
Systems Reference Library

IBM System/360 Time Sharing System

Assembler User Macro Instructions

File No. S360-36
Forw C28-2004-2 TSS

IBM System/360 Time Sharing System provides compre­
hensive program and data management services which,
together with communication, tulk output, and interrup­
tion handling services, are requested through macro
instructions. These rracro instructions are written in
the assembler language as an aid to programming and
processing time-shared tasks.

PREFACE

This publication contains a description
of Time Sharing System/360 (TSS/360) macro
instructions available to the assembler
language user.

The publication is divided into three
parts:

Part I: User Maco Instructions - con­
tains an introduction to user macro
instructions and their functional cate­
gories and describes the basic principals
of the TSS/360 macro instruction language.
Value mnemonics and basic macro instruction
formats are discussed in detail.

Part II: Functional Macro Instruction
Descriptions - contains detailed descrip­
tions of the macro instructions available
with TSS/360 within the framework of their
major functional purpose.

Appendixes -- Use of exit routines, con­
trol characters available with certain data
management facilities, and interrupt handl­
ing routines are explained.

All macro instructions available to the
assembler language user are listed in this
publication. However, since use of certain

Third Edition (September 1968)

macro instructions requires detailed know­
ledge of system operation, these macro
instructions are not of concern to the
average TSS/360 user. Detailed descrip­
tions are given in IBM System/360 Time
Sharing System: System Programmer's Guide,
Form C28-2008.

Prerequisite Publications

IBM System/360 Time Sharing System:
Concepts and Facilities, Form C28-2003

IBM System/360 Time Sharing System:
Assembler Language, Form C28-2000

Other recommended publications are:

IBM System/360 Time Sharing System:
Linkage Editor, Form C28-2005

IBM System/360 Time Sharing System:
Command System User's Guide, Form
C28-2001

IBM System/360 Time Sharinq System:
Assembler Programmer's Guide, Form
C28-2032

This editor has been updated technically; by including the Command
System macro instructions, AETD, OBEY, PRMPT, MCA~;T, SYSI~, BPKD, ~nd.
GDV; by adding the SIC operand to the GATE macro J.nstruct~on descr~pt~ons;
and by adding a return code to the list of ret~rn.codes fo: the COD ~acro
instruction. In addition, it has been reorgan~zed by plac~ng macro ~n­
struction descriptions within the framework of thE!ir major functiona~
categories. It should be noted that the DCB, OPEN, and CLOSE macr~ ~n­
structions which formerly appeared within each access method group~ng
now only appearance.

This edition is current with Version 3, Modification 0, and remains
in effect for all subsequent versions or modifica1:ions of IBM System/360
Time Sharing System unless otherwise indicated. !3ignificant changes or
additions to this publication will be provided in new editions or Techn­
ical Newsletters. Before using this publication in connection with the
operation of IBM systems, refer to the latest edii:ion of IBM System/360
Time Sharing System: Addendum, Form C28-2043, for the editions of pub­
lications that are applicable and current.

Specifications contained herein are subject to change from time to
time. Any such change will be reported in subsequent revisions or
Technical Newsletters.

This publication was prepared for production u!;ing an IBM computer to
update the text and to control the page and line format. Page impres­
sions for photo-offset printing were obtained froIn an IBM 1403 Printer
using a special print chain.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office servinq your locality.

A form is provided at the back of this publicai:ion for reader's com­
ments. If the form has been removed, comments mav be addressed to IBM
Corporation, Time Sharing System/360 Programming]'ublications, Depart-
ment 561, 2651 Strang Blvd., Yorktown Heights, N. Y. 10598

© International Business Machines Corporation 1966, 1967, 1968

PABT I: USER MACRO INSTRUCTIONS · · · · · · · · Section I: Int:roduction . · · · . . · · · · Data Set Management . · · · · · · · Program Management . · · · · · · · Section II: The Macro Inst:ruction Language · · · · Macl:o Instruction Format
Name Field
Operation Field . . . , . · · · · · Operand Field . . · · · · Macro Description Value Mnemonics · · · · Types of Macro Instructions · · · · a-Type Macl:O Instructions · · · · · S-Type Mac:ro Instructions · · · · . . · · · · Other Macrc Instructions

"PART 1.1: FUNCTIONAL HACRO INST"RUCTION DESCRIPTIONS ••••
Section I: Data Set Management
Defining a Data Set to the System • •

DDJF -- Define a Data Set ~)
DCB -- Construct a Data Control Block (0)
cnD -- Retrieve and Execute DDEF Commands (S)
DeBD -- Provide Symbolic Names for a Data Control Block (0)
FINDDS* - Locate JPCB Corresponding to Data Set Name (S)
FINDJPCB* - Locate JBCE and Ensure Volume Hounting (S)

Connecting a Data Set To The System • • • • • • • •
OPEN -- Connect a Data Set td the System (S) •••••

Accessing a Data Set • • • • • • •••
Virtual sequential Access Method • • • •

GET -- Get a Record (R) • • • • •
PUT -- Include a record in an Output Data Set (R)
PUTI -- Replace a Sequential Logical Record (R) • • • •
5ETL -- Specify start of Sequential processing (R)

Virtual Indexed Sequential Access Method •• • • • • • •
GET -- Get a Record (R) • • • • • • • • • • • • • • • •
PUT -- Include a Record in an output Data Set (R)
HEAD -- Read a Selected Logical Record (S)
WBITE -- Write a Selected Record (S) ••••
SETL -- Specify Start of Sequential Processing (m
ESETL -- Release Shared Data Set (R) •••••••••
DILREC -- Delete a Record (ft) • • • • • • • •
RELEX -- Release Read Exclusive Record (R) • • • •

Virtual Partitioned Access Method • • • • • • • • • • • •
FIND -- Find a Member of a Partitioned Data Set (S)
STOW -- Manipulate Partitioned Organization Directory (R) •

Basic Sequential Access ~ethod • • • • • • • • •
READ -- Read a Block (5) •••••••••••••••
WRITE -- Write a Block (5) ••••• • •••••

· · ·

CHECK -- Wait for and Test Completion of READ or WR!TE Operation (R)
DQDECB -- Eemove Unchecked DECBs From a Data Set's DECB Queue (R)
GETBUF -- Get a Buffer From a Pool (R) ••••
FBEEBUF -- Return a Buffer to a Pool (R)
GETPOOL -- Get a Buffel: Pool (R)
FBEEPOOL -- Free a Buf fer Pool (R) ••••
asp -- Backspace a Block (N) ••••• •••
C NTRL -- Control On-Li ne Inp ut/Output Devices (R)
FEOV -- Force End of Volume (R)
POINT -- Position to a Block (R)
NOTE -- Provide Position Feedback (R)
PBTOV -- Test for Printer Carriage Overflow (R) • • • •

Queued Sequential Access Method • • • • • ••
GET Get a Logical Record (E)
PUT -- Include a Record in an Output Data Set (R)

io •

· · · ·

· · · ·

· ·
· · · · · · · ·

· · · ·

· ·
· ·

· .

5
5
5
6
7
7
7
7
7
9

17
17
18
20

21
22
22
23
25

• • 34
35

• • 36
• • • • 36

37
38
41
42
42
43

• • • • • • 44
44
46
46

• • 47
48

• • 49
~1

• • ~2
':>2
53

• • 55
• • 55
• • 57
• • 61

62
64
67
69

• • 70
• • 71

72
73

• • 74
75
77
78
80
81
83
84

• • 85

PUTX -- Include a Logical Record in an Output or [Jpdated Data set (n) .. • 86
... 89 BELSE Release an InFut Buffer (R) • • .. •

TRUNe -- Truncate an output Buffer (R) ••• ~ • •
CNTBL -- Control a Printer or Stacker (R) .. • • • •
PiTOV -- Test for Printer Carriaqe Overflow (B)
SETL -- Specifies Start of Sequential processing (R)

Input Output Bequest Facility • • • • • .. • .. • • • •
rOBEQ -- Request an Input/Output Operation (S)
CHECK -- Wait for and Test ComplE~tion of an I/O Request (R)
VCCW -- Define a Virtual Channel Command Word (0)

Manipulating Entire Data Sets
Copying Data sets • • •

CDS -- Copy Existing Data Set (S)
Bulk output Facilities

PH -- Print a Data Set (S)
PU -- Punch a Data Set (S)
WT -- Write a Data Set on Ta pe for Off-Line printing (S)

Catalog Data SEt Attributes • • .. • ~ • ..
CAT -- Create or Change Catalog Entry (S) .. •
DEL -- Delete Catalog Entry (S)

Disconnecting A Data set From The System

89
• • 90
• • 91
... 92

95
.. • 95

98
• • 98
.. • 101
.. .. 101
.. .. 101
• .104
• .104
... 107
• .109
• • 113
• .113
• .116
.. .11S

CLOSE -- Disconnect Da ta Set FrOl1 User's Problem Program (S) • .118
.. .120 VAM only • .. •

BSAM and QSAM only • • • .. . • • • .. • • .120
Removing a Data Set Froll the System .• • • .. • • • ... • .123

ERASE -- Remove a Data Set froll Direct-Access Storage (5)
BEL -- Release Data set or Remove Job Library From Program Library List (5)

• .123
.124

SECTION II: PROGRAM MANAGEMENT
Virtual storage Management

GBTMAIN -- Allocate Virtual Storage (B) • •
FREEKAIN -- Release Allocated Virtual Storage (B)
CSTORE -- Control Section store (S) • .. • •
DCLASS* -- Specify Privilege Class (0)
BSPRV* -- Restore Privilege (0)
CKCLS* -- Check Protection Class CO)
LSCHP* -- list Changed Pages (R)

Program Loading and Linking • .. • • • • •
A£CON -- Generate an Adcon Group (0) • • • •
ADCOND -- Provide Symbolic Names for an Explicit Adcon Group (0)
ARft -- Initialize an Explicit Adcon Group (0) • • .. • •
CALL -- Call a Module (S) • • • • • • • • • •
LOAD -- Load and Retain a Module (R)
DELETE -- Delete a Loaded Module (R)
SAVE -- Save Register Contents (0) ••••••••••
RETURN RetUrn to a Program (0) • •
DELET* Enter DELETE Service Routine (0) ••••••
DLINK* tynamic Linkage Request (0)
ENTER* Enter a Privileged Routine (m
INVOKE* -- Transfer Control (0) • • •
LIBESBCH* -- Locate Program Module in External Library (S)
RESOME* -- Restore Registers (0)
STO.RE* -- store Register Contents (0) •••••

Interrupt Handling Facilities ••••••
SIB -- Specify Interrupt Routine (5)
SPEC Specify Program Entry Conditions (S)
SEEC Specify External Entry Conditions (S)
SSEC Specify Superv isor Call Entry Conditions (S) ••••
SAle Specify Asynchronous Entry Conditions (5)
STEC Specify Timer Fntry Conditions (S)
SIEe Specify Input/Output Entry Conditions (S)
DIR Delete Interrupt Routine (S)
SAL -- Save and Inhibi t (0) • • • • • • •
RAE -- Restore and Enable CO) •••••••
INTINQ -- Interrupt Inquiry (0) • • • • • • • •••
OSATT -- Give User Control of Attention Interrupts (0)
CLATT -- Give System Control of Attention Interrupts (0)
AETD -- Create an Attention Entry Table (0) • • • • • • • ••

• .126
• ••••••• 126

.... 126
... 128
... 130
• • 131
• .132
• .132
• .132

• • • 133
• .134
• .137
• .138
• .139

• ••••• •• 142
• .143
• .144

.146
• ••••• 148

• • • • ..14H
• ••••• 148

• .. 148
• .148
• .148
• .148

• 149
• .150

.152

.155

.157

.158

.161
• 164
.165

• .166
• .167
• .167
• • 169
• • 170
• .. 170

ATPOL* -- Poll For Pending Attention Interrupt (nonstandard)
I'lI* -- In hibi t Task Interrupts (n ons tandard) • • • • •

• • • • • • • • 172

PTI* -- Permit Task In terrupts (nonstandard) •••••
PCSVc* -- Enter Program Checkout Subsystem (nonstandard)

Transfer To Command Mode From Program Mode • • • • • • • •
PAUSE -- Enter Command Mode (8) •••••
COMMAND -- Enter Command Mode (R) • • • •
EXIT -- No~mal Program End (R)
ABEND -- Abnormal Task End (R)

• • 172
• .172

• ••••• 172
• .173
• • 173
• .174
• • 175
• .176

OBEY -- Execute a Command or Command Statement (O) • • • • • • • • • • • 177
CLIC* Read Command From SYSTN (Conversational) (0) •••• • .178
CLIP* -- Read Command From SYSIN (0) ••••••• • .178
RTBN* -- Create Privileged Linkage Queue Entry (0) • .178

Communication Eetween Oser Program and SYSIN/SYSOOT •• • .179
GATRD GEt Hecord from SYSIN (S) ••••••• • ••• .179
GA'IWR Write Record on SYSOUT (5) • • • • • • • • •••
GTWAR Write Record on SYSOOT and Read Response from SYSIN (S) •• ••

• .182
.1~3

.184 G'I~SR Write Record on SYSOOT and Read Record from Terminal SYSIN (S)
SYSIN Obtain a Message From SYSIN or the Source List (S)
PRMPT Prompt System to Display a Particular Message (~
MSGWR Issue Message and Get Response (S) ••••••
MCAST ModiI}, Character and Switch Table (0) ••••

Communication With Operator and System Log • • • •
WTO -- write to Operator (5) •••••• • • • •
iTOR -- Write to Operator with Reply (S)
WTL -- Wri te to Log (5) • • • • •

Timing Maintenance • • • • • • • • •
STIMER -- set Interval Timer (0)
TTIMER -- 'lest Interval Timer (0)
EBCDTIME -- convert System Time into EBCDIC Format (S)
REDTIM* -- Read Time (0) • ~

Command Creation • • • • • • • •
BPKD -- Create a Builtin Procedure Key (0)
GDV -- Get Default Val ue (R) •••••••

System Oriented User Macro Instructions • • • • • • • •
AWAIT* 1ests for Event Completion and Return Control
TWAIT* -- Tests fo.r Completion of Event (0) ••••
VSEND* -- Inter-Task Communication (0) •••••••••
VSENDR* -- Inter-Task Communication with Response(O)
XTR5YS* -- Extract From System Table (0)
XTRCT* -- Extract TSI Field(R)
XTBXTS* -- Extract From TSI (0)

APPENDIX A: EXIT LIST (EXLST) •
Char'acteristics of Exit Boutines
·Exit-List Example • • • • • •

APPENDIX B: SYNCHRONOUS ERROR EXIT ROUTINE (SYNAD)
Entry To SlNAD During ESAM or QSAM Operations.
Entry to SYNAD During VISAM Operations

APPENDIX C: END OF DATA ADDRESS (EODAD)

APPENDIX D: CONTROL CHARACTERS
Machine Code • • • •
Extended USASI Code • • • • • •

APPENDIX E: LINKAGE CONVENTIONS •
Proper Reg ister Use • • • • •
Reserving a Save Area • • • •
Reserving a Parameter Area
Implicit Linkage • • • •
Explicit Linkage
EXflicit DEletion ••

APPENDIX F: DATA CONTROL BLOCK FIELDS • •
Sources for Providing Data Set Attributes •••

(0)

• • • • • 185
.188
• 191
.193

••••••• 197
• ••••• 197

• .198
• • • • • .199

.200
• .200

•••• 203
• .204
• .207

• .208
• .208
• .211
• .213

.213
• .213
• .213
• .213
• .213
• .213
• .213

• .215
• .216
• .217

• .218
• .218
• .221

• .223

• .224
• .224

•••• 224

• .225
• .226
• .226
• .227
• .227
• .228
• .228

• .229
• .229

Priori ty ot Sources • • • • • • .

APPENDIX G: DETAILED DESCRIPTION OF DDEF MACRO INSTRUCTION

APPENDIX H: MACRO INSTRUCTION GENERl.TION OF LITERALS •

APPENDIX I: INTERRUPTION HANDLING Fl\CILITIES •
Establishing Interruption Routines
Processing an Interruption
Communication Area
Entry • •

APPENDIX J: THE TSS/360 SYSTEM MACRO AND COpy LIBRARY
system Macro and COpy Library Service Facilities

Generating the Library • • • • •
Using Symholic Libraries • • • • • •
Requesting Symbolic Library Services

APPENDIX K: SHARING VIRTUAL STORAGE DATA SETS
Types of I llterlocks • • • • •
Levels of Interlocks
User Considerations •

APPENDIX L: OPEN/CLOSE GENERATED PAl~TER LIST

INDEX It •

• .230

• .237

• .247

• .253
• • 253

• 255
• • 255
• • 255

• .256
• .257
• .257
• .257
• .258

• .260
• .260
• .260
• .261

• • 262

..• 263

Figure 1.
Figure 2.
F'igure 3.
Figure 4.
Figure S.
Figure 6.

Time Sharing System/360 Services • • • • •
Save Area Layout and iord Contents
TSS/360 Interruption Handling Facilities • • ...
Information Available Upon Entry to an Interrupt Routine
System Macro and COpy Library Symbolic Component Format
Format of a Line in a Line Data Set 4O ..

Table 1. Value Mnemonics and Their Permissible Operand Forms •••••••
Table 2. Acceptable record formats for QSAM and the pnTX Macro Instruction
Table 3. Final Magnetic-Tape Positions • • • .. • .. • .. • • .. • .. •••
Table 4. Factors Determining Magnetic-Tape Positioning For BSAM and QSA~
Table 5. Return Codes from All GATE Macro Instructions • • • •
Table 6. Conditions Upon Exit -- Routine Entries • • • • • •
Ta ble 7. Data Event Contro 1 Bloc k (DECB) • • • •
Table B. DCB Operands, Their Specification, Access Methods, and Alternate
Sources (Part 1 of 2) • •'.. .. • • • • • • •
Table 9. Operands for DDEF Macro Instruction • •
Table 10. literals Generated by Macro Instructions (Part of 6)
Table 11. Effect of OPEN Options on Data Set Interlocks

• .. 21
• .227
• .254
.. .2')6
.. .257
.. .258

.. • 11
• • 8 B
.. .. 120

• 121
• .. 181
• .216
• .220

• .231
• .238
... 249
.. .262

PART I: USER MACRO INSTRUCTIONS

SECTION I: INTRODUCTION

The TSS/360 user macro instructions provide two basic services; data
set management and program management. These two services and the
various management functions performed by each are summarized below.

DATA SET MANAGEMENT

• Define a Data Set to the System - by introducing a data set to a
task and describing the characteristics or attributes of a data set,
such as its record organization, disposition (i.e., OLD or NEW,
etc.), and data set name, for future system use. TSS will subse­
quently (after the data set has been connected to the system)
reference the indicated attributes to determine the appropriate
access method routines and other control information.

• Connect a Data Set to the System - by making the attribute specifi­
cations, describing a data set, available to the system, thereby
logically connecting the data set to the system. Appropriate access
method routines are initialized, labels are processed (if speci­
fie~, and the data set is positioned for user processing.

• Access a Data Set - by using the macro instructions associated with
the appropriate VAM or SAM access method or provide your own input/
output device management routines through use of the IOREQ macro
facilities. A user can store, retrieve, or modify data sets using
the macro instructions associated with the access method he uses.

• Manipulate an Entire Data Set - rather than individual records
within a data set. An entire data set can be manipulated and trans­
ferred from one area of virtual storage to another, to punched
cards, printer listings, or magnetic tape devices.

• Catalog Data Set Attributes - by recording certain predefined data
set attributes in catalog entries so that the data set can be subse­
quently located by using only its name, without redefining all of
its attributes to the system.

• Disconnecting a Data Set From the System - tells the system a user
has finished processing a data set and, permanently or temporarily,
disconnects the system from the control block (DCB) containing the
description of the data set's attributes and access method
specifications.

• Removing a Data Set From the System - causes a data set to be phys­
ically removed from the system and releases the storage areas, on
which it was recorded, to the system for future use.

Part I: User Macro Instructions ~

PROGRAM MANAGEMENT

6

• Virtual Storage Management - allows a user to acquire or release
virtual storage in units of pages or 8 byte multiples, or to trans­
form contiguous virtual storage bytes into an object module consist­
ing of a single control section.

• Loading and Linking - macro inst.ructions allow a user to explicitly
or implicitly load program modules and establish standard linkage
between calling and called program modules.

• Interrupt Handling Facilities - .allow programmers to assume control
at specific types of interrupts and execute special user coded
interrupt servicing routines ins·tead of the system provided inter­
rupt servicing routines.

• Transfer to Command Mode - from :program mode allows a user to inter­
rupt a program's execution, eithler temporarily or permanently, and
pass control to command mode for subsequent processing.

• Control Communication With SYSIN and SYSOUT - permits a user to pass
data, messages, and commands, to and from a coded program to SYSOUT
and SYSIN devices.

• Communication With Operator and System Log - allows a user to pass
messages, issued during a prograln's execution, to the system opera­
tor, and to record those messages in the system operator's log.

• Timinq Maintenance - provides a user with the ability to set timers
which can measure the time of a 1:ask' s execution or the elapsed
calendar time.

• Command Creation - allows a user to create his own commands and,
once created, issue them at his 1:erminal.

• System Oriented User Macro Instructions are available to all
users, but are meant to be used only by system programmers; there­
fore, these macro instructions are only briefly mentioned here, but
their detailed descriptions appear in the System Programmer's Guide.

SECTION II: THE MACRO INSTRUCTION LANGUAGE

Macro instructions for TSS/360 are processed by the assembler using
IBM-supplied macro definitions.

Processing a macro instruction by the assembler is called the expan­
sion of the macro instruction. Expansion results in fields of data and
executable instructions, called the macro expansion. Fields of data,
called parameters, specify the exact nature of the service to be per­
formed and are contained in either registers (parameter registers) or
data areas (parameter lists). If the parameters are contained in regis­
ters, only registers 0 and 1 may be used. If the parameters are con­
tained in a parameter list, the address of that list is placed in
register 1 and referred to by the called service routine.

MACRO INSTRUCTION FORMAT

System macro instructions, like assembler instructions, are written
in this format:

r--------T---------T---,
I Name I Operation I Operand I
I +---------+---i
I I I I L-_______ ~ _______ ~ ___ J

Name Field

The name field of the macro instruction may contain a symbol or
remain blank. Normally, this symbol is the name associated with the
first executable instruction of the macro expansion.

Operation Field

The operation field contains the mnemonic operation code of the macro
instruction. This code may be a string of not more than eight alphamer­
ic characters, the first of which is alphabetic.

Operand Field

The operand field may contain no operands, or one or more operands
separated by commas; the two types of operands are: positional and
keyword.

POSITIONAL OPERANDS: Positional operands must be written in a specific
order; for instance:

EXAMPLE A,B,C

Assembly-time processing of operands A, B, and C is determined by
whether they are the first, second and third operands, respectively. If

Part I: User Macro Instructions 7

the second operand (B) is omitted, thc= user must supply the second comma
to maintain the proper position for the third operand (C). Blanks may
not be embedded in the positional ope:rand field:

EXAMPLE A, ,C

If the last positional operands are omitted, delimiting commas need
not be written. For example, if operands Band C are omitted, the macro
instruction may be written:

EXAMPLE A

KEYWORD OPERANDS: The keyword associated with a specific keyword
operand uniquely identifies that operand to the assembler. Therefore,
these operands may be written in any sequence. A keyword operand is
written as a keyword, shown in each macro instruction description, imme­
diately followed by an equal sign and its value:

EXAMPLE AREA=X,LENGTH=100

MIXED OPERANDS: An operand field may contain both positional and key­
word operands; however, all positional operands must precede all keyword
operands. For example:

EXAMPLE A,B,C,AREA=X,LENGTH=100

THE RULES FOR OMITTING POSITIONAL AND KEYWORD OPERANDS APPLY TO MIXED
OPERAND FIELDS; IF OPERANDS B, C, AND AREA ARE OMITTED:

EXAMPLE A,LENGTH=100

OPERAND SUBLISTS: A sublist is one or more positional operands, each
separated by commas and the total list enclosed in parentheses. The
entire sublist is considered as one operand in that it occupies a single
position in the operand field or is a.ssociated with a single keyword.
The contents of the sublist are proc€!ssed similarly to positional
operands.

The following operands are sUblist.s:

(A,B,C)
(A)

Note that the sublist (A) above consists of only one operand. When a
macro instruction description shows t~hat an operand is written as a sub­
list, the enclosing parentheses must be written even if only one element
appears in the sublist.

Macro Description Notational Symbols: Notational symbols in the operand
field of macro instruction descriptions assist the user in showing how,
when, and where an operand should be written. The notational symbols
are: vertical stroke, shown as I; braces { }i brackets (] i ellipsis,
shown as ••• , and underscore

8

1. Vertical stroke means "exclusivE~ or. n For example, AI B means that
either the character A or the character B, but not both, may be
written. Alternatives are also indicated by operands being aligned
vertically, as shown in the nex1: paragraph.

2. Braces denote grouping. They are used most often to group alterna­
tive operands or alternative operand forms. For instance, the fol­
lowing two operand descriptions are equivalent:

{INPUT I OUTPUT}

{
INPUT ~
OUTPUT)

3. Brackets denote options. Information enclosed in brackets may
either be omitted or written in the macro instruction, depending on
the service to be performed.

In the following case, the operand of the EXAMPLE macro instruction
is optional and need not be supplied. However, if the operand is
supplied, it must be one of the alternatives grouped in braces.

r--------T---------~---,
I Name I Operation I Operand I
~--------f---------f--~
I [symbol] I EXAMPLI:: I [mode- (INPUT I OUTPUT}] I L-_______ ~ _______ ~ ___ J

4. An underscore means that if an operand is not specified, the unde­
rscored option is assumed. The underscored word, INPUT, in the
above example indicates that INPUT is assumed if the operand is
omitted.

5. The ellipis denotes the optional occurrence of the preceding syn­
tactical unit one or more times in succession. If the syntactical
unit consists of one term, it is followed by a comma and an ellip­
sis. For example,

dcb-adr, •••

indicates that the term dcb-addr can be repeated with commas
separating each term. No comma is placed after the last term.

If the syntactical unit consists of more than one term, it is enc­
losed in braces -- {} -- to indicate the unit that may be repeated.
The comma and ellipsis are placed outside the braces. For example,

{dcb-addr,opt-code}, •••

indicates that the unit dcb-addr,opt-code can be repeated with com­
mas separating each unit. No comma is placed after the last unit.

6. Upper-case (capital) letters indicate the portions of the operand
that must be written exactly as shown. For example, the operation
field and coded values in the operand field must always be trans­
cribed in upper-case letters.

1. Commas' and parentheses must be written as shown in an operand
field. They are delimiters, not notational symbols.

Macro Description Value Mnemonics

Value mnemonics help the user remember the forms a particular operand
may assume. Eleven value mnemonics are used in this publication.

Part I: User Macro Instructions 9

relexp
addr
addrx
addx
integer
absexp
value
text
code
symbol
characters
name
specsym
alphnum

In macro instruction descriptions in this publication, each position­
al operand is specified by a meaningful name hyphenated with a value
mnemonic, as illustrated:

r-------~---------T---,

I Name I Operation I Operand I
~-------+---------+---~
I [symbol] IEXAMPLE Iname-value mnemonic I L--______ ~ _________ ~ ___ J

Each keyword operand is specified by the keyword, an equal sign, and
a value mnemonic, as illustrated:

r--------T---------T---,
I Name I Operation I Operand I
~-------t---------+---~
I [symbol] I EXAMPLE IKEYWI=value mnemonic I L ________ ~ _________ ~ ___ J

One or more operand forms may be substituted for each value mnemonic.
For example, the value mnemonic, relexp, denotes that a relocatable
expression may be written as the operand form; the value mnemonic, addx,
specifies that an explicit address or an implied address may be written.

The 10 operand forms are:

relocatable expression
register notation
explicit address
implied address
symbol
decimal integer
absolute expression
code
text
characters
data set name
special symbol
alphameric characters

Table 1 lists the value mnemonics and their permissible operand
forms. In the subsequent text each operand form is fully described.

10

Table 1. Value Mnemonics and Their Permissible Operand Forms

Value Mnemonics
~---,,-----,-----,-----,-----.-----.-----,-----,-----,-----,---~----

Operand
Forms relexp absexp addr addrx addx integer value text code symbol characters name alphnum specsym

I----------+-----t-----+-----+-----+-----+-----+-----+-----+------+------+------f-----~~-I__- ------
x x

Relocatable
Expression
\---'----------+-----t-----t-----t-----t-----+------+-----+-----+------+------+--- ---I-------f-- ---- -­
Register x x x
Notation
I-::-Ex-p-::li-ci:-t-----+----+-----+-----+-----+-----+-----+-----+------+------+------+------l--~~-- -- -- -- - - --

~~ X X

Implied Address
(Indexed)

Symbol

X x

X
~-- ~-

Decimal X
1--1 n_te-"g=-er _______ +-____ +-____ +-____ +-____ +-____ +--____ +--____ +-____ +--___ .. ~ __ +--____ +-_______ ~ ___ ~ ___ ~ _____ __

X X
Absolute
Expression
------~---~-~----~----~----+-----+-----+----+-----+-----+-------+-----+-- --
Code X

Text X
1------------+-----+-----+-----+-----+-----+-----+-----+------ ----- --~-- ---
Characters X

Data Set
X

rA-:-lp-:-h-am-e--cri-c---+------+-----+-----+-----+------+------+------+------+-----+--- ------ --.- ---- - -
Name

Characters X
~ --

Special X
rS~ym_b_o_I ____ -L ____ -L ____ -L ____ -L ____ -L ____ ~ ____ ~ ____ ~ ____ ~ ____ ~ ____ ~ ______ L_ ____ _L_ ____ __

Note: An X indicates that the operand form may be written.

Relocatable Expression: The value of a relocatable expression would
change by n if the program in which it appears is relocated n bytes from
its originally assigned storage area. All relocatable expressions must
have a positive value. A relocatable expression may be a relocatable
term. A relocatable expression may contain relocatable terms -- alone
or in combination with absolute terms -- under the following conditions:

1. There must be an odd number of relocatable terms.

2. All relocatable terms but one must be paired.
later in "Absolute Expression."

Pairing is described

3. The unpaired term must not be directly preceded by a minus sign.

4. A relocatable term must not enter into a multiply or divide
operation.

A relocatable expression reduces to a single relocatable value. This
value is the value of the odd relocatable term adjusted by the values
represented by the absolute terms and/or paired relocatable terms asso­
ciated with it. The relocatability attribute is that of the odd relo­
catable term.

Complex relocatable expressions are also permitted. Refer to
Assembler Language.

In the following examples of relocatable expressions, SAM, JOE, and
FRANK are in the same control section and are relocatable; PT is
absolute.

Part I: User Macro Instructions 11

SAM
SAM-JOE+FRANK
JOE-PT*5
SAM+3

Note that SAM-JOE is not relocatable, because the difference between
two relocatable addresses is constant.

Register Notation: Register notation is written as an absolute expres­
sion enclosed in parentheses. The absolute expression, when evaluated,
must be some value 2 through 12, indicating the corresponding general
purpose register.

In these examples of register notation, SAM and JOE are relocatable
and PAL is absolute.

(5)
(SAM-JOE)
(PAL)
(PAL + 3)

indicates register 5

Explicit Address: The explicit address is written in the same form as
an assembler language operand:

fl:!~:er:::::::r
displacement

Examples of explicit addresses are:

2 (0,5)
o (2,4)

Implied Address (indexed): An implied address is written as a symbol,
optionally indexed by a specified index register.

Examples of implied addresses are:

GUPOFF
ALPMAY (4)

Note that ALPMAY is indexed by register 4.

Symbol: A symbol may be a symbolic address (i.e., a single relocatable
term), such as the name of an instruction in an assembler-language pro­
gram, or it may merely be a character string used for identification,
not location (such as the ddname parameter of a DeB macro instruction) •

In TSS/360, the alphabetic characters are the letters A-Z, and $, @,
and I. The alphameric characters are the alphabetic characters plus the
digits 0-9.

The symbol is written as a string of up to eight alphameric characters,
the first of which is alphabetic. Embedded commas and blanks are not
permitted. Symbols beginning with the characters eHD may not be used,
since symbols beginning with those characters are reserved for system
use. Examples of symbols are:

12

DDNAME1
ROGER

LOOP12
START
#1

Decimal Integer: The operand may be written as a whole decimal number;
e.g., 5, 31, 127, etc.

Absolute Expression: An absolute expression may be an absolute term or
any arithmetic combination of absolute terms. An absolute term may be
an absolute symbol or any self-defining term. All arithmetic operations
are permitted between absolute terms.

An absolute expression may contain relocatable terms alone or in com­
bination with absolute terms, under these conditions:

1. There must be an even number of relocatable terms in the
expression.

2. The relocatable terms must be paired. Each pair of terms must have
the same relocatability attribute; i.e., they appear in the same
control section of an assembly. Each pair must consist of terms
with opposite signs. The paired terms do not have to be contigu­
ous, e.g •• RT+AT-RT, where RT is relocatable and AT is absolute.

3. A relocatable term must not enter into a multiply or divide
operation.

Pairing of relocatable terms (with opposite signs and the same relo­
catability attribute) cancels the effect of relocation. The value
represented by the paired terms remains constant, regardless of program
relocation.

Example: In the absolute expression A-Y+X, the term A is absolute,
and the terms X and Yare relocatable with the same relocatability
attribute. If A equals 50, Y equals 25, and X equals 10, the value of
the expression becomes 35. If X and Yare relocated by a factor of 100,
their values become 125 and 110. However, the expression still evalutes
as 35 (50-1'25+110=35).

An absolute expression reduces to a single absolute value.

In these examples of absolute expressions, JOE and SAM are relocat­
able and defined in the same control section; BERNY and DAVE are
absolute:

331
DAVE
BERNY+DAVE-83
JOE-SAM
DAVE * 4 +BERNY

Code: A code is written exactly as indicated in the macro instruction
description. For example:

r--------T---------T---,
I Name I Operation I Operand I
~-------t---------+---1
I [symbol] IFTBAL I scores-code I L ______ ~ ________ ~ ___ J

scores
specifies the desired action

Part I: User Macro Instructions 13

TD - Touchdown
FG - Field goal
HT - Half-time is called

The macro instruction might be written in a program:

SAM

DUME

FTBAL
FTBAL
FTBAL

TD
FG
HT

Text: A text operand is written as a string of characters enclosed in
apostrophes. Embedded blanks and special characters are permitted. Two
apostrophes or two ampersands must be used to represent one apostrophe
or one ampersand in the character string. The text operand may not
exceed 255 characters including the enclosing apostrophes. For example:

'AREA, PCB, 132, ,1256'

'DO && DON"T'

Characters: The character operand is written as a character string.
Embedded commas or blanks are not permitted. Two apostrophes or two
ampersands must be used to represent one apostrophe or one ampersand in
the character string. The character string may not be enclosed in apos­
trophes. For example:

CUBTDAVE+HEINZ+JOHN*S30PMOT

DO&&DON"T

Data Set Name: The name of a data set or a group of data sets. The
rules for writing data set names are presented below; the types of names
that can be written for each macro instruction are described under each
macro instruction's description.

14

Fully gualified name uniquely identifies one data set.

1. Stand-alone data set name identifies a data set that is not a
member of a partitioned data set nor a generation of a generation
data group. The name of a stand-alone data set is written as a
series of symbols separated by periods. For example:

DATASET.TRIAL.TEST1
TERI.ROGER.LAURIE
A.B.C.

The rightmost symbol is the data set's simple name (TEST1,
LAURIE, and C above); the other symbols are qualifiers. In TSS/
360, for cataloging purposes, the maximum number of characters in
a data set including periods, is 35. The maximum number of qua­
lifiers for a one-character name is 11.

Note: Data set names created under the IBM System/360 Operating
System can contain a maximum of 44 characters; if data sets with
names greater than 35 characters are to be cataloged in TSS/360,
the user should employ the renaming facility of the CAT macro
instruction or CATALOG command to define a suitable TSS/360 name.

2. Partitioned Data Set and Member Name identifies a data set that
combines individual data sets, called members, into a single data
set. The partitioned organization allows the user to refer to
either the entire data set or to an individual member of the par­
titioned data set.

• The rules for writing the name of a partitioned data set are
the same as for writing those of a stand-alone data set •

• The rules for writing a member name vary with each macro
instruction that can manipulate members. Sometimes (as in LOAD
and DELETE) only the simple member name (a symbol) is written.
The full name is not required because the user has indirectly
defined the partitioned data set (library) in which the module
resides by assuring that the library is on the program library
list prior to issuing those commands.

The user could write

LOAD SORTR

if he has previously arranged that SORTR was in a library cur­
rently on the program library list.

In other macro instructions (e.g., CDS) , the user must give the
fully qualified member name. This consists of the name of the
partitioned data set sUffixed by the simple member name in
parenthesis. For example:

HQW (ONETRY)
G.H.AB (H)

Here HQW and G.H.AB are partitioned data sets with members ONE­
TRY and H, respectively.

The name of the partitioned data set is written with the same
rules as for a stand-alone data set. The parentheses and memb­
er name are merely considered as an appendage to that name.

3. Generation Names identify data sets which are part of a genera­
tion data group. These data sets can be referred to on an abso­
lute or relative basis:

a. Absolute Generation Names are written as the name of the
generation data group followed by a period and the characters
GxxxxVyy, where xxxx is a four-digit decimal generation numb­
er, and yy is a two-digit decimal version number. For
example:

HURST.LINER.TT.G0001VOO
HJ.LA4.WW.G0003V01
HARQ.G0141V03

The characters GxxxxVyy are considered a fixed-part of the
overall name. The name of the generation data group is a par­
tially qualified name applicable to all generations in the
group.

If the generation is a partitioned data set, a member (e.g.,
JO~ within that data set is referred to as follows:

A.B.C.GxxxxVyy(JOE)

b. Relative Generation Names are written as the name of the
generation data group followed by the appropriate relative
generation number enclosed in parentheses, as

G.D.G (0)

The relative generation number of the most recent generation
is (0); the generation just prior to that is (-1); the one

Part I: User Macro Instructions 15

before that is (-2), etc.; and a new generation to be added is
(+ 1). For example:

GOST. UU. L 19P (+ 1)
GOST.UU.L19P (-3)
MRQ. T. LS. SWIM (0)

If the generation is a partitioned data set, a member within
that data set is referred to as follows:

SEAT (- 3) (JOE)

where JOE is the member in question.

partially qualified names refer to all data sets having the partially
qualified name as their common higher-order qualifier.

1. Generation Data Group Name is the name that is common to each
generation in the group. Generation data group names are
restricted to a maximum of 26 characters including periods.

2. Other partially Qualified Name can also be used to refer to two
or more data sets. For example, the partially qualified name
GO.AB14 can be used to refer to both of the following data sets:
GO.AB14.A and GO.AB14.B. If these were the only two of a user's
data sets with the same higher-order qualifier, GO.AB14, and he
wished to erase them both, he could do so merely by specifying
GO.AB14 in the ERASE macro instruction.

Special Symbol: A special symbol operand may consist of any string of
from one to six alphameric or special characters (except for the tab,
blank, comma, backspace, equal sign, and right and left. parentheses) •
For example:

FORMNO
&H*/K

Alphameric Characters: An alphameric-character operand is written as a
string of alphameric characters, the first of which need not be alpha­
betic. For example:

A00764
10EOD4

The limit on the number of characters is given in the description of
each macro instruction in which it is used.

OPLIST OPERANDS: In a number of macro instruction descriptions in this
publication, the operand field is specified as:

r--,
I Operand I
~---~
I oplist- (text) I
I \..addr I L __ J

This format implies that a list of keyword and/or positional operands
may be written as fields of a character string. Also, the character
string itself (enclosed in apostrophes) or the address of the string may
be written as the oplist operand, depending on whether the text or addr
form of the operand is chosen.

If oplist is presented as a character string (i.e., text operand
form) the macro expansion places it in the assembled program followed

16

byan end-of-message code, and loads a pointer to the string in register
1~ If oplist is given as an address (i.e., addr operand form) the
expansion places that address in register 1. In this case, the user
must define the operands elsewhere in the program and provide an end-of­
message code.

To refer to and manipulate oplist macro instruction operands in cod­
ing, the address option of the operand is used, permitting the operand
character string to be set up as a series of adjacent fields, each with
its own label.

The string must end with a hexadecimal 21, which serves as an end-of­
message code. Any unused space in each of the adjacent fields in the
string must be filled with blanks to the maximum size of that field.
Unlike other operand forms, all commas in an oplist operand must be
written even if parameters are defaulted. A typical operand string
might be coded:

OPLIST
OPLIST1
OPLISTN

DC
DC
DC
DC

C'first operand'
C',second operand'
C',n operand'
X'21'

TYPES OF MACRO INSTRUCTIONS

Most system macro instructions are of two basic types: R-type
(register) or S-type (storage). In this publication, the letter (R) or
(S) follows the name of each macro instruction description to indicate
its type. Macro Instructions that are neither R- nor S-type, referred
to as • other II macro instructions, are denoted by (0) in their
descriptions.

Some macro instructions generate literals in their expansions. Con­
sequently, the rules for literal pool coverage must be followed. Refer
to Appendix H, and to "Terms and Expressions" in Section 2 of Assembler
Language.

R-Type Macro Instructions

An R-type (register) macro instruction is used when all required
parameters can be contained in the two parameter registers, 0 and 1. An
R-type macro instruction does not generate a parameter list; the parame­
ters are placed in the parameter registers by instructions in the macro
expansion. Execution time may be saved if the user places the data in
the parameter registers as the result of previous operations before
executing an R-type macro instruction.

Address operands in R-type macro instructions are always classified
as addrx or addx. This arrangement allows the user to employ indexing,
although the addresses passed in R-type macro instructions must be prop­
erly covered; i.e., the base register used for the passed address must
contain the proper value to ensure that the address refers to the
desired location in virtual storage.

For example, assume there is an R-type macro instruction, RTYPE,
which will contain an address "area" in register 1 and the "length" of
that area in register O. Its external macro description would be:

Part I: User Macro Instructions 11

r--------T---------T---,
I Name I Operation I Operand I
~-------t---------t---~
I [symbol] I RTYPE I area- raddrx}, length-{value~ I
I I I l (1) (0) J I L ________ i _________ i ___ J

Special Register Notation: The user's problem program might be written
so that one or both of the parameters already exist in the proper para­
meter register when the macro instruction is issued. In this case, (1)
or (0) is written as the operand. The notation (1) and (0) is referred
to as special register notation. Registers 1 and 0 cannot be used in a
macro instruction unless special register notation is shown in the macro
instruction description.

S-Type Macro Instructions

An S-type (storage) macro instruction is used when the number of
parameters to be passed to the called routine cannot be contained in the
two parameter registers. The parameters are placed in a parameter list
whose address is passed to the called routine in register 1.

There are three forms of the S-type macro instruction:

1. The Standard form
2. The L-form (Parameter list only)
3. The E-form (Executable code only)

Note: All S-type macro instructions may be written in L- and E-forms
unless otherwise stated in the individual descriptions.

THE S-TYPE STANDARD FORM: The S-type standard form macro instruction
generates both the parameter list required by the called routine and the
linkage to that routine. If the S-type macro instruction is coded in a
module that has a PSECT, the parameter list is generated in the PSECT.
In this case, the PSECT must be properly covered by a base register. If
the module has no PSECT, the parameter list is generated in-line and
coding is generated to branch around it. If an S-type macro instruction
is coded in a PSECT, the parameter list is generated in-line and coding
is generated to branch around it.

Address operands in S-type standard form macro instructions are
always classified as addr. Hence, they may not be indexed, and the
user's problem program is not responsible for providing cover registers.

As an example, assume an S-type macro instruction, STYPE, that
expects the addresses of two storage areas, "input" and "output," and
the "length" of those areas. Its external macro description might be:

r-------~---------T---,

I Name I Operation I Operand I
~--------t---------t---~
I [symbol] I STYPE I input-addr, output-addr, length-val ue I L ________ i _________ i ___ J

THE S-TYPE L-FORM: The L-form macro instruction creates a parameter
list. E-form macro instructions then link to the service routine and
point to the parameter list that is generated by the L-form macro
instruction.

The assembler recognizes an L-form macro instruction by the keyword
operand MF=L in its operand field.

18

Because the L-form macro instruction generates only a parameter list,
operand types that require executable code, such as register notation,
are prohibited.

There is an implied difference in the kinds of operands required in
the external macro description when using the various forms of the S­
type macro instruction. Where the standard form indicates addr and
value operands (i.e., register notation is allowed) , it is implicitly
understood that L-form macro instructions allow only relexp and absexp
operands (i.e., register notation is not allowed) •

The external description of the L-form STYPE macro instruction becom­
es, by implication,

r------~--------~---,
I Name I Operation I Operand I
~------+---------+---~
I symbol I STYPE I [[input-relexp] , [output-relexp] , [length-absexp] ,] ,
I I I I
I I I MF=L I L ________ ~ ________ ~ ___ J

Note that the name field is required in the L-form because it usually
becomes the label of the generated parameter list and is referred to by
the E-form.

All operands of an L-form macro instruction are usually optional. It
is assumed that operands that are omitted in the L-form will be supplied
in the E-form macro instruction.

The L-form macro instruction generates the parameter list at the
place the macro instruction is encountered. Because the L-form expan­
sions contain no executable instructions, they should be placed in the
program so that they do not receive control; e.g., among the DSs or Des.
An L-form macro instruction should never be written in a read-only con­
trol section.

THE S-TYPE E-FORM: A parameter list created by an L-form macro instruc­
tion, or by any other means, may be referred to by an E-form macro
instruction. The user can update a parameter list by supplying operands
in the E-form macro instruction.

The assembler recognizes an E-form macro instruction by the presence
of the keyword operand in its operand field:

MF= (E, list- raddrx})
l (1)

List should specify the location of the parameter list to be used by the
E-form macro instruction. If (1) is written, register 1 should be
loaded with the address of the L-form parameter list before execution
of the macro instruction. The symbol in the name field of an L-form
macro instruction becomes the name of the parameter list.

Once again, there is an implied difference in kinds of operands
required. When standard form requires addr and value operands, the E­
form requires addrx and value operands. The E-form thus allows the nser
to index addresses; however, proper cover registers must be provided.

The external description of the E-form STYPE macro instruction becom­
es, by implication,

Part I: User Macro Instructions 19

r--------T---------T---,
'Name I Operation \ Operand I
l-------+---------+---~
\ [symbol] 'STYPE I [[input-addrx] , [output-addrx] , [length-value] ,] I
\ \ \ I
, , I MF= (E, list- [addrx}) I
I , I l. (1) , l ________ ~ ________ ~ __ J

All operands are individually optional. The position of positional
operands supplied in the E-form macro instruction causes the generation
of executable instructions that replace the corresponding parameters in
the parameter list of the L-form macro instruction with their new
values.

Other Macro Instructions

The system macro instructions that cannot be classified as either
R-type or S-type are referred to as "other", denoted by (O) in the macro
instruction descriptions.

For example, the SAVE macro instruction does not produce parameters
that pass to a called program. Its expansion results in instructions in
the user's program that completely perform the requested service. Simi­
larly, the DeB macro instruction only defines a data area. It is, in
effect, an implied S-type L-form macro instruction.

20

PART II: FUNCTIONAL MACRO INSTRUCTION DESCRIPTIONS

The major functional groups into which macro instructions fall are
data set management and program management. A summary of these func­
tional groupings is indicated in'Figure 1

TIME SHARING SYSTEM/360
ASSEMBLER USEB MACRO INSTRUCTIONS

r---,
I DATA SET MANAGEMEN~ ,
~--~
,Defining Data Set(s) ,
~--------------------------------------~
, DDEF CDD FINDDS*,
, DCE DCBD FINDJFCB* ,
~-----------------------------------~
IConnEcting Data Set(s) to System ,
~--------------------------------------~
,OPEN ,
~------------------------------------~
,AccEssing Data Set(s) I
~------------------------------------~

VSAM VISAM VPAM
GF~- GET- FIND
PU~ PUT STOW
PU~X READ
SE~L WRITE

£2~11
REAt
WRI~E

CHECK
GE'IfOOL
GnEUF
FRfEBUF
FHEEFOOL
ESF
CN'IEL
FECV
POINT
NO'IE
PR~CV

SETL
ESETL
DELREC
RELEX

Q2!k1
GET
PUT
PUTX,
RELSE
TRUNC
CNTRL
PRTOV
SETL

JQ1!EQ
IOREQ
CHECK
VCCW

~--------------------------------~
IManipulating Entire Data set(~ ,
~--------------------~---------------~
, Copying Data Set (s), Bulk Output ,
~-------------------t-------------------~
I ,PR,
, ,PU I
, CDS , WT ,
~--------------------~-------------------~
,Catalcging Data set Attributes ,
~--------------------------------------~
, CAT ,
, D.EL ,
~--~
,Disconnecting rata Set (s) From System ,
~--------------------------------------~

,CLOSE I
&-----------------------------------1
,Removing Data Set(s) From System ,
~----------------------------------~
I ERASE ,
, REL ,
L ____________________________________ J

r-----------------------------------·· --,
, PROGRA~ CGNTROL MANAGEMENT I
~--------------------------------. -~

'Virtual StoragE Management I
~--------------------------------------~

'GE~MAIN DCLASS* CHKCLS*,
,FREEMAIN PSPRV* LSCHP* ,
I CS'ICRE ,
~--------------------------------- .~

,Program Linking and Loading I
~-- --I
I AICCND DELETE ENTER* ,
, ADCON SAVE RESUME* I
, ARM EETURN LIBES~CH*'

, CAll DELET* STORE* ,
I LOAI DLINK* ,
~---------------------------------~
,Interrupt Handling ,
~--------------------------------- --.-1
I SIR SIEC USATT,
, SPEC DIR AETD ,
, SSEC SAl ATPOL*,
, SEEC RAE ITI* I
, SAEC INTINQ PTI* ,
, STEC CLATT PCSVC*,
~--------------------------------- .--~

,Transfer to Ccrrmand Mode ,
~----------------------------------- .. ---j
, PAUSE ABEND CLIC* I
'COM~AND OBEY CLIP* I
, EXll RTRN* ,
~------------------------------ -----~

,Communication With SYSIN/SYSOUT ,
~------------------------------.--~

I GATED GTWSR MSGWR ,
, GATWR SYSIN MCAST ,
, G1~AR PRMPT I
~----------------------------------- ---I
,Communication With Operatcr and Log ,
~------------------------------------~
, WTO I
,WTOR I
I WTL I
~------------------------------------.--j

,Timing Maintenance ,
~---------------------------------------~
I STTMEF EEcrTIME I
, TTIMEF HED1IM* ,
~----------------------------.------I

,Command Creaticn I
~------------------------------------ .--1
,BPKD ,
, GDV I
~-------------------------------------~
,Systea Oriented Macro Instructions ,
~---------------------------------j

I AWAIT* VSENDR* XTRXTS* I
,TWAIT* XTRSYS* XTHCT* I
, VSEND* ,
L-_______________________________________ J

*Althcugh the~€ instructicns are aVailable to all users, they are employed primarily by
system_programme:s;_therefore, refer to ~~1~ill_R£2g£g~~~~§_Q~iQ~, Form C28-200E, for
a deta11ed d€ECr1pt1on of these macro instructions.

Figure 1. Time Sharing System/360 Services

Part II: ~lnctional Macro Instruction Grouping 21

SECTION I: DATA SET MANAGEMENT

This section describes TSS/360 macro instructions available to the
user to facilitate data set management. To enhance user understanding
of these macro instructions, they are presented in functional groups
that reflect their primary use in the system.

DEFINING A DATA SET TO THE SYSTEM

Certain characteristics of a data set must be described to TSS/360
Data Set Management and Task Management routines before a user may emp­
loy those management facilities to process and manipulate his data sets.
These data set attributes can be furnished to the system from two to six
different sources depending on whether the data set is a new data set or
a data set that has been previously defined to the system. The various
sources and their priorities are described in detail in Appendix F. The
two major sources (i.e., and the only mandatory sources) provided for
users to facilitate describing these data sets to the system, are the
DDEF and DCB macro instructions respectively. These macro instructions
and the CDD and DCBD instructions, which can be used with them, are
briefly described below.

DDEF describes certain attributes of a data set to the system and
defines or introduces that data set to a single task. Every data
set referenced within the framework of anyone task (i.e., from
LOGON to LOGOFF) must be defined to that task via system or user
issuance of the DDEF macro instruction {or comman~. In addition
to providing unique attribute information, such as DSNAME, which
cannot be supplied by any of the other sources for attributes,
the DDEF macro instruction or command can also be used to furnish
any attributes which are not furnished by the DCB macro
instruction.

DCB reserves a space in virtual storage in which the attributes of
the data set to be processed are to be placed and optionally
describes the attributes of the data set (in conjunction with the
DDEF macro instruction or command) to the TSS/360 management
facilities.

CDD

DCBD

retrieves one or more DDEF commands from a line data set (created
by issuance of a DATA or MODIFY command) that consists of pre­
stored DDEF commands only. The cnD macro instruction (or com­
man~ processes these commands as if they were just issued at the
terminal and thereby defines their related data sets to the sys­
tem in the same manner as the DDEF macro instruction.

used to facilitate easier processing or modification of the data
control block created by a DCB macro instruction. The macro
instruction generates a dummy control section that provides the
user with the symbolic names used by the system for referencing
the fields in a data control block. A user can then use these
labels to address the fields of any data control block he con­
nects to the Dummy control section via a USING instruction.

Detailed explanations of each of the above macro instructions and the
formats in which they may be specified are shown below. Further infor­
mation pertaining to defining a data set and the related macro instruc­
tions can be found in IBM System/360 Time Sharing System: Assembler
Programmer's Guide, Form C28-2032.

22

DDEF -- Define a Data Set (S)

The DDEF macro instruction defines a data set and describes its
characteristics to the system. Every data set that is referred to by an
object program during execution must be defined by a DDEF macro instruc­
tion or command. All public VAM data sets are automatically cataloged
at DDEF time. The system creates the catalog entry and provides the
user with unlimited access. Each DDEF macro instruction is valid only
during the session in which it is issued; thus data sets defined for one
session must be redefined at every session that involves reference to
them.

Note: The following description applies to the DDEF macro instruction
used to define a standard data set on a public volume. (The standard
data set is one that is VAM organized, on direct-access public storage,
arranged in units of pages, and has standard labels.) To define non­
standard public data sets or any private data set, refer to the detailed
description of the DDEF macro instruction given in Appendix G.

r------~---------T---,
I Name I Operation I Operand ,
~------t---------+---1
I [symbol] I DDEF I OPlist-{text~ I
I I I addr) I L-_______ ~ ________ ~ ___ J

oplist
specifies the list of operands. They are:

r--,
~ l---------------OP:~~-------------------------------~
I {ddname-symbOlj .] I : ,dSOrg-{~~} ,DSNAME=name[,DISP=[OLDINEW}] :

I PCSOUT I ~ __ J

ddname
specifies the symbolic data definition name associated with this
data set definition. It provides the link between the data control
block in the program and the data set definition. It must contain
one to eight alphameric characters, the first of which must be
alphabetic. The user is not allowed to use a ddname that begins
with SYS, since system reserved ddnames are prefixed with those
characters.

PCSOUT
specifies that the program checkout subsystem is being used and a
data set is being defined for dumps. A PCSOUT type of DDEF command
or macro instruction is required in a task if the DUMP command is
to be employed.

dsorg
specifies the organization of the data set.

VI
specifies the data set organization as virtual index sequential.

VS
specifies the data set organization as virtual sequential.

Note: If neither VI nor VS is specified, the data set organization
assigned at system generation time is assumed.

Part II: Functional Macro Instruction Grouping 23

DSNAME

DISP

specifies the name of the data set being defined; i.e., the name
under which the data set may be cataloged or temporarily referred
to.

This operand can be specified as the fully qualified name of: a
partitioned or nonpartitioned data set, a member of partitioned
data set, or a partitioned or nonpartitioned generation of a
generation data group (identified by an absolute generation name or
relative generation number) •

specifies the status of the data set. If DISP is defaulted in a
DDEF for an existing cataloged public data set, the system will
assume a value of OLD. If DISP is defaulted for any data set which
does not yet exist, the system will assume a default value of NEW.
It should be noted that for existing uncataloged private data sets
the DISP value must be explicitly specified as OLD. If the user
tries to default such a data set, a DISP value of NEW is assumed
and a system error results. The various defaults and options are
summarized below:

NEW - for a new data set.
OLD - for an old data set.
Defaults - OLD for old cataloged data sets.

NEW - for a new data set or for an old uncataloged
private data set.

CAUTION: If this macro instruction is included in a module that is
declared privileged (through use of the DCLASS macro instruction), the
address of a save area must be placed in register 13 before execution of
this macro instruction.

PROGRAMMING NOTES: All three of the DDEF operands shown above -- except
VI -- are required for a cataloged data set. Only the ddname and data
set organization are needed for an uncataloged data set. In either
case, the data set conforms to the current installation standards.

Before the user can employ the DUMP command in his task, he must
issue a PCSOUT type of DDEF macro instruction or command. Such a DDEF
macro instruction or command requires PCSOUT as the first operand, fol­
lowed by the dsname operand. Since the dump data set will be new, the
DISP operand is defaulted.

The DDEF macro instruction or command causes a system entry to be
established for the DDEF information so that allocation routines and
access methods can refer to it. The link between this information and
the problem program's reference to the data set (i.e., the data control
block) is the data definition name, ddname. The entry containing the
DDEF information is maintained until the task is concluded or until,
through the RELEASE macro instruction or command, the data set is
released.

The DDEF macro instruction or command may be used in conversational
and nonconversational tasks.

If the user's problem program is being executed in conversational
mode and an undefined ddname is referenced, prompting messages for DDEF
operands are issued to the user regardless of confirmation option.

The user may change the ddname assigned in a previous DDEF macro
instruction or command by using a DDEF macro instruction with a new
ddname. The only operands used in this case are ddname, dsname, and
disposition (OLD). The new ddname is then assigned and the old ddname
eliminated.

24

At completion of execution of the DDEF macro instruction, the low­
order byte of register 15 contains one of the following codes:

Code
(Hexadecimal)

00
04
08
OC
10
20
40
80

Significance
No error
Data set name undefined
Data set name not unique
Attention interruption
DSORG inconsistent
Space not available
ddname not unique
Other

L- AND E-FORM USE: The oplist operand is required in the L-form of this
macro instruction and is not permitted in the E-form. Only the text
form of the operand may be used in the L-form of the macro instruction.

DCB -- Construct a Data Control Block (0)

The DCB macro instruction is one of the major sources (see Appendix
F) by which the attributes of a data set may be described to the system.
The attributes of a data set which can be provided via this macro
instruction and the formats in which particular attributes can be speci­
fied are indicated below by access method.

Format: The format of the DCB macro instruction varies depending on the
data set organization and the access method which is to be used, or was
previously used, to perform I/O on that data set. All of the possible
parameters which might be specified by a nonprivileged user in a DCB
macro instruction are indicated by applicable access method.

Part II: Functional Macro Instruction Grouping 25

r--------T---------T------------------~-------------------------------,

I Name I Operation I Operands I Applicable Access Methods I
I I I r---,----T----T----T----T-----1
I I I IVSAMIVISAMIVPAMIBSAMIQSAMIIOREQI
r-------+---------+------------------_+----f-----+----+----+----+_----~

[symbol] DCB , [, DDNAME=symbol] 'X I X 'X I X I X I X I
~-------------------+----+_----+~--t----t----+-----1
, [,DSORG=code] 'X, X I X I X I X I X I
~-------------------+----+-----+----+----+----+-----~
I [, RECFM=code] I X I X I X I X I X I X I
~-------------------+----+_----+----t----+----+-----~
I [, LRECL=absexp] I X , X I X I X I X I I
~------------------_+----+-----t----+----+----+-----~
, [, EODAD=symbol] I X , X I X I X I X I I
~-------------------+----+-----+----+----+----+-----~
, [,SYNAD=symbol] I I X I x* I X I X I X I
~------------------_+----+_----+----+----+----+-----1
I (,PAD=absexp] I I X I x* I I I I
~-----------------__t----+__---+----+----+----+-----1
I [,RKP=absexp] I I X I x* I I I I
~-------------------+----+_----+----+----+----+-----1
I [, DEVD=code] I I 1. I 1. I X I X I X I
~-------------------+----+-----+----+----+----+-----~
I [,KEYLEN=absexp] I I X I x* I X I I X I
~---------------+----+-----+----+-----+----+-----~
I [, DEN=absexp] I I I I X I X I X I
~-------------------+----+-----+--+----+---+-----~
I [, TRTCH=code] I I I I X I X I X I
~-------------------+----+-----+----+----+----+-----~
I {, PRTSP=absexp] I I I I X I X I X I
~-------------------+----+-----+----+----+----+-----~
I [,MODE=cod~ I I I I X I X I X I
~------------------_+----+_----t----+----+----+-----~
I [,STACK=absexp] I I I I X I X I X I
~-------------------+----+----+----t---+---+-----~
I [,MACRF=code] I I I I X I X I I
~-------------------+----+_----t----+----+----+-----~
I [, BLKSIZE=absexp] I I I I X I X I I
~-------------------+----+--~--+----+----+----+-----~
I [,OPTCD=code] I I I I X I X I I
~---------------+----+-----+---+----+----+-----~
I [,IMSK=code] I I I I X I X I I
~----------------+----+-----+----+----+----+-----~
I [,EXLST=symbol] I I I I X I X I I
~------------------+----+-----+---+----+----+-----~
I [,NCP=absexp] I I I I X I I X I
~-----------------+----+-----+----+----+----+----~
I [, BUFNO=absexp] I I I I X I I I
~---------------+----+_----+----+---+----+-----1
I [,BFALN=cod~ I I I I X I I I
~---------------+----+-----+----+----+----+-----~
I [, BUFL=absexp] I I I I X I I I
~-----------------__t----+-----+----+----+----+----~
I [, BUFTEK=code] , I I I X I I I
~-----------------+----+-----+----+----+----+-----~
I [,BUFCB=addr] I I I I X I I I
~-------------------+----+_----+----+----+----+-----1
I [,EROPT=code] I I I I I X I I L-_______ i _________ i ______________ --i ____ ~ ____ i ____ i ____ i ____ i _____ J

* = VISAM members of a partitioned data set
1. = a value is assumed by the system

DDNAME (all access methods)

26

specifies the symbolic data definition name associated with a par­
ticular data set. This symbol provides the link which connects the

attributes of the data set defined by the DCB macro instruction
with those specified by the DDEF macro instruction (or command) ,
thereby providing the system with all the attributes necessary for
processing the data set.

Specified as: A symbolic name of one to eight alphameric charac­
ters, the first of which must be alphabetic. The name specified
for this parameter must be identical to the DDNAME parameter of the
DDEF macro instruction that defines this data set. The only
alternate source for this information is the user's program.

DSORG (all access methods)
specifies the organization of the data set.

Specified as: The various data set organizations. The codes by
which they can be specified, and the access methods with which they
are applicable are indicated below.

PS

PSU

VS

VI

VP

VIP

VSP

RX

Organization

a physical sequential organization

a physical sequential unmovable
organization in which the data set
contains location-dependent informa­
tion with respect to this data set.
Treated as PS by TSS/360.

virtual sequential organization

virtual indexed sequential
organization

virtual partitioned organization

virtual partitioned index sequential
member of a partitioned organization

virtual partitioned sequential member
of a partitioned organization

I/O request facility is being used

Applicable
Access Methods

BSAM,QSAM

BSAM,QSAM

VSAM

VI SAM

VPAM

VPAM

VPAM

IOREQ

For an existing VP data set, only VP need be specified. The
organization of the member (virtual sequential or virtual index
sequential) is determined by FIND and placed in the DCB. However,
when creating a new member, the user must specify either VIP or
VSP.

This information can also be supplied by the user's program or the
DDEF macro instruction (or comman~, but must be supplied before
issuing an OPEN macro instruction.

RECFM (all access methods)
specifies the format of the records in the data set.

Specified as:

For BSAM and QSAM:
U [T] [A 1M]
V [BIT] [AIM]
F [B I SIT I BS I BT I BST I ST] [A I M]

Part II: Functional Macro Instruction Grouping 21

Where the record format is:

U undefined-format records
V variable-length records
F fixed-length records

Where the physical attributes are:

B blocked records
S standard data set; no truncated blocks or unfilled tracks
T track overflow employed

Where the record contains:

A USASI control character
M machine code control character

Refer to Appendix D for a discussion of control characters.

Absence of any of the physical attribute mnemonics implies the
opposite of that attribute. For instance, writing RECFM=V
implies: variable-length, unblocked records, no control charact­
er, and no track overflow feature.

This information can also be supplied by the user's program, the
DDEF macro instruction (or command), or the data set label.

For VAM data sets: All VAM data sets can be organized as fixed
or variable length records but only VSAM and VPAM records can
be specified as having undefined formats.

U [A 1M]
V [A 1M]
F [AIM]

(applicable to VSAM, VPAM only)
(applicable to VSAM, VISAM, or VPAM)
(applicable to VSAM, VISAM, or VPAM)

Where the record format is:

U undefined-format records
V variable-length records
F fixed-length records

Where the record contains:

A USASI control character
M machine code control character

If A or M is not specified, no control character is assumed.
Refer to Appendix D for a discussion of control characters.

U -- undefined-format records

This information can also be supplied by the user's program,
the DDEF macro instruction (or command), or the data set label.

LRECL (VAM, BSAM, and QSAM)

28

specifies the length in bytes of a logical record. For forrnat-F
records~ this operand specifies the length of each record in the
data set. For format-V and -U records, the user must insert the
maximum expected value before the data set is opened. The maximum
size is 32,166 bytes for BSAM, 1,048,516 bytes for VSAM, and 4000
bytes for VISAM. When reading format-U or -V records, the corres­
ponding field in the data control block (DCBLRE) contains the
length in bytes of the record just read.

This information can also be supplied by the user's program, the
DDEF macro instruction (or command) , or the data set label.

EODAD (VAM, BSAM, and QSAM)
specifies the address of the user's end-of-data routine for input
data sets. This routine is entered if the user requests a record
when there are no more records in the data set. If no routine has
been provided, and the end-of-data condition has been encountered,
the task is abnormally terminated. (Refer to Appendix C.)

If the symbol supplied is an external symbol, it must also appear
as the operand of an assembler language EXTRN statement in the same
program module as the DCB macro instruction.

The only alternate source for this information is the user's
program.

SYNAD (VISAM, VISAM members, BSAM, QSAM, or IOREQ)
specifies the address of the user's synchronous error exit routine.
The routine is entered if input/output errors result from an
attempt to process data records. If no routine is specified and
the system encounters a condition that would cause control to be
given to the SYNAD routine, the task is abnormally terminated.

The only alternate source for this information is the user's
program.

If the address specified is an external symbol, the symbol must
also appear as the operand of an assembler language EXTRN statement
in the same program module as the DCB macro instruction.

PAD (VISAM or VISAM members)
specifies the percentage of space (to a limit of 50 percent) to be
left available within the pages of a virtual index sequential data
set, thus providing for insertions within the pages.

This information can also be supplied by the user's program, the
DDEF macro instruction (or command), or the data set label.

RKP (VISAM or VISAM members)
specifies the displacement (relative key position) of the key field
from the first byte of a logical record.
Note: For format-V records, the logical record includes the length
field as the first four bytes.

This information can also be supplied by the user's program or the
DDEF macro instruction (or command) •

DEVD (BSAM, QSAM, IOREQ, or VA~
specifies the device on which the data set resides. Additional
keyword operands are available, as shown below, to provide device­
dependent information to device-dependent parameter bytes in the
data control block.

Note: For VAM, DA is assumed, and the user can supply the KEYLEN
operand if desired.

DA [,KEYLEN=absexp]
TA [, DEN= {a 1112}] [, TRTCH= (C I E I T lET}
PR [,PRTSP=(0111213}]

{ RpDcJ [,MODE= (CIE}] [,STACK= {l12}]

Part II: Functional Macro Instruction Grouping 29

30

Note: Since nonprivileged users cannot address unit record devices
directly, they may not specify PR (printer), RD (card reader) , or
PC (card punch). These devices may be specified only by users with
proper system authorization.

This information can also be supplied by the user's program, the
DDEF macro instruction or command, or the data set label.

DA

TA

PR

specifies a direct-access device.

KEYLEN (VISAM or VISAM members, BSAM, or IOREQ)
specifies length in bytes of the key associated with a
physical record. When a record is read or written, the
number of bytes transmitted is equal to key length plus
record length. Maximum value of the key is 255.

This information can also be supplied by the user's program or
the DDEF macro instruction or command.

specifies magnetic tape.

DEN (BSAM, QSAM, or IOREQ)
specifies a value for the tape recording density in bits per
inch as listed below.

r------------T---------------------------------l
I ~-~~~=--~=-~~~~~~=--~=-ns~~~-~~~~~~~~~-~
IDEN Value I Model 2400 Tape Drive I
I ~------------------T---------------~
I I 7-Track I 9-Trackl
~-----------+-------------------+---------------~
I 0 I 200 I I
I 1 I 556 I I
I 2 I 800 I 800 I L _____________ ~ __________________ ~ _______________ J

This information can also be supplied by the user's program
or the DDEF macro instruction (or command) •

TRTCH (BSAM, QSAM, IOREQ)
specifies, for 7-track tape, recording technique, where:

C -- Data conversion feature available. If data conv­
ersion is not available, only format-F and format­
U are supported.

E Even parity is used.
T BCD to EBCDIC translation is required.

This information can also be supplied by the user's
program or the DDEF macro instruction (or command). If
not supplied by any source, odd parity and no transla­
tion is assumed.

specifies printer.

PRTSP (BSAM, QSAM, or IORE~

specifies the line spacing on a printer. Either 0, 1,
2, or 3 may be specified.

RD

PC

o No spacing
1 Space one line
2 Space two lines
3 Space three lines

This information can also be supplied by the user's
program or the DDEF macro instruction or command. If
not supplied by any source, 1 is assumed.

specifies card reader.

specifies card punch.

MODE (BSAM, QSAM, or IOREQ)
specifies the mode of operation for a card reader or a
card punch, as follows:

C - the card image (column binary) mode
E - The EBCDIC code

This information can also be supplied by the user's
program or the DDEF macro instruction (or command) •

MACRF (BSAM and QSAM only)
specifies the type of macro instructions to be used in processing a
particular data set.

Specified as:

For BSAM:

(R [C I P]) (W [C I P]) (R [C I P] , W [C I P])

R READ macro instructions
W -- WRITE macro instructions

Optional modifiers:

C CNTRL macro instruction
P POINT macro instruction

For QSAM:

(G [S I C I SC]) (P [S I C I SC])

G GET macro instructions
P -- PUT macro instructions

Optional modifiers:

S SETL macro instruction
C -- CNTRL macro instruction

(G [S] , P [S])

This information can also be supplied by the user's program or the
DDEF macro instruction (or comman~ •

BLKSIZE (BSAM only)
specifies a decimal value for the maximum block length in bytes.
Maximum value of BLKSIZE is 32,160.

This information can also be supplied by the user's program, the
DDEF macro instruction (or command), or the data set label.

Part II: Functional Macro Instruction Grouping 31

OPTCD (BSAM or QSAM)
specifies an optional service to be provided. This service con­
sists of performing a write validity check (for direct-access
device only) •

This information can also be supplied by the user's program, the
DDEF macro instruction (or command) , or the data set label. If not
supplied by any source, the service is not performed.

IMSK (BSAM or QSAM)
specifies a four-byte hexadecimal number whose bit pattern indi­
cates which system error handling procedures, if any, are to be
invoked.

If FFFFFFFF is written, the system applies all optional error reco­
very procedures. This is the default condition.

If 00000000 is written, the system is to apply none of its optional
error recovery procedures.

If any other four-byte hexadecimal number is written, the system
applies its error recovery procedures only for those entries, set
to 1 in IMSK, that correspond to error.

The first two bytes correspond to the first two bytes of the chan­
nel status word, and the other two bytes correspond to the first
two sense bytes. Bit positions in each byte for specification of
system error recovery procedures are:

XXXXXXAB XCXXXXXD YEFGHIYY YYYYYYYY

where a 1-bit in a given position indicates that the system is to
handle the associated error condition:

X System never tests this bit to determine entry to retry
routines

Y Device-dependent conditions
A Unit check
B Unit exception
C Incorrect length

EXLST (BSAM or QSA~
specifies the address of an exit list supplied by the user. See
Appendix A for explanation of the exit list.

This information can also be supplied by the user's program.

NCP (BSAM)
specifies the number of consecutive READ or WRITE macro instruc­
tions issued before a CHECK macro instruction. This number may not
exceed 99.

This information can also be supplied by the user's program or the
DDEF macro instruction (or command) •

BUFNO (BSAM)
specifies the number of buffers to be assigned to data control
block. The number, expressed as a binary value, may not exceed
255.

This information can also be supplied by the user's program or the
DDEF macro instruction (or command) •

BFALN (BSAM)
specifies boundary alignment of buffers. This field is ignored in

32

Time Sharing System/360. Every buffer is automatically aligned on
a doubleword bounndary.

This information can also be supplied by the user's program or the
DDEF macro instruction or command.

BUFL (BSAM)
specifies a decimal number which is the length in bytes of each
buffer to be obtained for a buffer pool. Maximum value is 32,760.

This information can also be supplied by the user's program or the
DDEF macro instruction (or command). If not supplied by any
source, the length is considered equal to the BLKSIZE operand.

BUFCB (BSAM)
specifies the address of a buffer control block.

This information can also be supplied by the user's program.

BFTEK (BSAM)
specifies that simple buffering is to be employed.

S - simple buffering

In simple buffering, a data set is associated with a specific group
of buffers. A data set always uses buffers obtained from the pool
assigned to its data control block at the time it is opened. Reco­
rds can be moved between a buffer and an independent work area,
processed within a buffer, or moved from an input buffer to an out­
put buffer.

This information can also be supplied by the user's program or the
DDEF macro instruction (or comman~. If not supplied by any
source, BFTEK=S is assumed.

EROPT (QSAM)
When using GET/PUT macro instructions to process a sequential data
set, an I/O error may occur. The user may specify one of three
automatic error options to be used if there is no SYNAD routine or
if the SYNAD routine returns control to the user's program. One of
the following choices of action can be specified:

ACC accept the erroneous block and continue processing
SKP skip the erroneous block and process the next record
ABE abnormally terminate the task

Note: If the EROPT and SYNAD fields are not completed, the ABE
option is assumed.

The choice of action that can be specified depends on which proces­
sing method (option) is specified in the OPEN macro instruction for
the data set. The allowable combinations are as follows:

Action Operand
ACC
SKP
ABE

OPEN Option
INPUT,OUTPUT (for printer only), RDBACK, or UPDAT
INPUT,RDBACK, or UPDAT
INPUT,OUTPUT,RDBACK, or UPDAT

PROGRAMMING NOTES: During the assembly of a source program, the DCB
macro instruction reserves storage space in a user program in which the
attributes of a data set being described to the system may be subse­
quently placed. This storage area is known as a Data Control Block
~CB) and is created at assembly time, in line, wherever the DCB macro
instruction appears in a user's source program. The reserved control
block has a fixed length and consists of two contiguous parts: a common

Part II: Functional Macro Instruction Grouping 33

portion, in which all information that is access method independent is
to be ·placed, and an access method dependent portion.

In addition to furnishing the storage area for holding the attribute
data describing a data set, the DCB macro instruction can also be used
optionally, at execution time, to actually specify many of a data sets
attributes. A user might furnish the system with such data attribute
information as, the data set organization, its record format, whether or
not buffering is to be used during I/O operations, the type of device
the data set resides on, and the addresses of user written routines for
handling I/O errors, processing labels, end-of-data-set processing, and
Data Control Block modification routines. Any such attributes, speci­
fied with a DCB macro instruction are automatically placed in appropri­
ate positions in the reserved storage area.

When the storage area reserved by the DCB macro instruction is filled
with the att.ributes of a data set, it becomes the principal control
block used to supply the system with information describing a particular
data set or device. Once optionally specified attributes have been
placed in the control block, the DCB routine returns to the user1s pro­
grama All data management macro instructions, provided with TSS/360,
reference this control block for pertinent data when they are executed.

CDD -- Retrieve and Execute DDEF Commands (S)

The CDD macro instruction retrieves one or more DDEF commands from a
line data set containing prestored DDEF commands. The macro instruction
processes the retrieved commands as if they had just been entered by the
user. The user can thus create a line data set of commonly used DDEF
commands with reference through the CDD macro instruction to eliminate
direct DDEF macro instruction or command entries for each run of a
program.

r--------T---------T---,
I Name I Operation I Operand I
~-------+---------+---1

I I I ~text} I I [symbol] I CDD loplist- I
I I I addr I L-_______ i _________ i ___ J

oplist
specifies the list of operands. They are:

r--,
I Oplist I
~--1
I dsname-name [,DDNAME=ddname-symbol, •••] I L __ J

dsname
specifies the name of the line data set containing the prestored
DDEF commands.

This operand can be specified as the fully qualified name of: a
nonpartitioned data set, or a nonpartitioned generation of a
generation data group (identified by absolute generation name or
relative generation number) •

DDNAME

34

specifies the following symbol as ddname of a particular DDEF com­
mand in the data set.

ddname
specifies the ddname ofa particular DDEF command in the data set.

CAUTION: The user must make sure that none of the DDEF commands or
macro instructions for his task has the same ddname as a DDEF command
retrieved through this macro instruction.

If this macro instruction is included in a module that is declared
privileged (through use of the DCLASS macro instruction), the address of
a save area must be placed in register 13 before execution of this macro
instruction.

PROGRAMMING NOTES: If no ddnames are given, all DDEF commands in the
set are retrieved and executed.

At completion of execution of the CDD macro instruction, the low­
order byte of register 15 contains one of the following codes:

Code
(Hexadecimal)

00
04
08
OC
10
14

Significance
Normal
Invalid dsname
Invalid ddname
ddname not in data set
Error return from DDEF
Not a line data set

L- AND E-FORM USE: The oplist operand is required in the L-form of this
macro instruction and is not permitted in the E-form. Only the text
form of the operand can be used in the L-form of the macro instruction.

DCBD -- Provide Symbolic Names for a Data Control Block (0)

The OCBD macro instruction generates a dummy control section (DSEC~
that provides symbolic names for the fields in a data control block.
With proper initialization of a base register, the user may access all
fields of a data control block.

The following conventions have been adopted:

1. The name of the dummy control section is CHADCB. (An EQU is
included in the DSECT to allow use of the alternative OS/360 name
IHADCB) •

2. The name of each field begins w·ith the characters "DeB" followed by
the keyword operand that represents the field in the DCB macro
instruction. If the resulting name is longer than six characters,
it is truncated to six characters by right-to-Ieft dropout; that
is, the field represented by the operand BLKSIZE= should be written
DCBBLK. (Refer to Appendix F.)

The attributes of each data control block field are defined in the
dummy control section (DSECT). Data control block fields containing
addresses are aligned on fullword boundaries.

r--------T---------T---,
I Name I Operation I Operand I
~-------f---------+---1
I ,OCBD, I L ________ ~ _________ ~ ___ J

Part II: Functional Macro Instruction Grouping 35

CAUTION: The DCBD macro instruction may be used only once in an assemb­
ly module.

PROGRAMMING NOTES: The macro instruction may appear at any point in a
control section. However, if it is written at any location other than
at the end of a control section, the original control section must be
resumed by the user. The d.ata control blocks to be accessed need not
appear in the same control section as the DCBD macro instruction.

EXAMPLE: This example illustrates how a program can access a field. in a
data control block through use of the DCED macro instruction. The load
address (LA) instruction is used to place the address of the data con­
trol block in register 5.

A USING statement establishes a base register for CHADCB. The store
operation (ST) places the value contained in register 6 into the speci­
fied field of the data control block pointed to by register 5. DCBLRE
is the field associated with logical record length. The user previously
loaded register 6 with the value he desired to be in DCBLRE.

MYDCB DCB

LA
USING
ST

DCBD

DDNAME=MYDCB,MACRF=G (other DCB operands)

5,MYDCB
CHADCB,5
6, DCBLRE

FINDDS* - Locate JFCB Corresponding to Data Set Name (S)

The FINDDS macro instruction obtains the location of the JFCB corres­
ponding to a given data set name. If the data set name specified is not
in the task definition table (TDT), but is in the catalog, the user can
request that a JFCB be created.

FINDJFCB* - Locate JFCB and Ensure Volume MOUnting (S)

The FINDJFCB macro instruction locates the JFCB for a given data
definition name and, optionally, ensures that the volumes specified in
that JFCB are mounted.

*Although these macro instructions are available to all users, they are
employed primarily by system programmers; therefore, refer to System
Prograrr~er's Guide for a discussion of these macro instructions.

36

CONNECTING A DATA SET TO THE SYSTEM

Before processing a data set, a user must first describe its attri­
butes and then connect it to the system. User issuance of the OPEN
macro instruction causes the system to interrogate the data set attri­
bute information specified by the DDEF and DCB macro instructions or any
other available sources for such attributes. The system determines if
an appropriate data set organization has been specified and if all of
the necessary attributes for processing such a data set have been pro­
vided. If the user has indicated he wants to alter the DCB contents at
open time, by including the EXLST parameter (for BSAM and QSAM only)
with his attribute specifications, the system immediately exits to the
user modification routine. Once all the required attributes have been
provided, the sy~tem makes the access method that a user has indicated
he desires to employ (via attribute specifications) available to him.
At the time a user opens a data set he can optionally select or default
a processing option which indicates to the system the type of processing
he expects to perform on that data set.

The user should know that the processing option he specifies when he
issues the OPEN macro instruction determines whether he can use all of
the macro facilities of an access method or only a portion of them
(i.e., if a user opens a data set for INPUT only, he will only be

allowed to use macro instructions which retrieve data and will not be
allowed to use macro instructions that store data into the data set he
has opened) •

Once the system knows the processing option and locates the device on
which a data set is to reside, or currently resides, it proceeds to
physically open that data set by processing labels (if specified) and
physically positioning the user at the data record he wants to process.
The initial positioning directed by the system varies depending on the
access method, the processing option, device type, and in some cases the
status (i.e., MOD) of the data set. These relationships are described
in detail in IBM System/360 Time Snaring System: Assembler Programmer's
Guide, Form C28-2032. The functions of the OPEN macro are briefly sum­
marized below.

OPEN collects the attribute data, describing one or more data sets,
from the various sources for providing such attributes (such as
the DCB and DDEF macro instructions) , by priority, and places
them in the related data control blocks. These attributes are
made available to the system, thereby logically connecting the
data set(s) to the system. The access method dependent portion
of the data set's data control block is initialized with pointers
to the appropriate access method routines. Labels (if any exist)
are checked, the user's privilege class is verified, and the sys­
tem positions the user at the beginning of the data set that is
to be processed. The user can proceed to process an opened data
set.

A detailed explanation of the above macro instruction and the various
formats in which it may be specified (depending on access method) is
shown below. Further information pertaining to opening a data set and
the priority of attribute sources may be found in Appendix F of this
publication and in IBM System/360 Time Sharing System: Assembler Pro­
grammer's Guide, Form C28-2032.

Opening a Data Set 37

OPEN -- Connect a Data Set to the System (S)

The OPEN macro instruction connects one or more data sets to the sys­
tem by completing the data control blocks containing their attributes,
indicates the manner in which a data set is to be processed, and ini­
tially positions the data set for processing. Input labels are analyzed
and output labels are created. Control is given to exit routines as
specified in the data control blocks exit list (BSAM and QSAM only) •
Any number of data sets and their associated options may be specified in
the OPEN macro instruction.

The standard form of the OPEN macro instruction is written as
follows:

r-------T---------T---,
'Name ,OperationlOperand ,
1-----+-----_+--~
, [symbol] 'OPEN , ({dch-addr, [(opt .. -code [, opt 2 -code])] } , •••) I L-_______ ~ _______ _i ___ J

dcb

opt1

38

specifies the address of the data control block containing the
attributes of the data set that is to be initialized.

specifies the intended method of input/output processing of the
data set being connected to the system. The processing method
which can be specified is dependent on the data set organization
and access method which is being used to perform the I/O proces­
sing_ The various processing options, their meanings, and the
access methods with which they can be specified are indicated
below:

r-------y-------------------------------------T---T----T----T-----'
'Code ,Meaning 'VAM' BSAM 1 QSAM' IOREQ,
I-------+-----------------------------------+---+----+----+-----~
, , , , , , 1

'INPUT 'Data set can be used as input only. , X 1 X, X 1 X 1
, , This option is assumed if opt1 is , 1 , 1 I
1 , defaulted. , , 1 , I
~-------+-------------------------------------+---+----+----+-----~
'OUTPUT , Data set can be used for output only I X, X 1 X I X 1
~-------+-----------------------------------+---+----+----+-----~
I I NOUT ,Both input and output operations are' X 1 X 1 --I X ,
, 'allowed. The DCB is opened as I' I I I
I , INPUT. , I I , ,
~------.-+------------------------------------+---+----+----+-----~
IOUTIN ,Both output and input operations are' X I X, --I X I
, 'allowed. The DCB is opened as " , , I
, , OUTPUT. , , I 1 ,
~------_+__-------------------------------+--_+----+----+-----i
I UPDAT , I X 1 X I X 1 X 1
~-------+------------------------------------+---+----+----+-----~
'RDBACK I An INPUT data set is to be read 1 --I X 1 X I -- 1
I , backwards. 1 1 , 1 I l ______ _i _____________________________________ ~ ___ ~ ___ ~ ____ ~ _____ J

Note: Opening a VISAM data set for INOUT or OUTIN is equivalent to
opening for UPDAT. When a data set is opened for UPDAT, however,
the user must position to the desired record in the data set.

the codes REREAD and LEAVE are accepted for compatibility with the

IBM System/360 Operating System. However, this parameter is
ignored by TSS/360 because volumes are not mounted in parallel.

CAUTION: The following errors cause the results indicated:

r--T-------------------,
, Error , Result I
1--------------------------------------+-------------------~
IOpening a data control block that is already open No action
I
,Specifying the address of an invalid data control Task terminated.
block

Opening a data control block when a DDNAME in
data control block has not been provided.

Opening a privileged data set by a nonprivileged
user (BSAM, QSAM, VPAM and IOREQ only) •

Opening a READ-ONLY data set and specifying an
option other than INPUT

Opening a data control block when the DDNAME in
the data control block does not correspond to the
DDNAME in the DDEF macro instruction (or command)

Nonconversational
task terminated;
prompting given if
task is conversa­
tional

Task terminated

Task terminated

Nonconversational
task terminated;
prompting given if
task is conversa­
tional

Opening a data control block containing an invalid Task terminated
DSORG specification L--__ ~ ___________________ J

If this macro instruction is included in a module that is declared
privileged (through use of the DCLASS macro instruction), the address of
a save area must be placed in register 13 before execution of this macro
instruction.

PROGRAMMING NOTES: Any number of data control block addresses and asso­
ciated options may be specified in the OPEN macro instruction. This
facility allows parallel opening of the data control blocks and their
associated data sets, which is more efficient than to open them indivi­
dually. One of the services performed at this time is processing of
labels of data sets or volumes.

VSAM:
When a shared VSAM data set is opened, a data set interlock is set
according to the opt1 specification. If INPUT is specified, a read
interlock is set; if OUTPUT, INOUT, OUTIN, or UPDAT is specified, a
write interlock. Rules for sharing VSAM data sets are given in
Appendix K.

VISAM:
When a shared VISAM data set is opened, a data set interlock is set
according to the opt~ specification. If INPUT, INOUT, OUTIN, or
UPDAT is specified, a read interlock is set; if OUTPUT is speci­
fied, a write interlock is set. Rules for sharing VISAM data sets
are given in Appendix K.

BSAM:
If a DCB exit routine or a user-label exit routine is to be
executed, the exit list address must be provided in the data con­
trol block. The format of the exit list, its use during the open-

Opening a Data Set 39

ing process, and exit routine requirements are discussed in Appen­
dix A.

L- AND E-FORM USE: The L- and E-form of this macro instruction are
allowed. The E-form of the macro instruction may specify any parame­
ters; however, the parameters specified in the E-form will overlay para­
meters specified in the L-form. The E-form may not specify more DeB
operands than are specified in the L-form. The format of the parameter
list generated by the OPEN macro instruction is described in Appendix L.

For example:

JOE
DEB

OPEN
OPEN

(DATSET"MORSET,,) ,MF=L
(, ,FOSET, ,NUSEM) ,MF= (E,JOE)

When the E-form macro instruction is executed, the data control block
FOSET replaces MORSET in the parameter list. Data control blocks with
symbolic addresses DATASET, FOSET, and NUSEM are opened.

EXAMPLES: EX1 opens the data control block INVEN as an input data set.
EX2 opens the two data control blocks INVEN and REPORT with different
options. EX3 opens the two data control blocks INVEN and MASTER; they
are opened for input data sets since INPUT is assumed when opt1 is
omitted. EX4 generates a parameter list for opening INVEN, and EX5
opens INVEN.

40

EX1
EX2
EX3
EX4
EX5

OPEN
OPEN
OPEN
OPEN
OPEN

(INVEN, (INPUT»
(INVEN, (INPUT) ,REPORT, (OUTPUT,LEAVE»
(INVEN, , MASTER)
(INVEN, (INPUT» ,MF=L

MF= (E,EX4)

ACCESSING A DATA SET

Once a data set has been given a name, its attributes have been
described, and it has been connected to the system, the user can employ
the routines provided by the TSS/360 data set management facilities for
storing and retrieving data organized in the various formats. These
routines are employed by using I/O macro instructions in the user's
source program. The macro instructions used comprise part of an access
method and are dependent on the manner in which a user organizes and
desires to process his data. There are two primary types of access
methods, the Virtual Access Methods ~AM) and the Sequential Access
Methods (SAM) as indicated below.

These are the access methods used in TSS/360 unless the data sets
must be interchanged with programs running in Operating System/
360 or the Model 44 Programming System, or the data set is to be
written on magnetic tape.

Users create, read, and process Virtual Access Method ~A~ data
sets on the basis of logical records. The system, however,
blocks these records by pages (4096 bytes) and uses the page as
the unit of transfer between the direct access device and the
user's virtual storage. The system also ensures that only those
pages of a data set that are actually required are resident in
virtual storage. Because VAM data sets can be organized either
sequentially, indexed sequentially, or partitioned, three dis­
tinct access methods are provided under VAM for processing these
data sets. The virtual access methods that are provided to a
user are:

Data Set Organization
sequential
indexed sequential

partitioned

Access Method
Virtual Sequential Access Methos ~S~
Virtual Indexed Sequential Access Method

~ISAM)
Virtual Partitioned Access Method ~PA~

Used to read and write records that can be read and written with
programs running under control of the Operating System/360 or the
Model 44 Programming System, or when the data set is to be writ­
ten on magnetic tape.

Users create, read, and process SAM data sets on the basis of
physical records. The records within a physical record can,
however, be blocked or unblocked. Because of this, two distinct
access methods are provided under SAM for processing data sets.
The Sequential Access Methods are indicated below.

Data Set Organization
unblocked sequential
blocked sequential

Access Method
Basic Sequential Access Method (BSA~
Queued Sequential Access Method (QS~

Another special accessing facility, the Input/Output Request Facility
(IOREQ) is provided for users who would rather program their own I/O

device control routines than employ any of the access methods provided
with the TSS/360 Data Management Facilities.

Each of the above access methods and the macro instructions which may
be used with them are explained more fully on the following pages.
Detailed information pertaining to access methods and data set organiza­
tion may be found in IBM System/360 Time Sharing System: Assembler Pro­
grammer's Guide, Form C28-2032.

Access Methods 41

VIRTUAL SEQUENTIAL ACCESS METHOD

The virtual sequential access method (VSAM) consists of the TSS/360
data management facilities that enable a user to process virtual sequen­
tial data sets. These data sets can be stored on, or retrieved from,
direct-access devices only. The record format within each such data set
can be fixed length (blocked or unblocked) , variable length (blocked or
unblocke~, or undefined length (unblocked only). Such attributes are
unique for each data set; they must be defined to the system before a
data set can be accessed by VSAM. The macro instructions that have been
provided to a user, by VSAM, for accessing a data set in the appropriate
manner, are summarized below.

GET

PUT

PUTX

SETL

used for reading logical records in a sequential order.

for writing new or altered logical records into a virtual sequen­
tial output data set.

for writing an updated or identical logical record, directly from
an input data set to an output data set, without altering the
length of the record. The next sequential logical record con­
tained in an input buffer area (where it may have been modified)
is transferred to the output buffer as the next sequential output
record. The system must be positioned at that next sequential
logical record by issuing a locate mode GET macro instruction
prior to issuing PUTX.

enables a user to logically position a data set at its beginning,
end, at the previous record, or at any logical record within a
blocked sequential data set. Subsequent PUT or GET operations
will start at this new position.

Detailed explanations of each of the above macro instructions and the
formats in which they may be specified are shown below. Further infor­
mation pertaining to BSAM data set management and the related macro
instructions can be found in IBM System/360 Time Sharing System:
Assembler Programmer's Guide, Form C28-2032.

GET -- Get a Record (R)

The GET macro instruction (for VSAM) can be specified in either loc­
ate mode or move mode. In locate mode, the GET macro instruction
locates the next sequential record of an input data set and places its
address in register 1. The user may then operate on the record where it
is, or move it to a work area. In move mode, the GET macro instruction
acquires the next sequential record of an input data set and moves it to
a specified area in virtual storage.

~------T---------T---,

I Name I Operation I Operand I
~-------+---------+---~
I [symbol] IGET IdCb-{addrxJ ~area-[addrxJl I
I I I 1.. (1) L L (0) J I L ________ ~ _________ ~ ___ J

dcb

42

specifies the address of the data control block opened for the data
set being processed. If (1) is written, the address must have been
loaded into parameter register 1 before execution of this macro
instruction.

area (for move mode only)
specifies the address of the user's work area into which the record
is moved. If (0) is written, the address must be loaded into para­
meter register 0 before execution of this macro instruction.

CAUTION: If a GET macro instruction is requested beyond the end of a
data set, as a result of sequential operation or following a SETL macro
instruction, the user EODAD is given control. ~efer to Appendix C.)

The address of a save area must be placed in register 13 before
execution of this macro instruction.

PROGRAMMING NOTES: When retrieving variable-length records, the GET
macro instruction returns with the length of the logical record in the
DCBLRE field of the data control block.

For undefined-format records, the user must set the DCBLRE field to
the length of the record to be retrieved before issuing GET.

Rules for sharing VSAM data sets are given in Appendix K.

PUT -- Include a record in an Output Data Set (R)

The PUT macro instruction (for VSA~ can be specified in either loc­
ate mode or move mode. In locate mode, the PUT macro instruction places
in register 1 the address of an output buffer. The user should subse­
quently construct at that address the next record to be incorporated in
an output data set. In move 'mode, the PUT macro instruction moves a
record from a user-specified area in virtual storage into an output
buffer so that the system may include the record in the output data set.

r--------T---------T---,
I Name I Operation I Operand I
~-------+---------+--~---1
I [symbol] IPUT IdCb-raddrx}r.area-raddrxJ~ I
I I I \. (1) L l (0) J I L-_______ i _________ i ___ J

dcb
specifies the address of the data control block opened for the data
set being created. If (1) is written, the address must have been
loaded into parameter register 1 before execution of this macro
instruction.

area (for move mode only)
specifies the address of the logical record to be moved into the
buffer. If (0) is written, the address must have been loaded into
parameter register 0 before execution of this macro instruction.

CAUTION: The address of a save area must be placed in register 13
before execution of this macro instruction.

PROGRAMMING NOTES: It is the user's responsibility to store the length
of each format-U record in the DCBLRE field of the data control block
before issuing the PUT. This length must be a multiple of 4096 bytes.

For format-V records, each record includes four control bytes. The
user must store the length of the record in bytes 1, 2, and 3 of that
four-byte field, before issuing a PUT macro instruction. Byte 0 must
contain binary zero.

Rules for sharing VSAM data sets are given in Appendix K.

Access Methods: VSAM 43

PUTX -- Replace a Sequential Logical Record (R)

The PUTX macro instruction (for VSA~ allows the user to return an
updated logical record to an input data set.

r--------T---------T---,
I Name I Operation I Operand I
~----·----t--------t--1
I [symbol] I PUTX I dcb- [addrx} I
I I I l (1) I L ________ ~ _________ ~ ___ J

dcb
specifies the address of the data control block opened for the data
set being processed. If (1) is written, the address must have been
loaded into parameter register 1 before execution of this macro
instruction.

CAUTION: The address of a save area must be placed in register 13
before execution of this macro instruction.

PROGRAMMING NOTES: The PUTX macro instruction can only replace a reco­
rd that was located by a locate-mode GET macro instruction. The data
control block must be opened for the UPDAT mode while using PUTX. The
user must no·t change the length of the record during the replacement
process.

Rules for sharing VSAM data sets are given in Appendix Ku

SETL -- Specify Start of Sequential Processing (R)

The SETL macro instruction (for VSA~ positions to the beginning,
end, previous record, or any point within a virtual sequential data set.

r--------T-----~--,

I Name I Operation I Operand I

r--------t--·------t----------------{R}-------------------------------1
I [symbo~ ISETL Idcb- [addrx},type- B [,llimit-raddrx~] I
I I I \.. (1) E l (0) J I
I I I P I L _______ ~ __ . _______ ~ __ J

dcb

R

B

E

44

specifies the address
set being processed.
control block must be
instruction. type
specifies the starting
vices requested:

of the data control block opened for the data
If (1) is written, the address of the data
in register 1 before execution of this macro

point for processing and any optional ser-

Record at the retrieval address obtained from DCBLPDA field in the
data control block following a GET or PUT.

Beginning of the data set

End of the data set

P
Previous logical record (backspace)

llimit
specifies the address of a word containing the retrieval address.
If the type operand specifies B, P, or E, the llimit field is to be
omitted. If (0) is written, the address of a field containing the
retrieval address must be in register 0 before execution of this
macro instruction.

CAUTION: A backspace request is not permitted for format-U records and
causes abnormal termination.

The address of a save area must be placed in register 13 before
execution of this macro instruction.

PROGRAMMING NOTES: A SETL instruction that positions to an area outside
of the data set causes an error. The error is indicated during a subse­
quent GET or PUT macro instruction by exit to EODAD.

Rules for sharing VSAM data sets are given in Appendix K.

Access Methods: VSAM 45

VIRTUAL INDEXED SEQUENTIAL ACCESS METHOD

The virtual indexed sequential access method ~ISAM) consists of the
TSS/360 data management facilities that enable a user to process indexed
sequential data sets. These data sets may be stored on, or retrieved
from, direct access devices only. The record format within each such
data set can be fixed-length (blocked or unblocked) or variable-length
~locked or unblocke~ format. Such attributes are unique for each data
set; they must be defined to the system before a data set can be
accessed by VISAM. The macro instructions that have been provided to a
user by VISAM, for accessing a data set in the appropriate manner, are
indicated below.

GET for reading logical records in sequential order

PUT for writing logical records in a sequential order

READ for reading logical records in a nonsequential or sequential
order

WRITE for writing logical records in a nonsequential or sequential
order

SETL enables a user to logically position a data set at its beginning,
end, at the previous record, or at any logical record within a
blocked sequential data set. Subsequent PUT or GET operations
will start at this new position.

ESETL (for shared data sets) allows other sharers to access portions of
the data set currently being processed by the user.

RELEX (for shared data sets) allows other sharers to access and/or up­
date portions of the data set currently being processed by the
user.

DELREC deletes a specified logical record from a data set

Detailed explanations of each of the above macro instructions and the
formats in which they may be specified are shown below. Further infor­
mation pertaining to VISAM data set management and the related macro
instructions can be found in IBM System/360 Time Sharing System:
Assembler Programmer's Guide, Form C28-2032.

GET -- Get a Record @)

The GET macro instruction (for VISA~ can be specified in either lo­
cate mode or move mode. In locate mode, the GET macro instruction
locates the next sequential record in an input data set and places its
address in register 1. The user may then operate on the record where it
is, or move it to a work area. In move mode, the GET macro instruction
acquires the next sequential record and moves it from an input buffer to
a user-specified area in virtual storage •

.---'----T------T---,
I Name I Operat ion I Operand I
r--------+-------+--~
I [symbol] I GET I dCb-{addri. , area- [addrxl. I
I I I (1) J l (0) J I L ___ . ____ .L ________ --'-__ J

dcb
specifies the address of the data control block opened for the

46

dataset being processed. If (1) is written, the address must have
been loaded into parameter register 1 before execution of the macro
instruction.

area (for move mode only)
specifies the address of the user's work area into which the record
is to be moved. If (0) is written, the address must have been
loaded into parameter register 0 before execution of the macro
instruction.

CAUTION: Any exceptional condition (i.e., logical record out of
sequence) resulting from the execution of a GET macro instruction causes
control to be passed to the user's synchronous error exit (SYNAD) rou­
tine. In this case, the general registers and the exceptional condition
fields in the data control block are set as shown in Appendixes Band F.

The address of a save area must be placed in register 13 before
execution of this macro instruction.

PROGRAMMING NOTES: When retrieving variable-length records, the GET
macro instruction returns with the length of the logical record in the
DCBLRE field of the data control block.

If a GET is requested beyond the end of a data set, as a result of
sequential operation or SETL macro instruction, the user EODAD exit is
taken. See Appendix C.

A page-level read interlock is imposed on the page referred to by
execution of this macro instruction. The interlock is released by any
macro instruction referring to the same DCB that refers to another page.
Rules for sharing VISAM data sets are given in Appendix K.

PUT -- Include a Record in an Output Data Set @)

The PUT macro instruction (for VISA~ may be specified in either lo­
cate mode or move mode. In locate mode, the PUT macro instruction
places in register 1 the address of an output buffer. The user should
subsequently construct, at this address, the next record for incorpora­
tion into the output data set. In move mode, the PUT macro instruction
moves a record from a specified area in virtual storage to an output
buffer so that the system can include the record in the output data set.

r------~---------T---,
I Name I Operat ion I Operand I
I------+-------+---~
I [symbol] I PUT I dcb- raddrxJf, area- raddrx~l I
I I I l. (1) L l. (0) JJ I L-_____ --i _________ ~ ___ J

dcb
specifies the address of the data control block opened for the data
set being created. If (1) is written, the address must have been
loaded into parameter register 1 before execution of this macro
instruction.

area (for move mode only)
specifies the address of the record to be moved into the buffer.
If (0) 1S written, the address must have been loaded into parameter
register 0 before execution of this macro instruction.

CAUTION: Any exceptional condition resulting from the execution of a
PUT macro instruction causes control to be passed to the user's synch­
ronous error exit (SYNAD) routine. In this case, the general registers

Access Methods: VISAM 47

and the exceptional condition fields in the data control block are set
as shown in Appendixes Band F.

The address of a save area must be placed in register 13 before
execution of ·this macro instruction.

PROGRAMMING NOTES: For format-V records, each record must begin with a
four-byte length field. The user must place the length of the record
into the low-order three bytes of that four-byte field, before issuing a
PUT macro instruction. The high-order byte must contain binary zero.
The PUT macro instructions may not be used with a shared data set.
Rules for sharing VISAM data sets are given in Appendix K.

READ -- Read a Selected Logical Record (S)

The READ macro instruction (for VISAM) acquires a selected logical
record from an input data set and moves it to a user-specified area.
The user selects the record by providing either the record key or the
retrieval address. The key is in the user's data control block upon
completion of the read operation; when completed, processing of the
user's program continues.

r--------T---------T---,
I Name I Operation I Operand I
r--------+---------+---1
I I I ~KY} I I [symbol] IREAD Idecb-symbol,type- KZ ,dcb-addr,area-addr,key-addr I
I I I KX I L _______ .L _________ --L __ J

decb

type

dcb

area

key

48

specifies the symbol (name) to be assigned to the data event con­
trol block ~ECB) constructed as part of the expansion of this
macro instruction.

specifies one of the following as the type of READ operation.

KY - read according to specified key.

KZ read according to specified retrieval address.

KX - read according to specified key permitting no other user shar­
ing the data set to gain access to the record until the cur­
rent user has released the record. The record must be
released by the RELEX macro instruction or by a subsequent
WRITE macro instruction referring to the same data control
block.

specifies the address of the data control block opened for the data
set being processed.

specifies the address of the user's work area into which the record
will be placed.

Note: The area must be large enough to contain the largest
expected record.

specifies the address of the field containing either the record key
for a READ ~ype -KY or -KX) or the retrieval address for a READ

(type KZ). The retrieval address is a four-byte field, beginning
on a word boundary that is in the data control block and may be
accessed using the DCBD macro instruction and the name, DCBLPA.

CAUTION: Exceptional conditions, including "key not found," "key great­
er than last key on data set," and "invalid retrieval address," result­
ing from the execution of a READ macro instruction, cause control to be
passed to the user's synchronous error exit (SYNAD) routine. In this
case, the general registers and the exceptional condition fields in the
data control block are set as shown in Appendixes Band F.

If this macro instruction is included in a module that is declared
privileged (through use of the DCLASS macro instruction), the address of
a save area must be placed in register 13 before execution of this macro
instruction.

PROGRAMMING NOTES: READ (type KY) imposes a page-level read interlock
on the pages containing the record to be read whereas READ (type K~
imposes a page-level write interlock and releases a page-level read
interlock. As the record pointed to by the data control block shifts
within the data set, page-level interlocks are released from pages no
longer being used. The retrieval address form of READ (i.e., type KZ)
cannot be used with shared data sets.

Rules for sharing VISAM data sets are given in Appendix K.

L- AND E-FORM USE: The L-form macro instruction results in a macro
expansion consisting of only a parameter list (DECB). The format of the
DECB is described in Appendix B.

The E-form macro instruction results in a macro expansion consisting
of only executable instructions. The E-form macro instruction uses the
DECB built for it by the L-form macro instruction. Only MF=E should be
specified for the MF= operand of the E-form, because it is the DECB sym­
bol which names the parameter list of the L-form.

If the E-form is used, either a DECB symbol or (1) must be specified;
if (1) is specified, the address of a DECB must be loaded into register
1 before execution of this macro instruction. Any E-form parameter
replaces the corresponding specified optional or required parameter in
the DECB. If a parameter is not specified in the L-form, it must be
specified in the E-form. Certain required parameters for the E- and
L-form are:

r-----------------------T----------------------T-----------------------,
I Operand I L-Form I E-Form I
~---------------------+----------------------+-----------------------~
I decb I required I decb- rsymbol~ I
I I I l (1) J I
I type I required I required I
I MF I tJ1F=L I MF=E I L--_____________________ ~ ______________________ ~ ______________________ J

WRITE -- Write a Selected Record (S)

The WRITE macro instruction (for VI SAM) moves a selected record from
a user-specified area to an output buffer. The system then includes the
record in the output data set either by key or retrieval address. This
macro instruction may be used to update a record or add to the data set.
When the write operation is completed, processing of the user's program
continues.

Access Methods: VISAM 49

r------~--·-----T---,

I Name I Operation I Operand I
~------+---------+--~

I I I ~KRU I I [symbol] IWRITE Idecb-symbol,type- KS ,dcb-addr,area-addr,key-addr I
I I I KT I L-______ ~ ________ ~ ___ J

decb

type

dcb

area

key

specifies the symbol (name) to be assigned to the data event con­
trol block (DECB) constructed as part of the expansion of this
macro instruction.

specifies one of the following as the type of WRITE operation:

KR - WRITE replace by retrieval address}
for updating

KS - WRITE replace by key

KT - WRITE a record with a new key} for adding a record

specifies the address of the data control block opened for the data
set being processed.

specifies the address of the user's work area from which the record
is to be written.

specifies the address of the field containing either the record
key, the length of which is indicated in the data control block; or
a retrieval address, a four-byte field on a fullword boundary, ori­
ginally obtained from DCBLPA.

CAUTION: Exceptional conditions resulting from the execution of a
WRITE macro instruction cause control to be passed to the user's synch­
ronous error exit (SYNAD) routine. In this case, the general registers
and the exceptional condition fields in the data control block are set
as shown in Appendixes Band F.

If this macro instruction is included in a module that is declared
privileged (through use of the DCLASS macro instruction), the address of
a save area must be placed in register 13 before execution of this macro
instruction.

PROGRAMMING NOTES: WRITE releases any page-level interlocks set for the
data set as a result of executing macro instructions referring to the
same data control block. Rules for sharing VISAM data sets are given in
Appendix K.

L- AND E-FORM USE: The L-form macro instruction results in a macro
expansion consisting of only a parameter list (DECB). The format of the
DECB is described in Appendix B.

The E-form macro instruction results in a macro
of only executable instructions. The E-form macro
DECB built for it by the L-form macro instruction.
written for ·the MF= operand in the E-form, because
which names the parameter list of the L-form.

expansion consisting
instruction uses the

Only MF=E should be
it is the DECB symbol

If th~ E-form is used, either a DECB symbol or (1) must be specified.
If (1) is specified, the address of a DECB must be loaded into register
1 before execution of this macro instruction. Any E-form parameter

50

replaces the corresponding specified optional, or required parameter in
the DECB. If a parameter is not specified in the L-form, it must be
specified in the E-form. certain required parameters for the E and L­
form are as follows:

r-----------------------~-------------------~-----------------------l
I Operand I L-Form I E-Form I
~------------_+------------------+_-------------------1
I decb I required I decb- rsymbol~ I
I I I l. (1) J I
I I I I
I type I required I required I
I I I I
I MF I MF=L I MF=E I L--_____________________ ~ ____________________ ~ _____________________ J

SETL -- Specify Start of Sequential Processing (R)

The SETL macro instruction (for VISAM) positions a data set to the
beginning, end, previous record, or any point within the data set.

r------~--------T---l
I Name I Operation' Operand I
r--------+-------+---1
, [symbol] I SETL I dcb- [addrx} , type-code [, llimi t- [addrx}1 I
I I 'l (1) l (0) I L---_____ ~ ________ _i ___ J

dcb

type

specifies the address of the data control block opened for the data
set being processed. If (1) is written, the data control block
address must have been loaded into parameter register 1 before
execution of the macro instruction.

specifies positioning within the data set as follows:

r------~--l
I Code IPositioning I
r----+---1

R IRecord at the retrieval address obtained from the DCBLPA
Ifield in the data control block following a GET or PUT
I

B ,Beginning of the data set
I

E lEnd of the data set
I

P IPrevious record (backspace) ,
K IRecord whose key is specified in the operand

I
N IRecord immediately following the one pointed to by the

Iprevious SETL; if there was no previous SETL, no reposi­
Itioning occurs

------~---

llimit
specifies the address of a field containing either the record key,
the length of which is indicated in the data control block, or a
retrieval address (a four-byte field beginning on a fullword boun­
dary originally obtained from DCBLPA). If CO) is written, the lli­
mit address must have been loaded into parameter register 0 prior

Access Methods: VISAM 51

to execution of this macro instruction. If the type operand is
specified as B, P, N, or E, the llimit field is ignored.

CAUTION: Exceptional conditions, including the following three condi­
tions, resulting from the execution of a SETL macro instruction cause
control to be passed to the user's synchronous error exit (SYNAD) rou­
tine. In this case, the general registers and the exceptional condition
fields of the data control block are set as shown in Appendixes Band F.

1. Invalid retrieval address or record key.
2. SETL (N) following a SETL (E).
3. SETL (P) following a SETL (B).

If a SETL macro instruction is requested by key and the request key
is greater than the highest key or lower than the lowest key in the data
set, control is passed to the user's SYNAD routine. SETL by retrieval
address ~ype R) must not be used with a shared data set.

The address of a save area must be placed in register 13 before
execution of this macro instruction.

PROGRAMMING NOTE: SETL does not impose any sharing interlocks on a data
set. Rules for sharing VISAM data sets are given in Appendix K.

ESETL -- Release Shared Data Set (R)

The ESETL macro instruction (for VISA~ releases a page-level inter­
lock imposed by another macro instruction (e.g., GET, or READ). This
macro instruction does not release the write interlock caused by a type
KX READ. See RELEX macro instruction in this section.

r--------T---------T---,
I Name I Operation I Operand I
~------+--.-------+---~
I [symbol] I ESETL I dcb- [addrx} I
I I I \. (1) I L----____ ~ _______ i ___ J

dcb
specifies the address of the data control block opened for the data
set being processed. If (1) is written, the data control block
address must have been loaded into parameter register 1 before
execution of this macro instruction.

CAUTION: Exceptional conditions resulting from the execution of a ESETL
macro instruction cause control to be passed to the user's synchronous
error exit (SYNA~ routine. In this case, the general registers and the
exceptional condition fields in the data control block are set as shown
in Appendixes Band F.

PROGRAMMING NOTE: Rules for sharing VISAM data sets are given in
Appendix

DELREC -- Delete a Record (R)

The DELREC macro instruction (for VISA~ deletes a specified record
from a virtual index sequential data set. The record may be specified
by its key or its retrieval address.

52

r--------T---------T---,
I Name I Operation I Operand I
~-------+---------+---~
I [symbol] I DELREC I dcb- [addrx}, type-{K~' llimi t- [addrx} I
I I I \.. (1) R) \.. (0) I L-_______ ~ _______ ~ ___ J

dcb

type

specifies the address of the data control block opened for the
dataset being processed. If (1) is written, the address must be
loaded into parameter register 1 prior to execution of this macro
instruction.

specifies whether the record will be deleted by key or retrieval
address as follows:

K

R

Record key

Retrieval address as obtained by the user from DCBLPA in the
data control block.

llimit
specifies the address of a field containing either the record key
or the retrieval address. The retrieval address must be in a four­
byte field, beginning on a doubleword boundary. If (0) is written,
the address must be loaded into parameter register 0 prior to
execution" of the macro instruction.

CAUTION: Exceptional conditions, including "invalid retrieval address·
and "key not found," resulting from the execution of a DELREC macro
instruction cause control to be passed to the user's synchronous error
exit (SYNA~ routine. In this case, the general registers and the
exceptional condition fields of the data control block are set as shown
in Appendixes Band F. DELREC by retrieval address may not be used with
a shared data set.

PROGRAMMING NOTE: This macro instruction releases any page-level inter­
locks established by other macro instructions referring to the same DCB.
Rules for sharing VISAM data sets are given in Appendix K.

RELEX -- Release Read Exclusive Record (R)

The RELEX macro instruction (fo~ VISA~ makes a record of a shared
data set available to other users after the record has been read with a
READ exclusive (type K~ macro instruction.

r--------T---------T---,
I Name I Operation I Operand I
~-------+---------+---~
I [symbol] I RELEX I dcb- [addrx} I
I I I\..(1) I L--______ ~ _________ ~ ___ J

dcb
specifies the address of the data control block opened for the data
set being processed. If (1) is written, the address of the data
control block must be loaded into parameter register 1 prior to
executing the macro instruction.

Access Methods: VISAM 53

CAUTION: Exceptional conditions resulting from the execution of a RELEX
macro instruction cause control to be passed to the user's synchronous
error exit (SYNAD) routine. In this case, the general registers and the
exceptional condition fields in the data control block are set as shown
in Appendixes Band F.

If this macro instruction is included in a module that is declared
privileged (through use of the DCLASS macro instruction), the address
ofa save area must be placed in register 13 before execution of this
macro instruction.

PROGRAMMING NOTE: Rules for sharing VISAM data sets are given in Appen­
dix K.

54

VIRTUAL PARTITIONED ACCESS METHOD

The virtual partitioned access method ~P~ consists of the TSS/360
data set management facilities that enable a user to access partitioned
data sets. Each partitioned segment ~r member) is a complete VSAM or
VISAM data set in itself. The allowable organizations of the records
within members are the same as within VSAM or VISAM respectively. VPAM
may be used only to store or retrieve data set members on direct access
devices.

Once a partitioned data set has been defined and connected to the
system by previous user (or system) issuance of a DCB, DDEF, and OPEN
macro instruction the user may employ the VPAM macro instructions (FIND
and STO~ to locate its members. When the member is opened and located
via a FIND macro instruction, the macro instructions, appropriate to the
particular member's organization (i.e., VSAM or VIS~, can be used to
process the member. It should be noted that although a member is
defined by the same DDEF and DCB macro instructions that defined the
partitioned data set, the member is not opened until a VPAM FIND macro
instruction is executed. The VPAM macro instructions are briefly
described below.

FIND

STOW

locates an individual member within a VPAM data set and opens the
member for processing. To process the records within the member,
appropriate VISAM and VSAM macro instructions can be employed.

causes a VISAM or VSAM data set, previously defined to the system
as a partitioned data set member, to be incorporated or deleted
from a partitioned data set. It also adds, changes, deletes, or
replaces member names or aliases and allows a user to enter
unique data, describing the member, into an index.

Detailed explanations of each of the above macro instructions and the
formats in which they may be specified are shown below. Further infor­
mation pertaining to VPAM data set management and the related macro
instructions can be found in IBM System/360 Time Sharing System:
Assembler Programmer's Guide, Form C28-2032.

FIND -- Find a Member of a Partitioned Data Set (S)

The FIND macro instruction (for VPA~ searches a partitioned organi­
zation directory to locate a directory entry for a member and optionally
places the user's data associated with the member into the specified
area. The member is opened and positioned for processing.

r--------T---------T---,
I Name I Operation I Operand I
I ---+-------+-------------------------------------i
I [symbol] IFIND Idcb-addr,name-addr[,area-addr,length-value] I L--______ ~ _______ ~ ___ J

dcb

name

area

specifies the address of the data control block opened for the data
set being processed.

specifies the location of the eight-character member name, or
alias, that is to be used to locate the member.

specifies the location of the eight-character member name, or
alias, that is to be used to locate the member.

Access Methods: VPAM 55

length
specifies the length, in bytes, of the area provided for reading in
the user data.

CAUTION: If area is specified, length must be specified. In addition,
area and length must be specified for shared data sets if user data is
present. If not specified, the task is abnormally terminated.

The FIND macro instruction causes an abnormal termination if any con­
ditions are discovered that make continuation impossible.

If this macro instruction is included in a module that is declared
privileged (through use of the DCLASS macro instruction), the address of
a save area must be placed in register 13 before execution of this macro
instruction.

PROGRAMMING NOTES: After execution of the FIND macro instruction, gen­
eral register 0 contains the length of the user data in the POD. Gener­
al register 1 points to the parameter list shown below.

PARAMETER LIST
r----------------, r--------------------------------,
IG. P. Register 1~----lll-idcb-addr IWord 0
L ________________ J ~----------------------------------~

Iname-addr I Word
~--------------------------------------~
I*Pointer to user-data area IWord 2
~--------------------------------------~
I*Pointer to Length, in bytes, of user IWord 3
I area buff er I L ______________________________________ J

*These are zero if not supplied in the
macro instruction.

The length, in bytes, of the user area buffer is placed in a word
immediately following word 3 of the parameter list by the macro expan­
sion. However, if the user constructs his own parameter list, the word
containing this length may be placed in some other location.

If the length specified is less than the actual length of the user
data in the POD, both area and length operands are ignored and general
register 15 contains appropriate error code (hexadecimal 10) •

Rules for sharing VPAM data sets are given in Appendix K.

For shared VPAM data sets, the following interlocks are set by a FIND
macro instruction:

1. VISAM members are:

• write interlocked when opened for OUTPUT.

• read interlocked when opened with any other option.

2. VSAM members are:

• read interlocked when opened for INPUT •

• write interlocked when opened with any other option.

After eXE~cution of the FIND macro instruction, bits 24 through 31 of
general register 15 contain one of the following codes, indicating the
status of the operation. The user should take appropriate action
depending on the code returned.

56

r-------------r--,
I Code I I
I (Hexadecimal) I Def ini tion I
r----------+--~

00 Successful completion of FIND

04

08

10

Member or alias was not located by FIND

Data control block, indicated in the macro instruction
is in use for creating a member. Execution of a STOW
must be complete before this FIND can be executed

Length specified in the macro instruction is not large
enough to contain user data

14 Member to be located is already open for this data con­
trol block, due to previous FIND L-__________ ~ __ J

L- AND E-FORM USE: All operands are optional in the L-form of this
macro instruction; register notation may not be used. All operands are
optional in the E-form; register notation may be used. All operands not
supplied in the L-form must be supplied in the E-form.

STOW -- Manipulate Partitioned Organization Directory (R)

The STOW macro instruction (for VPA~ causes a partitioned data set
member to be incorporated or deleted from a partitioned data set. This
macro instruction is also used to add, change, delete, or replace a
member name or an alias. It also provides for storage of additional
information in the partitioned organization directory (POD) in the form
of user data.

r--------T-------T--,
I Name I Operation I Operand I
~-------+---------+---~
I [symbol] I STOW I dcb- raddrx~, farea- raddrx~J ' type-code I
I I I l (1) J L l (0) j I L ____ ~ ________ -i __ J

dcb

area

type

specifies the address of the data control block opened for the data
set being processed. If (1) is written, the address must be loaded
into parameter register 1 before execution of this macro
instruction.

specifies the address of an area constructed by the user. The con­
tents of this area depend on the type of STOW requested. (Refer to
"Programming Notes.") If (0) is written, the address must be loaded
into parameter register 0 before execution of this macro instruc­
tion. For type-R STOW, area does not have to be specified, and if
not specified, the original user data will be unchanged.

specifies the type of STOW being requested by one of the following
codes:

N Add a new member and close the member.

NA Add one or more new aliases.

Access Methods: VPAM 57

R Replace the user data associated with a member and close the
member.

U Replace the user data associated with a member but do not close
the member.

D Delete a member from the data set; the directory entries for
the member and all of its aliases are deleted and the space
occupied by the member is made available for subsequent use.

DA Delete one or more aliases.

C Change the name of a member.

CA Change the name of an alias.

CAUTION: A member may not be subsequently referred to by the same data
control block after a type-N or -R STOW until a FIND of that member is
again requested since these types of STOW close the member.

STOW abnormally terminates the task if any conditions are discovered
that make continuation impossible.

If this macro instruction is included in a module that is declared
privileged (through use of the DCLASS macro instruction), the address of
a save area must be placed in register 13 before execution of this macro
instruction.

PROGRAMMING NOTES: Only type-R STOW is permitted on a shared data set
opened for input. The format of the area used by the STOW macro
instruction depends on the type of STOW requested. It is the user's
responsibility to construct the area and pass the address of the area to
STOW in the area operand of this macro instruction. The area require­
ments are:

Types Nand U: The area must be at least 12 bytes long and begin on a
fullword boundary.

r------------------------T-------T------------------------------,
bytes I 8 I 4 I N I

r------------------------f-------+------------------------------1
I Name I N I User Data I L ___ , __________________ ~ _______ J. ______________________________ J

Name - Eight-character member name

N - Number of bytes of user data (0~N~510)

User Data - Contains the variable data supplied by the user. The
data are stored in the POD and can be retrieved by
means of the FIND macro instruction.

Types NA and DA: The area must be at least 20 bytes long and begin on a
fullword boundary.

r-----------------T---T--------~---------T---------T-----------,

bytes I 8 I 4 I 8 I 8 I I 8 I

58

~------------_+---f-----_+---------f-------f----------1
I Member Name I M I Alias 1 I Alias 2 I ••••..• I Alias M I l _________________ J.-__ J. _________ J. _________ J.-________ J. ___________ J

Member Name - Name of the member to which the aliases are linked
or are to be linked.

M - Number of aliases to be added or deleted.

Aliases - The aliases to be added or deleted.

Type D: The specified area must contain the member name that is to be
deleted. It is eight bytes long. When a member name is deleted, all of
its aliases are also deleted.

r---,
bytes I 8 I

~--~
I Member Name I L ___ J

Type C: The name of the member and the name to which it is to be
changed are in this area (16 bytes) •

r-------------------------------T----------------------------,
bytes I 8 I 8 I

~--------------------------+----------------------------~
I Member Name I New Member Name I L-______________________________ ~ _____________________________ J

Type CA: The area specified must be 24-bytes long.

r------------------T-------------------~-------------------,
bytes I 8 I 8 I 8 I

~----- ----------+----------------+-----------------~
I Member I Old Alias I New Alias I L--_____________ ~ __________________ ~ ________________ J

Member The eight-character name of the member with which the
old alias is associated.

Old Alias - The eight-character alias being changed.

New Alias - The eight-character alias being used for the
replacement.

Type R: If any user's data is specified, the length must be four bytes
longer than the length of the data and begin on a fullword boundary.
The additional four bytes are required to specify the length of the spe­
cified data.

r------------------------------T----------------------------,
bytes I 4 I N I

.---------------------------+-------------------------~
I N I User Data I L-______________________________ ~ _____________________________ J

N - Number of bytes of user's data to be placed in the POD
(0:5N:5S10)

User Data - Contains the variable data supplied by the user. The
data is stored in the POD, and can be retrieved by
means of the FIND macro instruction.

The user must have exclusive access to a member in order to issue
type-C or type-D STOW; that is, he must have opened the data set with an
OPEN option that causes the member to be write-interlocked.

Member interlocks are released by CLOSE (referring to the same DCB
that caused the interlock to be set), type-R STOW, or a subsequent FIND.

Access Methods: VPAM 59

Rules for sharing VPAM data sets are also given in Appendix K.

After execution of the STOW macro instruction, bits 24 through 31 of
general register 15 contain one of the following codes indicating the
status of the operation. The user should examine this code to determine
the course of action.

r--------------T--,
I Code (hex) I Def ini tion I
1---------------+--~
I 00 ISuccessful completion of STOW I
I , ,
I 04 ,New name or alias is already in use (N, NA, C, or CAl I
I I I
I 08 IMember name is not in POD (U r 0, DA, or CAl I
I , I
I 10 IOld member name is not in POD (C); alias is not in POD I
I , (DA); old alias is not in POD (CA) I
, I I
I 14 IInvalid type STOW requested I L ___________ ..L ___ J

60

BASIC SEQUENTIAL ACCESS METHOD

The basic sequential access method (BS~ consists of the TSS/360
data set management facilities that enable a user to access unblocked
physical sequential data sets. Since BSAM does not provide a user with
blocking/deblocking or buffering routines it should be used primarily to
process unblocked records (QSAM has been provided to facilitate the pro­
cessing of blocked records). A physical sequential data set can be
stored on, or retrieved from, disk, tape, or cards, and can be printed
out by a printer. The record format within each such data set can be
fixed-length (blocked or unblocke~, variable-length (blocked or
unblocke~, or undefined-length (unblocked only). such attributes are
unique for each data set; they must be defined to the system before a
data set can be accessed by BSAM. The macro instructions provided to a
user, by BSAM, for accessing a data set in the appropriate manner, are
indicated below.

READ causes a request for a transfer of a physical record, from an
I/O device directly to a specific virtual storage input area,
to be recorded in a control block (DECB) and placed on an I/O
request queue. Control is then returned to the user's program;
the request is subsequently executed by the system when the
device is available. If this physical record contains several
logical records, the user must create his own deblocking rou­
tines to access the individual logical records. In such a
case, the GETPOOL and GETEUF macro instructions are very
useful.

WRITE causes a request for a transfer of a physical sequential rec­
ord, from a specific storage area to an I/O device (directly,
without using a buffer area) , to be recorded in a control block
(DECB) and placed on an I/O request queue. Control is then
returned to the user's program and the request is subsequently
executed by the system when the device is available. If a
physical record is to contain several logical records, the pro­
grammer must write his own blocking routines to include the
logical records in the storage area being transferred.

CHECK checks the queue of control blocks (DECBs) containing the
requests for read or write operations to determine if those
requests have been satisfied. It also indicates whether errors
or exceptional conditions have occurred while satisfying the
request.

DQDECB removes all unchecked DECBs (i.e., created by issuing READ and
WRITE macro instructions) from a queue of unchecked DECBs main­
tained by the system.

GETPOOL requests allocation of an area in virtual storage for use as a
buffer pool and assigns that area to a data control block
describing the data set.

GETBUF obtains a buffer work area from a buffer pool previously
assigned to a data control block (either by a GETPOOL macro
instruction or as a result of having selected the buffer
options provided in the DCB macro instruction) •

FREEBUF returns a buffer work area, obtained by a GETBUF, to its buffer
pool

FREEPOOL releases areas previously assigned to specified data control
blocks as buffer pools (either by a GETPOOL macro instruction
or as a result of buffer options specified by the DCB macro
instruction) •

Access Methods: BSAM 61

ESP

CNTRL

PRTOV

FEOV

POINT

NOTE

backspace one physical record or block on the current magnetic
tape or direct access volume regardless of the direction in
which data is being stored or retrieved on that device.

provides a control for card stacker selection, printer carriage
control, and magnetic tape positioning.

controls the page format for an on-line printer by testing
channels 9 and 12 on the printer control tape, as overflow
indicators, and allows the user to provide an overflow subrou­
tine to reposition the printer at any desired channel on the
printer control tape.

advances the system to the next volume of a multivolume data
set before the physical end of the current volume is reached.

causes repositioning of tape or direct access volumes to a spe­
cified block within a data set on that device.

makes available to the problem programmer the relative position
within a volume of a block just read or written.

Detailed explanations of each of the above macro instructions and the
formats in which they may be specified are shown below. Further infor­
mation pertaining to BSAM data set management and the related macro
instructions can be found in IBM System/360 Time Sharing System:
Assembler Programmer's Guide, Form C28-2032.

READ -- Read a Block (S)

The READ macro instruction (for BSA~ transmits a block of data from
an input data set to a user-specified virtual storage area. To allow
overlap of the I/O operation with processing, the READ macro instruction
returns control to the user's program before the input operation is
complete.

The READ macro instruction may be used to read backwards from magnet­
ic tape.

r--------T---------T---,
I Name ,OperationlOperand I
~-------t---------+---~
I [symbol] I READ ,decb-symbol,type- [SF' SB} ,dcb-addr ,
I , I ,area-addr (, length- [' S' I value}] I L-_______ ~ ________ i ___ J

decb

type

dcb

62

specifies the name to be assigned to the data event control block
(DECB), constructed as part of the expansion of the macro instruc­
tion. The DECB is illustrated in Appendix B, Table 7.

specifies one of the following:

SF
sequential forward reading of a physical sequential data set.

SB
sequential backward reading from a magnetic tape.

specifies the address of the data control block opened for the data
set being processed.

area
specifies the address of an area in virtual storage into which the
block of data is to be read. If SF is written in the type field,
this operand specifies the address of the first byte of the area;
if SB is written, the address of the last byte is specified.

length
specifies, for format-U records, the number of bytes to be trans­
mitted. If'S' is written, the program attempts to read the maxi­
mum size specified in the data control block, with maximum block­
size of 32,767 bytes. If this parameter is specified for format-F
or format-V records, it is ignored. For format-F and -v blocks,
length is obtained from the BLKSIZE field of the data control
block.

CAUTION: Abnormal termination occurs if:

1. The specified data control block is not validly opened.

2. The specified DECB is already in use by a previous READ or WRITE
macro instruction; i.e., it has not been checked by a CHECK macro
instruction.

3. An attempt is made to issue a READ macro instruction that causes
the number of unchecked READ and WRITE macro instructions to exceed
the DCBNCP parameter specified in the data control block.

4. An attempt is made to read on a device that cannot execute the
request, such as read the printer.

5. An attempt is made to read an OUTPUT data ~et.

If this macro instruction is included in a module that is declared
privileged (through use of the DCLASS macro instruction), the address of
a save area must be placed in register 13 before execution of this macro
instruction.

PROGRAMMING NOTES: The READ macro instruction returns control to the
user's program before the transmission of data has been completed. To
determine whether the read operation is completed, it is necessary to
issue the CHECK macro instruction before using the data transferred into
the specified area.

The DECB employed for a read operation must not be reused or modified
until the CHECK macro instruction is issued.

After a read operation has been checked, the length of a format-U
block or a truncated block in a fixed-length blocked data set can be
determined from the count field of the Channel Status Word in the DECB.
The number of READs may not exceed that specified in the DCBNCP field in
the data control block without using a CHECK macro instruction.

A data set written on a direct-access device with track overflow spe­
cified must have track overflow specified for all reads referring to
that data set. If a track selected by a READ macro instruction is
flagged as defective, the alternate track is automatically selected.
For any device, the operator is notified if any intervention is required
to complete the operation.

If a READ (type S~ macro instruction is issued for a format-V rec­
ord, the address of the first byte of the record can be calculated by
subtracting the count field in the channel status word from the maximum
block size and subtracting the result from the area address.

Access Methods: BSAM 63

If the length specified in the READ macro instruction for format-U
records is less than the length of the actual physical record, the extra
bytes of data are not transmitted.

The firs·t four bytes on format-V blocks contain control information
passed with the record, when read. The area specified by the area
operand mus·t be large enough to accommodate the maximum record size.

L- AND E-FORM USE: The L-form macro instruction results in a macro
expansion consisting of only a parameter list (DECB). The format of the
DECB is described in Appendix B.

The E-form macro instruction results in a macro expansion consisting
of only executable instructions. The E-form macro instruction uses the
DECB built for it by the L-form macro instruction.

If the E,-form is used, either a DECB symbol or (1) must be specified;
if (1) is specified, the address of a DECB must be loaded into register
1 before execution of this macro instruction. Any E-form parameter
replaces the corresponding specified optional or required parameter in
the DECB. If a parameter is not specified in the L-form, it must be
specified in the E-form. Certain required parameters for the E- and
L-form are:

r----------·------------~----------------------T-----------------------,
I Operand I L-Form I E-Form I
1------------------+ I ~
I decb I required I decb- rsymbol~ I
I I I l (1) j I
I I I I
I type I required I required I
I I I I
I MF I MF=L I MF=E I l _______________________ ~ _____________________ ~ _______________________ J

EXAMPLE: In example 1, a DECB, with the symbolic name ADECB, is pro­
duced as part of the in-line expansion. It indicates that forward­
reading of the next block in the data set associated with data control
block INDCB should be performed using area INAREA. The length operand,
not written in this example, is required for format-U records.

In example 2, the type operand indicates backward reading of a block
of records from the data set associated with the data control block
INDCB. For format-U records, 100 bytes are transmitted from INAREA+99
to INAREA. If'S' is specified for the length, the maximum block size
is transmit·ted. For records other than format-U, the length parameter
is ignored.

EX1
EX2

READ
READ

ADECB,SF,INDCB,INAREA
ADECB,SB,INDCB,INAREA+99,100

WRITE -- Wri te a Block (S)

The WRITE macro instruction writes (for BSAM) a block of data from
virtual storage on a physical sequential data set. To allow overlap of
the I/O operation with processing, the WRITE macro instruction returns
control to ·the user's program before the output operation is complete.

64

r--------T---------T---,
I Name I Operation I Operand I
~-------+---------+---~
I [symbol] IWRITE Idecb-symbol,type-SF,dcb-addr,area-addr I
I I I [,length-{'S'lvalue}] I L ________ ~ _________ ~ ___ J

decb

type

dcb

area

specifies the name to be assigned to the data event control block
(DECB), constructed as a part of the expansion of this macro
instruction. (Refer to Appendix B, Table 7 for an illustration of
the DECB.)

specifies SF for sequential forward writing of the block as part of
the data set.

specifies the address of the data control block opened for the data
set being processed.

specifies the starting address of the area in virtual storage that
contains the block of data to be written. The user must construct
the record-length information in front of each block of format-V
records.

length
specifies, for format-U records, the number of bytes to be trans­
mitted. If'S' is written, the maximum block length (specified in
the data'control block) for the data set is used. If this paramet­
er is specified for format-F or format-V records, it is ignored.
For format-F blocks, the length value is obtained from the DCBBLK
field of the data control block. For format-V blocks the length
value is obtained from the first two bytes of the output area (LL).

CAUTION: Abnormal termination occurs if:

1. A WRITE macro instruction is issued with record length longer than
a track, unless track overflow is specified in the DCB macro
instruction.

2. The data control block specified is not validly opened.

3. The DECB specified is already in use by a previous READ or WRITE
macro instruction; i.e., it has not been checked.

4. An attempt is made to issue a WRITE macro instruction which causes
the number of unchecked READ and WRITE macro instructions to exceed
the DCBNCP parameter in the data control block.

5. An attempt is made to write on a device which cannot execute the
required operation,e.g., write on the card reader.

6. An attempt is made to write a data set opened for INPUT or RDBACK.

If this macro instruction is included in a module that is declared
privileged (through use of the DCLASS macro instruction), the address of
a save area must be placed in register 13 before execution of this macro
instruction.

PROGRAMMING NOTES: The WRITE macro instruction returns control before
actual transmission of data is completed. To determine whether a write
operation has been completed, the CHECK macro instruction must be issued
for that DECB. The DECB employed for the write operation and the virtu-

Access Methods: BSAM 65

al storage the block occupies must not be altered or used until the
CHECK macro instruction is issued for that DECB.

If a track selected by a WRITE macro instruction is flagged as defec­
tive, an alternate track is automatically utilized. For any device, the
operator is notified automatically if any intervention is required to
complete the operation.

If the data set has been opened for UPDAT, the following considera­
tions apply.

• The WRITE macro instruction returns a block to a physical sequential
data set residing on a direct-access device. The data set must be
opened with the UPDAT option. Only the most recently read block can
be updated and returned.

• The update mode is provided only for data sets on direct-access
devices. Although it is not necessary to update and return each
block, the sequence of operations for those blocks that are updated
must be:

READ Block A

CHECK Await completion of read

update block in storage

WRITE Block A

CHECK Await completion of write

Thus, only the block last read, or its replacement, can be returned
to the data set. Two READ macro instructions can be issued without
an intermediate WRITE; this causes the first block to remain
unchanged on the device.

L- AND E-FORM USE: The L-form macro instruction results in a macro
expansion consisting of only a parameter list (DECB). The format of the
DECB is described in Appendix B.

The E-form macro instruction results in a macro
of only executable instructions. The E-form macro
DECB built for it by the L-form macro instruction.
written for the MF= operand in the E-form, because
which names the parameter list of the L-form.

expansion consisting
instruction uses the

Only MF=E should be
it is the DECB symbol

If the E-form is used, either a DECB symbol or (1) must be specified.
If (1) is specified, the address of a DECB must be loaded into register
1 before execution of this macro instruction. Any E-form parameter
replaces the corresponding specified optional or required parameter in
the DECB. If a parameter is not specified in the L-form, it must be
specified in the E-form. Certain required parameters for the E and L
forms are:

66

r----------------------~---------------------T-----------------------,
I Operand I L-Form I E-Form I
r---------------+-------------------+------------------~
I decb I required I decb- [symbolt I
I I I l (1) J I
I I I I
I type I required I required I
I I I I
I MF I MF=L I MF=E I L ___________________ ----i ______________________ L _______________________ J

EXAMPLE: The proper use of a WRITE macro instruction for format-U reco­
rds is shown. A data event control block is constructed as part of the
in-line macro expansion. A WRITE operation is to be performed from AREA
to the data set defined by DCBOUT. Eight-hundred data bytes are to be
transmitted for a format-U record, but for formats-V or -F, the length
parameter is ignored.

EX1 WRITE ADECB,SF,DCBOUT,AREA,800

CHECK -- Wait for and Test Completion of READ or WRITE Operation (R)

The CHECK macro instruction (for BSAM) waits, if necessary, for com­
pletion of an I/O operation requested by a READ or WRITE macro instruc­
tion and detects any errors and exceptional conditions that may occur.
If read or write operations are completed normally, the program resumes
execution at the instruction after the CHECK macro instruction.

As required, the CHECK macro instruction passes control to appropri­
ate exits that are specified by the user in the data control block for
error analysis (SYNAD) and end-of-data set (EODAD). The CHECK macro
instruction automatically initiates volume switching for input data
sets. Additional space for output data sets is automatically obtained
when current space is filled and more WRITE macro instructions are
issued.

The user must issue a CHECK macro instruction to test the I/O opera­
tion associated with a data event control block ~ECB) before modifying
or reusing it.

r-------T---------T---,
I Name I Operation I Operand I
, --+-----+---~
I [symbol] I CHECK I decb- [addrx} I
I I I l (1) I L ______ --i ______ ~ ___ J

decb
specifies the data event control block ~ECB), created as part of
the expansion of a READ or WRITE macro instruction.

If (1) is written, the DECB address must be loaded into parameter
register 1 before execution of this macro instruction.

CAUTION: If this macro instruction is included in a module that is
declared privileged (through use of the DCLASS macro instruction), the
address of a save area must be placed in register 13 before execution of
this macro instruction.

PROGRAMMING NOTES: The CHECK macro instruction must be used to test for
completion of every READ or WRITE operation. For each data set, the
CHECK macro instruction must be issued in the same order in which the
READ or WRITE operations were requested. A CHECK must be issued before

Access Methods: BSAM 67

the number of outstanding READ or WRITE macro instructions exceeds the
DCBNCP count (specified in the DCB macro instruction) in the data con­
trol block for the data set.

If the CHECK macro instruction tests a DECB that has not been posted
as complete, the user's task waits until the event is completed.

If the CHECK macro instruction tests a READ operation that attempted
to gain access to a block after the last block of a data set had been
read, control is passed to end-of-data set exit ~ODAD) whose address is
provided in the EODAD field of the data control block. The task is
abnormally terminated if an EODAD address is not supplied. Refer to
Appendix C for contents of registers when the EODAD routine is entered.

If the CHECK macro instruction determines that the READ or WRITE
operation was not completed correctly because of an I/O error, control
is given to the user's Synchronous Error Exit (SYNAD) routine. Refer to
Appendix B.

The RETURN macro instruction may be used to return to the calling
program from the SYNAD routine. The program may then proceed, if
desired, as if an error had not occurred. For input from any device, or
for output to a unit record device, processing may be continued. In all
other cases, the data control block should be closed.

The task is terminated if an error is detected by the CHECK macro
instruction and the user has not provided a SYNAD routine.

If the CHECK macro instruction detects an end-of-volume condition,
when processing a multivolume data set, processing continues with the
next volume. If there are no additional volumes, the user's EODAD rou­
tine is entered.

A hardware-detected incorrect-length block is not interpreted as an
error by the CHECK macro instruction if format-U records or truncated
blocks of fo:rmat-F records are being read. To determine length of the
block actually read, the user can examine the channel status word (part
of status indicators pointed to in the DECB) after issuing the CHECK
macro instruction. The first byte of a format-U record read backwards
from magnetic tape may be located by the same method.

The following table lists the results of incorrect-length error in
which length of the record read is different from the DCBBLK for
formats-F and U, or the LL field for format-V.

68

r ~-----------------------------------,
I RECFM I Control Passed To SYNAD I
r----------------------------_+------------------------------~
I Fixed (F) I Yes I
~------------------------------+-----------------------------------~
I Fixed blocked (FB) IIf block is short by a nonmultiple I
I lof LRECL I
r-----------------------------+------------------------------~
I Fixed standard (FS) I Yes I
r----------------------------t---------------------------i
I Fixed blocked IIf block is short by a I
I standard (FBS) Inonmultiple of LRECL* I
r--------------------------------+------------------------------~
I Variable (V) I Yes I
r------------------+------------------------------~
I Variable blocked (VB) I Yes I
r------------------------------+----------------------------------~
I Undefined (U) I No I
~----_--_----------..L---------------------------~
1*lf block is short by a multiple of LRECL, next record causes an end- I
I of-volume condition. If current volume is last of the data set, con-I
I trol is passed to EODAD. If current volume is not the last, proces- I
1 sing continues on next volume. I L __ J

EXAMPLE: The CHECK macro instruction tests for completion of I/O opera­
tions in the order in which they are requested. The operand field con­
tains the name of the data event control block specified in the read or
write request.

EX1 READ INDECB,SF,INVEN,WORK,100

CHECK INDECB

EX2 WRITE OUTDECB,SF,MNTHRPRT,WORK,100

CHECK OUTDECB

DQDECB -- Remove Unchecked DECBs From a Data Set's DECB Queue @)

The DQDECB macro instruction (for BSA~ removes all unchecked DECBs
from a queue of unchecked DECBs maintained by the system. If all of the
DECBs within the queue have not been posted complete, the I/O requests
associated with them are purged. DQDECB will not proceed until all
DECBs have been posted complete either due to the purge or the fact that
they have actually completed.

Access Methods: BSAM 69

r--------T--·------~---,

I Name I Operation I Operand I
r--------f---------f---1
I [symbol] I DQDECB I decb- [addrx} I
I I I l (1) I L ________ ~ _________ ~ ___ J

decb
specifies a data event control block (DECB) associated with the
data set for which the DECB dequeueing will be performed. The DECB
need not currently be in the DECB queue.

If (1) is written the DECB address must have been loaded into para­
meter register 1 before execution of this macro instruction.

PROGRAMMING NOTES: The DQDECB macro instruction is normally used in the
SYNAD routine when multiple READ or WRITE macro instructions have been
issued without an intervening CHECK. If DQDECB is issued, all unchecked
READ or WRITE requests must be reissued. The I/O operations associated
with the data set that were not checked are removed from the system. If
any of these DECBs are checked after the DQDECB without an intervening
READ or WRITE, the CHECK will be treated as a NOP.

This facility is of use to users of the IMSK facilities of the DCB
when they have multiple READ or WRITE requests unchecked and want to
initiate their own error retry procedures, or to the user with multiple
unchecked READ or WRITE requests who wants'to reinitiate the sequence of
I/O operations.

Upon return from DQDECB, register 0 contains a count of the number of
unchecked DECBs in the queue, and register 1 contains a pointer to the
list of unchecked DECBs. This queue is read-only and is only valid
until the next I/O operation is initiated on the data set.

GETBUF -- Get a Buffer From a Pool (R)

The GETBUF macro instruction (for BSAM) obtains a buffer from a spe­
cified buffer pool. Buffers acquired by a GETBUF must be returned by a
FREEBUF before they may be obtained again.

r--------T---------T---,
I Name I Operation I Operand I
r-----t------t---~
I [symbol] IGETBUF Idcb-[addrx},register-absexp I
I I I l (1) I L--______ ~ _______ ~ ___ J

dcb
specifies the address of the data control block opened for the data
set being processed.

If (1) is written, the address must have been loaded into register
1 before execution of this macro instruction.

register
specifies a general register into which the control program is to
place t.he address of the buffer.

CAUTION: The following error conditions result in termination of the
task::

1. The dcb operand specifies an invalid data control block.
2. Buffer size is 0 or greater than 32,760.

70

3. Number of buffers in pool is 0 or greater than 255.
4. Data control block not open.

The address of a save area must be placed in register 13 before
execution of this macro instruction.

PROGRAMMING NOTES: A buffer pool must have been assigned to the data
control block by use of a GETPOOL, or the buffer option in the DCB macro
instruction; i.e., BUFL= and BUFNO= are supplied in the DCB macro
instruction. Each successive GETBUF macro instruction issued obtains a
buffer in the order in which it exists in the buffer pool. For example,
if a buffer pool contains five buffers, five successive GETBUF macro
instructions would obtain five successive buffers from the buffer pool.

Buffers must be returned to the pool by the FREEBUF macro instruction
before they can be obtained again.

If no buffer is available within the pool, the contents of the
register specified in the GETBUF macro instruction will be set to zero
rather than an address.

The address of the buffer pool is placed in the OCBBCN field of the
data control block.

EXAMPLE: The GETPOOL macro instruction is used to define a buffer pool
of 10 buffers of 100 bytes each. The GETBUF macro instruction is used
to obtain the address of an available buffer in register 5. That buffer
is then used to hold an input block when a data set is being read. (The
length operand is not required in the READ macro instruction). The
buffer is released by the use of the FREEBUF macro instruction.

GETPOOL INDCB,10,100

OPEN (INDCB, (INPUT»

GETBUF INDCB, (5)

READ DECB 1 , SF , INDCB, (5)

FREEBUF INDCB, (5)

FREEBUF -- Return a Buffer to a Pool (R)

The FREEBUF macro instruction (for BSAM) returns a buffer (previously
obtained by a GETBUF macro instruction) to a buffer pool so that it will
be freed and can be obtained again by GETBUF. It is not necessary to
free all buffers prior to issuing the CLOSE macro instruction.

Access Methods: BSAM 71

r--------T---------T---,
I Name I Operation I Operand I
~------t---------t---~
I [symbol] !FREEBUF IdCb-{addrx}rregister-absexp I
! I I (1) I L---_____ i _________ i ___ J

dcb
specifies the address of the data control block opened for the data
set being processed.

If (1) is written r the address must have been loaded into parameter
register 1 before execution of this macro instruction.

register
specifies the general register that contains the address of the
buffer being returned to the pool.

CAUTION: Error conditions that result in termination of the task are:

1. The dcb operand specifies the address of an invalid data control
block.

2. Buffer pool address is not in data control block (GETBUF was not
invoked before FREEBUF) •

3. Buffer address specified by user does not belong to buffer pool.

4. Buffer specified by user is not in use (GETBUF was not used to
obtain buffer) •

The address of a save area must be placed in register 13 before
execution of this macro instruction.

PROGRAMMING NOTES: To release a buffer by FREEBUF r a buffer pool must
have been assigned to the data control block r and the specified buffer
must have been obtained by the GETBUF macro instruction.

GETPOOL -- Get a Buffer Pool (R)

The GET POOL macro instruction (for BSA~ requests allocation of an
area of virtual storage for use as a buffer pool. The buffer pool is
assigned to the specified data control block:

r-------~---------T---,

I Name I Operation I Operand I
~-------t---------t---1
I [symbol] IGETPOOL Idcb-{addrx}r{number-valuerlength-value} I
I I I (1) (0) I L ________ ~ _________ i ___ J

dcb
specifies the address of the data control block to which the buffer
pool is to be assigned. If (1) is written r the address must be in
parameter register 1 prior to execution of this macro instruction.

number
specifies the number of buffers to be in the pool. The maximum
value is 255.

length

72

specifies the number of bytes in each buffer. The value is
increased r if necessarYr by the GETPOOL routine to be a doubleword

multiple. The maximum value is 32,760 bytes. If (0) is written,
the value giving the number of buffers must be in the two high­
order bytes of register 0, and the value giving the length of each
buffer must be in the two low-order bytes of register 0, prior to
execution of the macro instruction.

CAUTION: Failure to observe these restrictions results in termination
of the task.

1. Only one buffer pool may be assigned to a data control block at one
time.

2. Buffer length must be less than, or equal to, 32,760.
3. Number of buffers must be less than, or equal to, 255.

The address of a save area must be placed in register 13 before
execution of this macro instruction.

PROGRAMMING NOTES: If the GETPOOL macro instruction is used, it must be
executed prior to the execution of any GETBUF macro instruction which
refers to the buffer pool area allocated by GETPOOL.

The FREEPOOL macro instruction should be issued to return the allo­
cated buffer pool to the system, unless a CLOSE is issued for the data
control block to which the buffer pool is assigned.

EXAMPLES: EX1 constructs a buffer pool consisting of two buffers, each
136 bytes long, in an area of virtual storage. This buffer pool is
assigned to the data control block REPORT. EX2 indicates that the
required parameters were in registers 0 and 1 prior to execution of the
macro instruction.

EXl
EX2

GET POOL
GET POOL

REPORT,2,136
(1) , (0)

FREEPOOL -- Free a Buffer Pool (R)

The FREEPOOL macro instruction (for BSA~ releases an area that had
previously been assigned as a buffer pool to a specified data control
block. The area must have been acquired through either the execution of
a GETPOOL macro instruction or by the buffer option described in the DCB
macro instruction; i.e., when the DCB macro instruction was written,
BUFNO= and BUFL= were included.

r--------T---------T---,
I Name I Operation I Operand I
~--------f---------+---1
I [symbol] IFREEPOOL Idcb-raddrx~ I
I I I l (1) J , L-_______ i _________ i ___ J

dcb
specifies the address of the data control block to which the buffer
pool was assigned.

If (1) is written, the address must be in parameter register 1
prior to execution of this macro instruction.

CAUTION: If the dcb operand does not specify the address of a valid
data control block, the task is terminated.

The address of a save area must be placed in register 13 before
execution of this macro instruction.

Access Methods: BSAM 73

PROGRAMMING NOTES: If the associated data set is processed by means of
BSAM, FREEPOOL may be issued as soon as the buffers are no longer
required.

The area released by FREE POOL must have been acquired through the
execution of a GETPOOL macro instruction, or by the buffer option
described in the DCB macro instruction; i.e., BUFNO= and BUFL= were sup­
plied in the data control block.

EXAMPLES: EX1 releases the buffer area assigned to the data control
block OUTPUT. EX2 releases the buffer area assigned to the data control
block whose address is in register 1.

EX1 FREEPOOL OUTPUT
EX2 FREEPOOL (1)

BSP -- Backspace a Block (R)

The BSP macro instruction (for BSA~ backspaces a block on the cur­
rent magnetic tape or direct-access volume. Backspacing is always
toward load point (or its equivalent on direct-access) regardless of the
OPEN macro instruction's parameters or the direction of reading.

This macro instruction is applicable only to magnetic tape or a
direct-acces device and becomes a NOP for other devices.

r----"----T---------T---,
I Name I Operation I Operand I
~------+---------+---~
I [symbol] I BSP I dcb- [addrx} " I
I I I l (1) I L-_______ i _________ i ___ J

dcb
specifies address of data control block opened for the data set to
be backspaced.

If (1) is written, the data control block address must have been
loaded into parameter register 1 before executing this macro
instruction.

CAUTION: Abnormal termination occurs if:

1. Data control block specified by the user is not validly opened.
2. Track overflow option is specified.
3. All read and write operations have not been checked for completion.

If this macro instruction is included in a module that is declared pri­
vileged (through use of the DC LASS macro instruction), the address of a
save area must be placed in register 13 before execution of this macro
instruction.

PROGRAMMING NOTES: Following execution of the BSP macro instruction,
register 15 contains a return code of 0 if the operation is completed
normally. It also contains a return code of 0 if the operation encoun­
tered a permanent positioning error, in which case the next CHECK of a
READ or WRITE passes control to the SYNAD routine.

If a tape mark is encountered on a backspace, the tape is reposi­
tioned to the tape position it was at before BSP was issued and a return
code of 4 is placed in register 15.

74

If user attempts to backspace into a header or trailer label track on
direct-access volumes, backspacing does not occur and a return code of 4
is placed in register 15.

All read or write operations must be checked for completion before
the BSP macro instruction is executed.

If more than one BSP is issued without an intervening READ or WRITE,
then NOTE, POINT, or CNTRL macro instructions may be more efficient.

CNTRL -- Control On-Line Input/Output Devices (R)

The CNTRL macro instruction (for BSA~ performs non-data-transfer
operations on magnetic-tape drives and online card readers and printers.
The functions provided are: card-stacker selection, printer carriage
control, and magnetic-tape repositioning.

Since online card readers and printers cannot be addressed directly
by most users of the system, only users with proper system authorization
may use this macro instruction for card-stacker selection and printer
carriage control. All users, however, may use this macro instruction
for magnetic-tape repositioning.

r-------~--------~---,
I Name I Operation I Operand I
~--------f---------+---~
I [symbol] ICNTRL Idcb-raddrx},{action-COde[,nUmber-VaIUe]~ I
I I I l (1) (0) J I L-_______ ~ _______ ~ ___ J

dcb
specifies the address of data control block opened for data set
being processed. If (1) is written, the address must be loaded
into parameter register 1 before execution of this macro
instruction.

action
specifies, by a code, the service to be performed:

SS selects a stacker for a card reader (stacker 1 or 2) •

SP - spaces lines on a printer; space = 1, 2, or 3.

SK - skips to channels 1 through 12 on carriage control tape for a
printer.

BSR - backspaces over a specified number of blocks on magnetic
tape. One block is assumed if number operand is omitted. BR
is the abbreviated code.

BSM - moves backward past a tape mark and forward spaces over the
tape mark. A number value of 1 is always assumed. BM is the
abbreviated code.

FSR - forward spaces over a specified number of blocks on magnetic
tape. One block is assumed if number operand is omitted. FR
is the abbreviated code.

FSM - moves forward past a tape mark and backspaces over the tape
mark. A number value of 1 is always assumed. FM is the
abbreviated code.

Access Methods: BSAM 75

FSF - moves forward past a tape mark. A number value of 1 is
always assumed. FF is the abbreviated code.

BSF - moves backward past a tape mark. A number value of 1 is
always assumed. BF is the abbreviated code.

WTM - writes a tape mark on magnetic tape. A number value of 1 is
always assumed. WM is the abbreviated code.

REW - rewinds magnetic tape. RW is the abbreviated code.

RUN - rewinds and unloads magnetic tape. RU is the abbreviated
code.

ERG - executes an erase gap for magnetic tape. ER is the abbre­
viated code.

If (0) is written, the two-character action code must be placed in
the two high-order bytes of parameter register 0 before execution
of this macro instruction. In the case of three-character action
codes, the abbreviated code must be placed in those bytes.

number
specifies a value for the stacker number, number of lines to be
skipped on the printer, printer carriage-tape channel, or number of
blocks on magnetic tape to qualify the action operand. Maximum
value is 32,767. If (0) is written, the value must be placed in
the two low-order bytes of parameter register 0; value is a binary
integer.

CAUTION: If magnetic-tape positioning is performed, an uncorrectable
tape-spacing error results in linkage to the user's SYNAD routine; this
does not apply to action codes SS, SP, SK, REW, or RUN. Refer to Appen­
dix B for a discussion of SYNAD.

Abnormal termination occurs if:

1. Action code is undefined or not applicable.

2. Number parameter is undefined for the action parameter.

3. A SYNAD-type error occurs and the user has not provided a SYNAD
address.

4. Data control block specified by the user is not a validly opened
data control block.

5. Outstanding read or write operations have not been checked.

If this macro instruction is included in a module that is declared
privileged (through use of the DCLASS macro instruction), the address of
a save area must be placed in register 13 before execution of this macro
instructione

PROGRAMMING NOTES: For stacker selection, the DCBNCP field of data con­
trol block must be 1. Each READ macro instruction directed to a card
reader must be followed by a CHECK macro instruction and a stacker
selection CNTRL macro instruction directed to the same device. Stacker
selection is not available for card punch through the use of the CNTRL
macro instruction; however, the user may specify the desired stacker
selection by changing, in his program, the DCBSTA field in the data con­
trol block. See Appendix F.

READ and WRITE operations must be checked for completion before the
CNTRL macro instruction is issued. If used to control stacker selec-

76

tion, the CNTRL macro instruction must be issued for each read
operation.

For printers, a skip to a specified channel results in no action if
the device is already at that channel.

Control is returned to user if a tape mark or a load point is encoun­
tered during an attempt to forward space or backspace blocks; control is
not passed to the SYNAD routine. Register 15 contains binary zeros if
operation is completed normally; otherwise, it contains a count of the
remaining number of forward spaces or backspaces that were not completed
in its low-order two bytes.

FEOV -- Force End of Volume (R)

The FEOV macro instruction (for BSA~ directs TSS/360 to advance to
the next volume of a data set before the end of the current volume is
reached. This macro instruction is applicable only to data sets mounted
on magnetic tape or direct-access devices.

r------~--------~---,
I Name I Operation I Operand I
~------f---------f---~
I [symbol] I FEOV I dcb- raddrx~ I
I I I l (1) J I L-_______ ~ _________ ~ ___ J

dcb
specifies the address of the data control block opened for the data
set being processed.

If (1) is written, the address must have been loaded into parameter
register 1 before execution of this macro instruction.

CAUTION: The following errors cause the results indicated:

r--T---------------,
I Errors I Resul t I
~--+---------------~
IThe dcb operand specifies address of a data control INo action I
Iblock that is not open I I
I I I
IThe dcb operand specifies address of an invalid data ITask terminated I
I control block I I
I I I
IData set is not processed by BSAM (magnetic tape or ITask terminated I
I direct-access devices) I I
I I I
INot all BSAM READs and WRITEs to data set are checked.ITask terminated I L-___ ~ _______________ J

If this macro instruction is included in a module that is declared
privileged (through use of the DCLASS macro instruction), the address of
a save area must be placed in register 13 before execution of this macro
instruction.

EXAMPLE: In the following example, the control program is directed to
advance to the next volume of the data set associated with the data con­
trol block REPORT.

EX1 FEOV REPORT

Access Methods: BSAM 77

POINT -- Position to a Block (R)

The POINT macro instruction (for BSAM) repositions a magnetic-tape or
direct-access volume to a specified block within a data set on that
volume. Thus the POINT macro instruction permits reading or writing of
a sequential data set from any specified position.

The NOTE macro instruction may be used to provide the positioning
information that is required for the POINT macro instruction.

r--------T---------T---,
I Name I Operation I Operand I
~-------+---------+---~
I [symbol] IPOINT IdCb-{addrx},loc-{addrx} I
I I I (1) (0) I L _______ -i_. ________ ~ ___ J

dcb

loc

specifies the address of the data control block opened for the data
set being processed. If (1) is written, the address must have been
loaded into parameter register 1 before execution of this macro
instruction.

specifies the starting address of a four-byte field containing a
block identification. The field must start on a fullword boundary.

If (0) is written, the address of the block identification must be
loaded into parameter register 0 before execution of this macro
instruction. The initial relative address for the first record on
a direct-access device is (TT=O,R=O). The initial relative address
for the first record on a magnetic tape device which was not opened
for RDBACK or MOD is (CC=O). The initial relative address for the
first record on a magnetic tape which was opened for RDBACK or MOD
is CC=(Block Count from trailer label).

CAUTION: Abnormal termination occurs if the data control block speci­
fied by the user is not validly opened.

Executing a POINT macro instruction for a direct-access device
results in an error if a volume cannot be properly repositioned or if an
invalid block identification is specified. Such an error causes the
next read or write operation to be completed unsuccessfully and, upon
execution of a CHECK macro instruction, causes control to be given to
the user's SYNAD routine. If an error occurs during the positioning of
magnetic tape, the POINT macro instruction passes control immediately to
the SYNAD routine.

The POINT macro instruction must not be issued for a data set on an
unlabeled magnetic tape volume or one containing nonstandard labels, if
the data set is opened under either of these conditions:

1. DDEF macro instruction or command specifying disposition parameter
of MODo

2. OPEN macro instruction specifying RDBACK.

The POINT macro instruction is applicable only to direct-access and
magnetic-tape devices. An immediate return with no action is taken for
other devices.

For direct-access volumes, a user may reposition to any point on the
volume that is assigned to the data set. For a magnetic-tape volume
which is opened for OUTPUT, CUTIN, or INOUT, the user must not reposi­
tion beyond the last record written.

78

If this macro instruction is included in a module that is declared
privileged (through use of the DCLASS macro instruction) , the address of
a save area must be placed in register 13 before execution of this macro
instruction.

PROGRAMMING NOTES: All read or write operations must be checked for
completion before the POINT macro instruction is executed. The user
must make sure that the block identification previously provided by a
NOTE macro instruction, and now being used in the POINT macro instruc­
tion, refers to the same volume.

If the POINT macro instruction is used on a data set opened in the
UPDAT mode, a READ macro instruction must be issued following the POINT
macro instruction. The WRITE (update mod~ specifies that only the last
record read may be updated and that the updated record written must
replace the last record read. Since a POINT macro instruction is used
to alter the next sequential I/O address, a WRITE (update mode) does not
return the updated record to the correct address.

If the user points to a block with a count provided by a NOTE issued
after a read-backward, another read backward should be executed to read
the block provided by the previous NOTE. A read-forward does not read
the block specified by the NOTE.

A POINT macro instruction executed after a WRITE macro instruction
returns the identification field of the block just written. To reposi­
tion so that writing will begin at the next block, the user should add
binary 1 to the low-order byte of the field. For a direct-access
device, a binary 1 is added to the Z-byte of the TTRZ field. For mag­
netic tape, the binary 1 is added to the low-order C of the ZZCC field.

EXAMPLE: In the following example, the POINT macro instruction is used
to reposition a volume to a block which was identified previously by a
NOTE macro instruction.

WRITE

CHECK
FREEBUF

NOTE
ST

GETBUF
POINT
READ

OUTDECB,SF,MYDCB, (4) ,100

OUTDECB
MYDCB,4

MYDCB
1,SAVE

MYDCB,4
MYDCB,SAVE
INDECB,SF,MYDCB, (4) ,100

This is the record to which
the program will reposition.

Note the position of the rec­
ord under consideration.

Reposition to the record
being considered and
read it.

Access Methods: BSAM 79

NOTE -- Provide Position Feedback (R)

The NOTE macro instruction (for BSA~ causes the relative position
within a volume of a block just read or written to be placed in register
1. This relative position identifies the block for subsequent reposi­
tioning of the volume.

NOTE provides a block count for magnetic tape. For direct-access
volumes, the count is the track number relative to the beginning of the
data set portion on the volume and the record number within the track.

The NOTE macro instruction normally provides infornlation for a subse­
quent POINT macro instruction.

r--------T---------T---,
I Name I Operation I Operand I
~----+---------+---~
I [symbol] I NOTE I dcb- {addrx} I
I I I l (1) I L-_______ i _________ i __ J

dcb
specifies the address of the data control block opened for the cur­
rent operation. If (1) is written, the data control block address
must have been loaded into parameter register 1 before execution of
this macro instruction.

CAUTION: Abnormal termination occurs if the data control block speci­
fied by the user is not validly opened.

For a data set on magnetic tape, the NOTE macro instruction should
not be issued for an unlabeled data set or a data set containing non­
standard labels, if the data set is opened under either of these
conditions:

1. DDEF macro instruction or command has a disposition parameter of
MOD.

2. OPEN macro instruction specifies RDBACK.

The current block count in the data control block is not valid under the
above conditions.

For a data set on magnetic tape, a NOTE macro instruction issued
after a POINT macro instruction, without an intervening READ or WRITE
macro instruction, does not return the relative address of the last rec­
ord read or written. NOTE returns the data control block count minus 1,
if the last I/O operation was not a READ (type SB); or it returns the
data control block count plus 1, if the last I/O operation was a READ
(type SB) •

The address of a save area must be placed in register 13 before
execution of this macro instruction.

PROGRAMMING NOTES: All READ or WRITE requests must be checked for com­
pletion before the NOTE macro instruction is executed. The provided
block identification is always within the current volume.

Following execution of the NOTE macro instruction, the system places
the block identification of the last block read or written in parameter
register 1.

The form of the block identification depends on whether magnetic tape
or direct-access devices are being used as follows:

80

Magnetic Tape: If magnetic tape is used, the block identification is a
four-byte block count of the form zzCC, where: .

zz - binary zero bytes;
CC - the block number (binary) within the volume.

The block identification may be used in the POINT macro instruction
to reposition the magnetic tape to the location of the block.

Direct-Access Device: If a direct-access device is used, the block
identification is a four-byte value of the form TTRz, where

TT - the track number relative to the beginning of the data set on the
current volume (first track equals 0).

R - the block number on that track (first data block equals 0).
z - a binary zero byte.

If the last operation was a WRITE, an additional parameter is pro­
vided by NOTE in register 0 in the form zzLL, where:

zz = binary zero bytes.
LL = the number (in binary) of bytes remaining on that track.

The initial relative address for the first record on a direct-access
device is (TT=O, R=O). The initial block count for the first record on
a magnetic-tape device which was not opened for ROBACK or MOD is (CC=O).
The initial block count for the first record on a magnetic tape, which
was opened for ROBACK or MOD, is CC minus 1 (CC=Trailer Label Block
Count). NOTE is applicable only to direct-access and magnetic-tape
devices. The address, sent back in general register 1 for any other
equipment type, is the data control block count minus one and is pre­
ceded by two bytes of binary O.

PRTOV -- Test for Printer Carriage Overflow (R)

The PRTOV macro instruction (for BSAM) controls the page format for
an on-line printer. The user may test channel 9 or 12 of the printer
control tape to determine if an overflow condition exists. Since the
printer cannot be addressed directly by most users of the system, this
macro instruction may be issued only by users with proper system
authorization.

Before testing overflow indicators, PRTOV waits for completion of all
previously requested printing.

r--------T---------T---,
I Name I Operation I Operand I
r--------f---------f---~
I [symbol] I PRTOV I dcb- [addrx} , number- {9112} [, userrtn- [addrx}] I
I I I\.(1) \. (0) I L--______ ~ _______ _i ___ J

dcb
specifies the address of the data control block opened for the data
set being processed.

If (1) is written, the data control block address must be loaded
into parameter register 1 before execution of this macro
instruction.

number
specifies either 9 or 12 as the channel to be tested for an over­
flow condition.

Access Methods: BSAM 81

userrtn
specifies the address of a routine that is to be given control if
the appropriate program indicator (for channels 9 or 12) is on when
tested. If this operand is omitted, and if the overflow condition
exists, an automatic skip to channel 1 is performed prior to the
next WRITE operation.

CAUTION: Abnormal termination occurs if the data control block speci­
fied by the user is not validly opened.

The address of a save area must be placed in register 13 before
execution of this macro instruction.

PROGRAMMING NOTES: This macro instruction is applicable only for a
printer.

The user routine, if it uses a PSECT, must use the same PSECT as the
routine that issues the PRTOV macro instruction. To continue processing
at the pOint at which PRTOV macro instruction was issued, the user rou­
tine must branch to the address that was contained in general register
14 upon entry to the user routine. A RETURN macro instruction may not
be used for this purpose.

If no user routine is specified, execution of the problem program
continues after a PRTOV macro instruction is issued. When the line
associated with the first WRITE macro instruction issued after the PRTOV
is to be printed, the appropriate program indicator is tested. An auto­
matic skip to channel 1 is performed if an overflow has occurred.

If a user routine is specified, the control program waits after a
PRTOV macro instruction is issued. When all prior print operations are
complete, the appropriate program indicator is tested.

Upon entry to the user's overflow routine, the contents of the gener­
al registers are:

r---------~---,
I Register I Contents I
r----------+---~
I 0 I Unspecified I
I I I
I IAddress of data control block I
I I I
I 2 to 13 ISame as existed before macro instruction was executed I
I I I
I 14 IReturn address I
I I I
I 15 IAddress of userrtn routine I
L----7----~---___________ J

EXAMPLES:

EX1
EX2

PRTOV
PRTOV

OUTDCB,9
PRINTDCB,12,OVERFLOW

In EX1, an overflow condition on channel 9 of the printer-control
tape results in an automatic skip to channel 1 since the operand,
userrtn, is omitted. In EX2, an overflow condition on channel 12
results in control passing to the user's overflow routine.

82

QUEUED SEQUENTIAL ACCESS METHOD

The queued sequential access method (QSAM) consists of the TSS/360
data set management facilities that enable a user to access blocked or
unblocked physical sequential data sets. QSAM, in contrast to BSAM,
permits the programmer to store and retrieve records of a sequential
data set without coding his own blocking/deblocking and buffering rou­
tines. A sequential data set can be stored on, or retrieved from, disk,
tape, or cards, and can be printed out by a printer. The record format
within each such data set can be fixed length (blocked or unblocked) ,
variable length ~locked or unblocked), or undefined length (unblocked
only). Such attributes are unique for each data set; they must be
defined to the system before a data set can be accessed by QSAM. The
macro instructions provided to a user, by QSAM, for accessing a data set
in an appropriate manner, are summarized below.

GET used for reading logical record in a sequential order. The ini­
tial GET reads in a physical record transferring it from the
input device to a system maintained buffer area and, when the
physical record is blocked, locates the first sequential logical
record within the physical record. Each subsequent GET locates
the next sequential logical record within the physical record
until all logical records within that physical record have been
processed; then the system reads in another physical record auto­
matically and locates logical records as indicated above.

PUT for writing new or altered logical records into a physical
sequential output data set.

PUTX for writing an updated or identical logical record directly from
an input data set to an output data set, without altering the
length of the record. The next sequential logical record con­
tained in an input buffer area (where it may have been modified)
is transferred to the output buffer as the next sequential output
record. The system must be positioned at the next sequential
logical input record by issuing a locate mode GET macro instruc­
tion prior to the PUTX

RELSE causes the remaining records of the current input buffer to be
ignored, locates the next sequential physical record's input
buffer area and positions the user at the first logical record in
that buffer area. The next GET macro instruction will retrieve
the first logical record from the new input buffer.

TRUNC causes the current output buffer to be regarded as filled, trans­
fers a physical record from that output buffer to the output
device, and positions the system at the next buffer area. The
next PUT issued causes the user to be positioned at the new out­
put buffer area in which he can construct the next logical
record.

SETL enables a user to logically position a data set at its beginning,
end, at the previous record, or at any logical record within a
blocked sequential data set. Subsequent PUT or GET operations
will start at this new position.

CNTRL provides control for card stacker selection, printer carriage
control, and magnetic tape positioning

PRTOV controls the page format for an on line printer by testing chan­
nels 9 and 12 on the printer control tape, as overflow indica­
tors, and allowing the user to provide an overflow routine to
reposition the printer at any desired channel of the printer con­
trol tape.

Access Methods: QSAM 83

Detailed explanations of each of the above macro instructions and the
formats in which they may be specified are shown below. Further infor­
mation pertaining to QSAM data set management and the related macro
instructions can be found in IBM System/360 Time Sharing System:
Assembler Programmer's Guide, Form C28-2032.

GET -- Get a Logical Record (R)

The GET macro instruction (for QSAM) can be specified in either lo­
cate mode or move mode. In locate mode, the GET macro instruction
locates the next sequential logical record in an input data set and
places its address in register 1. The user may then operate on the rec­
ord where it is or move it to a work area. The logical record pointed
to by register 1 resides in an input buffer where a system-scheduled
read operation placed it. In move mode, the GET macro instruction
acquires the next sequential logical record and automatically moves it
from the input buffer to an area in virtual storage specified by the
user.

r--------T--------~---,

I Name I Operation I Operand I
~-------+---------+---1
I [symbol] IGET Idcb-raddrx~r,area-raddrxJJ I
I I I\..(1) J L \.. (0) J I L ________ ~ _________ ~ ___ J

dcb
specifies the address of the data control block opened for the data
set being processed. If (1) is written, the address must have been
loaded into parameter register 1 before execution of the macro
instruction.

area (for move mode only)
specifies the address of the user's work area into which the record
is to be moved. If (0) is written, the address must have been
loaded into parameter register 0 before execution of the macro
instruction.

CAUTION: If either of the following error conditions exists as a result
of the execution of the GET macro instruction, control will be passed to
the Synchronous Error Exit (SYNAD) routine specified in the data control
block:

1. The next record to be processed starts a block that could not be
read satisfactorily because of an error condition.

2. A preceding PUTX macro instruction could not be executed without
resulting in an error condition. This situation is discovered by
the GET macro instruction when working in update mode.

3. When processing variable length records, the length of a block (LL)
does not equal the actual block size.

4. When processing variable length records, the lengths of each indi­
vidual record (11) within a variable length block do not add up to
the length indication of the block (LL).

When the SYNAD routine is given control, the general registers and sta­
tus indicators are set as shown in Appendix B.

The address of a save area must be placed in register 13 before
execution of this macro instruction.

84

PROGRAMMING NOTES: In locate mode, the control program returns the
address of the next logical record in parameter register 1, and places
the record length in the logical record length (DCBLRECL) field of the
data-control block. In the move mode, the area address provided by the
user is returned in register 1 and the logical record length of the
accessed record is placed in DCBLRECL. Because QSAM does not support
the substitute-mode GET macro instruction, this feature (i.e., return of
the area address) provides compatibility which allows the time sharing
system to use the move mode in order to execute programs originally
written to use the substitute-mode GET.

If a GET is requested beyond the end of a data set, as a result of
sequential operation or the user EODAD exit is taken, see Appendix C.

EXAMPLE: In the following example written in the move mode the next
record from the data set associated with the DCB labeled STAT is moved
to the workarea labeled SAMPLES. The address of the word area is
returned to the user in parameter register 1.

EXl GET STAT, SAMPLES

STAT DCB DSORG PS, ••••

SAMPLES DS 20F

PUT -- Include a Record in an Output Data Set (R)

The PUT macro instruction (for QSAM) may be specified in either lo­
cate mode or move mode. In locate mode, the PUT macro instruction
places in register 1 the address of an area within an output buffer
large enough to contain an output record. The user should subsequently
construct, at this address, the next record for incorporation into the
output data set. In move mode the PUT macro instruction moves a record
from a user specified area in virtual storage to an output buffer. When
an output buffer is filled, the system places its contents into the out­
put data set.

r--------T---------T---,
I Name I Operat ion I Operand I
1------+--------+--i
I [symbol] I PUT I dcb- [addrx'l [, area- [addrx"'l] I
I I I l (1) J l (0) J I L ______ ~ ________ i __ J

dcb
specifies the address of the data control block opened for the data
set being created. If (1) is written, the address must have been
loaded into parameter register 1 before execution of this macro
instruction. In locate mode, after execution of the macro instruc­
tion the address of the next buffer segment large enough to hold
the next logical record is returned in register 1.

area (for move mode only)
specifies the address of the record to be moved into the buffer.

If (0) is written, the address must have been loaded into parameter
register 0 before execution of this macro instruction.

Access Methods: QSAM 85

CAUTION: Any exceptional condition resulting from the execution of a
PUT macro instruction causes control to be passed to the user's synch­
ronous error exit (SYNAD) routine. In this case, the general register
and the exceptional condition fields in the data control block are set
as shown in Appendixes Band F.

The address of a save area must be placed in register 13 before
execution of this macro instruction.

PROGRAMMING NOTES: Before executing this macro instruction, the user
must place the length of the record in the logical record length field
(DCBLRECL) of the data control block according to the format of the log­
ical records as follows:

For format-F records, the logical record length is taken from
DCBLRECL. This field should not be altered after the DCB is opened or
an incorrect length block will be written. This will cause abnormal
termination 0

For format-U records, the actual record length must be known before
the record is constructed, and must be placed in the DCBLRECL field.
Abnormal termination will occur if DCBLRECL is greater than DCBBLKSI.

For format-V records, one of the following procedures must be chosen
depending upon whether locate mode or move mode is used. For locate
mode the actual record length must be placed in the DCBLRECL field or
anestimated record length (not less than the actual record length) must
be placed in the DCBLRECL field. If the estimated record length in
DCBLRECL is greater than DCBBLKSI, an abnormal termination will occur.
For move mode, the length 'II' of each logical record determines the
amount of buffer space needed. If 'II' is greater than DCBBLKSI, an
abnormal termination is taken. For PUT move mode, the area address pro­
vided by the user is returned in register 1. Because QSAM does not sup­
port the substitute mode PUT macro instruction, this feature (return of
the area address) provides the compatibility which allows move mode to
be used in order to execute programs originally written for OS/360 which
use substitute mode PUT.

EXAMPLE: In the following example, the use of a move-mode PUT macro
instruction is shown. The address of the next logical record to be pro­
cessed is returned in register 1 following the locate-mode GET macro
instruction. The record is part of an input data set associated with
the data-control block INVEN. After the record is processed within the
input buffer, the move-mode PUT macro instruction is used to move the
record to an output buffer. Before the PUT macro instruction is
executed, the address of the record is placed in parameter register O.
The branch instruction is used to reenter the processing loop.

AAV GET INVEN

LR 0,1
PUT REPORT, (0)
B AAV

PUTX· -- Include a Logical Record in an Output or Updated Data Set (R)

The PUTX macro instruction (for QSA~ causes the next logical record
contained in a buffer area of an input data set to be written as the

86

next sequential logical record of an output or updated data set. This
macro instruction may be specified in either update mode or output mode.
In update mode only, the output and input data sets are one and the
same, and only the dcbout-addrx operand is required. In output mode,
two different data sets are used, necessitating that both operands must
be specified.

r--------T---------T---,
I Name I Operation I Operand I
~--------f---------+---~
I [symbol] I PUTX I dcbout- [addrx}r. dcbin- raddrx~l I
I I I\.(1) L l (0) JJ I L--______ i-_______ -i ___ J

dcbout-addrx
specifies the address of the data control block opened for the out­
put data set. In the update mode the output and input data sets
are the same and only the dcbout-addrx operand is required. If (1)
is written, the address must have been loaded into parameter
register 1 before execution of this macro instruction. The DCB
referred to in the dcbout operand must be opened for UPDAT if the
update mode is used or it must be opened for OUTPUT if the output
mode is used.

dcbin-addrx
specifies the address of the data control block opened for the
input data set. If (0) is written, the address must have been
loaded into parameter register 0 before execution of this macro
instruction.

CAUTIONS: The following cautions apply:

• The data set must reside on a direct access device.

• For blocked-format records, if any logical record in a block has been
returned by a PUTX macro instruction, the control program will not
write the entire block back to the data set until all the logical
records in that block have been processed.

• The length of the block and the length of each logical record cannot
be altered.

• Additional logical records cannot be inserted into the block nor can
existing logical records be deleted from the block.

PROGRAMMING NOTES: Any exceptional condition resulting from the execu­
tion of a PUTX macro instruction causes control to be passed to the
user's synchronous error exit (SYNAD) routine.

The PUTX macro instruction must always be preceded by a locate mode
GET macro instruction. This GET maGro instruction must specify the same
data set as specified by an update mode PUTX macro instruction, or it
must specify the data set that is used as input by an output mode PUTX
macro instruction.

Since the update mode uses only a single data set the user need only
issue a PUTX for those logical records which are to be updated. Those
records which have not changed can be bypassed, and thereby remain
unchanged, simply by issuing two successive GET macro instructions (see
EXAMPLE below.)

In output mode two distinct data sets are used and a PUTX is required
for each logical record that is to be included in the output data set
being created. Abnormal termination will occur if these requirements
are violated.

Access Methods: QSAM 87

COMPA.TIBLE RECORD FORMATS AND BUFFERING TECHNIQUES: Normally, when the
PUTX macro instruction is used, data sets with the same record formats
and buffering techniques are processed together. However, the control
program supports certain variations from this procedure. Table 2 indi­
cates which combinations of input and output record formats are
acceptable.

Table 2. Acceptable record formats for QSAM and the PUTX Macro
Instruction

r----------------------------T------T------T-------T--------T----------,
I dcbout I to U I to F I to FB I to V I to VB I
I (move mode) I I I I I I
I dcbin I (1) I (2) I (2) I (3) I (3) I
I (locate mode) I I I I I I
.--------------------------+-----+------+-------f-------+----------~
I from U I S I I I I I
I from F I SIS I S I I I
I from FB I SIS I S I I I
I from V I S I I I SIS I
I from VB I S I I I SIS I
~---------------------------~------~------~------~------~----------~
where:

indicates unacceptable record format combination

S indicates acceptable record format combinations (only simple
buffering supported by TSS)

U indicates format-U records

F indicates format-F records

FB indicates format-F blocked records

V indicates format-V records

VB indicates format-V blocked records L __ J

Notes for Table 2:

1. The block size for the format-U output data set must be as large as
the largest logical record size of the input data set.

2. The logical record size for format-F and -FB records must be the
same for both data sets.

3. The maximum logical record for format-V and -VB records must
correspond.

EXAMPLE: In the following example, the use of a PUTX macro instruction
when records are being updated is shown. The locate-mode GET macro
instruction provides the address of the next record to be updated. The
PUT X macro instruction, after processing the record, returns it to the
data set. The conditional branch instruction tests the condition code.
If the record is to be updated, the next sequential instruction is
executed; if it is not to be updated, another GET macro instruction will
be issued to locate the next record. The unconditional branch following
the PUT macro instruction is used to reenter the processing loop. When
all the input records are processed, the EODAD routine is given control.

88

LLS GET DCBA

BH LLS

PUTX DCBA

B LLS

RELSE -- Release an Input Buffer @)

The RELSE macro instruction (for QSAM) causes the remaining contents
of the current input buffer to be ignored. The next GET macro instruc­
tion will retrieve the first logical record from the next input block.

r--------T---------T---,
I Name I Operation I Operand I
~------+---------+---i
I [symbol] IRELSE IdCb-[addrx} I
I I I l (1) I L ________ ~ _________ ~ ___ J

dcb
specifies the address of the data control block opened for the
input data set.

If (1) is written, the DCB address must have been loaded into para­
meter register 1 before execution of this macro instruction.

CAUTION: A RELSE macro instruction is ignored if used with unblocked
records, or if all records in a buffer have been processed, or if it
immediately follows another RELSE macro instruction.

If a RELSE is issued before the first GET of the data set, the macro
instruction is ignored.

PROGRAMMING NOTES: If a data set is being read backwards, the RELSE
causes the same results as in forward reading.

TRUNC -- Truncate an Output Buffer (R)

The TRUNC macro instruction (for QSA~ causes the current output
buffer to be regarded as filled. The next PUT macro instruction will
use the next block to hold a logical record.

r--------T---------T---,
I Name I Operation I Operand I
~--------f---------+---i
I [symbol] ITRUNC IdCb-[addrxJ I
I I I l (1) I L--______ ~ _________ ~ ___ J

Access Methods: QSAM 89

dcb
specifies the address of the data control block opened for the out­
put dat.a set.

If (1) is written, the DCB address must have been loaded into para­
meter register 1 before execution of this macro instruction.

A TRUNC macro instruction will be ignored if used with unblocked
records, or when a buffer is full, or if it immediately follows another
TRUNC macro instruction.

CAUTIONS: The TRUNC macro instruction is meaningful only with format-F
and -v blocked records. Its use with format-F blocked records means
that the data set cannot be considered to contain standard blocks. When
the data set is read, the RECFM operand of the DCB macro instruction
must not contain an S.

PROGRAMMING NOTES: Any exceptional condition resulting from the execu­
tion of a TRUNC macro instruction causes control to be passed to the
user's synchronous error exit (SYNAD) routine.

If a TRUNC is issued on a data set OPEN'ed for UPDAT, the following
GET will retrieve the first logical record from the next block. The
last block will be written out including all logical records read plus
those not updated by a PUTX.

If a TRUNC is issued bef.ore the first PUT of a data set, the TRUNC
macro instruction is ignored.

CNTRL -- Control a Printer or Stacker (R)

The CNTRL macro instruction (for QSAM) provides stacker selection of
an on-line card reader, or carriage control of an on-line printer.
r--------T---------T---,
I Name I Operation I Operand I
~-------+---------+---~
I [symbol] ICNTRL IdCb-{addrx},{action- [SSISPISK] , [number-value]~ I
I I I (1) (0) J I L ________ ~ _________ ~ ___ J

dcb
specifies the address of the data control block (DCB) opened for
the data set being processed.

action
specifies that the controlling action to be performed is one of the
following:

SS - select a stacker (the number operand values are 1 or 2) •
SP - space lines on the printer (the number operand values are 1, 2

or 3) •
SK - skip to a carriage control tape channel (the number operand

values are 1 through 12).

number

90

specifies a value for the controlling action to be performed, as
described in the preceding operand.

A skip to a given carriage control tape channel will cause no
action if the device is already at that channel position.

CAUTIONS: If stacker selection is desired and unblocked records are
being read. Each GET macro instruction must be followed by a stacker­
selection CNTRL macro instruction directed to the same device. The
CNTRL macro instruction need not immediately follow the GET macro
instruction. GET (locate mode) or GET (move mode) must be used exclu­
sively for a card reader.

If stacker selection is desired and blocked records are being read,
CNTRL should be issued only after the GET which refers to the last rec­
ord in the block.

CNTRL need not be issued for the GET which invokes EODAD.

For the printer, use of control characters does preclude use of the
CNTRL macro instruction.

If a locate mode PUT was last issued before the CNTRL, the SP or SK
CNTRL function will occur immediately following the line associated with
the PUT preceding the locate mode PUT. If a move mode PUT was last
issued before the CNTRL, the SP or SK CNTRL function will occur immedi­
ately following the line associated with the move mode PUT.

Example: In the following example, the on-line printer associated with
the data control block PRINTOUT will skip to channel 7 of the carriage
control tape.

EXl CNTRL PRINTOUT,SK,7

PRTOV -- Test for Printer Carriage Overflow @)

The PRTOV macro instruction (for QSAM) is used to control the page
format for an on-line printer. The programmer can test channel 9 or 12
of the carriage control tape for an overflow condition.

r--------T--------~---,
I Name I Operation I Operand I
~-------t---------t---1
I [symbol] I PRTOV I dcb- {addrx~ ,number- {9112} [, userrtn- raddrx~] I
I I I (1) J l (0) J I L _______ ~ _______ ~ ___ J

dcb
specifies the address of the data control block opened for the
dataset being processed.

number
specifies which channel (9 or 12) is to be tested.

userrtn
specifies the address of a routine that is to be given control if
the overflow condition exists. If this operand is omitted, an
automatic skip to channel 1 will be performed when an overflow con­
dition is found.

PROGRAMMING NOTES:

Existence of an overflow condition, as indicated by the channel 9 or
12 machine indicator, is detected by the system and retained in corres­
ponding program indicators, one for each channel. The control program
resets the appropriate program indicator only when a PRTOV macro
instruction tests that indicator. Thus, the PRTOV macro instruction
detects an overflow condition that occurred in any prior, completed
operation that was not tested. Testing occurs as follows:

Access Methods: QSAM 91

If no user routine is specified, execution of the problem program
continues after a PRTOV macro instruction is issued. When the line
associated with the first PUT macro instruction issued after the
PRTOV is about to be printed, the appropriate program indicator is
tested.

If a user routine is specified and a move mode PUT preceded the
PRTOV, the control program WAITs after a PRTOV macro instruction is
issued. When all prior PUT operations are complete, the appropri­
ate program indicator is tested.

If a user routine is specified and a locate mode PUT was last used,
the overflow indicator will be tested to indicate the status of the
print line associated with the PUT (locate or move mode) which pre­
ceded the locate mode PUT. A locate mode PUT does not cause a line
to be printed until the next PUT or TRUNC.

This macro instruction causes no action, if used for a device other
than a printer. The USERRTN must have the same PSECT as the rou­
tine which issued the PRTOV. To continue processing at the point
at which the PRTOV macro instruction was issued, the USERRTN must
branch ·to the address which was contained in general register 14
upon en·try to USERRTN, and must not issue a RETURN macro
instruc·tion.

The contents of the general registers upon entry to the user's over­
flow routine are as follows:

Register
o
1
2 through 13

14
15

Example:

Contents
Unspecified
Address of the data control block (DCB)
Those that existed before the macro instruction was
executed
The return address
The address of the exit routine

In the following example, channel 9 will be tested for an overflow con­
dition. Since the optional error routine address has been omitted, an
overflow condition will cause a skip to channel 1.

EX1 PRTOV DCBOUT,9

SETL -- Specifies Start of Sequential Processing (R)

The SETL macro instruction (for QS~ enables the user to position
himself at the beginning, end, previous record, or at any logical record
within a sequential data set volume.

r--------T--------~---,

I Name I Operation I Operand I
~--------t---------+---~
I [symbol] I SETL I dcb- [addrx} ,type-code [, llimit-{addrx}] I
I I I l (1) (0) I L----____ ~ _________ ~ ___ J

dcb

92

specifies the address of the data control block opened for the data
set being processed.

type

If (1) is written, the DCB address must have been loaded into para­
meter register 1 before execution of this macro instruction.

specifies the starting point for processing, and any optional ser­
vices requested, as follows:

C

R

B

Starting Point

After this instruction is executed DCBLPDQ will contain the
current retrieval address for use by a SETL type code R
instruction.

Retrieval address specified in the llimit parameter as
obtained from DCBLPDQ in the data control block, following
a SETL type code-C.

Beginning of data on current volume.

E End of data on current volume. On OUTPUT data sets this is
the current position.

P Previous logical record in volume (backspace).

llimit
specifies the address of a field containing the retrieval address
which must be a double word oriented, 6-byte field.

If (0) is written, the address of a field containing the retrieval
address must have been loaded into parameter register 0 before
execution of this macro instruction.

Only if the type code specifies R should the llimit field be
provided.

CAUTION: A SETL issued for a data set or opened for UPDAT must be fol­
lowed by a GET locate mode macro instruction before a PUTX can be
issued.

If a SETL with type E code is given for magnetic tape, subsequent use
of a SETL with type C or R codes will be invalid.

If SETL is used, the user must specify the SETL options in the MACRF
field of the data control block.

If type contains a P, a SETL issued for a direct access volume with
track overflow specified in the DCB causes no action to be taken.

If type contains R, a SETL cannot be issued for an unlabeled magnetic
tape volume which was OPEN'ed for RDBACK or if MOD was specified.

The retrieval address obtained from the DCBLPDQ field cannot be
altered before it is furnished to the SETL routine in the 11imit para­
meter. SETL type code C must be issued just before the retrieval
address in DCBLPDQ is saved for use by a subsequent SETL type code R.

The execution of a SETL macro instruction on a direct access device
results in an error if a volume cannot be properly repositioned or if
the DCBLPDQ is invalid. These errors cause the SETL to pass control to
SYNAD.

If repositioning errors occur in the execution of a SETL on a magnet­
ic tape, control passes immediately to SYNAD.

Access Methods: QSAM 93

PROGRAMMING NOTES: The DCBLPDQ field is six bytes in length and pro­
vides the relative address in the volume of the last logical record pro­
cessed by QSAM. The DCBLPDQ should not be altered by the user and is
used when R is specified in the type-code operand. The end of the data
set OPEN'ed for OUTPUT is the current address. If E is specified in the
type-code operand for an output data set, a SETL will position the user
to his current address. If R is specified, the limit parameter (DCBLPDQ
saved) cannot exceed the address of the last PUT.

EXAMPLE:

OPEN

GET
GET

INDCB,INPUT

INDCB
INDCB

(1st logical record)
(2nd logical record)

Save DCBLPDQ in RETAIN

GET

GET
SETL

GET

GET

CLOSE

INDCB (3rd logical record)

INDCB (nth logical recor~
INDCB, R, RETAIN

INDCB (2nd logical record)

INDCB (last record of volume)

INDCB

In the above example, the first GET after the SETL macro instruction
will fUrnish the 2nd logical record. If B had been specified in the
type-code operand, the 1st logical record would have positioned the user
to the address of the logical record just beyond the last record of this
data set stored on the volume. The next GET would have caused EODAD to
be given control if current volume is the last in the data set. If not
the last volume, the first record of the next volume is provided. If
type contained a P, the nth logical record (previous logical record)
would have been furnished by the next GET. (If E, B, C, or P is speci­
fied in the type operand, the llimit parameter is ignored) •

94

][NPUT OUTPUT REQUEST FACILITY

The input/output request facility (IOREQ) consists of the TSS/360
data set management facilities provided for users who would rather pro­
qram their own I/O device control routines than employ those from the
VAM or SAM access methods. It provides a means to control I/O devices
1through user specification of channel command words (CCWs) that are
normally created by the TSS/360 supplied access methods. Using IOREQ,
1t:he user can create a series of these channel instructions and execute
1them as he desires. The TSS/360 macro instructions IOREQ, CHECK, and
"CCW, have been provided to users who desire to, in effect, create their
own specialized access methods.

As with TSS/360 access methods, before the IOREQ facilities can be
used to access a data set, the data set must be described and connected
1to the system by previous user (or system) issuance of the DCB, DDEF,
and OPEN macro instructions and/or DDEF command, and, when he has
finished accessing the data set, he must disconnect the data set from
ithe system via a CLOSE macro instruction.

IOREQ causes a request for the input/output operations specified by a
user coded VCCW or a string of VCCW macro instructions to be
recorded in a control block (DECB) and placed on an input/output
request queue. Control is then returned to the userls program;
the request is subsequently executed by the system when the
device is available.

CHECK checks the queue of control blocks (DECBs), containing the
requests for one, or many, input/output operations, to determine
if these requests have been satisfied7' if completed satisfactori­
ly, control is returned to the next sequential instruction fol­
lowing the check macro instruction. It also indicates whether
errors or exceptional conditions have occurred while attempting
to satisfy the request.

·vccw generates a double word channel command word (i.e., CC~ contain­
ing all the information needed by the channel to execute the
requested input/output activity. The desired I/O activity can
then be initialized by the IOREQ macro instruction.

A detailed explanation of the above macro instructions and the format
in which they may be specified are shown below. Further information
pertaining to the input/output request facility and user handling of I/O
operations can be found in IBM System/360 Time Sharing System: Assembl­
er Programmer's Guide, Form C-28-2032.

IOREQ Reguest an Input/Output Operation (S)

The IOREQ macro instruction (for the IOREQ facility) initiates an
input/output operation which is specified by a virtual channel command
word (VCCW). See the VCCW macro instruction in this section.

After an IOREQ macro instruction is issued, control returns to the
problem program before the I/O operation is completed. The CHECK macro
instruction must be used to ensure the completion of the I/O operation.

r--------T---------T---,
I Name I Operation I Operand I
1------+--------+---~
I [symbol] IIOREQ Idecb-symbol,type-{NIB},dcb-addr,vccw-addr, I
I I I length-value, sio-value I L ________ ~ ________ ~ ___ J

Access Methods: IOREQ 95

decb

type

dcb

vccw

specifies the name to be assigned to the data event control block
(DECB) built by the macro expansion.

specifies either:

N nonbuffered I/O operation
B buffered I/O operation

specifies the address of the data control block opened for this
IOREQ.

specifies the address of a list of virtual channel command words
built by the VCCW macro instruction.

length

sio

specifies the number of VCCWs in the VCCW list to be issued.

specifies the number of the VCCW in the list which is to be
executed first.

PROGRAMMING NOTES: The IOREQ macro instruction builds a data event con­
trol block (DECB) which is addressed by the symbol coded for the decb
operand.

The format of the DECB is:

r-----------~------~--,
10ffset fromlSize inl I
IDECB-symbollBytes IField I
r---------·-t------t--~

+0 1 IEvent Control Block (ECB)
+1 3 IReserved by the system (user must not alter)
+4 2 IType field (buffered or nonbuffered IOREQ)
+6 2 ILength field (for buffered only)
+8 4 IDCB address

+12 4 IData area address (for buffered only)
+16 4 IPointer to status indicators
+20 4 IVCCW list address
+21 2 IUsed by the system (user must not alter)
+26 1 ISense byte 0
+27 1 ISense byte 1
+28 1 IVCCW list length in doublewords
+29 1 10ffset from VCCW list in doublewords to start VCCW
+30 2 IReserved by the system (user must not alter)
+32 8 IModified channel status word 1 (CS~
+40 8 ISense bytes (1-8)

r---------i-----L--~
11 Modified CSW differs only from CSW in that the first word contains I
I the 32-bit address of the instruction causing unit check or unit I
I exception. I L--__ J

The DECB used for IOREQ must not be altered until the operation has
been checked.

If buffering is specified, the buffer built for read request VCCWs
may have overlapping data areas. However, the complete buffer area
needed for all the read request VCCWs must form a contiguous area. For
write request VCCWs, unique buffer space is allocated for each VCCW
regardless of whether the areas used by the VCCWs have overlapping por-

96

tions. Consequently, write request VCCws do not have to form contiguous
areas.

For buffered VCCW write requests: the contents of the given data
address are used, when the IOREQ macro instruction is issued even if
these contents will be changed by a read request in the VCCW.

Each IOREQ macro instruction, which causes an input/output request to
be executed, accomplishes this request by building an IORCB. IORCBs are
executed separately by the system unless they are nchained. n Chaining
IORCBs saves time if a following IORCB arrives in the system before the
previous IORCBs commands are completed.

If chaining to the next IORCB is desired, the last instruction to be
executed must be the last in the user's VCCW list and must have the IOC
flag set. (This instruction is usually a Nap.) Chaining of IORCBs is
accomplished by changing the last CCW in a command list to a TIC to the
start command in the next IORCB. This start CCW cannot be a TIC, and
must be executable only once. IORCB chaining is allowed only between
IORCBs on the same device. When chaining is requested, it is still
necessary to check each IOREQ result by using the CHECK macro instruc­
tion. When execution of the IOREQ macro instruction is completed,
register 15 contains a return code in its low-order byte.

Return Code (decimal)
o

4

8

12

Significance
I/O initiated

The NCP value in the data control block is
exceeded; (I/O not initiated) or DECB
"active", or DECB in "wait" state.

I/O not initiated. The VCCW list contains
an error. One of the first eight rules for
forming VCCW lists has been violated (refer
to the IOREQ: VCCW macro instruction) •

I/O not initiated.
IOREQ is too large.
list.

The area needed for
Reduce or change VCCW

L- AND E-FORM USE: The L-form macro instruction results in a macro
"expansion consisting of only a parameter list. The E-form results in a
macro expansion only consisting of executable instructions. The E-form
macro instruction uses the DECB built for it by the L-form macro
instruction.

If the E-form is used, either a DECB addrx or
if (1) is written, the address of a DECB must be
before execution of this macro instruction. Any
rides the corresponding parameter in the L-form.
specified in the L-form, it must be specified in
parameters for the L- and E-forms are:

(1) must be specified:
loaded into register 1
E-form parameter over­
If a parameter is not

the E-form. Required

r----------------------~-----------------~-----------------------,
I Operand I L-Form I E-Form I
~---------------___t-----------------------+-----------------------~
I decb I decb-symbol I decb- raddrx~ I
I I I l (1) J I
~-------------------+-----------------+--------------------~
I MF I MF=L I MF=E I L-___________________ ~ ___________________ ~ ______________________ J

Access Methods: IOREQ 97

CHECK -- Wait for and Test Completion of an I/O Request @)

The CHECK macro instruction (for IOREQ facility) waits, if necessary,
for the completion of an I/O request and detects errors and exceptional
conditions. If the I/O operation is successful, the program resumes
execution at the instruction after the CHECK macro instruction.

The CHECK macro instruction must be used to test for the completion
of every IOREQ executed. A DECB furnished in an IOREQ must not be
altered by the user until a CHECK has been issued for this DECB.

r--------T--------T---,
I Name I Operation I Operand I
l- +-------+--~
I [symbol] I CHECK I decb- [addrx} I
I I I l (1) I L ________ i _________ i ___ J

decb
specifies the address of the DECB furnished in the IOREQ macro
instruction that is being checked.

If (1) is furnished as the operand, the address of the DECB must
have been loaded into general register 1 before the CHECK macro
instruction is used.

CAUTION: If this macro instruction is included in a module that is
declared privileged (through use of the DCLASS macro instruction), the
address of a save area must be placed in register 13 before execution of
this macro instruction.

PROGRAMMING NOTES: The CHECK macro instructions must be issued in the
same order in which the associated IOREQ macro instructions were issued.

If an IOREQ results in a unit check or unit exception, the CHECK of
the DECB associated with this IOREQ causes control to be given to the
user's SYNAD routine specified in his data control block. If a linkage
to SYNAD is executed by CHECK, all outstanding IOREQs are purged from
the system. In the user-provided SYNAD routine, the user may reference
the DEC field of the data control block to facilitate reissuing any of
the purged IOREQs. A RETURN may be issued in a SYNAD routine that
causes control to be returned to the next sequential instruction follow­
ing the CHECK macro instruction that invoked the SYNAD routine.

Upon entry to the SYNAD routine, general register 1 contains the
address of the DECB associated with the IOREQ involved.

When a subsequent IOREQ is executed after the SYNAD routine is
invoked, the contents of the area pointed to by DCBDEC in the data con­
trol block may be changed.

If the DCBDEVD field is zero or defaulted, any unit check or unit
exception causes the CHECK of the appropriate DECB to invoke SYNAD.

VCCW -- Define a Virtual Channel Command Word (0)

The VCCW macro instruction (for IOREQ facility) generates a double­
word, the virtual channel command word, that contains the proper infor­
mation to inform the IOREQ macro instruction of the I/O activity
requested.

98

r--------T--------~---,
I Name I Operat ion I Operand I
r-------+---------+ ~
I I I {COde J I I [symbo~ IVCCW I command- , data-relexp,count-absexp I
I I I absexp I
I I I I
I I I [, flag- ({CD I CC I NCC I SCC I IOC} , (SIL] , [SKP])] I L----____ L-________ ~ ___ J

command

data

count

flag

an absolute expression that specifies the hexadecimal command code.
This expression's value is right justified in byte 1 of the VCCW
doubleword.

The command codes, shown below, may also be supplied as a code
operand. The apostrophes are part of the code and must be written
if the code form of the operand is supplied.

Code Furnished
in Macro Instruction
'WRITE'
'READ'
'NOP'
'SENSE'
'TIC'
'READBK'

Hexadecimal Command
Code Provided

01
02
03
04
08
OC

specifies the data address of the VCCW to be generated (one word) •

specifies the count of the VCCW to be generated (two bytes) •

specifies which flags are to be set in the VCCW to be generated

CD - Chain Data flag
CC - Chain Command flag
SCC - Software Command Chaining flag
IOC - IORCB Chaining flag
NCC - Indicates No Command Chaining (Command chaining is default

condition)
SIL - Suppress Length Indicator flag
SKP - Skip flag

PROGRAMMING NOTES: A virtual channel command word ~CC~ is a double­
word located on a doubleword boundary with this format:

Byte 0 - channel command
Byte 1 - flag byte

Bit 0 CD Chain Data flag
1 CC Chain Command flag
2 SIL Suppress Length Indicator
3 SKP Skip flag
4 SCC Software Command Chaining
5 IOC IORCB Chaining flag 2

6 Reserved
7 Reserved

flag

flag 1

Bytes 2-3 binary count field of instruction
Bytes 4-7 address in virtual storage

Access Methods: IOREQ 99

1Software command chaining causes channel end and device end associated
with a command to invoke the execution of the next sequential command.

2See nprogramming Notes," under "IOREQ.n

A list of VCCWs generated by use of the VCCW macro instruction may be
used to inform the IOREQ macro instruction what I/O activity is
requested.

Restrictions: The list of VCCWs must conform to the following rules:

1. If any VCCW in the VCCW list has the SCC flag set,

a. The last instruction to be executed must be the last instruc­
tion in the VCCW list. This is accomplished by having this
instruction the only instruction in the list other than a TIC
which does not have a CD, CC, or SCC flag set.

b. The last instruction in the list must not be a TIC.

c. Only the last instruction may have the IOC flag set.

2. If no VCCW in the VCCW list has the SCC flag set,

a. An instruction executed in the VCCW list, other than a TIC,
that does not have the CD or CC flag set is the last instruc­
tion executed.

b. The last instruction in the list may have the IOC flag set only
if it is the last instruction in the list to be executed.

3. The last instruction in the VCCW list must not have the CD, CC, or
SCC flag set.

4. If a VCCW has the CD flag set, the following VCCW must have the
same command code or be a TIC.

5. If a VCCW has the CD flag set and the following VCCW is a TIC, the
TIC address must point to a VCCW with the same command code as the
VCCW preceding the TIC.

6. No VCCW may have a count field of 0 unless it is a TIC.

1. The address of a VCCW incremented by the VCCW count field must not
cross a page boundary.

8. The entire VCCW list must not refer to more than eight different
pages of storage.

9. The VCCW list requests the supervisor to allocate space for execut­
ing a particular VCCW when an IOREQ macro instruction is issued.

a. In the buffered IOREQ, all commands and data must be contained
in one IORCB.

b. In the nonbuffered IOREQ, all commands and page lists must be
contained in the IORCB.

10. When IORCB chaining is requested, the IOC flag must be set on the
~ast VCCW of the list (generally a NOP). This command must be the
last command in the list to be executed.

If there is a question as to whether a VCCW list requires too large
an area, an IOREQ macro instruction may be executed and the return code
tested.

100

MANIPULATING ENTIRE DATA SETS

Entire data sets (rather than individual records within a data set)
can be manipulated and transferred from one storage device to another.
A data set can be moved from one direct access device to another, or
simply to a different virtual storage area on the same direct access
device. They can also be transferred from virtual storage to punched
cards, printer listings, or magnetic tape devices. Several macro
instructions are provided with TSS/360 data set management facilities
for performing these operations. These macro instructions fall into two
groups; Copying Data Sets, and Bulk O/P facilities; these groups and
their related macro instructions are briefly summarized below.

COPYING DATA SETS

A user might decide to include an existing data set in a partitioned
data set, to renumber the lines of an existing line data set, or to
merely store an existing data set on a different device type, thereby,
freeing or releasing the device on which the existing data set is
stored. The functions of the CDS macro instruction, that has been pro­
vided with the TSS/360 data set management facilities to aid a user in
accomplishing this type of operation, are summarized briefly below.

CDS creates copies of existing data sets or members of partitioned
data sets that have been previously defined to the system and
reside on direct access or magnetic tape volumes. It also
creates copies of line data sets with renumbered lines. The copy
is placed into a new data set. Both the new data set and the
existing old data set must be previously defined to the system
via issuance of the DC.B macro instruction and the DDEF macro
instruction (or command). The old data set does not, however,
have to be opened by the user. It is opened automatically by the
CDS routine.

A detailed explanation of the above macro instruction and the format
in which it may be specified is shown below. Further information per­
taining to the manipulation of an existing data set and the CDS macro
instruction can be found in IBM System/360 Time Sharing System:
Assembler Programmer's Guide, Form C-28-2032.

CDS -- Copy Existing Data Set (S)

The CDS macro instruction copies a data set or a member of a parti­
tioned data set. In addition, it may renumber the lines of a line data
set. The resulting new data set is assigned the data set name furnished
(as an operand) by the user. A copy of a member may be specified either

as a new member of a partitioned data set, or as a new data set by
itself. A virtual storage data set may be copied as a member of a par­
titioned data set.

r--------~-------T---,
I Name I Operation, Operand I
1-------+------+----------------------------------1
, I , {text] I I [symbol] 'CDS 'oplist- I
, I , addr I L-_______ ~ ________ ~ ___ J

Manipulating Entire Data Sets: Copy Data Set 101

oplist
specifies the list of operands. They are:

r--,
I Oplist I
~--------------------~---~
Idsnamel-symbol,dsname2-symbol [,E] [, [line-integer) [,increment-integer)] I L--__ J

dsnamell
specifies the data set name of the data set being copied. It must
be cataloged or have been defined in a DDEF macro instruction or
command.

This operand can be specified as the fully qualified name of: a
nonpartitioned data set, a member of a partitioned data set, or a
nonpartitioned generation of a generation data group (identified by
absolute generation name or relative generation numbe~ •

dsname2

E

line

specifies the data set name assigned to the copy of the data set.
It must have been defined in a DDEF macro instruction or command
unless a member of a cataloged partitioned data set is specified.

This operand can be specified as the fully qualified name of: a
nonpartitioned data set, a member of a partitioned data set, or a
nonpartitioned generation of a generation data group (identified by
absolute generation name or relative generation number) •

specifies that the original data set or data set member is to be
erased after being copied. E applies only to data sets on direct­
access devices. If a shared data set is to be copied and then
erased, unlimited access to the data set must have been permitted.

specifies the starting line number of the data set copy if it is a
line data set and renumbering is desired. The number consists of
three to seven digits, the last two of which should be zero. An
all-zero starting line number is invalid.

Default: If increment is also defaulted, line numbering is not
performed. If increment is not defaulted, the starting line number
of the copy data set will be 100.

increment
specifies the value by which line numbers in the data set copy (if
it is a line data set) are to be incremented when renumbering is
desired. It consists of three to seven digits, the last two of
which should be O. An all-zero increment is invalid.

Default: If the starting line number is also defaulted, line numb­
ering is not performed. If the starting line number is not
defaulted, an increment of 100 is assumed.

CAUTION: If this macro instruction is included in a module that is
declared privileged (through use of the DCLASS macro instruction), the
address of a save area must be placed in register 13 before execution of
this macro instruction.

PROGRAMMING NOTES: The CDS macro instruction is restricted to data sets
on direct-access or magnetic-tape volumes. Data set organization is not
altered by the use of a CDS macro instruction. The dsname1 and dsname2
data sets must be defined with the same data set organization and record
format. For example, the copy of a physical sequential data set has

102

physical sequential organization, even though the device type may be
changed. A VISAM data set can be copied as VSAM and vice versa.

The user may specify a VISAM organization in the CDS macro instruc­
tion for a data set copy even though the original data set organization
is VSAM. In this case, each record of the original data set must con­
tain a key. In addition, the user should define -- in the DDEF macro
instruction or command for the data set copy -- the key length (KEYLE~,
padding (PAD), and record key displacement (RKP) values. If he does not
provide these values, no copy is made.

An entire partitioned data set cannot be copied with one CDS macro
instruction. Each member must be copied individually. A separate macro
instruction, specifying the data set name and member name, must be
issued for each member.

This macro instruction cannot be used to copy program modules because
program modules have format-U (undefined) records.

The user can copy only those data sets that belong to him or those to
which he has been given access.

At completion of execution of the CDS macro instruction, the low­
order byte of register 15 contains one of the following codes:

Code
mexadecimaU

00
04
08

OC

10

14
18
1C
20
24
28

2C

30

34

38

Significance
Normal
Invalid input parameters
Name of original data set not in catalog or task defini­
tion table (TDT)
Data set not in catalog and no DDEF macro instruction or
command has been executed for it
JFCB for original data set not consistent with JFCB for
new data set
Member name not given for partitioned data set
User does not have write access for new data set
Original data set not VAM or SAM
Data set not on direct-access; command ignored
New data set member name already exists in POD
Data set copied. Old data set not erased; user does not
have proper access
Data set copied. New data set not renumbered; not a line
data set
Data set copied and renumbered. Old data set not erased;
user does not have proper access
Data set copied and original erased. New data set not
renumbered; not a line data set
Data set copied; new data set not renumbered, and old
data set not erased

L- AND E-FORM USE: The oplist operand is required in the L-form of this
macro instruction and is not permitted in the E-form. Only the text
form of the operand can be used in the L-form of the macro instruction.

EXAMPLES: IN EX1, THE OPLIST IS PRESENTED AS A CHARACTER STRING. In
EX2, an address designates the oplist.

EX1
EX2

CDS
CDS

'DATASET,U'
OPLISTC

Manipulating Entire Data Sets: Copy Data Set 103

BULK OUTPUT .FACILITIES

The bulk output facilities allow a user to transfer entire data sets
from virtual storage to punched cards, printer listings, or magnetic
tape devices (for off-line printing). These facilities provide a user
with three macro instructions, the print (PR), punch (PU), and write
tape (WT) macro instructions, which enable him to accomplish these tran­
sfers. These macro instructions are to be issued in a user program on
closed SAM, VSAM, and VISAM data sets only. Although VPAM data sets or
members cannot employ these macro instructions, the members of the VPAM
data set could first be copied with a CDS macro instruction (or command)
into new VSAM of VISAM data sets and then be operated on by these macro
instructions. Execution of these macro instructions cause requests for
particular output operations to be set up as independent nonconversa­
tional tasks, places the requested task on a bulk output queue, and
returns to the user's problem program. The user can then continue pro­
cessing other data sets (and could even terminate) while the output task
waits to be, or is being, executed. The bulk output macro instructions
are briefly described below.

PR causes a specified data set to be listed on a high speed on-line
printer and optionally erases it from the user's catalog when the
printing has been finished. Line spacing on the printed output
can also be indicated by the user. The print operation takes
place as an independent nonconversatioal task.

PU causes a specified data set to be listed on a high speed on-line
punch and optionally erases it from the user's catalog when the
punching is finished. Stacker selection can also be indicated by
the user. The punch operatiori takes place as an independent non­
conversational task.

WT writes a specified data set on magnetic tape in proper format for
subsequent off-line printing and optionally erases it from the
user's catalog when the writing is finished. The write tape
operation takes place as an independent nonconversational task.

Detailed explanations of each of the above macro instructions and the
formats in which they may be specified are shown below. Further infor­
mation pertaining to bulk output facilities and the related macro
instructions can be found in IBM System/360 Time Sharing System:
Assembler Programmer's Guide, Form C28-2032.

PR -- Print a Data Set (S)

The PR macro instruction causes the specified data set to be listed
in nonconversational mode on a high-speed line printer and, optionally,
erases it from the catalog when printing is finished. The specified
data set is printed as it stands, with no code conversions; i.e., the
data set must be in EBCDIC character codes so proper printer graphics
will be used in printing. If the data set resides on a seven-track
tape, any character adjustments required to ensure data validity are
made by the system.

r--------T--·-------T---,
I Name I Operation I Operand I
l------+--.----+---~

I I I ~text) I I [symbol] I PR loplist- I
I I I addr I L-______ i ________ i ___ J

104

oplist
specifies the list of operands supplied for the PR macro
instruction:

r--,
I Oplist I
r--~
Idsname-name, [startno-integer] , [endno-integeq , I

I [J I
I EDIT I
I spacing- 1 I I ({~. [~ · [lines-integer) • [P~ i
I {ACCEPT; I I, [ERASE] , [error- SKIP] [,form-specsym] I
I END I L-___ J

dsname
specifies the name of the data set to be printed. The data set
name either must have been previously defined by a DDEF command or
macro instruction, or the dsname must be in the catalog.

This operand can be specified as the fully qualified name of a non­
partitioned data set or of a nonpartitioned generation of a genera­
tion data group (identified by absolute generation name or relative
generation number) •

startno

endno

specifies the byte number at which printing is to start for each
data set record. The number consists of one to six decimal digits.
If this operand is not specified, printing starts with the first
byte of each record.

specifies the byte number at which printing is to stop for each
data set record. This end byte is printed. If this operand is not
specified, printing continues to the last byte of each logical rec­
ord or until the printer line length is reached, whichever occurs
first.

spacing

H

specifies the number of lines to be skipped.

EDIT
indicates that the line spacing is controlled by a control
character in the first byte position of each data set logical
record. This control character is programmer-supplied and may be
in USASI ~SASCII) or machine code, but must be in the same code
throughout the data set. (Refer to Appendix D.)

Note: If EDIT is selected, the line skipping, header, lines per
page, and page numbering options cannot be specified in this macro
instruction.

1 - indicates skip 1 line
2 - indicates skip 2 lines
3 - indicates skip 3 lines

specifies that the first logical record of the data set is to be
repeated on each print page as a header line. The first 132 bytes
or the first record, whichever is smaller, will be used as the
header.

Manipulating Entire Data Sets: Bulk Output 105

lines

P

ERASE

error

form

specifies the number of lines to be printed on a page. The number
of lines is specified as a one-to-four digit decimal number. The
maximum number of lines per page is determined by the printer form
being used. If not specified, 54 lines are printed on each page.

specifies that page numbering is to be performed. If P is not spe­
cified, page numbering is not performed.

specifies that the cataloged data set is to be erased from the
catalog after the print operation is finished. If the data set is
shared and is currently being used by another user a diagnostic
will be issued and the erase will be ignored.

specifies the action to be taken if an uncorrectable error is
encountered while reading a data set record. This option applies
only if the data set to be printed is on tape. The options are:

ACCEPT - the error record is accepted.
SKIP - the error record is skipped.
END - ,the print operation is terminated.

specifies the form number of the printer paper to be used. It con­
sists of one to six characters. The installation's standard print­
er form, defined at system generation time, is used if this operand
is not specified.

CAUTION: If this macro instruction is included in a module that is
declared privileged (through use of the DCLASS macro instruction), the
address of a save area must be placed in register 13 before execution of
this macro instruction.

PROGRAMMING NOTES: The PR macro instruction processes data sets that
were created by using the basic sequential, queued sequential, virtual
sequential, or virtual index sequential access method. The data set
name mayor may not be in the catalog. If not, it is placed in the
catalog until printing is completed and is then erased. If the data set
name is in the catalog, the ERASE option can be used to erase the data
set after printing is completed. A basic sequential or queued sequen­
tial data set must reside on magnetic tape. A virtual sequential or
virtual index sequential data set must not contain format-U records.

If the data set to be printed was created via the DATA command, the
first byte of each record contains an indicator for the origin of the
record. Unless the startno operand is specified, this byte is printed
as part of the record upon issuance of the PR macro instruction. In
such a case, if the record was originally entered through a card reader,
the indicator byte will be printed as a C. If it was entered through a
terminal, the byte will be printed as a blank character. When the star­
tno operand is specified as 2 or greater, the indicator byte is bypassed
and is not included as part of the printed record.

Invalid print characters appear as blanks in the output. If a read
error occurs, the data set record causing the read error is output in
hexadecimal on the SYSOUT data set regardless of the error option, if
any, selected by the user.

At completion of execution of the PR macro instruction, register 1
contains the address of the batch sequence number assigned to the non­
conversational task established by this macro instruction; the low-order
byte of register 15 contains one of the following codes:

106

Code
-0-

All other codes

Significance
PR request was accepted.

Register 15 contains a two-byte message number.
These messages are described under "Prompting
Messages" and "Diagnostic Messages" in Command
Language User's Guide.

L- AND E-FORM USE: The oplist operand is required in the L-form of this
macro instruction and is not permitted in the E-form. Only the text
form of the operand can be used in the L-form of the macro instruction.

EXAMPLES: In EX1 r the oplist is presented as a character string. In
EX2 r a symbolic address designates the oplist.

EX1
EX2

PR
PR

'DSNAME1 r 02 r 120 r 1'
LSTTAG

Since EX2 specifies an address r the user has provided the oplist str­
ing at location LSTTAG. When the macro instruction is executed r the
necessary alphameric characters must be available in the string.

PU -- Punch a pata Set (S)

The PU macro instruction causes a specified data set to be punched
onto cards in nonconversational mode on a high-speed punch and r option­
allYr to be erased from the catalog when punching is finished. Any con­
tiguous field of up to 80 bytes can be punched from each input record of
an EBCDIC data set. The specified data set is punched as it stands r
with no code conversions.

Note: Up to 160 bytes per card can be punched in a special column
binary format r where bits 0 and 1 of each byte are ignored.

r--------T---------T---,
I Name I Operation I Operand I
~------+---------+---i
I [symbol] I PU I oplist- (text) I
I I I laddr I L--______ ~ ________ ~ ___ J

oplist
specifies the list of operands supplied for the PU macro
instruction:

r--,
IOplist I

r---(-,--}---1
I dsname-name r [BI NARY] [startno-integer] r [endno- integer] r [sel ect - 1.] r I
I 3 I
I DIT I
I I
I [ERASE] [rform-specsym] I L __ J

dsname
specifies the name of the data set to be punched. The data set
name either must be previously defined by a DDEF macro instruction
or command r or must be in the catalog.

Manipulating Entire Data Sets: Bulk Output 107

This operand can be specified as the fully qualified name of a non­
partitioned data set or of a nonpartitioned generation of a genera­
tion da'ta group (identified by absolute generation name or relative
generation number) •

BINARY
specifies punching in column binary format. If not specified,
punching is in EBCDIC format.

startno

endno

specifies the byte number at which punching is to start for each
data set record.

If this operand is not specified, punching starts with the first
byte of each record.

specifies the byte number at which punching is to stop for each
data set record. This end byte is punched. If this operand is not
specified, punching continues to byte 80 (or, in binary, to byte
160) or to the end of the record, whichever occurs first.

select

ERASE

form

specifies the stacker select or edit option:

1 - indicates pocket number P1
2 - indicates pocket number P2
3 - indicates pocket number P3

EDIT - indicates that the first byte of each data set logical rec­
ord contains a control character for stacker selection. This con­
trol character is user-supplied and may be in USASI (USASCII) or
machine code, but must be in the same code throughout the data
set. (See Appendix D.)

specifies that the cataloged data set is to be erased from the
catalog after the punch operation is finished. If the data set is
shared and is currently being used by another user, when this
option is processed, a diagnostic will be issued and the erase will
be ignored. If ERASE is not specified, no erasure is made.

specifies the card form number of the cards to be used for punch­
ing. The form number may have one to eight characters. If this
operand is not specified, the installation's standard card, as
established at system generation, is used.

CAUTION: If this macro instruction is included in a module that is
declared privileged (through use of the DCLASS macro instruction), the
address of a save area must be placed in register 13 before execution of
this macro instruction.

PROG~NG NOTES: The PU macro instruction processes data sets that
were created by using either the virtual sequential or virtual index
sequential access method. The data set name mayor may not be in, the
catalog. If not, it is placed in the catalog until punching is com­
pleted and is then erased. If the data set name is in the catalog, the
ERASE option can be used to erase the data set after punching is
completed.

If a data set to be punched was created via the DATA command, the
first byte of each record contains an indicator for the origin of the
record. Unless the startno operand is specified, this byte is punched
as part of the record upon issuance of the PU macro instruction. In

108

such a case, if the record was originally entered through a card reader,
the indicator byte will be punched as a C. If it was entered through a
terminal, the byte will be punched as a blank character. When the star­
tno operand is specified as 2 or greater, the indicator byte is bypassed
and is'not included as part of the punched record.

Since the READ CARDS command prefixes a line number automatically to
each record of a VISAM data set read from cards, any VISAM data set that
is to be read from cards should not contain line numbers. Therefore, if
an existing VISAM line data set is to be punched on cards and later
recreated by reading those cards with a READ CARDS command, the user
should be careful to punch out the stored VISAM data set without includ­
ing line numbers.

Invalid characters appear as blanks when EBCDIC records are punched.
If a read error occurs, the record in question is not punched, but is
written in hexadecimal on SYSOUT.

At completion of execution of the PU macro instruction, register 1
contains the address of the batch sequence number assigned to the non­
conversational task established by this macro instruction; the low-order
byte of register 15 contains one of the following codes:

Code
-0-

All other codes

Significance
PU request was accepted.

Register 15 contains a two-byte message number.
These message numbers are described under
"Prompting Messages" and "Diagnostic Messages"
in Command System User's Guide.

L- AND E-FORM USE: The oplist operand is required in the L-form of this
macro instruction and is not permitted in the E-form. Only the text
form of the operand can be used in the L-form of the macro instruction.

EXAMPLES: In EX1, the oplist is presented as a character string. In
EX2, a symbolic address designates the oplist.

EX1
EX2

PU
PU

'DSNAM2,,020, 99"ERASE'
CDTAG

Since EX2 specifies an address, the user has provided the oplist str­
ing at location CDTAG. When the macro instruction is executed, the
necessay alphameric characters must be available in the string.

WT -- Write a Data Set on Tape for Off-Line Printing (S)

The WT macro instruction edits and writes the specified data set on
magnetic tape in nonconversational mode for subsequent off-line printing
and, optionally, erases it from the catalog when writing is finished.
The output is written on 9-track tape in odd parity with standard
System/360 labels. Each input data set record is written as a logical
record, or print line, on tape in proper format for off-line printing;
records are blocked, if requested. The maximum blocked record length is
32,767 bytes.

Manipulating Entire Data Sets: Bulk Output 109

r--------T---------T---,
I Name I Operation I Operand I
r--------+---------+---1
I [symbol] I WT I oplist-{text} I
I I I addr I L ________ ~ _________ ~ ___ J

oplist
specifies the list of operands supplied for the WT command. They
are:

r---,
I Oplist I
~---1
Idsname 1 -name, dsname2 -name , [volume-alphnum] , [factor-integer] , I
I I I [[startnO-inJ~~~~) , [endno-integer) ~l I
i ' spaCing-LU}' [H) , [lines-integer] , [PJjJ [,ERASE] !
L ________________________ ~ _______________________________________ J

dsname 1
specifies the name of the data set to be written on tape in print
format. The data set name either must be previously defined by a
DDEF macro instruction or co~and, or must be in the catalog.

This operand can be specified as the fully qualified name of a non­
partitioned data set or a nonpartitioned generation of a generation
data group (identified by absolute generation name or relative
generation number) •

dsname 2
specifies the data set name under which the data set is to be.cata­
loged as it resides on the output tape. The user must specify
dsname2 or the task may be abended.

This operand can be specified as the fully qualified name of a non­
partitioned data set or a nonpartitioned generation of a generation
data group (identified by absolute generation name or relative
generation number) •

volume
specifies the volume ID number of the output tape. The ID number
consists of one to six alphameric characters. If volume is not
specified, a scratch tape is used.

factor
specifies the blocking factor of the output tape. The factor con­
sists of one to three decimal digits; the maximum blocking factor
permitted is 246. If the blocking factor is not specified, a
blocking factor of 30 is assumed.

startno

endno

110

specifies the byte number at which tape writing is to start for
each data set logical record. The number consists of one to six
decimal digits. If the operand is not specified, writing starts
with the first byte of each record.

specifies the byte number at which printing is to stop for each
data set record. This end byte is written. If this operand is not

specified, writing continues to the last byte of each logical reco­
rd or until the printer line length is reached, whichever occurs
first.

spacing

H

lines

P

ERASE

specifies the number of lines to be skipped.

EDIT - indicates that the line spacing is controlled by a control
character in the first byte position of each data set logical
record. This control character is user-supplied and may be in ASA
(USASCII-II) or machine code, but must be in the same code throu­

ghout the data set (Refer to Appendix D.)

1 - indicates skip 1 line
2 - indicates skip 2 lines
3 - indicates skip 3 lines

specifies that the first logical record of the data set is to be
repeated on each print page as a header line. The first 132 bytes
or the first record, whichever is smaller, will be used as the
header.

specifies the number of lines to be printed on a page. The number
of lines is specified as a one-to-four digit decimal number. The
maximum number of lines per page is determined by the printer form
used for the off-line printing of the data set. If not specified,
54 lines are printed on each page.

specifies that page numbering is to be performed. If P is not spe­
cified, no page numbering is performed.

specifies that the cataloged data set is to be erased from the
catalog after the tape-writing operation is finished. If the data
set is shared and is currently being used by another user, a diag­
nostic will be issued and the erase will be ignored. If ERASE is
not specified, no erasure is made.

CAUTION: If this macro instruction is included in a module that is
declared privileged (through use of the DCLASS macro instruction), the
address of a save area must be placed in register 13 before execution of
this macro instruction.

PROGRAMMING NOTES: The WT macro instruction processes input data sets
that were created by using either the virtual sequential or virtual
index sequential access method. The tape data set is created by using
the basic sequential access method. This output tape is written in odd
parity with standard Time Sharing System/360 labels. If the input data
set is not in the catalog, it is placed in the catalog until writing is
completed and is then erased. If the data set name is in the catalog,
the ERASE option can be used to erase the data set after writing is
completed.

If a data set to be written on tape was created via the DATA command,
the first byte of each record contains an indicator for the origin of
the record. Unless the startno operand is specified, this byte is writ­
ten as part of the record upon issuance of the WT macro instruction. In
such a case, if the record was originally entered through a card reader,
the indicator byte will be written as a C. If it was entered through a
terminal, the byte will be written as a blank character. When the star­
tno operand is specified as 2 or greater, the indicator byte is bypassed
and is not included as part of the written record.

Manipulating Entire Data Sets: Bulk Output 111

No more than one print line can be written from a single data set
record. If a read error occurs, the record in question is written in
hexadecimal form on SYSOUT.

At completion of execution of the WT macro instruction, register 1
contains the address of the batch sequence number assigned to the non­
conversational task established by this macro instruction; the low-order
byte of register 15 contains one of the codes given below.

Code
-0--

All other codes

Significance
WT request was accepted.

Register 15 contains a two byte message number.
These message numbers are described under
·Prompting Messages" and ·Diagnostic Messages·
in Command Language User's Guide.

L- AND E-FORM USE: The oplist operand is re~ired in the L-form of this
macro instruction and is not permitted in the E-form. Only the text
form of the operand can be used in the L-form of the macro instruction.

EXAMPLES: In EX1, the oplist is presented as a character string. In
EX2, a symbolic address designates the oplist.

EX1
EX2

WT
WT

'OLDNAME,NEWNAME'
TAPTAG

Since EX2 is given an address, the user has provided the oplist str­
ing at location TAPTAG. When the macro instruction is executed, the
necessary alphameric characters must be available in the string.

112

CATALOG DATA SET ATTRIBUTES

Once the attributes of a data set have been described to the system
via user (or system) issuance of the DCB macro instruction, the DDEF
macro instruction (or command) , or any of the other available sources
for attributes, certain attributes in the data set description should be
stored within the system so that it can subsequently be located by using
only its name. The CAT macro instruction has been provided with the
TSS/360 data management facilities for recording such attributes in a
user's catalog.

Such attributes are automatically cataloged at the initial DDEF time
by the system for all public VAM data sets; however, for private data
sets, the user must request that such attributes be recorded in the
catalog by issuing a CAT macro instruction. Catalog entries for both
public and private data sets can also be altered by issuing CAT. These
entries can be subsequently deleted from a user catalog by issuing a
delete ~EL) macro instruction. The CAT and DEL macro instructions are
briefly described below.

CAT record specific data set attributes as catalog entries for all
private data sets, group:::> of data 3et~, all geueLations of a
generation data group, and for partially qualified names (all
data sets with the same partial name). It also alters calalog
entries of both public and private data sets and recatalogs,
expanding and contracting multivolume SAM data sets.

DEL deletes one or more catalog entries for a data set or group of
data sets from the user catalog. For generation data groups,
entrie~ for all generaTions are deleted; for partially ~jalified
data sets names, all catalog entries with the same initial name
component are deleted.

Detailed explanations of each of the above macro instructions and the
formats in which they may be specified are shown below. Further infor­
mation pertaining to cataloging data set attributes and its related
macro instructions can be found in IBM System/360 Time Sharing System:
Assembler Programmer's Guide, Form C28-2032.

CAT -- Create or Change Catalog Entry (S)

The CAT macro instruction can create catalog entries for all private
data sets (i.e., all public VAM data sets are immediately cataloged at
initial DDEF time by the system) or it can be used to create a catalog
index for a generation data group or to catalog a data set as a new
generation of an existing generation data group. The CAT macro instru,c­
tion can also be employed to alter the catalog entry for both private
and public data sets (i.e., to rename a data set, or to change the
access qualification, etc.) or to recatalog expanding and contracting
multivolume SAM data sets.

r--------T---------T---,
I Name I Operation I Operand I
~--------+---------+---~
I I I text) I I [symbol] I CAT loplist- I
I I I addr I L ________ i--_______ ~ ___ J

oplist
specifies the list of operands. They are:

Cataloging Data Set Attributes 113

r--------------------------------·-----·--,
I Oplist I
~---~

! dsname.-name,state-{:}, lacceSS-{:}l , Idsnamc2-namel !
I I ! GDG=name,gnumber-integer, laction-{:}l , [Old-{:}l i

~ ___ J

dsname1

state

specifies the name of a SAM or a private VAM data set defined in a
DDEF macro instruction or command, or specifies a cataloged public
or priva'te data set name. The data set must reside on a direct­
access or magnetic tape volume.

This operand can be specified as:

• The fully qualified name of a partitioned or nonpartitioned
data set or a partitioned or nonpartitioned generation data
group (identified by absolute generation name or relative
generation number) •

• The partially qualified name of any data set other than a
generation data group.

specifies the updating of an existing catalog entry, or the crea­
tion of a new catalog entry:

N - new creation
U - update

access
specifies the owner access qualification for the data set:

R - read-only access
U - unlimited access

If this operand is not specified, unlimited access is assumed.
This default is valid only if a new catalog entry is being made;
otherwise, no change is made to the access qualification. If R is
specified, the owner may not write into his data set but he may
erase his data set.

dsname2
specifies
sary only
changed.
appended.

the new name for the data set. This parameter is neces­
if the currently defined name of the data set is to be
The dsname may have a relative generation number

GDG

114

This operand can be specified as:

• The fully qualified name of a partitioned or nonpartitioned
data set or a partitioned or nonpartitioned generation data
group (identified by absolute generation name or relative
generation number) •

• The partially qualified name of any data set other than a
generation data group.

specifies the name of a new generation data group.

gnumber
specifies the number of generations to be maintained in the genera­
tion data group.

action

old

specifies the action to be taken when the n+1 generation is being
cataloged in the generation data group:

A - all previous generations are to be removed from the catalog.
o - only the oldest generation is to be removed.

If this operand is omitted, 0 is assumed.

specifies the disposition of old generations deleted from the cata­
log. This applies to private volumes only; data sets on public
volumes are always erased when uncataloged.

E - erase external storage belonging to old generation data group
members.

S - save old generation data group members.

If this operand is omitted, S is assumed.

CAUTION: If this macro instruction is included in a module that is
declared privileged (through use of the DCLASS macro instruction), the
address of a save area must be placed in register 13 before execution of
this macro instruction.

The expansion and contraction of SAM or VAM multivolume data sets are
handled differently. Whenever an existing SAM multivolume data set has
been reduced or expanded in size, thereby residing on fewer or more
volumes, it must be recataloged by the user with the CAT macro instruc­
tion. For VAM, the system automatically recatalogs multivolume data
sets which expand or contract.

PROGRAMMING NOTES: When dsname1 is given, a new entry is made in the
catalog if the N option was specified. When the U option is given, the
catalog entry is updated with the requested changes to the data set name
and/or access qualifier. In addition, when dsname 2 is supplied, a
change is made to the name in the data set labels (DSCBS) on the volumes
containing the data set. This step is omitted if the volumes are on
tape.

If the GDG keyword is specified, an index is created for a new
generation data group using the parameters supplied. If the generation
data group is already cataloged, no updating is possible.

If the dsname is specified with a member name, only the dsname itself
is used; the member name is removed.

If the user wants to change the definition information for a cata­
loged data set, he must issue a new DDEF macro instruction, containing
the new information, and for SAM and private VAM data sets, a CAT macro
instruction. For public data sets issuance of the DDEF will cause the
new information to be automatically cataloged by the system. This effe­
ctively updates the entry for that data set. The information in the CAT
macro instruction may, of course, be changed merely by issuing a CAT
macro instruction with "update" indicated.

For private data sets only, the owner of a generation data group is
allowed to catalog generations of that group. Sharers, regardless of
their level of access, are not permitted to do this.

Cataloging Data Set Attributes 115

Generations of a generation data group that reside on private storage
can be saved by the user even after they are uncataloged.

At completion of execution of the CAT macro instruction, the
order byte in register 15 contains one of the following codes:

low-

Code
(HexadecimaQ

00
Significance
Cataloging accomplished as requested

04
08
OC
10
14
18

Name changed in catalog but not on one or more volumes
Invalid element in input string
Volume not available, or wrong kind of storage
Data set name not unique, already in catalog
No volume of data set mounted; cannot catalog
ABEND request

L- AND E-FORM USE: The oplist operand is required in the L-form of this
macro instruction and is not permitted in the E-form. Only the text
form of the operand can be used in the L-form of the macro instruction.

EXAMPLES: In EX1, the oplist is presented as a character string. In
EX2, an address designates the oplist.

EX1
EX2

CAT
CAT

'DATASET,U,U'
OPLISTC

DEL -- Delet~e Catalog Entry (S)

The DEL macro instruction deletes one or more catalog entries for a
data set or group of data sets. When a generation data group name is
supplied, the macro instruction deletes the catalog entries for all
generations in that group. Similarly, a partially qualified data set
name results in catalog entries being deleted for all data sets with the
same initial name component.

r-------T--------T--,
I Name I Operation I Operand I
r------+--------+---~
I I I tame) I I [symbol] IDEL Idsname- I
I I I addr I L--______ i-_______ ~ ___ J

dsname
specifies the name of the data set whose catalog entry is to be
deleted.

This operand can be specified as:

• The fully qualified name of: a partitioned or nonpartitioned
data set, or a partitioned or nonpartitioned generation of a
generation data group (identified by absolute generation name
or relative generation number) •

• The partially qualified name of any type of data set, including
a generation data group.

See nOplist Operands" in Section I for using the addr form of this
operand.

If the data set is not shared, it must reside on a private volume;
the dsname may be the sharer's name for a data set owned by another
user.

116

CAUTIQN: This macro instruction deletes the catalog entries for data
sets on private volumes only. A macro instruction that attempts to
uncatalog data sets residing in public storage is ignored and a diag­
nostic message is produced if in conversational mode. Only the ERASE
command can be used to remove such data sets from the system. However,
the DEL macro instruction can be used to delete a sharing descriptor
from the sharer's catalog.

If this macro instruction is included in a module that is declared
privileged (through use of the DCLASS macro instruction), the address of
a save area must be placed in register 13 before execution of this macro
instruction.

PROGRAMMING NOTES: Data sets on public volumes must be erased if they
are to be uncataloged. The user must, therefore, use the ERASE command
to remove those data sets from the system except when he is a sharer.

At completion of execution of the DEL macro instruction, the low­
order byte of register 15 contains one of these codes:

Code
(Hexadecimal)

00
04
08
OC

10
14
18
20
24
28
2C
30
34
38
3C

40

Significance
Valid return code
Not class D nor batch monitor
Invalid return from NEXTPAR
Invalid dsname (input preceded by left parentheses) -
NEXTPAR
No dsname supplied after verb
Return code from CHECKDS was not divisible by four
Data set not cataloged nor in task definition table (TOT)
Partitioned data set not in POD
Data set not cataloged
Data set on a public volume
Data set name is a member of a partitioned data set
User does not own nor share data set
Sharer does not have unlimited access to data set
Data set not cataloged
DDEF return code indicating dsname is unknown to the
catalog; hence, no JFCB created
Attention interruption

L- AND E-FORM USE: The oplist operand is required in the L-form of this
macro instruction and is not permitted in E-form. Only the text form of
the operand can be used in the L-form of the macro instruction.

Cataloging Data Set Attributes 117

DISCONNECTING A DATA SET FRO~ THE SYSTEM

Just as connecting a data set to the system tells the system a user
is ready to process that data set, disconnecting a data set from the
system tells the system a user has finished processing a data set.
Thus, when a user has finished his processing of a data set he must
inform the system by disconnecting the data set from the system. A data
set may be permanently or temporarily (for BSru~ only) disconnected from
the system. The CLOSE macro has been provided with TSS/360 data set
management facilities to allow the user to disconnect a data set from
the system in this manner. Descriptions of the permanent and temporary
close are briefly described below.

CLOSE (permanent close for all access methods) locates the descrip-
tion of data set attributes currently recorded in the data con­
trol block defined by a DCB macro instruction issued for that
data set and (for BSAM only) determines if all I/O requests
have been satisfied. If they have not been satisfied, the
CLOSE routine waits until they are satisfied before proceeding.
Output data set labels are then created, volumes are positioned
as specified by the user and the control blocks (DeB and JFCB)
containing descriptions of the data set's attributes are
res·tored to their pre-open status thereby logically disconnect­
ing that data set from further system processing and preventing
further user access to the data set. A subsequent OPEN macro
ins·truction must be issued for this data set if additional pro­
cessing is required.

CLOSE(T) (temporary close for BSAM data sets only) same as the standard
CLOSE macro instruction except that the fields of the control
blocks (DCB and JFCB) are not restored to their pre-open sta­
tus; the data control blocks remain in an open status and addi­
tional processing may be performed on that data set without
issuing another OPEN macro instruction. The temporary close is
useful as a simple way of repositioning a volume for subsequent
processing.

Detailed explanations of each of the above macro instructions and the
formats in which they may be specified are shown below. Further infor­
mation pertaining to disconnecting a data set from the system and the
related CLOSE macro instruction can be found in IBM/360 Time Sharing
System: Assembler Programmer's Guide, Form C28-2032.

CLOSE -- Disconnect Data Set From User's Problem Program (S)

The CLOSE macro instruction disconnects one or more data sets from
the user's problem program.

During the execution of CLOSE, user's trailer label routine, if supp­
lied, will be given control (BSAM and QSAM only). ~efer to Appendix
A.)

r--------T---------T---,
'Name I Operation I Operand I
~-------+---------+---~
, [symbol] ,CLOSE I [REREAD\ ,
, , ,({dcb-addr, [Opt-\"LEAVE JH , •••) [,TYPE=T] I
~-------i---------i------------------------------------_______________ J

dcb (all access methods)
specifies address of data control block opened for data set that

118

is to be permanently or temporarily disconnected (closed) from the
system. If more than one data control block is specified, two
commas must be placed between each to indicate the omission of the
positioning option, even though it is applicable to BSAM and QSAM
only.

opt (BSAM and QSAM)
specifies volume repositioning that is to be performed as a result
of closing. Its values and meanings are:

REREAD - positions current volume to process data set again.

LEAVE - positions current volume to logical end of data on the
volume. This value is assumed if the opt operand is omitted.

The opt operand is applicable to volume disposition of magnetic
tape devices only; it is ignored for other devices.

TYPE=T (BSAM ONLY)
is written as shown. It indicates that labels are created and
volumes are positioned, but the fields of the data control block
are not altered. The data set can be processed without issuing
another OPEN macro instruction. If TYPE=T is designated, it app­
lies to all of the associated data control blocks.

After this macro instruction has been executed, the user's program
can issue other macro instructions directed toward processing the
data set because the data control block remains in OPEN status.
If CLOSE (TYPE=T) is issued for a direct-access data set volume, a
regular CLOSE is executed.

CAUTION: The following errors cause the results indicated.

r--~----------------,
I Errors I Result I
~--_+----------------i
I I
permanently or temporarily closing a data No Action I
control block that is not open I

Temporarily closing (TYPE=T) a data control
block that has not been opened for BSAM

Permanently closing when the dcb operand does
not specify the address of a data control block

Temporarily closing (TYPE=T) when the dcb operand
does not specify the address of a data control block

No Action
I
I
I
I

Task terminated I , ,
Unpredictable I

I ,
permanently closing a dcb con~aining an Task terminated,
invalid DSORG specification , L-__ i ________________ J

If this macro instruction is included in a module that is declared
privileged through use of the DCLASS macro instruction, the address of a
save area must be placed in register 13 before execution of this macro
instruction.

PROGRAMMING NOTES: Any number of data control block addresses and asso­
ciated options (BSAM and QSAM) may be specified in the CLOSE macro
instruction. This facility makes it possible to close data control
blocks and their associated data sets in parallel, which is more effi­
cient than to close them individually.

Disconnecting Data Sets 119

VAM only

The CLOSE macro instruction releases any sharing interlocks set for
the data set. Rules for sharing VAM data sets are given in APPENDIX K.

If more than one data control block is specified in a CLOSE macro
instruction for VAM data sets. two commas must be placed between each to
indicate the omission of the repositioning operand. which is applicable
to BSAM only.

BSAM and QSAM only

The CLOSE (TYPE=T) macro instruction may be used to disconnect tem­
porarily. from the problem program. one or more data sets if they reside
on magnetic tape. An OPEN macro instruction must have been previously
executed for each data control block specified in this form of the CLOSE
macro instruction.

When the data sets are temporarily disconnected. labels are processed
and user label exits are taken. if necessary. Magnetic tape volumes are
repositioned as specified in this macro instruction.

Magnetic tape positioning varies depending on the options chosen in
OPEN and CLOSE (TYPE=T) macro instructions. Table 4 relates the options
in macro instructions to the repositioning of tape volumes.

For magnetic tape. positioning varies depending on whether the data
set uses labels. Table 3 defines a final position number for labeled
and unlabeled tapes and Table 4 relates the options chosen in OPEN and
CLOSE macro instructions to positioning of tape volumes.

User trailer-label exits are taken for a data set processed for INOUT
or OUTIN if last operation was a WRITE. No user trailer label exits are
taken if last operation was a READ.

Table 3. Final Magnetic-Tape Positions
r---------~-------------------_.--------------------------------------,
IPosition I Labeled Tape I Unlabeled Tape I
~-------+---------------------+--------------------------------------~
I I I I
I I I I
I I Preceding data set I Preceding first data block of I
I I header label group I portion of data set resident on I
I I on current volume I current volume I
~--------f---------------------+--------------------------------------~
I I I I
I I I I
I 2 I Following tape mark I Following tape mark that terminates I
I I that terminates I last data block of portion of data I
I I trailer label group I set resident on current volume I
I I of data set on I I
I I current volume I I L-________ i-___________________ -L ______________________________________ J

120

Table 4. Factors Determining Magnetic-Tape Positioning For BSAM and
QSAM

r-----------~----------------~---------------~---------------------l
IOpt'll of OPENIOther Factors IDirection of I Positioning as I
I Specified as I Influencing I Last Input I Specified by Opt 1
I I Positioning I Operation I in CLOSE I
I 1 I I----------T-----------~
I I 1 I LEAVE I REREAD I
~-----------+------------------+---------------+----------+-----------~
I OUTPUT I -- INot applicable I
~----------+------------------+---------------~
IOUTIN I INot determining I
I (BSAM only) I I factor I
~------------+------------------+---------------~
I I NOUT IAt least one WRITEINot determining I
I (BSAM only) loperation in this I factor I Position 2 Position 1
I I data set I I
~----------+----------------+-------------~
I INPUT I -- I Forward I
~-----------+----------~-------+---------------~
IINOUT INo WRITE operationlForward I
I ~SAM only) lexecuted in this I I
I Idata set I 1
~---------+-----------------+---------------~
IRDBACK I 1 Forward I
~-----------+------------------+---------------+----------+-----------~
I INPUT 1 I Backward I I 1
~---------_+_---------------_+---------------~ I I
IINOUT INo WRITE operationlBackward I 1 I
I (BSAM only) lexecuted on this I IPosition 11 Position 21
I 1 data set 1 I 1 1
r·----------_+----------------_+---------------1 1 I
IRDBACK I I Backward 1 I 1 L-_________ ~ _______________ ~ _______________ ~ ________ ~ ___________ J

If the data set resides on a magnetic tape, the following concerns
the writing of trailer labels:

1. If data set was opened for OUTIN or INOUT and the last I/O opera­
tion was a WRITE, then CLOSE or CLOSE (TYPE=~ both cause trailer
labels to be written. If CLOSE (TYPE=T) is issued, additional READ
or WRITE macro instructions are accepted without issuing a new OPEN
macro instruction.

2. If data set was opened for OUTIN or INPUT and the last I/O opera­
tion was a READ, and then CLOSE or CLOSE (TYPE=T) was issued, addi­
tional READ and WRITE macro instructions are accepted without a new
OPEN macro instruction being given.

3. If data set was opened for OUTPUT, A CLOSE or CLOSE (TYPE=T) both
cause trailer labels to be written. If CLOSE (TYPE=T) is issued,
additional WRITE macro instructions are accepted without a new OPEN
macro instruction being given.

4. If data set was opened for INPUT or ROBACK, a CLOSE or CLOSE (TYPE=
T) does not cause trailer labels to be written. If CLOSE (TYPE=T)
is issued, additional READ macro instructions are accepted without
a new OPEN macro instruction being given.

L- AND E-FORM USE: L- and E-forms of the CLOSE macro instruction are
allowed. The TYPE=T often is not permitted in the E-form. The E-form
of the macro instruction may specify any parameters; however, parameters
specified in the E-form will overlay those specified in the L-form. The
E-form may not specify more DCB operands than are specified in the

Disconnecting Data Sets 121

corresponding L-form. The format of the parameter list generated by the
CLOSE macro instruction is described in Appendix L.

For example:

JOE
TERI

CLOSE
CLOSE

(ADCB, , BDCB, ,) , MF=L
("PRODCB"AXDCB) ,MF=(E,JOE)

When the E-form macro instruction is executed, the data control block
PRODCB replaces the data control block BDCB in the parameter list, and
the data control block AXDCB is added to the parameter list in the posi­
tion reserved by the two commas following BDCB in the L-form. Thus,
data control blocks with symbolic address ADCB, PRODCB, and AXDCB are
closed.

EXAMPLES:

122

for BSAM or QSAM:

EX1 closes the data set associated with data control block INVEN
with no repositioning. EX2 closes the two data sets associated
with data control blocks INVEN and REPORT with different options.
EX3 closes data sets associated with two data control blocks.
Since opt is omitted in EX3, volume disposition is defaulted as
LEAVE. EX4 generates a parameter list for closing INVEN, and EXS
closes INVEN.

EXl
EX2
EX3
EX4
EXS

for VAM:

CLOSE
CLOSE
CLOSE
CLOSE
CLOSE

(INVEN, LEAVE)
(INVEN, LEAVE, REPORT ,REREAD)
(INVEN, , MASTER)
(I NVEN , LEAVE)

MF= (E,EX4)

EX1 closes data sets associated with two data control blocks. EX2
generates a parameter list for closing INVEN, and EX3 closes INVEN.

EX1
EX2
EX3

CLOSE
CLOSE
CLOSE

(INVEN, , MASTER)
(INVEN) , MF=L

MF= (E,EX2)

REMOVING A DATA SET FROM THE SYSTEM

When a user no longer has any use for a particular data set r it is
wasteful to leave such a data set ~ecorded on a device that could be
used for storing new data into the system. For this reason r TSS/360
data set management facilities provide a user with two macro instruc­
tions r ERASE and RELr which can physically remove a data set from the
system and release the input/output devices on which they had been reco­
rded for future system use.

ERASE for data sets recorded on direct access devices this macro
instruction erases the data set from the device by erasing the
direct access storage assigned to the data set. It also removes
any catalog entry for the e~ased data set that may have been
established in a user's catalog (via previous system or user
issuance of a CAT macro instruction) •

REL in effect r cancels or erases a previously defined public or priv­
ate data set from the system by deleting the attribute specifica­
tions previously defined to the system by issuance of a DDEF
macro instruction. For private data sets r the input/output
devices associated with it are released to a system resource
pool. It can also be used to release all data sets of a conca­
tenated data set or to remove a users JOBLIB.

Detailed explanations of each of the above macro instructions and the
formats in which they may be specified are shown below. Further infor­
mation pertaining to physically removing a data set from the system and
the related macro instructions can be found in IBM System/360 Time Shar­
ing System: Assembler Programmer's Guider Form C28-2032.

ERASE -- Remove a Data Set from Direct-Access Storage (S)

The ERASE macro instruction eras,es the direct-access storage assigned
to a data set. In addition r it removes the entry for a cataloged data
set from the catalog.

r--------T--------~---,
I Name I Operation I Operand I
~------+---------+---~
I [symbol] I ERASE I dsname- [text) I
I I I laddr I L ________ ~ ________ ~ ___ J

dsname
specifies the name of any data set residing on direct-access
storage. The data set name must be cataloged or must already be
defined within the current task.

This operand can be specified as:

• The fully qualified name of: a partitioned or nonpartitioned
data set r a member of a pa,rtitioned data set r or a partitioned
or nonpartitioned generation of a generation data group (iden­
tified by absolute generation name or relative generation
number) •

• The partially qualified name of any type of data set r including
a generation data group.

If the text option is selected r the data set name r enclosed in apos­
trophes r is written as the operand: if the addr option is selected r the
operand specifies the location of the data set name.

Remove Data Set From System 123

If the da·ta set name does not involve a member name, the direct­
access storage occupied by that data set is erased (i.e., released for
other use). The name is removed from the catalog if the data set was
cataloged.

If the data set name designates a particular member of a partitioned
data set, the member's name is deleted from the partitioned organization
directory (POD) of' that data set.

If the data set name is a partially qualified name or the name of a
generation data group, all data sets (or generations) indexed under that
dsname are erased and their catalog entries are removed.

If the name of a partitioned data set is supplied without a member
name, the storage for the entire partitioned data set is erased, and its
name is removed from the catalog.

PROGRAMMING NOTES: The ERASE macro instruction cannot be used to erase
data sets on magnetic tape; it applies to data sets on direct-access
storage only.

If a shared data set is opened by several users concurrently, a par­
ticular user cannot erase that data set until every other sharer active­
ly using that data set issues a CLOSE macro instruction to deactivate
their use of that data set. Any effort to erase an actively shared open
data set will be ignored and result in diagnostics being issued. Once a
user is the only currently active user of a shared data set he may erase
that data set regardless of whether he has closed the data set or not.

If the data set name specifies SYSULIB (user library), it must also
include the name of the module that is to be erased. The module name
must be contained within parentheses following the SYSULIB data set
name. Erasure of the entire SYSULIB data set is not permitted; there­
fore, specifying SYSULIB without a module name is invalid.

L- AND E-FORM USE: The L-form must specify the dsname as text (i.e.,
the data set name enclosed in apostrophes). The E-form must not specify
the dsname, but must specify the location of the parameter list created
by the L-form.

EXAMPLES: EX1 erases the data set A.B.C. EX2 erases all data sets
cataloged under the partially qualified name A.B. EX3 erases the data
set whose name is stored at location NAMLOC. EX4 removes member LAURA
from the partitioned data set R.L.T. EXS generates the parameter list
for erasing data set M.P.S., and EX6 erases M.P.S.

EX1 ERASE 'A.B.C'
EX2 ERASE 'A. B'
EX3 ERASE NAMLOC
EX4 ERASE 'R.L.T (LAURA) ,
EXS ERASE 'M.P. S' ,MF=L
EX6 ERASE MF= (E,EXS)

REL -- Release Data Set or Remove Job Library From Program Library List
J§L

The REL macro instruction deletes the definition previously estab­
lished for a data set. It may be used, in effect, to cancel a preceding
definition for either a public or private data set, as well as to
release,the input/output devices associated with a private data set. It
may also be used to release one or all data sets of a given concatena­
tion, and to remove JOBLIB from the user's program library list.

124

r-------~---------T---,
'Name I Operation I Operand I
~-------+---------+---~
, [symbol] I REL I oplist-r text} I
I I I \..addr I L ________ i _________ i ___ J

oplist
specifies the list of operands.

r--,
I Oplist I
~--~
I ddname-symbol[,dsname-name] I L __ J

ddname
specifies a data definition name previously issued by a DDEF macro
instruction or command. This data-definition name identifies the
data set being released. The ddname may specify a job library and
may also specify that the library data set name is to be removed
from the program library list.

dsname
specifies the name of one data set in a concatenated series. If
the operand is not specified, all data sets concatenated with the
ddname will be released.

This operand can be specified as the fully qualified name of a non­
partitioned data set or of a nonpartitioned generation of a genera­
tion data group (identified by absolute generation name or relative
generation number) •

CAUTION: When a data set has been released, it cannot be referred to
again until another DDEF macro instruction or command defining that data
set is issued.

If this macro instruction is included in a module that is declared
privileged (through use of the DCLASS macro instruction) , the address of
a save area must be placed in register 13 before execution of this macro
instruction.

PROGRAMMING NOTES: After execution of the REL macro instruction, the
low-order byte of register 15 contains one of these codes:

Code (Hexadecimal)

00
04
08
OC
10
14
18
20

Significance

Normal
Defaulted or invalid ddname
Attention interrupt occurred
Reserved ddname specified - not permitted
Undefined ddname
Uncataloged on public storage
Undefined dsname
Spurious input

L- AND E-FORM USE: The oplist operand is required in the L-form of this
macro instruction and is not permitted in the E-form. Only the text
form of the operand may be used in the L-form of the macro instruction.

EXAMPLES: In EX1, a character constant is given for the data-definition
name DD1. In EX2, the address of the same ddname is given.

EX1
EX2

REL
REL

IDD1'
RELTAG

Remove Data Set From System 125

SECTION II: PROGRAM MANAGEMENT

This section describes TSS/360 macro instructions available to the
user to facilitate program management. To enhance user understanding of
these macro instructions, they are presented in functional groups that
reflect their primary use in the system.

VIRTUAL STORAGE MANAGEMENT

It might occasionally become necessary for a user to obtain addition­
al virtual storage space at some point during the execution of his pro­
gram. The TSS/360 program management facilities provide a user with the
services of several macro instructions (GETMAIN and FREEMAIM to give
him this capability. The need for additional virtual storage at object
time is specified by issuing the GETMAIN macro instruction. When the
dynamically allocated virtual storage area is no longer required by a
user he may then release the area by issuing the FREEMAIN macro
instruction.

In addition to acquiring additional storage space, the CSTORE macro
instruction has been provided to enable a user to transform any set of
contiguous virtual storage bytes into an object module, consisting of a
single control section, during the execution of his program. These
macro instructions are briefly described below.

GETMAIN allows a user to request a contiguous area of virtual storage
be made available to him at some point during the execution of
his program. The user can request a number of pages or bytes
of such virtual storage be allocated to him. Subsequent pro­
cessing within the user program can make use of the allocated
area.

FREEMAIN releases a virtual storage area previously allocated by a GET­
MAIN macro instruction.

CSTORE transforms a number of contiguous virtual storage bytes from
virtual storage to an object module consisting of one control
section. The bytes of contiguous virtual storage will be
released and returned to the virtual storage map for future
allocation.

Detailed explanations of each of the above macro instructions and the
formats in which they may be specified are shown below. Further infor­
mation pertaining to virtual storage management and its related macro
instructions can be found in IBM System/360 Time Sharing System:
Assembler Programmer's Guide, Form C28-2032.

GETMAIN -- Allocate Virtual Storage (R)

The GETMAIN macro instruction requests a contiguous area of virtual
storage for a user's task at object time. The areas of virtual storage
allocated by GETMAIN contain binary zeroes.

126

r--------T---------T---,
I Name I Operation I Operand I

t~:::::;r:::-~::--r~~G;J;viR~-:~~:-~;l~~J;PR:i~t~~;;I[~~C~i~t~~~~-1
I I I [, EXIT=RETURN] I l ________ ~ _________ ~ ___ J

PAGE

R

LV

PR

PACK

specifies that a number of pages of virtual storage is to be
allocated.

VAR
specifies a variable number of pages to be allocated, defined
at system generation time by the installation. If the LV
value is nonzero, these additional pages are added to the
variable allocation.

specifies that a number of bytes of virtual storage is to be
allocated.

specifies the desired number of pages or bytes of virtual storage.

If (0) is written, the value must be given as a binary number
placed in the low-order three bytes of register 0, right-adjusted,
and the high-order byte of register 0 must contain binary O.

The length of the specified virtual storage area may not exceed the
amount of virtual storage available at the time of execution of the
macro instruction. Refer to the EXIT operand.

specifies the protection class to be assigned to the requested vir­
tual storage. The following values may be specified:

o - User read-and-write
1 - User read-only
2 - Private privileged

This parameter only has meaning for privileged users; if it is
omitted, PR=O is assumed. If bytes were specified and an invalid
protection class is specified, a return code of 8 is placed in
register 15.

specifies that the requested virtual storage be put into a unique
segment or packed into the first available space as follows:

o - put into a unique segment, or pack into the first available
space, depending on system parameters and type 'of request

1 - pack into the first available space, regardless of any system
parameters or the type of request

2 - put into a unique segment regardless of any system parameters
or the type of request

This parameter may only be used by privileged users; if it is
omitted PACK=O is assumed.

EXIT=RETURN
specifies that, if the request for virtual storage cannot be satis­
fied, a return code of 4 is placed in general register 15.

Virtual Storage Management 127

CAUTION: If a request for virtual storage cannot be satisfied, and the
EXIT operand is omitted, an abnormal task termination occurs.

If this macro instruction is included in a module that is declared
privileged (through use of the DCLASS macro instruction), the address of
a save area must be placed in register 13 before execution of this macro
instruction.

PROGRAMMING NOTES: Two sequential GETMAIN macro instructions do not
guarantee t.he allocation of two contiguous areas. The only way to
ensure a contiguous allocation of n pages is by issuing a GETMAIN macro
instruction specifying an area whose length is n.

The address of the allocated virtual storage is returned in register
1. The area begins on a page boundary if pages of virtual memory were
requested, and on a doubleword boundary if bytes were requested.

If the GETMAIN macro instruction is executed successfully, a return
code of 0 is placed in register 15.

EXAMPLE:

EX1

EX2

EX3

EX1
EX2
EX3

GETMAIN
GETMAIN
GETMAIN

PAGE,LV=(O) ,EXIT=RETURN
PAGE, LV=6
PAGE, LV= (0)

specifies a request for pages and indicates that register 0 has
been loaded with the number of pages of virtual storage requested,
and with Os in the high-order byte of the register. EX1 also spe­
cifies that a return code of 4 be issued if the request cannot be
satisfied.

requests six pages of virtual storage to be allocated.

indicates a request for pages. Before execution of this macro
instruction, the user loads register 0 with the length of the
required area and loads zeros in the high-order byte of the regist­
er. If the virtual storage cannot be allocated, the task is
abnormally terminated.

FREEMAIN -- Release Allocated Virtual Storage (R)

The FREEMAIN macro instruction releases a virtual storage area pre­
viously allocated by a GETMAIN macro instruction. This virtual storage
area can be released by units of pages or 8 byte multiples.

r--------T---------T---,
I Name I Operation I Operand I
~-------+--------_+---1
I [symbol] IFREEMAIN I [PAGE [,VAR1} 'Lv={value~ ,A= [addrx] I
I I Il R (0)) l (1) I L ______ ~ _________ ~ ___ J

PAGE

128

specifies that a number of pages of virtual storage is to be
released.

VAR
specifies the release of an area of virtual storage obtained

R

LV

A

through a PAGE,VAR GETMAIN macro instruction. The LV= para­
meter must be written as in the corresponding GETMAIN macro
instruction.

specifies that a number of bytes of virtual storage is to be
released.

specifies the length, in pages or in bytes, of the virtual storage
area, 'previously allocated by a GETMAIN macro instruction, to be
released.

If (0) is written, the value must be given as a binary number
placed in the low-order three bytes of register 0, right adjusted.
The high-order byte of the register must be O.

specifies the address of a fullword containing the address of the
virtual storage area to be released.

If (1) is written, the address of the virtual storage area (not the
address of a fullword containing the virtual storage area address)
must be loaded into register 1 before execution of this macro
instruction. If bytes are specified the address of the virtual
storage area must be on a double word boundary or an error code of
8 is returned in register 15.

CAUTION: During execution of the FREEMAIN macro instruction, the task
issuing the FREEMAIN macro instruction is abnormally terminated, if:

1. The area to be released is privileged or contains privileged areas,
or

2. The area to be released was not allocated by a GETMAIN.

If this macro instruction is included in a module that is declared
privileged (through use of the DCLASS macro instruction), the address of
a save area must be placed in register 13 before execution of this macro
instruction.

If FREEMAIN is unable to locate the page or doubleword boundary, con­
taining the virtual memory to be released, or if any of the virtual
memory has never been assigned or has already been released, a return
code of 4 is placed in register 15.

EXAMPLES:

EX1

EX2

EX3

EX1
EX2
EX3

FREEMAIN
FREEMAIN
FREEMAIN

PAGE,LV=16,A=(1)
PAGE,LV=(O) ,A=ADD1
PAGE,VAR,LV=2,A=ADD2

requests the release of a 16-page virtual storage area whose
address is in register 1.

requests the release of an area whose address is in the full word at
ADD1 and whose length, in pages, is in register o.

requests the release of an area, whose length is two pages more
than the value specified at system generation time, and whose
address is in the fullword at ADD2.

Virtual Storage Management 129

CSTORE -- Control Section Store (S)

The CSTORE macro instruction enables the user, during program execu­
tion, to transform any set of contiguous virtual storage bytes into an
object module consisting of a single control section. The module is
stowed in the current JOBLIB. It can then be loaded by the program that
created it, or by a subsequent program. When the module is loaded, no
relocation takes place; therefore, it may contain no relocatable items.
The resulting module will consist of an unnamed control section which
contains a copy of the hexadecimal text beginning at the page boundary
corresponding to or preceding the address specified as the sta~ting
address parameter, and terminating at the page boundary corresponding
toor following the address computed from the fourth parameter. Thus,
the resulting control section will always be an integral number of pages
in length.

When the module is loaded by the user, the module name, as well as
the entry pOint name, will point to the address computed by adding to
the load address of the new module, the page off-set (if any) implied by
the starting address. For example, assume that the user requests that a
control section of 4098 bytes be created from the bytes beginning at
virtual storage address 5D050. Two pages of hexadecimal text beginning
at the page boundary address (in this case 5DOOO) corresponding to or
preceding the specified starting address will be transformed into an
object module. The module and entry point names are off-set from the
page boundary by 50 to reflect the actual address (5D050) of the hexade­
cimal text which the user desires to place in a control section. Assum­
ing that the new module is later loaded at 70000, the loaded module and
control section will occupy two full pages beginning at 70000. The
second page is required so that the new control section will include the
last two bytes requested by the user. The new module and entry point
names will be adjusted to reflect the off-set and will both point to
70050.

Maximum control section size is one segment.

I ~--------~---,
I Name I Operation I Operand I
~-------+---------+--~
I [symbol] ICSTORE Imodule-symbol,epname-symbol,address-addr, I
I I I length-value, attribute-value I L--_______ ~ ________ ~ ___ ~

module
specifies the name to be assigned to the module created to contain
the control section.

epname
specifies the entry point name to be assigned to the specified
address location.

address
specifies the relocatable expression or register notation for the
address of the first byte of data to be included in the control
section.

length

130

specifies, in bytes, the amount of data to be included in the con­
trol section.

attribute
specifies a control section attribute byte whose contents indicate:

Bit 0 on - System
Bit 1 on - Privileged
Bit 2 on - Common
Bit 3 on - Prototype (PSECT)
Bit 4 on - Public
Bit 5 on - Read-only
Bit 6 on - Variable length
Bit 6 off Fixed-length

CAUTION: If this macro instruction is included in a module that is
declared privileged (through use of the DCLASS macro instruction), the
address of a save area must be placed in register 13 before execution of
this macro instruction.

PROGRAMMING NOTES: The control section is created from any contiguous
set of bytes, and is an integral number of pages in length. A control
section is not built if the module or entry-point names are duplicates
of existing names in the current JOBLIB.

Subsequent loading of the created module is accomplished implicitly,
by using an R and V type constant for the entry point name or module
name, or explicitly, by use of the LOAD macro instruction.

The common attribute (bit 2), if specified, will be ignored by the
dynamic loader, since it treats all unnamed control sections as unique.
The created module may contain no relocatable words (adcons) and can be
referenced by the control section name or module name offsets.

Upon completion of execution of the CSTORE macro instruction, the
low-order byte of register 15 contains one of these return codes:

Code
()()
04

Significance
normal return
Module name or entry point name already in use

L- AND E-FORM USE: The module and csname operands are required in the
L-form and not permitted in the E-form of this macro instruction. All
other operands are optional in the L- and E-forms; however, if an
operand is omitted from the L-form, it must be specified in the E-form.

EXAMPLE: This example indicates the macro instruction used to create a
module named MYMODULE which contains one unnamed control section. The
control section consists of the two pages of text taken from the bytes
beginning at HERE, which is on a page boundary. The entry point name
EPNAME points to the beginning of the control section, which as public
and read-only attributes.

EX1 CSTORE MYMODULE,EPNAME,HERE,8000,12

DCLASS* -- Specify Privilege Class (~

The DCLASS macro instruction declares the user as privileged or non­
privileged and causes subsequent code to be executed accordingly.

Virtual Storage Management 131

RSPRV* -- Restore Privilege (~

The RSPRV macro instruction responds to a nonprivileged routine's
request to be returned to the privileged state.

CKCLS* -- Check Protection Class (0)

The CKCLS macro instruction determines the most restrictive protec­
tion class assigned to a specified number of contiguous half-pages.

LSCHP* -- List Changed Pages (R)

The LSCHP macro instruction lists changed pages of virtual storage
for the user.

* Although these macro instructions are available to all users, they are
employed primarily by system programmers; therefore, refer to System
Programmer's Guide, Form C28-2008.

132

PROGRAM LOADING AND LINKING

A user has two ways of requesting that a module be loaded into virtu­
al storage; either by an implied request or an explicit request.

An implied request causes a program to be automatically loaded by the
system into a user's virtual storage during program assembly each time
the source program references (i.e., via CALL macro instruction) an
undefined external symbol. An explicit request is satisfied during the
actual execution of the program containing the request. When the expli­
cit request (specified via a CALL or LOAD macro instruction) is
executed, the referenced module is loaded into virtual storage assigned
to that task. Unlike the implicit call, the program loaded by an expli­
cit call during program execution may be released by subsequent issuance
of a DELETE macro instruction or an UNLOAD command. This would release
the virtual storage area occupied by that program for further use by the
user's program.

When a user's program calls another program, either explicitly or
implicitly, these programs must establish linkage between one another
using standard TSS/360 linkage conventions. Thus, proper registers must
be used in establishing linkage, and a save area must be set aside in
the calling program. Two macro instructions (SAVE and RETUR~ have been
provided to aid a user in establishing standard linkage.

ADCON generates a group of address constants which point to the program
that is to be explicitly or implicitly loaded. The adcon group
is generated in a format appropriate for the routine (i.e., the
LOAD or CALL routine) for which they are being provided.

ADCOND generates a Dummy Control Section which provides predefined sym­
bolic names for the fields of an explicit adcon group that was
generated via an ADCON macro instruction. These names allow a
user to symbolically access the resolved address constants that
are placed in the explicit adcon group upon execution of a LOAD
or explicit CALL macro instruction.

ARM initializes the ADCON group, defined by an ADCON macro instruc­
tion, with the name of the module, entry point, or control sec­
tion that is to be loaded into virtual storage. The initialized
adcon group can subsequently be used by a CALL or LOAD macro to
explicitly load the indicated program into storage.

CALL causes the called program to be loaded into virtual storage eith­
er explicitly or implicitly and establishes conventional linkage
between the calling and called program. The module or program to
be loaded is located via the address constants previously defined
by an ADCON or ARM macro instruction, which point to the called
routine. This macro instruction also initiates execution of the
called program.

LOAD causes a copy of a specified program to be loaded into the virtu­
al storage of a task explicitly if it is not already there. The
module of the program being loaded is located via the address
constants previously defined by an explicit ADCON macro instruc­
tion. The program is placed in virtual storage and cannot be
released from storage until the task logs off, a DELETE macro
instruction is issued for that program, or an UNLOAD command is
issued at the terminal. This macro instruction does not initiate
the execution of the called program.

SAVE stores the contents of general registers in a save area provided
in the program control section, or module which has called the
routine in which the SAVE macro instruction is issued. The SAVE

Loading and Linking 133

macro instruction should normally be the first instruction in a
called routine.

RETURN when issued in a called routine, it returns control to the cal­
ling routine at its NSI, restores general registers to their sta­
tus a't entry to the called routine, and passes return codes to
the routine which had called it.

Detailed explanations of the above macro instructions and the formats
in which they may be specified are shown below. Further information
pertaining to loading and linking can be found in IBM System/360 Time
Sharing System: Assembler Programmer's Guide, Form C28-2032.

ADCON -- Generate an Adcon Group (~

The ADCON macro instruction generates an adcon group for use by a
CALL, a LOAD, or a DELETE macro instruction.

r--------T---------T---,
I Name I Operation I Operand I
r--------f---------f---~
I I I type-code [,EP=symbol] I
I symbol I ADCON I I
I I I I rCODE~l [rsMo~l I
I , I ~LDERR=\..~RR JJ ,DELOPT=~SDMJJ I L ________ ~ _________ ~ ___ J

type

EP

specifies the type of adcon group to be generated. Possible codes
for the type operand, with their meanings are:

Code Meaning

CALL An explicit adcon group is generated for use by the CALL
macro instruction.

LOAD An explicit adcon group is generated for use by the LOAD
macro instruction.

DELETE An adcon group is generated for use by the DELETE macro
instruction.

IMPLICIT An implicit adcon group is generated using the externally
defined symbol specified in the EP operand.

INTERNAL An implicit adcon group is generated using the internally
defined symbol specified in the EP operand.

specifies the entry point of the module to which the adcon group
refers. If EP is omitted, eight blank characters are used as the
entry point name for CALL, LOAD, and DELETE adcon groups, whereas
zero is used as the entry point address and R-value for IMPLICIT
and INTERNAL adcon groups. Although the EP operand may be omitted
from the ADCON macro instruction, the entry point must eventually
be supplied to the appropriate field(s) of the adcon group before
the latter is actually used. Refer to the ARM and ADCOND macro
instruction descriptions in this section.

symbol
specifi.es the entry point of the module to which the adcon group

134

IDE~

refers. For an INTERNAL adcon group, the R-value indicates the
origin of the control section containing the ADCON macro instruc­
tion. An ADCON macro instruction that specifies INTERNAL as the
type must consequently not be written in an unnamed control
section.

specifies whether the Dynamic Loader is to take an error exit or to
present a return code if the specified module cannot be loaded. If
CODE is specified, ADC,ON generates bit ADCC2CB7 of the ADCC2C con­
trol byte with a value of 1 so that the Dynamic Loader will store
in the same control byte a return code indicating the reason for
loading failure. For a description of the return code values and
their meanings, refer to the LOAD macro instruction in this publi­
cation. If E~ is specified or if IDE~ operand is omitted, ADCON
generates the bit described above with a value of 0 so that the
Dynamic Loader will initiate "load error procedure" when the speci­
fied module cannot be loaded. The LDE~ operand may be used only
with a type operand that specifies LOAD or CALL.

DELOPT
specifies the DELETE option desired. If SMO is specified, ADCON
generates bit ADCC3DB7 of the ADCC3D control byte with a value of
so the Dynamic Loader will attempt to delete only the specified
module. If SDM is specified or if the DELOPT operand is omitted,
ADCON generates the bit just desc~ibed with a value of 0 so the
Dynamic Loader will attempt to delete all modules on which the spe­
cified module depends, as well as the specified module itself. The
DELOPT operand may be used only with a type operand that specifies
DELETE.

PROGRAMMING NOTES: An explicit adcon group is altered the first time a
CALL or LOAD macro instruction refers to it. In this altered state, the
adcon group is said to be disarmed; before being altered, it is said to
be armed. The ADCON macro instruction may be used to generate a fully
armed explicit adcon group having all control bytes and the entry point
name generated with the desired values. The user may, however, want to
complete arming by supplying the entry point name or control byte set­
tings after the adcon group is generated. In any case, an explicit
adcon group must be fully armed the first time it is used by a LOAD or
loadtype-E CALL macro instruction.

Once an adcon group has been disarmed during loading or calling of a
program, it may subsequently be used in that state only for one purpose
and under certain conditions. If the program that was loaded or called
has not been deleted, and if the adcon group used in its loading or cal­
ling has not been modified either by the ARM macro instruction or by the
user's own code, the same adcon group may be used in subsequent calls to
the same program. A disarmed adcon group may be made available for the
following purposes only if it is rearmed by means of the ARM macro
instruction:

• Calling or loading the same program again after it has been deleted.

• Calling the same program again after the referenced adcon group has
been rearmed for a different program.

• Calling or loading a different program.

Note that an explicit adcon group generated for use by the LOAD macro
instruction must not be used by the CALL macro instruction and vice
versa, except in the following situation. An explicit adcon group that
is used to load a program may, if it is not subsequently modified
eitherby ARM or by the user's own code, ana if the loaded program is not
subsequently deleted, be used in subsequent calls to the loaded program.

Loading and Linking 135

If the user issues ADCON macro instructions, the V-con and R-con pair
are located at a displacement of 12 from the label used for the ADCON
macro instruction.

The user may refer directly to certain fields of adcon groups of any
type. These fields are described below; no other fields can ever be
altered directly by the user. The name for each field or bit position
is the name provided by the ADCOND macro instruction. All references to
adcon group fields and bit positions must use these names.

EXPLICIT ADCON GROUPS FOR USE WITH LOAD OR CALL MACRO INSTRUCTIONS:

Field Name
For LOAD For CALL

ADCC1L ADCC1C

ADCC1LB1 ADCC1CB1

ADCC2L ADCC2C

ADCC2LB1 ADCC2CB1

ADCPNAM ADCPNAM

DELETE ADCON GROUP

Field Name

ADCC3D

ADCC3DB1

ADCC4D

ADCPNAMD

IMPLICIT ADCON GROUPS

Field Name

ADCEP

ADCRV

Meaning

Control byte 1

Bit of control byte 1; specifies type of expli­
cit adcon group; bit is 0 for LOAD; 1 for CALL
adcon groups

Control byte 2

Bit of control byte 2; corresponds to the LDERR
operand

Eight-byte field containing as a character con­
stant the name of program to be loaded or called

Meaning

Control byte 3

Bit of control byte 3; corresponds to DELOPT
operand

Control byte 4 in which Dynamic Loader places
return code indicating results of DELETE re­
quest; return code of 0 indicates successful
deletion; code X'04' indicates no deletion took
place because module defining specified EP sym­
bol was not present in user's virtual storage
when request for deletion was given; code X'OSI
indicates no deletion took place because of
other outstanding references to specified
program

Eight-byte field containing as a character con­
stant the name of program to be deleted

Meaning

A four-byte adcon, aligned on a fullword boun­
dary, containing entry point of specified pro­
gram (V-value)

A four-byte adcon, aligned on a fullword boun­
dary, containing R-value of specified program

CAUTION: Because adcon groups must be capable of being changed, they
must not be generated in read-only control sections.

136

EXAMPLE 1: This coding sequence generates an implicit adcon group for
calling EXNAM, an externally defined entry point name:

LEXNAM

LA
CALL

ADCON

15,LEXNAM
(15) ",E

IMPLICIT, EP=EXNAM

EXAMPLE 2: This coding sequence generates a DELETE adcon group for
deleting only EXNAM, the specified module. EXNAM is assumed to have
been previously loaded.

DELETE EPLOC=LEXNAM

LEXNAM ADCON DELETE, EP=EXNAM,DELOPT=SMO

ADCOND -- Provide Symbolic Names for an Explicit Adcon Group (0)

The ADCOND macro instruction generates a dummy control section
~SECT) that provides symbolic names for the fields in an explicit adcon

group. The name of the generated DSECT is CHAADC.

This DSECT permits symbolic access to the resolved V-type and R-type
address constants which are placed in the explicit adcon group upon
execution of a LOAD or explicit CALL macro instruction. The control
byte C2 , which directs the loader to a course of action, may also be
accessed. For an explanation of the control byte, refer to the LOAD
macro instruction in this section.

r--------y---------T---,
I Name I Operation I Operand I
I------+-----+--~
I IADCOND I I L _____ ~ ________ ~ ___ J

CAUTION: The ADCOND macro instruction may be used only once in an
assembly.

PROGRAMMING NOTES: The C~ control byte is addressable by the following
names: ADCC1C (for CALL) or ADCC1L (for LOAD). The C2 control byte is
addressable as ADCC2C (for CALL) or ADCC2L (for LOAD). The C3 control
byte for DELETE is addressable by the symbolic name ADCC3D; the C con­
trol byte for DELETE has the symbolic name ADCC4D. The symbolic nameAD­
CVCON addresses the resolved V-type address constant. The symbolic name
ADCRCON addresses the resolved R-type address constant. When ADCC1C is
set to '00' (hexadecimal) a LOAD e~plicit adcon group is implied, and
when set to '01' (hexadecimal) an explicit CALL adcon group is implied.

The macro instruction may appear at any point in a control section.
However, if it is written at any location other than at the end of a
control section, the original control section must be resumed.

EXAMPLE: The following example illustrates how a program accesses a
field in an explicit adcon group. The program alters the C2 control
byte so that the loader will return codes which indicate the action of
the loader. Refer to the LOAD macro instruction in this section.

Loading and Linking 131

The ADCON macro instruction generates an explicit adcon group for a
LOAD. ARM readies the adcon group for use by a LOAD. The LA instruc­
tion places the address of the adcon group into register 5. A USING
statement es·tablishes a base register for CHAADC. The MVI instruction
sets the C2 control byte to 1; this setting requests the loader to
return codes when the adcon group is used by a LOAD.

RALPH ADCON

ARM
LA
USING
MVI

SQROUT DC
ADCOND

LOAD

RALPH,SQROUT
5,RALPH
CHAADC,5
ADCC2L,X 1 01 1

CL8 1 SQROUT 1

ARM -- Initialize an Explicit Adcon Group (0)

The ARM macro instruction initializes an explicit adcon group, so
that it may be used by a loadtype-E CALL macro instruction or a LOAD
macro instruction.

Explicit adcon groups must be initialized if:

1. They are to be used for the first time to refer to one program
where they have been used at least once for a different program.

2. .Adcon group has been used at least once and the associated program
has been deleted by the DELETE macro instruction.

3. They were generated by an ADCON macro instruction without the EP
operand.

r--------T---------T---,
I Name I Operation I Operand I
r--------f---------+---~
I [symbol] IARM Iloc-addrx,extref-addrx I L ________ ~ _________ ~ ___ J

loc
specifies the address of adcon group to be initialized.

extref
specifies the address of an eight-byte field that contains the
external name that is to be placed in the explicit adcon group;
i.e., the name of the module, entry point, or control section to be
loaded or called.

PROGRAMMING NOTES: After execution of the ARM macro instruction,
register 15 contains the address of the armed adcon group.

138

CALL -- Call a Module (S)

The CALL macro instruction passes control from one module to another
module or from one point in a module to another point within the same
module.

The module issuing the CALL macro instruction is referred to as the
calling module; the module receiving control is referred to as the
called module.

I ~-----------------T---'
I Name I Operation I Operand I
r---------f-----------------f---~
I [symbol] I CALL I entry- [SymbOl} , [(param-addr, •••)] , [VL] I
I I I l (15) I
I I I I
I I I [,loadtype- {E I!}] [, ID=absexp] I L-_________ ~ ____________ _i_ __ J

entry
specifies the symbolic name of an entry point to which control is
to be passed. If the module is not reenterable, the symbolic name
can be: the name of a control section; the name in the operand
field of an assembler language ENTRY statement; or a module name.
If the module is reenterable, control section name must not be
used. If (15) is written, and the loadtype is I, the address of an
implicit adcon group must be loaded into register 15 before execu­
tion of this macro instruction. If (15) is written and the load­
type is E, the address of an explicit adcon group must be loaded
into register 15 before execution of this macro instruction.

An implicit adcon group consists of two contiguous fullwords: the
v-type and R-type address constants of the entry point. These
address constants must be coded as a v-type followed by an R-type.
See Example 2, below.

The explicit adcon group may be generated through the ADCON macro
instruction. The ARM macro instruction can be used to reinitialize
the adcon group.

L ADCON CALL, EP=entry point name

Refer to the ADCON and ARM macro instructions in this section.

par am

VL

specifies addresses to be pass,ed as a parameter list to the called
program. The param operands must be written as a sublist, as shown
in the format description. If one or more param operands are writ­
ten, a parameter list is generated. It consists of a fullword for
each operand. Each fullword is aligned on a fullword boundary and
contains the address to be passed. The addresses appear in the
parameter list in the same order as in the macro instruction.

When the called program is entered, register 1 contains the address
of the parameter list.

specifies that the first word preceding the parameter list contains
a binary number equal to the number of parameters (including null
parameters) supplied by the param operand.

The operand parameter list is fixed-length if it contains a known
number of parameters every time the called program is given con­
trol. The list is variable length if it contains a varying number

Loading and Linking 139

of parameters. In the latter case, the VL operand should be writ­
ten so that the called program can determine the length of the
parameter list being passed to it.

loadtype

ID

specifies an explicit CALL, if E is written; an implicit CALL, if I
is writ:ten. The default condition is I.

specifies a binary calling sequence identifier for the CALL macro
instruction. The maximum value is 4095. This parameter may be
used to uniquely identify the CALL macro instruction. This para­
meter generates a NOP in TSS/360.

PROGRAMMING NOTES: The explicit CALL macro instruction causes the named
module to be loaded (if necessary) at object time; it may then be
deleted through use of the DELETE macro instruction. Refer to the
DELETE macro instruction in this section. If an implicit CALL macro
instruction is issued, the called object module is already in virtual
storage and may not be deleted by the calling object module through use
of the DELETE macro instruction.

If (15) is written for the entry operand of a loadtype E CALL macro
instruction, the explicit adcon group should be armed if necessary and
then reused for any subsequent CALLs to the desired program. ADCON is
capable of generating an armed adcon group; refer to the ARM macro
instruction in this section. However, the explicit adcon group is
altered by the execution of the first CALL macro instruction and cannot
be reused if the module has been deleted (refer to the DELETE macro
instruction). If an object module has not been loaded or has been
loaded and then deleted and it is desired to CALL it using a previously
used explicit adcon group, it is necessary to issue or reissue the ARM
macro instruction. The ARM macro instruction adjusts the explicit
adcongroup so that it may be reused. Refer to examples 4 and 5, the
ADCON macro instruction, and the ARM macro instruction.

If the entry operand is given as an internal symbol, it must appear
as the operand of an assembler language ENTRY statement. The reason for
this rule is that the called name must be in the program module dic­
tionary (PMD), if the CALL macro instruction is to execute properly.

Register 14 contains a valid return address when control is passed to
the called module. Therefore, by issuing a RETURN macro instruction or
branching to the address in register 14, control is transferred to the
instruction after the CALL macro instruction in the calling module. The
CALL macro instruction is advantageous because it eliminates the need
for writing linkage to the called module.

L- AND E-FORM USE: The L- and E-forms of this macro instruction are
written as described in "S-Type Macro Instructions" in Section I except
for the following special operand requirements:

140

r----------------------T----------------------T-----------------------,
1 Operand I L-Form I E-Form I
~----------------------+----------------------+-----------------------~
I entry I ignored , required I
I param I allowed I allowedi I
I VL I allowed2 I allowed2 I
I load-type I ignored I allowed I
I ID I ignored I allowed I
~-----------------------~----------------------~-----------------------1
liE-form param list entries overlay the corresponding L-form param listl
1 entries. I
121f VL is specified on the E-form, it must have been specified on the I
I L-formi if VL is not specified on the E-form, it must not have been I
I specified on the L-form. I L __ J

This example shows L- and E-form use:

ALPHA
BETA

CALL , (A"C) ,MF=L
CALL RTNA, (,B,) ,1D=36,MF=(E,ALPHA)

EXAMPLES: Typical implicit and explicit CALL use.

EXAMPLE 1 - Implicit CALL:

EX1 CALL ENT

When the CALL macro instruction in the calling program is executed,
control is passed to ENT.

EXAMPLE 2 - Implicit ad con group for an implicit CALL:

EX2 CALL (15), (ABC,DEF) ,VL

Calling program contains an implicit adcon group:

SAMNAM ADCON IMPLIC1T,EP=CLDRTN

Before the CALL macro instruction is executed, register 15 must be
loaded with the address of the adcon group; e.g., LA 15,SAMNAM.

When the called program
parameter list. The first
word, the address of DEF.
tains a 2, indicating that
ters follow.

EXAMPLE 3 - Explicit CALL:

is entered, register 1 points to a two-word
word contains the address of ABC; the second
The word preceding the parameter list con­
two words containing the addresses of parame-

EX3 CALL ATOL, (BAT,CAT) "E

At execution time, the program whose entry point name is ATOL is
loaded into virtual storage (if necessary) and control is transferred to
ATOL. When the called program is entered, register 1 points to a two­
word parameter list which contains the addresses of BAT and CAT.
Register 14 contains the return address.

Loading and Linking 141

EXAMPLE 4 -- Repetitive Explicit CALLS, reusing an explicit adcon group:

MAX
JOE

ARM
CALL

CALL

CALL

ADCON
DC

MAX, JOE
(15) ",E

(15) ",E

(15) ", E

CALL
CL 8 ' CALLEE'

EXAMPLE 5 Repetitive Explicit CALLs with an intervening DELETE and
reusing an explicit adcon group.

MAX
JOE

ARM
CALL

DELETE

ARM
CALL

ADCON
DC

MAX, JOE
(15) ", E

EP=CALLEE

MAX,JOE
(15) ",E

CALL
CL 8 ' CALLEE '

LOAD -- Load and Retain a Module (R)

The LOAD macro instruction is used to load a specified object module,
and all other object modules to which it (and they) are explicitly
linked, into the user's virtual storage. LOAD does not initiate program
execution. The specified module cannot be released until the task logs
off, executes a DELETE macro instruction, or executes an UNLOAD command.
(Refer to Command System User's Guide.) Note that this macro instruc­
tion does not initiate execution of the specified program.

r--------T---------T---,
'Name ,OperationlOperand ,
~-------+---------+---~
, [symbol] 'LOAD 'jEP=symbOl l ' , , , ,
, , I fddrxj , I , I EPLOC= ,
, , , (1) ,
L-_______ ~ _________ ~ ___ J

142

EP

EPLOC

specifies the symbolic name of an entry point in the module to be
loaded. The name must be the name of a control section, the name
in the operand field of an assembler language ENTRY statement, or a
module name.

specifies the address of the explicit adcon group representing the
module to be loaded. If (1) is written, the address of the expli­
cit adcon group must be loaded into parameter register 1 before
execution of this macro instruction.

This adcon group can be generated by:

L ADCON LOAD,EP=external name

PROGRAMMING NOTES: If the module has already been loaded, this macro
instruction is ignored.

The ADDC2L byte may be used to direct the dynamic loader to a course
of action when the specified module cannot be loaded. If ADDC2L is set
to 0, the loader takes a system prescribed error exit.

If an explicit adcon group is to be used for a LOAD macro instruc­
tion, it must first be initialized unless it has not yet been used and
it was generated by an ADCON macro instruction. ~efer to the ARM and
ADCON macro-instructions in this section.) If a loaded module has been
deleted and it is desired to load it again, the same explicit adcon
group may be reused provided it is reinitialized. After the LOAD macro
instruction has completed, register 15 contains the address of the spe­
cified entry point in the loaded module.

EXAMPLE 1:

If a module whose entry point name is ROGER, is to be loaded, the
following ADCON,macro instruction is specified:

TERI ADCON LOAD, EP=ROGER

Upon execution, LOAD EPLOC=TERI causes the module associated with the
entry-point name ROGER to be placed into virtual storage.

EXAMPLE 2:

LOAD EP=ALPHA

Upon execution of the LOAD macro instruction, a copy of the module asso­
ciated with the entry-point name ALPHA is placed into virtual storage.

EXAMPLE 3:

LOAD EPLOC= (1)

Before issuing the LOAD macro instruction, the user loads the address of
TERI into register 1; e.g., LA 1,TERI. The effect of this instruction
is then the same as in Example 1.

DELETE -- Delete a Loaded Module @)

, The DELETE macro instruction indicates that a copy of a specified
module, which was placed in virtual storage, is no longer required.
This specified module must have been previously acquired by the issuan-

Loading and Linking 143

ceof a LOAD macro instruction or an explicit CALL macro instruction.
Upon execution of this macro instruction, the specified module is
deleted from the issuing task's virtual storage.

r--------T---------T---,
,Name I Operation I Operand ,
..--------f---------f---~
, [symbol] I DELETE I ~EP=SymbOl U '
, I I EPLOC= [addrxl, ,
I I I l (1) j I L ___ . ____ .L ________ .L ___ J

EP

EPLOC

specifies the external name of the module to be deleted. This
external name must be the name of a control section, the name in
the operand field of an assembler language ENTRY statement, or a
module name.

specifies the address of the delete adcon group representing the
module to be deleted. If (1) is written, the address of the adcon
group must have been loaded into parameter register 1 before execu­
tion of this macro instruction.

This delete adcon group is generated by:

ADCON DELETE,EP=external name

EXAMPLE 1:

If the module associated with the external name EARL is to be
deleted, and the following ADCON macro instruction is supplied:

DAVE ADCON DELETE,EP=EARL

The macro instruction MAX DELETE EPLOC=DAVE causes the module asso­
ciated with EARL to be deleted.

EXAMPLE 2:

SARP DELETE EP=ALPHA

The module associated with the external symbol ALPHA is deleted.

EXAMPLE 3: ------
NAM DELETE EPLOC= (1)

Before this DELETE macro instruction is executed, the address of the
delete adcon group must be loaded into register 1; e.g., LA 1,FAM. The
effect of this macro instruction is then the same as in Example 1.

SAVE -- Save Register Contents (0)

The SAVE macro instruction is normally written at each entry point of
a called program. Upon entry to the program, SAVE stores the contents
of specified registers in a save area provided by the calling program.
The saved register contents may then be restored by a RETURN macro
instruction, assembler language LM instruction, or other programming
techniques.

144

I T--------~------ 1
I Name I Operation I Operand I
~----+---------+---~ I [symbol] I SAVE I (reg.-integer [,reg2-integer]) , [T] I
I I I I
I I I [,id- rcharacters~] I
I I I l *) I L-_____ ~ _______ ~ ___ J

reg.,reg2
specify the range of registers whose contents are to be stored in
the save area defined by the calling program that is pointed to by
register 13. The operands are written as decimal numbers so that,
when inserted in an assembler language STM instruction, they cause
the contents of the desired registers in the range of 14 through 12
(i.e., 14, 15, and 0 through 12) to be stored. The contents of
register 14 and 15, if specified, are saved in words 4 and 5 of the
save area; the contents of registers 0 through 12, if specified, in
words 6 through 18. The contents of a given register are always
saved in a particular word in the save area. For example, the con­
tents of register 3 are always saved in word 9 of the save area,
even if contents of register 2 are not saved.
The reg1 and reg2 operands must not request saving the contents of
register 13 which is the pointer to the save area.

If reg2 is omitted, only the contents of the register specified by
reg. are saved.

Note: T and id are parameters used to facilitate tracing; i.e., check­
ing program flow. There is no tracing in Time Sharing System/360; these
parameters are provided for compatibility with the IBM System/360
Operating System.

T

id

specifies that the contents of registers 14 and 15 are to be saved
in words 4 and 5 of the save area, if not already saved by the
reg4, reg2 operands. If the T and reg2 operands are present and
the regt operand is 14, 15, 0, 1, or 2, the contents of all regis­
ters from 14 through the reg2 value are saved.

specifies the identifier of the entry point at which the SAVE macro
instruction is located. The operand is a character string of as
many as 255 characters; it must contain no blanks or commas.
Because it can have a length greater than eight characters, the
operand can be a combination of a data set name and a 'program name,
or some other complex name.

If this operand is written as an asterisk, the entry-point identi­
fier is the same as the symbol in the name field of this macro
instruction. If the name field is blank, the name of the control
section containing the SAVE macro instruction is used.

PROGRAMMcrNG NOTES: If the called routine is to use register 13, it must
save the contents of register 13 and, before termination, restore it.
The SAVE macro instruction must not be used for this saving.

When the macro is expanded, both the entry-point identifier and the
count of the number of bytes in the identifier, in that order, are
placed in front of the actual entry point to the SAVE routine. The
entry point identifier is assembled starting at the nearest possible
halfword boundary preceding the actual entry point. Because the count
byte always immediately precedes the entry point an extra byte is some­
times needed to achieve the required halfword alignment for the identi­
fier string. When the extra byte is needed, a character blank is

Loading and Linking 145

inserted at the end of the entry point identifier, immediately preceding
the count byte. The count byte will contain a count equal to the number
of characters in the identifier plus the blank (if used). The count
byte, itself, is not included in the count.

A symbol in the name field of a SAVE macro instruction is an entry­
point name. The entry-point name and the entry-point identifier are ~he
same only if the last operand of the macro instruction is an asterisk.
The entry-point name is used in passing control to the entry point. If
a program in another assembly module is to branch to the entry point,
the entry-point name should be an operand of an assembler-language ENTRY
statement provided by the user in the current assembly module.

EXAMPLES: EX1 saves the contents of registers 14 through 10. The con­
tents of registers 1 and 15 (and registers 0 and 1) are saved because
the T operand is written. The entry point identifier is F4RTNA7B99.
EX2 saves registers 3 and 4. The entry point identifier is EX2.

r------------------------------~--------------------------------------,
I Examples I Macro Expansions I
l--------------------------+--------------------------------~
I EX1 SAVE (2,10) ,T,F4RTNA7B99I DC OH I
I I DC CL11'F4RTNA7B99',FL1'11' I
I I I
I I EX 1 STM 1 4, 1 0, 1 2 (1 3) I
I I I
I EX2 SAVE (3,4) ,,* I DC OH I
I I DC CL3'EX2',FL1'3' I
I I I
I I EX2 STM 3,4,32 (13) I L-_____________________________ ~ _____________________________________ J

RETURN -- Return to a Program (~

The RETURN macro instruction, issued in a called program, returns
control to the calling program. The function of this macro instruction
depends on how it is used.

1. If the first program to receive control from the system issues a
RETURN macro instruction to return control to the system, the
effect is the same as if an EXIT macro instruction had been issued.

2. A program which follows Type I linkage conventions and is given
control by the CALL macro instruction, can return control to the
program which called it by issuing a RETURN macro instruction.

The RETURN macro instruction may also be used to restore the contents
of the regis,ters of the calling program that were saved by the SAVE
macro instruction issued in the called program.

r--------T--------T---,
I Name I Operation I Operand I
~-------+--------+---~
I I I fbsex] I I [symbol] IRETURN I [(reg l -integer [,reg2-integer)) [,T) [,RC=] I
I I I (15) I l ________ ~, _______ ~ ___ J

reg ll , reg2

146

specifies the range of registers whose contents are to be restored
from the save area of the calling program. The operands are writ­
ten as decimal numbers such that, when inserted in an LM instruc-

T

RC

tion, they cause the contents of the desired registers in the range
from 14 through 12 (i.e., 14, 15, and 0 through 12) to be restored.

The contents of registers 14 and 15, if specified, are restored
from words 4 and 5 of the save area; the contents of registers 0
through 12, if specified, restored from words 6 through 18. If
reg2 is omitted, only the register content specified by regf is
restored. If both reg~ and reg2 are omitted, no register contents
are restored.

The address of the save area defined by the calling program must be
loaded into register 13 before execution of this macro instruction.

specifies that a (1) is set in the low-order bit of the forward
link, word 3, in the save area defined by the calling program.
This action occurs after completion of the register reloading spe­
cified by the first operand. The bit is set to stop the forward
chain.

This parameter is supplied to facilitate tracing; i.e., checking
program flow. There is no tracing in TSS/360; this parameter is
provided for compatibility with the IBM System/360 Operating
System.

specifies a return code that is to be placed in the 12 low-order
bits of register 15, the return-code register. The value of the
absolute expression must be a multiple of 4 in the range from 0
through 4092 or diagnostics will be issued.

If (15) is written, the return code must have been loaded into
register 15 before execution of this macro instruction.

PROGRAMMING NOTES: The contents of register 14, the return register,
must be restored by means of the first' operand of the macro instruction;
or it must be correctly loaded before the macro instruction is executed.

The reg1 and reg2 operands must not specify that the contents of
register 13, the save area register, are to be restored. If the con­
tents of register 13 are to be saved and restored, it should be done
according to linkage conventions as described in Appendix E. The RETURN
macro instruction assumes that save area register (register 13) is
correctly positioned to the save area defined by the calling program.

If no return code is specified, the contents of the return code
register (register 15) will not be changed unless reg1 and reg2 span the
return code register. When a RETURN macro instruction terminates a pro­
gram, the return code in register 15 can be interrogated by the calling
program.

EXAMPLES: In the following examples, EX1 is a RETURN macro instruction
that restores the contents of registers 2 through 10. A 1 is placed in
the low-order bit of word 3 in the save area. EX2 restores the contents
of registers 14 through 5 and places a return code of 12 in register 15.
EX3 does not restore the contents of any register; however, control is
returned to the calling program.

EX1
EX2
EX3

RETURN
RETURN
RETURN

(2,10) ,T
(14,5) ,RC=12

Loading and Linking 147

DELET* -- Enter DELETE Service Routine (0)

The DELET macro instruction passes control to· the task monitor for
the explicit purpose of entering the DELETE service routine.

DLINK* -- Dynamic Linkage Request (0)

The DLINK macro instruction passes control to the task monitor for
the explicit purpose of entering the dynamic loader.

ENTER* -- Enter a Privileged Routine (~

The ENTER macro instruction enables a privileged routine to be
entered from a nonprivileged routine.

INVOKE* -- Transfer Control (0)

The INVOKE macro instruction uses the restricted linkage conventions
to transfer control from one program or routine to another.

LIBESRCH* -- Locate Program Module in External Library (S)

The LIBESRCH macro instruction determines if a particular program
module has been defined in any of the libraries opened for the current
task (i.e., LOGON to LOGOF~ and what library the module is located on.

RESUME* -- Restore Registers (0)

The RESUME macro instruction restores the contents of the specified
registers from the area specified and unconditionally returns control to
the calling program.

STORE* -- Store Register Contents (0)

The STORE macro instruction stores the contents of the specified
register or registers in a specified area.

* Although these macro instructions are available to all users, they are
employed primarily by system programmers; therefore, refer to System
programmer's Guide, Form C28-2008, for a discussion of these macro
instructions.

148

INTERRUPT HANDLING FACILITIES

TSS/360 provides interrupt handling facilities which permit the user
to control task interrupts. User coded routines can be invoked to ser­
vice interrupts; these routines must decide how to respond to each type
of interrupt and can even elect to ignore certain interrupts. The macro
instructions which are available to a user for creating interrupt handl­
ing routines are briefly summarized below.

SIR

SPEC

SSEC

SEEC

SMC

S~C

SIEC

DIR

SAI

defines a user routine (named via a SPEC, SAEC, SIEC, SEEC, STEC,
or SSEC macro instruction) to the system as an interrupt handling
routine for a specific type of interrupt and specifies the pro­
cessing priority for that routine. This routine replaces any
system supplied interrupt handling routines permanently, for this
type of interrupt, unless it is subsequently deleted from the
system via the DIR macro instruction. If DIR is issued, the sys­
tem supplied interrupt handling routines are reinstated.

names a user coded program interrupt servicing routine and pro­
vides·system control reference areas in which data pertaining to
a program interrupt can be recorded. The named routine must be
defined to the system as an interrupt handling routine by a SIR
macro instruction.

names a user coded supervisor call (SVC) interrupt serv1c1ng rou­
tine and provides system control reference areas in which data
pertaining to an SVC interrupt can be recorded. The named rou­
tine must be defined to the system as an interrupt handling rou­
tine by a SIR macro instruction.

names a user coded external interrupt handling routine and pro­
vides system control reference areas in which data pertaining to
an external interrupt can be recorded. The named routine must be
defined to the system as an interrupt handling routine by a SIR
macro instruction.

names a user coded asynchronous interrupt handling routine and
provides system control reference areas in which data pertaining
to asynchronous interrupts can be recorded. The named routine
must be defined to the system as an interrupt handling routine by
a SIR macro instruction.

names a user coded timer interrupt handling routine and provides
system control reference areas in which data pertaining to timer
interrupts can be recorded. The named routine must be defined to
the system as an interrupt handling routine by a SIR macro
instruction.

names a user coded input/output interrupt handling routine and
provides system control reference areas in which data pertaining
to I/O error interrupts can be recorded. The named routine must
be defined to the system as an interrupt handling routine by a
SIR macro instruction.

deletes a user coded routine, previously defined to the system as
an interrupt handling routine by a SIR macro instruction, from
the system, thereby eliminating its use as an interrupt handling
routine. The routine can no longer service interrupts unless
redefined to the system as an interrupt handling routine be a SIR
macro instruction.

saves the task's current interrupt servicing status indicator and
specifies that interrupts are not to be allowed during subsequent
execution in that program. Interrupts are inhibited until a sub-

Interrupt Handling Facilities 149

sequent RAE macro instruction is issued. Interrupts occurring
while the inhibit indicator is on are saved and queued for handl­
ing when the indicator is reset to enable.

RAE restores the tasks interrupt serv1c1ng status previously saved by
a SAl macro instruction and depending on what that status is
(i.e., enable or inhibit) continues processing. If the previous·
status was- enable, any interrupts that occurred while the program
was in the inhibit state, are then processed.

INTINQ generally used in an interrupt servicing routine to examine the
interrupt information recorded in the control reference areas
established by a SIR macro instruction for the interrupt routine
in which INTINQ is issued.

USATT causes subsequent attention interrupts to be processed by a user
coded routine that was previously established as an interrupt
handling routine by the SIR and SAEC macro instructions.

CLATT causes subsequent attention interrupts to be processed by the
system; it relinquishes a userls control of attention handling
interrupts previously granted by a USATT macro instruction.

AETD causes subsequent attention interrupts to be processed by anyone
of several user coded routines depending on the number of times
the attention key is hit. Control of attention interrupts is
returned to the system when an AETD macro instruction with no
operand is issued.

Detailed explanation of the above macro instructions and the formats
in which they may be specified are shown below. Further information
pertaining to interrupt handling and the related macro instructions can
be found in IBM System/360 Time Sharing System: Assembler Programmerls
Guide, Form C28-2032.

SIR -- Specify Interrupt Routine (S)

The SIR macro instruction establishes control references for the
userls interruption routine and specifies its processing priority. The
control references inform the system of the presence of interrupt con­
trol blocks that specify the interruptions to be serviced by user
routines.

r--------T--'-------T---,
I Name I Operation I Operand I
1-------+-------+---~ I [symbol] I SIR I (icb-addr, •••) [, PRTY=integer] I
I r I [, INHIBIT=YES I NO] r L---_____ ~ __ , ______ ~ ___ J

icb
specifies the address of an interrupt control block (ICB) estab­
lished by a SPEC, SAEC, SIEC, SSEC, STEC or SEEC macro instruction.

INHIBIT

150

specifies whether the interruption routines established by this
macro instruction may be interrupted by a higher priority interrup­
tion routine. If this operand is invalid or omitted, the option
YES is assumed for privileged programs and NO for nonprivileged
programs where:

PRTY

YES

NO

specifies that the routine may not be interrupted by higher
priority routines.

specifies that the routine may be interrupted by higher
priority routines.

is a decimal integer specifying the processing priority for the
interruption routine defined by the ICB referred to by the icb
operand. Priorities from 0 to 127 are available for nonprivileged
routines, and 12S-240 are reserved for privileged routines. An
assembly error message will be provided if the priority is invalid.
If the priority is invalid or omitted, a priority of 0 is assumed
for nonprivileged routines and a priority of 12S for privileged
routines.

CAUTION: If this macro instruction is included in a module that is
declared privileged (through use of the DCLASS macro instruction), the
address of a save area must be placed in register 13 before execution of
this macro instruction.

PROGRAMMING NOTES: The priority of an interruption routine is actually
determined by two factors: First, is the priority specified in its SIR
macro instruction. priority increases with the magnitude of the priori­
ty code; e.g., priority 10 is higher than 9. The second factor pertains
to two or more interruption routines specified with the same priority;
e.g., for the same device (for I/O and asynchronous ICBs) or same inter­
ruption type (for SVC, Timer, Program and External). Within such a
group, priority increases with the order in which the routines were spe­
cified; the highest priority goes to the routine appearing last in the
last SIR macro instruction.

The priority of an interruption routine may be changed by another SIR
macro instruction, but only if the control references have first been
deleted by a DIR macro instruction.

If the same ICB is referred to more than once in a single SIR macro
instruction, only the first reference is used; subsequent references are
ignored.

Normally, re-issuing a SIR on an ICB that has been previously SIRRED
will result in an immediate return with an error code of 'OS' in regist­
er 15. However, if an ICB created via a STEC macro instruction has a
second SIR issued for it without any intervening DIR macros being
issued, the timing intervals that were previously set in the ICB are
automatically reset to their original values. In this case, the user
mustre-SIR the same ICB with the same priority and the same inhibit
option, in order to get proper results.

At object time, the following error conditions cause immediate
return, with the error code in register 15, and the address of the inva­
lid IeB in register 1:

Code
04

OS
OC

10

Condition
ICB contains invalid DCB (for input/output and asynchronous
ICBs only) or invalid time or clock number specified (for
timer) •
ICB specified previously by another SIR macro instruction.
Invalid parameter (ICB or length invalid, or a nonprivileged
user requests privileged priority or has privileged flag on in
parameter area) •
Total user time will exceed 71/2hours. Time not set.

Interrupt Handling Facilities 151

L- AND E-FORM USE: The parameter list (list of ICB addresses) set up by
L-form of this macro instruction can also be used by the DIR macro
instruction g for del~tion of interruption routines.

An ICB address of 0 in the L-form of the macro instruction will cause
space to be reserved in the list. If this address is still 0 when the
E-form is executed, it is treated as a no-operation (NO~.

EXAMPLE 1:

LIST1 SIR (O,O,C,D) ,PRTY=5,MF=L

This macro instruction will, when executed, construct a list of four
ICB addresses, two of which are 0, and will define a priority of 5 for
each ICB.

EXAMPLE 2:

EX2 SIR (,B) ,MF= (E,LIST1)

When executed, this macro instruction places the address of B (an
ICB) into-the second ICB address field of LIST1, and then establishes
control references for each ICB in the list, ignoring the first because
the address is still O.

EXAMPLE 3:

EX3 SIR (A, 0, 0, 0) ,MF= (E,LIST1)

When executed, this macro instruction places the address of A into
the first IeB address field of LIST1, sets the remaining three fields to
0, and then establishes control references to A.

SPEC -- Specify Program Entry Conditions (S)

The SPEC macro instruction creates an interrupt control block (ICB)
to service program interrupts, and specifies the address of a communica­
tion area and the interrupt handling routine's entry point.

r--------T---------T--,
I Name Operation I Operand I
l- +---1
! [synWol) SPEC ! [EP=synWol) [(r;\z:::::~{~~~:ger . ll, ... 1
! ! ,INTTYP= (\ LEj L {COde 1nteger-1n}tegeri)if.~. NU2 J
I I ,inttype- integer ,... SAVE
I I integer-integer RESTORE
I I [,MF=!d (E,icb-raddrx~)]
I I l (1) J L-______ ~ __ . _____ i-__ _

EP

152

specifies the entry point name of the interrupt routine to which
control is to be transferred when an interruption of the type spe­
cified by INTTYP occurs.

COMAAEA
specifies the address of an area in main storage, aligned on a ful­
lword boundary, that is to be used by the control program to pass
interruption information to the interruption routine.

INTTYP
specifies the types of interruptions that will cause entry to the
interruption routine; where

A

S

R

specifies that the interruption information (code) that fol­
lows is to be added to the existing INTTYP field of the ICB.

specifies that the interruption information (code) that fol­
lows is to be subtracted from the existing INTTYP field of the
ICB.

specifies that the interruption information (code) that fol­
lows is to replace the existing INTTYP field of the ICB.

integer

code

NULL

SAVE

consists of one or more decimal integers (1 through 15) ,
representing program interruptions. A range of interruptions
can be indicated by two integers separated by a hyphen; e.g.,
7-11.

specifies a mnemonic for one of the 15 program interruptions.
The integer values and code mnemonics are:

Integer
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Code
OP

M
EX
P
AD
SP
D
IF
IK
DF
DK
E
U
LS
FK

Meaning
operation
privileged
execution
protection
addressing
specification
data
fixed-point overflow
fixed-point divide
decimal overflow
decimal divide
exponent overflow
exponent underflow
significance
floating-point divide

indicates that none of the types of interruptions covered by
INTTYP is to be serviced.

specifies that the contents of the INTTYP field of the ICB are
to be saved. If this or NULL or RESTORE is written, the A, S,
or R and interruption type codes are not written.

RESTORE

icb

specifies that the contents of the INTTYP field of the ICB are
to be replaced with the mask saved by an INTTYP=SAVE operand
in a previous SPEC macro instruction.

specifies the address of the interrupt control block.

Interrupt Handling Facilities 153

PROGRAMMING NOTES: The format of the first three words of the interrupt
control block is:

r--,
ICB +0 I COMAREA ADDR I

~--~
+4 I RESERVED I

~--~
+8 I INTTYP MASK I l __ J

INTTYP MASK is arranged so that bit l=operation, bit 2=privileged
operation, etc. (See INTTYP.)

Upon entry to an interruption routine, the COMAREA will contain the
information relating to the interruption to be serviced. The format of
the communication area and a description of its contents are shown here.

r----------------T------------T----------------------------,
I Hex '00' I NOT IINTTYP I

COMAREA + 0 I I USED I I
~----------------..L---------..L---------------------------~

+4 I ADDRESS FROM VPSW I
~--~

+8 I RESERVED I
~--~

+12 I RESERVED I l __ J

INTTYP
is a hexadecimal value from 1 to 15 representing the program
interrruption type.

L- AND E-FORM USE: If neither L- nor E-form is specified, L is assumed.
There is no standard S-type fUnction for this macro instruction since no
linkage is performed. The in-line code for the E-form is to alter the
contents of an ICB. Therefore the operand MF=(E,icb-addr) with no other
operands is meaningless and produces an assembly error message.

The A, S, R, SAVE or RESTORE operands are written only in the E-form
of the macro instruction.

EXAMPLE 1:

EX1

COM1

SPEC
DS
DS

EP=PROG1,COMAREA=COM1,INTTYP=(1,3,5-10) ,MF=L
OF
CL16

The ICB may be referred to by the symbolic name EX1. Conditions are
defined for an interruption routine whose initial entry point is the
location specified by the symbolic name PROG1. Only program interrup­
tion types 1, 3 and 5-10 will be processed by this interruption routine.
If one of those interruptions occurs, an entry will be mad"e to PROG 1 and
the interruption data will be in the first two words of COM1 and the
address of EX1 will be in register 1. The first word of EX1 will con­
tain the address of COM1.

EXAMPLE 2:

EX2 SPEC INTTYP= (A, 11-15) ,MF= (E,EX 1)

This macro instruction will, when executed, cause the ICB EX1 to be
modified to include program interruptions 11 to 15 to be processed by
the routine with entry point PROG1.

154

Macro Instruction EX2 could also be written as:

EX2 SPEC INTTYP= (A,DK,E,U,LS,FK) ,MF= (E,EX1)

Note that the macro instruction EX2 could be within the interruption
routine PROG1.

SEEC -- Specify External Entry Conditions (S)

The SEEC macro instruction creates an interrupt control block (ICB)
to service external interruptions, and specifies the address of a com­
munication area and the interrupt handling routine's entry point.

Note: This macro instruction should be used only by those programs
which may also use the VSEND macro instruction.

r--------T---------T---,
I Name I Operation I Operand I
~-------+---------+---i
I [symbol] I SEEC I [EP= rsymbol~] [, COMAREA=addr] I
I I I l (O) J I
I I I _ I
I I I [, INTTYP=integer] [,MSGAREA=addr] , I
I I I [, MSGLTH=integer] [, MF=!d (E, icb-r addrx~)] I
I I I l (1) J I L ________ ~ _________ ~ ___ J

EP
specifies the entry point of the interruption routine to which con­
trol is to be transferred when an interruption occurs for the mes­
sage specified by INTTYP.

If this operand is omitted or if EP=O is specified, the user must
place the entry point name of the interruption routine in the para­
meter list generated by this macro instruction.

COMAREA
specifies the address of an area in main storage, aligned on a ful­
lword boundary, that is to be used by the control program to pass
interruption information to the interruption routine.

INTTYP
specifies the message number (0-240) that will cause entry to the
interrupt routine. Message numbers 0 to 127 are reserved for pri­
vileged programs, and message numbers 219 to 240 are reserved for
nonprivileged programs. Numbers 128 to 218 are not available for
use.

MSGAREA
specifies the address of an area into which the message is to be
moved.

MSGLTH

ICB

specifies the length in doublewords of the message. This operand
may not specify a value greater than 238.

specifies the address of the interrupt control block.

CAUTION: If an interruption routine is to serve multiple messages, a
separate ICB must be defined (SEEC macro instruction) and specified (SIR
macro instructio~ for each message, and the routine must be
reenterable.

Interrupt Handling Facilities 155

PROGRAMMING NOTES: The message number (INTTYP) in an ICB should not be
changed while the associated routine is active (currently processing or
interrupted before completion of its processing) without first deleting
the interruption routine with a DIR macro instruction. After changing
the INTTYP, the routine must be re-established with a SIR macro
instruction.

The format of the first three words of the interrupt control block
is:

r--,
ICB +0 I COMAREA ADDR I

~---~
+4 I RESERVED I

~--~
+8 I RESERVED I L __ J

Upon entry to an interruption routine, the COMAREA will contain the
information relating to the interruption to be serviced. The format of
the communication area and a description of its contents are shown here.

r---------------T------------T--------------------------,
COMAREA +0 I Hex '02' I MSGLTH I INTTYP I

~--------------~------------~-------------------------~
+4 I MSGAREA ADDRESS I

~--~
+8 I RESERVED I

~--~
+12 I RESERVED I L __ J

MSGLTH
specifies the length (0-238) in doublewords of the message which
has been moved.

INTTYP
specifies the message number (0-255) that will cause entry to the
interruption routine. Message numbers 0 to 127 are reserved for
nonprivileged programs, and message numbers 219 to 255 are reserved
for privileged programs. Numbers 128 to 218 are not available for
use.

MSGAREA
specifies the starting address of an area into which the message
has been moved.

L- AND E-FORM USE: If neither L- nor E-form is specified, L is assumed.
There is no standard S-type function for this macro instruction since no
linkage is performed. The in-line code for the E-form is to alter the
contents of an ICB. Therefore the operand MF=(E,icb-addrx) with no
other operands is meaningless and will produce an assembly error
message.

EXAMPLE 1:

ICBE1

AREA 1
AREA2

SEEC

DS
DS
DS

EP=PROG1,INTTYP=4,COMAREA=AREA1,MSGAREA=AREA2,
NSGLTH=72,MF=L
OF
CL16
72D

The ICB may be referred to by the symbolic name IeBE1. Conditions
are defined for an interruption routine whose initial entry point is the
location specified by the symbolic name PROG1. When an interruption

156

forrnessage #4 (as specified by the INTTYP operand) causes entry to
PROG1, the interruption data will be present in the first four words of
AREAl, and the address of a parameter list containing the address of the
COMAREA will be in register 1.

EXAMPLE 2:

SEEC INTTYP=6,MF=(E,ICBE1)

This macro instruction will, when executed, cause the ICB defined in
example 1 to be modified, allowing interruptions for message #6 to be
processed by the routine with entry point at PROG1.

SSEC -- Specify Supervisor Call Entry Conditions (S)

The SSEC macro instruction creates an interrupt control block (ICB),
to service SVC interrupts, and'specifies the address of a communication
area and the interrupt handling routine's entry point.

r------~---------T---,
'Name I Operation I Operand I
~-------+---------+---~
I [symbol] I SSEC I [EP= rsymbol~] [,COMAREA=addr] I
I I I l 0 J I
, I , [, INTTYP=integer] I
, I I [,MF=!d (E,icb- raddrx~)] I
, 'I l (1) J I L-_______ ~ _________ ~ ___ J

EP
specifies the entry point of the interruption routine to which con­
trol is to be transferred when an interruption of the type speci­
fied by INTTYP occurs.

If this operand is omitted or if EP=O is specified, the user must
place the entry point name of the interruption routine in the para­
meter list generated by this macro instruction.

COMAREA
specifies the address of an area in main storage, aligned on a ful­
lword boundary, that is to be used by the control program to pass
interruption information to the interruption routine.

INTTYP

icb

specifies the I field of the SVC instruction the execution of which
will cause entry to the interruption routine. It may have a value
from 0 to 63.

specifies the address of the interruption control block.

CAUTION: If an interruption routine is to serve multiple SVCs, a separ­
ate ICB must be defined (SSEC macro instruction) and specified (SIR
macro instruction) for each SVC to be serviced and the routine must be
reenterable.

PROGRAMMING NOTES: The INTTYP in an ICB should not be changed while the
associated routine is active (currently processing or interrupted before
completion of its processing) without first deleting the interruption
routine with a DIR macro instruction. After changing the SVC-integer,
the routine must be reestablished with a SIR macro instruction.

Interrupt Handling Facilities 157

The format of the first three words of the interrupt control block
is:

r--,
ICB +0 I COMAREA ADDR I

~---~
+4 I RESERVED I

~--~
+8 I SVC-integer I L-___ J

Upon entry to an interruption routine the COMAREA will contain the
information relating to the interruption to be serviced. The format of
the communication area and a description of its contents are:

r----------------T------------~---------------------------,

I Hex '01' I NOT I INTTYP I
COMAREA +0 I I USED I I

~---------------~-----------~---------------------------~
+4 I address in VPSW at time of interrupt I L __ J

INTTYP
identifies the SVC I field value 0 to 63.

L- AND E-FORM USE: If neither L- nor E-form is specified, L is assumed.
There is no standard S-type function for this macro instruction since no
linkage is performed. The in-line code for the E-form is to alter the
contents of an ICB. Therefore the operand MF=(E,icb-addrx) with no
other operands is meaningless and will produce an assembly error
message.

EXAMPLE 1:

EXl

COM 1

SSEC
DS
DS

EP=SVC1,COMAREA=COM1,INTTYP=12,MF=L
OF
CL20

The ICB may be referred to by the symbolic name EX1. Conditions are
defined for an interruption routine whose initial entry point is the
location specified by the symbolic expression SVC1. An interruption
caused by the execution of an SVC with an I field of 12 will cause entry
to SVC1. Register 1 will contain the address of the ICB, the first word
of which contains the address of COM1.

EXAMPLE 2:

EX2 SSEC INTTYP=29,MF=(E,EX1)

This macro instruction will, when executed, cause the interrupt con­
trol block EX1 to be modified t.o change the SVC I field handled by the
SVCl interruption routine from 12 to 29.

Note: An ICB has not been defined to the system until it has been spe­
cified in a SIR macro instruction.

SAEC -- Specify Asynchronous Entry Conditions (S)

The SAEC macro instruction creates an interrupt control block (ICB)
to service asynchronous interruptions, and specifies the address of a
communication area, the data control block, and the interrupt handling
routine's entry point.

158

r--------T---------T---,
I Name I Operation I Operand I
..-------+------+---1
I [symbol] ISAEC I [EP= [symbol i\ [,DCB=addr] [,COMAREA=addr] I

I , l[lO) J I
I I I , {INTTYP ~ = r [AI S IBl {,code} ••• j I
I I I l ATTNTyrj NULL I
I I I SAVE I
I I I RESTORE I
I I I I
I I I [,MF=!d (E,ich- [addrx~)] I
I I I l (1)) I L-_____ ~ ________ ~ __ J

EP

DCB

specifies the entry point of the interruption routine to which con­
trol is to be transferred when an interruption of the type speci­
fied by INTTYP occurs.

If this operand is omitted or if EP=O is specified, the user must
place the entry point name of the interruption routine in the para­
meter list generated by this macro instruction.

specifies the address of a previously opened data control block
associated with the unit for which the routine is to service
interruptions.

COMAREA
specifies the address of an area in main storage, aligned on a ful­
lword boundary, that is to be used by the control program to pass
interruption information to the interruption routine.

INTTYP or ATTNTYP
specifies types of interruptions that will cause entry to the
interruption routine.
A

S

R

code

specifies that the interruption information (code) is to be
added to the existing INTTYP field of the ICB.

specifies that the interruption information (code) is to be
subtracted from the existing INTTYP field of the ICB.

specifies that the interruption information (code) is to
replace the existing INTTYP field of the ICB.

specifies the type or types of interruptions to be added to,
subtracted from, or to replace the INTTYP field of the ICB,
and can be written as one or more of the following: ATTN,
CANCEL, ALL, EOS, and AE. These codes are:

ATTN
indicates an attention interruption.

CANCEL
indicates that the routine is to service interruptions
from the CANCEL key on the alphameric keyboard. The CAN­
CEL key should be reserved to request control program
intervention.

Interrupt Handling Facilities 159

icb

NULL

SAVE

ALL

EOS

AE

indicates that the routine is to service interruptions
from all sources.

indicates that the routine is to service interruptions
caused by execution of end-of-order-sequence orders.

indicates that the routine is to service interruptions
caused by asynchronous errors.

indicates that none of the types of interruptions covered by
INTTYP are to be serviced.

specifies that the contents of the INTTYP field of the icb are
to be saved. If this or NULL or RESTORE is written, the A, S,
or R and interruption type codes are not written.

RESTORE
specifies that the contents of the INTTYP field of the reB are
to be replaced with the mask saved by an INTTYP=SAVE operand
in a previous SAEC macro instruction.

specifies the address of the interrupt control block.

CAUTION: If an interruption routine is to serve multiple units, a
separate ICB must be defined (SAEC macro instructio~ and specified (SIR
macro instruction) for each unit and the routine must be reenterable.

PROGRAMMING NOTES: The data control block address in an IeB should not
be changed while the associated routine is active (currently processing
or interrupted before completion of its processing) without first delet­
ing the interruption routine with a DIR macro instruction. After chang­
ing the DCB address, the routine must be re-established with a SIR macro
instruction ..

The format of the first three words of the interrupt control block
is:

r--,
ICB +0 I COMAREA ADDR I

~--~
+4 I DeB ADDR I

~--~
+ 8 I RESERVED I L __ J

Upon entry to an interruption routine, the COMAREA will contain the
information relating to the interruption to be serviced. The format of
the communication area and a description of its contents are:

r----------------T------------T----------------------------,
COMAREA +0 I Hex '03' I RESERVED I INTTYP I

~----------------~------------~----------------------------~
+ 4 I SENSE DATA I

~--~
+8 I RESERVED I

~--~
+12 I RESERVED I L __ J

160

INTTYP
indicates the type of interruption that occurred r by one of the
following hexadecimal codes:

Code
~
05
06

~
EOS (end-order-sequence)
CANCEL key (or ATTN)
AE (asynchronous error)

L- AND E-FORM USE: If neither L- nor E-form is specified r L is assumed.
There is no standard S-type function for this macro instruction since no
linkage is performed. The in-line code for the E-form is to alter the
contents of an ICB. Therefore the operand MF=(Ericb-addrx) with no
other operands is meaningless and will produce an assembly error
message.

The Ar Sr Rr SAVEr and RESTORE operands are specified only in the
E-form of this macro instruction.

EXAMPLE 1:

ICBX1

AREA 1

SAEC

DS
OS

EP=AR1 r DCB=GRAPHD1 r INTTYP=(ALL) r
COMAREA=AREA1 rMF=L
OF
CL16

The ICB may be referred to by the symbolic name ICBX1. Conditions
are defined for an interruption routine whose initial entry point is the
location specified by the symbolic name AR1. All interruptions will be
processed by this interruption routine. When an interruption on the
device specified by the DCB operand GRAPHD1 causes entry to AR1r the
interruption data will be present in the first four words of AREA1; the
address of a two-word parameter list containing the addresses of the
COMAREA and the DCB will be in register 1.

STEC -- Specify Timer Entry Conditions (S)

The STEC macro instruction creates an interruption control block
(ICB) to service timer interruptions r and specifies the address of a
communication area and the interruption handling routine's entry point.

r--------T---------T------------------------~-------------------------,
I Name I Operation I Operand I
~------+---------+---~
I I I [EP= [symboi'\] [r COMAREA=addr]
I I I l (0»)
I I I rOINTVL=addr~
I I I TASKn rlBINTVL=addr)
I [symbol] I STEC I INTTYP;
I I I ~DINTVL=addr }
I I I REALn r BINTVL=addr
I I I TOD=addr
I I I OO{WIMIY}=addr
I I I [rMF=!d (Ericb- raddrxJ)]
I I I l (1) L ________ ~ _________ ~ __ _

EP
specifies the entry point name of the interruption routine to which
control is to be transferred when an interruption of the type spe­
cified by INTTYP occurs.

Interrupt Handling Facilities 161

If this operand is omitted or if EP=O is specified, the user must
place the entry pOint name of the interruption routine in the para­
meter list generated by this macro instruction.

COIIoffiREA
specifies the address of an area in main storage, aligned on a ful­
lword boundary, and at least 16 bytes long, that is to be used by
the control program to pass interrupt information to the interrup­
tion routine.

INTTYP
specifies the types of interruptions that will cause entry to the
interruption routine; where:

TASK

REAL

n

specifies that the interval is to be decremented only when the
task issuing the STEC macro instruction is in control. A user
may not request an interval timer to be set with a total task
time that would be greater than 7.5 hours.

specifies that the interval is to be decremented continuously
whether or not the task issuing the STEC macro instruction is
in control.

specifies one of the 16 programmed timers. It must be an
integer.

o to 7
8 to 15

for nonprivileged programs
for privileged programs

OINTVL
specifies the address of a doubleword containing a decimal interval
to be set into the timer. If real clock time was indicated (REAL),
the doubleword must be aligned on a doubleword boundary and contain
eight unpacked, unsigned decimal digits in the format HHMMSSth,
where HH ~ 23, MM ~ 59, SS ~ 59, t ~ 9, h ~ 9. If task time is
being set (TASK), the maximum time interval that may be specified
is 7.5 hours.

BINTVL

TOD

DOW

162

specifies the address of a fullword containing a binary interval to
be established for this task. If real clock time was indicated
(REAL), the fullword must be aligned on a fullword boundary and
contain a positive 32-bit binary number in which the least signifi­
cant bit has a value of 0.001 second. The specified interval must
be less than 24 hours. If task time is being set (TASK), the maxi­
mum time interval that may be specified is 7.5 hours.

specifies the address of a doubleword containing the time of day at
which the interval is to end. The doubleword must be aligned on a
doubleword boundary and contain eight unpacked decimal digits in
the format HHMMSSth (defined in the DINTVL operand) •

specifies the address of a four-byte field containing the day of
the week at which the interval is to end. The four bytes must con­
tain one of the following seven character combinations.

MONO
TUES
WEON
THUR

DOM

DOY

icb

FRID
SATU
SUND

specifies the address of a two-byte field containing the day of the
month at which the interval is to end. The byte contains two
unpacked decimal digits which must take on a value in the range 01
through 31.

specifies the address of a fullword containing five packed decimal
digits of the form YYDDD, where YY = the last two digits of the
year and DDD = the day of the year. These five digits are preceded
by two packed decimal zeros and followed by a four-bit character
such that all digits will have the same zone if the 32-bit word is
unpacked.

specifies the address of the interruption control block.

Note: The TOD, DOW, DOM and DOY operands are meaningful only when a
REAL interval is specified. If a TASK interval is specified an error
message will be issued at assembly time.

PROGRAMMING NOTES: Timers set via the STEC macro instruction are decre­
mented as specified and must be reset before each entry to the timer
interrupt servicing routine. These timers can be reset simply by issu­
ing a second SIR macro instruction without any intervening DIR macro
having been issued.

The format of the first three words of the interrupt control block
is:

r--,
ICB + 0 I COMAREA ADDR I

~--~
+4 I RESERVED I

~---~
+8 I RESERVED I L __ J

Upon entry to an interruption routine, the COMAREA will contain the
information relating to the interruption to be serviced. The format of
the communication area and a description of its contents are:

r----------------T-----------~----------------------------,

COMAREA +0, Hex' 04' I T/R I INTTYP I

T/R

~----------------~-----------i----------------------------1
+4 I RESERVED I

~---~
+8 I RESERVED I

~---~
+12 I RESERVED I L __ J

specifies the character T(TASK) or R(REAL) identifying the type of
timer which has caused the interruption.

INTTYP
indentifies the timer (0-15) that has caused entry into the inter­
ruption routine.

Interrupt Handling Facilities 163

L- AND E-FORM USE: If neither L- nor E-form is specified, L is assumed.
There is no standard S-type function for this macro instruction since no
linkage is performed. The in-line code for the E-form is to alter the
contents of an ICB. Therefore the operand MF=(E, icb-addrx) with no
other operands is meaningless and will produce an assembly error
message.

EXAMPLE:

EX1

COM1

STEC

DS
DS

EP=TIME1,COMAREA=COM1,INTTYP=TASK5,DINTVL=TADDR1,
MF=L
OF
CL16

SIEC -- Specify Input/Output Entry Conditions (S)

The SIEC macro instruction creates an interrupt control block (ICB)
to service I/O interruptions, and specifies the addresses of a communi­
cation area, a data control block, and the interrupt handling routine's
entry point.

r--------T---------T---,
I Name I Operation I Operand I
~------+---------+---~
I [symbol] I SIEC I [EP= [symbol]~ [, DCB=addr] [, COMAREA=addr] I
I I I l 0 J I
I I I . I
I I I [,MF=11 (E,icb- [addrx~)] I
I I I l (1) J I L-_______ ~ _________ ~ ___ J

EP

DCB

specifies the entry point name of the interrupt routine to which
control is to be transferred when a synchronous interruption for
the unit specified in the DCB occurs.

If this operand is omitted or if EP=O is specified, the user must
place the entry point name of the interruption routine in the para­
meter list generated by this macro instruction.

specifies the address of a previously opened data control block
associated with the unit for which the routine is to service
interruptions.

COMAREA

icb

specifies the address of an area in main storage, aligned on a ful­
lword boundary, that is to be used by the control program to pass
interruption information to the interruption routine.

specifies the address of the interrupt control block.

CAUTION: If an interruption routine is to service multiple units, a
separate ICB must be defined (SIEC macro instruction) and specified (SIR
macro instructio~ for each unit, and the routine must be reenterable.

PROGRAMMING NOTES: The DCB address in an ICB should not be changed
while the associated routine is active (currently processing or inter­
rupted before completion of its processing) without first deleting the
interruption routine with a DIR macro instruction. After changing the
DCB address, the routine must be reestablished with a SIR macro
instruction.

164

The format of the first three words of the interrupt control block
is:

r--,
ICB +0 I COMAREA ADDR I

~--~
+4 I DCB ADDR I

~--~
+8 I RESERVED I L __ J

Upon entry to an interruption routine, the COMAREA will contain the
information relating to the interrupt to be serviced. The format of the
communication area is:

r--------------------~--------------------------T---------,
I I I STATUS I

COMAREA +0 I Hex 'OS' I NOT I FROM I
I I USED I CSW I
~-------------------~--------------------------~---------1

+4 I SENSE I
~---~

+8 I RESERVED I
~---1

+ 12 I RESERVED I L __ J

L- AND E-FORM USE: If neither L- nor E-form is specified, L is assumed.
There is no standard S-type function for this macro instruction since no
linkage is performed. The in-line code for the E-form is to alter the
contents of an ICB. Therefore the operand MF=(E,icb-addr) with no other
operands is meaningless and will produce an assembly error message.

EXAMPLE 1:

EX1

COM1

SIEC
DS
DS

EP=PROG1,COMAREA=COM1,DCB=DCB1,MF=L
OF
CL16

The ICB may be referred to by the symbolic name EX1. Conditions are
defined for an interruption routine whose initial entry point is the
location specified by the symbolic name PROG1. If an interruption for
the unit specified in DCB1 occurs, an entry will be made to PROG1 and
the interruption data will be in the first two words of COM1. The
address of EX1 will be in register 1. The first word of EX1 will con­
tain the address of COM1.

EXAMPLE 2:

EX2 SIEC DCB=DCB2,MF=(E,EX1)

This macro instruction, when executed, causes the ICB EX1 to be modi­
fied to handle I/O interruptions for the unit specified in DCB2.

Note that the macro instruction EX2 might be within the interrupt
routine PROG1.

DIR -- Delete Interrupt Routine (S)

The Delete Interrupt Routine (DIR) macro instruction deletes control
references to a previously specified interrupt control block. The
interruption routine specified in the ICB cannot service interruptions
unless the ICB is respecified by a SIR macro instruction.

Interrupt Handling Facilities 165

r--------T---------T---,
,Name I Operation' Operand ,
~-------+-.--------+---~
, [symbol] 'DIR I (icb-addr, •••) , L-_______ i _________ i ___ J

icb
specifies the address of an interrupt control block established by
a SPEC, SAEC, SIEC, SSEC, STEC, or SEEC macro instruction.

CAUTION: If this macro instruction is included in a module that is
declared privileged (through use of the DCLASS macro instruction), the
address of a save area must be placed in register 13 before execution of
this macro instruction.

PROGR~~ING NOTES: A DIR macro instruction deletes an active routine
(one currently processing or interrupted) or prevents a routine from
receiving subsequent interruptions through use of an E-form SPEC or SAEC
macro instruction, using the NULL code for the INTTYP operand.

At execution time, the following conditions cause a return, with a
return code in register 15, and the address of the invalid ICB in
register 1. These registers indicate the last return condition if mul­
tiple return conditions are encountered.

Return Code
04

08
OC

10

Condition
ICB contains invalid DCB (for input/output
and asynchronous ICBs only) or an invalid
time interval or clock number was specified
(for timer) •

No routine specified.
the interrupt servicing routine is active
(no further interrupts will be presented to
the interrupt routine until it has com­
pleted its current servicing action) •
invalid parameter (an invalid length was
specified or a nonprivileged user has
attempted to DIR a privileged routine) •

L- AND E-FORM USE: The list operand in the E-form of the macro instruc­
tion may refer to the same list of ICBs used by the SIR macro
instruction.

SAl -- Save and Inhibit (0)

The SAl macro instruction saves the inhibit status of the task mon­
itor and sets the problem program in the inhibit state.

r------~----------~---,
'Name 10peration IOperand I
~--------+----------+--~
, [symbol] ,SAl I [area-addr] , L ________ i __________ i-___ J

area

166

specifies a one-byte area for saving the prior inhibit status of
the task monitor. If this operand is omitted, only the inhibit
function occurs.

PROGRAMMING NOTES: The task monitor always dispatches in the inhibit
state to privileged routines unless the interruption program was made
available to the system by a SIR macro instruction with the operand
INHIBIT=NO.

The task monitor dispatches in the enabled state to nonprivileged
interruption programs unless the interruption program was made available
to the system by a SIR macro instruction with the operand INHIBIT=YES.

There are separate inhibit indicators for privileged and nonprivi­
leged programs. The SAl macro instruction sets the appropriate indica­
tor dependent on the attributes of the program being assembled. A non­
privileged program cannot inhibit the dispatching to privileged
programs.

RAE -- Restore and Enable (0)

The RAE macro instruction restores the prior inhibit state of the
task monitor and sets the problem program in the enabled state.

r--------T--------~---,
I Name I Operation I Operand I
i------_t------_t--f
I [symbol) I RAE I [area-addr] I l ______ --i _________ ~ ___ J

area
specifies a one-byte area previously used by an SAl macro instruc­
tion for saving the prior task monitor inhibit status. If this
operand is omitted, the restore function is not executed but the
enable status is set.

PROGRAMMING NOTES: There are separate enable indicators for privileged
and nonprivileged programs. The RAE macro instruction sets the appro­
priate indicator depending on the attributes of the program being
assembled. A nonprivileged program cannot inhibit dispatching to privi­
leged programs.

INTINQ Interrupt Inquiry (0)

The INTINQ macro instruction relinquishes control until more informa­
tion is available, maintains control in a wait state, or sets up a con­
ditional branch. It causes an examination of interruption queued infor­
mation for an ICB defined as available to the system by a SIR macro
instruction.

r--------T---------T---,
I Name I Operation I Operand I
~-------t--------_t--f
I [symbol] I INTINQ I [I
I I I B I
I I licb-addr ,MODE= W I
I I I CLEAR I
I I I tC,branCh-addrl,TYP=COdJl I L----____ ~ ________ ~ ___ J

icb
specifies the address of an ICB which has been defined available to
the system by means of a SIR macro instruction. This ICB should
not be one which has been defined to the system with a lower

Interrupt Handling Facilities 167

MODE

priority than the ICB by which current entry to this routine was
made if both include the address of the same data control block.

specifies one of four modes of inquiry and can be specified as R,
W, CLEAR, or C. If C is specified, the "branch" and TYP operands
are required. If the MODE operand is not written, the R (relin~
quish) option is assumed.

R

W

CLEAR

C

specifies that the interruption routine relinquishes control
until more interruption information of the type specified in
the ICB associated with the interruption routine is available.
If this information has already been queued by the system,
this routine may immediately regain control. Control returns
to this routine at the instruction following the INTINQ macro
instruction.

specifies that the interruption routine enters a wait condi­
tion pending availability of interruption information of the
type specified by the icb operand. Control is not relin­
quished although the wait condition may be interrupted by a
routine of higher priority. At the end of the wait, execution
is resumed with the instruction following the INTINQ macro
instruction.

specifies deletion of any interruptions queued for the routine
indicated by the ICB operand. Processing continues with the
next sequential instruction.

Note: These queued interruptions mayor may not conform with
interrupt types currently defined in the ICB.

specifies a branch to be taken to the location specified by
the "branch" operand, if the information specified by the TYP
operand is found in the queue of interruption information. If
it is not found, execution is resumed with the next sequential
instruction. The "branch" operand must be written if the C
option is chosen.

branch

TYP

specifies the address to which control is to be transferred if
interruption information of the type specified by the TYP
operand is available.

specifies the type of interruption information to be the con­
dition for the branch. The code can be written as any of the
INTTYP codes (as described in the SPEC, SAEC, SSEC, STEC and
SEEC macro instructions in this section) as long as the INTTYP
is consistent with the type of ICB defined by the ICB operand
in this macro instruction. ANY is written if any interruption
information of the type specified in the associated ICB is
desired. TYP can be something other than the INTTYP specified
in the associated ICB. TYP associated with SIEC should speci­
fy ANY.

CAUTION: If this module is included in a module that is declared privi­
leged (through use of the DCLASS macro instruction), the address of a
save area must be placed in register 13 before execution of this macro
instruction.

168

PROGRAMMING NOTES: The INTINQ macro instruction inspects the queue of
interruption information; the subsequent course of action is determined
by the availability of interruption information and the mode specified
in the macro instruction. Determination of the subsequent action for
modes R, W, and C is illustrated in the following chart.

r----T------------------------------T----------------------------------,
I IRequired Interrupt Information I I
I .-----------r ~ I
I Mode I Available I Not Available I Action I
l----+------------_+----------------+----------------------------------1
I R I X I I Continue execution with next I
I I I Isequential instruction I
I ~----------_+--------------+-------------------------------1
I I I X IRelinquish control; resume execu- ,
I I I Ition with next sequential instruc-,
I I I Ition when information available I
~--+------------_+----------------+---------------------------------1
I w, X I ,Continue execution with next ,
I I , Isequential instruction I
I .-----------+ +----------------------------1
I I I X IEnter wait state until information I
I I I 'available; then continue with next,
I I , Isequential instruction ,
~--+-----------+------------+-------------------------------1
I C I X I IBranch to specified branch address'
I. , +------------------------------1
I I 'X IContinue execution with next ,
I I I Isequential instruction ,
l---.L--------L--------------..L--------------------------------1
I The INTINQ macro instruction may be issued only from an interruption ,
I routine. Standard register conventions are required with the INTINQ ,
I macro instruction; register 13 must contain the address of a save I
I area for this interrupt routine. , L __ J

Conditions that cause special return codes are listed below, with the
associated hexadecimal return code. These conditions apply only to the
modes stated.

04 Undefined routine specified (modes C, W, CLEAR)

08 Bad parameter list, the conditions specified can never be met
(modes W, C)

USATT -- Give User Control of Attention Interrupts (0)

The USATT macro instruction allows the user to have his own routine
process attention interruptions.

r--------y---------T---,
, Name , Operation I Operand I
l--------+---------+--1
I [symbol] 'USATT , , L _____ -L ________ -L ___ J

PROGRAMMING NOTES: The user must first issue the SAEC and SIR macro
instructions to establish the routine that is to process attention
interruptions. He then issues the USATT macro instruction, and all sub­
sequent attention interruptions will be processed by the specified rou­
tine. However, if no routine has been established, the user loses con­
trol of his task.

Interrupt Handling Facilities 169

Once the user gains control of attention interruptions by issuing a
USATT macro instruction, control can be returned to the system by using
either the CLATT, EXIT, CLIC, CLIP, PAUSE, or COMl~ND macro instruc­
tions. If the user program issues the CLIC, CLIP, PAUSE, or COMMAND
macro instructions, the system regains control of attention interrupts
until a RUN command (without an operand) is issued. When a CLATT or
EXIT macro instruction gives control of attention interrupts to the sys­
tem, issuing a RUN command does not automatically return control of
interrupts to the user. In this case he can only regain control by
issuing another USATT macro instruction in this program.

In the SAEC macro instruction used to set up user control of atten­
tion interrupts, the DCB parameter must be specified as SYSINDCB.

CLATT -- Give System Control of Attention Interrupts (0)

The CLATT macro instruction allows the user to relinquish control of
attention interruptions; the system then processes attention
interruptions.

r--'----T---------T--,
I Name I Operation I Operand I
~-----+---------+---i
I [symbol] I CLATT I I L _______ ~ __ . ______ L ___ J

PROGRAMMING NOTES: This macro instruction is used in conjunction with
the USATT macro instruction, discussed in this section.

AETD -- Create an Attention Entry Table (~

The AETD macro instruction allows a user to interrupt his programs
during execu·tion by hitting the attention key, and thereby enter a pre­
defined user coded subroutine to process the attention interrupt.

r--------T---------T---,
I Name I Operation I Operand I
~--------+---------+---~
I I I I
I [symbol] I AETD I [({ [ep-symbol, sa-symbol] } , •••)] I L ________ L _________ L ___ J

ep

sa

specifies the symbolic entry point name of a routine to be entered
upon hitting the attention key at the terminal.

specifies the symbolic name of a 21-word save area that is to be
associated with the routine whose entry point is ep. The 21-word
save area is provided in addition to the standard 19-word save area
(which must be provided in order to conform to standard linkage
conventions). The two additional words in the 21 word save area,
are for saving the VPSW.

PROGRAMMING NOTES: The execution of the AETD macro instruction
generates a table containing the addresses of routines which are to be
given control when a user hits the attention key a specified number of
times (i.e., a user may specify that different routines be entered when
the attention key is hit a varying number of times). Thus, with the
first hit of the attention key, the user's program execution is inter-

170

rqpted and Procedure 1 in the table would be initiated; if he hits the
attention key a second time before Procedure 1 has been completed, he
will enter Procedure 2, and if he hits the attention key a third time
before Procedure 2 has been completed, he will enter Procedure 3, and so
on for as many predefined procedures as desired. Procedures specified
in this manner are generally used to communicate with the user's termin­
al allowing program modification at execution time.

The user might employ the AETD macro instruction to pass control to
any user provided control systems, or to provide partial backup in a
current task so that a bad error situation does not have to cause the
task to be reconstructed from scratch. It can be used to predefine
simple automatic debugging procedures by using PCS commands in the AETD
attention handling routines.

The table generated (Attention Entry Table, AE~ consists of three
words containing V - and R -con and save area addresses for each atten­
tion handling routine that a user has specified. Any null operand pair
causes three words containing binary zero to be created in the table.
Entries are generated in the same order as given in the operands.

If AETD is issued with no operand, the current table (AET), if one
was previously defined, will be disconnected from the system and the
system attention handling routines will be invoked for subsequent pro­
cessing of attention interrupts.

If the save area or entry point is externally defined, it must be
used as an argument of an EXTRN statement in the user's program.

An A - type and R- type adcon pair is normally generated for each
entry point name; in this case, the R - value is the origin of the first
declared PSECT in the assembly module containing AETD. If an entry
point is externally defined, AETD generates a V-type and R-type adcon
pair for that entry point operand. An A-type adcon is also normally
generated for each save area address.

L- AND E- FORM USE: The L- and E-forms of this macro instruction are
allowed and have no special requirements. The E-form of the macro
instruction may specify any parameters; however, the parameters speci­
fied in the E-form will overlay those specified in the L-form. The E­
form may not specify more operands than are specified in the correspond­
ing L-form.

For example:

SUE AETD (ETRYPTA,SAVEA) ,MF=L
AETD (,SAVEB) ,MF=(E,SUE)

When the E-form of this macro instruction is executed, the save area
specified in the L-form (SAVEA) will be replaced in the parameter list
by the save area specified in the E-form (SAVEB)

EXAMPLE: In the following example, the user has provided two attention
handling routines having the entry points EPMODA and EPMODB respective­
ly. If the user hits the attention key at the terminal once following
execution of the first AETD macro instruction, control will be passed to
the user coded routine at EPMODA. When the user hits the attention key
a second time before the routine at EPMODA has completed execution, con­
trol will be immediately passed to the routine at EPMODB. Execution of
a second AETD macro instruction, having no operand, will return control
of attention interrupts to the appropriate system routines.

AETD (EPMODA,SAVA,EPMODB,SAVB)

Interrupt Handling Facilities 111

AETD

ATPOL* -- Poll For Pending Attention Interrupt (nonstandard)

The ATPOL macro instruction determines if there are any pending
attention (task-asynchronous) asynchronous I/O interrupts; if there is,
control is transferred to a routine specified by the user.

ITI* -- Inhibit Task Interrupts (nonstandard)

The ITI macro instruction prevents the occurrence of task interrupts
until a subsequent PTI macro instruction is executed.

PTI* -- Permit Task Interrupts (nonstandar~

The PTI macro instruction allows any pending task interrupts to
occur; it is used to cancel the effect of a previously issued ITI macro
instruction.

PCSVC* -- Enter Program Checkout Subsystem (nonstandard)

The PCSVC macro instruction creates a task-SVC that transfers control
to the task monitor or program checkout subsystem (PCS).

* Although these macro instructions are available to all users, they are
employed primarily by system programmers; therefore, refer to System
Programmer's Guide, Form C28-2008, for a detailed description of these
macro instructions.

172

TRANSFER TO COMMAND MODE FROM PROGRAM MODE

TSS/360 provides a user with several ways of interrupting a program's
execution, either temporarily or permanently, and passing control to
command mode for subsequent processing. The following macro instruc­
tions are available to users who want to transfer from program mode to
command mode.

PAUSE (for conversational tasks only) types out a user specified mes-
sage at the user's terminal, passes control to command mode
enabling a user to enter commands at his terminal. After each
command is issued, the system prompts the user for the next
command. To resume program execution, the user must issue a
RUN command at the terminal.

COMMAND similar to PAUSE macro instruction except it can be issued in
nonconversational as well as conversational tasks. In conver­
sational mode it has the same effect as PAUSE. In nonconversa­
tional mode, the specified message is written out on the tasks
SYSOUT data set. The SYSIN data set is then polled for the
next commands. The program's execution can be resumed by issu­
ing a RUN command either at the terminal or in the SYSIN data
set.

EXIT notifies the system a task has reached a logical conclusion
(terminating point) by writing both a predefined system message

and a user specified message on the SYSOUT device. If EXIT is
issued in a program being executed in a conversational task,
the messages are written on the users terminal, control is
passed to command mode, and the next commands are taken from
the terminal. In nonconversational mode, the messages are
written on SYSOUT and the next commands are read from SYSIN.

ABEND serves as an error exit for an assembled program. There are
three error exits available; 1) terminate execution of the pro­
gram and return to the users terminal or to TSKABEND, 2) delete
the users task from the system, initialize a new task, and pass
control to command mode where commands can be entered for the
new task, 3) delete the user's task from the system and deac­
tivate his terminal.

OBEY allows a user to temporarily pass control to command mode,
execute a specified command or command statement, and continue
processing at the next sequential instruction in his program.

Detailed explanations of the above macro instructions and the formats
in which they may be specified are shown below. Further information
pertaining to transfers from program mode to command mode can be found
in IBM System/360 Time Sharing System: Assembler Programmer's Guide,
Form C28-2032.

PAUSE -- Enter Command Mode (R)

The PAUSE macro instruction switches a conversational task from pro­
gram mode to command mode. A PAUSE macro instruction issued in a non­
conversational task is ignored. During program stoppage, the user may
issue whatever commands he wishes directly from the terminal. The task
can be returned to program mode by issuing a RUN command.

The word PAUSE and the optional message specified in the operand are
displayed on SYSOUT.

Transfer To Command Mode 173

r--------T-·--------T---1
I Name I Operation I Operand I
i-----1---------t-[---------{text 7-]--------------------------------1
I [symbol] I PAUSE I message- addrx I
I I I (1) I L--______ L-. ________ i __ ~J

message
specifies the message to be issued. If an addrx is given, it must
point to the location in storage which contains the message as a
character string. If (1) is written, the location of the character
string must be in register 1 before execution of the macro instruc­
tion. The first byte of the message must contain the length, in
bytes, of the message.

CAUTION: If this macro instruction is included in a module that is
declared pri·vileged (through use of the DCLASS macro instruction), the
address of a save area must be placed in register 13 before execution of
this macro instruction.

PROGR~ING NailS: If the user has control of inter1u~tions before
issuilg a PAUSE macro instruction, the system regains control of them
until a RUN cOmHiand is issued.

EXAMPLES: In EX1 the message is supplied as text. In EX2 the message
is given at location DARRY.

EX1
EX2

PAUSE
PAUSE

'IROG DECISION AT STMT LOOP3'
D~RRY

COMMAND -- Enter Command Mode (R)

The COMMAND macro instruction switches the task from program mode to
command mode to allow the user to enter commands. This macro instruc­
tion causes an unconditional pause, and executes whether the task is
conversational or nonconversational. Any commands may be issued from
the terminal during conversational program stoppage. If the stopped
program is nonconversational, the SYSIN data set will be interrogated
for the next commands. The task can be switched back to program mode by
issuing a RUN command.

The word COMMAND followed by the optionally specified message is
written on SYSOUT.

r--------T--------~---1
I Name I Operation I Operand I

i------t---------t--[--------{~~;~J--J----------------------------------1
I [symbol] I COMMAND I message- addrx I
I I I (1) I L-______ -i ________ -i ___ J

message

174

specifies the message to be issued. If an addrx is given, it must
point to the location in storage which contains the message as a
charact.er string. If (1) is written, the location of the character
string must be in register 1 before execution of the macro instruc­
tion. The first byte of the message must contain the length of the
message (in bytes) •

CAUTION: If this macro instruction is included in a module that is
declared privileged (through use of the DCLASS macro instruction). the
address of a save area must be placed in register 13 before execution of
this macro instruction.

PROG~NG NOTES: If the user has control of interruptions before
issuing a COMMAND macro instruction. the system regains control until a
RUN command is issued.

EXAMPLES: In EX1 the message is su.pplied as text. In EX2 the message
is given at location BEMEL.

EX1
EX2

COMMAND
COMMAND

'PROG IN SUBRTN SQROOT'
BEMEL

EXIT -- Normal Program End (R)

The EXIT macro instruction terminates program execution and switches
the task to command mode. The words IIEXIT. RELEASE ALL UNNEEDED
DEVICES· followed by the specified message are written on SYSOUT. No
messages are written on SYSOUT if the NOMSG operand is specified.

I T---------T-----------------~---------------------------------,
'Name , Operation I Operand I r----t-----l[~ext J~ ---------------1
'[symbol] 'EXIT , message- addrx [,NOMSG] I
I , , (1) I L--_____ ~ _______ ~ ___ J

message

NOMSG

specifies the optional message to be issued. If the text option is
chosen. the actual message. enclosed in apostrophes. is written in
the operand field. If an addrx is given. it must point to the
location in storage which contains the message as a character str­
ing. If (1) is written. the location of the character string must
be in register 1 before execution of the macro instruction. The
first byte of the message must contain the length (in bytes) of the
message.

specifies that no messages are to be printed on SYSOUT when the
exit is taken.

PROGRAMMING NOTES: If EXIT is issued in a conversational task. the mes­
sage is, written on the user's terminal and the next commands taken from
the terminal. If issued by a nonconversational task. the message is
written on the SYSOUT data set and the next command is taken from the
SYSIN data set.

The EXIT macro instruction returns control to the user's terminal; to
return control to a calling module. the RETURN macro instruction must be
used.

If the user issues a USATT macro instruction to get control of inter­
ruptions and later issues an EXIT macro instruction. the system gains
control of interrupts and will not relinquish control until a return is
made to the user program and another USATT macro instruction is issued.

EXAMPLES: In EX1. the user supplies the message text as a character
string. In EX2. the message text is given at location MSGTEXT. In EX3.
no messages will be printed on SYSOUT

Transfer To Command Mode 175

EX1
EX2
EX3

EXIT
EXIT
EXIT

'COMPLETED ARDUOUS'
MSGTEXT
, NOMSG

ABEND -- Abnormal Task End (R)

The ABEND macro instruction serves as an error exit for an assembled
program, either to terminate execution of the program or to eliminate
the user's current task from the system, and return control to the user
in command mode.

r--------T--------~---,
I Name I Operation I Operand I
I---------t---------t--~
I [symbol) I AB:END I compcode-{val ue~ , message-{text 1 I
I I I (0) J addrx I
I I I (1) I L _______ -i ______ ---i ___ J

compcode
specifies the exit type as 1, 2 or 3. Compcode 1 causes return
either to the conversational user at his terminal or, in nonconver­
sational mode, to a data set with ddname TSKABEND, to retrieve com­
mands for execution; in either case, the task is returned to com­
mand mode. Compcode 2 wipes out user's task. If the task is con­
versational, a new task is created for the user and turned over to
him as though he had just logged on. Compcode 3 is similar to com­
pcode 2 in that it wipes out the user's task, but it does not cre­
ate a new task or return control to the user. The user terminal
will be deactivated.

If (0) is written, the value must be loaded into register 0 before
executing this macro instruction.

message
specifies the message text to be issued to SYSOUT when the ABEND
macro instruction is executed. If an addrx is given, it must point
to a one-byte length field that precedes the message text field;
text length in bytes is expressed in hexadecimal. The message may
be up to 251 bytes in length. If the text option is chosen, only
the text need be specified; the number of characters in the message
is not specified.

If (1) is written, the address of the length byte must be placed in
register 1 before executing the macro instruction.

CAUTION: If this macro instruction is included in a module that is
declared privileged (through use of the DCLASS macro instruction), the
address of a save area must be placed in register 13 before execution of
this macro instruction.

PROGRAMMING NOTES: ABEND with compcode 1 returns the task to command
mode and removes any previously invoked user control of attention
interrupts.

Although the VPSW and the general registers are displayed on SYSOUT
together with the message text provided in ABEND, identifying error
exits by providing discrete messages for different exits via ABEND may
facilitate checking.

The TSKABEND data set might contain a sequence of PCS commands that
obtains a selective dump of the program before terminating the task with
a LOGOFF command.

176

If an error occurs during the processing of a compcode 1 condition,
the ABEND procedure is reinvoked, and the error is processed as a com­
pcode 2 condition.

EXAMPLES: The user wishes to provide an error exit if his program
encounters trouble on one path. He includes in that path the ABEND
macro instruction:

ERROR ABEND 1, 'ABEND BECAUSE TROUBLE IN PATH N'

The user wants to provide discrete messages for different error con­
ditions. For his first error condition, he provides the message:

ERR 1
TEXT 1

DC
DC

ALl (L'TEXT1)
C'ABEND FOR INCOMPLETE PATH'

In the coding path that discovers this first error condition, he
includes:

EREX

LA
B
ABEND

1,ERRl
EREX
1, (1) COMMON ERROR EXIT

OBEY -- Execute a Command or Command Statement (0)

This macro instruction may exist anywhere in the programmer's code
and allows him to execute a command or command statement even though not
in command mode. Upon execution of the OBEY macro instruction, the com­
mand or command statement specified via the macro instruction operands
is executed; then control is returned to the user's program.

r--------T--------~---,
I Name I Operation I Operand I

t t :~ ~ddrJ~ 1 I [symbol] IOBEY Icom- text I
I I I (1) I L-_______ ~ _________ ~ ______________________ J

com
identifies the text of the command or command statement either by
specifying it directly as a character string enclosed in apos­
trophes, or indirectly as the address of the command or command
statement character string which the user has coded elsewhere in
his program, or as register notation. If no operand or (1) is
written, the address of the command character string must have been
loaded into register 1 before execution of this macro instruction.

PROGRAMMING NOTES: If the user chooses the addr form of the operand,
the address he specifies must point to the first byte of the command or
command character string, and the byte which precedes the character str­
ing must contain a count of the bytes composing the character string.
No special alignment is required.

L - AND E- FORM USE: The L- and E-forms of this macro instruction are
allowed and have no special requirements. The E-form of the macro
instruction may specify any parameters; however, the parameters speci­
fied in the E-form will overlay those specified in the L-form. The E­
form may n.ot specify more operands than are specified in the correspond­
ing L- form.

Transfer To Command Mode 177

For example:

SUE OBEY

OBEY

DC
COMADDR DC

DC
OTHERCOM DC

COMADDR,MF=L

OTHERCOM,MF=(E,SUE)

AL 1 (L' COMADDR)
C'EXECUTE PROG2'
AL 1 (L' OTHERCOM)
C'EXECUTE PROG3'

When the E-form of this macro instruction is executed, the program
specified via the L-form (PROG2) will be replaced in the command string
by the program (PROG3) indicated via the E-form of the macro
instruction.

EXAMPLES:

COMADDR

OBEY
OBEY
OBEY
OBEY
OBEY

DC
DC

'PROCDEF PAR 1 '
'EXECUTE MYPROG'
'BACK THISPRG'
COMADDR

AL 1 (L' COMADDR)
C'EXECUTE PROGA'

Obey a command

(Where no operand implies
that register 1 has been
previously loaded with the
address of COMADDR and the
number of bytes composing
COMADDR is in the byte
preceding COMADDR)

CLIC* -- Read Command From SYSIN (Conversational) (0)

The CLIC macro instruction allows a conversational user to enter com­
mands from his terminal during program execution. If the user has con­
trol of interruptions before issuing a CLIC macro instruction, the sys­
tem regains control of them until a RUN command is issued. If this
macro instruction is issued in a program operating in nonconversational
mode, it is ignored.

CLIP* -- Read Command From SYSIN (0)

The CLIP macro instruction reads a command from the SYSIN device for
either conversational or nonconversational tasks. If the user has con­
trol of interruptions before issuing a CLIP macro instruction. the sys­
tem regains control of them until a RUN command is issued.

RTRN* -- Create Privileged Linkage Queue Entry (0)

The RTRN macro instruction causes a privileged linkage queue entry to
the Director to be created. which logically completes a run.

*Although these macro instructions are available to all users, they are
employed primarily by system programmers; therefore. refer to System
Programmer's Guide. Form C28-2008, for a description of these macro
instructions.

178

COMMUNICATION BETWEEN USER PROGRAM AND SYSIN/SYSOUT

The TSS/360 communication facilities permit a user to pass data, mes­
sages, and commands, to and from a user's SYSIN and SYSOUT devices. The
macro instructions which effect communication between a problem program
and these devices are:

GATRD

GATWR

GTWAR

GTWSR

SYSIN

PRMPT

MSGWR

MCAST

reads a record from a SYSIN device, translates it to intern­
al code, and places it in a programmer-designated area of
virtual storage.

translates a record that is currently stored in a
programmer-defined area and writes it onto a SYSOUT device.

translates a record currently stored in a pregrammer-defined
area and writes it onto a SYSOUT device; then, it reads a
record from the SYSIN device and places it in another
programmer-defined area of virtual storage.

(for conversational tasks onl~ translates a record current­
ly stored in a programmer-defined area and writes it on a
SYSOUT device; then, it reads a record from the terminal and
places it in another programmer-defined area of virtual
storage.

reads a line of data from a SYSIN device, translates it to
internal code, and places it in a programmer-designated area
of virtual storage, or, if the input line contains a com­
mand, or command statement, it transfers the line to the
Source List for subsequent Command Analyzer processing.

Invokes the TSS/360 User Prompter Facility and writes mes­
sages from a user or system defined message file to SYSOUT
and, if specified, reads back responses from SYSIN.

provided for compatibility with previous TSS/360 programs.
It has the same function as the PRMPT macro instruction.
The PRMPT macro instruction should be used in lieu of the
MSGWR macro in future programs.

temporarily replaces the Character Translation Table (in the
user's session profil~ with a user specified Character
Translation Table, enables a user to change control function
characters such as a continuation character with a new
character representation. The character Translation Table
controls the transfer of data between SYSIN, a user's pro­
gram, and SYSOUT when communication macro instructions such
as GATRD, GATWR, etc. are issued.

A detailed explanation of the above macro instructions and the format
in which they may be specified are shown below. Further information
pertaining to communication between user programs and SYSIN/SYSOUT
devices and the related macro instructions can be found in IBM System/
360 Time Sharing System: Assembler Programmer's Guide, Form C28-2032.

GATRD -- Get Record from SYSIN (S)

The GATRD macro instruction reads a record from the user's SYSIN and
places it in a specified area.

Communication With SYSIN/SYSOUT 179

r--------T---·------T---,
I Name I Operation I Operand I
1---------+-------+--------------------------------------~
I [symbol] IGATRD Imsg-addr,length-addr [,SIC] I L--______ i ___ . ______ i ___ J

msg
specifies the address of the area into which the input record is to
be placed. The user must define the length of this area elsewhere
in the program.

length

SIC

specifies the address of a fullword containing the length of the
expected input record; the maximum length of line depends upon the
input source:

VAM data set
1050
2741
Model 35 KSR

128 characters
130 characters
130 characters

80 characters

On return, the actual record length is stored at the same address.

indicates whether characters within SYSIN representing control
functions (specified as such in the Character Translation Table,
CTT) are to be regarded as input characters by the GATRD macro
instruction. If SIC is specified, all characters in the CTT
(located in the user's session profile) are translated to internal
code and transmitted to storage regardless of the functional code
assigned to it in the CTT. Absence of this operand requests the
standard mode in which only characters assigned the translation
code (00) in the CTT are translated and transferred to storage,
while characters assigned to other functional codes are not trans­
ferred to storage. Thus, in the standard mode, characters within a
line of SYSIN that are assigned unique functional codes in the
Character Translation Table, such as the backspace or cancel con­
trol functions, will not be read into storage as part of the SYSIN
input line.

Records whose length is less than one line (from the terminal key­
boar~ , or one card image (from the terminal card reader) are read by
one GATRD macro instruction. Records longer than one line or card image
are truncated if continuation of the record is not indicated. If con­
tinuation is indicated, succeeding GATRD macro-instructions can be used
to read the remainder of the record.

CAUTION: If this macro instruction is included in a module that is
declared privileged (through use of the DCLASS macro instruction), the
address of a save area must be placed in register 13 before execution of
this macro instruction.

PROGRAMMING NOTES: The first GATRD (or GTWAR) issued fetches the first
record of the specified length from SYSIN. For each subsequent record
to be read from SYSIN, GATRD must be used. GATRD cannot be used to
recover a record that was read by an earlier GATRD.

If the SIC operand is specified, both input characters, as well as
control characters, must be included in the length count specified via
the length operand of the GATRD macro instruction.

In the standard mode, a character is transmitted to the message area
only if it satisfies the following four conditions:

180

1. It is assigned the translation code (00) in the Character Transla­
tion Table (see Command System User's Guide, Form C28-2001 for
additional information pertaining to the CTT) •

2. It is not deleted by the action of any characters that are assigned
the backspace or cancel functions.

3. It appears on a record to the left of all characters assigned the
end-of-message function.

4. Space is available for it in the area specified by the msg operand.

A record read in from SYSIN is truncated if it is longer than the length
specified and contains no continuation character.

On return from GATRD, register 15 contains two bytes of coded infor­
mation ~exadecimal) in bits 16-31, as shown in Table 5.

Table 5. Return Codes from All GATE Macro Instructions
r-----------------T--,
I Bits 16-23 Code I Significance I
I---------------+-------------------------------------~
I 0 IInput record contains no continuation code: record I
I lis therefore complete. ,
I I I
I 1 IInput record contains a continuation code. Issue a I
I IGATRD to get next portion of record. I
I I I
I 2 IRecord was truncated because it exceeded maximum I
I Ilength specified by the user. !
I------------+--~
I Bits 24-31 Code I
I------------------~
I 0 ISYSIN is VSAM (nonconversational).
I I
I 4 ISYSIN is VISAM (nonconversational).
I I
I 8 IAttention interruption occurred: record, if any, is
I I unpredictable.
I I
I 10 ISYSIN received from terminal keyboard.
I I
I 20 ISYSIN received from card reader at terminal. L--______________ i-___ J

On return, the actual record length (in bytes) is stored at the same
address at which 'length' was specified.

EXAMPLE: A 120-character record (i.e., 120 characters assigned the
translation function within the CTT) is to be fetched from SYSIN and
placed in the area READIN:

EX1 GATRD READIN,ILENGTH

In this example, the user has defined length elsewhere in the
program:

ILENGTH DC F'120'

Note t.hat the absence of the SIC parameter defaults to the standard
mode in which both input and functional characters are to be translated
by the standard Character Translation Table and transmitted to the mes­
sage area.

Communication With SYSIN/SYSOUT 181

GATWR -- \"lri te Record on SYSOUT (S)

The GATWR macro instruction writes a message on the user1s SYSOUT
from an area in storage.

r--------T---------T---,
I Name I Operation I Operand I
J------+-------+---------------------------------------~
I [symbol] IGATWR I msg-addr, length-addr [,SIC] I L-_______ i-_. _____ -i __ J

msg
specifies the address of the area containing the message text. Any
characters that can be represented in the terminal character set
are accepted, including blanks, parentheses, and commas.

length

SIC

specifies the address of a fullword which contains the length of
the message to be issued. If the message is longer than the maxi­
mum line length of SYSOUT, GATWR will write as many lines (or reco­
rds) as are necessary up to a maximum message length of 260 bytes.
The use.r may specify where to end each record by inserting pre­
ferred breakpoint characters (X'72I) in the message.

indicates whether characters in the storage area representing con­
trol functions (specified as such in the Character Translation
Table, CTT) are to be regarded as output characters by the GATWR
macro instruction. If SIC is specified, all characters in the CTT
(located in the user1s session profile) are translated from intern­
al code and transmitted to the user1s SYSOUT regardless of the
functional code assigned to it in the CTT. Absence of this operand
requests the standard mode in which only characters assigned the
translation code (OO) in the CTT are translated and transferred to
SYSOUT, while characters assigned to other functional codes are not
transferred to SYSOUT. Thus, in the standard mode, characters in
storage assigned unique functional codes in the Character Transla­
tion Table, such as the backspace or cancel control functions, will
not be translated to the user's SYSOUT as part of the output line.

CAUTION: If this macro instruction is included in a module that is
declared privileged (through use of the DCLASS macro instruction), the
address of a save area must be placed in register 13 before execution of
this macro instruction.

PROGRAMMING NOTES: The return codes from GATWR are shown in Table 5.

If the SIC operand is specified, characters assigned the translation
code COO} in the Character Translation Table, as well as characters
assigned control function codes, must be included in the message length
count specified via the length operand of the GATWR macro instruction.

EXAMPLE: A 16-character record is to be written on SYSOUT:

182

EX1 GATWR RECOUT,LENGTH

In this example the user has coded elsewhere in the program:

RECOUT DC
LENGTH DC

C'COMPLETED ROUND 1 I
F '16 I

GTWAR -- Write Record on SYSOUT and Read Response from SYSIN (S)

The GTWAR macro instruction writes a message on the user's SYSOUT,
then reads the next record from the user's SYSIN into the designated
area of the user's virtual storage.

r--------T---------T---,
I Name I Operation I Operand I
1------+ -+ ~
I [symbol] IGTWAR Imsgout-addr,lengthout-addr, I
I I Imsgin-addr,lengthin-addr[,SIq I I ~ ________ -i ___ J

msgout
specifies the address of the area containing the message text. Any
characters that can be represented in the terminal character set
are accepted, including blanks, parentheses, and commas.

lengthout

msgin

specifies the address of a fullword that contains the length of the
message to be issued. If the message is longer than the maximum
line length for SYSOUT, GTWAR will write as many lines (or records)
as are necessary up to a maximum message length of 260 bytes. The
user may specify the text for each line by inserting preferred
breakpoint characters (X'72') in the message.

specifies the address of the area into which the input record is to
be placed.

lengthin

SIC

specifies the address of a fullword containing the length of the
expected input record. On return, the actual record length is
stored in the address specified by lengthin.

indicates whether characters representing control functions (speci­
fied as such in the Character Translation Table, CTT) are to be
regarded as valid message characters by the GTWAR macro instruc­
tion. If SIC is specified, all characters in the CTT (located in
the user's session profile) are transmitted to and from storage
regardless of the functional code assigned to them in the CTT.
Absence of this operand reques~s the standard mode in which only
characters assigned the translation code (OO) in the CTT are trans­
lated and transferred to or from storage, while characters assigned
to other functional codes are not transferred. Thus, in the stan­
dard mode, characters assigned unique functional codes in the
Character Translation Table, such as the backspace or cancel con­
trol functions, will not be read into storage as part of the user's
SYSIN or written from storage on a user's SYSOUT device.

CAUTION: If this macro instruction is included in a module that is
declared privileged (through use of the DCLASS macro instruction), the
address of a save area must be placed in register 13 before execution of
this macro instruction.

PROGRAMMING NOTES: If the SIC operand is specified, characters assigned
the translation code (00) in the Character Translation Table, as well as
characters assigned control function codes, must be included in the mes­
sage length count specified via the lengthout and lengthin operands of
the GTWAR macro instruction. If a continuation is indicated (the record
extends over more than one print line), the user must provide a GATRD
macro instruction to fetch the next portion of the record.

Communication With SYSIN/SYSOUT 183

An input record is truncated only if it is longer than the length
specified and contains no continuation character. Truncation begins
with the rightmost character.

At conclusion of execution of the GTWAR macro instruction, register
15 contains two bytes of coded information ~exadecimal) in bits 16-3~;
see Table 5 for these codes. If a GTWAR macro instruction is issued in
nonconversational mode, it does not write a record on SYSOUT; it does,
however, read the next record from SYSIN.

EXAMPLE: A 16-byte message (i.e., 16 bytes assigned the translation
code in the CT~ is written on SYSOUT and a 120-byte record is read from
SYSIN into an area called ADLE.

EX1 GTWAR VICTOR,LARRY,ADLE,DAZE

In this example, the user has coded elsewhere in the program:

VICTOR DC
LARRY DC
ADLE DC
DAZE DC

C'COMPLETED FIRSTR'
F'16'
CL120
F'120'

GTWSR -- Wri·te Record on SYSOUT and Read Record from Terminal SYSIN (S)

The GTWSR macrQ instruction writes a message on SYSOUT and reads a
record from ·the terminal keyboard (SYSI~ in conversational tasks only.
Use of this macro instruction in a nonconversational task causes ter­
mination of ·the task; however, the message is written on SYSOUT.

r--------T---------T---,
I Name I Operation I Operand I
~-------+--.-------+---~
I [symbol] IGTWSR Imsgout-addr,lengthout-addr, I
I I Imsgin-addr,lengthin-addr[,SIq I L ________ ~ __ . _______ ~ ___ J

msgout
specifies the address of the area containing the message text. Any
characters that can be represented in the terminal character set
are accepted, including blanks, parentheses, and commas.

length out

msgin

specifies the address of a fullword containing the length of the
message to be issued. If the message is longer than the maximum
line length for SYSOUT, GTWAR will write as many lines (or records)
as are necessary up to a maximum message length of 260 bytes. The
user may specify where new lines should begin by inserting pre­
ferred breakpoint characters (X'72') in the message.

specifies the address of the area into which the input record is to
be placed.

lengthin

SIC

184

specifies the address of a fullword containing the length of the
expected input record. On return, the actual record length is
stored in the address specified by lengthin.

indicates whether characters representing control function (speci­
fied as such in the Character Translation Table, CTT) are to be
regarded as valid message characters by the GTWSR macro instruc-

tion. If SIC is specified, all characters in the CTT (located in
the user's session profile) are transmitted to and from storage
regardless of the functional code assigned to them in the CTT.
Absence of this operand requests the standard mode in which only
characters assigned the translation code (00) in the CTT are trans­
lated and transferred to and from storage, while characters
assigned to other functional codes are not transferred. Thus, in
the standard mode, characters assigned unique functional codes in
the Character Translation Table, such as the backspace or cancel
control functions, will not be translated from storage to the
user's terminal or and will not be read into storage as part of a
terminal input line.

CAUTION: If this module is included in a module that is declared privi­
leged (through use of the DCLASS macro instruction), the address of a
save area must be placed in register 13 before execution of this macro
instruction.

PROGRAMMING NOTES: If the SIC operand is specified, characters assigned
the translation code (00) in the Character Translation Table, as well as
characters assigned control function codes, must be included in the mes­
sage length count specified via the lengthout and lengthin operands of
the GTWSR macro instruction. At completion of execution of the GTWSR
macro instruction, register 15 contains two bytes of coded information
~exadecimal) in bits 16-31. These codes are shown in Table 5; however,

since this macro instruction cannot be executed in nonconversational
mode, the nonconversational mode return codes are not issued.

On return, the actual length of the input record (in bytes) is stored
at lengthin.

If a continuation is indicated (the record extends more than one
print line) , the user must provide a GATRD macro instruction to fetch
the next portion of the record.

An input record is truncated only if it is longer than the lengthin
specified by the user and contains no continuation character. Trunca­
tion begins with the rightmost character.

EXAMPLE: In the following example, a 16-byte message is written on SYS­
OUT and a 120-byte record is read from the user's terminal (SYSI~ into
area READIN:

EXI GTWSR OAREA,OLENGTH,READIN,ILENGTH

In the example, the user has coded elsewhere in the program:

OAREA
OLENGTH
READIN
I LENGTH

DC
DC
DC
DC

C'COMPLETED FIRSTR'
F'16'
CL120
F'120'

SYSIN -- Obtain a Message From SYSIN or the Source List (S)

The SYSIN macro instruction services the program in which it appears
by providing information about the current operating task. This is done
by retrieving input (i.e., either a command or data) from the Source
List or the SYSIN for the task.

Communication With SYSIN/SYSOUT 185

r--------T--------~---,
'Name I OperationJ Operand ,
~-------+---------+---~
, [symbol) 'SYSIN I msg-addr, length-addr [, source-code) I
I , I [,prmpt-addr] [,exit-addr) I L ________ ~ _________ ~ ___ J

msg
specifies the origin of a user storage area in which the SYSIN
macro instruction is to store the requested input message. No
boundary requirements exist for this operand.

length
address of a full word which specifies the number of bytes in the
user's storage area. If the requested input message is too long
for the specified storage area, it is truncated on the right. The
four low-order bits of register 15 contain a return code of 4 if
truncation occurs. If the requested message length is less than
the number of bytes in the user's storage area, the contents of
this fullword are replaced by the actual number of bytes
transmitted.

source

186

specifies a two byte code indicating the source from which the
input message is to be obtained and the location to which it should
be transmitted. The first byte serves as the source code and the
second byte indicates the location code. If only the source code
is specified, the second byte is left blank, and the transmittal
location is as indicated under the various source codes. The
source and location codes are described below.

Source code

L

G

E

Location Code

S

Meaning

Obtain the input message line from the Source List
(Created by the system Command Analyzer routine) and
return normally if the line contains a message or
data. If the message is a command, a return is made
to the specified exit address without obtaining the
command. If the message is a command but no exit
address is specifi~d, the program is abnormally
terminated.

Obtain the message from SYSIN and, if it contains a
message or data, return normally. If the message is
a command, transfer the command to the Source List,
but do not transmit it to the user specified storage
area. If the message is a command but no exit
address is specified, transfer the command to the
Source List and terminate the program normally.

Obtain the input message from either SYSIN or the
Source List, depending on the setting of the paramet­
er, SYSINX, established in the user's profile by pre­
vious issuance of a DEFAULT command. The value of
the SYSINX parameter in the user profile might have
been previously established as either G, L or E. If
the source operand is defaulted when issuing the
SYSIN macro instruction, the source code existing in
the user profile establishes the actual default
source. SYSINX is initially set to G by the system.

This code may be used as a suffix to any of the first
three codes, but may not be used by itself. It modi-

prmpt

exit

fies the action of the code to which it is suffixed
by causing commands to be transmitted to the userls
storage area just as ordinary data or message input
would be.

specifies a special command prompt string that is to be issued at
the userls terminal to prompt the user to enter an input line. The
indicated prompt string should be preceded by one byte containing
the string length.

specifies the address that is to receive control if the requested
message is a command and the source operand is not specified with
the S as a suffix. This operand is not valid if the source operand
is specified as LS, GS, or ES.

PROGRAMMING NOTES: The SYSIN macro instruction either prompts the
user's SYSIN device for an input line or it reads a line from the Source
List. When the input line is read, it is examined to determine if it
contains commands, an input message, or data. If an input message or
data was read from SYSIN or the Source List, the input line is trans­
ferred to the user specified input message area and execution of the
user's program continues. However, a user may have entered a command or
command statement in response to the prompting produced by execution of
the SYSIN macro instruction. If the reply from SYSIN or the Source List
is a command, or command statement, it is not transmitted to the user
specified input area unless the suffix S appears in the code. Instead,
SYSIN the routine passes control to the user indicated exit address. At
his exit address, the user can then examine the commands by searching
the Source List and either execute them immediately and continue proces­
Sing, or execute them further on in his program.

A user can alter the action of the SYSIN routine by entering the com­
mand language prefix character (i.e., usually an underscore) following
the SYSIN macro instruction routines prompt string when it is written
out at the terminal. If commands are entered in this manner they are
executed immediately and the SYSIN routine will return a code of 08 in
register 15 to the user.

If the suffix S is used, commands will be transmitted to the user's
input message area just as data normally is.

If a message is requested from the Source List when the latter is
empty, the message is obtained from SYSIN instead.

The following return codes are placed in register 15 when control is
returned to the user:

Code
~

10

14

20

24

Meaning
an immediate command (i. e., a command preceded by the sys-
tem's command prompt string) was detected and executed.
the input line was in keyboard format; a normal return was
made.
the input line was in keyboard format; the line was
truncated.
input line was in card reader format; a normal return was
made.
input line was in card reader format; the line was
truncated.

When a normal return is made, the total number of bytes
transmitted to the user area is passed to the user in the
area in which he indicated the maximum message length.

Communication With SYSIN/SYSOUT 187

L- AND E- FORM: Both the L- and E-forms of the SYSIN macro instruction
are available and have no special requirements. The E-form of the macro
instruction may specify any parameter; however. the parameters specified
in the E-form will overlay those specified in the L-form. The E-form
may not specify more operands than are specified in the corresponding
L-form.

For example:

SUE SYSIN
SYSIN

INAREA.LENGTH.G.PMPT.EXITEND.MF=L
LENGTHB •• PMPTB •• MF=(E.SUE)

When the E-form of this macro instruction is executed. the length and
prompt string parameters (LENGTH.PMPT) specified in the L-form will be
replaced in the parameter list by the length and prompt string (LENGTHB.
PMPTB) specified in the E-form.

EXAMPLE: Execution of the following example will cause the prompt str­
ing 'ENTER I/D' to be d~splayed at the user's terminal. and his reply to
be read from the terminal and transmitted to the user storage area
labeled INAREA. The number of bytes transferred to INAREA would be
placed in the LENGTH field specified by the user. When the SYSIN rou­
tine returns control to the user's program, register 15 will contain a
hex return code of 10.

MVC LENGTH, LCON
SYSIN INAREA,LENGTH.G.PROMPT,EXITADR

EXITADR RETURN

DC AL 1 (L' PR OMPT) Length of prompt string
PROMPT DC C'ENTERID'
LCON DC AL 1 (L' INAREA)
LENGTH DC X'OO' Length of INAREA
INAREA DS CL20

PRMPT -- Prompt System to Display a Particular Message (S)

The PRMPT macro instruction requests that the message associated with
a particular message ID be displayed at the terminal and calls upon a
system control program (User Prompter) to expedite the request.

r--------T---------T---,
I Name I Operation I Operand I
r--------+-------+----------------------------------~
I I I (addr) (N} I I [symbol] IPRMPT Imsgid- , resp opt- P , user resp-addr I

I I I text [. ([{param-{::::}} · J -)] i
L--______ ~ ________ ~ ___ J

188

msgid

resp

an original 8-byte message identification code associated with a
message residing in a user provided message library. If the addr
form is used it must point to an 8-byte field containing the msgid
left adjusted and filled out with blanks.

a one byte code indicating the types of responses, if any, the User
Prompter program should expect to have furnished from the terminal
when the message is displayed at the terminal. This code can be
specified as:

N no response should be expected from the terminal. This
option causes the User Prompter to display the message at
the terminal and return control to the program containing
the PRMPT macro instruction, after placing zero in the
user response code field.

P a predefined response should be expected from the termin­
al. This option causes the User Prompter to display the
message at the terminal, read a user response from the
terminal, and then compare the user response to an
expected response that was predefined in the message
library. If a matching response is received, a code
attached to the predefined response in the library is
returned to the caller in the user response field defined
by the PRMPT macro instruction. If a matching response is
not found, the user is prompted with all of the predefined
responses to terminal responses. For conversational
tasks, if the next response is also improper, the user
response field is set to zero and an error is indicated in
register 15. Control is then returned to the user's
program.

U An unpredictable response other than those defined in the
message file, such as a string of information, should be
expected from the terminal. This option causes the User
Prompter to display a message at the terminal and then
read an undefined response from the terminal. For
example, the message might be "Enter User ID w to which the
response would be an actual unique User ID value. In this
case the User Prompter places a pointer to the response
read from the terminal, in the user response field. The
byte preceding the string must equal the length of that
string (255 bytes maximum length) •

user resp
A one word field in which the User Prompter indicates the type of
user response to a message. For predictable responses, a unique
predefined response code indicating which of the possible prede­
fined responses has been entered, is placed, right justified, in
the field by the User Prompter. For unpredictable responses a
pointer to the response string is placed in the field.

param
information that is to be used to complete or alter the message
being displayed at the terminal. Parameters can be specified as
relocatable symbolic pointers or by register notation (addr), or as
quoted strings (text). Parameters are separated by commas. If
symbolic pointers are used, the strings to which they point must be
defined in the caller's program as assembly language character con­
stants and immediately preceded by a byte containing the length of
the string. The number of parameters cannot exceed 20.

Communication With SYSIN/SYSOUT 189

PROGRAMMING NOTES: The User Prompter is a centralized message storage
display, explanation, and response handling facility available to both
the system and user programmers. The message file, referenced by the
User Prompter, must be set up via the standards defined in IBM System/
360 Time Sharing System: Command System User's Guide, Form C28-2001, in
order to allow for use of the User Prompter facility. All predefined
responses set up in the message file should be preceded by a unique
identification code.

Explanations of messages displayed at the terminal can be requested
by use of the EXPLAIN command (see the Command System User's Guide for­
further details) •

When control is returned from the User Prompter to the program con­
taining the PRMPT macro instruction, register 15 will contain one of the
following return codes:

o
4
8
12
16

20

24
28

32

36
40

Meaning

No errors. Normal return
An I/O error has occurred
System error has occurred
Message could not be found
Message filtered out by user due to message display
level choice specified by the user in the user profile or
because of the length specified for the choice
Insufficient output buffer space available. Message
truncated.
Explanation could not be found in the message file
Matching response not found among predefined responses
in the message file
Invalid response option was specified. Response option not
N, P, or U.
Message continued
Attention interrupt occurred during I/O operation

L- AND E-FORM USE: The L- and E-forms of this macro instruction are
allowed and have no special requirements. The E-form of the macro
instruction may specify any parameters; however, the parameters speci­
fied in the E-form will overlay those specified in the L-form. The E­
form may not specify more operands than are specified in the correspond­
ing L-form.

For example:

SUE PRMPT MSGIDADR,N"MF=L

PRMPT , MSG IDB' , P , RESP , MF= (E, SUE)

MSGIDADR DC C'MSGIDA'

RESP DS F

When the E-form of this macro instruction is executed, the message
(i.e., the message whose ID is MSGIDA) is replaced in the parameter
table generated by the L-form macro expansion, by the message specified
in the E-form (i.e., the message whose ID is MSGIDB). In addition a
predictable response will be expected by the User Prompter instead of no
response at all.

190

EXAMPLES: Both the user code, the message written at the terminal, and
a user response, are displayed in the examples below:

EX1 ;

EX2;

EX3

EX4

User Program:
Message to Terminal;

User Program:

RESP
Message to Terminal:
Response from Terminal:

User Program:

IDCODE
Message to Terminal:
Response from Terminal:

User Program:

PARADD1
Message to Terminal:

PRMPT 'CZATF',N,
CZATF ILLEGAL COMMAND

PRMPT 'CZASE101',P,RESP

DS F
CZASE101 ENTER DSORG
VS

PRMPT 'CZABC201',U,IDCODE

DS F
CZABC201 ENTER USER ID
EJB107

PRMPT 'CZSEB' ,N, ('100' ,PARADD1)

DC AL1 (5)

DC C'CZATF'
CZSEB LINE 100 IN REGION

CZATF DOES NOT EXIST

In EX1 no response from the terminal is expected and control is
returned to the user's program after the message is displayed. EX2
expects predefined responses to be entered at the terminal. When the
user responds by entering VS, the PRMPT routine searches a list of pre­
defined responses (via the User Prompter) to find a match. A unique
code, identifying which of the possible predefined responses the user
has entered, is stored in the full word parameter (RESP) in the user's
program and control is returned to the program. EX3 expects unpredict­
able responses to be entered at the terminal. When the user responds by
entering his user ID, the routine determines if a valid ID has been
entered, and if valid, places a pointer to the area in which the
response is stored, in the user response option field (IDCOD~. EX4
requires no user response, but, inserts variable message data ('100' and
the string at PARADD1) parameters into the message contained in the mes­
sage file and writes the completed message to the terminal. Thus, if
the message is recorded in the messagefile as, LINE $1 IN REGION $2 DOES
NOT EXIST, the variable entries $1 and $2 are replaced by the parameters
provided via the operands of the PRMPT macro instruction as indicated in
EX4.

MSGWR -- Issue Message and Get Response (S)

The MSGWR macro instruction issues a message to SYSOUT and, if speci­
fied, fetches the response and places it in a user-designated area.
SYSOUT receives all the system messages such as diagnostics, responses,
etc. In conversational mode SYSOUT is considered to be the terminal and
in nonconversational mode, SYSOUT is considered to be the data set con­
taining system messages that will be printed at the end of the task.
Responses can only be made in conversational mode. Therefore, the
response option may only be specified in conversational mode. If the

Communication With SYSIN/SYSOUT 191

response option is specified in nonconversational mode, the task is
abnormally terminated.

MSGWR (unlike the similar macro instructions, GATWR and GTWSR) issues
system messages only. The text and the message numbers assigned to
these messages are described in the document IBM System/360 Time Sharing
System: Command System User's Guide. The user can modify a standard
system message by inserting variable information into it. Variable
fields are filled in by MSGWR,using information supplied by the user.

The format for the MSGWR macro instruction is indicated below. The
information associated with each parameter must be placed in storage by
the programmer before issuing the macro instruction.

r--------T---------T---,
I Name I Operation I Operand I
~-------t-------t--~
I [symbol] I MSGWR I msgcode-addr, [varinf-addr,] I
I I I [rarea-addr, rlength-addr] I L-_______ ~_. ________ ~ ___ J

msgcode
specifies the address of a full word containing the message number,
a response flag, and the number of variable strings of text to be
inserted. This information must be inserted in a full word by the
user in the format described below.

0-1

2

3

Contents

message number - four hexadecimal digits

response flag - 1 if response is desired
o if not

numbers of strings of variable text to be inserted

varinf

rarea

specifies the address of one or more double words which identify
the text to be inserted in the variable field of the message.
There are as many doubleword entries as are specified in byte 3 of
msgcode. The first of these words given the number of bytes of
text, in binary. The second word points to the actual text.

specifies the address of the area into which the response (if any)
is to be placed.

rlength
is the address of a 1-word field into which the length of the
response (if any) is to be placed. The response area must be large
enough to accept the longest expected reply. The longest possible
reply is 128 bytes. If the response does not fit in the allotted
area (because less than 128 bytes were specified), it will be trun­
cated, starting with the rightmost character.

If the user has any doubt about the length of the response, he should
give 128 as the rarea. This is the maximum print line length and will
thus prevent accidental truncation of an input record.

PROGRAMMING NOTES: On return from MSGWR, a hexadecimal code is loaded
into the low-order byte of general register 15. The significance of
these codes is as follows:

192

Code
-0-

4

8

Significance
No attention interrupt; no error in response length (if
applicable) •

Response too long for area specified. Truncation occurred.

Attention interrupt occurred; status of response (if any)
is unpredictable.

Upon return from MSGWR, if a response was requested, the actual byte
length of the response is placed in rlength.

General registers 2 through 12 and the floating-point registers are
unaffected by expansion of the MSGWR macro instruction.

EXAMPLE: In the following example, the system message D001 is to be
written on the terminal with a variable field containing XXUSERID; the
expected response should contain a maximum of 8 characters, which is to
be placed in an area called READIN.

EX1 MSGWR MSGCD,VARFLD,READIN,RLENGTH

In this example, the user has provided information required by the
MSGWR macro instruction elsewhere in his program through use of DCs.
The parameters of the MSGWR macro instruction have been specified using
the symbolic addresses pointing to the DCs.

MSGCD DC X'D0010101'
VARFLD DC F' 8'

DC A (TEXTVA)
TEXTVA DC C'XXUSERID'
READIN DC 2F'0'
RLENGTH DC F' 8'

MCAST -- Modify Character and Switch Table (0)

The MCAST macro instruction is used to temporarily replace the
Character Translation Table (in a user's session profile) with a user
specified Character Translation Table and temporarily overlay the con­
trol function characters such as continuation characters or end-of-block
characters (also in the session profil~ with new functional control
characters. The CTT and the Profile Character and Switch Table in the
session profile are both overlayed for the duration of the user's ter­
minal session. If desired, the changes can be permanently recorded in
the user's profile by issuance of the PROFILE command.

r--------T--------~---,
I Name I Operation I Operand I
~------+---------+---~
I I I [CTT=addrx] [, EOB=addrx] [, CONT=addrx] I
I I I [,CLP=addrx] I
I [symbol] I MCAST I (, TRP=addrx] [, DIV=addrx] [, SSM=addrx] I
I I I [, USM=addrx] I
I I I [,PL=addrx,CP=addrx] [,KC=addrx] I
I I I [, RS=addrx] I L---_____ ~ ________ ~ ___ J

CTT
address of a pointer to the 512 byte Character Translation Table
which is to temporarily replace the one in the user's session
profile.

Communication With SYSIN/SYSOUT 193

EOB

CONT

CLP

TRP

DIV

SSM

194

address of the Source List end-of-block character that is to
replace the one currently existing in the user's session profile.
This character_ defines the end of an input block in the Source List
to the Command Analyzer. The initial value is X'26'.

address of the continuation character that is to replace the one in
the user's session profile. If the last character before a car­
riage return is a control language continuation character, the line
of input is continued past the carriage return to include the next
line entered at the terminal. The initial CONT character is
defined as a hyphen, X'60'.

address of the control language prefix character that is to replace
the one in the user's session profile. Entry of this character at
the terminal by a user, requests the system to execute immediately
the command following the character. Initially this character is
defined as an underscore.

address of the transient command statement prefix character that is
to replace the one in the user's session profile. When the user
codes this as the first character of a command in a command state­
ment, the SYSIN routine will recognize it as an immediate command
and control will be passed to a predefind entry point in the lan­
guage processor currently being executed. The language processor
will then immediately process that command and either return con­
trol to the next sequential command in the command statement or
perform other processing. The initial TRP character is a vertical
line, X'4F'.

address of the preferred line divide character that is to replace
the one in the user's session profile. A user can enter this
character to indicate where he would prefer to have an input line
broken if it becomes necessary or desirable to do so. The initial
DIV character is defined as X'72'.

address of the new User Prompter system scope mask. This mask is
used in conjunction with the explainable words of messages written
to the terminal from the system message file. When the user
requests an explanation for such a word (via the EXPLAIN command)
this mask determines the pattern for searching through the hierar­
chy of word explanations in the message file. Each bit position in
the one byte mask corresponds to a byte in an eight character label
or message ID associated with a message containing the explainable
word. Each bit that is set on (from right (7 bit) to left (0 bit»
causes a different level message file to be searched once. A com­
plete scan is made and all indicated searches are executed.

The number of bytes in the message ID compared in each search is
equal to the number of bytes to the left of the bit that is set on,
plus 1, for the bit causing the search to be made. Thus if the 7
bit were set on, a search of 8 characters would be made; if the 1
bit were set on, a search of 2 characters would be made. The
search for a particular level of explanation for a'message begins
by scanning the mask from right to left for on bits. If the first
search doesn't locate the desired word, the scan continues to the
next search indicating bit, etc., until the complete mask has been
scanned and all levels of search have been completed. The initial
default is defined as X'29'.

USM

PL

CP

KC

RS

address of the new User Scope Mask. Each bit represents a level at
which a search and comparison is made to locate explainable words
in a user defined message file (located in the user library). The
user may set this mask according to his own search logic. See the
SSM operand above for further infor~ation. The initial default
value for USM is also X'29'.

address of a byte containing the length of the Command Prompt Str­
ing. This length cannot exceed 8. This length initially reflects
the 3 character default value of the command prompt string operand.
See CP below.

address of a system Command Prompt String that is to replace the
one in the user's session profile. This may be a string of up to
eight characters. The initial default is an underscore followed by
a backspace and a carriage return suppression character. The sys­
tem uses this string to prompt the user to enter commands at the
terminal. If this operand is specified, the PL operand must also
be specified.

address of a one byte keyboard/cardreader switch. This switch
indicates the type of device from, which input will be accepted by
the system. It may be set with a K for a keyboard, or with an E to
indicate either the keyboard or the card reader. E serves as the
default parameter and causes the input device to be determined by
examining the SYSIN parameter previously established in the user
library by a DEFAULT command. The SYSIN parameter can be set to K
or C; it is initially set to K. The KC operand is initially set to
E.

address of the carriage return suppression character that is to
replace the one in the user's session profile. Normally a carriage
return is executed after every message written on the terminal by
the GATE routine, however, when this character appears as the last
character in a message, no carriage return occurs. The next mes­
sage written on the terminal begins where the last one left off.
The initial value for RS is the colon, X'7A'. The suppression
character is not written on SYSOUT.

CAUTION: If a user issues a PROFILE command via an OBEY macro instruc­
tion following MCAST, his user profile will be permanently changed.
Users' should make certain, for subsequent program executions, that when
communicating with those programs the updated control and functional
characters are employed.

PROGRAMMING NOTES: The Character Translation Table consists of 512 con­
tiguous bytes. The table is broken into two 256 byte sections. The
first section contains the internal binary representation for each of
the possible hexadecimal codes from 00 to FF, in sequential order. The
second 256 byte section contains the function codes each displaced 256
bytes from its related hexadecimal translation code. The available
function codes and the Character Translation Table are described in
Appendix C of the IBM System/360 Time Sharing System: Command System
User's Guide, Form C28-2001. A user must generate his new character
Translation Table according to the prescribed format. A copy of the
table can be found in that publication.

Since the MCAST macro instruction allows new interpretations for all
current characters and control functions switches, it should be particu-

Communication With SYSIN/SYSOUT 195

larly useful for publisher text editing applications where unique
character interpretation is desired and line control changes are needed.

With varying line length capabilities of different devices r it may
become necessary to divide a line of input. The DIV operand can be used
to accomplish this. For ordinary printed text a user might make thi~
character a space; then a line would be broken between words.

L- AND E- FORM USE: The L- and E-forms of this macro instruction are
allowed and have no special requirements. The E-form of the macro
instruction may specify any parameters; however r the parameters speci­
fied in the E-form may not specify more operands than are specified in
the corresponding L-form.

For example:

SUE MCAST
MCAST

DIV=/r KC=K r MF=L
KC=ErMF= {E r}

When the E-form of this macro instruction is executed r the specifica­
tion of the SYSIN device indicated via the L-form (K) will be replaced
by the specification indicated in the E-form (E). Thus the system will
accept input from the keyboard and card reader.

EXAMPLE: The user is replacing the Character Translation Table in the
user's session profile with the characters indicated in the 512 byte
table located at NEWTAB. In addition r the end-of-block character in the
Profile Character and Switch Table in the user's session profile is
being changed to an asterisk (*) and the command prompt string is being
changed to a number sign CI).

196

LENGTHCB
NEWPRMPT
EOBCHAR
NEWTAB

MCAST

DC
DC
DC
DS

CTT=NEWTABrEOB=EOBCHAR r
PL=LNGTHCBrCP=NEWPRMPT

AL 1 CL' NEWPRMPT)
C'i'
C'*'
OCL512

COMMUNICATION WITH OPERATOR AND SYSTEM LOG

The TSS/360 communication facilities provide a user with macro
instructions for communicating with the system log (a generation data
group in which each VISAM data set contains a record of system to opera­
tor and operator to system communications for a startup to shutdown ses­
sion), and the main operator's terminal. These routines should normally
only be used for programs having specialized I/O routines that require
operator intervention. The macro instructions providing this communica­
tion are indicated below.

~O

WTOR

WTL

writes a user specified message on the main operator's console.

writes a user specified message on the main operator's console
and reads a reply from the main operator console into a
programmer-designated area.

writes a user specified message on the main operator's console
and records a copy of the user message in the system operator's
log.

A detailed explanation of the above macro instructions and the format
in which they may be specified are shown below. Further information
pertaining to the communication between user programs, the main opera­
tor, and the system log, can be found in IBM System/360 Time Sharing
System: Assembler Programmer's Guide, Form C28-2032.

WTO -- Write to Operator (S)

The ~O macro instruction writes a message on the main operator's
console.

r-------~---------T 1
I Name I Operation I Operand I
r--------f---------f---~
I [symbol] IWTO I message-text I l ________ ~ ________ ~ ___ J

message
specifies the message to be written on the operator's console. The
message can include commas, blanks, and apostrophes as in a
character constant.

The maximum message length is 256 bytes. The message does not
include the required enclosing apostrophes.

CAUTION: If this macro instruction is included in a module that is
declared privileged (through use of the DCLASS macro instruction), the
address of a save area must be placed in register 13 before execution of
this macro instruction.

PROGRAMMING NOTES: At completion of execution of the WTO macro instruc­
tion, the low-order byte of register 15 contains one of the following
codes:

Code
-0-

4
C

Significance
SUccessful
Attention interruption
Invalid message length; no message sent.

L- AND E-FORM USE: The message operand is required in the L-form and is
not permitted in the E-form.

Communication With Operator/Log 197

EXAMPLE: In the following example, the message NOW COMPLETE is to be
sent to the operator.

EX1 WTO 'NOW COMPLETE'

WTOR -- Write to Operator with Reply (S)

The WTOR macro instruction writes a message on the system operator
console and enables the system operator's reply to be transmitted to the
program issuing the macro instruction. No further processing of the
program occurs until the operator replies.

r--------T---------T---,
I Name I Operation I Operand I
r--------+---------+---~
I [symbol] IWTOR I message-text, reply-addr, length-value I L-_______ ~ ________ ~ ___ J

message

reply

specifies the message to be written on the console. The message
can include commas, blanks, and apostrophes as in a character
constant.

The maximum message length is determined at system generation time.
This length must not exceed the physical line length on the console
output device or 253 characters, whichever is less. The message
appearing on the console does not include the enclosing
apostrophes.

specifies the address of an area into which the message reply text
should be placed.

length
specifies the length, in bytes, of the reply text. The value must
not exceed 256.

CAUTION: If this macro instruction is included in a module that is
declared privileged ~hrough use of the DCLASS macro instruction), the
address of a save area must be placed in register 13 before execution of
this macro instruction.

PROGRAMMING NOTES: At completion of execution of the WTOR macro
instruction, the low order byte of register 15 contains one of the fol­
lowing codes:

Code (Hexadecimal)
o
4
C

10

Significance
Successful
Attention interruption
Invalid message length; no message sent.
Reply length greater than specified maximum
reply length; reply was received, but only
the maximum number of characters is in the
reply area.

L- AND E-FORM USE: The message operand is required in the L-form and is
not permitted in the E-form.

EXAMPLE: The message BEFF ON is written on the operator's console. The
expected reply is four bytes long and will be stored at location ALPHA.

EX1 WTOR 'BEFF ON', ALPHA, 4

198

WTL -- Write to Log (S)

The WTL macro instruction writes a message in the system log and on
the main operator's console.

r--------T---------T---,
I Name I Operation I Operand I
~----t---------t---~
I [symbol] IWTL I message-text I L ________ i _________ i ___ J

message
specifies the message to be written on the main operator's console
and inserted in the system log.. The maximum message length is 253
bytes. The message does not include the required enclosing
apostrophes.

CAUTION: If this macro instruction is included in a module that is
declared privileged (through use of the DCLASS macro instruction), the
address of a save area must be placed in register 13 before execution of
this macro instruction.

PROGRAMMING NOTES: The message can include commas, blanks, and apos­
trophes as in a character constant.

At completion of execution of the WTL macro instruction, the low­
order byte of register 15 contains one of the following codes:

Code
-0-

4
C

Significance
Successful
Attention interruption
Invalid message length; no message sent.

L- AND E-FORM USE: The message operand is required in the L-form and is
not permitted in the E-form.

EXAMPLE: The message ALL ON is to be sent to the operator and entered
in the system log.

EX1 WTL 'ALL ON'

Communication With Operator/Log 199

TIMING MAINTENANCE

There is a requirement within a time sharing system for the main­
tenance of various forms of elapsed time. The user requires the ability
to set a timer which will measure the time of his task's execution or
the elapsed calendar time. Three macro instructions have been provided
by TSS/360 to provide the user with these abilities; the STIMER, TTIMER,
and EBCDTIME macro instructions.

Each task has eight interval timers associated exclusively with that
task. The STIMER and TTIMER macro instructions can set and test any or
all of these eight timers. The EBCDTIME macro instruction can be used
to record or measure the elapsed calendar time from a base or starting
date of March 1, 1900.

STIMER sets a specified time interval into a timer, measures either
task execution time or real clock time, and indicates what
action should be taken when the time interval has elapsed.

TrIMER tests an interval timer previously set by the STIMER macro
instruction and indicates the time remaining in that interval.
It can also be used to cancel a previously specified timer
setting.

EBCDTIME converts system maintained time into various EBCDIC formats,
specified by the user. The time is expressed in some combina-
tion or years, months, days, and hundredths of seconds
which have elapsed since the base date of March 1, 1900.

A detailed explanation of the above macro instructions and the for­
mats in which they may be specified are shown below. Further informa­
tion pertaining to timing maintenance and related macro instructions can
be found in IBM System/360 Time Sharing System: Assembler Programmer's
Guide, Form C28-2032.

STIMER -- Set Interval Timer (0)

The STIMER macro instruction sets an interval into a programmed
interval timer, specifies when the interval timer is to be decremented,
and specifies the action to be taken when an interruption signals com­
pletion of the interval.

r--------T---------T---,
I Name I Operation I Operand I
r--------f---------f---~
I I I rDINTVL=addr~ I
I I I TASK [,exit-symbol] 'lBINTVL=addrj I
I I I I
I [symbol] I STIMER I ~DINTVL=addr J I
I I I [REAL[,exit-symbolD , BINTVL=addr I
I I I lWAIT) TOD=addr I
I I I DO(WIMIY}=addr I
I I I I
I I I [,TNO=Q I integer] I L-_______ ~ _________ ~ ___ J

TASK

200

specifies that the interval is to be decremented only when the task
issuing the STIMER macro instruction is in control. A user may not
request an interval timer to be set with a total task time greater
than 1.5 hours.

REAL

WAIT

exit

specifies that the interval is to be decremented continuously,
whether or not the task issuimg the STIMER is in control.

specifies that the interval is to be decremented continuously, and
that the task issuing the STlMER is to be placed in a wait condi­
tion until an interruption signals the end of the interval.

specifies the address of an exit routine to be given control asyn­
chronously when the specified interval ends. This operand cannot
be specified if WAIT is specified; if it is omitted when a TASK or
REAL interval is specified, the task will be unaware of when the
interval has ended.

DINTVL
specifies the address of a doubleword containing a decimal interval
to be set into the timer. If real clock time was indicated (REAL),
the doubleword must be aligned on a doubleword boundary and contain
eight unpacked decimal digits in the format HHMMSSth, where HH=
hours in a 24-hour clock, MM= minutes, SS= seconds, t= tenths of
seconds, and h= hundredths of seconds, where HH~23, MM~59, SS~59,
t~9, and h~9. If task time is being set (TASK), the maximum time
interval that may be specified is 7.5 hours.

BINTVL

TOD

DOW

DOM

DOY

specifies the address of a fullword containing a binary interval to
be established for this task. If real clock time was indicated
~EAL), the fullword must be aligned on a fullword boundary and
contain a positive 32-bit binary number in which the least signifi­
cant bit has a value of 0.001 second. The specified interval must
be less than 24 hours. If task time is being set (TASK), the maxi­
mum time interval that may be specified is 7.5 hours.

specifies the address of a doubleword containing the time of day at
which the interval is to end. The doubleword must be aligned on a
doubleword boundary and contain eight unpacked decimal digits in
the format HHMMSSth (defined in the DINTVL operand). This operand
is meaningful only when a REAL or WAIT interval is specified. If a
TASK interval is specified, an error message is issued at assembly
time.

specifies the address of a four-byte field containing the day of
the week at which the interval is to end. The four bytes must con­
tain one of the following seven character combinations.

MOND
TUES
WEDN
THUR
FRID
SATU
SUND

specifies the address of a two-byte field containing the day of the
month at which the interval is to end. The bytes contain two
unpacked decimal digits which must take on a value in the range 01
through 31.

specifies the address of a fullword containing five packed decimal

Timing Maintenance 201

TNO

digits of the form YYDDD, where YY= the last two digits of the year
and DDD= the day of the year. These five digits are preceded by
two packed decimal zeros and followed by a four-bit character such
that all digits have the same zone if the 32-bit word is unpacked.

The TOD, DOW, DOM and DOY operands are meangingful only when a REAL
or WAIT interval is specified. If a TASK interval is specified
with one of these operands, an error message is issued at assembly
time.

specifies the number of the programmed interval timer to be set.
Nonprivileged programs may set timers 0 to 7. If this operand is
omitted or invalid, timer 0 is assumed for nonprivileged programs.

EXAMPLES: In the following examples, EX1 is used in testing a new loop
in a program. The loop should be executed for 6 seconds maximum; there­
fore, an interval of 6 seconds is specified by the contents (00000600)
of the doubleword at LOC1. The interval is decremented only when the
task is in control. If the interruption occurs, a routine at RTN1 is
entered. A TTIMER macro instruction should be placed after the loop to
cancel the interval if execution is successfully completed in less than
6 seconds.

EX2 sets an interval to be decremented continuously, whether or not the
task issuing the macro instruction is in control. The interval is given
in fullword at LOC2. RTN2 is the entry point of the exit routine.

EX3 sets an interval for a program that polls terminals every time the
interval expires. The interval is given in the fullword at LOC3.
Assuming that the interval is 25 minutes, the task issuing the macro
instruction is placed in a WAIT condition for 25 minutes; then an inter­
ruption occurs and the task again competes for control.

EX4 causes the task to be placed in a WAIT condition until the time of
day specified by the contents of the doubleword at LOC4.

EX1
EX2
EX3
EX4

STIMER
STlMER
STlMER
STlMER

TASK,RTN1,DINTVL=LOC1
REAL,RTN2,BINTVL=LOC2
WAIT, BINTVL=LOC3
WAIT, TOD=LOC4

PROGRAMMING NOTES: When this macro instruction is executed, a pro­
grammed interval timer is set with the specified interval or with an
interval that will provide an interruption at the specified time of day.
If TASK is specified, the timer is decremented only when the task issu­
ing the macro instruction is in control; if REAL or WAIT is specified,
the ·timer is decremented continuously. If TASK or REAL is specified,
the ·task remains in contention for control; if WAIT is specified, the
task is placed in a WAIT condition until after the interruption, and
then returned to contention.

If TASK is specified, control is given to the exit routine, if speci­
fied, after the interruption. If no exit routine is specified, control
returns to the program at the next instruction to be executed, and the
program is not notified of the interruption.

If REAL is specified and the task issuing the STIMER macro instruc­
tion is in control when the interruption occurs, control is given to the
exit routine or the next instruction to be executed, as for TASK.
However, if the task is not in control when the interruption occurs, the
exit routine (if specifie~ or the next instruction to be executed is
given control when the task regains control normally.

202

When control is returned to the user program one of the following
return codes is placed in register 15.

Code
00

04
08

Meaning
Normal return
Invalid time interval or invalid clock number was specified
Total user task time specified exceeds 7.5 hours. The timer
was not set

Upon entry to the exit routine specified in an STIMER macro instruc­
tion, register contents are:

Register ll

o
1

2-12
13
14

15

Contents
Pointer to save area
Parameter list pointer
Same as when the interruption occurred
Savea,rea
Return address (internal task monitor
location)
Address of the exit routine (this register
can be used to provide addressability)

lISee the STEC macro instruction for parameter list and pointer
details.

The task monitor saves all registers internally. The exit routine
can use all registers, except 14, without having to save and restore
them.

Upon completion of the exit routine, the contents of register 14 must
be as they were upon entry to the routine. The exit should terminate
with a branch to the address in register 14.

TTlMER -- Test Interval Timer (~

The TTIMER macro instruction provides the time remaining in the
interval requested by a previous STIMER macro instruction and, opti~nal­
ly, cancels a previously specified timer interval.

r-------------~-------------~--1
I Name I Operation I Operand I
l-------------+-----------+------------------------------~
I [symbol] I TTl MER I {TASK) I
I I I [,CANCEL] [,TNO= LQI integer}] I
I I I REAL I L-___________ i-____________ ~ ____________________________________ J

TASK

REAL

specifies a TASK interval, as specified in the associated STIMER
macro instruction and as identified in the specified exit list.

specifies a REAL interval, as specified in the associated STIMER
macro instruction and as identified in the specified exit list.

CANCEL
specifies that the identified interval should be cancelled. If
this operand is omitted, processing continues with the unexpired
portion of the interval still in effect. If the interval expired
before the TTIMER macro instruction was executed, the CANCEL
operand has no effect.

Timing Maintenance 203

TNO
specifies the numher of the programmed interval timer to be tested.
Nonprivileged programs may test timers 0 to 15. Clocks 8-15 may be
tested but they cannot be canceled: clock numbers over 15 are con­
sidered invalid. If this operand is omitted or invalid, timer 0
will be assumed for nonprivileged programs.

When control is returned to the user program, one of the following
return codes is placed in register 15.

Code
00

04

Meaning
Normal return
Invalid clock number was specified

The time rema1n1ng in this interval is returned in register 0 whether
or not the interval is canceled.

The remaining time appears as a 32-bit unsigned binary number in
which the least significant bit has a value of 1 millisecond. The
interval is returned in this form even if the interval was originally
specified in decimal digits. If the interval expired and the event has
already been dispatched before the TTIMER macro instruction was issued,
a zero is returned in register O.

EBCDTIME -- Convert System Time into EBCDIC Format (S)

The EBCDTIME macro instruction is provided to convert time from the
format in which it is maintained by the system into various EBCDIC for­
mats specified by the user. System time can be translated into any com­
bination of years, months, days, hours, minutes, seconds, and tenths and
hundredths of seconds by the EBCDTIME macro instruction.

r--------T---------T---,
I Name I Operation I Operand I
I-------+--------+--~
I I I {text) I I [symbol] I EBCDTIME lolist- ,time-addr ,L-integer I
I I I addr I L-_______ i _________ i __ J

oplist

204

Can either be a string of special characters in text form or the
address of such a string. The text constitutes a map containing
special character groups which are converted into time and date:
characters that are not part of a special character group are
unchanged. The special character groups are are as follows:

time

L

r---------------~---,
ICHARACTER GROUP I CONVERTED TO I
~-------------+----------------------------.--------------~
IYYY year, from 1900 to 1999
IYY year, from 00 to 99
1000 day of year, from 001 to 366
IMO numeric month, from 01 to 12
100 Day of month, from 01 to 31
IHH Hours, from 00 to 23
IMM Minutes, from 00 to 59
ISS Seconds, from 00 to 59
ISSS Tenths of seconds, from 000 to 599
ISSSS Hundredths of seconds, from 0000 to 5999
IMON first 3 characters of month
I DAY first 3 characters of day
IDAYW first 4 characters of day L _____________ ~ __ _

specifies the address of a doubleword binary number of microseconds
to be converted to time and/or date. If the user provided the
address of such a number, that number is converted into the format
directed by the user specified map. If this parameter is
defaulted, the system maintained time (i.e., a binary number of
microseconds that have elapsed since March/1/1900) will be con­
verted as directed by the user defined map. If the user supplied a
time to be converted to a date, Mar 1, 1900, is used as the base
for the conversion.

specifies a halfword containing the length of the map field (2 to
50 bytes). This parameter need only be specified if the addr form
of the oplist parameter is used. If the text form of the oplist
parameter is used, the length parameter should not be used. In
such cases the system automatically calculates the length of the
user defined map. When the length parameter is required, if it is
specified as less than 2 or is not specified at all, a default map
is provided which is 14 bytes long. The default map is: MO/DD/YY
HH:MM. Normally, if the length parameter is greater than 50, the
map is truncated on the right, however, if register notation is
used for the length parameter, and L is greater than 50, the system
will abend the task.

CAUTIONS: If register notation is used to indicate the length paramet­
er, registers 1 and 14 cannot be specified.

Only upper case characters will be processed as part of a special
character group.

If the oplist parameter is specified in the 'addr' format, then it
should be reset after each use of EBCDTIME macro instruction because
each execution of the macro would alter the map placed in the oplist.

PROGRAMMING CONSIDERATIONS: The parameter list generated by the EBCD­
TIME macro instruction is indicated below:

Timing Maintenance 205

.----------------, r-----------------------------,
IG. P. Register ~-------~address of a halfword containing I Word 0
L ________ • _______ J I the length in bytes of the text I

lin which the user map has been I
I specified. I
~---------------------------~
laddress of the area in which the I Word 1
luser has designated a special I
I character map and in which the I
Iconverted time shall be placed atl
Icompletion of the EBCDTIME macro I
I execution. I
~-----------------------------~
laddress of a binary number to be I Word 2
Iconverted to time and/or date. I
IIf defaulted to the system main- I
Itained time, this field is set tol
I zeroes. I L ______________________________ J

The length in bytes of the user map is placed in a halfword immedi­
ately following word 2 of the parameter list by the macro expansion.
Similarly the user map is placed in a field immediately following the
length field. If the user constructs his own parameter list, the bytes
containing these parameters may be placed in other locations.

L- AND E - FORM USE: The L- and E- forms of the EBCDTIME macro instruc­
tion are allowed. They are written as described in IS-Type Macro
Instructions' in Section 1 except for the following exceptions. The
oplist operand is required in the L-form of this macro instruction. In
the E-form,the oplist operand is optional (i.e., if specified it usual­
ly points to an updated parameter list which is to overlay the parameter
list indicated via the L-form of the macro instruction), but, if speci­
fied, only the addrx form of the operand can be used. The L-form macro
instruction results in the generation of a parameter list in line. If
the oplist parameter is not specified as text then the length of the
text area should be specified. If the parameter oplist is not text and
L is not specified then a default map of the following format will be
assumed and, in addition, an error message indicating length was not
specified will be generated:

EXAMPLE:

206

MO/DD/yy HH:MM.

EX1 EBCDTIME PRINT 1 ,L=22

In this example the user has defined PRINT1 elsewhere in his
program as:

PRINT1 DC CL22'THE DATE IS DD MaN yy"

On output, on the given date, PRINT1 would contain:

THE DATE IS 24 FEB 67

EX2 EBCDTIME 'THE DATE IS DD MaN yy'

REDTIM* ~- Read Time (0)

The REDTIMmacro instruction gen,erates elapsed time (starting from
March 1, 1900) as a double-precision fixed-point number representing
year, month, day, hour, minute, second, millisecond, and microsecond.

*A1though this macro instruction is available to all users, it is emp­
loyed primarily by system programme·rs; therefore, refer to System Pro­
grammer's Guide, Form C28-2008, for a description of this macro
instruction.

Timing Maintenance 201

COMMAND CREATION

A user may desire to create unique commands that can be issued at his
terminal. TSS/360 program management facilities provide several macro
instructions to facilitate such operations. These macro instructions
(BPKD and GD~ can be employed in a user coded routine that is to serve
as the expansion of a command. The BPKD macro instruction must be used
in conjunction with a BUILTIN command entered at the terminal. The
functions of these macro instructions are summarized below.

BPKD

GDV

written in a PSECT associated with a user coded routine that is
to serve as the expansion of a command, being created by a user
and generates all necessary linkage information and parameter
storage areas required for use by a BUILTIN command used with the
macro instruction. The label of the BPKD macro instruction must
be specified as an operand of the BUILTIN command.

locates the default values in a user library associated with a
command. When an issued command has defaulted parameters, the
command expansion routine associated with it can use the GDV
macro instruction to locate the default values. The parameter
name specified by GDV must be the same as a dummy parameter name
indicated by a BPKD parameter.

Detailed explanations of each of the above macro instructions and the
formats in which they may be specified are shown below. Further infor­
mation pertaining to command creation and management and related macro
instructions can be found in IBM System/360 Time Sharing System: Com­
mand System User's Guide, Form C28-2001.

BPKD -- Create a Builtin Procedure Key (0)

The BPKD macro instruction is used in conjunction with the BUILTIN
command to identify a user coded routine as the routine that is to be
executed to process a user created command issued at the terminal. The
command which causes execution of the user routine defined by the BPKD
macro instruction must be assigned a name by the BUILTIN command (See
Command System User's Guide.)

r-----------T-------------T--1
I Name I Operation I Operand I
~----------+_------------+--1
I symbol I BPKD I ep-symbol [, ({ [param-relexp] } , • ••)] I l ___________ i-____________ ~ __ J

ep

param

208

specifies the symbolic name of the entry point to the user coded
routine to be executed when a command, named by the BUILTIN com­
mand, is issued at the terminal.

specifies the address of a dummy parameter that defines an operand
that is to be specified with the user created command. One 'param l

operand must be specified in the BPKD macro instruction for each
dummy parameter coded by the user. Each such dummy parameter
defines both the position, and any related keyword, for a particu­
lar operand of the command.

Each user coded dummy parameter consists of a DC containing a key­
word or a character string that can be related to the operand being
defined. Each such DC must be preceded by the length of the
character string in the DC (see Example below). Although each DC
contains this keyword specification, the actual operand, when spe­
cified during command issuance at the terminal, need not be indi­
cated by using this keyword; it can be specified positionally. The
position of each Iparaml operand specified within BPKD macro
instruction determines the positions of these operands when posi­
tional notation is used.

PROGRAMMING NOTES: At assembly time the BPKD macro instruction
generates a table containing all the necessary linkage information and
parameter storage areas required for use by the BUILTIN command asso­
ciated with the macro instruction. The generated table contains poin­
ters to the object module that is to process the command. This module
is referred to as the command processing routine or module. The
generated table also contains adcons pointing to each of the dummy para­
meter defining constants coded by the user to reflect the number of
parameters required by the command routine. Any keywords which a user
may desire to associate with a particular parameter, when issuing the
command at the terminal, should be placed in the parameter defining con­
stant. The number of available parameters which may be specified in a
command is determined by the number of dummy parameters defined in the
BPKD macro instruction. Space is reserved in the generated table in
which pointers to the parameters values specified by the user at the
terminal can be recorded.

An ENTRY statement is generated in the table for the symbolic name of
the BPKD macro instruction. The recorded entry address is then used to
establish linkage between the user coded module and the BUILTIN command
that defines that module as a command processing module and associates
it with a particular command name. When the named command is issued,
pointers to the actual values of any positional or keyword parameters
specified at the terminal, are placed within the reserved storage areas
within the generated table in the PSECT containing the BPKD macro
instruction, register 1 is set to point to these pointers so that the
data can be referenced by the command processing module. If any command
operand defined by BPKD is omitted when the command is issued at the
terminal, these pointers are set to point to any default values which
may exist; if none exist, they are set to zeros. Control is then passed
to the command processing module which is executed using the necessary
parameter values to accomplish the desired goal. If no parameter names
have been defined in the BPKD macro instruction, indicating that no
parameters are to be specified when the command is issued, the expansion
of the macro instruction does not set up dummy parameter areas or allow
specifications of parameters within the command. Examples of the table
generated by BPKD are shown under the Example paragraph below.

The BPKD macro instruction must be supplied in the object code as
part of a PSECT associated with the command processing module and must
have any expected parameters defined therein. The entire command pro­
cessor could be assembled within the PSECT if so desired. If the com­
mand processor is assembled in a module different from the one contain­
ing the BPKD macro instruction, its entry point and PSECT symbols must
be used as arguments of an EXTRN statement in the assembly containing
the BPKD macro instruction.

When a user desires to provide parameters for the command he is
creating, for each such parameter, the user must provide code in the
PSECT indicating a character string (or keyword) to be associated with
that parameter and the length of that character string. The parameter
symbols of the BPKD macro instruction must also be the name fields of
the user defined character strings (i.e., PAR 1 DC C'KEYWORD, where PAR1
is a parameter symbol for BPKD). It is these parameter strings of key-

Command Creation 209

words that will be associated with the parameters of a calling command
when the command is issued.

Any command procedures created by use of the BUILTIN command and the
BPKD macro instruction are automatically recorded in the user's per­
manent profile when the BUILTIN command is executed and can be used in
later terminal sessions.

EXAMPLE: If a user wants to execute the object program instructions in
a particular CSECT when a command called TROT is issued at the terminal,
he could indicate this by specifying:

In a PSECT associated with the command processor module:

BPKLABEL BPKD EPPROC, (DPAR1,DPAR2)

* ENTRY BPKLABEL
* BPKLABEL DC R (EPPROC) ptr to Command

Processing Module
entry point

* DC V (EPBPKMOD) PTR to BPKD psect entry
point

Macro *PARAM DC A (2) No. of possible
generated parameters
table

* DC 2F'0' Initially, words of
binary zero for
each parameter
After command execu-
tion, ptrs to the
actual values
indicated at the ter-
minal

*PARPTR DC A (DPAR1) Dummy parameter
*PARPTR DC A (DPAR2) defining parameters

DC AL1 (L'DPAR 1) coded by user for all
DPAR1 DC C ' KEYWORD 1 ' desired command

DC AL 1 (L' DPAR2) operands
DPAR2 DC C'KEYWORD2'

At the terminal:

BUILTIN TROT,BPKLABEL
TROT KEYWORD 1=10, KEYWORD2=5000

(OR IF POSITIONAL PARAMETERS
ARE SPECIFIED)

TROT 70,5000

When TROT is issued, pointers to any keyword or positional parameters
are placed in areas reserved within the BPKD macro expansion, making
them availaable to the command expansion routine located at entry point
CSECTMOD. The routine at CSECTMOD is entered, with register 1 pointing
to BPKLABEL·.12, which will contain pointers to the actual parameter
values entered at the terminal (the length of these actual values can be
found in the byte preceding the value location); then the routine is
executed and control is returned to the user terminal.

210

GDV -- Get Default Value (R)

The GDV macro instruction searches the user library associated with
the current user (i.e., a private library assigned to each user when he
joins the system) to find any predefined parameter default values for
system or user created commands.
r--------T---------T---,
I I I I
I Name I Operation I Operand I
r--------t---------t---1
I I I ~ddr) I I symbol I GDV I [com- text] I
I I I (1) I L ______ ~ _________ ~ ___ J

com
specifies the name of a particular command parameter as a character
string enclosed in apostrophes, or specifies the address of the
parameter. If the address of the parameter is specified, the actu­
al parameter must be preceded by its length. If (1) is written, or
if no operand is written, the address of the parameter must have
been loaded into general register 1 prior to executing the macro
instruction.

PROGRAMMING NOTES: The GDV macro instruction is useful within user
coded command expansion routines for locating any default values in the
user library associated with that command. When the command issued at
the terminal includes defaulted parameters, the command processor rou­
tine might execute the GDV macro instruction to search for defaults pre­
viously defined in the user library.

For user created commands, the name of the parameter specified by the
GDV operand must be the same as the parameter name indicated in a BPKD
macro instruction.

If there is no predefined defauLt value in the user library corres­
ponding to the parameter name indicated in the GDV macro instruction,
register 1 is set to zero and control is returned to the command expan­
sion routine.

If the GDV routine finds a default value in the user library, the
virtual storage address of the default value is placed in register 1 and
control is returned to the command processing routine.

The actual parameter should be a user coded character constant con­
taining any keyword that is to be associated with the parameter. The
user may, however, indicate these parameters at the terminal either as
keyword parameters or positional parameters.

L- AND E-FORM USE: The L- and E-forms of this macro instruction are
allowed and have no special requirements. The E-form of the macro
instruction may specify any parameters; however, the parameters speci­
fied in the E-form will overlay those specified in the L-form. The E­
form may not specify more operands than are specified in the correspond­
ing L-form.

For example:

SUE

INSTEAD

GDV
GDV

DC

'DPAR l' ,MF=L
INSTEAD,MF= (E,SUE)

C'DPAR2'

Command Creation 211

When the E-form of this macro instruction is executed, the parameter
specified in the L-form (dpar1) will be replaced by the parameter speci­
fied in the E-form (dpar2).

EXAMPLE: If a user has created a command to be issued at the terminal,
by use of the BPKD macro instruction and the BUILTIN command, the com­
mand processing routine coded by the user might employ the GDV macro
instruction as described below.

r-----------------------~---,
I Terminal Commands I User Coded Command Processing Routine I
~-----------,------------+--~

CSECTA CSECT

BUILTIN TROT, BPKLABEL
GDV DPAR2

DEFAULT KEYWORD2=200 PSECTA PSECT

BPKD CSECTA,DPAR1,DPAR2

TROT 50 DC AL1 (L'DPAR1)
DPAR1 DC C ' KEYWORD 1 '

DC AL 1 (L' DPAR2)
DPAR2 DC C'KEYWORD2'

------------------------~--

The command TROT is created by the user, and is issued with a
defaulted second parameter. In such cases the command processing rou­
tine then executes the GDV macro instruction to search the user library
for any defaulted value that may have been previously specified. When
the default value is located the command processing routine can then
insert the appropriate data into the parameter list generated by the
BPKD macro instruction and continue processing. In the example above
the defaulted DPAR2 operand is found equal to 200.

212

SYSTEM ORIENTED USER MACRO INSTRUCTIONS

In addition to those system oriented user macro instructions already
indicated w1thin the various functional groupings within the data set
management, and program management sections of this publication, there
are several other such macro instructions available. Although any non­
privileged user can issue these macro instructions, they are meant for
use, primarily, by the user's more sophisticated system programmers.
For this reason, their availability is indicated below, but the detailed
descriptions on their use have been placed in IBM System/360 Time Shar­
ing System: System Programmer's Guide, Form C28-2032.

AWAIT* Tests for Event Completion and Return Control (0)

tests for completion of an input/output event and returns control
to the task if the event is completed, or places the task in a
delay state from which it will be removed when any task interrup­
tion occurs.

TWAIT* -- Tests for Completion of Event(~

tests for completion of a given event and either returns control to
the task, if the event is complete, or places the task in a delay
state from which it is removed when any task interruption occurs.
It also causes all pages for this task, which are on paging drums,
to be moved to auxiliary disk storage.

VSEND* -- Inter-Task Communication (0)

sends a message from one task to another. The designated task is
located and the message is queued on its task status index (TSI) as
a task external interrupt.

VSENDR* -- Inter-Task Communication with Response (0)

sends a message to another task and waits for a reply from the
receiving task.

XTRSYS* -- Extract From System Table(~

used to extract specific information from the system table.

XTRCT* -- Extract TSI Field(R)

extracts a TSI field specified by the user, for subsequent user
examination.

XTRXTS* -- Extract From TSI (0)

provides a means of extracting specific information from the
extended task status index (XTSI).

*Meant for system programmers

Command Creation 213

214

APPENDIX A: EXIT LIST (EXLST)

The EXLST= operand of the DCB macro instruction may be specified only
when using BSAM or QSAM data organization.

The exit list consists of a series of codes and addresses that inform
the system of the location of a user-supplied exit.

Each entry in the list consists of three contiguous words aligned on
fu11word boundaries.

~1 byte-.j
r----------T---,
I I I

Word 1 I code I Unused I
I I I • ______ --L--_________________________ ~

I I
Word 2 I V-con of routine I

I I
~---~
I I

Word 3 I R-con of routine ,
I I
.------------------------------~
I ,
I I
....... ---------- 4 bytes -----------.,.,

Entries do not have to be in order by code. To indicate the last
entry in the exit list, the high-order bit of the byte containing the
code is turned on.

If an exit routine is in the same assembly module as the exit list,
two A-type address constants should be coded for words 2 and 3 of the
entry.

r-----------~--,
I Code (hex) I Meaning I
, I ---~

00 IEntry ignored, i.e., not active
I

01 IUser routine to process user header labels
I

02 IUser routine to crea~e user header labels
I

03 IUser routine to process user trailer labels
I

04 IUser routine to create user trailer labels
I

05 IUser DCB exit routine
I

ax ISignal last entry in list, where X is 0-5 representing
100-05 codes above L----______ ~ __ _

Appendix A: Exit List (EXLST) 215

Table 6. Conditions Upon Exit -- Routine Entries
r--------------------------T--------------------~---------------------,
I I TRAILER LABELS2 I HEADER LABELS2 I
I ~--------__,..__-----_+-------_._-------~
I I Exit 03 1 Exit 04 I Exit 01 1 Exit 02 I
I I INPUT I OUTPUT I INPUT I OUTPUT I
J----------------------+------+--------+ +------~
I~ I I I I I
I INPUT I I I X I I
1 OUTPUT 1 1 I I X I
1 UPDAT I 1 I X I I
1 INOOT I I I X I I
I OUTIN I I I I X I
I RDBACK I I I X I I
I-----------------+---------+---------+-----+----------~
lend'-of-volume 1 I 1 1 I
1 INPUT 1 X I 1 X1I I I
1 OUTPUT I I X I I X 11 I
1 UPDAT I X I I X 1 I I
I INOOT (READ) I X 1 I Xi I I
1 (WRITE) 1 1 X I I X1 I
I OUTIN (READ) 1 XII XlI I I
1 (WRITE) I I X 1 I X1 I
I RDBACK 1 X 1 I X 11 I I
r----------------------+----------+----------+-------+---------~
IFEOV - CLOSE 1 I I I I
1 INPUT I I I I X1 I
I OUTPUT I I X 1 I X 1 I
I UPDAT I I I I Xi I
I I NOUT (READ) I I I I I
I (WRITE I I X 1 I X 11 I
I OUTIN (READ) I I I I I
I (WRITE) I I X I I X 11 I
1 RDBACK I I I I X 1 I I---_____________________ ~ _________ ~ I ~----------~

11I Exit not taken if: (1) current volume in process is last volume, or I
I (2) data set is to be closed I
12If last I/O operation was backward, user header label routine is I
I invoked for trailer label processing and user trailer label routine I
I is invoked for header label processing I L----___ J

CHARACTERISTICS OF EXIT ROUTINES

Code 01: User Routine to Process User Header Labels

When this routine is entered, register 1 contains the address of the
data control block being processed, and register 0 contains the address
of an 80-byte buffer which contains a user header label. The first

If a data set to be written on tape was created via the DATA com­
mand, the first byte of each record contains an indicator for the ori­
gin of the record. Unless the startno operand is specified, this byte
is written as part of the record upon issuance of the WT macro instruc­
tion. In such a case, if the record was originally entered through a
card reader, the indicator byte will be written as a C. If it was
entered through a terminal, the byte will be written as a blank
character. When the startno operand is specified as 2 or greater, the
indicator byte is bypassed and is not included as part of the written
record. four bytes of the buffer contain the characters UHL1 to UHL8
or UTL1 to UTL8 depending on which of the eight permitted user header
labels or trailer labels is being processed. To obtain the next label,

216

the user issues a RETURN (no operands except RC= are allowed) with a
hexadecimal 04 in the low-order byte of register 1S. When the last
label is processed, the user issues a RETURN macro instruction with a
hexadecimal 00 in the low-order byte of register 1S. The user may not
issue data management macro instructions for this data set in this
routine.

Code 02: User Routine to Create User Header Labels

When this routine is entered, register 1 contains the address of the
data control block being processed; register 0 contains the address of
an SO-byte buffer in which the user is to build a label. The first
four bytes already contain the characters UHL1 to UHLS depending on
which of the eight permitted user header labels is being created.
These four bytes must not be altered. The user places information in
bytes 4-79. Issuing a RETURN macro instruction, with a hexadecimal 04
in the low-order byte of register 15, causes the label to be written,
and requests control to be returned to this routine so another label
may be created. Issuing a RETURN macro instruction, with a hexadecimal
00 in the low-order byte of register 15, causes the last label to be
written, and control is not returned to this routine. The user may not
issue data management macro instructions to this data set in this
routine.

Code 03: User Routine to Process User Trailer Labels

Same characteristics as Code 01.

Code 04: User Routine to Create User Trailer Labels

Same characteristics as Code 02, except the characters UTL1 through
UTLS are substituted for UHL1 through UHLS.

Code OS: User DCB Exit Routine

When this routine is entered, register 1 contains the address of the
data control block being opened. The user may alter fields in the data
control block, if desired. To return control to OPEN, the user issues
a RETURN macro instruction (no operands except RC= are permitted) with
a hexadecimal code of 00 in the low-order byte of register 1S.

EXIT-LIST EXAMPLE

The following is an example of the coding of an exit list. The exit
list must be in the same assembly module as the data control block (DCB
macro instruction) which refers to it.

APPLE
DC
DC
ADCON
DC
ADCON
DC
ADCON
DC
ADCON

OF ALIGN TO FULL WORD BOUNDARY
X'02'
IMPLICIT,EP=MHDRLAB
X'03'
IMPLICIT,EP=PHDRLB
X'01'
IMPLICIT, EP=PLABY
X'SS'
IMPLICIT,EP=ALTER

The symbolic name of this exit list is APPLE. To use it, EXLST=
APPLE must be written in the DCB macro instruction. Note that the
high-order bit of the hexadecimal code for the last entry is on, indi­
cating the last entry in the exit list.

Appendix A: Exit List (EXLS~ 217

APPENDIX B: SYNCHRONOUS ERROR EXIT ROUTINE (SYNAD)

When using BSAM, QSAM, VISAM (either for VISAM data sets or VISAM
members of VPAM data sets), or IOREQ macro instructions, it is possible
that errors may result from an attempt to process data; in many cases,
certain remedial actions are available to the user.

If desired, a routine may be written for the purpose of receiving
control from the system when an error occurs. The conditions, which
cause control to be given to the SYNAD routine are described under each
appropriate macro description.

The user indicates to the system that a SYNAD routine is supplied by
writing the keyword parameter SYNAD= in the DCB macro instruction. The
task is terminated if an error occurs which would normally cause SYNAn
to be entered and no SYNAD was supplied.

The following is a list of suggested actions which may be taken in a
SYNAD routine:

1. Issue a RETURN macro instruction, which causes a record to be
accepted with error ignored (BSAM and QSAM only) •

2. Set flags which are meaningful to the program.

3. Close the data set.

4. Resume processing at another point in the data set.

5. Call another routine.

6. Terminate the program.

Entry To SYNAD During BSAM or QSAM Operations

If BSAM or QSAM is being used, the contents of the general registers
upon entry to the SYNAD routine are as follows:

218

r----------T---------T---,
I Register I Bit I Usage I
~----------t---------t---~

o 0 thru 31 Address of data event control block (DEC B) •

o Set to 1, if error was caused by a READ macro
instruction (for BSAM), or by GET or RELSE macro
instructions (for QSAM)

Set to 1, if error was caused by a WRITE macro
instruction (for BSAM), or by PUT, PUTX or TRUNe
macro instructions (for QS~

2 Set to 1, if error was caused by a BSP, CNTRL or
POINT macro instruction (for BSAM), or by a SETL
macro instruction (for QSA~

~---------t---------+---~
I I 3 ISet to 1, if (1) error indicated by bit 0 did not I
I I Iprevent reading the block; or (2) if error indi- I
I I Icated by bit 1 occurred during creation of a new I
I I I block I
I I I I
I I 4 ISet to '1, if request was illogical; e.g., a POINT I
I I Imacro instruction (for BSAM) or a SETL macro I
I I linstruction (for QSA~ referred to a block not I
I I Icontained in the data set I
I I I I
I 15 thru 3 1 1Not used I
~--------t---------t---~
12 thru 12 I I (contents that existed before the macro instruc- I
I I I tion was executed) I
~--------_t---------t---~
I 13 I I SYNAD R-con value (for BSAM), or address of ser- I
I I Ivice routines save area (for QSAM)*. I
~----------t--------_t---~
I 14 I I Return address I
~----------t--------_t---~
I 15 I IThe address of the entered SYNAD routine I L __________ ~ _________ ~ ___ J

*For QSAM the word of the save area pointed to by GR13 will contain the
PSECT address (R-co~ for the SYNAD routine.

The DECB begins on a fullword boundary; its format is shown in Table
7.

Appendix B: Synchronous Error Exit Routine (SYNAD) 219

Table 7. Data Event Control Block (DECB)
r----------T---------T---,
I Byte I Bit I Usage I
~---------_+--------_+---i o 0 IAlways set to 0

I
ICompletion flag; set to 1 when an I/O event is
I completed
I

2 thru 311 (Used by the system)
I

4 and 5 IType field
1

6 and 7 ILength field
I

8 thru 11 IData control block address
1

12 thru 15 Area addresss

16 thru 19 Pointer to status indicators

20 thru 25 (Used by the system)

26 Sense byte 1

27 Sense byte 2

128 and 29 (Used by the system)
I
I 30 1 Permanent error flag
I
I 31 (Used by the system)
I
132 'thru 391 Channel status word L __________ ~ _________ i __ _

Type Field
contains a numeric value representing SF (for READ or WRITE) or SB
(for READ) •

Length Field
contains a binary number which represents the number of bytes in a
block, or an indicator that the maximum block size specified in the
data control block was used.

Data Control Block Address
contains the address of the data control block.

Area Address
specifies the I/O area address. For BSAM it contains the address
of the high-order byte of an area in virtual storage which is the
object of a forward READ or WRITE; or the address of the low-order
byte of an area in storage which is the object of a backward READ
operation.

Pointer to Status Indicators
contains the address of the status indicators, which are two bytes
in the channel status word. If control is passed to the SYNAD rou­
tine status information (i.e., sense byte 1, sense byte 2, and the
channel status word) is arranged as indicated above. Each of these
status indicators is described in detail below.

Channel Status Word
is a doubleword illustrated below:

220

r--------------T----------T----------T--------------T------------------,
I I I STATUS I STATUS I I
I STORAGE I COM~1AND I BYTE I BYTE I I
I PROTECTION I ADDRESS I 1 I 2 I COUNT-FIELD I
I KEY I I (uni t) I (cha.nnel) I I L ______________ ~ __________ ~ __________ ~ ____________ ~ __________________ J

The first six bits of sense byte 1 and all bits of status bytes 1 and
2 are device-independent. Their meaning is as follows:

r---T---------------,
I I Sense Byte 1 I
r---+---------------~
Bitl

o Command reject

Intervention
required

2 Bus out check

3 Equipment check

4 Data check

5 Over run

L ___ ~ _______________ J

r---T-------------, r---T-----------------------,
I IStatus Byte 11 1 I Status byte 2 1
~---+-------------~ ~---+-----------------------i
IBit IBit

o Attention

Status mod­
ifier

2 Control unit
end

3 Busy

4 Channel end

5 Device end

6 Unit check

1 Unit excep­
tion

o Program-controlled in­
terruption

Incorrect length

2 Program check

3 Protection check

4 Channel data check

5 Channel control check

6 Interface control check

1 Chaining check
L-__ ~ _____________ J ___ ~ _______________________ J

Bits 6 and 7 of sense byte 1 and all bits of sense byte 2 are device
dependent. Refer to individual publications on specific devices for
interpretation of these bits.

CAUTION: If any of the bits 4-1 of status byte 2 are on, the system
cannot recover. Any subsequent I/O operations on the data set result in
abnormal termination of the task.

If the permanent error flag in the data event control block is on,
the program must not issue any further I/O operations to the data set.

If SYNAD is invoked because of SETL only the DCB address and status
information in the DECB may be valid. All other fields may contain
undefined information.

Entry to SYNAn During VISAM Operations

The SYNAn routine may be entered during VISAM operations (either pro­
cessing of a VISAM data set or a VISAM member of a VPAM data set). The
contents of the general registers upon entry to the SYNAD routine are as
follows.

Appendix B: Synchronous Error Exit Routine (SYNA.D) 221

r---------T---,
IRegister I Usage I
r--------+--~
I 0 IAddress of DECB, if error was caused by a READ or WRITE I
I Imacro instruction. See Table 6 1
r--------+---~
1 1 IAddress of the data control block I
r--------+--~
12 thru 131 (Contents that existed before the macro instruction was 1
I lexecute~ I
r--------+---~
I 14 IReturn address 1
r--------+--~
I 15 IAddress of the entered SYNAD routine I L __ . ______ -'--___ J

Additional information, concerning the error, that may prove useful
to a SYNAn routine is found in the data control block fields, DCBEX1 and
DCBEX2 (Appendix F) •

222

APPENDIX C: END OF DATA ADDRESS (EODAD)

When using data management services for input data sets, the exact
number of records in the input data set need not be known. When the
last record of a data set being sequentially processed is accessed, a
subsequent attempt to access a record causes the system to transfer con­
trol to a specified point in ~he user's program. For BSAM the transfer
is made when the READ macro instruction, which requested a block after
the last block is accessed, is checked. For QSAM the transfer is made
when the user issues a GET macro instruction after all the records in
the data set have been processed.

The user indicates to the system where control is desired upon the
end-of-data condition by writing the keyword parameter EODAD= in the DCB
macro instruction. The task is terminated if an EODAD routine is not
supplied and an attempt is made to access a record after the last record
in the data set. For BSAM, the termination occurs upon issuing the
CHECK macro instruction for a READ macro instruction issued after the
last block of a data set is accessed.

When the end-of-data routine is entered, the general registers are
set as follows:

r---------T--,
IRegister I Usage 1
~--------t--~
I 0 1 (Not def ined) 1
1 I 1
I 1 IAddress of data control block 1
I 1 1
12 thru 121 (Same as before the routine was entered) 1
I 1 1
1 13 IEODAD R-con value (for BSAM), or address of service routines I
I I save area (for QSAM) * I
I I I
I 15 IAddress of EODAD routine I L-________ ~ ___ J

*The nineteenth word of the save area pointed to by GR13 will contain
the PSECT address (RCON) for the EODAD rou~ine.

Appendix C: End of Data Address (EODAD) 223

APPENDIX D: CONTROL CHARACTERS

All record formats may optionally include a control character in each
logical record. This control character is recognized and processed if a
data set is being written to a printer or punch. For format-F and -U
records this character is the first byte of the logical record. For
format-V records it must be the fifth byte of the logical record, imme­
diately following the logical record length field.

Two alternatives are available; i.e., the control character may be in
machine code or extended USASI code. If either option is specified in
the data control block, the character must appear in every record.

MACHINE CODE

The user may specify in the data control block that the machine code
control character is placed in each logical record. The user-supplied
byte must contain the bit configuration specifying a write and the
desired carriage or stacker-select operation. Only those commands which
include a write are permitted; the independent carriage and stacker
select operations are excluded. Appendix F of IBM System/360 Time Shar­
ing System: Command System User's Guide lists the machine codes.

EXTENDED USASI CODE

The user may choose to specify extended USASI code rather than
machine code. Extended USASI code is the same as USASCII. The location
of the byte is the same. This code byte must appear in each logical
record if this option is chosen. The extended USASI codes are given in
Appendix E of Command System User's Guide.

224

APPENDIX E: LINKAGE CONVENTIONS

Linkage conventions govern communication among programs by establish­
ing a standard which permits easy, efficient, error-free branching and
linking to a desired program. The following chart summarizes the ele­
ments required by an assembler program to be both a calling and a called
program:

r-----------------------------------,
I I

Entry--~SAVE routine , , ,
~-----------------------------------~
, I
IProgram statements ,
, I
~---------~-------------------------~
, I Called Program
'Calling sequence to another program I Entry r--------, , ~-----------~
~-----------------------------------~ I
, 'Exit ,
'Program statements ~-----------~ I , 'L ________ J

~-----------------------------------~
! ,
IRETURN routine ,
I ,

Exit..----I ,
I ,
.-----------------------------------~ , ,
,Parameter list area I , , L ___________________________________ J

In TSS/360, all linkage among programs residing in virtual storage
conforms to one of the following three convention types:

• Type I -- Between two nonprivileged or between two privileged
programs.

• Type II -- From a nonprivileged to a privileged program.
• Type III -- From a privileged to a nonprivileged program.

Only the Type I convention is presented in this appendix; Types II
amd III conventions are described in System Programmer's Guide.

Type I linkage conventions include three basic standards to which the
assembler user must adhere:

1. Utilizing the proper registers in establishing a linkage.

2. Reserving a save area in the calling program in which the called
program may save the contents of the calling program registers.

3. Reserving a parameter area in the calling program, to which the
called program may refer.

Appendix E: Linkage Conventions 225

Proper Register Use

TSS/360 has assigned roles to certain registers used in generating a
linkage. The function of each· linkage register is illustrated below.
Note that registers 2 through 12 are not used.

r------------------------T---,
I General Register I Usage I
~------------------------+---~
I 15,0 ISupervisor Parameter Registers I
I I I
I IParameter List Register, Supervisor Parameter I
I IRegister, or Parameter List Register I
I I I
I 13 ISave Area Register I
I I I
I 14 IReturn Register I
I I I
I 15 IEntry Point Register, Return Code Register I L ________________________ i ___ J

It is the responsibility of the called program to maintain the inte­
grity of general registers 2-12 so that their contents are the same at
exit as they were at entry to the called program. It is the calling
program's responsibility to maintain the floating point registers around
a call. General registers 0, 1, and 13-15 must conform to the indicated
conventions; when using system services (e.g., interrupt handling) ,
these registers should not be used by the calling program, because their
contents may be destroyed.

Reserving a Save Area

Every calling program must reserve an area of storage (save area) in
which certain registers (i.e., those used in the called program and
those used in the linkage to the called program) are saved by the called
program.

The minimum amount of storage needed for the save area of a program
that is both calling and called, is 19 words. Figure 2 shows the layout
of the save area and the contents of each word.

A called program that does not call another program need not estab­
lish a save area. However, if registers 13 or 14 are used by the called
program, that called program should save their contents in a desired
location and restore them before returning control to the calling
program.

226

r--,
SAREA -~r--,
(word 1) IContains length, in bytes, of save area and any I

lappendages to it I
SAREA + 4 -~--~
(word 2) IAddress of calling program's save area. This field I

lis set by the called program in its own save area I
SAREA + 8 -~--~
(word 3) IAddress of next save area; that is, save area of I

Icalled program. This field is set by the called I
I program I

SAREA + 12 -~--~
(word 4,) IContents of register 14 containing address to which I

Ireturn from. called program is made. This field is I
Iset by called program in calling program's save areal

SAREA + 16 -~---------------------------------------~------------~
(word 5) IContents of register 15, containing address to which I

SAREA
{word

SAREA
{word

SAREA
{word

SAREA
(word

+ 20
6)
+ 24
1)
+ 28
8)
+ 32
9)

SAREA + 68
(word 18)

SAREA + 12
(word 19)

lentry into called program is made. This field is I
Iset by called program in calling program's save areal

-~--~
IContents of register 0 I

-~--~
IContents of register 1 I

-~--~
IContents of register 2 I

-~--~
IContents of register 3 I
~--~
IEight words containing contents of registers 4 I
I through 11 I

-~--1
IContents of register 12 I

-~--~
IAddress of PSECT for called program belonging to I
Icalling program. This field must be set by calling I
I program, by storing R-con value of called program inl
lit I L __ J

Figure 2. Save Area Layout and Word Contents

Reserving a Parameter Area

If a called program requires a parameter list, every program calling
it must reserve an area of storage (parameter area) in which the para­
meter list used by the called program is located. Each entry in the
parameter area occupies four bytes at a fullword boundary. If the para­
meter list is of variable length, the word preceeding the first entry
contains the length (in words) of the parameter list. Each entry con­
tains the address of an argument to be passed to the called program.
The CALL macro instruction may be used to generate the parameter list as
well as to link to the called program.

There are two types of linkage available to users of TSS/360: impli­
cit linkage and explicit linkage. When an explicitly loaded module is
no longer needed, it can be deleted explicitly.

Implicit Linkage

Program reference to a V- or R-type address constant of an external
symbol constitutes a request for implicit linkage. When an undefined

Appendix E: Linkage Conventions 221

external symbol is referred to in this manner, the loader is called to
make available, in the user's virtual storage, those modules required
tosatisfy this external reference. This automatic action requires only
specification of external symbols and adcon types as required by the
assembler.

Explicit Linkage

Within a given program there may be several references to different
subprograms; however, for a given execution of that program, only one of
those subprograms might be required. Since dependence on normal impli­
cit linkage would require, in the calling program, the presence of
adcons for all such subprograms, some unnecessary overhead would be
experienced in preparing the unused adcons for linking.

It is also possible to develop, during program execution, the extern­
al name of the module, entry point, or CSECT which is to be explicitly
linked. In this case, it may not be possible to specify the modules to
be linked at asse~bly time.

To allow for these situations, two explicit functions are provided
that retrieve the desired subprogram at object time. The LOAD macro
instruction loads the desired program; the explicit CALL macro instruc­
tion, in addition to loading the program, establishes the necessary lin­
kage to it.

Explicit Deletion

The DELETE macro instruction dispenses with a previously explicitly
loaded program that is no longer needed, thereby making virtual storage
available. In addition, any other program is deleted that is no longer
required as a result of the deletion of a specified program.

228

APPENDIX F: DATA CONTROL BLOCK FIELDS

This appendix contains descriptions of the contents of the fields of
a data control block and the priority of the various sources for filling
those fields, for those who desire to alter data control blocks or
interrogate fields for the information contained therein.

Sources for Providing Data Set Attributes

In general, a user writes a source program to create or process data.
This data is considered to be a data set. In TSS/360, the system
requires that certain attributes and identifification information per­
taining to data sets must be available to the system before a user can
make use of the special programs and data management facilities compris­
ing the TSS/360.

These attributes can be furnished to the system from two to six dif­
ferent sources depending on whether the data set being processed is a
new data set or a data set that has been previously defined to the sys­
tem. The combined information provided by these sources must provide
the system with all the information it requires to begin processing a
pa~ticular data set. The six possible sources which provide the system
with the attributes of a data set are listed below in the order of their
priority. Table 8 indicates the DCB operands applicable to each access
method and their valid alternate sources prior to opening that data con­
trol block.

Source 1 - The User's Program

The user may alter or fill data control block fields any time after
the block has been created by a DCB macro instruction. A DCB macro
instruction with no operands merely reserves virtual storage for a data
control block, with all its fields containing binary zero. The user has
the opportunity to alter fields at OPEN time by specifying the address
of a user routine which is to alter the DCB at open time as the EXLST
parameter of the DCB macro instruction or lower priority DDEF macro
instruction or command. Any user coded data control block modification
routine will find the DeBD macro instruction very convenient for
referencing the fields of the control block.

Source 2 - The DCB Macro Instruction

Information may be supplied to the data control block by specifying
operands in the DCB macro instruction. In this case, the DeB macro
instruction, in addition to creating a data control block, also fills
the specified fields with the attributes indicated via the operands.

Source 3 - The Catalog - At the time a data set is cataloged certain
attributes (data set organization, data set disposition, device class,
and data set affinity) are recorded in the catalog. When a user desires
to re-open that data set for additional processing, information pre­
viously recorded in the catalog need not be specified again by another
attribute source. If such recorded information is specified again by
another attribute source, the previously recorded attribute information
will take precedence.

Appendix F: Data Control Block Fields 229

Source 4 and 5 - The DDEF Macro Instruction (4) Or Command (5)

The DDEF macro instruction or cOlnmand can supply the same information
to all fields in the DCB as can be specified via the DCB macro instruc­
tion, except for the EODAD, SYNAD, and EXLST parameters. The DDEF macro
instruction or command must be used for each data set to be processed
because it is the only source of DSNAME, the data set name. The primary
difference between the DDEF macro and command is the ability of the DDEF
command to provide attribute information from the terminal at execution
time rather than at assembly time.

Source 6 - Data Set Labels or Data Set Control Blocks (DSCB's)

At the time a data set is recorded on a storage device, a data set
label or DSCB is created. The label or DSCB of an existing data set
contains some data control block information. If fields in the data
control block are still unspecified at open time, the information is
taken from the data set label or DSCB and placed into the Data Control
Block.

Priority of Sources

Many of the attributes of a data set, required by the system can be
furnished from more than one of the six possible sources. In such
cases, each of the sources providing this information is assigned a
priority and the system will use the information from the source with
the highest priority. When two or more of the sources have correspond­
ing entries, the attributes in the lower priority sources will be
ignored.

This priority scheme provides great flexibility since information
omitted in a higher priority source can be supplied by a lower priority
source. Thus, if attribute parameters such as DSORG are not specified
in the higher level DCB and DDEF macro instructions they may be supplied
dynamically, at the terminal, by the lower priority DDEF command, or by
the DSCB or tape label.

If a field has been specified in the higher priority DCB or DDEF
macro instructions at assembly time or by the user's program prior to
OPEN it will not be possible to modify that field dynamically from the
terminal (e.g., if there were a LRECL parameter specification in the
DDEF command at the terminal and the DCB also contained an LRECL speci­
fication at assembly time, the LRECL specification of the DDEF command
would be ignored. In many cases, if a lower priority source provides
the same attribute data as a higher priority source but the data pro­
vided differs in each source, the system will issue diagnostics indicat­
ing this. The system will either assume the higher priority source con­
tains the valid data and continue processing based on that source or it
will require the user to issue the proper matching attribute data in the
lower priority source. Thus, if a user specifies a data set's organiza­
tion (DSORG) in a DDEF command for a data set that is already cataloged,
it must agree with the DSORG recorded in the catalog or diagnostics will
be issued asking the user to reenter the correct data set organization
parameter o:r to default to the system default value. In the latter
case, if the user fails to provide the proper information and does not
use the sys·tem default option the system will abend the user's task.

230

Table 8. DCB Operands, Their Specification, Access Methods, and
Alternate Sources (Part 1 of 2)

r-------T-------------------T--------------------------------T-------------------------------,
" I Applicable Access Method I Valid Alternate Sources I
I I ~----T-----T------T-----T----T-----+-------T-------T------T--------~
" I , , I , 1 , I DEFINE 1 Data , System I
I DCB , , , , I I I 'User'sl DATA 1 Set I Servicel
,Operandi Specifies IVSAMIVISAMIVPAM IBSAMIQSAMIIOREQIProgramICommand,Label I Routines 1

~-------+-------------------+----+-----+-----+---~----+-----+-------+-------+------+--------1
,DDNAME 'Symbolic name iden-, X, X 1 X , X, X, X 1 x, I I I
I Itical to that used I , I 1 , 1 1 1 I I I
, lin ddname operand I I I , , , , , , I I
1 lof DEFINE DATA com-, 1 I 1 1 1 , , I , 1
, 'mand associated I I , I , 1 , I , , ,
, Iwith data set , , I I I 1 I , , , 1

~-------+-------------------+----+-----+-----+---_+----+-----+-------+-------+------+--------1
,DSORG ,Data set organiza-, X I X I X , X, X, X I X I X, , I
"tion 'I"" 1 1 1 I 1
~-------+-------------------+----+-----+-----+---_+----+-----+-------+-------+------+--------1
'RECFM 'Record format in- I X I X , X I X, X, I X , X , X , X I
I I forma·tion "I I I 1 I 1 , , ,
~-------+-------------------+----+-----+-----+---_+----+-----+-------+-------+------+--------1
ILRECL I Logical record 1 X I X , X I X 1 X I 1 X I X I X I I
I I length I I I I I I 1 , , I 1
~-------+-------------------+----+-----+-----+---_+----+-----+-------+-------+------+--------1
I EODAD IAddress of user's I X, X I X I X I X I 1 X I , I I
I lend-of-data routine I , , I I I , I I , I
I Ifor input data sets I , I I , I I I I , I
~-------+-------------------+----+-----+-----+----+----+-----+-------+-------+------+---------1
,SYNAD 'Address of user's, I X I x* I X I x, X , X, I , ,
, Isynchronous error I , , I I I I , , , ,
, lexit routine (en-, , , , , I I , , , I
, Itered when an un- I I I , , I I I , , I
, ,correctable error' , I I I I , I , , I
I loccurs in I/O op- I I I I .1 I , , , , I
1 ,eration) 1 1 , 1 1 1 , , , , 1

~-------+-------------------+----+-----+-----+---_+----+-----+-------+-------+~------+--------1
,KEYLEN I Key length I' X I x* I XI' 'X I X 1 X, I
~-------+-------------------+----+-----+-----+---_+----+-----+-------+-------+------+--------1
IRKP IDisplacement of keyl 'X I X I , , 'X 1 X I X I I
I ,from first byte of I I I 1 1 I , , I , 1
, Ilogical record I I 1 I , 1 1 I , I I

~-------+-------------------+----+-----+-----+---_+----+-----+-------+-------+------+--------1
I PAD I Space to be left on I I X I x* I I 1 I X I X 1 X I I
I leach page of vir- I I I I I I I 1 I I I
I Itual index sequen- I I I , I I I 1 I I I
I Itial data set (to I I I I I I I 1 I , ,
, 'allow subsequent I I I I I , , I , I I
, , insertions) I' I , l , , , , , I
~-------+-------------------+----+-----+-----+----+----+-----+-------+-------+------+--------1
IMACRF ITypes of macro in- I , , I X, X, 1 X , X I I I
, Istructions used in I 1 , 1 1 , , I , , I
, Iprocessing data set, , , , , , , I I I I
, , (GET, PUT, READ, 1 1 I , I 1 1 1 I I I
1 1 WRITE, etc.) " , , I , 1 I I I I

~-------+-------------------+----+-----+-----+----+----+-----+-------+-------+------+--------i
IDEVD IDevice on which , I I I X I X I I X I some ,some , I
I Idata set resides I I , I I 1 I Idevice ,device, I
, ,plus, for some de- I , , , I 1 1 ,depen- ,depen-I I

·1 ,vice types, device-I I I I I I I I dent ,dent , I
I Idependent infor-, I I I I I 1 linfor- linfor-, I
I Imation (data code, I I I I I I 1 Imation Imationl I
I Itape density, etc.) I I I I I 1 1 1 I I I

J-------~-------------------~----~-----~-----~----~----~-----~-------~-------~------~--------i
·1 * (only for VISAM members) I L __ J

(Continued)

Appendix F: Data Control Block Fields 231

Table 8. DCB Operands (Part 2 of 2)

r-------T-------------------T---------------------------~----·T-------------------------------,

I I I Applicable Access Method I Valid Alternate Sources I
I I r----T-----T-----T---- .. ----T-----+-------T-------T------T--------1
I I I I I I I I I I DEFINE I Data I System I
I DCB , , I I I II I User'sl DATA, Set I Servicel
I Operandi Specifies IVSAMI VISAMIVPAM I BSAM I QSAMI IOREQ I Program, Command, Label I Routines I
r-------+--------------------+----t-----+-----t----+----+-----+-------+-------t------+--------1
IOPTCD IOptional service I I I I X I X I I X I X I X I I
I Idesired, write with, I I I I I I , I I I
I ,validity check (fori I , I I I I , I I I
I I direct-access de- I I I I I I , , , I ,
I Ivices only) 'I I I , I , I I I ,
~-------+---------~----------+----+-----+-----+----+----+-----+-------+-------+------t--------1
IBLKSIZEIMaximum block , I I I X, X I 'X I X I X I ,
'I length I I I , I , I I I , ,
r-------+-------------------+----+-----+-----t----+----+-----+-------+-------+------+--------1
I IMSK I Number code indi- I I I 'X I X, I X I X, I X I
I Icating what system I I , I I I I , , , ,
I lerror recovery pro-, I , , , , , I , I ,
I I cedures (if any) I , I I , I , I , , ,
, lare to be invoked I I I , I , , I I , ,
r-------+---------·----------t----+-----+-----+----f----t-----+-------t-------+------t--------1
IEXLST IAddress of user's I I I I X I. X, I X, I I I
I I exit list '" I , I I , , I ,
r-------+-------------------+----t-----+-----+----f----+-----t-------t-------+------t--------1
INCP INumber of consecu- I I I I X I I X I X I X I 'X I
I ltive READ. WRITE, I , I I , I , I I I I
, lor IOREQ macro I I I I I I , I , , I
, ,instructions I I , I I I , , I I ,
, lissued before, I , I , I , I , I I I
I ,CHECK macro in- I I , I I , I I I I ,
, , structions. I I I , I I I I I I ,
r-------+-------------------+----+-----+-----+----+----+-----t-------t-------+------t--------1
'BUFNO INumber of buffers I I I 'X I I I X I X, I I
r-------+-------------------+----+-----+-----+----+----+-----t-------t-------t------t--------1
IBFALN IBuffer alignment , I , 'X I I I I I I I
r-------t-------------------t----t-----t-----t----+----t-----t-------+-------t------t--------1
I BUFL IBuffer length I I I 'X I I I X I X, I I
~-------t---------·----------t----t-----t-----t----+----+----- ... ------...,+-------t------t--------~
, EROPT , , I I , 'X I I , I , ,
L _______ .L _________ . __________ .L ____ .L _____ .L _____ .L ____ .L ____ 1. _____ 1. ____ ._. __ L_ _ ____ 1. __ . ___ 1. ___ • ____ J

The fields are presented in alphabetical order and are described in
the following format:

r--,
I NAME (length) (name, name) I
I specification of contents I
L ___ J

NAME
is the keyword parameter name if the field may be supplied by key­
word parameter in a DCB macro instruction. If the field is not
supplied by keyword parameter, a meaningful name or phrase is
given; e.g., retrieval address.

length

name

specifies the length of the field in bytes.

specifies the symbolic name or names which, when used in conjunc­
tion with the DCBD macro instruction, will address the data control
block field.

An X in a bit position means that bit is not tested.

BLKSIZE (2-byte field) (DCBBLKSI, DCBBLK)
specifies a binary value for the maximum block length in bytes.
The maximum value is 32,760.

BUFL (2-byte field) (DCBBUFL, DCBBUF)
contains a binary number that represents the length, in bytes, of
each buffer obtained for a buffer pool. The maximum is 32,760.

BUFNO (1-byte field) (DCBBUFNO, DCBBUN)
contains a binary number that represents the number of buffers
assigned to a data control block. The maximum is 255.

DDNAME (8-byte field) (DCBDDNAM, DCBDDN)
contains a name of up to eight characters

232

DEVD (l-byte field) (DCBDEVD, DCBDEV)

Code
DA
PT
TA
PR
RD
PC
no device specified

Bit Pattern
11000100
11100111
11100011
11010111
11011001
11010101
11010110

The additional keyword operands which are optionally used with DEVD=
cause information to be inserted in device-dependent parameters 1 and 2.

Device Dependent Parameter 1 (l-byte fiel~CBDD1)

This byte is used to contain information from the operands that are
subordinate to the DEVD= operand of the DCB macro instruction. It may
contain the information for KEYLEN, DEN, STACK, PRTSP.

KEYLEN (DCBKEYLE, DCBKEY)
contains a binary number -that represents the length, in bytes,
of the key associated with a physical record. The maximum is
255.

DEN (DCBDEN)

Code
-0-

1
2

Density
200
556
800

Bit Pattern
00000011
01000011
10000011

When this field is used for DEN, it must not be altered during
or after OPEN time.

STACK (DCBSTACK, DCBSTA)

stacker select 1
stacker select 2

PRTSP (DCBPRTSP, DCBPRT)

Code
O-=-no spacing
1 - space one line
2 - space two lines
3 - space three lines

Bit Pattern
XXXX0001
XXXX0010

Bit Pattern
00000001
00001001
00010001
00011001

Q§.~!.ce Dependent Parameter 2 (l-byte field) (DCBDD2)

This byte is used to contain information from the operands that are
subordinate to the DEVD= operand of the DCB macro instruction. It may
contain information for either TRTCH or MODE.

TRTCH (DCBTRT)

Code
C
E
T
ET
Odd parity, no translation

Bit Pattern
00100011
00111011
00010011
00101011
00110011

Appendix F: Data Control Block Fields 233

MODE (DCBMOD)

Code
C
E

Bit Pattern
1000XXXX
0100XXXX

DSORG (2-byte field) (DCBDSORG, DCBDSO)

PS
PSU
VI
VS
VIP
VSP
VP

Bit Pattern
0100000X 00000000
01000001 00000000
01110001 00000000
01110010 00000000
01110011 00000000
01110100 00000000
01110101 00000000

EODAD (8-byte field) (DCBEODVD, DCBEOV) for V-con
(DCBEODRD, DCBEOR) for R-con

contains the address of the user's EODAD routine. The first word
contains the entry point address. The second word contains the
address of the PSECT for the EODAD routine. If the EODAD routine
has no PSECT, the second word contains the address of the CSECT
containing the EODAD routine.

EROPT (l-byte field) (DCBEROPT, DCBERO)

Code
ACC
SKP
ABE

Bit Pattern
10000000
01000000
00100000

Exceptional Condition Field 1 (1-byte field) (DCBEX1)

~rror _G.aused ~
GET
PUT
SETL
READ
WRITE
DELREC

Bit Pattern
00000000
00000100
00001000
00001100
00001111
00010100

Ex£~tional Condition Field 2 (l-byte field) (DCBEX2)

Type of Error
Keys equal - sequence error
Key not found
Keys out of sequence
Keys do not coincide
Keys coincide
Invalid retrieval address
Invalid record length
Position past end of data set
Position before beginning of data set
Exceed maximum number of overflow pages
Exceed maximum size of shared data set

Bit Pattern
00000100
00001000
00001100
00001111
00010100
00011000
00011100
00011111
00100100
00101000
00101100

EXLST (4-byte field) (DCBEXLST, DCBEXL)
contains the address of a user-supplied exit list. The exit list
must be in the same CSECT as the data control block.

IMSK (4-byte field) (DCBIMSK, DCBIMK)

234

contains the system error mask. The bit pattern is as specified
under IMSK in the DCB macro instruction.

LRECL (4-byte field) (DCBLRECL, DCBLRE)
specifies for format-F records the length in bytes of a logical
record. For BSAM or QSAM the maximum value is 32,760 bytes; for
VSAM, 1,048,516 bytes; for VISAM, 4,000 bytes.

MACRF (2-byte field)

G
GS
GC
GSC
P
PS
PC
PSC
R
RC
RP
W
WC
WP

(DCBMACRF, DCBMAC)

Bit Pattern
01000000 00000000
01000001 00000000
01000010 00000000
01000011 00000000
00000000 01000000
00000000 01000001
00000000 01000010
00000000 01000011
00100000 00000000
00100010 00000000
00100100 00000000
00000000 00100000
00000000 00100010
00000000 00100100

Note: For G[S], P(S] the bit pattern becomes the appropriate com­
bination of the above bit patterns.

For R[CIP), W[IP] the bit pattern become the appropriate combina­
tion of the above bit patterns.

NCP (l-byte field) (DCBNCP)
contains a binary number that represents the number of consecutive
READ or WRITE macro instructions that are to be issued before a
CHECK macro instruction is given. The maximum is 99.

OPTCD (l-byte field) (DCBOPTCD, DCBOPT)

W - write validity check
default condition, no validity check

OPl'IONS (1-byte field) (DCBOPI)

Bit Pattern
10000000
00000000

contains the bit patterns specified by option parameters in the
OPEN and CLOSE macro instructions.

OPEN OPT1
INPUT
OUTPUT
I NOUT
OUTIN
RDBACK
UPDAT

OPEN OPT2

REREAD
LEAVE

PAD (l-byte field) (DCBPAD)

CLOSE OPT

REREAD
LEAVE

Bit Pattern
XXOOOOXX
XX1111XX
XXOO 11XX
XX0111XX
XX0001XX
XX0100XX
01XXXXXX
11XXXXXX
XXXXXX01
XXXXXX11

contains a binary number that represents the space, as percentage,
left available within the pages of a VISAM data set, providing for
insertions within the pages of a VISAM data set. The maximum is 50
(50 percent) •

RECFM (l-byte field) (DCBRECFM, DCBREC)

Appendix F: Data Control Block Fields 235

F - fixed
V - variable
U - undefined
T - track overflow
B - blocked
S - standard
A - USASI control character
M - machine code control character

no control character
KEYLEN specified in Data Control Block

Bit Pattern
10XXXXXX
01XXOXXX
11XOOXXX
XX1XXXXX
XXX1XXXX
10XX1XXX
XXXXX10X
XXXXX01X
XXXXXOOX
XXXXXXX1

EXAMPLE: If this byte contains 10010100, the record format is
fixed length, blocked records with an ASA control character.

Retrieval Address for Virtual Access Method (4-byte field)
(DCBLPDA,DCBLPA)

This field contains a retrieval address that is used for recording
and repositioning to specified records of a data set.

Retrieval Address for QSAM (6-byte field) (DCBLPDQ)

This field contains a retrieval address that is used for recording
and repositioning to specified records of a data set.

RKP (2-byte field) (DCBRKP)
contains a binary number that represents the displacement of the
key field of a record from the first byte of the record.

SYNAD (8-byte field) (DCBSYNVD, DCBSY~ for V-con

236

(DCBSYNRD, DCBSYR) for R-con
contains the address of the user's SYNAD routine. The first four
bytes contain the entry point address. The second four bytes con­
tain the address of the PSECT for the SYNAD routine. If the SYNAD
routine has no PSECT, the second word contains the address of the
CSECT containing the routine.

APPENDIXG: DETAILED DESCRIPTION OF DDEF l4ACRO INSTRUCTION

This appendix describes the DDEF macro instruction as used to define
any private data set or any nonstandard public data set. To define
standard data sets refer to the description of the DDEF macro instruc­
tion. (Standard data sets have virtual sequential organization, are on
direct-access public storage, and are arranged in units of pages.)
Table 9 lists required and optional operand fields of the DDEF macro
instruction for various types of data sets. The complete format of DDEF
is as follows:

r--------T---------T---,
I Name I Operation I Operand I
~-------+---------+---~
I I I ~ext} I I [symbol] I DDEF loplist- I
I I I addr I L-_______ i _________ i ___ J

oplist
specifies the list of operands supplied for the DDEF macro instruc­
tion as shown in Table 9.-

ddname
specifies the symbolic data definition name associated with this
data set definition. It provides the link between the data control
block in the user's program and the data set definition. It must
contain one to eight alphameric characters, the first of which must
be alphabetic. The user is not allowed to use a ddname that begins
with SYS; the system-reserved ddnames are prefixed with these
characters.

PCSOUT

dsorg

specifies that the program checkout SUbsystem is being used and a
data set is being defined for dumps. One PCSOUT-type DDEF command
or macro instruction is required when the DUMP command is to be
employed.

specifies a two-character code that indicates the organization of
the data set. The codes are:

PS SAM
VI VAM index sequential
VS VAM sequential
VP VAM partitioned
RX IOREQ

Default: The data set is assigned the type of organization speci­
fied at system generation time.

DSNAME

name

specifies the name of the data set as one of the following:

specifies the name of the data set. This is the dsname under which
the data set may be cataloged or referred to during the task. A
relative generation number and/or a partitioned data set member
name may be included with the dsname.

Appendix G: Detailed Description of DDEF Macro Instruction 237

This operand can be specified as the fully qualified name of a par­
titioned or nonpartitioned data set, a member of a partitioned data
set, or a partitioned or nonpartitioned generation of a "generation
data group (identified by absolute generation name or relative
generation number) •

Table 9. Operands for DDEF Macro Instruction
r---,
I Oplist I
~---~

rddname-SYmbOl}
\"'PCSOUT

[dsorg{~!}]
, DSNAME= (name ~

\...*name)

, DCB= [*ddname] [, DSORG=code] [, MACRF=cod e] [, BUFL=absexp]
[, DEVD=code] [, BUFNO=absexp] [, BFTEK=S]
[, NCP=absexp] [,RECFM=code] [,OPTCD=W]
[, LRECL=absexp] [, BLKSIZE=integer]
[, KEYLEN=absexp] [, PRTSP=integer]
[, STACK=absexp] [, DEN=integer] [, CODE=code]
(,MODE=code] [,TRTCH=code] [,EROPT=code]
[, PAD=absexp] [,RKP=integer] [, IMSK=code]

[.UNIT=tf~!!:~:~~~::~~~;g~11}~\l ~AFF=SymbOl J J
[

• SPACE= (r 'g~ l. prirnary-integer (. secondary-integer] (. HOLD~ l
\l~eClength-integerj VJ

[
VOLUME= «(PRIVATE "J

l[volseqno-integer], [volserno-alphnum, •••] U

[,LABEL= ([filseqno-integer] [, labeltype-r~~ 1] [,RETPD=days])]
lSULj

[, DISP=stat us]
[,OPTION={CONCIJOBLIB}]

~--~
I Note: absexp may be indicated for DCB subparameters in the DDEF I
Imacro instruction, but integer must be specified if the DDEF command is I
I used. I L--___ J

*name

DeB

238

specifies the dsname, here prefixed by an asterisk (*), of a data
set created under the IBM System/360 Operating System. Subsequent
references to this data set name do not include the asterisk pre­
fix. The *dsname may have a maximum of 44 characters.

specifies the data control block information, as follows:

*ddname
specifies the data definition name of a previously issued DDEF com­
mand or macro instruction. The previous ddname is prefixed by an
asterisk (*) to indicate that the data control block field of that
DDEF is to be duplicated for the current DDEF macro instruction or
command. Any new subparameters given in the remainder of the field
take precedence over the corresponding subparameters of the pre­
vious DDEF command.

DCB Subparameters

UNIT

DA

Detailed descriptions of the data control block subparameters are
given in the discussion of the DCB macro instruction for each
access method, and in Appendix F.

Note: If the data set is or will be on tape, the DEN subparameter
must be furnished to specify tape density. The only exception to
this rule is the case when the tape conforms to the DEN default
value, which is a value set at system generation time.

specifies the type of device needed for the data set. Allowable
devices are specified at system generation time and, therefore, may
be changed. Direct-access devices may be specified for either
public or private volumes. The other types of devices (tape) and
unit affinity may be specified for private volumes only.

specifies that a direct-access device is required for the data set.

datype

TA

specifies the type of direct-access device as a four-digit number.

Default: The system selects the type of direct-access device, as
specified at system generation time.

specifies that a tape unit is required for the data set.

tatype

AFF

SPACE

specifies the type of tape required. It may be one of the
following:

1 - seven-track tape
1DC - seven-track tape with data conversion
9 - nine-track tape

Default: The system selects the type of tape, as specified at sys­
tem generation time.

specifies unit affinity for S~l data sets only. The data set being
defined is to be assigned the same device reserved for the data set
identified by ddname, which is the data definition name of a pre­
viously issued DDEF command or macro instruction. This subfield is
unacceptable if the data set is new and is to reside on a direct­
access device.

specifies the direct-access storage allocation for the data set.
If the entire space field is defaulted, the direct-access storage
allocation specified at system generation time is assigned.

~ppendix G: Detailed Description of DDEF Macro Instruction 239

TRK

CYL

specifies that the space requirements are expressed as number of
tracks.

specifies that the space requirements are expressed as number of
cylinders.

reclength
specifies the average record length, in bytes, of the physical
records. It must be a decimal number not exceeding 32,767.

Default: If the data set organization is SAM, the unit of alloca­
tion-rs-assumed to be a cylinder. If the data set organization is
VAM, the unit of allocation is assumed to be a page (4096 bytes) •

primary
specifies the number of units to be allocated to the data set; con­
sists of a one- to three-digit decimal number.

Default: The primary space allocation assigned at system genera­
tion time is assigned.

secondary

HOLD

specifies the number of units to be allocated each time the space
allocated to the data set has been exhausted and more data is to be
written; consists of a one- to three-digit decimal number.

Defa~lt: The secondary space allocation specified at system
generation time is assigned.

specifies that the unused storage assigned to this data set is not
to be released when the data set is closed.

Defa~lt: Unused storage will be released.

VOLUME
specifies the volume on which the data set resides. Normally this
field is used for an uncataloged data set that resides on a private
volume. The entire field may be defaulted if a new data set is to
be created on a public volume or if an old, cataloged data set is
being defined.

PRIVArE
specifies that volumes are to be allocated from the system pool
(i.e., the scratch tapes or disks available to the system opera­
tor). Once assigned, the volume remains the user's, exclusively,
until he notifies the system operator that it can be returned to
the pool.

volseqno
specifies the sequence number of the first volume of the data set
to be read or written; consists of a one- to four-digit number. It
is meaningful only if the data set has SAM organization, is cata­
loged, and its earlier volumes are not to be processed.

volserno

240

specifies the volume serial numbers identifying the volumes on
which the data set resides. Each one must contain one to six
alphameric characters. It is required for old uncataloged data
sets that reside on private volumes; it may be supplied for new
data sets that will reside on private volumes.

Qefault: If volseqno was specified, the data set is cataloged and
the serial numbers will be retrieved from the catalog. If PRIVATE
was specified, the system assigns a volume serial number. LABEL
specifies the labeling conventions. If the entire label field is
defaulted, the labeling conventions specified at system generation
time are assigned. However, if the data set is cataloged, label
information is retrieved from the catalog.

filseqno
specifies the file sequence number of a aata set when multiple data
sets are on one tape volume; consists of a one- or two-digit decim­
al number.

Default: The data set is assumed to be the first (or only) one on
the tape volume.

labeltype

RETPD

OISP

specifies either the type of labeling desired or the absence of
labels. It may be one of the following:

NL - no labels
SL - standard labels
SUL - standard labels and user labels

Default: The system assumes the label type specified at system
generation time.

specifies the retention period of the data set, where days is a
four-digit decimal number that indicates the time period, in days,
that the data set is to be retained after its creation. Applicable
for data sets on direct-access volumes or on labeled tapes.

Default: The retention period is assumed to be zero days, thus
allowing immediate rewriting.

specifies the status of the data set. If DISP is defaulted in a
DDEF for an existing cataloged public data set, the system will
assume a value of OLD. If DISP is defaulted for any data set which
does not yet exist, the system will assume a default value of NEW.
It should be noted that for existing uncataloged private data sets
the DISP value must be explicitly specified as OLD. If the user
tries to default such a data set a DISP value of NEW is assumed and
causes a system error. The various defaults and options are sum­
marized below:

NEW - for a new data set.
OLD - for an old data set.
MOD - the data set exists but is being added to. MOD causes logical

positioning after the last record of the data set. It applies
only to SAM data sets on private volumes.

Defaults - OLD - for old cataloged data sets.
NEW - for a new data set or for an old uncataloged priv­

ate data set.

OPTION
specifies that either a job library is being defined or a data set
is being added to the concatenated data set named as ddname.

JOBLIB
specifies that the data set is to be used as a job library. The
data set name specified in the dsname field will be entered into
the program library list.

Appendix G: Detailed Description of DDEF Macro Instruction 241

CONC
specifies the concatenation of this data set with one or.more data
sets whose data definitions have the same ddname. Only 1nput data
sets that are not job libraries can be concatenated. The order of
concatenated data sets is the same as the order in which they are
defined.

The DDEF macro instruction or command that defines any cataloged data
set is brief and simple. The only required operand fields are ddname,
dsname, and disp (disposition). Other operand fields are unnecessary
since the organization of the data set is described in its catalog
entry.

DDEF macro instructions or commands that define uncataloged data sets
may be divided into two groups: those defining new data sets (i.e.,
data sets that will be generated during the run but do not exist as yet)
and those defining old (already existing) data sets. These old uncata­
loged data sets can exist only on private volumes.

To define a new data set that will be written on a public volume, the
user may use the ddname, dsname, space, dsorg, and label operand fields.
Exactly which fields he uses other than ddname and dsname, which are
required, depends on the character of his particular data set.

To define a new data set that will be written on a private volume,
the user must give ddname, dsname, unit, and volume operands. If
desired, he may also furnish dsorg, space, label, and disp fields.

The user defines an old, uncataloged data set just as it stands on
his private volume. To do so, he must use the ddname, dsname, volume,
unit, and disp fields. He may also employ the dsorg and label fields.

Note: The dcb field is required to specify tape density for any data
set on tape. However, it may be defaulted if the tape density matches
that established at system generation time.

The DDEFmacro instruction or command also has several special uses:

1. To define a job library. Operand fields are as follows:

ddname w VP, DSNAME=dsname, DISP=(OLD), OPTION=JOBLIB

No other fields are required.

2. To define a data set for dumps. Operand fields are:

PCSOUT, VI, DSNAME=dsname

Other fields are as needed.

3. To complete the data control block of a data set at execution time.
The dcb field is included in this case; other operand fields are as
needed for the particular data set.

4. To concatenate data sets (i.e., to define them, for input purposes
only, so that several data sets can be read as if they formed a
single data set. The OPTION=CONC field is included; other fields
are as needed for each data set. The OPTION=CONC field must be
given in the DDEF for each data set except the first-defined member
of the concatenation. The remaining data sets in the concatenation
must each have the same ddname as the first-defined data set.

The DDEF macro instruction or command causes a system entry to be estab­
lished for the DDEF information so that allocation routines and access
methods can refer to it. The link between this information and the pro­
blem program's reference to the data set (i.e., the data control block)
is the data definition name. The entry containing the DDEF information
is maintained until the user logs off or until, through the RELEASE
macro instruction or command, the data set is released.

242

The DDEF macro instruction or command also results in a request, when
necessary, for device allocation and volume mounting if the defined data
set is private and resides on a demountable volume such as a reel of
tape or a disk pack.

Typical Use of DDEF Operand Fields
r-------------------------~---~----T---T--~--~---~---T--~---T---,

I I d I I d I I I I v I I I 0 I
I Idl d lsi I Is 1 0 1 1 1 Ipl
I I n I sin I I u I p I 1 I a I d I t I
I I a' 0 I a I din' a I u I b I iii ,
, I m I r 'm' c Ii' c 1m' e , s 10'
I Case Ie' 9 'e I b , t' e 'e I 1 , p , n ,
~ +---+-----+---+---+---+-----+---+---+---+---~
'Read a cataloged data set , x , , x, I I I I I x I ,
r--------------------------f---+-----+---+--_+--_+-----f---+--_+---f---~
I Read an uncataloged data I x I [x] I x I I x I I x I [x] I x I I
Iset I I I I I I I I I I I
~--------------------------f---+-----+---+--_+--_+-----f---+---+---+---~
I Write a data set on a I x I [x] I x I I I [x] I I [x] I [x] I ,
'public volume I I I I I I I I I I I
r--------------------------+---f-----+---+--_+--_+-----f---+--_+---+---~
I Wri te a data set on a I x I [x] I x, I x I [x] I x I [x] , [x] , I
'private volume I I I I I I I I , I ,
~-----------------------_+---f-----+---+---+--_+-----f---+--_+---+---~
'Modify any data set on 'x, [x] I x, 'x, , x , [x] I x I I
'a private volume I I I I I I I I I , I
r--------------------------+---f-----+---+--_+---+-----f---+--_+---f---~
IConcatenate cataloged datal x I [x] I x I I I I" x , x I
'sets while reading private I , I I I I I I I I I
Ivolumes (for each conca- I I 'I I I I I I , ,
Itenated data set except I I I I 'I I I , I I
Ifirst in concatenation) I I I I I I I I I I I
r--------------------------~---~-----~---~--~--~-----~---~--~---~---i
I Key: o indicates operand entry is optional. , L--__ J

Appendix G: Detailed Description of DDEF Macro Instruction 243

Data SEt Organization Requirements
r- ~----------~ ,
I I Data Set I I
I I Org aniza tion I I
I Data Set I (dsorg) I Comffients I
I I---r---,----~ ,
I IPS IVS IVI IVP I I
I- +- I +---t---+-----------------------I
I Any data set on a I I x I x I x I I
,public volume I I I I I I
1------------+---+-+--+--+----------------------1
IAny data set on a I x I x I x I x IPS applies te direct-access and,
Iprivate volume I I , I 'tape volumes; VS, VI, and VP I
I I I , I I apply only to volumes on direct-I
I I I I I I access device~ ,
, I , + I I --I
IAny mEmber of a I I x I x liThe same partitioned data set I
I parti tioned data set, I , , ,may include beth VS and VI mem- I
I I I I I I bers. (The member must be ei th-I
I I I I I I er V S 0 r V I •) I
I- +--+-+--+--+----------------------1
I SYSIN data set I I x I x I I I
I -r-+-+---t--+ --I
11ang~~g~_Rro£ess!~g I I I I ILine data set only. If source I
I SourCE data set fer I I I x I I data sets are entered from ter- I
Ilanguage processing , I I I ,minaI, a line data set is auto- I
I , I I , ,matically built ,
J- -+- I I +--+----------------------1
I SourCE statements , I x , x I I A line data SEt will be built I
,stored as part of , ,. , , ,from source statements I
,SYSIN data set I I I I I I
J- -+- I + , , -I
IObject module pro- , I x I I I The object module automatically I
,duced by language I I , I ,becomes a memter of the most I
I processor 'I'" recently defined job library, if I
I I , , , lany, or of thE user's library ,
I I , I I , (SYSULIB) • I
1-------------+--+-+ I I -f
I Job 1 i tr a ry I I I 'x I I
I---- -+- , +---+--+-------------------1
I Listing data set I I 'x I , I
I producEd by languagE I I I , I I
Iproce~~or I I I I I I
I-- I I +--+--+-------------------1
IInE~1L£~1E9~ I' I I I I
,PCSOU'l data set I I 'x I I I
I--- , I +--+--+ --I
I Input to WRITE TAPE, 'x I x I I I
I- -+--+-+--+--+ --I
I Input to PRINT I x I x I x I I ,
I-- I I + I I -f
I Input to PUNCH I' x I x I I I
I- ---+--+--+-, I --I
1~£eci~±_CommanQ_~~g~1 I I I , ,
IData set for CALL I , I x I ILine data set only ,
I DATA DEFINITION I I , I I ,
I -+---+-+--+--+- -I
I Data set for LINE? I I I x I I Line or language processor list-I
I I I I I , in 9 data set cnly I
I I I , +---+ -I
IData set created ty , I x , x, IUser option. If VI, must be I
,DATA , I , , ,line data set ,
I- -+- , I +--+- ---I
,Data SEt created ty I I I x I ,User option determines whether I
,MODIFY I , , I IVI is line data set or not ,
L-___________ --L-_--4---L--_-L----L

244

PROGRA~MING NOTES: The DDEF macro instruction or command may be used in
conver;ational-and nonconversational tasks.

The user's replies to diagnostic messages issued for his DDEF macre
instruction or comrrand should be guided by:

1. If the diagnostic message calls for reentering an element within a
given operand field, only that element should be reentered. Pre­
ceding and/or following delimiters are unnecessary. Default is
acceptable.

2. If the diagnostic message calls for reentering a complex operand
field, the whole field should be reentered, including keyword and
equal sign. Befault is acceptable.

3. If the diagnostic message calls for reentering an operand field
that consists of only one element in addition to the keyword, thE
refly may be either the element alone or the keyword, equal sign,
and element.

4. If the diagnostic message calls attention to an inconsistency and
asks the user te (re) enter one of two or three specified operands,
the reply must be a complete operand field. A default is accept­
aile only if so stated in the message.

The user is infcrmed if the DDEF macro instruction or command cannet
be comfleted. This action can occur for one of thesE reasons:

1. Invalid punctuation in the operand string.
2. User's volumes cannot be mounted.
3. Sufficient space cannot be allocated.
4. More than thrEe logical inconsistencies were detected in the rDEF

macro instruction or command.

Whenever possible, correction and completion of the command will be
attempted. But if diagnostic messages indicate that a parameter was
misunderstood because of a punctuation error in the eperand string, the
user should interrupt the operation (by pressing the ATTENTION key) and
reenter the corrected command. In confirmation mode, he may prefer to
wait for prompting.

The user must nEver reenter a parameter or part of a parameter that
was not requested.

If a keyword is missing or invalid, the pertinent elements following
it must be reentered after the corrected keyword and equal sign are
typed.

If a parameter occurs twice in the operand string, the second occur­
rence is preferred. All elements belonging in the earlier occurrence
are erased.

DDEE prompting messages are issued according to the operand informa­
tion already supplied. Unnecessary prompting is kept to a minimum.

If the user's program is being executed in conversational mode and an
undefined ddname is referenced, prompting messages fer DDEF operands
will bE issued to the user regardless of confirrnaticn mode.

245

At ccmpletion of execution of th~ DDEF macro instruction or comwand,
a code is loaded into the low-order byte of qeneral register 15. ~he

significance of thEse codes is:

~gg§
00
04
OE

oc
10

20
40
8e

~igg!!icanc§
No error
Undefined dsname (for old data set)
Multi-defined dsname (for new data
set)
Attention interruption
Dsorg in DDEF parameter list is not
the same as dsorg in catalog
Space cannot be allocated
ddnamE not unique
Any error condition not listed above

L- !~Q_!=!QRM Q~~: The oplist operand is required in the L-form and i~
not permitted in the E-form of this macro instruction. Only the text
form of the operand may be used in the L-form of this macro instructicn.

246

The lSS/360 assembler places literals in a module's first declared
PSECT if one has been declared. If no PSECT has been declared, addre~s
literals are treated as any other literals; i.e., placed in whatevEr
literal pool is proper. Table 10 indicates which macro instructions may
generate literals, which operands of each macro instruction are
involved, and under what conditions the literals are generated.

The table is arranged alphabetically by macro instruction name and
includes all macro instructions, whether or not they may generate
literals. The table also indicates whether a literal is generated as an
address literal or as some other kind of literal.

From the table a user can, therefore, determine if the expansion of a
particular macro instruction will generate a literal. If a literal is
generated, the user must be sure that the location ccntaining the liter­
al is covered "by a base register at the time the macro instruction is
executEd.

privileged users must establish save-area cover in register 13 tefcre
executing any macrc instruction that generates a type I linkage. The
macro instructions shown in Table 10 are flagged with an asterisk if
they generate a type I linkage in an assembly module that is declared to
be privileged by mEans of the DCLASS macro instruction.

Table 10 includes all TSS/360 macro instructions whether they are
documented in this publication or in ~~1~~ PrQg£am~Er'§~yidg~

Appendix H: Macro Instruction Generation of Literals 247

Table 10. Literals Generated by Macro Instructions (Part 1 cf 6)
r- I ~---,--

I ISouIce of Literal, ,Condition Under Which Literal is Generated ,
I l--------,-----f 1-----,-------,- , I ~-----4
,Macro Operand ,Linkage,Adcon I Operand,E-form,Operand,Program,Standard-1 Operand,
I Name "Literall >2 12-11 Only I is I is Iform OnlYlnot Text I
, I" I , Spec i - ,Pr i v i-I I ,
, 'I" I fied , leged, , I
, 'I I , I and Not I , , ,
1 I I , , ,R. N. , , , ,
.-- ,+-----1-----+----+------+----+-------+------4
I AB:E N r: * 'X, X I , , 'X, , ,
i-- -----+------1----+----_+_----1------+-----+---------1------4
, ADCCN, I , , , , , , , I
.. ------1------+-----1- I , , -I---_+_--------t-----4
,ADCONr: I I , I , , , I , I
...----_+_ I -P---+----_+_---+------+----+------I- I
I AFTD, i I I I I , , , ,
1-----+---- , I -f- I -f------I-----+---------I------4
,ARM, , I I I , , , , ,
i-- I , , -+----+-----I------+---_+_------f I
I BPKD I , I I , , , , I ,
i------+-----_+_ I -f-----+----+----+------+--------f-----4
I BSP* I I X I X I , , 'X, , I
I-----_f_ , -I- I +-, +-----+------_+_ I
,CALL I I , , I , , , , I
...-------+-------+----f---+----_+_---+----+-----+-----_+_----4
,CAT*, 'X, X, , I 'X, , I
, 1---- , -I- , -+----+-----+-----+--------+-----4
, I oplist, 'X, , 'X, 'X I X I
I-------+-- I f- I +----+---+-----+--------f--------J
I CDD* I 'X, X, I I 'X I I I
, I--------+---f---+------+----+----f- I f------4
, lop I is t I I X, I 'X I 'X, X ,
I-----_+_ , f---+- , , I +--------t-----~
ICDS* I I X , X I , , I X I I ,
I l------+------I-----f----_+_ I -t- I --1-------4
, ,oplist, 'X, I I X I I X I X I
I--------+-- I I -+-----+- , -I-----f--------f I
I CHECK* I I X I X I I I 'X I , I
I-- I --f---f , +---+-----+__ I _+_----~
I CLATT, I I I I I , , I I
L--____ -L- I ...I.-__ -L-- I ...I.-____ ...L--_----L-_______ -'---____ --.J

(Contin ued)

248

Table 10. Literals Generated by Macro Instructions (Part 2 cf 6)
,..--------r-----,------r---~----~---T-------,.----_,_--------T--------,

ICLOSE* I I X I X I I I I X I I I
i-- I -+-----... -+------+----f-----+_ I +-------!
I CNTBL*, I X I X I I I I X I , I
I ~, I -+------t----+-----+---+---------f------!
I Inumter I I I , I X, I , I
l------+-------+-----f I -+- I +_---t-------... -------~
I COMNANL* I I X I X I , I I X I I I
l------+-----+----... I --+-----+------.... ---_+--------.... --------t
ICSTOBE* I I X I X I , I I X, I I
I r-------t---t---__f_ I -+-----.... ----t-------... ------~
I lIng I I I X I X I I I I I
I I- I t---+-----+----+----... ----+--------.... ------~
f I atr I I I X I X I I I I I
I I I I I -+-----... ----+-------.... ------~
IDCB I I I t I I , I I ,
~ I I ,-+-----t----t------f----f---------t------~
,DCBD I , I I I I I I I ,
r-- I I t---+-----+-----t----+_---+--------+------I
IDCLASS I , I I I I I I , I
...------t I +----+------+-----t----... ---_+---------+------I
I DDEF* I I X I X I I I I X, I I
I I-----+---t----+------t-----+------.... I -t------~
I I opl i.st I I X I I 'X I I X I X I
r------t__ I -f-----f-----f----+-----+----+--------+-------t
I DEL* I I X I X I I 1 I X I , I
I ...- I I I f----t------+_ I +-------~
I I dsname I I X I , I X I 'X, X I
~---_+_ I -f----+------f----+-----+---+--------t------!
I DELETE I I I I I I l I I I
l-- I I -t I -t----+-----+-----+--------+------I
I DELREC* , I X I X I I I I X I J I
l-- I I ... I +---.--t-----+---+--------... ------I
I DIR* I I X I X I I I 'X I I I
I I I ... ----+-----f----+-----.... I +--------1
IDQDECE I I I I ! I I I , I
r--------_+_ I ... I -t-----t-----+----+---------+-------I
I EBCtTIME I I X I X I I , I I I I
l-- I I -+-----+----+-----.... ----+--------+------1
I ESETL* I I X I X I I I I X, , I
t--- I -+----_1__ I f----~.----- ---_+----------t-------I
I EXIT, I I I , , I I , I
, +------f-----+- I --+----+-----+-----f--------.... -------I
I FEOV* I I X I X I I I I X I I I
L--____ ...l-- -L-__ --'---___ ..L--__ -L.-

(Continued)

Appendix H: Macro Instruction Generation of Literals 249

Table 10. LitE~als Generated by Macro Instructions (Part 3 cf 6)
r- I --,-------,-----,-- ,----.,-----,-------,--------,

I FIND* I I X I X I I I X I I I
I ~-----+-----t I t-------f-----+--------f------t
I I length I I I X I X I I I I I
l------+------_+_ I +------+----t------f- , f-------t
IFREEEUF* I I X I X I I I I X I I I
l------+_ I f-----f-----+_---t -f----f---------f-------f
I F R E E M AI N * I I X I X I I I I X I I I
I l--- I f I +----+-----f- I f- I
I ILV I I I X I I I I I ,
I l------f----f- I -+-----+-------f---+-------t-----~
I I VAR I I I I I X I I I I
l--- I I f---f- I +------f- I f-------I
IF REEl?COL* I I X I X I I I I X I I I
l------+-- I f----+------+----+------f----I-------f------I
I GATED* I I X I X I ! I I X I I I
l-------t-- I f -+-----+_ I f---+-------+------I
I GATiB* I I X I X I , I 'X, I I
l-- I -+---f----+-----+----t-----f----f-------+ I
IGDV I I I I I I I I I I
l------_+_ I f I -+----+----f I -t------I
IGET I I I I I I I I I I
l-------+------f---f----f-----f----+-----f- I f------t
I GETEUF* I I X I X I I I I X I I I
l---------t- I t_ I +---t_-----f I -t------t
I GETMAIN* I I X I X I I I I X, I I
I l-----__f_ I -+-----+----f-----f-----+-------t------t
I IVAR I I I I I X I I I I
I I-------t- I -+------f----f-----f- I f- I
I I PACR I I I I 'X I I I I
I l------_+_---f-----+-----+----+-----f--_f_-------f------t
I I I I I I , I I I I
I I PR I I I I I X I I I I
I I- , f-----f-----+----+------f----+-------f-------f
I I LV I I I X I I I , I I
l-- I I f---+----+_---t-----f- I f------t
I GETPCCL* I I X I X I I I I X I I ,
I I-----_+_ I -+- I t-------f----+-------+-------t
I I numtEr I I I I I X I I I I
I l-- I f I +----f------f- I f---------I
I lIen 9th I I I I I X I I I I
l-- I __f_-----f---f-----+----+-----f- I f-------I
IGTWAE* I I X I X I I I I X I I I
l------_f_ I +- I -f----+----f- I -t- I
I GT~SR* I I X I X I I I I X I I I
l-----_f_ I +----t_ I -+-----f---f--------t------t
IINTINC* I I X I X I I I I X I I I
I I- I +---f------+----t------f- I f------t
I I MCBE I I I I I I I I I
I I null or R I X I X I I I I I I I
l-- I I f I +----f-------f- I f ,
I L C AI: I I I I I I , I I I
L----___ ----L- I I I ..L-___ ..L--___ ..L--_--L-________ ..L--____ -.J

(Continued)

250

Table 10. Literals Generated by Macro Instructions (Part 4 cf 6)
r-- I i ,- i -,-----T----"T i ~------,

,MCAS'r, , , , I , J I I I
I , I -f-----t-- , +----_1__---+--------+------1
,MSG W B*, I X , X I I I J X J , I
, -t--- I I I +- I _I__ I -+------1
I NOTE* I 'X I X I I I I X J , J
~ I -+- I -t-- I -1-----_1__---+---------+--------1
IOBEY I I I I I I I , I I
t-- I , + , I +-----_1__---+----------+ ,
,OPEN*, 'X, X, , , I X, , I
t-------t--- , _+_--t------+---+-----_I__----+----------+------I
IPAUSE*, 'X, X I I I I X, I I
, , I I I f----+----_I__ I +-------1
I POINt* I I X , X, I I 'X I I I
~-----+ I I -t-----__+_ I _1__----+--------+ I
,PR* I 'X, X I I I 'X I I I
, I-- I +__, __+_---+-----+ , -+------1
I I opl ist I I X I I I X, I X I X ,
I------t-------+_ I , +----+-----_1__---+--------+-------1
IPRMl?T I , I I I I I I I I
I-- , I _+_ I --+---+----_1__ I -+-------1
I PRTOV I , I , I I , I I I
I-- , , I , I +----_1__---+---------+-------1
,P 0* I I X I X I I I I X J , ,
, I-- , + I I -+----+---+-------+--------1
, I opl ist I I X, I I X I I X I X I
..-- I --+----_+_ I __+_---+------_1__---+--------+---------1
,POT , I I , , I , I I I
I-- I , , I +-----+------1-----+--------+------1
,PUTX, , , I , , , I I I
I- I-+-' I , __+_---+------+---+--------+------1
,RAE ,area , I X, , I X I I , ,
I-- I -+----+__---t------+----t-------+ , -+-------1
I REAL* I 'X I X I I , 'X I I I
, l------+----+ , __+_----1------_1__---+---------+------1
I ,length I I I X I X I , I I I
I-- I , -I- , -+----+------+----+---------+ I
,REL*, 'X, X, I , 'X, I ,
, I------+----+__ , __+_ I -1----+---------+-------1
I ,oplist I I X, , 'X I I X I X ,
I-- , -+-----+ , +----t------+-----+---------+-------I
,RELEX* I 'X, X I , I 'X, , ,
I-- , -+- , -t------+----+------I----+--------I-------1
I R ELS E * I I X I X I I I I X, I I

..L--_--L...- ..L-' ~ ____ -.J

(Continued)

Appendix H: Macro Instruction Generation of Literals 251

Table 10. LitErals Generated by Macro Instructions (Part 5 of 6)
.--- I I ,. I -,--- I ,.------,

I RETUEN I , " I I I I
&------1- , f---_+_ f_---t -f-- I
I SAEC I WheIl I I I X, X , I I
I IPFK~SK is, I' 1 I I I
, la sublistl I I I I I 'I
I .. ------I----f----+----+-----I-----+_ -t- I
I I EP I I X I , X I X I I 1 I
l-------+-------+---+----+-----_f_---f_---+_---+--------f_ I
I SAl I area I 1 X I I I X I I I I
&------t-----f----t---_+_ I I +- I +- I
I SAVE I I , , I I , I I I
l------_f_ I t--_+_ I f_-----+_ I t------t
I SEEC I MSGI 'IH I I I , X I X I I I I
I l----__+_ I I __+_---+-----+_ I +__ I
I IINT'lYP I I I , X I X I I I I
I l- I f-----f_ I I +---+------+__ I
I , EP I 'X I 'X I X I I I I
..------1--- I +- I 1 +----+---_+_-----+__-----1
,SETL, 1 1 I I I I I I ,
l-- I -t---t- I +----+-----+_--_+_------f_-----I
I SIEC I EP I I X I I X I X I I I I
...------t-- I f- I +- I +- I +__-----1
I SIR* I I X I X, I , 1 X, I I
l---------f------t-----t I f_---I-----+- I +- I
I S P E C I W hen IN T- 1 1 I I X I X I I I 1
I I TY P is a I I I I I 1 I , I
I I sublist I 1 I I , , 1 1 ,
I J-------I----f---_+_ I f_---+----+------t------I
I I EP I I X I , X I X I I , I
&-------f_ I t---+----+---_+_---+_ I + I
I SSEC I EP I 'X, I X I X I I , I
l-------+-----+-----f---_f_ I -f-----+_--+-------+------t
I STEC IINT'IYP I I , I X 1 X I , I 1
1 l-- , + , I +- I I +__------1
, IEP I I I I X I X I I I I
l-------f------t- I I +----+----+_ , -1-------1
I STIME1' I I I I I I I 1 I I
...-------f--. I + I +----+_ +- I +------1
I STO\l1*, I X I X I , I I X I I ,
l-------f_ I t _+_---f----I-----+_ I +-------4
I SYSIN I , I I I I I I I I
&-----t I t I I I +----+--------+------1
I TRUNe I I X , X I I I 'X I I I
l- I --I-----t I +_---+-----+_---+-------f_------1
ITTIME1' I I 1 I 1 I I , I ,
&-----f----__+_ I I -f---_f_---+_, +- ,
I USA'll', , I I I I I , I I
.-------1- , , , I I +_--_+_-------_+_ I
1 WRITE* I 'X 1 X, I I I X I I ,
I 1----__+_----+ 1 I" +-----+--_+_------1-------1
I Ilength, , I X I X, , I I I
...- I -t------t---_f_ I I -1-----+------+--------1
I WT* I 'X I X I I I I X, , ,
I 1-- , f_ I -+---_f_----+_ I +- I
1 I I I I I , , I I I
I loplist I I X, I 'X I I X , X I
l--.---+------_+_ I _f_---+---f_-----t I +-------1
I \I1TL* I I X I X I , I I X I I ,
1-----. -t , +--_f_ I f_----+_, +-------1
I W TO* I I X I X I , I I X, , I
l--.----f_ I I I -+- , I I +__ I
I WTOB* I 'X I X I I I 'X I , I

_---'.L-. _______ --'---__ -L--_---'_
...I.....-----'-----~------'

252

Time Sharing System/360 provides macro instructions that permit thE
user tc control task interruptions (Figure 3).

r-----------------------------,
IINTERRUPT HANDLING FACILITIES I
l--------------T--------------J

I
I

r-----------------T----------------~T-----------------T-----------------,
I I I I I
~---------------, ~---------------, ~---------------, ~---------------, ~---------------,
I Specify I I Specify or I I Enable or I I Interrupt I I User control I
I interrupt I I delete I I disable I I routine I I of interrupts I
I entry I I interrupt I I interrupts I I inquiry I I I
I conditions I I routines I I I I I I I
~---------------J ~---------------J ~---------------J ~---------------J ~---------------J
~------, ~------, ~------, ~------, ~------,
I SPEC I I SIR I I SAl I I INTINQ I I USATT I
~------.l------, ~------~------, ~------~-----_, ~------~-------, ~------~------,
I Program I I Specify I IDisable I IBranch or waitl IAllow user tol
~-------------J ~-------------J ~------------_J I until more in- I I process I
~------, ~------, ~------, Iformation is I I interruptions I
I SSEC I I DIR I I RAE I I available I ~-------------J
~ ______ .l ______ , ~------~------, ~------~------, l ______________ J ~------,

I SVC I I Delete I I Enable I I CLATT I
~-------------J l _____________ J l _____________ J ~------.l------,

~------, IReturn con- I
ISEEC I Itrol of I
~------.l------, linterruption I
IExternal I Ito system I
~-------------J l _____________ J
~------,
ISAEC I
~------~------,
IAsynchronous I
~ _____________ J

~------,
ISTEC I
~------.l------,
ITimer I
~-------_-----J

~------1
ISIEC I
~------~------,
I I/O I l _____________ J

Figure 3. TSS/360 Interruption Handling Facilities

Appendix I: Interruption Handling Facilities 253

The six types of task interruptions and their corresponding macro
instructions are:

Program
Supervisor Call
External
AEynchronous
Timer
Infut/Output

SPEC
SSEC
SEEC
SAEC
STEC
SIEC

Interruption har.dling consists ef responding to task interruptions.
The mOEt significant features of the interruption handling facility are
priority interruption control and interruption delay.

The user must decide how to respond to each type ef interruption, er
he may elect to ignore certain interruptions. Interruptions may te SEr­
viced ty one or more routines.

The following macro instructions create interrupt control blocks
(ICBs) that specify what task interruptions are to be processed, under
what ccnditions the user's interruption routine is to be entered, and
the entry point address of the user's interruption routine.

~2~~O ins!~~£ti9~
SIR

DIll

Function
Makes-an interruption reutine available fer
use, by establishing cor.trol references to
it and also setting the priority of an
interruption routine.

Deletes control references to a previously
specified interruption routine.

To ensure that an interruption routine will not be interrupted, twc
macro instructions are provided:

~~cr2-i~§!~£!iQn
SAl

RAE

Function
Inhibits interruptions from taking Flace.
However, no interruptions will be lost
because they are queued up.

Enables interruptions to occur.

IntErruptions are queued according to type and arE dispatched accord­
ing to Friority. ~he following macro instruction prcvides flexibility
within an interruption routine:

]~g:2-in§!~.!!£tion
INTINQ

f!!.!!£!:iog
Allows an interruption routine to tem­
porarily relinquish control~ enter a wait
state, branch conditionally, or delete all
impending interruptions on a queue.

ESTABLISHING INTERBUPTION ROUTINES

Interruption routines are established through the SPEC, SSEC, SEEC,
SAEC, STEC, and/or SIEC macro instructions. Control references to the
routinE and its priority are set by the SIR macro instruction. Any
interruFtion routine may be made unavailable by the rIR macro instruc­
tion. Another SIR macro instruction will make the interruption routine
availatle again.

254

PBOCES~ING AN INTEERUPTION

When an interruFtion occurs, an asynchronous exit is taken from thE
that occurs is madE available in a communication area. Using this
information, the intErruption routine can perform any calculations
necessary, issue input/output macro instructions, and do whatever is
necessary to respond to the interruption. The INTINC macro instruction
may be issued in the interruption routine. Issuing a RETURN macro
instruction causes control to be returned to the interrupted routine or
to another queued interruption routine.

If interruptions are not disabled by an SAl macro instruction, intEr­
ruptions of higher priority interrupt an interruption routine of lower
priori ty.

COMMUNICATION AREA

The communicaticn area, in addition to its primary purpose of holding
interruption infor«ation for an interruption routinE, allows information
to be Fassed betweEn the interruption routine and the interrupted pro­
gram. A field in the communication area may be used as an event control
block (fCB) where comFletion of interruption processing can be postEd.

ENTRY

When an interruFtion routine is entered, register 1 contains the
address of a two-werd parameter list. The first word of the parameter
list contains the address of a commmunication area, and the second word
contains the address of a data control block (Figure 4).

Register COMAREA*
---, r----------------------,

+0 I COMAR!A ADDR 1-----------1 I

+4
I---------f 1---------------...
I DCB ADDR 1---, I I
L- I 1----------------...

I I I
J t---------------~

I I I I L---_______________ J

I
I
I
I

DCB*

r-----------------,
L----t I

, I L ________________ J

I- -t
I*See dEscription cf [SPEC,SAEC,SIEC,SSEC,SEEC,STEC] macro instructionsl
I for format. I

Figure 4. Information Available Upon Entry to an Interrupt Routine

Appendix I: Interruption Handling Facilities 255

A symbolic library is composed of a symbolic com~cnent and index ccm­
ponent. The symbolic component may contain any collEction of named
groups of symbolic lines called parcels; thus, a collection of macro
definitions corres~onding to the ~SS/360 system macrc instructions,
together with any farcels to be accessed by means of the COpy assEmbler
instruction, form the symbolic comfonent of the TSS/360 system macro and
COpy litrary. This library provides the TSS/360 assembler with the
macro definitions and COpy parcels it needs, wh~n sy~tem macro instruc­
tions or COPY statements are encountered.

In this library, each macro definition is a group of symbolic lines
whose name (parcel nam~ is the same as that of the operation of the
definition's prototype and the corresponding macro instruction. Each
COpy parcel is a group of symbolic lines to whose name a COPY statement
must refer, to copy the parcel into a program. The ~ymbolic comFonent
of the system macrc and COpy library is normally cataloged as a virtual
index ~equential data set. The organization and format of this com­
ponent is shown in Figure 5. The format of Aach symtolic line, shown in
Figure 6, is that cf a record in a line data set. The lines of informa­
tion within the synbolic component are ordered by line number. ~he
number cf the first line of each parcel is used to index the symbolic
component.

The index component is a table that relates the name of each parcel
to the number of its first line. Thus, any parcel in the system macrc
and COpy library may be located within the symbolic component by match­
ing thE operation, of the corresponding macro instruction or operand cf
the corresponding COpy statement, to the appropriate entry in the index.
The ~ndex component is normally cataloged as a virtual sequential data
set. It consists cf a single format-u record.

r------~----------------__.__---------__._---------- ,
I D I L+P+ I L< P+ I LOp+ D+ I
I-------L--------T--------L---~-------...L-------T-_._ i'i -t
I l+P< I L<P< I LOP< IDq ••. ID<ol L+po I
I-- -.--- ...L-_...L-_~~ _________ ~

I L<po I LOpo I DO I
---------~---------~

Figure 5. System Macro and COpy Lib~ary Symbolic Ccmponent Format

D

L P

is a 21-byte line whose first character, always a right parenthe­
sis, marks it as the delimiter line for the jth parcel. The 8-
character field following the right parenthesis contains the name
of the (j+1)th parcel, left-adjusted with trailing blanks.

i£ the ith line of parcel j consisting of four norA than the numter
of bytes given in its length field.

Note: The first line of a parcel is L+P, not D+. D<, ••• D<O are
synonyms for the fcllowing parcel. Any parcel may have synonyms
(aliases) •

256

r-- -,----,---------------------- -----,
I RE~OME I I I ..- +----+----------------------------~
I 11 LN I CIT I

i----~ ______________________ _____ J

4 Eytes 7 Bytes Byte (LI-8) Bytes

Figure 6. Format of a Line in a Line Data Set

LL

C

LN

T

is the length of the line excluding the 1L fiEld.

is a code whose values and their meanings ar~:

~fg!2
01
00

Meal!.ing
The line originated at a terminal keybcard
The line was obtained as a card image

~2!!2~ C is ncrmally 00 for all lines of the system macro and COFY
litrary.

i~ the line number.

is the text of the symbolic line consisting of IL minus eight
characters.

SYSTEM ~ACRO AND CCPY LIBRARY SERVICE FACILITIES

The DATA command is used initially to create a line data set consist­
ing of the desired collection of system macro definitions and aSEemtlEr
COpy parcels. This data set becomes the symbolic component of the ~yE­
tem macro and COpy library when operated upon by the symbolic library
indexing routine, SYSINDEX or the symbolic library index build routinE,
SYSXBLt. The MODIFY command may be used to change the symbolic COID­

ponent when necessary.

Changes are madE as a function of line number. Each line in a linE
data set contains a line number; lines in the data SEt are ordered ty
line number. Once the line data set is created, RUN command is uEed-to
execute SYSINDEX. Alternatively, a user's program may oerform the
required function ty calling SYSXBLD. These routines create the index
(CHASLX) which relates the name of each parcel to its first line. When
the MODIFY command is used to change the line number of the first line
of any rarcel in the symbolic component, an updated index must be
created. The use of MODIFY does not otherwise require the suhseguent
use of SYSINDEX or SYSXBLD.

The ~SS/360 assembler uses the symbolic library search routine (SYS­
EARCH) to locate a parcel in the system macro and COEY library when it
encounters a system macro instruction or an assembler COPY statement.
SYSEARCH inspects the index which the assembler has rresent€d to it, and
returns with a return code of 4 if the required parCEl is ~ot in the

Appendix J: The TSS/360 System Macro and Copy Library 257

library. If the required parcel i§ in the library, SYSEARCH return~
with the number of the first line of the parcel and a return code cf O.

The assembler u~es the line number obtained from SYSEARCH, in con­
juncticn with a SElL macro instruction, to position the symbolic com­
ponent at the required parcel. Successive statement~ are then obtained
by using the VAM GET facility.

SYSEARCH is called to determine whether the parcel is present and, if
so, po~itions the ~ymbolic component to the designatEd parcel. If thE
parcel is not pr€sent, exit is made with a return code of 4; otherwisE,
It exit~ with a return code of O. In the latter caSE, SYSEARCH is
repeatEdly called to obtain successive lines of the Farcel.

As each line is obtained, SYSEARCH determines whether the line is
still in the required parcel by testing the first tExt character. If
that character is a right parenthesis, or if the EODAD sequence receives
control, exit is madE with a return code of 4; otherwise the line i~
presented to the a~sembler and exit is made with a rEturn code of O.
When the assembler i~ retrieving a macro definition from the library, it
will nermally senSE the end of the definition when it receives the
definition's MEND ~tat€ment.

If, instead, it detects a return code of 4 before it receives the
MEND statement, it assumes that a library format-errcr exists. WhEn the
assembler is retrieving a COpy parcel, it relies upon a return COdE of 4
from SYSEARCH to dEtEct the end of the parcel.

The symbolic litrary inddxing routine (SYSINDEX) is a system utility
routine that proceSSES the user's input parameters. It is initiated ty
a command language RUN command. The input parameter~ expected by SYSIN­
DEX arE contained in one or more SYSIN control staterrents.

SYSINDEX expect~ these parameters to arrive in a control statemEnt of
the form:

keyword=parameter,keyword=parameter

LENGTH=integer
sFecifies that each parcel name in CHASLX is composed of the numter
of characters given by integer.

HEADER=character
sFecifies a single character which is com Fared ~ith the fir~t cyte
of each source line to determine whether that line requires an
index entry. HEADER is not us~d if the user sUFplied SCAN (below).

SCAN=symbol
sFecifies the name of a user-supplied subroutine which is called to
in~pect each ~uccessive line of the symbolic component. This rou­
tine will determine whether a given line requires an entry in
CHASLXu SCAN is not used if the user supplies the HEADE~ parameter

The tuild symbolic library index routine (SYSXBLD) constructs the
index Fertion (CHASLX) of the symbolic library. It is invoked by means
of a CAlL macro instruct~on of the following format:

258

r--------.--------~---,

IName IOperatioEIOperand I
I --+- -t -1
l[symbcl]ICALL I SYSXBLD,(length-addr,[header-addI](,scan-addr]) I
I I ~ __ ~

length
spEcifies the location of the length of parcel names in the
litrary.

header

scan

specifies the location of a character used in dEtermining what
lines of the symbolic component require index entries. The hEadEr
character is compared with the first character ct each line to make
this determination. If header is given, it must be the second ele­
mEnt of the sublist and scan must not te given.

specifies the location of an eight-character naffie of a user's scan
rcutine. The name must be left-adjustEd and filled with trailing
blanks if necEssary. The useI's scan routine i~ called as each
symbolic line is obtained to determine whether the line requires an
index entry. If scan is given, it must be the third element of the
sutlist and hEader must not be given.

The symbolic litrary search routine (SYSEARCH), used to locate infcr­
mation stored in a symbolic library, is invoked by mEans of a CALL macro
instruction of the following format:

r--------~-------~--_,

I Name I Opera tio n I Operand I
I---- I +--1
I[symbclJICALL ISYSEARCH,(index-addr,name-adir,linno-addr) I
, ~ ________ i---- ~

index

name

linno

is the address of the index component (CHASLX) cf the symbolic
litrary to be sEarched. CHASLX must be brought into storagE by the
USEr.

is the address of the first byte of the name to be located. This
name must be cf the length specified to SYSINDEX or SYSXBLD during
thE creation cf the index, and must be left-adjusted with trailing
blanks.

is the locaticn at which the SYSEARCH routine i~ to store the
rEtrieval linE number it obtains.

On Exit, a code will be returned to the calling program in the return
code rEgister. The code will be one of the following values:

o - if the name was located. The retrieval line number will be placEd
in the location designated by the third parametEr.

4 - if the name cculd not be located.

Appendix J: The TSS/360 System Macro and Copy Library 259

To te concurrently accessible tc more than one task, a data set must
have one of the following organizations:

• Virtual sequential
• Virtual index sequential
• Virtual partitioned

Physical sequential data sets cannot be used concurrEntly by more than
one task.

To prevent several users from concurrently updating the same record
of a virtual storage data set, interlocks are put on the data set while
it is teing used. The interlocks, read and write can be imposed at
three levels~ page, data set, or member.

A ~~£Q_irr~g£loc~ is imposed to prevent other users from writing into
a data set, member, or page of a data set. Multiple read interlocks may
be established for a data set or member, permitting several users to
read it simultaneously; or the interlocks may be set on a page basis,
giving several users simultaneous access to the records within a page.
A read interlock cannot be set if a write interlock has already teEn set
for thE data set or page.

A ~!l!~!nt~£!QS~ prevents any user, other than the user who set the
interlcck, from reading or writing into a data set or page. Only one
write interlock can te set at a time; thus, once a write interlock is
set, neither read nor write interlocks can be applied until the write
interlcck is reset.

• ~~!~_§et_in!~£lo£t - set according to the OPEN ortion specified, as
shcwn in Table 11. This level of interlock restricts the use of
sutsequent OPEN macro instructions on shared data sets. The inter­
lock is reset when the data set is ClOSEd.

• ~~~te£_!rrl~rlQf~ - set when the FIND macro instruction is issued for
a member of a virtual partitioned data set. A mEmber interleck is
resEt when a SlOW type-R or CLCSE or FIND macro instruction is
issued.

• f~S~_!~l~£loct - set to ensure that the user has exclusive centrel
of a record while he is processing it. A page-lEvel interlock is
resEt when a rEference is made to another page in the data set or
whEn the data set is closed.

260

Table 11. Effect cf OPEN Options on Data Set Interlocks
r--------~ ~-----------------~----------------------,

I OPEN I VSAii data set I VISAM data set I VPA~ data set I
I 0 pt i c n I I I I
I-- I +----------------+-----------------...
I I I I I
I INPU~ I read interlock I read interlock I read interlock I
I I set I set I whe~ FIND issued I
J:------+-----------_+_ +-------------------1
I OUTPUl write interlock I write interlock I write interlock s~t ,
I set I set I when FIND issued I
.. _+_ +-- -f
I I I I
I INOUl write interlock I read interlock I when FIND is issued: I
I OUTIN set I set I write interlock i~ I
I UPDAl I I set for VSAM members; I
I I I read interlock is I
I I I set for VISAM mErntEr~ I

J

The only way a user can gain exclusive control of a shared VISAM data
set is to open it for OUTPUT. Although a data set is opened for CUlPU~,
a user may actually only want to read the data set.

When updating a VISAM data set, the record to be updated should have
been ottained by a READ (type KX). If users of a shared data set de Dot
employ this procedure, two tasks may concurrently refer to the sam~ page
using Either the GET or READ (type KY) macro instructions and decice
that a record within the page is to be updated. Since both tasks u~e
WRITEs to the same page, the task that issues the la~t ~RITE macro
instruction cancels the effects of the previously issued WRITE. The
following sequence prevents this situation:

GET (1)
decision that updating cf the record
is required

READ DECB, KX, (1) , (O) , (2)

update record

WRITE I:ECB, KS, (1) , (O) , (2)

A READ (type KZ) by retrieval address should not be Employed by users of
VIS AM shared data sets since the retrieval address of the desired recerd
can be shared by another task.

Coding sequences within a task may produce task looping that cannot
be detEcted by the access method. Consider, for example, this sequence:

READDECE,KX, (1), (0), (2)
GET (1)

where the READ and GET macro instructions refer to different DCBs ~ithin
the sanE task. This situation produces a task loop, since the GET macro
instruction waits for the write interlock, set by thE previous REAL
macro instruction, to be reset. The write interlock will not be reset
since it was set in the same task that is waiting for the write inter­
lock tc be reset. The user must pay close attention to the rules c£
interlcck setting and resetting when dealing with multiple opened DeBs
within a given task.

Appendix K: Sharing Virtual Storage Data Sets 261

262

One doubleword Farameter list is generated for each data set DCB
being cpened or clcsed and placed in a table, as described below:

0-3 Address of the DCB

4 OPEN/CLOSE option code

5-7 (CO 0.0 00) 16

The bit configuIations for the option codes are indicated below.

12i!:~Q=l 2.E!: ion
OOXXXXXX another DCB is to be opened or clcsed

10XXXXXX this is the last DCB to be opened or closed

XX01XXXX REREAD

XX11XXXX LEAVE

XXXXOOOO INPUT

XXXX1111 OUTPUT

XXXX0011 INOUT

XXXX0111 OUTIN

XXXXOO01 RDEACK

XXXX0100 UPDAT

I (see exclusi ve OR)
[] (see braces)
{} (see brackets)
& (see ampersand)
() (see parentheses)

(see ellipses)

ABEND macro instruction 176
absexp, definition of 13
absolute expre~sion, definition of 13
absolute generation name 15
accessing data sets 41

VSAM 41,42-45
VISAM 41,lE-54
VPAM 41,55-60
ESAM 41,61-82
QSAM 41,83-94
IOBEQ 41,95-100

access methods (see accessing data sets)
ADCON macro in~truction 133,134
ADCOND macro in~truction 133,137
addr, definiticn of 9,11
address constant ,

(see ADCON reacro instruction)
addrx, definition of 9,11
addx, definiticn of 9,11
AETD macro instruction 170
AFF (affinity cFerand in DDEF macro
instruction) 329

allocation
of direct access storagE (see SPACE) of

virtual storage 126
alphameric characters, definition of 16
alphnum, definition of 10
ampersand

use in characters 14
use in text 14

apostrophes
USE in characters 14
use in oplist operands 16
USE in text 14

ARM macro instruction 138
use with CALL 139
use with DELETE 143
use with LOAD 142

armed adcon grcup
(see also AEM macro instruction)

ATPOL macro instruction 172
attention interrupt, control of 169,170
AWAIT macro instruction 213

backsFace
(see BSP macro instruction)

backward reading of magnetic tape 63
basic sequential access method

(see BSAM)
BFALN (DCB operand) 26,32
BFTEK (DCB operand) 26,33

blanks
use in characters 14
use in text 14

BLKSIZE (nCB orerand) 26,31,232
block size

(see BLKSIZE)
BPKD macro instruction 208
braces, use of 8
brackets, use cf 9
BSAM macro instructions 61

READ 62
WRITE 64
CHECK 67
DQDECB 69
GETPOOL 72
GETBUF 70
FREEBUF 71
FREEPOOL 73
BSP 74
CNTRL 75
FEOV 77
POINT 78
NOTE 80
PRTOV 81

BSP macro instruction 74
BUFCB (nCB operand) 26,33
buffer

alignment of (see BFAIN)
length (see BUEL)
pool 7372,73

buffering technique
(see BFTEK)

BUFL (DCB operand) 26,33,232
BUFNO (DCB operand) 26,32,232
bulk output facilities 104

PR 104
PU 107
WT 109

CALL adcon group 136
call data defir.ition

(see cnD macro instruction)
CALL macro instruction 139
capital letters, use of 9
CAT macro instruction 113
cataloging data sets 113

CAT 113-116
DEL 116-117

CDD macro instruction 34
CDS macro instruction 101-103
channel progra«

(see NCP)
character and switch table 179
characters, definition of 14

operand forff! 11,14
value mnemonic 10

character translation table 179
CHECK macro instruction

Index 263

for BSAM 67
for IOREQ 58

check protecticn class
(see CKCLS Kacro instruction)

CKCLS macro inEtruction 132
CLATT macro inEtruction 170
CLIC macro instruction 178
CLIP macro instruction 178
CLOSE macro inEtruction 118
parameter list 260
CLOSE (TYPE=T) macro instruction 118
CNTRL macro inEtruction

for BSAM 75
for QSAM 9C

code definition of
operand form 11,13,14
value mnemonic 10,11

COMAR!A
(see communication area)

command creaticn 208
BPKD 208
GDV 211

CCMMAND macro instruction 174
c~mmand mode 173-177
communication ~ith operator 197

WTO 197
WTC 197
WTOE 198

with system log 197
WTL 199

inter-task
(see VSEND and VSENDR macro

instructicns)
with SYSINjSYSCUT 179

GATED 179
GA'I"R 182
GT~AR 183
GTWSR 184
SYSIN 185
PRMFT 188
MSGiiR 191
MCAST 193

communication area
for SAEC macro instruction 160
for SEEC 156
for SIEC 1 t5
for SPEC 154
for SSEC 158
for STEC 1 E3

CONC (tOEY macIo instructicn operand) 241
concatenating data sets

(see CONC)
connecting data sets 37

OPEN 37,38-40
control characters 224

(see also RECF~ and MCAST)
control of attention interrupts

(see AETD, USATT, and CIATT macro
instructi c ns)

COpy library 256
copying data sets 101

CDS 101
create catalog entry

(see CAT macro instruction)
CSTOBE macro in~truction

264

CTT
(see character trans1aticn table)

CYL (DDEF operand) 240

Data control block 229
(see also DCB macro instruction)

data definitioI name
(see DDN AME)

data event control block
(see DECB)

data set
concatenating (see CONC)
defining attributes (see DCE and tDEF

macro instructions)
interlock 258-259
name 14
in DDEF maCIO instruction (see DSNAME)
organi za tion (see dsorg: r:SCEG)
sharing 251:-259

data set management 21
DCB (DDEF operand) 238,239
DCB macro instruction 22,25-34,229
DCBD macro instruction 22,35
DCLASS macro instruction 131
DDEF macro instruction 237-247
DDNAME (DCB operand) 26
ddname (DDEY orerand) 24,237,238,239
DECB

with CHECK, BSAM 67,98
with IOHEQ 98
with READ 48,62

decimal integer, definition of 13
define a data Eet 22

DDEF 22,23-25
DCB 22,25-34
CDD 22,34
DCBD 22,35

DEL macro instruction 116-117
DELET macro instruction 148
delete

catalog entry (see DEL macro
instruction)

interrupt rcutine (see DIE macro
instructicn)

module (see DELETE macro instruction)
record (see DELREC macro instruction)

DELETE adcon group 136
DELETE macro instruction 143
DELREC macro instruction 52
DEN (DCB operand) 26,30,233
DIR macro instruction 165
disconnecting aata sets 118

CLOSE 118-122
CLOSE (TYPE=T) 119

DISP (DDEF operand) 24,238,241
disposition of a data set

(see DISP)
OLINK macro instruction 148
DQDECB macro instruction 69
DSNAME (DDEF oFerand) 24,237,238
DSORG (DCB opeIand 26,37,234
dsorg (DDEP operand) 24,237,23E

EBCDTIME macro instruction 204
ellipsis, use of 9

enabling interIupts
(see RAE maCIO instruction)

enter command rrcde 173
ENTER macro in~truction 148
EODAD (DCB operand) 26,29,223
ERASE macro in~truction 123
EROPT (DCB operand) 29,33,234
ESETL macro in~truction 52
exclusive contIcl of a reccrd 259
exclusive OR, definition of 8
execute form macro instruction 19
exit list 215

(see also EODAD, SYNAD)
EXIT macro instIuction 175
EXLST (DCB opeIand) 26,32,234

(see also exit list)
expansion of a macro instruction definition
of 7

explicit
address, definition of 12
call 140
deletion 228
linkage 22c

FEOV macro instruction 77
FIND macro instruction 55
PINDOS macro in~truction 36
FINDJFCB macro instruction 36
FREEBUl macro instruction 71
FREEMAIN macro instruction 128,
FREEPCCL macro instruction 73
functicnal chaIacters 193-196

GATE macro instructions
(see communication with SYSIN/SYSOUT)

GATRD macro in~truction 179
GATWR macro in~truction 182
GDV macro instruction 211
generation name 15

at~clute 15
relative 15

generation of literals 24E-252
GET macro instruction

for QSAM 84
for VISAM 46
for VSAM 42

GETBUF macro in~truction 70
GETMAIN macro instruction 126
GETPOOL macro instruction 72
GTWAR macro in~truction 183
GT~SR macro in~truction 184

HOLD (DDEF operand) 240

ICB
(see interruFt control l::lcck)

IMPLICITadcon group 133,136
implicit linkage 228
implied addres~, definition of 12
IMSK (tCB oper and) 26,32,234
inhibiting interrupts

(see SAl macro instruction)

INOUT (OPEN option) 38
INPUT (OPEN option) 38
input/output request facilities

(see IOFEQ)
integer, definition of 13
inter-task communication

(see VSEND and VSENDR macro
instructicns)

interlock, sharing 258,259
INTERNAL adcon group 133
interrupt control block

for SAEC macro instruction 160
for SEEC macro instruction 156
for SIEC macro instruction 16~

for SPEC macro instruction i 15~
for SSEC macro instruction 158
for STEC macro instruction 163

interrupt handling 149,253-255
INTINQ macrc instruction 167
RAE 167
SAEC 158
SAl 166
SEEC 155
S1EC 164
S1 R 150
SPEC 152
SSEC 157
STEC 161
AETD 170
CLATT 170
USATT 169
DIE 165

interval timer 200,203
INTINQ macro instruction 167
INVOKE macro instruction 148
IOREQ facility 95

CHECK macro instruction 98
IOREQ 95
VCCW 98,99

ITI macro instruction 172

JOB LIB 241
job library

(see JOBL1B)

KEYLEN (DCB opErand) 233
keyword 8
keyword operand 8
keyword creaticn

(see BPKD macro instruction)

label, volume
(see LABEL)

LABEL (DDEP operand) 241
LEAVE (CLOSE oFerand.) 120
LIBESBCH macro instruction 148
linkage

conventions 225
(see also CALL, SAVE, and EE1URN macro

instructi cns)
explicit 228
implicit 227

Index 265

linking and loading 133
ArCOND macrc instruction 137
ACCCN 134
ARM 138
CALL 139,1 42
LOAD 142
DELETE 143
SAVE 144
HE'IURN "146

list form macro instruction, definition
of 18

literals, generation of 248,252
load adcon grouF 136
LOAD macro instruction 142

loading a mcdule 142
locate mode
(see GET and PUT macro instructions)

log, system 199
logical record length

(seE LREeL)
LRECL (DCB operand) 26,28,235
LSCHP macro inEtruction 132

HACHE (DCB operand) 26,31,235
macro expansion, definition of 7
macro instructicn language 7
macro instructicn generaticn of
literals 248,252

macro library 257
magnetic tape positioning 120,121
MCAS1 macro instruction 1S3,196
manipulating entire data SEts 101

copying data sets 101
bulk output 104

member interlock 258,259
MEND statement 258
mixed operand 8
MODE (DCB operand for card reader or card

punch) 26,31,234
move mode

(see GET and PUT macro instructions)
MSGWB macro instruction 191

name, definiticn of 10,11
name field 7

:for DCB 232
for DDEF 237

NCP (DCE operand) 26,32,235
notaticnal symtols 8
NOTE macro instruction 80

use with POINT 80
O-type macro irEtructions 20
OBEY macro instructions 177
OPEN macro instruction 37,38-40

parameter list 260
OPEN options .38
operand

266

definition cf 7
field "]
forms
keyword 8
mixed 8
oplist 16
positional 7

sublist 8
operator communication with

(see WTO and WTOR macro instructions)
oplist operandE 16
OPTION (DDEF oferand) 241
OPTCD (DC B ope rand) 26,32,35
OUTIN (OPEN option) 38
OUTPUT {OPEN option} 38

PAD (DCB operand) 26,29,235
page interlock 258,259
parameter area 227
parameter list 7,227
parameter, definition of 7
parameter register 7
parentheses, UEe of 9
partially qualified name 16
partitioned data set name 14
partitioned organization directory S5-57
PAUSE macro instruction 173
PCSOUT (dump rcutine data set) 237
PCSVC macro instruction 172
POD

(see partitioned organization directory)
POINT macro instruction 78

use with NO'IE macro instruction 78
positional operand 7
PR macro instruction 104,107
printing a data set

(see PH and WT macro instructionE)
private volumes

(see PRIVATE)
PRIVA TE (DDEF cperand) 240
PRMPT macro inEtruction 188
profile character and switch tatle 179
program management 126
providing symtclic names for BCE fiElds

(see DCBD macro instruction)
PRTOV macro instruction

for BSAM 81
for QSAM 91

PRTSP (nCB operand for printEr
spacing) 26,30,233

PTI macro instruction 172
PU macro instruction 107-109
punching a data set

(see PU maCIO instruction)
PUT macro instruction

for QSAM 85
for VISAM 47
for VSAM 4.3

PUTX macro instruction
for QSAM 86
for VSAM 44

queued sequential access
QSAM macro instructions

GET 84
PUT 85
PUTX 86
RELSE 89
TRUNe 89
CNTBL 90
PRTOV 91
SETL 92

method
83

83

R-type macro instruction 17
RAE macro instruction 167
RDBACK (OPEN oFtion) 38
READ macro instruction

for BSAM 62
for VISAM 48

reading commands from SYSIN
(see CLIC and CLIP macrc instructions)

RECFM (DCB operand) 26,27,235
record format (see RECFM)
REDTIM macro instruction 207
register notatien 11
register type macro instruction 17
register use, fer linkage 226
REL macro instruction 124
relative

generation name 15
key positior (see RKP)

releasing
a data set 124
exclusive ccntrol of a record
(see RELEX macro instruction)
virtual storage 73

relexp, definition of 10,11
relocatable expression, definition
of 11,12

RELSE macro instruction 89
removing data SEts 123

ERASE 123
REI 124

removing a job library 125
replacing a recerd

(seE PUTX macro instruction)
REREAD (CLOSE eperand) 120
restoring registers

(see RESUME and RETURN macro
instructiens)

RESUME macro instruction 148
retention pericd

(see RETPD)
RETPD (DDEF operand) 238,241
retrieving DDEF cemmands

(see CDD macro instruction)
RETURN macro instruction 146
RKP (DeE operand) 26,29,231,236
RSPRV macro instruction 132
RTRN macro instruction 17E

S-type, E-form macro instruction 19
S-type, L-form macro instruction 18
S-type macro instruction 18
SAEC macro instruction 158
SAI macro instruction 166
save area 227

(see also SAVE macro instruction)
SAVE macro instruction 144
saving register contents

(see SAVE macro instruction)
SEEC macro instruction 155
SETL macro instruction

for QSAM 92
for VISAM 51
for VSAM 44

sharing data SEts 258

SIC (operand for GATE macro
instructions) 180,182,183,184

SIEC macro instruction 164
SIR macro instruction 150
SPACE (DDEF operand) 239
SPEC macro instruction 152
special symbol, definition ef 16
specify

interrupt reutine (see SIP macro
instructicn)

privilege class 131
specsym, definition of 10,11
SSEC macro lnstruction 157
STACK (DCB operand for stacker
selection) 2:33

STEC macro instruction 161
STIMER macro instruction 200
storage contrel section

(see CSTORE macro instruction)
Storage-type macro instruction 18
STORE macro instruction 148
STOW macro instruction 57
sublist, operand 8
symbol, definition of 12

operand form 12
value mnemonic 10,11

symbolic library 257
SYNAD (DCB operand) 26,29,236
SYNAD routine 218

entry during BSAM or QSAM
operations 218

entry during VISAM operations 221
SYSEABCH routine 257,259
SYSIN macro instruction 185
SYSIN parameter 195
SYSINX parametEr 186
SYSINDEX routine 257-259
SYSOUT 179-188
system macro instructions 7
SYSXBLD ROUTINE 256

terminal I/O 179-188,173
text, definitien of 14

operand forro 14
value mnemonic 10,11

timing maintenance 200
EBCDTIME 2C4
STIMER 200
TTIMER 203

transfer to corrmand mode 173
PAUSE 173
COMMAND 174
EXIT 175
ABEND 176
OBEY 177

translation codes (see SIC)
TRK (DDEF operand) 240
TRTCH (DCB operand) 25,30,233
TRUNC macro instruction 89
TSKABEND data set 176
TTIMEB macro instruction 203
TWAIT macro instruction 213

uncataloging data sets
(see DEL macro instructicn)

Index 267

268

unde~score, use of 9
UNIT (tDEF operand) 239
unit affinity

(see AFF)
unloading a module

(see DELETE macro instruction)
UPDAT (OPEN option) 38
upper-case letters, use of 9
USATT mac~o instruction 169

value, definiticn of 10,11
value mnemonics 9
VCCW macro instruction 98
vertical strokE 8
virtual channel command word

(see VCCW macro instruction)
virtual indexed sequential access method

(sEe VISAM)
virtual partitioned access method

(see VPAM)
virtual sequential access method

(SEE VSAM)
virtual storagE management 126

GETMAIN 126-128
FREEMAIN 12e-129
CS'IORE 130,131

VISAM 46
GET 46
PUT 47
REAt 48
WRI'lE 49
SE'IL 51
ESETL 52

DELREC 52
RELEX 53

volseqno (DDEF operand) 240·
volserno (DDEF operand) 240
VOLUME (DDEF' oferand) 240
volume

label (see lABEL)
serial number (see volserno)

VPAM 55
FIND 55
STOW 57

VSAM 42
GET 42
PUT 43
PUTX 44
SETL 44

VSEND macro instruction 213
VSENDR macro instruction 213

WRITE macro instruction
for BSAM 64
for VISA M Q·9

writing tape
(see WT macro instruction)

WT macro instruction 109-112
WTL macro instruction 199
WTO macro instruction 197
WTOR macro instruction 198

XTRCT macro instruction
XTRSYS macro instruction
XTRXTS macro instruction

213
213
213

READER'S COMMENT FORM

IBM System/360 Time Sharing System
Assembler User Macro Instructions

228-2004-2

• Your comments, accompanied by answers to the following questions, help us produce better

publications for your use. If your answer to a question is "No" or requires qualification,

please explain in the space provided below. Comments and suggestions become the property of

IBM.

Yes No
• Does this publication meet your needs? 0 D
• Did you find the material:

Easy to read and understand? 0 0
Organized for convenient use? 0 0
Complete? 0 0
Well illustrated? 0 D
Written for your technical level? 0 0

• What is your occupation?

• How do you use this publication?

As an introduction to the subject? 0 As an instructor in a class? 0
For advanced knowledge of the subject? 0 As a student in a class? D
For information about operating procedures? 0 As a reference manual? D

Other

• Please give specific page and line references with your comments when appropriate.

If you wish a reply, be sure to include your name and address.

COMMEN'S:

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

•

C28-2004-2

YOUR COMMENTS PLEASE . . .

This publication is one of a series which serves as reference for systems analysts, program­
mers and operators of IBM systems. Your answers to the questions on the back of this
form, together with your comments, will help us produce better publications for your use.
Each reply will be carefully reviewed by the persons responsible for writing and pu blish­
ing this material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM
system should be directed to your IBM representative or to the IBM sales office serving
your locality.

Fold Fold
•• II ••••••••••• II II •••••••••••••••• II. II' 1,.,1 ••••••••••• :

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.

ATTN: Ti me Sharing System/360
Programming Publications Dept. 561

POSTAGE WILL BE PAID BY

IBM Corporation
PO Box 344
2651 Strang Boulevard
Yorktown Heights, N.Y. 10598

FIRST CLASS
PERMIT NO. 34

YORKTOWN HTS., NY

•••••••••••••• 0 ••• II •••••••• II •• I" II II. II ••••• II' II •••••••• I" ••••• II •• :

Fold

®

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.10SOl
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

Fold

o
N
DO
I

N
o
o
os:.
I

N

C28-2004-2

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.106Ot
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

()
N
~.
Ie

N
o
o
0(:>

I
N

	001
	002
	003
	003a
	003c
	003d
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	replyA
	replyB
	xBack

