the point of requiring the service
of the adapter. If the data set was
made not ready by manual intervention,
operation may be resumed by making it
ready. Caution: The central HASP
SYSTEM may print error messages which
could cause the operator to restart
the communications line. In this event,
the workstation program must be
re-loaded according to Section 2.1.1.

Indicates an unusual condition
associated with the SCA (Synchronous
Communications Adapter) as described in
Section 3.1.

Issued at the time the workstation
program is initialized and when commu­
nications have been established with
the central HASP SYSTEM.

Response to any local command not recog­
nized by the workstation program.

Response to any local command recog­
nized by the workstation program.

HASP Remote Terminal Operator's Guide (1130) - Page 5.0-2

933

HAS P

(The remainder of this page intentionally left blank.)

934

HASP

11.5 HASP REMOTE TERMINAL PROCESSOR (System!360)

OPERATOR'S GUIDE

The following section contains detailed instructions for operating any

model of System!360 equipped with binary synchronous communication

facilities, as a HASP MULTI-LEAVING I remote workstation. Although

intended for use as a separate operational manual, it has been included

in the HASP SYSTEMS manual to achieve completeness.

HASP Remote Terminal Operator's Guide (System/360) - Page 11.5--1

-935

HAS P

(The remainder of this page intentionally left blank.)

936

HASP

HAS P

REMOTE TERMINAL PROCESSOR

FOR

MULTI-LEAVING BINARY SYNCHRONOUS

COMMUNICATIONS

SYSTEM 360 OPERATOR'S GUIDE

937

HASP

TABLE OF CONTENTS

SECTION PAGE

1 .0 Introduction 1.0-1

2.0 Operating Procedures 2.0-1

2 .1 Initiation of a Remote Job Stream 2.1-1
Processing Session

2.2 Remote Job Stream Processing 2.2-1

2.3 Terminating a Session 2.3-1

3.0 Error Procedures 3.0-1

3 . 1 Communication Adapter Errors 3.1-1

3.2 Unit Record Error Procedures 3.2-1

3.3 Remote Terminal Restart 3.3-1

4.0 System Control Cards 4.0-1

Table of Contents - Page i

938

HASP

1 .0 INTRODUCTION

The HASP SYSTEM is an automatic spooling, priority scheduling system

which, while opera ting in conjunction with OS/3 60, opera tes an unlimi ted

number of peripheral devices simultaneously with normal job execution, to

perform the functions normally associated with off line support computers.

The function of HASP ha s been extended to operate, via several cIa sse s of

telephone lines, peripheral devices located remotely from the central computer

complex.

Through the use of the HASP Remote Job Entry feature, a user, loca ted

perhaps thousands of miles from a particular System/360 installation, can

utilize the capabilities of that installation much as if the central system

were located at the remote site. The unit record devices at a remote station

are logically opera ted by HASP as if they were local readers, printers,

punches, and consoles ,so that HASP can simultaneously, while operating

all local unit record devices, read jobs from several remote readers into the

queue of jobs awaiting processing; and output to several remote printers and/or

punches results of previously entered jobs which have completed execution.

Al though a variety of devices may be utilized as remote terminals, this

document discusses only the use of a System/360 Model 2S and larger with

a binary synchronous communication adapter as a remote station.

A special program has been written for the remote System/360 which can be

considered a logical extension of the HASP System. This program referred

HASP Remote Terminal Operator's Guide (System/360) - Page 1.0-1

939

HASP

to in the HASP documentation as (HASP /RMT360) performs the following

functions:

A. INPUT

1 . Reads from the a ttached card readers.

2. Recognizes opera tor requests and reads from the attached

console.

3. Identifies I compresses I and blocks card images and commands

for transmission to HASP.

4. Queues blocked records from transmis sion to HASP.

B. OUTPUT

1 . Dequeues blocked records received from HASP.

2. Identifies the device required f or output of the records.

3. Deblocks and decompresses output records I queueing the

images for printing I punching I "or typing.

4. Prints I punches I and types the output records a s required.

5.. Sets sta tus flags indicating backlog conditions on the

output devices.

c. COMMUNICATIONS

1 ". Establishes and maintains synchronization with HASP.

2. Dequeues blocked input records and transmits them to

HASP upon reques t from HASP.

HASP Remote Terminal Operator's Guide (System/360) - Page 1.0-2

940

HASP

3. Provides backlog status flags indicating the terminal's abili ty

to receive the various output streams from HASP.

4. Receives output from HASP and queues the blocked records

for proces sing.

HASP /RMT360 may read print and punch data concurrently depending

upon the options selected by the installation and the capabilities of the unit

record devices.

Due to the use of blocking and character compression to minimize line;

transmission time, the speed at which the remote terminal unit record devices

will operate is dependent on the data being transmitted, and the number of

concurrent functions. Certain job mixes I because of their data characteristics I

will enable HASP/RMT360 to operate the unit record devices at full rated speE:d.

Other job mixes may cause the devices to operate in short bursts beca.use

of contention on the communication line.

HASP Remote Terminal Operator's Guide (System/360) - Page 1.0-3

941

HASP

2.0 OPERA TING PROCEDURES

The following pages provide sufficient information for initiating and

operating the HASP/RMT360 program during the remote job stream processing

session.

HASP Remote Terminal Operator's Guide (System/360) - Page 2.0-1

942

HASP

2.1 INITIATION OF A REMOTE JOB STREAM PROCESSING SESSION

The initiation of a remote job stream processing session involves the

initial program loading of the HASP/RMT360 program deck, the establishment

of the communication lines, and the exchange of initial control information

between HASP and the HASP /RMT360 program. The initial control sequence

ends with the passing of the SIGN-ON remote identification information.

2.1. 1 Ini tial Program Load (IPL)

The following steps should be taken to IPL the HASP /RMT360.

1. If power is off press POWER ON.

2. Ready the HASP /RMT360 deck in READER 1 designated by

central system personnel) and press START and EOF on the reader.

(The last card of the deck should be a blank or /*SIGNON card

as directed by the installation) .

3. Ready printers, punches, and the console.

4. Set the LOAD UNIT rotary switches to the device addres s of

READER 1.

5. Disable the interval timer if present.

6. Set the MODE (RATE) and DIAGNOSTIC (FLT) switches to PROCESS.

7. Set CHECK CONTROL to STOP.

8. Press SYSTEM reset and LOAD.

9. All cards of the HASP /RMT360 deck should be read into the reader.

HASP Remote Terminal Operator's Guide (System/360) - Page 2.1-1

943

HASP

2.1 .2

10. HASP/RMT360 will print the /*SIGNON card, if present, followl:?d

by a HASP ENVIRONMENTAL RECORDING ERROR PRINTOUT (if the

contents of core remain unchanged since the last running of the

program) .

11. The remote terminal is now ready to communicate with HASP.

HASP/RMT360 will wait while communications are established"·

with HASP.

Establishment Of Communication Line

The procedures for establishing communications with HASP are as follows:

1. Ready the data set. This will involve different actions based

on the type of data set. Readying nonswitched lines will only

require the data set DATA button be pressed (if present). To

ready a dial line da ta set perform the following:

a. Press the TALK button and lift the receiver on the da ta set.

b. Dial the assigned number for the remote terminal.

c. If the HASP line is available, the central system will

answer with a high pitched tone. Press DATA and hang

UP immediately (the data set is ready).

d. If the HASP line is in use, a busy signal will be received.

Hang up and try again later or dial an alternate communication

line number.

HASP Remote Terminal Operator's Guide (System/360) - Page 2.1-2

944

HASP

e. If the call is not answered, the central HASP opera tor

has not given the necessary command to authorize use

of that communication line.

2. When the data set is made ready for HASP I HASP /RMT360 will

wait to request a transmission. When requested HASP/RMT360 will

begin the initial control sequence.

3. When the initial sequence is complete the SIGN-ON is transmitted

to HASP. HASP/RMT360 will "handshake" with HASP until pro-

cessing of job streams actually began.

HASP Remote Terminal Operator's Guide (System/360) - Page 2.1-3
945

HASP

2.2 REMOTE JOB STREAM PROCESSING

During remote job stream processing the operator is concerned with

operating the unit record devices, while submitting jobs and controlling the

output via commands to the central system.

2.2.1 Output Processing

Except as controlled by the remote terminal operator or central system

operator via commands to HASP I the printing and punching of job output is

handled automatically by the HASP - HASP/RMT360 system.

2.2.2 Input Processing

With the exception of 2520 and 1442 DUAL Reader-Punch devices, job

submission can be initiated at any time from any card reader supported by the

HASP/RMT360 program (all readers may be running concurrently). The opera tor

need only place the cards in the input hopper as desired and press reader

START. When the last of a job stream has been loaded into the HOPPER, press

reader EOF to allow the reading of the la st cards to signal the program tha t

the end of stream has been read.

The input readers to HASP/RMT360 are considered always IIROT"; that is

the program is continually testing each reader and attempting to read cards.

When any card reader is loaded with cards HASP/RMT360 will read and transmit

them to HASP.

HASP Remote Terminal Operator'sGuide (System/360) - Page 2.2-1

946

I

HAS P

2.2.3 Input Processing On Dual Reader Punch

Devices with single card paths for read and punch functions are

considered DUAL reader/punches if they are supported for both func­

tions. The following are supported DUAL devices:

1 • 1442 READER PUNCH

2. 2520 READER PUNCH

Operating The Dual Reader Punch Devices

Dual devices have four basic status conditions which affect the

operator:

1.

2.

3.

4.

Neutral - Reader empty from normal program execution.

Input - Reading normal job stream.

Output - Punching normal output from HASP.

Output error recovery - Attempting to recover from punch

errors.

At IPL time the DUAL device will be in neutral status and may

be treated as any reader device in that the operator is at liberty

to submit multiple job streams at any time. Any blank cards mixed

in the input stream will be submitted to HASP as job input. When

HASP/RMT360 recognizes the end of file (EOF) the DUAL device will

revert to the neutral status.

When the DUAL device is in neutral the operator may choose to

ready the device with blank cards which places it in the output sta­

tus. If HASP has output waiting, HASP/RMT360 will respond immedi­

ately by punching into the blank cards. However, after all punching

is finished or if there is a pause due to

HASP Remote Terminal Operator's Guide (System/360) - Page 2.2-2

947

HASP

low line speeds the operator may not run the remaining cards out of the

device and ready it with job stream cards. The procedure for interrupting the

output mode is as follows:

1. Press STOP on the device.

2. Remove the cards from the HOPPER. (DO NOT non·-process run

the cards out of the card path).

3. Place the job stream cards in the HOPPER and press reader

START.

4. If the punch happens to be busy the device will continue

punching until the job stream is encountered; then the device

will enter the input status. (Not all blank cards need be

removed from the hopper).

5. If the punch. is momentarily idle I the operator can cause the

device to pass through one card by pressing reader STOP and

then START. If several blank cards are in the hopper in front

of the job stream the operation must be repeated for each

blank card.

The DUAL device is in error recovery status when a punch error occurs.

HASP /RMT360 will attempt to repunch the record in error into the following card.

If HASP /RM T 360 encounters a nonblank card a read error will occur (s ee unit

record error procedures). The operator should non-process run out the job

stream cards I place one or more blank cards in front and ready the device.

HASP Remote Terminal Operator1s Guide (System/360) - Page 2.2-3

948

HASP

2.2.4 Command Processing

Any message entered into the 10520perator ' s console via the keyboard

will be transmitted to HASP for action. Although all commands transmitted to

HASP may be listed on the central system operator consoles I only those

desginated in the HASP operator I s guide as being available to the remote user

will be acted upon.

Entering Commands

The operator should perform the following steps when entering commands:

1. Press the REQUEST button on the right side of the keyboard.

The ATTN indicatot (indicator above the keyboard on l052)

will glow momentarily.

2 . When the PROCD indica tor comes on I type in the command and

press EOB (numerical 5 key pressed while ALTN CODING key

is in).

3. If a typing error is noticed prior to pres sing EOB I pres s CANCEL

(numerical 0 key pressed while ALTN CODING key is in) and

repeat step 2.

4. If after receiving a proceed indicator nQ command is desired

press EOB.

HASP Remote Termiaal Operator's Guide (System/360) ~ Page 2.2-4

949

HAS P

2.3 TERMINATING A SESSION

When the remote terminal operator desires to terminate remote

processing, he should send through any card reader input stream a

/*SIGNOFF card. (See section 4.0). This causes HASP not to initiate

the sending of any more job output and to release the communication

line (if DIAL) when the current print and punch streams are finished.

The DATA light on the data set will go out and BSCA will enter a

CHECK CONDITION. For nonswitched lines HASP will make the line avail­

able and wait for an initial sequence request from the HASP/RMT360

program. HASP/RMT360 will log on the console message device, UNIT

I CHECK. The operator should check to see if printing and punching

of output streams have successfully terminated and press STOP on the

CPU. To start a new session the operator must perform the steps

prescribed for the initialization of a remote job stream processing

session.

HASP Remote Terminal Operator's Guide (System/360) - Page 2.3-1

'50

HASP

3.0 ERROR PROCEDURES

The following sections indicate some of the more common error conditions

which may arise and the necessary steps for recovery from the error.

HASP Remote Terminal Operator's Guide (System/360) - Page 3.0-1

951

HASP

-,·3.1 COMMUNICATION ADAPTER ERRORS

The design of the synchronization technique for HASP remote terminals

is such that no errors are expected during a processing session. The

occurrence, therefore, of any error condition is an unus ual condition

resulting from either system or communication facility malfunction or

operational conditions. In general, the displaying of error messages is

informational only since the ~erminal processor will automatically initiate

the appropriate recovery action. A statistical summary of all errors is

maintained in the HASP Environmental Recording Table and a historical

report is produced each time HASP /RMT3 60 is loaded (unless s,torage has

been cleared). Additionally, the occurrence of any error will cause a

descriptive message to be displayed immediately on the console type-

wri ter. Table 3. 1.1 indicates each of the pos sible communication errors

which can occur, their meaning and the recovery action taken.

HASP Remote Terminal Operator's Guide (System/360) - Page 3.1-1

952

HASP

Table 3.1.1

MESSAGE

01RREEOO

02000000

03RRRROO

04000000

05SS0000

Communication Adapter Error Messages

MEANING

Block sequence check-
a transmission block was
duplicated or lost
RR = Received block number
EE = Expected block number

N ega tive reply received -
a transmission block was
not correctly received by
HASP

ACTION TAKEN

If duplica te the received block
will be ignored. If los t block I
HASP will be signaled to restart
the job.

The bad record will be re­
transmitted.

Unknown response received - HASP will be requested to
an unrecognizable control retransmi t the record.
character was received
from HASP
RRRR = First two characters

received (If RRRR is
correct sequence I ending
sequence was bad)

Uni(Exception -
This indicates the receipt
of an II E OT II character from
HASP (EOT is not utilized in
MULTI-LEAVING)

U ni t check - a check
condition has occurred
in the communication
adapter
SS = Sense byte

indicating type of
check

HASP will be requested to
retransmi t the record.

The failing operation will be
retried.

HASP Remote Terminal Operator's Guide (System/360) - Page 3.1-2

953

HAS P

Table 3.1.1 - Communicaton Adapter Error Messages (Continued)

MESSAGE

06CCOOOO

07000000

MEANING

Sense Information byte
80 Command reject
40 Intervention

required
20 Bus out check
10 Equipment check
08 Data Check
04 Overrun
02 Lost data
01 Time out

Unusual end - an
unusual condition has
occurred in the channel
or control unit inter­
face
cc=CSW byte 5

SIO failure - a start
I/O instruction was
rejected by the Syn­
chronous Data Adapter

ACTION TAKEN

If write operation in proc­
ess at time of error, the
write will be reissued;
otherwise, HASP will be re­
quested to retransmit.

The failing operation will
be retried.

The start I/O will be re­
tried.

HASP Remote Terminal Operator's Guide (System/360) - Page 3.1-3

954

HASP

3. 2 UNIT RECORD ERROR PROCEDURES

Many of the unit record device errors which may occur during processing

are of such nature that HASP /RMT360 is able to continue processing without

operator intervention. Errors such as I DATA check on the reader and single

pocket punch devices; FEED check; END OF FORM; etc. require operator

assistance before use of the device can be continued. In any event all

errors occurring on unit record devices will be logged in the HASP ENVIRON­

MENTAL RECORDING ERROR 'PRINTOUT table and immediately on the 1052

operator's console.

When the error message is printed the operator should perform the

following:

1 . . Determine which device is in error (see table 3. 2.I)..

2. Note the device status (If HASP/RMT360 continues to use the

device I the error message is informative in nature).

3. Correct the error in accordance with procedures prescribed

for the device.

4. Ready the device for resumption of operations.

HASP Remote Terminal Operator's Guide (System/360) - Page 3.2-

955

HASP

Table 3.2.1 HASP/RMT360 Unit Record Error Messages

MESSAGE

OSSSOAM

06CCOAM

DESCRIPTION

Uni t deck - device wi thin
address "AM II has unit check
error described by sense byte
"SS" and/or indicators lights
on the device console.

Example sense byte settings
40 = Intervention required
10 = Equipment check
08 = Data check - card read,

card punched, or line
printed incorrectly.

01 = Carriage control tape
Channel 9 encountered

on printer

Unusual End - Previous I/O
came to an unusual end.
IBM customer engineer
should be cons ul ted
CC = CSW byte 5
AM = device addres s

PROGRAM ACTION

Wai t for op era tor
Trea t as da ta check
Depending upon device

ignore, retry, or wai t
for op era tor

Ignore

Treat as data check.

HASP Remote Terminal Operator's Guide (System/360) - Page 3.2-2

956

HAS P

3.3 REMOTE TERMINAL RESTART

In the event of an untimely interruption of the remote terminal

operation such as a machine, program, communications, or environmental

failure, the remote terminal operator should notify appropriate main­

tenance personnel of the malfunction, save material which may be of

use in determining the source of the failure, and with the aid of the

central system operator prepare for restarting the terminal as

follows:

1. Notify the central system operator of the failure and, if

necessary request his assistance in preparing for restart.

2. Determine the current job being transmitted to HASP. (The

central system operator has a record of the current job·

being submitted to HASP). The job stream starting with

the current job must be submitted to HASP after restart.

3. Determine the loss of data on the output devices and in­

form the central operator to BACKSPACE or RESTART the

printer or punch as necessary. (The central system's

line should be made available for a subsequent session

with the remote station or other stations within the

system) .

4. When the remote terminal is available, perform the steps

required for initiating a "Remote Job Processing Session".

HASP Remote Terminal Operator's Guide (System/360) - Page 3.3-1

957

HASP

4.0 SYSTEM CONTROL CARDS

Certain of the control cards recognized by HASP can be introduced from

the remote terminal site. Following is a list, with meanings, of these

control cards. Column numbers appear over the beginning character of

each section of the card.

1
/*MESSAGE

16
Any Message

71

The data punched into columns 16-71 of this card will be displayed

on the central computer operator console at the time the job is being read

into the system. This may be used to identify certain jobs, give special

instructions, etc. The /*MESSAGE card may be placed anywhere within

the input job stream. If this card appears within a job, the HASP number

assigned to that job will be appended to the message before displaying it,

otherwise the remote station ID will be appended.

1
/*ROUTE

10
PRINT
PUNCH

16
. LOCAL

REMOTEn
PRINTERn
PUNCHn

This card, when included anywhere within a job being submitted to the

central computer, will cause the print or punch output (as indicated in

column 10) to be processed on another remote workstation (REMOTEn) I a

HASP Ramote Terminal Operator's Guide (System/360) - Page 4.0-1

958

HASP

specific local printer and/or punch, or the first available local printer and/or

punch (LOCAL). This card may be used to divert large volumes of print or

punch to local high speed devices to avoid terminal congestion. Both print

and punch may be routed locally by including two /*ROUTE cards in a job.

1 16
/*PRIORITY n

This card may' be used to force the assignment of priority lIn II to the

job which immediately follows. lin 1\ may be any numerical value from 0-15.

This control card when read locally by HASP is interpreted as an absolute

priority assignment to a job. However, when read from a remote station

the card is regarded as a priority assignment to this job relative to other

iobs from the same station. Thus, a remote operator can, via the /*PRIORITY

card order the sequence of jobs submitted from only his station, for example,

a /*PRIORITY 15 (where 15 is the highest priority) wouJ.d cause its job to be

the next job from that remote station to be processed, although not necessarily

the next job to be processed by the centeal computer. The relative position

of the priority structure of a remote terminal with res pect to the overall

system priority structure is determined at HASPGEN by central computer

personnel.

The /*PRIORITY card must immediately precede the OS/360 JOB card

for the job to which it refers.

HASP Remote Terminal Operator's Guide (System/360) - Page 4.0-2

959

HASP

1
/*SIGNON

16
REMOTEn

25
Password

This card appears at the end of the HASP /RMT 360 program deck and is

used to override the remote identification number normally assigned to the

HASP/RMT360 program deck. For DIAL lines the /*SIGNON card may be

used to submit a password which, if correct, will allow the remote terminal

access to the HASP system for remote job stream processing. The value

"n" must match the remote identification number assigned to the remote

station by central computer' personnel. The value of the "password II must

match the password assigned to the line by the central computer operator

when the communication line is II started II.

1
/*SIGNOFF

This card is used to inform the central system that the remote terminal

operator desires to terminate a remote job stream processing session. When

submitted to the central system, HASP will, at the completion of the current

print and/or punch streams, disconnect the terminal from the system and

prepare the line for other remote stations to SIGN-ON.

1
/*command

Selected HASP commands may be submitted to the central system through

the remote terminal card reader. Commands submitted in this manner must

HASP Remote Terminal Operator's Guide (System/360) - Page 4.0-3

960

HASP

be the first cards of a job stream (in front of the first job sybrni,tted). Commands

which can be submitted are listed in the HASP operator's guide and must start

in column 3 of the card / i. e. the first 3 columns will be "/*$ II • (See Section

2.2.4 for entering HASP commands via the console typewriter).

1
/*SETUP

16
volume-serl/volume-ser2, ... / volume-sern

The volume serials punched in columns 16-71 of the card will be

71

displayed on the central system console and the associated job will be placed

in HOLD status (not be scheduled for execution) until released by the central

operator. The /*SETUP card appears in the corresponding job input deck between

the OS/360 JOB card and the first EXEC card.

HASP Remote Terminal Operator's Guide (System/360) - Page 4.0-4

961

HAS P

(The remainder of this page intentionally left blank.)

962

HASP

11 . (5 HASP REMOTE TERMINAL PROCESSOR (BSC MODEL 20)

OPERATOR'S GUIDE

The following section contains detailed instructions for operating a

360/20, equipped with a Binary Synchronous Communication Adapter, as

a HASP MULTI-LEAVING, remote workstation. Although intended for use

as a separate operational manual, it has been included in the HASP SYSTEMS

manual to achieve completenes s .

HASP Remote Terminal Operator's Guide (BSe Model 20) - Page 11. 6-1

963

HAS P

(The remainder of this page intentionally left blank.)

964

HAS P

REMOTE TERMINAL PROCESSOR

FOR

MULTI-LEAVING BINARY SYNCHRONOUS

COMMUNICATIONS

MODEL 20 OPERATOR'S GUIDE

965

HASP

TABLE OF CONTENTS

SECTION PAGE

1.0 Introduction 1.0-1

2.0 Operating Procedures 2.0-1

.2 • 1 Initiation of a Remote Job Stream 2.1-1
Processing Session

') 'J Remote Job Stream Processing 2.2-1 i....l • ",

2 •. 3 Terminating a Session 2.3-1

3.0 Error Procedures 3.0-1

3.1 Communication Adapter Errors 3.1-1

3.2 Unit Record Error Procedures 3.2-1

3.3 Remote Terminal Res tart 3.3-1

4.0 System Control Cards 4.0-1

Table of Contents - Page i

966

HAS P

1 .0 INTRODUCTION

The HASP SYSTEM is an automatic spooling, priority scheduling system

which, while 'operating in conjunction with OS/360 I operates an unlimited

number of peripheral devices simultaneously with normal job execution, to

perform the functions normally associated with off line support computers.

The function of HASP has been extended to operate, via several clas ses of

telephone lines I peripheral devices located remotely from the central computer

complex.

Through the use of the HASP Remote Job Entry feature I a user I located

perhaps thousands of miles from a particular System/360 installation I can

utilize the capabilities of that installation much as if the central system

were located at the remote site. The unit record devices at a remote station

are logically operated by HASP as if they were local readers, printers,

punches, and consoles, so that HASP can simultaneously, while operating

all local unit record devices, read jobs from several remote readers into the

queue of jobs awaiting processing; and output to several remote printers and/or

punches results of previously entered jobs which have completed execution.

Although a variety of devices may be utilized as remote terminals, this

document discusses only the use of a Sy'stem/360 Model 20 with a binary

synchronous communication adapter as a remote station.

A special program has been written for the Model 20 which can be

considered a logical extension of the HASP System. This program referred

HASP Remote Terminal Operator's Guide (BSC Model 20) - Page 1.0-1

967

HASP

to in the HASP documentation as (HASP/RMTM20) performs the following

functions:

A. INPUT

1 . Reads from the attached card reader.

2 • Recognizes operator requests and reads from the attached

console.

3. Identifies, compresses, and blocks card images and commands

for transmis s ion to HASP.

4. Queues blocked records for transmission to HASP.

B. OUTPUT

1. Dequeues blocked records received from HASP.

2 . Identifies the device required for output of the records.

3 . Deblocks and decompresses output records, queueing the

images for printing, punching, or typing.

4. Prints, punches, and types the output records as required.

5. Sets status flags indicating backlog conditions on the

output devices.

C. COMMUNICATIONS

1 . Establishes and maintains synchronization with HASP.

2 . Dequeues blocked input records and transmits them to

HASP upon request from HASP.

HASP Remote Terminal Operator's Guide (BSC Model 20) - Page 1.0-2

968

HASP

3 . Provides backlog status flags indicating the terminal I s ability

to receive the various output streams from HASP.

4. Receives output from HASP and queues the blocked records

for proce s sing.

HASP/RMTM20 may read print and punch data concurrently depending

upon the options selected by the installation and the capabilities of the unit

record devices.

Due to the use of blocking and character compression to minimize line

transmission time, the speed at which the Model 20 unit record devices will

operate is dependent on the data being transmitted, and the number of con­

current functions. Certain job mixes I because of their data oharacteristics I

will enable HASP/RMTM20 to operate the unit record devices at full rated

speed. Other job mixes may cause the devices to operate in short bursts

because of contention on the communication line .

HASP Remote Terminal Operator's Guide (BSC Model 20) - Page 1.0-3

969

HASP

2.0 OPERATING PROCEDURES

The following pages provide sufficient information for initiating and

operating the HASP/RMTM20 program during the remote job stream processing

session.

HASP Remote Terminal Operator's Guide (BSC Model 20) - Page 2.0-1

970

HAS P

2.1 INITIATION OF A REMOTE JOB STREAM PROCESSING SESSION

.The initic;ltion of a remote job stream processing session involves
the initial program loading of the HASP/RMTM20 program deck, the
establishment of the communication lines, and the exchange of ini­
tial control information between HASP and the HASP/RMTM20 program.
The initial control sequence ends with the passing of the SIGN-ON
remote identification information.

2.1.1 Initial Program Load (IPL)

The following steps should be taken to IPL the HASP/RMTM20.

1. If power is off press POWER ON.

2. Ready the HASP/RMTM20 deck in the supported card reader.
(The last card of the deck should be a blank or /*SIGNON card
as directed by the installation).

3. Ready the p~inter, punch, and console (as required).

4. Set time sharing key down.

5. Set the Address/Register Data Switches to one of the following:

6 •

7 •

8.

9.

I 10.

11.

lFOO - 8K storage
2FOO - 12K storage
3FOO - 16K storage

Set the mode switch to PROCESS.

Press LOAD.

All cards of the HASP/RMTM20 deck should be read except the
last card. Press reader START to read the last card.

The IPL is complete when the last card is read. HASP/RMTM20
will print the /*SIGNON card (if the last card) followed by
a HASP ENVIRONMENTAL RECORDING ERROR PRINTOUT (if the contents
of core remain unchanged since the last running of the
program).

The BSCA indicator lights should show periodic transmit and
receive activity.

The remote terminal is now ready to communicate with HASP.

HASP Remote Terminal Operator's Guide (BSC Model 20) - Page 2.1-1

971

1

HAS P

2.1.2 Establishment of Communication Line

The procedures for establishing communications with HASP are as
follows:

1. Ready the data set. This will involve different actions
based on the type of data set. Readying nonswitched lines
will only require the data set DATA button be pressed (if
present). To ready a dial line data set perform the
following:

a.

b.

c.

d.

e.

Press the TALK button and lift the~,eceiver on the
data set.

Dial the assigned number for the remote terminal.

If the HASP line is available, the central system
will answer with a high pitched tone. Press DATA
and replace the hand set in its cradle (the data set
is ready).

If the HASP line is in use, a busy signal will be
received. Hang up and try again later or dial an
alternate communication line number.

If the call is not answered, the central HASP opera­
tor has not given the necessary command to authorize
use of that communication line.

2. When the data set is made ready the BSCA DATA SET READY
and BUSY indicators will be on in addition to alternating
TRANSMIT MODE and RECEIVE MODE (RECEIVE MODE may appear
to be continuous).

3. When HASP responds to the MOD 20 transmission the SIGN-ON
is transmitted to HASP and CARD I/O for the card reader
will come on indicating the SIGN-ON is complete. HASP/
RMTM20 will "handshake" with HASP until processing of
job streams actually begins. This will be indicated by
BUSY being on with alternating RECEIVE MODE and TRANSMIT
MODE indicators.

HASP Remote Terminal Operator's Guide (BSC Model 20) - Page 2.1-2

972

HASP

2 .2 REMOTE JOB STREAM PROCESSING

During remote job stream processing the operator is concerned with operating

the unit record devices I while submitting jobs and controlling the output via

commands to the central system.

2 .2 .1 Output Processing

Except as controlled by the remote terminal operator or central system

operator via commands to HASP I the printing and punching of job output is

handled automatically by the HASP - HASP/RMTM20 system.

2.2.2 Input Processing

Job submission can be initiated at any time depending upon the capabilities

of the card reader - punch combination attached to the Model 20. There is no

restriction on when the operator may submit a job stream with the following

reader - punch combinations:

1 . 2501 reader - 2560 punch (secondary feed)

2. 2501 reader - 1442 punch

3. 2501 reader - 2520 punch

4. 2560 reader (primary feed) - 1442 punch

5·. 2520 reader - 1442 punch

HASP Remote Terminal Operator's Guide (BSC Model 20) - Page 2.2-1

973

HASP

The operator need only place the cards in the hopper as desired. The

reader will stop just before reading the last card of each job stream. The

operator should put more cards in the reader or pres s START on the reader

allowing the last card to be read and the program to recognize the end of

the job stream.

The input reader to HASP/RMTM20 is considered always "HOT"; that is

the program is continually testing the reader and attempting to read cards. During

this time the appropriate CARp I/O indicator on the CPU console will be

on (see section 3 .0 unit record error procedures). This condition is not an

error but indicates that HASP/RMTM20 is ready to send the next job stream.

2 .2 .3 Input Proces sing On DUAL Reader Punches

Devices with single card paths for read and punch functions are considered

DUAL reader/punch devices. When using these devices as DUAL devices

the operator must concern himself with the status of the device. The following

are supported DUAL devices:

1. 2520 READER PUNCH

2 . 2560 MFCM (READ - PRIMARY FEED)
(PUNCH - SECONDARY FEED)

Notice that these devices are not considered DUAL devices when used

in combinations listed in section 2 .2 .2.

HASP Remote Terminal Operator's Guide (BSC Model 20) - Page 2.2-2

974

HASP

Operating The DUAL 2520

The 2520 has four basic status conditions which affect the operator:

1 . Neutral - Reader empty from normal program execution.

2. Input - Reading normal job stream.

3. Output - Punching normal output from HASP.

4. Output error recovery - attempting to recover from punch errors.

At IPL time the 2520 will be in neutral status and may be treated as any

reader device in that the operator is at liberty to submit multiple job streams

at any time. Any blank cards mixed in the input stream will be submitted

to HASP as job input. When HASP/RMTM20 recognizes the end of file (EOF)

the 2520 will revert to the neutral status.

When the 2520 is in neutral the operator may choose to ready the device

with blank cards which places it in the output status. If HASP has output

waiting, HASP/RMTM20 will respond immediately by punching into the blank

cards. However, after all punching is finished or if there is a pause due to low

line speeds the operator may not run the remaining cards out of

the 2520 and ready it with job stream cards. The procedure for interrupting

the output mode is as follows:

1 . Press STOP on the 2520.

2 .. Remove the cards from the HOPPER. (DO NOT NPRO the cards

out of the card path).

3 . Place the job stream cards in the HOPPER and pres s reader

START ~

HASP Remote Terminal Operator's Guide (BSC Model 20) - Page 2.2-3

975

HASP

4 . If the punch happens to be busy the device will continue

punching until the job stream is encountered; then the 2520 will

enter the input status. (Not all blank cards need to be removed

from the hopper).

5 . If the punch is momentarily idle, it will be waiting for LOCAL

COMMANDS from the console (if installed). The operator

can cause the 2520 to pass through one card by typing on the

console ". SRI': (start reader number 1). If several blank

cards are in the hopper in front of the job stream this command

must be entered for each blank card. For configurations without

consoles the operator can simulate the . SRI command by setting

data dial 2 to numerical value 2 'and moving data dial lone

position in either direction. Care should be taken not to move

dial 1 twice and to set data dial 2 out of position 2 upon

completion of the skip function.

The 2520 is in error recovery status when a punch error occurs. HASP/

RMTM20 will attempt to repunch the record in error into the following card.

If HASP /RMTM2 0 encounters a nonblank card a read error will occur (see

unit record error procedures). The operator should non-process run out the

job stream cards, place one or more blank cards in front and ready the 2 S2 0 .

Operating The DUAL 2560 MFCM

The 2 S60 has two basic status conditions:

1 . Input - Submitting jobs using primary feed and hopper.

HASP Remote Terminal Operator's Guide (BSC Model 20) - Page 2.2-4

976

HASP

2 . Output - Punching data from HASP using secondary feed.

Blank cards for punching should always be in the 2560 secondary feed

hopper for punching purposes during normal processing. During idle periods

and periodically while punching HASP/RMTM20 will test the primary feed

for job stream cards. If job stream cards are encountered the HASP /RMTM20 will

susp8nj the output status and submit the job stream to HASP. The operator

should always press STOP on the DUAL 2560 prior to loading the job stream

in the primary feed hopper. ,(The feed mechanism cycles when HASP/RMTM20

is testing for job stream cards).

HASP Remote Terminal Operator's Guide (BSC Model 20) - Page 2.2-5

977

HASP

2.2.4 Command Processing

Central system commands as well as local commands may be entered

into the 2152 operator's console. Any message entered into the 2152

keyboard which is not recognized as a local command will be transmitted

. to HASP for action. Although all commands transmitted to HASP may be

listed on the central system operator consoles, only those designated in

the HASP operator's guide as being available to the remote user will be

acted upon.

Local commands are available to the HASP/RMTM20 operator for the purpose

of signalling the status of the unit record devices. Table 2 .2 . 1 contains a

list, with meanings I of all available local commands.

Entering Commands

The operator should perform the following steps when entering commands:

1 . Press the REO button which is located to the right of the

console typewriter keyboard. The request indicator (indicator

marked "R" at the right of the REO button) will glow momentarily.

2 . When the proceed indicator comes on (indicator marked liP"

below the request indicator) I type in the command and press

EOT.

3. If a typing error is noticed prior to pressing EOT, press CAN

(cancel) and repeat step 2.

HASP Remote Terminal Operator's Guide (BSC Model 20) - Page 2.2-6

978

HASP

4. If after receiving a proceed indicator no command entry is

desired type" ." and press EOT. This will be recognized

as an illegal local command and be ignored.

HASP Remote Terminal Operator's Guide (BSC Model 20) - Page 2.2-7

979

HASP

Table 2.2 .1

COMMAND

.SRI

. SUI

Local Commands

MEANING/COMMENTS

II Start reader number one II. This command

is used to tell HASP /RMTM2 0 that the operator

has corrected a data check condition and has

made the card reader ready to continue reading

. the input job stream (the first card being a

corrected vers ion of the card in error). This

command is also used in terminating the output

status of a DUAL 2520 card reader/punch (see

section 2.2.3) .

II Start punch number one". This command is used

to tell HASP/RMTM20 that the operator has

removed the incorrectly punched card from the

punch stacker (1442) and the punch is ready

for the punch of the record.

Commands start in the first available type position and are id entified

by the period (.). Except for the use of upper or lower case alphabetic

characters, the commands must appear exactly as listed. No blanks are

allowed.

HASP Remote Terminal Operator's Guide (BSC Model 20) - Page 2.2-8

980

HAS P

2.3 TERMINATING A SESSION

When the remote terminal operator desires to terminate remote

processing, he should send through the card reader input stream a

/*SIGNOFFcard. (See section 4.0). This tells HASP not to initiate

the sending of any more job output and release the communication

line (if DIAL) when the current print and punch streams are finished.

The DATA light on the data set will go out and BSCA will enter a

CHECK CONDITION. For nonswitched lines HASP will make the line avail­

able and thus will wait for an initial sequence request from the

HASP/RMTM20 program. Versions of the HASP/RMTM20 which support con­

sole messages will log on the console message device, UNIT CHECK.

The operator should check to see if printing and punching of output

streams have successfully terminated and press STOP on the CPU. To

start a new session the operator must perform the steps prescribed

for the initialization of a remote job stream processing session.

HASP Remote Terminal Operator's Guide (BSC Model 20) - Page 2.3-1

981

HASP

3 .. 0 ERROR PROCEDURES

The following sections indicate some of the more common error conditions

which may arise and the necessary steps for recovery from the error.

HASP Remote Terminal Operator's Guide (BSC Model 20) - Page 3.0-1

982

HASP

3 . r COMMUNICATION ADAPTER ERRORS

The design of the synchronization technique for HASP remote terminals

is such that no errors are expected during a processing session. The

occurrence, therefore, of any error condition is an unusual condition

resulting from either system or communication facility malfunction or

operational conditions. In general, the displaying of error messages is

informational only since the terminal processor will automatically initiate

the appropriate recovery action e A statistical summary of all errors is

maintained in the HASP Environmental Recording Table and a historical

report is produced each time the HASP /RMTM20 is loaded (unless storage has

been cleared). Additionally, if an operator message device has been

designated (console or printer) I the occurrence of any error will cause a

descriptive message to be displayed immediately. Table 3.1.1 indicates

each of the possible communication errors which can occur I their meaning

and the recovery action taken.

HASP Remote Terminal Operator's Guide (BSC Model 20) - Page 3.1-1

983

HASP

Table 3.1.1

MESSAGE

01RREEOO

02000000

03RRRROO

058S0000

Communication Adapter Error Messages

MEANING

Block sequence check -
a transmission block was
duplicated or lost
RR = Received block number
EE = Expected block number

Negative reply received -
a transmission block was
not correctly received by
HASP

ACTION TAKEN

If duplicate the received block
will be ignored. If lost block I
HASP will be Signaled to restart
the job.

The bad record will be re­
transmitted

Unknown response received - HASP will be requested to
an unrecognizable control retransmit the record
character was received
from HASP
RRRR = First two characters

received (If RRRR is
correct sequence I ending
sequence was bad)

Unit check - a check
condition has occurred
in the communication
adapter
SS = Sense byte

indicating type of
check

Common Examples -

The failing operation will be
retried.

SS=O 1 =overrun on write Write retried
SS=02=parity check on write Write retried
SS=81=overrun on READ Retransmission requested
SS=88=lost data on read Retransmission requested
SS=90=time out (no response

received from HASP in 3
sec.) Retransmission requested

SS=AO=transmission error Retransmission requested
SS=CO=EOT received Retransmission requested

HASP Remote Terminal Operator's Guide (BSC Model 20) - Page 3.1-2

984

HASP

3 .2 UNIT RECORD ERROR PROCEDURES

Unit record device errors which prevent the execution of I/O will caus~

HASP/RMTM20 to continuously test the device while performing other

functions which are able to continue. The operator is notified of device

error by the CPU indicator panel as follows:

CARD I/O 1 - 2 50 1 Card Reader

CARD I/O 2 - 2520 Reader - Punch or 2560 MFCM

CARD I/O 3 - 1442 Card Punch

PRINTER - 1403 or 2203 Printer

Indicators on the device control panel will indicate the nature of the

problem. The operator should correct the error in accordance with procedures

prescribed for the device and "ready" the device. HASP/RMTM20 will resume

its use of the device automatically.

Unit record errors occurring during the actual execution of I/O will result

in various program action in accordance with the operator message facilities

available for informing the operator and the nature of the error encountered.

Table 3.2. 1 indicates the program action taken for each device supported by

the system. The operator should when notified of the error via the 2152 console

perform the following:

1. Note the address code in the error message (see table 3.2.1).

2 • Correct the error for "data check" as prescribed for the device.

HASP Remote Terminal Operator's Guide (BSC Model 20) - Page 3.2-1

985

HASP

Table 3.2.1 HASP/RMTM20 Action on Unit Record I/O Execution Errors

DEVICE- FUNCTION ACTION WITH CONSOLE ACTION WITHOUT CONSOLE

2501 2520 1 • Type error message 1 • STOP with device address
(note 1) in ESTR register (note 2)

2460 - read 2 . Wait for . SRI command
2 • Reread when ,CPU STARTed

3. Read

1442 - punch 1 . Type error me s sage 1 . STOP with device addre s s
'(note 1) in ESTR register (note 2)

2 . Wait for. SUI command
2 . 'When CPU started repunch

3. Repunch record in error record in error

2520 I 2560 - punch 1 . Select out card in error I • Select out card in error

2 • Repunch record in error 2 . Repunch record in error

2203 I 1403 - print Ignore error Ignore error

2152 - write 1 • Ignore first error NA

2 . Wait on next attempt
to use device (note 3)

2152 - read 1 • Initiate re read NA

2 . Wait on next attempt
to use device (note 3)

1. Error message will be of the form: 0500000a UNIT CHECK where a is the
device address of the unit in error.

2 • Device addresses correspond to the CPU pan~l CARD I/O indicator numbers.

3. Console error indicator is cleared by pressing OFF LINE then ON LINE.

HASP Remote Terminal Operator's Guide (BSC Model 20) - Page 3.2-2

986

HASP

3 • Ready the device for program retry of the I/O.

4. Type the appropriate command (. SRI, . SUI) to signal HASP/

RMTM20 that the device is ready.

Without the 2152 the program will stop the CPU with the address of

the device in the ESTR register. The operator should without delay perform

the following:

I . Note the address of the device in the ESTR register.

2 . Pres s STOP on the indicated device.

3. Press START on the CPU to allow continuation of other functions.

4. Correct the error for "data check II as prescribed for the device.

5. Ready the device for program retry of the I/O.

HASP Remote Terminal Operator's Guide (BSC Model 20) - Page 3.2-3

987

HASP

3 .3 REMOTE TERMINAL RESTART

In the event of an untimely interruption of the remote terminal operation

such as a machine I program I communications I or environmental failure I the

remote terminal operator should notify appropriate maintenance personnel of

the malfunction I save material which may be of use in determining the source

of the failure I and with the aid of the central system operator prepare for

restarting the terminal as follows:

1 . Notify the central system operator of the failure and I if

necessary request his assistance in preparing for restart.

2 . Determine the current job being transmitted to HASP. (The

central system operator has a record of the current job being

submitted to HASP). The job stream starting with the current

job must be submitted to HASP after restart.

3. Determine the loss of data on the output devices and

inform the central operator to BACKSPACE or RESTART the

printer or punch as necessary. (The central system I s line

should be made available for a subsequent session with the

remote station or other stations within the system).

4. When the remote terminal is available, perform the steps

required for initiating a "Remote Job Processing Session".

HASP Remote Terminal Operator1s Guide (BSC Model 20) - Page 3.3-1

988

HASP

4.0 SYSTEM CONTROL CARDS

Certain of the control cards recognized by HASP can be introduced from

the remote terminal site. Following is a list I with meaning s I of these

control cards. Column numbers appear over the beginning character of

each section of the card.

1
/*MESSAGE

16 71
Any Message

The data punched into columns 16-71 of this card will be dis played

on the central computer operator console at the time the job is being read

into the system. This may be used to identify certain jobs I give s pecial<

instructions, etc. The /*MESSAGE card may be placed anywhere within,

the input job stream. If this card appears within a job, the HASP number

assigned to that job will be appended to the message before displaying it,

otherwise the remote station ID will be appended.

1
/*ROUTE

10
PRINT
PUNCH

16
LOCAL
REMOTEn
PRINTERn
PUNCHn

This card I when included anywhere within a job being submitted to the

central computer, will cause the print or punch output (as indicated in

column 10) to be processed on another remote workstation (REMOTEn), a

HASP Remote Terminal Operator's Guide (BSC Model 20) - Page 4.0-1

989

HASP

specific local printer and/or punch I or the first available local printer and/or

punch (LOCAL). This card may be used to divert large volumes of print or

punch to local high speed devices to avoid terminal congestion. Both print

and punch may be routed locally by including two /*ROUTE cards in ~ job.

1
/*PRIORITY

16
n

This card may be used to force the assignment of priority" n" to the

job which immediately follows. "n" may be any numerical value from 0-15.

This control card when read locally by HASP is interpreted as an absolute

priority assignment to a job. However I when read from a remote station

the card is regarded as a priority assignment to this job relative to other

jobs from the same station. Thus I a remote operator can I via the /*PRIORITY

card order the sequence of jobs submitted from only his station I for example I

a /*PRIORITY 15 (where 15 is the highest priority) would cause its job to be

the next job from that remote station to be processed, although not necessarily

the next job to be processed by the central computer. The relative position

of the priority structure of a remote terminal with respect to the overall

system priority structure is determined at HASPGEN by central computer

personnel.

The /*PRIORITY card must immediately precede the 08/360 JOB card

for the job to which it refers.

HASP Remote Terminal Operator's Guide (BSC Model 20) - Page 4.0-2

990

HASP

1
/*SIGNON

16
REMOTEn

25
Password

This card appears at the end of the HASP/RMTM20 program deck and is

used to override the remote identification number normally assigned to the

HASP/RMTM20 program deck. For DIAL lines the /*SIGNON card may be

used to submit a password which, if correct, will allow the remote terminal

access to the HASP system for remote job stream processing. The value

II nil mu st match the remote identification number ass igned to the remote

station by central computer personnel. The value of the II password II must

match the password assigned to the line by the central computer operator

when the communication line is II started II •

1
/*SIGNOFF

This card is used to inform the central system that the remote terminal

operator desires to terminate a remote job stream processing session. When

submitted to the central system, HASP will, at the completion of the current

print and/or punch streams, disconnect the terminal from the system and

prepare the line for other remote stations to SIGN-ON.

1
/*command

Selected HASP commands may be submitted to the central system through

the remote terminal card reader. Commands submitted in this manner must

HASP Remote Terminal Operator's Guide (BSC Model 20) - Page 4.0-3

991

HASP

be the first cards of a job stream (in front of the first job submitted). Commands

. which can be submitted are listed in the HASP operator's guide and must start

in column 3 of the card, i. e. the first 3 columns will be "/* $ ". (See Section

2 • 2 . 4 for entering HASP commands via the console typewriter) .

1
/*SETUP

16
volume-serl, volume-ser2, ••• ,volume-sern

The volume serials punched in columns 16-71 of the card will be

71

displayed on the central system console and the associated job will be placed

in HOLD status (not be scheduled for execution) until released by the central

operator. The /*SETUP card appears in the corresponding job input deck between

the OS/360 JOB card and the first EXEC card.

HASP Remote Terminal Operator's Guide (BSC Model 20) - Page 4.0-4

992

HASP

11 . 7 HASP REMOTE TERMINAL (2780)· OPERATOR'S GUIDE

The following section contains detailed instructions for operating an

IBM 2780 as a HASP remote workstation. This manual is intended for use

as a removable operator's guide and has been designed to serve as both

a tutorial for less experienced 2780 operators and an operating guide for

the more experienced.

HASP REMOTE TERMINAL (2780) OPERATOR'S GUIDE - Page 11. 7-1

993

HAS P

(The remainder of this page intentionally left blank.)

994

HASP

THE

HASP

SYS TEM

IBM 2780 Remote Workstation Operator l s Guide

995

HASP

TABLE OF CONTENTS

SECTION PAGE

1 .0 Introduction 1.0-1

2.0 Operating Procedures 2.0-1

2 .1 Initiating Processing 2.1-1

2.2 Establishment of Communications Line 2.2-1

3.0 Error' Recovery 3.0-1

3 . 1 Error Recovery when Transmitting 3.1-1

3.2 Error Recovery when Receiving 3.2-1

4.0 Central,Computer Control 4.0-1

Table of Contents - Page i

996

HASP

1.0 INTRODUCTION

The HASP SYSTEM is a computer program which operates in the central

computer. It provides a very efficient means of gathering jobs, scheduling

their execution on the bases of job priority and job class, collecting each

job's printed and punched output, and returning that output to the submitter

of the job. The process of gathering the card images which' constitute the

job, and of saving the job's output for later printing and punching, is called

SPOOLing. While HASP is reading or printing or punching on your 2780, it

may be simultaneously reading, printing, and punching on all of the card

. readers and printers next to the central computer and on all of the other

2780's, the 1130 systems, and the 360 systems to which the central

computer is attached ,for remote job entry.

HASP Remote Job Entry (HRJE) is a feature of the HASP system whereby

installations that are remote from the central computer may send jobs to

the central computer for execution and receive back their printed and

punched output. HRJE supports as remote terminals all models of System/360 I

the 1130 system, 2780's I and 1978's. A remote terminal may be at any

distance from the central computer . It may be next door, or it may be

thousands of miles away. The only requirement is that some means

(usually telephone lines) exists to allow it to communicate with the central

computer.

HASP Remote Terminal Operator's Guide (2780) - Page 1.0-1

997

HASP

Jobs to be submitted from a remote terminal have exactly the same Job

Control Language control cards as jobs that are submitted directly to the

central computer. Their output is routed back to the terminal from whence

they came, unless special HRJE control cards or operator commands '$pecify

differently.

The IBM 2780 Data Transmission Terminal can connect to a System/360

using HASP to transmit jobs to the 360 for execution and to receive the

printed and punched output from those jobs. The 2780 is not a computer

but rather an input/output device. HASP controls it much like any other

input/output device, when connected to the central computer via telephone

lines and an IBM 2701 Data Adapter Unit or an IBM 2703 Transmission'

Control Unit.

The 2780 consists of at most one printer and one reader punch . The

maximum speeds are 400 cards per minute for the reader, 355 cards per

minute for the punch (if only column 1 of each card is punched), and

about 240 lines per minute for the printer. However, the actual speeds

of these devices depend heavily on the speed of the telephone line and

upon the number of trailing blanks on each line to be printed and card: ,

to be punched.

Certail! special features of the 2780 are of concern to you as an

operator. These features are called EBCDIC Transparency and Auto

Turnaround.

HASP Remote Terminal Operator's Guide (2780) - Page 1.0-2

998

HASP

For System/3 60, EBCDIC is the character and punched-card 'eod~$

normally used. This code allows a column of a punched card to' bepuncheci

in any of 256 different ways. Certain of these punch combinations correspoJ1d

to control characters to which the 2780 will respond if it is .!!Q1 in tr:ansp"r,.ncy

mode. However, some 360 programs (for example, all assemblers ~nci

compilers) punch cards using the complete set of 256 punch combinations

(for example, object decks). If you intend to read these cards into a 2780 i

it.!!:U.!§1 have the Transparency feature ,and you must set the mode selection

knob to TSM TRSP. As a rule of thumb ,~ always use this setting ,rather

than the TSM setting I if your 2780 has the E2CDIC Transparency feature ..

If your 2780 has Auto Turnaround as a feature, it has a back-lighte<i

pushbutton to turn this feature on and off. The effect of this feature is to

switch the reader-punch automatically from a reader to a punch whiler~ading

in a job; this happens when the reader reads an all-blank card. Therefor."

you must be careful when using this feature that no blank cards are

imbedded in your job. The advantage of auto-turnaround is that no oper.t9t

intervention is required to start punching the output of a job.

The remaining sections of this manual discuss normal operating

procedures for reading I printing, and punching jobs; the sign-on

procedure;' error recovery; and control cards.

HASP Remot.t-'rmJn~l. Operator's Guide (2780) ~i~.9.\·t.:'~)~'~i

999

HASP

2.0 OPERATING PROCEDURES

This section discusses procedures for transmitting jobs to the central

computer and for receiving their printed and punched output. Throughout

this manual, the assumption is that your 2780 has a reader-punch and a

printer (that is, it is a 2780 Model 2). Refer to section 2.2 for the sign-on

procedure.

At any given time, a signed-on 2780 is either reading in a job, printing

a job, punching a job, or waiting for work. Often, after an operator has

read in a job through the 2780, he will disconnect (sign-off). the 2780 to

save telephone line charges and sign-on at a later time to receive his

output. There will be printed output for every job submitted; there will be

punched output only if the job requires it.

Thus, the normal cycle of a job submitted from the 2780 is: reading

the job (transmitting it to the central computer), waiting for it to execute,

receiving its printed output, and possibly receiving its punched output.

In the following descriptions, certain time estimates in seconds are

given. These are based on the default value of a certain variable in the

HASP system. Your installation may have changed this default; if so,

the time estimates will be greater or less than specified.

HASP Remote Terminal Operator's Guide (2780) - Page 2 .0-1

1000

HASP

2 .0.1 POWER-ON RESET

The power-on reset operation is referred to frequently throughout this

manual. Contrary to its name, a power-on reset does not involve the 2780

power on-off switch (on the right side of the 2780); this switch need be

turned on only once during 2780 operations.

You do a power-on reset by merely turning the mode selection knob

from its current position to any other position; this resets the 2780. If

the knob is already where you want it, then turn it to some other position

and back to its current position.

For example, turning the knob from REC to T8M, or from OFFLINE to

T8M I or from T8M to OFFLINE and back to T8M is sufficient to do~ a power-

on reset.

CAUTION: Do not do a power-on reset while the printer is printing I

or while cards are being read or punched.

HASP Remote Terminal Operator's Guide (2780) - Page 2.0-2

1001

HASP

2 . 1 INITIATING PROCESSING

The following section contains sufficient information to allow the

initiation of a remote job stream processing session.

2 .1 . 1 TRANSMISSION TO THE CENTRAL COMPUTER

You can transmit jobs to the central computer at one of three times.

• Immediately after you have signed on.

• In the pause (about 10 seconds) after the 2780 has finished

printing or punching output from a previous job.

• When the 2780 is signed on and waiting for work.

You cannot interrupt punching in the midd1e of a job to

start transmitting a job. You must not do a power-on reset while a job

is being printed or punched. The 2780 will not transmit or receive jobs

unless you have correctly signed on.

To read in a job I take the following steps:

1 . If a job is punching I wait till no cards have been punched

for a period of 5 to 10 seconds. Then

a. Do a power-on reset I leaving the knob at

TSM TRSP (or TSM).

b. Remove the blank cards from the hopper and

the punched cards from the stacker.

c. Press NPRO to run the two blank cards out of the

feed mechanism.

HASP Remote Terminal Operator's Guide (2780) - Page 2.1-1

1002

HASP

2 . Load the cards you want to read into the card hopper. Jobs

may be stacked one on top of the other.

3 . If a job is printing, wait till no lines have been printed

for a period of 5 to 10 seconds. Then do a power-on reset,

leaving the knob at TSM TRSP (or TSM) .

4. If you haven't already done so I turn the mode- selection

knob to TSM TRSP (or TSM) .

5. Push the END OF FILE button and the START button so that

the END OF FILE and READY lights come on. Cards should

start reading within about 15 seconds.

If cards do not start reading I or if the reader stops before the last

card has been read, see section 3.1. The reader will normally read

2 to 7 cards, pause a bit to transmit them to the central computer I and

then read 2 to 7 more .

. If you make the printer ready while you are transmitting (see 2. 1.2), it will

be able to receive after transmission is finished without further intervention.

If a job is printing and the selection knob is in either of the TSM positions

(see 2. 1.2), you may make the reader ready as in step 5. When the job's

printing is finished, card reading and transmission should begin without further

intervention.

It may be possible to interrupt printing only to begin transmitting. See

Section 3.2 for details.

HASP Remote Terminal Operator's Guide (2780) - Page 2 . 1-2

1003

HASP

.2.1 .2 RECEPTION FROM THE CENTRAL COMPUTER

After your job has completed reading I HASP queues it for execution

at the central computer. As the job executes I it may produce printed and

punched output. HASP saves these outputs and at the end of the job queues

the printed output for printing I usually upon the terminal from which the

job was read. You may have turned off the 2780 or otherwise disconnected

it from the computer; if so I you must follow the sign-on procedure before

you can receive output from the job.

After a job has finished printing I HASP queues its punched output (if

any) for punching I usually upon the terminal from which the job was read.

When HASP finds that any output device is ready on the 2780 I it inspects

that remote terminal's output queues in the order punch first I then print.

Thus I if you are expecting the printer to start I HASP may actually be trying

to punch the output from a previously printed job. In this case I the

printer's READY light would be on and the TERM ADDR light would also

be on. You must let HASP punch before it will start printing.

To receive a job's printed output (assuming you have correctly signed­

on) I perform the following s te ps:

1 . Make sure the mode-selection knob is at one of the positions

TSM TRSP I TSM I or REC. Do not put the knob in the PRINT

position.

2 • Push START on the printer.

HASP Remote Terminal Operator's Guide (2780) - Page 2.1-3

1004

HAS P

If this terminal's punch queue is empty and its print queue is non-empty I

printing should start within about 15 seconds. If the TERM ADDR light comes

on when the printer is ready I HASP has found a job to punch; you must ready

the punch.

If the printer will not become ready I see Section 3.2. When behaving

normally the printer should print from two to seven lines I pause a bit to

receive more print lines I and print two to seven more lines.

To receive a job ' s punched output (as suming you have signed on correctly) I

perform the following steps.

1. Make sure the mode-selection knob is set to REC. Do not use the

PUNCH setting.

2. Use the NPRO button to clear the card feed.

3. Put blank cards in the card hopper.

4. Press START on the reader-punch I and hold it in until the READY,

light comes on.

Punching should start within 15 seconds I if there is anything to punch.

Possible problems are discussed in Section 3.2.

The audible alarm will sound at the end of each job's printed or punched

output and will turn off if HASP sends more output or if you start transmitting

(see 2.1.1).

HASP Remote Terminal Operator's Guide (2780) - Page 2. 1-4

1005

HASP

2 .2 ESTABLISHMENT OF COMMUNICATION LINE

Before your 2780 terminal can transmit jobs to or receive printed or

, punched output from the central computer, the computer must establish

a path of communication to the terminal, and must recognize it as a 2780
'if

terminal (rather than, say, a System 360 Model 20 being used as a terminal) .

Depending on how your 2780 is connected to the central computer, you may

or may not have to use a special control card, called a sign-on card.

If your terminal is permanently connected to the central computer

(probably through private lines leased from the telephone company) you

need only inform the central operator, who will then issue the HASP

command:.

$ START LNEmrn

(where mm is a one or two digit decimal number). Either you or the central

operator will know the proper line number to use, depending upon your

installation. Once the operator has given this command and the 2780

mainline switch is turned on, you may begin to read in a job', or to print

or punch the output from a previous job.

However, if your 2780 is connected by ordinary switched telephone

lines to the central computer, you will have to dial a telephone number

to establish communications. You will have a sign-on card, and a

telephone number to call. Carefully perform the following steps.

HASP Remote Terminal Operator's Guide (2780) - Page 2.2-1

1006

HASP

1 • Turn on the 2780 mainline switch (it I S on the right side).

2 . Push the NPRO button on the card reader. Hold it in for a

few seconds to make sure the card feed mechanism is clear.

3. Place the sign-on card and the card weight in the card hopper.

4. Turn the mode- selection knob to TSM TRSP (or TSM) .

5. Dial the telephone number you have been given. The TALK

button on the dataphone must be depressed to do this.

6. Listen for the normal sound of ringing followed by the normal

sound of answering. You should then hear a high-pitched

tone of about six seconds I duration I followed immediately

by a short bleep.

7. When you hear the bleep I push the DATA button on the telephone

and watch for the DATA SET READY light on the card reader.

(You can hang up the telephone handset now.)

8. When the DATA SET READY light comes on, press the END OF

FILE button and the START button I so that the END OF FILE

light and the READY light come on. The reader should now

read the sign-on card.

Your 2780 is now signed on I and you may start reading, printing, or

punching.

If you do not hear the telephone being answered, the central operator

has not issued the command

$ START LNEmm

HASP Remote Terminal Operator's Guide (2780) - Page 2.2-2

1007

HASP

or has issued it for the wrong line. Ask him to issue the proper command,

and then re-dial if necessary. If instead of ringing you hear a busy signal,

the line is of course busy. Call back in a few minutes, or try an alternate

number if available.

If your sign-on card will not read, run out the sign-on card, place it in

the reader again, do a power-on reset, and repeat step 8~

HASP Remote Terminal Operator's Guide (2780) - Page 2.2-3

1008

HASP

3 .0 ERROR RECOVERY

A wide variety of problems can occur when operating almost any type

of machine, including the 2780. Most problems occur only rarely, and

many of those are not documented here. See the SRL II IBM 2780 Data

Transmission Terminal - Component Description", form A27-300S for a

more complete description of such problems as well as how to load paper

in the printer, how to fix a card jam, etc. A copy of this SRL should be

near your 2780.

Most problems you encounter will result in lights appearing on the

reader-punch or printer control panels. Some of these lights are not

error lights. These are DATA SET READY, the two READY lights, END OF

FILE, I/O BFR FULL, eTR I, eTR 2, and eTR 4, and usually LINE. Other

lights provide clues to the difficulty, and will be discussed in the following

twos.ections. The first section describes troubles you may have in

transmitting jobs to the central computer; the second section describes

troubles in receiving printed or punched output.

HASP Remote Terminal Operator's Guide (2780) - Page 3.0-1

1009

HASP

3 • 1 ERROR RECOVERY WHEN TRANSMITTING

TERM ADDR - This light may come on while you are readying the card
~J:,

reader. If 'cards do not read, the READY light is on, and the TERM ADDR

light is on, follow carefully these steps:

1 . Remove the cards from the hopper and pres s NPRO to run

ou t the two cards in the' feed.

2 . Put these two cards in front of the cards you removed from

the hopper, and place the cards back in the hopper.

3 • Do a power-on reset.

4. Wait for the TERM ADDR light to come on again. This may

take as long as about 10 seconds.

5. Do another power-on reset, push END OF FILE and push

START, so that the END OF FILE and READY lights come on.

6. Cards shOuld start reading within 15 seconds. If they

. don It, and the TERM ADDR light comes on again, repeat the

above steps.

If the above steps continue to fail, you may have interrupted printing

or punching to read in a job before the printing or punching of a previous

job had completed. Try readying the printer and punch as described in

section 2. 1 • 2 .

DATA CHECK,

DATA CHECK and EQUIP CHECK,

HASP Remote Terminal Operatorls Guide (2780) - Page 3.1-1
r

1010

HASP

DATA CHECK, EQUIP CHECK, and PARITY CHECK -

The reader could not read a card correctly. Do the following steps.

1 • Remove cards from hopper (not stacker).

2. Push NPRO. Two cards will run out into the stacker. The

first of these cards is the bad one.

3 . Correct the bad card.

4 . Put both cards back in the hopper, followed by the cards

you removed from the hopper.

s. Push END OF FILE and START so that the END OF FILE and

READY lights come on.

OVER RUN,

PARITY CHECK,

PARITY CHECK and EQUIP CHECK,

RECORD and LINE -

To correct_errors when these lights are on I you need first to find out

how many cards have been read but not yet transmitted. Add up the eTR

lights to do this. For example I if CTRl and eTR 2 are on I 3 cards have

been read but not yet transmitted.

Without removing all the cards from the stacker,

1 . Remove cards from hopper.

2. Press NPRO to run out the 2 cards from the feed mechanism.

3. Remove from stacker the last N+2 cards stacked I where n is the

number of cards read but not yet transmitted.

HASP Remote Terminal Operator's Guide (2780) - Page 3. 1-2

1011

HAS P

4. Put these cards back in the hopper, followed by the

cards you removed from the hopper. Do a power-on

reset.

5. Press END OF FILE and START so that the END OF FILE

and READY lights come on.

EQUIP CHECK -

A mechanical error has occurred. Use the procedure for DATA

CHECK, but you shouldn't need to correct a card.

LINE -

Wait a few moments to see if the reader will start reading by

itself. If the alarm comes on (in 15 to 45 seconds depending on

2780 wiring options) and cards are in the stacker, then a block of

data will be sent twice. You must ask the central operator to can­

cel the partially read job. Begin transmission as in Section 2.1.1

with the JOB card of the partially read job.

HOPR -

No card was fed. Check the edges of the cards at the bottom

of the hopper, and repair them if necessary. Then put them back,

and press END OF FILE and START so that the END OF FILE and READY

lights come on.

For other combinations of error lights, consult the 2780 man­

ual. Most other errors involve misfeeds or jams.

HASP Remote Terminal Operator's Guide (2780) - Page 3.1-3

1012

HASP

3.2 ERROR RECOVERY WHEN RECEIVING

Some of the errors you may encounter while receiving are self-explanatory,

such as END OF FORM (you need another box of paper) or FORM CHECK (the

paper is jammed).

One error deserves particular attention; it is indicated by OVER RUN

and INCP. If you get this error, you may have specified the wrong REMOTE

number on your sign-on card I and HRJE is attempting to use features your

2780 doesn It have. You will have to sign on again I using a correct REMOTE

number. If you were using the same I incorrect number when you read in

a job I you should call the central computer operator and ask him to re-

route the output of your job. In any case I you may have received output

that is not yours; if so I you must inform the central computer operator.

Other than these I you may see the following error indicators.

TERM ADDR-

The device (printer or punch) to which HASP is trying to transmit is

not ready.

1. Push STOP and CHECK RESET on the reader-punch.

2 . Make the output device ready.

EQUIP CHECX -

The punch has mechanically malfunctioned. Run out and throwaway

the cards in the feed mechanism I and make the punch ready again.

HASP Remote Terminal Operatorls Guide (2780) - Page 3.2-1

1013

,:','

HASP

SYNC CHECK-

The printer has erroneously printed a line.

1 . Push STOP.

2 • Push RESET (on the printer).

3 • Push the START button on the printer.

You will get a duplicate print line.

PARITY CHECK -

If the printer was printing', do a power-on reset and push the START

button on the printer. You may get some duplicate print lines.

If the punch was punching,

1 . Remove cards from hopper (not stacker).

2 • Press NPRO to run out the two cards in the feed mechanism.

3. Throwaway the N+K last cards stacked. N is the number

represented by the eTR lights. For example, if eTR 1 and

eTR 2 are lit, N is 3; if all eTR lights are off, N is o.

K is

2 if all eTR lights are off and the I/O BFR FULL

light is on;

1 if some or all CTR lights are on and the I/O

BFR FULL light is on;

2 if the I/O BFRFULL light is off.

HASP Remote Terminal Operator's Guide (2780) - Page 3.2-2

1014

HASP

4. Reload blank cards in the hopper, and make the punch ready.

Most other errors are jams or misfeeds. Look at the 2780 manual for

instructions on how to fix these problems.

Depending upon the central HASP System at your installation, actions during

printer only error ree.overy may be somewhat different than described above. If

this altered mode of printer operation is applicable to your 2780, when you make

the printer ready after any of the above stops the job which was printing will be

"suspended", a message and terminal separator line(s) will be printed, and the job

will be re-queued in the print queue for your terminal. You may cause this "sus­

pend \I action yourself by pressing STOP while printing, then readying the printer.

Actions after the printer" suspend II depend upon the state of your terminal

and the output queues. You may start transmission as in Section 2 . 1 . 1 or wait

for more output as in Section 2 . 1.2. Print jobs of higher priority than the sus­

pended job or any punch jobs will be received before the suspended job. When

the suspended job resumes printing, it will do so at approximately one page

prior to the page of interruption.

HASP Remote Terminal Operator's Guide (2780) - Page 3.2-3

1015

HASP

4.0 CENTRAL COMPUTER CONTROL

This section describes the control cards you may use to sign on, send

a message to the central computer operator, change the destination of printed

and/or punched output, and force the priority of a job.

1
/*SIGNON

16
REMOTEnn

25
password

This is the sign-on card. The number nn is a one or two digit decimal

number whose purpose is to correlate this remote device with information

about it in the central computer. Leave the password field blank unless

you are required to give a pas sword.

1
/*SIGNOFF

You may use the sign-off card after the last job you read in. If you

use this card I the telephone circuit will disconnect after about 30

seconds.

1
/*MESSAGE

16
message

When you read in this card I the contents of columns 16-71 will

immediately be printed on the central computer operator's console. You

may place this card anywhere within a job; it will be deleted before the

job is processed.

HASP Remote Terminal Operator's Guide (2780) - Page 4.0-1

1016

HASP

The typed message will automatically have the job number appended to

it if it is found within a job. If it is found outside a job, the remote term~,n~l;

ID will be appended.

1
/*ROUTE

10
PUNCH

16
LOCAL

This card causes· punchedoutpuffor the job within which it was found

to be punched at the central computer instead of at the remote terminal.

1
/*ROUTE

10
PRINT

16
LOCAL

This cQ.rd does the same thing for printed output that the above card

does for punched output. You may use both card; a good place to put"

most of the cards described here is right after the / / JOB card.

1
/*PRIORITY .

16
nn

If you use this card I it must immediately precede the / / JOB card.

The number nn is some one or two digit number between 0 and 15 i

inclusive. It specifies the urgency with which the job should be pfqc&'$:s: .. d

relative to other jobs submitted from the same remote terminal.

HASP Remote Terminal Operator's Guide (2780) - Page 4.072

1017

HASP

Depending upon features of the central HASP System at your installation,

you may use a subset of central HASP operator commands, submitted on cards

as follows:

1
/*command

In place of "command u, you should punch any of the commands listed in

Table 1. 1 .3 of the central HASP Operator's Guide which are valid from a

remote location. For example, "$DQ ,4" punched following the "/*" causes a

display of the number of jobs in various queues at the central site which are

routed to the terminal REMOTE4.

A group of one or more command cards may be transmitted alone or may be

placed in front of a group of jobs being transmitted.

Responses to commands from HASP are printed on the printer, after the

paper is positioned at the top of a new page. Such responses are always received

first after a transmission is completed, before any job's printed or punched

output is received. Certain spontaneous messages (i. e., not responses) are

also received. They are: messages acknowledging each job transmitted by your

terminal and messages from other operators in the system to you by use of the

"$DM" command.

You should read the HASP Operator's Guide to learn about the various

commands you may use (Table 1. 1.3), what their effects are, and how they should

be constructed. Also, output device control and special forms processing are

discussed in Section 7 of that Guide. However, certain properties of terminals

like your 2780 require more explanation of these two topics.

HASP Remote Terminal Operator's Guide (2780) - Page 4.0- 3

1018

Certain commands which control output devices ($B, $C, $E, $F, $I,$N,

$Z) actually refer to a job currently in active processing on that device whiCh is

to be backspaced, restarted, etc. When you submit commands from your 2780,

no output devices are active, therefore these commands have no effect. This

is true even after you II suspend II a print job as previously described in Section

3.2. The II suspend II is functionally equivalent to $1, which includes the function

of $B. To use the other commands, you must ask the central operator to enter

them.

The $S, $P, and $T device commands are effective when submitted from your

terminal. Furthermore, the $C command is effective when referring to a job rather

than a device. The $H, $A, and $R commands may also be used effectively.

Special forms for printed or punched output can effectively be controlled

from your terminal without central operator assistance, if all jobs submitted from

(or routed to) your terminal follow certain conventions in requesting special

forms. Programmers should be required to use only special routing output classes

(J and K normally) with requests for special forms by data set. Special print forms

for an entire job may be requested in the HASP accounting field of the rOB card •

In no case should special forms be requested when using the ordinary output

classes (A and B normally) as this will cause the system itself to request mounting

of special forms at a time when you, as 2780 operator, are unable to enter the

$S command to continue.

HASP Remote Terminal Operator's Guide (2780) - Page 4.0-4

1019

HASP

Assuming the above conventions, you should periodically submit the

$DF command to determine if special forms jobs are queued for output on your

terminal. If so, you should select the type of forms from those queued which you

desire to process first on each output device, mount those forms, enter a command

"$T device, F=forms#" for each device, and wait for printing and/or punching to

occur. When jobs stop processing on a device, you should resubmit the $DF

command and change to a new forms if indicated. The parameter "F=RESET"

should be used to return a device to ordinary output processing. The II F=AUTO"

parameter should not be used.

You may want to use the $P and $S device commands f prior to and after

the $T command respectively, to prevent HASP from attempting to send an output

job while you are changing forms.

HASP Remote Terminal Operator's Guide (2780) - Page 4.0- 5

1020

HAS P

11.8 HASP REMOTE TERMINAL (2770) OPERATOR'S GUIDE

The following section contains detailed instructions for operating
an IBM 2770 as a HASP remote workstation. This manual is intended
for use as a removable operator's guide and has been designed to
serve as both a tutorial for less experienced 2770 operators and
an operating guide for the more experienced.

liASP REMOTE TERMI~AL (2770) OPERATOR'S GUIDE - Page 11.8-1

1021

HAS P

(The remainder of this page intentionally left blank.)

1022

HAS P

THE

HASP

SYSTEM

IBM 2770 Remote Workstation Operator's Guide

1023

HAS P

TABLE OF CONTENTS

SECTION

INTRODUCTION

SWITCH SETUP

ESTABLISHMENT OF COMMUNICATIONS

OPERATING PROCEDURES

TRANSMISSION TO THE CENTRAL COMPUTER

RECEPTION FROM THE CENTRAL COMPUTER

ERROR RECOVERY

ERROR RECOVERY WHEN TRANSM.;ITTING

ERROR RECOVERY WHEN RECEIVING

CENTRAL COMPUTER CONTROL

Table of Contents - Page i.

1024

PAGE

1

4

5

8

9

12

14

16

18

22

HAS P

INTRODUCTION

The HASP SYSTEM is a computer program which operates in the

central computer. It provides a very efficient means of gathering

jobs, scheduling their execution under OS/360 based on job priority

and job class, collecting each job's printed and punched output,

and returning that output to the submitter of the job. The process

of gathering the card images which constitute the job, and of saving

the job's output for later printing and punching~ is called

SPOOLing. While HASP is reading or printing or punching on your

2770, it may be simultaneously reading, printing and punching on

all of the other 2770s, 2780s, the 1130 systems and the 360 systems

to which the central computer is attached for remote job entry.

HASP Remote Job Entry (HRJE) is a feature of the HASP system

whereby installations that are remote from the central computer

may send jobs to the central computer for execution and receive

back their printed and punched output. HRJE supports as remote

terminals all models of System/360, the 1130 system, 2770s, 2780s

and 1978s. A remote terminal may be at any distance from the cen­

tral computer. It may be next door, or it may be thousands of

miles away. The only requirement is that some means (usually

telephone lines) exis.ts to allow it to communicate with the central

computer.

Jobs to be submitted from a remote terminal have exactly the

same OS/360 Job Contlol Language cards as jobs that are submitted

directly to the centxal computer. Their output is routed back to

HASP Remote Tern~inal Operator's Guide (2770) - Page 1

1025

HAS P

the terminal from whence they came, unless special HRJE control

. cards or operator commands specify differently.

The IBM 2770 Data Communication System can connect to a

System/360 using HASP to transmit jobs to the 360 for execution and

to receive the printed and punched output from those jobs. The

2770 is not a computer but rather an input/output device. HASP

controls it much like any other input/output device, when connected

to the central computer vi.a telephone lines and an IBM 2701 Data

Adapter Unit or an IBM 2703 Transmission Control Unit.

The 2770 System may have a wide variety of I/O devices attached.

However, when operating your 2710 with HASP, you will be concerned

only with the standard keyboard and if attached, the card reader,

printer and card punch. These devices (mechanical features, speeds,

etc.) are described in the SRL "System Components: IBM 2770 Data

Communication System", form A27-30l3 which you should have on hand

for reference when operating your 2770. Actual speeds at which

these devices will operate when communicating with I~SP depend

upon the type of telephone line used and on the amount of infor­

mation in each line or card to be transmitted or received, as well

as the devices' mechanical speeds which are given in the SRL.

Certain special features of the 2770 are of concern to you as

an operator. One of these features is called EBCDIC Transparency.

For System/360, l~BCDIC is the character and punched-card code

normally used. This Gode allows a column of a punched card to be

punched in any of 256 different ways. Certain of these punch com­

binations correspond 1:0 control characters to which the 2770 will

HASP Remote Terminal Operator's Guide (2770) - Paqe 2

1026

HAS P

respond if it is not in transparency mode. However, some 360 pro­

grams (for example, all assemblers and compilers) punch cards using

the complete set of 256 punch combinations (for example, object

decks). If you intend to read these cards into a 2770 or receive

such cards from the central computer for punching at the 2770, it

must have the Transparency feature.

You should also know if your 2770 has the Buffer Expansion or

Additional Buffer Expansion features. These features affect device

performance and the amount of information which can be sent to HASP

in a single transmission from the keyboard.

The Keyboard Correction feature, if present, will make it

easier for you to correct errors in keyed data before transmission

to HASP.

The remaining sections of this manual discuss switch setup;

communications establishment; normal operating procedurs for read­

ing, printing and punching jobs; error recovery; and control cards.

HASP Remote Terminal Operator's Guide (2770) , Page 3

1027

HAS P

SWITCH SETUP

During all 2770 operations with HASP, certain console switches

should be set as follows:

JOB SELECT - VARIABLE SELECT

INPUT KEYBOARD, 2 (card reader) - both up

OUTPUT PRINTER, 2 (card punch) - both up

DIRECT DATA OUTPUT PRINTER - up

TERM MODE - LINE

SELECTION REOD - up

ANSWER - MANUAL

MONITOR PRINT - as desired by installation, normally down

Any of above which refer to devices not on your 2770 - down

All other VARIABLE SELECT switches - down

On installation, your 2770 may have been provided

with the equivalent of all the above switch settings at one of

the five JOB positions on the JOB SELECT switch. If so, simply set

to that position and ignore all VARIABLE SELECT switches. When

power is on, console lights will show the settings which are in effect.

Your 2770 card reader may be attached to the INPUT 3 position

rather than INPUT 2. Simply set the INPUT 3 switch up instead of 2.

The TRANSPCY swi t:ch should be set in the down position except

when used for transmi t:ting EBCDIC card decks which use all 256

possible punch combineltions.

HASP Remote Terminal Operator's Guide (2770) - Paqe 4

1028

HAS P

ESTABLISHMENT OF COMMUNICATIONS

Before your 2770 terminal can transmit jobs to or receive

printed or punched output from the central computer, the computer

must establish a path of communication to the terminal and must

recognize it as a 2770 terminal (rather than, say, a System/360

Model 20 being used as a terminal). Depending upon how your 2770

is connected to the central computer, you mayor may not have to

use a special control ca~d, called a sign-on card.

If your terminal is permanently connected to the central

computer (probably through private lines leased from the telephone

company), you need only inform the central operator who will then

issue the HASP command:

$ START LNEnun

(where mm is a one or two digit decimal number). Either you or the

central operator will know the proper line number to use, depending

upon your installation. Once the operator has given this command

and the 2770 Power On switch is turned on, you may begin to read in

a job, or to print or punch the output from a previous job.

However, if your 2770 is connected by ordinary switched tele­

phone lines to the central computer, you will have to dial a tele­

phone number to·establish communications. You will have a aiCJn-on

card and a.telephone number to call. Carefully perform the followin~

steps.

HASP Remote Terminal Operator's Guide (2770) - Page 5

1029

HAS P

1. Turn on the 2770 Power On switch.

2. Push the STOP button then the NPRO button on the card

reader. Hold it in for a few seconds to make sure the

card feed mechanism is clear.

3. Place the sign-on card and the card weight in the card

hopper.

4. Dial the telephone number you have been given. The TALK

button on the dataphone must be depressed to do this.

5. Listen for the normal sound of ringing followed by the

normal sound of answering. You should then hear a high­

pitched tone of about six seconds' duration, followed

immediately by a short bleep.

6. When you hear the bleep, push the DATA button on the tele­

phone. The DATA SET READY light on the console should

come on. (You can hang up the telephone handset now.)

7. Press TERM RESET on the console, turn the card reader

EOF switch on, and push the card reader START button to

run the sign-on card into the card feed.

8. Press the START button on the console; the BID light

should come on. Momentarily, the card reader should read

the sign-on card and move it into the stacker.

Your 2770 is now signed on, and you may start reading, printing

or punching.

If you do not hear the telephone being answered, the central

operator has not iSSUt~d the command

$ START LNBmm

EASP Remote Termixlal Operator's Guide (2770) - Page 6

1030

HAS P

or has issued it for the wrong line. Ask him to issue the proper

command and then re-dial if necessary. If instead of ringing you

hear a busy signal, the line is of course busy. Call back in a

few minutes or try an alternate number if available.

If your sign-on card will not read, run out the sign-on card,

place it in the reader again and repeat steps 7 and 8.

If still unsuccessful, call the central computer operator to

verify that you have the correct sign-on card and telephone number,

and that he has started the line correctly.

HASP Remote Term:.nal Operator's Guide (2770) - Page 7

1031

HAS P

OPERATING PROCEDURES

The next two sections discuss procedures for transmitting jobs

to the central computer and for receiving their printed and punched

output. The 2770 will not transmit or receive jobs unless you have

correctly signed on. Refer back to page 6 for the sign-on procedure.

At any given time, a signed-on 2770 is either reading in a job,

printing a job, punching a job or waiting for work. Often, after

an operator has read in a.job through the 2770, he will disconnect

(sign-off) the 2770 to save telephone line charges and sign-on at

a later time to receive his output. There will be printed output

for every job submitted; there will be punched output only if the

job requires it.

Thus, the normal cycle of a job submitted from the 2770 is:

reading the job (transmitting it to the central computer), waiting

for it to execute, receiving its printed output, and possibly

receiving its punched output.

In the following descriptions, certain time estimates in

seconds are given. These are based upon the default value of a

certain variable in the HASP System. Your installation may have

changed this default; if so, the time estimates will be greater

or less than specified.

IiASP Remote Terminal Operator's Guide (2770) - Page 8

1032

HAS P

TRANSMISSION TO THE CENTRAL COMPUTER

The 2770 can transmit jobs to the central computer only if

signed on and not busy printing or punching. However, you may

make it ready to transmit any time that it is signed-on. You

cannot interrupt punching in the middle of a job to

start transmitting ~ job. You must not press TERM RESET while a

job is being printed or punched. If you accidentally do this, a

line restart (described on page 14) must be done.

To transmit job(s), take the following steps:

1. Push the card reader STOP button then the NPRO button

to clear the feed.

2. Place one or more jobs in the card read hopper. Jobs

may be stacked one on top of the other.

3. Push card reader START to run cards into the feed. The

INPUT 2 light on the console should stop blin~ing and

come on steady indicating that the card reader is ready.

Turn on the reader EOF switch if all the cards you intend

to transmit fit in the hopper.

4. Turn on the console TRANSPCY switch if required by the

cards to be transmitted. (See previous discussion on

page 2 ..)

5. Press the START button on the console1 the BID light

should come on.

6. If the 2770 is printing or punching, it will continue

until the er..d of the current job. Then, or as soon as

START is pressed if the 2770 is idle, the 2770 will ask

HASP Remote Termin.al Operator's Guide (2770) - Page 9

1033

HAS P

permission to transmit. When the central computer

answers affirmatively (within 15 seconds), the BID

light should go out and cards should begin reading

into the stacker.

If you add more cards, be sure to turn on the reader EOF

switch when all cards you intend to transmit are in the hopper.

If you allow the hopper to become empty in the middle of a job's

input, you must not have the EOF switch on.

You may push STACKER UNLOAD on the card reader at any time

to halt reading temporarily to facilitate removing cards from the

stacker or adding more to the hopper. Push reader START to con­

tinue or wait for the reader to automatically continue in 30

seconds.

The keyboard can be used to transmit short jobs or control

cards alone, or can be used to transmit typed cards in front of

more cards read from the card reader in a single transmission.

To use the keyboard:

1. Wait until the current job, if any, is finished

printing or punching.

2. Turn off the TRANSPCY switch.

3. Press TERM RESET on the console and KEY REO on the keyboard.

The console PROCEED light should come on.

4. Type in one or more lines as if they were cards of 80 or

less columns. Use the END CARD key to end each card.

5. Press the ENTER key to transmit what you have typed.

The PROCEED light should go out, the BID light should

come on, thHn go out when transmission is complete.

HASP Remote Term:.nal Operator's Guide (2770) - Paqe 10

1034

HAS P

The keyboard transmits letters in lower case unless you up-

shift. You must upshift to transmit letters as they would be trans-

mitted if keypunched on cards.

Keyed information should appear on the printer as you type.

If mistakes are made, you must repeat from step 3 and retype every-

thing. See the SRL on page 2772-24 for better correction proce-

dures if you have the Keyboard Correction feature.

You may use the keyboard instead of the card reader to transmit

the sign-on card in the procedure previously described on page 6.

To transmit keyed cards in front of those read from the card

reader, do steps 1 through 4 and then instead of step 5, follow the

previously described procedure for the card reader. Keyed informa-

tion is always transmitted in non-transparency, therefore cards fol-

lowing keyed information must also be transmitted in non-transparency.

The maximum number of cards which can be transmitted from the

keyboard in a single transmission is two, without the Buffer Expan-

sion feature. With the feature, a variable number of cards up to

The I the capacity of two 256 character buffers can be transmitted.

Additional Buffer Expansion feature provides two 512 character buf-

fers. In either case, when the limit is reached, the keyboard locks

after the END CARD key is pressed. You must then cause transmission

with ENTER, or START if you are transmitting from the card reader af-

ter keying as described above.

It may be possible to interrupt printing only to begin trans­

mitting. See page 20 for details.

HASP Remote Terminal Operator's Guide (2770) - Page 11

1035

I

HAS P

RECEPTION FROM THE CENTRAL COMPUTER

After your job has completed reading, HASP queues it for exe­

cution at the central computer. As the job executes, it may produce

printed and punched output. HASP saves these outputs and at the end

of the job queues the printed output for printing, usually upon the

terminal from which the job was read. You may have turned off the

2770 or otherwise disconnected it from the computer; if so, you must

follow the sign-on procedure before you can receive output from the

job.

After a job has finished printing, HASP queues its punched out­

put (if any) for punching, usually upon the terminal from which the

job was read. When HASP finds that any output device is ready on

the 2770, it inspects that remote terminal's output queues in the

order punch first, then print. Thus, if you are expecting the

printer to start, HASP may actually be trying to punch the output

from a previously printed job.

The 2770 will receive either printed or punched output from

the central computer if HASP has output to send, the terminal is

not transmitting, and the output devices are ready. You should al­

ways have the printer and punch ready, even when transmitting, so

that the 2770 can automatically begin receiving when transmission

is finished.

The printer is ready if it is loaded with forms, has a correct

carriage tape, if the carriage is engaged, the type bar properly

HASP Remote Terminal Operator's Guide (2170) - Page 12

1036

HAS P

installed (2203 only), the cover is closed, and the printer START

has been pressed (2203 only). If you have a 2203 printer, the

INHIBIT IRS switch should be off when operating with HASP.

To ready the card punch, turn power on, place blank cards in

the hopper, set the punch keyboard switch to KEY PCH, place a card

with "0" punched in columns 2-80 on the Program Drum and lower the

star wheels, press the FEED key twice and the RELEASE key once, then

set the switch to AUTO PCH. The AUTO light should come on and the

CHECK light on the card punch should go out. See SRL pages 545-11,

12, 18 for more details.

Blinking OUTPUT PRINTER or OUTPUT 2 lights on the console in­

dicate that the above devices are not ready. Even after making them

ready, it may be necessary to press CHECK RESET and START on the

console to make the lights stop blinking and the devices ready to

receive.

Printed and punched output jobs will be separated by separator

pages or cards respectively, which are described in the central com­

puter HASP Operator's Guide.

HASP Remote Terminal Operator's Guide (2770) - Page 13

1037

HAS P

ERROR RECOVERY

A wide variety of problems can occur when operating almost

any type of machine, including the 2770. Some problems occur

only rarely and are not documented here. See the SRL "System

Components: IBM 2770 Data Communication System," form A27-30l3,

for a description of any problems you encounter which are not dis­

cussed in this Guide, as well as how to load paper in the printer,

how to fix a card jam, etc. A copy of this SRL should be near

your 2770.

In general, there are three levels of error recovery which

you may have to perform, depending upon the severity of the error.

They are:

1. Fix the difficulty (a not ready I/O device, check con­

dition, etc.) and continue. See. the following two

sections fO.r the mos t cornmon examples.

2. Job restart. This is done when the possibility of incor­

rect or lost data exists and requires the assistance of

the central computer operator. Job restart procedures

for both transmitting and receiving are described in the

following two sections.

3. Line restar1:. This is done usually when job restart is

unsuccessful or any time it is necessary to press TERM

RESET to clE!ar a check condi tion during printing or

punching. You should tell the central computer operator

to issue thE: HASP command:

$ RESTART LNEmm

K~SP Remote Terminal Operator's Guide (2770) - Page 14

1038

HAS P

then re-establish communications as previously described

on pages 5 and 6. Incomplete input or output jobs are

handled as described for job restart in the following

two sections.

If even line restart fails to establish successful operation,

you probably have a hardware and/or software problem which must be

analyzed by your installation's systems personnel and IBM Customer

Engineers.

Most problems you encounter will result in lights appearing

on the 2770 console or the I/O devices themselves. Some of these

lights are not error lights. These are DATA SET READY, CARRIER

OFF, DATA IN BUFFER, LINE MODE, PROCEED, BID, SELN REQD, TRNSPCY,

MANUAL ANSWER, and any of the I/O device lights when on steady.

Any I/O device light which is blinking indicates that the device

is not ready. Other lights provide clues to the difficulty and

will be discussed in the following two sections.

HASP Remote Termin.ll Operator's Guide (2770) - Page 15

1039

HAS P

ERROR RECOVERY WHEN TRANSMITTING

If job restart is required while transmitting, the OS job

which is only partially read into the 2770 must be re-read from

the beginning. You should ask the central computer operator to

issue the HASP command:

$DELETE RMnn.RDl

to delete the partially read job. Press TERM RESET. Load the

hopper beginning with the JOB card of the incompletely read job,

push reader START and console START.

Any card reader trouble while transmitting is indicated by

a blinking INPUT 2 or 3 light, whichever your card reader is attached

to. The following lights on the card reader may further indicate

the type of trouble.

FEED CHECK - The bottom card in the hopper failed to feed.

Remove hopper cards. Push NPRO. Repair bottom hopper card if

necessary and make sure the feed throat is clear. Reload cards.

Push reader START and console START.

ATTENTION - Full stacker, empty hopper with EOF off, and cover

open are possible causes. Correct, push reader START and console

START.

READ CHECK or VA7JIDITY CHECK - Last card was incorrectly read

due to invalid or off punching or read station jam. Last card in

stacker (if no jam) and following card (run out by NPRO after hopper

cards are removed) muut be re-read. After appropriate correction,

place these two cards at the front of the cards in the hopper, push

HASP Remote Terminal Operator's Guide (2770) - Page 16

1040

HAS P

reader START and console START. If a jam is so severe that the or­

der of cards or the last card read is not clear, do a job restart.

HASP retries all transmission line errors automatically until

transmission is successful; however, certain console lights may in­

dicate necessary action on your part as follows.

TERMINAL ADDRESS - HASP is trying to send output while you are

trying to start an input function. Continue input procedure (e.g.,

typing) until you have turned on the BID light. Then press CHECK

RESET and wait for input to begin. Press CHECK RESET if TERMINAL

ADDRESS comes on again. If you are not able to initiate the input

function, you may have interrupted an incomplete output function.

You must make your output devices ready to accept the output and

wait until the next output job ending to again attempt transmission.

BID ENTRY - HASP has failed to respond to the 2770 within 15

to 45 seconds (depends on 2770 wiring option). If any cards are in

the stacker, a duplicate block of data will probably be sent. Fol­

low the job restart procedure given previously.

INPUT CHECK, BUFFER CHECK, TRNSPCY CHECK - With these serious

errors you must always do a job restart. Make sure that you have

turned on the TRANSPCY switch if the job contains OS object decks

or other cards requiring transparent transmission.

RECORD CHECK or LINE CHECK - These lights may come on while

HASP is attempting retransmissions for line errors and will go out

if recovery is successful. If they stay on and transmission does

not proceed, you must do a job restart.

HASP Remote Terminal Operator's Guide (2770) - Page 17

1041

HAS P

ERROR RECOVERY miEN RECEIVING

If job restart is required while receiving, you must cause HASP

to begin printing or punching the current partially completed job

from its beginning. You should ask the central computer operator to

issue the HASP command:

$ RESTART RMnn.PRl or $RESTART RMnn.PUl

to cause the restart. Make your output devices ready and press

CHECK RESET in the normal manner. Discard the partially completed

output beginning with the last previous separator page or separator

card. For printing only you may ask the central operator to issue

the HASP command:

$BACKSPACE RMnn.PRI

instead. Only the few duplicated pages should be discarded in this

case. Do not press TERM RESET when doing a job restart while re­

ceiving. If TERM RESET is required to clear a check condition, a

line restart must be done.

Output device trouble is indicated by blinking OUTPUT PRINTER

or OUTPUT 2 lights and lights on the devices as follows.

CARRIAGE CHECK (2213), FORM CHECK (2203), END OF FORM (2203),

CARRIAGE INTERLOCK (2203) - The printer carriage, forms, or carriage

tape are not ready or jammed. Correct the condition, press RESET

(2203), console CHECK RESET, START (2203), and console START.

PRINT CHECK (2213), other CHK lights (2203) - The printer had

a parity error or other hardware malfunction. See the SRL to in­

terpret CHK lights. Press RESET (2203), console CHECK RESET, START

(2203), and console START. Failure to recover indicates hardware

trouble.

After any of the above printer recoveries, duplicate lines may

be printed because HASP's recovery programming is designed to pre­

vent loss of data at all costs. For most applications, these

HASP Remote Terminal Operator's Guide (2770) - Page 18

1042

HAS P

duplicate lines are obvious and may simply be crossed out or

ignored. For more sensitive applications, you may use the back­

space procedure described previously, which will make it easier

to discard duplicate output at page or document boundaries.

CHECK light or any card punch not ready condition - Hopper

empty, stacker full, or jams are possible causes. Set the keyboard

switch to KEY PCH. Remove all cards from the stacker or eject sta-

tion just below the stacker if any. Discard all removed cards after

the last one with a column 81 punch. Clear the entire card feed

path. With blank cards in the hopper, press the FEED key twice and

the RELEASE key once, then set the switch to AUTO PCH. Press con­
\

sole CHECK RESET and START~ The first card through the feed after

recovery will be blank and should be discarded.

As with printing, there is a high probability of duplicate

output following the punch error recovery described above. If

duplicate punched output occurs, a whole 2770 internal buffer full

of cards will be duplicated. The first full buffer punched after

recovery consists of the cards coming into the stacker up to and

including the first one with a column 81 punch. These cards (may

be as few as one) should be compared with the same number of cards

from the bottom of those removed from the stacker. If each card is

an exact duplicate, you should discard the second group. If the

application is such that a duplicated group of cards could occur as

part of the intended punched output, a job restart must be done

and all of the partially completed job's punched output must be

discarded.

HASP Remote Terminal Operator's Guide (2770) - Page 19

1043

HAS P

Certain console lights may require your attention while

receiving, as follows.

TERMINAL ADDRESS - HASP is trying to send output but your

2770 is not ready. Make sure your switch setup is correct,

ready all output devices, press console CHECK RESET.

OVERRUN - This usually indicates that features on your 2770

were not specified correctly at the central computer or that you

have signed-on using the wrong remote number. You may have sub­

mitted jobs previously using this wrong number which will need to

be re-routed to your correct number. You may have received out­

put which is not yours. Ask the central operator to help you

correct this confusion and do a line restart so that you can

sign-on using the correct number.

BUFFER CHECK - This serious hardware error will always require

you to do a line restart.

LINE CHECK - HASP is attempting re-transmissions. If they are

successful, the light will go out. If the light stays on and print­

ing or punching does not continue within a short time, you must do

a job restart.

Depending on the central HASP System at your installation,

actions during printer only error recovery may be somewhat different

than described above. If this altered mode of printer operation

is appl~cable to your 2770, when you make the printer ready after

HASP Remote Termir~al Operator's Guide (2770) - Page 20

1044

HAS P

any of the above stops the job which was printing will be "suspended",

a message and terminal separator line(s) will be printed, and the job

will be requeued in the print queue for your terminal. You may cause

this "suspend" action yourself by pressing STOP on the 2213 or CAR­

RIAGE STOP on the 2203 while printing, then readying the printer.

If you have a 2203, you may press the STOP key to make minor

carriage adjustments without causing a "suspend", if you ready the

printer within 34 seconds or periodically press STOP, CARRIAGE SPACE,

or CARRIAGE RESTORE to extend the 34 second period.

Actions after the printer "suspend" depend on the state of your

terminal and the output queues. You may start transmission as de­

scribed on page 9 and following or you may wait for more output.

Print jobs of higher priority than the suspended job or any punch

jobs will be received before the suspended job. When the suspended

job resumes printing, it will do so at approximately 1 page prior

to the page of interruption.

HASP Remote Terminal Operator's Guide (2770) - Page 21

1045

HAS P

CENTRAL COMPUTER CONTROL

This section describes the control cards you may use to sign

on, send a message to the central computer operator, change the

destination of printed and/or punched output, and force the

priority of a job.

1
/*SIGNON

16
REMOTEnn

25
password

This is the sign-on card. The number nn is a one or two

digit decimal number whose purpose is to correlate this remote

device with information about it in the central computer. Leave

the password field blank unless you are required to give a password.

1
/*SIGNOFF

You may use the sign-off card after the last job you read

in. If you use this card, the telephone circuit will disconnect

after about 30 seconds.

1
/*MESSAGE

16
message

When you read in this card, the contents of columns 16-71

will immediately be p.rinted on the central computer operator's

console. You may place this card anywhere within a job; it will

be deleted before the job is processed.

HASP Remote Term.lnal Operator's Guide (2770) - Page 22

1046

HAS P

The typed message will automatically have the job number

appended to it if it is found within a job. If it is found

outside a job, the remote terminal ID will be appended.

1
/*ROUTE

10
PUNCH

16
LOCAL

This card causes punched output for the job within which it

was found to be punched at the central computer instead of at the

remote terminal.

1
/*ROUTE

10
PRINT

16
LOCAL

This card does the same thing for printed output that the

above card does for punched output. You may use both cards; a

good place to put most of the cards described here is right after

the //JOB card.

On either of these ROUTE cards, you may use REMOTEnn, PRINTERn,

or PUNCHn in place of LOCAL, beginning in column 16. These alter­

nate forms cause the printed or punch output for the job to go to

a remote other than yours, or to a specific printer or punch at

the central computer rather than any printer or punch at the

central computer.

1
/*PRIORITY

16
nn

If you use this <:ard, it must immediately precede the //JOB

card. The number nn is some one or two digit number between 0 and

15, inclusive. It spE!cifies the urgency with which the job should

be processed relative to other jobs submitted from the same remote

terminal.

HASP Remote Terminal Operator's Guide (2770) - Page 23
1047

HAS P

Depending on features of the central HASP System at your in-

stallation, you may use a subset of central HASP operator commands,

submitted on cards as follows.

1
/*command

In place of "command", you should punch any of the commands

listed in Table 1.1.3 of the central HASP Operator's Guide which

are valid from a remote location. For example, "$DQ,4" punched

I following the "/*" causes a display of the number of jobs in various

queues at the central site which are routed to the terminal REMOTE4.

A group of one or more command cards may be transmitted alone

or may be placed in front of a group of jobs being transmitted.

Command cards may also be transmitted from the keyboard, using lower

case letters if desired.

Responses to commands from HASP are printed on the printer,

after the paper is positioned at the top of a new page. Such re-

sponses are always received first after a transmission is completed,

before any job's printed or punched output is received. Certain

spontaneous message (i.e., not responses) are also received. They

are:

messages acknowledging each job transmitted by your ter-

minal and messages from other operators in the system to

you by use of the "$DM" command.

HASP Remote Terminal Operator's Guide (2770) - Page 24

1048

HAS P

You should read the HASP Operator's Guide to learn about

the various commands you may use (Table 1.1.3), what their effects

are, and how they should be constructed. Also, output device

control and special forms processing are discussed in Section 7

of that Guide. However, certain properties of terminals like

your 2770 require more explanation of these two topics.

Certain commands which control output devices ($B, $C, $E,

$F, $I, $N, $Z) actually refer to a job currently in active pro­

cessing on that device which is to be backspaced, restarted, etc.

When you submit commands from your 2770, no output devices are

active, therefore these commands have no effect. This is true

even after you "suspend" a print job as previously described on

page 20. The "suspend" is functionally equivalent to $I, which

includes the function of $B. To use the other commands, you must

ask the central operator to enter them.

The $S, $P, and $T device commands are effective when sub­

mitted from your terminal. Furthermore, the $C command is effective

when referring to a job rather than a device. The $H, $A and $R

commands may also be used effectively.

Special forms for printed or punched output can effectively

be controlled f~om your terminal without central operator assis­

tance, if all jobs submitted from (or routed to) your terminal

follow certain conventions in requesting special forms. Programmers

HASP Remote Terminal Operator's Guide (2770) - Page 25

1049

HAS P

should be required to use only special routing output classes

(J and K normally) with requests for special forms by data set.

Special p~int forms for an entire job may be requested in the

HASP accounting field of the JOB card. In no case should special

forms be requested when using the ordinary output classes (A and

B normally) as this will cause the system itself to request

mounting of special forms at a time when you, as 2770 operator,

are unable to enter'the $S command to continue.

Assuming the above conventions, you should periodically

submit the $DF command to determine if special forms jobs are

queued for output on your terminal. If so, you should select the

type of forms from those queued which you desirt.; to process

first on each output device, mount that forms, enter a command

U$Tdevice,F=forms#" for each device, and wait .for printing andl

or punching ,to occur. When jobs stop processing on a device, you

should resubmit the $DF and change to a new forms if indicated.

The parameter "F=RESET" should be used to return a device to

ordinary output processing. The "F=AUTO" parameter should not be

used. You may want to use the $P and $S device commands, prior

to and after the $T command respectively, to prevent HASP from

attempting to send an output job while you are changing forms.

HASP ~mote Terminal Operator's Guide (2770) - Page 26

1050

HAS P

11.9 HASP REMOTE TERMINAL (SYSTEM/3) OPERATOR'S GUIDE

The following section contains detailed instructions for
operating the IBM System/3 as a HASP MULTI-LEAVING, remote
workstation. This manual is intended as a removable
section for use at the remote location.

HASP Remote Terminal Operator's Guide (SYSTEM/3) - Page 11.9-1

1051

HAS P

(The remainder of this page intentionally left blank.)

1052

HAS P

REMOTE TERMINAL PROCESSOR

FOR

MULTI-LEAVING BINARY SYNCHRONOUS

COMMUNICATIONS

SYSTEM/3 OPERATOR'S GUIDE

1053

HAS P

TABLE OF CONTENTS

SECTION PAGE

1.0 Introduction .•..........................•.•...•.....•... 1.0-1

2.0 Operating Procedures•.........•............. 2.1-1

2.1 Initiation of a Remote Job Stream Processing Session 2.1-1

2.2 Remote Job Stream Processing .•...•............. G •••••••• 2.2-1

2.3 Termination of a Remote Job Stream Processing Session .•. 2.3-1

2.4 Command Processing "•...•.......•........ ~• 2.3-1

3.0 Error Recovery Procedures•.•.........•.......... 3.1-1

3. 1 Communication Adapter Errors •.••...•.•.................. 3. 1-1

3.2 Unit Record Error Procedures ..•••.•....•...........•.... 3.2-1

3.3 Remote Terminal Restart .•...•••..•......•............... 3.3-1

4.0 System Control Cards•••...•..•..... ·••. 4.0-1

5.0 The Starter System .•...•.••••....••.•...•.•............. 5.0-1

Table of Contents - Page i.

1054

HAS P

1.0 INTRODUCTION

Remote Job Entry means the submission of jobs to an operating
system from a terminal that is "remote" from the central
computer. Ordinarily, job submission occurs from a card reader
that is at most a matter of feet from the central computer,
but a remote terminal may be hundreds of miles away.

The terminal communicates with the central computer over
telephone lines or by similar means. If the telephone lines
are permanently connected between the terminal and the central
computer, they are called "point-to-point non-switched".
If the lines are not permanently connected, they are called
"point-to-point switched", and the remote terminal operator
must dial the telephone number of the central computer, using
the remote terminal's data set telephone, to connect the
terminal with the computer.

HASP MULTI-LEAVING is a teleprocessing philosophy which allows
the full use of all resources of the remote computer and
of the communication line. A special, stand-alone terminal
program in the remote computer establishes and maintains
communication with HASP in the central computer. It compresses
and blocks (for most efficient line usage) and transmits
to HASP the card images of Operating System jobs. It receives
from HASP, deblocks, and decompresses the printed and punched
output of jobs. It performs similar functions for HASP operator
commands and their responses, and for HASP messages to the
remote terminal. The terminal program has the capability
of operating all supported devices simultaneously.

The HASP System/3 Remote Terminal Processor program is a
member of the family of HASP MULTI-LEAVING Terminal Programs.
It is a stand-alone, self-loading, customized program which
enables any System/3 with at least a Binary Synchronous Communi­
cations Adapter, a 5424 Multi-Function Card Unit, and a 5203
Printer to be used as a HASP MULTI-LEAVING Terminal.

This manual is the operating guide for HASP Remote Job Entry
from the System/3. It contains operating procedures, error
recovery-procedures, and specifications for certain optional
HASP Remote Job Entry and HASP-System/3 control cards. Since
eacp System/3 Remote Terminal Processor is custom-generated,
not all of the features described here may be in a particular
System/3 Remote Terminal Processor.

The HASP System/3 Remote Terminal Processor supports most
devices which can be attached to the System/3. Certain devices
must be present:

HASP Remote Terminal Operator's Guide (System/3) - Page 1.0-1

1055

HAS P

a 5424 Multi-Function Card unit
a 5203 Printer, with any features
a Binary Synchronous Communication Adapter

with EBCDIC code and point-to-point
network attachment.

The following devices need not be present, but will be supported
if they are present and specified at the time of generation
of the System/3 program:

a 5471 Printer-Keyboard, as an operator's
input/output console

a 5475 Data Entry Keyboard, as an operator's
input console

a 1442 Card Reader-Punch, an RPQ device,
as an 80-column card reader/punch.

HASP Remote Terminal Operator's Guide (System/3) - Page 1.0-2

1056

HAS P

2.0 OPERATING PROCEDURES

This section of the HASP System/3 Remote Terminal Operator's
Guide describes normal operating procedures for the System/3
as a remote job entry terminal. Operation generally consists
of:

loading the Remote Terminal program
signing on
operating the various System/3 devices to

send jobs and receive their output
signing off.

Although this program does not operate under the IBM System/3
Card System, this guide refers to the IBM System/3 Card System
Operator's Guide (Order Number GC2l-75l3) for extended infor­
mation on some phases of operation. You should have a copy of
the Card System Operator's Guide nearby for reference.

2.1 INITIATION OF A REMOTE JOB STREAM PROCESSING SESSION

To start a remote job entry session, you must accomplish three
things: loading the HASP/Remote Terminal Processor (HASP/
RTPSYS3) program deck, establishing a connection between the
System/3 and the central computer, and signing on.

The HASP/RTPSYS3 program deck is either a deck of 96-column
cards or a deck of 80-column cards.

To load
1.

2.
3.

4.

To load
1.
2.

3.
4.
5.
6 •
7.
8.

the 96-column load deck--
Put the deck in the rightmost card hopper of
the MFCU.
Hit START on the MFCU.
Hit PROGRAM LOAD on the System/3.
(For disk systems, the program load selection knob
must point to MFCU.)

Hit START on the printer.

the 80-column load deck--
Raise the CE Controls cover on the System/3.
With the CE Mode Selector at PROCESS, hit
SYSTEM RESET.
Turn the CE Mode Selector to ALTER STORe
Set the data knobs to C2 and hit START once.
Set the data knobs to 01 and hit START once.
Set the data knobs to 00 and hit START once.
Set the data knobs to 00 and hit START once.
Set the data knobs to 31 and hit START once.

HASP Remote Terminal Operator's Guide (System/3) - Page 2.1-1

1057

HAS P

9. Set the data knobs to 54 and hit START once.
10. Set the data knobs to 00 and hit START once.
11. Set the data knobs to 03 and hit START once.
12. Set the data knobs to F3 and hit START once.
13. Set the data knobs to 51 and hit START once.
14. Set the data knobs to 01 and hit START once.
15. Set the data knobs to Fl and hit START once.
16. Set the data knobs to 52 and hit START once.
17. Turn the CE Mode Selector to PROCESS.
18. Hit SYSTEM RESET.
19. Close the CE Controls cover.
20. Put the SO-column load deck in the 1442.
21. Hit START on the 1442, the printer, and the System/3.

Cards should begin reading.
22. When the 1442 ready light goes out, again push

START on the 1442.

Midway through the program deck, the reader will stop reading
and the printer will start printing the HASP Environmental
Recording and Editing Program (HEREP), a standard feature of
RTPSYS3. The information printed is the contents of certain
error counters; these counters contain a record of the unit
checks which occurred during the last remote terminal session.
If the counters are destroyed, one line will be printed:

HEREP COUNTERS HAVE BEEN ALTERED.

In any case, program loading will automatically resume after
printing is complete.

Program loading has completed satisfactorily if when cards
stop reading the console indicator "DT TERM READY" is on and
the hopper is empty (or the first card in the hopper is not
EOR or /*SIGNON; jobs or blank cards may be stacked behind
the program deck). If "DT TERM READY" is not on, the last
card of the program deck was not EOR or /*SIGNON or a card
read error occurred. To correct a card read error, follow
the procedure under halt code F3 in the IBM System/3 Card
System Operator's Guide, make the hopper ready, and depress
the START key (on dual-programming systems, the Program Level
One Halt Reset Key) if halt code F3 is displayed.

If "DT TERM READY" is lit and the hopper contains an EOR or
/*SIGNON card, remove the cards from the primary hopper and
push STOP and then NPRO on the reader. The card that was
stacked when you pushed NPRO is either an EOR or a /*SIGNON
card. You should reload the program deck, making sure that
it ends with either the correct /*SIGNON card or a single
EOR card. -(See section 4 for descriptions of these cards.)

HASP Remote Terminal Operator's Guide (System/3) - Page 2.1-2

1058

HAS P

Step 2 of initiating a remote session is establishing a con­
nection between your System/3 and the central computer. The
operator at the central computer should already have issued
the HASP command "$START LNEnn" where LNEnn is the communica­
tion line to which your System/3 ·is permanently connected
(point-to-point non-switched) or corresponds to the telephone
number you will dial (point-to-point switched).

If your communication line is non-switched, make sure that
any controls on its data set are in the "DATA" position. The
System/3 will automatically establish communication with the
central computer.

If your communication line is switched, pick up the data
set's telephone handset and depress the data set's "TALK"
button. Dial the telephone number you have been given and

HASP Remote Terminal Operator's Guide (System/3) - Page 2.1-3

1058.1

HAS P

(The remainder of this page intentiona1~y left blank.)

1058.2

HAS P

listen for the ring. When the ring is answered (automatically
by the central computer) you will hear a high-pitched tone,
followed by silence. Depress the data set's "DATA" key and
hang up the handset. The System/3 will initiate communications
with HASP and will automatically send it the /*SIGNON card.
As the /*SIGNON card is being sent, the message

COMMUNICATION ESTABLISHED

will print on the 5471 Printer-Keyboard and on the 5203 Printer
(if the 5203 Printer is ready).

If your System/3 has the Auto-Call feature and your /*SIGNON
card (or the default /*SIGNON card, if not over-ridden) specifies
a telephone number, leave the data set in IIAUTO". The System/3
will automatically dial the required telephone number. When
the number answers, the System/3 will automatically sign
on.

If your call is not answered, or if the System/3 halts with
halt code CA (call aborted) while trying to auto-call, the
trouble is most likely that you dialed or specified on the
/*SIGNON card an incorrect telephone number, or that the
central operator did not start the correct line.

An auto-call halt CA can occur if the called number is busy.
Depress the console start (or Program Level One Halt Reset)
key to re-dial, or re-dial manually.

2.2 REMOTE JOB STREAM PROCESSING

During remote job stream processing, you are concerned with
operating the unit record devices to submit jobs to the central
computer and receive their printed and punched output. Each
job goes through four phases - reading, execution, printing,
and punching.

READING

You place into a card hopper (either 5424 or 1442 card reader)
a stack of on~ or more jobs, and make the card hopper ready.
The system reads the first card, finds it to be non-blank,
and requests from HASP permission to start sending a job
stream. When the system receives permission from HASP, it
continues reading cards and sending them to HASP.

HASP Remote Terminal Operator's Guide (System/3) - Page 2.2-1

1059

HAS P

If you are reading from the 5424, you may use either card
hopper to read from. The last card of you~ stack of jobs
must be a /*EOF card (the characters /*EOF punched into columns
1-5); this card instructs the system to send to HASP an end­
of-job-stream indicator, and to make the card hopper dormant.

If you are reading from the 1442, you end the job stream
by pressing START when the hopper is empty. No special consider­
ations apply to preparing or reading 80-column cards.

Each job you submit to HASP should be in the format of standard
OS JCL. That is, it should consist of one JOB card followed
by one or more EXEC and DD cards, and possibly by input stream
data sets.

EXECUTION

When HASP receives the last card of a job from the System/3,
it queues the job for as execution. In due time, as completes
the job and HASP queues its printed output for transmission
to the remote terminal from which it came. (However, the
$ROUTE operator command or the /*ROUTE control card may be
used to change the destination of printed or punched output,
or both.) The execution process happens automatically, and
you as an operator are not normally concerned with it.

PRINTING

You need only press START on the printer to allow print to
occur; once a job has completed execution, printing starts
automatically. The normal JCL specification for printed
output is SYSOUT=A.

Some print data sets may require special forms; the programmer
specified a 1- to 4-digit forms number on his DD card (e.g.,
SYSOUT=(A,,1234) is the specification for forms type 1234).
When special forms are to be mounted, you will receive the
message

LOAD TYPE mmmm FORMS IN RMnn.PRl

either on the 5203 or on the 5471. Mount the forms and type
the command

$S RMnn.PRl

HASP Remote Terminal Operator's Guide (System/3) - Page 2.2-2

1060

HAS P

where nn is the same as in the LOAD message, or put into
an available hopper the two cards

/*$S RMnn.PRl
/*EOF.

When a job's printed output is complete, HASP queues that
job's punched output (if any) for processing. Though a job
may not have punched output, it will always have printed
output.

PUNCHING

You need only load an available hopper with blank cards and
make it ready. Once a job has completed printing, punching
starts automatically. The normal specification for punched
output is SYSOUT=B.

Some punch data sets may require special forms; the programmer
specified a 1- to 4-digit card forms number on his DD card
(e.g., SYSOUT=(B,,9876) is the specification for forms type
9876). When special cards are to be loaded, you will receive
the message

LOAD TYPE mmmrn FORMS IN RMnn.PUn

either on the 5203 or on the 5471. Run out the card path,
load cards of the type indicated, and type the command

$S RMnn.PUn

where nn and n are the same as in the LOAD message, or put
into an available hopper the two cards

/*$S RMnn.PUn
/*EOF.

NOTES ON THE 5424

1. Either hopper of the 5424 can be used as either a reader
or a punch. When a previously-dormant 5424 hopper reads
a non-blank card, it becomes a reader. It remains a reader
until it reads a /*EOF card; then it goes dormant with the
/*EOF card in the wait station.

HASP Remote Terminal Operator's Guide (System/3) - Page 2.2-3

1061

HAS P

2. When a previously-dormant 5424 hopper reads a blank card,
it becomes a punch. It remains a punch until it has completed
punching all jobs queued for it. If no jobs are queued for
it, you may make the hopper dormant by removing the blank
cards from it.

3. The 5424 can read cards much faster than it can punch
cards: therefore, to increase card throughput, the system
performs· card reading preferentially over card punching.
If you are using both hoppers, one as a reader and one as
a punch, punching will tend to proceed intermittently.

4. Though the 5424 has two hoppers, it has only one card
path. For reasons of error recovery, the system ensures
the card path is empty before switching hoppers. Therefore,
if you are using botb hoppers as readers, or both as punches,
the system will tend to process cards from one or the other
of the hoppers rather than dividing its time evenly between
them.

5. Each blank card to be punched is read befor~ it is punched,
to make sure it is blank. A card that is not blank is stacked
in the read stacker for the hopper from which it came.

6. Stacker selection is as follows:

Condition Stacker

Reading from Primary
Punching from Primary
Punching from Secondary
Reading from Secondary

1

2
3
4

7. When preparing 96-column cards for the job stream, either
as JCL or as data, you should avoid punching column Bl, since
the system makes special use of this column. In any case,
the system only transmits the contents of columns l-BO; columns
B2-96 are completely ignored. If the RMTGEN parameter &S30BJDK
was set to 1, the system inspects column Bl. If that column
contains the character "1", the system assumes that the card
contains a ~exadecimal image of the first 40 bytes of an
BO-column card. It reads the next card, checks for a "2"
in column Bl, combines the cards into an BO-column card image,
and transmits it. No checks are made for validity of hexadecimal
characters. If a "2"-card does not follow a "l"-card, the
"l"-card is lost.

8. Programmers should be aware of certain punching restrictions
on the 5424. For all systems, if column 1 is X'6A' (12-
11 punch on an aD-column card) the system recognizes a HASP

HASP Remote Terminal Operator's Guide (System/3) - Page 2.2-4

l()h?

HAS P

job separator card, extracts the job number to punch a System/3
job separator card, and ignores the rest of the card. If
during RMTGEN the value of &S30BJDK was specified as 1, then
if column 1 is X'02' (12-2-9 punch on an 80-column card)
the system recognizes a card image of an OS object deck and
punches two 96-column cards with a hexadecimal representation
of the card; see note 7 above. If during RMTGEN the value
&S396COL was sPGcified as 1, then if column 73 is X'80' (12-
0-1-8 punch on an 80-column card) the system recognizes the
left 48 columns (if column 80 is odd) or the right 48 columns
(if column 80 is even) of a 96-column card; in this way all
96 columns of a System/3 card can be punched. This feature
is used to create the System/3 Remote Terminal Program Deck,
which is punched in System/3 load mode.

NOTES ON THE 1442

1. When a previously-dormant 1442 reads a nonblank card,
it becomes a reader. It remains a reader until you press
the START button after the hopper becomes empty (or until
it reads a /*EOF card); then it goes dormant. If it became
dormant because you pressed the START button with no cards
in the hopper, it also runs out the cards in its feed path.

2. When a previously-dormant 1442 reads a blank card, it
becomes a punch. It remains a punch until it has completed
punching all jobs queued for it. Only after all queued jobs
have been punched can you safely remove cards from the 1442
hopper; with the hopper empty and no more punching to do,
the 1442 goes dormant. You should press the NPRO button
to stack into the right stacker the two blank cards remaining
in the card feed path.

3. All cards processed by the system are stacked into the
left stacker.

NOTES ON THE 5203

1. At program load time, the system checks indicators of
the 5203.to determine which print chain is mounted. If the
indicators show a 48-character-set chain, the system assumes
character arrangement LC; otherwise it assumes character
arrangement PN.

2. At program-load time, the system sets number of print
lines per page to 66 (this may be different for your installation).
For dual-carriage printers, the system uses only the left
carriage; you must not press the RIGHT CAR. RESTORE key.

HASP Remote Terminal Operator's Guide (System/3) - Page 2.2-5

1063

HAS P

3. At program-load time, the system sets line numbers for
programmed page skipping. These are provided to simulate
the carriage tape control normally encountered in os. A skip
to carriage channel 1 will result in a page eject; a skip
to channel 12 will stop 5 lines from the bottom of the page;
and a skip to any other channel will result in no paper movement.
Carriage tape channels may, however, be defined differently
for your installation. -

2.3 TERMINATION OF A REMOTE JOB STREAM PROCESSING SESSION

When you are done using the System/3 as a Remote Job Entry
terminal, put into an available hopper the two cards

/*SIGNOFF
/*EOF

and press START on the card reader.

The /*SIGNOFF card tells HASP to disconnect the communication
line after it has finished sending the current print and
punch streams to the System/3 and receiving the current job
from the System/3. That is, HASP disconnects when all- currently­
operating functions are complete. If you sign off before
HASP has started printing or punching some or all of your
jobs, HASP will save the output for transmission to your
terminal the next time you sign on with the same remote terminal
identification.

Alternatively, either you or the central operator can tell
HASP to route the printed or punched output of any or all
jobs to the central site. See the /*ROUTE control card in
Section 4 of this manual and the $ROUTE command in the HASP
Operator's Manual.

When HASP finally disconnects the communication line, the
System/3 Communication Adapter will get a time-out error
every three seconds for about 20 seconds; then the DATA light
on the data set telephone will go out. The System/3 may
continue printing and punching for a short time. When the
System/3 is dormant, push the STOP button on the console
to stop the customer meter from running. Your RJE session
is now ended.

2.4 COMMAND PROCESSING

If your System/3 includes a 5475 Data Entry Keyboard or a
5471 Printer-Keyboard, you use the keyboard to enter commands.
Otherwise, you punch commands on cards and enter them through
a reader, exactly as if they were jobs.

HASP Remote Terminal Operator's Guide (System/3) - Page 2.3-1

I

HAS P

The only commands valid from a remote terminal are certain HASP
commands. These commands are described in another section, the
HASP Operator's Guide; you should have a copy nearby for
reference.

ENTERING COMMANDS FROM THE 5471

To type a command to HASP, press the REQ key. If the system
can immediately allow you to type a command, the PROCEED light
will go oni otherwise the REQUEST PENDING light will go on.
You may press the REQ key while you are typing a command, while
the system is typing a mesSage to you, or while the console is
dormant.

When the PROCEED light comes on, start typing your command. If
you make a mistake, press the CANCEL key and start typing again.

When you are done typing, press either the END key or the RETURN
key; their functions are identical. Your command will be trans­
mitted to HASP, where it will be executed (if valid) and re­
peated together with your remote terminal number on the central
operator's console.

If you type a command of 120 characters, the system will auto­
matically perform the END key function when you type the l20th
character.

The 5471 will not type messages if the end-of-forms switch is
on. When the 5471 runs out of forms, reload forms, hit the REQ
key, and then hit the END key. The 5471 will resume typing if
there are messages to be typed.

ENTERING COMMANDS FROM THE 5475

To type a command to HASP, merely start typing on the 5475 Data
Entry Keyboard. The keyboard is always alive. After you have
typed the first character, the column indicator will become ac­
tive and display "02", the position of the character you will
be typing next. If you make a mistake, depress the FLD ERASE
key; the column indicator will display "01" and you may start
typing again.

When you are done typing, depress the REL key to transmit the
command to HASP. When the column indicators go dark, you may
begin typing another command. If you type a command of 120
characters, the system will automatically perform the REL key
function when you have typed the 120th character.

HASP Remote Terminal Operator's Guide (System/3) - Page 2.4-1

1065

HAS P

ENTERING COMMANDS FROM CARDS

To send a command to HASP from a card reader, you must first
punch the command on a card. Starting in column 1, punch
a slash, punch an asterisk, and then punch the command. Since
all HASP conunands start with a dollar sign, columns 1-3 will
read "/*$". Then put one or more command cards,followed
by a /*EOF card, into an available card hopper, and push
START. Your commands will be transmitted to HASP, where
they will be executed (if valid) and repeated together with
your remote terminal number and reader number on the central
operator's console.

HASP Remote Terminal Operator's Guide (System/3) - Page 2.4-2

1066

HAS P

2.5 SYSTEM/3 LOCAL COMMAND PROCESSING

If your System/3 Remote Terminal Program includes the local
command facility, you can read in commands to be executed
locally by the System/3. Place a card containing the command
into any dormant card hopper and hit START. Do not use a
/*EOF card.

For each command, the command name starts in column 1 and is
followed by the operand field.

Command completion is indicated by one of the following mes­
sages, printed in the same place as error messages:

CODEOOOO - Command completed satisfactorily
CODEOOOI - Syntax error in command
CODE0002 - Operand value error in command

2.5.1 /*CARRIAGE - Define Printer Carriage Information

The operand field has the format:

where

[L=forms-length] [,chan=line-no] [,chan=line-no ...]

forms-length is the number of print lines on a page of
forms (must not be greater than 112)

chan is the carriage-channel number (must be
between land 12)

line-no is the line number at which forms skipping
will stop for the indicated carriage chan­
nel (must not be greater than forms-length)

Notes: 1. The /*CARRIAGE command is effective immediately
when read in.

2. Specification of the L= operand destroys all
previous carriage channel settings.

HASP Remote Terminal Operator's Guide (System/3) - Page 2.4-3

1066.1

HAS P

(The remainder of this page intentionally left blank.)

1066.2

HAS P

3.0 ERROR RECOVERY PROCEDURES

Two general classes of errors are defined in the System/3
Remote Terminal Processor: Communication Errors and Unit
Record Errors. For either type of error, the system generates
an 8-character error message. If your system has a 5471
console, error messages will be typed on it as errors occur.
If your system does not have a 5471 console, error messages
mayor may not be printed on the 5203 printer, depending
upon how your Remote Terminal Program was generated. The
format of all error messages is

. ttxxxxuu

where tt is the message type, xxxx is additional error informa­
tion, and uu is the device upon which the error occurred.
T~lC correspondence between uu and device is as follows:

Device

BSCA
1442
5203
5424

'3.1 COMMUNICATION ADAPTER ERRORS

uu

00
05
OE
OF

The communication technique used by HASP is such that there
should be no BSCA errors during a processing session. There­
fore, any BSCAerror that occurs while you are signed on is
an unusual condition, resulting from system or communication
facility malfunction or operational conditions. For all BSCA
errors, the BSCA processor within the System/3 Remote Terminal
Processor will automatically take corrective action; therefore,
you should regard all BSCA error messages as only informational
messages.

The following BSCA messages can be produced:

OIRREEOO

MEANING - A block sequence check occurred - a transmission
block was duplicated or lost. RR is the received block number,
and EE is the expected block number. Both RR and EE will
range from X'80' to X'8F'.

ACTION - Duplicate transmission blocks will be ignored. Lost
transmission blocks will cause automatic job restart.

HASP Remote Terminal Operator's Guide (System/3) - Page 3.1-1

1067

HAS P

02000000

MEANING - The System/3 received a negative acknowledgment (NAK)
from HASP.

ACTION - The transmission block which was negatively acknowledged
will be retransmitted.

03RRRROO

MEANING - The transmission block received by the System/3 had
an unrecognizable starting or ending sequence. The starting se­
quence is RRRR; if it is correct, the ending sequence is in
error.

ACTION - The System/3will send a NAK to HASP, which will then
retransmit the block.

05SSSS00

MEANING - The System/3 BSCA has a unit check. The BSCA status
indicators are SSSS.

ACTION - The appropriate action will automatically be taken
to continue or restore communication. Two of the most common
examples of BSCA unit check are 05800000-timeout error, and
05840000-timeout with abortive disconnect. Read Section 2.3
of this manual to find out when these errors can occur normally.

3.2 UNIT RECORD ERROR PROCEDURES

Unit record error messages are provided for errors on the 1442
Card Reader/Punch (an RPQ device), the 5424 Multi-Function
Card Unit, and the 5203 Printer.

5424 MFCU

The only MFCU error message is 05SSSS0F, where -SSSS are the
MFCU status indicators. In all cases, operator intervention
is required. You should check the MFCU control panel to deter­
mine which card hopper the error message applies to. PRI means
the rightmost (primary) hopper; SEC means the leftmost (second­
ary) hopper. The system will attempt to perform its previous
operation again when you have cleared the error condition: if
it was reading when an error occurred, it will try to read·the
same card again; or if it was punching, it will try to punch
again. Therefore, if the hopper was punching, you should throw

HASP Remote Terminal Operator's Guide (System/3) - Page· 3.2-1

1068

HAS P

away the last card punched; if the hopper was reading, you
should place the last card read in the hopper again, so the
system can re-read it. First, however, lift the cards out of
the indicated hopper and press the NPRO key to clear the error
condition.

5203 Printer

The only 5203 error message is 05SSSS0E, where SSSS are the
5203 status indicators. If any error light is on at the 5203
control panel, correct the condition and press printer START.
The system will automatically retry printing when an incremen­
ter failure or print check occurred •

. 1442 Card Reader/Punch

The only 1442 error message is 05SSSS05, where SSSS are the
status indicators. The system recovers from 1442 errors the
same way it recovers from MFCU errors. You should perform
the action indicated by the 1442 error lights; then throwaway
the last-punched card or place the last-read card back in the
hopper and press START.

3.3 REMOTE TERMINAL RESTART

In the event of an untimely interruption of the remote terminal
operation such as a machine, program communications, or environ­
mental failure, you should notify appropriate maintenance
personnel of the malfunction, save material which may be of
use in determining the source of the failure, and with the
aid of the central computer operator prepare for restarting
the terminal as follows: .

1. Notify the central computer operator of the failure and, if
necessary,request his assistance in preparing for restart.

2. Determine the current job being transmitted to HASP. (The
central operator has a record of the current job being submit­
ted to HASP.) The job stream starting with the current job .
must be submitted to HASP after restart.

3. Determine the loss of data on the output devices and inform
the central operator to BACKSPACE or RESTART the printer or
punch as necessary. (The central computer's line should be
made available for a subsequent session with the remote station
or other stations within the system.)

4. When the remote terminal is available, perform the steps re­
quired ~or initiating a "Remote Job Processing Session."

HASP Remote Terminal Operator's Guide (System/3) - Page 3.3-1

1069

HAS P

4.0 SYSTEM CONTROL CARDS

You may use the same HASP control cards in submitting your
job from a HASP Remote Terminal that you would use for local
job submission. These cards, the /*PRIORITY, /*ROUTE,
/*MESSAGE, and /*SETUP control cards, offer you a greater
degree of control over jobs submitted to HASP.

By contrast, certain other control cards are fundamental to
the operation of the System/3 Remote Terminal Processor:
the /*EOF, /*SIGNON, EOR, and I*SIGNOFF cards.

/*EOF

The /*EOF control card consists of the characters "/*EOF"
punched in columns 1-5. This control card must be the last
card read by an MFCU hopper when the hopper is reading, whether
jobs, commands, or just a /*SIGNOFF card is being read. This
card may optionally be used on the 1442, but the recommended
1442 procedure is as stated in Section 2.2.

/*SIGNON

The /*SIGNON card consists of the characters "/*SIGNON" in
columns 1-8, your remote terminal identification starting in
column 16, an optional password field starting in column 25,
and optional dialing information starting in column 34. You
will only rarely be using this card, since a /*SIGNON card is
already included in your HASP/RTPSYS3 deck.

The remote terminal identification field consists of the let­
ters "REMOTE" followed by one or two decimal digits. If your
remote number is less than ten, use (for example) REMOTEI
rather than REMOTEOl.

The password field should not be used unless required by your
installation systems programmer.

The dial fieid should be used only if your System/3 Binary
Synchronous Communications Adapter has the Auto-Call feature
and you' want the telephone number dialed automatically. The
word "DIAL" should start in column 34. It should be fOllowed
by at least one blank, and by an all-numeric telephone number
of any length. No alphabetic characters, hyphens, or embedded
blanks may appear in the telephone number.

See Section 2.1 for an explanation of the use of the /*SIGNON
card.

HASP Remote Terminal Operator's Guide (System/3) - Page 4.0-1

1070

HAS P

EOR

The EOR control card consists of the characters "EOR" in card
columns 2-4. It is used instead of the /*SIGNON card when the
default /*SIGNON card, assembled into the HASP/RTPSYS3 deck,
is not to be overridden. See Section 2.1 for an explanation
of the use of the EOR card.

/*SIGNOFF

The /*SIGNOFF card consists of the characters "/*SIGNOFF" in
columns 1-9. Its use is explained more fully in Section 2.3.

/*PRIORITY

The /*PRIORITY card consists of the characters "/*PRIORITY"
punched in columns 1-10 and a decimal number from 1 to 15
punched starting in column 16. You use this control card when
you want to assign to your job a specific priority relative
to other jobs submitted from the same remote terminal. The
placement of the /*PRIORITY card is immediately before the
OS JOB card.

If you do not use the /*PRIORITY card, HASP will automatically
set your job's priority to a number calculated from your JOB
card's estimated execution time and estimated print lines.

/*ROUTE

The /*ROUTE control card offers a convenient way to redirect
the printed and/or punched output of jobs submitted from your
terminal. You may place the /*ROUTE card anywhere within a
job; it is effective for all printed or punched output of that
job.

The card consists of three fields: starting in column 1, the
characters "/*ROUTE"; starting in column 10, either the word
PRINT or the word PUNCH, depending upon which output type you
are rerouting; and, starting in column 16, the destination of
the output, expressed as either LOCAL, REMOTEn, PRINTERn, or
PUNCHn .. LOCAL routing routes the selected output to any
printer or punch at the central site, whichever device is
appropriate. REMOTEn routing routes the selected output to
the appropriate device type at the named remote terminal.
If allowed by your installation, PRINTERn and PUNCHn may be
used in place of LOCAL to route your output to a selected local
printer or punch.

HASP Remote Terminal Operator's Guide (System/3) - Page,4.0-2

1071

HAS P

You may reroute both your printed output and your punched
output; use two /*ROUTE cards to do this.

/*MESSAGE

The /*MESSAGE control card requests HASP to give the message
punched in its columns 16-71 to the central operator. The
characters "/*MESSAGE" start in column 1. The operator re­
ceives the message just after the /*MESSAGE card is read.
If the /*MESSAGE card appears within a job, the job's number
will be appended to it. Otherwise, your remote number and
reader number will be appended.

/*SETUP

The /*SETUP card consists of the characters "/*SETUP" punched
in columns 1-7 and, starting in column 16, a free-form list
of volume serial numbers for volumes your job requires. The
list must end by column 71. This card causes your job to be
placed in hold status and a message to be printed to the
central computer operator listing the volumes your job requires.
When the operator has located the volumes, he will issue the
$RELEASE command for your job.

To continue your list of volume serial numbers, use one or
more /*MESSAGE control cards after the /*SETUP control card.

HASP Remote Terminal Operator's Guide (System/3) - Page 4.0-3

1072

HAS P

5.0 THE ST~RTER SYSTEM

The System/3 Remote Terminal Processor Starter System i~;a
deck of 96-column cards distributed as a part of the H1\Sf\'
System. You should use the Starter System to punch attbe
System/3 the punched output of the RMTGEN process.

To use the Starter System deck, you must add two cards .ttlle
end of the deck. The first card describes the size of tn.
HASP MULTI-LEAVING buffers and is in exactly the same fo~\t·;·,
as for the HASPGEN parameter &MLBFSIZ=. For example, if the
correct size were 400 bytes, you would punch n&MLBFSIZ=400"
starting in column 1.

The second card to be added is a /*SIGNON card. You punch
this· card according to its description in Section 4.0 ofthi.
manual.

The Starter System deck will work on any System/3 which SUPPQxzts
HASP MULTI-LEAVING Remote Job Entry. The deck it punches will
be your customized System/3 Remote Terminal Processor, asde.ftned
by your installation systems programmer. The Starter System
does not include support for the 5475, 5471, or 1442.

HASP Remote Terminal Operator I s Guide (System/3) - Page .$.O~.l

1073

HAS P

(The remainder of this page intentionally left blank.)

1074

HAS P

11.10 HASP REMOTE TERMINAL (3780) OPERATOR'S GUIDE

The following section contains detailed instructions for operating
an IBM 3780 as a HASP remote workstation. This manual is intended
as a removable section for use at the remote location.

HASP Remote Terminal Operator's Guide (3780) - Page 11.10-1

1074.1

HAS P

(The remainder of this page intentionally left blank.)

1074.2

HAS P

THE

HAS P

s Y S T E M

IBM 3780 Remote Workstation Operator's Guide

1074.3

HAS P

TABLE OF CONTENTS

SECTION

INTRODUCTION

SWITCH SETUP

ESTABLISHMENT OF COMMUNICATIONS .

OPERATING PROCEDURES ...

TRANSMISSION TO THE CENTRAL COMPUTER

RECEPTION FROM THE CENTRAL COMPUTER .

ERROR RECOVERY

ERROR RECOVERY WHEN TRANSMITTING

ERROR RECOVERY WHEN RECEIVING

CENTRAL COMPUTER CONTROL

...

.
.

.

Table of Contents -Page i.

1074.4

PAGE

1

3

4

6

7

8

9

10

12

14

HAS P

INTRODUCTION

The HASP SYSTEM is a computer program which operates in the central
computer. It provides a very efficient means of gathering jobs,
scheduling their execution under OS/360 based on job priority and
job class, collecting each job's printed and punched output, and
returning that output to the submitter of the job. The process of
gathering the card images which constitute the job, and of saving
the job's output for later printing and punching, is called SPOOL­
ing. While HASP is reading or printing on your 3780, it may be
simultaneously reading, printing and punching on all of the other
37805, 27705, ~780s, the 1130 systems, the S/3 systems and the 360
systems to which the central computer is attached for remote job
entry. "

HASP Remote Job Entry (HRJE) is a feature of the HASP system whereby
installations that are remote from the central computer may send
jobs to the central computer for execution and receive back their
printed and punched output. HRJE supports as remote terminals all
models of System/360, the System/3 Model 10, the 1130 system, 2780s,
2770s, 2780s and 1978s. A remote terminal may b~ at any distance
from the central computer. It may be next door, or it may be thou­
sands of miles away. The only requirement is that some means
(usually telephone lines) exists to allow it to communicate with
the central computer.

Jobs to be submitted from a remote terminal have exactly the same
OS/360 Job Control Language cards as jobs that are submitted di­
rectly to the central computer. Their output is routed back to the
terminal from whence they came, unless special HRJE control cards
or operator commands specify differently.

The IBM 3780 Data Communications Terminal can connect to. a System/
360 or System/370 using HASP to transmit jobs to the 360 or 370 for
execution and to receive the printed output from those jobs. The
3780 is not a computer but rather an input/output device. HASP con­
trols it much like any other input/output device, when connected to
the cent"ral computer via telephone lines and an IBM 2701 Data Adapter
or an IBM 2703 Transmission Control Unit.

The 3780 Terminal contains a standard card reader,printer, associ­
ated control circuitry, and an operator control console. These de­
vices (mechanical features, speeds, etc.) are described in the SRL
"IBM 3780 Data Communications Terminal", form GA27-3063 which you
should have on hand for reference when operating your 3780. Actual
speeds at which" these devices will operate when communicating with
HASP depend upon the type of telephone line used and on the amount
of information in each card or line to be transmitted or received,
as well as the devices' mechanical speeds which are given in the SRL.

HASP Remote Terminal Operator's Guide (3780) - Page 1

1074.5

I

HAS P

The remaining sections of this manual discuss switch setup; communi­
cations establishment; normal operating procedures for reading and

. printing jobs; error recovery; and control cards.

HASP Remote Terminal Operator's Guide (3780) - Page 2

1074.6

HAS P

SWITCH SETUP

During all 3780 operations with HASP, certain console switches
should be set as follows:

TERM MODE - LINE

SPACE COMPRESS/EXPAND - ON

OFFLINE TEST - OFF

AUTO RESTART - OFF

ANSWER - MANUAL

INQUIRY MODE - OFF

When power is on, console lights will show some ofthe·settings
which are in effect.

The TRANSPCY switch should be set in the OFF position except when
you are transmitting EBCDIC card decks which use all 256 possible
punch combinations (for example, object decks) .

HASP Remote Ter,minal Operator's. Guide (3780) - Page 3

1074.7

HAS P

ESTABLISHMENT OF COMMUNICATIONS

Before your 3780 terminal can transmit jobs to or receive printed
output from the central computer, the computer must establish a
path of communication to the terminal and must recognize it as a
3780 terminal (rather than, say, a System/360 Model 20 being u$ed
as a terminal). Depending upon how your 3780 is connected to the
central computer, you mayor may not have to use a special control
card, called a sign-on card.

If your terminal is permanently connected to the central computer
(probably through private lines leased from the telephone company),
you need only inform the central operator who will then issue the
HASP command:

$ START LNEmm

(where rom is a one or two digit decimal number). Either you or the
central operator will know the proper line number to use, depending
upon your installation. Once the operator has given this command
and the 3780 POWER ON key is pressed, you may begin to read in a
job or to print the output from a previous job.

However, if your 3780 is connected by ordinary swiiched telephone
lines to the central computer, you will have to dial a telephone
number to establish communications. You will have a sign-on card
and a telephone number to call. Carefully perform the following
steps.

1. Press the 3780 POWER ON key (located on the card reader) .

2. Press the STOP key then the NPRO key on the card reader. Hold
it in for a few seconds to make sure the card feed mechanism
is clear.

3. Place the sign-on card and the card weight in the card hopper.

4.' Dial the telephone number you have been ' given. The TALK button
on the dataphone must be depressed to do this.

5. Listen for the normal sound of ringing followed by the normal
sound of answering. You should then hear a high-pitched tone
of about six seconds' duration, followed immediately by a
short bleep.

6. When you hear the bleep, press the DATA button on the tele­
phone. The DATA SET READY light on the console should come
on. (YoU can hang ~p the telephone handset now.)

HASP Remote Terminal Operator's Guide (3780) Page 4

1074.8

HAS P

7. Press TERM RESET on the console, turn the.card reader EOF
switch on, and press the card reader START key to run the
sign-on card into the card feed.

8. Press the START key on the console; the BID light should come
on. Momentarily, the card reader should read the sign-on card
and move it into the stacker.

Your 3780 is now signed on, and you may start reading or printing.

If ·you do not hear the telephone being answered, the central opera­
tor has not issued the cornmand--

$START LNEmm

or has issued it for the wrong line. Ask him to issue the proper
command and then re-dial if necessary. If instead of ringing you
hear a busy signal, the line is of course busy. Call back in a few
minutes or try an alternate number if available.

If your sign-on card will not read, run out the sign-on card, place
it in the reader again and repeat steps 7 and 8.

If still unsuccessful, call the central computer operator to verify
that you have the correct sign~on card and telephone number, and
that he has started the line correctly.

HASP Remote Terminal "Operator's Guide (3780) - Page 5

1074.9

HAS P

OPERAT·ING PROCEDURES

The next two sections discuss procedures for transmitting jobs to
the central computer and for receiving their printed output. The
3780 will not transmit or receive jobs unless you have correctly
signed on. Refer back to page 4 for the sign-on procedure.

At any given time, a signed-on 3780 is either reading in a job,
printing a job, or waiting for work. Thus, the normal cycle of a
job submitted from the 3780 is: reading the job (transmitting it
to the central computer), waiting for it to execute, and receiving
its printed output. Often, after an operator has read in a job
through the 3780, he will disconnect (sign-off) the 3780 to save
telephone line charges and sign-on at a later time to receive his
output.

Since the 3780 does not have a card punch, the central HASP system
will normally route any punched output produced by jobs submitted
from a 3780 to the central computer card punch or another remote.
If punched output is routed to your 3780, it will be printed on
the printer.

HASP Remote Terminal Operator's Guide (3780) - Page 6

1074.10

HAS P

TRANSMISSION TO THE CENTRAL COMPUTER

The 3780 can transmit jobs to the central computer only if signed
on and not busy printing. However, you may make it ready to trans­
mit any time that it is signed-on. You must not press TERM RESET
while a job is being printed. If you accidentally do this, a line
restart (described on page 9) must be done.

To transmit job(s), take the following steps:

1. Press the card reader STOP key then the NPRO key to
clear the feed.

2. Place one or more jobs in the card read hopper. Jobs
may be stacked one on top of the other.

3. Press card reader START to run cards into the feed. The
reader light on the console should stop blinking and
come on steady indicating that the card reader is ready.
Turn on the reader EOF switch if all the cards you intend
to transmit fit in the hopper.

4. Turn on the console TRANSPCY switch if required by the
cards to be transmitted (for example, object decks) .

5. Press the START key on the consolej the BID light should
come on.

6. If the 3780 is printing, it will continue until the end
of the current job. Then, or as soon as START is pressed
if the 3780 is idle, the 3780 will ask permission to trans­
mit. When the central computer answers affirmatively
(within 15 seconds), the BID light should go out and cards
should begin reading into the stacker.

If you add more cards, be sure to turn on the reader EOF switch when
all cards you intend to transmit are in the hopper. If you allow
the hopper to become empty in the middle of a job's input, you must
not have the EOF switch on.

You may press STOP on the card reader at any time to halt reading
temporarily to facilitate removing cards from the stacker or adding
more to the hopper. If you press reader START within 30 seconds,
transmission will continue without a reader error condition.

It may be possible to interrupt printing to begin transmitting.
See page 13 for details.

HASP Remote Terminal Operator's Guide (3780) - Page 7

1074.11

HAS P

RECEPTION FROM THE CENTRAL COMPUTER

After your job has completed reading, HASP queues it for execution
at the central computer. As the job executes, it may produce
printed and punched output. HASP saves these outputs and at the
end of the job queues the printed output for printing, usually upon
the terminal from which the job was read. You may have turned off
the 3780 or otherWise disconnected it from the computer; if so, you
must follow the sign-on procedure before you can receive output
from the job.

After a job has finished printing, HASP queues its punched OUtput
(if any) for punching, usually at the central computer if the job

was submitted from a 3780.

The 3780 will receive printed output from the central computer if
HASP has output to send, the terminal is not transmitting, and the
printer is ready. You should always have the printer ready, even
when transmitting, so that the 3780 can automatically begin receiv­
ing when transmission is finished.

The printer is ready if it is loaded with forms, has a correct car­
riage tape, if the carriage is engaged, the typebar properly in­
stalled, the cover closed, and the printer START key has been
pressed.

The printer INHIBIT IRS switch should always be off when operating
with HASP.

A blinking PRINTER light on the console indicates that the printer
is not ready. Even after making it ready, it may be necessary to
press CHECK RESET and START on the console to make the light stop
blinking.

Printed output jobs will be separated by separator pages, which are
described in the central computer HASP Operator's Guide.

HASP Remote Terminal Operator's Guide (3780) - Page 8

1074.12

HAS P

ERROR RECOVERY

A wide variety of problems can occur when operating almost any type
of machine, including the 3780. Some problems occur only rarely and
are not documented here. See the SRL "IBM 3780 Data Communications
Terminal", form GA27-3063, for a description of any problems you en­
counter which are not discussed in this Guide, as well as how to
load paper in the printer, how to fix a card jam, etc. A copy of
this SRL should be near your 3780.

In general, there are three levels of error recovery which you may
have to perform, depending upon the severity of the error. They
are:

1. Fix the difficulty (a not ready I/O device, check condi­
tion, etc.) and continue. See the following two sections
for the most cornmon examples.

2. Job restart. This is done when the possibility of incor­
rect or lost data exists and requires the assistance of
the central computer operator. Job restart procedures
for both transmitting and receiving are described in the
following two sections.

3. Line restart. This is done u'sually when job restart is
unsuccessful or any time it is necessary to press TERM
RESET to clear a check condition during printing. You
should tell the central computer operator to issue the
HASP command:

$RESTART LNEmm

then re-establish communications as previously described
on pages 4 and 5. Incomplete input or output jobs are
handled as described for job restart in the following
two sections.

If even line restart fails to establish successful operation, you
probably have a hardware and/or software problem which must be ana­
lyzed by your installation's systems personnel and IBM Customer
Engineers.

Most problems you encounter will result in lights appearing on the
3780 console or the I/O devices themselves. Some of these lights
are not error lights. These are DATA SET READY, CARRIER OFF, DATA
IN BUFFER, LINE MODE, OPERATE, BID, TRNSPCY, MANUAL ANSWER, and any
of the I/O device lights when on steady. Any I/O device light which
is blinking indicates that the device is not ready. Other lights
provide clues to the difficulty and will be discussed in the follow­
ing two sections.

HASP Remote Terminal Operator's Guide (3780) - Page 9

1074.13

HAS P

ERROR RECOVERY WHEN TRANSMITTING

If job restart is required while transmitting, the OS job which is
only partially read into the 3780 must be re-read from the begin­
ning. You should ask the central computer operator to issue the
HASP command:

$DELETE RMnn.RDl

to delete the partially read job. Press TERM RESET. Load the hop­
per beginning with the JOB card of the incompletely read job, press
reader START and console START.

Any card reader trouble while transmitting is indicated by a blink­
ing READER light. The following lights on the card reader may fur­
ther indicate the type of trouble.

FEED CHECK - The bottom card in the hopper failed to feed. Remove
hopper cards. Press NPRO. Repair bottom hopper card
if necessary and make sure the feed throat is clear.
Reload cards. Press reader START and console START.

ATTENTION - Full stacker, empty hopper with EOF off, and cover open
are possible causes. Correct, press reader START and
console START.

READ CHECK - Last card was incorrectly read due to invalid or off
punching or read station jam. Last card in stacker
(if no jam) and following card (run out by NPRO after
hopper cards are removed) must be re-read. After ap­
propriate correction, place these two cards at the
front of the cards in the hopper, press reader START
and console START. If a jam is so severe that the or­
der of cards or the last card read is not clear, do a
job restart.

HASP retries all transmission line errors automatically until trans­
mission is successful, however, certain console lights may indicate
necessary action on your part as follows.

TERMINAL ADDRESS - HASP is trying to send output while you are try­
ing to start an input function. Continue input proce­
dure until you have turned on the BID light. Then
press CHECK RESET and wait for input to begin. Press
CHECK RESET if TERMINAL ADDRESS comes on again. If
you are not able to initiate the input function, you
may have interrupted an incomplete output function.
You must make your printer ready to accept the output
and wait until the next output job ending to again
attempt transmission, or try to cause a printer
"suspend" as described on page 13.

HASP Remote Terminal Operator's Guide (378.0) - Page 10

1074.14

HAS P

BID RETRY - HASP has failed to respond to the 3780 within 15 to 45
seconds (depends on 3780 wiring option). If any cards
are in the stacker, a duplicate block of data will prob­
ably be sent. Follow the job restart procedure given
previously.

INPUT CHECK, BUFFER CHECK, TRNSPCY CHECK - With these serious errors
. you must always do a job restart. Make sure that you

have turned on the TRANSPCY switch if the job contains
OS object decks or other cards requiring transparent
transmission.

RECORD CHECK or LINE CHECK - These lights may come on while HASP
is attempting retransmissions for line errors and will
go out if recovery is successful. If they stay on and
transmission does not proceed, you must do a job
restart.

I HASP Remote Terminal Operator's Guide (3780) - Page 11

1074.15

HAS P

ERROR RECOVERY WHEN RECEIVING

If job restart is required while receiving, you must cause HASP to
begin printing the current partially completed job from its begin­
ning. You should ask the central computer operator to issue the
HASP command:

$ RESTART RMnn.PRl

to cause the restart. Make your printer ready and press CHECK
RESET. Discard the partially completed output beginning with the
last previous separator page. You may ask the central operator to
issue the HASP command:

$BACKSPACE RMnn.PRl

instead. Only the few duplicated pages should be discarded in this
case. Do not press TERM RESET when doing a job restart while re­
ceiving. If TERM RESET is required to clear a check condition, a
line restart must be done.

Output device trouble is indicated by a blinking PRINTER light and
lights on the printer as follows.

FORM CHECK, END OF FORM, CARRIAGE INTERLOCK - The printer carriage,
forms, or carriage tape are not ready or jammed. Cor­
rect the condition, press printer RESET, console CHECK
RESET, printer START, and console START.

Other printer CHK lights - The printer had a parity error or other
hardware malfunction. See the SRL to interpret CHK
lights. Press RESET, console CHECK RESET, START, and
console START. Failure to recover indicates hardware
trouble.

After any of the above printer recoveries, duplicate lines may be
printed because HASP's recovery programming is designed to prevent
loss of data at all costs. For most applications, these duplicate
lines are obvious and may simply be crossed out or ignored. For
more sensitive applications, you may use the backspace procedure
described previously, which will make it easier to discard duplicate
output at page or document boundaries.

Certain console lights may require your attention while receiving,
as follows.

TERMINAL ADDRESS - HASP is trying to send output but your 3780 is
not ready. Make sure your switch setup is correct,
ready the printer and press console CHECK RESET.

HASP Remote Terminal Operator's Guide (3780) - Page 12

1074.16

HAS P

OVERRUN - This usually indicates that you have signed-on using the
wrong remote number. You may have submitted jobs pre­
viously using this wrong number which will need to be
re-routed to your correct number. You may have received
output which is not yours. Ask the central operator to
help you correct this confusion and do a line restart so
that you can sign-on using the correct number.

BUFFER CHECK - This serious hardware error will always require you
to do a line restart~

LINE CHECK - HASP is attempting re-transmissions. If they are suc­
cessful, the light will go out. If the light stays on
and printing does not continue within a short time, you
must do a job restart.

Depending on an option chosen for the central HASP System at your
installation, actions during printer error recovery may be somewhat
different than described above. If this altered mode of printer
operation is applicable to your 3780, when you make the printer
ready after any of the above stops the job which was printing will
be "suspended", a message and terminal separator line(s) will be
printed, and the job will be requeued in the print queue for your
terminal. You may cause this "suspend" action yourself by pressing
CARRIAGE STOP while printing, then readying the printer. You may
press the printer STOP key to make minor carriage adjustments
without causing a "suspend", if you ready the printer within 34 sec­
onds or periodically press STOP, CARRIAGE SPACE, or CARRIAGE RESTORE
to extend the 34 second period.

Actions after the printer "suspend" depend on the state of your ter­
minal and the output queue. You may start transmission as described
on page 7 and following or you may wait for more output. Print jobs
of higher priority than the suspended job will be received before
the suspended job. When the suspended job resumes printing, it will
do so at approximately 1 page prior to the page of interruption.

HASP Remote Terminal Operator's Guide (3780) - Page 13

1074.17

HAS P

CENTRAL COMPUTER CONTROL

This section describes the control cards you may use to sign on,
send a message to the central computer operator, change the desti­
nation of printed output, and force the priority of a job.

1
/*SIGNON

16 25
REMOTEnn password

This is the sign-on card. The number nn is a one or two digit deci­
mal number whose purpose is to correlate this remote device with in­
formation about it in the central computer. Leave the password
field blank unless you are required to give a password.

1
/*SIGNOFF

You may use the sign-off card after the last job you read in. If
you use this card, the telephone circuit will disconnect after about
30 seconds.

1
/*MESSAGE

16
message

When you read in this card, the contents of columns 16-71 will imme­
diately be printed on the central computer operator's console. You
may place this card anywhere within a job; it will be deleted before
the job is processed.

The typed message will automatically have the job number appended
to it if it is found within a job. If it is found outside a job,
the remote terminal ID will be appended.

1
/*ROUTE

10 16
PRINT LOCAL

This card causes printed output for the job within which it was
found to be printed at the central computer instead of at the re­
mote terminal. A good place to put this card is right after the
//JOB card.

On the above ROUTE card, you may use REMOTEnn or PRINTERn in place
of LOCAL, beginning in column 16. These alternate forms cause the
printed output for the job to go to a remote other than yours, or
to a specific printer at the central computer rather than any printer
at the central computer.

1 16
/*PRIORITY nn

HASP Remote Terminal Operator's Guide (3780) - Page 14

1074.18

HAS P

If you use -this card, it must immediately precede the //JOB card.
The number nn is some one or two digit number between 0 and 15 in­
clusive. It specifies the urgency with which the job should be
processed relative to other jobs submitted from the same remote
terminal.

Depending on features of the central HASP System at your installa­
tion, you may use a subset of central HASP operator commands, sub­
mitted on cards as follows.

1
/*command

In place of "command", you should punch any of the commands listed
in Table 1.1.3 of the central HASP Operator's Guide which are valid
from a remote location. For example, "$DQ,4" punched following the
"/*" causes a display of the number of jobs in various queues at
the central site which are routed to the terminal REMOTE4.

A group of one or more command cards may be transmitted alone or
may be placed in front of a group of jobs being transmitted.

Responses to commands from HASP are printed on the printer, after
the paper is positioned at the top of a new page. Such responses
are always received first after a transmission is completed, before
any job's printed output is received. Certain spontaneous messages
(i.e., not responses) are also received. They are:

messages acknowledging each job transmitted by your terminal
and messages from other operators in the system to you by
use of the "$DM" command.

You should read the HASP Operator's Guide to learn about the various
commands you may use (Table 1.1.3), what their effects are, and how
they should be constructed. Also, output device control and special
forms processing are discussed in Section 7 of that Guide. However,
certain properties of terminals like your 3780 require more explana­
tion of these two topics.

Certain commands which control output devices ($B, $C, $E, $F, $1,
$N, $Z) actually refer to a job currently in active processing on
that device which is to be backspaced, restarted, etc. When you
submit commands from your 3780, your printer is not active; there­
fore, these commands have no effect. This is true even after you
"suspend" a print job as previously described on page 13. The
"suspend" is functionally equivalent to $I, which includes the func­
tion of $B. To use the other commands, you must ask the central
operator to enter them.

HASP Remote Terminal Operator's Guide (3780) - Page 15

1074.19

I

HAS P

The $S, $P, and $T device commands are effective when submitted
,from your terminal. Furthermore, the $C command is effective when
referring to a job rather than a device. The $H, $A and $R commands
may also be used effectively.

Special forms for printer output can effectively be controlled from
your terminal without central operator assistance, if all jobs sub­
mitted from (or routed to) your terminal follow certain conventions
in requesting special forms. Programmers should be required to use
only special routing output classes (J and K normally) with requests
for special forms by data set. Special print forms for an entire
job may be requested in the HASP accounting field of the JOB card.
In no case should special forms be requested when using the ordinary
output classes (A and B normally) as this will cause the system it­
self to request mounting of special forms at a time when you, as
3780 operator, are unable to enter the $S command to continue.

Assuming the above conventions, you should periodically submit the
$DF command to determine if special forms jobs are queued for output
on your terminal. If so, you should select the type of forms from
those queued which you desire to process first on your printer,
mount that forms, enter a command "$T RMn.PRl,F=forms#", and wait
for printing to occur. When jobs stop processing on the printer,
you should resubmit the $DF and change to a new forms if indicated.
The parameter "F=RESET" should be used to return the printer to or­
dinary output processing. The "F=AUTO" parameter should not be
used. You may want to use the $P and $S device commands, prior to
and after the $T command respectively, to prevent HASP from attempt­
ing to send an output job while you are changing forms.

HASP Remote Terminal Operator's Guide (3780) - Page 16

1074.20

HASP

12.0 APPENDICES

The following appendice s are included as additional information

pertaining to the current status of the HASP System.

Appendices - Page 12.0-1

1075

HAS P

12.1 REFERENCE LISTING OF HASPJCL

This section contains a reference listing of the source module
HASPJCL which is printed and punched during a complete HASPGEN,
as described in Section 10.1.4. The module contains four sample
jobs for use when installing HASP, as described in Section
10.2.2.

Reference Listing of HASPJCL - Page 12.1-1

1076

HAS P

12.1.1 Sample Job HASPSVC

IIHASPSVC JOR (OOOO,OOOO.,'INSTAll HASP SVC',MSGlEVEl=l
IISCRATCH EXEC PGM=IEHPROGM
IISVSPRINT on SYSOUT=A
IISVSRfS DO UN[T=SVSOA,VCLU~E=SER=YVVVyy,O[SP=OLD
IISVSIN 00 *

PENAME OSNAME=SVS1.OlONUC,NEWNAME=SYSl.NEWNUC,VOl=SVSDA=VVVVYV
UNCATLG DSNA~E=SVS1.NEWNUC

SCRATCH OSNAME=SVSl.NEWNUC,VOl=SYSOA=YVVYVV,PURGE
1*
IILKEO EXEC PG~=IEWL,PAR~='XREF,lET,lIST.NCAl.SCTR·,REGION=q6K
IIHASPOBJ DO DSNAME=SYS1.HASP08J,DISP=SHR
IINUClEUS 00 DSNAME=SYS1.NUCLEUS,DISP=SHR
IISYSUTI DI) UNIT=SYSOA,SPACE=CCYL,llO,5))
IISYSLMOO DO OSNAME=SVSl.NEWNUC,UNIT=23l4,VOlUME=SER=VVVYYY,
II DISP=(NEW,CATLG),lABEL=EXPOT=QQ36b,
II SPACE=(TRK,(40"2),,CONTIGt
IISVSPRINT DO SVSOUT=A
IISVSLIN OD *

INSERT IEAANIPO
INSERT IEAAIHOO USE ONLY FOR MFT
INSERT IEAQFXOO USE ONLY FOR MVT
INSERT IGFCCH USE FOR SYSTEMS WITH CCH V03.l

INCLUDE ~ASPOBJ(HASPSVCI
INCLUDE NUClEUSIIEANUC01)

NAME IEANUCOl(R)
1*
IIRENA~E EXEC PG~=IEHPROGM
IISYSPRINT DO SYSOUT=A
IISY$RES DO UNIT=SYSDA.VOLUME=SER=YYYYYY,DISP=OLO
IISYSIN DD *

1*

RENAME OSNAME=SVSl.NUCLEUS,NEWNAME=SYS1.OlDNUC,VOL=$YSDA=YYYVYY
RENAME DSNAME=SYSl.NEWNUC,NEWNAME=SYS1.NUClEUS,VOL=SVSDA=VYYYYy

OC020000
00040000
00060000
00080000
00100000
00120000
00140000
00160000
00180000
00200000
00220000
00240000
00260000

C00280000
C00300000

00320000
00340000
00360000
00380000
00400000
00420000
00430000
00440000
00460000
00480000
00500000
00520000
00540000
00560000
00580000
00600000
00620000
00640000

Reference Listing of HASPJCL -- Page 12.1-2

1()77

HAS P

12.1.2 Sample Job HASPROCS

IIHASPROCS JOB (OnOo,OOOO),'INSTALL HASP PROCS',MSGLEVEL=l 00660000
IIPRncs EXEC PGM=IEBUPOTE,PA~M=NEW 00680000
IISYSPRINT 00 SYSOUT=A 00100000
IISYSUT2 DO U5NAME=SYS1.PROCLIB,DISP=SMR,OCe=lRECl=80 00120000
IISYSIN 00 DATA 00740000
.1 ADO NAME=~ASP,lIST=All 00160000
.1 NU~BER NEw1=20000,INCR=20000 00180000
IIHASP PROC J09=STRTHASP 00800000
IIIEFPROC EXEC PGM=IEFIRC,REGICN=50K, C00820000
II PARM='01499900100124905100SYSOA EOOO' C00840000
II BPPTTTOOOMMMlllCCCRlSSSSSSSSAAAA 00860000
IIIEFRDER DO OSNAME=SYSl.PROCLI8(&JOB),OISP=SHR, C00880000
II DCB=(~UFNO=1,RECf~=FR,lRECL=80,BlKSIIE=80J 00900000
IIIEFPDSI DO DSNAME=SYS1.PPOClIB,OISP=SHR 00920000
IIIEFDATA DO DIjp.1MY 00940000
.1 ADD NAME=STRTHASP,lIST=ALL 00960000
.1 NUMBER NEW1=20000,INCR=20000 00980000
IIHASP JOH 'HASP-II','INVOKE MASP SYSTEM',CLASS=H,MSGCLASS=H 01000000
IISYSTEM EXEC PGM=HASP,TIME=1440,REGION=51K 01020000
IIOLAYllB DO OSNAME=SYSl.HASPOllB,OISP=SHR 01040000
II S INIT.PO",H 01060000
II 01080000
.1 ADD NAME=HOSROR,lIST=ALl ASS RDR FOR MVT ONLY 01100000
.1 NUMBER NE~1=20000,INCR=20000 01120000
IIIEFPROC EXEC PGM=lEFVMA,REGION=18K, V03.1C01140000
II PARM='00103000100125205011SPOOl E00001,1011201604EOOOSYSOA 00' 1 01160000
II. BPPTTTnnO~M~(IICCCRlSSSSSSSSAAAAEF,EJJAARRATABAAAODDDDDDDGK 01180000
IIIEFRDER 00 tJNIT=OOC,OISP=OlO, C01200000
II OC8= (RECFM=F, lRECl-=AO, BLK S IlE=80, BUFNO= 1) 01220000
IIIEFPOSI 00 OSNA~E=SYS1.PROCLIB,DlSP=SHR 01240000
IIIEFDATA DO LJNIT=SYSDA,VOlUME=REF=SYSl.lINKlIB, C01260000
II SPACE=C80,(200,200),RlSE,CONTIG),OISP=OLO, C012ROOOO
II OCB=(OSORG=PS,RECFM=FB,LRECl:80,BUFl=80,BlKSllE=80) 01300000
.1 ADD NAME=HDSRDR,lIST=All STn RDR FOR MFT OR MVT 01320000
.1 NUMBER NEWl~20000,INCR=20000 01340000
IIIEFPROC EXEC PGM=IFFIRC,REGION=52K, V03.1C01360000
II PARM='OOl03000100L25205011SPOOL (01380000
II BPPTTTOOC~M~IIICCCRlSSSSSSSS 01400000
IIIEFROER DO UNIT=OOC,DISP=OlD, C01420000
II OCB=(RECf~=F,lRECl=80,BlKSIlE=80,BUfNO=1) 01440000
IIIEFPOSI DO nSNA~E=SYSl.PROClIB,OISP=SHR 01460000
IIJFFnATA 00 UNIT=SYSOA,VOlUME=MEF=SYSL.lINKlIB, C01480000
II SPACE=(80,(20Q,200),RlSE,CONTIG),OISP=OlO, C01500000
II DCB=(OSORG=PS,RECFM=FB,LRECl=80,BUFL=80,BLKSIZE=80) 01520000
.1 ADD NAME=HOSWTR,LIST=All USED ONLY IF &WTRPART NE • 01540000
.1 NUMBER NEW1=20000,tNCR=20000 01560000
IIIEFPROC EXEC PG~=IEFS0080,PARM=·PA',RF.GICNs12K 01580000
IIJEFROER DO LJNIT=1403,OSNAME=SYSOUT,DISP=(NEW,KEEP), COL600000
II OCB=(RECf~=F~,LRECl=133,BlKSIZE=133,BUFL=133,BUFNO=1J 01620000
.1 ENDUP 01640000
I. 01660000

Reference Listing of HASPJCL - Page 12.1-3

1078

HAS P

12.1.3 Sample Job HASPHASP

IIHASPHASP JOB
IlSCRATCH EXEC
IISYSPRINT DO
IIOlAYllB DO
IISYSIN 00

lOOOO,OOOO),'INSTAll HASP PROGRAM',MSGlEVEl-1
PGM=IEHPROGM
SYSOUT=A
UNIT=SYSOA.VOlUME=SER=IIIIZI,OISP=OLO

•
UNCATlG
SCRATCH

OSNAME=SYS1.HASPOlIB
OSNAME=SYS1.HASPOLIB,VOl=SYSOA=ZIZIZI,PURGE

I.
IIOBlO
IISTEPlIB
IISYSIN
I·
IISYSOBJ
II
II
II
II
II
II
II
II
II
IISYSlIN
II
IIOlAYllB
II
II

EXEC PGM=HASPOBLO
00 OSNAME=SYS~.HASPMOO,OISP=SHR
DO *,OCB=BlKSIZE=80

00 OSNA~E=SYS1.HASPOBJ(HASPNUC),OISP=SHR
00 OSNA~E=SYS1.HASPOBJ(HASPROR.,OISP=SHR
00 OSNAME=SYS1.HASPOBJ(HASPXEQ),0ISP=SHR
DO OSNAME=SYS1.HASPOBJlHASPPRPU),OISP=SHR
00 OSNA~E=SYS1.HASPOBJ(HASPACCT),0ISP=SHR
DO OSNAME=SYS1.HASPOBJCHASPMISC),D1SP=SHR
DO OSNAME=SYS1.HASPOBJ(HASPCON),DISP=SHR
DO OSNAME=SYSl.HASP08JIHASPRTAM),OISP=SHR
DO OSNAME=SY~l.HASPOBJ(HASPCOMM.,OISP=SHR
00 OSNAME=SYSl.HAspnAJIHASPINIT),OISP=SHR
DO DSNAME=&&TEMP,UNIT=SYSSQ,OISP=(NEW,PASS),

SPACE=(400,(4CO,50)),OC8=BlKSIIE=400
DO OSNAME=SYS1.HASPOlIB,UNIT=SYSDA,VOlUME=SER=ZIIZIZ,

OISP=CNEW,CATlG),lABEL=EXPOT=99366,
SPACE=(1024,60"CONTIG)

01680000
01100000
01120000
01740000
01160000
01180000
01800000
01820000
01840000
01860000
01880000
01900000
01920000
01940000
01960000
01980000
02000000
02020000
02040000
02060000
02080000
02100000

C02120000
02140000

C02160000
C02180000

V03.l 02200000
IISYSPRINT DO
IllKEO E:XEC
IIHASPOBJ 00
IISYSUT1 00
IISYSlMOO 00
IISYSPRINT DO

SYSOUT=A,OCB=ALKSIZE=121
PGM=IEWL,PARM=·LIST.XREF·,REGION=~6K,CONO=(4,LT,OBLO'
DSNAME=SYS1.HASPOBJ,OISP=SHR
OSNAME=SYS1.UT1,OISP=OlO
DSNAME=SYSl.LINKLIB,OISP=OLO

02220000
1 02240000

02260000
02280000
02300000
02320000
02340000
02360000
02380000
02400000
02420000
02440000
02460000
02480000

SYSOUT=A
IISYSLIN 00 OSNAME=&&TEMP,DISP=(SHR,PASS)
II DO * NAME

INCLUDE
NAME

INCLUDE
NAME

HASPCR)
HASPOBJIHASPBRlt
HASPB~ 1 (R)
HASP08J(HASPWTR)
HASPWTR(R)

1*

12.1.4 Sample Job HASPOOLS

IIHASPOOlS JOB (OOOO,oOOOt,'AlLOCATE SPOOL SPACE',MSGlEVEL=l
IISCRATCH E~EC PG~=IEHPROG~
IISYSPRINT DO SYSOUT=A
IISPOOll 00 UNIT=SYSOA,VOlUME=SER=SPOOLl,OISP=OlO
IISPOOl2. 00 UNIT=SYSOA,VOlU~E=SER=SPOOL2,OISP=OlO
IISYSIN DO *

SCRATCH VTOC,VOL=SYSOA=SPOOL1,PURGE
SCRATCH VTOC,VOl=SYSOA=SPOOl2,PURGE

1*
IIAllOCAT
llSPOOl1
II
II
IISPOOl2
II
II

EXEC PGM=IEFBR14
00 DSNAME-SYS1.HASPACE,VClUME=SER=SPOOl1,

0ISP=(NEW,KEEPI,lABEl=EXPDT=99366,
UNIT=2314,SPACE=(ABSTR,(3998,2))

00 OSNAME=SYS1.HASPACE,VOlUME=SER=SPOOl2,
0ISP=CNEW,KEEP),lABEl=EXPOT=99366,
UNIT=3330,SPACE=CABSTR,(1614,2).

02500000
02520000
02540000
02560000
02580000
02600000
02620000
02640000
02660000
02680000

C02100000
C02720000

02740000
C02160000
C02180000

02800000

Reference Listing of HASPJCL - Page 12.1-4

1079

HAS P

12.2 HASP STORAGE REQUIREMENTS

This section is provided to·allow installations to compute the size
of a HASP SYSTEM based upon the HASPGEN options selected. The for­
mula given, when properly ·evaluated will indicate the size of the
resident HASP load module. This value may then be used.in computing
the proper region or partition size for HASP.

In computing the region or partition size, allowances must be made
for the various control blocks and work space required in the
region/partition by the Operating System for the initiation and op­
eration of HASP. Additional space may also be required for dynamic
construction of additional HASP buffers (see &NUMBUF description in
section 7). In all computations, the maximum degree of HASP overlay
(&OLAYLEV=15) is assumed.

12.2.1 Additional Nucleus Storage Requirements

In addition to the storage required as a region or partition, HASP
also requires certain fixed space in the Nucleus of the Operating
System as follows:

• The space required for the pseudo device unit Control
Blocks required for HASP.

• System Queue Space required by the Operating System to
initiate a job.

• Space for the HASP initialization SVC (136 bytes).

12.2.2 HASP Module Storage Requirements

The storage requirements of the primary HASP module are expressed
by the following formula:

S = HASP

where the values of S are defined below.
n

HASP Storage Requirements - Page 12.2-1

1080

HAS P

To facilitate ease in computation and simplicity of equations, the
following value should first be computed:

DAMAP =&NUMDA x « &NUMTGV+ 7) /8)

The values of S can then be computed as follows:
n

Sl = &NUMRDRS x (400+DAMAP)

S2 = &NUMTPES x (400+DAMAP)

= {~9B ~ ~NUMiNRs·x· (496+DAMAP)· . • . . if &NUMINRS = 0
. • . . if &NUMINRS ~ 0

S4 = &NUMPRTS x (316 + 8x&NOPRCCW)

8 5 = &NUMPUN8 x (372 + 8x&NOPUCCW)

~6 {

o . .
120 •

= 800 +
+ 298
+ 60

. . . if
• . . . if

164 x &NUMCONS
. •. . if

• . • • if

&AUTORDR· = NO }
&AUTORDR.= YES
+ 32 x &RQENUM }
&SIZ2260 ~ 0
&AUTORDR = YES

S7 = &NUMDA x 58 + 2 x DAr-1AP

S8 = &NUMBUF x (80+&BUFSIZE)

8 9 = &NUMOACE x 1112

SlO = &NU~WTOQ x 140

Sll = &MAXJOBS x 16

= {~6·+·&jITSizE ~ ~MiXjOBS· ·
= &MAXXEQS x 216

814 - &MAXPART x (12+&MAXCLAS)

if &NUMCONS = 0

if &NUMCONS ~ 0

if &JITSIZE = 0
if &JITSIZE ~ 0

HASP Storage Requirements - Page 12.2-2

1081

HAS P

S15 = &NUMDDT x 37

r' · · · · · · · · · · · · · · =' NO} if &MONINTV = 0
S16 = 252 + 12 x &MAXXEQS if &XZMULT if &MONINTV ~ 0 252 + 16 x &MAXXEQS if &XZMULT = YES

S17 {o . · · · if &PRlRATE = 0 = 108 · · · · · · · · · · · · · · · if &PRlRATE ~ 0 r · · · · if &WTRPART ~ * · · · · · · · · · ·
S18

= 1504 · · · · · · · · · · ~ ;*;*;*;*} + 96 · · if &WCLSREQ if &WTRPART = * · · + 112 · · · · · · if &RPS = YES

= {~6' · · · · · · · · if &OSINOPT = NO

I S19 · · · · · · · · · · · · · · if &OSINOPT = YES

r' · · · · · · · · · · · · · · · · lif &XBATCHC = null
S20 = 274 + 14 x &MAXPART if &NUMCONS = o of &XBATCHC ~ null 316 + 14 + &MAXPART if &NUMCONS :# o l.

S21 {o . · · · · · · .. · · · · if &TlMEOPT = 4
= 134 · · · · · · · · · if &TlMEOPT ~ 4

{o . · · · · · · · · · · · · if &PRTRANS = NO
S22 = 314 · · · · · · · · · · · · if &PRTRANS = YES

{o . · · · · · · · · · · if &ACCTNG = NO
S23 = 46 if · · · · · · &ACCTNG = YES

{~6j2'+'DAMAP' · · · · · · · · · · if &DEBUG = NO

I S24 = if · · · · · · · · · · &DEBUG = YES

{o . · · · · · · · · · · · · · · · · · · if &TRACE = 0
S25 = 534 + 64 x &TRACE · · · · · · · · · · · if &TRACE ~ 0

{~2'+'&OREPSIZ · · · · · · if &OREPSIZ = 0
S26 = if &OREPSIZ ~ 0 · · · ·

{o . · · · · · · · · · · if &DMPTAPE = 000
S27 = 560 if ~ 000 · · · · · · &DMPTAPE

S28 {o . · · · · · · · · · · · · · if &FCBV = NO
= 222 · · · · · · · · · · · · · if &FCBV = YES

{o . · · · · · · · · · · if &RPS = NO
S29 = 140 + 32 * &NUMDA · · · · if &RPS = YES · · ·

HASP Storage Requirements - Page 12.2-3

1082

HAS P

I ! 0 • • •
. . . · · · · · · · · if &NUMLNES = 0

8 30 = Rl + R2 + R3 + R4 + R5 + R6 + R7 + } if &NUMLNES F 0
RS + R9 + RIO + Rll

where:

Rl = &NUMTPBF x (144+&TPBFSIZ)

R2 = &NUMLNES x 104

R3 = &NUMRJE x 132

J
R4 = &NUMTPRD x (372+DAMAP)

R5 = &NUMTPPR x 200

R6 = &NUMTPPU x 168

R7 {~&SPOLMSG+7)i8'+'&NUM~E'X'8' · if &SPOLMSG = 0 = · if &SPOLMSG F 0

R8 r' · · · · · · · if &BSHTAB = NO
= 194 . . · · · if &BSHTAB = YES

R9
o . · · · · · . . if &BSHPRES = NO

= 196 · · · · · · · if &BSHPRES = YES

{o . · · · · · · · if &USASCII = NO
RIO = 548 · · · · · · · if &USASCII = YES

Rll = a values selected from the following table:

&BSC2770 or
&BSC2780 or

Rll &STR1978 &STRCPU &BSC3780 &BSCCPU

YES NO NO NO 6,290
NO YES NO NO 5,394
YES YES NO NO 8,002
NO NO YES NO 5,840
YES NO YES NO 8,936
NO YES YES NO 8,048
YES YES YES NO 10,632
NO NO NO YES 6,202
YES NO NO YES 9,770
NO YES NO YES 8,802
YES YES NO YES 11,402
NO NO YES YES 8,460
YES NO YES YES 11,540
NO YES YES YES 10,588
YES YES YES YES 13,172

HASP Storage Requirements - Page 12.2-4

1083

I

I

I

I

HAS P

12.2.3 Example I--Storage Requirements for a Small HASP

Consider a HASP package which has been HASPGENed to be used on a
small machine with limited resources. The HASPGEN parameters might
be set as follows:

&NUMDA = 1

&NUMTGV = 400

&NUMRD~S = 1

&NUMTPES = 0

&NUMINRS = 0

&NUMPRTS = 1

&NOPRCCW = 5

&NUMPUNS = 1

&NOPUCCW = 5

&NUMCONS = 0

&AUTORDR = YES

&NUMBUF = 11

&BUFSIZE = 504

&NUMOACE = 1

&NUMWTOQ = 5

&MAXJOBS = 50

&JITSIZE = 0

&MAXXEQS = 2

&MAXPART = 2

&MAXCLAS = 8

&NUMDDT = 16

&MONINTV = 0

&PRlRATE = 0

&WTRPART = ..

&WCLSREQ =
&RPS = NO

&OSINOPT = NO

&XBATCHC = null

&TlMEOPT = 4

&PRTRANS = NO

&ACCTNG = NO

&DEBUG

&TRACE

= NO

= 0

&OREPSIZ = 0

&DMPTAPE = 000

&FCBV = NO

&NUMLNES = 0

The storage requirements would be computed as follows:

DAMAP = 1 x SO = 50

SHASP = 21,9GO + 450 + 0 + 0 356 + 412 + 120 + 158 + 6,424 +

1,112 + 700 + 800 + 0 + 432 + 40 + 592 + 0 + 0 +

1,504 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0

= 35,000 bytes.

HASP Storage Requirements - Page 12.5-5

1084

HAS P

12.2.4 ExamE1e II--Stora2e Re9uirements for a TlEica1 HASP

Consider a HASP package which has been HASPGENed to be used on a
large machine with Remote Job Entry capabilities. The HASPGEN pa-
rameters might be set as follows:

&NUMDA = 2 &RPS = NO

&NUMTGV = 400 &OSINOPT = YES

&NUMRDRS = 2 &XBATCHC = W

&NUMTPES = 1 &TIMEOPT = 4

&NUMINRS = 1 &PRTRANS = YES

&NUMPRTS = 2 &ACCTNG = YES

&NOPRCCW = 15 &DEBUG = NO

&NUMPUNS = 1 &TRACE = 0

&NOPUCCW = 5 &OREPSIZ = 0

&NUMCONS = 0 &DMPTAPE = 000

&AUTORDR = YES &FCBV = YES

&NUMBUF = 20 &NUMLNES = 2

&BUFSIZE = 688 &NUMTPBF = 2

&NUMOACE = 2 &TPBFSIZ = 400

&NUMWTOQ = 10 &NUMRJE = 2

&MAXJOBS = 200 &NUMTPRD = 2

&JITSIZE = 8 &NUMTPPR = 2

&MAXXEQS = 3 &NUMTPPU = 2

&MAXPART = 3 &SPOLMSG = 20

&MAXCLAS = 8 &BSHTAB = YES

&NUMDDT = 30 &BSHPRES = NO

&MONINTV = 3 &USASCII = NO

&XZMULT = YES &STR1978 = NO

&PRIRATE = 3 &STRCPU = NO

&WTRPART = '* &BSC2770 = YES

I
&WTRCLAS = HAQ &BSC2780 = YES

&WCLSREQ = **R &BSCCPU = NO

HASP Storage Requirements - Page 12.2-6

1085

HAS P

The storage requirements would be computed as follows:

DAMAP = 2 x 50 = 100

SHASP = 21,900 + 1,000 + 500 + 994 + 872 + 412 + 120 + 316 +

15,360 + 2,224 + 1,400 + 3,200 + 1,686 + 648 + 60 +

1,110 + 300 + 108 + 1,600 + 26 + 316 + 0 + 314 +

46 + 0 + 0 + 0 + 0 + 222 + 0 +

(1088+208+264+944+400+336+19+194+0+0+5840)

= 64,027 bytes.

HASP Storage Requirements - Page 12.2-7

1086

H. ASP

(The remainder of this page intentionally left blank.)

1087

HASP

12.3 HASP CONTROL CARD FORMATS

12.3.1 HASP lob Card Format

The JOB card is a "variable-field II control card which defines the

beginning of a job (and, of course, the end of the previous job if there

is one) within the input stream. In addition, certain parameters are

passed to HASP and to the Operating System via fields and subfields

punched into the JOB card.

The format of the JOB card is basically as defined in the JOB

CONTROL LANGUAGE Manual (Form #C28-6539).

In particular, HASP requires that the accounting information field

be punched in the following format:

where:

pano

room

(pano, room, time ,lines, cards, forms, copies ,log ,linect)

=

=

Programmer's accounting number. This sub field

MUST BE PRESENT and must consist of one to four alphameric

characters. (Example: "4301")

Programmer's room number. This subfield MUST BE

PRESENT and must consist of from one to four alpha-

meric characters. (Example: II I E305 ")

HASP Control Card Formats - Page 12. 3-1
1088

HAS P

time = Estimated execution time in minutes. This subfield is

optional and may consist of ~ to four numeric digits.

If omitted, a standard value will be assumed. (Exam­

ple: ",30" for 30 minutes)

lines = Estimated line count in thousands of lines. This sub-

field is optional and may consist of ~ to four numeric

digits. If omitted, a standard number of lines will be

assumed. (Example: ",5" for 5000 lines)

cards = Estimated number of cards to be punched. This subfield

is optional and may consist of ~ to four numeric

digits. If omitted, a standard number of cards will be

assumed. (Example: ",200" for 200 cards to be punched)

forms = Special forms for printing entire job. This subfield

is optional and may consist of ~ to four numeric

characters. If omitted, standard forms will be as­

sumed. (Example: ",0005" for 5-part forms)

copies = Number of times the print output is to be printed.

This subfield is optional and may consist of ~ to

two numeric digits. If omitted, one copy will be as­

sumed. (Example: ",2" for two copies) This count

applies only to data sets printed on job forms and de­

mand forms. Only one copy of data sets indicated as

specially routed data sets will be produced.

log = HASP System Log option. This subfield is optional and

may consist of one character. If this character is

an liN", the

HASP Control Card Formats - Page 12.3-2

1089

HASP

linect =

HASP System Log will not be produced. If any other char­

acter I or if omitted, the log will be produced.

Lines to be printed per page. This subfield is optional and

may consist of up to two numeric digits. If coded as II 0 II

(zero) no automatic overflow will be produced. If omitted I

a standard value will be assumed.

(Example: .. ,34 II for 34 lines per page)

The other fields on the JOB card are also interpreted for accounting

purposes and Job control.

The job card may be continued in accordance with the Operating System

Job. Control Language specifications.

To omit a specific s ubfield I the comma normally punched following

the subfield should be punched in the first column of the subfield. To

omit the remainder of the subfields I the cloSing right parenthesis should

be punched following the last subfield entered.

The following would be a typical JOB card:

IIORBIT

II

JOB C7808,E305,,2,200),

'J. JACKSON',MSGLEVEL=l,CLASS=B

In this case:

pano

room

time

=

=

=

7808

E30S

2 minutes (assumed value)

CONTINUED

HASP Control Card Formats - Page 12 .. 3-3
,,..,.,.-

HASP

lines =

cards =

forms =

copies =

log =

linect =

2000 lines

200 cards

standard forms (assumed)

1 copy (assumed value)

yes (assumed value)

standard value (assumed)

HASP Control Card Formats - Page 12.3-3.1

1091

HASP

12. 3. 2 SPOOL Priori~y Card Format

The PRIORITY card is a "fixed-field" control card used to assign

a set priority to a job. The format of the card is as follows:

Columns 1 - 10

11 - 15

16 - 17

18 - 80

" /~:'PRIORITYIl

blank

p (left justified)

ignored

where "p" is either a number (between 0-15) or the character "~:'."

If "p" is a number, the value of "p" will be assigned as the priority

of the job following the PRIORITY card. If "p" is the character

"~:~, " or if the PRIORITY card is not present, the priority of the

job will then be determ.ined by the estimated execution time and the

estimated lines on the JOB card.

The PRIORITY card must immediately precede the JOB card.

If it does not, the PRIORITY card will be ignored and the input

stream will be flushed until a job card (or another PRIORITY card)

is found.

HASP Control Card Formats - Page 12. 3-4

1092

HASP

12.3.3 SPOOL Route Card Format

The ROUTE card is a "fixed" control card which allows the 'user to

specify the location to which his output is to :be printed or punched'. The

format of the card is as follows:

Columns: 1 - 7

8 - 9

10 - 14

15

16 - 23

"/* ROUTE"

blank

"PRINT~' or "PUNCH"

blank

one of the following device specifications:

LOCAL. -. Any local device

REM OTEn - Remote Terminal. "n II

PRINTERn - Printer "n"·*

PUNCHn .- Punch lin", *

24 - 80 - ignored

A single ROUTE card can be used to direct either the print or punch

routing but not both. If both print and punch are to be routed I two cards

must be used.

All ROUTE cards should be pla,ced immediately after the JOB card (s) .

* Note - The PRINTERn and PUNCHn specifications are the same as LOCAL

unless the specified printer or punch is subject to local print/punch

routing.

HASP Control Card Formats - Page 12.3-5

1093

·HASP

12.3. 4 SPOOL Message Card Format

The MESSAGE card is a "fixed-field" control card which permits the

user to send messages to the operator via the operator console at a,ASP

job input time. The format of the card is as follows:

Columns 1 - 9

12 - 71

72 - 80

" /*MESSAGE"

message to be written

ignored

All leading and trailing blanks are removed from the message before

writing it on the console.

If MES~AGE c;ards are included as part of a job they should be placed

inlmediately following the JOB card(s) (or after any ROUTE cards). In

. such cases the job number is appended on the front of the message(s).

If a MESSAGE card is not included withjn the boundarie s of a job, the

input device name is appended on the front of the me s sage.

HASP Control Card Forma ts - Page 12.3 ... 6

1094

12.3.5 SPOOL Setup Card Format

The SETUP card is a "variable-field II control card which permits the

user to indicate the need for certain volumes during the execution phase

of his job. The format of the card is as follows:

Columns: 1 - 7

8 - 15

16 - 72

"/*SETUP"

blank

volume identifiers s epara ted by

commas (i. e. I vvvvvv I WWWWWW,

xxxxxx, ...)

73 - 80 - ignored

The volumes required are listed on the console at the time that the job

enters the system. The job is then placed in II hold II status pending subsequent

release by the operator when the required volumes are available.

All SETUP cards should be placed with the ROUTE and MESSAGE cards

after the JOB card (s) .

HASP Control Card Formats - Page 12.3-7

1095

HASP

12.3. 6 SPOOL Command Card Format

The COMMAND card is a "variable-field" control card used to enter

HASP operator commands into the system. The forma t of the card is as

follows:

Columns: 1 - 3

4 - 71

72

"/*$"

opera tor command

if "N" the command will not be

repeated on the operator's console.

73 - 80 - ignored

Restrictions concerning commands which can be entered from remote

terminals are documented i~ subsection 6 of the Operator's Guide (Section 11).

All COMMAND cards must be placed in the input' stream prior to any

JOB card. COMMAND cards wi thin jobs will be ignored.

HASP Control Card Formats - Page 12. 3-8

1096

HASP

12.4 SPOOL ACCOUNTING CARD FORMAT

COLUMNS CONTENTS MODE

1 -20 Programmer's name EBCDJC

21-24 Room number EBCDIC

25-27 Spares N/A

28-31 P. A. number EBCDIC

32 Job priority number BINARY

33-35 Job input time in hundredths ofa second BINARY

36-~8 Job output time in hundredths ofa second BIN:ARY

39 -40 Number of cards read in BINARY:

41-43 Number of output lines BINARY

44-45 Number of output cards BINARY

46 -48 Total reader time in hundredths of a second BINARY

49-51 Total execution time in hundredths of a second BINARY

52-54 Total print time in hundredths of a second BINARY

55-57 Total punch time in hundredths of a second BINARY

58-65 Job name EBCDIC

66-71 Spares N/ A

72 Identifier (X'FF') . BINARY

73-74 Year EBCDIC

75-77 Days EBCDIC

78-80 Job number EBCDIC

SPOOL Accounting Card Format - Page 12.4 .. 1

1097

HASP

12. 5 SPOOL 'PRINT AND PUNCH ID FORMATS

12.5. 1 SPOOL Punch ID Card Format

The punch output will be preceded by an identification card containing

the programmer room number and internal job number. To make the

card easy to identify, it has an II-punch and a 12-punch punched in all

eighty columns. To make the room number and job number easy to read,

each digit is extended over 10 columns. Alphabetic characters are

converted to digits as follows:

Alphabetic Characters Numeric Punch
i

A or J 1

B, K, or S 2

C, L, or T 3

D, M, or U 4

E, N, or V 5

F, 0, or W 6

G, P, or X 7

H, 0, or Y 8

I , R, or Z 9

SPOOL Print and Punch ID Formats - Page 12. 5-1

1098

HASP

Below is an example of the punch identification card which would

precede a deck punched, for example, for a programmer residing in

Room E305, and having an internal job number of 129.

11
11
.""., •• , •• , •••• 110°11111111,·····,,1 •• 1.1.1 •• ,1 •• , •••••••••••• , •••• " •••••••••
11141.' •• ~""UM~M"MMa~nnNftanaa.~»~MB.n ••• ~au.e.~ ••• ~UUM •• D ••• ~waM •• u •• ~"nnM"NnMM.
1'1111111111111111111111111111' 111111111111111111111111111111111 , I I I 111 , I , , I • I " '

? 7 Z 7 21 Z Z 22 2 I Z 1 z Z Z 2 2 2 Z I Z 22 Z 2222 Z 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 Z 2 2 Z 2 2 2 2 2 2 2 Z 111111112 Z Z Z Z Z 2 7 272
J 3 3 3 J 3 3 3 3 3 3111111113 3 33332333333333333333333333333333333333333333 J 3 3 3 3 3» 3 3 3 3 J 333

".i ,
•• 4.44444444.444.4444 ••• 4.44444444444444.4444444444 •• 44 •••••••••••••••••••••••••

• J

SIIIIIIIIS5S5S5SSS5555S5S55555511111111~555555555555SS555S555SS~~~5S5S55SS555SS5

.111111 •• 1111111111111111 •••• 1 ••••••••• 11111111.1111.111111111111111111111111111·
I

,., 7""",' " ""'" " 1 1 J 71 J'" J 1 J' 1 J J J J " J J J """ J 1 J J,1" J J' J' J , " J 1 , J ", J J' J J'
• II •• I I I I I I •• I • III111 "1 •• I I I I •••• I • I •••••• I •••• II ••••••••••••••••• , •• II11I1III1 •

1,." •• tlll •• I ••••• " •• ,., •• t"I'llt •••• ,II.I., •• I.lj •• '."11,,., •• 1 •• ,,11111111,
11 •••• , ••• "UqM •• "dn.H •• M •• D ••• R ••••••••• ~ ••••••••• ua.M •••••••••••• ~ •• a"nnM»~nM~.

00-5081

SPOOL Print and Punch ID Formats - Page 12. 5-2

1099

HASP

12.5.2 SPOOL Print ID Card Format

The print output for all jobs proces sed by SPOOL will be preceded

and followed by special pages of job identification information. These

pages will consist of one line duplicated many times so as to fill the

.- page. This line will have the following format:

Columns

1-17

18-22

23-31

32-35

36-40

41-51

52-61

62-65

66-69

70-74

75-78

79-86

87-90

91-115

116-132

Contents

HASP identification

periods (.)

START JOB

.CONT JOB

•• END JOB

job number assigned by HASP

periods (.)

time of printing the page in form: hh. mm · s s {~l

date of printing the page in form: day month year

periods (.)

ROOM

room number

periods (.)

as jobname

periods (.)

programmers name padded with trailing periods (.)

HASP identification

SPOOL Print and Punch ID Formats - Page 12. 5- 3

1100

HAS P

12.6 HASP CODING CONVENTIONS

Each logical section of code within HASP has been assigned a unique

alphabetic header character which is used as the first character of symbolic

names within that section. The character II $ II is reserved to preface symbolic

names used for inter-routine communication. The following ar'e the currently

assigned HASP header characters:

A Asynchronous Input/Output Processor

B Buffer Handling Routines

C Operator Console and Command Processor

D Dump Routine

E HASP I/O Supervisor

F unassigned

G Priority Aging Processor

H HASP Dispatcher

I Interval Timer Routines

J unassigned

K Checkpoint Processor

L Log Proce s s or

M MULTI-LEAVING Line Manager

N Initialization Routine

o Overlay Service Routines

P Print/Punch Proces sor

HASP Coding Conventions - Page 12.6-1

1101

HAS P

Q Queue Manager Routines

R Input Service Proces sor

S unassigned

T Direct Access Space Allocation Routines

U Unit Allocation Routines

V Purge Proces sor

W Write To Operator Routine and Console Processor

X OS Execution Processor

Y unassigned

Z unassigned

-HASP Coding Conventions - Page 12.6-2

1102

HAS P

12.7 GENERAL HASP RESTRICTIONS

Because of the techniques utilized in the implementation of HASP,
certain features and/or functions of the Operating System may not
be available or may differ in operation in a system utilizing HASP.
Additionally, certain features and functions implemented by HASP
may not perform in the same manner as similar functions replaced
in OS; or may be affected by various environmental or operating
characteristics of a particular installation. The following
sections indicate a partial list of these restrictions, excluding
those restrictions which are made obvious by the general interface
technique utilized by HASP.

12.7.1 Unsupported OS Features

A. All I/O operations for SYSIN/SYSOUT data SPOOLed by HASP will
appear to the user as the direct use of unit record devices
(which do not actually exist). A program which depends upon
the physical characteristics of a particular device for proces­
sing SYSIN/SYSOUT data may, therefore, not function properly
in a HASP environment.

B. All I/O requests for SYSIN/SYSOUT data files controlled by
HASP must be made through the standard use of the EXCP macro
instruction.

C. SYSIN/SYSOUT operations, which appear to programs as the
direct use of unit record devices, are actually performed by
HASP by simulating the function of the unit record device. In
simulating the operation of these devices, certain functions
of the actual device may not be accurately simulated by HASP.
These include:

• Timing - I/O operations to the pseudo devices will not
have the s'ame timing characteristics as to an actual
device.

• Data Chaining - HASP does not support the Channel Command
Word data chaining feature of System/360, System/370 when
simulating unit record devices. The command chaining
feature is, however, fully supported.

• Input/Output Appendages - In responding to requests for
I/O operations, HASP will enter, if specified, only the
normal channel appendage. Because of the instantaneous
nature of HASP "I/O" operations, the use of any other
appendage is not applicable and will be ignored if
specified.

General HASP Restrictions -- Page 12.7-1

1103

HAS P

D. The use of the Checkpoint/Restart feature of OS is, in general,
inconsistent with the SPOOLing techniques utilized by HASP and,
in may cases, will not function properly in a HASP environment.
It is the responsibility of the user to verify the compatibility
of the various features of Checkpoint/Restart to be utilized.
Jobs requiring the use of unsupport~d features of Checkpoint/
Restart may be run, j.n a HASP environment (outside of the-con­
trol of HASP) •

E. In the processing of special forms types on SYSOUT data sets,
only the numeric portion of the characters specified will be
utilized by HASP for control purposes. Although alphabetic
forms types may be specified, it is recommended that numeric­
only types be utilized to avoid possible operational problems.

F. No provision has been made in HASP to support the ROLLOUT/
ROLLIN feature of OS. It is the responsibility of the user to
evaluate the compatibility and accuracy of this feature in a
HASP environment.

G. No provision has been made to support the interpreter restart
function when using the ASB Reader with OS MVT. If message
IEF336I occurs, the job must be resubmitted and the space for
SYS1.SYSJOBQE must be increased.

H. HASP does not support the continuation of the DD * or DD DATA
JCL statements under any conditions.

I. The HASP support of the DLM parameter on DD * and DD DATA JCL
statements is compatible with the OS support of this parameter
with the following exceptions:

• The OS Input SPOOLing Option will not be activated for
any input data set specifying the DLM parameter.

• If DCB parameters are specified, they must be specified
physically before the DLM specification (i.e., the DLM
specification must be the last parameter on the DD
statement) .

• The apostrophe (') cannot be used as a delimiter character.

• HASP Control Cards (/*MESSAGE, /*SETUP, /*ROUTE, etc.)
will not be recognized if the DLM specification is other
than "/*".

General HASP Restrictions - Page 12.7-2

1104

HAS P

12.7.2 HASP - Function/Feature Restrictions

A. The capability to dynamically withdraw HASP from the system and
continue operation is intended, primarily, as a programming aid
for the systems programmers and is highly dependent upon indi­
vidual operational environments. For these reasons, this func­
tion is not designed to (and may not) effect a complete with":"
drawal such that the previous presence of HASP is completely
transparent to the host Operating System. Each installation
utilizing this feature should individually verify the accuracy
and completeness of the withdraw operation.

B. The console support capability of HASP (&NUMCONS>O) is intended
primarily for standard WTO and WTOR support and may not function
properly under certain conditions. For example, HASP console
support may not function properly when:

• REPLYs to WTORs are erroneously left pending .

• A non-HASP (e.g., Z EOO) command issues a WTO or a WTOR,
unless it is operating under a separate task.

See HASPGEN parameter &NUMCONS for other restrictions. These
functional restrictions may be removed by using OS console
support (&NUMCONS=O).

C. HASP will not operate correctly if two or more jobs being simul­
taneously processed by OS have identical job names. While HASP
will protect against this circumstance for jobs under its con­
trol, it is the responsiblity of the user to insure that no job,
submitted outside of HASP control, has the same job name as any
job being controlled by HASP.

O. Because of the HASP/OS interface techniques and the total system
control status of HASP, no provision has been made to allow
processing to continue after a HASP failure. Any abnormal termi­
nation of HASP is considered a system failure and requires a
re-IPL.

E. All unit-record devices of the type utilized by HASP must be at­
tached to the system (appear as physically existent) at the time
HASP is invoked if they are to be subsequently utilized.

F. If any SYSOUT data set contains more than 65,535 pages (or skips
to any channel in the carriage tape), then print positioning
(either forward/backward spacing or warm start spacing) will not
function after the 65,535 page (or skip) is reached.

General HASP Restrictions - Page 12.7-3

1105

HAS P

G. While HASP makes an attempt to enter every WTO and WTOR in the
HASP System Log of the job associated with the message, there
are certain messages (e.g., DDR and MFT I/O Error messages)
which are not readily associated with any given job and may
not be logged.

H. While HASP is programmed to recover from most catastrophic
Input/Output errors in such a way that the impact on the in­
stallation will be minimal, it is conceivable that multiple
unusual errors might occur in a time relationship such that
loss of data is inevitable and complete recovery by HASP is
impossible.

General HASP Restrictions - Page 12.7.3-1

1105.1

HAS P

(The remainder of this page intentionally left blank.)

1105.2

HASP

12 .8 JeL PROCESSING

The HASP philosophy of providing. an interface to OS/360 which is

essentially transparent to the user is supplemented by the collection of

HASP routines which examine and alter JCL statements during system

operation. Since the HASP routines have access to every JCL statement

destined for the as scheduler, it is unnecessary to provide a special

Procedure Library (SYSI. PROCLIB) for HASP operation. In addition,

HASP features such as priority and job class scheduling can be easily

realized by including or changing the appropriate "CLASS" and "PRTY"

fields on the JOB JeL statements. HASP requirements for input stream

(DD*, DD DATA) and output stream (SYSOUT) correspondence to user

defined pseudo I/O units is a maj or function of the JCL routines.

Access to the JeL routines is provided thru the standard OS/360

Reader/Interpreter "exit list" feature which allows the user to specify

a routine to be given control whenever a JeL statement has been

encoded and is ready for individual statement analysis. The encoding

scheme used is described in the MVT Job Management PLM.

JeL Processing - Page 12.8-1

1106

HASP

12.8.1 JCL PROCESSING OS/360 INTERFACE

XNEXRCON - NEL Exit List Reconstruction

The Exit List Reconstruction program receives control from the HASP

LINK/XCTL interface routine when a LINK to the Reader/Interpreter

initialization module (IEFVH1) is intercepted. The NEL (Interpreter

Entrance List) and associated Exit List is examined for a Special Access

method entry which indicates that the Reader/Interpreter is being used

as a subroutine to process "In-core" JCL. If the Reader/Interpreter is

being used to process jobs, a test is made for the HASP Reader identified

by the default SYSOUT device name of "SPOOL" in the HASPRDR Proclib

Procedure. When the HASP Reader is identified, the Exit List is modified

to include linkage to the main HASP JCL program (XJCLSCAN) from the

Reader/Interpreter after each JCL statement is encoded.

JCL Processing - Page 12.8-2
1107

HAS P

12.8.2 JCL PROCESSING MAIN PROGRAMS

XJCLSCAN - JCL Scan and Control

The JCL Scan and Control Program is entered from the Reader/
Interpreter module IEFVFA as a result of the Exit List linkage
established by the HASP routine XNEXRCON. The following major
functions are performed:

1. A return PSW is constructed from the IEFVFA return register
(R14) and the left half of the current PSW provided by entry
to the HASP initialization SVC routine. This special use
of the initialization SVC allows the JCL routines to operate
disabled when necessary.

2. The Reader/Interpreter internal text pointer is obtained and
saved for subsequent text processing. A test is made on the
first word of the text to determine if an extensive JCL
statement has caused overflow to SYSl.JOBQUE. If this condi­
tion exists, HASP is unable to process the statement.

3. The first JCL key in the Reader/Interpreter internal text is
tested for "JOB", "EXEC" and "DD" values and control passed
to the corresponding HASP processor as indicated below:

KEY VALUE

JOB
EXEC
DD

HASP PROCESSOR

XJCLJBPR
XJCLXQPR
XJCLDDPR

4. All JCL processors terminate by passing control to XJCLEXIT
in the Scan and Control routine. The termination function is
accomplished by restoring saved registers and issuing a LPSW
using the PSW constructed when the control routine is entered.
Control is returned to IEFVFA.

XJCLJBPR - JOB Statement Routine

The JOB statement routine examines and changes all JOB statements
processed by the Reader/Interpreter. The major functions performed
are:

1. A new JOB internal text string is constructed in a HASP work­
area. The new text consists of the original text with "CLASS",
"PRTY"; "TYPRUN" and "MSGCLASS" entries deleted if they were
specified by the user.

JCL Processing - Page 12.8-3

1108

HAS P

2. A new CLASS entry is produced by extracting the "PITCLAS"
field from the PIT (Partition Information Table) associated
with the job being processed by the Reader/Interpreter.

3. A new "PRTY" entry is produced by extracting the "PITPRIO"
field from the PIT.

4. A MSGCLASS value corresponding to the first class given in
the parameter &WTRCLAS is entered into the text unless the
originally specified MSGCLASS corresponded to any class
given in &WTRCLAS.

5. This newly constructed text is then moved to the Reader/
Interpreter text area.

XJCLXQPR - EXEC Statement Routine

The EXEC statement routine does not examine the associated internal
text if the Execution Task Monitor has not been selected
(&MONINTV=O). If the Execution Task Monitor has been selected,
then XJCLXQPR performs the following functions:

1. The value of the Monitor priority represented by the &XZPRTY
is compared with the PIT priority field associated with the
Job being interpreted. If the values are not equal, then no
further action is taken on the EXEC statement.

2. If the priorities are equal, the internal text is examined
for the key value of "DPRTY=". If this parameter has not been
coded, no further action is taken.

3. If "DPRTY" has been coded under the circumstances cited, it
is removed from the internal text and therefore not processed
by os.

The overall purpose of the action taken by XJCLXQPR is to prevent
circumvention of the function of the Execution Task Monitor by
coding the "DPRTY" field.

XJCLDDPR - DD Statement Routine

The DD statement Routine examines all DD statements for SYSOUT or
DD*, DD DATA Specifications and performs the following major
functions:

1. The key content of the statement is determined by use of the
XINTSCAN routine.

2. If the statement does not contain a SYSOUT specification, con­
trol goes to the DD*/DD DATA test routine XJCLDDDT.

JCL Processing - Page 12.8-4
1109

HAS P

3. If a SYSOUT entry exists, the class is saved for possible
translation to a HASP pseudo unit. The class-pseudo unit
translation table (XTRTABLE) entry corresponding to the
SYSOUT class is examined for the values "*", "1", or "2".
If "*" is found, HASP processing is terminated for the DD
card. If "1" or "2" is found (indicating special routing),
the card will be processed as if special forms were speci~
fied. If the card was a simple SYSOUT=x, control goes to
the new internal text string build processor.

4. If the SYSOUT entry includes a special output writer speci­
fication, control goes to XJCLDDWR.

5. If the SYSOUT specified includes a forms field but not a
special writer, the forms field is extracted for later
processing.

6. The DDNAME, if it exists, is moved to the HASP text buffer
where internal text for UNIT=x is constructed.

7. If the forms field was detected, then control goes to
XJCLDDFR, otherwise the SYSOUT class is used to translate
to a HASP pseudo unit and the completed UNIT=x text is moved
to the Reader/Interpreter text buffer. Control returns to
the Reader/Interpreter via XJCLEXIT.

JCL Processing - Page 12.8-5

1110

HASP

12 .8.3 TCL PROCESSING INPUT STREAM PROGRAMS

XICLDDDT - DD* I DD DATA Test Routine

This routine tests for a DD* or DD DATA specification and goes to

XJCLDDDA if either is found. If the DD statement does not contain an

* or DATA, control returns to the Reader/Interpreter via XJCLEXIT.

,
NOTE: The positional parameters "*" and "DATA" are coded as "$"

and "CATA" by the HASP Card Reader Service Main Processor and are

recognized in these formats by XJCLDDDT.

XICLDDDA - DD* I DD DATA Processing Routine

This section of XJCLDDDT processes the DD* and DD DATA statements

in the following manner:

1. The execution PCE for the current job is est~blished using

the XESTBPCE subroutine.

2 • The DDNAME (if it exists) and the internal text for II UNIT=xxx"

is constructed in the HASP text area.

TCL Processing - Page 12.8-6

, , , 1

HASP

3. The execution DDT chain is searched for an unassigned DDT.

The EBCDIC unit is extracted from the first available DDT and

inserted in the "xxx" sub field of the "UNIT=xxx" text.

4 . If DCB parameters exist I control goes to XJCLINDB, otherwise

the HASP default BLKSIZE (defined by &IBLKSZE) and RECFM=F

are added to the constructed text.

5. Control goes to the termination section of XJCLDDPR where the

new internal text is moved to the reader text bu ffer and pro-

ce s sing is completed.

XICLINDB - DD*« DD DATA and DCB Processing Routine

Input stream statements (DD* I DD DATA) with DCB parameters are

processed by this routine in the following manner:

1 • The DCB preservation routine (XJCLDECB) is invoked to

extract and then delete user BLKSIZE and LRECL specifications

while preserving all other DCB parameters.

2 • The HASP maximum/default input stream BLKSIZE (defined by

&IBLKSZE) is moved to a test location (XDEFOBXX) for further

analysis by XJCLSHFL.

JeL Processing - Page 12.8-7

1112

HASP

3. The BLKSIZE I LRECL analysis routine XJCLSHFL is entered.

4. Control goes to the termination section of XJCLDDPR.

TeL Processing - Page 12.8-8

1113

HASP

12.8.4 TCL PROCESSING OUTPUT STREAM PROGRAMS

XICLDDCB - SYSOUT/DCB Routine

Output stream statements (SYSOUT) with DCB parameters are processed

by this routine as follows:

1. The DCB preservation routine (XJCLDECB) is invoked to extract

and then delete user BLKSIZE and LRECL specifications while

preserving all other DCB parameters.

2 . The HASP maximum/default output stream BLKSIZE (defined by

&OBLKSZE) is moved to a test location (XDEFOBXX) for further

analysis by XJCLSHFL.

3. The BLKSIZE, LRECL analysis routine XJCLHSFL is entered.

4. Control goes to the termination section of XJCLDDPR.

XICLDDWR - SYSOUT with Special Writer Routine

DD statements with a SYSOUT specification which includes a special

writer entry are processed by this routine:

JCL Processing - Page 12.8-9

1114

HASP

1. A test is made for a UNIT specification in the statement containing

the SYSOUT disposition. If UNIT has been specified I control returns

to the Reader/Interpreter via XJCLEXIT.

2. If UNIT is not specified I the text for UNIT=SYSDA is added to the

Reader/Interpreter text and processing is terminated via XJCLEXIT.

This addition is made to overcome the HASPRDR procedure default

SYSOUT unit of SPOOL.

XICLDDFR - SYSOUT with Forms Routine

This routine processes a forms specification in conjunction with a SYSOUT

disposition:

1. A test is made to determine if the current job has depleted the special

forms pseudo devices (1442 for punch I 1443 for print) and the forms

specification is ignored if so.

2 . The Execution Processor PCE for the current job is established using

the XESTBPCE subroutine.

3. The Execution Processor .routine XGETDDB is used to get a DDT. It a

DDT is not available I control goes to XJCLWAIT to place the Reader/

Interpreter task in an OS wait state pending the availability of a DDT.

4. The Execution Processor routine XGETUCB is used to get the appropriate

pseudo device UCB. If a UCB of the correct type is not available I

control goes to XJCLWAIT.

JCL Processing - Page 12.8-10

1115

HASP

5. The DDBTYPE entry in the acquired DDT is set to indicate the output

type according to the SYSOUT clas s specified (print, punch, special

routing print, or special routing punch).

6. The DDBSTATI entry in the acquired DDT is set to indicate no primary

buffer.

7 . The DDBSTAT2 entry in the acquired DDT is set to indicate an allo­

catable DCB exists.

8. The EBCDIC unit address from the DDBUNIT field of the DDT is moved

to the UNIT=xxx internal text establishing the HASP pseudo unit for

forms processing.

9 • The extracted forms field is moved to the DDBFORMS field of the DDT.

10. The UNIT=xxx text is moved to the HASP text buffer and control goes

to the DCB test section of XJCLDDPR.

JCL Proces sing - Page 12. 8- 11

1116

HASP

12 .8.5 JCL PROCESSING SUBROUTINES

XTCLSHFL - BLKSIZE!LRECL Subroutine

This routine is used to analyze BLKSIZE and LRECL values, if specified,

for both input stream (DD* I DD DATA) and output stream (SYSOUT) state­

ments. Processing proceeds as described below:

1 • The key status word (XSTATUS) is tested for both BLKSIZE and

LRECL specifications and control goes to the section (XJCLBOTH)

which processes this case. XJCLBOTH compares the user

LRECL with the maximum/default HASP BLKSIZE (&OBLKSZE or

&IBLKSZE). If the specified LRECL is greater than the HASP

maximum BLKSIZE, both LRECL and BLKSIZE are set to the value

of the HASP maximum/default BLKSIZE (SOBLKSZE OR &IBLKSZE)

and processing is terminated.

2 • If both BLKSIZE and LRECL have not been specified, a test is

made for BLKSIZE only. If BLKSIZE has not been specified, the

HASP default BLKSIZE (&OBLKSZE or &IBLKSZE) is used and pro­

ces sing is terminated.

3. If BLKSIZE alone is specified, it is u~sed as is and processing

is terminated.

JCL Processing - Page 12.8-12

1117

HASP

XICLDECB - DCB Preservation Subroutine

The purpose of this routine is to investigate DCB parameters specified

on input stream (SYSOUT) and output stream (DD* I DD DATA) statements

and to perform the following functions:

1 • Locates the position of the DCB substring in the Reader/Interpreter

internal text by use of the XINTSCAN subroutine.

2 • Examines all DCB subparameters in the DCB substring. BLKSIZE

and LRECL specifications are extracted by the XJCLXTRC Routine

for analysis by XTCLSHFL.

3. All user DCB subparameters, except BLKSIZE and LRECL, are

moved to the HASP text buffer for retention.

4. When the end of the DCB substring is reached, control returns

to the caller.

XICLXTRC - BLKSIZE!LRECL Data Extractor Subroutine

This routine is used to extract the user specified BLKSIZE or LRECL

data fields from the Reader/Interpreter internal text for later analysis

by XJCLSHFL. Processing is as follows:

JCL Processing - Page 12.8-13
1118

HASP

1. The address of the target field for the extracted data is contained

in Register WD. This field, is set to decimal zeros.

2 • The maximum field length, defined by XJCLMXLT, is used to

extract the low order XJCLMXLT bytes from the Reader text for

insertion into the target field.

3 • Control returns to the caller.

XESTBPCE - Execution Processor PCE Search Subroutine

This routine finds the Execution Processor PCE associated with the

job being processed by the Reader/Interpreter.

1 . The current (Reader/Interpreter) TCB address is found via the

as Communication Vector Table.

2. The Execution Processor PCEI s are searched for the peE

corresponding to the current TCB.

3. The correct PCE address is returned to the caller in the SAVE

Register.

JCL Processing - Page 12.8-14

1119

HASP

XINTSCAN - Internal Text Scan Subroutine

This routine provides two major functions. The contents of the

Reader/Interpreter internal text with respect to the key values encoded

from the users original TCL statement can be determined. The position of

a particular key value in the text string can be determined. The general

program logic is:

1 . The pointer to the first key in the internal text is obtained from

XINTKEYS which is set when XJCLSCAN is entered for each JCL

statement.

2 • A test is made on the contents of Register RO. If RO contains

the value of XJSENDKE (a special key value indicating the end

of the text string) then control goes to the section of XINTSCAN

which determines the key contents of the text. Any other value

in RO is as sumed to be a reques~ to find that particular key in

the text string.

3. When a particular key search is specified, the subroutine

XFINDKEY is used to obtain successive keys from the internal

text until the requested key is found or until the end of the

string is reached. A successful search is flagged by setting

RO non- zero and placing the pointer to the requested key loca­

tion in Rl and returning to the caller. If the search is

JCL Processing - Page 12.8-15

HASP

unsuccessful, RO is set to zero before returning.

4. The key contents of the internal text string is reflected by the

final disposition of the XSTATUS word. XSTATUS bits are set

on as dictated by the key values in the text and the selected

key values defined by the table XSTATDEF • Whenever an

internal text key is found which matches an entry in the

XSTATDEF table, a corresponding bit is turned on in the XSTATUS·

word. Using this scheme, the entire internal text string is

examined and the selected key values, if they exist in the

string, are reflected by XSTATUS.

5. After the setting of XSTATUS, the address of the end key of the

text string is saved in XINTENDK and the length of the. text is

calculated and saved in XINTEXTL. XSTATUS is placed in Rl

and control returned to the caller.

XFINDKEY - Next Key Byte Search Subroutine

This routine is used to find the position of the next key byte in the

internal text given the position of the preceding key byte. Rl points to

the preceding (current) key byte on entry. Rl points to the next key byte

on exit.

JCL Processing - Page 12.8-16

1121

HASP

12.9 HASP/RJE LINE TRANSMISSION TECHNIQUES

The following sections discuss, in detail, the line transmission tech­

niques utilized by HASP to communicate with remote terminals which have

program.ming capabilities. Transmission formats to mechanical terminals,

such as the IBM 1978, follow the specifications as outlined in the manuals

fa r tho se te rtninals.

HASP/RJE Line Transmission Techniques - Page 12.9-1

1122

I-IASP

12.9. I 1-7/8 of 8 Encoding

In order to support the entire EBCDIC character set from a remote

station, with no unnecessary degradation of line transmission, a new

encoding technique, inadaquately named 1-7/8 of 8, was devised. 1-7/8

of 8 is (obviously) based on the standard STR-4 of 8 encoding and operates

in the following manner:

The standard 4 of 8 character encoding has been entirely re-defined

such that, the logically highest 48 characters of the 4 of 8 set have been

defined as the 48 most common EBCDIC (BCD) characters. The rell'laining

16 4 of 8 characters have been reserved for use as 1-7/8 characters to

represent the remaining EBCDIC characters. These 16 characters are

defined as the hexadecimal digits "0" - llF" so that any of 256 character

combinations ll'lay be repre sented with two (2) 1-7/8 character s. Since

1-7/8 character s repre sent the nUll'lerically lowe st characte r s of both

the 4 of 8 character set and the EBCDIC character set, the receiving

program may detect 1-7/8 encoding (either before or after 4 of 8 trans-

1ation) by a single logical compare instruction. This, then allows for

the intermixing, within a single record, of norm.al character encoding

(1 for 1) and 1-7/8 (2 for 1) with no additional control inform.ation. Any

character repre sented by 1-7/8 encoding may be reconstructed with a single

MOVE WITH OFFSET instruction in the receiving program.

HASP/RJE Line Transm.ission Techniques - Page 12.9-2

1123

HASP

Since a very high percentage of all characters contained in a prograIn

source deck are of the 48 character set, normal transmission of jobs

from a remote site will be in a I for 1 character representation with

an occasional "unusual" character represented by 1-7/8 encoding.

This feature also allows the random interspersing of 08/360

object decks in an input stream. Figure 12. 9. I shows the 1-7/8 of 8

definitions for the 4 of 8 character set.

HASP/RJE Line Transmission Techniques - Page 12.9-3

1124

HASP

Figure 12.9.1 1-7/8 of 8 - 4 of 8 Conversion Table (48 characters)

Graphic EBCDIC 4 of 8 Graphic EBCDIC 4 of 8

(1-7/8 of 8) 00 OF G C7 8E
(1-7/8 of 8) 01 17 H C8 93
(1-7/8 of 8) 02 1B I C9 95
(1-7 /8 of 8) 03 ID J Dl 96
(1-7/8 of 8) 04 IE K D2 99
(1-7/8 of 8) 05 27 L D3 9A
(1-7/8 of 8) 06 2B M D4 9C
(1-7/8 of 8) 07 2D N D5 A3
(1-7/8 of 8) 08 2E 0 D6 A5
(1-7/8 of 8) 09 36 P D7 A6
(1-7/8 of 8) OA 3A Q D8 A9
(1-7/8 of 8) OB 3C R D9 AA
(1-7/8 of 8) OC 47 S E2 AC
(1-7/8 of 8) OD 4B T E3 Bl
(1-7/8 of 8) OE 4D U E4 B2
(1-7/8 of 8) OF 4E V E5 B4

0 FO 56 W E6 B8
1 Fl 5A X E7 C3
2 F2 5C y E8 C5
3 F3 63 Z E9 C6
4 F4 65 4B C9
5 F5 66 (4D CA
6 F6 69 + 4E CC
7 F7 6A & 50 D1
8 F8 6C ~, ..

I' 5C D2
9 F9 71) 5D D4
A Cl 72 - 60 D8
B C2 74 / 61 E1
C C3 78 , 6B E2
D C4 87

,
7D E4

E C5 8B = 7E E8
F C6 8D (blank) 40 FO

HASP/RJE Line Transmission Techniques - Page 12.9-4

1125

HASP

12.9.2 Character Compression Techniques

HASP I when communicating with a remote terminal with programming

capabilities (as indicated at HASPGEN) I optionally utilizes a duplicate

character compression algorithm to improve transmission line efficiency.

This algorithm breaks each logical record into one or more character

strings, prefaced by a pair of string control bytes (BCSs) to indicate the

type and extent of the character string. sess are in the form - IT KL

where:

JL =

I =

a count describing the extent of the character string.

This count is obviously derived by combining the low

order digit of both SCBs. Counts on records created

by HASP are one less than actual, while the count on

substrings received by HASP are expected to represent

the actual count.

a HEX digit which identifies the type of character

string as follows:

I=X'Q' - indicates a normal character string. (i. e. the

number of characters described by • JL' should be in­

serted intact when reconstructing the record image.

I=X' F' - indicates that' JL' blank characters should

appear in the reconstructed record image. Note that no

additional characters are required with this type of

string.

HASP /RJE Line Transmis s ion Techniques Page 12.9-5

1126

HASP

K =

, , "
I=X 4 or X C - indicates that the character

immediately following the SCB s should be

duplicated 'JL' times and inserted into the

image being reconstructed.

a HEX digit to additionally describe a character substring. K

IS presently 0 in all cases but is reserved for future expansion.

Any character in a normal character string or the sample character in non ,-

blank compre s sion may be encoded in a 1 for 1 repre sentation or in 1-7/8

representation (2 for 1). The count indicated by 'JL' is a character count,

rather than a byte count, so that a character represented by 2 bytes (1-7/8)

cause s only a count increment of 1.

A logical OUTPUT record from HASP, which may consist of several

SCBs and associated character strings, is terminated by the special SCB

of X'FOFO'. (This record terminator is not used on records sent to HASP

since a reconstructed record length of 80 may be assumed). A physical

record, which may consist of several logical records, is terminated by

the special SCB of X'FOFO' immediately following the last logical record.

(Again in the case of input records to HASP the X'FOFO' is notused to

terminate the buffer)

The following examp1e illustrates each of the HASP encoding tech-

niques. Assume the record below is to be encoded by HASP for trans-

mission to a remote terminal as punched output.

HASP /RJE Line Transmission Techniques - Page 12.9-6

1127

HASP

o
1

00
67

33
56

44
23

44
78

55
43

8
o

******bbbbb ... bbAbTE8T? bbbbb? ? ? ? ? ? ? bbbb b

Where b=BLANK=X'40',? =NON 48 Character Set Character=X'6F'

This record, after compression and before 4 of 8 translation, would appear

as below (with 8CB s underlined):

4005 5CF 1 OC0006C ~ 40E 3C5E2E 3060FF0044006060F~

Note that trailing blanks are not encoded by HASP. After translating to 4 of 8

characters the record would be:

F02 7D25A4 70F2B 72FOB 18BACB 12B4E 56 IE F02B2B4E5656 -- ----- --- -
Note that 8CB characters are encoded, as required, in 1-7/8.

HASP/RJE Line Transmission Techniques Page 12.9-7

1128

HASP

12.9.3 HASP Transmission Block Encoding

The following pages describe the format of physical records trans­

mitted by HASP to a programmable remote terminal and the format of

phy sical records expected by HASP from such a terminal. All value s are

indicated in EBCDIC (rather than 4 of 8) for simplicity.

HASP/RJE Line Transmission Techniques - Page 12.9-8

1129

HASP

PRrnT RECORD

The first two bytes of a logical print record are used to indicate

carriage control requirements to the remote terminal program. The

following list indicates all current carriage control characters and their

meaning.

BYTE 1 = X'04' Space immediate "N" spaces

= X'05' Skip immediate to channel "N"

= x'o6' Space "N" afte r print

= X'07' Skip to channel "N" after print

= X'08' - Suppre s s space

BYTE 2 = X'Ol' X'03' - "N" as described in space commands above.

= X'Ol' X'OF' - "N" as described in skip commands above.

= X'OO' if suppress space is indicated above.

Immediately after the carriage control bytes, any number of character

strings constituting the line to be printed may follow, ended by a SCB of

X'FOFO' to indicate the end of record. (In the case of carriage control only,

the X'FOFO' may immediately follow the carriage control information). The

above sequence may be repeated as many times as buffer space permits,

followed finally by another X'FOFO' to indicate end-of-buffer.

HASP/RJE Line Transmission Techniques - Page 12.9-9

1130

HASP

NOTE: In order to minimize CPU requirements at the remote terminal,

HASP does not utilize 1-7/8 encoding on print records. The

16 characters normally utilized for 1-7/8 encoding are defined as

additional print characters, thus yielding a 64 character print

set. An attempt to print a character which is not in this char­

acter set results in the substitution of a blank for that character.

Figure 12.9.3 indicates the 4 of 8 definitions for the 64 character

print set. Although data characters are not encoded in 1-7/8 I

carriage control and String Control bytes may be encoded in

1-7/8 as required.

HASP/RJE Line Transmission Techniques -- Page 12.9-10

1131

HASP

Figure 12.9.3 EBCDIC/4 of 8 Conversion Table (64 characters)

Graphic EBCDIC 4 of 8 Graphic EBCDIC 4 of 8

~ 4A OF G C7 8E
< 4C 17 H C8 93
I 4F IB I C9 95
! 5A ID J D1 96
$ 5B IE K D2 99
, 5E 27 L 03 9A
l 5F 2B M D4 9C
% 6C 2D N D5 A3

6D 2E 0 D6 A5 -
> 6E 36 P D7 A6
? 6F 3A Q D8 A9

7A 3C R 09 AA
7B 47 S E2 AC
@ 7C 4B T E3 Bl
II 7F 40 U' E4 B2 ~I~
I- EO 4E V E5 B4
a Fa 56 w E6 B8
1 F1 5A X E7 C3
2 F2 5C Y E8 C5
3 F3 63 Z E9 C6
4 F4 65 4B C9
5 F5 66 (4D CA
6 F6 69 + 4E CC
7 F7 6A & 50 Dl
8 F8 6C • W 5C D2 ','

9 F9 71) 5D D4
A C1 72 - 60 D8
B C2 74 / 61 E1
C C3 78 , 6B E2
D C4 87 I 7D E4
E C5 8B = 7E E8
F C6 8D (blank) 40 Fa

HASP /RJE Line Transm.ission Techniques - Page 12.9-11

1132

HASP

PUNCH RECORD

A punch record generated by HASP for transmission to a terminal

has exactly the same format as a print record. The punch record is so

identified by "carriage control" bytes of X·OFOF·. In order to support

the punching of OS/360 object decks at the remote site, 1-7/8 encoding

is utilized as required.

HASP/RJE Line Transmission Techniques - Page 12.9-12

1133

HASP

INPUT RECORD

Input records to HASP from a remote te rminal consist only of char­

acter strings and their associated SCBs. Note that no end-of-record

characters are used to separate card images. The end-of-logical-record

condition is assumed by HASP upon expanding the 80th character of a card

image. The end-of-buffer condition will be detected by HASP for the byte

count of the data transmitted. 1-7/8 encoding is utilized when required.

HASP/RJE Line Transmission Technique - Page 12.9-13.

1134

HASP

12.10 HASP INTERNAL READER

A procedure exists in HASP to allow the introduction of jobs directly

into the HASP job stream from any other program operating in the system.

The following sections describe techniques to accomplish this.

HASP Internal Reader - Page 12.10-1

1135

HAS P

12.10.1 PROCEDURE FOR USING THE HASP INTERNAL READER

The method of passing jobs to HASP through the internal reader

is by writing "cards" to a pseudo 2520 card punch device. Standard

OS/360 QSAM put or BSAM WRITE macros may be used to write the "cards"

to the pseudo punch. The information which would be physically

punched into a real 2520 card punch will be passed to the normal HASP

reader for insertion into the HASP Job Queue. The last "job" must be

followed by a "card" with an end of file indicator (/*EOF in columns

1-5). The end of file "card" is used to free the last job a110wirig

it to be scheduled for execution.

12.10.2 JCL CONSIDERATIONS

I Since any resident (non-swappab1e) system or user task may uti­

lize the HASP internal reader, the method of allocation and control­

ling the use of the device is via OS/360 Job Control Language. Fig­

ure 12.10.1 shows an example of an OS/360 IEBGENER utility run which

reads Job Control Language card images from a disk data set passing

the jobs to HASP. The program that created the data set inserted

the end of file card at the end of the data.

12.10.3 OS/360 - SYSGEN CONSIDERATIONS

Pseudo 2520 punch units must be specified at OS/360 SYSGEN time.

The device addresses selected as pseudo punches must be legal System/

360 addresses but must not be recognized by the physical devices

HASP Internal Reader - Page 12.10-2

1136

HAS P

or control units attached to the System/360. One device should be

generated for each internal reader allocated at any given time and

I should correspond to the value of the HASPGEN parameter &NUMINRS.

The following card might be used to generate an appropriate Unit

Control Block.

IODEVICE UNIT=2520,ADDRESS=30l,MODEL=B2

I The devices should be descriptively named for ease of alloca­

tion. The following card might be used to name three internal

readers:

UNITNAME unit=(30l,302,303) ,NAME=INTRDR

12.10.4 DELETION OF CURRENT JOB ON READER

If the submitting task determines that the previous JCL and/or

data of the job currently being punched into the internal reader is

incorrect a deletion card (/*DEL in columns 1-5) may be punched.

This will cause the job currently on the device to be deleted as

though cancelled by the operator.

HASP Internal Reader - Page 12.10-3

1137

HASP

Figure 12.10.1 Sample Use of HASP Internal Reader

IIPASSJOB JOB (OOOQ,OOOO) ,'PASS JOB STREAM',MSGLEVEL=l

IICOPY EXEC PGM=IEBGENER

IISYSIN DD DUMMY

IISYSPRINT DD SYSOUT=A

IISYSUTl

IISYSUT2

DD DSNAME=DAYSWORK,DISP=SHR

DD UNIT=INTRDR,DCB=(RECFM=F,BLKSIZE=80,LRECL=80)

1138

HASP

12 . 11 MULTI-LEAVING

"MULTI-LEAVING" is a term which describes a computer-to-computer

communication technique developed for use by the HASP SYSTEM. In a

gross sense I MULTI-LEAVING can be defined as the fully synchronized I

pseudo-simultaneous I bi-directional transmission of a variable number of

data streams between two or more computers utilizing binary synchronous

communications facilities.

The following section describes I in general terms I the basic structure

of MULTI-LEAVING. Section 12.10.2 describes the detailed specifications

of the MULTI-LEAVING control information and Section 12.10.3 discl:lsses

the application of MULTI-LEAVING to the HASP BSe/RIE support.

12. 11.1 MULTI-LEAVING Philosophy

The basic element for MULTI-LEAVED tr~nsmission is the character

string:. One or more character strings are formed from the smallest external

element of transmission - the phsyical record. These phsyical records are

input to MULTI-LEAVING and may be any of the classic record types (card

images I printed lines I tape records I etc). For efficiency in transmission I

each of these data records is reduced to a series of character strings of two

basic types. These two types are (1) a variable length nonidentical s,eries

of characters and I (2) a variable number of identical characters. Because

of the high frequency occurrance of blank characters I a special case is

MULTI-LEAVING - Page 12.11-1

1139 '

HA8P

:made in 2 above when the duplicate character is a blank. An eight bit

control field I termed a String Control Byte (8CB) I precedes each character

string to identify the type and length of the string. Thus a string as in 1

above is represented by an 8CB followed by the nonduplicate characters.

A string of consecutive I duplicate I nonblank characters (as in 2 above)

can be represented by an 8GB and a single character (the 8GB indicates the

duplication count and the character following indicates the character to be

duplicated). In the case of an all blank character string I only an 8GB is

required to indicate both the type and number of blank characters. A data

record to be transmitted is therefore segmented into the optimum number of

character strings (to take full advantage of the identical character compression)

by the transmitting program. A special SGB is utilized to indicate the grouping

of character strings which compose the original physical record. The receiving

program can then reconstruct the original record for processing.

In order to allow multiple physical records of various types to be grouped

together in a single transmission block I an additional eight bit control field

precedes the group of character strings representing the original phys ical

record. This field I the Record Control Byte (RCB) I identifies the general

type and function of the physical record (input stream I print stream I data set I

etc). A particular RCB type has been designated to allow the passage of

control information between the various systems. Also, to provide for

. simultaneous transmission of similar functions (i. e. multiple input streams I

1140

HAS P

etc) a stream identification code is included in the RCB. A second 8 bit

control field, the Sub- Record Control Byte (SRCB) is also included immediately

following the RCB. This field is utilized to supply additional information

concerning the record to the receiving program. For example, in the trans-

mis sion of data to be printed, the SRCB can be utilized for carriage control

inf orma tion .

For actual MULTI-LEAVING transmission, a variable number of records

may be combined into a variable block size, as indicated previously (i. e.

(RCB I SRCB, SCB1, SCB2 , ... SCBn, RCB, SRCB, SCBl , •.• etc). Th~ MULTI-

LEAVING design provides for two (or more) computers to exchange transmission

blocks, containing multiple data streams as described above I in an inter-

leaved fashion. To allow optimum use of this capability, however, a system

must have the capability to control the flow of a particular data stream while

continuing normal transmission of all others'. This requirement becomes

obvious if one considers the case of the simultaneous transmission of two

data streams to a system for immediate transcription to physical I/O devices

of different speeds (such as two print streams) .To provid~ for the metering

of the flow of individual data streams, a Function Control Sequence (FCS)

is added to each transmission block. The FCS is a sequence of bits, each

of which represent a particular transmission stream. The receiv~r of several

data streams can temporarily stop the transm.issionof a particular stream by

setting the corresponding FCS bit OFF in the next transmission to the sender

of that stream. The stream can subsequently be resumed by setting the bit

ON.

MULTI-LEAVING - Page 12.11-3

1141

HASP

Finally, for error detection and correction purposes, a Block Control

Byte (BGB) , is added as the first character of each block transmitted. The

BCB, in addition to control information, contains a modulo 16, block sequence

count. This count is maintained and verified by both the sending and

receiving systems to exercise a positive control over lost or duplicated trans­

mis sion blocks.

In addition to the normal binary synchronous text control characters

(STX, ETR, etc), MULTI-LEAVING utilizes two of the BSC control characters -­

ACKO and NAK. ACK 0 is utilized as a "filler" by all systems to maintain

communications when data is not available for transmission. NAK is used

as the only negative response and indicates that the previous transmission

was not successfully received. Figure 12. 11 . 1 indicates the format of

a typical MULTI-LEAVING transmission block.

MULTI-LEAVING - Page 12.11-4

1142

HASP

Figure 12.11.1 - Typical MULTI-LEAVING Transmission Block

bytes

DLE

STX

BCB

FCS

FCS

RCB

SRCB

SCB

DATA

SCB

DATA

SCB

RCB

SRCB

SCB

DATA

SCB

RCB

DLE

ETB

BSC Leader (SOH if no trans parency feature)

BSC START-OF-TEXT

Block Control Byte

Function Control Sequence

Function Control Sequence

Record Control Byte for record 1

Sub- Record Control Byte for record 1

String Control Byte for record 1

Character String

String Control Byte for record 1

Character String

Terminating SCB for record 1

RCB for record 2

SRCB for record 2

SCB for record 2

Character String

Terminating SeB for record 2

Transmission Block Terminator

BSe Leader - (SYN if no transparency feature)

BSe Ending Sequence

MULTI-LEAVING - Page 12.11-5

1143

HASP

12.11.2 MULTI-LEAVING Control Specification

The following pages indicate the bit-by-bit definitions of the various

MULTI- LEAVING control fields and notes concerning their utilization.

-MULTI::-L-EAVING - Page 12. 11- 6

1144

HASP

String Control Byte (SCB)

10 K L J J J J JI
o 7

Usage: Control field for data character strings

Bit Meanings: o = 0 = End of record (K L J J J J J = 0)

a 1 = All Other SCB's

K = 0 = Duplicate Character String

L = 0 = Duplicate Character is blank

L = 1 ::t: Duplicate Character is non blank
(and follows SC B)

JJJJJ = Duplication count

K = 1 = Nonduplicate Character String

LJJJJJ = Character String Length

NOTES:

1 . If KLJJJJJ = 0 and 0 = I, SCB indicates record is continued in next

transmission block.

2 . Count units are normally 1 but may be in any other units. The units

utilized may be indicated as function control sign-on or dyqamically

in the SRCB.

MULTI-LEAVING ~ Page 12.11-7

1145

HASP

Re?ord Control Byte (RCB)

10IIITTTTI

o 7

Usage: To identify each record type within a transmission block

Bit Meanings: o = 0 = End of transmission block (I I ITT T T = 0)

o = 1 = All Other RCB I s

III = Stream identifier - used to identify streams of
multiple identical functions (i. e. multiple print
streams to a multiple printer terminal, etc.)

III = Control information if TTTT = 0 (control record)

= 000 = Reserved for future expansion

= 001 = Request to initiate a function transmission
(Prototype RCB for function in SRCB)

= 010 = Permission to initiate a function transmission
(RCB for function contained in SRCB) •

= 011 = Reserved

= 100 = Reserved

= 101 = Available for local modification

= 110 = Available for local modification

= III = General Control Record (type indicated in
SRCB)

TTTT = Record type identifier

= 0000 = Control record

= 0001 = Operator message display request

MULTI-LEAVING - Page 12.11-8

1146

HASP

TTTT = 0010 =

= 0011 =

= 0100 =

= 0101 =

= 0110 =

= 0111 =

= 1000

= 1101

Operator command

, Normal input record

Print record

Punch record

Data set record

Terminal mes sage routing request

1100

1111

= Reserved for future expansion

= Available for local modifications

MULTI-LEAVING - Page 12.11-9

1147

HASP

Slib-Record Control Byte (SRCB)

10 8 8 8 8 8 8 81

o 7

Usage: To provide supplemental information about a record

Bit Meanings: a = 1 (Must always be ON)

SSSSSSS = Additional record information - actual content
is dependant on record type. Several examples
are listed below --

SRCB for General Control Record

(character)

o 7

Usage: To identify the type of generalized control record

Bit Meanings: character = A = Initial terminal SIGN-ON

:c B = Final terminal SIGN-OFF

= C = Print initialization record

= D = Punch initialization record

= E = Input initialization record

= F = Data set transmission initialization

= G = System configuration status

MULTI-LEAVING - Page 12.11-10

1148

HASP

= H = Diagnostic control record

= I R = Reserved

= S Z = Available for local modification

SRC B for Print Records

10 M C C C C eel
o 7

Usage: To provide carriage control information for print records

Bit Meanings: o = 1 (Must always be ON)

M = 0 = Normal carriage control

= 1 = Reserved for future use

CCCCCC = Carriage control information

= 1000NN = Space immediately NN spaces

= IINNNN = Skip immediately to channel NNNN

= OOOONN = Space NN lines after print

= 01XXXX = Skip to channel NNNN after print

= 000000 = SUPPRESS SPACE

MULTI-LEAVING - Page 12.11-11

1149

HASP

SRCB for Punch Records

IOMMBRRssl
o 7

Usage: To provide additional information for punch records

Bit Meanings: o = 1 (Must always be ON)

SS = Punch stacker select information

B = 0 = Normal EBCDIC card image

= 1 = Column Binary card image

M = 00 = SCB count units = 1

= 01 = SCB count units - 2

= 10 = SCB count units = 4

= 11 = Reserved

RR = Reserved for future expansion

SRCB for Input Record

IOMMBRRRRI
o 7

Usage: To provide additional information for input records

MULTI-LEAVING - Page 12.11-12

1150

HASP

Bit Meanings: o = 1 (Must always be ON)

M = 00 = 8CB count units = 1

= 01 = 8CB count units = 2

= 10 = 8CB count units = 4

= 11 = Reserved

RRRR = Re served

, SRCB for Terminal Message Routing Record

IOTTTTTTT

o 7

Usage: To indicate the destination of a terminal message

Bit Meaning s: o = 1 (Must always be ON)

TTTTTTT = Remote system number (1 ~ T ~ 99)

TTTTTTT = Remote system group I as HASPGENed (100 ~, T ~ 127)

TTTTTTT = 0 = Broadcast to all remote systems

MULTI-LEAVING - Page 12.11-13

1151

HASP

Function Control Sequence (FCS)

Usage:

Bit Meanings:

loS R R ABC Dr 0 T R R W X Y Z I
o 7 8 15

To control the flow of individual function streams

a = 1 (Must always be on)

S = 1 = Suspend all stream transmissfon :(WAIT-A-SIT)

= 0 = Normal state

T = Remote console stream identifier

R = Reserved· for future expansion

ABCD ... WXYZ = Various function stream identifiers (oriented only to
. recipient)

- Normal print (or input)~ A, B', C, ...

- Normal punch streams = Z I Y I X, .••

- Other functions =

NOTE a bit on = continue function transmis sion

- bit off' = suspend function transmission

MULTI"'LEAVING - Page 12.11-14

1152

HASP

Block Control Byte (BCB)

10 X X X C C c cl
a 7

Usage: Transmis sion block status and sequence count

Bit Meanings: o = 1 (Must always be ON)

ecce = Modulo 16 block sequence count

xxx = Control information as follows --

= 000 = Normal Block

= 001 = Bypass sequence count validation

= 010 = Reset expected block sequence count to ecce

= 011 = Reserved

= 100 = Reserved

::;:: 101 = Available for user modification

= 110 = Available for user modification

= III = Reserved for future expansion

MULTI-LEAVING - Page 12.11-15

1153

HASP

12.11.3 MULTI-LEAVING In BSC/RIE

The p~evious sections have grossly outlined the specifications of a

comprehensive, MULTI- LEAVING communications system. While the HASP

support for programmable BSe workstations iscompl~tely consistent with

the MULTI-LEAVING design I it does not utilize certain of the features

provided in MULTI-LEAVING. These features not utilized include:

1 . The transmission of record types other than print, punch,

input I console and control is not supported.

2 . The only general control record type utilized is the terminal

SIGN-ON control.

3 . Only SeB count units of 1 are utilized~

4. No support is included for column binary cards .

MULTI-LEAVING -. Page 12.11-16

1154

HAS P

12.12 HASP 2770 AND 3780 RJE SUPPORT

12.12.1 2770 Configuration

The basic 2770 with standard keyboard and either EBCDIC or USASCII
code is supported.

Optional supported devices are the 2502 Card Reader,' 2213 Printer,
2203 Printer, and 545 Output Punch. The printer must be attached
to OUTPUT PRINTER. The card punch must be attached to OUTPUT 2.

EBCDIC Transparency, Printer Horizontal Format Control, Space
Compression/Expansion, and any of the three buffer sizes (128, 256,
512) are supported by HASP programming. The Multipoint Data Link
Control feature and Identification features must not be present.
All other devices and features may be attached, but are either not
affected by programming or not supported.

I 12.12.2 I/O Formats

Although HASP formally supports only the keyboard, card, and printer
I/O devices listed previously in Section 12.12.1, the basic design
of the IBM 2770 (i.e., media formats independent of transmission for­
mat) may make it possible for individual installations to use other
I/O devices. This must be done only after careful analysis, design
and testing by the customer and local IBM Representative to estab­
lish the feasibility of the proposed device usage in the customer's
environment. Refer to the SRL GA27-30l3, especially pages 2772-9,
CU-2,3 and appropriate device sections. Also, the following descrip­
tions of HASP's handling of input and output transmission blocks from
and to the 2770 will aid in analysis of other device usage possi­
bilities.

Input

Input blocks to HASP from any device on the 2770 are transformed
into 80 character records of an as job stream, according to one of
the following two rules:

1. If the block is non-transparent, it is interpreted as
one or more records of 80 or less data characters, each
ended by an IRS character which does not become part of
the record processed by as. Compressed blanks, indicated
by the IGS characters, are detected and expanded prior to
processing by OS, if the HASPGEN parameter &BSHPRES=YES.

HASP 2770 RJE Support - Page 12.12-1

1155

I
I

I

H A"-'S P
I

2. If the block is transparent, it is interpreted as one or
more records of exactly 80 data characters. No record
ending characters are recognized.

,"Transparent and non-transparent input blocks may be mixed, in any
order, in any job or series of jobs transmitted to HASP. Proper
handling of compressed blanks in non-transparent input blocks and
proper handling of transparent input blocks are not dependent upon
the setting of the RMTnn HASPGEN parameter describing the particular
terminal.

Therefore, to' use other input devices, the input medium and device
must conform to the above. The device may be connected to any INPUT
position as long as that position is switched on before transmission
is initiated. Input which does not conform to these rules will cause
unpredictable deblocking when received by HASP and probably error
messages or incorre"ct results when processed by OS or the user's
program.

If the input medium/device cannot produce an IRS record ending char­
acter or if control characters are used as data, then the transmis­
sion must be unblocked and/or possibly transparent. The processing
program must handle as data any record ending character other than
IRS which the medium/device may produce."

An input medium other than cards may not be suitable for the prepa­
ration and transmission of OS JCL cards (e.g., //ANY JOB ••• up to
//SYSIN DD *) which are required preceding data in an OS input job
stream. The keyboard may be used to transmit such cards, followed
by data from the other device, using an operational procedure simi­
lar to that described for the keyboard and card reader on page 11
of the 2770 Operator's Guide.

Output

Output from HASP to the 2770 is in two forms: one intended for
printing~ the other for punching cards. These outputs are produced
during OS execution of jobs by using the disposition SYSOUT= on DD
cards. The decision to produce printed or punched output from a
given SYSOUT class is controlled for the entire system by the
HASPGEN parameters $$x, as described in Section 7.

Output block maximum length is 128, 256, or 512 bytes, as indicated
the RMTnn HASPGEN parameter. Output records do not span transmis­
sion block boundaries. Each printed or punched output job is ended
by an EOT transmission.

HASP 2770 RJE Support - Page 12.12-2

1156

I

I

HAS P

Printed Output

Printed output is always sent as non-transparent blocks. All data
characters less than X'40' are translated to X'OO', or if the
&PRTRANS parameter is set to YES, all non-printing characters are
translated to X'40'. The first block ofa job contains the compo­
nent selection character DC1. One or more variable length records
are sent in each block. Each record begins with the two character
ESC x carriage control sequence, has data characters up to the max­
imum specified for Printer Width in the RMTnn parameter, and ends
with the IRS character.

If indicated by parameter RMTnn (and supporting settings of &BSHTAB
and &BSHPRES) , blanks are compressed and encoded using either the
HT or IGS characters. Encoding by HT sets electronic tabs, every
10 columns beginning at column 11. This can be changed by altering
internal assembly variable &HTDIST.

The listing content for each job is the same as for all jobs printed
by HASP: beginning and ending separator pages (number of separator
lines controlled for all remotes in the system by the $TPIDCT param­
eter) , HASP System Log, OS System Messages (JCL, etc.) and any
printed SYSOUT data sets.

It is probably not very practical to direct printed output to another
device for output data purposes, because of the inclusion of separator
pages, messages, etc. The material could be directed to another me­
dium (e.g., paper tape) for later listing offline or on another ma­
chine; however, because only the printer can be attached to the OUT­
PUT PRINTER position, HASP would have to be modified to use other than
DCl for print component selection. This would be a trivial one card
modification if all 2770s in the system were configured and used the
same way, but more difficult if not.

Punched Output

Punched output is sent as transparent blocks if the RMTnn parameter
indicates that the Transparency feature is present. In this case,
the component selection character DC2 is sent alone in a non-trans­
parent block, at the beginning of the job. All other blocks are
transparent and contain one or more records of exactly 80 data char­
acters, without any record ending characters.

If Transparency is not indicated by the RMTnn parameter, all punched
output data characters less than X'40' are translated to X'OO'. Only
non-transparent blocks are sent, with the DC2 in the first block.
Each block contains one or more variable length records. Blanks are
compressed and encoded using the IGS character, if indicated by RMTnn
(and supporting &BSHPRES). Each record contains 80 or less data
characters and ends with the IRS character.

HASP 2770 RJE Support - Page 12.12-3

-1157

HAS P

Punch job content is: separator card (described in Section 12.5.1),
punched SYSOUT data sets, and one blank card at the end of the job.

_,Blank cards may be produced at the end of each SYSOUT data set by .
. some OS access methods, but these are simply transmitted as data by
HASP. A second blank card at the end of each job is produced at the
545 Output Punch by a mechanical eject when EOT is received.

Punched output, except for separator and terminal blank cards, is
pure data output whose content is controlled completely by the appli­
cation program execution. Therefore, it may be practical to direct
punched output to another device connected to the OUTPUT 2 position,
or other positions if HASP is appropriately modified to use other
than DC2 for punch component selection. If the non-transparency,
variable length record, form of punched output described above is
considered more desirable for the output device in question, HASP
may be forced to produce it by omitting Transparency in the RMTnn
parameter, even if the 2770 has the Transparency feature. This will
not prevent the 2770 from transmitting transparent input blocks to
HASP.

12.12.3 3780 Support

The previous description of 2770 support applies to the 3780 also,
with minor exceptions: The 3780 is assumed to have standard 512
byte buffers, card reader, printer, but no keyboard or card punch.
Component selection characters are not sent to the 3780. Although
features Transparency, Horizontal Format, and Compression are
standard; use of them for output is controlled by the RMTnn param­
eter, as with 2770.

HASP 2770 RJE Support - Page 12.12-4

1158

HAS P

12.13 HASP EXECUTION BATCH SCHEDULING

This feature is a modification of normal HASP scheduling of jobs
into logical partitions for execution by OS. The purpose is to al­
low the system to realize performance improvement by avoiding unnec­
essary OS Job Management overhead between "jobs" or "transactions"
processed by an appropriate batch processing program; while maintain­
ing the flexibility of having these "jobs" or "transactions" submitted
to HASP independently, coming from possibly differing input sources,
having differing printed and punched output routing, and with separate
accounting for each job.

12.13.1 Batch Processing Program Characteristics

The processing programs to be used with the Batch Scheduling Feature
of HASP may cover a wide variety of application areas such as:

• Compile and go debugging compilers
• File inquiry programs
• Hardware or software system emulators

However, a particular program to be used in the batch scheduling
mode must have certain characteristics:

• It must read all user input from a single sequential
data set.

• It must recognize a standard OS JOB card or its own con­
trol card to determine the beginning of a "job".

• It must recognize a standard OS null JCL card (/1 followed
by 78 blanks) or its own control card to determine the
ending of a "job".

If it is necessary that the batch processing program have a WTOR
outstanding past the ending of one of its "jobs", the HASPGEN op­
tion &NUMCONS=O must be used.

The batch processing program will receive an actual end-of-file con­
dition when a card having $$ in columns 1 and 2 is read while proc­
essing a "job". The program may continue to the next logical sub­
file by a variety of techniques. It may simply reset appropriate
bits in as I/O control blocks and continue reading or it may CLOSE
the data set. The data set may then be re-OPENed to continue read­
ing at the card following the $$ card.

It is desirable that the program process "jobs" or "transactions" of
relatively short duration. If not, the saving in as Job Management
overhead between successive jobs may not be a large enough percentage
of total job execution time to justify use of this feature.

HASP Execution Batch Scheduling - Page 12.13-1

1159

HAS P

12.13.2 Submission Of Batch Jobs

To use a batch processing program under the Batch Scheduling
Feature of HASP, the user simply constructs jobs as follows:

The first card of each 'should be a standard HASP/OS JOB card,
which includes a CLASS=x parameter, where x is the class (instal­
lation defined) indicating which batch program is to process the
job. The accounting field is interpreted by HASP just as for
non-batch jobs.

No other JCL is used. All other cards should be control cards,
source cards,~ata cards, etc., as required by the batch program.
These will be read by the batch program just as if they had been
placed in a DO * data set and the batch program had been invoked
by standard JCL. If the batch program requires it, each logical
sub-file should be terminated by a card having $$ in columns 1
and 2.

12.13.3 Batch Scheduling Process

Special actions take place when HASP recognizes that a batch job
has been selected for execution.

If the batch program is not already active in the logical partition
for which the job was selected, then HASP generates and sends to
the OS R/I an internal job which uses JCL from proclib (see 12.13.4)
to invoke the program. The entire user job as submitted (JOB card,
all other user input) followed by two null JCL cards added by HASP
is allocated as an input data set to the batch program.

If the batch program is already active and simply waiting for
another job, then HASP makes the input data set allocation as above
and processing begins immediately, without any use of OS Job
Management.

Job termination is detected by the batch program when it reads its
own ending control card or one of the null JCL cards added by HASP.
After writing any remaining SYSOUT data for the completed job, the
batch program simply attempts to read ahead in its input file for
another job. HASP detects this condition, temporarily forces the
batch program into a wait state, and does its job termination actions
for the job (flush output buffers, release input SPOOL space, queue
job for printing, etc.). The batch program remains in the logical
partition.

When a batch program is waiting in a logical partition, HASP job
selection is altered. Instead of scanning for all classes eligible
to execute in that partition, HASP first tries to start another job
of the same class as the batch program still in the partition. If

HASP Execution Batch Scheduling - Page 12.13-2

1160

HAS P

successful, processing can begin immediately as described above.

If no more jobs of the same class are available to execute, then
all other job classes of the partition are scanned in order. If
a job is found, HASP internally cancels the batch program and
normal scheduling takes place using OS Job Management. If no jobs
of the other classes are found, then the partition remains idle
awaiting availability of a job in any of its classes. If a job
becomes available in the class of the batch program still in the
partition, processing begins immediately.

If a batch program ends (abend or normal return to OS) ,HASP
detects this as a non-batch termination in the partition. OS Job
Management will be used to re-invoke the batch program when another
job for its class is selected.

Use of the operator commands $PI or $PIn will cause HASP to cancel
an idle batch program when the partition(s) becomes drained.

12.13.4 Installing Batch Scheduling

The Batching feature is included in HASP by setting the &XBATCHC
HASPGEN parameter equal to a list of job classes to be processed
by the rules described above. The &XBATCHN parameter should also
be set (see descriptions of these two parameters in Section 7).

Each batch class should be used to represent one batch processing
program. Each batch class should be made eligible to execute in
one or more logical partitions, by setting the &CLS(n) HASPGEN
parameters or by use of the $T operator command.

The batch processing program for each class must be available in
loadable form somewhere in the system.

For each combination of batch class and logical partition in which
it may execute, there must be a procedure in SYSl.PROCLIB whose
name is "nnnnncid"j where nnnnn are the five characters assigned
to &XBATCHN, c is the particular batch job class (one of the list
assigned to &XBATCHC), and id is the one or two character logical
partition identification set by the parameters &PID(n). These
procedures actually call the batch processing programs for each
class and define all data sets other than the user input data set.

The procedures may either be single step or may have preliminary
steps before the single step which processes the user jobs. That
step must have a stepname of GO. The processing program invoked
by this step must read its input from a ddname SYSIN or the pro­
cedure must refer to OONAME=SYSIN on a DO card whose name is the
one used for input by the processing program. It is recommended

HASP Execution Batch Scheduling - Page 12.13-3

1161

HAS P

that the DCB parameter BUFNO=l be included on any SYSOUT data sets
in a procedure. This will help to insure that HASP has actually re­
ceived all output produced by the batch program for a job or trans­
action, when the program is suspended while trying to read ahead to
the next job.

The special forms field in SYSOUT must not be used in any batching
procedure. If OS output spooling Ii1Usea-with any SYSOUT (see
HASPGEN parameter $$X), the output is not queued for the OS writer
until the batch processing program terminates, which is not neces­
sarily when any batch job terminates.

If a given batch class is eligible to execute in more than one log­
ical partition,- the requirement for a separate procedure name for
each class-partition combination may be satisfied by alias names of
a single procedure, or by actual separate procedures which may spec­
ify different region sizes, work files, etc.

The following example shows the internal job which HASP would gener­
ate to initially load a program to process batch class X jobs, in a
partition whose &PID(n)=3, assuming the default setting for &XBATCHN.

11$$$$$X3 JOB 1,SYS,MSGLEVEL=1
IIFAKE EXEC $$$$$X3
IIGO.SYSIN DD DATA,DCB=BUFNO=l
II

This job would call a procedure as shown. The following is an exam­
ple of a procedure which an installation might use for a simple file
inquiry program which reads inquiry input from SYSIN, interrogates a
file, and prints responses to SYSPRINT.

IIGO EXEC PGM=FINDPART
IISYSPRINT DD SYSOUT=A,DCB=(BLKSIZE=12l,BUFNO=1)
IIPARTFILE DD DSN-PARTFILE.MASTER,DISP=SHR
IISYSUDUMP DD SYSOUT=A

This procedure would be placed in SYSl.PROCLIB with the name $$$$$X3.

HASP Execution Batch Scheduling - Page 12.13-4

1162

HAS P

12.14 HASP OVERLAY PROGRAMMING RULES

The following comments summarize the rules for coding and using
"overlayable code" in HASP. All rules apply to use of any control
sections created by use of the $OVERLAY macro, even if the code so
produced is optionally made permanently resident as part of the
overlay build process. HASP Overlay does not use any overlay
facility defined elsewhere in OS/360 documentation. More precise
details of Overlay Macros syntax, Overlay Build process, Overlay
Service and Overlay Roll internal logic are given in Sections
9.7, 10.2.2.3, 4.20 and 5.16.

12.14.1 Creating Overlay Control Sections

The beginning of a portion of HASP executable coding or tables to
be made overlayable is indicated by the $OVERLAY macro. By con­
vention, the name field begins with "HASP" and continues with up
to four more characters. The fifth character (first after "HASP")
usually indicates the Processor of which the overlayable code is
a part~ e.g., R for read, X for execution, P for print/punch, etc.
A specific example is "HASPXJI1", the name of the first of two
overlays used by the HASP Execution Processor for job initiation
actions. The name coded with $OVERLAY will be defined at the first
location coded by the programmer after the $OVERLAY and will be
used to derive a name for the control section created.

The operands of $OVERLAY specify the priority for use of overlay
resources and, in conjunction with the HASPGEN parameter &OLAYLEV,
whether the code created is to be actually disk or main memory
resident during HASP operation.

The $OVERLAY macro is a functional replacement for CSECT, USING,
and BALR or L when creating a HASP overlayable control section.
$OVERLAY creates an actual assembly control section and indicates
local addressability in register BASE3. Overlay Service and Roll
functions insure that the proper base value is loaded into BASE3
when an overlay section is being used.

An overlay control section's coding may be terminated and all
effects of a previous $OVERLAY cancelled in one of two ways.
Another overlay may be begun by a new $OVERLAY macro. Non-overlay
coding may be resumed by DROPing register BASE3 and re-establishing
an appropriate CSECT.

If it is desired to add more coding to a previously terminated
overlay section, the actions in the following example must be per­
formed. &xyz is a properly declared variable symbol. HASPabcd. is
the overlay name chosen by the programmer. Other·symbols are
defined in standard HASP assemblies. The second statement must
be placed after the $OVERLAY defining the overlay section to be
resumed, before another $OVERLAY is used.

HASP OVERLAY Programming Rules - Page 12.14-1

1163

HAS P

HASPabcd $OVERLAY 12,0 (original definition)
&xyz SETC '&OSECT'

&xyz

12.14.2

CSECT
'USING

(later additional code)
HASPabcd-OACEPROG+BUFDSECT,BASE3

Calling Ov~rlay Routines

The three executable macros $LINK, $XCTL, and $LOAD cause an over­
lay routine to be made available for use in addressable memory.
The single operand of each of these macros gives the name of the
overlay to be used, either directly or by providing (in register
form) the address of a $OCON macro which gives the name. The name
referenced is that used with a $OVERLAY macro to create the overlay
routine. The overlay control section ($OVERLAY and following code)
may be in the same or a different HASP assembly as a macro which
calls it.

The $LINK and $LOAD macros must be physically placed in non-overlay
CSECTs and executed only when no other overlay routine is being
used, i.e., nested calling of overlays is not defined. With $LINK,
program control is eventually passed to the first instruction after
$OVERLAY of the called routine. The address of the caller's next
~nstruction is saved for later return. $LOAD returns control to
the next instruction after $LOAD when the routine is available in
memory.

$XCTL relinquishes use of an overlay routine, previously called by
$LINK or $XCTL, and calls a new overlay routine which is entered
as if called by $LINK. Return address saved by the original $LINK
is not altered. $XCTL must always be executed when an overlay is
in use, but may physically be in an overlay routine or in non-overlay
coding, subject to the requirements of 12.14.3.

$RETURN and $DELETE both relinquish use of an overlay routine, which
must be in use when they are executed. These macros have no
operands; the routine released is the only one in use at the time.
$RETURN causes control to pass to the next instruction after the
$LINK previously executed by the Processor from non-overlay code.
$RETURN, like $XCTL, may physically reside anywhere. $DELETE must
physically reside in non-overlay code and is valid only after a .
routine was previously called by $LOAD. Control continues following
$DELETE, after use of the overlay routine has been released.

Overlay routines may be called only by HASP Processors operating
under the primary HASP TCB, HASP Dispatcher, and PCE control (see
Section 5.1). Overlay routines may not be called in exits from
the Asynchronous Post Processor (see Section 4.8).

HASP OVERLAY Programming Rules - Page 12.14-2

1164

HAS P

12.14.3 Coding While Using Overlay Routines

On entry to an executable overlay by $LINK or $XCTL or after loading
an overlay with $ LOAD , the caller's registers RO-R7 and R9-R13
are preserved. However, registers BASE3 (same as R8 or WG in unmodi·­
fied HASP)·, LINK, R15 and the condition code are destroyed and are
not later restored. While an overlay routine is being used (after
the execution of $LINK or $LOAD but before the execution of $RETURN
or $DELETE), the program must not alter the value of register BASE3.

Coding in an overlay routine is "covered" by local addressability
provided by $OVERLAY. Coding physically outside an overlay but
referring to it (usual case after a $LOAD) must be "covered" by a
USING like that in the example in 12.14.1. Other addressability
(e.g., BASEl, BASE2) remains in effect if not dropped and may be
used.

Program control may be transferred out of or into an overlay routine
and its storage may be retrieved, as long as overlay control of that
routine is in effect (has not been released by $RETURN, $DELETE,
or $XCTL to a new routine) and proper addressability is maintained.
References to locations in an overlay routine from physically
outside the overlay at any other time are illegal.

Relocatable valued A or V type constants must not be physically
coded in overlay routines. Such constants may be coded in non-over­
lay CSECTs and referenced from overlay routines. Relocatable A or
V type literals may be coded if the literal pool containing them
is not physically in an overlay routin~. An A or V constant or
Ii teral containing an "un-paired" ·(see As sembly Language SRL)
reference to a symbol defined in an overlay routine is always
illegal, regardless of location.

When use of an overlay routine is released by $RETURN or $DELETE,
only the LINK and BASE3 registers are destroyed. All other registers
and the conditi~n code are preserved as set prior to the execution
of these macros.

Total size of all coding in an overlay routine must not exceed the
value of the internal assembly variable &OLAYSIZ, currently set
at 1024 bytes in unmodified HASP. An error message will be produced
during the Overlay Build process for each routine which violates
this restriction.

HASP OVERLAY Programming Rules - Page 12.14-3

1165

HAS P

12.14.4 Overlay Location Independent Coding

Whenever a HASP Processor which is using an overlay routine
executes $WAIT, regardless of the physical location of the
$WAIT, the Overlay Roll Processor may pre-empt the Overlay Area
for other ·use. When control is returned to the Processor fol­
lowing the $WAIT, the overlay routine may have been re-read from
direct access, destroying all self-modification or temporary
storage in the overlay, and may be in a different Overlay Area,
making all address values relative to the overlay routine's
location invalid (in registers or elsewhere).

The first effect above (destruction of temporary storage) is
similar to the effect on single (non-re-entrant) temporary
storages in non-overlay coding used by multiple Processors when
$WAIT is executed. The effect on overlay storage may take place
when only one peE is using an overlay routine. Re-entrant
temporary storage (e.g., in a PCE workarea) or re-construction
from known values after $WAIT will avoid errors due to this pos­
sible "re-freshing" of overlay routines.

The second effect (changing overlay location) is, of course,
peculiar to use of overlay routines. System Overlay Service and
Roll logic automatically makes proper adjustments to registers
BASE3 (overlay routine base value) and RIS ($WAIT re-entry
address), if the $WAIT is physically in the overlay routine.

Other address values relative to an overlay routine are usually
created in registers by use of instructions such as LA (with
BASE3 as base), BAL, or BALR (the last two if physically in an
overlay routine). These registers should be "relativized" prior
to $WAIT by "SLR n,BASE3" instruction(s) and "absolutized" after
$WAIT by "ALR n,BASE3" instruction(s). Equivalent techniques may
be created for other coding situations.

Certain HASP macros which call services subroutines represent a
"hidden" possible $WAIT. They must be treated as equivalent to
$WAIT in all cases previously described. Specifically, any macro
for which the keyword parameter OLAY=YES is defined (see Section 9)
represents a hidden $WAIT, regardless of physical location. The
OLAY=YES is coded only if the macro physically exists in an overlay
routine. Macro expansion and service subroutine exit coding handle
possible adjustment of the LINK register. The services subroutines
assume that all parameter address values (in RO, Rl, or RlS) are
not relative to an overlay routine. Other addresses rel~tive to
an overlay routine must be adjusted before and after the service
macro call by the caller.

The $WTO macro is a special case. It represents a hidden $WAIT
unless WAIT=NO is coded. If coded physically in an overlay
routine, WAIT=NO must be coded. It may be coded physically outside
an overlay routine without WAIT=NO, but then registers must be
treated as for macros which have OLAY=YES defined.

HASP OVERLAY Programming Rules - Page 12.14-4

1166

HAS P

12.15 HASP WITH OS CONSOLE SUPPORT

The following sections describe the HASP routines which are pro­
vided for the OS console support interface selected by specifying
the HASPGEN parameter &NUMCONS=O (see Section 7.1).

12.15.1 General Description

The functions included in HASP to provide an interface with the
OS console support are in the following major areas:

Initialization procedure
SVC 34 processing
SVC 35/36 processing
WTO subtask

Each of these areas is described in greater detail in the remaining
sections of this appendix.

The combined overall functions of the interface is to allow operator
commands (both OS and HASP) to be entered from any OS supported
console input device without special operator action and to
display the commands and associated information in accordance to
a combined OS and HASP criteria. In addition, the unique HASP
features of abbreviated replies to WTORs and the HASP System
Log of WTO messages as part of the programs printed output are
included (subject to the restrictions noted in the description
of the &NUMCONS variable in Section 7.1).

12.15.2 Initialization Procedure

Preparation for the &NUMCONS=O option at the time HASP is invoked
includes the following functions in the INIT modules:

1. Information concerned with the UCM base is extracted and
stored in the resident CON module. Included are: address
of UCM save area; TCB address of communication task; address
of UCM base fields containing address of first UCM entry,
size of each UCM entry, address of last UCM entry; contents
of Mode flag byte from UCM base. The source of this infor­
mation is OS release dependent. See the OS MVT Supervisor
PLM for additional information on the UCM.

2. The address of the HASP TCB is stored in CON to facilitate
OS POSTing of the HASP task.

HASP With as Console Support - Page 12.15-1

1167

I

I

HAS P

3. The servicing of SVC 35 and, conditional on the HASPGEN param­
eter &WTLOPT, SVC 36 by OS is diverted to HASP by changing the
contents of the SVC table to enter the XEQ modules lOS interface
section and, subsequently, the CON module code $WTOSVC. If the
OS System is MFT, the SVC table is changed to indicate a Type 3
resident routine. If the OS System is MVT, the SVC table is
changed to indicate a Type 2 SVC. In both cases the original
SVC table contents are saved in the HCT prior to the indicated
changes. Note: The SVC table for MFT must contain four byte
entries in order to indicate a Type 3 resident SVC.

4. An ATTACH is issued to the BRI module which executes a branch
to the address contained in register 1. Prior to the ATTACH,
register 1 is set to the entry point of the HASP WTO subtask
($HASPWTO). Register WA is set to the address of an ECB
($WTOECB) which is used to coordinate the activities of HASP
with the subtask. See Section 12.15.5 for further details.

5. An error message, indicating the completion code provided by
the return from ATTACH, is issued if the ATTACH was unsuccess­
ful. Control is passed to the HASPIOVD segment of INIT to
continue processing.

12.5.3 SVC 34 Processing

$MGCRSVC, a section of code contained in the CON module, is entered
whenever an XCTL to IGC0403D is detected by the HASP LINK/XCTL in­
terface. The functions performed by $MGCRSVC are:

1. Immediate return to perform,the XCTL if the SVC 34 was issued
by HASP.

2. Performs backspace editing of the command in accordance with the
HASPGEN parameter "$BSPACE". Tests for possible HASP format ab­
breviated reply to outstanding WTOR. If the first character is
numeric, the abbreviated reply process is invoked to expand the
HASP form to a form acceptable to OS. The SVC 35/36 Processing
routine is entered for possible logging of the expanded reply on
the HASP SYSTEM LOG. Control is returned to process the XCTL
with expanded reply.

3. If the first character is non-numeric, an explicit test is made
for a "$" which identifies HASP commands. Control is returned
to process the XCTL if the first character is non-numeric or
not a "$".

4. If the first character is a "$", a test for at least one CMB
which is not being used to process HASP commands is performed
using a counter ($COMMCT) maintained in the HCT. If all CMBs
(except one) are being used to process commands or if no CMBs
are available, then control is returned to process the XCTL.
The command is subsequently

HASP With OS Console Support - Page 12.15-2

1168

HAS P

rejected by OS as invalid.

5. If MCS is being used in the OS system, the authorization code
for the device indicated by the UCMID contained in the low
order byte of RO is extracted from the ucr1 and converted to
the HASP restriction level. Reference the HASP COMM Proces­
sor for additional information on the OS authorization code
and HASP restriction level relationship.

6. The contents of the input buffer are copied to the acquired
HASP CMB and the CMB is queued for the HASP command processor
using the $COMMQUE pointer in the HCT. The command processor
is $POSTed for work and HASP is as POSTed.

7. The resume PSW in the SVRB of the issuer of the XCTL to
IGC0403D is changed to point to CVTEXIT in the CVT. The cur­
rent SVRB is terminated by issuing an SVC 3 which eventually
causes the whole process to be ignored by OS.

12.15.4 SVC 35/36 Processing

$WTOSVC, a section of the CON module, is entered from the SVC
SLIH via the Execution Processor lOS interface routine whenever
an SVC 35 or, optionally, SVC 36 is encountered. This section of
code operates as a Type 2 SVC and accomplishes the following
functions:

1. XCTLs to the real first load of SVC 35 (IGC0003E) if the WTO
was issued by the HASP subtask ($HASPWTO).

2. Saves registers in the current SVRB extended save area and
tests input for WTO or WTOR.

3. If WTOR, adjusts input pointer (Rl) to beginning of message
and proceeds as follows (WTO processing):

4. An internal table is used to compare the first eight bytes of
the input message and, if a match occurs, special processing
is invoked through a corresponding routine. The usual function
of the special processing is to bypass the display of redundant
system messages.

5. A search of the Execution Processor PCEs is made to locate the
JCT for the job issuing the SVC 35 or 36. The TIQT and asso­
ciated job name is used for the search. If a match is not
found, control goes to the real first load of the SVC 35/36.

HASP With OS Console Support - Page 12.15--3

1169

HAS P

6. If a CMB is available, the subroutine HASPCBUF is entered to
copy the message to the HASP Log for the particular job; HASP
is OS POSTed and control passed to the appropriate OS module:
IGC0003E or IGC0003f for SVC 35 or 36 respectively.

7. If a CMB is not available, the caller is forced into an OS
WAIT .condition. The forced WAIT is conditional: the Com­
munication Task, DAR and SIRB controlled routines are
excluded. In addition, if no PQE (used to retain the TCB
and define an ECB for the routine $FREEMSG to OS POST) is
available, the caller is not forced into a WAIT condition
and the message is not entered into the HASP Log.

12.15.5 HASP WTO Subtask

The HASP OS WTO interface ($HASPWTO) which operates as an ATTACHed
subtask to HASP is responsible for the processing of all WTO
messages generated by HASP processors as the result of $WTO macros.
$HASPWTO is implemented as a subtask in order to allow the normal
OS function of delaying the execution of a task due to predetermined
buffer limits. The "delaying" of the task, under these circumstances,
is in the form of an ENQ and WAIT procedure which causes the task
to be non-dispatchable until sufficient resources (buffers) are
available to process the WTO. It is undesirable for HASP proper
to be forced into a WAIT state but it is tolerable for the $HASPWTO
subtask to be subjected to a forced WAIT.

$HASPWTO is assembled as part of the CON module and is executed as
a task via an ATTACH issued at HASP initialization. The overall
logic of this task is:

1. The initial entry establishes local and HASP addressability,
POSTs a synchronization ECB for INIT and then WAITs for
work using a communication ECB which is POSTed by the CON
module routine $WQUEBUF.

2. When the communication ECB ($VJTOECB) is posted, $HASPWTO
examines the CMB active queue ($BUSYQUE) for messages to be
sent to the OS console routines via a WTO. All messages on
the queue except those flagged for remote processing are pro­
cessed by $HASPWTO. If the queue is empty, $HASPWTO WAITs
for the next POST of $WTOECB.

3. If the message selected from the active queue contains a UCMID
byte, then the MCSFLAGS field of the WTO calling sequence is
set to indicate RO contains the UCMID and, eventually, RO is
loaded with the UCMID. This feature allows responses to HASP
commands to be returned to the indicated console.

HASP With OS Console Support - Page 12.15-4

1170

HAS P

4. The routing code field of the WTO calling sequence is used
for non-UCMID CMBs. The HASP logical console bit indicators
(contained in the CMB) are used to translate to the equiva­
lent as routing codes based on the following table:

HASP

LOG
ERROR
UR
TP
TAPE
MAIN

as Function

MASTER CONSOLE INFORMATIONAL
SYSTEM/ERROR MAINTENANCE
UNIT RECORD POOL
TELEPROCESSING CONTROL
TAPE, DISK LIBRARIES TAPE, DA POOLS
MASTER CONSOLE, ACTION AND INFORMATIONAL

5. The message is copied from the CMB to an internal buffer
corresponding to the WTO format. If routing codes are being
used, the description code field is set to indicate a system
status message.

6. The CMB is returned to the available CMB queue ($FREEQUE)
using the $FREEMSG subroutine. If $FREEMSG returns with a
condition code = 0, than an OS POST is issued to the
HASP ECB ($HASPECB), otherwise no POST is given.

7. The WTO is issued for the copied CMB using either the UCMID
or the routing and descriptor code options. The procedure
described starting at step 2 is repeated.

HASP With as Console Support - Page 12.15-5

1171

HAS P

12.16 MULTIPLE DEVICES ON MULTI-LEAVING REMOTES

If a HASP System includes MULTI-LEAVING RJE support (&NUMLNES >0
and &BSCCPU=YES) and if any remote terminal to be supported has
multiple .devices (i.e., more than one reader, printer or punch),
then the following considerations should be reviewed before per­
forming HASPGEN and RMTGEN for that configuration.

12.16.1 RMTGEN Considerations

The appropriate parts of Section 7 describe how to specify support
for a second (or third, etc.) reader, printer, or punch when
performing RMTGEN for the various types of MULTI-LEAVING remote
workstation programs.

12.16.2 HASP Processor Considerations

It may be necessary to increase the value{s) of the HASPGEN
parameters &NUMTPPR, &NUMTPPU, and &NUMTPRD to allow concurrent
operation of all remote devices in the total system.

For example, if &NUMLNES=3 and the default value &NUMTPPR=&NUMLNES
is taken, then the HASP System can only support three concurrent
remote print operations. If all three lines are active and one
of the three active remotes has two printers, then unless &NUMTPPR
is increased to four, one of the four possible concurrent remote
print operations may be delayed until a print operation on
another remote comes to the end of a job.

The decision to increase these parameters and by how much, depends
on the total remote configuration and an estimate of how many
active remotes will usually be doing the same stage of job
processing.

12.16.3 HASP Remote Device Considerations

HASP generates a Device Control Table (OCT) for one of each type
of device (reader, printer, and punch) on each remote terminal known
to HASP (RMTOI through RMTnn where &NUMRJE=nn).

If a remote terminal has more than one of each type of device,
then a OCT for each such additional device must be generated.

Multiple Devices on MULTI-LEAVING Remotes - Page 12.16-1

1172

HAS P

Each additional DCT must be specified on a card of the following
format:

$RMTDCT type,device -serial-

Values for the above card should be chosen from the following
table:

readers
printers
punches

~ device

RJR
RPR
RPU

RMnn.RDm
RMnn.PRm
RMnn.PUm

serial

N0730nnm
N0732nnm
N0736nnm

where linn" is the remote number (same as in the RMTnn HASPGEN
parameters but with a leading ~ omitted in device) and "m"
is the device number which must be 2 or greater, up to a maximum
of 7.

All the above cards describing additional devices for all remotes
in a system must be placed in ascending order by serial number
and added to the source module HASPINIT using the HASPGEN Update
facility described in Section 10.1.3. The following example
shows how to generate a second printer DCT for remote 2 and a
second reader DCT for remote 5.

Columns
1
./

10 16
CHNGE HASPINIT
$RMTDCT. RJR,RM5.RD2
$RMTDCT RPR,RM2.PR2

73 80

N0730052
N07'32022

Multiple Devices On MULTI-LEAVING Remotes - Page 12.16-2

1173

HAS P

12.17 3211 FORMS CONTROL BUFFER ADDITIONAL LOADS

Installations using HASP with 3211 printers may want to add carriage
tape images to HASP in addition to the images provided. Each such
image is named by a letter or a number, but the number 'I' is re­
served to allow the operator to force single-spacing and the letter
'V' is reserved for the operator-variable FCB load. Of the 34 re-
maining alphanumerics, HASP supplies images for '6', '8', and lUI.

12.17.1 Adding and Changing FCB Loads

The mechanism for defining Forms Control Buffer loads in HASP is
the $FCB macro, defined in Chapter 9. To add or change an FeB
image, the installation system programmer

• codes a $FCB macro for each image

• assigns it a card sequence number from the numbers shown in
Section 12.17.3.

• includes it in his HASPGEN modification deck

• does a HASPGEN to create new source for HASPPRPU

• re-assembles HASPPRPU

• executes HASPOBLD to create a new HASP load module and overlay
library.

12.17.2 FCB Loads Provided by HASP

HASP provides three FCB loads, callable by the characters '6', '8',
and 'U'.

The '6' image is designed for 11-inch-10ng forms. Channell is
punched at line I, channel 2 at line 7, channel 3 at line 13, and
so on to channel 8. Channel 10 is at line 49, channel 11 at line
55, channel 12 at line 61, and channel 9 at line 63. The $FCB
macro is

FCB6 $FCB 6,66,1-1,2-7,3-13,4-19,5-25,6-31,7-37,8-43,10-49,
11-55,12-61,9-63

The '8' image is designed for 8-l/2-inch-long forms, at 8 lines
per inch. The punches are the same as for the '6' image, except
that channel 9 is at line 64. The $FCB macro is

FCB8 $FCB 8,68,1-1,2-7,3-13,4-19,5-25,6-31,7-37,8-43,10-49,
11-55,12.-61,9-64

3211 Forms Control Buffer Additional Loads - Page 12.17-1

1174

HAS P

The 'u' image specifies only carriage channell at line 1; other
carriage channels are filled in by the $FCB macro to prevent forms
runaway. The $FCB macro is

FCBU $FCB 6,66,1-1

12.17.3 Recommended Card Sequence Numbers

It is recommended that additional FCB images be assembled using
the following card sequence numbers:

Image
Name

A
B
C
D
E
F
G
H
I
J
K
L
M
N
o
P
Q
R
S
T
U
W
X
Y
Z
o
2
3
4
5
7
9

First
Sequence Number

P3458000
P3460000
P3462000
P3464000
P3466000
P3468000
P3470000
P3472000
P3474000
P3476000
P3478000
P3480000
P3482000
P3484000
P3486000
P3488000
P3490000
P3492000
P3494000
P3496000
P3540000
P3502000
P3504000
P3506000
P3508000
P3510000
P3514000
P3516000
P3518000
P3520000
P3524000
P3528000

Continuation
Sequence Numbers

P3458100-P3459900
P3460100-P3461900
P3462100-P3463900
P3464100-P3465900
P3466100-P3467900
P3468100-P3469900
P3470100-P3471900
P3472100-P3473900
P3474100-P3475900
P3476100-P3477900
P3478100-P3479900
P3480100-P3481900
P3482100-P3483900
P3484100-P3485900
P3486100-P3487900
P3488100-P3489900
P3490100-P3491900
P3492100-P3493900
P3494100-P3495900
P3496100-P3497900
P3540100-P3541900
P3502100-P3503900
P3504100-P3505900
P3506100-P3507900
P3508100-P3509900
P3510100-P3511900
P3514100-P3515900
P3516100-P3517900
P3518100-P3519900
P3520100-P3521900
P3524100-P3525900
P3528100-P3529900

3211 Forms Control Buffer Additional Loads - Page 12.17-2

1175

HAS P

(The remainder of this page intentionally left blank.)

1175.1

	0000001
	0000002
	0000003
	0000004
	0000005
	0000006
	0000007
	0000008
	000001
	000002
	000003
	000004
	000005
	000006
	00001
	00002
	00003
	00004
	00005
	00006
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067
	0068
	0069
	0070
	0071
	0072
	0073
	0074
	0075
	0076
	0077
	0078
	0079
	0080
	0081
	0082
	0083
	0084
	0085
	0086
	0087
	0088
	0089
	0090
	0091
	0092
	0093
	0094
	0095
	0096
	0097
	0098
	0099
	0100
	0101
	0102
	0103
	0104
	0105
	0106
	0107
	0108
	0109
	0110
	0111
	0112
	0113
	0114
	0115
	0116
	0117
	0118
	0119
	0120
	0121
	0122
	0123
	0124
	0125
	0126
	0127
	0128
	0129
	0130
	0131
	0132
	0133
	0134
	0135
	0136
	0137
	0138
	0139
	0140
	0141
	0142
	0143
	0144
	0145
	0146
	0147
	0148
	0149
	0150
	0151
	0152
	0153
	0154
	0155
	0156
	0157
	0158
	0159
	0160
	0161
	0162
	0163
	0164
	0165
	0166
	0167
	0168
	0169
	0170
	0171
	0172
	0173
	0174
	0175
	0176
	0177
	0178
	0179
	0180
	0181
	0182
	0183
	0184
	0185
	0186
	0187
	0188
	0189
	0190
	0191
	0192
	0193
	0194
	0195
	0196
	0197
	0198
	0199
	0200
	0201
	0202
	0203
	0204
	0205
	0206
	0207
	0208
	0209
	0210
	0211
	0212
	0213
	0214
	0215
	0216
	0217
	0218
	0219
	0220
	0221
	0222
	0223
	0224
	0225
	0226
	0227
	0228
	0229
	0230.0
	0230.1
	0230.2
	0231
	0232
	0233
	0234
	0235
	0236
	0237
	0238
	0239
	0240
	0241
	0242
	0243
	0244
	0245
	0246.0
	0246.1
	0246.2
	0247
	0248
	0249
	0250
	0251
	0252
	0253
	0254
	0255
	0256
	0257
	0258
	0259
	0260
	0261
	0262
	0263
	0264
	0265.0
	0265.1
	0265.2
	0266
	0267
	0268
	0269
	0270
	0271
	0272
	0273
	0274
	0275
	0276
	0277
	0278
	0279
	0280
	0281
	0282
	0283
	0284
	0285
	0286
	0287
	0288
	0289
	0290
	0291
	0292
	0293
	0294
	0295
	0296
	0297
	0298
	0299
	0300
	0301
	0302
	0303
	0304
	0305
	0306
	0307
	0308
	0309
	0310
	0311
	0312
	0313
	0314
	0315.0
	0315.1
	0315.2
	0316.0
	0316.1
	0316.2
	0317
	0318
	0319
	0320
	0321
	0322
	0323
	0324
	0325
	0326
	0327
	0328.0
	0328.1
	0328.2
	0329
	0330
	0331
	0332
	0333
	0334
	0335
	0336
	0337
	0338
	0339
	0340
	0341
	0342
	0343
	0344
	0345
	0346
	0347
	0348
	0349
	0350
	0351
	0352
	0353
	0354
	0355
	0356
	0357
	0358
	0359
	0360
	0361
	0362
	0363
	0364
	0365
	0366
	0367
	0368
	0369
	0370
	0371
	0372
	0373
	0374
	0375
	0376
	0377
	0378
	0379
	0380
	0381
	0382
	0383
	0384
	0385
	0386
	0387
	0388
	0389.0
	0389.1
	0389.2
	0390
	0391
	0392.0
	0392.1
	0392.2
	0393
	0394
	0395
	0396
	0397.0
	0397.1
	0397.2
	0398
	0399
	0400
	0401
	0402
	0403
	0404
	0405
	0406
	0407
	0408
	0409
	0410
	0411
	0412
	0413
	0414
	0415
	0416
	0417
	0418.0
	0418.1
	0418.2
	0419
	0420
	0421
	0422
	0423
	0424
	0425
	0426
	0427
	0428
	0429
	0430
	0431
	0432
	0433
	0434
	0435
	0436.0
	0436.1
	0436.2
	0437
	0438
	0439
	0440
	0441
	0442
	0443
	0444
	0445
	0446
	0447
	0448
	0449
	0450
	0451
	0452
	0453
	0454
	0455
	0456
	0457
	0458
	0459
	0460
	0461
	0462
	0463
	0464
	0465
	0466
	0467
	0468
	0469
	0470
	0471
	0472
	0473
	0474
	0475
	0476
	0477
	0478
	0479
	0480
	0481
	0482
	0483
	0484
	0485
	0486
	0487
	0488
	0489
	0490
	0491
	0492.0
	0492.1
	0492.2
	0493
	0494
	0495
	0496
	0497
	0498
	0499
	0500.0
	0500.1
	0500.2
	0501
	0502
	0503
	0504
	0505
	0506
	0507
	0508
	0509
	0510
	0511
	0512
	0513
	0514
	0515
	0516
	0517
	0518
	0519
	0520
	0521
	0522
	0523
	0524
	0525
	0526
	0527
	0528
	0529
	0530
	0531
	0532
	0533
	0534
	0535
	0536
	0537
	0538
	0539
	0540
	0541
	0542
	0543
	0544
	0545
	0546
	0547
	0548
	0549
	0550
	0551
	0552
	0553
	0554
	0555
	0556
	0557
	0558
	0559
	0560
	0561
	0562
	0563
	0564
	0565
	0566
	0567
	0568
	0569
	0570
	0571
	0572
	0573
	0574
	0575
	0576
	0577
	0578
	0579
	0580
	0581
	0582
	0583
	0584
	0585
	0586
	0587
	0588
	0589
	0590
	0591
	0592
	0593
	0594
	0595
	0596
	0597
	0598
	0599
	0600
	0601
	0602
	0603
	0604
	0605
	0606
	0607
	0608
	0609
	0610
	0611
	0612
	0613
	0614
	0615
	0616
	0617
	0618
	0619
	0620
	0621
	0622
	0623
	0624
	0625
	0626
	0627
	0628
	0629
	0630
	0631
	0632
	0633
	0634
	0635
	0636
	0637
	0638
	0639
	0640
	0641
	0642
	0643
	0644
	0645
	0646
	0647
	0648
	0649
	0650.0
	0650.1
	0650.2
	0651
	0652
	0653
	0654
	0655
	0656
	0657
	0658
	0659
	0660
	0661
	0662
	0663
	0664
	0665.0
	0665.1
	0665.2
	0666
	0667
	0668
	0669
	0670
	0671
	0672
	0673
	0674
	0675
	0676
	0677
	0678
	0679
	0680
	0681
	0682
	0683
	0684
	0685
	0686.0
	0686.1
	0686.2
	0686.3
	0686.4
	0687
	0688
	0689
	0690
	0691_Operators_Guide
	0692
	0693
	0694
	0695
	0696
	0697
	0698.0
	0698.1
	0698.2
	0699
	0700
	0701
	0702
	0703
	0704
	0705
	0706
	0707
	0708
	0709
	0710
	0711
	0712
	0713
	0714
	0715
	0716
	0717
	0718
	0719
	0720.0
	0720.1
	0720.2
	0721
	0722
	0723.0
	0723.1
	0723.2
	0723.3
	0723.4
	0723.5
	0723.6
	0724
	0725
	0726
	0727
	0728
	0729
	0730
	0731
	0732
	0733
	0734
	0735
	0736
	0737
	0738
	0739
	0740
	0741
	0742
	0743
	0744
	0745
	0746
	0747
	0748
	0749
	0750
	0751
	0752
	0753
	0754
	0755
	0756
	0757
	0758
	0759
	0760
	0761
	0762
	0763.0
	0763.1
	0763.2
	0764
	0765
	0766
	0767
	0768
	0769
	0770
	0771
	0772
	0773
	0774
	0775
	0776
	0777
	0778
	0779
	0780
	0781
	0782
	0783
	0784
	0785
	0786
	0787
	0788
	0789
	0790
	0791
	0792
	0793
	0794
	0795
	0796
	0797
	0798
	0799
	0800
	0801
	0802
	0803
	0804.0
	0804.1
	0804.2
	0804.3
	0804.4
	0805
	0806
	0807
	0808
	0809
	0810
	0811
	0812
	0813
	0814
	0815
	0816
	0817
	0818
	0819
	0820.0
	0820.1
	0820.2
	0821
	0822
	0823
	0824
	0825
	0826
	0827
	0828
	0829
	0830
	0831
	0832
	0833
	0834
	0835
	0836
	0837
	0838
	0839
	0840
	0841
	0842
	0843
	0844
	0845
	0846
	0847
	0848
	0849_STR_Model_20_Operator
	0850
	0851
	0852
	0853
	0854
	0855
	0856
	0857
	0858
	0859
	0860
	0861
	0862
	0863
	0864
	0865
	0866
	0867
	0868
	0869
	0870
	0871
	0872
	0873
	0874
	0875_1978_Operator
	0876
	0877
	0878
	0879
	0880
	0881
	0882
	0883
	0884
	0885
	0886
	0887
	0888
	0889
	0890
	0891
	0892
	0893
	0894
	0895
	0896
	0897
	0898
	0899
	0900
	0901
	0902
	0903
	0904
	0905
	0906
	0907_1130_Operator
	0908
	0909
	0910
	0911
	0912
	0913
	0914
	0915
	0916
	0917
	0918
	0919
	0920
	0921
	0922
	0923
	0924
	0925
	0926
	0927
	0928
	0929
	0930
	0931
	0932
	0933
	0934
	0935_360_Operator
	0936
	0937
	0938
	0939
	0940
	0941
	0942
	0943
	0944
	0945
	0946
	0947
	0948
	0949
	0950
	0951
	0952
	0953
	0954
	0955
	0956
	0957
	0958
	0959
	0960
	0961
	0962
	0963_BSC_Model_20_Operator
	0964
	0965
	0966
	0967
	0968
	0969
	0970
	0971
	0972
	0973
	0974
	0975
	0976
	0977
	0978
	0979
	0980
	0981
	0982
	0983
	0984
	0985
	0986
	0987
	0988
	0989
	0990
	0991
	0992
	0993
	0994
	0995_2780_Operator
	0996
	0997
	0998
	0999
	1000
	1001
	1002
	1003
	1004
	1005
	1006
	1007
	1008
	1009
	1010
	1011
	1012
	1013
	1014
	1015
	1016
	1017
	1018
	1019
	1020
	1021_2770_Operator
	1022
	1023
	1024
	1025
	1026
	1027
	1028
	1029
	1030
	1031
	1032
	1033
	1034
	1035
	1036
	1037
	1038
	1039
	1040
	1041
	1042
	1043
	1044
	1045
	1046
	1047
	1048
	1049
	1050
	1051_System3_Operator
	1052
	1053
	1054
	1055
	1056
	1057
	1058.0
	1058.1
	1058.2
	1059
	1060
	1061
	1062
	1063
	1064
	1065
	1066.0
	1066.1
	1066.2
	1067
	1068
	1069
	1070
	1071
	1072
	1073
	1074.00
	1074.01_3780_Operators
	1074.02
	1074.03
	1074.04
	1074.05
	1074.06
	1074.07
	1074.08
	1074.09
	1074.10
	1074.11
	1074.12
	1074.13
	1074.14
	1074.15
	1074.16
	1074.17
	1074.18
	1074.19
	1074.20
	1075
	1076
	1077
	1078
	1079
	1080
	1081
	1082
	1083
	1084
	1085
	1086
	1087
	1088
	1089
	1090
	1091
	1092
	1093
	1094
	1095
	1096
	1097
	1098
	1099
	1100
	1101
	1102
	1103
	1104
	1105.0
	1105.1
	1105.2
	1106
	1107
	1108
	1109
	1110
	1111
	1112
	1113
	1114
	1115
	1116
	1117
	1118
	1119
	1120
	1121
	1122
	1123
	1124
	1125
	1126
	1127
	1128
	1129
	1130
	1131
	1132
	1133
	1134
	1135
	1136
	1137
	1138
	1139
	1140
	1141
	1142
	1143
	1144
	1145
	1146
	1147
	1148
	1149
	1150
	1151
	1152
	1153
	1154
	1155
	1156
	1157
	1158
	1159
	1160
	1161
	1162
	1163
	1164
	1165
	1166
	1167
	1168
	1169
	1170
	1171
	1172
	1173
	1174
	1175.0
	1175.1

