GC28-1300-2
File No. S370-36

Program Product MVS JCL

MVS/System Product - JES2 Version 1
5740-XYS '
MVS/System Product - JES3 Version 1
5740-XYN

This edition applies to the following program products:
MVS/System Product - JES2 Version 1 Release 3.4 (Program No. 5740-X‘YS)
MVS/System Product - JES3 Version 1 Release 3.4 (Program No. 5740-XYN)
MYVS/370 Data Facility Product (DFP) Release 1.1 (Program No. 5665-295)
Resource Access Control Facility (RACF) Version 1 Release 6 and later (Program No. 5740-XXH)

Do not replace your existing documentation until your system consists of the above releases (1) of the base
control program with JES2 or JES3 and (2) of DFP.

Note: Because the book has been extensively revised, JES2 installations using Version 1 Release 3.4
should use this edition, even though the previous edition also reflects Version 1 Release 3.4.

Third Edition (December, 1984)

This is a major revision of, and obsoletes, GC28-1300-1. See the Summary of
Amendments following the Contents for a summary of the changes made to this manual.
Technical changes or additions to the text and illustrations are indicated by a vertical line
to the left of the change.

This edition applies to the program releases listed in the box above and to all subsequent
releases until otherwise indicated in new editions or Technical Newsletters. Changes are
made periodically to the information herein; before using this publication in connection
with the operation of IBM systems, consult the latest IBM System/370 and 4300
Processors Bibliography, GC20-0001, for the editions that are applicable and current.

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM program product in this publication is not intended to state or imply
that only IBM’s program product may be used. Any functionally equivalent program
may be used instead.

Publications are not stocked at the address given below. Requests for IBM publications
should be made to your IBM representative or to the IBM branch office serving your
locality.

A form for reader’s comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to IBM Corporation, Information
Development, Department D58, Building 920-2, PO Box 390, Poughkeepsie, New York,
U.S.A. 12602. IBM may use or distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1982, 1984

Preface |

This publication describes how to control job processing and the resources needed to run a job.
These resources include storage, data sets, devices, and volumes. Job and resource control is
specified in job control language (JCL) statements, job entry subsystem 2 (JES2) control
statements, and job entry subsystem 3 (JES3) control statements.

Who Should Use This Publication

This book is needed by programmers who code JCL, JES2, and JES3 control statements.
Those using this book should understand the concepts of job management and data
management.

Major Sections of This Publication

Part 1. Introduction: In this part, chapter 1 introduces job control. It is intended primarily for
the programmer who is inexperienced in job control.

Chapter 2 explains the coding conventions for JCL, JES2, and JES3 control statements. These
coding conventions are used throughout the book.

Part 2. Guide to Job and Step Control: This part discusses how to control jobs and steps using
JCL, JES2, and JES3 control statements. It contains:

® The background needed to understand why you should code each parameter.
@® Examples to show when to code the parameters.
@® Descriptions of how to code combinations of parameiers to obtain particular results.

The descriptions of job and step control are grouped into the following chapters:

Chapter 3. Guide to Job Control teils how to control the system’s handling of your job. It
describes the parameters you can code on the JCL JOB statement and on the JES2 or JES3
control statements to direct the system.

Chapter 4. Guide to Step Control tells how to control the system’s handling of your job
step. It describes the parameters you can code on the JCL EXEC statement and on the
JES2 or JES3 control statements to direct the system.

Chapter 5. Guide to Job and Step Control tells how to control the system’s handling of your
job and its steps. It describes the parameters you can code on the JCL JOB statement, on
the JCL EXEC statement, and on the JES2 or JES3 control statements to direct the system.
The parameters and control statements in this chapter not only influence the job and its

steps, but they influence each other.

Preface 1ii

Chapter 6. Guide to Data Allocation Control tells how to control the system’s allocation of
data resources. It describes the parameters you can code on the JCL JOB and EXEC
statements and on the JES3 control statements to direct allocation.

Part 3. Guide to Data Set Control: This part discusses how to control your job’s data set
resources using JCL DD statements and JES2 or JES3 control statements.

Chapter 7. Guide to Specifying Data Set Information tells how to control the system’s
handling of your data sets. It describes the parameters you can code on JCL DD
statements and on JES2 or JES3 control statements to tell the system the following:

Data set information

The location of a data set
The size of a data set

Data attributes

Data set processing options

Chapter 8. Guide to Special Data Sets tells how to use special data sets. It describes the
parameters on the JCL, JES2, and JES3 control statements for special data sets.

Chapter 9. Guide to Cataloged and In-Stream Procedures tells how to use cataloged and
in-stream procedures of JCL statements. It describes how to:

® Create procedures and place them in catalogs.
® Modify and add parameters and statements to cataloged procedures.
@ Use symbolic parameters in cataloged procedures.

Part 4. Reference to Job Control Statements and Parameters: This part details the coding of
each JCL, JES2, and JES3 control statement and of each parameter, in alphabetical order by
statement. The chapters are:

Chapter 10. Coding the JOB Statement

Chapter 11. Coding the EXEC Statement
Chapter 12. Coding the DD Statement

Chapter 13. Coding Special DD Statements
Chapter 14. Coding the OUTPUT JCL Statement
Chapter 15. Coding Special JCL Statements
Chapter 16. Coding JES2 Control Statements
Chapter 17. Coding JES3 Control Statements

For each statement and parameter, this part gives the following information, as needed:

IV MVSICL

Parameter type.

Purpose.

References to related information in this book or other IBM publications.
Syntax and coding rules.

Parameter or subparameter definitions.

Defaults.

Overrides.

Mutually exclusive parameters and subparameters.

Relationship to other parameters and control statements.

Programming considerations.

@ System action in response to the parameter or subparameter.
® Examples.
® Other information required to code the statement or parameter.

Part 5. Reference Tables: In this part, chapter 18 contains reference tables that summarize
some job control information. Figures, which follows the Contents, lists the tables.

Guide to Using this Publication

If your system contains MVS/System Product - JES2 Version 1 program number 5740-XYS,
JES2 information in this manual refers to the JES2 function in the MVS/System Product
Version 1, unless otherwise noted.

If your system contains MVS/System Product - JES3 Version 1 program number 5740-XYN,
JES3 information in this manual refers to the JES3 function in the MVS/System Product
Version 1, unless otherwise noted.,

Your system must contain Resource Access Control Facility (RACF) Program Product,
program number 5740-XXH, in order for you to specify the PROTECT parameter on your DD
statements.

Restrictions on Use of SYSCHK DD Statement and DD Statement RESTART Parameter: 1If
your system contains (1) MVS/System Product - JES2 Version 1 Release 3 (5740-XYS) or (2)
MVS/System Product - JES3 Version 1 Release 3 (5740-XYN) or (3) any subsequent release of
these products, but does not contain MVS/370 Data Facility Product program number
5665-295, do not use the SYSCHK DD statement or the RESTART parameter on the JOB
statement.

If your system contains the MVS/370 Data Facility Product with JES2 or JES3 Release 3 or a
subsequent release, you can use the SYSCHK DD statement or the RESTART parameter on
the JOB statement, with certain restrictions. For detailed information on checkpoint/restart, see
Checkpoint|Restart.

JCL Statements no Longer Supported or Supported Differently: Parameters introduced in OS
but not supported in MVS/System Product are:

® Main storage hierarchy support and rollout/rollin. The system will check the
HIERARCHY and ROLL parameters only for correct syntax.

® The SEP and AFF parameters and the UNIT = SEP subparameter on the DD statement.
The system will check them only for correct syntax. The job will fail if they are coded
incorrectly.

JCL DD parameters supported differently are:

@® SPLIT and SUBALLOC. Their values are converted internally to SPACE requests. When
the SUBALLOC keyword is coded, the DD statement from which space is allocated
becomes a dummy DD.

® If JES3 is used, the UNIT parameter on a DD statement that names a cataloged data set

cannot specify a device type that conflicts with the cataloged device type. For example, a
3330 and a 3375.

Preface V

Prerequisite Publication

Introduction to Virtual Storage in System/370, GR20-4260.

Publications Cited in the Text

General
Vocabulary for Data Processing, Telecommunications, and Office Systems, GC20-1699.
Base Control Program

OS/VS2 MVS System Programming Library: Job Management, GC28-1303.

OS/VS2 System Programming Library: Supervisor, GC28-1046.

OS/VS2 MV'S Supervisor Services and Macro Instructions, GC28-1114.

Operator’s Library: OS|VS2 MVS System Commands, GC28-1031.

OS/VS2 MVS System Programming Library: Initialization and Tuning Guide, GC28-1029.
MVS/370 System Generation Reference, GC26-4063.

MVS Diagnostic Techniques, SY28-1133.

OS/VS2 System Programming Library: Debugging Handbook, Volumes 1 through 3,
GC28-1047 through GC28-1049.

MVS/370 Message Library: System Messages, Volume 1, GC28-1374, and Volume 2,
GC28-1375.

OS/VS Message Library: VS2 System Codes, GC38 1008.

Data Facility Product

MVS/370 Data Management Services, GC26-4058.

MVS/370 System Programming Library: Data Management, GC26-4056.
MVS/370 Data Management Macro Instructions, GC26-4057.

MVS/370 Catalog Users Guide , GC26-4053.

MVS[370 Checkpoint/Restart, GC26-4054.

MVS/370 Magnetic Tape Labels and File Structure, GC26-4064.

MVS/370 Access Method Servzces Reference for the Integrated Catalog Facility ,
GC26-4051.

MVS[370 Access Method Services Reference for VSAM Catalogs , GC26-4059.
MVS/370 VSAM Reference, GC26-4074.

MVS/370 VSAM Users Guide, GC26-4066.

OS/VS2 MV'S System Programming Library: VTAM, GC28-0688.

OS/VS2 TCAM Programmer’s Guide, (levels 8 and 9), GC30-2041.

OS/VS TCAM System Programmer’s Guide, (level 10), GC30-2051.

OS/VS BTAM, GC27-6980.

JES2

System Programming Library: JES2 Initialization and Tuning, SC23-0046.
Operator’s Library: JES2 Commands, SC23-0048.

vi MVS ICL

JES3

JES3 System Programming Library: Initialization and Tuning, SC23-0041.

JES3 Commands, SC23-0045.

JES3 Messages, GC23-0044.

JES3 System Programming Library: Diagnosis, 1L.C28-1369.

JES3 System Programming Library: User Modifications and Macros, LC28-1371.

Programs

OS/VS2 MVS Interactive Problem Control System (IPCS) System Information, GC34-2004.
OS/VS Mass Storage System (MSS) Services General Information, GC35-0016.

OS/VS Mass Storage System (MSS) Services Reference Information, GC35-0017.

Resource Access Control Facility (RACF) General Information Manual, GC28-0722.
OS/VS2 MVS System Programming Library: Service Aids, GC28-0674.

OS/VS2 MVS System Programming Library: System Management Facilities (SMF),
GC28-1030.

OS/VS2 TSO Command Language Reference, GC28-0646.

MVS[370 Utilities, GC26-4065.

Hardware

Print Management Facility User’s Guide and Reference, SH35-0059.

IBM 3800 Printing Subsystem Models 3 and 8 Programmer’s Guide, SH35-0061.

OS/VS Graphic Programming Services (GPS) for IBM 2260 Display Station, GC27-6972.
2821 Control Unit Component Description, GA24-3312.

3340 Disk/Storage - Fixed Head Feature User’s Guide, GA26-1632.

OS and OS|VS Programming Support for the IBM 3505 Card Reader and IBM 3525 Card
Punch, GC21-5097.

OS/VS2 IBM 3540 Programmer’s Reference, GC24-5111.

3800 Printing Subsystem Programmer’s Guide, GC26-3846.

Forms Design Reference Guide for the. IBM 3800 Printing Subsystem, GA26-1633.

Preface Vil

viii MVSJCL

Contents

Part 1. Introduction

Chapter 1. Introduction to Job Contrel 1-1
The JCL Statements 1-1

The JES2 Control Statements 1-3

The JES3 Control Statements 1-5
Cataloged and In-Stream Procedures 1-7
Submitting and Executing Your Job 1-7

Chapter 2. Coding Conventions for JCL, JES2, and JES3 Statements - 2-1
Notation Used to Show Syntax 2-1
Fields in Control Statements 2-3
The Parameter Field 2-5
Continuing Control Statements 2-6
Coding Conventions for JES2 Control Statements 2-8
Coding Conventions for JES3 Control Statements 2-8
Concatenating Data Sets 2-9
Character Sets 2-10
Coding Special Characters 2-10
Backward References 2-13
Symbolic Parameters 2-15
Defining Symbolic Parameters When Writing a Procedure ~ 2-15
Assigning Values to and Nullifying Symbolic Parameters 2-16
Example of an In-Stream Procedure Containing Symbolic Parameters 2-21

Part 2. Guide to Job and Step Control

Chapter 3. Guide to Job Control 3-1
Naming the Job 3-1
Installation Management Information 3-2
Job Accounting Information Parameter 3-2
JES2 Accounting Information 3-4
Network Accounting Information 3-4
Programmer Information: The programmer-name parameter 3-5
Networking 3-6
Routing a Job in a Network (JES2) 3-7
Transmitting Data in a Network (JES2) 3-7
Controlling Output Destination in a JES2 Network 3-7
Example of Obtaining Output (JES2) 3-9
Routing a Job in a Network (JES3 Networking) 3-10
Example of Routing a Job Through a JES3 Network = 3-11
Controlling Job Execution Node Using JES3 Networking 3-11

Contents ' IX

X MVSICL

Controlling Sysout Routing in a JES3 Network 3-11
Controlling Output Destination Using JES3 3-12
Remote Job Processing in JES3 3-12
Example of Obtaining Output (JES3) 3-13-
Job Log 3-14
MSGLEVEL Parameter 3-14
MSGCLASS Parameter 3-16 -
JES2 Hard-Copy Log 3-16
JES3 Main Device Scheduler Messages 3-17
JES3 System Messages 3-18
TSO 3-18
NOTIFY Parameter 3-18
The JES2 NOTIFY Control Statement 3-19 :
The USER Parameter on the JES3 MAIN Control Statement - 3-19
Remote Job Processing 3-20
JES2 Remote Job Processing - 3-20
JES3 Remote Job Processing 3-22
Special Job Processing 3-23
Deadline Scheduling for JES3 - 3-27
Dependent Job Control for JES3: The Job Net ~ 3-27
The JES3 NET Control Statement 3-28
How to Code NET Statements 3-29
JES3 Spool Partitioning 3-33

Chapter 4. Guide to Step Control . 4-1
Naming a Job Step 4-3
Processing Program Information 4-4
Selecting a Processing Program 4-4
Identifying the Program to be Executed 4-4
The IEFBR14 Program = 4-7 : v
Selecting a Cataloged Procedure Library 4-7
Passing Information to the Program in Execution = 4-8
PARM Parameter - 4-9 ‘ ,
Installation Management Information: The ACCT Parameter 4-10
ACCT Parameter 4-11 ,
Dynamically Allocating and Deallocating Data Sets 4-12
Example of Dynamically Deallocating Data Sets 4-13

Chapter 5. Guide to Job and Step Control 5-1

Scheduling a Job 5-1

Selecting a Processor in JES2 5-3
Selecting a Processor in JES3 = 5-4

Conditionally Executing Job Steps 5-5
Specifying Return Code Tests on the JOB Statement 5-5
Specifying Return Code Tests on the EXEC Statement 5-7
Limiting Job and Job Step Execution Time 5-16
Using the TIME Parameter for Cataloged Procedures 5-17

Examples of Coding the Time Parameter on JOB and EXEC Statements '

Conirolling Job Queuing through Job Classes and Priorities 5-18
Establishing job processing balance in JES3 5-19

Assigning a Job to a Job Class in JES2 = 5-19

Assigning a Job to a Job Classin JES3 5-19

Assigning a Priority to a Job for JES2 . 5-20

Assigning a Priority to a Job in JES3 -20

518

Assigning a Dispatching Priority to Job Steps 5-21

DPRTY Parameter 5-21

Performance of Jobs and Job Steps in JES2 5-22

Performance of Jobs and Job Steps in JES3 5-22
Requesting Storage for Execution 5-23

When to Request Real Storage 5-23

Specifying Storage Requirements with the REGION Parameter

Using the JES3 LREGION Parameter to Define Logical Storage
Restarting a Job at a Step or Checkpoint 5-26

The RD Parameter on the JOB Statement 5-27

The RESTART Parameter on the JOB Statement 5-28

The RD Parameter on the EXEC Statement 5-28

The JES2 RESTART Parameter 5-29

The JES3 FAILURE Parameter 5-29

Chapter 6. Guide to Data Allocation Control 6-1

Using JES3 Spool Partitioning 6-1

Controlling Access to RACF-Protected Data Sets 6-2

Dynamically Allocating and Deallocating Data Sets 6-3
Example of Dynamically Deallocating Data Sets 6-4

Allocating Data Resources in a JES3 System 6-4

Part 3. Guide to Data Set Control

Chapter 7. Guide to Specifying Data Set Information 7-1
Specifying the DDNAME Parameter 7-1
When You Code the DDNAME Parameter 7-1
Specifying the DSNAME Parameter 7-2
Creating or Retrieving a Nontemporary Data Set 7-3
Creating or Retrieving a Temporary Data Set 7-4
Associated Data Sets (3540 Diskette) 7-6

Copying the Data Set Name from an Earlier DD Statement 7-6

Specifying the DSNAME Parameter in Apostrophes 7-7

Specifying the LABEL Parameter 7-7

Example of Identifying Data Sets to the System 7-13

Disposition Processing of Non-VSAM Data Sets 7-13

Specifying Data Set Status 7-14

Specifying a Disposition for the Data Set 7-14

Default Disposition Processing 7-19

Bypassing Disposition Processing 7-19

Insuring Data Set Integrity 7-19

Examples of Disposition Processing of Non-VSAM Data Sets
Requesting Units and Volumes 7-24

Specifying Volume Information 7-24

Specifying Unit Information 7-28

Example of Requesting Units and Volumes 7-31

Example of UNIT and VOLUME Affinities 7-35
Specifying Data Sets for Mass Storage Systems (MSS) 7-37

Mass Storage Volume Groups 7-37

Nonspecific Volume Requests for Mass Storage Volumes 7-38

Specific Volume Requests for Mass Storage Volumes 7-38
Requesting Space for Non-VSAM Data Sets = 7-39

5-24

5-25

7-23

The Basic Space Request: Unit of Measurement and Primary Quantlty - 7-40

Assigning Specific Tracks 7-42

Contents

X1

xii

Example of Requesting Space 7-43

Specifying Data Set Processing Options 7-43
Processing Output Data Sets for the JOB 7-44
Processing System Output Data Sets Using the OUTPUT JCL Statement 7-44
Using the OUTPUT JCL Statement to Tailor the Job Stream = 7-46
Specifying a Destination for the Data Set 7-49
Grouping Data Sets Using the OUTPUT JCL Statement 7-49 .
Managing the System-Managed Data Sets: The JESDS Parameter 7-49
Assigning System Output Data Sets to Output Classes 7-51
Specifying the Device 7-52

Specifying the Internal Reader 7-52
Example of Using the Internal Reader 7-53
JES Ouitput Class Processing ~ 7-54
Delaying the Writing of an Output Data Set 7-55
Suppressing the Writing of an Output Data Set 7-55
Limiting Output Records 7-55
Specifying JES2 Page Overflow Processing 7-56
Specifying JES3 Forms Overflow Processing and Printer Spacing 7-56
Interpretation of Punched Output 7-57
JES2 Support of the 3211 Indexing Feature 7-57
Requesting Multiple Copies of an Output Data Set Using JES2 7-57
Requesting Multiple Copies of an Qutput Data Set Using JES3 7-58
Requesting Copy Modification 7-58
Requesting Printer Form and Character Control ~ 7-58
Requesting Forms Overlay 7-62
Bursting of Output 7-62

Chapter 8. Guide to Special Data Sets 8-1
Creating and Using Private and Temporary Libraries 8-1
Creating a Private Library 8-2
Retrieving an Existing Private Library 8-3
Using Private Catalogs = 8-5
Temporary Libraries §-5
Requesting an Abnormal Termination Dump 8-6
Defining a Dummy Data Set 8-8
Coding the DUMMY Parameter 8-8
Coding DSNAME=NULLFILE 8-9
Requests to Read or Write a Dummy Data Set 8-9
Using Virtual Input/Output (VIO) for Temporary Data Sets 8-10
Defining a VIO Temporary Data Set 8-10
Backward References to VIO Data Sets §-11
Using Virtual Input/Output (VIO) to Pass Temporary Data Sets Among Job Steps
Entering Data Through the Input Stream 8-13
VSAM Data Sets 8-14
Creating and Retrieving Indexed Sequential Data Sets 8-18
Creating an Indexed Sequential Data Set §-18
Retrieving an Indexed Sequential Data Set 8-22 :
Examples of Creating and Retrieving an Indexed Sequential Data Set §8-24
Creating and Retrieving Generation Data Sets 8-25
Building a Generation Data Group Base Entry ~ 8-25
Creating a Generation Data Set 8-26
Retrieving a Generation Data Set 8-28
Deleting and Uncataloging Generation Data Sets 8-30
Submitting a Job for Restart 8-30

MYVS JCL

8-12

Example of Creating and Retrieving Generation Data Sets
Creating and Using a Subsystem Data Set 8-32

Chapter 9. Guide to Cataloged and In-Stream Procedures 9-1
Writing Cataloged and In-Stream Procedures 9-1

Identifying an In-Stream Procedure 9-2

Placing a Cataloged Procedure in a Procedure Library 9-2

Allowing for Changes in Cataloged and In-Stream Procedures

Using Cataloged and In-Stream Procedures 9-3
How to Call Cataloged and In-Stream Procedures 9-3
Modifying Cataloged and In-Stream Procedures 9-4
Adding DD Statements to a Procedure 9-8
Adding OUTPUT JCL Statements to a Procedure 9-10

Identifying Procedure Statements on an Output Listing 9-13

Part 4. Reference to Job Control Statements and Parameters

Chapter 10. Coding the JOB Statement 10-1

Name Field 10-1

Parameter Field 10-1

Comments Field 10-2

Location in the JCL. 10-2

Examples of JOB Statements 10-2
Accounting Information Parameter 10-3

Subparameter Definition 10-4

JES2 Accounting Information Format 10-4

Examples of the Accounting Information Parameter 10-5
ADDRSPC Parameter 10-7

Subparameter Definition 10-7

Defaults 10-7

Overrides 10-7

Relationship to the JOB REGION Parameter 10-7

Examples of the ADDRSPC Parameter 10-8
CLASS Parameter 10-9

Subparameter Definition 10-9

Defaults 10-9

Overrides 10-9

Example of the CLASS Parameter 10-S
COND Parameter 10-10

Subparameter Definition 10-10

Overrides 10-11

Summary of COND Parameters 10-11

Examples of the COND Parameter 10-11
GROUP Parameter 10-12

Subparameter Definition 10-12

Defaults 10-12

Relationship to Other Parameters 10-13

Example of the GROUP Parameter 10-13
MSGCLASS Parameter 10-14

Subparameter Definition 10-14

Defaults 10-14

Significance of Output Classes 10-14

Examples of the MSGCLASS Parameter 10-15
MSGLEVEL Parameter 10-16

Contents

xiil

Subparameter Definition 10-16

Defaults 10-17

Examples of the MSGLEVEL Parameter 10-17
NOTIFY Parameter 10-18

Subparameter Definition 10-18

Relationship to JES2 /*JOBPARM SYSAFF Parameter

Receiving Notification of Job Completion 10-18

Example of the NOTIFY Parameter 10-19
PASSWORD Parameter 10-20

Subparameter Definition 10-21

Relationship to Other Parameters 10-21

Examples of the PASSWORD Parameter 10-21
PERFORM Parameter 10-22

Subparameter Definition 10-22

Defaults 10-22

Overrides 10-22

Example of the PERFORM Parameter 10-23
Programmer’s Name Parameter 10-24

Parameter Definition 10-24

Examples of the Programmer’s Name Parameter 10-25
PRTY Parameter 10-26

Subparameter Definition = 10-26

Defaults in a JES3 System 10-26

Relationship to Other Control Statements in a JES2 System

Example of the PRTY Parameter 10-27
RD Parameter 10-28

Subparameter Definition 10-29

Defaults 10-30

Overrides 10-30

Relationship to Other Control Statements 10-30

Examples of the RD Parameter 10-30
REGION Parameter 10-31

Subparameter Definition 10-31

Defaults 10-31

Overrides 10-32

Relationship to the JOB ADDRSPC Parameter 10-32

Examples of the REGION Parameter 10-32
RESTART Parameter 10-33

Subparameter Definition 10-34

Relationship to Other Control Statements 10-34

Cautions When Coding the RESTART Parameter 10-34

Generation Data Sets in Restarted Jobs 10-35

Examples of the RESTART Parameter 10-35
TIME Parameter 10-36

Subparameter Definition 10-36

Overrides 10-37

Defaults 10-37

Time Handling 10-37

Examples of the TIME Parameter 10-37

10-18

10-26

Examples of the TIME Parameter on JOB and EXEC Statements

TYPRUN Parameter 10-39

Subparameter Definition 10-39

Example of the TYPRUN Parameter 10-40
USER Parameter 10-41

MVS JCL

10-38

Subparameter Definition 10-41
Defaults 10-41

Relationship to Other Parameters 10-42
Example of the USER Parameter 10-42

Chapter 11. Coding the EXEC Statement 11-1

Name Field 11-1

Parameter Field 11-2

Comments Field 11-3

Location in the JCL 11-3

Examples of EXEC Statements 11-3
ACCT Parameter 11-4

Subparameter Definition 11-5

On EXEC Statement that Calls a Procedure 11-5

Examples of the ACCT Parameter 11-5
ADDRSPC Parameter 11-6

Subparameter Definition 11-6

Defaults 11-6

Overrides 11-6

Relationship to the JOB or EXEC REGION Parameter

On EXEC Statement that Calls a Procedure 11-7

Examples of the ADDRSPC Parameter 11-7
COND Parameter 11-8

Subparameter Definition 11-9

Overrides 11-10

On EXEC Statement that Calls a Procedure 11-10

Cautions when Specifying COND Parameters 11-10

Summary of COND Parameters 11-11

Examples of the COND Parameter 11-12
DPRTY Parameter 11-13

Subparameter Definition 11-13

Defaults 11-14

On EXEC Statement that Calls a Procedure 11-14

Examples of the DPRTY Parameter 11-14
DYNAMNBR Parameter 11-15

Subparameter Definition 11-15

Defaults 11-15

On EXEC Statement that Calls a Procedure 11-15

Example of the DYNAMNBR Parameter 11-16
PARM Parameter 11-17

Subparameter Definition 11-17

On EXEC Statement that Calls a Procedure 11-18

Examples of the PARM Parameter 11-18 ‘
PERFORM Parameter 11-19

Subparameter Definition 11-19

Defaults 11-19

Overrides 11-19

On EXEC Statement that Calls a Procedure 11-20

Example of the PERFORM Parameter 11-20
PGM Parameter 11-21

Subparameter Definition 11-21

Checking JCL Syntax without Executing the Step 11-22

Examples of the PGM Parameter 11-22
PROC and Procedure Name Parameters 11-24

11-6

Contents XV

B A ™ S)

Subparameter Definition 11-24
Effect of PROC Parameter on Other Parameters and Following Statements 11-24
Examples of the PROC Parameter 11-25
RD Parameter 11-26 :
Subparameter Definition 11-27
Defaults 11-28
Overrides 11-28
Relationship to Other Control Statements 11-28
On EXEC Statement that Calls a Procedure 11-28
Examples of the RD Parameter ~ 11-29
REGION Parameter 11-30
Subparameter Definition 11-30
Defaults 11-31
Overrides 11-31
Relationship to the EXEC ADDRSPC Parameter 11-31
Examples of the REGION Parameter 11-31
TIME Parameter 11-32
Subparameter Definition 11-32
Defaults 11-33
Overrides 11-33
Time Handling 11-33
Examples of the TIME Parameter 11-33

Chapter 12. Coding the DD Statement 12-1

Name Field 12-1

Parameter Field 12-3

Comments Field 12-3

Location in the JCL 12-3

DD Statements for Cataloged and In-stream Procedures 12-3

Examples of DD Statements and ddnames ~ 12-5
* Parameter 12-6

Defaults 12-6

Relationship to Other Parameters 12-6

Relationship to Other Control Statements 12-7

Location in the JCL 12-7

Unread Records 12-7

Examples of the * Parameter 12-7
ACCODE Parameter 12-9

Subparameter definition 12-9

Defaults 12-9

Overrides 12-10

Example of the ACCODE Parameter . 12-10
AMP Parameter 12-11

Subparameter Definition 12-12

Relationship to Other Parameters 12-14

Buffer Requirements 12-15

Examples of the AMP Parameter 12-15
BURST Parameter 12-16

Subparameter Definition 12-16

Default 12-16

Overrides 12-16

Relationship to Other Parameters 12-17

Relationship to Other Control Statements 12-17

Example of the BURST Parameter 12-17

Xvi MVSIJICL

CHARS Parameter 12-18

Subparameter Definition 12-18

Defaults 12-19

Overrides 12-19

Relationship to Other Parameters 12-19

Relationship to Other Control Statements 12-20

Printing Device Reassignment 12-20

Requesting a High-Density Dump in a JES3 System 12-20

Examples of the CHARS Parameter 12-20
CHKPT Parameter 12-21

Subparameter Definition 12-21

Overrides 12-21

Relationship to Other Parameters 12-21

Relationship to the SYSCKEOV DD Statement 12-21

Checkpointing Concatenated Data Sets 12-22

Examples of the CHKPT Parameter 12-22
CNTL Parameter 12-23

Subparameter Definition 12-23

Examples of the CNTL Parameter 12-23
COPIES Parameter 12-25

Subparameter Definition 12-25

Defaults 12-26

Overrides 12-26

Relationship to Other Parameters 12-26

Relationship to Other Control Statements 12-27

Examples of the COPIES Parameter 12-27
DATA Parameter 12-28

Defaults 12-28

Relationship to Other Parameters 12-28

Relationship to Other Control Statements 12-29

Location in the JCL 12-29

Unread Records 12-29

Examples of the DATA Parameter 12-29
DCB Parameter 12-31

Subparameter Definition 12-32

Defaults 12-32

Relationship to Other Parameters 12-33

Completing the Data Control Block 12-33

Examples of the DCB Parameter 12-35
DDNAME Parameter 12-49

Subparameter Definition 12-49

Relationship to Other Parameters 12-49

Overrides 12-49

Location in the JCL 12-50

Referenced DD Statement 12-50

Backward References 12-51

Examples of the DDNAME Parameter 12-51
DEST Parameter 12-53

Subparameter Definition for JES2 Systems 12-53

Subparameter Definition for JES3 Systems 12-54

Defaults 12-55

Overrides 12-55 v

Relationship to Other Parameters 12-55

Relationship to Other Control Statements 12-56

Contents XVii

xviii

Examples of the DEST Parameter 12-56
DISP Parameter 12-57
Subparameter Definition 12-57
Defaults 12-60
Relationship to Other Parameters 12-60
Disposition of VSAM Data Sets 12-61
Disposition of Temporary Data Sets 12-61
Disposition of Partitioned Data Sets 12-61
DISP=MOD for a Multivolume Data Set 12-61
Examples of the DISP Parameter 12-62
DLM Parameter 12-64
Subparameter Definition 12-64
Default 12-65
Relationship to Other Parameters 12-65
Invalid Delimiters 12-65
Example of the DLM Parameter 12-65
DSID Parameter 12-66
Subparameter Definition 12-66
Relationship to Other Parameters 12-67
Example of the DSID Parameter 12-67
DSNAME Parameter 12-68
Subparameter Definition 12-69
Relationship to Other Parameters 12-71
Examples of the DSNAME Parameter 12-71
The DUMMY Parameter 12-73
Parameters on DD DUMMY Statements 12-73
Relationship to Other Parameters 12-74
Relationship to Other Control Statements 12-74
Relationship to Access Methods 12-74
Examples of the DUMMY Parameter 12-74
DYNAM Parameter 12-76
Relationship to Other Parameters 12-76
Relationship to Other Control Statements 12-76-
Example of the DYNAM Parameter 12-76
FCB Parameter 12-77
Subparameter Definition 12-77
Defaults 12-78
Overrides 12-78
Relationship to Other Parameters 12-78
Relationship to Other Control Statements 12-79
Defining an FCB Image for a Work Station 12-79
Requesting a High-Density Dump in a JES3 System
Examples of the FCB Parameter 12-79
FLASH Parameter 12-81
Subparameter Definition 12-81
Defaults 12-81
Overrides 12-82
Relationship to Other Parameters 12-82
Relationship to Other Control Statements 12-82
Verification of Forms Overlay Frame 12-82
Printing without Flashing 12-83
Example of the FLASH Parameter 12-83
FREE Parameter 12-84
Subparameter Definition 12-84

MVS JCL

12-79

Defaults 12-84

Overrides 12-84

Relationship to Other Parameters 12-84
Relationship to Other Control Statements 12-85

Relationship to the CLOSE Macro Instruction 12-85

Examples of the FREE Parameter 12-85
HOLD Parameter 12-87

Subparameter Definition 12-87

Defaults 12-87

Overrides 12-87

Relationship to Other Parameters 12-88

Relationship to Other Control Statements 12-88

Example of the HOLD Parameter 12-8§
LABEL Parameter 12-89

Subparameter Definition 12-89

Defaults 12-93

Reiationship to Other Parameters 12-93

Deleting a Data Set Before its Expiration Date 12-93

Translation 12-94

Examples of the LABEL Parameter 12-94
MODIFY Parameter 12-95

Subparameter Definition. 12-95

Defaults 12-96

Overrides 12-96

Relationship to Other Parameters 12-96

Relationship to other Control Statements 12-96

Example of the MODIFY Parameter 12-97
MSVGP Parameter 12-98

Subparameter Definition 12-98

Relationship to Other Parameters 12-99

Allocation when MSVGP is Not Coded 12-99

Examples of the MSVGP Parameter 12-100
OUTLIM Parameter 12-101

Subparameter Definition 12-101

Default 12-101

Relationship to Other Parameters 12-101

Relationship to Other Control Statements 12-102

Example of the OUTLIM Parameter 12-102
OUTPUT Parameter 12-103

Subparameter Definition 12-104

Defaults 12-104

Overrides 12-104

Relationship to Other Subparameters 12-105

Location in the JCL 12-105

No Match for OUTPUT Name 12-105

Processing Options in Multiple References 12-105

Examples of the OUTPUT Parameter 12-105
PROTECT Parameter 12-109

Subparameter Definition 12-109

Relationship to Other Parameters 12-1(09

Requirements for Protecting a Tape Volume 12-109

Requirements for Protecting a Direct Access Data Set

Examples of the PROTECT Parameter 12-110
QNAME Parameter 12-111

12-110

Contents

XIX

Subparameter Definition 12-111

Relationship to Other Parameters 12-111

Example of the QNAME Parameter 12-111
SPACE Parameter 12-112

Subparameter Definition 12-113

Relationship to Other Parameters 12-115

SPACE for New Data Sets on Mass Storage Volumes 12-116

Examples of the SPACE Parameter 12-116
SUBSYS Parameter 12-117

Subparameter Definition 12-117

Relationship to Other Parameters 12-118

Examples of the SUBSYS Parameter 12-118
SYSOUT Parameter 12-120

Subparameter Definition = 12-121

Defaults 12-121

Overrides 12-121

Relationship to Other Parameters 12-122

Relationship to Other Control Statements 12-122

Starting an External Writer when Requested 12-122

Backward References 12-122

Held Classes in a JES2 System = 12-123

Significance of Output Classes 12-123

Examples of the SYSOUT Parameter 12-123
TERM Parameter 12-125

Subparameter Definition = 12-125

Relationship to Other Parameters 12-125

Location in the JCL. 12-125

Examples of the TERM Parameter 12-126
UCS Parameter 12-127

Subparameter Definition 12-127

Defaults 12-128

Overrides 12-128

Relationship to Other Parameters 12-129

Using Special Character Sets = 12-129

Examples of the UCS Parameter 12-129
UNIT Parameter 12-130

Subparameter Definition 12-130

Overrides 12-133 4

Relationship to Other Parameters 12-133

Location in the JCL 12-133

Examples of the UNIT Parameter 12-134
VOLUME Parameter 12-135

Subparameter Definition 12-136

Overrides 12-139

Relationship to Other Parameters 12-139

VOLUME Information for a Checkpoint/Restart Data Set 12-140

VOLUME Parameter in a JES3 System 12-140

VOLUME Parameter for Optical Readers 12-140

Examples of the VOLUME Parameter 12-140

Chapter 13. Coding Special DD Statements 13-1

JOBCAT DD Statement 13-2 _
Parameters on JOBCAT DD Statements 13-2
Relationship to STEPCAT DD Statement 13-2

XX MYVSICL

Chapter 14. Coding the OUTPUT JCL Statement

Relationship to Other Control Statements 13-2
Location in the JCL 13-2
Example of the JOBCAT DD Statement 13-3

JOBLIB DD Statement 13-4

Parameters on JOBLIB DD Statements 13-4
Relationship to Other Control Statements 13-5
Location in the JCL 13-5

Relationship of a JOBLIB to a STEPLIB 13-5
Examples of the JOBLIB DD Statement 13-6

STEPCAT DD Statement 13-7

Parameters on STEPCAT DD Statements 13-7
Relationship to Other Control Statements 13-7
Location in the JCL 13-7

Example of the STEPCAT DD Statement 13-7

STEPLIB DD Statement 13-8

Parameters on STEPLIB DD Statements 13-8
Relationship to Other Control Statements 13-9
Location in the JCL 13-9

Relationship of a STEPLIB to a JOBLIB 13-9
Examples of the STEPLIB DD Statement 13-10

Location in the JCL 13-11

Storing a Dump 13-11

Printing a Dump 13-12

Overriding Dump DD Statements 13-13
Duplicate Dump Requests 13-13

Examples of the SYSABEND, SYSMDUMP, and SYSUDUMP DD Statements
SYSCHK DD Statement 13-15

Parameters on SYSCHK DD Statements 13-15

Relationship to Other Control Statements 13-17
Location in the JCL 13-17

Examples of the SYSCHK DD Statement 13-17

SYSCKEOV DD Statement 13-18

Parameters on SYSCKEOV DD Statements 13-18
Coding SYSCKEOV for VSAM Data Sets 13-19
Example of the SYSCKEOV DD Statement 13-19

Name Field 14-2
Parameter Field 14-2
Comments Field 14-3
Location in the JCL. 14-3
Overrides 14-4

BURST Parameter 14-6

Subparameter Definition 14-6

Defaults 14-6

Overrides 14-6

Example of the BURST Parameter 14-6

CHARS Parameter 14-7

Subparameter Definition 14-7

Defaults 14-8

Overrides 14-8

Requesting a High-Density Dump in a JES3 System
Example of the CHARS Parameter ~ 14-9

14-1

SYSABEND, SYSMDUMP, and SYSUDUMP DD Statements

14-9

Contents

13-13

XX1

Xxii

CKPTLINE Parameter 14-10

Subparameter Definition 14-10

Defaults 14-10

Example of the CKPTLINE Parameter 14-10
CKPTPAGE Parameter 14-11

Subparameter Definition 14-11

Defaults 14-11

Relationship to Other Parameters 14-11

Example of the CKPTPAGE Parameter 14-11
CKPTSEC Parameter 14-12

Subparameter Definition 14-12

Defaults 14-12

Relationship to Other Parameters 14-12

Example of the CKPTSEC Parameter 14-12
CLASS Parameter 14-13

Subparameter Definition 14-13

Overrides 14-13

Held Classes 14-13

Significance of Output Classes 14-14

Examples ¢f the CLASS Parumeter 14-14
COMPACT Parameter 14-15

Subparameter Definition 14-15

Defaults 14-15

Overrides 14-15

Example of the COMPACT Parameter 14-15
CONTROL Parameter 14-16

Subparameter Definition 14-16

Defaults 14-16
~ Example of the CONTROL Parameter 14-16
COPIES Parameter 14-17

Subparameter Definition 14-17

Defaults 14-18

Overrides 14-18

Relationship to Other Parameters 14-18

Relationship to Other Control Statements 14-18

Examples of the COPIES Parameter 14-18
DEFAULT Parameter 14-20

Subparameter Definition 14-20

Defaults 14-20

Location in the JCL 14-20

References to Default OUTPUT JCL Statements 14-21

Example of the DEFAULT Parameter 14-21
DEST Parameter 14-23

Subparameter Definition for JES2 Systems 14-23

Subparameter Definition for JES3 Systems 14-24

Defaults 14-25

Overrides 14-25

Examples of the DEST Parameter 14-25
FCB Parameter 14-26

Subparameter Definition 14-26

Defaults 14-27

Overrides 14-27

Relationship to Other Parameters 14-27

Requesting a High-Density Dump in a JES3 System 14-27

MYVS JCL

Example of the FCB Parameter 14-27
FLASH Parameter 14-28

Subparameter Definition 14-28

Defaults 14-29

Overrides 14-29

Relationship to Other Parameters 14-29

Verification of Forms Overlay Frame 14-29

Printing without Flashing 14-29

Example of the FLASH Parameter 14-30
FORMDEF Parameter 14-31

Subparameter Definition 14-31

Overrides 14-31

Example of the FORMDEF Parameter 14-32
FORMS Parameter 14-33

Subparameter Definition 14-33

Defaults 14-33

Overrides 14-33

Example of the FORMS Parameter 14-33
GROUPID Parameter 14-34

Subparameter Definition 14-34

Examples of the GROUPID Parameter 14-34
INDEX Parameter 14-36

Subparameter Definition 14-36

Defaults 14-36

Relationship to Other Parameters 14-36

Example of the INDEX Parameter 14-36
JESDS Parameter 14-37

Subparameter Definition 14-37

Overrides 14-38

Location in the JCL 14-38

Destination for the System Data Sets 14-38

Example of the JESDS Parameter 14-38
LINDEX Parameter 14-39

Subparameter Definition 14-39

Defaults 14-39

Relationship to Other Parameters 14-39

Example of the LINDEX Parameter 14-39
LINECT Parameter 14-40

Subparameter Definition 14-40

Defaults 14-40

Example of the LINECT Parameter 14-40
MODIFY Parameter 14-41

Subparameter Definition 14-41

Defaults 14-42

Overrides 14-42

Relationship to Other Parameters 14-42

Example of the MODIFY Parameter 14-42
PAGEDEF Parameter 14-43

Subparameter Definition 14-43

Overrides 14-44 ‘

Example of the PAGEDEF Parameter 14-44
PIMSG Parameter 14-45

Subparameter Definition 14-45

Defaults 14-45

Contents XXiii

Example of the PIMSG Parameter 1445
PRMODE Parameter 14-46

Subparameter Definition 14-46

Defaults 14-46

Printing a Line-Mode Data Set Using PSF 14-47

Example of the PRMODE Parameter 14-47
PRTY Parameter 14-48

Subparameter Definition 14-48

Defaults 14-48

Overrides 14-48

Example of the PRTY Parameter 14-48
THRESHLD Parameter = 14-49

Subparameter Definition 14-49

Defaults 14-49

Example of the THRESHLD Parameter 14-50
TRC Parameter 14-51

Subparameter Definition 14-51

Defaults 14-51

Relationship to Other Parameters 14-51

Example of the TRC Parameter 14-52
UCS Parameter 14-53

Subparameter Definition 14-53

Defaults 14-54

Overrides 14-54

Using Special Characters Sets ~ 14-55

Example of the UCS Parameter 14-55
WRITER Parameter 14-56

Subparameter Definition 14-56

Defaults 14-56

Overrides 14-56

Starting an External Writer 14-56

Example of the WRITER Parameter 14-57

Chapter 15. Coding Special JCL Statements 15-1
JCL Command Statement 15-2

Command 15-2

Parameter Field 15-3

Comments Field 15-3

Location in the JCL 15-3

Example of the Command Statement 15-3
Comment Statement 15-4

Location in the JCL 15-4

Listing of Comments Statements 15-4

Example of the Comment Statement 15-4
CNTL Statement 15-5

Label Field 15-5

Parameter Field 15-5

Comments Field 15-5

Location in the JCL 15-6

Program Control Statements 15-6 3

Program Control Statements in Procedures 15-6

Example of the CNTL Statement 15-6
Delimiter Statement 15-7 ‘

Relationship to the DD Statement DLM Parameter 15-7

XXiv MVS ICL

Example of the Delimiter Statement 15-7
ENDCNTL Statement 15-8

Label Field 15-8

Comments Field 15-8

Location in the JCL 15-8

Example of the ENDCNTL Statement 15-8
Null Statement 15-9

Location in the JCL 15-9

Example of the Null Statement 15-9
PEND Statement 15-10

Name Field 15-10

Comments Field 15-10

Location in the JCL 15-10

Examples of the PEND Statement 15-10
PROC Statement 15-11

Name Field 15-11

Parameter Field 15-11

Comments Field 15-12

Overrides 15-12

Using Symbolic Parameters 15-12

Examples of the PROC Statement 15-12

Chapter 16. Coding JES2 Control Statements 16-1

Location in the JCL. 16-1

Internal Reader 16-1
Command Statement 16-2

Parameter Definition 16-2

Location in the JCL 16-3

Examples of the Command Statement 16-3
/*JOBPARM Statement 16-4

Parameter Definition 16-4

Overrides 16-7

Location in the JCL 16-7

Execution Node 16-7

Example of the /*JOBPARM Statement 16-8
[*MESSAGE Statement 16-9

Relationship to the /*ROUTE XEQ Statement 16-9

Location in the JCL 16-9

Example of the /*MESSAGE Statement 16-9
[*NETACCT Statement 16-10

Parameter Definition 16-10

Defaults 16-10

Overrides 16-10

Location in the JCL. 16-10

Example of the /*NETACCT Statement 16-10
[¥*NOTIFY Statement 16-11

Parameter Definition 16-11

Overrides 16-11

Relationship to Other Control Statements 16-12

Examples of the NOTIFY Statement 16-12
[¥*OUTPUT Statement 16-13

Parameter Definition 16-14

Overrides 16-20

Relationship to Other Control Statements 16-21

Contents XXV

Location in the JCL 16-21

Example of the /*OUTPUT Statement 16-21
/¥*PRIORITY Statement 16-22

Parameter Definition 16-22

Overrides 16-22

Relationship to Other Control Statements 16-22

Location in the JCL 16-23

Example of the PRIORITY Statement 16-23
/*ROUTE Statement 16-24

Parameter Definition 16-24

Location in the JCL 16-26

Processing of /*ROUTE Statements 16-26

Multiple /*ROUTE Statements 16-26

Examples of the ROUTE Statement 16-26
/*SETUP Statement 16-28

Parameter Definition 16-28

Location in the JCL. 16-28

Example of the /*SETUP Statement 16-28
/[*SIGNOFF Statement 16-29

Example of the /*SIGNOFF Statement 16-29
/*SIGNON Statement 16-30

Location in the JCL 16-30

Parameter Definition 16-30

Examples of the /*SIGNON Statement 16-31
[*XEQ Statement 16-32

Parameter Definition 16-32

Location in the JCL 16-32

Multiple /*XEQ Statements 16-32

Example of the XEQ Statement 16-32
/¥*XMIT Statement 16-33

Parameter Definition 16-33

Defaults 16-34

Location in the JCL 16-35

Example of the XMIT Statement 16-35

Chapter 17. Coding JES3 Control Statements 17-1

Location in the JCL 17-1

Internal Reader 17-1

Examples of JES3 Control Statements 17-2
Command Statement 17-3

Parameter Definition 17-3

Location in the JCL, 17-4

Examples of the Command Statement 17-4
[/[*DATASET Statement 17-5

Parameter Definition 17-5

Examples of the //*DATASET Statement 17-6
//*ENDDATASET Statement 17-7

Location in the JCL 17-7

Example of the //*ENDDATASET Statement 17-7
//*ENDPROCESS Statement 17-8

Location in the JCL. 17-8

Example of the //*ENDPROCESS Statement 17-8
/[*FORMAT PR Statement 17-9

Parameter Definition 17-10

XXvi MVSIJCL

Relationship to Sysout DD and OUTPUT JCL Statements

Relationship to //*PROCESS Statement 17-17

Examples of the //*FORMAT PR Statement 17-17
/[¥*FORMAT PU Statement 17-18

Parameter Definition 17-19

Relationship to Sysout DD and OUTPUT JCL Statements

Relationship to //*PROCESS Statement 17-22

Example of the //*FORMAT PU Statement 17-22
/[*MAIN Statement 17-23

Parameter Definition 17-24

Location in the JCL 17-34

Example of the //*MAIN Statement 17-34
//*NET Statement 17-35

Parameter Definition 17-35

Examples of the //*NET Statement 17-39
/[*NETACCT Statement 17-40

Parameter Definition 17-40

Defaults 17-41

Example of the //*NETACCT Statement 17-41
//*OPERATOR Statement 17-42

Example of the //[*OPERATOR Statement 17-42
//*PAUSE Statement 17-43

Example of the //*PAUSE Statement 17-43
/[*PROCESS Statement 17-44

Parameter Definition 17-44

Location in the JCL 17-45

Examples of the //*PROCESS Statement 17-46
//*ROUTE XEQ Statement 17-47

Parameter Definition 17-47

Location in the JCL 17-47

Example of the //*ROUTE XEQ Statement 17-48
/¥*SIGNOFF Statement 17-49

Example of the /*SIGNOFF Statement 17-49
/*SIGNON Statement 17-50

Parameter Definition 17-50

Example of the /*SIGNON Statement 17-51

Part 5. Reference Tables
Chapter 18. Reference Tables 18-1

Index X-1

17-17

17-22

Contents

XX Vil

XXvill MVS JCL

Figures

1-1.
1-2.
1-3.
1-4.
1-5.
1-6.

2-2.
4-1.
4-2.
5-1.
5-2.

7-1.
7-2.
8-1.
8-2.
9-1.
9-2.
10-1.
11-1.
11-2.
12-1.
14-1.
14-2.
17-1.
18-1.
18-2.
18-3.
18-4.
18-5.
18-6.
18-7.
18-8.
18-9.
18-10.
18-11.
18-12.
18-13.

Job Control Statementsiiiittttti . 1-1
JES2 Control Statements vttt 1-3
JES3 Control Statementsovv vttt it i e 1-5
AJobinthe Input Stream 19
A Job with Several Job Steps i e 1-10
Job Boundaries in the Input Stream 1-10
JCL Control Statement Fields i, 2-5
Character Sets . ..o i it i i e e e e e e e 2-10
Using the EXEC Statementttt ennnnenns 4-1
Modifying a Cataloged Procedurec.iiiiiinnennnnnnn. 4-2
Using the COND Parameter 0.ttt 5-11
Using the COND Parameter within a Failing Step 5-13
Types Of JES3 Setup .. .o v ittt i e e 6-7
How Device Status Affects Eligibility for Allocation 7-24
Unit and Volume Affinity i, 7-34
DD parameters used with VSAM e, 8-15
DD parameters you should avoid with VSAM 8-16
Identification of Cataloged Procedure Statements on the Output Listing 9-13
Identification of In-stream Procedure Statements on the Output Listing 9-14
Continuation or Termination of the Job Based on COND Parameter 10-11
Execution or Bypassing of Current Step Based on COND Parameter 11-11
Effect of EVEN and ONLY Subparameters on Step Execution 11-11
Special Character Sets for the 1403, 3203 Model 5, and 3211 Printers 12-128
Using job- and step-level OUTPUT JCL statements 14-1
Special Character Sets for the 1403, 3203 Model 5, and 3211 Printers 14-54
Table of Allowable DSPs for PROCESS Statements 17-45
DD Parameters for Creatinga Data Set 18-2
DD Parameters for Retrievinga Data Set 18-4
DD Parameters for Extendinga Data Set 18-5
DD Parameters for Retrieving or Extending an Indexed Sequential Data Set .. 18-6
Area Arrangement of Indexed Sequential Data Sets 18-7
Table of Mutually Exclusive DD Parameters 18-8
Disposition Processing Table 18-9
Direct Access Capacitieso ii ittt it e e e e 18-10
Track Capacitieso v vttt i e e e 18-11
The JOB Statementttt iie et iae e 18-13
The EXEC Statementiuiiiimnenetineiaeeineennan 18-14
The DD Statementuiineet ettt et 18-15
The OUTPUT JCL Statementc.uuueeemninmeneennennennnn. 18-18

Figures XXIX

XXX MVSICL

ontents Directory

)B Statement Jog

{EC Statement EXEC

D Statement DD

yecial DD Statement Spec

UTPUT Statement OUTPUT

secial JCL Statements Spec JC

£S2 Statements JES?2

ES3 Statements JESS

eference Tables

Contents Directory XXX1

XXXxil MVSJCL

Summary of Amendments

Summary of Amendments

for GC28-1300-2

as updated December 21, 1984

This revision supports MVS/System Product Version 1 Release 3.4 with the following changes:
® The OUTPUT JCL statement can now be used in JES3 systems.

® The DEST parameter on the DD statement and on the JES3 //*FORMAT statement; JES3 now defines
the default origin as the submitting node.

The revision also includes maintenance and editorial changes.

Summary of Amendments
for GC28-1300-1

as updated October 12, 1984
by TNL GN28-1016

This technical newsletter contains information to support changes in the Resource Access Control Facility

(RACF) requirements for the JOB statement USER, PASSWORD, and GROUP parameters and to support
early authorization verification.

Summary of Amendments
for GC28-1300-1

as updated December 1983
This revision contains:

@® Information to support MVS/System Product Version 1 Release 3.4.

@® Maintenance updates, which reflect the changes made in response to comments from our readers.

Summary of Amendments XXX11i

XXXV MVS JCL

Part 1. Introduction

You write your program in a programming language such as FORTRAN, assembler, or
COBOL. The operating system translates this programming language into machine language,
so that the computer can execute the instructions and perform work.

The program you code has specific resource requirements: storage, data sets, devices, and
volumes. To communicate these resource requirements to the operating system, you use a
programming language called job control language (JCL) in the input stream.

In addition, the job entry subsystem in use at your installation provides certain resources for
your job and your job’s data sets. Using Job Entry Subsystem 2 (JES2) and/or Job Entry
Subsystem 3 (JES3) control statements, you can specify processing requirements for:

® Your job

@® All data sets for your job

@ Specific data sets in your job

A collection of related programs you submit to the operating system is a job. A job is made up
of one or more job steps; each step is the unit of work associated with one of the programs that
make up the job.

To introduce you to job control, the first chapter in this part describes:

® The JCL statements.

® The JES2 control statements.

® The JES3 control statements.
®

Cataloged and in-stream procedures, which are standard sets of JCL statements for jobs
you run frequently.

® Submitting and executing your job.

The second chapter in this part explains the coding conventions used throughout the book to
describe the JCL statements and JES2 and JES3 control statements.

Part 1. Introduction

The JCL Statements

Chapter 1. Introduction to Job Control

Job control language (JCL) consists of the statements summarized in Figure 1-1. Each
statement is described in detail in later chapters.

Statement Name Purpose

// JOB job Marks the beginning of a job; assigns a name to the job.

/{ EXEC execute Marks the beginning of a job step; assigns a name to the step; identifies
the program or the cataloged or in-stream procedure to be executed in
this step.

// DD data definition Identifies and describes a data set.

// OUTPUT output Specifies the processing options that the job entry subsystem is to use for
printing output data sets.

/| CNTL control Marks the beginning of one or more program control statements.

// ENDCNTL end control Marks the end of one or more program control statements.

// PEND procedure end Marks the end of an in-stream procedure.

// PROC procedure Marks the beginning of an in-stream procedure and may mark the
beginning of a cataloged procedure; assigns default values to parameters
defined in the procedure.

// command command Enters a system operator command through the input stream. The
command statement is used primarily by the operator.

Note: JES3 ignores the JCL command statement.

//* comment comment Contains comments. The comment statement is used primarily to
document a program and its resource requirements.

/* delimiter Indicates the end of data placed in the input stream.

Note: Any two characters can be designated by the user to be the
delimiter.

// null Marks the end of a job in a JES3 system.

Note: JES2 ignores the null statement.
Figure 1-1. Job Control Statements

In addition to using JCL statements to identify your job, job steps, and data sets, you use JCL
statement parameters to request resources and services from the operating system. The
operating system, together with your job entry subsystem, is responsible for managing all the

Chapter 1. Introduction to Job Control 1-1

resources of the computing system. It performs many job processing services automatically, but
you can influence the way your job is processed by the JCL parameters you code. For
example, the job entry subsystem selects jobs for execution, but you can speed up or delay
selection of your job by the parameters you code on the JOB statement in a JES2 system or on
the //*MAIN statement in a JES3 system. Also, you can ask for a specific volume on which to
write a data set.

The following paragraphs describe some of the functions that are requested through the major
JCL statements:

JOB statement: Parameters on the JOB statement can:

Provide accounting information to the installation’s accounting routines.
Define execution characteristics.

Specify conditions for early termination of the job.

Request a specific class for system messages and JCL statements.

Hold a job for later execution.

Limit the time that the job can use the processor.

EXEC statement: Parameters on the EXEC statement can:

Identify the program or cataloged or in-stream procedure that the system is to execute.
Provide job step accounting information.

Give conditions for bypassing or executing a job step.

Limit the time that the job step can use the processor.

Pass information to a processing program, such as the linkage editor.

DD statement: Parameters on the DD statement can provide the system with information:

The name of the data set.

The type of 1/O device that holds the data set.

The serial number of the volume on which it resides.

Whether a data set is old, new, or temporary.

What to do with the data set after processing is finished.

The format of the records in the data set.

The size of newly created data sets.

The access method that will be used to-create or refer to the data.

OUTPUT statement: Parameters on the OUTPUT statement provide the system with
processing options for system output data sets. Parameters on this statement can:

@ Specify processing options for output data sets.

® Route output to a specific destination.
@® In JES2 systems, process output data sets as a group.

1-2 mMvsicL

The JES2 Control Statements

In a JES2 installation, you can use JES2 control statements in the input stream to control the
input, output, and processing of a program. See Figure 1-2 for the purpose of the JES2
statements that you can use with JCL statements to define your job’s resource and processing
requirements to the system.

Statement Purpose

[*$command Enters JES2 operator commands through the input stream.

/*JOBPARM Specifies certain job-related parameters at input time.

/*MESSAGE Sends messages to the operator via the operator console.

*NETACCT Specifies an account number for a network job.

[*NOTIFY Specifies the destination of notification messages.

[*OUTPUT Specifies characteristics and options of groups of SYSOUT data sets or
of a specific SYSOUT data set.

/*PRIORITY Assigns a job queue selection priority.

/*ROUTE Specifies the default ontput destination.

[*SETUP Indicates volumes needed to exeéute the job.

[*SIGNOFF Ends a remote job stream processing session.

/*SIGNON Begins a remote job stream processing session.

*XEQ Specifies the execution node for a job.

[*XMIT Indicates a job or data stream to be transmitted to another JES2 node

or eligible non-JES2 node.

Figure 1-2. JES2 Contrel Statements

Several of these statements are briefly discussed here.

JES2 [*JOBPARM Statement: Parameters on the JES2 /*JOBPARM statement can specify:

The estimated number of cards to be produced as output from a job.
The number of copies of printed output desired.

The default print or punch forms for this job.

The number of output lines on each page.

The estimated total number of output lines from the job.

The estimated total number of system output data set bytes from the job.
Your office number.

Any system affinity that may be required.

The estimated job execution time.

The printing of the job log.

The name of the cataloged procedure library to be used to convert the JCL for the job.

JES2 [*NETACCT Statement: The network account number on the JES2 *NETACCT
statement lets you specify accounting information that can be accepted and interpreted by all
nodes. Some nodes may use the number as is, while others can translate it to a local account
number.

Chapter 1. Introduction to Job Control

1-3

JES2 [*ROUTE Statement: Parameters on the JES2 /*ROUTE statement can:

® Route the execution of a job to any processor in the network.
® Route the printed or punched output to any local device, remote terminal, or node in the
network.

JES2 [*XEQ Statement: The JES2 [*XEQ statement causes JES2 to send the job to any
processor in the JES2 network for execution.

JES2 [*XMIT Statement: The JES2 /*XMIT statement causes JES2 to transmit a data stream

or job to a specified JES2 node or eligible non-JES2 node without JES2 input service functions
being performed on the data stream.

1-4 MvsICL

The JES3 Control Statements

In a JES3 installation, you can use JES3 control statements in the input stream to control the
input, output, and processing of a program. See Figure 1-3 for the purpose of the JES3
statements that you can use with JCL statements to define your job’s resource and processing
requirements to the system.

Statement Purpose

/{*¥*command Enters JES3 operator commands, except *DUMP and *RETURN, through
the input stream.

/[¥*DATASET Begins each additional input data set in the input stream.

/[*YENDDATASET Ends the input data set that began with a DATASET statement.

/*ENDPROCESS Ends a series of PROCESS statements.

/*FORMAT Specifies special destination and format-related instructions for a specific
SYSOUT or JES3-managed print or punch data set.

/*MAIN Defines selected processing parameters for the current job.

/[*NET Identifies relationships between predecessor and successor jobs in a
dependent job control net.

J/*NETACCT Specifies an account number for a network job.

//[¥*OPERATOR 1 Sends messages to the operator.

/[¥**PAUSE Halts the input reader.

//*PROCESS Identifies a nonstandard job.

/[*ROUTE Specifies the destination node in a network.

/[*SIGNOFF Ends a remote job stream processing session.

/[*SIGNON Begins a remote job stream processing session.

Figure 1-3. JES3 Control Statements
Several of these statements are briefly discussed here.

JES3 [[*FORMAT Statement: Parameters on the JES3 //*FORMAT statement differ
according to the type of request you are making. For print and punch data sets, keyword
parameters specify such options as:

® Output destination.
® Number of output copies.
® Types of output forms.

JES3 |[*MAIN Statement: Parameters on the JES3 //*MAIN statement specify such options
as:

The main processor name or type of system to be used for the job.
The type of control program to be used.

The estimated number of cards or lines of output.

The job class for the job.

The time that the job is due to be completed.

Chapter 1. Introduction to Job Control 1-5

JES3 [[*PROCESS Statement: A job, which is identified by a JOB statement, is a series of
related problem programs, each identified by an EXEC statement. A job is also a series of
JES3 processing functions. Standard processing needs only the standard scheduler elements:
converter/interpreter service, main service, output service, and purge service.

A standard job consists of related programs to be processed by MVS; a standard job requires
no special processing. A nonstandard job requires one or more special processing functions in
place of or in addition to standard processing. Specify a nonstandard job by following the JOB
statement with a JES3 //*PROCESS statement for each job processing function.

For example, it is not always necessary to have all of the standard processes in a job. You can
submit a job for debugging only. Because JES3 is not to execute the debugging job, you can
skip some of the standard processing.

JES3 |[*ROUTE XEQ Statement: Parameters on the JES3 ROUTE statement direct a job to
another node in the network for execution.

1-6 MvsicL

Cataloged and In-Stream Procedures

You often use the same set of JCL statements repeatedly with little or no change, for example,
to compile, link-edit, and execute a program. To save time and prevent errors, you can prepare
standard job step definitions and place, or catalog, them in a partitioned data set known as the
procedure library. Such a set of JCL statements in the system procedure library,
SYS1.PROCLIB, is called a cataloged procedure. A cataloged procedure consists of EXEC and
DD statements.

Note: Do not place any JES2 or JES3 control statements within a cataloged procedure.

To retrieve a cataloged procedure, use a JOB statement and an EXEC statement. On the
EXEC statement, specify the name of the procedure. Your job uses the JCL statements in the
cataloged procedure as if the JCL statements appeared in the input stream. If necessary, you
can modify the cataloged procedure by a process known as overriding.

Before putting a procedure into the procedure library, you should test it. For testing, create an
in-stream procedure; an in-stream procedure is a set of JCL statements starting with a PROC
statement and ending with a PEND statement. You call this procedure with an EXEC
statement that is in the same job as the procedure. After testing the procedure, catalog the
in-stream procedure and call it with an EXEC statement whenever you want to use it.

Note: The maximum number of in-stream procedures you can code within any job is 15.

Cataloged and in-stream procedures are not checked for correct syntax until an EXEC
statement that calls the procedure is syntax checked. Therefore, to test a procedure, an EXEC
statement must call it.

Submitting and Executing Your Job

To have the computer execute your job, submit your JCL statements and any input data to the
operating system through an input/output (I/0) device or an internal reader. The input device
can be a card reader, a magnetic tape device, a terminal, or a direct access device. The input
stream consists of the JCL statements and input data for all the jobs being submitted through
an input device. The operating system distinguishes a job control statement from data in the
input stream by the contents of the records.

A job can be simple or complex; you can have a procedure in the input stream or call a
cataloged procedure. A job can consist of up to 255 job steps, including all steps in any
procedure that the job calls. Specification of a greater number of steps produces unpredictable
results.

See Figure 1-4 for some examples of jobs. One example shows the use of JES2 statements;
these statements could have been placed within all of the jobs. In a system that uses JES3, the
JES3 statements can be used in any of the jobs and are placed after the JOB statement.

Figure 1-5 shows a job that contains several job steps: a compilation, a link-edit, and a
program execution.

Figure 1-6 shows how several jobs run one after another through the input stream. Your job
would be one job in the group of jobs that make up an input stream.

Chapter 1. Introduction to Job Control 1-7

(delimiter

S
(data

r delimiter

y4u

[data
(i oo

(1o -

i Jos

SYS1.PROCLIB

f delimiter
(1 Exec

4
ﬁ DD
(Il Exec
(1*ouTPUT
/*JOBPARM
(1 Jos
/*PRIORITY

Figure 1-4. A Job in the Input Stream

1-8 MvsiIcL

L
|_exec ||
)

A Job With One Job Step

The EXEC statement defines the program to be
executed; the DD statements define the data to
be used. There is also data in the input stream.

A Job With a Cataloged Procedure

The EXEC statement is calling a cataloged
procedure to process the data in the input
stream.

DDNAME=XY

A Job With an In-stream Procedure

The EXEC statement refers to an in-stream
procedure which is shown using the PROC and
PEND statements.

A Job With JES2 Statements

A simple job using JES2 control statements. The
PRIORITY, command, and any comment
statements would be the only control statements
to be placed in front of the JOB statement.

input data

([Il ExEC
/ delimiter

input data —
(source program)

DD
EXEC

Figure 1-5. A Job with Several Job Steps

(/I DD

EXEC

(JES2 or JES3 stmts.
(1/ o8
//"PRIORITY

delimiter

[———(JES2)

input data

(1/ oo

1 Jos

Figure 1-6. Job Boundaries in the Input Stream

Chapter 1. Introduction to Job Control 1-9

1-10 MvsiCL

Chapter 2. Coding Conventions for JCL, JES2, and JES3
Statements

Syntax rules define how to code job control statements and their parameters. The syntax
indicates:

@® What the system requires.
@® What is optional for the specific purpose or process you are requesting.
® How the statement and its parameters are to appear.

Some syntax rules are the same for JCL and JES parameters.

The following rules apply to all job control statements: JCL statements, JES2 control
statements, and JES3 control statements. Additional coding conventions for JES2 and JES3
control statements are given under separate headings below.

You must follow the syntax rules in coding job control statements to achieve specific results. If
you do not follow the rules, you may get error messages or unpredictable results. IBM does
not support the use of statements or parameters to achieve results other than those stated in
this publication.

Notation Used to Show Syntax

The syntax of the job control statements and of their parameters appear in the chapters that
describe the statements. The notation used in this publication for the syntax follows.

Uppercase letters, words, and characters
Code uppercase letters, words, and the characters listed below exactly as they appear in
the syntax.

& ampersand

* asterisk

, ~comma

= equal sign

() parentheses
period

Lowercase letters, words, and symbols
Lowercase letters, words, and symbols in the syntax represent variables. When you code
the parameter, you substitute specific information for them.

Chapter 2. Coding Conventions for JCL, JES2, and JES3 Statements 2-1

For example, CLASS =jobclass is the syntax for the CLASS parameter. When you code
the CLASS parameter on a JOB statement, you substitute an alphanumeric character for
the word “jobclass.” ‘

| (vertical bar)

A vertical bar indicates an exclusive OR. Never code it on a control statement. It is used
in the syntax between choices within braces or brackets; it indicates that you code only
one of the items within the braces or brackets.

For example, FREE ={END|CLOSE} is the syntax for the FREE parameter. On a DD
statement, you are to code either FREE=END or FREE =CLOSE.

{} (braces)

Braces surround required, related items and indicate that you must code one of the
enclosed items. Never code them on a control statement.

For example, the followihg is part of the syntax for the SPACE parameter on the DD
statement.

{TRK }
{CYL }
{blocklength}

When coding the SPACE parameter, you must code TRK, CYL, or a numerical value
substituted for “blocklength.”

[]1 (brackets)

2-2 MVSICL

Brackets surround an optional item or items and indicate that you can code one or none
of the enclosed items. Never code them on a control statement.

For example, [DEFER] is part of the format description for the UNIT parameter. When
you code the UNIT parameter, you can include ,DEFER in the UNIT parameter or omit
it.

An example of several items in brackets appears in the LABEL parameter of the DD

statement:

[,RETPD=nnnn]
[,EXPDT=yyddd}

You can code either ,EXPDT =yyddd or ,RETPD =nnnn in the LABEL parameter, or
you can omit both.

Sometimes one of the items in brackets is a comma. Code the comma when you are not
coding any of the other items in the brackets but you are coding a following part of the
parameter. For example, the SYSOUT parameter of the DD statement appears in the
format description as:

SYSOUT=({class-name|,}[,writer-name|,][,form-name|,code-name])

You can code both “,writer-name” and “,form-name”:

SYSOUT=(A,writer—-name,form-name)

You can omit both:

SYSOUT=A

Or you can code only one:

SYSOUT=(A,writer-name) or SYSOUT=(A,,form-name)

Note in the second example that the comma after the vertical bar in the first set of
brackets [,writer-name|,} must be coded when “,writer-name” is omitted and “,form-name’
is included.

1)

_ (underline)
An underline indicates the default that the system uses when you do not code a
subparameter. For example:

ADDRSPC={VIRT|REAL}

The underline indicates that VIRT is the default if you do not code the ADDRSPC
parameter.

.. (ellipsis)
An ellipsis follows an item that you can code more than once. Never code it on a control
statement.

For example, COND = ((code,operator)[,(code,operator)]....) is the syntax for the COND
parameter on the JOB statement. The ellipsis indicates that you can repeat
“,(code,operator).”

COND=((12,GE), (8,EQ), (4,EQ))

.. (two consecutive periods)
Two consecutive periods indicate that a parameter consists of a symbolic parameter
followed by other information; only part of the field is variable. For example,

&DEPT..MACS is such a parameter. If &DEPT =DS58, then the actual value is
D58.MACS.

Fields in Control Statements

A job control statement consists of one or more 80-byte records. Each record is in the form of
an 80-column punched-card image. Each job control statement is logically divided into the
following five fields. All five fields do not appear on every control statement.
Identifier field
The identifier field indicates to the system that a statement is a job control statement
rather than data. The identifier field consists of the following:
@® Columns 1 and 2 of all JCL statements, except the delimiter statement, contain //

@® Columns 1 and 2 of the delimiter statement contain either /* or two other characters
designated by the user in a DLM parameter to be the delimiter

® Columns 1, 2, and 3 of a comment statement contain //*

Chapter 2. Coding Conventions for JCL, JES2, and JES3 Statements 2-3

Name field
The name field identifies a control statement so that other statements and the system can
refer to it. For JCL control statements, code the name as follows:

® The name must begin in column 3.

@® The name is 1 through 8 alphanumeric or national characters. See Figure 2-2 on
page 2-10 for the character sets.

® The first character must be an alphabetic or national character.
@® The name must be followed by at least one blank.

For JES control statements, code the name field as it appears in the control statement
syntax.

Operation field
The operation field specifies the type of control statement, or, for the command
statement, the command. Code the operation field as follows:

® The operation follows the name field.
® The operation must be preceded and followed by at least one blank.

Parameter field
The parameter field contains parameters separated by commas. Code the parameter field
as follows:

@ The parameter field follows the operation field.
® The parameter field must be preceded and followed by at least one blank.

See “The Parameter Field” on page 2-5 for details on coding the parameter field.

Comments field
The comments field contains any information you deem helpful when you code the
control statement. Code the comments field as follows:

® The comments field follows the parameter field.
® The comments field must be preceded by at least one blank.

You can code comments after the parameter field even though you continue the
parameter field on a subsequent statement; see “Continuing Control Statements” on
page 2-6. :

For most statements, if you do not code any parameters, do not code any comments.

Location of Fields on Statements: Code the identifier field beginning in column 1 and the name
field immediately after the identifier, with no intervening blanks. Code the operation,
parameter, and comments fields in free form. Free form means that the fields need not begin in
a particular column. Separate between fields with at least one blank; the blank serves as the
delimiter between fields.

Do not code fields, except on the comment statement, past column 71. If the total length of the
fields exceeds 71 columns, continue the fields onto one or more following statements.

2-4 MVSICL

Continuing fields is described under “Continuing Control Statements” on page 2-6. The
comment statement can be coded through column 80.

Use Keywords Only for Parameters or Subparameters: Do not use parameter or subparameter
keywords from any JCL, JES2, or JES3 statements as symbolic parameters, names, or labels.

Statement Identifier Fields

JOB /! name JOB parameter! comments?

EXEC /! name! EXEC parameter comments?

DD /! name! DD parameter comments?

OUTPUT /! name OUTPUT parameter comments2

PROC(cataloged) /! name! PROC parameter comments?
- PROC (in-stream) // name PROC parameter! comments?

PEND /! name! PEND comments!

Command 1/ command parameterl comments!

Delimiter /* comments!

XX comments!
Null /!
Comment /1* comments
! Optional
Optional -- If parameters are not coded, comments cannot be coded.
If parameters are coded, comments are optional.

Figure 2-1. JCL Control Statement Fields

The Parameter Field

The parameter field is made up of two types of parameters: positional parameters and keyword
parameters. Positional parameters must precede all keyword parameters. Keyword parameters
follow the positional parameters.

Commas: You must use commas to separate all positional parameters, keyword parameters,
and subparameters coded in the parameter field.

Positional Parameters: A positional parameter consists of (1) characters that appear in
uppercase in the syntax and must be coded as shown, (2) variable information, or (3) a
combination. For example, DATA on a DD statement, programmer’s-name on a JOB
statement, and PGM = program-name on an EXEC statement.

Code positional parameters first in the parameter field in the order indicated in the syntax. If
you omit a positional parameter and code a following positional parameter, code a comma to
indicate the omitted parameter. Do not code the replacing comma if:

The omitted positional parameter is the last positional parameter.
All following positional parameters are also omitted.

Only keyword parameters follow.

All positional parameters are omitted.

Chapter 2. Coding Conventions for JCL, JES2, and JES3 Statements 2-5

Keyword Parameters: A keyword consists of characters that appear in uppercase in the syntax
and must be coded as shown followed by an equals sign followed by either characters that must
be coded as shown or variable information. For example, RD=R and

MSGCLASS =class-name on the JOB statement.

Code any of the keyword parameters for a statement in any order in the parameter field after
the positional parameters. Because of this positional independence, do not code a comma to
indicate the absence of a keyword parameter. :

Multiple Subparameters: A positional parameter or the variable information in a keyword
parameter sometimes consists of more than one item, called a subparameter list. A
subparameter list can consist of both positional and keyword subparameters. These
subparameters follow the same rules as positional and keyword parameters.

When a parameter contains more than one subparameter, separate the subparameters by
commas and enclose the subparameter list in parentheses or, if indicated in the syntax, by
apostrophes. If the list is a single keyword subparameter or a single positional subparameter
with no omitted preceding subparameters, omit the parentheses or apostrophes.

Symbolic Parameters: The EXEC and DD statements in cataloged and in-stream procedures
can contain one other type of parameter: a symbolic parameter. A symbolic parameter consists
of an ampersand (&) followed by a name. For example, DEST =&LOC on a procedure DD
statement.

A symbolic parameter stands as a symbol for a parameter, a subparameter, or a value. Use
symbolic parameters to make variable any information in the parameter field of a procedure
EXEC statement or DD statement. You assign a value to a symbolic parameter by coding the
value on the EXEC statement that calls the procedure. This value is in effect only for this
execution of the procedure. For example:

//STEP1 EXEC PROC=A,LOC=NYC

For a detailed discussion of symbolic parameters, see “Symbolic Parameters” on page 2-15.

Continuing Control Statements

When the total length of the fields on a control statement exceeds 71 columns, continue the
fields onto one or more following statements.

JCL statements that you cannot continue follow. While you cannot continue these statements,
you can code as many separate statements as you need.

Command statement
Comment statement
Delimiter statement

Null statement

For all other JCL statements, you can continue the parameter field or the comments field.

2-6 MVS IJCL

Continuing the Parameter Field: The continuation conventions for the parameter field are:

1.

Interrupt the field after a complete parameter or subparameter, including the comma that
follows it, at or before column 71.

Include comments by following the interrupted parameter field with at least one blank.

Code a nonblank character in column 72 when you are continuing a comments field and,
optionally, when you are continuing the parameter field.

Note: The system treats a following statement as a continuation, even when column 72 is
blank, when conventions 4, 5, and 6 are followed.

Code // in columns 1 and 2 of the following statement.

Continue the interrupted parameter or field beginning in any column from 4 through 16. If
you begin coding after column 16, the system treats this statement as a comment field.

If column 3 contains a nonblank character other than an asterisk, the system assumes the
following statement is a new statement. The system issues an error message indicating that
no continuation is found and fails the job.

Continuing the Comments Field:

Ll

Interrupt the comment at a convenient place before column 72.

Code a nonblank character in column 72.

Code // in columns 1 and 2 of the following statement.

Continue the comments field beginning in any column after column 3.

Identifying Comments on an Qutput Listing

The system lists in the job log the control statement and how it was interpreted.

//* in columns 1 through 3: indicates a control statement in the input stream, other than a
comment statement, that the system considers to contain only comments.

XX* in columns 1 through 3: indicates a control statement in a cataloged procedure, other
than a comment statement, that the system considers to contain only comments.

*** in columns 1 through 3: indicates a comment statement.

+ + in columns 1 and 2: indicates any control statements in an in-stream procedure.

For additional information, see “Identifying Procedure Statements on an Output Listing” on
page 9-13.

Chapter 2. Coding Conventions for JCL, JES2, and JES3 Statements 2-7

Coding Conventions for JES2 Control Statements

Code JES2 control statements with JCL statements to control the input and output processing
of jobs. The rules for coding JCL statements, including syntax, discussed in the preceding
topics, apply to the JES2 control statements. However, there are additional rules for coding
JES2 statements. They are:

@® Columns | and 2 always contain the characters /*.

® The /*OUTPUT statement is the only JES2 control statement that you can continue.

For all other JES2 control statements, code multiple control statements if you require more
than one statement.

@ If you code more than one of the same parameters on the same statement, JES2 uses the
last parameter value coded.

When coding more than one of the same JES2 control statements, be aware of the following
system actions: :

@® If you code more than one statement with the same parameter, JES2 uses the parameter
value coded on the last statement.

® If you code more than one statement with different parameters, JES2 uses all parameters.

Coding Conventions for JES3 Control Statements

You can code JES3 statements in combination with JCL statements to control the input and
output processing of your job. Rules for coding JCL, including syntax, discussed in previous
topics, apply to the JES3 statements. However, there are additional rules for coding JES3
statements. They are:

® Columns 1 through 3 usually contain the characters //*. There are some JES3 control
statements that have /* in columns 1 and 2.

® Columns 3 and 4 must be nonblanks.
® Continue JES3 statements, except command statements, by:
1. Coding a comma as the last character of the first statement.
2. Coding //* in columns 1 through 3 of the continuation statement.

3. Resuming the text in column 4 of the continuation statement.

® Do not include comments on JES3 control statements, except ENDPROCESS and PAUSE
statements.

2-8 MVSICL

Concatenating Data Sets

You can logically connect (concatenate) up to 255 sequential or 16 partitioned input data sets
for the duration of a job step. Each of these data sets may reside on a different volume.

To concatenate data sets, omit the ddnames from all the DD statements except the first in the
sequence. When MVS encounters this ddname in a data control block in the processing
program, MVS processes each data set in the same sequence as the DD statements defining
them.

You may concatenate data sets on different devices as long as you do not concatenate data sets
on RPS devices to data sets on non-RPS devices, or vice versa.

You may also concatenate data sets that have different block sizes as long as the data set with
the largest block size appears first in the concatenation. For further details on concatenating
data sets, refer to Data Management Services Guide.

Concatenation Cautions

® If you make a backward reference to a concatenation (using *.), the system obtains
information only from the first data set defined in the sequence.

@ If you make a forward reference to a concatenation (using the DDNAME parameter), the
system only obtains information from the first data set defined in the sequence.

® If you issue a RDJFCB macro instruction to a DD statement that is concatenated, only the
job file control block (JFCB) for the first data set is read.

@ If you define a data set using the DUMMY parameter you should not concatenate other
data sets to it. When the processing program asks to read a dummy data set, the system
takes an end-of-data set exit immediately and ignores any data set that might be
concatenated to the dummy.

Chapter 2. Coding Conventions for JCL, JES2, and JES3 Statements 2-9

Character Sets

You can code job control statements using a combination of the characters from three different
character sets. Figure 2-2 illustrates the contents of each of the character sets.

Character Set Contents
Alphanumeric Alphabetic A through Z
Numeric 0 through 9
“At” sign @
National Dollar sign $
(See Note) Pound sign #
Comma)
Period .
Slash /
Apostrophe ’
Left parenthesis (
Special Right parenthesis)
Asterisk *
Ampersand &
Plus sign +
Hyphen -
Equal sign =
Blank
Note: The system recognizes the following hexadecimal representations of the U.S. National
characters; @ as X’7C’; $ as X’5B’; and # as X’7B’. In countries other than the U.S., the
U.S. National characters represented on terminal keyboards might generate a different
hexadecimal representation and cause an error. For example, in some countries the $
character may-generate a X"4A’.

Figure 2-2. Character Sets

When coding any special characters, you must follow certain rules. The description and use of
these rules follows.

Coding Special Characters
You use special characters in the job control language to:
® Delimit paraméters (the comma).
® Delimit fields (the blank).

® Perform syntactical functions. (For example, the appearance of && as the first two
characters following DSNAME = tells the system that a temporary data set name follows.)

Sometimes you can code a special character that does not satisfy one of the above uses of

special characters. In most of these cases, indicate that you are using special characters by
enclosing the item that contains the special characters in apostrophes, for example,

2-10 MvsiICL

ACCT= ’123 +456’. If one of the special characters is an apostrophe, you must code two
consecutive apostrophes in its place, for example, “O”’NEILL’.

The following list contains those parameters that can have special characters as part of their
variable information, and indicates when you do not have to code the apostrophes. Where
applicable, this information is repeated for each parameter in “Part 4. Reference to Job
Control Statements and Parameters.”

@® The accounting information on the JOB statement. The account number and additional
~accounting information can contain hyphens without being enclosed in apostrophes. For
example:

//JOBD JOB D58-D04

® The programmer’s name on the JOB statement. The programmer’s name can contain
periods and/or hyphens without being enclosed in apostrophes.

//JOBN JOB ,P.F.M,CLASS=...

//JOBX JOB ,S.M~TU,CLASS=...
//JOBC JOB ,M-T,CLASS=...

However, because a comma cannot immediately follow a period, the following is invalid:

//30BY JOB ,LEIGH.,TYPRUN=...

® The checkid field in the RESTART parameter on the JOB statement can contain an
asterisk. For example:

//JOBZ JOB A709I,NAT,RESTART=*

® The ACCT parameter on the EXEC statement. The ACCT parameter can contain hyphens
and plus zero (+0, an overpunch) without being enclosed in apostrophes. For example:

//STEP1 EXEC PRINT,ACCT=D58-LOC
//STEP2 EXEC PGM=PUB,ACCT=D57+0

® The PARM parameter on the EXEC statement may contain an ampersand for symbolic
parameters. When coding the ampersand for symbolic parameters, you need not code an
apostrophe. For example:

//STEPX EXEC MYPROC,PARM=&UNIT
® The DSNAME parameter on the DD statement.

~— You can code hyphens in the DSNAME parameter without enclosing it in apostrophes.
For example:

// DD DSN=NAT-SMT,...

— You can code periods in a qualified data set name without enclosing it in apostrophes.
The use of periods within the data set name qualifies the DSNAME and eliminates the
need to enclose it in apostrophes. For example:

// DD DSN=BPT.DATA.GROUP

Chapter 2. Coding Conventions for JCL, JES2, and JES3 Statements 2-11

However, the following combinations are invalid when you do not enclose the
parameters within apostrophes.

— A period immediately after a left parenthesis or immediately before a right
parenthesis, for examﬁl-e:;.‘”_ e » !

// DD 'DSN=(.ABC)
// DD. DSN=(ABC..)

— A period immediately followed by a comma, for example:

// DD DSN=P.D.S.,

~ You can code a plus or minus (hyphen) sign to identify a generation of a generation
data group in the DSNAME parameter without enclosing it in apostrophes. For
example:

// DD DSN=PAYROLL (+1)

— You can code ampersahd;v as the first two char_acteré when defining a temporary data
set in the DSNAME parameter without enclosing them in apostrophes.

// DD DSN=&&ELM

— You can code parentheses in the DSNAME parameter when defining a member of a
partitioned data set, a generation of a generation data group, or an area of an indexed
sequential data set. The parentheses that enclose the member name, generation
number, or area name do not have to be enclosed in apostrophes. For example:

// DD DSN=PDS (MEM1)

@ The volume serial number of the-VOLUME parameter can contain hyphens without being
enclosed in apostrophes. For example:

// DD VOL=SER=PUBS-RD

® Subsystem-defined parameters in the SUBSYS DD parameter can contain special characters
without being enclosed in apostrophes.

® The device type subparanietér of the UNIT parameter on the DD statement can contain
hyphens without being enclosed in apostrophes. . . :

// DD UNIT=3330-1

2:12 w™MvsicL

Backward References

Many parameters in job control statements allow you to make use of the backward reference to
fill in information. The backward reference lets you copy previously coded information or refer
to DD statements that appear earlier in your job. Most backward references are coded as

* stepname.ddname, where stepname is the name of an earlier step that contains the DD
statement to which ddname is referring. The step you name must contain the DD statement to
which you are referring,

For example:

//REFBAK1 JOB ceen

//STEP1 EXEC

//POKDD DD DSN=D58 . POK.PUBS01
//STEP2 EXEC

// DD DSN=* . STEP1.POKDD

If the DD statement appears earlier in the same step as the backward reference, code the
backward reference as *.ddname. The DD statement to which you are referring must precede
the backward reference. '

For example:

//REFBAK2 JOB
//STEP EXEC - ?
//PUBSDD DD DSN=D04 .POK.PUBS04

// DD DSN=* , PUBSDD
Do not make backward references to a DD statement that contains a SYSOUT parameter.

You can also refer to a DD statement that is contained in a cataloged or in-stream procedure
step by coding *.stepname.procstepname.ddname.

You must:
® Code an asterisk (*) indicating to the system that this is a backward reference.
@ Code the name of the step in your job that invokes the procedure.

® Code the name of the procedure step that contains the DD statement to which you are
referring.

® Code the name of the DD statement to which you are referring.

Chapter 2. Coding Conventions for JCL, JES2, and JES3 Statements 2-13

The cataloged procedure PUBS contains:

//SPELL EXEC
4 .

//WRITE DD e
5 .

Your job contains:

//REFBAK3 = JOB e
//STEPCALL EXEC PROC=PUBS
3 . 1

//WKSTEP EXEC

// DD DSN=%* , STEPCALL.SPELL.WRITE
2 3 4 5

1. Step STEPCALL invokes the cataloged procedure named PUBS.

Later in your job, you wish to make a backward reference to a DD statement in the cataloged
procedure PUBS. . ‘

2. The asterisk (*.) indicates to the system that this is a backward reference.

3. STEPCALL is the name of the previous step in your job that invoked the cataloged
procedure that contains the DD statement to which you want to refer.

4. SPELL is the name of the step within the cataloged procedure that contains the DD
statement to which you want to refer.

5. WRITE is the name of the DD statement in the cataloged procedure to which you want to
refer.

2-14 MvsiCL

Symbolic Parameters

In order to be modified easily, cataloged and in-stream procedures can contain symbolic
parameters. A symbolic parameter is a symbol preceded by an ampersand that stands for a
parameter, a subparameter, or a value. In the following procedure step, the symbolic
parameters are underlined:

//STEP1 EXEC PGM=UPDATE,ACCT=(PGMG,&DEPT)
//DD1 DD DSNAME=INIT,UNIT=&DEVICE,SPACE=(CYL, (&SPACE,10))
//DD2 DD DSNAME=CHNG,UNIT=3400-6,DCB=BLKSIZE=&LENGTH

When this procedure is executed, every symbolic parameter must either be assigned a value or
nullified on the EXEC statement calling the procedure; the changes are in effect only for the
current execution of the procedure. Therefore, without being permanently changed, the
procedure can be modified each time it is executed. Details on how to assign values to or
nullify symbolic parameters are included under “Assigning Values to and Nullifying Symbolic
Parameters.” How to include symbolic parameters when writing a cataloged or in-stream
procedure is described in the next section, “Defining Symbolic Parameters When Writing a
Procedure.”

Defining Symbolic Parameters When Writing a Procedure

Any parameter, subparameter, or value in a procedure that can vary each time the procedure is
called is a good candidate for definition as a symbolic parameter. For example, if different
values can be passed to.a processing program by means of the PARM parameter on one of the
EXEC statements, you could define the PARM field as one or more symbolic parameters, for
example, ‘ '

PARM=&ALLVALS
or
PARM=&DECK&CODE

The symbolic parameter itself is one to. seven alphanumeric and national (#,@,$) characters
preceded by a single ampersand. The first character must be alphabetic or national. Since a
single ampersand defines a symbolic parameter, you code double ampersands to indicate to the
system that you are not defining a symbolic parameter. For example, if you want to pass
543&LEV to a processing program by means of the PARM parameter, you must code

PARM ="543&&LEV’. The system treats the double ampersand as if a single ampersand had
been coded, and only one ampersand appears in the results.

If you enclose a symbolic parameter with apostrophes, a symbolic parameter not enclosed in
apostrophes must precede the one enclosed in apostrophes for correct substitution to occur.

Keyword parameters that you may code on the EXEC statement (such as ACCT, COND, and
PARM) cannot be used as the name of a symbolic parameter. Also, you cannot use EXEC
statement keyword parameters to define symbolic parameters in JCL procedures that you intend
to start from the console using the START command.

For example, you cannot code ®ION =200K or REGION = ®ION on the EXEC
statement, but you can code REGION = &SIZE.

The definitions used to signify symbolic parameters should be consistent in all the cataloged

and in-stream procedures at an installation. For example, every time the programmer is to
assign his department number to a symbolic parameter, no matter which procedure he is

Chapter 2. Coding Conventions for JCL, JES2, and JES3 Statements 2-15

calling, the symbolic parameter could be defined as &DEPT. In different procedures, you could
code ACCT =(43877,&DEPT) and DSNAME =LIBRARY.&DEPT.TALLY. The programmer
would assign his department number to the symbohc parameter wherever that symbolic
parameter appears in a procedure.

The same symbolic parameter can appear more than once in a procedure, as long as the value
assigned to the symbolic parameter is a constant in the procedure. Therefore, you could use
&DEPT more than once in a procedure, if the department number to be assigned is the same in
each use. But if you have two DD statements and include a symbolic parameter for the
primary quantity of the space request on each DD statement, you would not want to use the
same symbolic parameter, since the requests for primary quantxty could be different for the two
data sets.

Only one value can be assigned to each symbolic parameter used in a procedure; if you assign
more than one value to a symbolic parameter, only the first value is used and that value is
substituted wherever the symbolic parameter occurs.

Assigning Default Values to Symbeolic Parameters

You can assign default values to the symbolic parameters coded in the procedure on the PROC
statement. The PROC statement must always appear as the first statement in an in-stream
procedure; the PROC statement must be coded as the first statement in a cataloged procedure
only if you want to assign defaults. Generally, you should assign defaults to every symbolic
parameter in a procedure to limit the amount of coding necessary each time the procedure is
called. For details, see the next section, “Assigning Values to and Nullifying Symbolic
Parameters.” ‘

You can use symbolic parameters on DD statements that you are adding to a procedure.
However, if you are adding a DD statement to the last step of a procedure — do not use
symbolic parameters that are not used elsewhere in the procedure.

Assigning Values to and Nullifying Symbolic Parameters

When a procedure containing symbolic parameters is used, each symbolic parameter must either
be assigned a value or nullified. If the symbolic parameter is not assigned a value or nullified,
the symbolic parameter remains in the JCL for that job.

Symbolic parameters are assigned values or nullified in one of two ways: k

1. The programmer who uses the procedure codes the symbolic parameter on the EXEC
statement that calls the procedure, either assigning it a value or nullifying it. Symbolic
parameters specified on the EXEC statement calling the procedure must appear in the
procedure.

2. The programmer who writes the procedure assigns a default value to or nullifies the
symbolic parameter on the PROC statement, which must be the first statement in an
in-stream procedure and can be the first statement in a cataloged procedure.

The default assigned to a symbolic parameter on a PROC statement is overridden when that

symbolic parameter is assigned a value or nullified on the EXEC statement that calls the
procedure.

2-16 MVSJCL

Default values are not necessarily assigned to symbolic parameters in a procedure. Before using
any procedure, find out what symbolic parameters are used, the meaning of each symbolic
parameter, and what default, if any, is assigned. The PROC statement is optional in cataloged
procedures; if the PROC statement is not included, no default values can be assigned to
symbolic parameters in the procedure.

You need not code the symbolic parameters in any specific order when you assign values to or
nullify them.

Assigning a Value to a Symbolic Parameter

To assign a value to syfnbolic parameter, you code:

symbolic parameter=value

Omit the ampersand that precedes the symbolic parameter in the procedure. For example, if
the symbolic parameter &NUMBER appears on a DD statement in the procedure, code
NUMBER = value on the PROC statement (if you are writing the procedure and assigning
defaults) or on the EXEC statement that calls the procedure (if you are using the procedure and
want this value to be in effect only for the current execution of the procedure).

There are some rules for assigning values to symbolic parameters:
® The length of the value assigned is limited as follows:
— The value cannot be continued on to another statement.

— The length of the value you assign, combined with the length of all foliowing
parameters and delimiters in the operand field of a single statement, cannot exceed 120
characters. For example:

//INIT EXEC PGM=MYPROG,PARM='0

The length of the value assigned to &X must be less than 103 characters because the
length of the remainder of the operand field “, TIME =10,REGION=5"is 17
characters.

Note: The PARM keyword on the EXEC statement is given special consideration when
processing symbolic parameters. Any symbolic parameter appearing in a PARM keyword
operand that is enclosed in apostrophes is replaced by its assigned value. (&X in the
example above is replaced.) For any other use of a symbolic parameter in an operand
enclosed in apostrophes, the symbolic parameter is not replaced. For example,

//DDX DD DSN='g&PRM',DISP=(,SHR)
&PRM is not replaced by its assigned value.

If the character string that includes the ampersand is not enclosed in apostrophes, the
ampersand causes a JCL error. ‘

@ If the value contains special characters, enclose the value in apostrophes (the enclosing

apostrophes are not considered part of the value). If the special characters include
apostrophes, each apostrophe must be shown as two consecutive apostrophes.

Chapter 2. Coding Conventions for JCL, JES2, and JES3 Statements 2-17

® If more than one value is assigned to a symbolic parameter as a default on the PROC
statement, only the first value encountered is used; likewise, if more than one value is
assigned to a symbolic parameter on an EXEC statement, only the first value encountered
is used.

@ If a symbolic parameter is a positional parameter followed by other parameters in the
statement, it should be followed in the procedure by a period instead of a comma; for
example:

//DEFINE DD &POSPARM.DSN=ATLAS,DISP=0LD
® Do not use a value of literal blanks, that is, VALUE=" ", to nullify a symbolic parameter.

Symbolic parameters that are keyword subparameters should appear in the procedure
without a preceding comma; for example:

VOLUME=SER=(llllll&SERNO)

This is necessary so that, if the symbolic parameter is nullified, a leading or trailing comma
will not cause a JCL syntax error. (For a more complete dlscusswn of this, see “Caution
Concerning Leading and Trailing Commas.”)

In these cases, you must include a comma when you assxgn a value to the symbolic
parameter; that is:

POSPARM='DUMMY, '
SERNO="',222222"

Since the comma is a special character, the value musf then be enclosed in apostrophes.
@® Two consecutive periods (..) indicate that a parameter consists of a symbolic parameter
followed by other information; only part of the field is variable. For example,
&DEPT..MACS is such a parameter. If &DEPT =D58, then the actual value is
D58.MACS.
Nullifying a Symbolic Parameter

To nullify a symbolic parameter, code:

symbolic parameter=

Omit the ampersand that precedes the symbolic parameter in the procedure and do not follow
the equal sign with a value.

For example, a DD statement in an in-stream procedure named TIMES is:

//DD8 DD UNIT=3211,UCS=&UCSINFO

If you are writing the procedure and want to nullify &UCSINFO as a default on the PROC
statement, code:

-//TIMES PROC UCSINFO=

2-18 MVSIJICL

If you are calling the procedure, and no default was assigned to &UCSINFO, or if &UCSINFO
was assigned a value on the PROC statement, nullify the parameter on the EXEC statement
that calls the procedure by coding:

//CALL EXEC TIMES,UCSINFO=

If a symbolic parameter appears 'as the last parameter on a statement that is being continued, it
cannot be nullified and must be assigned a value. An attempt to nullify such a parameter
results in a JCL error.

Caution Concerning Leading and Trailing Commas

All symbolic parameters must be assigned values or nullified before the procedure is executed.
(When you write a procedure, you can assign default values to the symbolic parameters, or the
programmer can assign values when he calls the procedure; for details, see “Assigning Values to
and Nullifying Symbolic Parameters.”) When a symbolic parameter is nullified, a delimiter,
such as a leading or trailing comma, is not automatically removed. Only when the symbolic
parameter is a positional subparameter followed by other subparameters should the comma
remain. In other cases, the remaining comma will cause a syntax error.

For example, you code for a unit request:

UNIT=(3350,&MORE,DEFER)

If &MORE is nullified, the comma before it must remain, since the unit count subparameter is
positional and a comma must indicate its absence if other subparameters follow. When
&MORE is nullified, the parameter will appear as:

UNIT=(3350, ,DEFER)

However, if you code:
VOLUME=SER=(111111, &SERNO)
and &SERNO is nullified, a leading comma will remain and cause a JCL syntax error. If a

symbolic parameter is a positional parameter followed by other parameters in the statement,
such as

//DEFINE DD &POSPARM,DSN=ATLAS,DISP=OLD

the comma will remain at the begmmng of the operand field if &POSPARM is nullified and
again cause a syntax error.

In these cases, do not code the comma. When a symbolic parameter follows information that
does not vary, such as in VOLUME =SER =(111111,&SERNO), you do not have to code any
delimiter. The system recognizes the symbolic parameter when it encounters the single
ampersand. For this example, you would code:

VOLUME=SER=(111111&SERNO).

When a value is assigned to the symbolic parameter, a comma must be included in the value,
that is SERNO=",222222". (Because the comma is a special character, you must enclose the
entire value within single apostrophes.)

When a symbolic parameter precedes information that does not vary, a period may be required

after the symbolic parameter to distinguish the end of the symbolic parameter from the

Chapter 2. Coding Conventions for JCL, JES2, and JES3 Statements 2-19

beginning of the information that does not vary. A period is required after the symbolic
parameter when the character following the symbolic parameter is:

@® An alphabetic, numeric, or natiohal ’(#,@,.‘B) charaylcterb
@® A period

The system recognizes the period as a delimiter and the period does not appear in the procedure .
after the symbolic parameter is assigned a value or.nullified. (A period will appear after the
value when two consecutive periods are coded.)

Therefore, place a period after a symbolic parameter that stands for a positional parameter
followed by other parameters in the statement:

.//DEFINE DD &POSRARM.DSN=ATLAS,DISP=OLD

If &POSPARM is nullified, the statement appears as:

//DEFINE DD DSN=ATLAS,DISP=0LD

When assigning a value to &POSPARM, you must include a comma:

POSPARM="'DUMMY, '

‘These rules are in effect whenever you are concatenating a symbolic parameter with information
that does not vary. In the following examples, a symbolic parameter is placed after information
that does not vary.

In these examples, the system recognizes the symbolic parameter when it encounters the &:

® DSNAME=LIBRARY(&MEMBER)
® DSNAME=USERLIB.&LEVEL

In the following examples, a symbolic parameter is placed before information that does not
vary:

® PARM="&OPTION +15. &OPTION is not followed by period because of the +.

@® DSNAME=&QUAL.246. The period is required because a numeric character follows the
symbolic parameter.

® DSNAME=&DOCNO..TXT. The period is required because a period follows the
symbolic parameter. A single period will appear in the results.

You can also define two or more symbolic parameters in succession without including a

comma, for example, PARM =&DECK&CODE. If you want a comma in the results, you
must include a comma in the value assigned to the symbolic parameter.

12-20 .MVSICL

Example of an In-Stream Procedure Containing Symbolic Parameters

The following example illustrates the execution of an in-stream procedure to test symbolic
parameters prior to placing the procedure in a procedure library.

The in-stream procedure named TESTPROC contains the following statements:

//TESTPROC PROC A=IMB406,B=ABLE,C=3330,D=WXYZ1,
E=0LD,F=TRK,G='10,10,1"

//STEP EXEC PGM=&A
//DD1 DD DSN=&B,UNIT=&C,VOL=SER=&D,DISP=4E,
// SPACE=(&F, (&G))

// PEND

To execute the above in-stream procedure with certain overrides (change DSN to BAKER,
PGM to IEFBR14, DISP to (NEW, KEEP) and leave the remainder of the parameters the
same), code the following statements:

//STEPX EXEC TESTPROC,A=IEFBR14,B=BAKER,E='(NEW,KEEP)'

After the symbolic substitution, the statements will look like this:
//STEP EXEC PGM=IEFBR14

//DD1 DD DSN=BAKER,UNIT=3330,VOL=SER=WXYZ1,
// DISP=(NEW,KEEP) ,SPACE=(TRK, (10,10,1))

To execute the above in-stream procedure and change DD1 to resemble a temporary scratch
space, code the following statement:

//STEPX EXEC TESTPROC,A=IEFBR14,B=,C=3350,D=,E=

After the symbolic substitution, the statements will look like this:

//STEP EXEC PGM=IEFBR14
//DD1 DD DSN=,UNIT=3350,VOL=SER=,DISP=,SPACE=(TRK, (10,10,1))

Chapter 2. Coding Conventions for JCL, JES2, and JES3 Statements 2-21

2-22 mvsicL

Part 2. Guide to Job and Step Control

The operating system provides some resources for all the programs in a job. It provides other
resources for a particular job step, that is, a particular program in a job.

You code parameters on a JOB statement to ask the operating system for resources for your
entire job. There are also some JES control statements that you can use to request resources
for the entire job. The parameters and control statements for resources for the entire job are
discussed in Chapter 3, “Guide to Job Control.”

You code parameters on an EXEC statement to ask the operating system for resources for a
particular job step. The parameters for resources for a particular step are discussed in Chapter
4, “Guide to Step Control.”

Some parameters that you can code on a JOB statement you can also code on an EXEC
statement. Because these parameters have a relationship to each other when you code them on
both the JOB and EXEC statements, they are discussed together in Chapter 5, “Guide to Job
and Step Control.”

Part 2. Guide to Job and Step Control

Chapter

3. Guide to Job Control

Normally the JOB statement is the first JCL statement of your job. Certain JES control
statements can precede the JOB statements; these are discussed with the JOB statement
parameter to which they relate. The JOB statement must contain a valid jobname in its name

~ field and the word JOB in its operation field. The format of the JOB statement is:

Naming

//jobname JOB positional-parameters|,keyword-parameter]... comments

If you do not code any parameters on the JOB statement, you cannot code comments on the
JOB statement.

The JOB statement parameters and JES control statements allow you to specify information in
the following areas:

Installation management information.
Networking.

Operating system messages.

TSO (time sharing option).

Remote job processing.

Special job processing.

JES3 spool partitioning.
RACF-protected data sets..

In this chapter, each area is discussed; the discussions center around the JCL statements that
you can code to direct the system’s handling of your job. Where a JES2 or JES3 control
statement also affects an area, the appropriate JES control statement and/or parameter is also
discussed.

the Job

Your job must have a name. The job scheduler component of the operating system requires a
jobname.

Code the jobname in the name field of the JOB statement. It can range from one to eight

characters in length and can contain any alphanumeric characters. However, the first character
of the name must be an alphabetic or national character and must begin in column 3.

Chapter 3. Guide to Job Control 3-1

‘The following are examples of jobnames in JOB statements:

//MYJOB JOB
//MCS167 JOB
//R#123 JOB
//@5AB JOB

Installation Management Information

You can specify two types of installation management information in the JOB statement: job
accounting information and programmer’s name. These are positional parameters: You must
code them before coding any other parameters on a JOB statement. The first positional
parameter is for job accounting information; the second posmonal parameter is.for the
programmer’s name:

//jobname JOB account,programmer

If you omit the job accounting information, you must indicate its absence with a comma:

//jobname JOB ,programmer

If you omit both the job accounting information and the programmer’s name and you specify
other parameters (such as MSGLEVEL), you do not need to indicate their absence with
commas:

//jobname JOB MSGLEVEL=...
The installation can make mandatory the job accounting information or programmer’s name or

both. That is, your job will fail if you do'not specify them on your JOB statement. Your
manager or supervisor should inform you of this requirement.

Job Accounting Information Parameter

The first positional parameter of the JOB statement allows you to supply job accounting
information. It has the following format:

([account-number] [,accounting-information]...)

Replace the term “account-number” with the account number to which you want to charge the
job; replace the term “accounting-information” with other items your installation’s accounting
routines require. Your manager or supervisor should tell you exactly how to code the job
accounting information parameter. The followmg are general rules for coding accounting
information. : ‘ , :

® The account number and each item of accounting information are subparameters; you
must separate them with a comma.

® You can enclose the job accounting information with either parentheses or apostrophes.
For example: ~

//JOBOZ JOB (12A75,DEPTD58,920)

or
//JOBOX JOB '12A75,DEPTD58,920"

3-2 MVSJCL

If you use apostrophes, the system considers all accounting information within the
apostrophes as one field.

If a subparameter contains special characters (except hyphens), you must code it as follows:

— Enclose that subparameter in apostrophes and all the job accounting information in
parentheses. For example:

//JOBON JOB (12A75,'DEPT/D58',920)

— Enclose all the job accounting information in apostrophes. For example:

//JOBOK JOB '1l2A75,DEPT/D58,920'

- If the special character is an apostrophe, you must code two consecutive apostrophes. For
example, code DEPT'DS58 as:

//JOBGO JOB (12A75,'DEPT' 'D58',920)
or
//JOBDO JOB '12A75,DEPT''D58,920"'

If your job accounting information consists of only an account number and the number
does not contain special characters, you need not enclose the number in parentheses or
apostrophes. . If the account number contains special characters, enclose it in apostrophes.
For example: :

//JOBO1 JOB 12A75
//JOBO2 JOB '12A.75'
//JOBO3 JOB '12A''75"

If your job accounting information does not include an account number, you must indicate
its absence by coding a comma preceding the additional accounting information. For

example:

//JOBO4 JOB (,DEPTD58,920)
//3JOBO5 JOB (,'DEPT/D58',920)
//JOBO6 JOB ',DEPT/D58,920"

Job accounting information can consist of up to 142 characters, including the commas that
separate the subparameters. If your installation’s parameter is long, you will have to
continue it onto another statement. Keep the following in mind when you continue it:

Enclose the job accounting information in parentheses.

Do not continue a subparameter enclosed in apostrophes. Break for the continuation
before or after such a subparameter.

Follow the continuation conventions outlined in “Continuing Control Statements” on
page 2-6. The following example shows job accounting information continued onto
another statement.

//YOURJOB JOB (2G29, 'DEPT/D58',
/7 920)

Chapter 3. Guide to Job Control 3-3

JES2 Accounting Information

JES2 systems assume that the accountihg informatjdn parameter contains information that you
can, alternatively, specify on the JES2 /*JOBPARM statement. Specify the accounting
information in the following format:

(pano,room,time,lines,card,forms,copies,log,linect)

JES2 will interpret and use the subparameters of this accounting information as explained in
“Accounting Information Parameter” on page 10-3.

However, your installation might initialize JES2 to ignore accounting field subparameters that
are illegal by JES2 standards. If your installation has initialized JES2 to terminate a job that
has an accounting field subparameter that is illegal by JES2 standards, then you must code the
first two subparameters (pano and room).

For a discussion of the JES2 scan of the accounting information parameter, refer to SPL:
JES?2 Initialization and Tuning.

Network Accounting Information

Both job entry subsystems allow you to transmit a job to some other node in a network.
Therefore, both JES2 and JES3 provide a means of spec1fy1ng an account number that is
available to all nodes in a network.

JES2 NETACCT Control Statement

The JES2 NETACCT statement is an account nuinber that JES2 makes available to all nodes
in the JES2 network. The format of the JES2 NETACCT statement is:

/*NETACCT network-account-number

The “network-account-number” is from 1 to 8 alphanumeric characters that represent this job’s
accounting throughout the JES2 network. The JES2 NETACCT statement follows the JOB
statement.

//JOBAB JOB
/*NETACCT NETNUMO

-

For complete coding information on the JES2 NETACCT statement, see “/*NETACCT
Statement” on page 16-10.

3-4 MVvsICcL:

JES3 NETACCT Control Statement

The JES3 NETACCT statement allows you to specify a variety of accounting information that
JES3 makes available to other nodes in the JES3 network. The format of the JES3 NETACCT
statement is:

//*NETACCT parameter|[,parameter]...
The parameters are:

PNAME=programmer ' s-name
ACCT=nnnnnnnn
BLDG=nnnnnnnn
DEPT=nnnnnnnn
ROOM=nnnnnnnn
USERID=nnnnnnnn

The JES3 NETACCT statement follows the JOB statement. For exampie:

//JOBAC JOB
//*NETACCT PNAME=BETH,ACCT=D57706

For complete coding information on the JES3 NETACCT statement, see “//*NETACCT
Statement” on page 17-40.

Programmer Information: The programmer-name parameter

The second positional parameter on the JOB statement indicates your name or identification to
your installation’s accounting routines. This parameter must follow the job accounting
information. The following are rules for coding the programmer’s name:

® The programmer’s name must not exceed 20 characters, including all special characters.
® Enclose the name in apostrophes if it contains:

— Special characters, other than hyphens. Blanks are special characters.
— Leading or imbedded periods, including a period at the end of the name.

For example:
~ //JOBAl JOB ,T.JONES
//JOBA2 JOB ,'T JONES'

//JOBA3 JOB ,'SP/4 T.JONES'
//JOBA6 JOB ,'L.NORRIS.'

@ If the special character is an apostrophe, you must code it as two consecutive apostrophes.
For example, specify the names O'Neill and J.O’Brien as:

//JOBA4 JOB ,'O''NEILL'
//JOBA5 JOB ,'J.O''BRIEN'

@ If you do not code the job accounting information, you must indicate its absence by a
comma preceding the programmer’s name. For example:

//MCS JOB ,LORRAYN

Chapter 3. Guide to Job Control . 3-5

If you do not intend to code the programmer’s name parameter, you do not have to
indicate its absence with a comma. For example:

//JOBA8 JOB A709P,CLASS=A

Networking

JES2 networking lets you:

Enter a job on one system and execute it on another system.
Send output from one system to a remote device or an output device on another system.

From a JES2 node, send data to nodes to which the sending node does not have a direct
connection via an intermediate node.

For further information, see JES? itialization and Tuning.

JES3 netWorking lets you:

From one JES3 node, send jobs to another node for execution.
From a JES3 node, send outpﬁt to other nodes for processing.

From a JES3 node, send data to nodes to which the sending node does not have a direct
connection via an intermediate node.

For further information, see JES3 SPL: Initialization and Tuning.

Ask the system programmers at you}installation and at other node(s) for the specific
information required to properly prepare jobs for execution or output processing at the node.

Factors you should consider are:

The content and format of the JOB statement. The receiving node might have different
parameter requirements than the submitting node.

The job entry subsystem in use at the receiving node: The receiving node, if using a different
job entry subsystem, will have different control statement requirements.

The content of the procedure library (PROCLIB): The procedure library might not be the
same at the receiving node and at the submitting node.

Data set identification: To use data sets at the receiving node, you need to know their
names and the data set values to code in your JCL parameters. '

Installation specific unit names in use at the receiving node might inclhide devices different
from the submitting node.

SYSOUT classes might have different meanings at the receiving node than at the submitting
node.

3-6 MVSJCL

@ Execution classes might have different meanings at the receiving node than at the
submitting node. :

Routing a Job in a Network (JES2)
In a JES2 system, jobs can be routed in two ways:

® An operator can issue a JES2 command through a console or input reader. Refer to JES2
Commands.

@ JES2 control statements can be specified within the JCL.
Execution routing through JCL may be accomplished with either of two control statements:

® The ROUTE statement with the XEQ parameter. Specifying the XEQ option with the
name of a node sends the job to that node for execution. The output returns to the node of
origin, unless you code the PRINT or PUNCH option on another ROUTE statement.

® The XEQ statement with the name of a node. This statement sends the job to that node
for execution. The output returns to the node of origin, unless you code the PRINT or
PUNCH option on a ROUTE statement.

The job may be entered at an RJE terminal, a TSO terminal, an input reader, or an internal
reader before being routed to some other node for execution. However, neither a started task,
such as a task begun by an operator START command, nor a TSO logon can be executed at
any node other than the node of entry.

Transmitting Data in a Network (JES2)

By using the JES2 XMIT control statement you can submit and route a non-JES2 job or data
through a JES2 node to a non-JES2 node (for example, a VM node or JES3 node) for
processing. You can also use the XMIT statement to send jobs and data from a JES2 node to
another JES2 node. When you use this control statement, JES2 will not check the information
between the XMIT statement and the delimiter for JES2 syntax.

Controlling Output Destination in a JES2 Network

JES2 allows you to submit jobs to a central computing center from a work station anywhere in
the network; you can route output to any node or work station in the network.

Unless overridden by the system programmer or operator, the default output location is the
submitting location, either a remote work station or the central site (destination of LOCAL).
To receive the output at the submitting location, simply assign output data sets to any output
class (with the SYSOUT parameter or the CLASS parameter on the OUTPUT JCL statement)
and assign messages from your job to an output class (with the MSGCLASS parameter on a
JOB statement or on the JESDS parameter, and the CLASS parameter on the OUTPUT JCL

Chapter 3. Guide to Job Control 3-7

statement). You can request at remote stations, most of the same JES2 options for writing data -
sets that you can request when submitting the job at the central computing center. You can
request that: ' ‘ ‘

@ A data set be held until the operator requests that it be printed.

@ A special output form be used by specifying a form-name in the SYSOUT parameter. You
can also request special forms using the JES2 /*OUTPUT statement or the OUTPUT JCL
statement. . ‘ ' '

@ Multiplé copies of the data set be produced.

Whether at a remote station or at the central computing center, you can also request that a
data set be routed to another destination. With JCL and JES2 control statements, you have the
following ways of routing the output data set:

@ JES2 ROUTE Statement (with PRINT and PUNCH options) — Allows the user to specify
the destination of jobs or output for any node or any remote station. All output that has
no other specific assignment is directed to the destination specified in the JES2 ROUTE
statement.

Note that if you send a job to execute at a remote node and you have a ROUTE PRINT*
RMTnnn statement in the job, JES2 returns the output to RMTnnn at the node of origin.
To have JES2 print the output at RMTnnn at the executing node, use the DEST parameter
on a JES2 OUTPUT control statement, OUTPUT JCL statement, or sysout DD statement
with the form DEST =NnnnRmmm.

® DD SYSOUT Statement — Allows a specific data set assignment by the DEST parameter
on a DD statement containing a SYSOUT parameter, thus routing that data set to a
particular destination.

® OUTPUT JCL Statement — Permits another way of specifying a DEST parameter for a
system output data set.

® SYSOUT DD Parameter — Allows the user to specify a code name that points to a JES2
OUTPUT statement, which in turn might contain a DEST parameter identifying up to four
actual destinations. This method allows the user to send more than one (but not necessarily
all) data sets to the same place without coding DEST on each SYSOUT statement. If the
destination should change, only the JES2 OUTPUT statement need be altered.

@ Default Output Destination — Defined implicitly: when the job enters the job entry
network, the default destination is determined by the device upon which the job entered the
system. S :

If you code a destination on the SYSOUT DD statement, the JES2 OUTPUT statement, or the
OUTPUT JCL statement, it will override the destination in the ROUTE statement. Work
stations are identified by a destination identification established by the system programmer.

The DEST parameter causes JES2 to route output to local printers or punches or to any remote
station, or any node.

38 MvsicL

Example of Obtaining Output (JES2) -

This example shows the use 1of JESZ and JCL statements tob/o.btain output.

/*PRIO

RITY 5

//OUTJOB JOB BAKER,PERFORM=100, MSGCLASS=J

/*JOBP
/*OUTP

ARM COPIES=2, LINECT 20, ROOM—233 FORMS=GRN1
UT PSET DEST'PRINTERB FCB=STD3,FORMS=2PRT,UCS=TN

/*SETUP SCHLIB

//STEP
//OUT1
//DD1

1. The

2. The

1 EXEC PGM‘TESTSYSO

OUTPUT JESDS=ALL

DD DSN=DATA,UNIT=3350,VOL=SER=SCHLIB,
DISP=(OLD,KEEP) ,SPACE=(TRK, (5,2))

DD DSN=&&TEMP ,UNIT=3350,Di1ISP=(NEW,DELETE) ,
SPACE=(TRK,(1OJ5))

DD SYSOUT=(A, ,PSET)

DD SYSOUT=(A, ,GRPH)

DD SYSOUT=L,OUTPUT=* .0UT1,DEST=HDQ

job will be selected at priority level 5.°

job will run in performance group. 100;.the meaning of 100 is defined by the

installation. All system messages are to be written to output class J.

3. The

4. The

a.

JOBPARM statement 1nd1cates that:

Two copies of the: entlre Job-relatcd output w111 be prmted

No more than 20 lmes per page w111 be printed (LINECT =20). You can override this
LINECT parameter by codlng the LINECT parameter on the OUTPUT JCL

statement.

The programmer’s room number is 233. This appears on the separator page and is
used for distributing output.

Forms name GRNT1 is the name of the form to be used by all data sets unless a specific
form is defined on a DD, JESZ /*OUTPUT or JCL OUTPUT statement.

[*OUTPUT statement indicates that

PSET is the code that, when 1nd1cated on a SYSOUT DD statement, causes all
parameters on the /*OUTPUT statement to override default parameters, except those
coded on the OUTPUT JCL statement(s). For further information, see “Processing
System Output Data Sets Using the OUTPUT JCL Statement” on page 7-44.

The destination for the output is PRINTERS. PRINTERS does not necessarily have to
be defined as a printer, it can be defined as any output device.

If the printer has the forms control buffer feature, STD3 must be the name of a
member of SYSI.IMAGELIB.:STD3 defines the special forms control buffer image to
be used for processing any data set that has PSET coded in the SYSOUT parameter.

Forms name 2PRT is the name of the form JES2 uses for printing any data sets that
have PSET coded in the SYSOUT parameter (for example, DD3).

TN is the train or UCS used in output processing.

Chapter 3. Guide to Job Control 3-9

5.

The SETUP statement indicates that volume SCHLIB should be mounted before this job
begins processing.

SYSOUT data sets (except DD3 and DD4) are printed on the form called GRN1. The
DD4 SYSOUT data set is printed on the form called GRPH; the DD3 SYSOUT data set is
printed on the form called 2PRT because the code name subparameter of DD3 contains the
value PSET (referring to the /*OUTPUT statement).

The output data set and the accompanying system data sets from DD35 will be processed at
HDQ.

Note: For more examples of obtaining output using the OUTPUT JCL statement, see Chapter

14,

Routing a Job

“Coding the OUTPUT JCL Statement.” and “OUTPUT Parameter” on page 12-103.

in a Network (JES3 Networking)

To prepare a job for execution at a remote node:

L.

4.

3-10 MvsiICL

Code a JOB statement the same as the JOB statement you normally code to execute a job
at your installation.

Code a JES3 ROUTE XEQ statement. This statement specifies the node that is to execute
the job. It causes JES3 to divert the incoming job stream to a special input service
function. This special input service function transmits the data that follows the ROUTE
XEQ statement to the specified node.

Note: Without the ROUTE XEQ statement, the job will execute at the submitting node.

Code a second JOB statement that allows the remote job to execute at the node specified in
the ROUTE XEQ statement. Because procedures-vary between installations, the format of
this JOB statement might be different from the format you normally use at your
installation. For example, the accounting field of this JOB statement might not contain the
same parameters in the same format that you are accustomed to using.

@ An error on the ROUTE XEQ statement might cause the second JOB statement to
signal the start of a job for local execution. To avoid this possibility, specify NJB in
the second JOB statement in place of JOB. NJB is changed to JOB by JES3 input
service prior to transmitting the job through the network.

Note: TSO users submitting jobs through a JES3 network must specify NJB in place of
JOB on the second JOB statement.

Code the remainder of the JCL statements for the job that is to execute at the remote node.

Example of Routing a Job Through a JES3 Network

//REMOTE JOB D58-2951
//*ROUTE XEQ MSC

//EXAM NJB (DLD1,2E44,12,8)
//*MAIN

/*

1. REMOTE is a valid JOB statement for the submitting JES3 location.
2. The ROUTE XEQ statement directs the following job to the remote node MSC.

3. EXAM is a valid JOB statement that allows the job to execute at the remote location,
MSC, specified on the ROUTE XEQ statement.

Note: TSO users submitting jobs through a JES3 network must specify NJB in place of
JOB on the second JOB statement. ’

Controlling Job Execution Node Using JES3 Networking

To control routing within the JES3 network, you specifically designate any jobs to be sent to
other nodes with a JES3 ROUTE XEQ control statement. A ROUTE XEQ statement
encountered after a local JOB statement causes JES3 to route the next job to the node specified
on the ROUTE XEQ control statement. A ROUTE XEQ control statement has the format:

//*ROUTE XEQ nodename[.vmguestid]

The nodename refers to an MVS JES3 system on a global processor. The nodename cannot
refer to a local processor within a JES3 node. If the nodename specifies the node on which the
job was entered, the first JOB statement and the ROUTE XEQ statement will be flushed and
the job that follows will execute on the node of entry.

You can also specify an MVS JES2 system, a VSE POWER node, or a VM system in the
nodename. If a VM system, then specify a VM guest system id as a qualifier for the nodename.

Controlling Sysout Routing in a JES3 Network

You can route sysout data to other nodes in a JES3 network using one or more of the
following:

@® The ORG parameter on the JES3 MAIN statement.
® The DEST parameter on the JES3 FORMAT statement.
@® The DEST parameter on the OUTPUT JCL statement.

In addition, you can have sysout data processed by an external writer at the destination node

by specifying the EXTWTR parameter on the JES3 FORMAT control statement. See SPL:
Job Management for further information on external writers.

Chapter 3. Guide to Job Control 3-11

Controlling Output Destination Using JES3

JES3 allows you to submit jobs to a host processing center from a work station and to route
output (submitted anywhere) to work stations. '

When you submit a job from a lo‘czﬂ processor or a work station, the output is returned to the
place where it is submitted unless you code the ORG parameter on a MAIN statement, or you
specifically route the output.

JES3 offers most of the same options for writing data sets at remote stations that you can
request when submitting the job at the central computing center.

You can request that:
@ A data set be held until the operator requests that it be printed.

@ A special output form be used by specifying a form name on the sysout DD or the
OUTPUT JCL statement. ‘

@® Multiple copies of the data set be produced.

Whether at a remote station or at the host processing center, you can also request that a data
set be routed to another destination. To route an output data set to another destination, code
the identification of that destination in one of the following:

the DEST parameter on the DD statement defining the data set.
the MAIN ORG statement.

the DEST parameter on a JES3 FORMAT PR statement.

the DEST parameter on a JES3 FORMAT PU statement.

the DEST parameter on an OUTPUT JCL statement.

Work stations are identified by a destination identification that the system programmer
establishes. The DEST parameter on the DD statement, the JES3 FORMAT PR and PU
statements, and the OUTPUT JCL statement routes individual data sets to a remote destination
(work station), a local destination (central computing center), or a specific local device.

Remote Job Processing in JES3

Jobs can be submitted to JES3 for processing from remote work stations using remote job
processing (RJP). Any job submitted from a remote work station will, by default, have its
output (print and punch) returned to.the originating work station unless you have instructed
JES3 to do otherwise using JES3 FORMAT, MAIN ORG, or OUTPUT JCL statements. The
remote user has almost all the capabilities of the local JES3 user, except that he cannot use
column binary input and output or uniquely specify printer overflow specifications.

You can route a job’s output to a remote destination using the DEST parameter on the DD
statement, the OUTPUT JCL statement, or the JES3 FORMAT statement. See “DEST
Parameter” on page 12-53, “DEST Parameter” on page 14-23, and “//*FORMAT PR
Statement” on page 17-9.

3:12. MVsJCL

Example of Obtaining Output (JES3)

This example shows some of the JES3 and JCL statements that can be used to obtain output.

//OUTJOB JOB BAKER,PERFORM=100,MSGCLASS=J
//*FORMAT PR,DDNAME=,COPIES=2,FORMS=GRN1

//*FORMAT PR,DDNAME=DD3,DEST=PRINTERS,CARRIAGE=STD3,
//*FORMS=2PRT , TRAIN=TN

//STEP1 EXEC PGM=TESTSYSO

//DD1

DD DSN=DATA,UNIT=3350,VOL=SER=SCHLIB,
DISP=(OLD,KEEP) ,SPACE=(TRK, (5,2))

DD DSN=&TEMP,UNIT=3350,DISP=(NEW,DELETE),
SPACE=(TRK, (10,5))

DD SYSQUT=(A)

DD SYSOUT=(A, ,GRPH)

DD SYSOUT=L

1. All system messages are to be written to output class J.

2. The first //*FORMAT statement indicates that:

a.

All print data sets (according to class) that do not have /[*FORMAT statements will be
printed according to the parameters on this statement unless the output class defines
specific processing characteristics because DDNAME is coded without a name
(DDNAME =,) and applies to all output data sets for the job.

JES3 uses the form named GRN1 and prints two copies of all data sets unless a specific
form or number of copies is defined on a DD statement or for a class by the
installation.

3. The second //*FORMAT statement indicates that:

a.

C.

d.

The destination for the output is a printer that has an installation-defined name of
PRINTERS.

If PRINTERS has the forms control buffer feature, STD3 must be the name of a
member of SYSI.IMAGELIB. STD3 defines the special forms control buffer image or
carriage tape to be used for processing the job.

Forms name 2PRT is the name of the forms for DD3.

TN means text printing on a 1403, 3211, or 3203-5 printer.

Note: For examples of obtaining output using the OUTPUT JCL statement, see Chapter
14, “Coding the OUTPUT JCL Statement,” and “OUTPUT Parameter” on page 12-103.

Chapter 3. Guide to Job Control 3-13

Job Log

The system produces a job log, which is a record of job-related information for the
programmer. It is a system output (sysout) data set written to the output listing for the job’s
message class, which is specified by the MSGCLASS parameter on the JOB statement. The job
log can consist of:

® The JOB statement.

® Other JCL statements from the input stream and cafaloged ‘procedures.
® JCL messages.
L

JES and operator messages about the job: the allocation of devices and volumes,
disposition of data sets, and termination of job steps and the job.

By coding the MSGLEVEL parameter on the JOB statement, you inform the system of what
statements and messages you want included in the job log. The notation used on the job log to

identify cataloged and in-stream procedure statements is described in Chapter 9, “Guide to
Cataloged and In-Stream Procedures” on page 9-1.

By coding the MSGCLASS parameter on the JOB statement, you assign the job log to an
output class. The system uses an installation-defined default if MSGCLASS is not coded.

By coding the NOLOG parameter on the JES2 JOBPARM statement, you can control the
printing of the JES2 job log.

By coding the FETCH parameter on the JES3 MAIN statement, you can control whether JES3
routes or displays the fetch messages from the JES3 main device scheduler. However, JES3 still
sends the main device scheduler fetch messages to the JESMSG data set.

By coding the DDNAME parameter on the JES3 //*FORMAT statement, you can control the
printing of messages that pertain to the output data set the system is processing.

You can also control the processing options of the system data sets by using the JESDS

keyword on the OUTPUT JCL statement. For further information, see “Managing the
System-Managed Data Sets: The JESDS Parameter” on page 7-49.

MSGLEVEL Parameter

The MSGLEVEL parameter on the JOB statement tells the operating system what message
information you want as output from your job. You can request the following output:

® The JOB statement

@ All input JCL statements

3-14 MvVsiCL

@ All cataloged procedure statements for procedures invoked by the job’s steps, and the
internal representation of procedure statements after symbolic parameter substitution

® Allocation and disposition (allocation/termination) messages.

The format of the MSGLEVEL parameter is:

MSGLEVEL=({statements] [,messages])

Replace “statements” with one of the following:

0
only print the JOB statement.

1
print all JCL statements in your job, cataloged procedure. statements, and the internal
representation of statements after symbolic substitution.

2

only print the JCL statements in your job (cataloged procedure statements will not
appear).

Replace “messages” with one of the following:

0 :
no allocation/termination messages are to appear, unless the job abnormally terminates.
If abnormal termination occurs, these messages will appear as output.

all allocation/termination messages are to appear.

If you omit the MSGLEVEL parameter or one of the subparameters, MVS assumes a default
value established by your installation. Your manager or supervisor should tell you the defaults
chosen in your installation.

For example, if you want MVS to display only the JOB statement and no
allocation/termination messages, code:

MSGLEVEL=(0,0)

If you want MVS to display only the JCL statements in your job and all allocation/termination
messages, code:

MSGLEVEL=(2,1)

If you want to use your installation’s default for JCL statements and MVS is not to display any
allocation/termination messages, code:

MSGLEVEL=(,0)

If you want all your JCL statements, cataloged procedures, and internal representation of
statements, and your installation’s default for allocation/termination messages, code:

MSGLEVEL=1

Chapter 3. Guide to Job Control 3-15

If you want your installation’s defaults for both JCL statements and allocation/termination
messages, omit the MSGLEVEL parameter.

For information on coding the MSGLEVEL parameter, sce “MSGLEVEL Parameter” on
page 10-16.

MSGCLASS Parameter

The MSGCLASS parameter allows you to specify the output class to which MVS is to write the
job log.

The format of the MSGCLASS parameter is:

MSGCLASS=class—name

Replace “class-name” with a letter (A-Z) or a number (0-9).

The system produces your job log on a device assigned to the class you selected. Ifsyou omit
the MSGCLASS parameter, JES determines the default for the MSGCLASS parameter by the
input source of the job. That is, the particular card reader or work station, or whether the job
was submitted by a time-sharing user.

You can route the job log and output data sets to the same output class. To do this, code the
same output class in both the MSGCLASS parameter on the JOB statement and the SYSOUT
parameter on the DD statements for the data sets. Or, if you code SYSOUT =* on all DD
statements for the output data sets, the system uses the same output class you specified in the
MSGCLASS parameter on the JOB statement. Note that the MSGCLASS parameter can be
overridden on the OUTPUT JCL statement.

Your manager or supervisor should tell you which output classes are available in your
installation. Some of these output classes are standard and some are reserved for special uses.
You may have to notify the operator if you are using a special output class in your job because
he has to start an output writer for that output class in order to obtain the output. For further
information, see SPL: Job Management.

For additional information on coding the MSGCLASS parameter, see “MSGCLASS
Parameter” on page 10-14.

JES2 Hard-Copy Log

In addition to the job log, JES2 produces a hard-copy log for the job. The job’s JES2
hard-copy log contains a list of job-related console messages and operator replies that JES2
produces while processing your job. You can request that JES2 suppress the hard-copy log
output using the JES2 JOBPARM statement. The format of the JES2 JOBPARM statement is:

/*JOBPARM parameters

To suppress the job’s JES2 hard-copy log, code:

/*JOBPARM NOLOG

3-16 - MvsiICL

Place the JES2 JOBPARM statement after the JOB statement:

//JOBXO JOB
/*JOBPARM NOLOG
//S1 EXEC

For additional information on coding the JOBPARM statement, see “/*JOBPARM Statement”
on page 16-4.

You can also control the job’s JES2 hard-copy log by using the JESDS parameter on the

OUTPUT JCL statement. For further information on the JESDS parameter, see “JESDS
Parameter” on page 14-37.

JES3 Main Device Scheduler Messages

The JES3 main device scheduler (MDS) issues allocation (fetch), mounting, and deallocation
messages for all JES3 and JES3/MVS (jointly) managed devices.

Using the FETCH parameter on the JES3 MAIN statement you can override the default
specified for FETCH at JES3 initialization. The format of the JES3 MAIN statement is:

//*MAIN parameters

Using the FETCH parameter you cém request that the MDS:
@ Issue all fetch messages for all volumes in DD statements that use JES3 setup devices
® Issue no fetch messages

@ Issue fetch messages for volumes in DD statements specified by the SETUP parameter on
the JES3 MAIN statement

@ Issue fetch messages for volumes on specific DD statements
® Not issue fetch messages for volumes on specific DD statements

The format of the FETCH parameter on the JES3 MAIN statement is:

FETCH={ALL|NONE | SETUP| [/] (ddname[,ddname]...)}

For specific information on coding the FETCH parameter, see “//*MAIN Statement” on
page 17-23. ’

Chapter 3. Guide to Job Control 3-17

JES3 System Messages

TSO

The JES3 FORMAT statement allows you to code the ddname of the DD statement that
defines the output data set characteristics you want to specify. If you want system messages,
code on the FORMAT statement:

//*FORMAT PR DDNAME=SYSMSG

If you want the JCL statements and messages, code on the FORMAT statement:

//*FORMAT PR DDNAME=JESJCL

If you want JES3 and system operator messages (job log), code on the FORMAT statement:

//*FORMAT PR DDNAME=JESMSG

You can also control JES3 job log messages, system messages, and JCL statement messages by
using the JESDS parameter on the OUTPUT JCL statement. For further information on the
OUTPUT JCL statement, see Chapter 14, “Coding the OUTPUT JCL Statement.”

For additional information on coding the FORMAT PR statement, see “//*FORMAT PR
Statement” on page 17-9.

TSO allows a number of users to execute programs concurrently and to interact with the
programs during execution. :

You can request that the system notify you when your background job completes. Under TSO,
a background job is one that is entered through a tinie sharing terminal by means of the
SUBMIT command or by executing a step to run TSO in the background For more
information, see OS/VS2 TSO Command Language Reference.

The JCL NOTIFY parameter, on the JOB statement, allows you to indicate to the system that
you want automatic notification when your job completes.

The JES2 NOTIFY control statement allows you to indicate to the system that you want
notification messages directed to the userid you specify. '

The USER parameter on the JES3 MAIN control statement allows you to specify a userid that
indicates, to JES3, a TSO user who can access, receive, or inquire about a data set.

NOTIFY Parameter

By coding NOTIFY on the JOB statement, you are requesting that a message be sent to your
terminal when your job completes.

The format of the NOTIFY parameter is:

NOTIFY=userid

3-18 MvsICL

Replace the term “userid” with a user identification expressed in 1 to 7 alphanumeric
characters; the first character must be alphabetic. The user identification can be the same one
you use when you start your terminal session; that is, the same user identification you use in the
LOGON command must be the one used in the NOTIFY parameter, if you want to notify
yourself. You can notify any other user using their valid ID in place of your own. For
example, if a user submits a job named FORMS through the terminal and his user
identification is JOHNHC, and he wants to be notified upon completion of his job, then his
JOB statement if he used NOTIFY should be:

//FORMS JOB NOTIFY=JOHNHC
For more information on coding the NOTIFY parameter on a JOB statement, see “NOTIFY

Parameter” on page 10-18. For a more detailed discussion of TSO, refer to TSO Command
Language Reference.

The JES2 NOTIFY Control Statement

Use the JES2 NOTIFY control statement to have the system direct a job’s notification messages
to the userid you specify. The format of the NOTIFY statement is:

{ {.userid }}
{nodename{:userid }}
/*NOTIFY { {/userid }3}
{ {(userid) }3}
{userid 3

To specify that the system is to send a job’s notification messages to a node other than the job’s
node of origin, code:

/*NOTIFY nodename.userid

To specify that JES2 is to send a job’s notification messages to the job’s node of origin, code:

/*NOTIFY userid

Note: The userid you code on this statement overrides any specification you code in the
NOTIFY parameter on the JOB statement.

For more information on coding the JES2 NOTIFY statement, see “/*NOTIFY Statement” on
page 16-11.

The USER Parameter on the JES3 MAIN Control Statement
The USER parameter allows:
@® A TSO user to access SYSOUT data sets via the TSO OUTPUT command
® A TSO user to inquire about the status of a job or to cancel the job

@ Data sets to be sent to a main processor for use by a TSO user

The format of the USER parameter is:

//*MAIN USER=userid

Chapter 3. Guide to Job Control 3-19

To send SYSOUT data sets to an MVS main processor for use by a TSOﬁliisfer,{code:; ‘

//*MAIN ‘ACMAIN=main-name USER=userid

For additional information on the MAIN statement, see “//*MAIN Statement” on page 17-23
and TSO in JES3 SPL: Initialization and Tuning.

Remote Job Processing

Remote job processing allows you to enter a _]Ob into the JES2 or JES3 jOb stream by way of a
remote work station or device.

There are some differences between JES2 and JES3; therefore each is dlscussed under a separate
heading. \ &

JES2 Remote Job Processing

The remote job entry (RJE) facility of JES2 allows a remote work station to use the job entry
subsystem. JES2 processes remote jobs the same way it processes those recelved from local
readers, printers, and punches. : :

Remote job entry is the ability to submit jobs and receive system output at remote facilities as if -
the jobs had been submitted at a local facility. JES2 supports both systems network architecture
(SNA) and binary synchronous communication (BSC) remote stations as RJE facilities. The -
remote facilities may be attached to JES2 by synchronous data link control (SDLC) or by a
point-to-point (BSC) communications link. The remote facility becomes a logical extension of
the local computer facility and JES2 expects it to be under the control of a remote operator.

There are two types of remote facilities. The first type is a remote terminal, which does not
have a processor. A remote terminal, for example a 2780 or 2770, can be used for entering jobs
into and receiving data from JES2. The second type is a remote work station, which has a
processor. A processor, for example, System/3 or System/370, executes a JES2-generated
program that allows the processor to send jobs to, and receive data from, JES2. Also part of
the remote work station are printers, punches, card readers, and a console.

SNA RJE for JES2

Remote job entry stations that use the facilities of a SNA network gain access td JESi 'thro'ugh
VTAM. For more information, see remote job entry in SPL: JES2 Inzttalzzatzon and Tunmg
and SPL: VTAM.

BSC RJE for JES2

Communication between the local processor and BSC remote work stauons use a JESZ facility
called MULTI-LEAVING. Multi-leaving allows the transmission of multiple print and punch
streams at the same time and allows JES2 to receive multiple console messages. and mput
streams. -For more information, see remote job entry in SPL: JES2 Imtzalzzatzon and Tunmg
and SPL: VTAM. ‘ ; -

-3-20 MVSsICL

Remote Job Ent;y Stations

Installations can configure remote lines as dedicated or nondedicated. This configuration is
established during JES2 initialization. The following discussion pertains to nondedicated
. - remote lines only.

BSC remote work stations: use the JES2 SIGNON control statement to notify JES2 of a
connection request. See the discussion of the SIGNON statement below.

SNA remote work stations: must use the LOGON command instead of the SIGNON statement
to notify JES2 of a connection request. For a discussion of the LOGON command, refer to
SPL: JES2 Initialization and Tuning and SPL: VTAM.

The JES2 SIGNON Control Statement

Use the SIGNON statement to indicate to the central processor that you wish to begin a
remote job stream processing session. The format of the JES2 SIGNON statement is:

{REMOTEnnn}
/*SIGNON {RMTnnnn } [passwordll [password2]
: {RMnnnn }

Place the SIGNON statement at the end of the JES2/RTP program deck for multi-leaving
~*“remote stations. For non-multileaving remote stations, JES2 transmits the SIGNON statement
' alone as part of the initial connection process.

REMOTEnnn, RMTnnnn, or RMnnnn specifies the identification number asmgned to the
Temote station requesting to sign on.

Note: If you code REMOTEnnn on the SIGNON statement, and you code RMT on the
ROUTE statement, you are restricted to coding RMT on the ROUTE statement with only
three digits (RMTnnn).

" passwordl is a communication line password assigned to a dial line that allows the remote
station access to JES2 for remote job stream processing. This password guarantees a user or a
group of users the use of a line and prevents unauthorized remote operators from using the line
to gain access to JES2.

password? is a password that ensures that the remote station signing on is a valid RJE (remote
job entry) station.

For more information on coding the SIGNON statement, see “/*SIGNON Statement” on
page 16-30.

The JES2 SIGNOFF Control Statement
To terminate a remote job stream processing session, use the JES2 SIGNOFF statement. Both
SNA and BSC remote work stations can use the SIGNOFF statement. SNA remote work

stations can also use the LOGOFF command to end a session with JES2. For a discussion of
the LOGOFF command, refer to SPL: JES2 Initialization and Tuning and SPL: VTAM.

Chapter 3. Guide to Job Control 3-21

The format of the SIGNOFF statement is:

/*SIGNOFF

For more information on coding the SIGNOFF statement, see “/*SIGNOFF Statement” on
page 16-29.

JES3 Remote Job Processing

JES3 remote job processing (RJP) allows you to enter a job into the JES3 job stream using an
input source connected to the global processor by a data line. JES3 processes the job as if it
had been submitted locally.

Devices attached to a processor via channels are called local devices; devices attached to a -
processor via a data link are called remote devices. Any output from a remotely-entered job
can, at your option, be retained at the host system, transmitted to the originating location, or
sent to another location.

JES3 supports two types of remote devices for RJP. The first type are those attached using
binary synchronous communications (BSC) protocols. The second type are those attached using
synchronous data link contrel (SDLC) protocols within the IBM systems network architecture
(SNA).

Remote Work Stations (JES3)
Installations can configure remote lines as dedicated or nondedicated. This configuration is
established during JES3 initialization. The following discussion pertains to nondedicated

remote lines only.

BSC remote work stations use the JES3 SIGNON control statement to notify JES3 of a
connection request. See the discussion of the SIGNON statement below.

SNA remote work stations must use the LOGON command instead of the SIGNON statement
to notify JES3 of a connection request. For a discussion of the LOGON command, refer to
JES3 SPL: Initialization and Tuning and SPL: VTAM.

The JES3 SIGNON Control Statement

Use the SIGNON statement to indicate to JES3 that you wish to begin a remote job stream
processing session. The format of the JES3 SIGNON statement is:

/*SIGNON work-station-name {A|(blank)} {R|(blank)] passwdl passwd2

The fields for the JES3 SIGNON statement have the following meanings:
® The work-station-name identifies the remote station requesting to sign on.

® An A4 in column 22 identifies the remote work station as prograinmable and specifies that,
for the duration of this session, the processor automatically reads from the reader.

3-22 MvS.JCL ’

@® An R in column 23 identifies the remote work station as nonprogrammable and specifies
the output suspension feature. That is, if a print or punch data set is currently active, it
can be suspended if the active device is not ready.

@ passwdl is a line password assigned to a dial line that allows the remote station access to
JES3 for remote job stream processing. This password guarantees a user or a group of
users the use of a line and prevents unauthorized remote operators from using the line to
gain access to JES3.

@ passwd2 is a password that ensures that the remote station signing on is a valid RJP
(remote job processing) work station.

For more information on coding the SIGNON statement, see “/*SIGNON Statement” on
page 17-50.

The JES3 SIGNOFF Control Statement

To terminate a remote job stream processing session, use the JES3 SIGNOFF statement. Both
SNA and BSC remote work stations can use the SIGNOFF statement. SNA remote work
stations can also use the LOGOFF command to end a session with JES3. For a discussion of
the LOGOFF command, refer to JES3 SPL: Initialization and Tuning and SPL: VTAM.

The format of the SIGNOFF statement is:

/*SIGNOFF

For more information on coding the SIGNOFF statement, see “/*SIGNOFF Statement” on
page 17-49.

Special Job Processing

Using JOB statement parameters and JES control statement parameters you can request special
processing options of the operating system. The special processing options you can request are:

Delaying Initiation of Your Job
Delaying Initiation of Other Jobs in JES3
Bypassing Job Initiation

Testing JCL Without Execution

Copying JCL Without Execution in JES2
Reading Column Binary Input

Deadline Scheduling

Dependent Job Control for JES3

Delaying Initiation of Your Job in JES2
Although you can influence a job’s selection by assigning a job class and priority to the job,
you cannot predict whether JES2 will select a job in one job class for execution before another

job in a different job class.

When jobs exist in the same job class, you cannot be certain that one job will complete
execution before JES2 selects the other job, even if you assign a higher priority to the first job.

Chapter 3. Guide to Job Control 3-23

You must use the TYPRUN =HOLD parameter because the higher priority controls only the "
selection sequence and does not guarantee that the first job will complete execution before the
second is selected. In some cases, when submitting two jobs, JOBA and JOBB, JOBA must
complete execution before JES2 can initiate JOBB; JOBA might create records that JOBB uses.
You will have to instruct JES2 to delay JOBB’s initiation until JOBA completes execution.

It is also possible that resources a job requires will not be available. Therefore, you will want
to delay the job’s initiation until required resources are available. The job remains on the
execution queue or JCL conversion queue, but JES2 will not select the job for processing until
the operator releases the job. Use the /*MESSAGE control statement to notify the operator to
release the job. When the operator releases the job, it is again eligible for selection by JES2.

Delay a job's initiation by coding on the JOB statement:

TYPRUN=HOLD
or
TYPRUN=JCLHOLD

Alternatively, you can specify a job class defined by the installation to force a
TYPRUN=HOLD default. -

For more information on coding the TYPRUN parameter on a JOB statement, see “TYPRUN
Parameter” on page 10-39. oL ‘)

JES2 users can delay a job’s initiation and have specific volumes mounted before the job
executes by coding the JES2 SETUP statement. The SETUP statement notifies the operator
which volumes the job requires.

If you code a JES2 SETUP statement, you can notify the operator what volumes to retrieve
from the library. The operator will mount the requested volumes and then should release the
job that has been held on the execution queue or on the JCL Conversion Queue.

For more information on coding the JES2 SETUP statement, see “/*SETUP Statement” on
page 16-28.

Note: JES3 does not support the use of TYPRUN =HOLD. Instead JES3 users can specify
the HOLD parameter on the JES3 MAIN statement. This produces the same effect as coding
TYPRUN =HOLD on the JOB statement. Additionally, JES3 users can use dependent job
control to delay a job’s initiation. For information on coding the JES3 MAIN statement, see
“//*MAIN Statement” on page 17-23. For information on using dependent job control, see
“Dependent Job Control for JES3: The Job Net” on page 3-27.

Delaying Initiation of Other Jobs (JES3)

Sometimes the function of your job is to update a member of a procedure library. To prevent
other jobs from using the data set being updated, JES3 users should code the UPDATE
parameter on the JES3 MAIN statement. This parameter identifies the:procedure library data
set(s) being updated. The parameter causes all jobs using this data set and all data sets
concatenated to it to be held until the update is complete.

You can also use the UPDATE parameter when updating a private library. The installation
must define any private library at JES3 initialization.

For information on coding the JES3 MAIN statement, see “//*MAIN Statement” on
page 17-23. ‘

3-24 MVSICL

Bypassing Job Initiation

- ‘Under certain conditions you may wish to scan the control statements for syntax errors without
submitting the associated input data sets, or you may wish to produce a copy of your input
deck without actually initiating any steps. To scan the control statements for syntax errors

_without initiating the job, code on the JOB statement:

TYPRUN=SCAN

k Or you can select a job class that the installation has defined to force the TYPRUN =SCAN
default. When you code this option, the system first scans the job for control statement syntax
errors and then passes directly to the output stage for processing.

TYPRUN =SCAN causes the system to check for coding errors that it can detect at the
converter phase. That is, invalid keywords, illegal characters, and parenthesis errors. The
_.-system does not check for errors that occur at the interpreter phase. For example, misplaced
~ statements, the syntax of JCL statements in cataloged procedures, or the syntax of

subparameters of JCL parameters.

For more information on coding the TYPRUN parameter on a JOB statement, see “TYPRUN
-Parameter” on page 10-39.

Testing JCL Without Execution (JES3)

- JES3 provides another method to test your job’s JCL in addition to the TYPRUN=SCAN
parameter on the JOB statement. JES3 users can code PGM =JCLTEST or PGM =JSTTEST
on the EXEC statement. This causes the system to scan the JCL for syntax errors. These
programs will check for invalid keywords, illegal characters, parentheses errors, and excessive
parameters without processing the job or setting up devxces For further information about
JSTTEST and JCLTEST, see JES3 SPL: Dzagnoszs

Copying JCL Input Without Execution in JES2

To produce a copy of the input deck without initiating any steps, code on the JOB statement:

TYPRUN=COPY

Or you can select a job class that the installation has defined to force the TYPRUN=COPY
default.. When you code this option, JES2 reads the input deck (as submitted) directly to a
SYSOUT data set and schedules it for output processing. The class of the SYSOUT data set is
the same as the message class of the job. Therefore, you can control the class using the
MSGCLASS parameter on the JOB statement.

The SYSOUT data set generated can be processed by either the JES2 print/punch processor or
by an external writer. It is available to the TSO OUTPUT command only if the output class is
a held sysout class. Before adding control statements to the SYSOUT data set, JES2 interprets

- control statements that it encounters in the input stream.. JES2 copies job control language
(JCL) statements without any processing (that is, without JCL conversion).

‘When you specify TYPRUN=COPY on a JOB statement, JES2 ignores any OUTPUT JCL
‘statements during output processing.

For more information on coding the TYPRUN paranieter on a JOB statement, see “TYPRUN
Parameter” on page 10-39. , v

Chapter 3. Guide to Job Control 3-25

Reading Column Binary Input

. Jobs that require input from column binary cards can receive this input directly from the DD
statement using JES3. To do this, code the MODE = C DCB subparameter on the DD * or
DD DATA statement that precedes the column binary card input or notify the operator to read
this job into a card reader for which he has specified mode C processing.

The DATASET statement can also be used to read column binary input for installation-written
routines executed as part of nonstandard jobs. For a discussion of nonstandard jobs, see
“/[*PROCESS Statement” on page 17-44.

The JES2 SETUP Statement
Use the JES2 SETUP statement to tell the operator what volumes your job needs to execute.

Use of the SETUP statement in a JES2 network generally requires that the SETUP statement
follow any ROUTE or XEQ statement. This prevents JES2 from requesting the setup on a
node other than the node of execution. If JES2 processes the SETUP statement prior to
processing the ROUTE or XEQ statements, JES2 requests the setup on both the input and
execution nodes.

The format of the JES2 SETUP statement is:

/*SETUP volume-serial-number[,volume-serial-numberl]...

® Place all SETUP statements after the JOB statement.
® Code as many SETUP statements as necessary.

For example:

/*SETUP 666321,149658

When the job enters the system, JES2 lists on the console the two volumes requested. JES2
then places the job in hold status awaiting release by the operator when the required volumes
are available. The message informs the operator to mount the volumes before running the job.

For more information on coding the JES2 SETUP statement, see “/*SETUP Statement” on
page 16-28. :

JES3 SETUP Parameter
Use the SETUP parameter on the JES3 MAIN statement to modify the standard algorithm

JES3 uses in assigning devices to a job prior to job execution. The format of the SETUP
parameter is:

SETUf={JOB|HWS|THWSI[/](ddname[,ddname]...)}

For a discussion of the JES3 SETUP parameter, see “//*MAIN,Statement” on page 17-23. For
a discussion of JES3 allocation, see “Allocating Data Resources in a JES3 System” on
page 6-4. '

3-26 MVSICL

Deadline Scheduling for JES3

- When a job must be scheduled by a certain time of the day, week, month, or year, specify the
DEADLINE parameter on the JES3 MAIN statement. By indicating that there are time
restrictions, you influence the priority of the job and help insure that the job will be scheduled
when necessary. For example, a job must be scheduled every Friday by 2 p.m. to calculate the
payroll. Request that the job be executed by that time by coding:

//*MAIN DEADLINE=(1400,A,6,WEEKLY) .
The subparameter values mean the following:

1400
is 2 p.m. on a 24-hour clock.

A
defines the deadline type that determines the periodic increment of the job’s priority (the
installation defines the meaning for A).
6
is the sixth day of the week - Friday (the first day is Sunday; the seventh day is Saturday).
WEEKLY

is the cycle indicating the frequency of scheduling this job.

The purposes of deadline scheduling are to allow submission of a job at its true priority level
and to have JES3 schedule it to best use the available resources. JES3 increases the priority
level only if the job is not scheduled on time. For example, if you work first shift and submit a
job at the end of the day, you do not need results until the next morning. Indicate that the job
must be scheduled by 7 a.m. and assign an initial lower priority, then the job can be scheduled
at any time. If it has not been scheduled a few hours before the 7 a.m. deadline, JES3 increases
the priority periodically to increase the job’s chances for being selected by 7 a.m.

If you have requested that a job be scheduled by a certain time on a certain day and the job is
submitted after the deadline time, JES3 increases the priority of the job to the same level it
would have been if the job had been submitted prior to the deadline and had not completed.

For more information on coding the DEADLINE parameter on the JES3 MAIN statement, sece
“/[*MAIN Statement” on page 17-23.

Dependent Job Control for JES3: The Job Net

JES3 installations can use dependent job control (DJC) when jobs must be executed in a
specific order. There are several reasons to execute one job before another. For example, JES3
fetches data set information from the catalog before scheduling a job. If JOBA changes or adds
to the catalog that JOBB will refer to, use dependent job control to ensure that JOBA runs
before JES3 processes JOBB allocation. Another reason to use DJC is to achieve better device
utilization. If a job requires only one device for the first four steps but requires five devices for
the fifth step, break the job into two jobs (one for the first four steps and one for the fifth step).
Use DJC to make the second job dependent on the first; that is, the second job can run only
after the first job has completed. DJC is also useful in controlling the scheduling of jobs that
have data dependencies. When you use dependent job control, the group of jobs that depend
on each other form a dependent job net. To indicate to JES3 the relationship of jobs to each
other in a dependent job net, use a JES3 NET control statement.

Chapter 3. Guide to Job Control 3-27

‘The JES3 NET Control Statement

To define a dependent job net, submit a NET statement with each job. The NET statement
identifies a job’s net and specifies the dependency that must be satisfied before the job can be
scheduled. :

Jobs normally must wait for scheduling until a predecessor job completes. Jobs that depend on
one or more predecessor jobs to complete are called successor jobs. To specify the number of
predecessor/successor relationships of a given job in a net, specify.the number of predecessor
jobs on the NHOLD parameter and the name of each successor job in the RELEASE
parameter of the NET statement. The number of predecessors is the number of jobs
immediately prior to the job that depends on other jobs completing; the number of successors is
the total number of all jobs remaining to be processed in the net that depend on this job
completing.

Some of the parameters you use on a JES3 NET statement are discussed in the following topics.
For a discussion of all of the parameters you can code on a NET statement, see “//*NET
Statement” on page 17-35. ‘

Specifying System Action for Termination of a Job in a Net

A normal or abnormal predecessor completion can be the requirement established for going to
the next job. For example, a job might not be requested unless the predecessor job abnormally
terminates. The NORMAL and ABNORMAL parameters on the NET statement specify the
kind of predecessor completion required for the successor dependent job to execute.

A job-net job that has previously completed normally can be resubmitted while the associated
net is still active in the system. The resubmitted job does not enter the net nor does it affect the
net’s processing. If you want to resubmit the previously completed job as part of the net, you
must first free the net from the system and then resubmit the entire net. Note that if you code
the COND parameter on a JOB or EXEC statement, and the job terminates due to condition
codes, JES3 treats the job as an abnormally terminated job.

Placing a Job in a Net on Hold

Use the NHOLD parameter to specify the number of immediate predecessor jobs that must
complete before a job is released for scheduling; the number can include jobs from another net
that are predecessors to the dependent job. When this parameter is defined, the job is placed
into dependent job control hold status when it enters the system. A job.is made eligible for
JES3 allocation and scheduling when its NHOLD count becomes zero. This count is decreased
when each predecessor job completes execution or by the operator. However, the NHOLD
value can be decreased before the predecessor job completes execution if you issue a DJC
(dependent job control) WTO (write to operator) macro in the predecessor job problem
program. Refer to Supervisor Services and Macro Instructions, for the format of the write to
operator command and JES3 Messages for message text information.

9, To place jobs that are in a dependent job net in operator hold, code thé NET OPHOLD
: parameter. This parameter prevents scheduling of the job until the operator explicitly releases it
from hold.

Upon either normal or abnormal completion of a predecessor job, a successor job can have its
NHOLD count decreased, can be flushed from the system, or can be retained pending operator
action. If it is flushed, the job and all of its successor jobs (and their successor jobs) are
canceled, printed, and flushed from the system. If it is retained in the system in the held state,

"3-28 MvsJCL

the NHOLD count is not decreased and the job and all of its successor jobs are suspended from
scheduling until either the predecessor is resubmitted or the operator decreases the NHOLD
count. You can control external dependencies by setting the NHOLD value one greater than
normally assigned and asking the operator to decrease the NHOLD count when the dependency
is satisfied.

Specifying Early Setup of Resources for a Job in a Net

Early setup of successor job resources is indicated using the RELSCHCT parameter. It allows
a job to enter JES3 allocation before all predecessor jobs have completed. The job is then
placed in a hold status until all of its predecessors complete processing. Early setup of
successor job resources is invoked when the NHOLD count becomes less than or equal to the
RELSCHCT count. Do not use this option with jobs that have catalog dependencies. Coding
the RELSCHCT parameter can tie up devices and data sets for a long time, so use it carefully.

Establishing Dependencies Between Different Nets

You can establish dependencies between jobs in different nets. To indicate that a job in one net
is the predecessor to. a job in another net, specify the NETREL parameter. For examples of
using the NETREL parameter, see the dependent job control examples on the following pages.

Specifying Devices Dedicated to a Net

You can dedicate devices to a dependent job net by coding the DEVPOOL parameter. When
you code the DEVPOOL parameter in the first job in a net (it is ignored if not coded in the
first job), the devices specified are dedicated for device allocation and volume mounting only by
jobs in the same net.

To release these devices prior to all jobs completing in the network, code the DEVRELSE
parameter. This parameter may be specified on one or more jobs in the net, except the first
job. The first completing job that contains DEVRELSE = YES will cause the dedicated devices
to be released. If no such job is encountered, the devices are released when the net is purged.

How to Code NET Statements

When a job is part of a net, the number of predecessor jobs and the names of all successor jobs
must be indicated on the NET statement. A diagram is a good way to graphically show the
relationship of jobs in a net. Once you describe a net of dependent jobs in a diagram, you can
list the dependencies in a table and then translate that into NET statements (see the following
three examples). The following is a guideline for defining dependent job control nets:

1. Draw a diagram of the net, connecting dependent jobs with lines indicating the flow of job
dependencies. Give the net a name (such as EXAM]) to identify the net; this becomes the
NETID parameter value.

2. List the jobname of each job in the net in the order of their dependencies on one another.
Note next to each jobname the number of predecessors to the job, including predecessors of
other job-nets, if any. The number of predecessors becomes the NHOLD parameter value.
If early setup scheduling is desired, specify RS =count (RELSCHCT =count) where count
specifies setup of a dependent job’s resources before all of its predecessors have completed
execution, ‘

3. List the disposition of each successor jobname based on normal or abnormal predecessor
completion. '

Chapter 3. Guide to Job Control . 3-29

4. List the successor jobnames for each job in the diagram. If there is a successor in a
different net, then list the successor jobname and successor net-id in parentheses. The
successors become the RELEASE -.urameter values. ‘

5. Construct the necessary NET statements based on the diagram.

One way to verify the net is to execute the IEFBR14 program for each job in the net,
simulating normal and abnormal completions. The general format for each job of the net is:

//jobname JOB

//*NET your specific parameters
//STEPl EXEC PGM=IEFBR14

/ *
In this way, all DJC net functions and definitions can be tested without using actual jobs.
Examples of Dependent Job Control

Instead of coding the full name of the parameters for every job, you can use the short form of
the following parameters.

Parameter Short Form
NETID ID
NHOLD HC
RELEASE RL
NORMAL NC
ABNORMAL AB
OPHOLD OH
RELSCHCT RS
NETREL NR

1. A simple net

Given: five jobs, A, B, C, D, and E.

NETID Jobname

EXAM1

®_®)
(S)
® ®

moAaw

330 MmVsJCL

Predecessors
(NHOLD)

—_—— o o

Successors
(RELEASE)

job C
job C
jobs D,.E
none
none

How to code EXAMI1:

Jobname Control Statement

A //*'NET NETID=EXAMI,RELEASE=(C)

B //*'NET NETID=EXAMI,RELEASE=(C)

C /*NET NETID=EXAMI,NHOLD =2,RELEASE = (D,E)
D //*NET NETID=EXAMI,NHOLD=1

E //*NET NETID=EXAMI,NHOLD=1

If the system scheduled this net of jobs with defined dependencies, you could achieve the
desired sequence only through operator action. By using JES3 dependent job control,
operator intervention is not required. Jobs A and B can run concurrently, followed by job
C, and then jobs D and E can run concurrently.

Multiple predecessor jobs

Given: six jobs, A, B, C, D, E, and F.

the NETID is EXAM2.
NETID Jobname Predecessors Successors Disposition
EXAM2 (NHOLD) (RELEASE)
(A) (B) A 0 jobs C,D
B 0 jobs CD,E AB=R (retain job)
’ﬂ NC=D (decrease job)
© /©c 1 job F AB=R (retain job)
NC=D (decrease job)
®) D 2 job F AB=F (flush job)
NC=D (decrease job)
E 1 job F AB=R (retain job)
NC =D (decrease job)
F 3 none AB=R (retain job)
NC=D (decrease job)
How to code EXAM2:

Jobname Control Statement

/[[*NET NETID=EXAM2,RELEASE=(C,D)

/*NET NETID=EXAM2,RELEASE=(C,D,E)

/[*NET NETID=EXAM2,RELEASE=(F),NHOLD=1

/[/*NET NETID=EXAM2,RELEASE =(F),NHOLD =2 ABNORMAL=F
/[*NET NETID=EXAM2,RELEASE =(F),NHOLD =1

[/¥*NET NETID=EXAM2,NHOLD =3

mTHYQ®E >

If either job A or B abnormally terminates, job D is flushed from the system, thereby
causing job F also to be flushed. Jobs C and E remain in the system. In this situation,
correct the predecessor and resubmit the jobs to the system. When it completes normally,
its successors, C and E, are made eligible for scheduling. Because job C has NHOLD =1 it
requires that only job A or B complete normally. However, job D, which has NHOLD =2,
requires that both jobs A and B complete normally.

Chapter 3. Guide to Job * "ontrol 3-31

i3-32 'MVSICL

Complex network
Given: two networks, EXAM4 and EXAM3.
EXAM4 contains four jobs, W,X,Y, and Z.
EXAM3 contains ten jobs, A,B,C,D,E,F,G,H,], and J.

The net to be released (NETREL) for job I is EXAM4, the release jobname is Y.

EXAM4 Jobname Predecessors Successors Disposition
(NHOLD) (RELEASE)

W W job X

(X) X 1 jobY AB=R (retain job)
NC=D (decrease job)

) Y 2%* job Z AB=F (flush job)
NC=D (decrease job)

@ Y4 1 none AB=F (flush job)

NC=D (decrease job)

*Job Y has one predecessor in this net and one predecessor in EXAM3.

EXAM3 Jobname Predecessors Successors Disposition
(NHOLD) (RELEASE)
(B) A 0 job C
B 0 jobs C,.D AB=R (retain job)
(D) NC=D (decrease job)
C 2 job E AB=R (retain job)
@ NC=D (decrease job)
Q), D 1 jobs E,I AB=R (retain job)
@ NC=D (decrease job)
E 2 jobs F,H AB=R (retain job)
NC=D (decrease job)
F 1 job G AB=R (retain job)
NC=D (decrease job)
G 1 none AB=R (retain job)
NC=F (flush job)
H 1 none AB=F (flush job)

NC=D (decrease job)

I 1 (EXAM4,Y) AB=R (retain job)
jobJ NC=D (decrease job)
J 1 none AB=R (retain job)

NC =D (decrease job)
How to code EXAM4:

Jobname Control Statement
(using short form of parameters)

W /*NET ID=EXAM4,RL=(X)

X //*NET ID=EXAM4,RL=(Y),HC=1

Y //*NET ID=EXAM4,RL=(Z),HC=2,AB=F
z - //*NET ID=EXAM4,HC=1AB=F

How to code EXAM3:

Jobname Control Statements
(using short form of parameters)
/[[*NET ID=EXAM3,RL=(C)
/*NET ID=EXAM3,RL=(C,D)
/NET ID=EXAMS3,RL=(E),HC=2
/*NET ID=EXAM3,RL=(E,I),HC=1
/*NET = ID=EXAM3,RL=(F,H),HC=2,RS=1
/*NET ID=EXAM3,RL=(G),HC=1
/[[¥NET =~ ID=EXAM3HC=|,NC=F
[[*NET ID=EXAM3HC=1,AB=F
/*NET ID=EXAMS3,RL=(J),HC=1,NR =(EXAM4,Y)
/[*NET ID=EXAM3HC=1

SCmQEmEmogOw e

JES3 Spool Partitioning

When the Eystem reads a job, it initially places the job on a spool volume or volumes. An
installation can divide its spool volumes into groups, known as partitions. Depending on how
your installation ‘defines its partitions, you can make the system allocate all the spool data for a
particular job or all the spool data of a particular type, such as input, output, etc., to the spool
volume or volumes in a specified spool partition. Thus, you can prevent JES3 from spreading a
job’s spool data sets across all spool volumes.

See JES3 SPL: Initialization and Tuning for details on how the installation initializes the spool
. partitions and how JES3 allocates a job’s data sets to the partitions.

The following examples illustrate how to guide JES3’s use of spool partitions during job
execution. ‘

//ONE JOB

//*MAIN

//STEP1 EXEC ‘
//OUT1 DD SYSOUT=N
//0UT2 DD SYSOUT=8

No SPART parameter is specified on the MAIN statement. Therefore, this job’s input spool
data sets are allocated to the default spool partition (PARTA). Because there is no spool
partition specified for SYSOUT =N, these output spool data sets are allocated to the default
spool partition (PARTA). However, if this job executes on the processor named SY2, output
spool data sets for SYSOUT =N are allocated to spool partition PARTC as specified on the
JES3 MAINPROC initialization statement associated with the processor named SY2. Output
spool data sets for SYSOUT =S are allocated to spool partition PARTD as specified on the
SYSOUT initialization statement associated with the class name S.

Chapter 3. Guide to Job Control 3-33

//TWO JOB
//*MAIN CLASS=IMSBATCH
//STEP1 EXEC
//OUT1 DD SYSOUT=N
//0UT2 DD SYSOUT=S

No SPART parameter is specified on the MAIN statement. However, because a class is
specified on the MAIN statement, this job’s input spool data sets are allocated to the spool
partition specified on the CLASS initialization statement associated with IMSBATCH
(PARTB). Because there is no spool partition specified for SYSOUT =N, these output spool
data sets are allocated to the spool partition specified on the CLASS initialization statement
associated with IMSBATCH (PARTB). Output spool data sets for SYSOUT =S are allocated
to spool partition PARTD as specified on the SYSOUT initialization statement associated with
the class name S.

//THREE JOB

//*MAIN CLASS=IMSBATCH,SPART=PARTE
//STEP1 EXEC

//OUT DD SYSOUT=N

//OUT2 DD SYSOUT=$

This job’s input spool data sets are allocated to the spool partition specified by the SPART
parameter on the MAIN statement (PARTE) overriding the partition defined by the JES3
CLASS initialization statement. Because there is no spool partition specified for SYSOUT =N,
these output spool data sets are allocated to the spool partition specified by the SPART
parameter on the MAIN statement (PARTE). Output spool data sets for SYSOUT =S are
allocated to spool partition PARTD as specified on the SYSOUT initialization statement
associated with the class name S.

3-34 MvsicL

Chapter 4. Guide to Step Control

The first JCL statement of each step in your job is the EXEC statement. The EXEC statement
is also the first statement of each procedure step in a cataloged procedure. The format of the
EXEC statement is:

//steprniame EXEC parameters comments

Following the EXEC statement in the input stream are any DD statements and data that
pertain to the step.

The principal functions of the EXEC statement are to:

@ Identify the program the system is to execute.
@ Identify the cataloged procedure the system is to use.

For example, Figure 4-1 shows the input deck for a three-stép job.

Procedure Library

Input Deck
>
=3
// DD Statements
]
a // name EXEC // name EXEC

PGM=XXX

5(?/\ PGM=PRINT
// name EXEC // PROC Statement

PROC =PROCONE

Y

Input Data

g

// DD Stat

// name EXEC
PGM =MYPROG

// name JOB ...

Figure 4-1. Using the EXEC Statement

Chapter 4. Guide to Step Control 4-1

® The EXEC statement of the first step requests a program named MYPROG. The DD
statements and data that MYPROG requires follow the EXEC statement.

® The EXEC statement of the second step requests a cataloged procedure named PROCONE.
When the system executes the seeond step, it uses PROCONE.

® PROCONE has two procedure steps.

— The EXEC statement of the first procedure step requests a program named XXX.
— The EXEC statement of the second procedure step requests a program named YYY.

After the system uses the catal'oged p’rocedure, it will execute the third step of the job.

@® The EXEC statement of the third step requests a program named PRINT. The DD
statements required by PRINT follow the third EXEC statement.

Note that you only supply the JCL statements for your job. The cataloged procedure already
exists in the procedure hbrary (SYSL. PROCLIB) ‘Therefore, you do not have to code the JCL
statements for the cataloged procedure unless you are actually writing the cataloged procedure
to place it in the procedure library. You can, however, modify cataloged procedure statements
by placing the corrections in the input deck for your job. The methods for modifying cataloged
procedures are described in Chapter 9, “Guide to Cataloged and In-Stream Procedures.”

// DD Statements

: ; // name EXEC
N PGM =8

// DD Statements

// name EXEC
" PGM=A_

// name EXEC .) // PROC Statement
PROCSB

// DD Statements

// DD Statements

// name EXEC
PGM=ONE

// name JOB. ..

Figure 4-2. Modifying a Cataloged Procedure
The EXEC statement must contain the word EXEC in its operation field. The stepname (name
field) and most parameters in the operand field are optional. The only required information in
the operand field is either:

@® The name of the program the system executes, or
@® The name of the procedure the system invokes

4-2 MvVsIJCL

Naming

The parameters on the EXEC statement that are not related to parameters on the JOB
statement allow you to specify the following types of information:

@® Processing program information

@ Passing information to the program in execution
@ Installation management information

@® Dynamically allocating and deallocating data sets

The following paragraphs discuss the stepname and the optional parameters of the EXEC

statement. For a discussion of EXEC statement parameters that are influenced by JOB
statement parameters, see Chapter 5, “Guide to Job and Step Control.”

a Job Step

The stepname identifies a step within a job. The stepname is optional. However, when you
want to perform certain functions, you need a valid and unique stepname in the name field for
each job step within the job. You must specify a stepname if:

® Later JCL statements refer to the step. See “Backward References” on page 2-13.

@® The step is part of a cataloged procedure.

® You are going to override parameters on an EXEC statement or DD statement in a
cataloged procedure step.

® You are going to add DD statements to a cataloged procedure step.

® You are goingto perform sfep or checkpoint restart at or within the step.

Notes:

1. Name each step in your job; the system uses stepnames in many operating system messages. If
you supply a stepname, it is easier for you to find out what part of your job causes the
messages. (If the step is unnamed, the part of the message where the stepname would appear

is left blank.)

2. Using a stepname can save coding time if you later decide to use backward references or to
turn your JCL statements into a cataloged procedure.

Code the stepname in the name field of the EXEC statement. The stepname can range from
one to eight characters in length and can contain any alphanumeric characters. The first
character of the name must be an alphabetic or national character and must begin in column 3.
Each stepname in a job or procedure must be unique.

The following are examples of stepnames in several EXEC statements:

//STEP1 EXEC...
//CHECK EXEC...
//B$9 EXEC...
//LINKEDIT EXEC...

Chapter 4. Guide to Step Control 4-3

Processing Program Information

Use the PGM parameter to identify the program the system is to execute. Use the PROC
parameter to identify the cataloged procedure the system is to invoke. You can also identify
the cataloged procedure by name only as the first parameter in the operand field of the EXEC
statement. '

The PGM parameter and the PROC parameter (or procedure-name) are mutually exclusive.
That is, you can code only one of them on an EXEC statement. However, you must code one
of them in the EXEC statement.

Your manager or supervisor should give you the names of the programs and cataloged
procedures available in your installation.

Selecting a Processing Program

You must use the PGM parameter to indicate which processing program the system is to use
for this job step and where this program resides. Processing programs can reside in three types
of libraries (partitioned data sets):

® A system library.
® A private library.
@® A temporary library.

You must code the PGM parameter as the first parameter in the operand field.
All IBM-supplied processing programs and, probably, the most frequently used programs

written by your installation reside in a system library. The format of the PGM parameter for
specifying programs that reside in a system library is:,

PGM=program-name

Replace the term “program-name” with the name or alias associated with the program.

Not all programs have an alias. For example, your installation may have several levels of the
linkage editor, but only one of them can have a particular alias. Your manager or supervisor
should give you a list of the names and aliases of the processing programs in your installation.

Identifying the Program to be Executed

All executable programs are members of partitioned data sets (libraries). The library that
contains the program can be a temporary library. or a private library. In order to execute a
program contained in these libraries, code the PGM parameter as the first parameter on the
EXEC statement.

4-4 MVS JCL

Temporary Library

Temporary libraries are temporary partitioned data sets that the system creates to store a
program until it is used in a later job step of the same job. This type of library is particularly
useful for storing the program output (load module) of a linkage editor run until it is executed
by a later job step. The program stored in a temporary library is assigned a name by the
system. This system-assigned name is not predictable by the programmer. Therefore, you use
the PGM parameter to identify the program by location rather than by name. You do this
using the backward-reference feature of JCL; see “Backward References” on page 2-13. The
format of the PGM parameters for specifying programs that reside in temporary libraries is:

PGM=* .stepname.ddname

Replace the term “stepname” with the name of the EXEC statement of the job step (of the
same job) that creates the temporary library. Replace the term “ddname” with the name of the
DD statement that defined the library. The following example shows the EXEC statement for
a link edit step, the DD statement in that step that defines the temporary library, and the
EXEC statement that requests the execution of the program stored in the temporary library.

//LINK EXEC PGM=IEWL This EXEC statement requests
the linkage editor
//SYSLMOD DD ce This DD statement defines

the temporary library

/ /GO EXEC PGM=* .LINK.SYSLMOD

When the temporary library is created in a cataloged procedure step (of the same job), you may
want to call it in a later job step outside the procedure. In order to call it, you must give both
the name of the job step that invokes the procedure and the procedure stepname. For example:

//jobstep EXEC PGM=*,stepname.procstepname.ddname.

The first part of the following example shows an EXEC statement that calls a cataloged
procedure named ASMFCL (ASMFCL is a cataloged procedure that assembles and link edits a
source program), and the EXEC statement that requests the execution of the program link
edited with the cataloged procedure. The second part of the example shows the EXEC
statement of the procedure step in ASMFCL where the temporary library is created, and the
DD statement that defines the library.

Chapter 4. Guide to Step Control 4-5

Input

//CALL EXEC ASMFCL

. stepname
//GO EXEC PGM=%* ,CALL.LKED.SYSLMOD
. ddname

procstepname
e

Cataloged Procedﬁre
J / /

//LKED EXEc4§5;:;;;

//SYSLMOD#DD.

You can also specify programs residing in the system library or private libraries by coding
PGM = * stepname.ddname, provided the named DD statement defines the program as a
member of such a library.

For more information on temporary libraries, refer to the section, “Creating and Using Private
and Temporary Libraries.”

Private Library

Private libraries are partitioned data sets that store programs not used often enough to warrant
their inclusion in a system library. For example, a set of programs that prepare quarterly sales
tax reports might be placed in a private library. The format of the PGM parameter for
programs residing in private libraries is the same as for programs residing in a system library.

You indicate to the system the fact that the program resides in a private library by inserting a
special DD statement in your input JCL statements. The use of the DD statements that define
private libraries is explained in Chapter 8, “Guide to Special Data Sets.”

Request use of a program that is a member of a private library by coding

PGM = program-name and including a DD statement named JOBLIB or STEPLIB that defines
the private library. The system looks in the private library for a member with the
corresponding name.

A program that resides in a private library can also be executed by coding
PGM = *_stepname.ddname or PGM = * stepname.procstepname.ddname. This can be done

only when the named DD statement defines the program as a member of a private library.

For more information on private hbranes refer to the section “Creatlng and Using Private and
Temporary Libraries” on page 8-1.

4-6 MVSJCL

The IEFBR14 Program

When this program is called, it gives a return code of 0 and returns to the calling routine. This
program causes the system to check the syntax of the control statements, allocate DASD space,
and/or satisfy requests for disposition processing of data sets. To perform the preceding
functions, substitute IEFBR14 for the program name on the EXEC statement.

For an example of using the IEFBR14 program, see “Using the COND Parameter to Force
Step Execution” on page 5-15.

Note: When you use the IEFBR14 program to allocate data sets, the system does not perform
any data set initialization. Therefore, any attempt to read from the data set will produce
unpredictable results. Also, IBM does not recommend the use of the IEFBR14 program to
allocate multi-volume data sets.

If you created a data set when using this program, the data set’s status will be old when you
execute your program. For situations when a disposition of CATLG will not be satisfied, see
“Cataloging a Data Set” on page 7-16.

When you use IEFBR14 to catalog or uncatalog a data set, a message to mount the volume is
issued to the operator. If you do not want the volume mounted, code DEFER on the UNIT
parameter.

JES will honor any JCL OUTPUT statements in an IEFBR14 program. This is especially
important if you wish to give processing options to the system managed data sets. For more
information, see the explanation for the JESDS keyword in Chapter 14, “Coding the OUTPUT
JCL Statement.”

Selecting a Cataloged Procedure Library

Instead of executing a particular program, a job step may use a cataloged or in-stream
procedure. A cataloged or in-stream procedure can contain JCL statements for several steps,
each of which executes a particular program. Cataloged procedures are members of the
procedure library. (The IBM-supplied procedure library is named SYSI1.PROCLIB; at your
installation, there may be additional procedure libraries, which would have different names.)

The format of the PROC parameter is:

PROC=procedure-name

Replace the term “procedure-name” with the name of the cataloged procedure or the name on
the PROC statement of the in-stream procedure. The procedure-name must be from 1 to 8
alphanumeric characters, the first of which must be alphabetic or national. If you prefer, omit
“PROC” and simply code the procedure-name. For example, you can request a cataloged
procedure named COBFLG with either of the following EXEC statements:

//name EXEC PROC=COBFLG
//name EXEC COBFLG

The PROC parameter or the procedure name must be the first parameter in the operand field.

Chapter 4. Guide to Step Control 4-7

Notes:

1. You can use subsequent parameters in the operand field to override EXEC statement
parameters in the cataloged procedure.

2. For details on using and modifying cataloged or in-stream procedures, see Chapter 9, “Guide
to Cataloged and In-Stream Procedures.”

In a JES2 System

Code the PROCLIB parameter on the JES2 JOBPARM control statement to choose which of
the installation-specified cataloged procedure libraries JES2 uses for resolving catalog procedure
references in the JCL. If this parameter is omitted, JES2 uses a cataloged procedure library
associated with your job’s class.

For more information on coding the JOBPARM statement, see “/*JOBPARM Statement” on
page 16-4.

In a JES3 System

Code the PROC parameter on the JES3 MAIN control statement to choose which of the
installation-specified cataloged procedure libraries JES3 uses for resolving catalog procedure
references in the JCL. If this parameter is omitted, JES3 uses the installation standard library,
denoted by ST.

If you want to update a cataloged procedure library, code the UPDATE parameter on the JES3
MAIN statement specifying the library to be updated by that job. You can code the UPDATE
parameter whether or not JES3 used that library to resolve the job’s library references. JES3
will effectively disable the use of that library, preventing all jobs that request it from entering
the converter interpreter phase until the updating job. terminates. This prevents the use of the
library while the update occurs.

Note: The library update facility cannot be used for concatenated data sets.

For more information on coding the MAIN statement, see “//*MAIN Statement” on
page 17-23.

Passing Information to the Program in Execution

Some information required by a program can vary from application to application, such as
module attributes and options required by the compiler, assembler, and linkage editor
programs. In order to provide this information to the program at the time it is executed, code
the PARM parameter on the EXEC statement. The program must include instructions that can
retrieve this information. (The exact location and format of the information passed to a
processing program are included in Supervisor Services and Macro Instructions.)

The PARM parameter can also be coded on the EXEC statement of a cataloged or in-stream
procedure step. This establishes fields in which you can pass information to the job. By coding
the PARM parameter on the EXEC statement of the job calling a cataloged or in-stream

~ procedure, you can override, add, or nullify parameters in the procedure, or define symbolic
parameters. For more information on the PARM parameter, see Chapter 9, “Guide to
Cataloged and In-Stream Procedures.”

4-8 MVS JCL

PARM Parameter

The PARM parameter enables you to pass variable information to a program in execution.
Additionally, some IBM-supplied processing programs allow you to select alternatives from a
set of options. The PARM values are listed in the publication associated with the program you
are using.

In many cases, default values can be selected for PARM values during system generation. That
is, the system programmer will select one alternative or assign a fixed value to another. The
system assumes this default option unless you specify the other alternative or change the fixed
value.

Your manager or supervisor will tell you which detault values were generated for the
installation’s operating system.

The format of the PARM parameter is:

PARM=information

Replace the term “information” with up to 100 characters of data. The following are general
rules for coding the PARM parameter:

@ If the information contains more than one expression separated by commas, you must
enclose the information in either apostrophes or parentheses. For example:

PARM=(DECK,LIST,NOMAP)
PARM='DECK,LIST,NOMAP'

@ If any of the expressions contain special characters, you can:

— Enclose that expression in apostrophes and the value in parentheses. For example:

PARM=(DECK, 'NAME=FIRST',LIST)
PARM=(P1,1867,'P*AA"')

— Enclose the entire value in apostrophes. For Example:

PARM="'DECK,NAME=FIRST,LIST'
PARM='P1,167,P*AA'

(The enclosing apostrophes and parentheses are not considered part of the information and
do not count towards the maximum of 100 characters of data; commas within apostrophes
are passed as part of the information.) ’

@ If the special character is an apostrophe, code it as two consecutive apostrophes. For
example, show NAT'L as:

PARM='NAT''L'
When you code two. apostrophes, the system passes only one to the processing program.

@ If the special character is an ampersand and you are not defining a symbolic parameter,
code the ampersand as two consecutive ampersands. For example, show ABC&D as:

PARM="'ABC&&D'

Chapter 4. Guide to Step Control 4-9

When you code two ampersands, the system passes only one to the processing program.

@ If there is only one value and the value does not contain special characters, you need not
enclose the value in parentheses or apostrophes. If the value contains special characters,
enclose the value in apostrophes. For example:

PARM=LIST
PARM='L.24"'
PARM='NAT''L'

Since the PARM value can consist of up to 100 characters, you may have to continue the value
onto another statement. If you must continue the value, enclose it in parentheses. You cannot
continue any value enclosed in apostrophes. To continue the value, follow the continuation
conventions as outlined in the topic “Continuing Control Statements” in the section “Coding
Conventions.” The continuation comma is considered part of the value field and counts
towards the maximum of 100 characters of data. The following is an example of continuing the
value onto another card. '

//name EXEC ...,PARM=(DECK,LIST, 'LINECNT=80",
// NOMAP)

When the job step uses a cataloged procedure, you can pass information to a step in the
procedure by including the procedure stepname as part of the keyword PARM. The format is:

PARM[.procstepname]l=value

This specification overrides the PARM parameter in the named procedure step, if one is
present. You can code as many parameters of this form as there are steps in the cataloged
procedure. For example, the following EXEC statement passes PARM information to two
procedure steps of a cataloged procedure named PROCTWO. The names of the two procedure
steps are STEP1 and STEP2.

//Al EXEC PROC=PROCTWO,PARM.STEP1=(ONE,'TWO=B',
// THREE) , PARM. STEP2= (FOUR,FIVE, SIX,
// ' SEVEN=G"')

To pass information to the first step in a cataloged procedure and nullify all other PARM
parameters in the procedure, code the PARM keyword without a procedure stepname. For
example:

//Al EXEC PROCTWO,PARM=(ONE,'TWO=B',6EIGHT)

Installation Manageinent _Information: The ACCT Parameter

Some installations have job step accounting routines in addition to the regular job accounting
routines. Job step accounting is particularly useful in cases where a different programmer is
-assigned to write each step of a job, or where the installation’s management wants to know how
much time is spent on different functions such as compilation or link editing.

You can specify job step accounting information instead of, or in addition to, job accounting
information. Specify job step accounting information with the ACCT parameter on the EXEC
statement. Specify job accounting information with the accounting information positional
parameter in the JOB statement; see Chapter 10, “Coding the JOB Statement.”

4-10 MvsJcL

ACCT Parameter

The ACCT parameter allows you to supply job step accounting information. It has the
following format:

ACCT[.procstepname]=(accounting-information)

Replace the term “accounting-information” with one or more subparameters separated by
commas. Your manager or supervisor should tell you exactly how to code this parameter. The
following are general rules for coding the accounting information:

® The total number of characters of accounting information, plus the commas that separate
the subparameters, cannot exceed 142.

@ If the list contains only one subparameter, you need not enclose it in parentheses. For
example:

ACCT=12345
® If any subparameter contains special characters (except hyphens), you can:

— Enclose the subparameter in apostrophes and the value in parentheses. For example:

ACCT=(12345,'T/24")

— Enclose the entire value in apostrophes.

ACCT="'12345,T/24"'
Note that the system does not consider the apostrophes as part of the information.

@ If the special character is an apostrophe, it must be shown as two consecutive apostrophes.
For example, show 0'DONNELL as:

ACCT=(12345,'0''DONNELL') or ACCT='12345,0''DONNELL"'

When the job step uses a cataloged procedure, you can supply accounting information
pertaining to a single procedure step by including, as part of the keyword ACCT, the procedure
stepname, i.e., ACCT.procstepname. This specification overrides the ACCT parameter in the
named procedure step, if one is present. You can code as many parameters of this form as
there are steps in the cataloged procedure. For example, the following EXEC statement passes
job step accounting information to two procedure steps of a cataloged procedure named
PROC3. The name of the two procedure steps are ONE and TWO.

//BBB EXEC PROC3,ACCT.ONE=(COMPILE,'J.JONES',
// '2/04/82"') ,ACCT.TWO=(LKED, 'J.JONES','2/04/82")

To supply accounting information pertaining to all steps in a procedure, code the ACCT
parameter without a procedure stepname. This specification overrides all ACCT parameters in
the procedure, if any are present. For example:

//BBB EXEC PROC=PROC3,ACCT=('T.JONES','5/20/69")

Chapter 4. Guide to Step Control 4-11

Dynamically Allocating and Deallocating Data Sets

Dynamic allocation allows you to acquire resources as they are needed. One reason to use
dynamic allocation is that you may not know all of the device requirements for a job prior to
execution. Another reason is that it allows the system to use resources more efficiently; that is,
the system can acquire resources just before their use and/or release them immediately after use.
(Resources, as used here, refer to a ddname-data set combination with its associated volumes
and devices, if any.) The DYNAM DD statement parameter and DYNAMNBR EXEC
statement parameter indicate the number of dynamic allocations to be held in anticipation of
reuse. The system uses these indicators to establish a control limit for tracking resources that it
is holding in anticipation of reuse.

Use the DYNAMNBR parameter on the EXEC statement to replace the DD DYNAM
statements you would have to code. The format of the DYNAMNBR parameter is:

//stepname EXEC PGM=program-name,DYNAMNBR=n

Where n is the number of DD DYNAM statements you would otherwise have to code.

When you code the DYNAMNBR parameter and DD statements, the system uses the sum of
the number of DD statements and the DYNAMNBR value to determine the limit of resources
it is to hold in anticipation of reuse.

You can dynamically deallocate resources during the execution of a job step (at the time the
data set is closed) by coding the FREE = CLOSE parameter on a DD statement.

There are some circumstances when you should not code the FREE parameter.

® The data set name is referenced in a subsequent step.
® The data set name is referenced in another DD statement in the same step.

Do not use the FREE parameter for a data set if a subsequent DD statement requests unit
affinity to this DD statement. For example, do not code the following:

//DD1 DD DSN=dsname,DISP=0LD,UNIT=TAPE,VOL=SER=111111,FREE=CLOSE

//DD3DD DISP=(,KEEP) ,DSN=dsname2,UNIT=AFF=DD1

For more information on coding the FREE parameter, see “FREE Parameter” on page 12-84.
If you do dynamically deallocate a resource at close time, it cannot be reopened in the same
step. If you do not want to dynamically deallocate the resource, either specify nothing or
specify FREE=END to let the system deallocate the resources at the end of the job step.

For more information on how to use dynamic allocation and deallocation and the control
limit, see SPL: Job Management.

4-12 MvsICL

Example of Dynamically Deallocating Data Sets

//PROS JOB CLASS=A,MSGLEVEL=(2,0),PERFORM=70
//STEP1 EXEC PGM=TEST,DYNAMNBR=4,PARM=(P3,123,MT5)
//OUT1 DD SYSOUT=C,FREE=CLOSE

//OUT2 DD SYSOUT=A

//SYSIN DD *

a

1.

3.

data

The JOB statement specifies that this job will be processed in class A in performance group
70. Only JCL statements will be printed.

The control limit is the sum of the number of DD statements coded and the value coded in the
DYNAMNBR parameter; in this case, seven. If this control limit is exceeded and a request
for another dynamic allocation is made, the request is not honored unless resources can be
deallocated so that the control value is not exceeded.

When OUT]1 is closed, it is immediately ready for printing.

Chapter 4. Guide to Step Control 4-13

414 MvsicL

Chapter 5. Guide to Job and Step Control

This chapter discusses job and step control using parameters on the JOB statement, the EXEC
statement, and the JES control statements. The discussion covers the following:

Scheduling a job

Selecting a processor

Conditionally executing job steps

Limiting job and step execution time

Controlling job queuing through job classes and priorities
Requesting storage for execution

Restarting a job at a step or checkpoint

Scheduling a Job

The scheduling of jobs depends on the job entry subsystem in use at your installation. The
following paragraphs discuss job scheduling as it pertains to JES2 or JES3.

In a JES2 System

JES2 controls the selection of jobs for processing. As JES2 reads a job into the system, it
places JCL statements and any input stream data in respective logical data sets. The system
checks the JCL and JES2 statements for syntax errors and issues appropriate error messages. If
the JCL statements are syntactically correct, JES2 places the job on an execution queue. The
execution queue consists of job class queues; JES2 places jobs within each job class queue
according to their priority. Installation programmers assign JES2 initiators to process job
classes. The initiator selects jobs from the first class assigned to it according to the priority of
the jobs until no more jobs exist in that class; it then selects jobs from the next class assigned.

Use the CLASS parameter on the JOB statement and the JES2 PRIORITY control statement
to influence how a job is placed on the execution queue. The format of the CLASS parameter
is:

CLASS=jobclass

For information on coding the CLASS parameter, see “CLASS Parameter” on page 10-9.

The format of the JES2 PRIORITY control statement is:

/*PRIORITY p

Chapter 5. Guide to Job and Step Control 5-1

... - For information on coding the PRIORITY control statement, see “/*PRIORITY Statement” on
.. page 16-22. : :

Note that in a multi-access spool environment, more than one JES2 system will be altering the
queues. Due to conversion and processor timings, jobs of the same class and priority may be

. queued for execution out of their reader sequence. Therefore, to insure that one job is selected
before another or that the desired volumes are mounted before a job is executed, delay the job's
selection by coding TYPRUN =HOLD on the JOB statement, by coding a job class that will
force TYPRUN =HOLD, or by coding a SETUP control statement.

For more information on the TYPRUN parameter and‘ the SETUP statement, see “Special Job
Processing” on page 3-23.

MVS includes support for controlling the processing rate of jobs and job steps. The installation
defines a certain number of performance group definitions. Each of these defines a particular
processing rate formula to use for associated jobs or job steps. To associate a job or job step
with performance group definitions, code the PERFORM parameter on either the JOB or
EXEC statements. The format of the PERFORM parameter on either the JOB or EXEC
statement is:

PERFORM=n

For information on coding the PERFORM parameter on the JOB statement, see “PERFORM
Parameter” on page 10-22. For information on coding the PERFORM parameter on the
EXEC statement, see “PERFORM Parameter” on page 11-19.

® If you specify PERFORM on the JOB statement, its value supersedes any PERFORM
specifications on EXEC statements associated with the job.

In a JES3 System

JES3 controls the selection of jobs for processing. When JES3 reads a job into the system, it
initially places the job on a spooling volume. : The system checks the JCL and JES3 statements
for syntax errors. If no errors are present, JES3 determines allocation requirements for the job.
JES3 device selection takes place next.

JES3 selects devices based on the requirements for JES3-managed devices established in the
JCL:. JES3 requests that the operator mount any necessary volumes. More information on this
subject is given in “Allocating Data Resources in a JES3 System™ on page 6-4. Once all
JES3-managed devices are selected and the first volume on each device is mounted (unless
deferred mounting is requested or high watermark setup is used), JES3 places the job in the
queue for execution. (High watermark setup allocates a minimum number of devices to run a
job.)

When JCL or JES3 statements have syntax errors, appropriate error messages are issued and
the job is terminated. When the job has JES3 allocation errors, error messages are issued and
JES3 bypasses execution. If the error is due to the operator mounting the wrong volume, JES3
issues a message requesting the correct volume.

The execution queue is logically divided into groups of job classes specified by the installation;
within each job class group, jobs are placed according to their job priority. Normally, JES3
places jobs in the same job class group 'with the same job priority in the execution queue in the
order they are read into the system. Deadline scheduling or operator intervention can cause

5-2° MVSIJICL

some jobs to move ahead of other jobs regardless of the order in which JES3 read the jobs into
the system. The various job class groups are assigned priorities by the installation. JES3 starts
system initiators on each processor and assigns them a job class group to process based on the
installation priorities. It selects jobs from any class assigned to it. Jobs are selected by job
class, processor eligibility, workload balancing, and priority order as described in the topics:
“Assigning a Priority to a Job in JES3” on page 5-20, “Establishing job processing balance in
JES3” on page 5-19, and “Assigning a Job to a Job Class in JES3” on page 5-19.

Selecting a Processor in JES2

In a JES2 multi-access spool configuration, jobs enter the common queue from any input
source (local, remote, or another node). If JES2 is not directed to take special actions, the jobs
are eligible to execute in any system in the configuration and are selected by priority and the
class of initiators, as in a single-system operation.

In a multi-access spool configuration, the JES2 job queue entries contain a system affinity for
up to seven systems and may contain an independent mode affinity.

System affinity is useful for special processing requirements (for example, emulation) not
available on all systems in the configuration. Independent mode is useful for testing new
components with selected jobs while in a shared configuration.

You assign, to a job, affinity to one or more systems (less than the total configuration) and
affinity for independent mode by using the SYSAFF parameter on the JES2 JOBPARM control
statement. The format of the SYSAFF parameter is:

SYSAFF={* | ANY|cccc} [,IND]

A SYSAFF specification overrides any installation defined input device default.

You specify a specific system in the JES2 multi-access spool configuration by coding:

/*JOBPARM SYSAFF=cccc
Where cccc is the system-id of the system, in the JES2 multi-access spool configuration, that is
to convert and process your job. The output for the job is eligible for processing by any

member of the multi-access spool configuration.

To specify that more than one system can convert and process your job, code:

/*JOBPARM SYSAFF=cccc,cccce
You can repeat cccc up to the number of processors in the configuration.

To specify that a processor operating in independent mode is eligible to convert and process
your job, code:

/*JOBPARM SYSAFF=cccc,IND

Where IND indicates that the system ccce, operating in independent mode, is to convert and
process your job. This same system is to process the job’s output.

Chapter 5. Guide to Job and Step Control 5-3

When you specify that a job has affinity to a-specific system (or systems) or to independent
mode, only the system you specify can select the job for conversion and processing. The system
selects the job only if the mode of the system (independent or not) matches that of the job.

If you submit a job with the NOTIFY parameter specified on the JOB statement or the job
includes a JES2 NOTIFY statement, then the mode of the job (independent or not) must match
that of the system at which the job is submitted. That is, for TSO submitted jobs, you cannot
change the system affinity using the SYSAFF parameter.

For more information on the JES2 multi-access spool configuration, see SPL: JES2
Initialization and Tuning. For more information on coding the SYSAFF parameter, see
“/*JOBPARM Statement” on page 16-4.

Selecting a Processor in JES3

JES3 automatically selects a processor for a job based on device, volume, and data set
dependencies known to it. However, if any of the dependencies are not known to JES3, the job
can be processed incorrectly or can fail. The section, “Allocating Data Resources in a JES3
System” on page 6-4, discusses these dependencies in more detail. There can also be processor
dependencies: a special system feature such as an emulator, a nonstandard catalog, or a
system-managed device that JES3 will not recognize unless you define which processor is
required using the SYSTEM parameter on the JES3 MAIN statement. The format of the
SYSTEM parameter is:

SYSTEM={ ANY | JGLOBAL | JLOCAL| [/] (main-name[,main-name]...)}

The subparameters of the SYSTEM parameter, JGLOBAL and JLOCAL, request the global or
a local MVS processor. To specify particular processors or exclude particular processors, code
the main-name value on the MAIN SYSTEM parameter for each processor.

Not all classes are eligible to run on all processors; therefore, maké sure that the job class for
the job is eligible before selecting a specific processor.

JES3 flushes a job if it specifies a job class (on the JOB or MAIN statements) and a specific
processor(s) (on the SYSTEM and TYPE subparameters on the MAIN statement) that are
incompatible. A processor(s) is defined for each valid job class on the JES3 CLASS
initialization statement during JES3 initialization. For example, if a job specifies CLASS=C
and SYSTEM =SY]1, then the processor SY1 must have been defined on the CLASS
initialization statement for class C.

If you do not specify the SYSTEM parameter, or if you omit the MAIN statement, the job is
eligible to run on those processors for which its class is eligible.

If any DD statement in the job contains a device address in the UNIT parameter and that

device is either JES3-managed or jointly-managed (JES3/MVS), you must use the SYSTEM or
TYPE parameters to restrict job eligibility. to the processor that has a path to that device.

5-4 WMVSICL

Conditionally Executing Job Steps

Depending on the results of one step of a job, you may not wish to execute subsequent steps.
For example, if a compilation fails, you would not want to waste computing time attempting
subsequent link-editing or execution steps. You can specify tests to determine whether to bypass
or execute job steps, based on the results from previous steps. To do this code the COND
parameter on either a JOB or EXEC statement.

Programs indicate the results of a job step in a return code. Return codes range from 0 to 4095.
You can code the COND parameter to test the return codes that the compiler, assembler, and
linkage editor programs issue.

Some return codes are standard for certain programs; for example, a return code of 8 issued by
a compiler or linkage editor indicates that serious errors were found and execution is likely to
fail. In problem programs, assign a number as the return code to signify a certain condition.
For example, if STEPI of a job reads accounts that are processed in subsequent job steps, you
might set a return code of 10 if no delinquent accounts are found. Before STEP3 executes to
process delinquent accounts, test the return code from STEPI; if the return code from STEP1 is
10 - there are no delinquent accounts - you can skip STEP3. Specify the test to check the
return code from STEP1 by coding the COND parameter.

Note: When JES3 determines the setup requirements for any given job, it does so without
regard to any COND parameters that may be specified on the EXEC statements. All jobs are
processed as though each step will be executed. This is necessary because setup requirements
are determined in advance of job execution. The JES3 interpreter DSP (dynamic support
program) has no way of predicting whether any given step will or will not execute, or what
return code the program will produce.

Specifying Return Code Tests on the JOB Statement

In the COND parameter, specify tests to determine if the system should bypass a job step.
When you code the COND parameter on a JOB statement, and if the system determines that a
comparison is true, it bypasses all remaining job steps.

For example, if you code COND = ((10,GT),(20,LT)) on the JOB statement, you are asking, “Is
10 greater than the return code or is 20 less than the return code?” If either is true, the system
skips all remaining job steps.

If any job step return code is 12, neither test is satisfied: no job step is skipped. All the tests
you specify must be false if processing is to continue without skipping any job steps. If the
return code is 25, the first test is still false, but the second test is satisfied: 20 is less than 25.
The system will bypass all remaining job steps, if you code the COND parameter on the JOB
statement.

Note: 1If any job step abnormally terminates, MVS bypasses all subsequent steps unless you
code the COND parameter on the EXEC statement. (See the section “Specifying the COND
Parameter on the EXEC Statement.”) If you want to restart the same step that terminated
abnormally you can use the checkpoint/restart facility of the operating system. (See “Restarting
a JOB” in this chapter.)

Chapter 5. Guide to Job and Step Control 5-5

The format of the COND parameter on the JOB statement is:

COND=((code,operator) [, (code,operator)]...)

Replace “code” with any number from 0 to 4095. Replace the term “operator” with one of the
following:

GT (greater than)

GE (greater than or equal to)
EQ (equal to)

LT (less than)

LE (less than or equal to)
NE (not equal to)

If you coded COND = ((50,GE),(60,L.T)), it would read “if 50 is greater than or equal to a
return code, or 60 is less than a return code, I want the remaining job steps bypassed.” In
other words, the job continues as long as return codes range from 51 through 60. If you want
to make only one return code test, you need not code the outer parentheses. For example,
COND =(8,NE). A maximum of eight conditions can be established. For example, if you
code:

COND=((5,GT) , (8,EQ) , (12,EQ), (17,EQ), (19,EQ), (21,EQ) , (23,LE))

Your job will continue only if the return codes are: 5, 6, 7, 9, 10, 11, 13, 14, 15, 16, 18, 20, or
22.

The system applies the tests you specify with the COND parameter against the return code, if
any, that each step in your job produces. You can best take advantage of this parameter when
the return codes of each job step have compatible meanings. For example, a return code of 4
from the COBOL compiler indicates that the source program was compiled and some minor
errors were found; the same return code of 4 from the linkage editor indicates that a load
module was produced, but an error that may cause failure at execution time has been found. If
you want to chance processing even if small errors occur, code COND = (4,LT); that is, the job
terminates if the return code of any step is greater than 4. If you only want to continue
processing when no errors occur, code COND = (4,LE); that is, the job terminates if the return
code of any step is greater than or equal to 4. (All codes greater than 4 indicate major errors
for both the COBOL compiler and the linkage editor.)

If the same return code has different meanings in different job steps, or if you want to take
different actions according to which job step produced the return code, use the COND
parameter of the EXEC statement to set up conditions for individual job steps. Using the
COND parameter on both the JOB and EXEC statements allows you to set some conditions
that apply to all steps in the job and other conditions that apply only to particular job steps.

Relationship to the COND Specification on the EXEC Statement
If you code the COND parameter on fhe JOB stateinent and on one or more of the job’s EXEC
statements, and the return code test requested on the JOB statement is satisfied, the job
terminates. The job terminates regardless of whether or not the return code test requested on

the EXEC statement is satisfied.

If the test requested on the JOB statement is not satisfied and the return code test requested on
- the EXEC statement is satisfied, the step is bypassed.

5-6 MVSICL

If you omit the COND parameter from the JOB statement, no return code tests are performed
for the entire job. If you want return codes tested for a given job step, use the COND
parameter on the EXEC statement for that job step. If you do not code the COND parameter
on either the JOB or the EXEC statements, the system does not perform any return code tests
but tries to execute each step in the job. :

Note: The COND parameter of the EXEC statement is slightly different from the COND
parameter of the JOB statement. See the following section, which also contains examples of
using the COND parameter in both the JOB and EXEC statements.

Specifying Return Code Tests on the EXEC Statement
The COND parameter of the EXEC statement lets you:

® Make as many as eight tests on return codes issued by preceding job steps or cataloged
procedure steps, which completed normally. If any one of the tests is satisfied, the job step
is bypassed. '

@ Specify that the system execute the job step even if one or more of the preceding job steps
abnormaily terminates or only if one or more of the preceding job steps abnormally
terminated.

The system performs the tests you specify with the COND parameter of the EXEC statement in
addition to the tests you specify with the COND parameter of the JOB statement. That is, the
system first performs the tests in the JOB statement. If any conditions you specify on the JOB
statement are met, the job is discontinued regardless of what you specify in the EXEC
statements.

Abnormal termination of a job step normally causes-the system to bypass subsequent steps and
to terminate the job. However, by means of the COND parameter on the EXEC statement,
you can specify execution of a job step after one or more preceding job steps have abnormally
terminated. o

For the system to act on the COND parameter, a job step must abnormally terminate while the
program has control. If a job step abnormally terminates during scheduling, due to failures
such as JCL errors or inability to allocate space, the system bypasses the remaining job steps,
no matter what you specified in any COND parameter.

The format of the COND parameter on the EXEC statement is:

COND=((code,operator[,stepname] [.procstepname])
[, (code,operator[,stepnamel [.procstepnamel)]l... [,EVEN])
‘ ' [,ONLY])

You can write the term (code,operator[,stepname][.procstepname] up to eight times, or you can"
write either EVEN or ONLY and the term (code,operator[,stepname][.procstepname]) up to
seven times. o

Replace the term “code” with any decimal integer from 0 through 4095.

Chapter 5. Guide to Job and Step Control 5-7

- Replace the term “operator” with one of the following:

GT (greater than)

GE (greater than or equal to)
EQ (equal to)

LT (less than)

LE (less than or equal to)
NE (not equal to)

Replace the term “stepname” with the name of the previous job step that issues the return code
to be tested. If you do not code a “stepname,” the test indicated is performed on all preceding
steps.

For example, if you write:

COND=((20,GT,STEP1), (60,EQ,STEP2))

it would read “Bypass this step if 20 is greater than the return code STEPI issues, or if STEP2
issues a return code of 60.”

If you write:
COND=((20,GT,STEP1), (60,EQ))

it would read “Bypass this step if 20 is greater than the return code STEP1 issues, or if any of
the preceding steps issues a return code of 60.”

If you want only one test made, omit the outer parentheses. For example:

COND=(10,LT) or COND=(15,NE,STEP5)

When the return code is issued by a cataloged procedure step, you may want to test it in a later
job step outside of the procedure. In order to test it, you must give both the name of the job
step that invokes the procedure and the procedure stepname, for example:

COND=((code,operator,stepname.procstepname),...).

If you write:

~ COND= (7,LT,STEP4.LINK)

it would read “Bypass this step if 7 is less than the return code issued by a procedure step
named LINK in the cataloged procedure called by an EXEC statement named STEP4.” For
additional information on using the COND parameter with cataloged procedures, see “Using
the COND Parameter within Cataloged Procedures” on page 5-13.

Using the COND Subparameters EVEN and ONLY

The EVEN subparameter causes the system to execute the step even if one or more of the
preceding job steps abnormally terminated. However, if any return code tests specified in this
job step are satisfied, the system bypasses this step. '

The ONLY subparameter causes the system to execute the step only if one or more of the
preceding job steps abnormally terminated. However, if any return code tests specified in this
job step are satisfied, the system bypasses the step.

5-8 MvsICL

The EVEN and ONLY subparameters are mutually exclusive. You can code whichever
subparameter you select in combination with up to 7 return code tests, and the subparameter
can appear before, between, or after return code tests, for example:

COND= (EVEN, (4,GT, STEP3))
COND=((8,GE,STEP1), (16,GE) ,ONLY)
COND=((15,GT,STEP4) ,EVEN, (30,EQ, STEP7))

When a job step abnormally terminates, the system scans the COND parameter on the EXEC
statement of the next step for the EVEN or ONLY subparameter. If neither is present, the the
system bypasses the job step. The system then scans the EXEC statement of the next step for
the EVEN or ONLY subparameter. If EVEN or ONLY is specified, the system makes any
return code tests on all previous steps specified that executed and did not abnormally terminate.
The step is bypassed if any test is satisfied, or if any previous job step abnormally terminated
because it exceeded the time limit for the job. Otherwise, the job step is executed.

For example, if you write:

COND=EVEN

it would read, “Execute this step even if one or more of the preceding steps abnormally
terminated during execution.”

If you write:

COND=((10,LT,STEPA), (20,EQ) ,ONLY)

it would read, “Execute this step.only if one of the preceding steps terminated abnormally; but
bypass it if 10 is less than the return code STEPA issues or if any of the steps that terminated
normally issued a return code of 20.” '

If you write:

COND=((10,LT,STEPA),(ZO,EQ),EVEN)

it would read, “Bypass this step if 10 is less than the return code STEPA issues, or if any of the
preceding steps issues a return code of 20; otherwise execute this step even if one of the
preceding steps terminated abnormally.”

If you omit the COND parameter,the system makes no return code tests and bypasses the step
if any of the preceding job steps abnormally terminated.

Examples of using the COND Parameter in a Job
Any tests specified via the COND parameter of the JOB statement take precedence over those
specified via EXEC statements. For example, Figure 5-1 on page 5-11 shows an input deck
with nine steps and the return codes produced by those steps that executed. The following tests
are performed:

® Before STEP2 (STEP1 produced a return code of 6):

1. Is 10 less than 67 No.
2. Is the return code 2 or 4? No. ; Exe}c}tllvt'e STEPZ_

Chapter 5. Guide to Job and Step Céntrél 59

® Before STEP3 (STEP2 produced a return code of 2):

1. Is 10 less than 2 or 6? No.
2. Did one or more of the preceding steps terminate abnormally" No. Bypass STEP3.

@® Before STEP4:

1. Is 10 less than 2 or 67 No.

2. Is 5 greater than 6?7 No.

3. Is one of the preceding return codes equal to 2? Yes. Bypass STEP4.
® Before STEPS:

1. Is 10 less than 2 or 6? No. Execute STEPS.
@ Before STEP6 (STEPS produced a return code of 9):

1. Is 10 less than 9, 2, or 6? No.

2. Is 8 greater than 9? No.

3. Did one of the preceding steps terminate abnormally? No. Execute STEP6.
@ Before STEP7 (STEP6 produced a return code of 10):

1. Is 10 less than 10, 9, 2, or 6? No.

2. Is 4 greater than return code of STEP4? STEP4 was bypassed and did not produce a
return code so. this test is ignored. Execute STEP7.

@ Before STEP8 (STEP7 produced a return code of 12):

1. Is 10 less than 12, 10, 9, 2, or 6? Yes. Bypass STEP8 and STEP9.

5-10- MvsiIcL

//MYJOB JOB EXEC A.SMITH,COND=(10, LT) Return Code

//STEP1 EXEC PGM=AAA . 6
//STEP2 EXEC PGM=BBB,COND=((2,EQ),(4,EQ)) 2
//STEP3 EXEC PGM=CCC,COND=ONLY . ; -

//STEP4 EXEC PGM=DDD,COND=((5,GT,STEP1),(2,EQ)) -

-

//STEP5 EXEC - PGM=EEE 9
//STEP6 EXEC PGM=FFF,COND=((8,GT,STEP5),EVEN) | 10
//STEP7 EXEC PGM=GGG,COND=(4,GT,STEP4) 12

//STEP8 EXEC PGM=HHH o , -

//STEP9 EXEC PGM=III,COND=ONLY ‘ -

Figure 5-1. Using the COND Parameter

Chapter 5. Guide to Job and Step Control 5-11

Figure 5-2 on page 5-13 is another example of the use of the COND parameter. This figure
shows an input deck with nine steps and the return codes produced by those steps that were
executed. The following tests are performed:

5-12 MVsICL

Before STEP2 (STEP1 produced a return code of 4):

1. Is 5equal to 4? No.
2. 1Is 7 less than 4? No. Execute STEP2.

Before STEP3 (STEP2 terminated abnormally):

1. Is 5equal to 4? No.

2. Is EVEN or ONLY specified in STEP3? Yes.

3. Is 20 greater than 4? Yes. Bypass STEP3.

Before STEP4:

1. Is 5 equal to 47 No.

2. Is EVEN or ONLY specified in STEP4? Yes.

3. Are any of the preceding return codes equal to 3?7 No. Execute STEP4.
Before STEPS (STEP4 produced a return code of 6):

1. Is Sequal to 6 or 47 No.

2. Is 2 less than the return code of STEP3? STEP3 was bypassed and did not produce a
return code, so this test is ignored.

3. Is EVEN or ONLY specified in STEP5? No. Bypass STEPS.
Before STEP6:

1. Is 5equal to 6 or 4?7 No.
2. Is EVEN or ONLY specified in STEP6? No. Bypass STEPS6.

Before STEP7:
1. Is 5equal to 6 or 4? No.
2. Is EVEN or ONLY specified in STEP7? Yes.

3. Is 6 equal to the return code of STEPS? STEPS was bypassed and did not produce a
return code, so this test is ignored. Execute STEP7.

Before STEP8 (STEP7 produced a return code of 5):

1. Is5Sequaltos, 6, or 4?7 Yes. Bypass STEP8 and STEP9.

//ABC JOB 12345,COND=(5,EQ) Return Code

//STEP1 EXEC PGM=A 4
//STEP2 EXEC PGM=B,COND=(7,LT) ABEND
//STEP3 EXEC PGM=C,COND=((20,GT,STEP1) ,EVEN) -

//STEP4 EXEC PGM=D,COND=((3,EQ),ONLY) 6
//STEPS EXEC PGM=E,COND=(2,LT,STEP3) -
%/STEPG EXEC PGM=F -
//STEPT EXEC PGM=G,COND=((6,EQ,STEP5) ,ONLY) 5
%/STEPB EXEC PGM=H, COND=EVEN -

//STEPQ EXEC PGM=I -

Figure 5-2. Using the COND Parameter within a Failing Step

Using the COND Parameter within Cataloged Procedures

When the job step uses a cataloged procedure, you can establish return code tests and the
EVEN or ONLY subparameter for a procedure step by including, as part of the keyword
COND, the procedure stepname. For example:

COND.procstepname=condition codes

This specification overrides the COND parameter in the named procedure step, if one is
present. You can code as many parameters of this form as there are steps in the cataloged
procedure. For example, the following EXEC statement passed COND parameters to two
procedure steps of a cataloged procedure named PROC4. The name of the two procedure steps
are STEP4 and STEP6.

//TEST EXEC PROC=PROC4,COND.STEP4=((7,LT,STEP1),

// (5,EQ) ,EVEN) ,COND.STEP6=((2,EQ),
// (10,GT,STEP4))

To establish one set of return code tests and the EVEN or ONLY subparameter for all steps in
a procedure, code (on the EXEC statement that invokes the procedure) the COND parameter

Chapter 5. Guide to Job and Step Control 5-13

without a procedure stepname. This specification replaces all COND parameters in the
procedure, if any are present. For example:

//TEST EXEC PROC4,COND=((7,LT,STEP1),(5,EQ))

The stepname you specify in the condition, for example, STEP2 in (5,EQ,STEP2), can be the
name of either a preceding procedure step in the cataloged procedure or of a preceding step in
the job.

Note: Do not use the same stepnames for EXEC statements in your job as those used for
procedure steps in any cataloged procedure used in that job.

You can also test the return code produced by a procedure step of another cataloged procedure
that this job uses. To do this, code the COND parameter with the following format.

COND.procstepname=(codes, stepname.procstepname)

The following example illustrates this use of the COND parameter. -

Your job contains

Cataloged Procedure
PROCA

/TWO EXEC PROCA ; : ©

) ® ® JJEDIT EXEC

Cataloged Procedure

: : ‘ ‘ ~ PROCB
J/THREE EXEC PROCB,COND.ST3= (OLT.TWOEDIT) | - ®
- ® 0300 ||

//ST3 EXEC

1 Previous step in your job that calls the cataloged procedure containing the procedure step that issues the return
code you want the system to test.

2 Cataloged procedure called by previous step in your job.
3 Procedure step that issues the return code you want the system to test.

4 Cataloged procedure, called by this step in your job, that includes the procedure step you want the system to
bypass based on the return code tests.

5 Procedure step you want the system to bypass based on return code tests.

6 The return code test the system performs. (If 10 is less than the return code issued by procedure step EDIT,
bypass procedure step ST3.)

5-14 MvsIJCL

You can direct the system to bypass all steps in a procedure by coding the COND parameter
without a procedure stepname. In the above example, if you want the system to bypass the
entire PROCB cataloged procedure when 10 is less than the return code issued by step EDIT of
cataloged procedure PROCA, code:

//THREE EXEC PROCB,COND=(10,LT,TWO.EDIT)
Notes:

1. When a job step that contains the EVEN or ONLY subparameter references a data set that
was to be created or cataloged in a preceding step, the data set (1) will not exist if the step
creating it was bypassed, or (2) may be incomplete if the step creating it abnormally
terminated.

2. It is meaningless to specify the COND parameter for the first step of a job.

Using the COND Parameter to Force Step Execution

Normally, when you code the COND parameter on an EXEC statement, you are instructing the
system to bypass execution of this step if the return code tests are satisfied.

There might be a job step that you want the system to execute (rather than bypass) if the return
code tests are satisfied. For example, you might want to execute a step that cleans up data sets
if an earlier step executes but issues a return code that indicates there might be a problem that
could cause job failure in a later step.

You can use the COND parameter on an EXEC statement to force the system to execute
(rather than bypass) a step if any return code tests are satisfied by adding an extra step to your
job. To do this,

1. code an additional EXEC statement that executes program IEFBR14.

2. code on this EXEC statement a COND parameter with condition codes that specify the
conditions under which you want the system to execute the original step. (These codes will
cause the system to bypass this step.) '

3. On the step you want to execute, code: COND = (0,EQ,stepname) where stepname is the
name of the step that executes program IEFBR14.

The following example illustrates using the COND parameter to instruct the system to execute a
job step if return code tests are satisfied.

//jobname JOB
//STEP1 EXEC

//STEP2 EXEC

//STEP3 EXEC

-

//TESTCODE EXEC PGM=IEFBR14,COND=(8,LE)
//CLEANUP EXEC PGM=PROB,COND=(0,EQ,TESTCODE)

Chapter 5. Guide to Job and Step Control 5-15

1. The COND parameter on job step TESTCODE specifies: if any preceding step issues a
return code less than 8, execute this step. (If 8 is less than or equal to the return code
issued by any preceding step, bypass this step.)

2. The COND parameter on step CLEANUP specifies: if step TESTCODE issues a return
code equal to 0, bypass this step.

3. Step CLEANUP will execute only if step TESTCODE is bypassed because program
IEFBR14 always issues a return code of 0 when it executes.

4. Ifstep 1, 2, or 3 issues a return code of 8 or greater, step TESTCODE is bypassed and step
CLEANUP will execute.

5. Ifstep 1, 2, or 3 issues a return code of less than 8, step TESTCODE will execute issuing a
return code of 0 and the system bypasses step CLEANUP.

Limiting Job and Job Step Execution Time

The TIME parameter specifies the maximum amount of time a job may use the processor. Two
benefits of the TIME parameter are that it allows you to find out through messages how long
the job uses the processor (processor time used appears on the output listing), and it helps limit
the processor time wasted by a step that goes into a loop. Normally, the system terminates a
job that exceeds its time limit.

The format of the TIME parameter on the JOB and EXEC statements is:

TIME={1440]| ([minutes][,seconds])}

Code 1440 if the job can use the processor for 24 hours or more, or code 1440 if any of the
job’s steps should be allowed to remain in a wait state for more than the established time limit.

Coding TIME = 1440 also lifts the restrictions on the amount of time a job step may remain in
a wait state. With System Management Facilities, the installation determines this time limit. In
this case, a job step remaining in a wait state for more than the established time limit causes
termination of the job unless a user-provided exit routine extends the wait-state time limit for
that step.

Replace the term “minutes” and “seconds” with the maximum number of minutes and seconds
that the step can use the processor. The number of minutes must be less than 1440 (24 hours);
the number of seconds must be less than 60. That is, the maximum time you can specify is
TIME = (1439,59).

If you code the processor time limit in minutes only, you need not code the parentheses. For
example, code twelve minutes as

TIME=12

If the processor time limit is given in seconds only, you must code both the parentheses and a
comma to indicate the absence of minutes. For example, code “thirty seconds” as:

TIME=(,30)

5-16 MVSICL

Because the processor time-used field is checked at intervals of about 10.5 seconds, the actual
amount of time that a job uses the processor can exceed the time specified on the TIME
parameter by up to 10.5 seconds.

A job that exceeds the specified limit causes termination of the job unless you use a user exit
routine to extend the time. '

TIME =0 is not supported for the JOB statement. The results are unpredictable.

If you code TIME=0 on an EXEC statement, the step will fail after the unexpired time from
the previous step is used up.

If the TIME parameter is coded on the JOB statement with a value other than 1440, the time
limit for each step is set to the step time limit (the value coded on the TIME parameter of the
EXEC statement or the limit specified by the installation) or the remaining job time, whichever
is smaller.

If the TIME parameter is not coded on the JOB statement, each job step is timed individually
according to the value coded on the TIME parameter of the EXEC statement or the limit
specified by the installation.

The time limit specified for a job or the time remaining for successive steps in a multistep job is
converted, by the system, to seconds and then rounded to the nearest unit (1 unit=1.048576
seconds). Thus a step can begin execution with up to-one-half unit more or one-half unit less
time than expected. For example, if the time remaining for the job is less than one-half unit, a
step will begin execution with zero time, resulting in an abnormal termination.

If you omit the TIME parameter on the JOB statement, there is no processor time limit
assigned to the job; however, each job step is still timed. You can specify different processor
time limits for each step in the job by coding the TIME parameter on the EXEC statement
associated with each step, as described below. \

Using the TIME Parameter for Cataloged Procedures

When the job step uses a catalo.ged'p’ro'eedure, you can set a processor time limit for a single
procedure step by including, as part of the TIME parameter, the procedure stepname. For
example:

//stepname EXEC PGM=program-name,TIME.procstepname=1440

This specification overrides the TIME parameter in the named procedure step, if one is present.
You can code as many parameters of this form as theére are steps in the cataloged procedure.
For example, the following EXEC statement sets a time limit for two procedure steps of a
cataloged procedure named PROCS The name of the procedure steps are ABC and DEF.

//ARA EXEC PROC5 TIME ABC= 20 TIME DEF=(3, 40)

Chapter 5. Guide to Job and Step Control 5-17

Examples of Coding the Time Parameter on JOB and EXEC Statements

//FIRST JOB TIME=2
//STEP1 EXEC TIME=1
//STEP2 EXEC TIME=1

In this example the total job is allowed 2 minutes of execution time and each step is allowed 1
minute. Should either step attempt to execute beyond 1 minute the entire job will terminate
beginning with that step.

//SECOND JOB TIME=3
//STEP1 EXEC TIME=2
//STEP2 EXEC TIME=2

In this example the total job is allowed 3 minutes of execution time. Each step is allowed 2
minutes of execution time. Should either step attempt to execute beyond 2 minutes, the entire
job will terminate beginning with that step. Should STEPI1 execute for 1.74 minutes and STEP2
attempt to execute beyond 1.26 minutes, the job will be terminated because of the 3-minute
time limit specified on the JOB statement.

To set a processor time limit for an entire procedure, code the TIME parameter without a
procedure stepname. This specification overrides all TIME parameters in the procedure if any
are present. For example:

//AAA EXEC PROC5,TIME=20
Specifying the TIME parameter on the JES2 JOBPARM Statement

When you code the TIME parameter on a JES2 JOBPARM control statement, you instruct
JES2 to issue messages to the operator when the job exceeds the estimated execution time.

Controlling Job Queuing through Job Classes and Priorities

One of the most important features of the operating system is its ability to balance the job mix
by recognizing the classes and priorities assigned to jobs.

There can be up to 36 job classes in your installation (two additional classes are reserved for
started tasks and time sharing users). The type of job assigned to each class is arbitrary and
should be determined by each installation. For example, some installations: may assign a class
to each of the following types of jobs:

® 1/O-bound jobs.

@® Processor-bound jobs.

@® Jobs that are being debugged.
[

Jobs that use a particular resource. For example, if there are relatively few tape drives in
your installation, two programs that use that tape drives should not be multiprogrammed.
Therefore, those programs should be assigned to the same job class to avoid their
simultaneous selection. Similarly, if there is a data base that programs must access serially,
Therefore, those programs should be assigned to the same job class to avoid their
simultaneous selection.

5-18 MvsiICL

In general, all jobs of the same characteristics should be in the same class.

The priority assigned to each job determines the order of execution within each class. There
can be up to 15 priorities in each class. The higher the priority (the higher the number), the
sooner your job will be executed.

Your manager or supervisor should tell you which class and priority to assign to your job.

Establishing job processing balance in JES3

The IORATE parameter on the JES3 MAIN statement specifies a value for the job to
determine the mix of jobs for each processor. It defines the relationship between
processor-bound processing and I/O-bound processing for that job. The I/O rate for a job is
expressed as being high, medium, or low. JES3 attempts to provide a balance of
processor-bound and I/O-bound jobs to improve the scheduling of jobs for execution.

The IORATE parameter regulates how a job is scheduled. In contrast, the PERFORM
parameter on either the JOB or EXEC statement regulates how a job executes. The
PERFORM parameter is discussed in “Performance of Jobs and Job Steps in JES3” on
page 5-22.

Assigning a Job to a Job Class in JES2

An installation establishes job classes to group jobs. By assigning jobs to job classes, the
installation tries to avoid contention between jobs that require the same resources by preventing
them from running concurrently; in short, grouping jobs is an attempt to provide a better mix
of jobs for more efficient system use. The installation determines which characteristics are most
important in achieving a good balance of jobs in the computing system.

Assign a job to a job class by coding the CLLASS parameter on the JOB statement. The format
of the CLASS parameter is:

CLASS=jobclass

Replace the term “jobclass” with a letter from A through Z or a number from 0 through 9.
For example, if your job belongs to class C, code

CLASS=C

If you omit the CLASS parameter the default job class is determined by the input device from
which the job entered the system.

Assigning a Job to a Job Class in JES3

A job class describes the type of job being submitted, that is, production, testing, and so forth.
The installation establishes it; the class has no inherent meaning except as the installation has
defined it. It is used by the installation for scheduling jobs on eligible parameter on the JOB
statement, as discussed above, or the CLASS parameter on the JES3 MAIN control statement.
If neither of these parameters is coded, the job will be assigned an installation-defined standard
class default.

Chapter 5. Guide to Job and Step Control 5-19

P
e

Assigning a Priority to a Job for JES2

Within a job class, jobs are selected for execution from the execution queue according to job
priority. Jobs with the same class and priority are placed in the execution queue in the
execution queue in a first-in first-out order. In most cases, JES2 calculates the job’s priority.
However, for certain jobs, you or the operator can assign different priorities. Specify job
priority by coding a JES2 PRIORITY statement or by coding the PRTY parameter on the JOB
statement.

Priority is explicitly stated on a PRIORITY statement. When you do not specify a priority,
JES2 uses the estimated number of cards, lines of output, and the time for job execution,
according to installation algorithms, to calculate the priority. JES2 also uses these factors to
monitor job execution time and output. If you do not code these estimates, JES2 assumes
installation defaults. If your job exceeds any of these estimates, JES2 issues warning messages
to the operator. In some cases, the installation can specify that the operator cancel the job.
For example, an installation might specify that the lower the estimated execution time and
output, the higher the priority. This can enforce programmers specifying the correct amounts
or the job is canceled. JES2 sets a job’s selection priority to 1 following execution if the job’s
execution priority was 12 or less. If the execution priority was greater than 12, JES2 sets the
selection priority to 15.

If you wish to assign a different priority to your job, use the PRTY parameter.

The format of the PRTY parameter on the JOB statement for JES2 is:

PRTY=priority

Replace the term “priority” with an integer from 0 through 15. The highest priority number is
15.

Note: To assign a different priority to a job step, code the DPRTY parameter on the EXEC
statement associated with the step, as described in “Assigning a Dispatching Priority to Job
Steps” on page 5-21. The priority assigned to the job applies to any step that does not use the
DPRTY parameter.

Assigning a Priority to a Job in JES3
Within a job class group, jobs are selected for execution according to job priority. Jobs with
the same priority are placed in a first-in first-out order. Spec1fy job pnonty by coding the
PRTY parameter on the JOB statement.

The format of the PRTY parameter on the JOB statement for JES3 is:

PRTY=priority

Replace the term “priority” with an integer from 0 through 13. The highest priority number is
13.

5-20 MvsICL

Note: To assign a different priority to a job step, code the DPRTY parameter on the EXEC
statement associated with the step, as described in the next section. The priority assigned to the
job applies to any step that does not use the DPRTY parameter.

The operator can change the priority order for jobs by priority aging or by deadline scheduling.
How the operator changes priority is discussed in JES3 Operator’s Library.

Priority aging allows JES3 to increase the priority of a job after JES3 passes over it an
installation-specified number of times. A job can be bypassed because of an insufficient
number of devices or contention for a volume or data set or because there is not enough main

~ storage on an MVS processor. The installation defines priority aging; it you cannot specify it
using JCL.

Deadline scheduling allows you to specify a time of day when the job should be scheduled. If
the job is not scheduled by this time, JES3 will increase the priority of the job at
installation-defined intervals until it is scheduled. For more information on deadline
scheduling, refer to “Deadline Scheduling for JES3” on page 3-27.

In addition to job selection, raising a job’s priority will cause the job to be given preferential
treatment in JES3 device selection. For more information on JES3 device selection, see
“Allocating Data Resources in a JES3 System” on page 6-4.

Assigning a Dispatching Priority to Job Steps

In most jobs, you will want the job’s dispatching priority to default to an automatic priority
group (APG) instead of assigning your own dispatching priority. The automatic priority group
function is an algorithm that the system resources manager uses to attempt to increase system
throughput by dynamically adjusting the dispatching priority of associated address spaces.

If you do assign a dispatching priority, code the DPRTY parameter on the EXEC statement.
In the DPRTY parameter, you can code two values. The system substitutes these values in the
. following formula to form the dispatching priority:

(valuel x 16) + value2 = step's dispatching priority

If you omit the DPRTY parameter completely, the job step is assigned the APG priority. If
valuel is omitted or it is equal to the APG value, the step is assigned the APG priority and any
value you code for value2 is ignored. In this case, value2 is obtained from the Installation
Performance Specification (IPS) using the performance group associated with the job step. (See

- SPL: Initialization and Tuning Guide for information on IPS.) If value2 is not specified in the
IPS, a value of 6 is assigned to value2.

DPRTY Parameter

The format of the DPRTY parameter is:

DPRTY=([valuell [,value2])

Replace both “valuel” and “value2” with a number from 0 through 15.

Chapter 5. Guide to Job and Step Control 5-21

If you do not assign a number to “valuel,” a default value of 0 is assumed. If ydu omit
“valuel” you must code both the parentheses and a comma preceding “value2” to indicate the
absence of “valuel.” For example, if you code: : S

DPRTY=(,5)
a value of DPRTY =(0,5) is assumed.

If you omit “value2” you need not code the parentheses. For example, if yo‘u'coyde:

DPRTY=7

If you omit the DPRTY parameter, the job step is assigned the priority you specified for the
entire job either with the PRTY parameter of the JOB statement, or by default.-

When this step uses a cataloged procedure, you can assign a dispatching priority to a single
procedure step by including, as part of the DPRTY parameter, the procedure stepname, that is,
DPRTY .procstepname. This specification overrides the DPRTY parameter in the named
procedure step, if one is present. You can code as many parameters of this form as there are
steps in the cataloged procedure. For example, the following EXEC statement is used to. = ..
establish a dispatching priority for two procedure steps of a cataloged procedure named
PROC6. The names of the procedure steps are UP and DOWN.

//STEP9 EXEC PROC6,DPRTY.UP=(,8),DPRTY.DOWN=(4,6)

To assign a single dispatching priority to an entire cataloged procedure, code the DPRTY
parameter without a procedure stepname. This specification overrides all DPRTY parameters
in the procedure, if any are present. For example: -

//STEP9 EXEC PROC=PROC6,DPRTY=(5,9)

Performance of Jobs and Job Steps in JES2

You can associate a job or job step with any one of several performance group definitions.
Performance group definitions that the installation supplies describe the workload-dependent
processing rate the system should afford to an associated job or job step. Most performance
group definitions prescribe good processing rates under light system workload conditions.
However, when the system workload is moderate or heavy, some performance group definitions
will specify significantly lower processing rates than for other performance groups.

The installation defines the number and definition of performance groups needed to meet the
response requirements of its various users and will probably publish this information for your
use. Make the performance group association with the job or job step by coding an
appropriate performance group number on the PERFORM parameter of the JOB or. EXEC
statement.

For further information concerning performance, refer to SPL: Initialization and Tuning Guide
and to SPL: JES2 Imtzalzzatzon and Tuning.

5-22 MVS JCL

Perforniance of Jobs and Job Steps in JES3

To regulate the execution performance of a job in JES3, associate a job or job step with a
performance group. The installation defines performance groups that determine the rate at
which a given job will have access to the processor, storage, and I/O channels. Most
performance groups designate good processing rates under light system workload conditions.
However, when the system workload is moderate or heavy, some performance groups will have
significantly lower processing rates than others. The installation defines the performance
groups needed to meet the response requirements of its various users and will probably publish
this information for your use. Associate the performance group with a job or job step by
coding a performance group number on the PERFORM parameter on the JOB or EXEC
statements. The PERFORM parameter regulates how a job executes as contrasted with the
MAIN IORATE parameter that regulates how a job is scheduled. The IORATE parameter is
described in the section, “Establishing job processing balance in JES3” on page 5-19.

For further information concerning system performance, refer to SPL. Initialization and Tuning
Guide and to JES3 SPL: Initialization and Tuning.

Requesting Storage for Execution

In MVS, the storage available for a program consists of real storage and virtual storage:

® Real storage is the storage from which the central processing unit can directly obtain
instructions and data and to which it can directly return results.

@ Virtual storage is addressable space that appears to the user as real storage, from which
instructions and data are mapped into real storage locations. The user address space is 16
million bytes. The user address space consists of the commonly addressable system storage,
the nucleus, and the private address space (which includes the user’s region).

When a program is selected, it is brought into virtual storage and divided into pages (a page is
4K bytes). The supervisor component of MVS is responsible for transferring pages of a
program into real storage for execution. This paging is done automatically by the supervisor;
to you, it appears as if the entire program exists in real storage.

Usually you assign a region size through the REGION parameter of the JOB statement, as
described below. In this case, each step of the job will be executed in that region. You can,
however, specify a different region size for each step in the job using the REGION parameter
of the EXEC statement. This is desirable in cases where different steps need a greatly different
region size. .

When to Request Real Storage

For most programs, the supervisor transfers pages of a program to real storage as they are
required for execution; not all pages of a program are necessarily in real storage at one time
and the pages that are in real storage at once do not necessarily occupy contiguous space.
Certain programs, however, must have all their pages in contiguous real storage while they are
executing; they cannot be paged during execution. Such prograrhs include:

@ Programs that modify a channel program while it is active
® Programs that are highly time dependent

Chapter 5. Guide to Job and Step Control 5-23

These programs must be put into an area of virtual storage called the nonpageable dynamic
area, whose virtual addresses are identical to real addresses; they are the only programs for
which you should request real storage. If a job or job step must not be paged during execution,
identify it by coding ADDRSPC=REAL on cither the JOB or the EXEC statement Request
the amount of real storage needed via the REGION parameter.

Specifying Storage Requirements with the REGION Parameter

The meaning of the REGION parameter differs depending on whether the program can be
paged during execution (if ADDRSPC=VIRT is coded or implied) or cannot be paged during
execution (if ADDRSPC=REAL is coded).

Virtual Storage Requirements

When ADDRSPC=VIRT is coded or implied, two values are established internally from either
the REGION parameter or an installation-supplied default. When ADDRSPC=REAL is
coded, one value is established internally from either the REGION parameter or the
installation-supplied default. These internal values are used to limit all GETMAINSs. : (For
further information, see SPL: Job Management, Supervisor Services and Macro Instructions, and
the sections on the ADDRSPC and REGION parameters in this publication.)

The amount of space requested must include any additional requests the program makes during
its execution (for example, a request made with the GETMAIN macro instruction). Also, the
amount of storage requested must include sufficient space for the task termination function.
Task termination invokes certain system resource managers that can issue GETMAIN macro .
instructions for space in the user’s region. The region must have enough unallocated storage
during task termination to allow the task termination function to complete.

If you do not specify the REGION parameter when ADDRSPC=VIRT is coded or implied,
the installation provides a default region size. That value, or if coded, the value specified on
the REGION parameter, sets the upper boundary to limit region size for variable-length
GETMAINs. In addition, an IBM- or installation-supplied routine {EALIMIT) uses the
region value to establish a second value, which the system uses to limit fixed-length and
variable-length GETMAINs when the space remaining in the region is less than the requested
minimum. When the minimum requested length for variable-length GETMAINSs causes this
second value to be exceeded, the job or job step abnormally terminates. For further
information, see Supervisor Services and Macro Instructions.

Real Storage Requirements

When ADDRSPC=REAL is coded, the minimum region size must be 8K if the program to be
executed is reenterable and resides in an authorized library. In all other cases the minimum
region size must be 12K. Note that this is the minimum region for successful execution, but not
necessarily the minimum region size for successful job completion. If you are going to run
programs in an ADDRSPC=REAL environment, have them perform as much clean-up as
possible before terminating. o

When a job step uses a cataloged procedure, you can request a region size for a single
procedure step by including, as part of the region parameter, the procedure stepname For
example: o

REGION.procstepname=valuekK

5-24 MvSICL

This specification overrides the REGION parameter in the named procedure step, if one is
present. You can code as many parameters of this form as there are steps in the cataloged
procedure. For example, the following EXEC statement is used to assign region sizes to two
procedure steps of a cataloged procedure named PROCS8. The names of the procedure steps are
FIRST and SECOND.

//STEP EXEC PROCS,REGION.FIRST=750K
// REGION.SECOND=700K

To request a single region size for an entire cataloged procedure, code the REGION parameter

without a procedure stepname. This specification overrides all REGION parameters in the
procedure, if any are present. For example:

//STEP EXEC PROC=PROC8,REGION=650K

Note: 1f you have specified a REGION parameter on the JOB statement, REGION
parameters on the job’s EXEC statements are ignored.

The REGION Parameter
The REGION parameter allows you to request:

® The maximum amount of storage to be allocated to the job. This figure must include the
size of those components that are required by your program and are not resident in storage.

The format of the REGION parameter is:

REGION=valueK

® Code an even number for valueK. If you code an odd number, the system treats it as the
next highest even number.

@® When you want to specify a different region size for each job step, code the REGION
parameter on the EXEC statements, instead of the JOB statement.

® If you code the REGION parameter on the JOB statement, REGION parameters coded on
the job’s EXEC statements are ignored.

REGION =0K will get you all the storage available in the private area, that is, from the
top of the system region to the bottom of the common service area (CSA). The resulting
size of the region is unpredictable.

Using the JES3 LREGION Parameter to Define Logical Storage

The LREGION parameter of the JES3 //*MAIN statement allows you to specify the
approximate size of the largest step’s working set in real storage. JES3 uses the LREGION to
improve scheduling on an MVS main processor. However, you should consult your system
programming staff before using LREGION. LREGION values that are too small can cause a
performance degradation. For more information, see the JES3 SELECT initialization statement
in the JES3 SPL: Initialization and Tuning.

Chapter 5. Guide to Job and Step Control 5-25

Example of Requesting Storage

The purpose of this example is to indicate how to request storage for a program when it is
important that it not be paged.

//JOB JOB BROWN,CLASS=D,MSGLEVEL=1

//STEP1 EXEC PGM=REAL,REGION=20K,ADDRSPC=REAL
//DD1 DD DSN=DISK1,DISP=0LD

//STEP2 EXEC PGM=VIRT,REGION=75K,ADDRSPC=VIRT
//DD2 DD DSN=DISK2,DISP=OLD

1. The JOB statement assigns the job to class D and requests the printing of all JCL
statements and messages. ’

2. STEPL is to be executed in real storage.

3. STEP2 is to be executed in virtual storage.

Restarting a Job at a Step or Checkpoint

When a job step abnormally terminates, you may have to resubmit the job for execution; this
means lost computer time and a delay in obtaining the desired results. The operating system
provides restart facilities to reduce the effects of abnormal termination.

If a job step abnormally terminates or if a system failure occurs, the restart facilities allow you
to request that the job step be restarted either at the beginning of the step (step restart) or at
some point within the step (checkpoint restart). Furthermore, restart can occur automatically
after abnormal termination, or it can be deferred until the job is resubmitted. Automatic
restarts are specified with the RD parameter, and deferred restarts with the RESTART
parameter. For detailed information on the checkpoint/restart facilities, see Checkpoint/Restart.

There are two types of restarts:
@ Step restart, from the beginning of a job step.

® Checkpoint restart, from a checkpoint within a job step. You establish checkpoints in a job
step by coding the CHKPT macro instruction for each checkpoint. The CHKPT macro is
described in Data Management Macro Instructions. See also the DD CHKPT parameter.
It specifies that checkpoints are to be taken at end of volume for the data set defined by the
DD statement on which it is coded.

Whether you use step restart or checkpoint restart, the restart facility can be automatic or
deferred.

Automatic restart: To use automatic restart, code the RD (restart definition) parameter on the
JOB or EXEC statement. If you use this facility, the presence of a job journal is required. (A
job journal is established at JES2 initialization, or by coding JOURNAL =YES on the
//*MAIN JES3 statement for JES3, program in execution.) When a system failure occurs or a
job step abnormally terminates, and you have a job journal, the restart facility allows you to
have automatic restart by coding RD=R on the JOB or EXEC statements. If you have taken
checkpoints, the system restarts the job at the last checkpoint regardless of whether you have
coded the RD parameter.

5-26 MVSICL

For JES2, when you code RD =R or RD=RNC, JES2 forces journaling. When a job step
abnormally terminates or a system failure occurs while the job is in execution and you do not
have a job journal, these jobs are ineligible for automatic restart regardless of whether or not
the RD parameter is coded.

For JES3, when a job step abnormally terminates or a system failure occurs while the job is in
execution and you do not have a job journal, these jobs are ineligible for automatic restart
regardless of whether or not the RD parameter is coded.

Deferred restart: To use deferred restart, code the RESTART parameter on the JOB
statement. This required parameter specifies a job step or a step of a cataloged procedure and
can specify a checkpoint identifier if you are using deferred checkpoint restart. The effect of
the parameter is simply to restart the job at the beginning of the specified step or checkpoint.
The SYSCHK DD statement is required when a job is being submitted for deferred checkpoint
restart and must specify explicit UNIT and VOLUME information if the checkpoint data set is
not cataloged.

Refer to Checkpoint/Restart. for a complete description of planning for and using the
checkpoint restart facility.

The RD Parameter on the JOB Statement

A job can be automatically restarted at the beginning of the job step that abnormally
terminated (step restart) or within the step (checkpoint restart). In either case, automatic restart
can occur only if all of the following are true:

1. You use the RD parameter to request restart,

2. The completion code returned during abnormal termination indicates that the step is
eligible for restart, and

3. The operator authorizes restart.

When you code the RD parameter on the JOB statement, the RD parameter applies to all steps
of the corresponding job and overrides the RD parameter you code on any EXEC statements of
the job.

A request for an automatic checkpoint restart (issuing the CHKPT macro instruction) overrides
a request for automatic step restart (coding RD=R on a JOB or EXEC statement).

Use the RD (restart definition) parameter to specify that the operator is to perform automatic
step restart if job failure occurs. You can also use the RD parameter to suppress, partially or
totally, the action of the CHKPT macro instruction. The format of the RD parameter on the
JOB statement is:

RD={R|RNC|NC|NR}

When you do not code the RD parameter, the job is eligible for automatic checkpoint restart if
your program has requested checkpoints using the CHKPT macro instruction. However, the
job is not eligible for automatic step restart.

Chapter 5. Guide to Job and Step Control ~ 5-27

When you code RD=R or RD=RNC on either the JOB or EXEC statements JES2 forces =
journaling.

The RESTART Parameter on the JOB Statement

Use the RESTART parameter to perform a deferred restart of a job. You can specify that the
system restart at a step (deferred step restart), or within the step at a checkpoint taken with the
CHKPT macro instruction (deferred checkpomt restart) The format of the RESTART
parameter is:

RESTART=({*|stepname|stepname.procstepname}[,checkid])

Using the RESTART parameter.
Before resubmitting a job,

@ Check all backward references to steps that precede the restart step. Eliminate all
backward references for the following keywords:

— PGM on EXEC statements, and
— VOLUME=REF= reference on DD statements

@ Carefully review all EXEC statements that contain the COND parameter. If any of the
COND parameters contain values that refer to a step preceding the restart step, be aware
that the system ignores the COND parameters for these steps. -

Using the RESTART parameter With Generation Data Sets

In the restart step or in steps following it, do not use the original relative generation numbers to
refer to generation data sets that were created and cataloged in steps preceding the restart step.
Instead, refer to a generation data set by its present relative generation number. For example,
if the last generation data set created and cataloged was assigned a generation number of +2,
refer to it as 0 in the restart step and in steps following the restart step. If generation data set
+1 was also created and cataloged, you would refer to it as -1.

If generation data sets created in the restart step were kept instead of cataloged (that is,
DISP=(NEW,CATLG,KEEP) was coded and abnormal termination occurred), refer to

generation data sets during checkpoint restart by the same relative generation numbers that you
used to create them.

The RD Parameter on the EXEC Statement

Use the RD (restart definition) parameter to specify how the step restart facilities are used with
the CHKPT macro instruction, and whether you want to permit or suppress automatic restart.

For detailed information on the checkpoint/restart facilities, refer to Checkpoint/Restart.

. The format of the RD parameter on the EXEC statement is:

RD[.procstepname]={R|RNC|NC|NR}

5-28 MvVSICL

Using the RD Parameter

Automatic restart will not be honored if you do not have a job journal. The journal data set in
JES3 is used if one of the following exists:

® RD= is specified on the JOB or EXEC statement
® JOURNAL=YES is specified on the JES3 MAIN statement

® JOURNAL=YES is specified on the CLASS initialization statement for this job, and the
JES3 MAIN statement did not override it

If you code the RD parameter on the JOB statement, any RD parameters coded on the job’s
EXEC statements are ignored and the value coded on the JOB statement is effective for all
steps.

You can use the RD parameter values NC and RNC to suppress the action of the CHKPT DD
parameter.

The JES2 RESTART Parameter

If your job is executing before a re-IPL and you warm start JES2, and your job cannot restart
from a step or checkpoint, code the RESTART parameter on the JES2 JOBPARM control
statement.

The JES3 FAILURE Parameter

The FAILURE parameter on the JES3 MAIN control statement tells JES3 what action to take
if a system failure occurs.

Chapter 5. Guide to Job and Step Control 5-29

5-30 MvsIcL

Chapter 6. Guide to Data Allocation Control

This chapter discusses how to direct the system in its allocation of data resources. The
discussion covers the following:

Using JES3 spool partitioning

Controlling access to RACF-protected data sets
Dynamically allocating and deallocating data sets
Allocating data resources in a JES3 system

Using JES3 Spool Partitioning

When the system reads a job, it initially places the job on a spool volume or volumes. An
installation can divide its spool volumes into groups, known as partitions. Depending on how
your installation defines its partitions, you can make the system aliocate all the spool data for a
particular job or all the spool data of a particular type, such as input, output, etc., to the spool
volume or volumes in a specified spool partition. Thus, you can prevent JES3 from spreading a
job’s spool data sets across all spool volumes.

See JES3 SPL: Initialization and Tuning for details on how the installation initializes the spool
partitions and how JES3 allocates a job’s data sets to the partitions.

The following examples illustrate how to guide JES3’s use of spool partitions during job
execution.

//ONE JOB

//*MAIN

//STEP1 EXEC

//OUT1 DD SYSOUT=N
//OUT2 DD SYSOUT=S

No SPART parameter is specified on the MAIN statement. Therefore, this job’s input spool
data sets are allocated to the default spool partition (PARTA). Because there is no spool
partition specified for SYSOUT =N, these output spool data sets are allocated to the default
spool partition (PARTA). However, if this job executes on the processor named SY2, output
spool data sets for SYSOUT =N are allocated to spool partition PARTC as specified on the
JES3 MAINPROC initialization statement associated with the processor named SY2. Output
spool data sets for SYSOUT =S are allocated to spool partition PARTD as specified on the
SYSOUT initialization statement associated with the class name S.

//TWO JOB
//*MAIN CLASS=IMSBATCH
//STEP1 EXEC
//OUT1 DD SYSOUT=N
//OUT2 DD SYSOUT=S

Chapter 6. Guide to Data Allocatior ~ontrol 6-1

No SPART parameter is specified on the MAIN statement. However, because a class is
specified on the MAIN statement, this job’s input spool data sets are allocated to the spool
partition specified on the CLASS initialization statement associated with IMSBATCH
(PARTB). Because there is no spool partition specified for SYSOUT = N, these output spool
data sets are allocated to the spool partition specified on the CLASS initialization statement
associated with IMSBATCH (PARTB). Output spool data sets for SYSOUT =S are allocated
to spool partition PARTD as specified on the SYSOUT initialization statement associated with
the class name S.

//THREE JOB
//*MAIN CLASS=IMSBATCH,SPART=PARTE
//STEP1 EXEC
. //OUT DD SYSOUT=N
//0UT2 DD SYSOUT=S

This job’s input spool data sets are allocated to the spool partition specified by the SPART
parameter on the MAIN statement (PARTE) overriding the partition defined by the JES3
CLASS initialization statement. Because there is no spool partition specified for SYSOUT =N,
these output spool data sets are allocated to the spool partition specified by the SPART
parameter on the MAIN statement (PARTE). Output spool data sets for SYSOUT =S are
allocated to spool partition PARTD as specified on the SYSOUT initialization statement
associated with the class name S.

Controlling Access to RACF-Protected Data Sets

The IBM Resource Access Control Facility (RACF) is a program product that helps
installations achieve data security by controlling access to data sets. When the data sets a job
uses are RACF protected, the USER and PASSWORD parameters may be required on the JOB
statement to gain access to protected data sets.

For example:

//MINE JOB D58,TOM,USER=userid,PASSWORD=pswd

The USER parameter identifies the RACF-defined user and the PASSWORD parameter
identifies the user’s current password. '

Depending on the RACF options an installation has chosen, a user may also be required to
specify a RACF group name on the JOB statement in order to access some RACF-protected
resources. When an installation determines that this is necessary, you must code the GROUP
parameter in addition to the USER and PASSWORD parameters.

For example:

//YOURS JOB D58,CHERI,USER=userid,PASSWORD=pswd, GROUP=groupname
Depending on the installation’s procedures, the USER, PASSWORD, and GROUP parameters

may be omitted for jobs submitted through the internal reader by RACF/TSO users or directly
by other jobs.

6-2 MVSIJL

For more information about coding these parameters, see “GROUP Parameter” on page 10-12,
“PASSWORD Parameter” on page 10-20, and “USER Parameter” on page 10-41. For more
information about RACF, see Resource Access Control Facility (RACF) Security
Administrator's Guide.

Dynamically Allocating and Deallocating Data Sets

Dynamic allocation allows you to acquire resources as they are needed. One reason to use
dynamic allocation is that you may not know all of the device requirements for a job prior to
execution. Another reason is that it allows the system to use resources more efficiently; that is,
the system can acquire resources just before their use and/or release them immediately after use.
(Resources, as used here, refer to a ddname-data set combination with its associated volumes
and devices, if any.) The DYNAM DD statement parameter and DYNAMNBR EXEC
statement parameter indicate the number of dynamic allocations to be held in anticipation of
reuse. The system uses these indicators to establish a control limit for tracking resources that it
is holding in anticipation of reuse.

Use the DYNAMNBR parameter on the EXEC statement to replace the DD DYNAM
statements you would have to code. The format of the DYNAMNBR parameter is:

//stepname EXEC PGM=program-name, DYNAMNBR=n

Where n is the number of DD DYNAM statements you would otherwise have to code.’

When you code the DYNAMNBR parameter and DD statements, the system uses the sum of
the number of DD statements and the DYNAMNBR value to determine the limit of resources
it is to hold in anticipation of reuse.

You can dynamically deallocate resources during the execution of a job step (at the time the
data set is closed) by coding the FREE =CLOSE parameter on a DD statement.

There are some circumstances when you should not code the FREE parameter.

® The data set name is referenced in a subsequent step.
® The data set name is referenced in another DD statement in the same step.

Do not use the FREE parameter for a data set if a subsequent DD statement requests unit
affinity to this DD statement. For example, do not code the following:

//DD1 DD DSN=dsname,DISP=0LD,UNIT=TAPE,VOL=SER=111111,FREE=CLOSE
//DD3DD DISP=(,KEEP),DSN=dsname2,UNIT=AFF=DD1

For more information on coding the FREE parameter, sece “FREE Parameter” on page 12-84.
If you do dynamically deallocate a resource at close time, it cannot be reopened in the same
step. If you do not want to dynamically deallocate the resource, either specify nothing or

specify FREE=END to let the system deallocate the resources at the end of the job step.

For more information on how to use dynamic allocation and deallocation and the control
limit, see SPL: Job Management.

Chapter 6. Guide to Data Allocation Control 6-3

Example of Dynamically Deallocating Data Sets

//PROS JOB CLASS=A,MSGLEVEL=(2,0),PERFORM=70
//STEP1 EXEC PGM=TEST,DYNAMNBR=4,PARM=(P3,123,MT5)
//OUT1 DD SYSOUT=C,FREE=CLOSE

//OUT2 DD SYSOUT=A

//SYSIN DD *

data

/*
1. The JOB statement specifies that this job will be processed in class A in performance group

70. Only JCL statements will be printed.

2. The control limit is the sum of the number of DD statements coded and the value coded in the

’ DYNAMNBR parameter; in this case, seven. If this control limit is exceeded and a request
for another dynamic allocation is made, the request is not honored unless resources can be
deallocated so that the control value is not exceeded.

3. When OUT!I is closed, it is immediately ready for printing.

Allocating Data Resources in a JES3 System

Data resources, that is, the devices, data sets, and volumes required for each DD statement
request, are allocated either by JES3 or by the system according to the DSNAME, DISP,

"UNIT, and VOLUME parameters on the DD statement. Allocation is handled differently for
existing and new data sets and for devices managed by the system, JES3, or jointly. Allocation
requires access to the catalog. '

Existing data sets: If you request an existing data set, data resources are allocated differently
according to how the required or specified device is managed:

@ A JES3-managed device: JES3 allocates the request before the job executes. For this
allocation, JES3 examines the request in relation to other data requests in this and other
jobs. . : "

® A MVS-managed device: The system allocates the request as the step enters execution.

JES3 does not allocate direct access storage (DASD) space.

Foral ES3-managed device, you can change the way JES3 handles the allocation by specifying
the SETUP parameter on the JES3 MAIN statement. See “Types of JES3 Setup” on-page 6-5.

New data sets: If you request a new nonspecific data set and you require or specify a
JES3-managed unit:

@® JES3 allocates all tape and MSS requests.
® If you code PRIVATE in the VOLUME parameter, JES3 allocates all DASD requests.

6-4 MVSICL

Device Management: In a JES3-controlled complex, devices are managed in three ways:
MVS-managed, jointly managed (JES3/MVS), or JES3-managed. The following chart shows
how each type of device can be managed.

Attribute of Device
How Managed
Permanently Resident Removable
MVS managed only X X
Jointly managed (JES3/MVS) X
JES3-managed only X

JES3 allocates JES3-managed devices and jointly managed devices. MVS allocates
MYVS-managed and jointly managed devices. The system programmer defines how each device
is managed. Refer to “Requesting Units and Volumes” on page 7-24 for a brief discussion of
MYVS allocation. Refer to SPL: Job Management for additional information on MVS
allocation and to JES3 SPL: Initialization and Tuning for additional information on JES3
allocation.

Catalog Access: To allocate data resources, JES3 accesses the catalog at job setup time,
whereas MVS accesses the catalog at step execution time. After job setup and before step
execution, the catalog can be changed by, for example, an IBM utility, user utility, or SVC
routine. Because JES3 and MVS access the catalog at different times, such catalog changes can
cause unpredictable results. Therefore, you must make sure that the catalog remains the same
from job setup until job execution.

Types of JES3 Setup

JES3 allocates devices in three different ways: job setup, high watermark setup, and explicit
setup.

Job setup: Job setup results in allocation of all the JES3-managed and jointly-managed devices
required in the job before the job executes.

To obtain job setup, specify SETUP=JOB on the MAIN statement. If you specify MSS=JOB
on the MAIN statement, JES3 allocates all mass storage system (MSS) requests. However,
JES3 never mounts or demounts MSS volumes.

JES3 mounts the initial volumes necessary to run all steps before the job executes.

When volumes are no longer needed, they will be demounted and the devices deallocated, that
is, made available for use by another job. If you spécify the FREE =CLOSE DD parameter,
JES3 deallocates the device when the data set is closed. If you are using the dequeue at
demount facility (early volume release) for multivolume data sets, JES3 deallocates volumes
when they are demounted. For information on the dequeue at demount facility, see the
TYPE=1J OPEN macro option in SPL.: Data Management.

Chapter 6. Guide to Data Allocation Control = 6-5

High watermark setup:: High watermark setup results in JES3 reserving for a job the highest
number of devices of each type needed for any one job step. High watermark setup does not
cause premounting of all mountable volumes. When you must use fewer devices for a job, high
watermark setup is better than job setup.

To obtain high watermark setup, specify one of the following:

® For tape, direct access devices, graphics, and unit record devices, SETUP =HWS on the
MAIN control statement for the job.

@® For tapes only, SETUP=THWS on the MAIN control statement for the job.

@ For direct access devices only, SETUP=DHWS on the MAIN control statement for the
job. .

® For MSS devices, MSS=HWS on a MAIN control statement for the job.

® SETUP=THWS, SETUP=DHWS, or SETUP=HWS on the STANDARDS initialization
statement, if the SETUP or MSS parameter is not specified on a MAIN statement.

@® MSS=HWS on the SETPARM initialization statement, if the SETUP or MSS parameter is
not specified on a MAIN statement.

High watermark setup, like job setup, causes devices, volumes, and data sets to be returned to
JES3 for use by other jobs as soon as the resource is deallocated in the last step using it.

In the high watermark setup shown in Figure 6-1 on page 6-7, volume A is mounted for use in
STEP! and then demounted until needed in STEP4. Volume K is mounted for use in STEP1
and STEP2 and then demounted until needed in STEP4. When needed in STEP4, volumes A
and K are mounted on any available device.

Explicit setup: Explicit setup is user directed. It uses the number of devices required by job
setup, but premounts volumes according to the explicit setup specifications.

To obtain explicit setup, specify one of the following:

® SETUP=ddname on the MAIN statement, where ddname is the request that JES3 is to use
for this setup.

@® SETUP=/ddname on the MAIN statement, where ddname is the request that JES3 is to
remove from consideration for this setup.

An advantage of explicit setup over high watermark setup is that you can force volumes to stay
mounted on devices until they are no longer needed. A disadvantage of explicit setup is that
JES3 does not deallocate devices early: JES3 allocates a certain number of'devices before job
execution and does not deallocate any until the job completes execution. In contrast, JES3
using job setup and high watermark setup can deallocate devices at the end of any step, if the
devices are no longer needed.

In the explicit setup shown in Figure 6-1 on page 6-7, four devices are allocated for both tape
and disk instead of the three allocated using high watermark setup. When you explicitly
request that JES3 mount certain volumes, the volumes you specify, for example volumes A and
K, are not deallocated and remounted for the last step.

6-6 MVSICL

Three Types of JES3 Setup

Job Setup High Waterlmar k Explicit Setup
(SETUP=J0B) Setup (SETUP=ddname)
(SETUP=HWS)

Devices and Volumes to be Allocated

Tape Disk Tape Disk Tape Disk

Volumes on Devices Set Up Prior to alslclple|FlkiLIm|n|olAlB|D]kILIN|AlB[C|D|K|L|{M|N
Execution)

Steps in a Job?

STEP1 tape volume=A, B
disk volume=K, L

STEP2 tape volume=B,C, D
disk volume=K

STEP3 tape volume=D ¢ .
disk volume=L, M, N ' '

STEP4 tape volume=A, E, F ' v ‘ .
disk volume=K, N, O) ® 3

Total devices used by the job for setup 6 Tape 5 Disk 3 Tape 3 Disk 4 Tape 4 Disk

LEGEND:

The device is allocated and in use

The device is allocated but not in use

The device is no longer needed and can be dealtocated

1High watermark setup can express combinations of tape and disk allocations.
HWS request allocation of the minimal number of devices required to run the job.
THWS requests high watermark setup for tapes and job setup for disks.
DHWS requests high watermark setup for disks and job setup for tapes.

2\/olumes mounted after STEP1 are indicated by placing the volume name in the
box for the step in which it is allocated. For example, in high watermark setup,
volume C is mounted at STEP2.

Figure 6-1. Types of JES3 Setup

Altering JES3 Device Allocation: To prevent JES3 from allocating devices before the first job
step begins execution and holding them until a later job step needs them, you can break a
multiple-step job into several smaller, dependent jobs. “Dependent Job Control for JES3: The
Job Net” on page 3-27 tells how to split a job into smaller, dependent jobs.

Chapter 6. Guide to Data Allocation Control 6-7

6-8 MvVSsICL

Part 3. Guide to Data Set Control

The primary functions of JCL DD statements are to describe the characteristics of data sets and
to indicate their location to the system. These functions allow you a great deal of freedom in
writing your programs. For example, if you are writing a program to process paid bills, you do
not have to indicate in your program the size of the input records, or the type of device where
the records are located. You can postpone these definitions until you run the program. At that
time you code the DD statements for the input data sets.

You can debug your program, and then run it several times with different DD statements for
the input record set. In this way you can determine which record size is most efficiently
processed, and whether the input should come from a card reader or a magnetic tape unit. All
your program needs to know to refer to the data set is the name of the DD statement (ddname)
that describes the data set. Each time you execute the program you can use the DD statement
to describe a different data set as long as the ddname remains constant.

You can define data set characteristics within your program so that you will not have to specify
those characteristics that remain constant ‘each time you use a data set. The number and type
of data set characteristics you can specify in your program, rather than in the DD statement,
depends on the language you are using for writing your program. However, regardless of the
facilities of the language you are using, you should only specify in your program those
requirements essential to processing and leave the rest for the DD statement. This gives you
more flexibility in writing the program and places fewer restrictions on any future changes you
may have to make to the program.

All job steps in your job (except those steps that use a cataloged procedure) require DD
statements because every program must have either an input data set, or an output data set,
and, in many cases, work data sets in order to operate. The names of the DD statements
required for IBM-supplied programs, such as compilers and utilities, are predefined and you
must code their parameters according to the rules stated in the publications associated with the
programs.

Only you can determine the DD statements required for your own program. There must be a
DD statement for each data set that you use in your job step that is not dynamically allocated.
DD statements follow the EXEC statement that marks the beginning of the job step. You can
include a maximum of 1635 DD statements in each job step.

Part 3. Guide to Data Set Control

"MVS JCL

If the job step uses a cataloged procedure, you can use a DD statement either to override
parameters in a DD statement in the procedure, or to add a new DD statement to the
procedure. In either case, the modification remains in effect only for the duration of the job
step, it does not change the procedure permanently.

A DD statement must contain the term DD in its operation field. Although all parameters in
the DD statement’s operand field are optional, a blank operand field is invalid except when you
are overriding DD statements defining concatenated data sets in a cataloged procedure.

The parameters in the operand field allow you to specify the following:

Data set information

Unit and volume requests

Data sets for mass storage systems
Space for non-VSAM data sets
Data set processing options

Not all DD statement parameters are needed to define a data set. In fact, you cannot use some
combinations of parameters in the same DD statement.

The valid combinations of DD statement parameters allow you to perform the following
functions:

Create a data set

Retrieve an existing data set
Extend an existing data set
Define special data sets
Postpone definition of a data set

This section describes the ddname and the parameters you need for each of the above functions.
Also discussed are any JES control statement parameters that you can code for a particular
function.

Chapter 7. Guide to Specifying Data Set Information

You must provide certain data set information to enable the system to deal with your data sets.

Specifying the DDNAME Parameter

You use the DDNAME parameter most often in cataloged procedures and in job steps that call
procedures. It is used in cataloged procedures to postpone defining data in the input stream
until a job step calls the procedure. (Procedures cannot contain DD statements that define data
in the input stream; that is, DD * or DD DATA statements). In job steps that call procedures
it is used on an overriding DD statement to postpone defining data in the input stream until the
last overriding DD statement for a procedure step. Overriding DD statements must appear in
the same order as the corresponding DD statements in the procedure.

When You Code the DDNAME Parameter

When the system encounters a DD statement that contains the DDNAME parameter, it saves
the ddname of that statement. The system also temporarily saves the name specified in the
DDNAME parameter so that it can relate that name to the ddname of a later DD statement.
Once a DD statement with that corresponding name is encountered, the name is no longer
saved. For example, if the system encounters this.statement

//XY¥Z DD DDNAME=PHOB

the system saves XYZ and, temporarily, PHOB. Until the system encounters the ddname
PHOB in the input stream, it treats the data set as a dummy data set.

When the system encounters a statement whose ddname has been temporarily saved, it does two
things. It uses the information contained on this statement to define the data set; it associates
this information with the name of the statement that contained the DDNAME parameter. The
value that appeared in the DDNAME parameter is no longer saved by the system. To continue
the above example, if the system encounters this statement

//PHOB DD DSNAME=NIN,DISP=(NEW,KEEP),UNIT=3400-5

the system uses the data set name and the disposition and unit information to define the data
set; it also associates the ddname of the statement that contained the DDNAME parameter
with this information. In this example, the ddname used is XYZ; the ddname PHOB is no
longer saved. The data set is now defined just as it would be if you had coded

//XYZ DD DSNAME=NIN,DISP=(NEW,KEEP) ,UNIT=3400-5
The system associates the ddname of the statement that contains the DDNAME parameter with

the data set definition information. It does not use the ddname of the later statement that
defines the data set. Therefore, any references to the data set, before or after the data set is

Chapter 7. Guide to Specifying Data Set Information 7-1

defined, must refer to the DD statement that contains the DDNAME parameter, not the DD

statement that defines the data set. The following sequence of control statements illustrates
this:

//DD1 DD DDNAME=LATER

//LATER DD DSN=SET12,DISP=(NEW,KEEP),UNIT=3350,
// VOLUME=SER=46231,SPACE=(TRK, (20,5))

//bD12 DD DSN=SET13,DISP=(NEW,KEEP),VOLUME=REF=*,DD1,
// SPACE=(TRK, (40,5))

DD1 postpones defining the data set until the system encounters DD statement LATER.
DD12 must do a backward reference to DD1 because the system associates the data set
information with the DD statement that contains the DDNAME parameter.

When you want to concatenate data sets, the unnamed DD statements must follow the DD
statement that contains the DDNAME parameter, not the DD statement that defines the data
set. The following sequence of control statements illustrates this:

//DDA DD DDNAME=DEFINE
// DD DSN=A.B.C,DISP=OLD
// DD DSN=SEVC,DISP=0OLD,UNIT=3350,VOL=SER=52226

//DEFINE DD *
data
/*

You can use the DDNAME parameter up to five times in a job step or procedure step.
However, each time the DDNAME parameter is coded, it must refer to a different ddname.

‘Specifying the DSNAME Parameter

When creating a data set, use the DSNAME parameter to assign a name to the data set. The
data set name is part of the information stored with the data set on a volume. Later, when
another job step or job wants to use the data set, it identifies the data set name in the
DSNAME parameter; the system uses the data set name to locate the data set on the volume.

How you code the DSNAME parameter depends on the type of data set and whether the it is
nontemporary or temporary.

Note that if you code a data set name ending in .GnnnnVnn (where n=0 to 9) for a tape, your
data set is always treated as part of a generation data group by data management routines. For
more information on generation data groups, see “Creating and Retrieving Generation Data
Sets” on page 8-25.

<72 . MVSJCL

Creating or Retrieving a Nontemporary Data Set
If the data set is nontemporary, you can identify:
@® A permanent data set by coding DSNAME = dsname

@® A member of a nontemporary partitioned data set by coding DSNAME = dsname(member
name)

@ A generation of a nontemporary generation data group by coding
DSNAME = dsname(number)

@® An area of a nontemporary indexed sequential data set by coding DSNAME = dsname(area
name)

Nontemporary Data Sets

When a nontemporary data set is created, it is assigned a name in the DSNAME parameter and
is assigned a disposition of KEEP or CATLG. (A data set assigned a disposition of KEEP may
be assigned a disposition of CATLG by a later job step or job). All other steps and jobs that
want to use the data set must specify the DSNAME parameter using either the data set’s
assigned name or its backward reference.

A nontemporary data set name can be either an unqualified or qualified name. An unqualified
data set name consists of 1 through 8 characters. The first character must be an alphabetic or
national (@,#,9) character; the remaining characters can be any alphanumeric or national
characters, a hyphen, or plus zero (+0). Note that national characters are invalid for
ISO/ANSI/FIPS Version 3 tape data set names.

A qualified data set name consists of 1 through 44 characters (including periods), except when
the qualified name identifies a generation data group. In this case, the data set name may
consist of only 1 through 35 characters (including periods). For each eight characters or less
there must be a period, and the first character of the name and the character following a period
must be an alphabetic or national (@,#,$) character.

When you request a data set that is cataloged on a control volume or a private catalog, the
system attempts to mount this control volume if it is not already mounted. After the system
obtains the pointer to the requested data set, the control volume or private catalog can then be
demounted by the system if the unit on which it was mounted is required by another volume.
The control volume or private catalog is assigned to the job step and is available for disposition
processing when the job step ends.

In the following cases, the control volume or private catalog is not mounted when disposition is
processed:

® The job fails or abnormally terminates and data sets with a conditional disposition of
CATLG or UNCATLG have been passed but not received.

® A job step is deallocated during system warm start.

Chapter 7. Guide to Specifying Data Set Information 7-3

Members of a Partitioned Data Set

A partitioned data set consists of independent groups of sequential records, each identified by a
member name in a directory. When you want to add a member to a partitioned data set or
retrieve a member, specify the partitioned data set name and follow it with the member name.
The member name is enclosed in parentheses and consists of 1 to 8 characters. The first
character must be an alphabetic or national (@,5,#) character, the remaining characters can be
any alphanumeric or national characters. :

Generations of a Generation Data Group

A generation data group is a collection of chronologically related data sets that can be referred
to by the same data set name. When you want to add a generation to a generation data group
or retrieve a generation, specify the generation data group name and follow it with the
generation number. The generation number is enclosed in parentheses and the number is a zero
or a signed integer. A zero represents the most current generation of the group, a negative
integer (for example, -1) represents an older generation; a positive integer (for example, +1)
represents a new generation that has not as yet been cataloged.

To retrieve all generations of a generation data group (up to 255 generations), code only the
group name in the DSNAME parameter and the DISP parameter.

A complete discussion of creating and retrieving generation data sets is contained in “Creating
and Retrieving Generation Data Sets.”

Areas of an Indexed Sequential Data Set
The areas used for an indexed sequential data set are the index, prime, and overflow areas.
When you are creating the data set and define any of these areas on a DD statement, you must
identify the data set name and follow it with the area name you are defining. The area name is
enclosed in parentheses and is either PRIME, INDEX, or OVFLOW. If you are using only
one DD statement to define the entire data set, code DSNAME = dsname or
DSNAME =dsname(PRIME). When you retrieve the data set, you code only the data set
name; you do not include the terms PRIME, INDEX, or OVFLOW.

Creating or Retrieving a Temporary Data Set
If the data set is temporary, you can identify:

@ A temporary data set by coding DSNAME = &&dsname

@® A member of a temporary partitioned data set by coding DSNAME = &&dsname(member
name)

@ An area of a temporary indexed séquential data set by coding DSNAME = &&dsname(area
name)

“7-4 MVS ICL

Temporary Data Sets

Any data set that is created and deleted within the same job is a temporary data set. A DD
statement that defines a temporary data set need not include the DSNAME parameter; the
system generates one for you.

If you do include the DSNAME parameter, the temporary data set name can consist of 1
through 8 characters and is preceded by two ampersands (&&). The character following the
ampersands must be alphabetic or national (@,#,3) characters; the remaining characters can be
any alphanumeric or national characters. (A temporary data set name that is preceded by only
one ampersand is treated as a temporary data set name as long as you do not assign a value to
it either on the EXEC statement for this job step when it calls a procedure, or on a PROC
statement within the procedure. If a value is assigned to it by one of these means, it is treated
as a symbolic parameter).

The system generates a qualified name for the temporary data set that begins with SYS and
includes the Julian date, the time, the jobname, the temporary name assigned in the DSNAME
parameter if specified (or an identifying name and number if not specified), and other
identifying characters.

Note: The time in the system-generated qualified name is the time that the
converter/interpreter is invoked. Because the system invokes the converter/interpreter only once
per job, if you use the same temporary data set name more than once per job, you might get a
JCL error.

If you attempt to keep or catalog a temporary data set (by specifying a disposition of KEEP or
CATLG in the DISP parameter), the system changes the disposition to PASS and the data set
is deleted at job termination. However, this change is not made for a data set on a tape volume
when the following conditions exist:

® The data set is new

@® The data set is not assigned a name

® You specify a status of OLD or SHR in the DISP parameter
® You specify DEFER in the UNIT parameter

The data set is deleted at job termination, but the system tells the operator to keep the volume
on which the data set resided during the job. If you code a conditional disposition for
temporary data sets, it is ignored.

To simplify processing of temporary data sets, see “Using Virtual Input/Output (VIO) for
Temporary Data Sets.”

Members of a Temporary Partitioned Data Set

When adding a member to a temporary partitioned data set or retrieving a member during the
job, specify the partitioned data set’s temporary name and follow it with the member name.
The member name is enclosed in parentheses and consists of 1 through 8 characters. The first
character must be an alphabetic or national (@,3,#) character; the remaining characters can be
any alphanumeric or national characters.

Chapter 7. Guide to Specifying Data Set Information 7-5

Areas of a Temporary Indexed Sequential Data Set

The areas you specify for indexed sequential data set are the index, prime, and overflow areas.
When you are creating a temporary indexed sequential data set and define any of these areas on
a DD statement, you must identify the data set’s temporary name and follow it with the area
name you are defining. The area name is enclosed in parentheses and is either PRIME,
INDEX, or OVFLOW. If you are using only one DD statement to define the entire temporary
data set, code DSNAME = &&dsname or DSNAME = &&dsname(PRIME). If you want to
retrieve the temporary data set on the same job, you code only the data set’s temporary name;
you do not include the term PRIME, INDEX, or OVFLOW.

Associated Data Sets (3540 Diskette)

Associated data sets are data sets on 3540 diskette volumes that are separate from the job
stream data set and are to be spooled as SYSIN data sets. Associated SYSIN data sets are
identified by specifying a data set identifier (on the DD DSID parameter) and, optionally, a
volume identifier on the DD * or DD DATA statement in the job stream.

To have associated data sets merged into the job stream, the job stream containing the diskette
associated data set requests must be processed by the diskette reader program; neither JES2 nor
JES3 can read it.

Data sets are created on 3540 diskette volumes only by using SYSOUT. The SYSOUT DD
statement must contain the DSID parameter and a sysout class (or classes) designed by the
installation to be used by data sets on a 3540 diskette. The diskette writer must be started to
the sysout class to transfer the data sets to diskettes.

For more information on the 3540 diskette, refer to “OS/VS2 IBM 3540 Programmer’s
Reference.”

Copying the Data Set Name from an Earlier DD Statement

The name of a data set that is used several times in a job can be copied after its first use in the
job. You can copy the data set name whether specified in the DSNAME parameter or assigned
by the system. This allows you to easily change data sets from job to job and eliminates your
having to assign names to temporary data sets. To copy a data set name, refer to an earlier
DD statement that identifies the data set.

Note: When copying a data set’s name from an earlier DD statement, you may also copy other
information from the DD statement. The other information is:

® Whether or not the data set is a partitioned data set (PDS).
@® Whether or not the data set is a temporary data set.

Do not copy data set names of subsystem data sets created by a DD * or a DD DATA
- statement.

7-6 MVS JICL

When the earlier DD statement is contained in an earlier job step, code,

DSNAME=*, stepname.ddname

When the earlier DD statement is contained in the same job step, code,

DSNAME=* ., ddname

When the earlier DD statement is contained in a cataloged procedure step called by an earlier
job step, code,

DSNAME=*.stepname.procstepname.ddname

Specifying the DSNAME Parameter in Apostrophes

Sometimes, it may be necessary or desirable to specify a data set name that contains special
characters. If the name contains special characters, you must enclose the name in apostrophes,
for example, DSNAME="DAT +5". If one of the special characters is an apostrophe, you
must identify it by coding two consecutive apostrophes in its place, for example,
DSNAME="DAY”SEND’. A data set name enclosed in apostrophes can consist of 1 through
44 characters.

There are cases when the data set name must contain required special characters, which tell the
system something about the data set (for example, && in DSNAME = &&name are required
special characters that tell the system that this is a temporary data set). In these cases, the data
set name must not be enclosed in apostrophes because the system will not recognize the
required special characters as having any special significance. The following data set names
contain special characters that tell the system something about the data set and, therefore,
cannot be enclosed in apostrophes:

DSNAME =name(member name)

DSNAME =name(area name)

DSNAME =name(generation number)

DSNAME = &&name

DSNAME = * stepname.ddname

Part of, or the entire data set name, that is to be symbolically substituted

Keep the following rules in mind:
@ If the data set name ends with a blank character, the blank is ignored.

@ If the only special character is a period used to create a qualified data set name, a hyphen,
or plus zero (0-12 punch), you need not enclose the data set name in apostrophes.

Specifying the LABEL Parameter

The operating system uses labels to identify volumes and the data sets they contain, and to
store data set attributes. Data sets residing on magnetic tape volumes usually have data set
labels. If data set labels are present, they precede each data set on the volume. Data sets
residing on direct access volumes always have data set labels. These data set labels are
contained in the volume table of contents of the direct access volume.

A data set label may be a standard or nonstandard label. Standard labels can be procgssed by
the system; nonstandard labels must be processed by nonstandard label processing routines,

Chapter 7. Guide to Specifying Data Set Information 7-7

which the installation includes in the system. Data sets on direct access volumes must have
standard labels. Data sets on tape volumes usually have standard labels, but can have
nonstandard labels or no labels.

The LABEL parameter must be coded if:

@ You are processing a tape data set that is not the first data set on the reel; in this case,
indicate the data set sequence number.

@ The data set labels are not IBM standard labels; you must indicate the label type.

® You want to specify what type of labels a data set is to have when it is written on a scratch
volume; indicate the label type.

® The data set is to be password protected; specify PASSWORD when creating the data set.

® The data set is to be processed only for input or output and this conflicts with the
processing method indicated in the OPEN macro instruction; specify IN, for input, or
OUT, for output.

® The data set is to be kept for a specific period of time; indicate a retention period (RETPD)
or expiration data (EXPDT).

The Data Set Sequence Number Subparameter

When placing a data set on a tape volume that already contains one or more data sets, specify
where the data set is to be placed, that is, whether the data set is to be the second, third, fourth,
etc., data set on the volume. The data set sequence number causes the tape to be positioned
properly so that the data set can be written on the tape or retrieved.

The data set sequence number subparameter is a positional subparameter and is the first
subparameter that you can code in the LABEL parameter. The data set sequence number is a
1- to 4-digit number. The data set sequence number is ignored for the following types of data
sets:

@ For data sets passed from a previous step, the system obtains the data set sequence number
from the passing step.

@® For GDG ALL requests, the system always retrieves the data set sequence number from the
catalog.

If you omit the data set sequence number subparameter or code 0, the system assumes 1 (this is
the first data set on the tape) unless the data set is cataloged. If the data set is cataloged, the
system obtains the data set sequence number from the catalog.

Specifying the Label Type
The label type subparameter tells the system the type of labels associated with the data set. The
label type is a positional subparameter and must be coded second in the LABEL parameter,

after the data set sequence number subparameter. You can omit this subparameter if the data
set has IBM standard labels.

7-8 MVSICL

The label type is specified as:

® SL — if the data set has IBM standard labels.

® SUL — if the data set has both IBM standard and user labels.

® AL — if the data set has ISO/ANSI Version | or ISO/ANSI/FIPS Version 3 labels.

@® AUL — if the data set has ISO/ANSI Version 1 or ISO/ANSI/FIPS Version 3 labels, and
ISO/ANSI Version 1 or ISO/ANSI/FIPS Version 3 user labels.

® NSL — if the data set has nonstandard labels.

® NL — if the data set has no labels.

® BLP — if you want label processing bypassed.

® LTM — if you want the system to bypass a leading tape mark on unlabeled tape (OS/DOS

interchange).

SL or SUL is the only label type that can be specified for data sets that reside on direct access
volumes. SL, SUL, AL, AUL, NSL, and NL are the only label types that can be specified for
data sets that reside on tape volumes. BLP and LTM are label type subparameters that can also
be coded for tape.

When SL or SUL is specified, or the label type is omitted and the data set has IBM standard
labels, the system can ensure that the correct tape or direct access volume is mounted.

When referring the operating system to an earlier tape volume request (by receiving a passed
data set or by using VOL = REF =reference), you should specify SL or SUL as the label type.
Specifying any other label type causes the operating system to copy the label type from the
referenced request — overriding the label type you specify on the DD statement making the
reference.

When specifying NSL, installation-provided nonstandard label processing routines must ensure
that the correct tape volume is mounted.

When specifying NL or BLP, the operator must ensure that the correct tape volume is
mounted. If you specify NL, the data set must have no standard labels.

When specifying AL or AUL, the system ensures that the correct tape is mounted; to be
correct, the tape must have a ISO/ANSI Version 1 or ISO/ANS/FIPS Version 3 label.

Specifically, if your installation has specified ASCII=INCLUDE during system generation,
then the specification of LABEL = (,AL) or LABEL =(,AUL) requests translation. You can
also request translation by specifying OPTCD = Q. If the tape is not labeled, LABEL =(,NL),
you must specify OPTCD = Q for translation to occur.

For cataloged and passed data sets, label type information is not kept. Therefore, when
referring to a cataloged or passed data set that has other than standard labels, code the LABEL
parameter and specify the label type.

BLP is not a label type, but a request that the system bypass label processing. This

specification allows you to use a blank tape or overwrite a seven-track tape that differs from the

Chapter 7. Guide to Specifying Data Set Information 7-9

current parity or density specifications. If the bypass label processing option is not selected by
. . the installation and you have coded BLP, the system assumes NL.

When retrieving data sets from each of several NL or BLP tape volumes and you are coding the
data-set-sequence-number subparameter, you must set up a concatenation with one tape volume
for each DD statement and you must. repeat the LABEL parameter on each DD statement.

Note: When you request the system to bypass label processing (LABEL =BLP) and the tape
volume has labels, the system treats anything between tapemarks as a data set.

Therefore, in order for a tape with labels to be positioned properly, you must code the
data-set-sequence-number subparameter of the LABEL parameter and the subparameter must
reflect all labels and data sets that precede the desired data set. The Tape Labels publication
illustrates where tapemarks appear.

Nonspecific volume request:: The label type subparameter can also be specified when making a
nonspecific volume request for a tape volume (that is, no volume serial numbers are specified
on the DD statement) and when having a certain type of label. If the volume that is mounted
does not have the corresponding label type desired, you may be able to change the label type.

-~ When you specify NL or NSL and the operator mounts a tape volume that contains standard
labels, you can use the volume if all the following are true:

1. The expiration data of the existing data set on the volume has passed;
2. The existing data set on the volume is not password protected;
3. You make a nonspecific volume request.

If they are not all true, the system requests the operator to mount another tape volume.

If you specify SL. and make a nonspeciﬁc‘ volume request, but the operator mounts a tape
volume that contains other than IBM standard labels, the system asks the operator to identify
the volume serial number and the volume’s new owner before the IBM standard labels are
written. If the tape volume has ISO/ANSI Version 1 or ISO/ANSI/FIPS Version 3 labels, the
system asks the operator for permission to destroy the labels.

If you specify SL and make a specific volume request, but the volume that is mounted does not
contain IBM standard labels:

@ The system rejects the tape and requests the operator to mount the tape volume specified,
or '

® If the volume currently mounted is not labeled, the operator has the option of labeling the
tape volume or rejecting it.

The PASSWORD and NOPWREAD Subparameters

The PASSWORD and NOPWREAD subparameters tell the system that you want the data set
to be password-protected.

® If you specify PASSWORD, the data set cannot be read from, written into, or deleted by

another job step or job unless the operator can supply the system with the correct
password.

7-10 MvsiIcCL-

@ If you specify NOPWREAD (no password read), the data set can be read without the

operator supplying the password, but the password is still required for writing or deleting

data sets.

The PASSWORD and NOPWREAD subparameters are positional and must be coded third,
after the data set sequence number subparameter and the label type subparameter; if you do not
code the preceding positional subparameters, you must code commas to indicate their absence.

For example,

//EX1 DD
//EX2 DD
//EX3 DD
//EX4 DD

LABEL=(data-set-sequence-number,SL,PASSWORD)
LABEL=(data-set-sequence-number, ,PASSWORD)
LABEL=(,AL,PASSWORD)

LABEL=(, ,PASSWORD)

If you want the data set password-protected, specify PASSWORD when the data set is created.

-Password-protected data sets must have standard labels, either IBM standard or ISO/ANSI

Version 1 or ISO/ANSI/FIPS Version 3 labels.

Overriding OPEN Macro Options: The IN and OUT Subparameters

The basic sequential access method (BSAM) permits a specification of INOUT, OUTIN, or

OUTINX in the OPEN macro instruction as the processing method.

The basic direct access method (BDAM) permits a specification of UPDAT in the OPEN

macro instruction as the processing method.

OPEN macro LABEL subparameter System treats the
specification specification open as If
INOUT (BSAM) IN INPUT was specified in
OPEN macro. See
Note 1.
OUTIN ouT OUTPUT was specified in
OPEN macro. See
Note 1.
OUTINX ouT EXTEND was specified in
OPEN macro. See
Note 2.

Note 1: When you code the IN subparameter, and the OPEN for INOUT or
UPDAT is in effect, any attempt by the processing program to process the
data set for output results in abnormal termination.

Note 2: When you specify the OUT subparameter, and the OPEN for
OUTIN or OUTINX is in effect, any attempt by the processing program
to process the data set for input results in abnormal termination.

The IN and OUT subparameters are positional subparameters and must appear as the fourth

subparameter in the LABEL parameter. That is, IN or OUT must follow the

data-set-sequence-number subparameter, the label-type subparameter, and the PASSWORD

Chapter 7. Guide to Specifying Data Set Information

7-11

subparameter — or the commas that indicate the absence of a preceding subparameter. For
example;

//DD1 DD LABEL=(data-set-sequence-number,bSL,PASSWORD, IN)
//DD2 DD LABEL=(,AL,NOPWREAD,OUT)

//DD3 DD LABEL=(,,PASSWORD,IN)

//DD4 DD LABEL=(,,,OUT)

The IN subparameter allows a program that opens for INOUT to read a password protected
data set. Because the OPEN does not allow output processing, the read password and not the
write password allows the data set to be read

If the data set is protected with the NOPWREAD (read without password) option, no password
is required to read the data set.

You can also use the IN subparameter to avoid operator intervention when reading a data set
that has an unexpired expiration date.

Note: When you specify OUTINX or EXTEND in the OPEN macro instruction or if you
specify the OUT subparameter, the system adds records to the end of the data set regardless of
what you specify on the DISP parameter of the DD statement.

The RETPD and EXPDT Subparameters

When a data set must be kept for some time, you can tell the system how long when you create
the data set, by means of the LABEL parameter. As long as the time period has not expired, a
data set that resides on a direct access volume cannot be deleted by or overwritten by another
job step or job; this is true even if the job or step has specified a disposition of DELETE for
the data set. If it is necessary to delete a data set before the expiration date or retention period
has passed, use one of the following methods:

® For data sets cataloged in a VSAM catalog use the DELETE command; this makes the
space occupied by the data set available for reallocation. See Access Method Services.

® To delete the catalog entry for data sets that are not cataloged in a VSAM catalog, use the
IEHPROGM utility as described in Utilities.

@® To delete the data set control block use the SCRATCH macro with the “OVRD”
parameter; this makes the space occupied by that data set available for reallocation. See

SPL: Data Management.

When the expiration date of a data set is the current date, the data set is considered expired and
another data set can delete or write over it.

There are two different ways to specify a time period:

1. Tell the system how many days you want the data set kept, through the RETPD
subparameter, or

2. Tell the system the exact date after which the data set need not be kept, through the
EXPDT subparameter.

If you code the RETPD subparameter, you specify a 1- to 4-digit number, which represents the

number of days the data set is to be kept. If you code the EXPDT subparameter, you specify a
2-digit year number and a 3-digit day number (for example, January 1 would be 001, July 1

7-12 MvsICL

would be 182); the number you code represents the date after which the data set need not be
kept. When neither the RETPD or EXPDT subparameter is specified for a new data set, the
system assumes a retention period of zero days.

The RETPD or EXPDT subparameter must follow all other subparameters of the LABEL

parameter. If no other subparameters are coded, you can code LABEL =RETPD =nnnn or
LABEL =EXPDT =yyddd.

Example of Identifying Data Sets to the System

This job shows how to use the DSNAME parameter.

/*PRIORITY 8
//DATASETS JOB FREEMAN,MSGLEVEL=1
//STEP1 EXEC PGM=IEFBR14
//D1 DD DSN=ABC,DISP=(NEW,CATLG) ,UNIT=3350,
// VOL=SER=333001,SPACE=(CYL,(12,1,1),CONTIG)
//D2 DD DSN=&&NAME ,UNIT=3330, SPACE=(TRK, (10,1))
//D3 DD DSN=SYSLIB,DISP=(OLD,KEEP)
/ /D4 DD *
data
/*

1. This job runs in priority 8, the meaning of which is defined by the installation.

2. The job statement specifies that system messages and JCL statements are to be printed
(MSGLEVEL =1).

3. DI catalogs a newly created data set. The space request is for 12 primary cylinders, 1
secondary, 1 directory, and the space is to be contiguous.

4. D2 creates a temporary data set on a 3330. The space request is for 10 primary tracks and
1 secondary.

S. D3 defines an old cataloged data set.

6. D4 defines a SYSIN data set. This will be followed by data in the input stream.

Disposition Processing of Non-VSAM Data Sets
Processing of data sets at the end of a job step or when closed and FREE = CLOSE is specified,
is known as disposition processing. You request disposition processing for non-VSAM data
sets by coding the DISP parameter on the DD statement defining the data set. (VSAM data
sets are handled differently. For information on VSAM, refer to VSAM Programmer’s Guide.)

In the DISP parameter, you can code:

® Data set status as the first subparameter, indicating whether the data set is new, is old, can
be shared with other jobs, or can be lengthened.

Chapter 7. Guide to Specifying Data Set Information 7-13

® Normal disposition as the second subparameter, indicating how the data set should be
handled if the job step terminates normally.

® Conditional disposition as the third subparameter, indicating how the data set should be
handled if the job step terminates abnormally.

If you do not code one of the subparameters, or omit the DISP parameter entirely, the system
supplies default values, as described under “Default Disposition Processing.” Refer to
Figure 18-7 on page 18-9 for further information on disposition processing.

Specifying Data Set Status
Indicate a data set’s status by coding one of the following:
® NEW — the data set is being created in this job step.
® OLD — the data set existed before this job step.

® SHR — the data set existed before this job step and can be read simultaneously by other
jobs.

® MOD — the system first assumes that the data set exists. However, if the system cannot
find volume information for the data set on the DD statement, in the catalog, or passed
with the data set from a previous step, the system then assumes that the data set does not
exist and the data set is created for the job step. Specifying MOD for a neyw sequential
data set causes the read/write mechanism to be positioned after the last record in the data
set. The read/write mechanism is positioned after the last record each time the data set is
opened for output when being created.

When coding SHR, you are requesting shared control of the data set and the job should be
reading the data set only. When coding NEW, OLD, or MOD, you are requesting exclusive
control of the data set. Shared and exclusive control are described in this chapter under
“Insuring Data Set Integrity.”

Specifying a Disposition for the Data Set

You can specify one disposition, called a normal disposition, to be used when the job step
terminates normally (successfully) and another disposition, called the conditional disposition, to
be used when the job step terminates abnormally.(You can specify a conditional disposition for
nontemporary data sets only.)

For normal disposition, you can request as the second subparameter that the data set be:

Deleted by coding DELETE

Kept by coding KEEP .
Cataloged by coding CATLG
Uncataloged by coding UNCATLG
Passed by coding PASS

- Note: The disposition of a data set is solely a function of the DISP parameter; however, the
disposition of the volumes on which the data set resides is a function of the volume status when
the volume is demounted.

7-14 MvsiICL. .. .

For conditional disposition (the third subparameter of the DISP parameter), you may code the
same dispositions as for a normal disposition except for PASS. You should consider using
conditional disposition every time you create or use a data set. Conditional disposition can be
used to keep data sets after a program failure, when they might be needed to determine the
cause of the failure. Conditional disposition can also be used to delete data sets in case of
program failure, thereby restoring the system environment to what it was before the error. This
allows the failing job to be rerun without an intervening clean-up job.

Data sets allocated to steps that have abnormally terminated and that do not have automatic
restart, are disposed of as specified by the conditional disposition. If a job step abnormally
terminates during execution and a conditional disposition is not specified, the normal
disposition is processed.

If a job step fails during step allocation:

@ A data set created in that job step is deleted.
@ A data set that existed before that job step is kept.

If you are accessing a data set that was cataloged or kept in a step prior to the step that
abnormally terminates, and you have not coded a disposition, MVS processing follows the
disposition specified in the earlier step.

Disposition processing differs for data sets on direct access volumes and data sets on magnetic
tape volumes. A direct access volume contains a volume table of contents (VTOC), which
consists of control blocks describing the non-VSAM data sets and available space on the
volume. The handling of tape and direct access volumes when specifying a particular
disposition is described below.

Deleting a Data Set

Specifying DELETE requests that the data set’s space on the volume be released at the end of

the job step (normal disposition) or if the step abnormally terminates (conditional disposition).

If the data set resides on a public tape volume, the tape is rewound and the volume is available
for use by other job steps. If the data set resides on a private volume, the tape is rewound and
unloaded. In this case, it is rewound and unloaded and a KEEP message is issued. If the data

set exists on a direct access volume, the control block describing the data set is removed from _
the VTOC and the space on the volume is then available to other data sets.

In the following case, however, a data set on a direct access volume will not be deleted.

If a data set previously existed and has an unexpired expiration date or retention period, a
disposition of DELETE does not delete the data set if the step abnormally terminates.

Specify a length of time that a data set must be kept by assigning a retention period or
expiration date in the LABEL parameter on the DD statement. Specifying a retention period
or expiration date is described under “Specifying the LABEL Parameter” on page 7-7.

If you are deleting a cataloged non-VSAM data set, the entry for the data set in the system
catalog is also removed, provided the system obtained volume information for the data set from
the catalog (that is, the volume’s serial number was not coded on the DD statement).

If the system did not obtain volume information from the catalog, the data set is still deleted

but its entry in the catalog remains. If an error is encountered while attempting to delete a data
set, its entry in the catalog remains. (The data set will or will not be deleted, depending on

Chapter 7. Guide to Specifying Data Set Information 7-15

when the error occurs). To delete an entry from a VSAM catalog, use the DELETE command
as described in VSAM Programmer’s Guide, which makes the space occupied by the data set
available for reallocation.

To delete the catalog entries for data sets that are not cataloged in a VSAM catalog, use the
UNCATLG statement of IEHPROGM as described in Utilities.

DELETE is the only valid conditional disposition for a data set that has no name or that has a
temporary name. If you specify a disposition other than DELETE, the system assumes
DELETE.

Keeping a Data Set

Specifying KEEP instructs the system to keep a data set intact until a subsequent job step or
job requests that the data set be deleted or at least until the expiration date or retention period
is passed. You can specify an expiration date or retention period, indicating the length of time
a data set must be kept, in the LABEL parameter on the DD statement. If you do not specify
a time period, the system assumes a retention period of zero days. Coding an expiration date
or retention period is described under “Specifying the LABEL Parameter” on page 7-7.

If you are assigning a final disposition of KEEP to a passed data set, make certain that you
follow the rules for receiving a passed data set. See the discussion under “Passing a Data Set”
on page 7-17.

For data sets on direct access devices, the entry in the VT'OC describing the data set and the
data set itself are kept intact. For data sets on tape, the volume is rewound and unloaded, and
a KEEP message is issued to the operator.

Cataloging a Data Set

Cataloging allows you to keep track of and retrieve data sets. You can catalog data sets in the
system master catalog or in user (private) catalogs. A private catalog can be either a VSAM
user catalog or an Integrated Catalog Facility (ICP). When retrieving a cataloged data set, you
do not have to specify volume information; you need only code the DSNAME parameter and a
status other than NEW in the DISP parameter.

To catalog a non-VSAM data set, code CATLG as the disposition; the system creates an entry
in the catalog that points to the data set. The disposition CATLG implies KEEP.

You can specify a disposition of CATLG for an already cataloged data set. Do this when
lengthening the data set with additional output (a status of MOD is coded) and the data set can
exceed one volume. If the system obtained volume information for the data set from the
catalog (that is, the volume’s serial number was not coded on the DD statement) and you code
DISP=(MOD,CATLG), the system updates the entry to include the volume serial numbers of
any additional volumes.

We define a collection of cataloged data sets that are kept in chronological order as a
generation data group (GDG). The entire GDG is stored under a single data set name; each
data set within the group, called a generation data set, is associated with a generation number
that indicates how far removed the data set is from the original generation. For more
information on defining and creating generation data groups, see “Generation Data Groups” in
this publication, and VSAM Programmer’s Guide.

7-16 MVSJCL

Note: There are instances when the system will not catalog a data set. The system does not
catalog a data set if the DD statement describing that data set is not opened by the problem
program and;

® You request a nonspecific tape volume (scratch volume is assumed), or

@® You request a tape volume for a tape unit with dual density options and you did not
specify the density (DEN subparameter of the DCB parameter) on the DD statement.

Uncataloging a Data Set

To remove the entry describing a non-VSAM data set from the catalog, code UNCATLG as
the disposition. Specifying UNCATLG does not request the initiator to delete the data set;
only the reference in the catalog is removed. When you request use of the data setin a
subsequent job or job step, you must include volume information on the DD statement.

Passing a Data Set

If more than one step in a job requests the same data set, each step using the data set can pass
the data set for a later step to use. A data set can only be passed within a job.

To pass a data set, code PASS as the normal disposition; PASS cannot be the conditional
disposition. You continue to code PASS each time the data set is referred to until the last time
it is used in the job. At this time, you assign it a final disposition.

Specifying the data set name of a passed data set without specifying volume serial number or a
volume reference is called “receiving” the data set. Identical data set names (whether or not the
same data set is referred to) can be passed at the same time. Such identical data set names are
received in the same order in which they are passed. A data set name that has been passed n
times can be received no more than n times. A data set cannot be passed and received within
the same step.

Considerations for Passed Data Sets: Consider the following when you pass data sets:
A data set may be passed more times than it is received. However, a problem can occur when
the same data set is passed more times than it is received in a procedure that is called multiple

times in a job.

For example, the following procedure is called in a job step:

//STEP1 EXEC PGM=IEFBR14

//DD1 DD DSNAME=&A,DISP=(NEW,PASS),

// SPACE=(TRK, (1,1)),UNIT=SYSDA
//DD2 DD DSNAME=*.DD1,DISP=(OLD,PASS),
// VOL=REF=* .DD1

//STEP2 EXEC PGM=IEFBR14

//DD3 DD DSNAME=&A,DISP=(OLD,DELETE)

In this example:
® DDI1 and DD2 pass data set &A.
@® DD3 receives data set &A.

@ After the procedure has been called the first time, one entry for data set &A remains
unreceived.

Chapter 7. Guide to Specifying Data Set Information 7-17

@ If the procedure is called a second time, DD3 receives data set &A from the first execution
of the procedure and this can result in incorrect data or an abnormal termination.

@ If data set &A is not received twice in the job, data set &A is processed as an unreceived
passed data set at the end of the job.

If a job step containing a passed data set abnormally terminates during execution, the passed
data set is passed at the end of the job step. This allows you to receive and process the passed
data set on a following job step (for example, when COND =EVEN or ONLY is coded). If the
passed data set remains unreceived at the end of the job, then the conditional disposition (if
specified) for the passed data set occurs.

In a JES3 system:If the data set was extended to additional volumes, code
UNIT = AFF =ddname in the step to receive the data set. This makes JES3 aware of the
additional unit requirement for the extended data set.

For additional information on JES3 allocation, see “JES3 Resource Allocation,” “Specifying
Volume Affinity When Using Multivolume Data Sets,” and “JES3 Handling of Unit and
Volume References.”

Disposition Processing of Passed Unreceived Data Sets

A job step can pass a data set that is never received by a later step. If a job step abnormally
terminates, unreceived data sets that specified a conditional disposition when passed are
processed as specified in their conditional disposition, with four exceptions, as follows:

If the conditional disposition requires an update to a user catalog and:

® CATLG is specified for a data set that has a first-level qualifier of a catalog name or alias,
the system does not catalog the data set.

® UNCATLG or DELETE (of a cataloged data set) is specified for a data set that has a
first-level qualifier of a catalog name or alias, the system does not uncatalog the data set.

@ CATLG is specified for a data set that does not have a qualifier or has a qualifier that is
not a catalog name, the system catalogs the data set in the master catalog.

® UNCATLG or DELETE (of a cataloged data set) is specified for a data set that does not
have a qualifier or has a qualifier that is not a catalog name, the system tries to uncatalog
the data set from the master catalog.

Unreceived passed data sets that do not specify a conditional disposition, that is, those that
were specified as (NEW,PASS) in this job, are deleted; all others are kept. The system deletes
these data sets even if they have unexpired expiration dates or retention periods. (See “The
RETPD or EXPDT Subparameters™)

If unreceived passed data sets are deleted at the end of a job, dynamic allocation is performed
to allocate the unit and volume for deletion. If you have specified the second subparameter of
the MSGLEVEL parameter (MSGLEVEL =(,1)) the system issues allocation messages for these
data sets.

If no job step abnormally terminates before it begins execution, unreceived passed data sets that
were specified as (NEW,PASS) are deleted; other data sets are kept.

7-18 MvsiICL

If a step abnormally terminates before it actually begins execution (for example, during
allocation of units and volumes or direct access space), the system ignores the disposition you
code and again automatically keeps existing data sets and deletes new data sets.

For example, if you code:

DISP=(,PASS,CATLG)

the system assumes the data set is new. If this step or any subsequent step prior to the step that
receives this data set, abnormally terminates during its execution, the system tries to catalog the
data set as instructed by the conditional disposition of CATLG. Any attempt by the system to
catalog the data set is subject to the conditions discussed above.

Default Disposition Processing

If you do not code the DISP parameter, or omit one of the subparameters, the system supplies
default values.

If you do not specify a data set status, the system assumes NEW. If you do not code the
second and third subparameters, the system determines how to handle the data set according to
the status of the data set:

@ Data sets that existed before the job are automatically kept (data sets for which OLD,
SHR, or MOD is coded when volume information is available)

@ Data sets created in the job are automatically deleted (data sets for which you coded NEW
or MOD when volume information is not available, or for which you did not code a status)

Bypassing Disposition Processing

If you define a data set as a dummy data set, the system ignores the DISP parameter (if coded),
and does not perform disposition processing. For details on specifying dummy data sets, see
“Defining a Dummy Data Set” on page 8-8.

Insuring Data Set Integrity

When a job must receive control of the data sets it requests, you can request either exclusive
control, allowing no other job to use the data set, or shared control, allowing the data set to be
used by other jobs that also request shared control. The process of securing control of data sets
for use by a job is called data set integrity processing.

Data set integrity processing avoids conflict between two or more jobs that request use of the
same data set.

For example, two jobs, one named READ and another named MODIFY, both request the data
set FILE.

® RFEAD wants only to read and copy certain records
® MODIFY deletes some records and changes other records in the data set FILE

Chapter 7. Guide to Specifying Data Set Information 7-19

If both jobs have control of FILE concurrently, READ cannot be certain of the records
contained in FILE; that is, READ cannot be certain of the integrity of the data set.

® MODIFY should have exclusive control of the data set
@® READ can share control of FILE with other jobs that also want only to read the data set.

Indicate the type data set control a job requires in the DISP parameter on the DD statement
defining the data set.

Exclusive Control of a Data Set
When a job has exclusive control of a data set, no other job can use that data set until
termination of the last step in the job that refers to the data set. A job should have exclusive
control of a data set in order to modify, add, or delete records.
In some cases, you may not need exclusive control of the entire data set. You can request
exclusive control of a block of records by coding the DCB, READ, WRITE, and RELEX

macro instructions. (These instructions are described in Data Management Macro Instructions.)

To request exclusive control of a'data set, you code NEW, OLD, or MOD as the first
subparameter of the DISP parameter.

Shared Control of a Data Set
Special jobs can concurrently use a data set on a direct access storage device, if these jobs
request shared control of the data set; however, none of the jobs should change the data set in
any way.
To request shared control, code SHR as the first subparameter in the DISP parameter. If more
than one step of your job requests a data set, you must code SHR on every DD statement that
defines the data set if it is to be used by concurrently executing jobs. ‘

How the MVS System Performs Data Set Integrity Processing

The system performs data set integrity processing once for each job, for the following types of
data sets:

® Nontemporary data sets, and

® Non-VIO temporary data sets (see “Using Virtual Input/Output (VIO) for Temporary Data
Sets.”)

@ Data sets with alias names (created with the access method services DEFINE command; see
Access Method Services).

® Members of generation data groups

The system does not perform data set integrity processing for subsystem data sets.

To secure control for all nontemporary data sets for the job, the system enqueues each data set,
marking the data set as requested by that job and noting what kind of control was requested. A

job can request either shared or exclusive control for a data set. The system assigns control of
the data set until the termination of the last step in the job that refers to that data set occurs.

7-20 MVSICL

If you code NEW, OLD, or MOD on any reference to a data set, the system assigns exclusive
control. A reference requesting exclusive control overrides any number of references requesting
shared control.

The job receives control of the data set if:
® Another job is not using the data set, or

® Another job is using the data set but both the job requesting the data set and the job using
the data set request shared control and there are no exclusive requests pending.

The job does not receive control of a data set if:
® Another job is using the data set and that job has exclusive control, or

@® Another job is using the data set (with either exclusive or shared control), and the job
requesting use of the data set requests exclusive control, or

® Another job is using the data set (with shared control) and there is yet another job that
requested exclusive control of the data set prior to this job.

If a job requests data sets that are not available, the system issues the message “JOB jjj
WAITING FOR DATA SETS” to the operator. The initiator that started the job
automatically waits until the required data sets become available unless the operator cancels the
job.

When the system has secured control of all nontemporary data sets, it allocates and deallocates
resources for each step of the job. The job terminates after the system has deallocated all
resources for the last step in the job.

Non-VIO temporary data sets, data sets with alias names, and members of generation data
groups are reserved or enqueued for each step within the job. The job receives control of the
data set for that step in the same manner as described for nontemporary data sets.

When a job is executing and it requires a non-VIO temporary data set, a data set with alias
names or a member of a generation data group, if the job cannot secure control for the data
set, the job fails. (The system cannot wait for data sets at this point: the job already owns
certain resources and waiting for other resources could create a possible deadlock.)

When each step terminates, the system releases control of any data sets (except non-VIO

temporary data sets) that are not used in any subsequent step of the job. The system releases
control of all other data sets and terminates the job upon completion of the last step in the job.

Chapter 7. Guide to Specifying Data Set Information 7-21

The following table summarizes data set integrity processing.

Data Set is Data Set Data Set Has
currently not in previous request
in use as: use for:
Shared Exclusive Shared Exclusive
Nontemporary
Data Set Requesting:
Shared Control Note: 1 Note: 2 Note: 1 Note: 1 Note: 2
Exclusive Control Note: 2 Note: 2 Note: 1 Note: 2 Note: 2
Non-VIO Temporary
Data Set Requesting:
Shared Control Note: 1 Note: 3 Note: 1 Note: 1 Note: 3
Exclusive Control Note: 3 Note: 3 Note: 1 Note: 3 Note: 3
GDG Requesting:
Shared Control Note: 1 Note: 3 Note: 1 Note:13 Note: 31
Exclusive Control Note: 3 Note: 3 Note: 1 Note: 3 Note: 3
Data Sets with Alias
Names Requesting:
Shared Control Note: 1 Note: 3 Note: 1 Note: 1 Note: 3
Exclusive Control Note: 3 Note: 3 Note: 1 Note: 3 Note: 3

Note 1: The requested control will be granted.

Note 3: The requested control will not be granted and the job is terminated at the step requesting that data set.

Note 2: The requested control will not be granted until the data set is released by the job that has control or the data
set is released by the job that has previously requested control.

7-22 .MVS JCL

Examples of Disposition Processing of Non-VSAM Data Sets

//DISP JOB MSGLEVEL=1
//S1 EXEC PGM=IEFBR14
//D1 DD DSN=ABC,DISP=(SHR,KEEP)

//D2 DD DSN=SYSA,DISP=(OLD,DELETE,UNCATLG)

//D3 DD DSN=SYSB,UNIT=3350,VOL=SER=335001,

// SPACE=(CYL, (4,2,1)) ,DISP=(NEW,KEEP,CATLG)

/ /D4 DD DSN=&&SYS1,DISP=(MOD,PASS),UNIT=3350,

// VOL=SER=335004,SPACE=(TRK, (15,5,1))

//S2 EXEC PGM=IEFBR14

//D1 DD DSN=&&SYS1,DISP=(MOD,DELETE),UNIT=3350,

// VOL=SER=335004,SPACE=(TRK, (15,5,1))

1. The JOB statement requests that all JCL statements and system messages be printed.

2. D1 in S1 defines a data set that already exists and can be shared with other data sets. It is
to be kept on the volume after this job step.

3. D2 in S1 defines a data set that already exists, cannot be shared with other data sets, is to
be deleted at the end of the job step, and is to be uncataloged if the program abnormally
terminates.

4. D3 in S1 defines a new data set that is to be assigned a specific volume (335001) on a 3350
device. The data set is to be kept on the volume at the end of this job step for normal
processing but is to be cataloged if the program abnormally terminates.

5. D4 in S1 defines a temporary data set that is to be created in this job step. It is to be
assigned to volume 335004 on a 3350 device with the space request of 15 primary tracks,
five secondary, and a directory. This data set is to be passed for subsequent use by a job
step in this job.

6. DI in S2 defines the same temporary data set that was defined in D4 of S1. When this step

is completed, the data set is to be deleted.

//PASS JOB MSGLEVEL=1
//S1 EXEC PGM=IEFBR14
//DD1 DD DSN=A,DISP=(NEW,PASS),VOL=SER=335000,

//

UNIT=3350,SPACE=(TRK,1)

//DD2 DD DSN=A,DISP=(OLD,PASS),VOL=REF=%.DD1

//DD3 DD DSN=B,DISP=(OLD,PASS),VOL=SER=335000,UNIT=3350
//DD4 DD DSN=B,DISP=(OLD,PASS),VOL=SER=335001,UNIT=3350
//S2 EXEC PGM=IEFBR14

//DD5 DD DSN=A,DISP=OLD

//DD6 DD DSN=A,DISP=0LD

//DD7 DD DSN=B,DISP=O0LD

//DD8 DD DSN=B,DISP=(OLD,PASS)

//S3 EXEC PGM=IEFBR14

//DD9 DD DSN=B,DISP=OLD -

L

2.

DD1 and DD2 pass the same data set. DD5 and DD6 receive that same data set.

DD3 and DD4 pass different data sets of the same name, DD7 receives the data set passed
by DD3 and DDS8 receives the one passed by DD4. DDS8 also continues to pass the data
set originally passed by DD4.

DD9 receives the data set passed by DD4 and DDS.

Chapter 7. Guide to Specifying Data Set Information. 7-23

Requesting Units and Volumes

On the DD statement defining a data set, indicate the device and volume on which the data set
can be found or will be written by specifying unit and volume information. Input/output
devices are grouped according to class; a device class refers to a kind of device: direct access,
magnetic tape, unit record, graphic, and communications equipment. A wunit is a particular
device: a 3350 direct access device, a 1403 printer, etc.; a volume is a section of auxiliary
storage that is serviced by a single read/write mechanism — for example, a reel of magnetic
tape, a drum, or a disk pack.

Device status can affect the device eligibility for allocation. Figure 7-1 shows the various
devices and the possible status each may have.

Status

Device Type

Direct Access Tape Unit Record Graphic Teleprocessing

Eligible for allocation

Eligible for allocation when the operator Eligible for
brings device online allocation

Pending Unload Eligible for allocation

when volume is Not applicable
specifically requested

Pending Offline Eligible for allocation Eligible for allocation

when the operator brings when the operator brings Not applicable
the device online and the device online
when the volume is

specifically requested

Figure 7-1. How Device Status Affects Eligibility for Allocation

Specifying Volume Information

Data sets exist on direct access and magnetic tape volumes that must be mounted on devices
before they can be used. To tell the system on which volume an existing data set can be found,
make a specific volume request; to create a new data set, make a specific or nonspecific volume
request. If you request multiple disk volumes to be mounted in JES3, they must all be either
mountable or permanently resident; a mixture of both is not allowed.

Specific Volume Requests

A specific volume request informs the system of the volume serial number of the volume
required. A request for an existing data set implies request for a specific volume. Make either
a specific or nenspecific volume request when creating a data set.

7-24 MVS JCL

You are making a specific request when:

® You specify the serial numbers in the SER subparameter of the VOLUME parameter; for
example, VOL = SER = (948762,945231).

® You refer the system to an earlier specific volume request to copy the volume serial
numbers.

You do this by coding the name of a passed or cataloged data set or a previous DD
statement in the REF subparameter of the VOLUME parameter.

— To refer the system to a passed or cataloged data set, code VOL =REF =dsname
— To refer to a DD statement in the same step, code VOL = REF =*.ddname
— To refer to a DD statement in a preceding step, code VOL = REF = *.stepname.ddname

— To refer to a DD statement in a procedure step that is in a procedure called by a
preceding step, code VOL = REF =* stepname.procstepname.ddname. (If you refer to a
multi-device type VSAM data set, the system uses only the volume serial number of the
first device type listed.)

® You pass the data set from an earlier step or you reference the data set from the catalog.

The system obtains the volume serial numbers from the passed data set information or from
the catalog; you need not code the VOLUME parameter unless requesting a private
volume, coding a volume sequence number, or requesting additional volumes. If a
cataloged data set is cataloged in, or is to be cataloged or uncataloged from, a private
catalog other than JOBCAT and STEPCAT, then the system automatically allocates that
private catalog to the job step. (The private catalog must be on a permanently resident
volume for JES3). If this allocation is not successful, the job fails.

How the System Satisfies Specific Volume Requests

A specific volume request informs the system of the volume serial number of the volume
required. In the following cases the system can satisfy a request for a specific volume that is
already mounted:

® The volume is permanently resident or reserved. (The volume is assigned regardless of the
requested use attribute, and the use attribute is not changed by the allocation.)

® The direct access volume is a removable volume that can be shared and is being used by a
concurrently executing step. (If your request would make the volume unable to be shared,
the system will assign you that volume only when all other job steps using the volume have
terminated.)

® The direct access volume is removable but not allocated. The use attribute (private or
public) assigned to the volume when it is allocated is determined by the presence or absence
of the PRIVATE subparameter.

® The tape volume is a scratch volume and is not in use. The use attribute of private is

assigned to the volume if the request is for a permanent data set or if the PRIVATE
subparameter is coded.

Chapter 7. Guide to Specifying Data Set Information 7-25

Nonspecific Volume Requests

Nonspecific volume requests can be made only for new data sets. When you make a nonspecific
volume request, do not specify volume serial numbers. You need not code the VOLUME
parameter unless you are requesting a private volume or a volume count.

You can make four types of nonspecific volume requests:

® A private volume for a temporary data set

@® A private volume for a nontemporary data set

® A nonprivate volume for a temporary data set

® A nonprivate volume for a nontemporary data set

How the system satisfies these different types of requests is described below. Since the system
satisfies the first two types of requests in the same way, these two requests are described
together.

® When you make a nonspecific volume request for a private direct access or tape volume, the
system always requests the operator to mount a volume. The operator should mount a
volume whose space is unused. This allows you to have control over all space on the
volume. Once mounted, the volume is assigned the use attribute of private.

® When you make a nonspecific volume request for a nonprivate direct access volume that is
to contain a temporary data set, the system assigns a public or storage volume that is
already mounted, or if no space is available, it requests the operator to mount a removable
volume. If the system selects a mounted volume, its use attribute is not affected. If a
removable volume-is mounted, it is assigned the use attribute of public. For the definition
of the MOUNT and USE attributes, see SPL. Job Management .

® When you make a nonspecific request for a nonprivate tape volume, data management
(OPEN) will satisfy this request by using any available, physically mounted, tape volume.
This could result in the loss of user data. However, if you use labels on your tape volumes
and specify the types of labels in the LABEL parameter, loss of data can usually be
prevented.

@® When you specify labels in the LABEL parameter, data management (OPEN) checks the
first record of the tape. There are various error conditions that can occur during
verification of the first record. These error conditions are described in Tape Labels.

® When you make a nonspecific volume request for a nonprivate tape volume that is to
contain a temporary data set, the system assigns a public or scratch volume that is already
mounted, or it requests the operator to mount a tape volume. Once mounted, the volume
is assigned the use attribute of public.

@® When you make a nonspecific volume request for a nonprivate direct access volume that is
to contain a nontemporary data set, the system assigns a storage volume if one is mounted.
Otherwise, the system treats the request as a nonspecific volume request for a private
volume.

® When you make a nonspecific volume request for a nonprivate tape volume that is to

contain a nontemporary data set, the system treats the request as a nonspecific volume
request for a private volume.

7-26 MVS JCL

Note: If your nonspecific volume request requires more than one unit from a group that
contains both single and dual density tape drives, the system assigns the devices so that the
single density drive is the first one used. The default density is the density of the single density
drive. The operator may be requested to mount the volumes in a different order than assigned
by the system.

Using Private Volumes

A private volume is one that can be used only by those who know the serial number. Code
PRIVATE as the first subparameter in the VOLUME parameter for both specific and
nonspecific volume requests. When you make a specific volume request for a direct access
volume, code PRIVATE if you want a private volume; tape volumes for which you make a
specific volume request are automatically made private, so you need not code the PRIVATE
subparameter.

A volume already made private cannot be allocated to satisfy other nonspecific volume
requests. Therefore, if you request a private volume, you will be the only user using that
volume, unless another job makes a specific volume request for that volume.

If PRIVATE is coded or implied for a direct access volume, the operating system requests that
the operator demount the volume at job termination.

If PRIVATE is coded or implied for a tape volume, the operating system automatically requests
that the operator demount the volume after its last use in the job step unless RETAIN is coded
or the data set is passed. If you expect to use a data set in a subsequent step for which you
requested a private volume, code RETAIN in the VOLUME parameter to ensure that the
volume is not demounted at the end of the step. Even if you specify RETAIN or a disposition
of PASS, the operator can still unload the volume or another step in the same job or another
job can allocate and demount it.

Sharing Volumes Between Data Sets

To use fewer volumes, request that data sets be assigned the same volume. Data sets on the
same volume have volume affinity.

You can request volume affinity either:

@® Implicitly, through catalog references or by specifying the same volume serial numbers for
different data sets in the SER subparameter of the VOLUME parameter.

@ Explicitly, by using the REF subparameter of the VOLUME parameter to indicate that
volumes identified in the catalog or on an earlier DD statement in the job are to be
assigned to the data set being defined.

Volume affinity influences the allocation of devices. The system can modify a request for a
specific number of units if a data set has volume affinity with at least one other data set. For
examples of volume affinity, see “Example of UNIT and VOLUME Affinities” at the end of
this section.

Chapter 7. Guide to Specifying Data Set Information 7-27

Multivolume Data Sets

If you are creating or extending a data set that can require more than one volume, request the
maximum number of volumes required in the volume count subparameter of the VOLUME
parameter. The maximum number of volumes you can request is 255. For some jobs, each
volume requested must be mounted on a unit before it can be used. For these jobs, be sure to
request as many units as volumes. ‘'When you make a specific volume request for more volumes
than units, the system automatically indicates that the volumes on the same unit cannot be
shared.

By coding the volume sequence number subparameter when reading or lengthening an existing
multivolume data set, you can instruct the system to begin processing other than the first
volume. Usually a volume sequence number is coded when you are defining an existing
cataloged or passed data set.

Specifying Unit Information

Use the UNIT parameter to provide the system with the information it needs to assign a device
to a data set. To indicate what unit or type of unit you want, code one of the following:

® Unit address
@® Device type (generic name)
® User-assigned group name (esoteric name)

The unit address is a 3-character address made up of the channel, control unit, and unit
number. For example, UNIT =180 indicates channel 1, control unit 8, and unit number 0.
Specifying a unit address, however, limits unit assignment: the system can assign only that
specific unit, and, if the unit is being used, the job must be delayed or canceled. Only specify
unit addresses when necessary since these specifications restrict the system.

A device type corresponds to a particular set of features of input/output devices. When coding
a device type, you allow the system to assign any available device of that device type. For
example, UNIT =3350 indicates that you want the system to assign any available 3350 disk
storage facility.

For additional information on specifying device types, see System Generation Reference.

During system generation, each installation can also define user-assigned group names to signify
a group of devices that may or may not all be of the same type. By coding a user-assigned
group name, you allow the system to assign any available devices included in the group. For
example, if the group named DISK includes all 3350 and 3330 disk storage facilities and you
code UNIT =DISK, the system assigns an available 3350 or 3330 device. If the group named
3350A includes particular 3350’s and you code UNIT =3350A, the system could assign one of
several 3350 devices.

If the group consists of more than one device type, and more than one unit is requested, the
units are allocated from the same device type. For example, if the group named TAPE includes
both 3400-5 and 3400-6 devices, and you request two units by specifying UNIT = (TAPE,2), the
system assigns either two 3400-5s or two 3400-6s. If there is an insufficient number of units of
any smgle type to satisfy the request the job is flushed.

If a group contains more than one device type or class (for example SYSSQ can refer to all
tape and direct access devices), you should not code the group name when defining an existing

7-28 MVSICL

data set or requesting a specific volume. The volume on which the data set resides may require
a device different from the one assigned to it. For example, if the data set resides on a tape
volume, it must be assigned to a tape device.

The same is true if the data set resides on a 3348 Model 70F Data Module and the group name
includes 3340 drives with and without the Fixed Head Feature. The 3348 Model 70F must be
assigned to a 3340 with the feature. For more information on the Fixed Head Feature, see the
IBM 3340 Fixed Head Feature User's Guide.

Only direct access devices can be simultaneously allocated for two or more jobs. Teleprocessing
equipment is not allowed to be allocated more than once in the same job step. If a unit record,
teleprocessing equipment, or graphics device is designated as a console, it is not eligible for
allocation by a job.

Relationship of a UNIT Specification to System Generation

Installation programmers use the IODEVICE system generation macro instruction to describe
the characteristics and requirements of a device to the system. Each I/O device at your
installation is described in an IODEVICE macro instruction. The UNIT parameter of the
IODEVICE macro instruction describes the device type (generic name) that you code in the
UNIT JCL parameter.

For example, when you code UNIT =3350 in your JCL, you are coding the same specification
that your installation programmer coded in the UNIT parameter of the IODEVICE macro
instruction at system generation.

Installation programmers use the UNITNAME system generation macro instruction to specify
a name for a group of devices. The NAME parameter of the UNITNAME macro instruction
defines the user-assigned group name (esoteric name) that you code in the UNIT JCL parameter.

For example, when you code UNIT =DISK, you are coding the same specification that your
installation programmer coded in the NAME parameter of the UNITNAME macro instruction
at system generation.

For additional information on the IODEVICE and UNITNAME system generation macro
instructions, sss System Generation Reference.

Requesting More than One Unit

To increase operating efficiency, request multiple units for a multivolume data set or for a data
set that may require additional volumes. When each required volume is mounted on a separate
device, execution of the job step is not interrupted to allow the operator to demount and mount
volumes. You should always request multiple units when the data set can be extended to a new
volume when the data set resides on a permanently resident or reserved volume. Permanently
resident and reserved volumes cannot be demounted in order to mount a new volume.

Request multiple units by:

® Coding the unit count subparameter in the UNIT parameter
® Requesting parallel mounting

To request parallel mounting, code P in place of the unit count subparameter when you make a
specific or nonspecific volume request. The system counts the number of volumes requested (by

Chapter 7. Guide to Specifying Data Set Information 7-29

counting the volume serial numbers specified on the DD statement or counting the volume
serial numbers in cataloged or passed data sets).

It compares this sum to the volume count, if specified, and the system assigns the larger of the
specified number of devices.

Deferred Mounting of Volumes

A job step may include a data set that your program might not use. Use the DEFER
subparameter to request that the system not mount the volume containing the data set until the
data set is opened. This can save the operator the time it takes to mount volumes on direct
access devices.

Note: No other job step can use such a volume until the job step specifying DEFER ends. If
you code DEFER for a new data set that could be placed on a direct access device, then the
system ignores DEFER.

Relationship of the UNIT Parameter to a Volume Reference

The system can obtain unit information from sources other than the UNIT parameter. In
many such cases, you do not have to code the UNIT parameter. However, if coding

VOL =SER =s¢rial-number or VOL = REF =reference, you should know where the system
obtains the unit information.

Normally, you do not have to code unit information when the data set is cataloged. For
cataloged data sets, the system obtains unit and volume information from the catalog. This is
true except when you code VOL = SER =serial-number on a DD statement that defines a
pre-existing data set. When you code VOL = SER = serial-number, the system does not look in
the catalog — you must code the UNIT parameter.

You can override the data set name on a procedure DD statement with the data set name of a
cataloged data set. If you do so but do not override the UNIT parameter on the DD statement
in the procedure, the system will not search the catalog for unit information. Instead, the
system will obtain unit information from the overridden DD statement. Therefore, when you
override the data set name on a procedure DD statement, nullify the unit parameter on the
procedure DD statement and the system will search the catalog for unit information.

Normally, when the data set is passed from a previous job step, you do not have to code unit
information.

For passed data sets, the system obtains unit and volume information from passed data set
information. This is true except when you code VOL = SER =serial-number on a DD statement
that defines a pre-existing data set. When you code VOL =SER =serial-number on a DD
statement that defines a pre-existing data set, the system does not look in the passed data set
information — you must code the UNIT parameter.

You do not have to code unit information when the data set is to use the same volumes
assigned to an earlier data set. You can code VOLUME =REF =ddname. In this case, the

system obtains unit and volume information from:

@ the earlier DD statement that specified the volume serial number, or
@ the catalog.

7-30 MVS ICL

When you want additional devices assigned or when you want to influence device allocation
code the UNIT parameter. The system uses the coded UNIT parameter if it is a subset of the
unit type referenced. Otherwise, the system ignores it.

Do not code the UNIT parameter when defining a data set included in the input stream. If
UNIT is coded on a DD * or DD DATA statement, MVS terminates the job.

JES3 Handling of UNIT and VOLUME references

When JES3 looks in the catalog, it cannot determine whether or not a given device type is a
subset of another device type. Errors might result if you request a device to be mounted on a
conflicting device type (for example, a 3330 mounted on a 3350). To avoid this error, use the
JES3 HWSNAME initialization statement to define to JES3 which device names are subsets of
other device names.

If, in a multiple-step job, a data set is extended to additional volumes, and if a subsequent step
allocates that data set, MVS allocates the additional units the job requires. JES3 is unaware of
the additional unit requirement; therefore code UNIT = AFF =ddname in the last step to
allocate the extended data set.

For additional information on JES3 allocation, see “Allocating Data Resources in a JES3
System” on page 6-4 and “Specifying Volume Affinity When Using Multivolume Data Sets” on
page 7-35.

Example of Requesting Units and Volumes

This job shows the unit and volume parameters.

//TEST JOB WIBORG,CLASS=C

//STEP1 EXEC PGM=TESTSYSO

//DD11 DD DSN=A01DD1,UNIT=3330,DISP=(,PASS),
SPACE=(TRK, 1) ,VOL=SER=333001

//STEP2 EXEC PGM=TESTSYSO

//DD21 DD DSN=SYSLIB,UNIT=3350,VOL=(PRIVATE,SER=123456),

// DISP=0OLD

//DD22 DD DSN=SYSABC,UNIT=AFF=DD21,VOL=SER=777777,

// DISP=(OLD,KEEP)

//DD23 DD DSN=SYSTAPE,UNIT=(3400-5,P,DEFER),DISP=0LD,
// VOL=SER=(342001,342002,342003,342004,342005)
//DD24 DD DSN=SYSDISK,DISP=(SHR,KEEP),UNIT=(,P),

// VOL=SER= (333005, 333008,333010)

//DD25 DD UNIT=3350,VOL=REF=* ,DD21,SPACE=(TRK, (5,2))
//DD26 DD UNIT=3330,VOL=REF=SYSDISK,SPACE=(TRK, (10,5))

1. The job is assigned to class C.

2. DDI11 defines a new data set named A01DD1. It is to be on volume 333001 which is
mounted on a 3330 device.

3. DD2I defines an old data set named SYSLIB that exists on a private volume, 123456. The
volume is mounted on a 3350 device.

4. DD22 defines an old data set named SYSABC that is to be kept after this job step is

complete. SYSABC is on volume 777777. This volume is to be mounted on the same 3350
device as the volume defined on DD21.

Chapter 7. Guide to Specifying Data Set Information 7-31

5. DD23 defines an old data set named SYSTAPE. There are five volumes that are to be
mounted only after the data set is opened (caused by the DEFER subparameter). The P
requests parallel mounting; that is, all five volumes are to be mounted at the same time on
five different 3400-6 devices.

6. DD?24 defines an old data named SYSDISK that can be shared by another job since it will
only be read. It is to be kept after this job step. The number of units used is determined
by the number of volumes requested.

7. DD25 is a temporary data set (no DSNAME specified) and, therefore, assumes a
disposition of NEW,DELETE. The volume to be used is the same one used in STEP2
DD21; that is, volume 123456. '

8. DDD26 is also a temporary data set. The backward reference for volume information is to
STEP2 DD24 where the data set named SYSDISK is located.

Sharing a Unit Between Data Sets on Different Volumes

You can conserve the number of devices used in a job step. To do so request that an existing
data set be assigned to the same device or devices as assigned to a data set defined earlier in the
job step. When two or more volumes are assigned the same device, the volumes are said to
have unit affinity. Unit affinity implies deferred mounting for all except one of the volumes,
since all volumes cannot be mounted on the same device at the same time.

Request explicit unit affinity by coding UNIT = AFF =ddname on a DD statement.

The ddname is the name of an earlier DD statement in the same job step. The data set defined
on the DD statement that requests unit affinity is assigned the same device or devices as the
data set defined on the named DD statement; the data set must reside on the same device type.
If the ddname refers to a DD statement that defines a dummy data set, the data set defined on
the DD statement requesting unit affinity is assigned a dummy status.

Unit affinity also exists on one DD statement when there are more volumes than units. This is
implied unit affinity. See examples of unit affinity.

If all of the following conditions are present, the data set defined on the DD statement
requesting unit affinity might be written over by the named data set:

® The named DD statement requests a scratch tape.

@ The data set defined on the DD statement requesting unit affinity is opened prior to that
on the named DD statement.

@ The tape is not unloaded prior to the OPEN of the data set defined on the named DD
statement and tape label positioning is not specified using the LABEL parameter. (Note
that a tape unit that is allocated to more than one request is not unloaded (1) as a result of
dynamic deallocation, or (2) when it is closed if FREE =CLOSE is specified.)

Note: You cannot request unit affinity for a new data set if the original request is for a direct
access device. :

7-32 MVS JCL

Unit and Volume Affinities: 1t is possible to have unit affinity, volume affinity, and/or unit and
volume affinity occurring in the same step. You can also have unit and volume affinity
occurring on the same DD statement (see example 2, below). However, not all combinations are
possible.

Explicit unit affinity is requested when UNIT = AFF =ddname is specified.

Implied unit affinity is requested when more volumes than units are specified on the same
DD statement. '

Volume affinity is requested when two or more DD statements reference the same volume.

Examples of Unit and Volume Affinity

The examples below illustrate the three kinds of relationships possible between unit and volume
affinity.

1.

All volume affinity requests are unrelated to any of the unit affinity requests. For example,
//DD1 DD VOL=SER=A,UNIT=3330
//DD2 DD UNIT=AFF=DD1,VOL=SER=B

//DbD3 DD VOL=SER=(C,D),UNIT=3330
//DD4 DD VOL=SER=C,UNIT=3330

® Unit affinity is explicitly requested between DD1 and DD2.
® Volume affinity is implicitly requested between DD3 and DD4.

® Therefore, the volume affinity request is not related to the unit affinity request.

All volume affinity requests are contained in the unit affinity requests. For example,

//DD1 DD VOL=SER=(A,D),UNIT=3330
//DD2 DD UNIT=AFF=DD1,VOL=SER=(A,B)
//DD3 DD VOL=SER=X,UNIT=3330

® Unit affinity is explicitly requested between DD1 and DD2.

® DDl illustrates implied unit affinity within a DD statement because the unit count
defaults to one.

® Volume affinity is also implicitly requested between DD1 and DD2.
® Therefore, the volume affinity request is contained within the unit affinity request.

Some volume affinity requests are contained in the unit affinity requests, but not all. For
example,

//DD1 DD VOL=SER=A,UNIT=3330
//DD2 DD UNIT=AFF=DD1,VOL=SER=B
//DD3 DD VOL=SER=B,UNIT=3330

@ Unit affinity is explicitly requested between DD1 and DD2.
® Volume affinity is implicitly requested between DD2 and DD3.

@® Therefore, some volume affinity requests are contained within the unit affinity requests,
but not all.

Chapter 7. Guide to Specifying Data Set Information 7-33

If both unit and volume affinity do exist in the same step, sometimes only one requested affinity
can be honored at a time. Figure 7-2 on page 7-34 indicates what will happen when you code

unit and volume affinity for either tape or direct access devices.

Relationship of
unit and volume
affinity requests

Tape

Direct Access

Unit and volume
affinity requests
unrelated

‘Because there is no

conflict, both unit
and volume affinity
requests are honored.

Because there is no
conflict, both unit
and volume affinity
requests are honored.

All volume affinity
requests contained
in unit affinity
requests.

All volumes will use
the same unit; that
is, volume affinity
is ignored and unit
affinity is honored.

For those volumes having
volume affinity that are
contained in the unit
affinity requests, unit
affinity is ignored. That
is, they will share the
same unit while the
remaining requests in the
unit affinity will use

a different unit.

Some volume affinity
requests contained

in unit affinity
requests.

For those volumes having
volume affinity that are
contained in the unit
affinity requests, unit
affinity is ignored. That

is, they will share the same
unit while the remaining
requests in the unit affinity
will use a different unit.

For those volumes having
volume affinity that are
contained in the unit
affinity requests, unit
affinity is ignored. That
is, they will share the
same unit while the
remaining requests in the
unit affinity will use

a different unit.

Figure 7-2. Unit and Volume Affinity

Note: If a requested volume is mounted on an eligible, permanently-resident or reserved unit,
it must be allocated to that unit regardless of any relationships to other requests. This is done
because that particular volume cannot be dismounted.

Positioning the Unit Affinity Request
If unity affinity (UNIT = AFF =ddname) to a DD statement is requested before the ddname is
defined within the job stream, the system treats the requesting DD statement as a DUMMY
DD.

For example;

//STEP EXEC PGM=TKM

//DD1 DD DDNAME=DD5
//DD2 DD DSN=A , DISP=OLD
//DD3 DD UNIT=AFF=DD1

The system treats DD3 as a DUMMY DD.

7-34 MVsICL

Specifying Volume Affinity When Using Multivolume Data Sets
Do not request volume affinity for multivolume data sets without also requesting unit affinity.

When you specify volume affinity for multivolume data sets using VOL =REF =*.ddname,
without specifying unit affinity, the system allocates a unit that is shared between all the DD
statements involved in the volume affinity request. The system then initiates a mount request
for the first volume serial number associated with the referenced DD statement.

Because volume affinity requests are not related to unit affinity requests,
OPEN/CLOSE/END-OF-VOLUME (O/C/EOV) look ahead mounting or end of volume
processing may cause this volume to be demounted and remounted on a unit other than the one
that was originally allocated for the volume affinity request. Your job now goes into a wait
because the system has requested the same volume on two different units.

To enable O/C/EOV to find the volume when such a remount occurs, always specify volume
affinity and unit affinity for multivolume data sets.

Example of UNIT and VOLUME Affinities

The purpose of this job is to show several job steps that use either unit or volume affinity for
their processing.

//AFFIN JOB (8526,831),WOON,CLASS=J,PERFORM=50
//STEP1 EXEC PGM=TESTAFF

//DD1 DD UNIT=3400-5,VOL=SER=111111

//DD2 DD UNIT=AFF=DD1,VOL=SER=222222
//STEP2 EXEC PGM=TESTAFF

//DD11 DD UNIT=(3330,2),VOL=SER=(A,B)
//DD12 DD UNIT=AFF=DD11,VOL=SER=(C,D)
//STEP3 EXEC PGM=TESTAFF

//DD21 DD UNIT=(3330,2),VOL=SER=(A,B)
//DD22 DD UNIT=AFF=DD21,VOL=SER=(C,D)
//DD23 DD UNIT=3330,VOL=SER=B

//STEP4 EXEC PGM=TESTAFF

//DD31 DD UNIT=(3330,2),VOL=SER=(E,F)
//DD32 DD UNIT=AFF=DD31,VOL=SER=(G,H)
//STEP5 EXEC PGM=TESTAFF

//DD41 DD UNIT=3400-5,VOL=SER=(111111,222222)
//DD42 DD UNIT=AFF=DD41,VOL=SER=(222222)
//STEP6 EXEC PGM=TESTAFF

//bD51 DD UNIT=3330,VOL=SER=(ABCDEF,GHIJKL)
//DD52 DD UNIT=AFF=DD51,VOL=SER=(ABCDEF)
'//STEP7 EXEC PGM=TESTAFF

//DD61 DD UNIT=3400-5,VOL=SER=111111
//DD62 DD UNIT=3400-5,VOL=SER=111111
//DD63 DD UNIT=AFF=DD61,VOL=SER=222222

1. The JOB statement assigns jobs to class J in performance group 50.

2. STEPI assigns one unit for both volumes. Volume 111111 will be mounted first, then
222222 will be mounted when DD?2 is opened. (This processing is true for both tape and
direct access.)

3. STEP2 allocates two units to DD11 and volumes A and B are mounted. DDI12 gets

allocated to the same two units but volumes C and D will be mounted when DD12 is
opened.

Chapter 7. Guide to Specifying Data Set Information 7-35

4. STEP3 is a direct access example of volume affinity for volume B. The actual allocation of
units will cause volumes A and C to share one unit and volumes B and D to have their own
units.

5. STEP4 is a direct access example. Assume that volume E is currently mounted and has
been assigned the permanently resident or reserved attribute. In this case, since volume E
cannot be dismounted, a separate unit will be allocated for it. Volume G will have its own
unit and volumes F and H will share one unit. Therefore, three volumes will be allocated
for these requests, instead of two, because of the permanently resident or reserved mount
attributes.

6. STEPS is a tape example. Volume affinity is ignored between the DD statements because
only one tape data set for each tape volume can be open at a time.

7. STEPS is a direct access example where unit affinity is ignored for the common volume.
Volume ABCDEF of both DD statements will share the same unit while the remaining
request (GHIJKL) will use a different unit.

8. In STEP7, unit affinity is requested between DD61 and DD63. Volume affinity is
requested between DD61 and DD62. Because there is a volume affinity request (DD62)
that is not contained in the chain of unit affinity requests, the UNIT =AFF =DD61
specification is ignored for DD63. STEP7 allocates two units; one for volume 111111, and
another for volume 222222.

Volume Afttributes

MVS assigns attributes to every mounted volume. This discussion describes the relationship of
JCL parameters and the disposition of removable tape volumes.

Note that 3330V or MSS volumes, while ultimately recorded on tape-like media, are treated as
DASD volumes by MVS.

This discussion is not applicable to JES3-managed units.

The JCL disposition parameter (DISP) refers to a data set’s disposition, whereas the
disposition of a tape volume is influenced by the volume’s mount and use attributes. For further
information see Job Management This discussion centers on tape volumes with the removable
mount attribute. That is, those volumes that are not mounted in response to the operator
MOUNT command. The use attributes for tape volumes are PRIVATE and PUBLIC.

MYVS assigns the use attribute of PRIVATE if any one of the following is true.

® You specify the PRIVATE subparameter of the VOLUME parameter, or

® You make a specific volume request, or

@ The data set is a nontemporary data set; that is, it does not have a system-generated data
set name, or it has a data set disposition other than DELETE.

MYVS assigns the use attribute of PUBLIC when all of the following are true.
® You do not specify the PRIVATE subparameter of the VOLUME parameter, and

® You do not request a specific volume, and

7-36 MVSICL

. @ The data set is a temporary data set; that is, you have allowed the system to generate the
data set name or you have specified a disposition of DELETE.

Ultimately a tape volume has one of two dispositions; Keep (K) or Scratch (D). However,
situations arise in which a tape volume must be demounted before a job is “finished” with that
* volume so that the drive may be used to mount a different volume.

For example, this can occur when a volume is used by job steps 1 and 3 but not by job step 2
in a three-step job.

In this instance the system assigns the volume the RETAINED (R) designation, in effect
instructing the operator to place the tape nearby for possible later use.

In a multiple step job, if there is a period when a volume is not in use, you can request the
system to attempt to keep the volume mounted by coding the RETAIN subparameter on the
VOLUME parameter.

The designation R causes the system to “remember” that a unit contains such a passed or
retained volume.

When a tape unit is deallocated, for example, at the end of a job step, PRIVATE volumes that
are not passed or retained are demounted with a volume disposition of keep (K).

We define a private volume as one that is usable only by those who know its volume serial
number. The system cannot return the volume to the scratch pool because it has no way of
“knowing” that the users have relinquished the volume serial number.

By definition PUBLIC volumes are available for use by any user and therefore should remain
mounted on units that are no longer in use by a particular job. This enables any subsequent
job to use them. When these volumes cannot remain on the unit they are currently mounted on
(because the unit is being allocated), the volume is demounted with a D (scratch) designation.
This would occur when the system requests that the operator mount a specific volume on that
particular unit.

There are situations where the use attribute can change from private to public and from public
to private, in these cases a demount may not take place. For a discussion of when the use
attributes can change, see SPL: Job Management.

Specifying Data Sets for Mass Storage Systems (MSS)

Mass storage volumes are accessed on virtual direct access devices. All previous descriptions of
direct access device resource requests apply, with several additional functions also available.
The mass storage volume device type is 3330V.

Mass Storage Volume Groups

The mass storage system (3850) can contain up to 4,720 mass storage volumes (3330V). To
assist the installation in managing the volumes, the mass storage system utilities are used to
assign the volumes to groups. When creating a new data set with a nonspecific request, the
desired group can be specified using MSVGP =id. The system then selects the best volume for
the requirements from the specified group.

Chapter 7. Guide to Specifying Data Set Information 7-37

The installation can define as many groups as necessary; one group and its name are standard
in all systems (SYSGROUP). The installation then assigns each mass storage volume to a user
group, to SYSGROUP, or to no group.

Nonspecific Volume Réquests for Mass Storage Volumes

Previous descriptions of nonspecific DASD volume requests apply to mass storage volumes.
The type of request can be modified by the MSVGP parameter that specifies an installation
defined subset of all mass storage volumes to be used by the system to satisfy the request.
MSVGP implies a private volume. The system will select a volume from the defined group that
has sufficient space to satisfy the space requirements of the DD statement. (See the section on
mass storage volume control in Mass Storage System (MSS) Services: General Information or
the selection of MSVGP volumes to satisfy space requirements.) If you code the MSVGP
parameter, the VOLUME parameter can be used to specify a volume count, but must not be
used for volume serial numbers. VOLUME =PRIVATE is redundant when MSVGP is used.

You can specify that data sets be allocated to different volumes by coding the ddname operand
on the MSVGP parameter. It may be desirable to specify different volumes for two data sets,
for example, when an existing data set containing a critical master file is used for input and a
new data set is created for the output master file.

If MSVGP is not specified when you make a nonspecific request for a:

@ Private mass storage volume, the system always causes a default group of volumes to be
used (MSVGP =SYSGROUP).

@ Nonprivate mass storage volume that is to contain a temporary data set, the system assigns
a public or storage mass storage volume that is already mounted (if one is available).
Otherwise, the request is treated as a nonspecific volume request for a private volume.

® Nonprivate mass storage volume that is to contain a nontemporary data set, the system
assigns a mass storage volume if one is mounted. Otherwise, the request is treated as a
nonspecific volume request for a private volume.

Specific Volume Requests for Mass Storage Volumes

Previously defined descriptions of specific DASD volume requests (direct access storage
volumes) also apply to mass storage volumes.

Because there is no operator involvement or decision making in mounting mass storage
volumes, we recommend (for data integrity purposes) that you catalog all permanent data sets
on mass storage volumes. All specific requests for these data sets should always reference the
volumes using by the catalog, not the VOLUME parameter. Reference to the catalog is
required when extending an existing multivolume data set to one or more volumes. The reason
is that the system must know all volumes on which the data set currently resides before it selects
the new volume. Parallel mounting must also be specified, to ensure proper multivolume
extensions.

7-38 MVSICL

Requesting Space for Non-VSAM Data Sets on Mass Storage Volumes

When an installation defines mass storage volume groups, each group is given a default for
space. Specific volume requests for new data sets require the SPACE parameter. Nonspecific
volume requests with the MSVGP parameter can optionally specify the SPACE parameter.
Nonspecific volume requests without the MSVGP parameter can optionally specify the SPACE
parameter if the request will default to MSVGP=SYSGROUP. If other types of space
attributes are desired, the SPACE parameter can be coded to override the specified default.
Neither directory nor index quantities can be provided in the default; therefore, you must code
the SPACE parameter for new BPAM or ISAM data sets on mass storage volumes.

Retrieving Generation Data Groups Residing on DASD Volumes

For generation data groups residing on DASD (including MSS) volumes, when you specify the
generation group name without a generation number (GDG ALL request), and request parallel
mounting in the UNIT parameter, the system mounts all volumes of all generations.

Before using mass storage volumes, refer to Mass Storage System (MSS) Services: General
Information and Mass Storage System (MSS) Services: Reference Information.

Requesting Space for Non-VSAM Data Sets

You must request space for every non-VSAM data set created on a direct access volume. To
request space, code the SPACE parameter on the DD statement that defines the data set. The
SPACE parameter provides two ways to request space:

® Tell the system how much space you want and let the system assign specific tracks.
® Tell the system the specific tracks on which you want the data set written.

Letting the system assign specific tracks is the easiest and most frequently used method of
requesting space. You need only specify the unit of measurement to be used to compute the
space requirement and how many of the units of measurement the data set requires. In
addition, this form of the SPACE parameter offers several options:

A secondary quantity, to be used if the data set runs out of space
Space for a directory or index

Release of unused space

Contiguous space

Whole cylinders

OS/MVT and OS/VS2 Release 1 (SVS) included the SPLIT and SUBALLOC parameters to
request space for a group of data sets on a single direct access volume. These two parameters
are now internally converted to SPACE requests. SUBALLOC requests are not eligible for
virtual input/output (VIO).

Chapter 7. Guide to Specifying Data Set Information 7-39

The Basic Space Request: Unit of Measurement and Primary Quantity

To have the system assign specific tracks, specify only the unit of measurement the system
should use to allocate space and the primary quantity of space needed. As the unit of
measurement, you can specify:

@® Average block length of the data, for blocks
® TRK, for tracks
® CYL, for cylinders

As the primary quantity, code an integer that indicates how many blocks, tracks, or cylinders
are required.

It is easiest to specify an average block length: the system will allocate the least number of
tracks required to contain the number of blocks specified. Specifying block length also
maintains device independence; you can change the device type in the UNIT parameter without
altering the space request or you can code in the UNIT parameter a group name that includes
different direct access devices.

When specifying TRK or CYL, compute the number of tracks or cylinders required; consider
such variables as the device type, track capacity, tracks per cylinder, cylinders per volume, data
length (blocksize), key length, and device overhead. These variables, and examples of
estimating space requirements for partitioned and indexed sequential data sets, are described in
Data Management Services Guide.

Cylinder allocation allows faster input/output of sequential data sets than does track allocation.
When you request space in terms of average block length, the system will allocate tracks to
contain the request unless you code ROUND as the last subparameter in the SPACE
parameter. The system will then allocate the smallest number of cylinders needed to contain
the request.

How the System Satisfies Your Primary and Secondary Request

7-40

Enough available space must exist on one volume to satisfy the primary request. If there is not
enough space available on a single volume, the system will terminate the job or search another
volume, depending on the type of volume request made:

Specific volume request (for example, you code volume serial numbers): If sufficient space is not
available on the first volume specified, the job is terminated. When extending a multivolume
data set, if sufficient space is not available to satisfy secondary allocation on the next specified
volume, the job is terminated.

Nonspecific volume request (for example, you do not code volume serial numbers): If space is
not available on the first volume chosen, the system will choose another volume and continue
the search, causing volumes to be mounted if necessary. The system continues to search until a
volume with sufficient space is found or the operator cancels the job.

Note: If the first volume selected by allocation to satisfy a request for a new ISAM data set
does not contain sufficient storage to satisfy the request, allocation does not attempt to find
another volume with sufficient space if the request is of the following types.

® A request for multiple volumes or units.
@ A request uses the second, third, or subsequent DD statement you used to define the
dataset.

MVS JCL

The system attempts to allocate the primary and secondary quantity in contiguous tracks or
cylinders. If contiguous space is not available, the system satisfies the request with up to five
noncontiguous extents (blocks) of space. (If user labels are specified — that is, you code SUL in
the LABEL parameter — the system allocates up to four noncontiguous extents of space. The
system allocates a track for user labels separate from the primary quantity; this one track is
considered an extent, and therefore, up to four additional extents can be allocated to satisfy the
primary quantity.)

A Secondary Request for Space

In the primary quantity, you need not anticipate all future demands for space for a data set.
Code a secondary request for space to be used only if the data set exceeds its allocated space.
Do this by coding an integer, following the primary quantity, that indicates how much
additional space should be allocated.

For data sets whose disposition is NEW or MOD, the system allocates this space on the same
volume as the primary quantity until:

1. There is not enough space available on the volume to allocate the secondary quantity, or

2. A total of 16 extents, less the number of extents for the primary quantity and user label
space, have been allocated to the data set. (BDAM data sets cannot be extended.)

If either of these conditions is satisfied, the system must allocate the secondary quantity on
another volume. However, the system will allocate your secondary request on another volume
only if you request more than one volume in the VOLUME parameter or for a specific volume
request, you request more volumes than devices.

If you are making a nonspecific volume request and there exists the possibility that the system
will allocate a permanently mounted volume, code PRIVATE in the VOLUME parameter.

When allocating a secondary quantity for a data set whose disposition is OLD (in other words,
a data set that is preallocated or is being written over), the system will go to the next volume, if
one is specified, and see if there is already a secondary quantity allocated there.

If you did specify another volume and there is already a secondary quantity, the system will

® Use that space instead of making another allocation, or
® Allocate space if no space is already allocated there for the data set.

If you didn’t specify another volume, the secondary space will be allocated on the current
volume.

A secondary quantity can be requested when creating a data set or when retrieving an existing
data set, whether or not you coded a secondary quantity in the original request. A secondary
request for an existing data set is in effect only for the duration of the job step and overrides an
original request if one was made.

If you specify SPACE in terms of average block length, code the maximum block length of the
data in either the DCB macro instruction or the BLKSIZE subparameter of the DCB
parameter on the DD statement: the system uses the maximum block length to compute how
many additional tracks to allocate.

Chapter 7. Guide to Specifying Data Set Information 7-41

Requesting Directory Space for a Partitioned Data Set

To create a partitioned data set, request a primary quantity large enough to include space for a
directory. A directory is an index used by the system to locate members in a partitioned data
set. It consists of 256-byte records, and you must specify, as the third quantity in the SPACE
parameter, how many records the directory is to contain. The directory is included at the
beginning of the primary space, which must be large enough to contain the directory. Request
enough directory space to allow for growth of the data set: you cannot lengthen the directory
as you can lengthen the data set itself, that is, by requesting a secondary quantity. If the
directory runs out of space, recreate the data set.

For a complete description of the directory, including details on member entries that will enable
you to compute how many records to request, see Data Management Services Guide.

Requesting Index Space for an Indexed Sequential Data Set

If you are creating an indexed sequential data set that occupies more than one cylinder, and
you are not defining the index on a separate DD statement, you can request index space in
addition to a primary quantity. Request index space as the third quantity in the SPACE
parameter. The space request for an indexed sequential data set must be in terms of cylinders
or absolute track allocation. The system determines whether the request is for a directory or an
index by examining the DSORG subparameter of the DCB parameter on the DD statement.
DCB=DSORG=1IS or DCB=DSORG =ISU must be included on any DD statement defining
an indexed sequential data set. ‘

The index quantity is added to the primary quantity when considering the space requirements.

Assigning Specific Tracks

You can request that specified tracks on a volume be allocated to a data set. This is the most
stringent request for space: if any of the tracks requested are occupied, the space cannot be
allocated and the job is terminated. An example of where specific track allocation is required is
a data set that is to reside under the fixed heads of a 3348 Model 70F Data Module (cylinders
1-5).

To request specific tracks, you must code:

® ABSTR as the first subparameter, indicating absolute tracks
@® A primary quantity, specifying the number of tracks to be allocated
@ The relative track number of the first track to be allocated

When using the ABSTR subparameter, count the first track of the first cylinder on the volume
as 0. Count through the tracks on each cylinder until you reach the track on which you want
- your data set to start. Do not request track 0.

For example, to allocate one track for a data set and specifically the second track on a volume,
code: ‘

//DDEX DD SPACE=(ABSTR,{(1,1))

7:42 " MVS JCL

For a partitioned data set, specify how many records you want allocated for a directory. If
requesting a user-label track, this track will be the first of the space requested.

If you are defining an indexed sequential data set using absolute track allocation, the number of
tracks for the index, primary, or overflow areas must be equal to an integral number of
cylinders and on a cylinder boundary. All of the DD statements defining the indexed sequential
data sets must request specific tracks.

Example of Requesting Space

One purpose of this job is to request space for two temporary data sets. The following steps
refer to these data sets for volume information.

//ALLOC JOB (3416,354) ,STONER,MSGLEVEL=1,MSGCLASS=C

//STEP1 EXEC PGM=TESTSYSO

//DD11 DD UNIT=3350,DISP=(,PASS),SPACE=(TRK,(10,5))

//DD12 DD UNIT=3330,DISP=(,PASS),SPACE=(TRK, (10,5))
//SYSABEND DD SYSOUT=L

//STEP2 EXEC PGM=TESTSYSO

//DD1 DD DSN=*,STEP1.DD11,DISP=(OLD,DELETE,DELETE)

//DD2 DD VOL=REF=*,STEP1.DD12,SPACE=(TRK, (3,1)),UNIT=3330
//SYSABEND DD SYSOUT=L

1. The JOB statement specifies that all job related output is to be printed and that system
messages for the job are to be written to output class C.

2. STEPI defines two temporary data sets. Step 2 refers to these data sets for volume
information.

3. The space requirements for these requests indicate that for DD11 and DD12 in STEP! you
want 10 primary and 5 secondary tracks; and for DD2 in STEP2 you want 3 primary and 1
secondary track.

Specifying Data Set Processing Options

By coding JCL statements, you can request output data sets, listings of JCL statements, system
messages, and abnormal termination dumps. By coding the OUTPUT JCL statement, you can
request special forms processing, routing of output, grouping of output data sets, and multiple
printing of data sets.

The following topics discuss the functions the system provides to process your job’s output.
The specific JCL statement, JES2 control statement, or JES3 control statement that performs
the function is discussed under the function it provides.

This section includes the following topics:

Processing Output Data Sets for the JOB

Processing System Output Data Sets Using the OUTPUT JCL Statement
Assigning System Output Data Sets to Output Classes

Specifying the Device

JES Output Class Processing

Delaying the Writing of an Output Data Set

Suppressing the Writing of an Output Data Set

Chapter 7. Guide to Specifying Data Set Information 7-43

Limiting Output Records

Specifying Forms Overflow Processing and Printer Spacing
Interpretation of Punched Output

Requesting Multiple Copies of an Output Data Set
Requesting Copy Modification ,

Requesting Printer Form and Character Control -
Requesting Forms Overlay

Processing Output Data Sets for the JOB
 The two ways to process output data sets are:

@® Assign processinéoptibhs to the data set and allow the job entry subsystem to manage the
output devices.

@ Specify the device on which the output should be written.

When you assign processing options to a data set, it is handled by the job entry subsystem in
use at your installation. The data set is first written to the job entry subsystem spool device
and then written or transmitted to the final output device by either the job entry subsystem or
an external writer.

For either JES2 or JES3, when you specify the output device on the UNIT parameter, the
~device, if available, is exclusively assigned to your job and under the control of your program.

Output data sets to be written to a 3540 diskette must be assigned to an output class that is
processed by the diskette writer (an external writer), as described in OS/VS2 IBM 3540
Programmer’s Reference. For the diskette writer to receive data sets, the job entry subsystem
initialization deck must specify the SYSOUT classes to be reserved for diskette output. To

~ write data sets on a diskette, the operator must start the diskette writer to a 3540 device.

Processing System Output Data Sets Using the OUTPUT JCL Statement

The OUTPUT JCL statement governs the processing of system output data sets. It allows you
to specify:

@ The processing options for a system output data set.
@ Default processing options for system output data sets.

The general format of the OUTPUT JCL statement is:

//name OUTPUT parameter|[,parameter]...

The OUTPUT JCL statement can be referenced explicitly or implicitly by a sysout DD
statement, as described below.

A sysout DD statement can reference more than one OUTPUT JCL statement. For each
reference to an OUTPUT JCL statement; the system processes the data set defined by the DD
statement according to the output processing options that apply from the DD and the
OUTPUT JCL statements.

7+44 MVSJCL

Explicit Reference

You code an explicit reference to an OUTPUT JCL statement by specifying the name of the
OUTPUT JCL statement on the OUTPUT parameter of the sysout DD statement. You can
have up to 128 explicit references to OUTPUT JCL statements from a single DD statement.
Each reference causes a separate processing of the data set. For example:

//STEP1 EXEC PGM=MFK

//OUT1 OUTPUT COPIES=6,DEST=NY,FORMS=BILLS
//0UT2 OUTPUT COPIES=2,DEST=KY,FORMS=LOG
//REF1 DD SYSOUT=A,OUTPUT=(* .0UT1, *.0UT2)

In the example, two sets of output are created from DD statement REF1. One of the sets will
go to NY and have six copies printed on the form defined as BILLS. The other set will go to
KY and have two copies printed on the form defined as LOG.

Implicit Reference

To code an implicit (default) reference to an OUTPUT JCL statement, code DEFAULT =YES
on the OUTPUT JCL statement and do not code an OUTPUT parameter on the sysout DD
statement.

Note: You can implicitly reference any number of output JCL statements.

You can place default OUTPUT JCL statements at the job level or the step level. Where you
place the default OUTPUT JCL statement determines the scope of control that the OUTPUT
JCL statement has on the sysout data sets in the job.

A job-level OUTPUT JCL statement is one that appears before the first EXEC statement in the
job. Any sysout DD statement within the job can implicitly reference a job-level OUTPUT
JCL statement, but only if the step does not contain a step-level default OUTPUT JCL
statement and the DD statement does not explicitly reference an OUTPUT JCL statement.

A step-level OUTPUT JCL statement is one that appears anywhere after the first EXEC
statement in the job. Only sysout DD statements within the step can implicitly reference a
step-level OUTPUT JCL statement. You may code more than one job- or step-level default
OUTPUT JCL statement per job or step.

When you explicitly reference an OUTPUT JCL statement, the system ignores all step- and
job-level default OUTPUT JCL statements. - For example,

//JOB1 JOB options.....

//0UT1 OUTPUT COPIES=8,DEST=FRANCE

//0UT2 OouTPUT COPIES=2,FORMS=A,DEFAULT=YES
//STEP1 EXEC PGM=DEMENT

//0UT3 OuTPUT DEFAULT=YES,COPIES=5,DEST=REMULAC
//INPUT DD DSN=RHINO

//MFK1 DD SYSOUT=A

//MFK2 DD SYSOUT=B, OUTPUT=*.OUT1

In the preceding example,

® The system processes the output from DD statement MFK1 using the options on the
OUTPUT statement OUT3 (1) because MFK1 does not contain an OUTPUT parameter
and (2) because OUT3 contains DEFAULT =YES and is in the same step as MFK1.
MFKI1 cannot implicitly reference the job-level default statement OUT2 because of

Chapter 7. Guide to Specifying Data Set Information 7-45

| step-level default statement OUT3. If STEP1 had not contained OUT3, MFK1 would have
| referenced statement OUT2.

@ The system processes the output from DD statement MFK2 according to the processing
options on the job-level OUTPUT JCL statement OUT1 because DD statement MFK2
explicitly references OUT1 using the OUTPUT parameter. Note that the system ignores
the processing options on all default OUTPUT JCL statements (OUT2 and OUTS3).

JES2 [*OUTPUT References

If you explicitly or implicitly reference an OUTPUT JCL statement from a DD statement, and
you also reference a JES2 /*OUTPUT control statement(s) from the same DD statement, the
system ignores the JES2 /*OUTPUT control statement(s). If you do not reference an
OUTPUT JCL statement, but you do reference a JES2 /*OUTPUT control statement, the
system uses the output processing options coded on the JES2 /*OUTPUT control statement.

Be careful when you modify a job that includes DD statements that previously referenced JES2
/*OUTPUT control statements. The DD statements referenced the JES2 /*OUTPUT control
statements using the code field in the SYSOUT parameter on the DD statement. If this DD
statement now references an QUTPUT JCL statement, the references to the JES2 /#*OUTPUT
statement(s) are ignored and the code field is no longer recognized as a reference to a JES2
/*OUTPUT statement. The system now interprets the code field as a forms name to be used
when processing the data set.

| JES3 [/*FORMAT Statement with OUTPUT JCL Statement

| When a JES3 //*FORMAT statement explicitly references a sysout DD statement that, in turn,
| explicitly references an OUTPUT JCL statement, the processing options from both the
| OUTPUT JCL and JES3 //*FORMAT statements apply. For example:

| //PUT1 OUTPUT options...
| //*FORMAT PR,DDNAME=DD9,options...
| //DD9 DD SYSOUT=A,OUTPUT=*.PUT1

Two separate sets of system output are created from the data set defined by DD statement DD9.
One set of output is created according to the processing options on QUTPUT JCL statement
PUTI1. The other is created according to the processing options on the JES3 //*FORMAT
statement.

Using the OUTPUT JCL Statement to Tailor the Job Stream

When a sysout DD statement references an OUTPUT JCL statement, either explicitly or
implicitly, the system selects the processing options to be used as follows:

@ If the same options are on the OUTPUT JCL statement and the sysout DD statement, the
values on the sysout DD statement override the values coded on the OUTPUT JCL
statement.

@ If an option is on only one of the statements, the system uses it.

The system combines the options from the two statements to determine how the sysout data set
is processed.

7-46 MVS JCL

Processing for Explicit References: When you explicitly reference an OUTPUT JCL statement
using the OUTPUT parameter on the sysout DD statement, consider the following:

® The OUTPUT JCL statement must appear earlier in the input stream, before any sysout
DD statement that references it.

@® When you code the OUTPUT parameter on a DD statement, the system ignores OUTPUT
JCL statements containing DEFAULT =YES. However, the the OUTPUT parameter can
refer to an OUTPUT JCL statement that contains DEFAULT =YES, and the system will
accept this reference.

 Processing for Implicit (Default) References: You can use the OUTPUT JCL statement to

provide output processing options for all or part of the sysout data sets in your job. Then, if
you wish slightly different processing options for a specific data set in the job, specify the
different options on the sysout DD statement. The DD options override those on the
OUTPUT JCL statement for that specific set of output, without affecting other output from the
job.

An Example Using Explicit and Implicit References: This example illustrates the use of the
OUTPUT JCL statement and shows how the statement’s position affects the processing of the
output data sets.

//EXAMP JOB MSGCLASS=A

//0UT1 OUTPUT DEFAULT=YES,DEST=COMPLEX7,FORMS=BILLING,
// CHARS=(AOA,AOQB) ,COPIES=2

//0UT2 OUTPUT DEFAULT=YES,DEST=COMPLEX1

//STEP1 EXEC PGM=0ORDERS

//R1 DD SYSOUT=A

//R2 DD SYSOUT=A

//STEP2 EXEC PGM=BILLING

//0UT3 OUTPUT DEFAULT=YES,DEST=COMPLEX3

//B1 DD SYSOUT=A

//B2 DD SYSOUT=A,OUTPUT=(*.0UT3, *.0UT2)
//STEP3 EXEC PGM=REPORTS

//0UT4 OUTPUT FORMS=SHORT,DEST=COMPLEX1

//RP1 DD SYSOUT=A

//RP2 DD SYSOUT=A,OUTPUT=(*.STEP2.0UT3,*.0UT1)
//

In STEPI, the system processes DD statements R1 and R2 using the processing options
specified on job-level OUTPUT JCL statements OUT1 and OUT2 because

® DEFAULT=YES is specified on OUTPUT JCL statements OUT1 and OUT?2, and
® there is no OUTPUT JCL statement with DEFAULT = YES within STEP1.
® The OUTPUT parameter is not specified on DD statements R1 and R2.

In STEP2, the system processes DD statement Bl using the processing options specified on
OUTPUT JCL statement OUT3 because:

® DEFAULT=YES is specified on QUTPUT JCL statement OUT3 and OUTPUT JCL
statement OUT3 is within the job step STEP2.

® The OUTPUT parameter is not specified on DD statement B1.
® OUTPUT JCL statement OUT3 is within STEP2; therefore, the system ignores the

DEFAULT = YES specification on job-level OUTPUT JCL statements OUT1 and OUT2
when processing DD statement B1.

Chapter 7. Guide to Specifying Data Set Information 7-47

In STEP2, the system processes DD statement B2 using the processing options specified on
OUTPUT JCL statements OUT3 and OUT2 because:

® Both of the OUTPUT JCL statements are explicitly referenced from the SYSOUT
statement. Explicitly-referenced OUTPUT JCL statements can be in any previous
procedure or step, before the DD statement in the current step, or at the job-level.

® Note that default OUTPUT JCL statement OUT1 is ignored when processing the data set
defined by DD statement B2 because B2 explicitly references OUTPUT JCL statements
OUT3 and OUT2.

In STEP3, the system processes DD statement RP1 using the output processing options
specified on the job-level OUTPUT JCL statements OUT1 and OUT2 because:

® DEFAULT=YES is specified on OUTPUT JCL statements OUT1 and OUT?2, and
® no OUTPUT JCL statement with DEFAULT =YES is coded within STEP3.
® The OUTPUT parameter is not specified on DD statement RP1.

Note: In STEP3, OUTPUT JCL statement OUT4 is not used at all because it does not have
DEFAULT=YES coded, and no DD statement explicitly references OUT4.

In STEP3, DD statement RP2 is processed using OUTPUT statements OUT3 and OUT1. You
can explicitly reference an OUTPUT JCL statement in another step if you use a fully qualified
reference, such as the reference to OUTPUT statement OUT3 used on DD statement RP2.

You may explicitly reference an OUTPUT JCL statement with DEFAULT =YES coded, such
as the reference to OUT1 from DD statement RP2. The system ignores the DEFAULT
parameter and uses the remaining processing options according to the normal rules that apply
when coding explicit references.

Specifying Sublist Using the OUTPUT JCL Statement

You must be careful when you are coding the COPIES, MODIFY or FLASH parameter on an
OUTPUT JCL statement. If you code the COPIES, FLASH or MODIFY parameter on a
sysout DD statement, you get a JCL error if you code it with a null first subparameter. For
example, you cannot code MODIFY =(,3) on a DD statement, even though you can code
MODIFY =(,3) on an OUTPUT JCL statement. For example:

//EXAMP2 OUTPUT FLASH=(,3),DEFAULT=YES
//FVZ2 DD FLASH=(INV)

In the example, INV is used because the FLASH parameter on DD statement FVZ2 overrides
the entire FLLASH parameter on OUTPUT JCL statement EXAMP2. This means that the
FLASH count will not be set to 3; instead all copies of the entire data set will be flashed
because the FLASH COUNT subparameter was not specified on the DD statement FVZ2. In
the case of overrides, even though a part may be left off an overriding parameter, the system
replaces the whole overridden parameter with the whole overriding parameter. The system uses
the FLASH parameter as coded on DD statement FVZ2 and ignores whatever is coded on the
FLASH parameter of OUTPUT JCL statement EXAMP2.

7-48 MVS JICL

Specifying a Destination for the Data Set

You can specify a destination for an output data set. You may want a set of reports printed in
Chicago, New York, Paris, and Los Angeles. To do this, you must code and reference four
different OUTPUT JCL statements with a destination specified on each because you can code
only one destination on each OUTPUT JCL statement. However, by referencing OUTPUT JCL
statements, you can specify up to 128 different destinations from a single DD statement. In
addition, you can use the OUTPUT JCL statement to specify the output processing options you
may want to use at any or all of these destinations.

Grouping Data Sets Using the OUTPUT JCL Statement

In JES2 systems, you can group system output data sets together using the GROUPID
parameter on the OUTPUT JCL statement. Output data sets with the same group identifier are
processed together by the system. You can use grouping to keep related information from
different data sets closer together in both the location and time when they are printed.

You may always group system output data sets with similar processing characteristics. But, you
cannot group output data sets with differing SYSOUT classes, destinations, processing modes,
writer names, or groupids. If you attempt to do so, your output group specified via GROUPID
is further broken down into smaller output groups in which all data sets have identical class,
destinations, processing modes (PRMODE), writer name, and groupid.

Your installation controls whether or not you can group output data sets with different printer
setup requirements, such as forms. Such output groups are called demand setup groups. If you
are attempting to create a demand setup group and your installation does not permit demand
setup groups, the group is further broken down into smaller groups in which all data sets have
identical setup characteristics. Consult with your installation to determine if demand setup
grouping is allowed.

An Example Using the OUTPUT JCL Statement to Group Output: The following example
illustrates grouping of data sets using the OUTPUT JCL statement.

//TEST1 JOB MSGCLASS=B
//OUT1 OUTPUT GROUPID=GRP10,UCS=PN,DEST=RT6,DEFAULT=YES
//STEP1 EXEC PGM=REPORT

//RP1 DD SYSOUT=A
//RP2 DD SYSOUT=B
//RP3 DD SYSOUT=A

In this example, two groupd are created for the three different system output data sets.

Managing the System-Managed Data Sets: The JESDS Parameter

Sysout DD statements are not coded for the system-generated and -maintained output data sets,
which are the job log, the JCL statements and messages, and the system messages. The JESDS

parameter of the OUTPUT JCL statement indicates that the processing characteristics for these
data sets are coded on the OUTPUT JCL statement. You can code the JESDS parameter only

on job-level OUTPUT JCL statements. Use:

JESDS=LOG to control the job log data set;

JESDS=JCL to control the JCL images data set;
JESDS=MSG to control the system messages data set;
JESDS=ALL to control all of the system-managed data sets.

Chapter 7. Guide to Specifying Data Set Information 7-49

The following example requests that the three system-managed data sets be printed normally,
but also requests that a copy of each be routed to an external writer named JCLOGGER.

// JOB

// OUTPUT JESDS=ALL

// OUTPUT JESDS=ALL,WRITER=JCLOGGER
// EXEC PGM=REPORT

In the next example, four different output groups are created. Group SYSPROG will contain a
copy of all three of the system-managed data sets. Group OPER will also contain a copy of all
three system managed data sets. Group USER will contain a copy of the system-managed data
sets as well as a copy of the data set defined by DD statement SYSPRINT (this group is
processed locally). The system creates a fourth group without a user-specified group name.
The system generates a group name and that group contains a copy of the three
system-managed data sets and a copy of the data set defined by DD statement SYSPRINT
(this group is processed remotely at destination REMOTE):

JOB MSGCLASS=A
//SYSPROG OUTPUT JESDS=ALL,GROUPID=SYSPROG

//OPER OUTPUT JESDS=ALL,GROUPID=OPER

//USER OUTPUT JESDS=ALL,DEFAULT=YES,GROUPID=USER

//REMOTE OUTPUT JESDS=ALL,DEFAULT=YES,DEST=REMOTE
EXEC PGM=REPORT

//SYSPRINT DD SYSOUT=A

Be careful when combining sysout data sets and system-managed output data sets within an
output group. The values you specify on the sysout DD statements might override those
specified on the QUTPUT JCL statement for the DD-defined data sets; but the values you
specify on the OUTPUT JCL statement always apply to the system-managed data sets.
Therefore, the output characteristics given to the system-managed output data sets and sysout
data sets can vary greatly, even if the data sets all reference the same OUTPUT JCL statement.
An example of how problems can arise when you try to group the system-managed output data
sets and sysout data sets is shown below.

//SYSDS JOB MSGCLASS=A .
//0UT1 OUTPUT JESDS=ALL,CLASS=F,GROUPID=JOINT,DEFAULT=YES
//STEP1 EXEC PGM=REPORT

//REQPRT DD SYSOUT=A
In this example, two groups are produced:

1. The system messages are put in a subgroup of the group called JOINT and are printed in
system output class F, specified in the OUTPUT JCL statement.

2. The REQPRT output data set is put in a different subgroup of the group called JOINT and
is printed in system output class A, specified in the DD statement.

Even though the sysout DD statement REQPRT references the OUTPUT JCL statement with
the JESDS parameter, the output processing characteristics of the data sets are different. The
data set defined by sysout DD statement REQPRT takes its processing characteristics from a
combination of the values coded on the sysout DD statement and the OUTPUT JCL statement.
The system-managed data sets take their output processing characteristics only from the
OUTPUT JCL statement.

7-50 MvsiICL

Specifying a Priority for Sysout Data Sets.

You can specify a priority for an output data set using the PRIORITY parameter on the
OUTPUT JCL statement. You can use this function to increase an output data set’s priority so
it will be printed much sooner than it otherwise might have been.

However, your installation may instruct the system to ignore the priority specified on an
OUTPUT JCL statement. Consult your systems programmer to determine whether you can
specify an output data set’s processing priority using the OUTPUT JCL statement.

Assigning System Output Data Sets to Output Classes

Output classes generally include system output data sets that have similar characteristics and
that are written to the same device. There are 36 possible output classes; each is defined by an
alphabetic (A-Z) or numeric (0-9) character. The output class is indicated on the DD statement
SYSOUT parameter, the CLASS parameter of the OUTPUT JCL statement, or the
MSGCLASS parameter on the JOB statement.

The letter and number names have no inherent meaning; each installation defines its own
output classes and can assign special processing characteristics for each class. For example,
output class W might contain low-priority output; class X might contain output to be printed
on a special form (eliminating the need to request the form directly); class J might be reserved
for high-volume output.

If you want the output data set and messages from the job to be printed on the same output
listing, specify one of the following:

® SYSOUT=* on the DD statement.

® CLASS=* on the OUTPUT JCL statement.

@ The same output class in the DD SYSOUT parameter or OUTPUT JCL CLASS parameter
as specified in the JOB MSGCLASS parameter.

Held System Output Classes

The instailation can designate certain system output classes as held, that is, not able to be
selected by an output device. If the output class specified for the MSGCLASS parameter is not
designated as a held class, the system generated data sets will not be held and none of the job’s
data sets assigned to held classes will be held. Data sets can be explicitly held by coding the
HOLD =YES parameter or by coding TSO commands. (Refer to TSO Command Language
Reference for information on the TSO commands.) Jobs can be released from the hold state by
the operator or by the time-sharing user with the TSO OUTPUT command. Control of
holding or not holding of all desired print data sets is done using held classes on the
MSGCLASS parameter on the JOB statement. If MSGCLASS is set to a held class and
SYSOUT class is not set to a held class, the system data sets will be held but the job’s data sets
will not be held.

For more information on holding data sets, see “Delaying Initiation of Your Job in JES2” on
page 3-23.

If your installation allows demand setup, output for all data sets could be printed on the same
listing, even if parameters such as FORMS, FCB, and UCS are different.

Chapter 7. Guide to Specifying Data Set Information 7-51

Specifying the Device

To process an output data set without using the job entry subsystem output service, code the
UNIT parameter on the DD statement defining the device on which the data set is to be
written. The system will allocate the device exclusively to the job if the device is available: no
other job can write output to that device until it is released. Jobs cannot share an output
device as they can when output is assigned to output classes. ‘

Data management routines write the output from the program to the device specified in the
UNIT parameter. Specifying a particular output device in the UNIT parameter generally is not
the most efficient method for obtaining system output.

Specifying the Internal Reader

You might wish to make the output of a job or job step the input to another job or step.
Instead of directing that output to a card punch or a tape drive and then resubmitting the
output as input to the later job, you can direct the output to an internal reader.

The input to the internal reader must consist of JCL statements to run the later job.

To direct the output of a job or job step to the internal reader, code:

//IROUT DD SYSOUT=(A,INTRDR)

® “INTRDR” is an IBM-reserved name identifying the internal reader as the program to
process this output data set.

@ The SYSOUT class of this DD statement becomes the default message class for the job
going into the internal reader unless you code the MSGCLASS parameter on the JOB
statement. See “Job Log” on page 3-14.

The system places the output records for the internal reader into a buffer in your address space.
When this buffer is full, the contents are copied into the JES address space; JES3 then spools
the data. The JES input service can now process the contents of this buffer as input to the job
you specify.

Instead of waiting for the buffer in your address space to fill up, you can send the contents of
the internal reader buffer directly to the JES input service by coding:

@® /*EOF as the last record of the job.

— For JES2, this control statement delimits the current job and makes it eligible for
immediate processing by JES2 input service.

— For JES3, this control statement is a request for special end-of-record processing. The
internal reader facility closes the data set and sends the data set to the JES3 input
service. The internal reader facility closes the data set without deallocating it so it is
available for more records.

7-52 MVSICL

® /[*DEL as the last record of the job.

— For JES2, this control statement cancels the current job and schedules it for immediate
output processing. The output will consist of any JCL submitted followed by a
message indicating that the job was deleted before execution.

— For JES3, this control statement is treated like /*EOF.

® /*PURGE as the last record in the job.

For JES2 only, this control statement cancels the current job and schedules it for purge
processing; no output is produced for the job.

® [*SCAN as the last record in the job.

For JES2 only, this control statement requests that JES2 scan the current job for JCL
errors only. The job is not to be executed.

Example of Using the Internal Reader

In the following example, different groups of data are directed to the internal reader. Each
group is started with a JOB statement.

//JOBA JOB D58JTH,HIGGIE
//GENER EXEC PGM=IEBGENER
//SYSIN DD DUMMY

//SYSPRINT DD SYSOUT=A, DEST=NODE1
//SYSUT2 DD SYSOUT= (M, INTRDR)

//SYSUT1 DD DATA

//JOBB JOB D58JTH,HIGGIE,MSGLEVEL=(1,1)
//REPORTA EXEC PGM=SUMMARY
//OUTDD1 DD SYSOUT=*

//INPUT DD DSN=REPRTSUM, DISP=OLD
//JOBC JOB D58JTH,HIGGIE,MSGLEVEL=(1,1)
//REPORTB EXEC PGM=SUMMARY

//OUTDD2 DD SYSOUT=A, DEST=NODE2

//INPUT DD DSN=REPRTDAT , DISP=0LD

/*EOF

® JOBA executes program IEBGENER.

® Program IEBGENER reads JOBB and JOBC from SYSUT1 and submits them to the
internal reader.

® The message class for JOBB and JOBC is M, the SYSOUT class specified on the internal
reader DD statement (SYSUT?2).

® The message class for the output data set from JOBB (OUTDD1) is M because
SYSOUT =* is coded.

® The /*EOF statement specifies that the preceding jobs are to be sent immediately to the job
entry subsystem for input processing.

Chapter 7. Guide to Specifying Data Set Information 7-53

For more information on the internal reader, see SPL: Job Management, SPL: JES2
Installation, Initialization, and Tuning, or JES3 SPL: Initialization and Tuning.

JES Output Class Processing

Using JES2 or JES3 is an efficient way to write output. The job entry subsystems support the
use of local and remote printers and punches as devices on which data sets are written. An
external writer supports tape and direct access devices and user-written writer routines.

Output for all data sets will generally be printed on the same listing if such parameters as
CLASS, FORMS, FCB, UCS, and DEST have similar characteristics and a user-written writer
is not specified. The installation may choose to print all data sets that specify the same output
class as the MSGCLASS parameter on the same listing, even though FORMS, UCS, FCB, and
DEST are different.

For an external writer, the operator will determine which data sets will be selected. This can
cause certain output to print out on the same listing even though all of the FORMS, DEST,
UCS, and FCB parameters do not indicate the same characteristics.

When an external writer is specified, either an IBM-supplied external writer or a user-written
writer can process the output. The operator must start the external writer to have the data
written. If you want to know more about how to write an external writer routine, refer to
SPL: Job Management.

JES2 Output Class Processing

Job-related output is output that is not held, spun off or processed by a user-written writer. (A
spun off data set is made available for output processing before job termination.) Job-related
output will be retained until the end of the job and printed by JES2. If you release a held data
set in time for it to be printed with other non-held or no longer held output, JES2 will print
them together if the following criteria are satisfied:

@ The released data set has not been spun-off; spun-off data sets are always printed
separately.

@ Printing of the job-related data sets has not begun, or else released data sets are printed
independent of job related data sets.

@ The job-related data set does not have multiple copies; released -data sets will not be printed
with job-related data sets for which there are multiple copies.

® The released data sets would have been part of the job-related data set had they not been
held.

Dynamically deallocated SYSOUT data sets are spun off and are not considered part of the
job-related output.

7-54 MVSICL

Delaying the Writing of an Output Data Set

A data set can be made available for inspection from a time-sharing terminal and its printing
delayed by specifying held classes and/or by coding the HOLD parameter. For example, the
installation can direct the delayed printing of a very large data set to prevent monopolizing an
output device until smaller data sets are written. If a data set requires special forms that are
not immediately available, it can be held until the operator supplies those forms. When

HOLD =YES is specified on the DD statement, the data set is placed on a hold queue until the
operator releases it. Notify the operator (using the NOTIFY parameter for TSO, the
MESSAGE statement for JES2, or the OPERATOR statement for JES3) when that data set is
ready for processing because no message will be sent to the operator. The operator or
time-sharing user can release the data set for output processing.

Suppressing the Writing of an OQutput Data Set

Whether writing an output data set by coding the SYSOUT parameter or the UNIT parameter,
you can suppress the writing of the data set by defining it as a dummy data set. This is useful
when you are testing a program and you do not want data sets printed until you are sure they
will contain meaningful output. Suppressing the writing of a data set saves processing time.

If you are creating an output data set by coding the SYSOUT parameter, code the DUMMY
parameter to define the data set as a dummy data set. When DUMMY is coded, the system
ignores the SYSOUT parameter and does not print the data set.

You can also suppress the writing of an output data set by specifying a particular
installation-defined sysout class defined to delete all output data sets before they are printed.
Use this technique to suppress the output of started tasks such as START and MOUNT
commands.)

JES3 users can suppress the writing of an output data set by coding COPIES=0 on the
[[*FORMAT PR or /[/[*FORMAT PU (print or punch) control statements.

If the device on which the data set will be written is specified in the UNIT parameter, you can
assign the data set a dummy status by coding DUMMY or by assigning the data set name
NULLFILE. All parameters other than DUMMY or DSNAME=NULLFILE and DCB are
ignored; no units are assigned to the data set. When the program requests that the data set be
written, the request is recognized but no data is transmitted. Requests to write a dummy data
set are supported by the basic sequential access method (BSAM), virtual storage access method
(VSAM), and queued sequential access method (QSAM). If any other access method is used,
the job is terminated.

Limiting Output Records

To limit the number of logical records in the output data set, specify a maximum number of
records on the OUTLIM parameter on a DD statement. For example, a program is printing
and goes into an endless loop. You can anticipate this problem and only have a maximum
number of records printed before having the system abnormally terminate the job.

¢ 3

Chapter 7. Guide to Specifying Data Set Information 7-55

JES2 Output Limiting

In a JES2 system, you can specify the estimated number of logical records, bytes, or pages for
the job’s output using the LINES, BYTES or PAGES parameters on a. /*JOBPARM control
statement (for punch data sets, use CARDS instead of LINES). For further information about
JES2 output limiting, see “/*JOBPARM Statement” on page 16-4. ‘

JES3 Output Limiting

To limit the printed or punched output of a job, specify the estimated number of bytes, lines,
pages or cards of output associated with your job by coding the LINES, BYTES, PAGES
and/or CARDS parameters on the JES3 //*MAIN statement. JES3 uses this information to
monitor output and take whatever action is specified if you exceed the estimates. These actions
request that the operator receive a warning (the WARNING subparameter), that the job be
canceled (the CANCEL subparameter), or that the job be canceled with a storage dump (the
DUMP subparameter). JES3 initialization parameter values are used if you omit the estimates.

The LINES parameter will not limit the size of an internal reader data set because JES3 does
not consider an internal reader data set to be part of the printed output of a job. To restrict
this type of data set, you must use the OUTLIM parameter on the DD statement. ;

Specifying JES2 Page Overflow Processing

JES2 will automatically limit the number of lines it prints per page, thus preventing printing
over the edge of the form. Overflow processing is specified either by the installation during
JES2 initialization or by the programmer coding JCL or JES2 control statements.

You can code the “linect” field in the Accounting Information parameter on the JOB statement,
or the LINECT parameter on the OUTPUT JCL statement, the JES2 JOBPARM statement, or
the JES2 /*OUTPUT statement. You can override the installation-specified number of lines per
page through the LINECT parameter on the OUTPUT JCL statement, JOBPARM statement,
JES2 /*OUTPUT statement, or on the “linect” field in the accounting information parameter
on the JOB statement. You can turn off line limiting by coding LINECT =0.

Specifying JES3 Forms Overflow Processing and Printer Spacing

Use the overflow parameter (OVFL) on the JES3 //*FORMAT PR control statement to
prevent printing across page folds. Specifying OVFL=ON on the //*FORMAT PR statement
or the JES3 SYSOUT initialization statement causes the printer to eject a page when it senses
the end-of-forms indicator (channel 12) on the printer’s carriage control or in the printer’s FCB.

You can also control page ejection by specifying the CONTROL =PROGRAM parameter on
the //*FORMAT PR statement. This causes the format specified in the

DCB=(...,RECFM =format,...) parameter on the DD statement to be used for printer carriage
control. Do not use this method if the printer control (tape or RCB) contains channel 12
indicators and OVFL =ON (the default).

JES3 defaults to OVFL=ON and CONTROL =PROGRAM on the //*FORMAT PR
statement. Therefore, you must specify OVFL = OFF on the //*FORMAT PR statements for
data sets that are program-controlled. You can turn overflow off by specifying OVFL =OFF
on each data set’s //*FORMAT PR statement.

7-56 MVSIJCL

If the number of data sets requiring OVFL=ON is small, the installation can turn off the
overflow by specifying OVFL =OFF on the SYSOUT initialization statement. For those data
sets requiring overflow, code a //¥*FORMAT PR statement with OVFL=ON to override the
SYSOUT initialization statement.

Interpretation of Punched Output

Cards punched on a 3525 card punch from output spooled by either job entry subsystem will be
interpreted if:

® Youcode FUNC=I as a DCB subparameter on the SYSOUT card, and
® The spooled output is processed by the JES writer rather than an external writer.

If the JES writer processes the spooled output on to a card punch other than the 3525, JES
ignores the FUNC=I subparameter. Check with your installation to determine if a special
output class has been set aside for 3525 output. Card interpretation by the external writer is an
operator-specified function. Output to be interpreted should be placed in a class designated by
the installation as a punch-with-interpretation class.

JES3 Punch Output Interpretation on a 3525

Punched output may or may not be interpreted depending on the installation-defined standard
for the SYSOUT class. You can specify that punched output is to be interpreted by coding the
INT =YES parameter on the JES3 //*FORMAT PU statement. If you omit the device name
that specifies a 35251, JES3 attempts to find one for the output. If you specify a
non-interpreting punch device, output is punched on it but not interpreted.

JES2 Support of the 3211 Indexing Feature

You can request that output printed by JES2 on a 3211 printer be indexed to the right or the
left by coding the INDEX or LINDEX parameters, respectively, on the OUTPUT JCL
statement or the JES2 /*OUTPUT statement. JES2 ignores these parameters if the output is
processed by an external writer or is processed to a device other than a 3211. Ask your
installation’s system programming staff whether an output class has been set aside for output to
be processed on a 3211 printer.

Requesting Multiple Copies of an Output Data Set Using JES2

You can control the number of hard copies of output data sets that JES2 produces. As many
as 255 copies of an output data set can be obtained by coding the COPIES parameter on a
sysout DD statement that defines the data set, on the OUTPUT JCL statement, or on the JES2
/¥*OUTPUT statement. As many as 255 copies of the entire job-related output are obtained by
coding the COPIES parameter on the JES2 JOBPARM control statement.

The number of JOB copies can be limited by each installation.

If you request multiple copies of a data set by coding the COPIES parameter on a JES2
/¥*OUTPUT, OUTPUT JCL, or sysout DD statement and the JOBPARM control statement,
JES2 output processing gives the product of the requested amount for each SYSOUT data set.
For example, if you request two copies of the entire job output (COPIES=2 on the JOBPARM
statement) and three copies of a certain output data set (COPIES=3 on a sysout DD statement
or OUTPUT JCL statement), you will receive two copies of the entire job output but will

Chapter 7. Guide to Specifying Data Set Information 7-57

receive a total of six copies of the output data set. However, if the data set has been written
directly to an output device, held, spun off, or processed by an external writer, it is no longer a
job-related data set and is not affected by the COPIES parameter on the JOBPARM statement.
In this case, you would receive three copies of the requested output data set.

For the 3800 printer, you can also specify on the sysout DD statement, the OUTPUT JCL
statement, and the JES2 /*OUTPUT statement how the copies of the output data set are to be
grouped. Each group value of the COPIES parameter specifies the number of copies of each
individual page that is to be printed before copies of the next page are printed. The total
number of copies printed equals the sum total of the group values. The system allows a
maximum of eight group values.

Requesting Multiple Copies of an Output Data Set Using JES3

You can control the number of hard copies of the system output data sets that JES3 produces.
You can request as many as 254 copies of an output data set by coding the COPIES parameter
on the sysout DD statement defining the data set, or up to 255 copies by coding the COPIES
parameter on the JES3 //*FORMAT PR control statement or on the OUTPUT JCL statement.

For the 3800 printer, you can also specify on the sysout DD statement, on an OUTPUT JCL
statement, or on the JES3 //*FORMAT PR statement how the copies of the output data set are
to be grouped. Each group value of the COPIES parameter specifies the number of copies of
each individual page that is to be printed before copies of the next page are printed. The total
number of copies printed equals the sum total of the group values.

Requesting Copy Modification

When using the 3800 printer, you can modify selected copies of output by specifying a copy
modification module name in the MODIFY parameter on the sysout DD statement, on the
OUTPUT JCL statement, on the JES3 //*FORMAT PR control statement, or on the JES2

- /*OUTPUT control statement. This allows the printing of predefined data on all pages of a
-specific copy or copies of a data set. For example, you may want to vary column headings or
explanatory remarks on different copies of the same printed page of data. Copies might also be
personalized with the recipient’s name, address, and other desired information. Blanks or
printable characters, such as asterisks, might also be used to suppress the printing of variable
data on particular copies of a page. (This is a function done in other printers by using short or
spot carbon in the forms set.)

The predefined data is created as a copy modification module and stored on SYS1.IMAGELIB

using the IEBIMAGE utility program. For information on using IEBIMAGE, sce the IBM
3800 Printing Subsystem Programmer’s Guide.

Requesting Printer Form and Character Control

When requesting that an output data set be printed, you can give the job entry subsystem
special instructions on how to print the data set. You can request:

@® A special output form.

@ A special character set or arrangement, when output is being printed by a 3211, 3203
Model 5, or 1403 printer with the universal character set feature or by a 3800 printer.

'7-58 MVS JCL

® A specific FCB (forms control buffer) module, which controls how many lines per inch are
printed and the length of the form, when the data set is written to a 3211, 3203 Model 5, or
3800 printer.

@ A specific FCB (forms control buffer) module, which controls how many lines per inch are
printed and the length of the form, when the data is written to a remote job processing
(RJP) printer supported by systems network architecture (SNA) or to a 3211, 3203 Model 5
printer or a 3800 printer.

@ A specific carriage control tape, when the data set is written to a 1403 printer.
@ A test for printer overflow and spacing.
@ Interpretation of punch output on the 3525.

Note: JES2 treats the 3203 Model 5 printer the same as a 3211 printer with the following
exceptions:

® The UCSs (universal character sets) for the 3203 Model 5 are the same as for the 1403
printer.

® The 3203 Model 5 printer does not support indexing; therefore JES2 indexing commands
are ignored.

® You cannot explicitly identify the 3203 Model 5 printer to JES2 via JES2 initialization
parameters. MVS passes the 3203 Model $ identification to JES2 via the UCB.

For further information on UCSs and UCBs, see SPL: Data Management.
Requesting a Special Output Form

To request special forms for output data set printing, include the form name in the SYSOUT
parameter on the DD statement defining the data set; or code the FORMS parameter on the
OUTPUT JCL statement, on the JES2 /*OUTPUT control statement, or on the JES3
/[*FORMAT PR control statement. For example, assign a data set to an output class to be
routed to a printer and specify the data set be printed on a special form. (Code
SYSOUT=(A,,FMS2) on the DD statement.) The job entry subsystem and the external writer
insure that the proper form is mounted.

For JES2, the entire job can be printed on a special form if you code the FORMS parameter
on the JOBPARM statement. If you code a forms name on either the DD statement with the
SYSOUT parameter, the FORMS parameter on the OUTPUT JCL statement, or the JES2
/*OUTPUT statement, it overrides the forms name in the JOBPARM statement.

Requesting a Special Character Set Using the UCS Feature

The universal character set (UCS) feature is requested by coding the UCS parameter on a DD
statement defining an output or SYSOUT data set, or:

® For JES2, by coding the UCS parameter on the OUTPUT JCL statement or on the JES2
/*OUTPUT control statement for SYSOUT data sets.

® For JES3, by coding the TRAIN parameter on the //*FORMAT PR control statement.

Chapter 7. Guide to Specifying Data Set Information 7-59

You can request the UCS feature for different sets of characters to be printed for various
applications.

To request a special character set for a 3211, 3203 Model 5, or 1403 printer, specify the code
identifying the character set in the UCS parameter on a DD statement, on an OUTPUT JCL
statement, or on a JES2 /*OUTPUT statement. The codes for the IBM standard special
character sets are in Figure 12-1 on page 12-128

Requesting Character Arrangements with a 3800 Printer

Specify character-arrangement tables to be used when printing with the 3800 on the CHARS
parameter of the sysout DD statement, the OUTPUT JCL statement, or:

® For JES2, on the JES2 /*OQUTPUT statement.
® For JES3, on the JES3 //*FORMAT PR statement.

For the table names supplied for the 3800, see the IBM 3800 Printing Subsystem Programmer’s
Guide. See your system programmer for the selection of table names available at your
installation.

When more than one character arrangement table is specified, you can code OPTCD=1J as a
DCB subparameter to indicate that your data line contains a table reference character for
dynamically selecting the table you want. (See the description of the OPTCD subparameter for
BSAM and QSAM in the topic, “The DCB Parameter.”) Using the IEBIMAGE utility
program, you can modify or construct character arrangement tables and graphic character
modification modules to allow substitution of existing or user-designed characters. For details
on using the OPTCD subparameter, see the IBM 3800 Printing Subsystem Programmer’s Guide.

You can specify the UCS (universal character set) parameter on the same output DD statement
as the CHARS parameter; do this to permit output to go to either the 3800 or to other printers.
If a printer other than the 3800 is selected for output, the system ignores the CHARS
parameter.

If the UCS value is supplied and the CHARS parameter is not, and you requested that the data
set be printed on a 3800 printer, the UCS value is used as the default value for the missing
CHARS parameter.

Requesting Forms Control

For a 1403 printer and printers supported by systems network architecture (SNA) remote job entry
(RJE):

Request forms control by specifying a specific carriage control tape in the FCB parameter on a
sysout or output DD statement, or

® For JES2, with the FCB parameter on the OUTPUT JCL statement or the JES2
[¥*OUTPUT control statement.

® For JES3, with the FCB parameter on the OUTPUT JCL statement or the CARRIAGE
parameter on the //*FORMAT PR control statement.

Carriage specifications are used for JES output processing only; they are ignored by the external
writer. .

7-60 MvVS JCL

For a 3211 or 3203 Model 5 printer and printers supported by systems network architecture
(SNA) remote job entry (RJE):

Request specific forms control images (for example, the number of lines per page or number of
characters per line) by coding an image identifier in the FCB parameter on a sysout or output
DD statement, the OUTPUT JCL statement, or:

® For JES2, the JES2 /*OUTPUT control statement.

® For JES3, the JES3 //*FORMAT PR control statement.

You can also specify a carriage control tape for JES3 output processing in the CARRIAGE
parameter on the //*FORMAT PR control statement.

The FCB image is stored in SYSI.IMAGELIB. IBM provides two standard FCB images:
STDI1 and STD2. STDI1 specifies that 6 lines per inch are to be printed on an 8.5-inch form.
STD2 specifies that 6 lines per inch are to be printed on an 11-inch form.

Note: Do not specify STDI1 or STD2 for JES2 or JES3 processing unless instructed to do so
by your installation.

Additional FCB images can be specified by the installation. For information on IBM- and
user-supplied FCB images, see SPL. Data Management.

Programming notes for JES2: JES2 treats the 3203 Model 5 printer the same as a 3211 printer
with the following exceptions:

@® The UCSs for the 3203 Model 5 are the same as for the 1403 printer.

@ The 3203 Model 5 printer does not support indexing, so JES2 indexing commands are
ignored.

® You cannot explicitly identify the 3203 Model 5 printer to JES2 via JES2 initialization
parameters. MVS passes the 3203 Model S identification to JES2 via the UCB.

For further information on UCSs and UCBs, see SPL: Data Management.

For a 3800 printer: Request forms control by specifying an FCB module name in the FCB
parameter on a sysout DD statement, the OUTPUT JCL statement, or:

® For JES2, the JES2 /*OUTPUT control statement.

® For JES3, the JES3 //*FORMAT PR control statement.

The FCB module is stored in SYSI.IMAGELIB. IBM provides a standard FCB module,
STD3, which specifies output of 80 lines per page at 8 lines per inch on 11-inch long paper.
(For a 3800 using ISO paper sizes, STD3 can be redefined by the installation.) Additional FCB

modules can be specified by the installation. For information on IBM- and user-supplied FCB
modules, see the IBM 3800 Printing Subsystem Programmer’s Guide.

Chapter 7. Guide to Specifying Data Set Information 7-61

Requesting Forms Overlay
The forms overlay feature of the 3800 printer allows printing of the image from a forms overlay
negative together with the-data being printed. This reduces the need for pre-printed forms, and
for changing of forms.
Specify a forms overlay using one of the following:
@ The FLASH parameter on a sysout DD statement.
® The FLASH parameter on an OUTPUT JCL statement.
@® For JES2, the FLASH parameters on the JES2 /*OUTPUT control statement.
® For JES3, the FLASH parameter on the //*FORMAT PR control statement.
Identify the overlay to be used and the number of copies on which that overlay is to be printed.
When you do not specify the FLASH parameter on either a DD statement or a JES control

statement, the 3800 printer uses the default specified at JES initialization.

For information on designing and making or obtaining forms overlay negatives, see the Forms
Design Reference Guide for the IBM 3800 Printing Subsystem.

Bursting of Output
The optional Burster-Trimmer-Stacker of the 3800 printer separates continuous form paper into
individual sheets. To specify to the operator whether the output is to go to the
Burster-Trimmer-Stacker or to the continuous forms stacker, specify one of the following:
® The BURST parameter on an output or sysout DD statement.
® The BURST parameter on an OUTPUT JCL statement.
® For JES2, the BURST parameter on the JES2 /*OUTPUT control statement.
L

For JES3, the BURST parameter on the //*FORMAT PR control statement.

7-62 MVSJCL

Chapter 8. Guide to Special' Data Sets

You can define data sets to satisfy a special purpose. Such data sets are usually defined with a
special ddname, a specific data set name, or a specific parameter.

This section includes eight topics:

Creating and using private and temporary libraries.
Requesting an abnormal termination dump.

Defining a dummy. data set.

Using virtual input/output (VIO) for temporary data sets.
Entering data through the input stream.

Virtual storage access method (VSAM) data sets.

Creating and retrieving indexed sequential (ISAM) data sets.
Creating and retrieving generation data sets.

Creating and using a subsystem data set.

Creating and Using Private and Temporary Libraries

A library is simply a partitioned data set — a data set in direct access storage that is divided
into partitions, called members, each of which can contain a program or part of a program.
Each partitioned data set contains a directory (or index) that the control program can use to
locate a program in the library. All programs that can be executed must exist in a library; that
is, they must be members of a partitioned data set.

A private library is a partitioned data set that contains user-written programs. To inform the
system that a program exists in a private library code a DD statement defining that library.
You can define a private library to be used throughout the job by coding a DD statement with
the ddname JOBLIB, or you can define a library to be used in a specific step by coding a DD
statement with the ddname STEPLIB. The library defined by a JOBLIB or STEPLIB DD
statement is searched prior to the system libraries (such as SYS1.LINKLIB) for the program to
be executed (that is, the program named in the PGM = field of the EXEC statement).

A temporary library is a partitioned data set created during the job to store a program, as a
member of the partitioned data set, until it is executed in a following step. For example, if in
the job you want to assemble, link edit, and then execute a program, make the output of the
linkage editor a member of a libraiy. Any library that is created and deleted in the same job is
a temporary library.

Code the PGM parameter as the first parameter on the EXEC statement to execute a program
contained in a library.

If the program exists in a private library, codle PGM =program name and either a JOBLIB or
STEPLIB DD statement. If the program exists in a temporary library, code either

Chapter 8. Guide to Special Data Sets 8-1

PGM = * stepname.ddname or PGM = * stepname.procstepname.ddname. Ddname is a
temporary library created in and pointed to by stepname and procstepname. They identify the
job step or job step and procedure step defining the library. If you define a private library, the
system looks in that library for the program you want executed.

This chapter describes how to code JCL statements to create or retrieve private and temporary
libraries. Complete information on creating a partitioned data set, and on adding members to
and deleting members from a partitioned data set appears in Data Management Services Guide.

Creating a Private Library

Use the JOBLIB DD statement to create a private library. The JOBLIB DD statement must
appear immediately after the JOB statement and any JES statements. Do not use the ddname
JOBLIB unless you are defining a private library. The library defined with a JOBLIB DD
statement is automatically available to every step in the job. (The STEPLIB DD statement is
included among the DD statements in a step and is available only to that step unless you pass
the library or redefine it in subsequent steps; since the library on a JOBLIB DD statement is
available to every step, it is easier to create a library with the JOBLIB DD statement.)

When creating the library on the JOBLIB DD statement, you are creating a partitioned data
set. Steps in the job must add members to the library before those members (programs) can be
used by subsequent steps.

On the JOBLIB DD statement, assign the library a name in the DSNAME parameter, give unit
and volume information in the UNIT and VOLUME parameters (a partitioned data set must
be contained on one direct access volume; if, however, you make a nonspecific volume request,
you need not code the VOLUME parameter), request space for the entire library in the SPACE
parameter, and assign a data set status and disposition in the DISP parameter. Code NEW as
the data set status and either CATLG or PASS as the data set disposition. When you specify
CATLG, the library is cataloged, available throughout the job, and kept at the end of the job.
When specifying PASS, the library is available throughout the job, but is deleted at job
termination. (If you do not code a disposition, or code a disposition other than CATLG or
PASS, the system assumes DELETE. This means that the library will be deleted at the end of
the first step and will not be available to any later job steps.) You must also code the DCB
parameter if complete data control block (DCB) information is not included in the processing
program.

Adding Members to a Private Library

For a job step to add members to the library code a DD statement that defines the library and
names the member to be added to the library.

In the DSNAME parameter, follow the library name with the name of the program being added
to the library, for example, DSNAME = LIBRARY(PROGRAM).

Do not code the SPACE parameter; request space for the entire library on the JOBLIB DD
statement.

In the DISP parameter, specify MOD as the data set status; the partitioned data set already
exists since you created it in the JOBLIB statement, and you are lengthening it with a new
member. If you cataloged the library in the JOBLIB DD statement, that is, coded
DISP=(NEW,CATLG), do not specify CATLG again when adding a member: you need not
code a second disposition at all. For a cataloged library, you do not have to specify unit and

8-2 MVsicL

volume information, except in one instance: if you are adding a member to the library in the
first step of the job, supply unit and volume information; the library is not cataloged until the.
first step completes execution. Refer to the JOBLIB DD statement for unit and volume
information by coding VOL = REF = *JOBLIB.

In the following example, the JOBLIB DD statement creates a library named GROUPLIB;
STEPI1 adds the program RATE to the library; STEP2 calls the program RATE:

//EG JOB MSGLEVEL=1
//JOBLIB DD DSNAME=GROUPLIB,DISP=(NEW,CATLG),
// UNIT=3350,VOL=SER=727104,

// SPACE=(CYL, (50,3,4))

//STEP1 EXEC PGM=FIND

//ADDPGMD DD DSNAME=GROUPLIB(RATE) ,DISP=MOD,
VOL=REF=*.JOBLIB

//STEP2 EXEC PGM=RATE

In STEPI, the system looks for the program named FIND in SYS1.LINKLIB — the private
library created on the JOBLIB DD statement does not actually exist until a member is added to
it. In STEP2, the system looks for the program named RATE first in the private library.

Retrieving an Existing Private Library

If you are retrieving several programs from one library (several steps in the job will be using the
library), use the JOBLIB DD statement to define the library: the library will be available in
every step of the job for which you do not code a STEPLIB DD statement. The JOBLIB DD
statement must appear immediately after the JOB statement. To make a library available in a
single step, define the library on a STEPLIB DD statement. The STEPLIB DD statement is
included with the DD statements for a step (in no specific order) and is available only to that
step, unless you pass the library and retrieve it in a subsequent step. Use the ddnames JOBLIB
and STEPLIB only when defining private libraries.

The system will search for a program in the private library you define. If both JOBLIB and
STEPLIB DD statements appear in a job, the STEPLIB definition supersedes the JOBLIB
definition; that is, the private library defined by the JOBLIB DD statement is not searched for
any step that contains the STEPLIB definition. If you want the JOBLIB definition ignored but
the step does not require use of another private library, define a system library on the STEPLIB
DD statement:

//STEPLIB DD DSNAME=SYS1.LINKLIB,DISP=SHR

Retrieve a private library as you would any partitioned data set: if the library is cataloged, or
in the case of a STEPLIB definition, passed from a previous step, you need not specify unit and
volume information; otherwise, you must code the UNIT and VOLUME parameters.

For both cataloged and uncataloged libraries, code:

® the DSNAME parameter, specifying the name of the library

® the DCB parameter, if complete data control block information is not included in the data
set label ’

@ the DISP parameter, specifying data set status and disposition.

Chapter 8. Guide to Special Data Sets 8-3

Normally, you will want to specify SHR as the data set status: SHR indicates that the data set
is old, but also allows other jobs to simultaneously use the library. All references to the library
in the job must specify SHR if the data set is to be shared; do not code SHR, however, if you
will be adding members to the library in the job. (A more thorough discussion of sharing a
-data set is included in the topic “Insuring Data Set Integrity.”) Code PASS as the data set
disposition for a library defined on the JOBLIB DD statement: PASS makes the library
available throughout the job. (If you do not code a disposition, the system assumes PASS.)
For a library defined on a STEPLIB DD statement, code any valid disposition, depending on
how you want the data set treated after its use in the job step: for example, if the library is not
cataloged, and you want it to be cataloged, code CATLG; if you want the library deleted, code
DELETE.

The following job includes both JOBLIB DD and STEPLIB DD statements:

//CAMILLE JOB MSGLEVEL=1

//JOBLIB DD DSNAME=LIB5.GRP4,DISP=SHR
//STEP1 EXEC PGM=FIND

//STEP2 EXEC PGM=GATHER

//STEPLIB DD DSNAME=ACCOUNTS,DISP=(SHR,KEEP),
// UNIT=3350,VOL=SER=727104

® In STEPI, the system searches the library named LIB5.GRP4, defined on the JOBLIB DD
statement, for the program named FIND.

® In STEP2, the system searches the library named ACCOUNTS, defined on the STEPLIB
DD statement, for the program named GATHER.

Add a program to an existing library by coding a DD statement in a job step that defines the

library and names the program to be added — see “Adding Members to a Private Library” for
details on coding this DD statement. The new member must be added to the library before it
can be executed (the step that adds the program to the library must precede the step that calls
the program).” Do not code SHR as the data set’s status when modifying the library.

Concatenating Private Libraries
If the job uses programs contained in several libraries, you can concatenate these libraries on

one JOBLIB DD statement or one STEPLIB DD statement; all the libraries concatenated must
be existing libraries. Omit the ddname from all the DD statements defining the libraries, except

the first:

//JOBLIB DD DSNAME=D58.LIB12,DISP=(SHR,PASS)
// DD DSNAME=D90.BROWN,DISP=(SHR,PASS),
// UNIT=3330,VOL=SER=411731

// DD DSNAME=A03.EDUC,DISP=(SHR,PASS)

This entire group must appear immediately after the JOB statement. When concatenating
libraries using STEPLIB as the ddname, the entire group appears as part of the DD statements
for the step.

The system will search the libraries for the program in the order in which the DD statements
defining the libraries are coded.

8-4 MvsicL

Using Private Catalogs

Use access method services to define private user catalogs, as explained in VSAM Programmer’s
Guide. A JOBCAT or STEPCAT is a private catalog that is searched prior to the system
catalog whenever a DD statement does not specify unit and volume serial information for a
data set. JOBCAT applies to each step of a job in which a STEPCAT has not been specified.

To locate a data set, VSAM searches catalogs in the following order:

1. User catalogs specified in the current job step (STEPCAT), or if no user catalogs are
specified for the job step user catalogs specified in the current job (JOBCAT).

2. A CVOL or user catalog indicated by the first qualifier of the data set name, if any.

3. The master catalog.

Temporary Libraries

Temporary libraries are libraries that are created and deleted within the job. It is not necessary
to define a temporary library on a JOBLIB DD or STEPLIB DD statement: simply code a DD
statement creating a partitioned data set and adding the program to it in the step that produces
the program. You can then retrieve this program in a later step. (You can also use the VIO
facilities to define temporary data sets. For more information, refer to “Defining a VIO
Temporary Data Set” later in this section.)

For example, STEP2 illustrated below calls the program IEWL, which link edits object modules
to form a load module that can be executed. Place the results of the linkage edit step in a
library so that a subsequent step can use those results. Since the results are not a program
other jobs will call, it is logical to place the program in a temporary library:

//STEP2 EXEC PGM=IEWL
//SYSLMOD DD DSNAME=&&PARTDS (PROG) ,UNIT=3350,

DISP=(NEW,PASS),SPACE=(1024, (50,20,1))
//STEP3 EXEC PGM=*,STEP2.SYSLMOD

Call the program in STEP3 by naming the step in which the library was created and the name
of the DD statement that defines the program as a member of a library. If STEP2 had called a
procedure, and the DD statement named SYSLMOD was included in PROCSTEP3 of the
procedure, you would code PGM =* STEP2.PROCSTEP3.SYSLMOD.

Chapter 8. Guide to Special Data Sets 8-5

Requesting an Abnormal Termination Dump

To obtain a dump in the event of abnormal termination of a job step, code a DD statement
defining a dump data set. The name of the DD statement must be SYSABEND,
SYSMDUMP, or SYSUDUMP. If more than one of these DD statements is present, the
system uses the last one (provided each has a different ddname).

When MVS encounters dump requests with duplicate ddnames, processing is as follows:
® Under JES2 the job fails with message IEC912I.
@® Under JES3

— If both DD statements request JES3- or jointly-managed devices, the job is cancelled
during the JES3 interpreter phase.

— If only one or neither statement requests JES3- or jointly-managed devices, the job fails
with message IEC9121.

To change the type of dump request DD statement in a cataloged procedure, add a DD
statement with a ddname that is not the same as the ddname of the dump request in the
procedure.

SYSABEND, SYSMDUMP, and SYSUDUMP DD statements can each provide a dump
containing the processing program’s virtual storage areas, the system nucleus, the entire system
queue area, all local system queue areas, and any active link pack area (LPA) modules for the
failing task. If either the Generalized Trace Facility (GTF) or the System Trace is active, the
dump will contain their records. In addition, if your installation permits dumping of the
common storage area, a SYSMDUMP DD statement can provide a dump containing those
parts of the CSA that the failing program is authorized to reference.

You can take subsequent SYSMDUMPs to the same data set if the data set name is
SYS1.SYSMDPxx (where xx can be 00 - FF) and the data set disposition is SHR. Before
attempting to take subsequent SYSUDUMPs see “Rules for Coding” under “The SYSABEND,
SYSMDUMP and SYSUDUMP Facilities” in this publication.

If your program has issued an ABEND macro, or if you have written a recovery routine, you
can determine what dump options you want, in addition to the installation defauits, and define
them in a dump option list on the ABEND macro or on a SETRP macro issued by your
recovery routine. How to do this is explained in Supervisor Services and Macro Instructions.

Dumps with more data per page are available with the 3800 Printing Subsystem. By specifying
CHARS=DUMP on the SYSABEND or SYSUDUMP DD statement, the dump is formatted
in a 204-character line containing 64 bytes of storage. If FCB=STD3 is specified, the page is
printed at 8 lines per inch. The dump program recognizes only STD3 for producing 8 lines per
inch.

Descriptions of dumps and information on reading dumps are included in the Debugging
Handbook and Diagnostic Techniques.

To print the dump that was produced for a SYSABEND or SYSUDUMP DD statement, either

assign the dump to an output class using the SYSOUT parameter on the DD statement, or code
the UNIT parameter and specify the printer on which you want the dump printed. To store the

8-6 MvVsICL

dump, define the data set as you would any other data set, coding the DSNAME, DISP,
UNIT, and VOLUME parameters. If the data set will go to a direct access device, code the
SPACE parameter.

The dump taken for a SYSMDUMP DD statement is machine-readable (unformatted) and
must be stored on either a magnetic tape unit or a direct access device. If the job or step is
running with nonpageable virtual storage (ADDRSPC=REAL) on the. JOB or EXEC
statements, the SYSMDUMP output must be directed to a VIO data set.

To format and print a dump taken for a SYSMDUMP DD statement, use the AMDPRDMP
service aid, which is documented in SPL: Service Aids, or IPCS, which is documented in
Interactive Problem Control System (IPCS) System Information. Do not print the dump by
sending it to SYSOUT = A because the output will be unformatted and difficult to read.

If you are using IPCS to format and print a dump taken for a SYSMDUMP DD statement, the
data set disposition specified will produce the following results:

@® DISP=MOD on a SYSMDUMP DD statement permits the collection of dump
information pertaining to each of multiple events that occur during one job step.

Use of DISP=MOD produces a data set that only IPCS can process (although IPCS'’s
COPYDUMP subcommand can generate AMDPRDMP input from any dump collected in such
a data set).

® DISP=NEW or DISP=0LD on a SYSMDUMP DD statement permits the collection of
only the dump information pertaining to the last of multiple events that occur during one
job step.

Use of either DISP=NEW or DISP=0LD produces a data set that either IPCS or
AMDPRDMP can process.

If a private data set is specified for SYSABEND or SYSUDUMP and more than one dump is

possible, specify the data set with a disposition of MOD because it will be closed after each
dump.

Chapter 8. Guide to Special Data Sets 8-7

Defining a Dummy Data Set

Coding the

To save processing time, you might not want a data set to be processed every time the job is
executed. For example, while testing a program, you might want to suppress the writing of an
output data set until you are sure it will contain meaningful output; you might want to skip the
reading of a data set to be used only once a week. When you define a dummy data set,
input/output operations are bypassed, disposition processing is not performed, and devices and
storage are not allocated to the data set.

Define a dummy data set by:

® Coding the DUMMY parameter on the DD statement or
® Assigning the data set name NULLFILE in the DSNAME parameter on the DD statement

DUMMY Parameter

Code DUMMY as the first parameter on the DD statement. DUMMY is a positional
parameter: it must precede all keyword parameters on the DD statement.

When you code the DUMMY parameter, the system ignores all other parameters on the DD
statement, except the DCB parameter. (The parameters are checked for syntax, however; if a
parameter is coded incorrectly, a JCL error message is issued.) Therefore, although you can
code UNIT, VOLUME, and DISP, no device or external storage is allocated to the data set
and no disposition processing is performed. The DCB parameter must be coded if you would
code it for normal I/O operations. For example, when an OPEN routine requires a BLKSIZE
specification to obtain buffers and BLKSIZE is not specified in the DCB macro instruction,
you should supply this information in the DCB parameter on the DD statement.

When a DD statement that overrides a procedure DD statement contains the DUMMY
parameter, all of the parameters coded on the procedure DD statement are nullified, except for
the DCB parameter.

When you want the data set to be processed, replace the DD statement containing the
DUMMY parameter with a DD statement containing the parameters required to define the
data set. When a procedure DD statement contains the DUMMY parameter, nullify it by
coding the DSNAME parameter on the overriding DD statement and assigning a data set name
other than NULLFILE.

If you request unit or volume affinity with a dummy data set, the data set requesting affinity is
assigned a dummy status. (Unit and volume affinity are described in the topic “Requesting
Units and Volumes.”)

If unit affinity (UNIT =AFF =ddname) to a DD statement is requested before the ddname is
defined within the job stream, the system treats the requesting DD statement as a DUMMY
DD. ‘

For example:

//STEP EXEC PGM=TKM

//DD1 DD DDNAME=DD5

//DD2 DD - DSN=A,DISP=OLD

//DD3 DD DSN=C,DISP=SHR,UNIT=AFF=DD1
//DD5. DD DSN=B,DISP=SHR

8-8 MvsicL

1. The ddname for step DD1 will be defined at DDS5.

2. Step DD3 requests unit affinity with step DD1. Because the ddname in step DD1 has yet
to be defined, the system treats DD3 as a DUMMY DD.

Coding DSNAME = NULLFILE

Assigning the name NULLFILE in the DSNAME parameter has the same effect as coding
DUMMY. The data set is assigned a dummy status; no device or storage is allocated and no
disposition processing is performed. All parameters except DSNAME and DCB are ignored.
(The parameters are checked for syntax, however; if a parameter is coded incorrectly, a JCL
error message is issued.) Code the DCB parameter when defining a dummy data set if you
would code it for normal I/O operations.

When you want the data set to be processed, replace the name NULLFILE with another data
set name. (Assigning names to data sets is described under “Specifying the DSNAME
Parameter.”) ’

Requests to Read or Write a Dummy Data Set

When the program asks to read a dummy data set, an end-of-data-set exit is taken immediately.
When the program requests that the data set be written, the request is recognized but no data is
transmitted. VSAM supports dummy data sets for both read and write processing. Otherwise,
use the basic sequential access method (BSAM) or-queued sequential access method (QSAM)
when requesting to write a dummy data set; if any other access method is used, the job is
terminated.

If you define a data set as a dummy data set, the DISP parameter, if coded, is ignored and
disposition processing is not performed.

If you define a data set using the DUMMY parameter, you should not concatenate other data

sets to it. When the processing program asks to read a dummy data set, the system takes an
end-of-data-set exit immediately and ignores any concatenated data set.

Chapter 8. Guide to Special Data Sets 8-9

Using Virtual Input/Output (VIO) for Temporary Data Sets

" Temporary data sets can be handled by a facility called virtual I/O (VIO). (VIO processing
does not apply to nontemporary data sets.) Data sets for which VIO is specified reside within
the paging space; however, to a problem program and the access method, the data sets appear
to reside on some other real direct access storage device.

During system generation, the installation can define new and/or existing unit names as eligible
for VIO. You can code these unit names on a DD statement that defines a data set to specify
VIO processing for any system-named temporary data set.

Defining a VIO Temporary Data Set

The DD statement for a VIO data set is similar to the DD statement for a conventional
temporary data set, with the following exceptions:

Volume serial numbers cannot be specified for VIO.

The UNIT keyword in the VIO DD statement must specify a name that has been defined as
eligible for VIO.

If the SPACE parameter is not coded for virtual I/O data sets, the default value is 10
primary and 50 secondary blocks with an average block length of 1000. Up to a
one-volume limit, you will always obtain the full amount of space requested (that is, the
primary quantity plus fifteen secondary requests). If the primary quantity for space is
larger than the.simulated volume, the job will fail. If the primary request is met, but the
secondary request is greater than one volume, you will get up to one volume. When
allocating by average block length for a VIO data set, the secondary request is determined
by the average block length specified in the SPACE parameter.

VIO does not support ISAM or VSAM, so you cannot specify ISAM or VSAM indicators
in the DSORG parameter of a DD statement for a VIO data set. The “area” of an ISAM
data set cannot be specified in the DSNAME parameter.

The DISP parameter must be specified as NEW or PASS when creating a data set. Do not
specify KEEP or CATLG in the DISP parameter for a temporary VIO data set.

The DSNAME parameter need not be coded, but if it is, it must only be specified in &&
name form.

A VIO data set will be allocated to non-VIO if any of the above exceptions are violated,
except the SPACE parameter request.

The unit count subparameter of the UNIT parameter is ignored.

Note: Empty input data sets and SUBALLOC requests are not eligible for VIO.

8-10 MvsicL

Backward References to VIO Data Sets

If the referring DD statement (VOL = REF =) defines a temporary data set and refers to a DD
statement that defines a VIO data set, the data set is assigned to external page storage as a
VIO data set.

If the referring DD statement requests unit affinity but does not define a temporary data set,
the referring statement takes on the unit specification of the DD statement to which reference is
made, but not the VIO status.

The following examples assume that you defined the user-assigned group name SYSDA and the
device type name 3330 at system generation (with the UNITNAME macro instruction) as group
names eligible for VIO processing.

The data sets defined by the following DD statements are assigned to external page storage for
VIO processing:

//DD1 DD UNIT=SYSDA

//DD2 DD UNIT=3330

//DD3 DD DSN=&&A,DISP=(NEW),SPACE=(CYL, (30,10)),UNIT=SYSDA

//DD1 DD UNIT=SYSDA
//DD2 DD VOL=REF=%.DD1

//DDA DD UNIT=SYSDA
//DDB DD VOL=REF=*,DDA,UNIT=3330

In each of the following examples, the data set defined on the first DD statement is assigned to
external page storage for VIO processing. The second DD statement does not request VIO
because it defines a nontemporary data set.

//DD1 DD UNIT=SYSDA
//DD2 DD DSN=NONTEMP,DISP=(,KEEP),
// VOL=REF=* .DD1, SPACE=(CYL, 10)

//DD1 DD UNIT=SYSDA
//DD2 DD DSN=TEMP,DISP=(,KEEP),VOL=SER=665431,
// SPACE=(CYL,10) ,UNIT=AFF=DD1

Chapter 8. Guide to Special Data Sets 8-11

Using Virtual Input/Output (VIO) to Pass Temporary Data Sets Among Job Steps

VIO data sets are passed in the same way as conventional data sets. For example, the following
JCL statements show the DD statements required by VIO for a job with compilation, linkage
editor, and execution steps. The VIO data sets in the various job steps are defined as
system-named temporary data sets. The unit name PAGEDEV has been defined as eligible for
VIO (via the UNITNAME macro instruction during system generation).

(1) //ASM EXEC PGM=IFOX00

//ASM.SYSGO DD DSN=&&0BJ, UNIT=PAGEDEV ,DISP=(NEW, PASS)

(2) //LKED EXEC PGM=IEWL
//SYSLIN DD DSN=&&OBJ,DISP=(OLD,DELETE)
// DD DDNAME=SYSIN
//SYSLMOD DD DSN=&&LOAD(A),DISP=(NEW,PASS),UNIT=PAGEDEV,
// DCB=DSORG=PO, SPACE=(TRK, (5,5,1))
(3) //GO EXEC PGM=*,LKED.SYSLMOD

Note:
You must code the SPACE parameter on the //SYSLMOD DD card to
ensure that directory space is allocated.

8-12 MvsicL

Entering Data Through the Input Stream

You can enter data through the input stream by coding either the * or DATA parameters on
the DD statement. The DD * statement precedes data in an input stream; the DD DATA
statement precedes data in an input stream when the data contains JCL statements. The DLM
parameter allows the use of a delimiter other than /* to terminate data defined in the input
stream. Code this parameter on either the DD * or DD DATA parameters.

You can include several distinct groups of data in the input stream. Two types of data are for
job steps specifying a program name or for job steps that call a cataloged or in-stream
procedure. However, cataloged and in-stream procedures cannot contain DD statements
defining data in the input stream.

Chapter 8. Guide to Special Data Sets 8-13

VSAM Data Sets

Virtual Storage Access Method (VSAM) is an access method for use with direct-access storage.
It is different from all other access methods and you need to take certain precautions when
coding VSAM data sets. You can use JCL parameters to identify cataloged VSAM data sets
and to specify options for them. - To process a VSAM data set, specify a DD statement in the
form:

//ddname DD DSNAME=dsname,DISP={OLD|SHR}

The DSNAME parameter specifies the name of the VSAM cluster to which the data set you are
processing belongs. ‘

The DISP parameter must specify either OLD or SHR because the data set is cataloged.

You cannot use JCL to create VSAM data sets; you must use access method services
commands. VSAM data sets cannot be passed within a job.

Some DD parameters and subparameters have different meanings for VSAM data sets. For
example, VSAM data sets are described by the access-method control block (ACB), not the
DCB. Therefore, the DCB parameter is not applicable to VSAM. Parameters that can be used
without modification are explained in Figure 8-1 on page 8-15. Parameters that either should
not be used or should be used only with caution are explained in Figure 8-2 on page 8-16. The
STEPCAT and JOBCAT facilities identify user catalogs. These parameters are similarly used
for all data sets and are discussed in this section under “Creating and Using Private Libraries.”

VSAM has one JéL parameter of its own: AMP. The AMP parameter takes effect when the
data set defined by the DD statement is opened. It has subparameters for:

@® Overriding operands specified with the ACB, EXLST, or the GENCB macro instructions
® Supplying operands missing from the ACB or GENCB macro instruction
® Indicating checkpoint/restart options

@ Indicating options when using ISAM macro instructions to process a key-sequenced data
set

@ Indicating that the data set is a VSAM data set when you specify unit and volume
information or DUMMY in a DD statement

@ Indicating that you want VSAM to supply storage dumps of the access-method control
block(s) that identify this DD statement

8-14 MvsicL

Parameter

DDNAME
DISP

DSNAME
DUMMY

DYNAM
FREE
PROTECT
UNIT

VOLUME

Figure 8-1.

Subparameter

ddname
SHR

OLD
dsname

address
type

group
p

unit count

DEFER
PRIVATE
SER

Comment

No special considerations for VSAM.

Indicates that you are willing to share the data set with other jobs. This
subparameter alone, however, does not guarantee that sharing will take place. See
VSAM User’s Guide for a full description of data-set sharing.

No special considerations for VSAM.
No special considerations for VSAM.

No special considerations for VSAM, except that an attempt to read results in an
end-of-data condition, and an attempt to write results in a return code that indicates
the write was successful. If specified, AMP=AMORG must also be specified.

No special considerations for VSAM.
No special considerations for VSAM.
No special considerations for VSAM.

Must be the address of a valid device for VSAM (2305, 3330V, 3330, 3340, 3344,
3350, 3375, or 3380). If not, OPEN will fail

Must be a type supported by VSAM (2305, 3330, 3330V, 3340, 3350, 3375, or 3380).
If not, OPEN will fail. .

Must be a group supported by VSAM. If not, OPEN will fail.

There must be enough units to mount all of the volumes specified. If sufficient units
are available, UNIT =p can improve performance by avoiding the mounting and
demounting of volumes.

If the number of devices requested is greater than the number of volumes on which
the data set resides, the extra devices are allocated anyway. If a key-sequenced data
set and its index reside on unlike devices, the extra devices are allocated evenly
between the unlike device types. If the number of devices requested is less than the
number of volumes on which the data set resides but greater than the minimum
number required to gain access to the data set, the devices over the minimum are
allocated evenly between unlike device types. If devices beyond the count specified
are in use by another task but can be shared and have mounted on them volumes
containing parts of the data set to be processed, they will also be allocated to this
data set.

No special considerations for VSAM.
No special considerations for VSAM.

The volume serial number(s) used in the access method services DEFINE command
for the data set must match the volume serial numbers in the VOLUME =SER
specification when the data set is defined. After a VSAM data set is defined, the
volume serial number(s) need not be specified on a DD statement to retrieve or
process the data set. If, however, VOLUME =SER and UNIT =type are specified,
only those volumes specifically named are initially mounted. Other volumes may be
mounted when they’re needed if at least one of the units allocated to the data set is
not shareable or the unit count is equal to the total number of volumes allocated to
the data set. A unit is unshareable when unit count is less than the number of
volume serial numbers specified or when DEFER is specified. If VOLUME =SER
is specified and the data set is cataloged in a user catalog, the user catalog should be
defined as a JOBCAT or a STEPCAT for the current step.

DD parameters used with VSAM

Chapter 8. Guide to Special Data Sets 8-15

Parameter

BURST
CHARS

CHKPT
COPIES

DATA

DCB

DEST
DISP

DLM

DSNAME

Subparanﬁeter

Al

CATLG

DELETE

MOD

KEEP
NEW

UNCATLG

PASS

dsname(area-name)
dsname (generation)
dsname (member)

All temporary
dsnames

All backward
DD references
of the form
*.ddname

Comment

Because this parameter applies only to unit-record devices, it does not apply
to VSAM.

Because this parameter applies only to unit-record devices, it does not apply
to VSAM.

VSAM ignores CHKPT

Because this parameter applies only to unit-record devices, it does not apply
to VSAM.

Because there is no way to get VSAM data into the input stream, this
parameter is not applicable to VSAM.

The access-method control block, not the DCB, describes VSAM data sets;
therefore, the DCB parameter is not applicable to VSAM. An
access-method control block is generated by an ACB or GENCB macro,
and can be modified by a MODCB macro.

Specify DEST only with the SYSOUT parameter.

VSAM data sets are cataloged and uncataloged as a result of an access
method services command; if CATLG is coded, a message is issued, but the
data set is not cataloged. .

VSAM data sets are deleted as a result of an access method services
command; if DELETE is coded, a message issued, but the data set is not
deleted.

For VSAM data sets, MOD is treated as if OLD were specified, except for
processing with an ISAM program, in which case MOD indicates resume
load.

Because KEEP is implied for VSAM data sets, it need not be coded.

VSAM data spaces are initially allocated as a result of the access method
services DEFINE command. If NEW is specified, the control program also
allocates space, and it is never used by VSAM. Moreover, an access
method services request for space may fail if the DISP=NEW acquisition
of space causes too little space to remain available.

VSAM data sets are cataloged and uncataloged as a result of access method
services commands; if UNCATLG is coded, a message is issued, but the
data set is not uncataloged.

The PASS parameter is not applicable to VSAM. However, because there
is no error checking, coding PASS for a key-sequenced data set whose index
resides on a like device does not result in an error. If a VSAM data set and
its index reside on unlike devices, the results are unpredictable. In either
case, the data set is not passed.

Because there is no way to get VSAM data into the input stream, this
parameter is not applicable to VSAM.

The name is used; area-name is ignored.
The name is used; generation is ignored.
The name is used; member is ignored.

Because VSAM data sets are built by access
method services, which used the data-set name supplied in the DEFINE
command, temporary names cannot be used with VSAM.

If the object referred to is a cluster and the data set
and index reside on unlike devices, the results of a
backward DD reference are unpredictable. -

Figure 8-2 (Part 1 of 2). DD parameters you should avoid with VSAM

8-16 MVSICL

Parameter

FCB
FLASH

LABEL

MODIFY

MSVGP
SPACE

SYSOUT
ucs

UNIT

VOLUME

Subparameter

BLP, NL, NSL

IN

ouT
NOPWREAD
PASSWORD

SL, SUL

All

AFF

REF

vol-seq-number
volume-count

Comment

Because this parameter applies only to unit-record devices, it does not apply
to VSAM.

Because this parameter applies only to unit-record devices, it does not apply
to VSAM.

Because these subparameters have no meaning for direct-access devices,
they do not apply for VSAM data sets, which all reside on direct-access
storage.

Because IN is used to override DCB subparameters and the DCB parameter
does not apply to VSAM data sets, IN does not apply.

Because OUT is used to override DCB subparameters and the DCB
parameter does not apply to VSAM data sets, OUT does not apply.

The password-protection bit is set for all VSAM data sets, regardless of the
PASSWORD/NOPWREAD specification in the LABEL parameter.

The password-protection bit is set for all VSAM data sets, regardless of the
PASSWORD/NOPWREAD specification in the LABEL parameter.

Although these parameters apply to direct-access storage devices, SL is
always used for VSAM, whether you specify SL, SUL, or neither.

Because this parameter applies only to unit-record devices, it does not apply
to VSAM. .

You must explicitly specify the volume serial number.

VSAM data spaces are initially allocated as a result of the access method
services DEFINE command. If SPACE is specified, therefore, an extent is
allocated that is never used by VSAM. Moreover, an access method
services request for space may fail as a result of the SPACE acquisition of
space.

If SYSOUT is coded with a mutually exclusive parameter (for example,
DISP), the job step is terminated with an error message.

Because this parameter applies only to unit-record devices, it does not apply
to VSAM.
Use this subparameter carefully. If the cluster components, the data and its

index, reside on unlike devices, the results of UNIT = AFF are
unpredictable.

Use this subparameter carefully. If the referenced volumes are not a subset
of those contained. in the catalog record for the data set, the results are
unpredictable.

Results are unpredictable.

This subparameter is used to request some number of nonspecific volumes.
Because all VSAM volumes must be specifically defined before processing,
volume count is not applicable to VSAM data sets.

Because there is no way to get VSAM data into the input stream, this
parameter has no application with VSAM.

Figure 8-2 (Part 2 of 2). DD parameters you should avoid with VSAM

"Chapter 8. Guide to Special Data Sets 8-17

Creating and Retrieving Indexed Sequential Data Sets

- Indexed sequential (ISAM) data sets are created and retrieved using special subsets of DD
statement parameters and subparameters. Each data set can occupy up to three different areas
of space:

1. Prime area — This area contains data and related track indexes. It exists for all indexed
sequential data sets. E

2. Overflow area — This area contains overflow from the prime area when new data is added.
It is optional.

3. Index area — This area contains master and cylinder indexes associated with the data set.
It exists for any indexed sequential data set that has a prime area occupying more than one
cylinder.

Indexed sequential data sets must reside on direct access volumes. The data set can reside on
more than one volume and the device types of the volumes may in some cases differ.

Creating an Indexed Sequential Data Set

One to three DD statements can be used to define a new indexed sequential data set. When
using three DD statements to define the data set, each DD statement defines a different area
and the areas must be defined in the following order:

1. Index area
2. Prime area
3. Overflow area

When using two DD statements to define the data set, the areas must be defined in the
following order:

1. Index area
2. Prime area

or

1. Prime area and, optionally, index area
2. Overflow area

When using one DD statement to define the data set, you are defining the prime area and,
optionally, the index area.

When more than one DD statement is used to define the data set, assign a ddname only to the
first DD statement; the name field of the other statements must be blank.

The only DD statement parameters that can be coded when defining a new indexed sequential
data set are the DSNAME, UNIT, VOLUME, LABEL, DCB, DISP, and SPACE parameters.
When to code each of these parameters and what restrictions apply are described in the
following paragraphs.

8-18 m™MvsiICL

The DSNAME Parameter‘

The DSNAME parameter is required on any DD statement that defines a new temporary or
nontemporary indexed sequential data set. To identify the area you are defining, you follow
the DSNAME parameter with the area.

For example,

DSNAME=name (INDEX)
DSNAME=name (PRIME)
or

DSNAME=name (OVFLOW) .

If you are using only one DD statement to define the data set, code

DSNAME=name (PRIME)
or
DSNAME=name

When you reuse previously allocated space to create an ISAM data set, the DSNAME
parameter must contain the name of the old data set to be overlaid.

The UNIT Parameter

The UNIT parameter is required on any DD statement that defines a new indexed sequential
data set unless VOLUME = REF =reference is coded. - You must request a direct access device
in the UNIT parameter and must not request DEFER.

If there are separate DD statements defining the prime and index areas, request the same
number of direct access devices for the prime area as there are volumes specified in the
VOLUME parameter. You request only one direct access volume for an index area and one
for an overflow area.

A DD statement for the index area or overflow area can request a device type different than the
type requested on the other statements.

Another way to request a device is to code UNIT = AFF =ddname (except for new data sets),
where the named DD statement requests the direct access device or device type you want.

The VOLUME Parameter

The VOLUME parameter is required if you want an area of the data set written on a specific
volume or the prime area requires the use of more than one volume. (If the prime area and
index area are defined on the same statement, you cannot request more than one volume on the
DD statement.) Either supply the volume serial number or numbers in the VOLUME
parameter or code VOLUME = REF =reference. In all cases, you can use the VOLUME
parameter to request a private volume (VOL=PRIVATE).

Notes:

1. If a new ISAM data set is being created with a nonspecific volume request and its DSNAME
already -exists on a volume eligible for allocation, the job might fail due to duplicate names on
the volume. If the old data set that has a duplicate name resides on another volume than the
one selected for the new data set, however, the new data set is not affected and will be added
-to the volume. You can correct job failures because of duplicate data set names by scratching
the old data set or by renaming the new data set before resubmitting the job.

Chapter 8. Guide to Special Data Sets 8-19

2. Allocation fails a nonspecific volume request for any new ISAM data set when there is not
sufficient space on any of the volumes eligible for allocation.

3. If the first volume selected by allocation to satisfy a request for a new ISAM data set does not
contain sufficient storage to satisfy the request, allocation does not attempt to find another
volume with sufficient space if the request is of the following types.

@ A request for multiple volumes or units.

@ A request uses the second, third, or subsequent DD statement you used to define the
dataset.

The LABEL Parameter

The LABEL parameter need only be coded to specify a retention period (EXPDT or RETPD)
or password protection (PASSWORD).

The DCB Parameter

You must code the DCB parameter on every DD statement that defines an indexed sequential
data set. At minimum, the DCB parameter must contain DSORG =IS or DSORG =ISU.
Other DCB subparameters can:be coded to complete the data control block if the processing
program does not complete it.

When more than one DD statement is used to define the data set, code all the DCB
subparameters on the first DD statement. Code,

DCB=*_,ddname

on the remaining statement or statements; ddname is the name of the DD statement that
contains the DCB subparameters.

When reusing previously allocated space and recreating an ISAM data set, desired changes in
the DCB parameter must be coded on the DD statement. Although you are creating a new
data set, some DCB subparameters cannot be changed if you want to use the space the old data
set used. The DCB subparameters you can change are:

BFALN DSORG NCP RECFM
BLKSIZE KEYLEN NTM RKP
CYLOFL LRECL OPTCD

The DISP Parameter

If you are creating a new data set and not reusing preallocated space, the DISP parameter need
be coded only if you want to:

Keep the data set: code DISP=(,KEEP)
Catalog the data set: DISP=(;CATLG)
Pass the data set: DISP=(,PASS)

If you are reusing previously allocated space and récreating an ISAM data set, code
DISP=0LD. The newly created data set will overlay the old one.

To update an existing ISAM data set, code DISP=O0LD. If you code SHR, the data set will
not open correctly.

- 8-20 MvsICL

In order to catalog the data set by coding DISP=(,CATLG) or to pass the data set by coding
DISP=(,PASS), you must define the data set on only one DD statement. If you define the
data set on more than one DD statement and the volumes containing the data set correspond to
the same device type, use the access method services DEFINE command to catalog the data set.
For details, refer to Access Method Services.

The SPACE Parameter

The SPACE parameter is required on any DD statement that defines a new indexed sequential
data set. Use either the recommended nonspecific allocation technique or the more restricted
absolute track (ABSTR) technique. If you use more than one DD statement to define the data
set, each DD statement must request space using the same technique.

Nonspecific Allocation Technique

You must request the primary quantity in cylinders (CYL). When the DD statement that
defines the prime area requests more than one volume, each volume is assigned the number of
cylinders requested in the SPACE parameter.

One of the subparameters of the SPACE parameter, the “index” subparameter, is used to
indicate how many cylinders are required for an index. When you use one DD statement to
define the prime and index areas and you want to explicitly state the size of the index, code the
“index” subparameter.

You can code the CONTIG subparameter in the SPACE parameter. ' However, if you code
CONTIG on one of the statements, you must code it on all of them.

You cannot request a secondary quantity for an indexed sequential data set. Also, you cannot
code the subparameters RLSE, MXIG, ALX, and ROUND.

Absolute Track Technique

The number of tracks requested must be equal to one or more whole cylinders. The address of
the beginning track must correspond with the first track of a cylinder other than the first
cylinder on the volume. When the DD statement that defines the prime area requests more
than one volume, space is allocated for the prime area beginning at the specified address and
continuing through the volume and onto the next volume until the request is satisfied. (This
can only be done if the volume table of contents of the second and all succeeding volumes is
contained within the first cylinder of each volume.)

Use the “index” subparameter of the SPACE parameter to indicate how many tracks an index
requires. The number of tracks specified must be equal to one or more cylinders. When you
use one DD statement to define the prime and index areas and you want to explicitly state the
size of the index, code the “index” subparameter.

Note: If the indexed sequential data set is to reside on more than one volume and an error is
encountered as the volumes are being allocated to the data set, follow this procedure before
resubmitting the job: Use the IEHPROGM utility program to scratch the data set labels on
any of the volumes to which the data set was successfully allocated. This utility program is
described in Utilities.

Chapter 8. Guide to Special Data Sets 8-21

Area Arrangement of an Indexed Sequential Data Set

When creating an indexed sequential data set, the arrangement of the areas is based on two
criteria: » S

1. The number of DD statements used to define the data set
2. What area each DD statement defines

An additional criterion is used when you do not include a DD statement that defines the index
area: Is an index size coded in the SPACE parameter on the DD statement that defines the
prime area?

Figure 18-5 on page 18-7 illustrates the different arrangements that can result based on the
criteria listed above. In addition, it indicates what restrictions apply on the number and types
of devices that can be requested.

Retrieving an Indexed Sequential Data Set

If all areas of an existing indexed sequential data set reside on volumes of the same device type,
you can retrieve the entire data set with one DD statement. If the index or overflow resides on
a volume of a different device type, use two DD statements. If the index and overflow reside
on volumes of different device types, use three DD statements to retrieve the data set. The DD
statements are coded in the following order:

1. First DD statement - defines the index area
2. Second DD statement - defines the prime area
3. Third DD statement - defines the overflow area

The only DD statement parameters that you may code when retrieving an indexed sequential
data set are:

DSNAME VOLUME DISP
UNIT DCB

When to code each of these parameters and what restrictions apply are described in the
following paragraphs.

The DSNAME Parameter

The DSNAME parameter is always required. Identify the data set by its name; however, it is
not necessary to include the terms INDEX, PRIME, or OVFLOW when retrieving an indexed
sequential data set. If the data set was passed from a previous step, identify it by a backward
reference.

The UNIT Parameter

The UNIT parameter must be coded unless the data set resides on one volume and was passed.
You identify in the UNIT parameter the device type and how many of these devices are
required.

If the data set resides on more than one volume and the volumes correspond to the same device
type, you need only one DD statement to retrieve the data set. Request one device per volume

in the UNIT parameter. If the index or overflow area of the data set resides on a different type
of volume than the other areas, you must use two DD statements to retrieve the data set. On

8-22 MVSICL

one DD statement, request the device type required to retrieve the index or overflow area. On
the other DD statement, request the device type and the number of devices required to retrieve
the prime area and the overflow area if the overflow area resides on the same device type. If

the index and the overflow areas reside on device types different from the prime area, you need
a third DD statement.

The VOLUME Parameter

The VOLUME parameter must be coded unless the data set resides on one volume and was
passed from a previous step. Identify in the VOLUME parameter the serial numbers of the

volumes on which the data set resides. Code the serial numbers in the same order as they were
coded on the DD statements used to create the data set.

The DCB Parameter

The DCB parameter must always contain DSORG=IS or DSORG=ISU. You do not have to
code other DCB subparameters if the data set is passed from a previous step or is cataloged.

However, you can code other DCB subparameters to complete the data control block if it has
not been completed by the processing program.

The DISP Parameter
The DISP parameter must always be coded. The first subparameter of the DISP parameter
must be SHR or OLD. When you are updating an existing ISAM data set, code DISP=OLD.

If you specify DISP =SHR, the data set will not open correctly. You can, optionally, assign a
disposition as the second subparameter.

Chapter 8. Guide to Special Data Sets 8-23

Examples of Creating and Retrieving an Indexed Sequential Data Set

The following job creates an indexed sequential data set on one 3330 volume.

//ISAMJOB JOB ,,MSGLEVEL=(1,1),PERFORM=25
//STEP1 EXEC PGM=INCLUDE

//DD1 DD DSN=DATASET1 (INDEX) ,DISP=(NEW,KEEP) ,UNIT=3330,
// VOL=SER=777777,SPACE=(CYL, (10) , ,CONTIG),

// DCB= (DSORG=IS ,RECFM=F , LRECL=80,RKP=1,KEYLEN=8)
// DD DSN=DATASET1 (PRIME) ,DISP=(NEW,KEEP) ,UNIT=3330,
// VOL=REF=* .DD1, SPACE=(CYL, (25) , ,CONTIG) ,DCB=*.DD1
// : DD DSN=DATASET1(OVFLOW) ,DISP=(NEW,KEEP) ,UNIT=3330,
// VOL=REF=*.DD1, SPACE=(CYL, (25), ,CONTIG) ,DCB=*.DD1

The following job includes the DD statements required to retrieve the indexed sequential data
set created above.

//RETRISAM JOB ,,MSGLEVEL=(1,1),PERFORM=25

//STEP1 EXEC PGM=RETRIEVE

//DDISAM DD DSN=DATASET1,DCB=DSORG=IS,UNIT=3330,DISP=0LD,
// VOL=SER=777777

The following job creates an indexed sequential data set on one 3330 and two 3350 volumes.

//ISAMJOB JOB ,,MSGLEVEL=(1,1),PERFORM=25
//STEP1 EXEC PGM=IEFISAM
//DDISAM DD DSN=DATASET2 (INDEX) ,DISP=(NEW,KEEP),UNIT=3330,

// ~ VOL=SER=888888, SPACE=(CYL, 10, ,CONTIG) ,DCB=(DSORG=IS,
// RECFM=F , LRECL=80,RKP=1,KEYLEN=8)

// DD DSN=DATASET2 (PRIME) ,DISP=(,KEEP),UNIT=3350,

// VOL=SER=999999, SPACE=(CYL, 10, ,CONTIG) ,DCB=* ,DDISAM
// DD DSN=DATASET2 (OVFLOW) ,DISP=(,KEEP),UNIT=3350,

// VOL=SER=AAAAAA, SPACE=(CYL, 10, ,CONTIG) ,DCB=* ,DDISAM

The following job includes the DD statements required to retrieve the indexed sequential data
set created above. '

//RERISAM JOB ,,MSGLEVEL=(1,1),PERFORM=25
//STEP1 EXEC PGM=IEFISAM
//DDISAM DD DSN=DATASET2,DCB=DSORG=IS,DISP=0LD,UNIT=3330,

// VOL=SER=888888
// DD DSN=DATASET2,DCB=DSORG=IS,DISP=OLD,UNIT=(3350,2),
// VOL=SER= (999999, AAAAAA) B,

8-24 MVSICL

Creating and Retrieving Generation Data Sets

£

N

A generation data set is one of a collection of successive, historically related, cataloged data sets
known as a generation data group. The system keeps track of each data set in a generation
data group as it is created so that new data sets can be chronologically ordered and old ones
easily retrieved.

To create or retrieve a generation data set, identify the generation data group name in the
DSNAME parameter and follow the group name with a relative generation number. When you
create a generation data set, the relative generation number tells the system whether this is the
first data set being added during the job, the second, the third, etc. When retrieving a
generation data set, the relative generation number tells the system how many data sets have
been added to the group since this data set was added.

Relative generation numbers are obtained from the catalog as it existed:

® “For JES2, at the beginning of the first step that specifies the generation data set by relative
generation number. ‘

Note: In a shared DASD environment, if two or more jobs running on different systems
simultaneously create new generations of the same data set, one of the jobs could fail with
a JCL error.

@ For JES3, when the job is set up, and again by the operating system at the beginning of the
first step that specifies the generation data set by relative generation number. If the most
recent data set is not the same at both times, the results are unpredictable.

A generation data group can consist of cataloged sequential and direct data sets residing on
tape volumes, direct access volumes, or both. Generation data sets can have like or unlike
DCB attributes and data set organizations. If the attributes and organizations of all
generations in a group are identical, the generations can be retrieved together as a single data
set (up to 255 data sets can be retrieved in this way). The retrieval order is last in-first out. If
the generation data group resides on more than one device type, all generations cannot be
retrieved together.

Building a Generation Data Group Base Entry

1

i

Before defining. the first geﬂeration data set, you must build a generation data group base entry

_in a VSAM, OS CVOL, or ICF catalog. This provides for as many generation data sets (up to

255) as you would like to have in the generation data group. The system uses the base to keep
track of the chronological order of the generation data sets. Use the access method services
DEFINE command to build generation data group bases in a VSAM or ICF catalog. This
command is described in Access Method Services.

Another requirement of generation data groups is that a data set label list exist. ‘The system
uses this label to refer to DCB attributes when you define a new generation data set. There are
two ways to satisfy this requirement: (1) create a model data set label on the same volume as
the catalog before defining the first generation data set; or (2) use the DCB parameter to refer
the system to an existing cataloged data set each time you define a new generation data set.

Chapter 8. Guide to Special Data Sets 8-25

Creating a Model Data Set Label

To create a model data set label, define a data set and request that it be placed on the same
volume as the generation data group base. This ensures that there is always a data set label on
the same volume as the catalog to which the system can refer.

The name assigned to the data set can be the same or different than the name assigned to the
generation data group. (If you assign the same name for both, the data set associated with the
model data set label cannot be cataloged.) Request a space allocation of zero tracks or
cylinders. The DCB attributes that can be supplied are DSORG, OPTCD, BLKSIZE, LRECL,
KEYLEN, and RKP.

You need not create a model data set label for every generation data group whose indexes
reside on the same volume. Instead, create one model data set label to be used by any number
of generation data groups. When creating a generation data set, specify the name of the model
in the DCB parameter; follow the name with a list of all the DCB subparameters required for
the new generation data set that are different than specified in the model; that is,

DCB =(dsname,list of attributes).

Referring the System to a Cataloged Data Set

If there is a cataloged data set residing on the same volume as the generation data group index
and you are sure that data set will exist as long as you are adding data sets to the generation
data group, you need not create a model data set label. When creating a generation data
group, specify the name of the cataloged data set in the DCB parameter by coding

DCB =dsname. If all the DCB attributes are not contained in the label of the cataloged data
set, or if vou want to override certain attributes, follow the data set name with these attributes;

TYALIL LIIVOV QURIUBIVG,
that is, DCB =(dsname,list-of-attributes).

Creating a Generation Data Set

When defining a new generation data set, always code the DSNAME, DISP, and UNIT
parameters. Other parameters you might code are the VOLUME, SPACE, LABEL, and DCB
parameters.

The DSNAME Parameter

In the DSNAME parameter, code the name of the generation data group followed by a number
enclosed in parentheses. This number must be 1 or greater. If this is the first data set you are
adding to a particular generation data group during the job, code +1 in parentheses. Each
time during the job you add a data set to the same generation data group, increase the number
by one. When the first character is a plus (+), the remaining digits (three digits or less) must
not exceed 255.

“Any time you refer to this data set later in the job, use the same relative generation number as
was used earlier. At the end of the job, the system updates the relative generation numbers of

all generations in the group to reflect the additions.

Note: Unpredictable results can occur if you use a relative generation number that causes the
actual generation number to exceed G9999.

8-26 MvVSsICL

The DISP Parameter

Assign new generations a status of NEW and a disposition of CATLG in the DISP parameter;
that is, DISP=(NEW,CATLG). If the DISP parameter is not specified, the system assumes
DISP=(NEW,DELETE) and the new generation will be deleted at the end of the step.

The UNIT Parameter

The UNIT parameter is required on any DD statement that defines a new generation data set
unless VOLUME = REF =reference is coded. In the UNIT parameter, identify the type of
devices you want (tape or direct access).

The VOLUME Parameter

You can assign a volume in the VOLUME parameter or let the system assign one for you. The
VOLUME parameter can also be used to request a private volume (PRIVATE) and to indicate
that more volumes may be required (volume count).

The SPACE Parameter

Only code the SPACE parameter when the generation data set is to reside on a direct access
volume.

The LABEL Parameter

You can specify label type, password protection (PASSWORD), and a retention period
(EXPDT or RETPD) in the LABEL parameter. If the data set will reside on a tape volume
and is not the first data set on the volume, specify a data set sequence number.

The DCB Parameter

A model data set label that has the same name as the group name may exist. If this is so, and
if the label contains all the attributes required to define this generation, you need not code the
DCB parameter. If all the attributes are not contained in the label, or if you want to override
certain attributes, code DCB = (list of attributes).

If a model data set label has a different name than the group name and if the label contains all
the attributes required to define this generation data set, you need code only the name of the
data set associated with the model data set label. Code the name in the DCB parameter; that
is, DCB=dsname. If all the attributes are not contained in the label, or if you want to override
certain attributes, follow the data set name with these attributes; that is, DCB = (dsname,list of
attributes).

If a model data set label does not exist, you must code the name of a cataloged data set that
resides on the same volume as the generation data group index. If all the attributes are not
contained in the label for this data set, or if you want to override certain attributes, follow the
data set name with these attributes.

Chapter 8. Guide to Special Data Sets 8-27

Retrieving a Generation Data Set

To retrieve a generation data set, always code the DSNAME and DISP parameters. Other
parameters you might code are the UNIT, LABEL, and DCB parameters.

The DSNAME Parameter

Using the DSNAME parameter you can retrieve a single generation data set or all of the
generation data sets in the generation data group.

Retrieving a Single Generation Data Set: If you want to retrieve a single generation data set,
code in the DSNAME parameter the name of the generation data group followed by a number
enclosed in parentheses. This number can be a maximum of four characters. The number
coded depends on which generation data set is to be retrieved. To retrieve the most recent data
set, code a zero (0). If the first character is zero (0), the remaining characters must be zero or
blanks.

To retrieve data sets created prior to the most recent data set, code a minus value (-nnn).
When nnn is a minus value, the remaining digits (3 digits or less) must not exceed 255. The
value of nnn is determined by the relation of the desired data set to the most current data set.
Minus one (-1) refers to the data set created immediately preceding the most recent data set;
minus two (-2) refers to the data set created preceding the data set identified by the minus one
value.

For example:

WEEKLY.PAYROLL is the name of a generation data group.

DSN=WEEKLY.PAYROLL(0) The most recent generation data set.
DSN=WEEKLY.PAYROLL(-1) Last week's generation data set.
DSN=WEEKLY.PAYROLL(-2) Generation data set of two weeks ago.

Relative generation numbers are maintained by the system only when generation data sets are
specified using relative generation numbers.

Note: When you are retrieving a generation data set within a started task, and the generation
data set is cataloged in a private catalog or control volume (CVOL), coding a relative
generation number causes unpredictable results.

Retrieving All Generation Data Sets: If you want to retrieve all generations of a generation
data group as a single data set, specify the generation data group name without a generation
number in the DSNAME parameter: for example,

DSNAME=WEEKLY . PAYROLL
where WEEKLY.PAYROLL is the generation data group name.

To retrieve all generations in this manner, the DCB attributes and data set organization of all
generations must be identical.

When you specify the generation data group name without a generation number, the operating

* system treats your request as a concatenation of all existing data sets in the generation data
group, starting with the most recent data set and ending with the oldest data set. In addition,
all data sets, except the most recent, will have unit affinity to the most recent data set. For
further information, see “Concatenating Data Sets” on page 2-9.

8-28 mMvsiIcL

For generation data groups residing on tape, when you specify the generation group name
without a generation number (GDG ALL request), and request parallel mounting in the UNIT
parameter, the system mounts all volumes of the first generation only.

For generation data groups residing on DASD (including MSS) volumes, when you specify the
generation group name without a generation number (GDG ALL request), and request parallel
mounting in the UNIT parameter, the system mounts all volumes of all generations.

The relative generation number of the most recent data set is obtained from the catalog as it
existed:

@® For JES2, at the beginning of the first step that specifies the generation data set by relative
generation number.

Note: In a shared DASD environment, if two or more jobs running on different systems
simultaneously create new generations of the same data set, one of the jobs could fail with
a JCL error.

® For JES3, when the job is set up, and again by the operating system at the beginning of the
first step that specifies the generation data set by relative generation number. If the most
recent data set is not the same at both tirpes, the results are unpredictable.

Note: When retrieving a generation data set within a started task, and the generation data set
is cataloged in a private catalog or control volume (CVOL), coding a relative generation
number causes unpredictable results.

The DISP Parameter

You must always code the DISP parameter. The first subparameter of the DISP parameter
must be OLD, SHR, or MOD. You can, goptionally, assign a disposition as the second
subparameter. The second subparameter must be specified for a generation data group. Do
not code PASS as the second subparameter when you retrieve all generations of a generation
data group as a single data set. In all such retrievals, the unit and volume information for each
generation level is obtained from the catalog, and not from the pass mechanism. If you code
the DISP subparameter MOD for a generation data set and the specified relative generation
does not exist in the catalog, the operating system changes the disposition to NEW.

The UNIT Parameter

Code the UNIT parameter when you want more than one device assigned to the data set. Code
the number of devices you want in the unit count subparameter, or, if the data set resides on
more than one volume and you want as many devices as there are volumes, code P in place of
the unit count subparameter.

The VOLUME Parameter
Use the VOLUME parameter to request a private volume (PRIVATE) and to indicate that
more volumes might be required (volume count). A volume serial number specified for an old

generation data group is ignored; the system obtains the volume serial number from the catalog
except for deferred checkpoint restart (see “Submitting a Job for Restart,” below).

Chapter 8. Guide to Special Data Sets 8-29

The LABEL Parameter

Code the LABEL parameter when the data set resides on tape and has other than standard
labels. If the data set is not the first data set on the volume, specify the data set sequence
number. If the data set sequence number is coded for a GDG ALL request, it is ignored; the
data set sequence number will be taken from the catalog.

The DCB Parameter

Code DCB = (list of attributes) when the data set has other than standard labels and DCB
information is required to complete the data control block. Do not code DCB =dsname when
retrieving a generation data set.

Deleting and Uncataloging Generation Data Sets

In a multiple-step job, if you attempt to delete or uncatalog any generation data set except the
oldest member of a generation data group, catalog management can lose orientation within the
data group. This could cause the deletion, uncataloging, or retrieval of the wrong data set
when you later refer to a specific generation. Therefore, if you delete a generation data set in a
multiple step job, do not refer to any previous (older) generation in later job steps.

Also, we recommend that in a multiple-step job, you catalog or uncatalog generation data sets

-using JCL instead of IEHPROGM or a user program. Because allocation/deallocation routines
access the catalog during job execution, they are unaware of the functions performed by
IEHPROGM or a user program; you might get unpredictable results. .

Submitting a Job for Restart

Certain rules apply when you refer to generation data sets in a job submitted for restart (the
RESTART parameter is coded on the JOB statement).

If your installation has installed MVS/System Product Release 3 (5740-XYN or 5740-XYS) or
subsequent releases without installing Data Facility/Device Support Release 1 Enhancements
(5740-AM7), do not use the checkpoint/restart facility.

If you have installed Data Facility/Device Support with either of the MVS/System Products,
you can use the checkpoint/restart facility with certain restrictions.

For additional information concerning these restrictions, see Checkpoint/Restart.

For step restart: generation data sets that were created and cataloged in steps preceding the
restart step must not be referred to (by means of the same relative generation numbers that
were used to create them) in the restart step or in steps following the restart step. Instead, you
must refer to a generation data set by means of its present relative generation number. For
example, if the last generation data set created and cataloged was assigned a generation number
of +2, it would be referred to as 0 in the restart step and in steps following the restart step. In
this case, the generation data set assigned number of +1 would be referred to as -1.

For checkpoint restart: If generation data sets created in the restart step were kept instead of
cataloged, that is, DISP = (NEW,CATLG,KEEP) was coded, you can, during checkpoint
restart, refer to these data sets and generation data sets created and cataloged in steps preceding
the restart step by means of the same relative generation numbers that were used to create
them. ‘ ‘

8-30.‘ MVS JCL

For Deferred Checkpoint Restart: the system does not use the catalog to obtain the volume
serial numbers for a generation data group. Therefore, if you changed the volume serial
numbers in the catalog between the original submission of the job and the restart, you must
code volume serial information.

Example of Creating and Retrieving Generation Data Sets

The following job step includes the DD statements that could be used to add three data sets to
a generation data group.

//STEPA EXEC PGM=PROCESS e

//DD1 DD DSNAME=A.B.C(+1),DISP=(NEW,CATLG) ,UNIT=3400-6,

// VOL=SER=13846,LABEL=(, SUL)

//DD2 DD DSNAME=A.B.C(+2) ,DISP=(NEW,CATLG),UNIT=3330,
// VOL=SER=10311,SPACE=(480,(150,20))

//DD3 DD DSNAME=A.B.C(+3),DISP=(NEW,CATLG) ,UNIT=3350,
// VOL=SER=28929,SPACE=(480, (150,20)),

// DCB=(LRECL=120,BLKSIZE=480)

The first two DD statements do not include the DCB parameter because a model data set label
exists on the same volume as the generation data group index and has the same name as the
generation data group (A.B.C). Since the DCB parameter is coded on the third DD statement,
the attributes LRECL and BLKSIZE, along with the attributes included in the model data set
label, are used.

The following job includes the DD statements required to retrieve the generation data sets
defined above when no other data sets have been added to the generation data group.

//JWC JOB CLASS=B

//STEP1 EXEC PGM=REPORT9

/ /DDA DD DSNAME=A.B.C(-2),DISP=OLD,LABEL=(,SUL)
//DDB DD DSNAME=A.B.C(-1),DISP=OLD

//DDC DD DSNAME=A.B.C(0),DISP=0LD

Chapter 8. Guide to Special Data Sets 8-31

Creating and Using a Subsystem Data Set

Use the DD SUBSYS parameter to:
@ Specify the name of the subsystem that will process the associated subsystem data set

® Specify up to 254 subsystem-defined parameters that describe the subsystem data set to the
subsystem

The subsystem processes the subsystem-defined parameters according to its own rules.

When you specify the SUBSYS parameter,the subsystem may alter the significance of certain
DD statement parameters. To determine if a particular subsystem alters the significance of any
DD statement parameters, and if it does, to determine which statements are affected and how
they are affected, refer to the documentation for the subsystem.

If you specify the DUMMY parameter, MVS invokes the specified subsystem to syntax check
the subsystem-defined parameters. If the syntax is acceptable, MVS assigns a dummy status to

the data set and processes the request as a dummy request.

If you request unit affinity to a subsystem data set, MVS substitutes SYSALLDA as the UNIT
parameter specification.

8-32 MvsiICL

Chapter 9. Guide to Cataloged and In-Stream Procedures

Applications that require many control statements and that are used on a regular basis can be
considerably simplified through the use of cataloged and in-stream procedures. A cataloged
procedure is a set of job control statements that are placed in a partitioned data set known as
the procedure library; an in-stream procedure is a set of job control statements that are placed
in the input stream within a job. You can execute a procedure simply by specifying its name on
an EXEC statement in your job. This section describes how to write and use cataloged and
in-stream procedures.

This section includes the following topics:

® Writing Cataloged and In-Stream Procedures
® Identifying an In-Stream Procedure
® Identifying Procedure Statements on an Output Listing

Writing Cataloged and In-Stream Procedures

Cataloged and in-stream procedures are simply the job control statements needed to perform an
application. A procedure contains one or more procedure steps, each consisting of an EXEC
statement that identifies the program to be executed, DD statements defining the data sets to be
used or produced by the program, and, optionally, OUTPUT JCL statements defining the
processing options the system is to use for output data sets. The program requested on the
EXEC statement must exist in a private library or the system library. If you do requesta -
program that is contained in a private library, the procedure step calling that program must
include a DD statement with the ddname STEPLIB that d=fines the private library; the
STEPLIB DD statement is described in the chapter, “Creating and Using Private and
Temporary Libraries.”

Cataloged and in-stream procedures cannot contain:
® EXEC statements that refer to other cataloged or in-stream procedures
@® JOB, delimiter, or null statements

® DD statements defining private libraries to be used throughout the job (DD statements
with the ddname JOBLIB)

® DD statements defining data in the input stream (statements including the * or DATA
parameters)

® OUTPUT JCL statements prior to the first EXEC statement within the procedure.

Chapter 9. Guide to Cataloged and In-Stream Procedures 9-1

® Any JES2 control statements; they are ignored

® Any JES3 control statements; they are ignored in cataloged procedures only

Identifying an In-Stream Procedure
To identify an in-stream procedure, code the PROC and PEND job control statements.

On the PROC statement, which must be the first statement in an in-stream procedure, assign
the procedure a name. This name is the name that a programmer codes to call the procedure.
Optionally, you can also assign default values to symbolic parameters contained in the
procedure and code comments. (A symbolic parameter is a symbol preceded by an ampersand
that stands for a parameter, a subparameter, or a value in a procedure; including symbolic
parameters in a procedure is described in detail in “Symbolic Parameters” on page 2-15. If you
do not assign default values to symbolic parameters on the PROC statement, you cannot code
comments. The simplest form of the PROC statement, to identify an in-stream procedure
named PAYROLL, would be:

//PAYROLL PROC

The PEND statement marks the end of the in-stream procedure. You can include a name on
the PEND statement and comments, but these are optional. Both of the following examples are
acceptable:

//ENDPROC PEND end of in-stream: procedure
// PEND

The following example illustrates an in-stream procedure named SALES consisting of two
procedure steps. Note that STEP2 includes a STEPLIB DD statement to define the private
library in which the program J UGGLE can be found.

//SALES PROC :

//STEP1 EXEC PGM=FETCH ‘

//DD1A DD DSNAME=RECORDS (BRANCHES) ,DISP=OLD
//DD1B DD DSNAME=RECORDS (MORGUE) , DISP=MOD"
//STEP2 EXEC PGM=JUGGLE

//STEPLIB DD DSNAME=PRIV.WORK,DISP=OLD

//DD2A DD SYSOUT=A

// PEND

Placing a Cataloged Procedure in a Procedure Library

The major difference between cataloged and in-stfeam'procedures is where they are placed.
Cataloged procedures must be placed in a procedure library before being used. In-stream
procedures are placed within the job that calls them.

A procedure library is simply a partitioned data set containing cataloged procedures. IBM
supplies a procedure library named SYS1.PROCLIB, but the installation can have additional
procedure libraries with different names. When a programmer calls a cataloged procedure, he
receives a copy of the procedure; therefore, a cataloged procedure can be used simultaneously
by more than one programmer. " '

To add a procedure to a procedure library, use the IEBUPDTE utility program. You can also

use the [EBUPDTE utility to permanently modify an existing procedure. (Before modifying an
existing cataloged procedure, however, you must notify the operator; he must delay the

9-2 MVSICL

execution of jobs that might use the procedure library while it is being updated.) Details on
using the IEBUPDTE utility appear in Utilities. In JES3, you can use the procedure library
update feature to modify an existing procedure. The UPDATE parameter on the JES3 MAIN
statement indicates that a procedure library is being updated and causes all jobs using the
library to be held until the update is complete.

Before placing or modifying a cataloged procedure in a procedure library, test it without
overriding any parameters to ensure that the procedure statements are syntactically correct.
Additionally, test the procedure by first running it as an in-stream procedure. In-stream testing
enables you to detect any errors in overridden parameters prior to cataloging the procedure.

No special job control statements are used to identify a cataloged procedure. The PEND
statement is never used and the PROC statement is optional. You need code the PROC
statement as the first statement in a cataloged procedure only when you want to assign default
values to symbolic parameters. The name of the PROC statement is not necessarily the name
of the cataloged procedure; you assign the procedure a name when adding it to the procedure
library.

Allowing for Changes in Cataloged and In-Stream Procedures

The usefulness of cataloged and in-stream procedures is destroyed if a programmer who uses
the procedure has to permanently modify the procedure every time he wants to make a change.
When writing a procedure, you can define, as symbolic parameters, those parameters,
subparameters and values that are likely to vary each time the procedure is used. For details
on coding symbolic parameters, see “Symbolic Parameters” on page 2-15.

Using Cataloged and In-Stream Procedures

To use a cataloged or in-stream procedure, specify the procedure name on an EXEC statement.
You can modify the procedure by adding DD statements and OUTPUT JCL statements, by
overriding, adding, or nullifying parameters on EXEC, DD, and OUTPUT JCL statements,
and by assigning values to symbolic parameters. Calling and modifying procedures is explained
in greater detail in the following paragraphs.

How to Call Cataloged and In-Stream Procedures

To call a cataloged or in-stream procedure, identify the procedure on the EXEC statement of
the step calling the procedure; do this by coding one of the following as the first operand on the
EXEC statement:

® The procedure name
@® PROC-= the procedure name

A cataloged procedure must exist in the procedure library before you attempt to use it. JES2
or JES3 is responsible for fetching cataloged procedures. Refer to “Scheduling a Job” on
page 5-1 to see how JES2 or JES3 determines what library to select. When using an in-stream
procedure, include the procedure, beginning with- a PROC statement and ending with a PEND
statement, with.the job control language for the job; the procedure must follow the JOB
statement but appear before the EXEC statement that calls it. You can include as many as
fifteen uniquely named in-stream procedures in one job and can use each procedure as many
times as you wish in the job.

Chapter 9. Guide to Cataloged and In-Stream Procedures 9-3

To call a cataloged procedure named PROCESSA, you would code:

//CALL EXEC PROCESSA or
//CALL EXEC PROC=PROCESSA

On the EXEC statement, you can also code changes you would like to make for this execution
of the procedure.

Modifying Cataloged and In-Stream Procedures
You can modify a procedure by:
@ Assigning values to or nullifying symbolic parameters contained in the procedure

® Overriding, adding, or nullifying parameters on EXEC, DD, and OUTPUT JCL statements
in the procedure

@® Adding DD statements to the procedure
® Adding OUTPUT JCL statements to the procedure

All changes you make are in effect only during the current execution of the procedure. For a
discussion of symbolic parameters, see “Symbolic Parameters” on page 2-15. Other
modifications are described in the following sections.

Modifying Parameters on an EXEC Statement

To override, add, or nullify a parameter on an EXEC statement in a procedure, identify on the
EXEC statement that calls the procedure the parameter you are changing, the name of the
EXEC statement on which the parameter appears, and the change to be made:

//CALL EXEC procedurename,parameter.procstepname=value

When overriding a parameter, the value coded for the parameter on the EXEC statement
calling the procedure replaces the value assigned in the procedure. When adding a parameter,
that parameter is used in the execution of the procedure step. When nullifying a parameter,
you do not follow the equal sign with a value; the value assigned to the parameter in the
procedure is ignored. All changes made are in effect only for the current execution of the
procedure.

You can make more than one change to each EXEC statement in the procedure, and you can
change parameters on more than one EXEC statement in the procedure. You cannot, however,
change the PGM parameter. When making changes to different steps in the procedure, code all
changes for one procedure step before you code changes to a subsequent step.

Test all new procedures without overriding any parameters to ensure that the procedure
statements are syntactically correct and contain no invalid backward references.

Note: You cannot override invalid backward references or syntactical errors on an EXEC

statement within a procedure with valid parameters. The system scans the original text for
errors, and thus an overriding parameter does not eliminate the error.

9-4 MVSIJCL

For example, the first three EXEC statements in a procedure named IRISH are:

//STEP1 EXEC PGM=YEATS,PARM='*14863"'
//STEP2 EXEC PGM=NOLAN
//STEP3 EXEC PGM=SYNGE,TIME=(2,30)

and you want to make the following changes:

® Nullify the PARM parameter in STEP1.
@® Add the COND parameter, specifying the test (8,LT), in. STEP2.
@ Change the time limit in the TIME parameter in STEP3 to 4 minutes.

On the EXEC statement calling the procedure, you would code:

//CALL EXEC IRISH,PARM.STEP1=,
// COND.STEP2=(8,LT),TIME.STEP3=4

In the above example, code TIME.STEP3 = 1440 to nullify the TIME parameter. If you code
TIME.STEP3 =, the default time value for the job class is assigned.

You need not name the procedure step when changing a parameter. When you omit the name,
the procedure is modified as follows:

® If the PARM parameter is coded, it applies only to the first procedure step. If a PARM
parameter appears in a later EXEC statement in the called procedure, it is nullified.

@ If the TIME parameter is coded, it applies to the total procedure. If the TIME parameter
appears on any of the EXEC statements in the called procedure, it is nullified.

@ If any other parameter is coded, it applies to every step in the called procedure. Nullifying
the parameter on the EXEC statement calling the procedure causes the parameter to be
ignored on every EXEC statement in the procedure; if you assign a value to the parameter
on the EXEC statement calling the procedure, the parameter is overridden where it appears
in the procedure and added to EXEC statements in the procedure on which it does not
appear.

For example, assume the EXEC statements in the procedure named COMPUTE are:
//STEP1 EXEC PGM=LIST,TIME=(1,30)

//STEP2 EXEC PGM=UPDATE,RD=NC,TIME=2
//STEP3 EXEC PGM=CHECK,RD=RNC,COND=ONLY

You want to make the following changes:

1. Assign a time limit of 4 minutes to the entire procedure; TIME parameters on individual
EXEC statements in the procedure will be nullified.

2. Allow automatic step restart for each step of the job by coding RD=R. The RD
parameter will be added to the first step of the job and will override the RD parameters in
STEP2 and STEP3.

To call the procedure and make these changes, you would code:

//CALL EXEG COMPUTE,TIME=4,RD=R

Chapter 9. Guide to Cataloged and In-Stream Procedures 9-5

During the processing of the JCL statements for the job, the EXEC statements appear as:

//STEP1 EXEC PGM=LIST,RD=R
//STEP2 EXEC PGM=UPDATE, RD=R
//STEP3 EXEC PGM=CHECK,RD=R,COND=ONLY

If any parameter change affects every step of the job (by omitting the procedure step name),
you must code that parameter on the EXEC statement calling the procedure before you code
changes to parameters on different steps (for which, you include the procedure step name).
Time will be a total of four minutes, each step using the remaining amount of time available
from the total. If more than four minutes is required, the step will abnormally terminate.

Modifying Parameters on a DD Statement

To override, add, or nullify parameters on a DD statement in a procedure, include a DD
statement containing the changes you want to make following the EXEC statement that calls
the procedure. The name of the DD statement containing the changes is /composed of the
procedure step name and the ddname of the DD statement in the procedure:

//procstepname.ddname DD parameter=value

When overriding a parameter, the value you code replaces the value assigned to the parameter
in the procedure.

When adding a parameter, the parameter is added to the DD statement in the procedure for the
current execution of the procedure. '

When nullifying a parameter, do not follow the equal sign with a value; that parameter in the
procedure is ignored. Do not nullify a parameter when you are replacing it with a mutually
exclusive parameter; it will be nullified automatically. (See Figure 18-6 on page 18-8 for a
table of mutually exclusive parameters on the DD statement.)

All changes you make are in effect only for the current execution of the procedure. If you are
overriding a DD statement, the system does not check for mutually exclusive parameters on the
DD statement. Therefore, all procedures should be executed once without any overriding
statements to ensure that they do not contain any mutually exclusive parameters.

You can change more than one parameter on a DD statement and you can change parameters
on more than one DD statement in the procedure. However, the DD statements containing the
changes must be coded in the same order as the corresponding DD statements in the procedure.
Test all new procedures without overriding any parameters to ensure that the procedure
statements are syntactically correct.

For example, the first two steps: of the cataloged procedure TEA are:

//STEP1 EXEC PGM=SUGAR

//DD1A DD DSNAME=DRINK,DISP=(NEW,DELETE),
// UNIT=3400-6,VOL=SER=568998
//DD1B DD UNIT=SYSSQ

//STEP2 EXEC PGM=LEMON

//DD2A DD UNIT=3350,DISP=(,PASS),

// ‘ SPACE=(TRK, (20,2))

9-6 MVS JCL

You want to make the following changes for this invocation:
1. Change the disposition on the DD statement named DDI1A to CATLG.

2. Change the volume serial number on the DD statement named DD1A to a nonspecific
request allowing the operating system to choose the volume.

3. Change the unit on the DD statement named DD1B to TAPE.

4. Change the SPACE parameter on the DD statement named DD2A to
SPACE=(CYL,(4,1)).

When calling the procedure, you would code:

//CALL EXEC TEA

//STEP1.DD1A DD DISP=(NEW,CATLG) ,VOL=SER=
//STEP1.DD1B DD UNIT=TAPE

//STEP2.DD2A DD SPACE=(CYL, (4,1))

When changing DCB keyword subparameters, you need code only those subparameters you are
changing. The DCB keyword subparameters you do not code (and for which you do not code
a mutually exclusive subparameter) remain unchanged. For example, a DD statement named
DD1 in a procedure step named STEP! contains,

DCB=(BUFNO=1,BLKSIZE=800 ,RECFM=FM,BUFL=800)

To change the block size to 320 and the buffer length to 320, you would code:

//STEP1.DD1 DD DCB=(BLKSIZE=320,BUFL=320)
The subparameters BUFNO and RECFM remain unchanged.

If a DCB positional subparameter is needed, the DCB positional subparameter must be coded
on the override statement regardless of whether one exists in the statement to be overridden.
To nullify a DCB positional parameter, do not code the DCB positional parameter on the
override statement.

For example, a DD statement named DD?2 in a procedure step named STEP2 contains
DCB=(DSN1,BLKSIZE=2380). To change the block size to 400, and copy other DCB
information from the cataloged data set named DSN1, you would code:

//STEP2.DD2 DD DCB=(DSN1,BLKSIZE=400)

To nullify the DCB parameter, you must nullify each subparameter. For example, if a DD
statement in a procedure contains DCB =(RECFM =FB,BLKSIZE = 160,LRECL = 80), you
must code DCB=(RECFM = ,BLKSIZE = ,LRECL =) in order to nullify the DCB parameter.

To nullify the DUMMY parameter, code the DSNAME parameter on the overriding DD
statement and assign a data set name other than NULLFILE. To nullify all the parameters on
a DD statement other than DCB, code DUMMY on the overriding DD statement.

If you code DUMMY on a DD statement, the system ignores all other parameters on the DD
statement, except the DCB parameter. However, the system does syntax check all parameters
so they must be correct. (The DUMMY parameter is described in detail under “Defining a
Dummy Data Set.”)

Chapter 9. Guide to Cataloged and In-Stream Procedures 9-7

Modifying Parameters on DD Statements that Define Concatenated Data Sets

When a concatenation of data sets is defined in a cataloged procedure and you attempt to
override the concatenation with one DD statement, only the first (named) DD statement is
overridden. To override others, you must include an overriding DD statement for each DD
statement; the DD statements in the input stream must be in the same order as the DD
statements in the procedure. The second and subsequent overriding statements must not be
named. If you do not wish to change one of the concatenated DD statements, leave the
operand field blank on the corresponding DD statement in the input stream. (This is the only
case where a blank operand field for a DD statement is valid.)

For example, suppose you are calling a procedure that includes the following sequence of DD
statements in STEPC:

//DD4 DD DSNAME=A.B.C,DISP=OLD

// DD DSNAME=STRP,DISP=OLD,UNIT=3350,VOL=SER=X12182
// DD DSNAME=TYPE3,DISP=OLD,UNIT=3350,VOLUME=SER=BL1421
// DD DSNAME=A.B.D,DISP=OLD

To override the DD statements that define the data sets named STRP and A.B.D, you would
code:

//STEPC.DD4 DD

// DD DSNAME=INV.CLS,DISP=0LD
// DD
// DD DSNAME=PALS8,DISP=OLD,UNIT=3350,VOL=SER=125688

Adding DD Statements to a Procedure

You can add DD statements to a procedure when calling the procedure. These additional DD
statements are in effect only during the current execution of the procedure.

To add a DD statement to a procedure step, place the additional DD statement after the EXEC
statement that calls the procedure and after any overriding DD statements for that step. The
ddname of the DD statement identifies the procedure step to which this statement is to be
added; you must assign a ddname that is different from all the ddnames in the procedure step.
If you do not identify the procedure step in the ddname, the DD statement is added to the step
specified by the last DD statement that contains a stepname and modifies a DD statement in
the procedure. If there are no DD statements that contain stepname.ddname, then the DD
statement is added to the first step of the procedure.

For example, if you use the following procedure:

//LINKS1 PROC

/ /LK1 EXEC PGM=IEWL,REGION=512K
//SYSUT1 DD SPACE=(CYL,(5,2)),UNIT=SYSDA
//SYSPRINT DD SYSOUT=A

//SYSLMOD DD DISP=OLD,UNIT=3330,VOL=SER=&SER,
// DSN=SYS1.TESTLIB

//LK2 EXEC PGM=IEWL,REGION=512K
//SYSUT1 DD SPACE=(CYL,(5,2)),UNIT=SYSDA
//SYSPRINT DD SYSOUT=A

//SYSLMOD DD UNIT=3330,VOL=SER=TSTVOL,

// DSN=COPY.TESTLIB,DISP=0LD

9-8 MVSJCL

and you specify these DD statements:

//LK2.SYSLMOD DD DSN=COPY2.TESTLIB,UNIT=3350,
// VOL=SER=ATEST , DISP=SHR
//ADD DD DSN=SYS1.LPALIB,DISP=SHR

then the DD statement with the ddname of ADD would be added to step LK2. If you did not
code the DD statement LK2.SYSLMOD, then the DD statement ADD would be added to step
LK1.

You can use symbolic parameters on DD statements that you are adding to a procedure.
However, if you are adding a DD statement to the last step of a procedure, do not use symbolic
parameters that are not used elsewhere in the procedure.

When adding DD statements to a procedure that contains concatenated DD statements, follow
the rules outlined in the previous topic “Modifying Parameters on DD Statements That Define
Concatenated Data Sets.”

Modifying Parameters on an OUTPUT JCL Statement

To override, add, or nullify parameters on an OUTPUT JCL statement in a procedure, include
an OUTPUT JCL statement containing the changes you want to make following the EXEC
statement that calls the procedure. The name of the OUTPUT JCL statement containing the
changes is composed of the procedure step name and the name of the OUTPUT JCL statement
in the procedure:

//procstepname.name OUTPUT parameter=value

When overriding a parameter, the value you code replaces the value assigned to the parameter
in the procedure.

When adding a parameter, the parameter js added to the OUTPUT JCL statement in the
procedure for the current execution of the procedure.

When nullifying a parameter, do not follow the equal sign with a value; that parameter in the
procedure is ignored.

All changes you make are in effect only for the current execution of the procedure.

You can change more than one parameter on an OUTPUT JCL statement and you can change
parameters on more than one OUTPUT JCL statement in the procedure. However, the
OUTPUT JCL statements containing the changes must be coded in the same order as the
corresponding OUTPUT JCL statements in the procedure. Test all new procedures without
overriding any parameters to ensure that the procedure statements are syntactically correct.

For example, the first two steps of the cataloged procedure MOVE are:

//STEP1 EXEC PGM=TRUCK

//OUTA OUTPUT GROUPID=RPT,BURST=YES,COPIES=6,
// FORMS=STD, DEST=NEWYORK

//DD1 DD SYSOUT=A,OUTPUT=* .OUTA

//STEP2 EXEC PGM=LOAD

//OUTB OUTPUT COPIES=2,FORMS=IMG1,FLASH=(AB,2),
// DEST=ARIZ

Chapter 9. Guide to Cataloged and In-Stream Procedures 9-9

You want to make the following changes for this invocation:

Change the BURST parameter on OUTPUT JCL statement OUTA to NO.

Change the COPIES parameter on OUTPUT JCL statement OUTA to 12.

Change the COPIES parameter on OUTPUT JCL statement OUTB to 12.

Nullify the FORMS parameter on OUTPUT JCL statement OUTB.

Change the DEST parameter on the OUTPUT JCL statement OUTB to NEWYORK.

e

When calling the procedure, you would code:

//CALL EXEC MOVE
//STEP1.0UTA OUTPUT BURST=NO,COPIES=12
//STEP2.0UTB OUTPUT COPIES=12,FORMS=,DEST=NEWYORK

Note: The OUTPUT parameter coded on DD statement DD is still valid. The output data
set for DD statement DDI receives the output processing as specified on OUTPUT JCL
‘statement OUTA and the changes specified on the ovemdlng OUTPUT IJCL statement
identified by //STEP1.OUTA.

Adding OUTPUT JCL Statements to a Procedure

You can add OUTPUT JCL statements to a procedure when calling the procedure. These
additional OUTPUT JCL statements are in effect only during the current execution of the
procedure.

To add an OUTPUT JCL statement to a procedure step, place the additional OUTPUT JCL
statement after the EXEC statement that calls the procedure and after any overriding OUTPUT
JCL statements for-that step. The name of the OUTPUT JCL statement identifies, the
procedure step to which this statement is to be added; you must assign the OUTPUT JCL
statement a name that is different from all the OUTPUT JCL statement names in the procedure
step. If you do not identify the procedure step in the name, the OUTPUT JCL statement is
added to the step specified by the last overriding OUTPUT JCL statement that contains a
stepname. If there are no overriding OUTPUT JCL statements that contain stepname.name,
then the OUTPUT JCL statement is added to the first step of the procedure.

For example, if you use the following procedure:

//LINKS1 PROC

/ /LK1 EXEC PGM=IEWL,REGION=512K
//OUTRP1 OUTPUT BURST=YES,COPIES=2,DEST=POK
//SYSPR1 DD SYSOUT=A

//LK2 EXEC PGM=IEWL,REGION=512K
//OUTRP2 OUTPUT COPIES=2,FORMS=RA

//SYSPR2 DD SYSOUT=A

‘and you specify these OUTPUT JCL statements:

//STEPA EXEC LINKS1
//LK1.OUTRP1 OUTPUT DEFAULT=YES,FLASH=(XA,2),DEST=HQ
//ADD1. OUTPUT DEFAULT=YES,DEST=MONT

//LK2.0OUTRP2 OUTPUT DEFAULT=YES,FORMS=STD,DEST=HQ
//LK2.0OUTRP3 OUTPUT DEFAULT=YES,DEST=FLA
//ADD2 OUTPUT DEFAULT=YES,COPIES=2,DEST=POK

® The OUTPUT JCL statement with the name LK1.OUTRP1 adds parameters to OUTPUT
JCL statement OUTRPI in procedure step LK1.

9-10 MvVsJCL

The system adds OUTPUT JCL statement ADDI to procedure step LK1 because it does
not have a name in the form stepname.name.

The OUTPUT JCL statement with the name LK2.QOUTRP2 adds parameters to OUTPUT
JCL statement OUTRP2 in procedure step LK2.

The system adds OUTPUT JCL statement LK2.OUTRP3 to procedure step LK2.

The system adds OUTPUT JCL statement ADD2 to procedure step LK2 because ADD?2
does not have a name in the form stepname.name.

Notes:

1.

Because OUTPUT JCL statements LK1.OUTRPI and ADDI have DEFAULT=YES
specified, the system processes the output data set defined by DD statement SYSPRI DD
statement SYSPR?2 using the processing options specified on OUTPUT JCL statements
OUTRPI and ADDI.

Because OUTPUT JCL statements LK2.OUTRP2, LK2.OUTRP3, and ADD2 have
DEFAULT= YES specified, the system processes the output data set for DD statement
SYSPR?2 using the processing options specified on QUTPUT JCL statements OUTRP2,
OUTRP3, and ADDI.

For more information and examples of the relationship between the DEFAULT parameter on
an OUTPUT JCL statement and a DD statement with the SYSOUT DD parameter and
OUTPUT DD parameter, see “OUTPUT Parameter” on page 12-103.

Adding OUTPUT JCL statements when there is an OUTPUT DD Parameter

For example, if you use the following procedure:

//LINKS1 PROC

//LK1 EXEC PGM=IEWL,REGION=512K
//OUTRP1 OUTPUT BURST=YES,COPIES=2,DEST=POK
//SYSPR1 DD SYSOUT=A, OUTPUT=* .OUTRP 1
//LK2 EXEC PGM=IEWL , REGION=512K
//OUTRP2 OUTPUT COPIES=2,FORMS=RA

//SYSPR2 DD SYSOUT=A, OUTPUT=* .LK1.OUTRP1
//SYSPR3 DD SYSOUT=A

//LK3 EXEC PGM=IEWL , REGION=512K
//SYSPR4 DD SYSOUT=A,OUTPUT=* .LK1.OUTRP1

and you specify these OUTPUT JCL statements:

//STEPA EXEC LINKS1
//LK1.OUTRP1 OUTPUT DEFAULT=YES,FLASH=(XA,2),DEST=HQ
//BDD1 OUTPUT DEFAULT=YES, DEST=MONT

//LK2,0UTRP2 OUTPUT DEFAULT=YES,FORMS=STD,DEST=HQ

The OUTPUT JCL statement with the name LK1.OUTRP1 adds parameters to OUTPUT
JCL statement OUTRP! in procedure step LK 1.

The system adds OUTPUT JCL statement ADD1 to procedure step LK1 because it does
not have a name in the form stepname.name.

The OUTPUT JCL statement with the name LK2.OUTRP2 adds parameters to OUTPUT
JCL statement OUTRP2 in procedure step LK2.

Chapter 9. Guide to Cataloged and In-Stream Procedures 9-11

Notes:

1. Because output DD statement SYSPRI makes an explicit reference to OUTPUT JCL
statement OUTRPI, the system processes the data set using the combined processing options
coded on OUTPUT JCL statements OUTRPI and LKI.OUTRPI.

2. Because output DD statement SYSPR2 makes an explicit reference to OUTPUT JCL
statement OUTRPI, the system processes the data set using the combined processmg options
coded on OUTPUT JCL statements OUTRPI and LKI. OU TRPI.

3. Because output DD statement SYSPR3 does not make an explicit reference to an OUTPUT
JCL statement and because OUTPUT JCL statement LK2.OUTRP2 specifies
DEFAULT = YES, the system processes the data set for DD statement SYSPR3 using the
combined processing options specified on OUTPUT JCL statements LK2.OUTRP2 and
OUTRP2.

4. Because output DD statement SYSPR4 makes an explicit reference to OUTPUT JCL
statement OUTRPI, the system processes the data set using the combined processing options
coded on OUTPUT JCL statements OUTRPI and LKI.OUTRPI.

If you add an OUTPUT JCL statement to procedure step LK3, you cannot refer to it from DD
statement SYSPR4, because the system adds the additional OUTPUT JCL statement at the end
of procedure step LK3. Because you are using the backward reference feature of JCL to refer
to an OUTPUT JCL statement, the OUTPUT JCL statement must precede the DD statement
that makes the reference.

If you want the system to process an output data set according to processing options on an
OUTPUT JCL statement that you are adding to the procedure and the DD statement makes an
explicit reference to a different OUTPUT JCL statement, you can use the following method.

For example, if you use the following procedure:

//LINKS1 PROC

//LK1 EXEC PGM=IEWL, REGION=512K
//OUTRP1 OUTPUT BURST=YES,COPIES=2,DEST=POK
//SYSPR1 DD SYSOUT=A,OUTPUT=%* .QUTRP1
//LK2 EXEC PGM=IEWL, REGION=512K
//OUTRP2 OUTPUT COPIES=2,FORMS=RA

//SYSPR2 DD SYSOUT=A,OUTPUT=*,0UTRP2
//SYSPR3 DD SYSOUT=A

//LK3 EXEC PGM=IEWL ,REGION=512K
//SYSPR4 DD SYSOUT=A,QUTPUT=*.LK1.0OUTRP1

and you want the system to process the data set forkDD statement SYSPR4 according to the
processing options specified on an OUTPUT JCL statement different from OUTRPL, you
would specify:

//J0B1 JOB

//BDD2 OUTPUT DEFAULT=YES,COPIES=2,DEST=POK
//STEPA EXEC LINKS1

//LK3.SYSPR4 DD OUTPUT=

OUTPUT JCL statement ADD?2 is now a job-level OUTPUT JCL statement and the
DEFAULT parameter applies to any DD statement with the SYSOUT parameter coded for
which there is no step-level OUTPUT JCL statement with DEFAULT =YES coded. Then,
when you nullify the OUTPUT parameter on DD statement SYSPR4, SYSPR4 is processed
according to ADD2. However, because the DEFAULT =YES parameter. applies to any DD

9-12 MVSsICL

statement with the SYSOUT parameter, the system uses OUTPUT JCL statement ADD2 when
processing DD statement SYSPR3 and SYSPR4. To avoid using the DEFAULT =YES
specification you could code:

//J0B1 JOB

//BDD2 OUTPUT COPIES=2,DEST=POK
//STEPA EXEC LINKS1
//LK3.SYSPR4 DD OUTPUT=*.ADD2

You override the OUTPUT parameter specification on DD statement SYSPR4 with a reference
to a job-level OUTPUT JCL statement. Because there is no DEFAULT =YES specification,
OUTPUT JCL statement ADD?2 does not apply to any other output data set unless there is an
explicit reference made to ADD2.

For a discussion of step-level and job-level OUTPUT JCL statements, see “Processing System
Output Data Sets Using the OUTPUT JCL Statement” on page 7-44.

You can use symbolic parameters on OUTPUT JCL statements that you are adding to a
procedure. The use of symbolic parameters on an OUTPUT JCL statement is the same as for a
DD statement. See “Symbolic Parameters” on page 2-15. However, if you are adding an
OUTPUT JCL statement to the last step of a procedure, do not use symbolic parameters that
are not used elsewhere in the procedure.

Identifying Procedure Statements on an Output Listing

You can request that cataloged and in-stream procedure statements be included on the output
listing by coding 1 as the first subparameter in the MSGLEVEL parameter on the JOB
statement. (For a description of the MSGLEVEL parameter, see “Requesting Listings of JCL
Statements and System Messages.”)

Procedure statements are identified on the output listing as illustrated in Figure 9-1 and
Figure 9-2 on page 9-14. The output listing will also show the symbolic parameters and the
values assigned to them.

Columns

1,2,3

XX cataloged procedure statement you did not override

X/ cataloged procedure statement you did override

XX* cataloged procedure statement, other than a comment
statement, that the system considers to contain
only comments

*kk comment statement, JES2, and JES3 statements

Note: The X/ identifier applies only to DD statements.

Figure 9-1. Identification of Cataloged Procedure Statements on the Output Listing

Chapter 9. Guide to Cataloged and In-Stream Procedures 9-13

Columns
1,2,3

++

+/

++*

*k*k

in-stream procedure
in-stream procedure
in-stream procedure
statement, that the
only comments
comment statement,

statement you did not override
statement you did override
statement, other than a comment
system considers to contain

JES2, and JES3 statements

Note: The +/ identifier applies only to DD statements.

Figure 9-2.

9-14 wMvVsICL

Identification of In-stream Procedure Statements on the Output Listing

Reference

Part 4. Reference to Job Control Statements and Parameters

This part details the coding of each JCL, JES2, and JES3 control statement. The chapters are:

Chapter 10. Coding the JOB Statement

Chapter 11. Coding the EXEC Statement
Chapter 12. Coding the DD Statement

Chapter 13. Coding Special DD Statements
Chapter 14. Coding the OUTPUT JCL Statement
Chapter 15. Coding Special JCL Statements
Chapter 16. Coding JES2 Control Statements
Chapter 17. Coding JES3 Control Statements

In chapters 10, 11, 12, and 14, which each cover only one statement, the parameters are listed

alphabetically. In chapters 13, 15, 16, and 17, the statements are listed alphabetically and, for

each statement, the parameters are listed alphabetically.

For each statement and parameter, this part gives the following information, as needed:
Parameter type: positional or keyword, required or optional.

Purpose of the parameter.

References to related information in this book or other IBM publications.

L

L

L

® Syntax and coding rules.
® Parameter or subparameter definitions: how to code each parameter or subparameter.
® Defaults if you do not code a statement, parameter, or subparameter.

L

Overrides: statements that this statement overrides or is overridden by or parameters that
this parameter overrides or is overridden by.

® Relationship to other parameters, including other parameters or subparameters that must
not be coded with this one.

Part 4. Reference to Job Control Statements and Parameters

Reference

Relationship to other control statements.
On EXEC statement that calls a procedure, for EXEC statement parameters.
Location in the JCL.

Other information required to code the statement or parameter.

Examples.

MVS JCL

JOB

Chapter 10. Coding the JOB Statement

Purpose: Use the JOB statement to mark the beginning of a job and to tell the system how to
process the job. Also, when jobs are stacked in the input stream, the JOB statement marks the
end of the preceding job.

The parameters you can specify for job processing are arranged alphabetically in the following
pages.

References: For more information on coding JOB-related parameters, see Chapter 3, “Guide
to Job Control” on page 3-1 and Chapter 5, “Guide to Job and Step Control” on page 5-1.
For information about the JES initialization parameters that provide installation defaults, see
SPL: JES2 Initialization and Tuning and SPL: JES3 Initialization and Tuning.

Syntax:

//jobname JOB positional-parameters|,keyword-parameter]... comments

The JOB statement consists of the characters // in columns 1 and 2 and four fields: name,
operation (JOB), parameter, and comments.

A JOB statement is required for each job.

Name Field

Code a jobname on every JOB statement, as follows:

Each jobname must be unique.

The jobname must begin in column 3.

The jobname is 1 through 8 alphanumeric or national characters.
The first character must be alphabetic or national.

The jobname must be followed by at least one blank.

Parameter Field

A JOB statement has two kinds of parameters: positional and keyword. All parameters are
optional unless your installation requires the accounting information parameter and the
programmer’s name parameter.

Chapter 10. Coding the JOB Statement 10-1

JOB

Positional Parameters: A JOB statement can contain two positional parameters. They must
precede all keyword parameters. You must code the two positional parameters in the following
order:

1. accounting information
2. programmer’s name

Keyword Parameters: A JOB statement can contain the following keyword parameters. You
can code any of the keyword parameters in any order in the parameter field after the positional
parameters.

ADDRSPC
CLASS
COND
GROUP
MSGCLASS
MSGLEVEL
NOTIFY
PASSWORD
PERFORM
PRTY

RD
REGION
RESTART
TIME
TYPRUN
USER

Do not use JOB statement parameter keywords as symbolic parameters, names, or labels.

Comments Field

The comments field follows the parameter field after at least one intervening blank. If you do
not code any parameters on a JOB statement, do not code any comments.

Location in the JCL

A JOB statement must be the first statement in each job. JOB statements never appear in
cataloged or in-stream procedures.

Examples of JOB Statements

//ALPHA JOB 843,LINLEE,CLASS=F,MSGCLASS=A,MSGLEVEL=(1,1)

//LOS JOB ,'J M BUSKIRK',TIME=(4,30),MSGCLASS=H,MSGLEVEL=(2,0)
//MART JOB 1863,RESTART=STEP4 THIS IS THE THIRD JOB STATEMENT.
//TRYS8 JOB '

//RACF1 JOB 'D83,123' ,USER=RACO1,GROUP=A27,PASSWORD=XYY

10-2 MVS JCL

JOB: Accounting Information

Accounting Information Parameter

Parameter Type: Positional, required (according to installation procedures)

Purpose: Use the accounting information parameter to enter an account number and any other
accounting information that your installation requires.

References: For more information on the accounting information parameter, see “Job
Accounting Information Parameter” on page 3-2, and on how to add accounting routines, see
SPL: System Management Facilities.

If you are to provide accounting information for an individual step within a job, code an
ACCT parameter on the EXEC statement for that step. For information on coding the EXEC
statement ACCT parameter, see “ACCT Parameter” on page 11-4.

Syntax:

([account-number] [,accounting-information]...)

Location: Code the accounting information parameter first in the parameter field.

Omission: If you omit the accounting information parameter but you are coding a
programmer’s name parameter, code a comma to indicate the omitted parameter. If you
omit both positional parameters, do not code any commas before the first keyword
parameter.

Length: The entire accounting information parameter must not exceed 142 characters:

® Including any commas, which are considered part of the information.
® Excluding any enclosing parentheses, which are not considered part of the information.

Multiple Subparameters: When the accounting information parameter consists of more than
one subparameter, separate the subparameters by commas and enclose. the parameter in
parentheses or apostrophes. For example, (5438, GROUP6) or '5438, GROUPS6’. - If you use
apostrophes, all information inside the apostrophes is considered one field.

Special Characters: When a subparameter contains special characters, other than hyphens,
enclose it in apostrophes and the entire parameter in parentheses or enclose all of the
parameter in apostrophes. For example, (12A75,"DEPT/D58’,706) or
"12A75,DEPT/D58,706".

Code each apostrophe or ampersand that is part of the accounting information as two
consecutive apostrophes or ampersands. For example, code DEPT'D358 as
(12A75,'DEPT""D58’,706) or '12A75,DEPT"D58,706’. Code 34&251 as "34&&251".

Continuation onto Another Statement: Enclose the accounting information parameter in
parentheses. End each statement with a comma after a complete parameter. For example:

//JOB1 JOB (12A75,'DEPT/D58',
// 706) ‘ C

Chapter 10. Coding the JOB Statement 10-3

JOB: Accounting Information

Subparameter Definition

account-number
Specifies an accounting number, as defined by the installation.

accounting-information

Specifies more information, as defined by the installation. For example, your department
and room numbers.

JES2 Accounting Information Format
JES2 assumes that the JOB accounting information parameter could, alternatively, appear on
the JES2 /*JOBPARM statement. If you code the accounting information parameter in the
following format, JES2 can interpret and use it.

References: For a discussion of the JES2 scan of the accounting information parameter, see
SPL: JES2 Initialization and Tuning.

Syntax:

(pano,room,time,lines,cards,forms,copies,log,linect)

Code a comma in place of each omitted subparameter when other subparameters follow.

Subparameter Definition

pano
Specifies the programmer’s accounting number. pano is 1 to 4 alphanumeric characters.

room .
Specifies the programmer’s room number. room is 1 to 4 alphanumeric characters.

time
Specifies the estimated execution time in minutes. time is 1 to 4 decimal numbers. For
example, code 30 for 30 minutes. If you omit time, JES2 uses an installation default
specified at initialization.

lines
Specifies the estimated line count in thousands of lines. lines is 1 to 4 decimal numbers.
For example, code 5 for 5000 lines. If you omit lines, JES2 uses an installation default
specified at initialization.

cards
Specifies the estimated number of cards JES2 is to punch. cards is 1 to 4 decimal
numbers. If you omit cards, JES2 uses an installation default specified at initialization.

forms
Specifies the forms that JES2 is to use for printing output for the entire job. formsis 1 to
4 alphanumeric characters. For example, code 5 for 5-part forms. If you omit forms,
JES2 uses an installation default specified at initialization.

10-4 w™MvsICL

JOB: Accounting Information

copies
Specifies the number of times JES2'is to print and/or punch this job’s output. copies is 1
to 3 decimal numbers not exceeding an installation-specified limit. The maximum is 255.
For example, code 2 for two copies. If you omit copies, JES2 assumes one copy.

The copies subparameter is ignored and only one copy is produced if the output class for
the job log, as specified in the JOB MSGCLASS parameter, or the output class of any of
the job’s system output data sets is a held class.

log
Specifies whether or not JES2 is to print the job log. Code N to request no job log. If
you code any other character or omit this subparameter, JES2 prints the job log. If your
installation specified NOLOG for this job’s class during JES2 initialization, JES2 will not
print a job log.

linect

Specifies the number of lines JES2 is to print per page. linect is 1 to 3 decimal numbers.
When you send a data set across a network, linect cannot exceed 254. When you print
the data set locally, linect cannot exceed 255. If you omit linect, JES2 uses an installation
default specified at initialization. If you code a zero, JES2 does not eject to a new page
when the number of lines exceeds the installation default.

Invalid Subparameters: Your installation can initialize JES2 to do one of the following if the
accounting information contains subparameters that are invalid to JES2:

@® Ignore the invalid subparameters.
® Terminate the job. In this case, JES2 requires the first two subparameters: pano and room.

Overrides: A parameter on any of the following statements overrides an equivalent accounting
information subparameter on the JOB statement:

JES2 /*JOBPARM statement
JES2 /*OUTPUT statement
OUTPUT JCL statement
DD statement

Examples of the Accounting Information Parameter

//J0B43 JOB D548-8686

//YOURJOB JOB ,SUE,CLASS=A

In this statement, the accounting information parameter is omitted, but indicated by a comma.

Chapter 10. Coding the JOB Statement 10-5

JOB: Accounting Information

//J0B44 JOB (D548-8686,'12/8/85',ERICKSON)

Because this statement contains an account-number plus additional accounting-information,
parentheses are required.

//J0B45 JOB (CFH1,2G14,15,,,2)
This statement shows a JES2 accounting information parameter: programmer’s accounting

number, CFH1; room number, 2G14; estimated job time, 15 minutes; and copies, 2.
Parentheses are required. Standard values are assumed for the other JES2 subparameters.

10-6 MvsJCL

JOB: ADDRSPC

ADDRSPC Parameter

Parameter Type: Keyword, optional

Purpose: Use the ADDRSPC parameter to indicate to the system that the job requlres virtual (@SIEN
storage (pageable) or real storage (nonpageable).

References: For more information on the ADDRSPC parameter, see “Requesting Storage for
Execution” on page 5-23 and “The REGION Parameter” on page 5-25.

Syntax:

ADDRSPC={VIRT|REAL}

Subparameter Definition

Defaults

Overrides

VIRT
Requests virtual storage. The system can page the job.

REAL
Requests real storage. The system cannot page the job and must place each step of the
job in real storage.

If no ADDRSPC parameter is specified, the default is VIRT.

The JOB statement ADDRSPC parameter applies to all steps of the job and overrides any
EXEC statement ADDRSPC parameters.

Code EXEC statement ADDRSPC parameters when each job step requires different types of
storage. The system uses an EXEC statement ADDRSPC parameter only when no ADDRSPC
parameter is on the JOB statement and only during the job step.

Relationship to the JOB REGION Parameter

When ADDRSPC=REAL: Code a REGION parameter to specify how much real storage the
job needs. If you omit the REGION parameter, the system uses an installation default
specified at JES initialization.

When ADDRSPC= VIRT or ADDRSPC is Omitted: Do not code a REGION parameter. The
system uses an installation default specified at JES initialization.

Chapter 10. Coding the JOB Statement 10-7

JOB: ADDRSPC

Examples of the ADDRSPC Parameter

//PEH JOB ,BAKER,ADDRSPC=VIRT

The ADDRSPC parameter requests virtual (pageable) storage. The space available to the job is
the installation-specified default.

//DEB JOB ,ERIC,ADDRSPC=REAL,REGION=100K

The ADDRSPC pérameter requests real (nonpageable) storage. The REGION parameter
specifies 100K of storage for the job.

10-8 MvsicL

JOB: CLASS

CLASS Parameter

Parameter Type: Keyword, optional

Purpose: Use the CLASS parameter to assign the job to a class. The class you should request
depends on the characteristics of the job and your installation’s rules for assigning classes.

References: For more information on the CLASS parameter, see “Assigning a Job to a Job
Class in JES2” on page 5-19 or “Assigning a Job to a Job Class in JES3” on page 5-19. In
JES3 systems, you can also code a CLASS parameter on a JES3 //*MAIN statement. For
information on the //*MAIN statement, see “//*MAIN Statement” on page 17-23.

Syntax:

CLASS=jobclass

Subparameter Definition

jobclass
Identifies the class for the job. The jobclass is one character, A through Z or 0 through 9,
and must be a valid class specified at system initialization.

Defaults
The default is based on the source of the job: The systém makes the job’s class the same as the
installation-specified default class for the particular card reader, work station, or time-sharing
user that submitted the job. The installation default is specified at JES initialization.
Overrides

A JES3 //*MAIN statement CLASS parameter overrides a JOB statement CLASS parameter.

Example of the CLASS Parameter

//SETUP JOB 1249,SMITH,CLASS=M

This statement assigns the job to class M.

Chapter 10. Coding the JOB Statement 10-9

JOB: COND

COND Parameter

Parameter Type: Keyword, optional

Purpose: Use the COND parameter to specify the return code tests the system uses to
determine whether a job will continue processing. Before each job step is executed, the system
performs the COND parameter tests against the return codes from completed job steps. If none
of these tests is satisfied, the system executes the job step; if any test is satisfied, the system
bypasses all remaining job steps and terminates the job.

References: For more information on the COND parameter, see “Conditionally Executing Job
Steps” on page 5-5.

Syntax:

COND=((code,operator) [, (code,operator)]...)

® One return code test is: (code,operator)
® You can omit the outer parentheses if you code only one return code test.

@ Specify up to eight return code tests for a job.

Subparameter Definition

code
Specifies a number that the system compares to the return code from each job step. code
is a decimal number from 0 through 4095.

Note: Specifying a decimal number greater than 4095 could result in invalid return code
testing or invalid return codes in messages.

operator
Specifies the type of comparison to be made to the return code. Operators and their
meanings are:

Operator Meaning

GT Greater than

GE Greater than or equal to
EQ Equal to

NE Not equal to

LT Less than

LE Less than or equal to

10-10 MvsicL

Overrides

JOB: COND

If you code the COND parameter on the JOB statement and on one or more of the job’s EXEC
statements, and if a return code test on the JOB statement is satisfied, the job terminates. In
this case, the system ignores any EXEC statement COND parameters.

If the tests on the JOB statement are not satisfied, the system then performs the return code
tests on the EXEC statement. If a return code test is satisfied, the step is bypassed.

Summary of COND Parameters

See Figure 10-1 for a summary of how to code tests in the COND parameter to cause the job
to be continued or terminated.

Return Code (RC) from Just Completed Step
Test in COND Parameter Continue Job Terminate Job
COND =(code,GT) RC > code RC < code
COND =(code,GE) RC > code RC < code
- COND =(code,EQ) RC —1 = code RC = code
COND =(code,LLT) RC < code RC > code
COND =(code,LE) RC < code RC > code
COND =(code,NE) RC = code RC —1 = code
Figure 10-1. Continuation or Termination of the Job Based on COND Parameter

Examples of the COND Parameter

//TYPE JOB (611,402),BOURNE,COND=(7,LT)

The COND parameter specifies that if 7 is less than the return code, the system terminates the
job. Any return code less than or equal to 7 allows the job to continue.

//TEST JOB 501,BAXTER,COND=((20,GE), (30,LT))
The COND parameter specifies that if 20 is greater than or equal to the return code or if 30 is

less than the return code, the system terminates the job. Any code of 21 through 30 allows the
job to continue.

Chapter 10. Coding the JOB Statement 10-11

JOB: GROUP

GROUP Parameter

Parameter Type: Keyword, optional

Purpose: Use the GROUP parameter to specify a RACF-defined group to which a
RACF-defined user is to be connected. RACF places each RACF-defined user in a default
group; the GROUP parameter is needed only to specify a group other than a user’s default
group. ,

The USER, the PASSWORD, and, optlonally, the GROUP parameters are requn’ed on JOB
statements only for the following: ‘

@ Batch jobs submitted through an input stream, such as a card reader, (1) if the job requires
access to RACF-protected resources or (2) if the installation requires that all jobs have
RACEF identification.

@ Jobs submitted by one TSO user for another user. In this case, the JOB statement must
specify the other user’s userid and password. The group id is optional.

® Jobs that execute at another network node that uses RACF protection.

Otherwise, the USER, PASSWORD, and GROUP parameters can be omitted from JOB
statements. RACF uses the userid, password, and group id of the submitting TSO user or job.

References: For more information on the GROUP parameter, see “Controlling Access to
RACF-Protected Data Sets” on page 6-2, and on RACF-protected facilities, see Resource
Access Control Facility (RACF) General Information Manual.

Syntax:

GROUP=group-name

Subparameter Definition
group-name

Identifies the group with which the system is to associate the user. group-name is 1 to 8
alphanumeric or national characters. The first character must be alphabetic or national.

Defaults

If you do not code the GROUP parameter, but do code the USER and PASSWORD
parameters, the system assigns a default group name it associates with the userid.

10-12 mMvsJcCL

JOB: GROUP

Relationship to Other Parameters '

Code the USER and PASSWORD parameters on the JOB statement when you code the
GROUP parameter.

' JOL
Example of the GROUP Parameter -

//TEST JOB 'D83,123456',GROUP=MYGROUP,USER=MYNAME, PASSWORD=ABC

This statement requests that the system connect RACF-defined user MYNAME to the group
named MYGROUP for the duration of the job.

Chapter 10. Coding the JOB Statement 10-13

JOB: MSGCLASS

MSGCLASS Parameter

Parameter Type: Keyword, optional

Purpose: Use the MSGCLASS parameter to assign the job log to an output class. The job log
is a record of job-related information for the programmer. Depending on the JOB statement
MSGLEVEL parameter, the job log can consist of:

Only the JOB statement.

All JCL statements.

Cataloged procedure statements.

JCL messages:

JES and operator messages about the job.

References: For more information on the MSGCLASS parameter, see “Job Log” on page 3-14
and “MSGCLASS Parameter” on page 3-16.

Syntax:

MSGCLASS=c las's—namer

Subparameter Definition
class-name

Identifies the output class for the job log. The class-name is one character, A through Z
or 0 through 9, and must be a valid output class specified at system initialization.

Defaults
The default is based on the source of the job: The system places the job log in the same output
class as the installation-specified default class for the particular card reader, work station, or
time-sharing user that submitted the job. The installation default is specified at JES
initialization.

Significance of Qutput Classes

To print the job log and any output data sets on the same output listing, code one of the
following:

@ The same output class in the DD SYSOUT parameter as in the JOB MSGCLASS
parameter.

® DD SYSOUT=* to default to the JOB MSGCLASS output class.
©® DD SYSOUT=¢(,) to default to one of the following:
1. The CLASS parameter in an explicitly or implicitly referenced OUTPUT JCL

statement. In this case, the OUTPUT JCL CLASS parameter should specify the same
output class as the JOB MSGCLASS parameter.

10-14 MvsiIcCL -

JOB: MSGCLASS

2. The JOB MSGCLASS output class, if no OUTPUT JCL statement is referenced or if
the referenced OUTPUT JCL statement contains CLASS =*,

Examples of the MSGCLASS Parameter

‘ : R , JOb:
//EXMP1 JOB , GEORGE ,MSGCLASS=F -

In this example, the JOB statement specifies output class F for the job log.

//EXMP2 JOB ,MENTLE,MSGLEVEL=(2,0)

This JOB statement does not specify an output class. In this case, the output class defaults to
the installation default output class for the device from which the job was submitted.

//A1403 JOB ,BLACK,MSGCLASS=L
//STEP1 EXEC PGM=PRINT
//OUTDD1 DD SYSOUT=L

In this example, the JOB statement and sysout DD statement OUTDDI1 both specify the same
output class. Consequently, the job log and data set OUTDD! are written on the same output
listing.

//B209 JOB ,WHITE,MSGCLASS=M
//STEPA EXEC PGM=PRINT
//OUTDDX DD SYSOUT=*

In this example, the JOB statement specifies that the system route the job log to output class

M. The system also routes sysout data set OUTDDX to class M because SYSOUT =* is
specified. : o ‘

Chapter 10. Coding the JOB Statement 10-15

JOB: MSGLEVEL

MSGLEVEL Parameter

Parameter Type: Keyword, optional

Purpose: Use the MSGLEVEL parameter to control the contents of the job log. Youcan .
request that the system print the following:

@® Only the JOB statement.

@® All JCL statements.

@ Cataloged procedure statements for any procedure a job step calls, including the internal
representation of procedure statement parameters after symbolic parameter substitution.

® JCL messages.

@ JES and operator messages about the job: the allocation of devices and volumes,
disposition of data sets, and termination of job steps and the job.

References: For more information on the MSGLEVEL parameter, see “MSGLEVEL
Parameter” on page 3-14.

Syntax:

MSGLEVEL=([statements] [,messages])

You can omit the parentheses if you code only the first subparameter.

Subparameter Definition
statements

Indicates which job control statements the system is to print in the job log. statements is

one of the following numbers:

0 The system prints only the JOB statement.

1 The system prints all JCL statements, the cataloged procedure statements, and the
internal representation of procedure statement parameters after symbolic parameter
substitution. ,

2 The system prints only JCL statements.

messages
Indicates which messages the system is to print in the job log messages is one of the

following numbers:

0 The system prints only JCL messages. It prints JES and operator messages only if the
job abnormally terminates.

1 The system prints JCL messages and all JES and operator messages.

10-16 MvsiCL

'JOB: MSGLEVEL

Defaults
If you do not code the MSGLEVEL parameter, JES uses an installation default specified at
initialization.

Examples of the MSGLEVEL Parameter

//EXMP3 JOB ,GEORGE,MSGLEVEL=(2,1)

In this example, the JOB statement requests that the system print only JCL statements, JCL
messages, and JES and operator messages.

//EXMP4 JOB ,MENTLE,MSGLEVEL=0

In this example, the JOB statement requests that the system print only the JOB statement and
that JES is to use the installation default for messages.

//EXMP5 JOB ,MIKE,MSGLEVEL=(,0)
In this example, the JOB statement requests that JES use the installation default for printing

JCL statements and the system is not to print JES and operator messages unless the job
abnormally terminates.

Chapter 10. Coding the JOB Statement 10-17

JOB: NOTIFY

NOTIFY Parameter

Parameter Type: Keyword, optional

Purpose: Use the NOTIFY parameter to request that the system send a message to your TSO
userid or another TSO userid when this background job completes processing.

References: For more information on the NOTIFY parameter, see “TSO” on page 3-18.

Syntax:

NOTIFY=userid

Subparameter Definition

userid
Identifies the user that the system is to notify. The userid is 1 to 7 alphanumeric
characters and must be a valid TSO userid.

Relationship to JES2 /*JOBPARM SYSAFF Parameter

If you submit a job with a JOB statement NOTIFY parameter or a JES2 /*NOTIFY statement,
then the mode of the job (independent or not) must match that of the system at which the job is
submitted. That is, for TSO-submitted jobs, you cannot change the system affinity using the
JES2 /*JOBPARM SYSAFF parameter.

Receiving Notification of Job Completion

In a JES2 System: If you are logged on to the member of the JES2 multi-access spool from
which you submitted the job, the system immediately notifies you when the job completes. If
you are not logged on, the system saves the message until you log on to the member from
which you originally submitted the job.

In a JES3 System: If you are logged on, the system iminediately notifies you when the job
completes. If you are not logged on, the system saves the message until you log on to the
system from which you originally submitted the job.

To receive notification that a job you submitted through batch processing has completed,
supply a main-name on the ACMAIN parameter of the JES3 //*MAIN statement in addition to
the JOB statement NOTIFY parameter. The ACMAIN parameter should specify the processor
on which your TSO system is running.

10-18 MvsJCL

JOB: NOTIFY

Example of the NOTIFY Parameter

//SIGN JOB ,JEEVES,NOTIFY=POK1l

When the job SIGN completes processing, the system sends a message to userid POK1.

Chapter 10. Coding the JOB Statement 10-19

JOB: PASSWORD

PASSWORD Parameter

Parameter Type: Keyword, optional

Purpose: Use the PASSWORD parameter to identify a current RACF password or specify a
new RACF password. You can specify a new password at any time and must specify a new
password when your current one expires.

Note: If your installation uses the early authorization verification option and has an exit
routine to implement this option, a new password specified in the PASSWORD parameter takes
effect when the job is read in, even if the job fails because of JCL errors or even if the job is
executed later. When changing the password, other jobs that use the new or old password may
fail, depending on when their passwords are verified.

The USER, the PASSWORD, and, optionally, the GROUP parameters are required on JOB
statements only for the following:

@ Batch jobs submitted through an input stream, such as a card reader, (1) if the job requires
access to RACF-protected resources or (2) if the installation requires that all jobs have
RACEF identification.

@ Jobs submitted by one TSO user for another user. In this case, the JOB statement must
specify the other user’s userid and password. The group id is optional.

@ Jobs that execute at another network node that uses RACF protection.

Otherwise, the USER, PASSWORD, and GROUP parameters can be omitted from JOB
statements. RACF uses the userid, password, and group id of the submitting TSO user or job.

References: For more information on the PASSWORD parameter, see “Controlling Access to
RACF-Protected Data Sets” on page 6-2. For more information on using RACF-protected
facilities, see Resource Access Control Facility (RACF) General Information Manual.

Syntax:

PASSWORD= (password[,new-password])

® You can omit the parentheses if you code only the first subparameter.

® The PASSWORD parameter must be on the first statement if the JOB statement is
continued.

10-20 MVsJCL

JOB: PASSWORD

Subparameter Definition

password
Specifies the user’s current RACF password. The password is 1 to 8 alphanumeric or
national characters.

new-password
Specifies the user’s new RACF password. The new-password is 1 to 8 alphanumeric or
national characters. The installation’s security administrator can impose additional
restrictions on passwords; follow your installation’s rules.

Relationship to Other Parameters

You must code a PASSWORD parameter when you code a USER or GROUP parameter on a
JOB statement.

You must code a USER parameter when you code a PASSWORD parameter.

Examples of the PASSWORD Parameter \

//TEST1. JOB 'D83,123456',PASSWORD=ABCDE,USER=MYNAME

This JOB statement identifies ABCDE as the current password for the RACF user.

//TEST2 JOB 'D83,123456',PASSWORD=(BCH,Al12) ,USER=RAC1l,GROUP=GRP1

This JOB statement requests that the system change the RACF password from BCH to Al2.

Chapter 10. Coding the JOB Statement 10-21

JOB: PERFORM

PERFORM Parameter

Parameter Type: Keyword, optional

Purpose: Use the PERFORM parameter to specify the performance group for the job. The
installation-defined performance groups determine the rate at which associated jobs have access
to the processor, storage, and channels.

References: For information on performance groups, see “Establishing job processing balance
in JES3” on page 5-19, “Performance of Jobs and Job Steps in JES2” on page 5-22, or
“Performance of Jobs and Job Steps in JES3” on page 5-23.

Syntax:

PERFORM=n

Subparameter Definition

Defaults

Overrides

n
Indicates the performance group. The n is a number from 1 through 999 and must
identify a performance group that has been defined by your installation. The specified
performance group should be appropriate for your job type according to your
installation’s rules.

If no PERFORM parameter is specified or if the specified PERFORM number fails validity
checks, the system uses an installation default specified at initialization. If the installation did
not specify a default, the system uses a built-in default:

1 for non-TSO jobs
2 for TSO sessions

See SPL: Initialization and Tuning Guide for details.

A JOB statement PERFORM parameter apphes to all steps of the job and overrides any EXEC
statement PERFORM parameters.

Code EXEC statement PERFORM parameters when each job step executes in a different
performance group. The system uses an EXEC statement PERFORM parameter only when no
PERFORM parameter is on the JOB statement and only during the job step.

10-22 mvsJcL

JOB: PERFORM

Example of the PERFORM Parameter

//STEP1 JOB ,MARLA,CLASS=D,PERFORM=25

Once in the system, the job will run in performance group 25. The installation must have

In this example, CLASS =D determines the class in which the system will execute the job. -
JOb
defined the significance of this performance group.

Chapter 10. Coding the JOB Statement 10-23

JOB: Programmer’s Name

Programmer’s Name Parameter

Parameter Type: Positional, required (according to installation procedures)

Purpose: Use the programmer’s name parameter to identify the person or group responsible
for a job.

References: For more information on the programmer’s name parameter, see “Programmer
Information: The programmer-name parameter” on page 3-5.

Syntax:

programmer 's=-name

Location: Place the programmer’s name parameter immediately after the accounting
information parameter and before all keyword parameters.

Omission: Do not code a comma to indicate the absence of the programmer’s name
parameter. For example:

//YOURJOB JOB 'D58/706',MSGCLASS=A

Parameter Definition

programmer’s-name
Identifies the job’s owner. The name must not exceed 20 characters, including all special
characters.

Special Characters: Enclose the programmer’s name in apostrophes when:

@® The name contains special characters, other than hyphens, leading periods, or
embedded periods. For example:

//YOURJOB JOB 'BUILD/PAUL'
//YOURJOB JOB 'MAE BIRDSALL'

® The last character of the name is a period. For example:

//YOURJOB JOB 'TIIU.'

® Code each apostrophe that is part of the name as two consecutive apostrophes. For
example, code O'DONNELL as "'O“"DONNELL’".

10-24 MVs JCL

JOB: Programmer’s Name

Examples of the Programmer’s Name Parameter

//APP JOB ,G.M.HILL

This JOB statement specifies a programmer’s name with no accounting information. The
leading comma may be optional; check with your installation.

//DELTA JOB 'T.O''NEILL'

The programmer’s name contains special characters. The installation requires no accounting
information. The imbedded apostrophe is coded as two consecutive apostrophes; the entire
name must be enclosed in apostrophes.

//#308 JOB (846349,GROUP12) ,MATTHEW

This JOB statement specifies an account number, additional accounting information, and a
programmer’s name.

//JOBA JOB 'NICOLLE.'

Because this programmer’s name ends with a period, it is enclosed in apostrophes.

Chapter 10. Coding the JOB Statement 10-25

JOB: PRTY

PRTY Parameter

Parameter Type: Keyword, optional
Purpose: Use the PRTY parameter to assign:

@ In a JES2 system, the queue selection priority for your job and all of its output, except the
JES2 hard-copy log.

Note: Depending on the JES2 initialization options in use at your installation, JES2 may
ignore the PRTY parameter.

® In a JES3 system, the job’s initiation or selection priority within its job class.

A job with a higher priority is selected for execution sooner.

References: For more information about priority, see “Assigning a Priority to a Job for JES2”
on page 5-20 and SPL: JES2 Initialization and Tuning or “Assigning a Priority to a Job in
JES3” on page 5-20.

Syntax:

PRTY=priority

Subparameter Definition

priority
Requests a priority for the job. The priority is a number from 0 through 15 for JES2 and
from 0 through 14 for JES3. The highest priority is 15 or 14.

Follow your installation’s rules in coding a priority.

Defaults in a JES3 System

If no PRTY parameter is specified, JES3 use an installation default specified at initialization. If
the PRTY specified is invalid, JES3 issues an error message.

Relationship to Other Control Statements in a JES2 System

Instead of coding the PRTY parameter on a JOB statement, JES2 users can code the JES2
/*PRIORITY control statement. For information on coding the /¥*PRIORITY statement, see
“/*PRIORITY Statement” on page 16-22. If a /*PRIORITY statement is not present or if
JES2 ignores the /*PRIORITY statement, the system derives the priority from the following, in
override order:

1. The PRTY parameter on the JOB statement.

2. The accounting information on a /*JOBPARM statement.
3. The accounting information on the JOB statement.

4. An installation default specified at JES2 initialization.

10-26 MvVsJCL

JOB: PRTY

Example of the PRTY Parameter

//JOBA JOB 1,'JIM WEBSTER',PRTY=12

This job has a priority of 12.

Chapter 10. Coding% JOB Statement 10-27

JOB: RD

RD Parameter

Parameter Type: Keyword, optional
Purpose: Use the RD (restart definition) parameter to:
® Request that the operator perform automatic step restart if the job fails.

® Suppress, partially or totally, the action of the assembler language CHKPT macro
instruction or the DD statement CHKPT parameter.

The system can perform automatic restart only if the job has a job journal. A job journal is a
sequential data set that contains job-related control blocks needed for restart. For JES2,
specify a job journal by one of the following:

® An installation option during JES2 initialization.

® RD=R or RD=RNC on either the JOB statement or any one EXEC statement in the job.
@® RESTART parameter on the JOB statement.

For JES3, specify a job journal by one of the following:

@® An installation option during JES3 initialization.

- @ RD=R or RD=RNC on either the JOB statement or any one EXEC statement in the job.

@® JOURNAL=YES on a JES3 //*MAIN statement in the job.

References: For more information on the RD parameter, see “The RD Parameter on the JOB
Statement” on-page 5-27, and on restarting jobs, see:

@® “Restarting a Job at a Step or Checkpoint” on page 5-26.
® “RESTART Parameter” on page 10-33.
® “RD Parameter” on page 11-26.

For JES2 systems, see the RESTART parameter on the /*JOBPARM control statement in
“/*JOBPARM Statement” on page 16-4.

For JES3 systems, sece the FAILURE parameter on the //*MAIN control statement in
“//*MAIN Statement™ on page 17-23.

For detailed information on deferred checkpoint restart, see Checkpoint/Restart.

Syntax:

RD={R|RNC|NC|NR}

10-28 MvVsICL

JOB: RD

Subparameter Definition

R (Restart)
Indicates that the operator is to perform automatic step restart if the job fails.

RD =R does not suppress checkpoint restarts:

@ If the processing program executed in a job step does not include a CHKPT macro
instruction, RD=R allows the system to restart execution at the beginning of the
abnormally terminated step.

@ If the program includes a CHKPT macro instruction, RD =R allows the system to

restart execution at the beginning of the step, if the step abnormally terminates before
the CHKPT macro instruction is executed.

@ If the step abnormally terminates after the CHKPT macro instruction is executed,
only checkpoint restart can occur. If you cancel the affects of the CHKPT macro
instruction before the system performs a checkpoint restart, the request for automatic
step restart is again in effect.

RNC (Restart and No Checkpoint)
Indicates that the operator is to perform automatic step restart if the job fails.

RD =RNC suppresses automatic and deferred checkpoint restarts. It suppresses:
® Any CHKPT macro instruction in the processing program: That is, the operator is
not to perform an automatic checkpoint restart, and the system is not to perform a

deferred checkpoint restart if the job is resubmitted.

@® The DD statement CHKPT parameter.

@ The checkpoint at end-of-volume (EOV) facility; see “SYSCKEOV DD Statement”
on page 13-19.

NC (No Checkpoint)
Indicates that the operator is not to perform automatic step restart if the job fails.

RD = NC suppresses automatic and deferred checkpoint restarts. It suppresses:
@® Any CHKPT macro instruction in the processing program.
@® The DD statement CHKPT parameter.

® The checkpoint at EOV facility.

Chapter 10. Coding the JOB Statement 10-29

JOB: RD
NR (No Automatic Restart) i LEU g
Indicates that the operator is net to perform automatic step restart 1f the]Ob falls '

RD =NR suppresses automatic checkpoint restart but permits deferred chéckpoint
restarts. It permitS'

o A CHKPT macro mstructxon to estabhsh a checkpomt

@ The job to be resubmitted for restart at the checkpoint. On the JOB statement when
resubmitting the job, specify the checkpoint in the RESTART parameter.’

If the system fails, RD =NR does not prevent the job from restarting.

Defaults

If no RD parameter is specified, the terminated job step is eligible for automatic
checkpoint/restart, if its program requested checkpoints with a CHKPT macro instruction.

Overrides

A JOB statement RD parameter applies to all steps of the job and overrides any EXEC
statement RD parameters. :

Code EXEC statement RD parameters when each job Step :rquires ‘di_f‘ferent restart types. The

system uses an EXEC statement RD parameter only when no RD parameter is on the JOB
statement and only during the job step. .

Relationship to Other Control Statements

RD=NC or RD=RNC suppresses the action of the DD statement CHKPT parameter.

Examples of the RD Parameter

//JILL JOB 333,TOM,RD=R

RD =R specifies that the operator is to perform automatic step restart if ,y_the jqb fails.

//TRY56 JOB 333,DICK,RD=RNC

RD=RNC specifies that, if the]Ob fails, the operator is to perform automatlc step restart
beginning with the step that abnormally termmates RD= RNC suppresses automatic and
deferred checkpoint restarts.

//PASS JOB (721,994) ,HARRY,RD=NR

RD=NR specifies that the operator-is. not to perform automatic step restart or automatic
checkpoint restart. However, a CHKPT macro instruction can establish checkpoints to be used
later for a deferred restart.

10-30 wMvsicL

JOB: REGION

REGION Parameter

Parameter Type: Keyword, optional
Purpose: Use the REGION parameter to specify the amount of space that the job requires.

The specified or default region size sets an upper boundary to limit region size for
variable-length GETMAINs. The system uses the upper boundary for variable-length
GETMAINS as long as the region still has available at least the minimum amount <. storage
requested.

In addition, the IBM- or installation-supplied routine IEALIMIT uses th: rcgio.. size to
establish a second limiting value. The system uses this second value for:

@ Fixed-length GETMAINS.

/'@ Variable-length GETMAINs when the space remaining in the region is less than the
minimum requested.

If the minimum requested length for variable-length GETMAINS exceeds this second value, the
job or job step abnormally terminates.

REGION=0K gives the job all the storage available in the private area, that is, from the top of
the system region to the bottom of the common service area (CSA). The resulting size of the
region is unpredictable.

References: For more information on the REGION parameter, see “The REGION Parameter”
on page 5-25. Also, see “ADDRSPC Parameter” on page 10-7. For more information on the
region size and the routine, see OS/VS2 Supervisor Services and Macro Instructions. and SPL:
Supervisor.

Syntax:

REGION=valuek

Subparametér Definition
valueK
Specifies the required storage in thousands (1024) of bytes. The value is 1 to 5 decimal

numbers. Code an even number. For example, REGION = 66K. If you code an odd
number, the system treats it as the next highest even number.

Defaults

If no REGION parameter is specified, the system uses an installation default specified at JES
initialization.

Chapter 10. Coding the JOB Statement 10-31

JOB: REGION

Overrides

A JOB statement REGION parameter applies to all steps of the job and overrides any EXEC
statement REGION parameters.

‘Code EXEC statement REGION parameters when each job step requires a different region size.
The system uses an EXEC statement REGION parameter only when no REGION parameter is
on the JOB statement and only during the job step.

Relationship to the JOB ADDRSPC Parameter

When ADDRSPC=REAL: Code a REGION parameter to specify how much real storage the
job needs. If you omit the REGION parameter, the system uses the default.

When ADDRSPC = VIRT or ADDRSPC is Omitted: Do not code a REGION parameter The
system uses the default.

Examples of the REGION Parameter

//ACCT1 JOB A23,SMITH,REGION=100K,ADDRSPC=REAL

" This JOB statement indicates that the job requires 100K of real storage.

//ACCT4 JOB 175,FRED,REGION=250K

This JOB statement indicates that the job requires 250K of virtual storage; When the
ADDRSPC parameter is omitted, the system defaults to ADDRSPC=VIRT.

‘10-32 -MvsICL

JOB: RESTART

RESTART Parameter

Parameter Type: Keyword, optional k

Purpose: Use the RESTART parameter to restart a job. You can specify that the system
perform either of two restarts:

@ Deferred step restart, which is a restart at ihe beginning of a job step.

® Deferred checkpoint restart, which is a restart from a checkpoint taken during step
execution by a CHKPT macro instruction.

References: For more information on the RESTART parameter, sce “The RESTART
Parameter on the JOB Statement” on page 5-28, and on restarting jobs, see:

® “Restarting a Job at a Step or Checkpoint” on page 5-26.

® “The RD Parameter on the JOB Statement” on page 5-27.
® “The RD Parameter on the EXEC Statement” on page 5-28.
® “RD Parameter” on page 10-28. :

® “RD Parameter” on page 11-26.

For JES2 systems, sece the RESTART parameter on the /*JOBPARM control statement in
- “/*JOBPARM Statement” on page 16-4. :

For JES3 systems, see the FAILURE parameter on the //*MAIN control statement in
“//*MAIN Statement” on pagé€ 17-23.

For detailed information on the deferred checkpoint restart, see Checkpoint/Restart.

See “Restrictions on Use of SYSCHK DD Statement and DD Statement RESTART
Parameter” on page v.

Syntax:

RESTART=({* | stepname|stepname.procstepname}{,checkid])

You can omit the parentheses if you code only the first subparameter.

Chapter 10. Coding the JOB Statement 10-33

JOB: RESTART

Subparameter Definition

*

Indicates that the system is to restart execution (1) at the beginning of or within the first
job step or (2), if the first job step calls a cataloged or in-stream procedure, at the
beginning of or within the first procedure step.

stepname

Indicates that the system is to restart execution at the beginning of or within a job step.
Stepname identifies the EXEC statement of the job step. '

stepname.prbcstepname

Indicates that the system is to restart execution at the beginning of or within a step of a
cataloged procedure. Stepname identifies the EXEC statement of the job step that calls
the procedure; procstepname identifies the EXEC statement of the procedure step.

checkid

Specifies the name of the checkpoint at which the system is to restart execution. This
checkpoint must be in the job step specified in the first subparameter. '

Omit checkid to request restart at the beginning of the specified job step.

When the name contains special characters, enclose it in apostrophes. Code each

apostrophe that is part of the name as two consecutive apostrophes. For example, code
CHPT'1 as "CHPT"1".

Relationship to Other Control Statements
When the systém is to restart execution in a job step, place a SYSCHK DD statement
immediately following the JOB statement. The SYSCHK DD statement defines the data set on
which the system entered the checkpoint for the step being restarted.

When preparing for a deferred checkpoint, code the DISP abnormal termination disposition
subparameter in the step’s DD statements as follows:

® KEEP, to keep all data sets that the restart step is to use.

® CATLG, to catalog all data sets that you are passing from steps preceding the restart step
to steps following the restart step.

For more information, see “DISP Parameter” on page 12-57.

Cautions When Coding the RESTART Parameter

Before resubmitting a job:

@ Check all backward references to steps before the restart step. Eliminate all backward

references in EXEC statement PGM parameters and DD statement VOLUME = REF
parameters.

10-34 mMvsiIcL

JOB: RESTART

® Review all EXEC statement COND parameters. If any of the COND parameters reference
a step before the restart step, be aware that the system ignores the return code tests for
those steps.

Generation Data Sets in Restarted Jobs

In the restart step or following steps, do not use the original relative generation numbers to
refer to generation data sets that were created and cataloged before the restart step. Instead,
refer to a generation data set by its present relative generation number.

For example, if the last generation data set created and cataloged was assigned a generation
number of +2, refer to it as 0 in the restart step and following steps. If generation data set +1
was also created and cataloged, refer to it as -1. For more information on using generation
data sets, see “Creating and Retrieving Generation Data Sets” on page 8-25.

If generation data sets created in the restart step were kept instead of cataloged, that is,

DISP = (NEW,CATLG,KEEP) was coded, then refer to them by the same relative generation
numbers used to create them.

Examples of the RESTART Parameter

//LINES JOB '1/17/85',RESTART=COUNT

This JOB statement indicates that the system is to restart execution at the beginning of the job
step named COUNT.

//@LOC5 JOB '4/11/86',RESTART=(PROCESS,CHKPT3)
//SYSCHK DD DSNAME=CHK,UNIT=3330,DISP=OLD

The JOB statement indicates that the system is to restart execution at checkpoint CHKPT3 in
job step PROCESS. The SYSCHK DD statement must follow the JOB statement; it defines
the data set on which the system wrote checkpoint CHKPT3.

//WORK JOB ,PORTER,RESTART=(*,CKPT2)
//SYSCHK DD DSNAME=CHKPT,UNIT=3330,DISP=0LD

The JOB statement indicates that the system is to restart execution at checkpoint CKPT?2 in the
first job step. The SYSCHK DD statement defines the data set on which the system wrote
checkpoint CKPT2.

//CLIP5 JOB ,JONES,RESTART=(PAY.WEEKLY,CHECKS8)
//SYSCHK DD DSNAME=CHKPT ,UNIT=3350,DISP=0LD

The JOB statement indicates that the system is to restart execution at checkpoint CHECKS8 in
procedure step WEEKLY. PAY is the name field on the EXEC statement that calls the
cataloged procedure that contains procedure step WEEKLY. The SYSCHK DD statement
defines the data set on which the system wrote checkpoint CHECKS.

Chapter 10. Coding the JOB Statement 10-35

JOB: TIME

TIME Parameter
Parameter T ype.; Keywofd, ojptioﬁél

Purpose: Use the TIME parameter to specify the maximum length of time that a job is to use
the processor and to find out through messages how much processor time the job used.

The systerﬁ terminates a job that_ 4éxcee_ds the specified time limit 1_1n1ess a user exit routine
extends the time. '

References: For more information on the TIME parameter, see “Limiting Job and Job Step. .
Execution Time” on page 5-16.

Syntax:

TIME={1440} ([minutes][,seconds])}

- You can omit the parentheses if you code only 1440 or.the processor time‘in minutes.

| B 1 kIf you,omjt the seconcis, do not code a null subparaineter. ’For 'éxample, TIME=(60,) is
| invalid.

Subparameter Definition

1440 - SRR o .
- Indicates that the job can use the processor for an unlimited amount of time; 1440
literally means 24 hours. Code TIME = 1440 for the following reasons: .

® To obtain job accounting information.

® To specify that the system is to allow any of the job’s steps to remain in a wait state
for more than the installation-established time limit.
minutes
Specifies the maximum number of minutes the job can use the processor. The minutes
must be a number from 1 through 1439.
Do not code TIME=0 on the JOB statement. The results are unpredictable.

seconds o . . o
Specifies the maximum number of seconds that the job can use the processor, in addition
to any minutes that are specified. The seconds must be a number from 1 through 59.

10-36 MVS.ICL

JOB: TIME

Overrides
For a JOB statement TIME parameter other than TIME = 1440, the system sets the time limit
for each step to:
® The step time limit specified on the EXEC statement TIME paraméter.
® If no EXEC TIME parameter was specified, (1) the default time limit or (2) the job time
remaining after execution of previous steps, whichever is smaller. '
Defaults
If no TIME parameter is specified, JES uses an installation default specified at initialization.
Time Handling

How the System Converts the Time Value: The job time limit or the time remaining after
execution of previous steps in a job is converted by the system to seconds and then rounded to
the nearest unit, where 1 unit=1.048576 seconds. Thus, a step can begin execution with up to
one-half unit more or one-half unit less time than expected. If the time remaining for the job is

1less than one-half unit, a step will begin execution with zero time, resulting in an abnormal

termination.

Time Checking: Because the system checks the processor time-used field about every 10.5
seconds, the actual time that a job uses the processor can exceed the specified TIME value by
up to 10.5 seconds. For example, the system checks the job’s time-used field and finds 0.5
seconds remaining. Because the system does not again check the job’s time-used field for about
10.5 seconds, the job can execute for an additional 10.5 seconds and thus exceed the coded
TIME value by 10 seconds.

Examples of the TIME Parameter

//STDi JOB ACCT271,TIME=(12,10)

This statement specifies that the maximum amount of time the job can use the processor is 12
minutes, 10 seconds.

//TYPE41 JOB ,GORDON,TIME=(,30)

This statement specifies that the maximum amount of time the job can use the processor is 30
seconds.

//FORMS JOB ,MORRILL,TIME=5

This statement specifies that the maximum amount of time the job can use the processor is 5
minutes.

//RAINCK JOB 374231,MORRISON,TIME=1440
This statement specifies an unlimited amount of time for job execution; the job can use the

processor and remain in wait state for an unspecified period of time. The system will issue
messages telling how much processor time the job used.

Chapter 10. Coding the JOB Statement 10-37

Examples of the TIME Parameter on JOB and EXEC Statements: = -

//FIRST JOB ,SMITH, TIME=2
//STEP1 EXEC PGM=READER , TIME=1

.

//STEP2 EXEC PGM WRITER TIME 1

In this example, the job is allowed 2 minutes for execution and each step is allowed 1 minute.
If either step continues executing beyond 1 mmute, the entlre JOb abnormally termmates
beginning with that step.

//SECOND JOB =~ ,JONES,TIME=3
//STEP1 EXEC PGM=ADDER , TIME=2

A

//STEP2 EXEC PGM=PRINT, TIME=2

" In this example, the job is allowed 3 minutes for execution, and each step is allowed 2 minutes.
If either step continues executing beyond 2 minutes, the entire job abnormally terminates
beginning with that step. If STEP] executes for 1.74 minutes and STEP2 tries to execute
beyond 1.26 mmutes, the _]ob abnormally terrmnates because of the 3-mmute limit specified on
o the JOB statement

10-38 mvsiJicL ®

JOB: TYPRUN

TYPRUN Parameter

Parameter Type: Keyword, optional

Purpose: Use the TYPRUN parameter to tell the system to:

® Place a job on hold until a special event occurs. When the event occurs, the operator,
following your directions, must release the job from its hold to allow the system to select
the job for processing.

" @ Scan a job’s JCL for syntax errors.

® 1In a JES2 system, request that JES2 convert the input job stream directly to a system
output data set and schedule it for output processing.

References: For more information on the TYPRUN parameter, see “Bypassing Job Initiation”
on page 3-25.

For JES2 systems, see related information in “Delaying Initiation of Your Job in JES2” on
.- page 3-23, “Copying JCL Input Without Execution in JES2” on page 3-25, and “/*SETUP
~ Statement” on page 16-28.

. For JES3 systems, see related information in “Delaying Initiation of Other Jobs (JES3)” on
page 3-24, “Testing JCL Without Execution (JES3)” on page 3-25, “JES3 SETUP Parameter”
on page 3-26, “Deadline Scheduling for JES3” on page 3-27, and “Dependent Job Control for
JES3: The Job Net” on page 3-27.

Syntax:

TYPRUN={HOLD | JCLHOLD | SCAN| COPY}

Subparameter Definition

HOLD
Requests that the system hold the job before execution until the operator releases it. The
operator should release the job when a particular event occurs. If an error occurs during
input service processing, JES does not hold the job.

JCLHOLD (JES2 only)
Requests that JES2 hold the job before completing JCL processing. JES2 holds the job
until the operator releases it.

Note: JCLHOLD is supported only in JES2 systems.

Chapter 10. Coding the JOB Statement 10-39

JOB: TYPRUN

SCAN
Requests that the system scan this job’s JCL for syntax errors, without executing the job
or allocating devices. This parameter asks the system to check for:

® Invalid keywords.

® Invalid characters.
@® Parentheses errors.
o

Parameter value errors or excessive parameters in a JES3 system, but not in a JES2
system.

® Invalid syntax on JCL statements in cataloged procedures invoked by EXEC
statements in the job.

The system does not check for misplaced statements.

COPY (JES2 only)
Requests that JES2 convert the input job stream, as submitted, directly to a system output
data set and schedule it for output processing. The class of this sysout data set is the
same as the message class of the job and is controlled by the MSGCLASS parameter.

Note: COPY is supported only in JES2 systems. This feature is available in JES3 by
using the JES3 //*PROCESS statement. See “//*PROCESS Statement” on page 17-44.

Example of the TYPRUN Parameter

//UPDATE JOB ,HUBBARD
//STEP1 EXEC PGM=LIBUTIL

//LIST JOB HUBBARD , TYPRUN=HOLD
//STEPA EXEC PGM=LIBLIST

- Jobs UPDATE and LIST are submitted for execution in the same input stream. UPDATE
executes a program that adds-and deletes members of a library, LIST executes a program that
lists the members of that library. For an up-to-date listing of the library, LIST must execute
after UPDATE. To force this execution order, code TYPRUN=HOLD on JOB statement
LIST.

If a MONITOR JOBNAMES command is executed from the input stream or by the operator,
" the system notifies the console operator when UPDATE completes. The operator can then
release LIST, allowing the system to select LIST for execution.

10-40 MvsiJCL

JOB: USER

USER Parameter

Parameter Type: Keyword, optional

Purpose: Code the USER parameter to identify to the system the person submitting the job. «
The userid is used by the Resource Access Control Facility (RACF), the system resources
manager (SRM), and other system components.

The USER, the PASSWORD, and, optionally, the GROUP parameters are required on JOB
statements only for the following:

@® Batch jobs submitted through an input stream, such as a card reader, (1) if the job requires
access to RACF-protected resources or (2) if the installation requires that all jobs have
RACEF identification.

® Jobs submitted by one TSO user for another user. In this case, the JOB statement must
specify the other user’s userid and password. The group id is optional.

® Jobs that execute at another network node that uses RACF protection.

Otherwise, the USER, PASSWORD, and GROUP parameters can be omitted from JOB
statements. RACF uses the userid, password, and group id of the submitting TSO user or job.

References: For more information on the USER parameter, see “Controlling Access to
RACF-Protected Data Sets” on page 6-2, and on RACF-protected facilities, see Resource
Access Control Facility (RACF) General Information Manual.

Syntax:

USER=userid

Subparameter Definition

Defaults

userid
Identifies a user to the system. The userid consists of alphanumeric or national
characters; the first character must be alphabetic or national. It is 1 through 8 characters
or, for TSO users, 1 through 7 characters.

If neither the JOB statement nor the submitting TSO user supplies identification information,
RACEF assigns a default userid and group id, unless the job enters the system via a JES internal
reader. In that case, the user and group identification of the submitting TSO user or job is
used.

Chapter 10. Coding the JOB Statement 10-41

JOB: USER

Relationship to Other Parameters

Code the USE‘R parameter when you code the GROUP or PASSWORD parameters on the
JOB statement.

Example of the USER Parameter

//TEST JOB 'D83,123456',USER=MYNAME ,PASSWORD=ABCD i.

This statement identifies the user submitting this job as MYNAME.

10-42 MvsicL

S EXEC

Chapter 11. Coding the EXEC Statement

Purpose: Use the EXEC (execute) statement to identify the program or cataloged or in-stream
procedure that this job step is to execute and to tell the system how to process the job step.
The EXEC statement marks the beginning of each step in a job or a procedure.

A job can have a maximum of 255 job steps. This maximum includes all steps in any
procedures the EXEC statements call.

The parameters you can specify for step processing are arranged alphabetically in the following
pages.

References: For more information on coding EXEC-related parameters, see Chapter 4, “Guide
to Step Control” on page 4-1 and Chapter 5, “Guide to Job and Step Control” on page 5-1.
For information about the JES initialization parameters that provide installation defaults, see
SPL: JES2 Initialization and Tuning and SPL: JES3 Initialization and Tuning.

Syntax:

//[stepname] EXEC positional-parameter|[,keyword-parameter]... comments

The EXEC statement consists of the characters // in columns 1 and 2 and four fields: name,
operation (EXEC), parameter, and comments.

An EXEC statement is required for each job step.

Name Field
A stepname is optional, but is needed for the following:
@® Coding backward references to the step.

® Overriding parameters on an EXEC statement or DD statement in a cataloged or in-stream
procedure step.

@ Adding DD statements to a cataloged or in-stream procedure step.

@ Performing a step or checkpoint restart at or in the step.

Chapter 11. Coding the EXEC Statement 11-1

Code a stepname as follows:

Each stepname must be unique within the job.
The stepname must begin in column 3.
- The stepname is | through 8 alphanumeric or national characters.
The first character must be alphabetic or national.
The stepname must be followed by at least one blank.

Parameter Field

An EXEC statement has two kinds of parameters: positional and keyword.
Do not use EXEC statement parameter keywords as symbolic parameters, names, or labels.

Positional Parameters: An EXEC statement must contain one of the following positional
parameters. The positional parameter must precede all keyword parameters. =~

PGM
PROC
procedure name

Keyword Parameters: An EXEC statement can contain the following keyword parameters.
You can code any of the keyword parameters in any order in the parameter field after the
positional parameter.

ACCT
ADDRSPC
COND
DPRTY
DYNAMNBR
PARM
PERFORM
RD

REGION
TIME

Keyword Parameters on EXEC Statement that Calls a Procedure: - When the EXEC statement
positional parameter calls a cataloged procedure, all of the EXEC statement’s keyword
parameters override matching EXEC keyword parameters in the called procedure. If a keyword
parameter is to override a parameter on only one EXEC statement in the procedure, code
.procstepname immediately following the keyword. The procstepname is the name field of the
procedure EXEC statement containing the keyword parameter to be overridden. For example:

//STEP1 EXEC PROC=WKREPORT,ACCT.PSTEPWED=5670

The accounting information 5670 applies only to step PSTEPWED in the procedure
WKREPORT.

11-2: . MvVS JCL

EXEC

Comments Field

The comments field follows the parameter field after at least one intervening blank.

Location in the JCL

An EXEC statement must be the first statement in each job step or cataloged or in-stream
procedure step.

Examples of EXEC Statements

//STEP4 EXEC PGM=DREC,PARM='3018,NO’

The EXEC statement named STEP4 invokes a program named DREC and passes the value in
the PARM parameter to DREC.

// EXEC PGM=ENTRY, TIME=(2,30)

This EXEC statement, which does not have a stepname, invokes a program named ENTRY
and specifies the maximum processor time for execution of the step.

//FOR EXEC PROC=PROC489 -

The EXEC statement named FOR invokes a cataloged or in-stream procedure named
PROC489. c

Chapter 11. Coding the EXEC Statement 11-3

EXEC: ACCT

ACCT Parameter

Parameter Type: Keyword, optional

Purpose: Use the ACCT parameter to specify one or more subparameters of accounting
information that apply to this step. The system passes the accounting information to the
installation’s accounting routines.

References: For more information on the ACCT parameter, see “Installation Management
Information: The ACCT Parameter” on page 4-10, and on how to add accounting routines, see

SPL: System Management Facilities.

Syntax:

ACCT[.procstepname]=(accounting-information)

Single Subparameter: You can omit the parentheses if the accounting information consists of
only one subparameter.

Length: The entire accounting-information must not exceed 142 characters:

® Including any commas, which are considered part of the information.
® Excluding any enclosing parentheses or apostrophes, which are not considered part of
the information.

Multiple Subparameters: When the accounting-information consists of more than one
subparameter, separate the subparameters by commas and enclose the information in
parentheses or apostrophes. For example, ACCT = (5438, GROUP6) or
ACCT="5438,GROUPS¢'.

Special Characters: When a subparameter contains special characters, other than hyphens,
enclose it in apostrophes and the information in parentheses or enclose all of the information
in apostrophes. For example, ACCT =(387,"72/159") or ACCT="387,72/159".

Code each apostrophe that is part of the accounting-information as two consecutive
apostrophes. For example, code DEPT'D58 as ACCT ="DEPT”D58’

Continuation onto Another Statement: Enclose the accounting-information in parentheses.
End each statement with a comma after a complete subparameter. For example:

//STEP1 EXEC PGM=WRITER,ACCT=(1417,J318,'D58/920','CHG=2",
// '33.95")

11-4 MvsicL

EXEC: ACCT

Subparameter Definition
accounting-information

Specifies one or more subparameters of accounting information, as defined by the
installation.

On EXEC Statement that Calls. a Procedure

If the EXEC statement calls a cataloged or in-stream procedure, the ACCT parameter overrides
the ACCT parameter on or is added to:-

@® The EXEC statement named in the procstepname qualifier. The information applies only
to the named procedure step. The EXEC statement can have as many ACCT.procstepname
parameters as the procedure has steps; each ACCT parameter must specify a unique
procstepname.

® All EXEC statements in the procedure if procstepname is not coded. Then the information
applies to all steps in the called procedure.

Examples of the ACCT Parameter

//STEP1 EXEC PGM=JP5,ACCT=(LOCATIONS, ' CHGE+3 ")

This EXEC statement executes program JP5 and specifies accounting information for this job
step.

//STP3 EXEC PROC=LOOKUP,ACCT=('/83468")

This EXEC statement calls cataloged or in-stream procedure LOOKUP. The accounting
information applies to this job step, STP3, and to all the steps in procedure LOOKUP.

//STP4 EXEC PROC=BILLING,ACCT.PAID=56370,ACCT.LATE=56470,
// ACCT.BILL='121+366"

This EXEC statement calls cataloged or in-stream procedure BILLING. The statement

specifies different accountmg information for each of the procedure steps: PAID, LATE, and
BILL.

Chapter 11. Coding the EXEC Statement 11-5

EXEC: ADDRSPC

ADDRSPC Pérameter

Parameter Type: Keyword, optional

. Purpose: Use the ADDRSPC parameter to indicate to the system that the job step requires
virtual storage (pageable) or real storage (nonpageable). '

Réferences: For more information on the ADDRSPC parameter, seec “Requesting Storage for
Execution” on page 5-23 and “The REGION Parameter” on page 5-25.

Syntax:

ADDRSPC[.procstepname]={VIRT|REAL}

Subparameter Definition

VIRT ‘ : .
Requests virtual storage. The system can page the job step.

REAL

Requests real storage. The system cannot page the job step and must place the job step in
real storage.

Defaults

If no ADDRSPC parameter is specified, the default is VIRT.

Overrides

The JOB statement ADDRSPC parameter applies to all steps of the job and overrides any
EXEC statement ADDRSPC parameters.

Code EXEC statement ADDRSPC parameters when each job step requires different types of
storage. The system uses an EXEC statement ADDRSPC parameter only when no ADDRSPC
parameter is on the JOB statement and only during the job step.

Relationship to the JOB or EXEC REGION Parameter

Code a REGION parameter to specify how much storage the job step needs. If you omit the
REGION parameter, the system uses an installation default specified at JES initialization.

11-6 MVSJCL

EXEC: ADDRSPC

On EXEC Statement that Calls a Procedure

If this EXEC statement calls a cataloged or in-stream procedure, the ADDRSPC parameter
overrides the ADDRSPC parameter on or is added to: :

® The EXEC statement named in the procstepname qualifier. The parameter applies only to
the named procedure step. The EXEC statement can have as many
ADDRSPC.procstepname parameters as the procedure has steps; each ADDRSPC
parameter must specify a unique procstepname.

@ All EXEC statements in the procedure if procstepname is not coded. Then the parameter
applies to all steps in the called procedure.

Examples of the ADDRSPC Parameter

//CAC1 EXEC PGM=A,ADDRSPC=VIRT

This EXEC statement executes program A and requests virtual (pageable) storage. Because the’
REGION parameter is not specified, the storage available to this job step is the installation
default or the region size specified on the JOB statement.

//CAC2 EXEC PROC=B,ADDRSPC=REAL,REGION=80K

This EXEC statement calls procedure B and requests real (nonpageable) storage. The
REGION parameter specifies 80K of storage.

Chapter 11. Coding the EXEC Statement 11-7

EXEC:' COND

COND Parameter

Parameter Type: Keyword, optional, JES2 only

Purpose: Use the COND parameter to specify the return code tests the system is to use to
determine whether to bypass this job step. The system performs each COND parameter test
against the return code from every previous job step or from the named previous job step(s). If
none of these tests is satisfied, the system executes this job step; if any test is satisfied, the
system bypasses this job step. SR

If a job step fails, the system normally bypasses all following job steps. To make the system
execute a following step, for instance, to write a dump, code EVEN or ONLY on that step’s
EXEC statement. The EVEN or ONLY subparameters are interpreted first. - If they indicate
that the job step should be executed, then the return code tests, if specified, are performed. If
no return code tests were coded or if none of the coded tests is satisfied, the system executes the
step.

Instead of coding a JOB statement COND parameter, code an EXEC statement COND
parameter when you want to:

@ Specify different tests for each job step.

~ @ Bypass only one step, rather than all subsequent steps in the job.
® Name a specific step whose return code the system is to test.
® Specify special conditions for executing a job step.

The tests are made against return codes from the current execution of the job.

Note: The EXEC COND parameter is supported only on JES2 systems. JES3 processes all
jobs as though each step will execute.

References: For more information on the COND parameter, see “Conditionally Executing Job
Steps” on page 5-5.

Syntax:

COND|[.procstepname]l=((code,operator[,stepname] [.procstepname])
' [, (code,operator| ,stepname] [.procstepnamel)]... [,EVEN])
a [,ONLY])

® One return code test is: (code,operator)
® You can omit the outer parentheses if you code only one return code test or only EVEN or ONLY.

® Specify up to eight return code tests. However, if you code EVEN or ONLY, specify up to seven
return code tests.

® You can omit all return code tests and code Jonly EVEN or ONLY.

@® Place the EVEN or ONLY subparameters before, between, or after the return code tests.

11-8 MVSsICL

EXEC: COND

Subparameter Definition

code

operator

Specifies a number that the system compares to the return codes from all previous steps in
the job or from specific steps. code is a decimal number from 0 through 4095.

Note: Specifying a decimal number greater than 4095 could result in invalid return code
testing or invalid return codes in messages.

Specifies the type of comparison to be made to the return code. Operators and their
meanings are:

Operator Meaning

GT - Greater than
GE Greater than or equal to
EQ Equal to
NE Not equal to
LT Less than
LE Less than or equal to
stepname

Identifies the EXEC statement of the earlier job step that i issues the return code to be used
in the test. If the specified step is in a procedure, this step must be in the same procedure;
otherwise, the specified step must not be in a procedure.

stepname.procstepname

Identifies a step in a cataloged or in-stream procedure called by an earlier job step.
Stepname identifies the EXEC statement of the calling job step; procstepname identifies
the EXEC statement of the procedure step that issues the return code to be used in the
test.

EVEN

ONLY

Specifies that this job step is to be executed even if a preceding job step abnormally
terminated. When EVEN is coded, the system:

® Does not test the return code of any steps that terminated abnormally.
® Does test the return code of any steps that terminated normally. If none of the return
code tests for these steps is satisfied, this job step is executed.

If the operator terminated a job step w1th a CANCEL command, the system ignores
EVEN.

Specifies that this job step is to be executed only if a precedlng step abnormally
terminated. When ONLY is coded, the system:

® Does not test the return code of any steps that terminated abnormally.
@ Does test the return code of any steps that terminated normally. If none of the return
code tests for these steps is satisfied, this job step is executed.

- If the operator terminated a job step with a CANCEL command, the system ignores

ONLY.

Chapter 11. Coding the EXEC Statement 11-9

EXEC: COND

Overrides

If you code the COND parameter on the JOB statement and on one or more of the job’s EXEC
statements, and if a return code test on the JOB statement is satisfied, the job terminates. In
this case, the system ignores any EXEC statement COND parameters.

If the tests on the JOB statement are not satisfied, the system then performs the return code
tests on the EXEC statement. If a return code test is satisfied, the step is bypassed.

T On EXEC Statement that Calls a Procedure

If this EXEC statement calls a cataloged or in-stream procedure, the COND parameter
overrides the COND parameter on or is added to:

® The EXEC statement named in the procstepname qualifier, which is to the left of the equals
sign. The parameter applies only to the named procedure step. The EXEC statement can
have as many COND.procstepname parameters as the procedure has steps; each COND
parameter must specify a unique procstepname.

@® All EXEC statements in the procedure if procstepname is not coded. Then the parameter
applies to this job step and to all steps in the called procedure.

Cautions when Specifying COND Parameters

Backward References to Data Sets: 1If a step is bypassed because of its COND parameter or if
a step abnormally terminates, a data set that was to have been created or cataloged in the step
may not exist, may not be cataloged, or may be incomplete. Thus, a job step that specifies the
EVEN or ONLY subparameter should not refer to a data set being created or cataloged in a
step that could be bypassed or abnormally terminated.

JOBLIB and COND=ONLY: 1If the job contains a JOBLIB DD statement and ONLY is
specified in a job step, the JOBLIB unit and volume information are not passed to the next
step; when the next step is executed, the system searches the catalog for the JOBLIB data set.

Job Time Out: The system abnormally terminates a job with a system completion code of 322
if the EXEC or JOB statement TIME parameter or the default time limit specified at JES
initialization is exceeded. This time out occurs regardless of any COND parameters.

When the JOB Statement Contains a RESTART Parameter: When restarting a job, do not
specify in the deferred restart step or in any following steps a COND parameter that refers to a
stepname or stepname.procstepname for a step before the restart step. The system ignores any
COND parameters that refer to preceding steps. For information on submitting a job for
restart, see “RESTART Parameter” on page 10-33 and “Restarting a Job at a Step or
Checkpoint” on page 5-26.

11-10 mvsJCL

Summary of COND Parameters

EXEC: COND

See Figure 11-1 for a summary of how to code tests in the COND parameter to cause the

current step to be executed or bypassed. See Figure 11-2 for the effect of the EVEN and

ONLY subparameters on step execution.

Return Code (RC) from Previous Step

Test in COND Parameter Execute Bypass
Current Step Current Step
COND =(code,GT) RC > code RC < code
COND = (code,GE) RC > code RC < code
COND =(code,EQ) RC —1= code RC = code
COND = (code,LT) RC < code RC > code
COND =(code,LE) RC < code RC = code
COND =(code,NE) RC = code RC —1 = code
Figure 11-1. Execution or Bypassing of Current Step Based on COND Parameter
EVEN or ONLY Any Preceding Any Tests Current Step
Specified? Abend? Satisfied Execute?
EVEN No No Yes
EVEN No Yes No
EVEN Yes No Yes
EVEN Yes Yes No
ONLY No No No
ONLY No Yes No
ONLY Yes No Yes
ONLY Yes Yes No
Neither No No Yes
Neither No Yes No
Neither Yes No No
Neither Yes Yes No

Figure 11-2. Effect of EVEN and ONLY Subparameters on Step Execution

Chapter 11. Coding the EXEC Statement

11-11

- EXEC: COND

Examples of the COND Parameter

//STEP6 EXEC PGM=DISKUTIL,COND=(4,GT,STEP3)

In this example, if the return code from STEP3 is 0 through 3, the sysfem bypasses STEP6. If
the return code is 4 or greater, the system executes STEP6. Because neither EVEN nor ONLY
is specified, the system does not execute this step if a preceding step abnormally terminates.

//TEST2 EXEC PGM=DUMPINT,COND=((16,GE),(90,LE,STEP1l) ,0ONLY)
The system executes this step ONLY if two conditions are met:

1. A preceding job step abnormally terminated.
2. No return code tests are satisfied.

Therefore, the system executes this step only when all three of the following are true:
@ A preceding job step abnormally terminated.

@ The return codes from all preceding steps are 17 or greater.

® The return code from STEP1 is 89 or less.

The system bypasses this step if any one of the following is true:

@ All preceding job steps terminated normally.

@® The return codes from all preceding steps are 0 through 16.
® The return code from STEP1 is 90 or greater.

//STP4 EXEC PROC=BILLING,COND.PAID=((20,LT),EVEN),
// COND.LATE=(60,GT,FIND),
// COND.BILL=((20,GE), (30,LT,CHGE))

This statement calls cataloged or in-stream procedure BILLING. The statement specifies
different return code tests for each of the procedure steps: PAID, LATE, and BILL. The
system executes step PAID even if a preceding step abnormally terminates unless the
accompanying return code is satisfied.

11-12 MvVsiCL

EXEC: DPRTY

DPRTY Parameter

Parameter Type: Keyword, optional

Purpose: Use the DPRTY parameter to assign a dispatching priority to the address space for
this job step. The system uses the dispatching priority to determine the order in which to
execute tasks.

Reference&: For more information on the DPRTY parameter, see “Assigning a Dispatching
Priority to Job Steps” on page 5-21.

Syntax:

DPRTY ([.procstepnamel={([valuel][,value2])

@® You can omit the parentheses if you code only valuel.

® You must include the parentheses and code a comma before value2 if you code only
value2.

Subparameter Definition
‘valuel '

Indicates whether this job step is to have the same or a different priority than the job.

valuel is a number from 0 through 15.

JES2 determines the job priority from one of the following:

® The JES2 *PRIORITY statement.

® A value calculated from the accounting information on the JOB statement or the
JES2 /*JOBPARM statement.

@® An installation default.
value2

Specifies a number to be added to valuel to form the dispatching priority. value2 is a
number from 0 through 15. The system forms the internal dispatching priority as follows:

dispatching priority = (valuel) (16) + value2

Chapter 11. Coding the EXEC Statement 11-13

EXEC: DPRTY

Defauits

If you omit the DPRTY parameter, the system assigns the job step the APG (automatic priority
group) priority.

If you omit valuel or it is equal to the APG priority, the system assigns the step the APG
priority and ignores value2. In this case, the system obtains value2 from the Installation
Performance Specification (IPS) using the performance group associated with the job step. See
SPL: Initialization and Tuning Guide for information on IPS. If value2 is not specified in the
IPS, the system makes value2 equal to 6. :

On EXEC Statement that Calls a Procedure

If this EXEC statement calls a cataloged or in-stream procedure, the DPRTY parameter
overrides the DPRTY parameter on or is added to:

® The EXEC statement named in the procstepname qualifier. The parameter applies only to
the named procedure step. The EXEC statement can have as many DPRTY.pro'cstepname‘

parameters as the procedure has steps; each DPRTY parameter must specify a unique
procstepname.

® All EXEC statements in the procedure if procstepname is not coded. Then the parameter
applies to this job step and to all steps in the called procedure.

Examples of the DPRTY Parameter

//BP2 EXEC PGM=FOUR,DPRTY=(13,9)

The system uses the values in this DPRTY parameter to form a dispatching priority for this
step. Because the numbers are relatively high, the dispatching priority will be high: 217.

//STEP EXEC PROC=CLEAN,DPRTY=(11,7)

This EXEC statement calls a cataloged procedure named CLEAN, which has three steps. The
DPRTY parameter applies to all three steps. The dispatching priority is 183.

//STEP EXEC PROC=CLEAN,DPRTY.UP=(13,7)

In this statement, the DPRTY parameter applies only to the procedure step UP. The
dispatching priority for UP is 167.

11-14 mMvsiJcL

EXEC: DYNAMNBR

DYNAMNBR Parameter

Parameter Type: Keyword, optional
Purpose: Use the DYNAMNBR parameter to tell the system to hold a number of resources in
anticipation of reuse. Code DYNAMNBR instead of several DD statements with DYNAM

parameters.

Reference: For more information on the DYNAMNBR parameter, see “Dynamically
Allocating and Deallocating Data Sets” on page 4-12.

Syntax:

DYNAMNBR/[.procstepname]=n

Subparameter Definition

n
Specifies a value used to calculate the maximum number of data set allocations that the
system can hold in anticipation of reuse. nis a decimal number from 0 through the value:
1635 minus the number of DD statements in the step.

The number of resources that the system actually holds in anticipation of reuse equals n

plus the number of DD statements in the step, including any DD statements in a
cataloged or in-stream procedure called by the step.

Defaults

If no DYNAMNBR parameter is specified, the default is 0. If you code DYNAMNBR
incorrectly, the system uses the default of 0 and issues a JCL. warning message.

On EXEC Statement that Calls a Procedure

If this EXEC statement calls a cataloged or in-stream procedure, the DYNAMNBR parameter
overrides the DYNAMNBR parameter on or is added to:

® The EXEC statement named in the procstepname qualifier. The parameter applies only to
the named procedure step. The EXEC statement can have as many
DYNAMNBR.procstepname parameters as the procedure has steps; each DYNAMNBR
- parameter must specify a unique procstepname.

@ All EXEC statements in the procedure if procstepname is not coded. Then the parameter
applies to all steps in the called procedure.

Chapter 11. Coding the EXEC Statement 11-15

EXEC: DYNAMNBR

Example of the DYNAMNBR Parameter

//STEP1 EXEC PROC=ACCT,DYNAMNBR.CALC=12

For the procedure step CALC, this statement specifies that the system should hold the
following data set allocations for reuse: 12 plus the number of DD statements following this
-EXEC statement and the number of DD statements in procedure ACCT.

11-16 - mvsicL

EXEC: PARM

PARM Parameter

Use the PARM parameter to pass variable information to the processing program executed by
this job step.

References.: For more information on the PARM parameter, see “Passing Information to the
Program in Execution” on page 4-8. For details on the format of the passed information, see

SPL: Supervisor Services and Macro Instructions.

Syntax: £k

PARM|[.procstepname]=information

Subparameter Definition

information
Consists of the information to be passed to the processing program.

Length: The entire information passed must not exceed 100 characters:

@ Including any commas, which are passed to the processing program.

® Excluding any enclosing parentheses or apostrophes, which are not passed.

For example, PARM ='P1,123,MT5’ is received by the program as P1,123,MTS5.
Commas: When the information consists of more than one expression, separate the
expressions by commas and enclose the information in parentheses or apostrophes. For
example, PARM =(P1,123,MT5) or PARM ='P1,123,MT¥".

Special Characters: When an expression contains special characters, enclose it in
apostrophes and the information in parentheses or all the information in apostrophes.

For example, PARM = (P50,”12 + 80") or PARM ="P50,12 + 80".

Code each apostrophe and ampersand that is part of the information as two consecutive
apostrophes or ampersands. For example, code 3462&5 as PARM ="3462&&5’.

Continuation onto Another Statement: Enclose the information in parentheses. End each
statement with a comma after a complete expression. For example:

//STEP1 EXEC PGM=WORK , PARM=(DECK,LIST, 'LINECNT=80",
// '12+80',NOMAP)

Chapter 11. Coding the EXEC Statement 11-17

EXEC: PARM

On EXEC Statement that Calls a Procedure

If this EXEC statement calls a cataloged or in-stream procedure the PARM parameter
overrides the PARM parameter on or is added to:

® The EXEC statement named in the procstepname qualifier. The mformatlon applies only
to the named procedure step. The EXEC statement can have as many
PARM.procstepname parameters as the procedure has steps; each PARM parameter must
specify a unique procstepname.

® The EXEC statement in the procedure if procstepname is not coded; the system nullifies

any PARM parameters on any following EXEC statements in the procedure.. The
information applies to only the first step in the called procedure.

Examples of the PARM Parameter

© //RUN3 EXEC PGM=APG22,PARM='P1,123,P2=5"'

The system passes P1,123,P2=5 .o the processing program named APG22.

// EXEC PROC=PROC81,PARM=MT5

The system paskses MTS5 to the first step of the prb,éedure named PROC81. If PROCS81 contains
more steps and their EXEC statements contain PARM parameters, the system nullifies those
PARM parameters.

//STP6 EXEC PROC=ASMFCLG,PARM.LKED={(MAP,LET)

The system passes MAP,LET to the procedure step named LKED in procedure ASMFCLG. If
any other procedure steps in ASMFCLG contaln a PARM parameter, those PARM parameters
remain in effect.

//RUN4 EXEC PGM=IFOX00,PARM=(NOOBJECT,'LINECNT=50",
// DECK)

The system passes NOOBJECT,LINECNT = 50,DECK to processing program IFOX00.
Because the PARM parameter is continued on' a second statement, the information is enclosed
in parentheses; notice that the continuation occurs after a comma following a complete
expression.

11-18 MvsICL

EXEC: PERFORM

PERFORM Parameter

Parameter Type: Keyword, optional

Purpose: Use the PERFORM parameter to specify the performance group for the job step.
The installation-defined performance groups determine the rate at which associated steps have
access to the processor, storage, and channels.

References: For more information on the performance groups, see “Performance of Jobs and

Job Steps in JES2” on page 5-22 and “Performance of Jobs and Job Steps in JES3” on
page 5-23. ,
Syntax:

PERFORM| .procstepname]=n

Subparameter Definition

n
Requests a performance group. The n is a number from 1 through 999 and must identify
a performance group that has been defined by your installation. The specified
performance group should be appropriate for your step type according to your
installation’s rules.

Defaults
If no PERFORM parameter is specified or if the specified PERFORM number fails validity
checks, the system uses an installation default specified at initialization. If the installation did

not specify a default, the system uses a built-in default:

1 for non-TSO job steps
2 for TSO sessions

See SPL: Initialization and Tuning Guide for details.

Overrides

A JOB statement PERFORM parameter applies to all steps of the job and overrides any EXEC
statement PERFORM parameters.

Code EXEC statement PERFORM parameters when each job step is to execute in a different

performance group. The system uses an EXEC PERFORM parameter only when no
PERFORM parameter is on the JOB statement and only during the job step.

Chapter 11. Coding the EXEC Statement 11-19

EXEC: PERFORM

On EXEC Statement that Calls a Procedure

If this EXEC statement calls a cataloged or in-stream procedure, the PERFORM parameter
overrides the PERFORM parameter on or is added to:

@ The EXEC statement named in the procstepname qualifier. The parameter/applies only to
the named procedure step. The EXEC statement can have as many
PERFORM . .procstepname parameters as the procedure has steps; each PERFORM
parameter must specify a unique procstepname. .

® All EXEC statements in the pfocedure if procstepname is not cdded. The.n"t‘hé parameter
applies to all steps in the called procedure. ;

Example of the PERFORM Parameter

//STEPA EXEC PGM=ADDER,PERFORM=60

This job step will.be run in performance group 60 if it passes validity checks. The installation
must have defined the significance of this performance group.

11-20 MvsICL

EXEC: PGM

PGM Parameter

Parameter Type: Posiﬁonal, optional

Purpose: Use the PGM parameter to name the program that the system is to execute. The
" specified program must be a member of a partitioned data set used as a system library, a
private library, or a temporary library.

References: For more information on naming programs and on temporary and private

libraries, see “Processing Program Information” on page 4-4. EXE
Syntax:
{program-name 1
PGM={* . stepname.ddname }

{*.stepname.procstepname. ddname}

The EXEC statement parameter field must begin with a PGM parameter or a PROC
parameter. These two parameters must not appear on the same EXEC statement.

Subparameter Definition

program-name
Specifies the member name or alias of the program to be executed. The program-name is
1 through 8 alphanumeric or national characters; the first character must be alphabetic
or national.

* stepname.ddname , '
Refers to a DD statement that defines, as a member of a partitioned data set, the
program to be executed. Stepname identifies the EXEC statement of the earlier job step
that contains the DD statement with ddname in its name field.

This form of the parameter is usually used when the previous job step created a
temporary partitioned data set to store a program until it is required.

* stepname.procstepname.ddname
Refers to a DD statement that defines, as a member of a partitioned data set, the
program to be executed. The DD statement is in a cataloged or in-stream procedure that
is called by an earlier job step. Stepname identifies the EXEC statement of the calling job
step; procstepname identifies the EXEC statement of the procedure step that contains the
DD statement with ddname in its name field.

Chapter 11. Coding the EXEC Statement 11-21

EXEC: PGM

Checking JCL Syntax without Executing the Step

In a JES3 system, code PGM =JCLTEST or PGM =JSTTEST to scan the job step’s JCL for
syntax errors without executing the job or allocating devices. JCLTEST or JSTTEST provide
the same function as provided by the JOB statement TYPRUN =SCAN parameter.

For more information, see:

@® For PGM =JCLTEST or PGM =JSTTEST, “Testing JCL Without Execution (JES3)” on
page 3-25.

@® For the JOB statement TYPRUN=SCAN parameter, “Bypassing Job Initiation” on
page 3-25 and “TYPRUN Parameter” on page 10-39.
Examples of the PGM Parameter

//JOB8 JOB ,BOB,MSGLEVEL=(2,0)
//JOBLIB DD DSNAME=DEPT12.LIB4,DISP=(OLD,PASS)
//STEP1 EXEC PGM=USCAN

These statements indicate that the system is to search the private library DEPT12.LIB4 for the
member named USCAN, read the member into storage, and execute the member.

//PROCESS JOB ,MARY,MSGCLASS=A

//CREATE EXEC PGM=IEWL

//SYSLMOD DD DSNAME=&&PARTDS (PROG) ,UNIT=3350,DISP=(MOD,PASS),
// SPACE=(1024,(50,20,1))

//GO EXEC PGM=*,CREATE.SYSLMOD

The EXEC statement named GO contains a backward reference to DD statement SYSLMOD,
which defines a library created in the step named CREATE. Program PROG is a member of
the partitioned data set &&PARTDS, which is a temporary data set. Step GO executes
program PROG. The data set &&PARTDS is deleted at the end of the job.

//JOBC JOB ,JOHN,MSGCLASS=H

//STEP2 EXEC PGM=UPDT

/ /DDA DD DSNAME=SYS1.LINKLIB(P40),DISP=0LD
//STEP3 EXEC PGM=*,STEP2.DDA

The EXEC statement named STEP3 contains a backward reference to DD statement DDA,
which defines system library SYS1.LINKLIB. Program P40 is a member of SYS1.LINKLIB;
STEP3 executes program P40.

//CHECK EXEC PGM=IEFBR14

This EXEC statement specifies execution of the program IEFBR14, which is a two-line
user-written program that consists of an entry point and a branch to the contents of register 14.
This program is handy during testing: execute it to test JCL space allocation and disposition
requests before executing your program. The system checks all the job control statements in
the job for syntax.

11-22 MvVSICL

//USUAL
//ASM

//SYSPRINT
//SYSLIB
//SYSUT1

/7
//SYSLIN

//SYSIN

//LKED

//
//SYSPRINT
//SYSLIN
//SYSUT1

//SYSLMOD
//
/ /GO

//SYSUDUMP
//SYSPRINT

//0UTPUT

//
//INPUT

/*
/7

EXEC: PGM

JOB A2317P, 'MAE BIRDSALL'

EXEC PGM=IEV90,REGION=256K, EXECUTES ASSEMBLER
PARM= ('OBJECT', 'NODECK,LINECOUNT (50) ')

DD SYSOUT=* ,DCB=BLKSIZE=3509 THE ASSEMBLY LISTING

DD DSNAME=SYS1.MACLIB,DISP=SHR THE MACRO LIBRARY

DD DSNAME=&&SYSUT1,UNIT=SYSDA, A WORK DATA SET
SPACE=(CYL, (10,1))

DD DSNAME=&&0OBJECT , UNIT=SYSDA, THE OUTPUT OBJECT MODULE
SPACE=(TRXK, (10,2)) ,DCB=BLKSIZE=3120,DISP=(,PASS)

DD * IN-STREAM SOURCE CODE

code

EXEC PGM=HEWL,
PARM='XREF,LIST,LET',COND=(8,LE,ASM)

EXECUTES LINKAGE EDITOR

DD SYsSouT=* LINKEDIT MAP PRINTOUT

DD DSNAME=&&0OBJECT ,DISP=(OLD,DELETE) INPUT OBJECT MODULE

DD DSNAME=&&SYSUT1,UNIT=SYSDA, A WORK DATA SET
SPACE=(CYL, (10,1))

DD DSNAME=&&LOADMOD ,UNIT=SYSDA, THE OUTPUT LOAD MODULE

DISP=(MOD,PASS),SPACE=(1024(50,20,1))
EXEC PGM=*,LKED.SYSLMOD,TIME=(,30), EXECUTES THE PROGRAM
COND=((8,LE,ASM), (8,LE,LKED))
DD SYSOUT=*
DD SYSOUT=*,
DCB=(RECFM=FBA,LRECL=121)

*IF FAILS, DUMP LISTING
OUTPUT LISTING

DD SYSOUT=A, PROGRAM DATA OUTPUT
DCB=(LRECL=100,BLKSIZE=3000,RECFM=FBA)

DD * PROGRAM DATA INPUT
data

This example shows JCL that can be used to:

@ Assemble object code entered in the input stream: the step named ASM.

® Linkedit the object module, if the assembly did not result in a return code of 8 or higher:
the step named LKED.

® Execute the linkedited module, if neither the assembly nor the linkage editing resulted in a
return code of 8 or higher: the step named GO.

Chapter 11. Coding the EXEC Statement 11-23

EXEC

EXEC: PROC and Procedure Name

PROC and Procedure Name Parameters

Parameter Type: Positional, optional

‘ «Purposé: Use the PROC parameter to specify that the system is to call and execute a cataloged
¢ or in-stream procedure.

References: For more information on the PROC parameter, see “Processing Program
. Information” on page 4-4, and on cataloged and in-stream procedures, see Chapter 9, “Guide
" to Cataloged and In-Stream Procedures.”

Syntax:

{PROC=procedure-name}
“{procedure~name 3

@® The EXEC statement parameter field must begin with a PGM parameter or a PROC
parameter. These two parameters must not appear on the same EXEC statement.

@® You can omit PROC= and code only the procedure-name.

Subparametgr Definition

procedure-name
Identifies the procedure to be called and executed:

@® The member name or alias of a cataloged procedure.
® The name of an in-stream procedure. The in-stream procedure must appear earlier in
this job. '

The procedure-name is 1 through 8 alphanumeric or national characters; the first
character must be alphabetic or national.

Effect of PROC Parameter on Other Parameters and Following Statements

Because this EXEC statement calls a cataloged or in-stream procedure, the other parameters on
‘the statement are added to or override corresponding parameters on the EXEC statements in
the called procedure. See the descriptions of the other parameters for details of their effects.

Any DD statements following this EXEC statement are added to the procedure or override or

nullify corresponding DD statements in the procedure. For details, see “DD Statements for
Cataloged and In-stream Procedures” on page 12-3.

11-24 mvsicL

EXEC: PROC and Procedure Name

Examples of the PROC Parameter

//SP3 EXEC PROC=PAYWKRS

This statement calls the cataloged or in-stream procedure named PAYWKRS.

//BK EXEC OPERATE

This statement calls the cataloged or in-stream procedure named OPERATE.

Chapter 11. Coding the EXEC Statement 11-25

EXEC: RD

RD Parameter

Parameter Type: Keyword, optional
Purpose: Use the RD (restart definition) parameter to:
@ Specify that the operator is to perform automatic step restart if the job fails.

® Suppress, partially or totally, the action of the assembler language CHKPT macro
instruction or the DD statement CHKPT parameter.

The system can perform automatic restart only if the job has a job journal. A job journal is a
sequential data set that contains job-related control blocks needed for restart. For JES2,
specify a job journal in one of the-following:

@® An installation opﬁon during JES2 initialization to specify a checkpoint data set.

® RESTART parameter on the JOB statement.

® RD=R or RD=RNC on either the JOB statement or any one EXEC statement in the job.
For JES3, specify a job journal in one of the following:

® An installation option during JES3 initialization.

® RD=R or RD=RNC on either the JOB statement or any one EXEC statement in the job.
® JOURNAL=YES on a JES3 //*MAIN statement in the job.

References: For more information on the RD parameter, see “The RD Parameter on the
EXEC Statement” on page 5-28, and on restarting jobs, see:

@ “Restarting a Job at a Step or Checkpoint” on page 5-26.
® “RD Parameter” on page 10-28.

For JES2 Systems, see the RESTART parameter on the /*JOBPARM control statement in
“/*JOBPARM Statement” on page 16-4.

For JES3 systems, see the FAILURE parameter on the //*MAIN control statement in
“/[*MAIN Statement” on page 17-23.

For detailed information on deferred checkpoint restart, see Checkpoiht/Restart.

Syntax:

RD[.procstepname]={R|RNC|NC|NR}

11-26 MvVsJCL

EXEC: RD

Subparameter Definition

R (Restart)
Indicates that the operator is to perform automatic step restart if the job step fails.

RD =R does not suppress checkpoint restarts:

If the processing program executed in a job step does not include a CHKPT macro
instruction, RD =R allows the system to restart execution at the beginning of the
abnormally terminated step.

If the program includes a CHKPT macro instruction, RD=R allows the system to
restart execution at the beginning of the step, if the step abnormally terminates before
the CHKPT macro instruction is executed.

If the step abnormally terminates after the CHKPT macro instruction is executed,
only checkpoint restart can occur. If you cancel the affects of the CHKPT macro
instruction before the system performs a checkpomt restart, the request for automatic
step restart is again in effect.

RNC (Restart and No Checkpoint) ,
Indicates that the operator is to perform automatic step restart if the job step fails.

RD =RNC suppresses automauc and deferred checkpoint restarts. It suppresses:

Any CHKPT macro instruction in the processing program: That is, the operator is
not to perform an automatic checkpoint restart, and the system is not to perform a
deferred checkpoint restart if the job is resubmitted.

The DD statement CHKPT parameter.

The checkpoint at end-of-volume (EOV) facility; see “SYSCKEOV DD Statement”
on page 13-19.

NC (No Checkpoint)
Indicates that the operator is not to perform automatic step restart if the job step fails.

RD =NC suppresses automatic and deferred checkpoint restarts. It suppresses:

Any CHKPT macro instruction in the processing program.
The DD statement CHKPT parameter.

The checkpoint at EOV facility.

Chapter 11. Coding the EXEC Statement 11-27

EXEC: RD
NR (No Automatic Restart) . ; e
Indicates that the operator is not to perform automatic step restart 1f the job falls

RD=NR suppresses automatic checkpoint restart but permlts deferred checkpomt
restarts. It permits:

® A CHKPT macro instruction to establish a checkpoint.

® The job to be resubmitted for restart at the checkpoint. On the JOB statement when
resubmitting the job, specify the checkpoint in the RESTART parameter.. -

If you code RD=NR and the system fails, RD =NR does not prevent the job from

restarting.
Defaults
If no RD parameter is specified, the terminated job step is eligible for automatic
checkpoint/restart, if its program requested checkpoints with a CHKPT macro instruction.
Opverrides

@® A JOB statement RD parameter applies to all steps of the job and overrides any EXEC
statement RD parameters.

When no RD parameter is on the JOB statement, the system uses an EXEC statement RD
parameter, but only during the job step. Code EXEC statement RD parameters when you
want to specify different restart types for each job step.

@ A request by a CHKPT macro instruction for an automatic checkpoint restart overrides a
request by a JOB or EXEC statement RD =R parameter for automatic step restart.

Relationship to Other Control Statements

Code RD=NC or RD=RNC to suppress the action of the DD statement CHKPT parameter.

On EXEC Statement that Calls a Procedure

If the EXEC statement calls a cataloged or in-stream procedure, the RD parameter is added to
or overrides the RD parameter on:

® The EXEC statement named in the procstepname qualifier. The information applies only
to the named procedure step. The EXEC statement can have as many RD.procstepname
parameters as the procedure has steps; each RD parameter must specify a unique
procstepname.

® All EXEC statements in the procedure if procstepname is not coded. Then the parameter
applies to all steps in the called procedure.

11-28 ™Mvs JCL

EXEC: RD

Examples of the RD Parameter

//STEP1 EXEC PGM=GIIM,RD=R

RD =R specifies that the operator is to perform automatic step restart if the job step fails.

//NEST EXEC PGM=T18,RD=RNC

RD = RNC specifies that, if the step fails, the operator is to perform automatic step restart.
RD =RNC suppresses automatic and deferred checkpoint restarts. -
EXEC

//CARD EXEC PGM=WTE,RD=NR

RD=NR specifies that the operator is not to perform automatic step restart or automatic
checkpoint restart. However, a CHKPT macro instruction can establish checkpoints to be used
later for a deferred restart. '

//STP4 EXEC PROC=BILLING,RD.PAID=NC,RD.BILL=NR

This statement calls a cataloged or in-stream procedure BILLING. The statement specifies
different restart requests for each of the procedure steps: PAID and BILL.

Chapter 11. Coding the EXEC Statement 11-29

EXEC: REGION

REGION Parameter

'Parameter Type: Keyword, optional
Purpose: Use the REGION parameter to specify the amount of space that the step requires.

The specified or default region size sets an upper boundary to limit region size for
variable-length GETMAINs. The system uses the upper boundary for variable-length
GETMAINSs as long as the region still has available at least the minimum amount of storage
requested.

In addition, the IBM- or installation-supplied routine IEALIMIT uses the region size to
establish a second limiting value. The system uses this second value for:

® Fixed-length GETMAINSs.

@ Variable-length GETMAINSs when the space remaining in the region is less than the
requested minimum.

When the minimum requested length for variable-length GETMAINSs exceeds this second value,
the job step abnormally terminates.

REGION=0K gives the job step all the storage available in the private area, that is, from the
top of the system region to the bottom of the common service area (CSA). The resulting size of
the region is unpredictable.

References: For more information on the REGION parameter, see “Requesting Storage for
Execution” on page 5-23. Also, see “ADDRSPC Parameter” on page 11-6. For further

information on the region size, see OS/VS2 Supervisor Services and Macro Instructions.

Syntax:

REGION[.procstepname]=valuek

Subparameter Definition 4 .

valueK
Specifies the required storage in thousands (1024) of bytes. The value is 1 to 5 decimal
numbers. Code an even number. For example, REGION = 66K. If you code an odd
number, the system treats it as the next highest even number.

11-30 MvsiIcL

EXEC: REGION

Defaults
If no REGION parameter is specified, the system uses an installation default specified at JES

initialization.

Overrides

A JOB statement REGION parameter applies to all steps of the job and overrides any EXEC
statement REGION parameters.

When no REGION parameter is on the JOB statement, the system uses an EXEC statement
REGION parameter, but only during the job step. Code EXEC statement REGION
parameters when you want to specify a different region size for each job step.

Relationship to the EXEC ADDRSPC Parameter

When ADDRSPC=REAL: Code a REGION parameter to specify how much real storage the
job needs. If you omit the REGION parameter, the system uses the default.

When ADDRSPC = VIRT or ADDRSPC is Omitted: Do not code a REGION parameter. The
system uses the default.

Examples of the REGION Parameter

//MKBOYLE EXEC PROC=A,ADDRSPC=REAL,REGION=40K

The system assigns 40K bytes of real storage to this job step.

//STP6 EXEC PGM=CONT,REGION=120K

The system assigns a region of 120K bytes. When the ADDRSPC parameter is not specified,
the system defaults to ADDRSPC=VIRT.

Chapter 11. Coding the EXEC Statement 11-31

EXEC: TIME

TIME Parameter

Parameter Type: Keyword, optional

Purpose: Use the TIME parameter to specify the maximum length of time that a job step is to: :
use the processor and to find out through messages how much processor time the step used.

A step that exceeds its allotted time abnormally terminates and causes termination bf the job,
unless a user exit routine extends the time for the job.

References.: For more information on the TIME parameter, see “Lumtmg Job and Job Step
Execution Time” on page 5-16.

Syntax:

TIME[.procstepname]={1440| ([minutes] [,seconds])}

You can omit the parentheses if you code only 1440 or the processbr time in nﬁﬁutes.

| If you omit the seconds, do not code a null subparameter. For example,.TIM,E=(60,) is
[invalid. _ ,

Subparameter Definition

1440 : S
Indicates that the step can use the processor for an unlimited amount of time; 1440
literally means 24 hours. Code TIME = 1440 for the following reasons:

@® To obtain job step accounting information.

® To specify that the system is to allow this step to remain in a walt state for more than
the installation-established time limit.

minutes
Specifies the maximum number of minutes the step can use the processor. The minutes
must be a number from 1 through 1439.

Code TIME =0 on the EXEC statement to indicate that the step is to use the unexpired
time from the previous step. If this step exceeds that unexpired time, it abnormally
terminates.

seconds

Specifies the maximum number of seconds that the step can use the processor, in addition
to any minutes that are specified. The seconds must be a number from 1 through 59.

11-32 Mvs iCL

EXEC: TIME

Defaults
If no TIME parameter is specified, JES uses an installation default specified at initialization.
Overrides
For a JOB statement TIME parameter other than TIME = 1440, the system sets the time limit
for each step to:
@® The step time limit specified on the EXEC statement TIME parameter. E Y
® If no EXEC TIME parameter was specified, (1) the default time limit or (2) the job time
remaining after execution of previous steps, whichever is smaller.
Time Handling

How the System Converts the Time Value: The job time limit or the time remaining after
execution of previous steps in a job is converted by the system to seconds and then rounded to
the nearest unit, where 1 unit=1.048576 seconds. Thus a step can begin execution with up to
one-half unit more or one-half unit less time than expected. If the time remaining for the job is
less than one-half unit, a step will begin execution with zero time, resulting in an abnormal
termination.

Time Checking: Because the system checks the processor time-used field about every 10.5
seconds, the actual time that a job uses the processor can exceed the specified TIME value by
up to 10.5 seconds. For example, the system checks the job’s time-used field and finds 0.5
seconds remaining. Because the system does not again check the job’s time-used field for about
10.5 seconds, the job can execute for an additional 10.5 seconds and thus exceed the coded
TIME value by 10 seconds.

Examples of the TIME Parameter

//STEP1 EXEC PGM=GRYS,TIME=(12,10)

This statement specifies that the maximum amount of time the step can use the processor is 12
minutes, 10 seconds.

//FOUR EXEC PGM=JPLUS,TIME=(,30)

This statement specifies that the maximum amount of time the step can use the processor is 30
seconds.

//INT EXEC PGM=CALC,TIME=5

This statement specifies that the maximum amount of time the step can use the processor is 5
minutes.

Chapter 11. Coding the EXEC Statement 11-33

EXEC: TIME

//LONG EXEC PGM=INVANL,TIME=1440

This statement specifies that the step can have unlimited use of the processor. Therefore, the
step can use the processor and can remain in a wait state for an unspecified period of time, if
not restricted by the JOB statement TIME parameter. ‘

//STP4 EXEC PROC=BILLING,TIME.PAID=(45,30),TIME.BILL=(112,59)

This statement calls cataloged or in-stream procedure BILLING. The statement specifies
different time limits for each of the procedure steps: PAID and BILL.

For examples of TIME coded on both the JOB and EXEC statements, see “Examples of the
TIME Parameter on JOB and EXEC Statements” on page 10-38.

11-34 wMvsicCL

DD

Chapter 12. Coding the DD Statement

Use the DD (data definition) statement to describe a data set and to specify the input and
output facilities needed for the data set.

The parameters you can specify for data set definition are arranged alphabetically in the
following pages.

References: For more information on coding DD statement parameters, see Chapter 7, “Guide
to Specifying Data Set Information” on page 7-1. For information about the JES initialization
parameters that provide installation defaults, see SPL: JES2 Initialization and Tuning and SPL:
JES3 Initialization and Tuning.

Syntax:

//{ddname } DD [positional-parameter]|,keyword-parameter]... comments
{procstepname.ddname}

® The DD statement consists of the characters // in columns 1 and 2 and four fields: name, operation
(DD), parameter, and comments.

® A DD statement is required for each data set.
® The maximum DD statements per job step are:

— 1635, in a JES2 system.
— Determinated by the installation, in a JES3 system.

Name Field
Code a ddname as follows:

® Each ddname should be unique within the job step. If duplicate ddnames appear in a job
step, processing is as follows:

— In a JES2 system: The system performs device and space allocation and disposition
processing for both DD statements; however, it directs all references to the first DD
statement in the step.

— In a JES3 system: If both DD statements request JES3- or jointly-managed devices,

the system cancels the job during JES3 interpretation. If only one or if neither DD
statement requests JES3- or jointly-managed devices, the system performs device and

Chapter 12. Coding the DD Statement 12-1

DD

space allocation and disposition processing for both DD statements; however, it directs
all references to the first DD statement in the step.

The ddname must begin in column 3.
The ddname is 1 through 8 alphanumeric or national characters.

The first character must be alphabetic or national.

The ddname must be followed by at least one blank.
Omitting the ddname: Do not code a ddname in two cases:

® The DD statement defines a dataset that is concatenated to the data set of the preceding
DD statement.

@® The DD statement is the second or third consecutive DD statement for an indexed
sequential data set.

Special ddnames: Use the following special ddnames only when you want to use the facilities
these names represent to the system. These facilities are explained in Chapter 13, “Coding
Special DD Statements” on page 13-1.

JOBCAT
JOBLIB
STEPCAT
STEPLIB
SYSABEND
SYSCHK
SYSCKEOV
SYSMDUMP
SYSUDUMP

The following ddnames have special meaning to JES3; do not use them on a DD statement in a
JES3 system.

JCBIN
JCBLOCK
JCBTAB
JCLIN
JESInnnn
JESICL
JESMSG
JOURNAL
JST
SYSMSG

12-2 MvsicL

DD

Parameter Field

A DD statement contains two kinds of parameters: positional and keyword. All parameters
are optional. However, do not leave the parameter field blank unless the DD statement
overrides a DD statement that defines a concatenated data set in a cataloged or in-stream
procedure.

Positional Parameters: A DD statement can contain one of the following positional
parameters. It must precede all keyword parameters.

*

DATA
DUMMY
DYNAM

Keyword Parameters: A DD statement can contain the following keyword parameters. You
can code any of the keyword parameters in any order in the parameter field after a positional
parameter, if coded.

ACCODE DDNAME FLASH PROTECT UNIT
AMP DEST FREE QNAME VOLUME
BURST DISP HOLD SPACE

CHARS DLM LABEL SUBSYS

CHKPT DSID MODIFY SYSOUT

CNTL DSNAME MSVGP TERM

COPIES FCB OUTLIM UCs

DCB OUTPUT

Do not use DD statement parameter or subparameter keywords as symbolic parameters, names,
or labels.

Comments Field

The comments field follows the parameter field after at least one intervening blank. If you do
not code any parameters on a DD statement, do not code any comments.

Location in the JCL

Most DD statements define data sets to be used in a step of a job or of a cataloged or
in-stream procedure; these appear after the EXEC statement for the step. Some DD
statements define data sets for the job, for example, the JOBLIB DD statement; these appear
after the JOB statement and before the first EXEC statement.

DD Statements for Cataloged and In-stream Procedures

When a job step calls a cataloged or in-stream procedure, DD statements in the calling step (1)
override, nullify, or add parameters to DD statements in the procedure or (2) are added to the
procedure. These changes affect only the current execution of the job step; the procedure itself
is not changed.

Chapter 12. Coding the DD Statement 12-3

DD

Location in the JCL: Place DD statements that override, nullify, or add parameters
immediately following the EXEC statement that calls the procedure. :

Place added DD statements after all overriding DD statements.

Order of Overriding DD Statements: To override more than one DD statement in a procedure,
place the overriding DD statements in the same order as the overridden DD statements in the
procedure.

Coding an Overriding DD Statement: To override parameters on a procedure DD statement,
code in the name field of the overriding DD statement the name of the procedure step
containing the DD statement, followed by a period, followed by the ddname of the procedure
DD statement to be overridden. For example:

//PROCSTP1.PROCDD DD parameters

Coding an Added DD Statement: To add DD statements to a procedure step, code in the name
field of the added DD statement the name of the procedure step, followed by a period, followed
by a ddname of your choosing.

In-stream Data for a Procedure: To supply a procedure step with data from the input stream,
code a DD * or DD DATA statement in the calling step after the last overriding and added
DD statement. The name field of this statement must contain the name of the procedure step,
followed by a period, followed by a ddname. The ddname can be of your choosing or
predefined in the procedure. If it is predefined, it appears in a DDNAME parameter on a
procedure DD statement.

Words Prohibited as Symbolic Parameters: Do not use the following DD statement keywords
as symbolic parameters in procedures to be started by a START command from the operator
console.

AFF! DISP LABEL SUBALLOC!
AMP DLM MODIFY SUBSYS
BURST DSID MSVGP SYSOUT
CHARS DSNAME OUTLIM TERM
CHKPT DSN PROTECT UCS
COPIES FCB QNAME UNIT

DCB FLASH SEP! VOLUME
DDNAME FREE SPACE VOL

DEST HOLD SPLIT!

'These DD statement keywords are from previous releases of MVS. For a description of how
they are currently handled, see “JCL Statements no Longer Supported or Supported
Differently” on page v.

12-4 wMvsiICL

DD
Examples of DD Statements and ddnames

//INPUT DD DSNAME=FGLIB,DISP=(OLD,PASS)
// DD DSNAME=GROUP2,DISP=SHR

In this example, because the ddname is missing from the second DD statement, the system
concatenates the data sets defined in these statements.

//PAYROLL.DAY DD DSNAME=DESK,DISP=SHR

In this example, if procedure step PAYROLL contains a DD statement named DAY, this
statement overrides parameters on DD statement DAY. If the step does not contain DD
statement DAY, the system adds this statement to procedure step PAYROLL for the duration

of the job step.
//STEPSIX.DD4 DD DSNAME=WRITER,DISP=(NEW,PASS)
// DD DSNAME=ART,DISP=SHR

In this example, the second data set is concatenated to the first, and both are added to
procedure step STEPSIX. The ddname is omitted from the second DD statement in order to
concatenate data set ART to data set WRITER.

Chapter 12. Coding the DD Statement 12-5

DD: * Parameter

* Parameter

Defaults

Parameter Type: Positional, optional
Purpose: Use the * parameter to begin an in-stream data set. The data records immediately

follow the DD * statement; the records must be in BCD or EBCDIC. The data records end
when the system reads in the input stream a delimiter:

/*

// to indicate another JCL statement

The two-character delimiter specified by a DLM parameter on this DD statement
The data can also end when the input stream runs out of card images.

Use a DATA parameter instead of the * parameter if any of the data records start with //.

Syntax:

//ddname DD *[,parameter]...

When you do not code DCB=BLKSIZE and DCB=LRECL, JES uses installation defaults
specified at initialization.

Relationship to Other Parameters

The only DD parameters that you can code with the * parameter follow. All other parameters
are a JCL error.

DCB=BILKSIZE
DCB=BUFNO
DCB=LRECL
DLM

DSID
VOLUME=SER

For 3540 Diskette Input|Output Units: VOLUME =SER, DCB=BUFNO, and DSID
parameters on a DD * statement are ignored except when they are detected by a diskette reader
as a request for an associated data set. See IBM 3540 Programmer’s Reference. On a DD * or
DD DATA statement processed by a diskette reader, you can specify DSID and
VOLUME=SER parameters to indicate that a diskette data set is to be merged into the input
stream following the DD statement.

For JES3 SNA RJP Input: The only parameters you can specify for JES3 systems network
architecture (SNA) remote job processing (RJP) input devices are DCB =BLKSIZE and
DCB=LRECL.

12-6 MVSICL

DD: * Parameter

Relationship to Other Control Statements

Do not refer to an earlier DD * statement in DCB or DSNAME parameters on following DD
statements.

Location in the JCL
A DD * statement begins an in-stream data set.

In-stream Data for Cataloged or In-stream Procedures: A cataloged or in-stream procedure
cannot contain a DD * statement. When you call a procedure, you can add input streamn data
to a procedure step by placing in the calling step one or more DD * or DD DATA statements,
each followed by data.

Multiple In-stream Data Sets for a Step: You can code more than one DD * or DD DATA DD
statement in a job step in order to include several distinct groups of data for the processing

program. Precede each group with a DD * or DD DATA statement and follow each group

with a delimiter statement. If you omit a DD statement before input data, the system provides a

DD * statement with the ddname of SYSIN; if you omit a following delimiter statement, the

system ends the data when it reads a JCL statement or runs out of card images.

Unread Records

If the processing program does not read all the data in an in-stream data set, the system skips
the remaining data without abnormally terminating the step.

Examples of the * Parameter

//INPUT1 DD *

data
//INPUT2 DD *

data
/* '

This example defines two groups of data in the input stream.

Chapter 12. Coding the DD Statement 12-7

DD: * Parameter

//STEP2 EXEC PROC=FRESH
//SETUP . WORK DD UNIT=3400-6,LABEL=(,NSL)
//SETUP.INPUT1 DD *

data
/* '
//PRINT.FRM DD UNIT=180
//PRINT.INP DD *
data
/* '

This example defines two groups of data in the input stream. The input data defined by DD
statement SETUP.INPUT!1 is to be used by the cataloged procedure step named SETUP. The
input data defined by DD statement PRINT.INP is to be used by the cataloged procedure step
named PRINT.

12-8 MvVsiCL

DD: ACCODE

ACCODE Parameter

Parameter Type: Keyword, optional

Parpose: Use the ACCODE parameter to specify or change an accessibility code for an
ISO/ANSI/FIPS Version 3 tape output data set. An installation-written file-access exit routine
verifies the code, after the code is written to tape. If the code is authorized, the job step’s
program can use the data set; if not, the system issues messages and may abnormally terminate
the job step.

A data set protected by an accessibility code should reside only on a volume protected by
RACF or a volume accessibility code. The volume should not contain any unprotected data
sets.

Note: ACCODE is supported only for ISO/ANSI/FIPS Version 3 tape data sets. ACCODE is
ignored for SL (IBM standard) label tapes.

References: For more information on ISO/ANSI/FIPS Version 3 tape data sets, see MVS/370
Magnetic Tape Labels and File Structure.

Syntax:

ACCODE=access—code

Subparameter definition

access-code
Specifies an accessibility code. The access-code is 1 through 8 characters; the first
character is an upper case letter from A through Z.

Note: Only the first character is used as the ISO/ANSI/FIPS Version 3 accessibility code;
the other seven characters can be used by the installation. If the first character is other
than an upper case letter from A through Z, the installation does not give control to the
file-access exit routine.

Defaults
If no accessibility code is specified on a DD statement that defines an ISO/ANSI/FIPS Version
3 tape data set, the system writes a blank character (X'40’) in the tape label: a blank authorizes
unlimited access to the tape’s data sets.

If the installation does not supply a file-access exit routine, the system prevents access to any
ISO/ANSI/FIPS Version 3 tape volume.

Chapter 12. Coding the DD Statement 12-9

DD: ACCODE

Overrides
If PASSWORD or NOPWREAD is coded on the DD statement LABEL parameter, password

access overrides the ACCODE parameter.

Example of the ACCODE Parameter

//TAPE DD UNIT=2400,VOLUME=SER=T49850,DSNAME=TAPEDS,
LABEL=(,AL) ,ACCODE=%

In this example, the DD statement ACCODE parameter specifies an accessibility code of Z for
tape volume T49850, The volume has ISO/ANSI/FIPS Version 3 labels. The data set
TAPEDS is first on the tape.

12-10 mvsICL

DD: AMP

AMP Parameter

Parameter Type: Keyword, optional

Purpose: Use the AMP parameter to complete information in an access method control block
(ACB) for a VSAM data set. The ACB is a control block for entry-sequenced, key-sequenced,
and relative record data sets.

Note: AMP is supported only for VSAM data sets.

References: For more information on AMP and the ACB, see VSAM Programmer’s Guide.

Syntax:

AMP= (subparameter)
AMP=("'subparameter(,subparameter]..."')

The subparameters are:

AMORG

BUFND=number
BUFNI=number
BUFSP=bytes
CROPS={RCK|NCK|NRE | NRC}
OPTCD={I|L|IL}

RECFM={F |FB|V|VB}
STRNO=number
SYNAD=modulename

TRACE

Parentheses: The subparameter or subparameters are always enclosed in one set of
parentheses. For example, AMP=(AMORG).

Multiple Subparameters: When the parameter contains more than one subparameter,
separate the subparameters by commas and enclose the subparameter list in apostrophes
inside the parentheses. For example, AMP=(AMORG,STRNO=4").

Special Characters: When the parameter contains only one subparameter and that
subparameter contains special characters, enclose the subparameter in apostrophes inside
the parentheses. For example, AMP=(STRNO=4").

Note: Do not enclose a subparameter in a subparameter list in apostrophes.

Continuation onto Another Statement: Enclose the subparameter list in only one set of
parentheses. Enclose all the subparameters on each statement in apostrophes. End each
statement with a comma after a complete subparameter. For example:

//DS1 DD DSNAME=VSAMDATA,AMP=('BUFSP=200,0PTCD=IL,RECFM=FB, *
// ' STRNO=6 , TRACE ')

Chapter 12. Coding the DD Statement 12-11

DD: AMP

Subparameter Definition

AMORG
Indicates that the DD statement defines a VSAM data set. Code AMORG for either of
the following reasons:

@® When data set access is through an ISAM interface program and the DD statement
contains VOLUME and UNIT paramete'rs or contains a DUMMY parameter.

® To open an ACB for a VSAM data set if the data set is not fully defined at the
beginning of the job step.

BUFND = number
Specifies the number of I/O buffers that VSAM is to use for data records. The minimum
is 1 plus the STRNO subparameter number. If you omit STRNO, BUFND must be at
least 2.

If you omit BUFND from AMP and from the ACB macro instruction, the system uses
the STRNO number plus 1.

BUFNI = number
Specifies the number of I/O buffers that VSAM is to use for index records. If you omit
BUFNI from AMP and from the ACB macro instruction, VSAM uses as many index
buffers as the STRNO subparameter number; if you omit both BUFNI and STRNO,
VSAM uses 1 index buffer.

If data access is through the ISAM interface program, specify for the BUFNI number 1
more than the STRNO number, or specify 2 if you omit STRNO, to simulate having the
highest level of an ISAM index resident. Specify a BUFNI number 2 or more greater
than the STRNO number to simulate having intermediate levels of the index resident.

BUFSP =bytes
Specifies the maximum number of bytes for the data and index buffers in the user area.

If BUFSP specifies fewer bytes than the BUFFERSPACE parameter of the access method
services DEFINE command, the BUFFERSPACE number overrides the BUFSP number.

CROPS = {RCK|NCK|NRE|NRC}
Requests a checkpoint/restart option. For more mformatlon see Checkpoint/Restart.

RCK
Requests a data-erase test and data set post-checkpoint modification tests. If the
CROPS subparameter is omitted, RCK is the default.

12-12 wmvsiIcL

DD: AMP

NCK
Requests no data set post-checkpoint modification tests.

NRE
Requests no data-erase test.

NRC «
Requests neither a data-erase test nor data set post-checkpoint modification tests.

If you request an inappropriate option, such as the data-erase test for an input data set,
the system ignores the option.

OPTCD = {I|L|IL}
Indicates how the ISAM interface program is to process records that the step’s processing

program flags for deletion.
I

Requests, when the data control block (DCB) contains OPTCD =L, that the ISAM
interface program is not to write into the data set records marked for deletion by
the processing program.

If AMP=(OPTCD=T) is specified without OPTCD =L in the DCB, the system
ignores deletion flags on records.

L
Requests that the ISAM interface program is to keep in the data set records marked
for deletion by the processing program.
If records marked for deletion are to be kept but OPTCD =L is not in the DCB,
AMP=(OPTCD =L") is required.
Note: This parameter has the same meaning and restrictions for the ISAM
interface as it has for ISAM. While it was not required in the ISAM job control
language, you should code it in the AMP parameter.

IL

Requests that the ISAM interface program is not to write into the data set records
marked for deletion by the processing program. If the processing program had read
the record for update, the ISAM interface program deletes the record from the data
set.

AMP=(OPTCD =IL’) has the same effect as AMP=(OPTCD =1') coded with
OPTCD =L in the DCB.

RECFM ={F|FB|VY|VB}
Identifies the ISAM record format used by the processing program. You must code this
RECFM subparameter when the record format is not specified in the DCB.

Note: This parameter has the same meaning and restrictions for the ISAM interface as it

has for ISAM. While it was not required in the ISAM job control language, you should
code it in the AMP parameter.

Chapter 12. Coding the DD Statement 12-13

DD: AMP

All VSAM requests are for unblocked records. If the processing program requests blocked
records, the ISAM interface program sets the overflow-record indicator for each record to
indicate that each is being passed to the program unblocked.

F
Indicates fixed-length records.
FB
Indicates blocked fixed-length records.
Indicates variable-length records. If no RECFM is specified in the AMP parameter
or in the DCB, V is the default.
VB

Indicates blocked variable-length records.

STRNO =number

Indicates the number of request parameter lists the processing program uses concurrently.
The number must at least equal the number of BISAM and QISAM requests that the
program can issue concurrently. If the program creates subtasks, add together the
number of requests for each subtask plus 1 for each subtask that sequentially processes
the data set. For details, see VSAM Programmer’s Guide. exit

SYNAD = modulename

Names a SYNAD exit routine. The ISAM interface program is to load and exit to this
routine if a physical or logical error occurs when the processing program is gaining access
to the data set.

The SYNAD parameter overrides a SYNAD exit routine specified in the EXLST or
GENCB macro instruction that generates the exit list. The address of the intended exit
list is specified in the access method control block that links this DD statement to the
processing program. If no SYNAD exit is specified, the system ignores the AMP
SYNAD parameter.

TRACE

Indicates that the generalized trace facility (GTF) executes with your job to gather
information about opening and closing data sets and end-of-volume processing. You can
use the AMDPRDMP program to print the trace output; see SPL: Service Aids.

Relationship to Other Parameters

Do not code the following parameters with the AMP parameter.

* DLM QNAME
BURST DYNAM SPACE
CHARS FCB SYSOUT
COPIES FLASH TERM
DATA MODIFY Ucs
DCB OUTPUT

12-14 wmvsiJcL

DD: AMP

Invalid ddnames: The following ddnames are invalid for VSAM data sets:

JOBLIB
STEPLIB
SYSABEND
SYSUDUMP
SYSCHK

Invalid DSNAMEs: When you code the AMP parameter, the DSNAME must not contain
parentheses, a minus (hyphen), or a plus (+) sign. The forms of DSNAME valid for ISAM,
partitioned access method (PAM), and generation data groups (GDG) are invalid with VSAM
data sets.

Buffer Requirements

For a key-sequenced data set, the total minimum buffer requirement is three: two data buffers ﬂ
and one index buffer. For an entry-sequenced data set, two data buffers are required.

If the number of buffers specified in the BUFND and BUFNI subparameters causes the virtual
storage requirements to exceed the BUFSP space, the number of buffers is reduced to fit in the
BUFSP space.

If BUFSP specifies more space than required by BUFND and BUFNI, the number of buffers is
increased to fill the BUFSP space.

Examples of the AMP Parameter

//VSAMDS1 DD DSNAME=DSM.CLASS,DISP=SHR,AMP=('BUFSP=200,BUFND=2",
// 'BUFNI=3,STRNO=4, SYNAD=ERROR')

In this example, the DD statement defines the size of the user area for data and index buffers,
specifies the number of data and index buffers, specifies the number of requests that require
concurrent data set positioning, and specifies an error exit routine named ERROR.

//VSAMDS2 DD DSNAME=DSM.CLASS,DISP=SHR,AMP=('BUFSP=23456,BUFND=5",
// '"BUFNI=10, STRNO=6, SYNAD=ERROR2 , CROPS=NCK, TRACE"')

In this example, the DD statement defines the vaiues for BUFSP, BUFNI, STRNO, and
SYNAD, as in the previous example. It also specifies that a data set post-checkpoint
modification test is not to be performed when restarting at a checkpoint and that GTF is to
provide a trace.

Chapter 12. Coding the DD Statement 12-15

DD: BURST

BURST Parameter

Parameter Type: Keyword, optional

Purpose: Use the BURST parameter to specify that 3800 Printing Subsystem output is to go
to: o

@ The burster-trimmer-stacker, to be burst into separate sheets.
@® The continuous forms stacker, to be left in continuous fanfold.

If the specified stacker is different from the last stacker used, or if a stacker was not previously
requested, JES issues a message to the operator to thread the paper into the required stacker.

Note: BURST is valid for any outpﬁt data set that is printed on a 3800 equipped with a
burster-timmer-stacker.

Syntax:

BURST={[YES|Y]}
{[NO|N] 3}

Subparameter Definition

Default

Overrides

YES
Requests that the printed output is to be burst into separate sheets. This subparameter
can also be coded as Y. ~

NO
Requests that the printed output is to be in a continuous fanfold. This subparameter can
also be coded as N.

If you do not code a BURST parameter, but you code a DD SYSOUT parameter and the
output data set is printed on a 3800 that has a burster-timmer-stacker, JES uses an installation
default specified at initialization.

If you do not code a BURST parameter or a DD SYSOUT parameter, the default is NO.

A BURST parameter on a sysout DD statement overrides an OUTPUT JCL BURST
parameter.

12-16 mVSJCL

DD: BURST

Relationship to Other Parameters

Do not code the following parameters with the BURST parameter.

* DLM MSVGP
AMP DSID PROTECT
DATA DSNAME QNAME
DDNAME DYNAM VOLUME
DISP LABEL

Relationship to Other Contrpl Statements
The burster-trimmer-stacker can also be requested using the following:

@® The BURST parameter on the OUTPUT JCL statement. See “BURST Parameter” on

page 14-6. ﬁ

® The STACKER parameter on the JES3 /*FORMAT PR statement. See “/[*FORMAT
PR Statement” on page 17-9.

® The BURST parameter on the JES2 /*OUTPUT statement. See “/*OUTPUT Statement”
on page 16-13.

Example of the BURST Parameter

//RECORD DD SYSOUT=A,BURST=Y
In this example, the DD statement requests that JES send the output to the

burster-trimmer-stacker of the 3800. The stacker separates the printed output into separate
sheets instead of stacking it in a continuous fanfold.

Chapter 12. Coding the DD Statement 12-17

DD: CHARS

CHARS Parameter

Parameter T ypé: iKeyword, ‘o‘ptional k

Purpose: Use the CHARS paramétér to specify the name of one or more
character-arrangement tables for printing the data set on a 3800 Printing Subsystem.

Note: CHARS is valid for any output data set that is printed on a 3800.

References: For further information on character-arrangement tables, see “Requesting
Character Arrangements with a 3800 Printer” on page 7-60 and the IBM 3800 Printing
Subsystem Programmer’s Guide. Refer to System Generation Reference for information on how
to choose during system generation particular groups, other than the Basic group, which is
always available.

Syntax:

{table~name
CHARS={(table-namel ,table-namel}...)

{DUMP

{(DUMP[,table-name]...)

o o G

® You can omit the parentheses if you code only one table-name.

® Null positions in the CHARS parameter are invalid. For example, you cannot code
CHARS =(,table-name) or CHARS = (table-name,,table-name).

Subparameter Definition

table-name

Names a character-arrangement table. Each table-name is 1 to 4 alphanumeric or
national characters. Code from one to four names.

DUMP
Requests a high-density dump of 204-character print lines from a 3800. If more than one

table-name is coded, DUMP must be first.
Note:
® DUMP is supported only on JES3 systems.

® DUMP is valid only on a SYSABEND, SYSMDUMP, or SYSUDUMP DD
statement.

12-18 wMvsiICL

DD: CHARS

Defaults
If you do not code the DD CHARS parameter, JES uses the following, in order:
1. The CHARS parameter on an OUTPUT JCL statement, if referenced by the DD
statement. ‘
2. The DD UCS parameter value, if coded.
3. The UCS parameter on an OUTPUT JCL statement, if referenced.

If no character-arrangement table is specified on the DD or OUTPUT JCL statements, JES
uses an installation default specified at initialization.

Overrides

A CHARS parameters on a sysout DD statement overrides the OUTPUT JCL CHARS
parameter.

For a data set scheduled to the Print Services Facility (PSF), the PSF uses the following
parameters, in override order, to select the font list:

1. Font list in the SYSI.IMAGELIB member specified by an OUTPUT JCL PAGEDEF
parameter.

2. DD CHARS parameter.

3. OUTPUT JCL CHARS parameter.

4. DD UCS parameter.

5. OUTPUT JCL UCS parameter.

6. JES installation default for the device.

7. Font list on the PAGEDEF parameter in the PSF cataloged procedure.

See “PAGEDEF Parameter” on page 14-43 for more information.

Relationship to Other Parameters

Do not code the following parameters with the CHARS parameter.

* DLM MSVGP
AMP DSID PROTECT
DATA DSNAME QNAME
DDNAME DYNAM VOLUME
DISP LABEL

Chapter 12. Coding the DD Statement 12-19

DD: CHARS

Relationship to Other Control Statements
CHARS can also be coded on the following:
® The OUTPUT JCL statement. See “CHARS Parameter” on page 14-7.

® The JES3 //*FORMAT PR statement. See “//*FORMAT PR Statement” on page 17-9.
® The JES2 /*OUTPUT statement. See “/*OUTPUT Statement” on page 16-13.

Printing Device Reassignment

The output device might not be a 3800, for example, if printing were reassigned to a 3211. See
the IBM 3800 Printing Subsystem Programmer’s Guide for restrictions that apply.

_ Requesting a High-Density Dump in a JES3 System

You can request a high-density dump on the 3800 in a JES3 system through two parameters on
the DD statement for the dump data set or on an OUTPUT JCL statement referenced by the
dump DD statement:

® FCB=STD3. This parameter produces dump output at 8 lines per inch.
® CHARS=DUMP. This parameter produces 204-character print lines.

You can code one or both of these parameters. You can place both on the same statement or
one on each statement.

Examples of the CHARS Parameter

//DD1 DD SYSOUT=A,CHARS=(GS10,GU12)

In this example, the CHARS parameter specifies two character-arrangement tables to be used
when printing the data set. GS10 refers to a Gothic character set, GU12 refers to a Gothic
underscored character set.

//SYSABEND DD UNIT=3800,CHARS=DUMP,FCB=STD3

The CHARS parameter on this SYSABEND DD statement specifies a high-density dump with
204 characters per line. The FCB parameter requests the dump output at 8 lines per inch.

12-20 MVS JCL

DD: CHKPT

CHKPT Parameter

Parameter Type: Keyword, optional

Purpose: Use the CHKPT parameter to request that a checkpoint be written when each
end-of-volume is reached on the multivolume data set defined by this DD statement.
Checkpoints are written for all volumes except the last. Checkpoints can be requested for input
or output data sets.

Note: CHKPT is supported only for multivolume QSAM or BSAM data sets. CHKPT is
ignored for single-volume QSAM or BSAM data sets or for ISAM, BDAM, BPAM, or VSAM
data sets.

References For more information, see Checkpoint/Restart.

Syntax:

CHKPT=EOV

Subparameter Definition

EOV
Requests a checkpoint at each end-of-volume.

Overrides
® The RD parameter values of NC and RNC on the JOB or EXEC statements override the
CHKPT parameter. For more information, see “RD Parameter” on page 10-28 and “RD
Parameter” on page 11-26.

® The CHKPT parameter overrides cataloged procedure values or START command values
for checkpoints at end-of-volume.

Relationship to Other Parameters

Do not code the following parameters with the CHKPT parameter.

* DLM QNAME
DATA DYNAM SYSOUT
DDNAME OUTPUT

Relationship to the SYSCKEOV DD Statement

If you specify CHKPT, you must also provide a SYSCKEOV DD statement in the job or step.
See “SYSCKEOV DD Statement” on page 13-19.

Chapter 12. Coding the DD Statement 12-21

DD: CHKPT

Checkpointing Concatenated Data Sets

For concatenated BSAM or QSAM data sets, CHKPT must be coded on each DD statement in
the concatenation, if checkpointing is desired for each data set in the concatenation.

Examples of the CHKPT Parameter

//DS1 DD DSNAME=INDS,DISP=OLD,CHKPT=EOV,
// UNIT=SYSSQ,VOLUME=SER=(TAPEO1,TAPE(O2,TAPEO3)

In this example, the DD statement defines data set INDS, a multivolume QSAM or BSAM
data set for which a checkpoint is to be written twice: once when end-of-volume is reached on
TAPEO] and once when end-of-volume is reached on TAPEOQ2.

//DS2 DD DSNAME=OUTDS,DISP=(NEW,KEEP),
// CHKPT=EOV,UNIT=SYSDA,VOLUME=(,,,8)

In this example, OUTDS is a multivolume data set that is being created. The data set requires

eight volumes. Seven checkpoints will be written: when the end-of-volume is reached on
volumes one through seven. ’

12-22 MVSICL

DD: CNTL

CNTL Parameter

Parameter Type: Keyword, optional

Purpose: Use the CNTL parameter to reference a CNTL statement that appears earlier in the
job. The reference causes the system to execute the program control statements within the
referenced CNTL/ENDCNTL group.

The system executes the statements following the first CNTL statement it finds with a label that
matches the label in the CNTL parameter. If the system finds no match, the system issues an

€ITOr message.

References: For more information on program control statements, see “CNTL Statement” on

page 15-5.
Syntax:
CNTL={*.label 3
{*.stepname.label 3

{*.stepname.procstepname. label}

Subparameter Definition

*.Jabel
Identifies an earlier CNTL statement, named label. The system searches for the CNTL
statement first in this step, then before the first EXEC statement of the job.

* stepname.label
Identifies an earlier CNTL statement, named label, that appears in an earlier step,
stepname, in the same job.

* stepname.procstepname.label
Identifies a CNTL statement, named label, in a cataloged or in-stream procedure.
Stepname is the name of the job step that calls the procedure; procstepname is the name
of the procedure step that contains the CNTL statement named label.

Examples of the CNTL Parameter

//MONDAY DD CNTL=*.WKLYPGM

In this example, the DD statement requests that the system use the program control statements
following the CNTL statement named WKLYPGM and located earlier in this step or preceding
the first step.

//TUESDAY DD CNTL=*.SECOND.BLOCKS

In this example, the DD statement requests that the system use the program control statements
following the CNTL statement named BLOCKS and located in a preceding step named
SECOND.

Chapter 12. Coding the DD Statement 12-23

DD: CNTL

//WEDNES DD CNTL=*,.THIRD.PROCTWO.CANETTI
In this example, the DD statement requests that the system use the program control statements

following the CNTL statement named CANETTI and located in the procedure step
PROCTWO of the procedure called in the preceding job step THIRD.

12-24 MVS JCL

COPIES Parameter

Parameter Type: Keyword, optional

Purpose: Use the COPIES parameter to specify how many copies of the output data set are to
be printed. The printed output is in page sequence for each copy.

For printing on a 3800 Printing Subsystem, this parameter can instead specify how many copies
of each page are to be printed before the next page is printed.

References: For more information on the COPIES parameter, see “Requesting Multiple Copies

DD: COPIES

of an Output Data Set Using JES2” and “Requesting Multiple Copies of an Output Data Set

Using JES3” on page 7-58.

Syntax:

{nnn

{(, (group-valuel,group-valuel...))

3

COPIES={ (nnn, (group-value[,group-valuel...))}

3

The following are not valid:

® A zero group-value, for example, COPIES =(5,(1,0,4))

You can omit the parentheses if you code only COPIES =nnn.

@ A null group-value, for example, COPIES =(5,(,)) or COPIES=(5,)

® A null within a list of group-values, for example, COPIES =(5,(1,,4))

Subparameter Defirition

nnn

Specifies how many copies of the data set are to be printed; each copy will be in page
sequence order. nnn is & number from 1 through 255 in a JES2 system and from 1

through 254 in a JES3 system

For a data set printed on a 3800, JES ignores nnn if any group-values are specified.

group-value

Specifies how many copies of each page are to be printed before the next page is printed.
Each group-value is a number from 1 through 255 in a JES2 system and from 1 through
254 in a JES3 system. You can code a maximum of eight group-values. Their sum must
not exceed 255 or 254. The total copies of each page equals the sum of the group-values.

Note:

@ This subparameter is valid only for 3800 output.

® For 3800 output, this subparameter overrides an nnn subparameter, if coded.

Chapter 12. Coding the DD Statement 12-25

DD: COPIES

Defaults

If you do not code a COPIES parameter on any of the following, code it incorrectly, or code
COPIES =0, the system uses a default of 1, which is the default for the DD COPIES parameter.

DD statement
OUTPUT JCL statement
For JES2, the /*OUTPUT statement

For JES3, the //*FORMAT PR or //*FORMAT PU statement or, if neither is specified,
the SYSOUT initialization statement

Qverrides

A COPIES parameter on a sysout DD statement overrides an OUTPUT JCL COPIES
parameter.

If this DD statement references an OUTPUT JCL statement and that OUTPUT JCL statement
contains a FORMDEF parameter, which specifies a SYS1.IMAGELIB member, the
COPYGROUP parameter on a FORMDEF statement in that member overrides any
group-value subparameters on the OUTPUT JCL COPIES parameter or the sysout DD
COPIES parameter. For more information, see “FORMDEF Parameter” on page 14-31.

Relationship to Other Parameters

Do not code the following parameters with the COPIES parameter.

* DISP LABEL
AMP DLM MSVGP
DATA DSNAME QNAME

DDNAME DYNAM VOLUME

Relationship to FLASH Parameter: 1f this DD statement or a referenced OUTPUT JCL
statement also contains a FLASH parameter, JES prints with the forms overlay the number of
copies specified in one of the following:

® COPIES=nnn, if the FLASH count is larger than nnn. For example, if COPIES=10 and
FLASH=(LTHD,12) JES prints 10 copies, all with the forms overlay.

@ The sum of the group-values specified in the COPIES parameter, if the FLASH count is
larger than the sum. For example, if COPIES =(,(2,3,4)) and FLASH=(LTHD,12) JES
prints nine copies in groups, all with the forms overlay.

@® The count subparameter in the FLASH parameter, if the FLASH count is smaller than nnn
or the sum from the COPIES parameter. For example, if COPIES =10 and
FLASH=(LTHD,7) JES prints seven copies with the forms overlay and three copies
without.

12-26 MVS JCL

DD: COPIES

Restriction When Coding UNIT Parameter: The COPIES parameter is normally coded with the
SYSOUT parameter. If, however, both COPIES and UNIT appear on a DD statement, JES
handles the COPIES parameter as follows:

@® nnn defaults to 1.
@ Only the first group-value is used, if group-values are specified and printing is on a 3800.

Relationship to Other Control Statements

For JES2, if you request copies of the entire job on the JES2 /*JOBPARM COPIES parameter
and also copies of the data set on the DD COPIES or OUTPUT JCL COPIES parameter, and
if this is a sysout data set, JES2 prints the number of copies equal to the product of the two
requests.

The number of copies can also be specified on the COPIES parameter of the following:

® The OUTPUT JCL statement. See “COPIES Parameter” on page 12-25.

@® The JES2 /*OUTPUT statement. See “/*OUTPUT Statement” on page 16-13.

® The JES3 //[*FORMAT PR statement. See “//*FORMAT PR Statement” on page 17-9.
o

The JES3 //[*FORMAT PU statement. See “//*FORMAT PU Statement” on page 17-18.

Examples of the COPIES Parameter

//RECORDL DD SYSOUT=A,COPIES=32

This example requests 32 copies of the data set defined by DD statement RECORD1 when
printing on an impact printer or a 3800.

//RECORD2 DD SYSOUT=A,COPIES=(0,(1,2))

In this example, when printing on a 3800, three copies of the data set are printed in two groups.
The first group contains one copy of each page. The second group contains two copies of each
page. When printing on an impact printer, one copy (the default for nnn) is printed.

//RECORD3 DD SYSOUT=A,COPIES=(8,(1,3,2))

In this example, when printing on a 3800, six copies of the data set are printed in three groups.
The first group contains one copy of each page, the second group contains three copies of each
page, and the last group contains two copies of each page. When the output device is not a
3800, the system prints eight collated copies.

//RECORD4 DD UNIT=3800,COPIES=(1,(2,3))

Because the UNIT parameter is coded and the device is a 3800, the system prints only the first
group-value: two copies of each page are printed.

Chapter 12. Coding the DD Statement 12-27

DD: DATA

DATA ‘Parameter

Defaults :

Parameter Type: Positional, optional

Purpose: Use the DATA parameter to begin an in-stream data set that contains statements
with // in columns 1 and 2. The data records immediately follow the DD DATA statement; the
records must be in BCD or EBCDIC. The data records end when the system reads in the input
stream a delimiter:

/*

The two-character delimiter specified by a DLM parameter on this DD statement
The data can also end when the input stream runs out of card images.

Note that, unlike a DD * statement, the data is not ended by the // that indicates another JCL
statement.

Syntax:

//ddname DD DATA[,parameter]...

When you do not code DCB=BLKSIZE and DCB=LRECL, JES uses installation defaults
specified at initialization.

Relationship to Other Parameters

Restrictions in a JES2 system: For JES2, the only DD parameters that you can code with the
DATA parameter follow. All other parameters are a JCL error.

DCB
DLM
DSID
VOLUME

Restrictions in a JES3 System: For JES3, the only DD parameters that you can code with the
DATA parameter follow. All other parameters are a JCL error.

DCB=BLKSIZE
DCB=BUFNO
DCB=LRECL
DCB=MODE=C
DLM

DSID
VOLUME=SER

12-28 MVs JCL

DD: DATA

For 3540 Diskette Input/Output Units: VOLUME=SER, DCB=BUFNO, and DSID
parameters on a DD DATA statement are ignored except when they are detected by a diskette
reader as a request for an associated data set. See IBM 3540 Programmer’s Reference. On a
DD * or DD DATA statement processed by a diskette reader, you can specify DSID and
VOLUME = SER parameters to indicate that a diskette data set is to be merged into the input
stream following the DD statement.

Relationship to Other Control Statements

Do not refer to an earlier DD DATA statement in DCB or DSNAME parameters on following
DD statements.

Location in the JCL
A DD DATA statement begins an in-stream data set.

In-stream Data for Cataloged or In-stream Procedures: A cataloged or in-stream procedure
cannot contain a DD DATA statement. When you call a procedure, you can add input stream
data to a procedure step by placing in the calling step one or more DD * or DD DATA
statements, each followed by data.

Multiple In-stream Data Sets for a Step: You can code more than one DD * or DD DATA
statement in a job step in order to include several distinct groups of data for the processing
program. Precede each group with a DD * or DD DATA statement and follow each group
with a delimiter statement. If you omit a DD statement before input data, the system provides a
DD * statement with the ddname of SYSIN; if you omit a following delimiter statement, the
system ends the data when it reads a JCL statement or runs out of card images.

Unread Records

If the processing program does not read all the data in an in-stream data set, the system skips
the remaining data without abnormally terminating the step.
Examples of the DATA Parameter
//GROUP1 DD DATA
éata

*
//GROUP2 DD DATA

data
/* '

This example defines two groups of data in the input stream.

Chapter 12. Coding the DD Statement 12-29

DD: DATA

//STEP2 EXEC PROC=UPDATE
//PREP.DD4 DD DSNAME=A.B.C,VOLUME=SER=D88,
// UNIT=3350,SPACE=(TRK, (10,5)),
// DISP=(,CATLG,DELETE)
//PREP.IN1 DD DATA

data
/* '
//ADD.IN2 DD *

data
/*

This example defines two groups of data in the input stream. The input defined by DD
statement PREP.IN1 is for use by the cataloged procedure step named PREP. This data
contains job control statements. The input defined by DD statement ADD.IN2 is for use by
the cataloged procedure step named ADD. Because this data is defined by a DD * statement,
it must not contain job control statements.

12-30 MvsICL

DD: DCB

DCB Parameter

Parameter Type: Keyword, optional

Purpose: Use the DCB parameter to complete during execution the information in the data
control block (DCB) for a data set.

The data control block is constructed by the DCB macro instruction in assembler language
programs or file definition statements or language-defined defaults in programs in other

languages.

References: For more information on constructing the data control block, see Data
Management Services Guide.

Syntax:

DCB=(subparameter [, subparameter]...)

({ 3
({ *.ddname 3

DCB=({ *.stepname.ddname }[,subparameter]...
({ *.stepname.procstepname.ddname }

[
[
[
[
[
[

et e e b et e

Parentheses: You can omit the parentheses if you code:
® Only one keyword subparameter.
® Only a data set name, dsname, without any subparameters.

@ Only a backward reference without any subparameters. A backward reference is a reference to an
earlier DD statement in the job or in a cataloged or in-stream procedure called by a job step. A
backward reference is in the form *.ddname or *.stepname.ddname or
* stepname.procstepname.ddname.

For example, DCB=RECFM =FB or DCB=WKDATA or DCB=*.STEP3.DD2

Multiple Subparameters: When the parameter contains more than one subparameter, separate the
subparameters by commas and enclose the subparameter list in parentheses. For example,
DCB=(RECFM =FB,LRECL =133,BLKSIZE =399) or DCB=(*.DD1,BUFNO=4)

Continuation onto Another Statement: Enclose the subparameter list in only one set of parentheses. End
each statement with a comma after a complete subparameter. For example:

//INPUT DD DSN=WKDATA,DCB={(RECFM=FB,LRECL=80,BLKSIZE=800,
// BUFL=800,BUFNO=4)

Chapter 12. Coding the DD Statement 12-31

DD: DCB

Subparameter Definition T

Defaults

subparameter

Specifies a DCB keyword subparameter needed to complete the data control block. An
alphabetic summary of the DCB keyword subparameters follows this parameter
description.

dsname

Names a cataloged data set. The system is to copy DCB information from the data set’s
label. The data set must reside on a direct access volume, and the volume must be
mounted before the job step is executed.

The dsname cannot contain special characters, except for periods used in qualifying the
name. Do not specify a generation data group (GDG) name.

*.ddname

Specifies the ddname of an earlier DD statement in the same step. The system is to copy
DCB information from the DD statement. The DCB parameter of the referenced DD
statement must contain subparameters; it cannot name a cataloged data set or refer to
another DD statement.

* stepname.ddname

Specifies the ddname of a DD statement in an earlier step, stepname, in the same job.
The system is to is to copy DCB information from the DD statement. The DCB
parameter of the referenced DD statement must contain subparameters; it cannot name a
cataloged data set or refer to another DD statement.

* stepname.procstepname.ddname

Specifies the ddname of a DD statement in a cataloged or in-stream procedure called by
an earlier job step. Stepname is the name of the job step that calls the procedure and
procstepname is the name of the procedure step that contains the DD statement. The
system is to is to copy DCB information from the DD statement. The DCB parameter of
the referenced DD statement must contain subparameters; it cannot name a cataloged
data set or refer to another DD statement. o

The system obtains DCB information from the following sources, in override order:

The processing program, that is, the DCB macro instruction in assembler language
programs or file definition statements or language-defined defaults in programs in other
languages.

The DCB subparameter of the DD statement.

The data set label.

Therefore, if you supply information for the same DCB field in your processing program and
on a DD statement, the system ignores the DD DCB subparameter. If a DD statement and the
data set label supply information for the same DCB field, the system ignores the data set label
information.

12-32 MVSICL

DD: DCB

Relationship to Other Parameters
Do not code the following parameters with the DCB parameter.

AMP
DYNAM

With the BDNAME parameter, code only the BLKSIZE, BUFNQO, and DIAGNS DCB
subparameters.

The following are also mutually exclusive:

DCB

Subparameter = Mutually Exclusive With

CPRI DD parameter OUTLIM
FRID DD or OUTPUT JCL FCB parameter

FUNC Data-set-sequence-number of the DI3 LABEL parameter

THRESH DD parameter OUTLIM

Mutually Exclusive DCB Subparameters: The DCB subparameters CODE, KEYLEN, MODE,
PRTSP, STACK, and TRTCH apply to different device types; because only one can apply to a
data set, they use the same DCB field. If one of these subparameters is specified on a DD
statement for a device different from the type to which it applies, the system interprets the value
incorrectly.

DCB subparameters CPRI and THRESH are mutually exclusive.

For 3540 Diskette Input|Output Units: The VOLUME =SER, DCB=BUFNO, and DSID
parameters on a DD * or DD DATA statement are ignored except when they are detected by a
diskette reader as a request for an associated data set. See I/BM 3540 Programmer’s Reference.

Completing the Data Control Block

For Assembler Language Programs: You must code the DCB macro instruction in a processing
program written in assembler language. You can specify some DCB options, particularly those
that are different for each execution of the program, on the DD statement DCB parameter, or
you can let the system read them from a data set label.

For Programs in Other Languages: If your processing program is written in a language other
than assembler, DCB options may be (1) specified as part of file definition statements in your
program, as DCB subparameters on a DD statement, or in data set label fields, or (2) taken
from language-defined default values via the DCB open exit routine. Refer to the
programmer’s guide for your language to determine how to code DCB options. Refer to Data
Management Services Guide for a description of the DCB open exit routine.

DCB Information from the DD DCB Parameter: Code DCB keyword subparameters to provide
the information required to complete the data control block. You must supply DCB options on
the DD statement DCB parameter if your processing program, the data set label, or your
language’s defined values do not complete the data control block.

Chapter 12. Coding the DD Statement 12-33

DD: DCB

DCB Information from the Label of a Cataloged Data Set: Code DCB =dsname to copy the
following DCB information from the data set label of a cataloged data set on a currently
mounted direct access volume.

DSORG (used in a backward reference)
RECFM

OPTCD

BLKSIZE

LRECL

KEYLEN

RKP

If you do not specify the volume sequence number, system code, and expiration date of the
cataloged data set, the system copies them from the data set label.

If you code any DCB subparameters after the dsname, these subparameters override any of the
corresponding subparameters in the data set label.

Mounting of Volume: A permanently resident volume is the best place from which to copy
information, because it is always mounted.

To copy from a volume that is neither permanently resident nor reserved, do one of the
following:

® Reference the volume in a job step before the step in which you copy the DCB information.
This reference will ensure that the DCB information is available.

@ If the processing program specifies the RDBACK option in the OPEN macro, code the
volume-sequence-number subparameter in the DD VOLUME parameter to make sure that
the correct volume is mounted.

DCB Information From an Earlier DD Statement: To copy DCB information from an earlier
DD statement, code in the DCB parameter one of the following backward references:

* ddname
* stepname.ddname
* stepname.procstepname.ddname

If you code any DCB subparameters following the reference, the subparameters override the
corresponding subparameters on the referenced DD statement. The system copies from the
referenced DD statement only those subparameters not specified on the referencing DD
statement.

Do not reference a DD * or a DD DATA statement.

Note: The system also copies the UCS and FCB parameters from the referenced DD
statement, unless you override them in the referencing DD statement.

12-34 mMvsiIcCL

DD: DCB

Examples of the DCB Parameter

//DD1 DD DSNAME=ALP,DISP=(,KEEP) ,VOLUME=SER=44321,
// UNIT=3400-6,DCB=(RECFM=FB, LRECL=240,BLKSIZE=960,
// DEN=1, TRTCH=C)

DD statement DD1 defines a new data set named ALP. The DCB parameter contains the
information necessary to complete the data control block.

//DD2 DD DSNAME=BAL , DISP=OLD,DCB= (RECFM=F , LRECL=80,

// BLKSIZE=80)

//DD3 DD DSNAME=CNANN, DISP=(,CATLG,DELETE) ,UNIT=3400-6,
// LABEL=(,NL) , VOLUME=SER=663488 ,DCB=* . DD2

DD statement DD3 defines a new data set named CNANN and requests that the system copy

the DCB subparameters from DD statement DD2, which is in the same job step. -
DD

//DD4 DD DSNAME=JST,DISP=(NEW,KEEP) ,UNIT=3350,

// SPACE=(CYL, (12,2)) ,DCB=(A.B.C,KEYLEN=8)

DD statement DD4 defines a new data set named JST and requests that the system copy the
DCB information from the data set label of the cataloged data set named A.B.C. If the data
set label contains a key length specification, it is overridden by the KEYLEN coded on this DD

statement.
//DD5 DD DSNAME=SMAE ,DISP=0OLD,UNIT=3350,
// DCB=(*,STEP1.PROCSTP5.DD8,BUFNO=5)

DD statement DDS5 defines an existing data set named SMAE and requests that the system
copy DCB subparameters from DD statement DD8, which is contained in the procedure step
named PROCSTPS. The cataloged procedure is called by EXEC statement STEP1. Any of the
DCB subparameters coded on DD statement DDS8 are ignored if the are specified in the
program. If the DCB BUFNO subparameter is not specified in the program, five buffers are
assigned.

Chapter 12. Coding the DD Statement 12-35

DD: DCB

Access ‘
Method

Sub-
Parameters

BTAM
EXCP

GAM

QSAM
TCAM

Description of Subparameters

x | BDAM
< | BISAM
< | BPAM
» | BSAM

BFALN

>

» | QISAM

>

BFALN = {F|D}

Specifies that each buffer starts either on a word boundary that is not also a
doubleword boundary or on a doubleword boundary. . If both BFALN and
BFTEK are specified, they must be specified from the same source.

Default: D (doubleword)

BFTEK X

BFTEK =R for BDAM and BSAM

BFTEK =D for BTAM

BFTEK = {S|E|A} for QSAM

R Specifies that the data set is being created for or contains variable-length
spanned records. : o .

D Specifies that dynamic buffering is to be used in the processing program; if
dynamic buffering is specified, a buffer pool must also be defined.

S,E,and A _ :

Specify simple, exchange, or locate mode logical record interface for
~spanned records. S, E, or A can be coded only when RECFM =VS.

If both BFALN and BFTEK are specified, they must be specified from the same
source.

BLKSIZE X

BLKSIZE = number-of-bytes

Specifies the maximum length, in bytes, of a block. The maximum is 32760. The
number you specify for BLKSIZE depends on the device type and the record
format for the data set. For ASCII data sets on magnetic tape, the minimum
value for BLKSIZE is 18 bytes and the maximum is 2048 bytes. If you code the
BLKSIZE subparameter in the DCB macro instruction or on a DD statement
that defines an existing data set with standard labels, the DCB BLKSIZE
overrides the block size specified in the label. BLKSIZE can be coded but will
have no effect on EXCP processing.

BUFIN

BUFIN = number-of-buffers

Specifies the number of buffers to be assigned initially for receiving operations for
each line in the line group. The combined BUFIN and BUFOUT values must
not be greater than the number of buffers in the buffer pool for this line group
(not including those for disk activity only).

Default: 1

BUFL X

BUFL =number-of-bytes

Specifies the length, in bytes, of each buffer in the buffer pool. The maximum is
32760.

BUFMAX

BUFMAX = number-of-buffers

Specifies the maximum number of buffers to be allocated to a line at one time.
Number must be 2 through 15 and must be equal to or greater than the larger of
the numbers specified by the BUFIN and BUFOUT subparameters.

Default: 2

12-36 MvVsICL

DD: DCB

Access
Method
= E = 5 =|a - 5 =l= Description of Subparameters
Sub HEEHEEREEE
parameters AR E R RAEIREELE
BUFNO XIX|XIX|X|X XiX BUFNO =number-of-buffers

Specifies the number of buffers to be assigned to the DCB. The maximum
normally is 255, but can be less because of the size of the region.

BUFOFF X X| |BUFOFF={n[L}

n Specifies the length, in bytes, of the block prefix used with an ASCII tape
data set. For input, n can be 0 through 99. For output, n must be 0 for
writing an output data set with fixed-length or undefined-length records.

L Specifies that the block prefix is 4 bytes and contains the block length.
BUFOFF =L is valid only with RECFM =D. For output, only

BUFOFF =L is valid. | -
DD
BUFOUT X | BUFOUT = number-of-buffers

Specifies the number of buffers to be assigned initially for sending operations for
each line in the line group. The combined number of BUFIN and BUFOUT
values must not be greater than the number of buffers in the buffer pool for this
line group (not including those for disk activity only) and cannot exceed 15.

Default: 2

BUFSIZE X | BUFSIZE = number-of-bytes

Specifies the length, in bytes, of each of the buffers to be used for all lines in a
particular line group. Length must be 31 through 65535 bytes.

CODE X X X CODE={A|B|C|F|IIN|T}

Specifies the paper tape code used for punched data. The subparameters CODE,
KEYLEN, MODE, PRTSP, STACK, and TRTCH are mutually exclusive.

A ASCII (8 track)
B Burroughs (7 track)
C National Cash Register (8 track)
F Friden (8 track)
1 IBM BCD perforated tape transmission code (8 track)
N No conversion required
T Teletype! (5 track)
Default: 1
CPRI X | CPRI = {R|E|S}

Specifies the relative transmission priority assigned to the lines in this line group.
R Specifies that CPU receiving has priority over CPU sending.

E Specifies that receiving and sending have equal priority.

S Specifies that CPU sending has priority over CPU receiving.

Note: Subparameter CPRI is mutuaily exclusive with subparameter THRESH
and with DD parameter OUTLIM.

Trademark of Teletype Corporation, Skokie, I1l.

Chapter 12. Coding the DD Statement 12-37

DD: DCB

Access
Method
= = a Zis|s Description of Subparameters
su- HHEEEEEEEE
Parameters IR ERISRC] (=4 =4 |5
CYLOFL X CYLOFL =number-of-tracks
Specifies the number of tracks on each cylinder to hold the records that overflow
from other tracks on that cylinder. The maximum is 99.
Specify CYLOFL only when OPTCD =Y.
DEN X X X DEN = {0|1|2)3]4}
Specifies the magnetic density, in number of bytes-per-inch, used to write a
magnetic tape data set.
DEN | 7-track tape 9-track tape
0 200 -
1 556 -
2 800 800 (NRZI)
3 - 1600 (PE)
4 - 6250 (GCR)
NRZI Non-return-to-zero inverted recording mode.
PE Phase encoded recording mode.
GCR Group coded recording mode.
Default: 800 bpi assumed for 7-track tape and 9-track without dual density.
1600 bpi assumed for 9-track with dual density or phase-encoded
drives.
6250 bpi assumed for 9-track with 6250/1600 bpi dual density or group
coded recording tape.
DIAGNS XIXIXIX|X[X{XIX]X DIAGNS =TRACE
Specifies the OPEN/CLOSE/EOV trace option, which gives a
module-by-module trace of OPEN/CLOSE/EOV’s work area and the DCB. If
the generalized trace facility (GFT) is not running and tracing user events,
DIAGNS is ignored.
DSORG XXX X X X]X]X]X]|X]|DSORG = data-set-organization
' Specifies the organization of the data set and indicates whether the data set
contains any location-dependent information that would make the data set
unmovable.
Organization Access Method
PS Physical sequential data set BSAM,EXCP,QSAM, TCAM
PSU Physical sequential data set that con- BSAM,QSAM,EXCP
tains location-dependent information
DA Direct access data set BDAM,EXCP
DAU Direct access data set that contains BDAM,EXCP
location-dependent information
IS Indexed sequential data set BISAM,QISAM,EXCP
ISU Indexed sequential data set that con- QISAM,EXCP
tains location-dependent information
PO Partitioned data set BPAM,EXCP
POU Partitioned data set that contains BPAM,EXCP
location-dependent information
CX Communications line group BTAM
GS Graphic data control block GAM

12-38 mMvsiCL

DD: DCB

Access
Method

Sub-
Parameters

BDAM
BISAM
BPAM

BSAM

EXCP

GAM

QISAM

TCAM

Description of Subparameters

EROPT

» | BTAM

> | QSAM

EROPT =n

BTAM: Requests the BTAM on-line terminal test option.
n=T
QSAM: Specifies the option to be executed if an error occurs in reading
or writing a record.
n=ACC System is to accept the block causing the error.
SKP System is to skip the block causing the error.
ABE System is to cause abnormal end of task.

Default: ABE

FRID

FRID = identifier

Specifies a 1- to 4-character load module name identifying the first format record
of the 3886 Optical Character Reader data set. FRID is mutually exclusive with
the DD or OUTPUT JCL FCB parameter.

FUNC

FUNC = {I|R|P|W|D{X|T}

Specifies the type of data set to be opened for a 3505 Card Reader or 3525 Card
Punch. Unpredictable results will occur if coded for other than a 3505 or 3525.

Note: Subparameter FUNC is mutually exclusive with the
data-set-sequence-number of the DD LABEL parameter.

Data set is for punching and printing cards.
Data set is for reading cards.

Data set is for punching cards.

Data set is for printing.

Protected data set is for punching.

Data set is for both punching and printing.
Two-line print option.

HXOET R~

Default: P, for output data set. R, for input data set.

The only valid combinations of these values are:

I WwT RWT RPWXT PWX
R RP PW RPWD RPWX
P RPD PWXT RWX RWX
w RW RPW RWXT

GNCP

GNCP =number-of-channel-programs

Specifies the maximum number of I/O macro instructions that the program will
issue before a WAIT macro instruction.

INTVL

INTVL = {integer|0}

Specifies the interval, in seconds, between passes through an invitation list.

Default: 0

IPLTXID

IPLTXID = member-name

Specifies the member name of the partitioned data set that you want loaded into a]
3704/3705 Communications Controller. The DCB IPLTXID subparameter
overrides IPLTXID in the TERMINAL macro representing the NCP.

Chapter 12. Coding the DD Statement 12-39

DD: DCB

Access
Method

Sub-
Parameters

BISAM

BSAM
BTAM

QISAM

QSAM

Description of Subparameters

KEYLEN

> | BDAM

> | BPAM

>

> 1 EXCP
GAM

b

> | TCAM

KEYLEN = number-of-bytes

Specifies the length, in bytes, of the keys used in a data set. The number is from

1 through 255. KEYLEN =0 specified in the DCB parameter is ignored. For an
existing data set, the key length can be supplied from the data set label. If a key
length is not specified or supplied, input or output requests must not require keys.
The subparameters CODE, KEYLEN, MODE, PRTSP, STACK, and TRTCH
are mutually exclusive.

LIMCT X

LIMCT = number-of-blocks-or-tracks

Specifies how many blocks (if relative block addressing is used) or how many
tracks (if relative track addressing is used) are to be searched for a free block or
available space. This kind of search occurs only when DCB OPTCD=E is also
specified; otherwise, LIMCT is ignored. If the LIMCT number equals or exceeds
the number of blocks or tracks in the data set, the entire data set is searched.

LRECL

LRECL =number-of-bytes

Specifies (1) the length, in bytes, for fixed-length records or (2) the maximum
length, in bytes, for variable-length records. When the DCB RECFM is F or U,
the length must not exceed the DCB BLKSIZE. For RECFM =D or V, the
length must not exceed BLKSIZE minus 4. For RECFM =VS, the length can
exceed BLKSIZE. For unblocked records when DCB RKP =0, the length is for
only the data portion of the record.

LRECL =nnnnnK

Specifies the length in kilobytes for variable-length spanned records in
ISO/ANSI/FIPS Version 3 tape data sets that are processed the Data Facility
Product using the extended logical record interface (XLRI). nnnon is from 1
through 16383 and indicates multiples of 1024 bytes. The value in the DCB must
be LRECL=0K or LRECL=nnnnnK. If a K is coded for any other type of data
set, only the numeric value of LRECL is recognized.

QSAM: LRECL=X

Specifies that the logical record length exceeds 32760 bytes for variable-length
spanned records. This option is not valid for ISO/ANSI/FIPS Version 3
variable-length records.

12-40 mvsicL

DD: DCB

Access
Method
=g, =|= Description of Subparameters
s 22221221212
Parameters) ES% HEICIEEE
MODE X X X
{CIlO]}

MODE= {EI([R]}
Specifies the mode of operation to be used with a card reader, a card punch, or a
card read-punch.
C Card image (column binary) mode
E EBCDIC mode
O Optional mark read mode
R Read column eliminate mode
If you specify R, you must also specify either C or E. Do not code the MODE
subparameter for data entered through the input stream except in a JES3 system.
The subparameters CODE, KEYLEN, MODE, PRTSP, STACK, and TRTCH
are mutually exclusive.
Do not code MODE=C for JES2 or JES3 output.
Default: E

NCP XXX NCP = number-of-channel-programs
Specifies the maximum number of READ or WRITE macro instructions that will
be issued before a CHECK macro instruction is issued to test for completion of
the I/O operation. The maximum number is 99, but may actually be smaller
depending on the size of the region or partition. If chained scheduling is used,
the number must be greater than 1.
Defauit: 1

NTM X NTM = number-of-tracks
Specifies the number of tracks to be used for a cylinder index. When the specified
number of tracks has been filled, a master index is created. The DCB NTM is
needed only when the DCB OPTCB=M. If you specify OPTCD =M but omit
NTM, the master index option is ignored.

Chapter 12. Coding the DD Statement 12-41

DD: DCB

Access
Method
s1E|lslsi=]a s|= Description of Subparameters
s 2EEEEEEEER
Parameters Rl= % @@ || OO
OPTCD XIX|X]X X X1 X | X | Specifies the optional services to be performed by the control program. All

optional services must be requested in one source, that is, in the data set label of
an existing data set, in the DCB macro, or in the DD DCB parameter. However,
the processing program can modify the DCB OPTCD field. Code the characters
in any order; when coding more than one, do not code commas between the
characters.

{{A} ' }

BDAM: OPTCD= {{R}EJF]W] }

A indicates that the actual device addresses are to be specified in READ and
WRITE macro instructions.

R indicates that relative block addresses are to be specified in READ and
WRITE macro instructions.

E indicates that an extended search (more than one track) is to be performed
for a block of available space. LIMCT must also be coded. Do not code
LIMCT =0 because it will cause an abnormal termination when a READ or,
WRITE macro instruction is executed.

F indicates that feedback can be requested in READ and WRITE macro
instructions and the device is to be identified in the same form as it was
presented to the control program.

W requests a validity check for write operations on direct access devices.

BISAM: OPTCD ={[L][R][W]}

L requests that the control program delete records that have a first byte of all
ones. These records will be deleted when space is required for new records.
To use the delete option, the DCB RKP must be greater than zero for
fixed-length records and greater than four for variable-length records.

R requests that the control program place reorganization criteria information
in certain fields of the DCB. The problem program can analyze these
statistics to determine when to reorganize the data set.

W requests a validity check for write operations on direct access devices.

Default: R, whenever the OPTCD subparameter is omitted from all sources.
BPAM: OPTCD = {C|WI|CW}

{CIH[HC)
{CIWH|WHC}

C requests chained scheduling.
W requests a validity check for write operations on direct access devices.
H

requests that a partitioned data set being processed and residing on MSS, if
opening for input, is to be staged to end of file (EOF) on the virtual
DASD. Otherwise, only the directory is staged.

-12-42 MVS JCL

DD: DCB

Access
Method
Description of Subparameters
- A HEEEEEEEE Ferpton of Sebe
Parameters SHEHEHBEERIEER
OPTCD BSAM and QSAM: OPTCD = {B}
(continued) {T}
{UIC]}
{CITI[BI[UL}
{HIZ][B]}
{JIClUL}
{WICIIT]BIUL}
{Z[CI[TIBI[U}
{QICI[TI{B]}
{z}

B requests that the end-of-volume (EOV) routine disregard the end-of-file
(EOF) recognition for magnetic tape. For an input data set on a
standard-labeled (SL or AL) tape, the EOV routine treats EOF labels as
EOV labels until the volume serial list is exhausted. This option allows SL
or AL tapes to be read out of volume sequence or to be concatenated to
another tape with the same data set name using one DD statement.

C requests chained scheduling.

H requests hopper empty exit for optical readers or bypass of DOS checkpoint
records.

J for a data set to be printed on a 3800 Printing Subsystem, instructs the
system that each output data line begins with a print control character
followed by a table reference character (TRC). The TRC identifies which
character arrangement table in the CHARS parameter is to be used to print
the line. Before specifying OPTCD =], see the IBM 3800 Printing
Subsystem Programmer’s Guide.

Q requests (1) that ASCII tape records in an input data set be converted to
EBCDIC code when the input record has been read, or (2) an output record
in EBCDIC code be converted to ASCII code before the record is written.

T requests user totaling facility. T cannot be specified for a SYSIN or
SYSOUT data set.

U for 1403 or 3211 Printers with the Universal Character Set (UCS) feature
and for the 3800, permits data checks and allows analysis by an appropriate
error analysis routine. If U is omitted, data checks are not recognized as
erTors.

U for MSS, requests window processing to reduce the amount of staging space
required to process large sequential data sets. The DCB DSORG must be
PS, the allocation must be in cylinders, and the type of I/O accessing must
be INPUT only or OUTPUT only.

W requests a validity check for write operations on direct access devices.

N

for magnetic tape input, requests that the control program shorten its
normal error recovery procedure. When specified, a data check is
considered permanent after five unsuccessful attempts to read a record.

z for direct access storage device input, specifies search direct (SD) for
sequential data sets.

Z for direct access input, specifies the search direct technique.

OPTCD =Z is ignored if chained scheduling is used.

EXCP: OPTCD=Z

Z for magnetic tape input, requests that the control program shorten its
normal error recovery procedure. When specified, a data check is
considered permanent after five unsuccessful attempts to read a record.

Z for direct access storage device input, specifies search direct (SD) for
sequential data sets.

Chapter 12. Coding the DD Statement 12-43

DD: DCB

Aceess
Method | ‘
E | . e
- = Description of Subparameters
su- EEEEEEES
Parameters SHEEBE PR EE ‘
OPTCD . QISAM: OPTCD = {[IJ[LIM][R}UIWIY]}
(continued) :

I requests that ISAM use the independent overflow areas for overflow
records.

L requests that ISAM delete records that have a first byte of all ones. These
records can be deleted when space is required for new records. To use the
delete option, the DCB RKP must be greater than zero for fixed-lenzth
records and greater than four for variable-length records.

M requests that the system create and maintain one or more master indexes,
according to the number of tracks specified in the DCB NTM
subparameter.

R requests that the control program place reorganization criteria information
in the DCB. The problem program can analyze these statistics to determine
when to reorganize the data set.

U requests that the system accumulate track index entries in storage and write
them as a group for each track of the track index. U can be specified only
for fixed-length records.

W requests a validity check for write operations on direct access devices.

Y requests that the system use the cylinder overflow areas for overflow
records.

Default: R, whenever the OPTCD subparameter is omitted from all sources.

TCAM: OPTCD = {C|U|W}

C specifies that one byte of the work area indicates if a segment of a message
is the first, middle, or last segment.

U specifies that the work unit is a message. If U is omitted, the work unit is
assumed to be a record.

W specifies that the name of each message source is to be placed in an 8-byte

. field in the work area.
PCI X
{(INIL,ND}
PCI= {(RILRD}
{(AILAD}
{IXILXD}

Specifies (1) whether or not a program-controlled interruption (PCI) is to be used
to control the allocation and freeing of buffers and (2) how these operations are
to be performed. The first operand applies to receiving operations and the second
to sending operations.

N specifies that no PCIs are taken while filling buffers during receiving
operations or emptying buffers during sending operations.

R specifies that after the first buffer is filled or emptied, a PCI occurs during
the filling or emptying of each succeeding buffer. The completed buffer is
freed, but no new buffer is allocated to take its place.

A specifies that after the first buffer is filled or emptied, a PCI occurs during
the filling or emptying of the next buffer. The first buffer is freed, and a
buffer is allocated to take its place.

X . .specifies that after a buffer is filled or emptied, a PCI occurs during the

filling or emptying of the next buffer. The first buffer is not freed, but a
new buffer is allocated.

You can omit the parentheses if you code only the first operand.

Default: (A,A)

12-44 mvsICL

DD: DCB

Access
Method ‘
112 e = Description of Subparameters
so- HEEHEEREEE
Parameters mimiEdalmE|S| oS
PRTSP X X X PRTSP={0/1|2|3}

Specifies the line spacing for an online printer. PRTSP is valid only for an online
printer and only if the DCB RECFM is not A or M. PRTSP=2 is ignored if
specified with the DD SYSOUT parameter. The subparameters CODE,
KEYLEN, MODE, PRTSP, STACK, and TRTCH are mutually exclusive.

0 spacing is suppressed
1 single spacing

2 double spacing

3 triple spacing

Default: 1

JES2 ignores PRTSP for SYSOUT data sets.

RECFM X XX X X | X | X | Specifies the format and characteristics of the records in the data set. All the
format and characteristics must be completely described in one source, that is, in
the data set label of an existing data set, in the DCB macro, or in the DD DCB
parameter. However, the processing program can modify the DCB RECFM

field.
{u }
{ VIs] }
BDAM: RECFM= {[BS] }
{ FIT] }
U indicates that the records are of undefined length.
v indicates that the records are of variable length.

VS indicates that the records are of variable length and spanned.

VBS indicates that the records are of variable length, blocked, and spanned, and.
that the problem program must block and segment the records.

F indicates that the records are of fixed length.
T indicates that the records may be written using the track-overflow feature.

Default: undefined-length, unblocked records.

{U [T [A]
{ M]

v [B] [A]
(1] [M]
[BT]

B] [A]
(T M]
[BT]
indicates that the record contains ISO/ANSI control characters.

indicates that the records are blocked.

indicates that the records are of fixed length.

indicates that the records contain machine code control characters.

indicates that the records may be written using the track-overflow feature.
Chained scheduling (OPTCD =C) will be ignored. :
indicates that the records are of undefined length.

indicates that the records are of variable length.

BPAM: RECFM =

B o)

e Nt Wt R Rate Rt Rt Tt

<c HzTw»

Default: U

Chapter 12. Coding the DD Stat~ment 12-45

DD: DCB

Access
Method
Sub. 5 é 5 E E s - g 5 i Description of Subparameters
Parameters nQ:E %%Eﬁ 5588
RECFM {U [T} [A] }
(continued) { M] }
{ b
{F [B] [A]}
{ (51 ™M)}
{ [T] }
{ [BS] }
BSAM,EXCP,& QSAM: RECFM = { [BT] }
{ [BST])
{ }
{v [B1 [A] }
{ (51 M]}
{ T] }
{ [BS] 3
{ [BT] }
{ [BST] }
For BSAM, EXCP, and QSAM using ISO/ANSI/FIPS data sets on tape:

{D[B] S }

{D [B] [A] }

RECFM= {U [A] }

{F [B] [A] }

A or M cannot be specified if the PRTSP subparameter is specified.

indicates that the record contains ISO/ANSI device control characters.

indicates that the records are blocked.

indicates that the records are variable-length ISO/ANSI tape records.

indicates that the records are of fixed length.

indicates that the records contain machine code control characters.

(1) For fixed-length records, indicates that the records are written as

standard blocks, that is, no truncated blocks or unfilled tracks within the

data set, with the exception of the last block or track. (2) For

variable-length records, indicates that a record can span more than one

block.

indicates that the records can be written using the track-overflow feature, if

required. Chained scheduling (OPTCD =C) is ignored.

U indicates that the records are of undefined length. U is invalid for an
ISO/ANSI/FIPS Version 3 tape data set.

v indicates that the records are of variable length. V cannot be specified for

(1) a variable-length ISO/ANSI tape data set (specify D for this data set),

(2) a card reader data set, or (3) a 7-track tape unless the data conversion

feature (TRTCH =C) is used.

vwzTMY® >

o

Default: U for IBM standard label tapes.

QISAM: RECFM = { V[B] }
{ F[B] }
B indicates that the records are blocked.
F indicaies that ihe records are of fixed length.
v indicates that the records are of variable length; variable records cannot be
in ASCII.

When creating indexed sequential data sets, you can code the RECFM
subparameter; when processing existing indexed sequential data sets, you must
omit RECFM.

Default: V

12-46 MVSsJCL

DD: DCB

Access
Method

Sub-
Parameters

BDAM
BISAM
BPAM

BSAM

BTAM

EXCP

GAM

QISAM
QSAM
TCAM

Description of Subparameters

RECFM
(continued)

TCAM: RECFM= {U }
{ V[B] }
{F 3}
B indicates that the records are blocked.
F indicates that the records are of fixed length.
U indicates that the records are of undefined length.
V indicates that the records are of variable length.

Default: U

RESERVE

RESERVE = (number1,number2)

Specifies the number of bytes (0 through 255) to be reserved in a buffer for
insertion of data by the DATETIME and SEQUENCE macros.

number] indicates the number of bytes to be reserved in the first buffer that
receives an incoming message.

number2 indicates the number of bytes to be reserved in all the buffers
following the first buffer in a multiple-buffer header situation.

Default: (0,0)

RKP

RKP =number

Specifies the position of the first byte of the record key in each logical record.
The first byte of a logical record is position 0.

If RKP =0 is specified for blocked fixed-length records, the key begins in the first
byte of each record. OPTCD =L must not be specified.

If RKP =0 is specified for unblocked fixed-length records, the key is not written
in the data field. OPTCD =L can be specified.

For variable-length records, the relative key position must be 4 or greater, if
OPTCD =L is not specified; the relative key position must be 5 or greater, if
OPTCD =L is specified.

Default: 0

For EXCP processing, RKP can be coded but is ignored.

STACK

STACK ={1[2}

Specifies which stacker bin is to receive a card. The subparameters CODE,
KEYLEN, MODE, PRTSP, STACK, and TRTCH are mutually exclusive.

Default: 1

THRESH

THRESH =number

Specifies the percentage of the nonreusable disk message queue records that are to
be used before a flush closedown occurs.

Default: Closedown occurs when 95} of the records have been used.

Note: Subparameter THRESH is mutually exclusive with subparameter CPRI
and with DD parameter OUTLIM.

Chapter 12. Coding the DD Statement 12-47

DD: DCB

Access
Method
Si= a = Description of Subparamsters
su- 2EEEEEEEES
Parameters AR AR R BIEIEEE
TRTCH X X X TRTCH = {C|E|T|ET}

Specifies the recording technique for 7-track tape. The subparameters CODE;

KEYLEN, MODE, PRTSP, STACK, and TRTCH are mutually exclusive.

C specifies data conversion, odd parity, and no translation.

E specifies no data conversion, even parity, and no translation.

T specifies no data conversion, odd parity, and that BCD to EBCDIC
translation is required when reading and EBCDIC to BCD translation
when writing.

ET specifies no data conversion, even parity, and that BCD to EBCDIC
translation is required when reading and EBCDIC to BCD translation
when writing.

Default: no conversion, odd parity, and no translation.

12-48 MVS ICL

DD: DDNAME

DDNAME Parameter

Parameter Type: Keyword, optional

Purpose: Use the DDNAME parameter to postpone defining a data set until later in the same
job step. A DDNAME parameter on a DD statement in a cataloged or in-stream procedure
allows you to postpone defining the data set until a job step calls the procedure; the data set
must be defined in the calling job step.

References: For more information on the DDNAME parameter, see “Specifying the
DDNAME Parameter” on page 7-1.

Syntax:

DDNAME=ddname

Subparameter Definition

ddname
Refers to a later DD statement that defines the data set. The ddname must match the
ddname of the defining DD statement.

A job step or procedure step can contain up to five DD statements with DDNAME
parameters. Each DDNAME parameter must refer to a different DD statement.

Relationship to Other Parameters

Overrides

The only DD parameters you can code with the DDNAME parameter are:

AMP
DCB=BLKSIZE
DCB=BUFNO
DCB=DIAGNS

Do not code the DDNAME parameter on a DD statement with a ddname of JOBLIB,
JOBCAT, or STEPCAT.

If any DCB subparameter appears on both DD statements, the DCB subparameter on the
referenced DD statement overrides the DCB subparameter on the DD statement that contains
DDNAME.

Chapter 12. Coding the DD Statement 12-49

DD: DDNAME

Location in the JCL

Place the DD statement referenced in the DDNAME parameter later in the job step or in a
cataloged or in-stream procedure called by the job step.

If the referenced data set is to be concatenated with other data sets, the DD statements for the
concatenated data sets must immediately follow the DD statement that contains the DDNAME
parameter.

Errors in Location of Referenced DD Statement: The system treats a DDNAME parameter as
through it were a DUMMY parameter and issues a warning message in both of the following
cases: :

® If the job step or called procedure does not contain the referenced DD statement.
@ If the referenced DD statement appears earlier in the job step.

Location. of DD Statement Requesting Unit Affinity: To use the same device, a DD statement
can request unit affinity to an earlier DD statement by specifying UNIT = AFF = ddname.

If a DD statement requests unit affinity to a DD statement containing a DDNAME parameter,
the DD statement requesting unit affinity must be placed after the DD statement referenced in
the DDNAME parameter. If the DD statement requesting unit affinity appears before, the
system treats the DD statement requesting unit affinity as a DUMMY DD statement.

//STEP EXEC PGM=TKM

//bD1 DD DDNAME=DD4
//DD2 DD DSNAME=A,DISP=OLD

//DD4 DD DSNAME=B, DISP=0OLD
//DD5 DD UNIT=AFF=DD1

DD1 postpones defining the data set until DD4. DDS5 requests unit affinity to DD1. Because
DD1 is defined when DDS5 is processed, the system assigns DDS to the same device as DDI.

Instead of specifying UNIT = AFF =ddname, both DD statements can specify the same devices
in their UNIT parameters or the same volume serials in their VOLUME parameters. For more
information on unit affinity, see “Sharing a Unit Between Data Sets on Different Volumes” on
page 7-32.

Referenced DD Statement
If the DDNAME parameter appears in a procedure with multiple steps, the ddname on the

referenced DD statement takes the form stepname.ddname. For example, if procedure step
STEPCPI1 contains:

//INDATA DD DDNAME=DD1

The referenced DD statement in the calling job step is:

//STEPCP1.DD1 DD *

The referenced DD statement must not contain a DYNAM parameter.

12-50 mvsicL

DD: DDNAME

Backward References

A backward reference is a reference to an earlier DD statement in the job or in a cataloged or
in-stream procedure called by a job step. A backward reference is in the form *.ddname or

* stepname.ddname or *.stepname.procstepname.ddname. The ddname in the reference is the
ddname of the earlier DD statement. If the earlier DD statement contains a DDNAME
parameter, the reference is to the ddname in the name field of the earlier statement, not to the
ddname in the DDNAME parameter.

The DD statement referenced in a DDNAME parameter cannot refer to a DD statement
between the statement containing the DDNAME parameter and itself. For example:

//SHOW EXEC PGM=ABLE

//DD1 DD DDNAME=INPUT

//DD2 DD DSNAME=TEMPSPAC,SPACE=(TRK, 1) ,UNIT=SYSDA

//DD3 DD DSNAME=INCOPY,VOLUME=REF=*.DD1, t

// DISP=(,KEEP) ,SPACE=(TRK, (5,2))
//DD4 DD DSNAME=OUTLIST,DISP=0LD

//DD5 DD DSNAME=MESSAGE,DISP=0LD,UNIT=3330,VOLUME=SER=333333

//INPUT DD DSNAME=NEWLIST,DISP=(OLD,KEEP),VOLUME=SER=333333,

// UNIT=3330

The DDNAME parameter on DD1 refers to DD statement INPUT.

The VOLUME parameter of DD3 specifies a backward reference to DD1, which is the ddname
in the name field of the referenced statement.

DD statement INPUT identifies the volume 333333 in its VOLUME = SER = 333333 parameter.
DD statement INPUT cannot use a backward reference to the VOLUME parameter on DD5
because DDS5 is between the referring DD1 and the referenced INPUT.

Examples of the DDNAME Parameter

The following procedure step is the only step in a cataloged procedure named CROWE:

//PROCSTEP EXEC PGM=RECPGM
//DD1 DD DDNAME=WKREC
//POD DD DSNAME=OLDREC,DISP=OLD

DD statement DDI1 is intended for weekly records in the input stream; these records are
processed by this step. Because the * and DATA parameters cannot be used in cataloged
procedures, the DDNAME parameter is coded to postpone defining the data set until the
procedure is called by a job step. The step that calls the procedure is:

//STEPA EXEC PROC=CROWE
//WKREC DD *

data

/*

Chapter 12. Coding the DD Statement 12-51

DD: DDNAME

When the procedure contains multiple steps, use the form stepname.ddname for the ddname of
the referenced DD statement. For example, the following procedure steps appear in a cataloged
procedure named PRICE:

//STEP1 EXEC PGM=SUGAR
//DD1 DD DDNAME=QUOTES

//STEP2 EXEC PGM=MOLASS
//DD2 DD DSNAME=WEEKB,DISP=OLD

The step that calls the procedure is:
//STEPA EXEC PROC=PRICE
//STEP1.QUOTES DD *

data

/*

12-52 MVSICL -

DEST Parameter

Parameter Type: Keyword, optional

DD: DEST

Purpose: Use the DEST parameter to specify a destination for a system output data set. The
DEST parameter can send a sysout data set to a remote or local terminal, a node, a node and
remote work station, a local device or group of devices, or a terminal at a node.

Note: Code the DEST parameter only on a DD statement with a SYSOUT parameter.

Otherwise, the system checks the DEST parameter for s