File No. S360-36
Form C28-2004-2

IBM Systems Reference Library

IBM System/360 Time Sharing System
Assembler User Macro Instructions

IBM System/360 Time Sharing System rrovides compre-
hensive program and data management services which,
together with communication, kulk output, and interrup-
tion handling services, are requested through macro
instructions. These wacroc instructions are written in
the assembler language as an aid to programming and
processing time-shared tasks.

TSS

W
i
i
i
i
i
@




PREFACE

This publication contains a description
of Time Sharing System/360 (TSS/360) macro
instructions available to the assembler
language user.

The publication is divided into three
parts:

Part I: User Maco Instructions - con-
tains an introduction to user macro
instructions and their functional cate-
gories and describes the basic principals
of the TSS/360 macro instruction language.
Value mnemonics and basic macro instruction
formats are discussed in detail.

Part II: Functional Macro Instruction
Descriptions - contains detailed descrip-
tions of the macro instructions available
with TSS/360 within the framework of their
major functional purpose.

Appendixes -- Use of exit routines, con-
trol characters available with certain data
management facilities, and interrupt handl-
ing routines are explained.

All macro instructions available to the

assembler language user are listed in this
publication. However, since use of certain

Third Edition (September 1968)

macro instructions requires detailed know-
ledge of system operation, these macro
instructions are not of concern to the
average TSS/360 user. Detailed descrip-
tions are given in IBM System/360 Time
Sharing System: System Programmer's Guide,

Form C28-2008.

Prerequisite Publications

IBM System/360 Time Sharing System:
Concepts and Facilities, Form C28-2003

IBM System/360 Time Sharing System:
Assembler Language, Form C28-2000

Other recommended publications are:

IBM System/360 Time Sharing System:
Linkage Editor, Form C28-2005

IBM System/360 Time Sharing System:
Command System User's Guide, Form
C28-2001

IBM System/360 Time Sharing System:
Assembler Programmer's Guide, Form
C28-2032

This editor has been updated technically; by including the Command
System macro instructions, AETD, OBEY, PRMPT, MCAST, SYSIN, BPKD, gnd.
GDV; by adding the SIC operand to the GATE macro instruction descriptions;
and by adding a return code to the list of return codes for the CDD macro

instruction.

In addition, it has been reorganized by placing macro in-

struction descriptions within the framework of their major functional

categories.

It should be noted that the DCB, OPEN, and CLOSE macro in-

structions which formerly appeared within each access method grouping

now only appearance.

This edition is current with Version 3, Modification 0, and remains
in effect for all subsequent versions or modifications of IBM System/360

Time Sharing System unless otherwise indicated.

Significant changes or

additions to this publication will be provided in new editions or Techn-

ical Newsletters.

Before using this publication in connection with the

operation of IBM systems, refer to the latest edition of IBM System/360

Time Sharing System:
lications that are applicable and current.

Addendum, Form C28-2043, for the editions of pub-

Specifications contained herein are subject to change from time to

time.
Technical Newsletters.

Any such change will be reported in subsequent revisions or

This publication was prepared for production using an IBM computer to

update the text and to control the page and line format.

Page impres-

sions for photo-offset printing were obtained from an IBM 1403 Printer

using a special print chain.

Requests for copies of IBM publications should be made to your IBM

representative or to the IBM branch office serving your locality.

A form is provided at the back of this publication for reader's com-

ments.

If the form has been removed, comments may be addressed to IBM

Corporation, Time Sharing System/360 Programming Publications, Depart-

ment 561, 2651 Strang Blvd., Yorktown Heights, N. Y. 10598

® International Business Machines Corporation 1966, 1967, 1968



CONTENTS

PABRT I: USER MACRO INSTRUCTIONS &+ o o o o o o » o v o o o s s o o o o o o o o o = = =« 5
Section I: INtroduUCLioN o + « o o« o o o o @ o o o s o =« o o o o o o o = o« =« o o« » o« =« 5
Data Set Management « o « o ¢ o o o o o + o o o s o o s s o 5 o s s o s o s s s o = 5
Program MaAnagement « o o o« o « o o o « = o o o o o« s 5 s o o s o o s s o o o = » o b
Section II: The Macro Instruction LanguUage .« « « « o = o o o o o o = o =« = o o o o o 1
Macro Instruction FOTMAt .+ & o o o o o o 2 o o o s o o o o o o o o o o o o« o« o = o« 1
Name Field o« o« ¢ o o o o o o 2 o o o s 5 a s s o o o s o o =« o s = s » o o o o o 1
operation Field . o« o ¢ o s o o o s o o o @ o % o o s s o o s o s o « o o o o o o 1
Operand Fi€ld . o ¢ ¢ o o « ¢ 2 o o o s s o 5 o s o s o s o o s o s o o o s o o o 1
Macro Description Value MNnemoOnicCS . o « o o o o o o o o o o o o o = = o 2 o o« « « 9
Types Of MAcTo INSLLUCLIONS o o ¢ ¢ o o ¢ o o « o o o o o s s o o o o o = o s = o o 17
R-Type MacIO INSErUCLionNsS . « o o o o o o o o o o o o o o o o o o o » o o o s o « 17
S5-Type MAcIC INSErUCLIiOoNS o v ¢ o o o ¢ o ¢ o o o & o o s o o o « s s o s « o« =« = 18
Other Macrc INStTUCtiOoNS . o & o o o o @ o o o o a = s s o = o o o a o« s o =« « o« 20
PART I1: FOUNCTICNAL MACRO INSTRUCTION DESCRIPTIONS .+ o o o o o o o o« s o o o o « o« o 21
Section I: Data Set MAnNAageBENt .« o« « o o s o o 2 s s o o o o s o o o » o » = o o o« o« 22
Defining a Data Set to the SYSteHm « o o ¢ o o ¢ o o o o o o o o « « s o o o » o o o o 22
DDEF —— Define a Data Set (S) o « o o o o o @ o 2 » o o a s a « = o o o o o » o o 23

DCB —- Construct a Data Control Block (0) +. « ¢ o o o o o o o o« o o s » s o o o o« 25

CDD -- Retrieve and Execute DDEF Commands (S) o« o o « o o o o o » o« o « « o« « « « 34
DCBD -- Provide Symbolic Names for a Data Control Block (0) .« « « « « « = o« « « « 35
FINDDS* -~ Locate JFCB Corresponding to Data Set Name (S) . ¢« ¢« ¢ 2 o o« « = o « » 36
FINDJFCB* - Locate JBCE and Ensure Volume Mounting (S) e s o o o e o s e o » = o 36
Connecting a Data Set To The SyStem . v« o o « 4 2 « ¢ o o 2 o » o o« = o o o » o o o « 37
OPEN -~ Connect a Data Set to the SYsStem (5) =+ v o o v 2 2 o o o o = « = o« « o« « 38
Accessing a Data Set . . . o o o @ ° s o 8 o s s w ® ® = s e = s e @ = o o o = o« o 47
Virtual Sequential Access uethod e o o o s » 8 s s e e ® s 8 o s e w o ® s s o o s U2
GET -- Get a Record (R) o o« o 2 o o o o o = e a2 o o o s o a e a o e o « » = e o« 42

PUT -- Include a record in an Output Data Set (R) « o o o o « « o o o =« o = « + o« 43
PUTX -- Replace a Sequential Logical Record (R) « o« o o« o o ¢ o o o o o o o« o o o Uy
SETL -~ Specify Start of Sequential ProcessSing (R) =« « o o o o o = o o o o o o o U4
virtual Indexed Sequential Access Method .+ ¢ o o & o 4 o 4 s o o o o o o « o« o« « - U5
GET —= Get a RecoOrd (R) o o o « ¢ 2 o« » = o« o = e o o s s s e e e e e e o = e« o Ub

PUT —- Include a Record in an Output Data Set (R) « o ® s s e s e s e e o e = = W7
READ -- Read a Selected Logical Record (S) . « o o ¢ « o o o o « o« « « = =« » o o U8
WRITE ~- Write a Selected Record (S) . . o = e e o o s e o 2 e s e = s = = « U9
SETL ~- Specity Start of Seguential Processxng (R) e s e o & s s e @« o a o = = & 91
ESETL —-- Release Shared Data Set (R) “ e e e e e o e s o o s s s o » s s e = 92
DEI.REC——DeleteaRecord(R)..........................52
RELEX —-- Belease Read Exclusive Record (R) =+ « o o o o « « o o a a » a o« o« o o o« 93
virtual Partitioned Access Method . « . . & « . . e o o o e o s s e e« & s e o « & 55
FIND -- Find a Member of a Partitioned Data Set (S) -
STOW -- Manipulate Partitioned Organization Dlrectory (RY &« ¢ &« & o o o ¢ o o« o o 57
Basic Sequential Access Method . ¢ ¢ ¢ ¢ o o o @ ¢ o o o o o o o o o o o o o o « o 61
READ —=— BRead @ BlOCK (S) & o o o o o o o o o 2 s o o o o o o o a » o« =« o« o s o o« b2
WRITE -~ Write a Block (S) e e s e e & e s s e o . e o s e = =« . 54
CHECK —- Wait for and Test Completion of READ or WRITE Operatlon (R) e o o s e « 67
DQLECB —— kemove Unchecked DECBs From a Data Set'!s DECB Gueue (R) « « « o « « « o 69
GETBUF -- Get a Buffer From a POOL (R) &« o o o o o o o o 2 o » o o 2 o o a o o « 10
FREEBUF —- Return a Buffer to a POOl (R) & 4 o o v o o o o o o o o o o a o« « « o 1
GETPOOL —— Get a Buffer POOL (R) o o o o o o 2 o » o o o s o o s o o o s o o « « 12
FREEPOOL -- Free a Buffer Pool (R) e e o » e e s 8 ® & s e o s o = o e o s o o « 13

BSP —- Backspace a Block (B) .« . « . & © e s e s e s e a4 o 8 e e s = = = o « o 14
CNTRL —-- Control On-Line Input/Output Dev1ces (R) =« ¢ o e o a o o o « o « = o« « « 15
FEOV —- Force End of Vclume (R) « « « o o o o o o o o o = o o a o o o o« o o o « o 17
PCINT —-- Pocsition to a Block (R) e o 2 o o @ o u ® s s e e o a a » e e s = = o o 18
NOTE -- Provide Position Feedback (R) « . . . e o o o e s e s e = e o s s o o « 80
PETOV -—- Test for Printer Carriage Overflow (R) e o o e e e e e s = = s s e s o = 81
Queued Sequential Access Method . . ¢ ¢ ¢ ¢ o o o o o o o o o« = o« o = = =« = » « « « 83
GET —-- Get a Logical Record (R) . . . . e a s e o o = o s = o o o e« o o B4

PUT -- Include a Record in an Output Data Set (R) . e



PUTX -- Include a Logical Rkecord in an Output or Updated Data Set (R) . . . . . . 86
RELSE -- Release an Input Buffer (R) . ¢« ¢ & & ¢ o o o e o o o = o o« » « « =« » « 89
TRUNC -- Truncate an Output Buffer (R) e o o % o ® s & s @ s s s s e+ e = s = =« o 89
CNTRL -~ Control a Printer OF Stacker (R) « o« &« ¢ o o o o « o o o o s o« o o = « « 90
PETOV —- Test for Printer Carriage OVerflow (R) e o« o o e ¢ o o o s o o o o o o « N
SETL —- Specifies Start of Sequential Processing (R) .« < o o 4 o o o o o o« « o « 92
Input Output BRequest Facility . . . . . . - e e o s s e s e % = « = = = o = « « 95
IOREQ —-- Request an Input/Output Operatlon (S) e » o = o s e s e e = a2 s = o = « 95
CHECK ~- Wait for and Test Completion of an I/0 Request (R) « o« o« « o« » o« o « « « 98
VCCW -— Define a Virtual Channel Command Word (0) « + « o ¢ ¢ o « o = « = « » « » 98
Manipulating Entire Data SetsS o ¢ ¢ o o ¢ ¢ ¢ o ¢ o o o o o o 2 o s = 5 s o o » = o 2101
Copying Data Sets . . . e e % o 0 s » ® o a ® e % ® e s e e o a » e o s o a s « 101
CDS -- Copy Existing Data Set (S) o o + o o s 4 2 v e 2 e s & s o w e o =« » s o 2101
Bulk Output FACIlitiesS o o & o 4 o o o 2 o 2 o 2 o s o s s o o s s o o = « « s « o104
PR —— Print a Data Set (S) ¢ o o o « o o s o u« s o s s s s o o o =« » o s o s « <104

PU -- Punch a Data Set (S§) . . . . . . e o s s s 8 e e = s s o o « = « 2107

WT -- Write a Data Set on Tape for 0ff Llne Prlntlng (S) o o a o« o o o o o« = « <109
Catalog Data Set Attributes . . . . o+ . . & « e = . e o s s o e e s e s e = e« « +113
CAT —- Create or Change Catalog Entry (S) e ® = 8 5 e o s e o e e s o e e = « 2 113

DEL —— Delete Catalog ENtLY (S) w e ¢ « o o o « o s 2 s =2 s 2 s s o o« o« o« o« =« « o116
Disconnecting A Data Set From The System . « ¢ ¢ o o « o « & e s o s s = e o « o =118
CLCSE —-- Disconnect Data Set From User's Problem Progranm (S) e o s 2 o = = = » 2118

VAM ORlY « o o ¢ o o « o o o o o o o s s = 5 o = o« o s o a = o » s s = s o = « <120
BSAM and QSAM ONDlY o & o o o o 4 o = o s o s o v o o a o o » e o o = o = o« = o 120
Removing a Data Set From the SYSteR ., o & o = ¢ o o o ¢ o o o o s o o = o o o o » » #1123
ERASE -- Remove a Data Set from Direct-Access Storage (5) « - . « e« o o o <123

REL -~ Release Data Set or Remove Job Library From Program Library Llst {S) . . .124

SECTICR II: PROGRAM MANAGEMENT . . . . . . . .

Virtual Storage Management .« . o « & 4 o ¢ o o o o o 2 s s o s a e s+ s 2 s o s o o 126
GETMAIN —- Allocate Virtual StoLage (B) « o« « « o o « = = s o o o o s « » o o« o =126
FREEMAIN —- Release Allocated Virtual Storage (R) « o o 4« o = o o « » = « « » » =128
CSTORE —- Control Section StOLe (S) v « o « o o « = o o s 2 o o o« s « =« » o« » = «130
DCLASS* —- Specify Privilege Class (0) « o o o o = o o = o o s o o = o &« = « o131
BSPRYV* -— Restore Privilege (0) . « o o o o o o o = = = o o = a =« =« = o » = = « <132
CKCLS* ~— Check Protection Class (0) =« « o o o o s o = s o o s » o o o » a » « 2132
LSCHP* —-- list Changed Pages (R) .+ « &« o o o o o 5 o o o o o o s » » = o » « = 2132

Program Loading and Linking . . . . . e 8 o o s o s s e s s 8 o = e s s s e o s o <133
ALCON —- Generate an Adcon Group (0) « e s e = e . e e o s ® e s o = = « 134
ADCOND -- Provide Symbolic Names for an Explicit Adcon Group {0) e o = o e o o o137
ARE -- Initialize an Explicit AdCon GIOUDP (0) ¢ 2 o o o o « s« = o s » = = « « « 138
CALL -~ Call a Module (S) « =« 2 ¢ « o o e = s 2 » o s s s o » o = o s =« = o« » » 2139
LCAD -- Load and Retain a Module (R) e ® o 5 8 o o » o o e s o 8 s s s s e e = V42
DELETE -~ Delete a Loaded Module (R) * s e o s o o s e s s s o s e s+ s e = = - <143
SAVE -- Save Register Contents (0) e o o s s & s 8 u s s s e s s s e s e o e < oM44
RETURN ~-— BReturn to a Program (D) o o « o s o o o o o« s o » o o« o s = o « « =« « 148
DELET* -- Enter DELETE Service Routine (0) e« o o o o o s s = s e s s = = = = = 2148
DLINK* —- LCynamic Linkage Request (0} . ¢ ¢ o o o o o o o o o« o o » o o« o » « » 1848
ENTER* -—- Enter a Privileged Routine (0) .« ¢« ¢ ¢ o o c o o o o o s « o = = o « o148
INVOKE* —- Transfer Control (0) « o o o o o o o « o @« o o 2 o o s« =« « o « » o « 148
LIBESRCH* -- Locate Program Module in External Library (S) « « 2« « « o« « s » « o148
BESUME* —- EKestore Begisters (0) < o« o ¢ o o = o » « = s 5 » s o s s =« « « o » 148
STORE* -— Store Register Contents (D) o ¢ 4 o ¢ o o o o 2 o o = o a o o » » « « =148

Interrupt Handling FacilitiesS . . o o ¢ o o o e o o o o o o » s 2 o s o s = o« 2 = « 149
SIE -- Specify Interrupt Routine (S) “ o e« & o o 85 o e o s s e s v s e s o = « 150
SPEC -~ Specify Progras Entry Conditions (5) .« ¢ ¢ v ¢ o o o o« o o 2 2 o = o o« #1522
SEEC -~ Specify External Entry Conditions (S) . . e o s e ° s & e e s e e o = .155
SSEC -- Specify Supervisor Call Entry Conditions (S) . « ¢« o« o « o o o o o o « o157
SAEC —-- Specify Asynchronous Entry Conditions (S) « « « « o « o« o s o e « o o « «158
STEC -- Specify Timer Entry Conditions (S) ¢ o o« o o o o 2 s = o o o s s « = « =161
SIEC -- Specify Input/Cutput Entry Conditions (S) . ¢ o« « o« o o o« o s o s « » « «164
DIR ~- Delete Interrupt Routine (S) . o ¢ o o o o = o o = o o « o » o« o« o« = =« = <165
SAI —- Save and Inhibit (0) v o o o o o o o e o o = s s 2 s o o« o s o o o« o o « 166
RAE —~ Restore and Enable (0) . o o o o o o o o o 2 o o o 2 o o o o « » a o« o « 167
INIINQ —— Interrupt Inguiry (0) « « « « =« « o =« . e o a 8 = e e e = e o a = o167
USATT -- Give User Control of Attention Interrupts (O) e e e s 2 e o v s e e« « <2169
CLATT ~- Give System Control of Attention Interrupts (0) . &« o ¢ o o = = « « o« 2170
AEID -- Create an Attention Entry Table (0) o o o ¢ 2 o o o o « o« o s o o« o« « « <170



ATPOL* —— Foll For Pending Attention Interrupt (nounstandard)

ITI* -- Inhibit Task Interrupts (nonstandard) . . . . .
PTI* —— Permit Task Interrupts (nonstandard) . . . .
PCSVC* —- Enter Program Checkout Subsystem (nonstandard)
Transfer To Compmand Mode From Program Mode . . . . . « .« «
PAUSE —- Enter Command Mode (R) » o ¢ « o o o o o o o =
COMMAND —- Enter Command Mode (R) « o« ¢ o« o o o o o o «
EXIT —-- Normal Program End (R) « « ¢ o o o o o o o =
ABEND -- ALbnormal Task End (R) « o e = o o o
OBEY -- Execute a Command or Command Statement (0) . .
CLIC* —-- Read Command From SYSIN (Conversational) (0) .
CLIP* -—- Read Command From SYSIN (O) o o = e - e .
RTRN* -- Create Privileged Linkage Queue Entry (0)

Communication Between User Program and SYSIN/SYS500T
GATRD -- Get Record from SYSIN (S) « e e s e =
GATWR —— Write Record cn SYSOUT (S) « « e « o

GTIWAR -— Write Record on SYSOUT and Read Response from SYaIN (S)

. o o s

-

-

L T T T O I )

GIWSR -- Write Record on SYSOUT and Read Record from Terminal
SYSIN -~ Obtain a Message From SYSIN or the Source List

PRMPT -- Prompt System to Display a Particular Message (5)
MSGWR —- Issue Message and Get Response (S) « « « « « « o
MCAST ——- Modify Character and Switch Table (0) e e o o =
Communication With Operator and System LOG . <« o o o o o « =«
WIGC —-—- Write to Operator (5) . e - s o e o s 4 ° = =
WTOR ~—- Write to Operator with Heply (S) o o o = o o 2 =
WTL —— Write to LOg (S) o o o o o o o o o o o o s s s o =
Timing Maintepance . . « o o o e o 2 o % o o ® 8 o 8 o =
STIMER ~~- Set Interval Timer (O) e » ® o e« e« * 5 4 s e »
TTIMER -- Test Interval Timer (0O) . . . e & o & o 3 o ®
EBCDTIMR ~-~- Convert System Time into EBCDIC Format (S) -
RECTIM* —~— Read Time (0) .+ o ¢ ¢ o o o = o o = o o o = =
Command Creation « « « . - . . - e s o v s e s
BPKD -— Create a Bu11t1n Procedure Key (0) e s e s e e .
GDV -- Get Default Value (R) e o s o o o s s » = » s =
Systemr Oriented User Macro Instructions . . « « « . « o o o
AWAIT* -- Tests for Event Completion and Return Control {
TWAIT* -- Tests for Completion of Event(0) . . « . « «

VSEND* -- Inter~-Task Communication(0) . . . . .

VSENDR* —- Inter-Task Communication with Response(o)

XTRSYS* -- E xtract From System Table(0) . . .
XTRCT* —- Extract TSI Field(R) .« . « o « = o &
XTRXTS* —— Extract From TSI (O) e o o o o o o =

APPENDIX A: EXIT LIST (EXLST) o o e o o o « o s o
Chapracteristics of Exit Routines . . . . « « .« =«
Exit-List EXamBple .« « o o o o ¢ o o o o o o o o =

APPENDIX B: SYNCHRONOUS ERROR EXIT ROUTINE (SYNAD)
Entry To SYINAD During ESAM or QSAM Operations .
Entry to SYNAD During VISAM Operations . . . .

APPENDIX C: ENL OF DATA ADLRESS (EODAD) . « « + « =
APPENDIX D: CONTROL CHARACTERS « « ¢ o o o o o o o

Machine Code .+ o« o o o o o = o o « s s s o o o «
Extended USASI Code . . o« « o o o

.
.
.
.
.
.
.
.

APPENDIX E: LINKAGE CONVENTIONS
Proper Register Use . . . .
Reserving a Save Area . . .
Reserving a Parameter Area
Implicit Linkage . . . . .
Explicit Linkage . . . . .
Explicit Deletion ., . . . .

s o ° o & @

¢ ¢ ¢ s ¢ 3
LI Y I R I ]

s 5 ¢ & 9
e s & s 0 e s
¢« 8 o 2 o & g
[ I S R N K]

4 e o v o
e & ¢ o v e &

-

APPENDIX F: DATA CONTROL BLOCK FIELDS « o o &« o o =«
Socurces for Providing Tata Set Attributes . . .

-

¢« v & & 0 e

« & & 3 s 0

o« & ¢ 0 o o s

L N A T ] .

.

()

* ¢ 2 e ¢ B s s 0

e & 5 8 s & s 2

R Y T R N S )

o ¢ ¥ 5 s o

* o 8 s ¢ 2 0 .

SYSIN

e & & o & 4 0

@ 8 ¢ & 8 o 9 &

¢ o & a2 9

.

.
.
-
.
.
.
.
.
.
.
N

L T T B ]

s & 8 0

¢ 4 2 s s s

LR S Y S ]

« 8 8 0 ¢ o & @

+

L T ]

o e o & ¢ 3 ¢ @

e 8 ¢ 2 ¢ 3 8 & & s e @

LI T S '}

¢ & & ¢ o s &

¢ o 6 o o 4 &

.172
. 172
2172
<172
.173
-173
<174
. 175
. 176
2177
.178
-178
.178
. 179
.179
.182
.183
. 184
. 185
.188
.191
-193
- 197
. 197
.198
-199
.200
.200
.203
. 204
. 207

.208
.208
.211
.213
.213
.213
.213
.213
.213
.213
.213

.215
.216
.217

.218
.218
.22

.223

. 224
<224
<224

. 225
«226
. 226
. 227
.227
.228
.228

.229
.229



PrioTity Of SOULCES o o ¢ o o o « o « o o o s s » s 2 o o o = a o o s = » o s » 2230

APPENCIX G: DETAILED DESCRIPTION OF DDEF MACRO INSTRUCTION 4+ & o o o o + » « = o« « 2237

APPENDIX H: MACRO INSTRUCTION GENERATION OF LITERALS « « « o o o o « o o o s s » = 2247

APPENDIX I: INTERRUPTION HANDLING FACILITIES 4 2 « « o = o @« = s o s s « s« s a « « 2253
Estalblishing Interruption Routines . . . o & o o o o o 4 o s o o o 2 o « o« » o « 2253
Processing an INtECLTUPLiON « & v o ¢ o o o = o o o a o s o o » s a o o o o o & « 2255
ComBUNICAtion AT@A =« o o o o o o o o = 2 o = o o s s s s o o a s o o o s s =« o« « 2255
EREIY o o o o o o o o o o o o o a o« a o o 2 @« o o s o s s s o o o s o »a o = » « « =255

APPENDIX J: THE TSS/360 SYSTEM MACRO AND COPY LIBRARY . v 2 o « o = o = o o« o o « <256
System Macro and COPY Library Service Facilities . . « 4 o o ¢ o ¢ o » o =« » a « 4257

Generating the LibTAary . o« o o ¢ ¢ o o ¢ o o o o o s s « s o o a =« s s o = o = 257
Using Symbolic Libraries . ¢ o o« o o ¢ o o o o« o o o s a o o a s a2 = = s s » » 2257
Requesting Symbolic Library Services . . . o 4 o o o o « o = o« 2 o s a s o« a « «258

APPENDIX K: SHARING VIRTUAL STORAGE DATA SETS & & o o o s o o o s o o » o = » o« » 2260
Types Of INRterloCKkS +o o o o ¢ o o « o o = o o o o 5 s o s o s o o a s o = o o o 2260
Levels Of INterloCKkS o o o o o o o o o o« o 2 2 o 2 @ o« s s o s o s a = o « « « 2260
USer ConsS1derationNS ¢« o « o o « 2 o« 2 o = s & a a a s a o s o a s s » o s« o« « « 2261

APPENDIX L: OPEN/CLOSE GENERATED PARAMETER LIST . . o« . o o« o o o s o o o a o o o 2262

INDEX -4 K



FIGURES

Figure 1. Time Sharing System/360 SeIVICeS . . ¢ o ¢ o o o o o s o = o « o « » 21
Figure 2. Save Area layout and Word Contents e o s e s e e s e s oe s e s &227
Figure 3. TSS/360 Interruption Handling FacilitiesS . . ¢ ¢ ¢ o &« o o o o o « <254
Figqure 4. 1Information Available Upon Entry to an Interrupt Routinme . . . . . .256
Fiqure 5. System Macro and COPY Library Symbolic Component Format e e = = = 2257
Figure 6. Format of a Line in a Line Data Set « @ s e o = & = e s e = = »« = 258
TABLES

Takle 1. Value Mnemonics and Their Permissible Operand Forms . . . . . . . . . 11
Takle 2. Acceptable record formats for QSAM and the PUTX Macro Instruction . . B8
Takle 3., Final Magnetic-Tape Positions . « « « ¢ o « « o & e e o s s e = =
Table 4. Factors Determining Magnetic-Tape Positioning For BSAH and QsamMm . .
Table 5. Return Codes from All GATE Macro Instructions . . « . . « « « « . . .181
Table 6. Conditions Upon EXit -—- Routine Entries . . ¢ ¢ ¢ ¢ ¢ o o o o o « « 2216
Takle 7. LCata Event Control Block (DECB) e o a2 % o s s = s s = e e o s o = o 220
Takle 8. ©IDCB Operands, Their Specification, Access Methods, and Alternate

Sources (Part 1 of 2) o« o « o o o . e o o e e e o s = s s e = s s o o o = = = <2317
Table 9. Operands for DDEF Macro Instructlon e e e e e e e e e e e « e« - -238
Table 10. ILiterals Generated by Macro Instructions (Part 1 of b) e e o s « o o249
Tatle 11, Effect of OPEN Options on Data Set Interlocks . . . . e o e« o o o o262

TR



PART I: USER MACRO INSTRUCTIONS

SECTION I: INTRODUCTION

The TSS/360 user macro instructions provide two basic services; data
set management and program management. These two services and the
various management functions performed by each are summarized below.

DATA SET MANAGEMENT

e Define a Data Set to. the System - by introducing a data set to a
task and describing the characteristics or attributes of a data set,
such as its record organization, disposition (i.e., OLD or NEW,
etc.) , and data set name, for future system use. TSS will subse-
quently (after the data set has been connected to the system)
reference the indicated attributes to determine the appropriate
access method routines and other control information.

e Connect a Data Set to_the System - by making the attribute specifi-
cations, describing a data set, available to the system, thereby
logically connecting the data set to the system. Appropriate access
method routines are initialized, labels are processed (if speci-
fied), and the data set is positioned for user processing.

e Access a Data Set - by using the macro instructions associated with
the appropriate VAM or SAM access method or provide your own input/
output device management routines through use of the IOREQ macro
facilities. A user can store, retrieve, or modify data sets using
the macro instructions associated with the access method he uses.

e Manipulate an Entire Data Set - rather than individual records
within a data set. An entire data set can be manipulated and trans-
ferred from one area of virtual storage to another, to punched
cards, printer listings, or magnetic tape devices.

e Catalog Data Set Attributes - by recording certain predefined data
set attributes in catalog entries so that the data set can be subse-
quently located by using only its name, without redefining all of
its attributes to the system.

e Disconnecting a Data Set From the System - tells the system a user
has finished processing a data set and, permanently or temporarily,
disconnects the system from the control block (DCB) containing the
description of the data set's attributes and access method
specifications.

e Removing a Data Set From the System - causes a data set to be phys-
ically removed from the system and releases the storage areas, on
which it was recorded, to the system for future use.

Part I: User Macro Instructions 5



PROGRAM MANAGEMENT

e Virtual Storage Management - allows a user to acquire or release
virtual storage in units of pages or 8 byte multiples, or to trans-
form contiguous virtual storage bytes into an object module consist-
ing of a single control section.

e Loading and lLinking - macro instructions allow a user to explicitly
or implicitly load program modules and establish standard linkage
between calling and called program modules.

e Interrupt Handling Facilities - allow programmers to assume control
at specific types of interrupts and execute special user coded
interrupt servicing routines instead of the system provided inter-
rupt servicing routines.

e Transfer to Command Mode - from program mode allows a user to inter-
rupt a program's execution, either temporarily or permanently, and
pass control to command mode for subsequent processing.

e Control Communication With SYSIN and SYSOUT - permits a user to pass
data, messages, and commands, to and from a coded program to SYSOUT
and SYSIN devices.

e Communication With Operator and System Log - allows a user to pass
messages, issued during a program's execution, to the system opera-
tor, and to record those messages in the system operator's log.

e Timing Maintenance - provides a user with the ability to set timers
which can measure the time of a ftask's execution or the elapsed
calendar time.

e Command Creation - allows a user to create his own commands and,
once created, issue them at his terminal.

e System Oriented User Macro Instructions — are available to all
users, but are meant to be used only by system programmers; there-
fore, these macro instructions are only briefly mentioned here, but
their detailed descriptions appear in the System Programmer's Guide.




SECTION II: THE MACRO INSTRUCTION LANGUAGE

Macro instructions for TSS/360 are processed by the assembler using
IBM-supplied macro definitions.

Processing a macro instruction by the assembler is called the expan-
sion of the macro instruction. Expansion results in fields of data and
executable instructions, called the macro expansion. Fields of data,
called parameters, specify the exact nature of the service to be per-
formed and are contained in either registers (parameter registers) or
data areas (parameter lists). If the parameters are contained in regis-
ters, only registers 0 and 1 may be used. If the parameters are con-
tained in a parameter list, the address of that list is placed in
register 1 and referred to by the called service routine.

MACRO INSTRUCTION FORMAT

System macro instructions, like assembler instructions, are written
in this format:

r
| Name Operation|Operand

[P BN )

Name Field

The name field of the macro instruction may contain a symbol or
remain blank. Normally, this symbol is the name associated with the
first executable instruction of the macro expansion.

Operation Field

The operation field contains the mnemonic operation code of the macro
instruction. This code may be a string of not more than eight alphamer-
ic characters, the first of which is alphabetic.

Operand Field

The operand field may contain no operands, or one or more operands
separated by commas; the two types of operands are: positional and
keyword.

POSITIONAL OPERANDS: Positional operands must be written in a specific
order; for instance:

EXAMPLE A,B,C

Assembly-time processing of operands A, B, and C is determined by
whether they are the first, second and third operands, respectively. If

Part I: User Macro Instructions 7



the second operand (B) is omitted, the user must supply the second comma
to maintain the proper position for the third operand (C). Blanks may
not be embedded in the positional operand field:

EXAMPLE A,,C

If the last positional operands are omitted, delimiting commas need
not be written. For example, if operands B and C are omitted, the macro
instruction may be written:

EXAMPLE A

KEYWORD OPERANDS: The keyword associated with a specific keyword
operand uniquely identifies that operand to the assembler. Therefore,
these operands may be written in any sequence. A keyword operand is
written as a keyword, shown in each macro instruction description, imme-
diately followed by an equal sign and its value:

EXAMPLE AREA=X, LENGTH=100

MIXED OPERANDS: An operand field may contain both positional and key-
word operands; however, all positional operands must precede all keyword
operands. For example:

EXAMPLE A,B,C,AREA=X,LENGTH=100

THE RULES FOR OMITTING POSITIONAL AND KEYWORD OPERANDS APPLY TO MIXED
OPERAND FIELDS; IF OPERANDS B, C, AND AREA ARE OMITTED:

EXAMPLE A,LENGTH=100

OPERAND SUBLISTS: A sublist is one or more positional operands, each
separated by commas and the total list enclosed in parentheses. The
entire sublist is considered as one cperand in that it occupies a single
position in the operand field or is associated with a single keyword.
The contents of the sublist are processed similarly to positional
operands.

The following operands are sublists:

(a,B,C)
@A)

Note that the sublist (A) above consists of only one operand. When a
macro instruction description shows that an operand is written as a sub-
list, the enclosing parentheses must be written even if only one element
appears in the sublist.

Macro Description Notational Symbols: Notational symbols in the operand
field of macro instruction descriptions assist the user in showing how,
when, and where an operand should be written. The notational symbols
are: vertical stroke, shown as |; braces { }; brackets ([ ]; ellipsis,
shown as ..., and underscore -

1. Vertical stroke means "exclusive or." For example, A|B means that
either the character A or the character B, but not both, may be
written. Alternatives are also indicated by operands being aligned
vertically, as shown in the next paragraph.



2. Braces denote grouping. They are used most often to group alterna-
tive operands or alternative operand forms. For instance, the fol-
lowing two operand descriptions are equivalent:

{INPUT | OUTPUT}
INPUT
OUTPUT

3. Brackets denote options. Information enclosed in brackets may
either be omitted or written in the macro instruction, depending on
the service to be perfornmed.

In the following case, the operand of the EXAMPLE macro instruction
is optional and need not be supplied. However, if the operand is
supplied, it must be one of the alternatives grouped in braces.

A L
Name Operation|Operand

[ e S e

R

[symbol] |EXAMPLE [mode- {INPUT | OUTPUT}]

4. An underscore means that if an operand is not specified, the unde-
rscored option is assumed. The underscored word, INPUT, in the
above example indicates that INPUT is assumed if the operand is
omitted.

5. The ellipis denotes the optional occurrence of the preceding syn-
tactical unit one or more times in succession. If the syntactical
unit consists of one term, it is followed by a comma and an ellip-
sis. For example,

dcb-adr,...

indicates that the term dcb-addr can be repeated with commas
separating each term. No comma is placed after the last term.

If the syntactical unit consists of more than one term, it is enc-
losed in braces -- {3} -- to indicate the unit that may be repeated.
The comma and ellipsis are placed outside the braces. For example,

{dcb-addr,opt—-code} , c..

indicates that the unit dcb-addr,opt-code can be repeated with com-
mas separating each unit. No comma is placed after the last unit.

6. Upper—case (capital) letters indicate the portions of the operand
that must be written exactly as shown. For example, the operation
field and coded values in the operand field must always be trans-
cribed in upper-case letters.

7. Commas and parentheses must be written as shown in an operand
field. They are delimiters, not notational symbols.

Macxro Description Value Mnemonics

Value mnemonics help the user remember the forms a particular operand
may assume. Eleven value mnemonics are used in this publication.

Part I: User Macro Instructions 9



relexp
addr
addrx
addx
integer
absexp
value
text
code
symbol
characters
name
specsym
alphnum

In macro instruction descriptions in this publication, each position-

al operand is specified by a meaningful name

mnemonic, as illustrated:

hyphenated with a value

Name

T T
| Operation|Operand
1 !

(= s g s g

T T
[symbol} | EXAMPLE |name-value mnemonic
L L

Each keyword operand is specified by the keyword, an equal sign, and
a value mnemonic, as illustrated:

e s s e

Name

T L]
| Operation|Operand
4 4

e b

1 1
[symbol] | EXAMPLE |KEYWI=value mnemonic
'] L

L e

One or more operand forms may be substituted for each value mnemonic.

For example, the value mmemonic, relexp, denotes that a relocatable

expression may be written as the operand form; the value mnemonic, addx,
specifies that an explicit address or an implied address may be written.

The 10 operand forms are:

Table 1 lists the value mnemonics and their permissible operand
In the subsequent text each operand form is fully described.

forms.

10

relocatable expression
register notation
explicit address
implied address
symbol

decimal integer
absolute expression
code

text

characters

data set name

special symbol
alphameric characters



Table 1. Value Mnemonics and Their Permissible Operand Forms

Note: An X indicates that the operand form may be written,

Relocatable Expression: The value of a relocatable expression would
change by n if the program in which it appears is relocated n bytes from
its originally assigned storage area. All relocatable expressions must
have a positive value. A relocatable expression may be a relocatable
term. A relocatable expression may contain relocatable terms -- alone
or in combination with absolute terms —-- under the following conditions:

1. There must be an odd number of relocatable terms.

2. All relocatable terms but one must be paired. Pairing is described
later in "Absolute Expression."

3. The unpaired term must not be directly preceded by a minus sign.

4, A relocatable term must not enter into a multiply or divide
operation.

A relocatable expression reduces to a single relocatable value. This
value is the value of the odd relocatable term adjusted by the values
represented by the absolute terms and/or paired relocatable terms asso-
ciated with it. The relocatability attribute is that of the odd relo-
catable term. .

Complex relocatable expressions are also permitted. Refer to
Assembler Lanquage.

In the following examples of relocatable expressions, SAM, JOE, and
FRANK are in the same control section and are relocatable; PT is
absolute.

Part I: User Macro Instructions 11

Value Mnemonics
Operand )
Forms relexp | absexp addr addrx addx integer | value text code symbol |characters| name | alphnum | specsym
Relocatable
Expression X X
Register X X X —
Notation
Explicit [N -
Address X X
Implied Address - [ N
(Indexed) X X
Symbol X
Decimal T -
Integer X
Absolute
Expression X X
Code X
Text X
Characters X
Data Set - B -
Name X
Alphameric - — —
Characters X
Special B SRR S
Symbol X




SAM
SAM-JOE+FRANK
JOE-PT*5
SAM+3

Note that SAM-JOE is not relocatable, because the difference between
two relocatable addresses is constant.

Register Notation: Register notation is written as an absolute expres-
sion enclosed in parentheses. The absolute expression, when evaluated,
must be some value 2 through 12, indicating the corresponding general
purpose register.

In these examples of register notation, SAM and JOE are relocatable
and PAL is absolute.

(5) indicates register 5
(SAM-JOE)

(PAL)

(PAL+3)

Explicit Address: The explicit address is written in the same form as
an assembler language operand:

a (b,c)

!

base register
index register
displacement
Examples of explicit addresses are:

2(0,5)
0(2,4)

Implied Address (indexed): An implied address is written as a symbol,
optionally indexed by a specified index register.

Examples of implied addresses are:

GUPOFF
ALPMAY (4)

Note that ALPMAY is indexed by register 4.

Symbol: A symbol may be a symbolic address (i.e., a single relocatable
term) , such as the name of an instruction in an assembler-language pro-
gram, or it may merely be a character string used for identification,

not location (such as the ddname parameter of a DCB macro instruction) .

In TSS/360, the alphabetic characters are the letters A-Z, and $, 3,
and #. The alphameric characters are the alphabetic characters plus the
digits 0-9.

The symbol is written as a string of up to eight alphameric characters,
the first of which is alphabetic. Embedded commas and blanks are not
permitted. Symbols beginning with the characters CHD may not be used,
since symbols beginning with those characters are reserved for system
use. Examples of symbols are:

DDNAME 1
ROGER

12



LOOP12
START
#1

Decimal Integer: The operand may be written as a whole decimal number;
e.g., 5, 31, 127, etc.

Absolute Expression: An absolute expression may be an absolute term or
any arithmetic combination of absolute terms. An absolute term may be
an absolute symbol or any self-defining term. All arithmetic operations
are permitted between absolute terms.

An absolute expression may contain relocatable terms alone or in com-
bination with absolute terms, under these conditions:

1. There must be an even number of relocatable terms in the
expression.

2. The relocatable terms must be paired. Each pair of terms must have
the same relocatability attribute; i.e., they appear in the same
control section of an assembly. Each pair must consist of terms
with opposite signs. The paired terms do not have to be contigu—
ous, €.9., RT+AT-RT, where RT is relocatable and AT is absolute.

3. A relocatable term must not enter into a multiply or divide
operation.

Pairing of relocatable terms (with opposite signs and the same relo-
catability attribute) cancels the effect of relocation. The value
represented by the paired terms remains constant, regardless of program
relocation.

Example: In the absolute expression A-Y+X, the term A is absolute,
and the terms X and Y are relocatable with the same relocatability
attribute. If A equals 50, Y equals 25, and X equals 10, the value of
the expression becomes 35. If X and Y are relocated by a factor of 100,
their values become 125 and 110. However, the expression still evalutes
as 35 (50-125+110=35).

An absolute expression reduces to a single absolute value.

In these examples of absolute expressions, JOE and SAM are relocat-
able and defined in the same control section; BERNY and DAVE are
absolute:

331

DAVE
BERNY+DAVE-83
JOE~-SAM
DAVE+4+BERNY

Code: A code is written exactly as indicated in the macro instruction
description. For example:

[ T T 1
| Name | Operation|Opexrand |
F 1 1 1
| [symbol] | FTBAL | scores—code |
L i [ 3
scores

specifies the desired action

Part I: User Macro Instructions 13



TD - Touchdown
FG - Field goal
HT - Half-time is called

The macro instruction might be written in a program:

SAM FTBAL TD
FTBAL FG
DUME FTBAL HT

Text: A text operand is written as a string of characters enclosed in
apostrophes. Embedded blanks and special characters are permitted. Two
apostrophes or two ampersands must be used to represent one apostrophe
or one ampersand in the character string. The text operand may not
exceed 255 characters including the enclosing apostrophes. For example:

'AREA, PCB, 132, , 1256

*DO && DON''T®

Characters: The character operand is written as a character string.
Embedded commas or blanks are not permitted. Two apostrophes or two
ampersands must be used to represent one apostrophe or one ampersand in
the character string. The character string may not be enclosed in apos-
trophes. For example:

CUBTDAVE+HEINZ +JOHN*830PMOT

DO&EDON"''T
Data Set Name: The name of a data set or a group of data sets. The
rules for writing data set names are presented below; the types of names

that can be written for each macro instruction are described under each
macro instruction's description.

Fully qualified name uniquely identifies one data set.

1. Stand-alone data set name identifies a data set that is not a
member of a partitioned data set nor a generation of a generation
data group. The name of a stand-alone data set is written as a
series of symbols separated by periods. For example:

DATASET.TRIAL.TEST1
TERI.ROGER.LAURIE
A.B.C.

The rightmost symbol is the data set's simple name (TEST1,
LAURIE, and C above) ; the other symbols are qualifiers. 1In TSS/
360, for cataloging purposes, the maximum number of characters in
a data set including periods, is 35. The maximum number of qua-
lifiers for a one-character name is 17.

Note: Data set names created under the IBM System/360 Operating
System can contain a maximum of 44 characters; if data sets with
names greater than 35 characters are to be cataloged in TSS/360,
the user should employ the renaming facility of the CAT macro

instruction or CATALOG command to define a suitable TSS/360 name.

2. Partitioned Data Set and Member Name identifies a data set that
combines individual data sets, called members, into a single data
set. The partitioned organization allows the user to refer to
either the entire data set or to an individual member of the par-
titioned data set.

14



The rules for writing the name of a partitioned data set are
the same as for writing those of a stand-alone data set.

The rules for writing a member name vary with each macro
instruction that can manipulate members. Sometimes (as in LOAD
and DELETE) only the simple member name (a symbol) is written.
The full name is not required because the user has indirectly
defined the partitioned data set (library) in which the module
resides by assuring that the library is on the program library
list prior to issuing those commands.

The user could write
LOAD SORTR

if he has previously arranged that SORTR was in a library cur-
rently on the program library list.

In other macro instructions (e.g., CDS), the user must give the
fully qualified member name. This consists of the name of the
partitioned data set suffixed by the simple member name in
parenthesis. For example:

HQW (ONETRY)
G.H.AB (H)

Here HQW and G.H.AB are partitioned data sets with members ONE-
TRY and H, respectively.

The name of the partitioned data set is written with the same
rules as for a stand-alone data set. The parentheses and memb-
er name are merely considered as an appendage to that name.

Generation Names identify data sets which are part of a genera-

tion data group. These data sets can be referred to on an abso-
lute or relative basis:

Ae

Absolute Generation Names are written as the name of the
generation data group followed by a period and the characters
GxxxxVyy, where xxxx is a four-digit decimal generation numb-
er, and yy is a two-digit decimal version number. For
example:

HURST.LINER.TT.G0001VO00
HI.LAW . WW.G0003VO01
HARQ.GO147v03

The characters GxxxxVyy are considered a fixed-part of the
overall name. The name of the generation data group is a par-—
tially qualified name applicable to all generations in the
group.

If the generation is a partitioned data set, a member (e.g.,
JOE) within that data set is referred to as follows:

A.B.C.GxxxxVyy (JOE)
Relative Generation Names are written as the name of the

generation data group followed by the appropriate relative
generation number enclosed in parentheses, as

G.D.G (0)

The relative generation number of the most recent generation
is (0) ; the generation just prior to that is (-1); the ome

Part I: User Macyxo Instructions 15



before that is (-2), etc.; and a new generation to be added is
(+1) . For example:

GOST.UU.L19P (+1)
GOST.UU.L19P (-3)
MRQ.T.L5.SWIM (0)

If the generation is a partitioned data set, a member within
that data set is referred to as follows:

SEAT (-3) (JOE)
where JOE is the member in question.

Partially qualified names refer to all data sets having the partially
qualified name as their common higher-order qualifier.

1. Generation Data Group Name is the name that is common to each
generation in the group. Generation data group names are
restricted to a maximum of 26 characters including periods.

2. Other Partially Qualified Name can also be used to refer to two
or more data sets. For example, the partially qualified name
GO.AB14 can be used to refer to both of the following data sets:
GO.AB14.2A and GO.AB14.B. If these were the only two of a user's
data sets with the same higher-order qualifier, GO.AB14, and he
wished to erase them both, he could do so merely by specifying
GO.AB14 in the ERASE macro instruction.

Special Symbol: A special symbol operand may consist of any string of
from one to six alphameric or special characters (except for the tab,
blank, comma, backspace, equal sign, and right and left parentheses).
For example:

FORMNO
E§H*/K

Alphameric Characters: An alphameric-character operand is written as a
string of alphameric characters, the first of which need not be alpha-
betic. For example:

A00764
10EO0DY

The limit on the number of characters is given in the description of
each macro instruction in which it is used.

OPLIST OPERANDS: In a number of macro instruction descriptions in this
publication, the operand field is specified as:

Operand

oplist-|text

r
I
1
)
|
| addr
L

b e e ks s

This format implies that a list of keyword and/or positional operands
may be written as fields of a character string. Also, the character
string itself (enclosed in apostrophes) or the address of the string may
be written as the oplist operand, depending on whether the text or addr
form of the operand is chosen.

If oplist is presented as a character string (i.e., text operand
form) the macro expansion places it in the assembled program followed

16



byan end-of-message code, and loads a pointer to the string in register
1. If oplist is given as an address (i.e., addr operand form) the
expansion places that address in register 1. In this case, the user
must define the operands elsewhere in the program and provide an end-of-
message code.

To refer to and manipulate oplist macro instruction operands in cod-
ing, the address option of the operand is used, permitting the operand
character string to be set up as a series of adjacent fields, each with
its own label.

The string must end with a hexadecimal 27, which serves as an end-of-
message code. Any unused space in each of the adjacent fields in the
string must be filled with blanks to the maximum size of that field.
Unlike other operand forms, all commas in an oplist operand must be
written even if parameters are defaulted. A typical operand string
might be coded:

OPLIST DC C'first operand’
OPLIST1 DC C',second operand'
OPLISTN DC C',n operand'

DC X277

TYPES OF MACRO INSTRUCTIONS

Most system macro instructions are of two basic types: R-type
(register) or S-type (storage). In this publication, the letter (R) or
(S) follows the name of each macro instruction description to indicate
its type. Macro Instructions that are neither R- nor S-type, referred
to as "other" macro instructions, are denoted by (0) in their
descriptions.

Some macro instructions generate literals in their expansions. Con-
sequently, the rules for literal pool coverage must be followed. Refer
to Appendix H, and to "Terms and Expressions" in Section 2 of Assembler

Langquage.

R-Type Macro Instructions

An R-type (register) macro instruction is used when all required
parameters can be contained in the two parameter registers, 0 and 1. An
R-type macro instruction does not generate a parameter list; the parame-
ters are placed in the parameter registers by instructions in the macro
expansion. Execution time may be saved if the user places the data in
the parameter registers as the result of previous operations before
executing an R-type macro instruction.

Address operands in R-type macro instructions are always classified
as addrx or addx. This arrangement allows the user to employ indexing,
although the addresses passed in R-type macro instructions must be prop-
erly covered; i.e., the base register used for the passed address must
contain the proper value to ensure that the address refers to the
desired location in virtual storage.

For example, assume there is an R-type macro instruction, RTYPE,

which will contain an address "area" in register 1 and the "length" of
that area in register 0. 1Its external macro description would be:

Part I: User Macro Instructions 17



T T
Name |Operation|Operand
[l [

[symbol]{RTYPE {area— addrx|,length-| value
| ! (n (0)

= v o S .
e v e e e )

Special Register Notation: The user's problem program might be written
so that one or both of the parameters already exist in the proper para-
meter register when the macro instruction is issued. 1In this case, (1)
or (0) is written as the operand. The notation (1) and (0) is referred
to as special register notation. Registers 1 and 0 cannot be used in a
macro instruction unless special register notation is shown in the macro
instruction description.

S-Type Macro Instructions

An S-type (storage) macro instruction is used when the number of
parameters to be passed to the called routine cannot be contained in the
two parameter registers. The parameters are placed in a parameter list
whose address is passed to the called routine in register 1.

There are three forms of the S-type macro instruction:

1. The Standard form
2. The L-form (Parameter 1list only)
3. The E-form (Executable code only)

Note: All S-type macro instructions may be written in L- and E-forms
unless otherwise stated in the individual descriptions.

THE S—-TYPE STANDARD FORM: The S—-type standard form macro instruction
generates both the parameter list required by the called routine and the
linkage to that routine. If the S-type macro instruction is coded in a
module that has a PSECT, the parameter list is generated in the PSECT.
In this case, the PSECT must be properly covered by a base register. If
the module has no PSECT, the parameter list is generated in-line and
coding is generated to branch around it. If an S-type macro instruction
is coded in a PSECT, the parameter list is generated in—-line and coding
is generated to branch around it.

Address operands in S—-type standard form macro instructions are
always classified as addr. Hence, they may not be indexed, and the
user's problem program is not responsible for providing cover registers.

As an example, assume an S-type macro instruction, STYPE, that
expects the addresses of two storage areas, "input" and "output," and
the "length" of those areas. Its external macro description might be:

r T T
| Name |Operation|Operand
L 1 4

e e .

T T
| [symbol] | STYPE | input-addr,output-addr,length-value
L 1 i

THE S-TYPE L-FORM: The IL-form macro instruction creates a parameter
list. E-form macro instructions then link to the service routine and
point to the parameter list that is generated by the L-form macro
instruction.

The assembler recognizes an L-form macro instruction by the keyword
operand MF=L in its operand field.

18



Because the L-form macro instruction generates only a parameter list,
operand types that require executable code, such as register notation,
are prohibited.

There is an implied difference in the kinds of operands required in
the external macro description when using the various forms of the S-
type macro instruction. Where the standard form indicates addr and
value operands (i.e., register notation is allowed), it is implicitly
understood that L-form macro instructions allow only relexp and absexp
operands (i.e., register notation is not allowed) .

The external description of the L-form STYPE macro instruction becom-
es, by implication,

1 Ll T 1
| Name | Operation|Operand |
L I (|

] T 1 1
| symbol |STYPE | [[input-relexp] , [output-relexp} , {length-absexp] ,] |
| | | |
[ | | MF=L [
] L 1 1

Note that the name field is required in the L-form because it usually
becomes the label of the generated parameter list and is referred to by
the E-form.

All operands of an L-form macro instruction are usually optional. It
is assumed that operands that are omitted in the L-form will be supplied
in the E-form macro instruction.

The L-form macro instruction generates the parameter list at the
place the macro instruction is encountered. Because the L-form expan-
sions contain no executable instructions, they should be placed in the
program so that they do not receive control; e.g., among the DSs or DCs.
An L-form macro instruction should never be written in a read-only con-
trol section.

THE S-TYPE E-FORM: A parameter list created by an L-form macro instruc-
tion, or by any other means, may be referred to by an E-form macro
instruction. The user can update a parameter list by supplying operands
in the E-form macro instruction.

The assembler recognizes an E-form macro instruction by the presence
of the keyword operand in its operand field:

MF=(E, list-jaddrxl)
4

List should specify the location of the parameter 1list to be used by the
E-form macro instruction. If (1) is written, register 1 should be
loaded with the address of the L-form parameter list before execution
ofthe macro instruction. The symbol in the name field of an L-form
macro instruction becomes the name of the parameter list.

Once again, there is an implied difference in kinds of operands
required. When standard form requires addr and value operands, the E-
form requires addrx and value operands. The E-form thus allows the user
to index addresses; however, proper cover registers must be provided.

The external description of the E-form STYPE macro instruction becom-
es, by implication,

Part I: Usexr Macro Instructions 19



T R}
Name | Operation|Operand
L [

T
[symbol} | STYPE [ {input-addrx] , [output-addrx] , [length-value] ,]

(M

[m e o e e e s oy
Ly Wp—— |

F——— — ]

l MF= (E, list- {addrx})
:

All operands are individually optional. The position of positional
operands supplied in the E-form macro instruction causes the generation
of executable instructions that replace the corresponding parameters in
the parameter list of the L-form macro instruction with their new
values.

Other Macro Instructions

The system macro instructions that cannot be classified as either
R-type or S-type are referred to as "other", denoted by (0) in the macro
instruction descriptiomns.

For example, the SAVE macro instruction does not produce parameters
that pass to a called program. Its expansion results in instructions in
the user's program that completely perform the requested service. Simi-
larly, the DCB macro instruction only defines a data area. It is, in
effect, an implied S-type L-form macro instruction.

20



PART II:

FUNCTIONAL MACRO INSTRUCTION DESCRIPTIONS

The major functional groups into which macro instructions fall are
data set management and program management. A summary of these func-
tional groupings is indicated in'Figure 1

TIME SHARING SYSTEM/360
ASSEMBLER USER MACRO INSTRUCTIONS

|Removing Data

Set(s) From System

FRASE
REL

T a
1 DATA SET MANAGEMENT |
b 4
|Defining Data Set(s) |
L ']
L 1
| DDEF CDD FINDDS* |
| DCE DCBD FINDJFCB* |
- 1
JConnecting Data Set(s) to Systenm |
k 1
i OPEN |
k 1
|Accessing Data Set (s) 1
! I
ln Ll
| YSAM VIsAd VPAM [
| GET GET FIND |
{ PUT PUT STOW 1
| PUIX READ |
| SETL WRITE IOREQ |
| SETL IOREQ |
| ESAM ESETL CHECK |
| REAL DELREC VCCW |
| ®RITE RELEX |
| CHECK |
| GETEOOL QSAN !
f GETEUF GET |
| FREEBUF PUT |
| FREEPOOL PUTX, |
| BSE RELSE
| CNIEL TRUNC |
| FECV CNTRL |
| POINT PRTOV |
| NOTE SETL |
{ PRTICV |
| |
I |
| |
— 1
{Manipulating Entire Data Set(s) |
1 4
¥ T 1
| Copying Data Set(s) | Bulk Output |
- t 1
| | PR l
| | PU !
| CDS | WT |
- + 4
|Catalcging Data Set Attributes |
F 1
| CAT |
i DEL |
- 1
|Disconnecting Cata Set(s) From Systenm |
L I
L} Ll
| CLOSE |
- 4
|
1
|
I
]

1
[
|
|
L

*Althcugh these instructicns are available to all users, they are e

r =
| PROGRAM CGNTROL MANAGEMENT |
} -4
|Virtual Storage Management |
L 4
L] 1
1 GETMAIN DCLASS* CHKCLS* |
| FREENMAIN PSPRV* LSCHP* |
| CSICRE i
F -
{Program Linking and Loading |
H --
| ATLCCND DELETE ENTER* |
| ADCON SAVE RESUME* |
| ARM KETURN LIBESRCH* |
| CALIL DELET* STORE* |
| LOAL DLINK* |
't 4
r 1
|Interrupt Handling |
b ==
| SIE SIEC USATT |
| SPEC DIR AETD |
| SSEC SAT ATPOL* |
| SEEC RAE ITI* |
| SAXC INTINQ PTI* |
| STEC CLATT PCSVC* |
L 1
L3 1
|Transfer to Ccrmand Mode |
= |
| PAUSE ABEND CLIC* |
| COMMAND OBEY CLIP* |
| EXII RTRN* |
F =y
|Communication With SYSIN/SYSOUT |
F— 1
] GATED GTWSR MSGHR |
| GATWR SYSIN MCAST |
| GIWAR PRMPT {
F -
|Communication With Operatcr and Log |
- 1
1 WTO |
1 WTOR |
] WTL |
+ 1
|Timing Maintenance |
s 4
r 1
] STIMEF ERCLTIME {
| TTIMEE REDTIM* |
— -
[Command Creaticn |
H -
] BPKD !
| GDV 1
k 4
|Systen Oriented Macro Instructions ]
- -
| AWAIT* VSENDR* XTRXTS* |
| THWAIT* XTRSYS* XTHCT* i
| VSEND* {
L -4

mployed primarily by

system programmers; therefore, refer to System Programner's Guide, Form C28-200€&, for
a detailed description of these macro instructions.

Figure

1. Time Sharing System/360 Services

Part II:

Functional Macro Instruction Grouping

21



SECTION I: DATA SET MANAGEMENT

This section describes TSS/360 macro instructions available to the
user to facilitate data set management. To enhance user understanding
of these macro instructions, they are presented in functional groups
that reflect their primary use in the system.

DEFINING A DATA SET TO THE SYSTEM

Certain characteristics of a data set must be described to TSS/360
Data Set Management and Task Management routines before a user may emp-
loy those management facilities to process and manipulate his data sets.
These data set attributes can be furnished to the system from two to six
different sources depending on whether the data set is a new data set or
a data set that has been previously defined to the system. The various
sources and their priorities are described in detail in Appendix F. The
two major sources (i.e., and the only mandatory sources) provided for
users to facilitate describing these data sets to the system, are the
DDEF and DCB macro instructions respectively. These macro instructions
and the CDD and DCBD instructions, which can be used with them, are
briefly described below.

DDEF describes certain attributes of a data set to the system and
defines or introduces that data set to a single task. Every data
set referenced within the framework of any one task (i.e., from
LOGON to LOGOFF) must be defined to that task via system or user
issuance of the DDEF macro instruction (or command) . In addition
to providing unique attribute information, such as DSNAME, which
cannot be supplied by any of the other sources for attributes,
the DDEF macro instruction or command can also be used to furnish
any attributes which are not furnished by the DCB macro
instruction.

DCB reserves a space in virtual storage in which the attributes of
the data set to be processed are to be placed and optionally
describes the attributes of the data set (in conjunction with the
DDEF macro instruction or command) to the TSS/360 management
facilities.

CDD retrieves one or more DDEF commands from a line data set (created
by issuance of a DATA or MODIFY command) that consists of pre-
stored DDEF commands only. The CDD macro instruction (or com—
mand) processes these commands as if they were just issued at the
terminal and thereby defines their related data sets to the sys-
tem in the same manner as the DDEF macro instruction.

DCBD used to facilitate easier processing or modification of the data
control block created by a DCB macro instruction. The macro
instruction generates a dummy control section that provides the
user with the symbolic names used by the system for referencing
the fields in a data control block. A user can then use these
labels to address the fields of any data control block he con-
nects to the Dummy control section via a USING instruction.

Detailed explanations of each of the above macro instructions and the
formats in which they may be specified are shown below. Further infor-
mation pertaining to defining a data set and the related macro instruc-
tions can be found in IBM System/360 Time Sharing System: Assembler
Programmer's Guide, Form C28-2032.

22



DDEF -- Define a Data Set (S)

The DDEF macro instruction defines a data set and describes its
characteristics to the system. Every data set that is referred to by an
object program during execution must be defined by a DDEF macro instruc-
tion or command. All public VAM data sets are automatically cataloged
at DDEF time. The system creates the catalog entry and provides the
user with unlimited access. Each DDEF macro instruction is valid omnly
during the session in which it is issued; thus data sets defined for one
session must be redefined at every session that involves reference to
them.

Note: The following description applies to the DDEF macro instruction
used to define a standard data set on a public volume. (The standard
data set is one that is VAM organized, on direct-access public storage,
arranged in units of pages, and has standard labels.) To define non-
standard public data sets or any private data set, refer to the detailed
description of the DDEF macro instruction given in Appendix G.

r L) L] 1
| Name | Operation|Operand |
L 1 ] J
v L L ]
| {symbol] | DDEF |oplist—~|text {
| | | addr [
L 1 A 4
oplist
specifies the list of operands. They are:
r A R
| Oplist |
t 1
-

| |[ddname-symbol ; |
| rdsorg-} VI\| ,DSNAME=name [,DISP={OLD | NEW}] |
I \E |
| | PCSOUT |
L - J
ddname

specifies the symbolic data definition name associated with this
data set definition. It provides the link between the data control
block in the program and the data set definition. It must contain
one to eight alphameric characters, the first of which must be
alphabetic. The user is not allowed to use a ddname that begins
with SYS, since system reserved ddnames are prefixed with those
characters.

PCSOUT
specifies that the program checkout subsystem is being used and a
data set is being defined for dumps. A PCSOUT type of DDEF command
or macro instruction is required in a task if the DUMP command is
to be employed.

dsorg
specifies the organization of the data set.

VI
specifies the data set organization as virtual index sequential.

vsS
specifies the data set organization as virtual sequential.

Note: If neither VI nor VS is specified, the data set organization
assigned at system generation time is assumed.

Part II: Functional Macro Instruction Grouping 23



DSNAME
specifies the name of the data set being defined; i.e., the name
under which the data set may be cataloged or temporarily referred
to.

This operand can be specified as the fully qualified name of: a
partitioned or nonpartitioned data set, a member of partitioned
data set, or a partitioned or nonpartitioned generation of a
generation data group (identified by an absolute generation name or
relative generation number) .

DISP
specifies the status of the data set. If DISP is defaulted in a
DDEF for an existing cataloged public data set, the system will
assume a value of OLD. If DISP is defaulted for any data set which
does not yet exist, the system will assume a default value of NEW.
It should be noted that for existing uncataloged private data sets
the DISP value must be explicitly specified as OLD. If the user
tries to default such a data set, a DISP value of NEW is assumed
and a system error results. The various defaults and options are
summarized below:

NEW - for a new data set.
OLD - for an o0ld data set.
Defaults - OLD - for old cataloged data sets.
NEW - for a new data set or for am o0ld uncataloged
private data set.

CAUTION: If this macro instruction is included in a module that is
declared privileged (through use of the DCLASS macro instruction), the
address of a save area must be placed in register 13 before execution of
this macro instruction.

PROGRAMMING NOTES: All three of the DDEF operands shown above -- except
VI -- are required for a cataloged data set. Only the ddname and data
set organization are needed for an uncataloged data set. 1In either
case, the data set conforms to the current installation standards.

Before the user can employ the DUMP command in his task, he must
issue a PCSOUT type of DDEF macro instruction or command. Such a DDEF
macro instruction or command requires PCSOUT as the first operand, fol-
lowed by the dsname operand. Since the dump data set will be new, the
DISP operand is defaulted.

The DDEF macro instruction or command causes a system entry to be
established for the DDEF information so that allocation routines and
access methods can refer to it. The link between this information and
the problem program's reference to the data set (i.e., the data control
block) is the data definition name, ddname. The entry containing the
DDEF information is maintained until the task is concluded or until,
through the RELEASE macro instruction or command, the data set is
released.

The DDEF macro instruction or command may be used in conversational
and nonconversational tasks.

If the user's problem program is being executed in conversational
mode and an undefined ddname is referenced, prompting messages for DDEF
operands are issued to the user regardless of confirmation option.

The user may change the ddname assigned in a previous DDEF macro
instruction or command by using a DDEF macro instruction with a new
ddname. The only operands used in this case are ddname, dsname, and
disposition (OLD). The new ddname is then assigned and the o0ld ddname
eliminated.

24



At completion of execution of the DDEF macro instruction, the low-
order byte of register 15 contains one of the following codes:

Code

(Hexadecimal) Significance
00 No errxror
o4 Data set name undefined
08 Data set name not unique
oC Attention interruption
10 DSORG inconsistent
20 Space not available
40 ddname not unique
80 Other

I- AND E-FORM USE: The oplist operand is required in the L-form of this
macro instruction and is not permitted in the E-form. Only the text
form of the operand may be used in the L-form of the macro instruction.

DCB -— Construct a Data Control Block (0

The DCB macro instruction is one of the major sources (see Appendix
F) by which the attributes of a data set may be described to the system.
The attributes of a data set which can be provided wvia this macro
instruction and the formats in which particular attributes can be speci-
fied are indicated below by access method.

Format: The format of the DCB macro instruction varies depending on the
data set organization and the access method which is to be used, or was
previously used, to perform I/O on that data set. All of the possible
parameters which might be specified by a nonprivileged user in a DCB
macro instruction are indicated by applicable access method.

Part II: Functional Macro Instruction Grouping 25



[ S S S e e e e S e e e S e S e S s B e S S S e S S S e S S S e SO S Y S S S i S S S S W S M s R s S e = e e o S e )

o]
=]
w nOn_ LT I I B o LS T (- T - I B - o]
T L]
g Fgt—t—t—+—F—t+—+—+—+—+—+—F—T—ft—+—F—t—t—F—Ft—Ft—Ft -ttt
£}
m % LT o T I T - T o T - » Lo - T I T 2T T R T - I B R e
s 1Wu..Tl%||T|....IL..|1...||||L|||_||J||LT||T| —_—t e e e
0|
w % LT B T T I O - -] LT I T - T - T - T - - N I - - - I - - B - -
M s e a el a e E S s S R E Ets St St B i S Bt it e e e e e e e e e e e
M * * +* . *
R R R R N R R R RN N R R
‘M oo e b e e e e e i s o e e e o e e e e o e e s e e i e e e e e o e e e e e e e s s e s e e b e e s e e e e e e
5|2 .
L T Y2 T I T I T - N I T Il
L) =
Q> _|
.nDn.. 1W.|.II — e e e e s e e e e s s e S e s e e e . e e e e S i e s s e i S i e o e s e e e e e e e s s e e e
<
W oI - T B I T B
b e e e e s e e e e oo e e e e e e e e e e e e — e e e e e e e e e e s e e e . e o e e s e e s s s e b e o e
= o .m
<) FPERERES) X I ™ 13 = I R
Qe | X Q Q | e | = Qlem e | X Xlem ] @] = Qlemm | Xl el ]l QD |
=] Q Y] [ Q| Q [OTIN I o TN 12} Qu O 9] p— [ [] Q [[VJ R o [o]] O ] ] Lol ~ ()
>~17T | ” ] & E bl ] 0| Q W o 1%} [ w | o © | ° ] E » [0 o] [} Olm | T
2] 9} o1 4Q AR [V o] o] [ ocl1lQiw i o} ] Q| T >l o Qa Q 0 O | T Q
I} o] 9] 1] 2] 2 1] 22} Q il 12} 8] ] [¢] 1] O 3] 4] o} 2] 12} M 0 Q Il 1M O
0 3] Il Il Il Ii i Q1 a O1214Q Il Il 9] | I 3] Il O i Q Il 1l © ] X 1] |
4ol 2101214311 aQ © ] m_u m [1 B = < = ¥ Il MIKlHIHTA U B (1L R I I [ R
=} = I R B O R - il 1l o) Il Ol ik |10Oiglw | |OIlINx|® I Zl314a W“ O | &
© ZioliEBIAlIa I/ W HlZ2 Il OIIBEITR [ HIHIERI& K | O
) Qlw = x| Q > < & = =] x =4 ] H m = & = <O IR B j i R o 1
[0} AlAalg AR O lAMIIAIxM|IA|IEHITATET®W MIOlHIHA |2 | Al AMIA|IMQIHA
[oN) ~ - - » ~ - ~ - ~ ~ » - - - ~ - - ~ ~ - - - - ~ ~ - -
O Ll ) L [ e Nd L A Nl ed L =" Sl e o] d e Snnd S L Lt e ot el Somd S— —
lllll I S SN SHNIIEPI SV YNNI SR NSS IR WIS SpRI VIPCE SN SR SRR SR FE S S S R SRR A S e A |
=
e}
ot
2
©
M
[} ®
Q Q
@] (=]
[ o e s i e s i o e s T e S e T T e S S e S e T e S . S . e e . T S . ! e . S S e e S o e e S ) i . i e T e S S -
~
-
o}
0 £
g >
] 2]
N e
e s s s o e s T e B . s S——— —— — T—— S ———— ———————————T— —— —— — — ——————, T— — ——— —————— S— w— -

= a value is assumed by the system

(@all access methods)
specifies the symbolic data definition name associated with a par-
ticular data set. This symbol provides the link which connects the

1.

* = VISAM members of a partitioned data set

DDNAME
26



attributes of the data set defined by the DCB macro instruction
with those specified by the DDEF macro instruction (or command),
thereby providing the system with all the attributes necessary for
processing the data set.

Specified as: A symbolic name of one to eight alphameric charac-
ters, the first of which must be alphabetic. The name specified
for this parameter must be identical to the DDNAME parameter of the
DDEF macro instruction that defines this data set. The only
alternate source for this information is the user's program.

DSORG (all access methods)
specifies the organization of the data set.

Specified as: The various data set organizations. The codes by
which they can be specified, and the access methods with which they
are applicable are indicated below.

Applicable
Code Organization Access Methods
PS -- a physical sequential organization BSAM,QSAM
PSU -- a physical sequential unmovable BSAM, QSAM
organization in which the data set
contains location-dependent informa-
tion with respect to this data set.
Treated as PS by TSS/360.
Vs -- virtual sequential organization VSAM
VI -- virtual indexed sequential VISAM
organization
VP  -- virtual partitioned organization VPAM
VIP -- virtual partitioned index sequential VPAM
member of a partitioned organization
VSP -- virtual partitioned sequential member VPAM
of a partitioned organization
RX -- I/0 request facility is being used IOREQ

For an existing VP data set, only VP need be specified. The
organization of the member (virtual sequential or virtual index
sequential) is determined by FIND and placed in the DCB. However,
when creating a new member, the user must specify either VIP or
VSP.

This information can also be supplied by the user's program or the
DDEF macro instruction (or command) , but must be supplied before
issuing an OPEN macro instruction.

RECFM (all access methods)
specifies the format of the records in the data set.

Specified as:

For BSAM and QOSAM:
UTl [A[M)
VIB|T] [A|M]
F[B|S|T|BS|BT|BST|ST] [A|M)

Part II: Functional Macro Instruction Grouping 27



Where the record format is:

U -- undefined-format records
V —- variable-length records
F -- fixed-length records

Where the physical attributes are:

B —- blocked records
S —-- standard data set; no truncated blocks or unfilled tracks
T —- track overflow employed

Where the record contains:

A -- USASI control character
M -- machine code control character

Refer to Appendix D for a discussion of control characters.

Absence of any of the physical attribute mnemonics implies the
opposite of that attribute. For instance, writing RECFM=V
implies: variable-length, unblocked records, no control charact-
er, and no track overflow feature.

This information can also be supplied by the user's program, the
DDEF macro instruction (or command) , or the data set label.

For VAM data sets: All VAM data sets can be organized as fixed
or variable length records but only VSAM and VPAM records can
be specified as having undefined formats.

uRaiM (applicable to VSAM, VPAM only)
viiaiM (applicable to VSAM, VISAM, or VPAN)
FAIM (applicable to VSAM, VISAM, or VPAM)

Where the record format is:

U -- undefined-format records
V -- variable-length records
F -- fixed-length records

Where the record contains:

A —-- USASI control character
M -- machine code control character

If A or M is not specified, no control character is assumed.
Refer to Appendix D for a discussion of control characters.

For IOREQ
U -- undefined-format recoxrds

This information can also be supplied by the user's program,
the DDEF macro instruction (or command) , or the data set label.

LRECL (VAM, BSAM, and QSAM)

28

specifies the length in bytes of a logical record. For format-F
records, this operand specifies the length of each record in the
data set. For format-V and -U records, the user must insert the
maximum expected value before the data set is opened. The maximum
size is 32,766 bytes for BSAM, 1,048,576 bytes for VSAM, and 4000
bytes for VISAM. When reading format-U or -V records, the corres-
ponding field in the data control block (DCBLRE) contains the
length in bytes of the record just read.



This information can also be supplied by the user's program, the
DDEF macro instruction (or command) , or the data set label.

EODAD (VAM, BSAM, and QSAM)

specifies the address of the user's end-of-data routine for input
data sets. This routine is entered if the user requests a record
when there are no more records in the data set. If no routine has
been provided, and the end-of-data condition has been encountered,
the task is abnormally terminated. (Refer to Appendix C.)

If the symbol supplied is an external symbol, it must also appear
as the operand of an assembler language EXTRN statement in the same
program module as the DCB macro instruction.

The only alternate source for this information is the user's
program.

SYNAD (VISAM, VISAM members, BSAM, QSAM, or IOREQ)

specifies the address of the user's synchronous error exit routine.
The routine is entered if input/output errors result from an
attempt to process data records. If no routine is specified and
the system encounters a condition that would cause control to be
given to the SYNAD routine, the task is abnormally terminated.

The only alternate source for this information is the user's
program.

If the address specified is an external symbol, the symbol must
also appear as the operand of an assembler language EXTRN statement
in the same program module as the DCB macro instruction.

PAD (VISAM or VISAM members)

specifies the percentage of space (to a limit of 50 percent) to be
left available within the pages of a virtual index sequential data
set, thus providing for insertions within the pages.

This information can also be supplied by the user's program, the
DDEF macro instruction (or command) , or the data set label.

RKP (VISAM or VISAM members)

DEVD

specifies the displacement (relative key position) of the key field
from the first byte of a logical record.

Note: For format-V records, the logical record includes the length
field as the first four bytes.

This information can also be supplied by the user's program or the
DDEF macro instruction (or command) .

(BSaM, QSAM, IOREQ, or VAM)

specifies the device on which the data set resides. Additional
keyword operands are available, as shown below, to provide device-
dependent information to device-dependent parameter bytes in the
data control block.

Note: For VAM, DA is assumed, and the user can supply the KEYLEN
operand if desired.

DA [,KEYLEN=absexp]
T™A ([,DEN={0|1]2}) [,TRTCH={C|E|T|ET} ]
PR [,PRTSP={0]|1]2{3}]

RD
{ } [,MODE= {C|E}] [,STACK= {1]2}]
PC

Part II: Functional Macro Instruction Grouping 29



Note:

Since nonprivileged users cannot address unit record devices

directly, they may not specify PR (printer), RD (card reader), or

PC

(card punch) . These devices may be specified only by users with

proper system authorization.

This information can also be supplied by the user's program, the
DDEF macro instruction or command, or the data set label.

DA

TA

PR

30

specifies a direct-access device.

KEYLEN (VISAM or VISAM members, BSAM, or IOREQ)
specifies length in bytes of the key associated with a
physical record. When a record is read or written, the
number of bytes transmitted is equal to key length plus
record length. Maximum value of the key is 255.

This information can also be supplied by the user's program or
the DDEF macro instruction or comrmand.

specifies magnetic tape.

DEN (BSaAM, OSAM, or IOREQ)

specifies a value for the tape recording density in bits per
inch as listed below.

] T

| | Tape Recording Density (bits/inch)}
! t 1
| DEN Value | Model 2400 Tape Drive |
| t T {
| | 7-Track | 9-Track|
b $ + 4
I 0 | 200 I -— |
I 1 | 556 ! -— |
{ 2 | 800 | 800 |
L i 1 J

This information can also be supplied by the user's program
or the DDEF macro instruction (or command) .

TRTCH (BSAM, QSAM, ICREQ)
specifies, for 7-track tape, recording technique, where:

C -- Data conversion feature available. If data conv-
ersion is not available, only format-F and format-
U are supported.

E -- Even parity is used.

T -- BCD to EBCDIC translation is required.

This information can also be supplied by the user's
program or the DDEF macro instruction (or command) . If
not supplied by any source, odd parity and no transla-
tion is assumed.

specifies printer.

PRTSP (BSAM, QSAM, or IORE9Q)

specifies the line spacing on a printer. Either 0, 1,
2, or 3 may be specified.



No spacing

Space one line
Space two lines
Space three lines

WO
o nn

This information can also be supplied by the user's
program or the DDEF macro instruction or command. If
not supplied by any source, 1 is assumed.

RD
specifies card reader.

PC
specifies card punch.

MODE (BSAM, QSAM, or IOREQ)
specifies the mode of operation for a card reader or a
card punch, as follows:

C - the card image (column binary) mode
E - The EBCDIC code

This information can also be supplied by the user's
program or the DDEF macro instruction (or command) .

MACRF (BSAM and QSAM only)

specifies the type of macro instructions to be used in processing a
particular data set.

Specified as:
For BSAM:
RICIP]) | (W[CIPl) | RI[C|P],WIC|F])

R -- READ macro instructions
W —— WRITE macro instructions

Optional modifiers:

C —= CNTRL macro instruction
P -- POINT macro instruction
For OSAM:

(crsiciscyy | (pIsiciscr) | (c(S1,P[S))

G —- GET macro instructions
P -- PUT macro instructions

Optional modifiers:

S —-- SETL macro instruction
C -- CNTRL macro instruction

This information can also be supplied by the user's program or the
DDEF macro instruction (or command) .

BLKSIZE (BSAM only)
specifies a decimal value for the maximum block length in bytes.
Maximum value of BLKSIZE is 32,760,
This information can also be supplied by the user's program, the
DDEF macro instruction (or command), or the data set label.

Part II: Functional Macro Instruction Grouping 31



OPTCD (BSAM or QSAM)
specifies an optional service to be provided. This service con-
sists of performing a write validity check (for direct-access
device only).

This information can also be supplied by the user's program, the
DDEF macro instruction (or command) , or the data set label. If not
supplied by any source, the service is not performed.

IMSK (BSAM or QSAM)
specifies a four-byte hexadecimal number whose bit pattern indi-
cates which system error handling procedures, if any, are to be
invoked.

If FFFFFFFF is written, the system applies all optional error reco-
very procedures. This is the default condition.

If 00000000 is written, the system is to apply none of its optional
error recovery procedures.

If any other four-byte hexadecimal number is written, the system
applies its error recovery procedures only for those entries, set
to 1 in IMSK, that correspond to error.

The first two bytes correspond to the first two bytes of the chan-
nel status word, and the other two bytes correspond to the first
two sense bytes. Bit positions in each byte for specification of
system error recovery procedures are:

XXXXXXAB XCXXXXXD YEFGHIYY YYYYYYYY

where a 1-bit in a given position indicates that the system is to
handle the associated error condition:

Il

X System never tests this bit to determine entry to retry
routines

Device-dependent conditions

Unit check

Unit exception

Incorrect length

0wy

e

EXLST (BSAM or QSAM)
specifies the address of an exit list supplied by the user. See
Appendix A for explanation of the exit 1list.

This information can also be supplied by the user's program.

NCP (BSANM)
specifies the number of consecutive READ or WRITE macro instruc-
tions issued before a CHECK macro instruction. This number may not
exceed 99.

This information can also be supplied by the user's program or the
DDEF macro instruction (or command) .

BUFNO (BSAM)
specifies the number of buffers to be assigned to data control
block. The number, expressed as a binary value, may not exceed
255.

This information can also be supplied by the user's program or the
DDEF macro instruction (or command) .

BFALN (BSAM)
specifies boundary alignment of buffers. This field is ignored in

32



Time Sharing System/360. Every buffer is automatically aligned on
a doubleword bounndary.

This information can also be supplied by the user's program or the
DDEF macro instruction or command.

BUFL (BSAM)
specifies a decimal number which is the length in bytes of each
buffer to be obtained for a buffer pool. Maximum value is 32,760.

This information can also be supplied by the user's program or the
DDEF macro instruction (or command) . If not supplied by any
source, the length is considered equal to the BLKSIZE operand.

BUFCB (BSAM)
specifies the address of a buffer control block.

This information can also be supplied by the user's program.

BFTEK (BSAM)
specifies that simple buffering is to be employed.

S - simple buffering

In simple buffering, a data set is associated with a specific group
of buffers. A data set always uses buffers obtained from the pool
assigned to its data control block at the time it is opened. Reco-
rds can be moved between a buffer and an independent work area,
processed within a buffer, or moved from an input buffer to an out-
put buffer.

This information can also be supplied by the user's program or the
DDEF macro instruction (or command) . If not supplied by any
source, BFTEK=S is assumed.

EROPT (QSAM)
When using GET/PUT macro instructions to process a sequential data
set, an I/0 error may occur. The user may specify one of three
automatic error options to be used if there is no SYNAD routine or
if the SYNAD routine returns control to the user's program. One of
the following choices of action can be specified:

ACC -—- accept the erroneous block and continue processing
SKP -- skip the erroneous block and process the next record
ABE -- abnormally terminate the task

Note: If the EROPT and SYNAD fields are not completed, the ABE
option is assumed.

The choice of action that can be specified depends on which proces-
sing method (option) is specified in the OPEN macro instruction for
the data set. The allowable combinations are as follows:

Action Operand OPEN Option
ACC INPUT,OUTPUT (for printer only), RDBACK, or UPDAT
SKP INPUT,RDBACK, or UPDAT
ABE INPUT, OUTPUT,RDBACK, or UPDAT

PROGRAMMING NOTES: During the assembly of a source program, the DCB
macro instruction reserves storage space in a user program in which the
attributes of a data set being described to the system may be subse-
quently placed. This storage area is known as a Data Control Block

(DCB) and is created at assembly time, in line, wherever the DCB macro
instruction appears in a user's source program. The reserved control
block has a fixed length and consists of two contiguous parts: a common

Part II: Functional Macro Instruction Grouping 33



portion, in which all information that is access method independent is
to be placed, and an access method dependent portionm.

In addition to furnishing the storage area for holding the attribute
data describing a data set, the DCB macro instruction can also be used
optionally, at execution time, to actually specify many of a data sets
attributes. A user might furnish the system with such data attribute
information as, the data set organization, its record format, whether or
not buffering is to be used during I/0 operations, the type of device
the data set resides on, and the addresses of user written routines for
handling I/0 errors, processing labels, end-of-data-set processing, and
Data Control Block modification routines. Any such attributes, speci-
fied with a DCB macro instruction are automatically placed in appropri-
ate positions in the reserved storage area.

When the storage area reserved by the DCB macro instruction is filled
with the attributes of a data set, it becomes the principal control
block used to supply the system with information describing a particular
data set or device. Once optionally specified attributes have been
placed in the control block, the DCB routine returns to the user's pro-
gram. All data management macro instructions, provided with TSS/360,
reference this control block for pertinent data when they are executed.

CDD -- Retrieve and Execute DDEF Commands (S)

The CDD macro instruction retrieves one or more DDEF commands from a
line data set containing prestored DDEF commands. The macro instruction
processes the retrieved commands as if they had just been entered by the
user. The user can thus create a line data set of commonly used DDEF
commands with reference through the CDD macro instruction to eliminate
direct DDEF macro instruction or command entries for each run of a
program.

T T T 1
| Name | Operation|Operand i
b : 1 {
| | | text |
| {symbol] | CDD |oplist- |
| | addr |
L 4 L J
oplist

specifies the list of operands. They are:

Oplist

[ e oy e

dsname-name [, DDNAME=ddname-symbol, ...]

e e s e

dsname
specifies the name of the line data set containing the prestored
DDEF commands.

This operand can be specified as the fully qualified name of: a
nonpartitioned data set, or a nonpartitioned generation of a
generation data group (identified by absolute generation name or
relative generation number).

DDNAME

specifies the following symbol as ddname of a particular DDEF com-
mand in the data set.

34



ddname
specifies the ddname of a particular DDEF command in the data set.

CAUTION: The user must make sure that none of the DDEF commands or
macro instructions for his task has the same ddname as a DDEF command
retrieved through this macro instruction.

If this macro instruction is included in a module that is declared
privileged (through use of the DCIASS macro instruction), the address of
a save area must be placed in register 13 before execution of this macro
instruction.

PROGRAMMING NOTES: If no ddnames are given, all DDEF commands in the
set are retrieved and executed.

At completion of execution of the CDD macro instruction, the low-
order byte of register 15 contains one of the following codes:

Code
(Hexadecimal) Significance
00 Normal
oy Invalid dsname
08 Invalid ddname
0oC ddname not in data set
10 Error return from DDEF
14 Not a line data set

I- AND E-FORM USE: The oplist operand is required in the L-form of this
macro instruction and is not permitted in the E-form. Only the text
form of the operand can be used in the L-form of the macro instruction.

DCBD -- Provide Symbolic Names for a Data Control Block (0)

The DCBD macro instruction generates a dummy control section (DSECT)
that provides symbolic names for the fields in a data control block.
With proper initialization of a base register, the user may access all
fields of a data control block.

The following conventions have been adopted:

1. The name of the dummy control section is CHADCB. (An EQU is
included in the DSECT to allow use of the alternative 0S/360 name
IHADCB) .

2. The name of each field begins with the characters "DCB" followed by
the keyword operand that represents the field in the DCB macro
instruction. If the resulting name is longer than six characters,
it is truncated to six characters by right-to-left dropout; that
is, the field represented by the operand BLKSIZE= should be written
DCBBLK. (Refer to Appendix F.)

The attributes of each data control block field are defined in the
dummy control section (DSECT) . Data control block fields containing
addresses are aligned on fullword boundaries.

k) L
Name |Operation|Operand
4 [

o e aape e ey

[

L
| DCBD
L

—

Part II: Functional Macro Instruction Grouping 35



CAUTION: The DCBD macro instruction may be used only once in an assemb-
1y module.

PROGRAMMING NOTES: The macro instruction may appear at any point in a
control section. However, if it is written at any location other than
at the end of a control section, the original control section must be

resumed by the user. The data control blocks to be accessed need not

appear in the same control section as the DCBD macro instruction.

EXAMPLE: This example illustrates how a program can access a field in a
data control block through use of the DCBD mwacro instruction. The load
address (LA) instruction is used to place the address of the data con-
trol block in register 5.

A USING statement establishes a base register for CHADCB. The store
operation (ST) places the value contained in register 6 into the speci-
fied field of the data control block pointed to by register 5. DCBLRE
is the field associated with logical record length. The user previously
loaded register 6 with the value he desired to be in DCBLRE.

MYDCB DCB DDNAME=MYDCB, MACRF=G (other DCB operands)
LA 5,MYDCB
USING CHADCB, 5
ST 6, DCBLRE
DCBD

FINDDS* - Locate JFCB Corresponding to Data Set Name (S)

The FINDDS macro instruction obtains the location of the JFCB corres-
ponding to a given data set name. If the data set name specified is not
in the task definition table (TDT), but is in the catalog, the user can
request that a JFCB be created.

FINDJFCB* - Iocate JFCB and Ensure Volume Mounting (S)

The FINDJFCB macro instruction locates the JFCB for a given data
definition name and, optionally, ensures that the volumes specified in
that JFCB are mounted.

*Although these macro instructions are available to all users, they are
employed primarily by system programmers; therefore, refer to System
Programmer's Guide for a discussion of these macro instructions.

36



CONNECTING A DATA SET TO THE SYSTEM

Before processing a data set, a user must first describe its attri-
butes and then connect it to the system. User issuance of the OPEN
macro instruction causes the system to interrogate the data set attri-
bute information specified by the DDEF and DCB macro instructions or any
other available sources for such attributes. The system determines if
an appropriate data set organization has been specified and if all of
the necessary attributes for processing such a data set have been pro-
vided. If the user has indicated he wants to alter the DCB contents at
open time, by including the EXLST parameter (for BSAM and QSAM only)
with his attribute specifications, the system immediately exits to the
user modification routine. Once all the required attributes have been
provided, the system makes the access method that a user has indicated
he desires to employ (via attribute specifications) available to him.

At the time a user opens a data set he can optionally select or default
a processing option which indicates to the system the type of processing
he expects to perform on that data set.

The user should know that the processing option he specifies when he
issues the OPEN macro instruction determines whether he can use all of
the macro facilities of an access method or only a portion of them
(i.e., if a user opens a data set for INPUT only, he will only be
allowed to use macro instructions which retrieve data and will not be
allowed to use macro instructions that store data into the data set he
has opened) .

Once the system knows the processing option and locates the device on
which a data set is to reside, or currently resides, it proceeds to
physically open that data set by processing labels (if specified) and
physically positioning the user at the data record he wants to process.
The initial positioning directed by the system varies depending on the
access method, the processing option, device type, and in some cases the
status (i.e., MOD) of the data set. These relationships are described
in detail in IBM System/360 Time Sharing System: Assembler Programmer's
Guide, Form C28-2032. The functions of the OPEN macro are briefly sum-
marized below.

OPEN collects the attribute data, describing one or more data sets,
from the various sources for providing such attributes (such as
the DCB and DDEF macro instructions), by priority, and places
them in the related data control blocks. These attributes are
made available to the system, thereby logically connecting the
data set (s) to the system. The access method dependent portion
of the data set's data control block is initialized with pointers
to the appropriate access method routines. Labels (if any exist)
are checked, the user's privilege class is verified, and the sys-
tem positions the user at the beginning of the data set that is
to be processed. The user can proceed to process an opened data
set.

A detailed explanation of the above macro instruction and the various
formats in which it may be specified (depending on access method) is
shown below. Further information pertaining to opening a data set and
the priority of attribute sources may be found in Appendix F of this
publication and in IBM System/360 Time Sharing System: Assembler Pro-
grammer's Guide, Form C28-2032.

Opening a Data Set 37



OPEN -- Connect a Data Set to the System (S)

The OPEN macro instruction connects one or more data sets to the sys-
tem by completing the data control blocks containing their attributes,
indicates the manner in which a data set is to be processed, and ini-
tially positions the data set for processing. Input labels are analyzed
and output labels are created. Control is given to exit routines as
specified in the data control blocks exit list (BSAM and QOSAM only) .

Any number of data sets and their associated options may be specified in
the OPEN macro instruction.

The standard form of the OPEN macro instruction is written as
follows:

T T
Name | Operation|Operand
(! iR

T T
[symbol] | OPEN | ({dcb-addr, {(opty-code [,opt,~codel)]},«..)
(R

b e b s wed

f
I
1
r
I
L

dcb
specifies the address of the data control block containing the
attributes of the data set that is to be initialized.

Opt 1
specifies the intended method of input/output processing of the
data set being connected to the system. The processing method
which can be specified is dependent on the data set organization
and access method which is being used to perform the I/0 proces-
sing. The various processing options, their meanings, and the
access methods with which they can be specified are indicated
below:

—

0
0
bl
2
]
o
o
=
e}

Code

:
:

Meaning

—— e .
(=)
2
o
Q
=]
bl
>
=
>

Data set can be used as input only.
This option is assumed if opt, is
defaulted.

ouTPUT

>
>
b

SAPSRS SUE SpUL I PRSI W IR

Data set can be used for output only

-
g
=
1
>

T e e i =t e E e
>

o e e e e o e e e i e e e e e e e

i
t

Both input and output operations are
allowed. The DCB is opened as
INPUT.

OUTIN

>

Both output and input operations are
allowed. The DCB is opened as
OUTPUT.

PDAT

e

Al d
>

DBACK

An INPUT data set is to be read
backwards.

[ e s Gy S St . i St Y S . i M Sy o
TPNSECSEDS SN TP S SR S
T S SN Ay SR S S

[P S SIS SIS S U S |

Note: Opening a VISAM data set for INOUT or OUTIN is equivalent to
opening for UPDAT. When a data set is opened for UPDAT, however,
the user must position to the desired record in the data set.

opt.
the codes REREAD and LEAVE are accepted for compatibility with the

38



IBM System/360 Operating System. However, this parameter is
ignored by TSS/360 because volumes are not mounted in parallel.

CAUTION: The following errors cause the results indicated:

r T

{ Error i Result

L i

L] 1

|Opening a data control block that is already open |No action

| |

|Sspecifying the address of an invalid data control |[Task terminated.
| block |

| I

[Opening a data control block when a DDNAME in |Nonconversational
|]data control block has not been provided. |task terminated;

|prompting given if
|task is conversa-
|tional

—— et S

|Opening a privileged data set by a nonprivileged |Task terminated
juser (BSAM, Q0SAM, VPAM and IOREQ only) .

|

|Opening a READ-ONLY data set and specifying an
option other than INPUT

Task terminated

Opening a data control block when the DDNAME in |Nonconversational
the data control block does not correspond to the |task terminated;
DDNAME in the DDEF macro instruction (or command) |prompting given if
[ |task is conversa-
|tional

|
Opening a data control block containing an invalid|Task terminated
DSORG specification |

L o e — —— — — — —— — A — —— — — — —— —— — —— o ke s— vl

If this macro instruction is included in a module that is declared
privileged (through use of the DCLASS macro instruction), the address of
a save area must be placed in register 13 before execution of this macro
instruction.

PROGRAMMING NOTES: Any number of data control block addresses and asso-~-
ciated options may be specified in the OPEN macro instruction. This
facility allows parallel opening of the data control blocks and their
associated data sets, which is more efficient than to open them indivi-
dually. One of the services performed at this time is processing of
labels of data sets or volumes.

VSAM:

When a shared VSAM data set is opened, a data set interlock is set
according to the opt, specification. If INPUT is specified, a read
interlock is set; if OUTPUT, INOUT, OUTIN, or UPDAT is specified, a
write interlock. Rules for sharing VSAM data sets are given in
Appendix K.

VISAM:

When a shared VISAM data set is opened, a data set interlock is set
according to the opt, specification. If INPUT, INOUT, OUTIN, or
UPDAT is specified, a read interlock is set; if OUTPUT is speci-
fied, a write interlock is set. Rules for sharing VISAM data sets
are given in Appendix K.

BSAM:

If a DCB exit routine or a user-label exit routine is to be
executed, the exit list address must be provided in the data con-
trol block. The format of the exit list, its use during the open-

Opening a Data Set 39



ing process, and exit routine requirements are discussed in Appen-
dix A.

L— AND E-FORM USE: The L- and E-form of this macro instruction are
allowed. The E-form of the macro instruction may specify any parame-
ters; however, the parameters specified in the E-form will overlay para-
meters specified in the L-form. The E-form may not specify more DCB
operands than are specified in the L-form. The format of the parameter
list generated by the OPEN macro instruction is described in Appendix L.

For example:

JOE OPEN (DATSET, ,MORSET, ,) ,MF=L
DEB OPEN (. .FOSET, ,NUSEM) ,MF= (E,JOE)

When the E-form macro instruction is executed, the data control block
FOSET replaces MORSET in the parameter list. Data control blocks with
symbolic addresses DATASET, FOSET, and NUSEM are opened.

EXAMPLES: EX1 opens the data control block INVEN as an input data set.
EX2 opens the two data control blocks INVEN and REPORT with different
options. EX3 opens the two data control blocks INVEN and MASTER; they
are opened for input data sets since INPUT is assumed when opt, is
omitted. EX# generates a parameter list for opening INVEN, and EX5
opens INVEN.

EX1 OPEN (INVEN, (INPUT))

EX2 OPEN (INVEN, (INPUT) ,REPORT, (OUTPUT,LEAVE))
EX3 OPEN (INVEN, , MASTER)

EXU4 OPEN (INVEN, (INPUT)) ,MF=L

EX5 OPEN MF= (E, EXY4)

40



ACCESSING A DATA SET

Once a data set has been given a name, its attributes have been
described, and it has been connected to the system, the user can employ
the routines provided by the TS5S/360 data set management facilities for
storing and retrieving data organized in the various formats. These
routines are employed by using I/0 macro instructions in the user's
source program. The macro instructions used comprise part of an access
method and are dependent on the manner in which a user organizes and
desires to process his data. There are two primary types of access
methods, the Virtual Access Methods (VAM) and the Sequential Access
Methods (SAM) as indicated below.

VAM: These are the access methods used in TSS/360 unless the data sets
must be interchanged with programs running in Operating System/
360 or the Model 44 Programming System, or the data set is to be
written on magnetic tape.

Users create, read, and process Virtual Access Method (VAM) data
sets on the basis of logical records. The system, however,
blocks these records by pages (4096 bytes) and uses the page as
the unit of transfer between the direct access device and the
user's virtual storage. The system also ensures that only those
pages of a data set that are actually required are resident in
virtual storage. Because VAM data sets can be organized either
sequentially, indexed sequentially, or partitioned, three dis-
tinct access methods are provided under VAM for processing these
data sets. The virtual access methods that are provided to a
user are:

Data Set Organization Access Method

sequential Virtual Sequential Access Methos (VSAM)

indexed sequential Virtual Indexed Sequential Access Method
(VISAM)

partitioned Virtual Partitioned Access Method (VPAM)

SAM: Used to read and write records that can be read and written with
programs running under control of the Operating System/360 or the
Model 44 Programming System, or when the data set is to be writ-
ten on magnetic tape.

Users create, read, and process SAM data sets on the basis of
physical records. The records within a physical record can,
however, be blocked or unblocked. Because of this, two distinct
access methods are provided under SAM for processing data sets.
The Sequential Access Methods are indicated below.

Data Set Organization Access Method
unblocked sequential Basic Sequential Access Method (BSAM)
blocked sequential Queued Sequential Access Method (QSAM)

Another special accessing facility, the Input/Output Request Facility
(IOREQ) is provided for users who would rather program their own I/0
device control routines than employ any of the access methods provided
with the TSS/360 Data Management Facilities.

Each of the above access methods and the macro instructions which may
be used with them are explained more fully on the following pages.
Detailed information pertaining to access methods and data set organiza-
tion may be found in IBM System/360 Time Sharing System: Assembler Pro-
grammer's Guide, Form C28-2032.

Access Methods 41



VIRTUAL SEQUENTIAL ACCESS METHOD

The virtual sequential access method (VSAM) consists of the TSS/360
data management facilities that enable a user to process virtual sequen-
tial data sets. These data sets can be stored on, or retrieved from,
direct-access devices only. The record format within each such data set
can be fixed length (blocked or unblocked) , variable length (blocked or
unblocked) , or undefined length (unblocked only) . Such attributes are
unique for each data set; they must be defined to the system before a
data set can be accessed by VSAM. The macro instructions that have been
provided to a user, by VSAM, for accessing a data set in the appropriate
manner, are summarized below.

GET used for reading logical records in a sequential order.

PUT for writing new or altered logical records into a virtual sequen-
tial output data set.

PUTX for writing an updated or identical logical record, directly from
an input data set to an output data set, without altering the
length of the record. The next sequential logical record con-
tained in an input buffer area (where it may have been modified)
is transferred to the output buffer as the next sequential output
record. The system must be positioned at that next sequential
logical record by issuing a locate mode GET macro instruction
prior to issuing PUTX.

SETL enables a user to logically position a data set at its beginning,
end, at the previous record, or at any logical record within a
blocked sequential data set. Subsequent PUT or GET operations
will start at this new position.

Detailed explanations of each of the above macro instructions and the
formats in which they may be specified are shown below. Further infor-
mation pertaining to BSAM data set management and the related macro
instructions can be found in IBM System/360 Time Sharing System:
Assembler Programmer's Guide, Form C28-2032.

GET -— Get a Record (R)

The GET macro instruction (for VSAM) can be specified in either loc-
ate mode or move mode. In locate mode, the GET macro instruction
locates the next sequential record of an input data set and places its
address in register 1. The user may then operate on the record where it
is, or move it to a work area. In move mode, the GET macro instruction
acquires the next sequential record of an input data set and moves it to
a specified area in virtual storage.

| L] 1] h}
| Name | Operation|Operand |
i (! 4 ¥
T T 1 1
| (symbol) |GET | dcb- Jaddrx| |,area- Jaddrx |
| | | M (0) |
t L L 4
dcb

specifies the address of the data control block opened for the data
set being processed. If (1) is written, the address must have been
loaded into parameter register 1 before execution of this macro
instruction.

42



area (for move mode only)
specifies the address of the user's work area into which the record
is moved. If (0) is written, the address must be loaded into para-
meter register 0 before execution of this macro instruction.

CAUTION: If a GET macro instruction is requested beyond the end of a
data set, as a result of sequential operation or following a SETL macro
instruction, the user EODAD is given control. (Refer to Appendix C.)

The address of a save area must be placed in reglster 13 before
execution of this macro instruction.

PROGRAMMING NOTES: When retrieving variable-length records, the GET
macro instruction returns with the length of the logical record in the
DCBLRE field of the data control block.

For undefined-format records, the user must set the DCBLRE field to
the length of the record to be retrieved before issuing GET.

Rules for sharing VSAM data sets are given in Appendix K.

PUT -- Include a record in an Output Data Set (R)

The PUT macro instruction (for VSAM) can be specified in either loc-
ate mode or move mode. In locate mode, the PUT macro instruction places
in register 1 the address of an output buffer. The user should subse-
quently construct at that address the next record to be incorporated in
an output data set. In move mode, the PUT macro instruction moves a
record from a user-specified area in virtual storage into an output
buffer so that the system may include the record in the output data set.

r T T B
| Name | Operation|Operand |
L L 4 J
i[symbol]iPUT idcb— addrx||,area-|addrx }
| | Lo © }
dcb

specifies the address of the data control block opened for the data
set being created. If (1) is written, the address must have been
loaded into parameter register 1 before execution of this macro
instruction.

area (for move mode only)
specifies the address of the logical record to be moved into the
buffer. If (0) is written, the address must have been loaded into
parameter register 0 before execution of this macro instruction.

CAUTION: The address of a save area must be placed in register 13
before execution of this macro instruction.

PROGRAMMING NOTES: It is the user's responsibility to store the length
of each format-U record in the DCBLRE field of the data control block
before issuing the PUT. This length must be a multiple of 4096 bytes.

For format-V records, each record includes four control bytes. The
user must store the length of the record in bytes 1, 2, and 3 of that
four-byte field, before issuing a PUT macro instruction. Byte 0 must
contain binary zero.

Rules for sharing VSAM data sets are given in Appendix K.

-

Access Methods: VSAM 43



PUTX -- Replace a Sequential Logical Record (R)

The PUTX macro instruction (for VSAM) allows the user to return an
updated logical record to an input data set.

T T T 1
| Name |Operation|Operand |
t{ [ 1

T L) | "
| [symbol] | PUTX | dcb- [addrx |
| | | (M |
L i i 1
dcb

specifies the address of the data control block opened for the data
set being processed. If (1) is written, the address must have been
loaded into parameter register 1 before execution of this macro
instruction.

CAUTION: The address of a save area must be placed in register 13
before execution of this macro instruction.

PROGRAMMING NOTES: The PUTX macro instruction can only replace a reco-
rd that was located by a locate-mode GET macro instruction. The data
control block must be opened for the UPDAT mode while using PUTX. The
user must not change the length of the record during the replacement
process.

Rules for sharing VSAM data sets are given in Appendix K.

SETL —— Specify Start of Sequential Processing (R)

The SETL macro instruction (for VSAM) positions to the beginning,
end, previous record, or any point within a virtual sequential data set.

r T T 1
| Name | Operation|Operand |
. i : |
| [symbol]} | SETL jdcb- )addrx\{,type—/ B\ [,11limit-)jaddrxl] |
| | | nm E (0) |
| I | P I
i L L J
dcb

specifies the address of the data control block opened for the data
set being processed. If (1) is written, the address of the data
control block must be in register 1 before execution of this macro
instruction. type

specifies the starting point for processing and any optional ser-
vices requested:

R
Record at the retrieval address obtained from DCBLPDA field in the
data control block following a GET or PUT.

B
Beginning of the data set

E

End of the data set

L1



Previous logical record (backspace)

1limit
specifies the address of a word containing the retrieval address.
If the type operand specifies B, P, or E, the 1llimit field is to be
omitted. If (0) is written, the address of a field containing the
retrieval address must be in register 0 before execution of this
macro instruction.

CAUTION: A backspace request is not permitted for format-U records and
causes abnormal termination.

The address of a save area must be placed in register 13 before
execution of this macro instruction.

PROGRAMMING NOTES: A SETL instruction that positions to an area outside
of the data set causes an error. The error is indicated during a subse-
quent GET orxr PUT macro instruction by exit to EODAD.

Rules for sharing VSAM data sets are given in Appendix K.

Access Methods: VSAM 45



VIRTUAL INDEXED SEQUENTIAL ACCESS METHOD

The virtual indexed sequential access method (VISAM) consists of the
TSS/360 data management facilities that enable a user to process indexed
sequential data sets. These data sets may be stored on, or retrieved
from, direct access devices only. The record format within each such
data set can be fixed-length (blocked or unblocked) or variable-length
(blocked or unblocked) format. Such attributes are unique for each data
set; they must be defined to the system before a data set can be
accessed by VISAM. The macro instructions that have been provided to a
user by VISAM, for accessing a data set in the appropriate manner, are
indicated below.

GET for reading logical records in sequential order
PUT for writing logical records in a sequential order

READ for reading logical records in a nonsequential or sequential
order

WRITE for writing logical records in a nonsequential or sequential
order

SETL enables a user to logically position a data set at its beginning,
end, at the previous record, or at any logical record within a
blocked sequential data set. Subsequent PUT or GET operations
will start at this new position.

ESETL (for shared data sets) allows other sharers to access portions of
the data set currently being processed by the user.

RELEX (for shared data sets) allows other sharers to access and/or up-
date portions of the data set currently being processed by the
user.

DELREC deletes a specified logical record from a data set

Detailed explanations of each of the above macro instructions and the
formats in which they may be specified are shown below. Further infor-
mation pertaining to VISAM data set management and the related macro
instructions can be found in IBM System/360 Time Sharing System:
Assembler Programmer's Guide, Form C28-2032.

GET -- Get a Record (R)

The GET macro instruction (for VISAM) can be specified in either lo-
cate mode or move mode. In locate mode, the GET macro instruction
locates the next sequential record in an input data set and places its
address in register 1. The user may then operate on the record where it
is, or move it to a work area. In move mode, the GET macro instruction
acquires the next sequential record and moves it from an input buffer to
a user—-specified area in virtual storage.

r T T |
| Name | Operation|Operand |
L R i J
r L T 1
[symbol} |GET dcb-}addr| ,area-)addrx |
Yy
| | | Mm (0 |
L 1 'S J
dcb

specifies the address of the data control block opened for the

4o



dataset being processed. If (1) is written, the address must have
been loaded into parameter register 1 before execution of the macro
instruction.

area (for move mode only)
specifies the address of the user's work area into which the record
is to be moved. If (0) is written, the address must have been
loaded into parameter register 0 before execution of the macro
instruction.

CAUTION: Any exceptional condition (i.e., logical record out of
sequence) resulting from the execution of a GET macro instruction causes
control to be passed to the user's synchronous error exit (SYNAD) rou-
tine. In this case, the general registers and the exceptional condition
fields in the data control block are set as shown in Appendixes B and F.

The address of a save area must be placed in register 13 before
execution of this macro instruction.

PROGRAMMING NOTES: When retrieving variable-length records, the GET
macro instruction returns with the length of the logical record in the
DCBLRE field of the data control block.

If a GET is requested beyond the end of a data set, as a result of
sequential operation or SETL macro instruction, the user EODAD exit is
taken. See Appendix C.

A page-level read interlock is imposed on the page referred to by
execution of this macro instruction. The interlock is released by any
macro instruction referring to the same DCB that refers to another page.
Rules for sharing VISAM data sets are given in Appendix K.

PUT -- Include a Record in an Output Data Set (R)

The PUT macro instruction (for VISAM) may be specified in either lo-
cate mode or move mode. In locate mode, the PUT macro instruction
places in register 1 the address of an output buffer. The user should
subsequently construct, at this address, the next record for incorpora-
tion into the output data set. In move mode, the PUT macro instruction
moves a record from a specified area in virtual storage to an output
buffer so that the system can include the record in the output data set.

1
{Name iOperationTOperand |
L (1 (| J

N 1
{[symbol]TPUT Idcbﬂ addrxl|,area- |Jaddrx |
| | | m (0) I
L 1 1 J
dcb

specifies the address of the data control block opened for the data
set being created. If (1) is written, the address must have been
loaded into parameter register 1 before execution of this macro
instruction.

area (for move mode only)
specifies the address of the record to be moved into the buffer.
If (0) is written, the address must have been loaded into parameter
register 0 before execution of this macro instruction.

CAUTION: Any exceptional condition resulting from the execution of a

PUT macro instruction causes control to be passed to the user's synch-
ronous error exit (SYNAD) routine. In this case, the general registers

Access Methods: VISAM 47



and the exceptional condition fields in the data control block are set
as shown in Appendixes B and F.

The address of a save area must be placed in register 13 before
execution of this macro instruction.

PROGRAMMING NOTES: For format-V records, each record must begin with a
four-byte length field. The user must place the length of the record
into the low-order three bytes of that four-byte field, before issuing a
PUT macro instruction. The high-order byte must contain binary zero.
The PUT macro instructions may not be used with a shared data set.

Rules for sharing VISAM data sets are given in Appendix K.

READ -- Read a Selected Logical Record (S)

The READ macro instruction (for VISAM) acquires a selected logical
record from an input data set and moves it to a user-specified area.
The user selects the record by providing either the record key or the
retrieval address. The key is in the user's data control block upon
completion of the read operation; when completed, processing of the
user's program continues.

r T T 1
| Name | Operation|Operand |
t t } i
{ [ KY |
| {(symbol] |READ | decb-symbol,type—( KZ ), dcb-addr,area-addr,key-addr |
KX
! ! ! ]
decb

specifies the symbol (name) to be assigned to the data event con-
trol block (DECB) constructed as part of the expansion of this
macro instruction.

type
specifies one of the following as the type of READ operation.

KY - read according to specified key.
KZ - read according to specified retrieval address.

KX - read according to specified key permitting no other user shar-
ing the data set to gain access to the record until the cur-
rent user has released the record. The record must be
released by the RELEX macro instruction or by a subsequent
WRITE macro instruction referring to the same data control
block.

dcb

specifies the address of the data control block opened for the data
set being processed.

area
specifies the address of the user's work area into which the recorad
will be placed.

Note: The area must be large enough to contain the largest
expected record.

key
specifies the address of the field containing either the record key
for a READ (type -KY or —-KX) or the retrieval address for a READ

us



(type KZ) . The retrieval address is a four-byte field, beginning
on a word boundary that is in the data control block and may be
accessed using the DCBD macro instruction and the name, DCBLPA.

CAUTION: Exceptional conditions, including "key not found," "key great-
er than last key on data set," and "invalid retrieval address,"™ result-
ing from the execution of a READ macro instruction, cause control to be
passed to the user's synchronous error exit (SYNAD) routine. In this
case, the general registers and the exceptional condition fields in the
data control block are set as shown in Appendixes B and F.

If this macro instruction is included in a module that is declared
privileged (through use of the DCLASS macro instruction), the address of
a save area must be placed in register 13 before execution of this macro
instruction.

PROGRAMMING NOTES: READ (type KY) imposes a page-level read interlock
on the pages containing the record to be read whereas READ (type KX)
imposes a page-level write interlock and releases a page-level read
interlock. As the record pointed to by the data control block shifts
within the data set, page-level interlocks are released from pages no
longer being used. The retrieval address form of READ (i.e., type KZ)
cannot be used with shared data sets.

Rules for sharing VISAM data sets are given in Appendix K.

IL- AND E-FORM USE: The L-form macro instruction results in a macro
expansion consisting of only a parameter list (DECB). The format of the
DECB is described in Appendix B.

The E-form macro instruction results in a macro expansion consisting
of only executable instructions. The E-form macro instruction uses the
DECB built for it by the L-form macro instruction. Only MF=E should be
specified for the MF= operand of the E-form, because it is the DECB sym-
bol which names the parameter list of the L-form.

If the E-form is used, either a DECB symbol or (1) must be specified;
if (1) is specified, the address of a DECB must be loaded into register
1 before execution of this macro instruction. Any E-form parameter
replaces the corresponding specified optional or required parameter in
the DECB. If a parameter is not specified in the L-form, it must be
specified in the E-form. Certain required parameters for the E- and
L-form ares

T T T 1
| Operand | L-Form | E-Form |
b : + 1
| decb | required | decb- | symbol |
| | i (M I
] type | required | required |
| MF | MF=L | MF=E {
L 1 L 4
WRITE -- Write a Selected Recoxrd (S)

The WRITE macro instruction (for VISAM) moves a selected record from
a user-specified area to an output buffer. The system then includes the
record in the output data set either by key or retrieval address. This
macro instruction may be used to update a record or add to the data set.
When the write operation is completed, processing of the user's program
continues.

Access Methods: VISAM 49



T T

Name | Operation| Operand
1 1
T

i KR
| decb—-symbol,type-( KS ),dcb-addr,area-addr ,key-addr
i XT
L

fom e o s e o ey

|
[symbol] | WRITE
|

1

Lo e e s b e

decb
specifies the symbol (name) to be assigned to the data event con-
trol block (DECB) constructed as part of the expansion of this
macro instruction.

type
specifies one of the following as the type of WRITE operation:

KR - WRITE replace by retrieval address
for updating
KS - WRITE replace by key

KT - WRITE a record with a new key} for adding a record

dcb
specifies the address of the data control block opened for the data
set being processed.

area
specifies the address of the user's work area from which the record
is to be written.

key

specifies the address of the field containing either the record
key, the length of which is indicated in the data control block; or
a retrieval address, a four-byte field on a fullword boundary, ori-
ginally obtained from DCBLPA.

CAUTION: Exceptional conditions resulting from the execution of a
WRITE macro instruction cause control to be passed to the user's synch-
ronous error exit (SYNAD) routine. In this case, the general registers
and the exceptional condition fields in the data control block are set
as shown in Appendixes B and F.

If this macro instruction is included in a module that is declared
privileged (through use of the DCLASS macro instruction), the address of
a save area must be placed in register 13 before execution of this macro
instruction.

PROGRAMMING NOTES: WRITE releases any page-level interlocks set for the
data set as a result of executing macro instructions referring to the
same data control block. Rules for sharing VISAM data sets are given in
Appendix K.

I- AND E-FORM USE: The L-form macro instruction results in a macro
expansion consisting of only a parameter list (DECB). The format of the
DECB is described in Appendix B.

The E-form macro instruction results in a macro expansion consisting
of only executable instructions. The E-form macro instruction uses the
DECB built for it by the L-form macro instruction. Only MF=E should be
written for the MF= operand in the E-form, because it is the DECB symbol
which names the parameter list of the L-form.

If the E-form is used, either a DECB symbol or (1) must be specified.

If (1) is specified, the address of a DECB must be loaded into register
1 before execution of this macro instruction. Any E-form parameter

50



replaces the corresponding specified optional, or required parameter in
the DECB.

specified in the E-form.

If a parameter is not specified in the L-form, it must be
Certain required parameters for the E and L-

form are as follows:

r k| - L] 1
| Operand ] L-Form | E-Form |
[ (] N
r 1 } 4
| decb | required | decb- |symbol |
| | | M |
[ | _ | _ |
| type | required | required |
! | I |
| MF | MF=L | MF=E i
L AL L 3
SETL ~-—- Specify Start of Sequential Processing (R)

The SETL macro instruction (for VISAM) positions a data set to the
beginning, end, previous record, or any point within the data set.
r L] T 1
| Name |Operation|Operand |
L 1 L 4
3 T T 1
| [symbol] | SETL |dcb- jaddrx | ,type-code [,11limit-[addrxl] |
I | I Q)] (0 |
L L L J
dcb

specifies the address of the data control block opened for the data
set being processed. If (1) is written, the data control block
address must have been loaded into parameter register 1 before
execution of the macro instruction.

type

specifies positioning within the data set as follows:

L
Code |Positioning

1

[P0 e . e . s o v e " e e et S S . )

R

Z RN W H W

T
|Record at the retrieval address obtained from the DCBLPA
|field in the data control block following a GET oxr PUT

|Beginning of the data set

|
|End of the data set
|

|Previous record (backspace)

|Record whose key is specified in the operand

I

|Record immediately following the one pointed to by the
|previous SETL; if there was no previous SETL, no reposi-
|tioning occurs

A4

1limit

specifies the address of a field containing either the record key,

the length of which is indicated in the data control block, or a

retrieval address (a four-byte field beginning on a fullword boun-
dary originally obtained from DCBLPA) .
mit address must have been loaded into parameter register 0 prior

e e v e e s S e St e S s S, e e o e b

If (0) is written, the 11i-

Access Methods: VISAM 51



to execution of this macro instruction. If the type operand is
specified as B, P, N, or E, the 1limit field is ignored.

CAUTION: Exceptional conditions, including the following three condi-
tions, resulting from the execution of a SETL macro instruction cause
control to be passed to the user's synchronous error exit (SYNAD) rou-
tine. In this case, the general registers and the exceptional condition
fields of the data control block are set as shown in Appendixes B and F.

1. Invalid retrieval address or record key.
2. SETL (N) following a SETL (E).
3. SETL (P} following a SETL (B).

If a SETL macro instruction is requested by key and the request key
is greater than the highest key or lower than the lowest key in the data
set, control is passed to the user's SYNAD routine. SETL by retrieval
address (type R) must not be used with a shared data set.

The address of a save area must be placed in register 13 before
execution of this macro instruction.

PROGRAMMING NOTE: SETL does not impose any sharing interlocks on a data
set. Rules for sharing VISAM data sets are given in Appendix K.

ESETL -- Release Shared Data_ Set (R)

The ESETL macro instruction (for VISAM) releases a page-level inter-
lock imposed by another macro instruction (e.g., GET, or READ). This
macro instruction does not release the write interlock caused by a type
KX READ. See RELEX macro instruction in this section.

T T
Name |Operation|Operand
i | 1

[symbol] |[ESETL  |dcb- {addrx}
| | )]

4 i

r
|
t
r
|
|
L

R s

dcb
specifies the address of the data control block opened for the data
set being processed. If (1) is written, the data control block
address must have been loaded into parameter register 1 before
execution of this macro instruction.

CAUTION: Exceptional conditions resulting from the execution of a ESETL
macro instruction cause control to be passed to the user's synchronous
error exit (SYNAD) routine. In this case, the general registers and the
exceptional condition fields in the data control block are set as shown
in Appendixes B and F.

PROGRAMMING NOTE: Rules for sharing VISAM data sets are given in
Appendix

DELREC -- Delete a Record (R)

The DELREC macro instruction (for VISAM) deletes a specified record
from a virtual index sequential data set. The record may be specified
by its key or its retrieval address.

52



T 1 T B
| Name |Operation|Operand {
L 1 1 4{
1 1
| [symbol] | DELREC | dcb- Jaddrx|,type-|K|,11limit- Jaddrx |
| | | ) R (0) ]
L 1 J | 4
dcb
specifies the address of the data control block opened for the
dataset being processed. If (1) is written, the address must be
loaded into parameter register 1 prior to execution of this macro
instruction.
type
specifies whether the record will be deleted by key or retrieval
address as follows:
K
Record key
R
Retrieval address as obtained by the user from DCBLPA in the
data control block.
1limit

specifies the address of a field containing either the record key
or the retrieval address. The retrieval address must be in a four-
byte field, beginning on a doubleword boundary. If (0) is written,
the address must be loaded into parameter register 0 prior to
execution of the macro instruction.

CAUTION: Exceptional conditions, including "invalid retrieval address"”
and "key not found," resulting from the execution of a DELREC macro
instruction cause control to be passed to the user's synchronous error
exit (SYNAD) routine. In this case, the general registers and the
exceptional condition fields of the data control block are set as shown
in Appendixes B and F. DELREC by retrieval address may not be used with
a shared data set.

PROGRAMMING NOTE: This macro instruction releases any page-level inter-
locks established by other macro instructions referring to the same DCB.
Rules for sharing VISAM data sets are given in Appendix K.

RELEX -- Release Read Exclusive Record (R)

The RELEX macro instruction (for VISAM) makes a record of a shared
data set available to other users after the record has been read with a
READ exclusive (type KX) macro instruction.

T L
Name | Operaticn|Operand
1 1

| m

r
|
L
r
|
|
L

. S |

T )

[symbol] | RELEX | dcb- Jaddrx
|
i

dcb
specifies the address of the data control block opened for the data
set being processed. If (1) is written, the address of the data
control block must be loaded into parameter register 1 prior to
executing the macro instruction.

Access Methods: VISAM 53



CAUTION: Exceptional conditions resulting from the execution of a RELEX
macro instruction cause control to be passed to the user's synchronous
error exit (SYNAD) routine. In this case, the general registers and the
exceptional condition fields in the data control block are set as shown
in Appendixes B and F.

If this macro instruction is included in a module that is declared
privileged (through use of the DCLASS macro instruction), the address
ofa save area must be placed in register 13 before execution of this
macro instruction.

PROGRAMMING NOTE: Rules for sharing VISAM data sets are given in Appen-
dix K.

54



VIRTUAL PARTITIONED ACCESS METHOD

The virtual partitioned access method (VPAM) consists of the TSS/360
data set management facilities that enable a user to access partitioned
data sets. Each partitioned segment (oxr member) is a complete VSAM or
VISAM data set in itself. The allowable organizations of the records
within members are the same as within VSAM or VISAM respectively. VPAM
may be used only to store or retrieve data set members on direct access
devices.

Once a partitioned data set has been defined and connected to the
system by previous user (or system) issuance of a DCB, DDEF, and OPEN
macro instruction the user may employ the VPAM macro instructions (FIND
and STOW) to locate its members. When the member is opened and located
via a FIND macro instruction, the macro instructions, appropriate to the
particular member's organization (i.e., VSAM or VISAM), can be used to
process the member. It should be noted that although a member is
defined by the same DDEF and DCB macro instructions that defined the
partitioned data set, the member is not opened until a VPAM FIND macro
instruction is executed. The VPAM macro instructions are briefly
described below.

FIND locates an individual member within a VPAM data set and opens the
member for processing. To process the records within the member,
appropriate VISAM and VSAM macro instructions can be employed.

STOW causes a VISAM or VSAM data set, previously defined to the system
as a partitioned data set member, to be incorporated or deleted
from a partitioned data set. It also adds, changes, deletes, or
replaces member names or aliases and allows a user to enter
unique data, describing the member, into an index.

Detailed explanations of each of the above macro instructions and the
formats in which they may be specified are shown below. Further infor-
mation pertaining to VPAM data set management and the related macro
instructions can be found in IBM System/360 Time Sharing System:
Assembler Programmer's Guide, Form C28-2032.

FIND -- Find a Member of a Partitioned Data Set (S)

The FIND macro instruction (for VPAM) searches a partitioned organi-
zation directory to locate a directory entry for a member and optionally
places the user's data associated with the member into the specified
area. The member is opened and positioned for processing.

f T T h |
| Name | Operation|Operand |
L R L

r 1 L} "
| [symbol] |FIND | dcb-addr,name-addr [, area—-addr,length-value} |
L 1 1 J
dcb

specifies the address of the data control block opened for the data
set being processed.

name
specifies the location of the eight-character member name, or
alias, that is to be used to locate the member.

area
specifies the location of the eight-character member name, or
alias, that is to be used to locate the member.

Access Methods: VPAM 55



length
specifies the length, in bytes, of the area provided for reading in
the user data.

CAUTION: If area is specified, length must be specified. In addition,
area and length must be specified for shared data sets if user data is
present. If not specified, the task is abnormally terminated.

The FIND macro instruction causes an abnormal termination if any con-
ditions are discovered that make continuation impossible.

If this macro instruction is included in a module that is declared
privileged (through use of the DCLASS macro instruction), the address of
a save area must be placed in register 13 before execution of this macro
instruction.

PROGRAMMING NOTES: 2After execution of the FIND macro instruction, gen-
eral register 0 contains the length of the user data in the POD. Gener-
al register 1 points to the parameter list shown below.

PARAMETER LIST

area buffer ]
4

EG. P. Register f}nn-{dcb—addr ]Word 0
iname—addr }Word 1
i*Pointer to user-data area }Word 2
E*Pointer to Length, in bytes, of user }Word 3
L

*These are zero if not supplied in the
macro instruction.

The length, in bytes, of the user area buffer is placed in a word
immediately following word 3 of the parameter list by the macro expan-
sion. However, if the user constructs his own parameter list, the word
containing this length may be placed in some other location.

If the length specified is less than the actual length of the user
data in the POD, both area and length operands are ignored and general
register 15 contains appropriate error code (hexadecimal 10).

Rules for sharing VPAM data sets are given in Appendix K.

For shared VPAM data sets, the following interlocks are set by a FIND
macro instruction:

1. VISAM members are:
e write interlocked when opened for OUTPUT.
e read interlocked when opened with any other option.
2. VSAM members are:
e read interlocked when opened for INPUT.
¢ write interlocked when opened with any other option.
After execution of the FIND macro instruction, bits 24 through 31 of
general register 15 contain one of the following codes, indicating the

status of the operation. The user should take appropriate action
depending on the code returned.

56



r T a
| Code | |
| (Hexadecimal) | Definition |
L ]

I i 1
| 00 |Successful completion of FIND |
| |
| o4 |Member or alias was not located by FIND |
| | |
| 08 |Data control block, indicated in the macro instruction |
| |is in use for creating a member. Execution of a STOW |
| Jmust be complete before this FIND can be executed |
| I I
| 10 |Length specified in the macro instruction is not large |
| |enough to contain user data |
| |
| 14 |Member to be located is already open for this data con- |
| |trol block, due to previous FIND |
L 1 4

L- AND E-FORM USE: All operands are optional in the L-form of this
macro instruction; register notation may not be used. All operands are
optional in the E-form; register notation may be used. All operands not
supplied in the L-form must be supplied in the E-form.

STOW —— Manipulate Partitioned Organization Directory (R)

The STOW macro instruction (for VPAM) causes a partitioned data set
member to be incorporated or deleted from a partitioned data set. This
macro instruction is also used to add, change, delete, or replace a
member name or an alias. It also provides for storage of additiomnal
information in the partitioned organization directory (POD) in the form
of user data.

r T 1
| Name | Operation |Operand |
[ [ 4
T 1 = 1
| [symbol] | STOW | dcb- jaddrx\, |area- Jaddrx|| ,type~code |
I | | M (0) |
L L 4
dcb

specifies the address of the data control block opened for the data
set being processed. If (1) is written, the address must be loaded
into parameter register 1 before execution of this macro
instruction.

area
specifies the address of an area constructed by the user. The con-
tents of this area depend on the type of STOW requested. (Refer to
"Programming Notes.") If (0) is written, the address must be loaded
into parameter register 0 before execution of this macro instruc-
tion. For type-R STOW, area does not have to be specified, and if
not specified, the original user data will be unchanged.

type
specifies the type of STOW being requested by one of the following
codes:
N Add a new member and close the member.

NA Add one or more new aliases.

Access Methods: VPAM 57



R Replace the user data associated with a member and close the
member.

U Replace the user data associated with a member but do not close
the member.

D Delete a member from the data set; the directory entries for
the member and all of its aliases are deleted and the space
occupied by the member is made available for subsequent use.

DA Delete one or more aliases.
Cc Change the name of a member.

CA Change the name of an alias.

CAUTION: A member may not be subsequently referred to by the same data
control block after a type-N or —R STOW until a FIND of that member is
again requested since these types of STOW close the member.

STOW abnormally terminates the task if any conditions are discovered
that make continuation impossible.

If this macro instruction is included in a module that is declared
privileged (through use of the DCLASS macro instruction), the address of
a save area must be placed in register 13 before execution of this macro
instruction.

PROGRAMMING NOTES: Only type-R STOW is permitted on a shared data set
opened for input. The format of the area used by the STOW macro
instruction depends on the type of STOW requested. It is the user's
responsibility to construct the area and pass the address of the area to
STOW in the area operand of this macro instruction. The area require-
ments are:

Types N and U: The area must be at least 12 bytes long and begin on a
fullword boundary.

bytes 8 N

Name User Data

.-_-_,-._..

I
=

p e e ]

R e

Name - Eight-character member name

N - Number of bytes of user data (02N2=510)

User Data - Contains the variable data supplied by the user. The
data are stored in the POD and can be retrieved by

means of the FIND macro instruction.

Types NA and DA: The area must be at least 20 bytes long and begin on a
fullword boundary.

bytes 8 4 8 8 8

Member Name M Alias 1 Alias 2 Alias M

sesscecee

,._-,...__
b e —
R
R .
=t — =
e o - — o
| IR U}

Member Name - Name of the member to which the aliases are linked
or are to be linked.

58



M - Number of aliases to be added or deleted.
Aliases - The aliases to be added or deleted;
Type D: The specified area must contain the member name that is to be

deleted. It is eight bytes long. When a member name is deleted, all of
its aliases are also deleted.

bytes 8

Member Name

s

b e b o

Type C: The name of the member and the name to which it is to be
changed are in this area (16 bytes).

r T q
bytes | 8 | 8 |
b = 1
| Member Name | New Member Name |
L i 3
Type CA: The area specified must be 24-bytes long.
r 1 T 1
bytes | 8 | 8 | 8 |
b + t 1
| Member - | 014 aAlias | New Alias |
L ] L J
Member - The eight-character name of the member with which the

old alias is associated.
0l1d Alias - The eight-character alias being changed.

New Alias - The eight-character alias being used for the
replacement.

Type R: If any user's data is specified, the length must be four bytes
longer than the length of the data and begin on a fullword boundary.

The additional four bytes are required to specify the length of the spe-
cified data.

bytes 4 N

N User Data

—
T
L e

N - Number of bytes of user's data to be placed in the POD
(0<N<510)

User Data - Contains the variable data supplied by the user. The
data is stored in the POD, and can be retrieved by
means of the FIND macro instruction.

The user must have exclusive access to a member in order to issue
type-C or type-D STOW; that is, he must have opened the data set with an
OPEN option that causes the member to be write-interlocked.

Member interlocks are released by CLOSE (referring to the same DCB
that caused the interlock to be set), type-R STOW, or a subsequent FIND.

Access Methods: vVPAM 59



Rules for sharing VPAM data sets are also given in Appendix K.

After execution of the STOW macro instruction, bits 24 through 31 of
general register 15 contain one of the following codes indicating the
status of the operation. The user should examine this code to determine
the course of action.

i Code (hex) i Definition i
{ 00 iSuccessful completion of STOW 1
! ou =New name or alias is already in use (N, NA, C, or CA) {
‘ 08 }Member name is not in POD (U, D, DA, or Ch) {
‘ 10 =01d member name is not in POD (C) ; alias is not in POD :
| | (DA) ; old alias is not in POD (CA) |
i 14 iInvalid type STOW requested i

60



BASIC SEQUENTIAL ACCESS METHOD

The basic sequential access method (BSAM) consists of the TSS/360
data set management facilities that enable a user to access unblocked
physical sequential data sets. Since BSAM does not provide a user with
blockings/deblocking or buffering routines it should be used primarily to
process unblocked records (QSAM has been provided to facilitate the pro-
cessing of blocked records) . A physical sequential data set can be
stored on, or retrieved from, disk, tape, or cards, and can be printed
out by a printer. The record format within each such data set can be
fixed-length (blocked or unblocked), variable-length (blocked or
unblocked) , or undefined-length (unblocked only). Such attributes are
unique for each data set; they must be defined to the system before a
data set can be accessed by BSAM. The macro instructions provided to a
user, by BSAM, for accessing a data set in the appropriate manner, are
indicated below.

READ causes a request for a transfer of a physical record, from an
I/0 device directly to a specific virtual storage input area,
to be recorded in a control block (DECB) and placed on an I/O
request queue. Control is then returned to the user's program;
the request is subsequently executed by the system when the
device is available. If this physical record contains several
logical records, the user must create his own deblocking rou-
tines to access the individual logical records. In such a
case, the GETPOOL and GETBUF macro instructions are very
useful.

WRITE causes a request for a transfer of a physical sequential rec-
ord, from a specific storage area to an I/0 device (directly,
without using a buffer area), to be recorded in a control block
(DECB) and placed on an I/0 request queue. Control is then
returned to the user's program and the request is subsequently
executed by the system when the device is available. If a
physical record is to contain several logical records, the pro-
grammer must write his own blocking routines to include the
logical records in the storage area being transferred.

CHECK checks the queue of control blocks (DECBs) containing the
requests for read or write operations to determine if those
requests have been satisfied. It also indicates whether errors
or exceptional conditions have occurred while satisfying the
request.

DODECB removes all unchecked DECBs (i.e., created by issuing READ and
WRITE macro instructions) from a queue of unchecked DECBs main-
tained by the system.

GETPOOL requests allocation of an area in virtual storage for use as a
buffer pool and assigns that area to a data control block
describing the data set.

GETBUF obtains a buffer work area from a buffer pool previously
assigned to a data control block (either by a GETPOOL macro
instruction or as a result of having selected the buffer
options provided in the DCB macro instruction) .

FREEBUF returns a buffer work area, obtained by a GETBUF, to its buffer
pool

FREEPOOL releases areas previously assigned to specified data control
blocks as buffer pools (either by a GETPOOL macro instruction
or as a result of buffer options specified by the DCB macro
instruction) .

Access Methods: BSAM 61



BSP backspace one physical record or block on the current magnetic
tape or direct access volume regardless of the direction in
which data is being stored or retrieved on that device.

CNTRL provides a control for card stacker selection, printer carriage
control, and magnetic tape positioning.

PRTOV controls the page format for an on-line printer by testing
channels 9 and 12 on the printer control tape, as overflow
indicators, and allows the user to provide an overflow subrou-
tine to reposition the printer at any desired channel on the
printer control tape.

FEOV advances the system to the next volume of a multivolume data
set before the physical end of the current volume is reached.

POINT causes repositioning of tape or direct access volumes to a spe-
cified block within a data set on that device.

NOTE makes available to the problem programmer the relative position
within a volume of a block just read or written,

Detailed explanations of each of the above macro instructions and the
formats in which they may be specified are shown below. Further infor-
mation pertaining to BSAM data set management and the related macro
instructions can be found in IBM System/360 Time Sharing System:
Assembler Prxogrammer's Guide, Form C28-2032.

READ -- Read a Block (S)

The READ macro instruction (for BSAM) transmits a block of data from
an input data set to a user-specified virtual storage area. To allow
overlap of the 1I/0 operation with processing, the READ macro instruction
returns control to the user's program before the input operation is
complete.

The READ macro instruction may be used to read backwards from magnet-
ic tape.

T T
Name | Operation|Operand
1 1

T T

[symbol] |READ | decb-symbol, type- {SF| SB} ,dcb-addr
| | rarea-addr [,1length- {'S"'|value}]

L

PO
e o e ol o e

L

decb
specifies the name to be assigned to the data event control block
(DECB) , constructed as part of the expansion of the macro instruc-
tion. The DECB is illustrated in Appendix B, Table 7.

type
specifies one of the following:
SF
sequential forward reading of a physical sequential data set.
SB

sequential backward reading from a magnetic tape.
dcb

specifies the address of the data control block opened for the data
set being processed.

62



area
specifies the address of an area in virtual storage into which the
block of data is to be read. If SF is written in the type field,
this operand specifies the address of the first byte of the area;
if SB is written, the address of the last byte is specified.

length
specifies, for format-U records, the number of bytes to be trans-
mitted. If *'S' is written, the program attempts to read the maxi-
mum size specified in the data control block, with maximum block-
size of 32,767 bytes. If this parameter is specified for format-F
or format-V records, it is ignored. For format-F and -V blocks,
length is obtained from the BLKSIZE field of the data control
block.

CAUTION: Abnormal termination occurs if:
1. The specified data control block is not validly opened.

2. The specified DECB is already in use by a previous READ or WRITE
macro instruction; i.e., it has not been checked by a CHECK macro
instruction.

3. An attempt is made to issue a READ macro instruction that causes
the number of unchecked READ and WRITE macro instructions to exceed
the DCBNCP parameter specified in the data control block.

4. An attempt is made to read on a device that cannot execute the
request, such as read the printer.

5. BAn attempt is made to read an OUTPUT data set.

If this macro instruction is included in a module that is declared
privileged (through use of the DCLASS macro instruction), the address of
a save area must be placed in register 13 before execution of this macro
instruction.

PROGRAMMING NOTES: The READ macro instruction returns control to the
user's program before the transmission of data has been completed. To
determine whether the read operation is completed, it is necessary to
issue the CHECK macro instruction before using the data transferred into
the specified area.

The DECB employed for a read operation must not be reused or modified
until the CHECK macro instruction is issued.

After a read operation has been checked, the length of a format-U
block or a truncated block in a fixed-length blocked data set can be
determined from the count field of the Channel Status Word in the DECB.
The number of READs may not exceed that specified in the DCBNCP field in
the data control block without using a CHECK macro instruction.

A data set written on a direct-access device with track overflow spe-
cified must have track overflow specified for all reads referring to
that data set. If a track selected by a READ macro instruction is
flagged as defective, the alternate track is automatically selected.

For any device, the operator is notified if any intervention is required
to complete the operation.

If a READ (type SB) macro instruction is issued for a format-V rec-
ord, the address of the first byte of the record can be calculated by
subtracting the count field in the channel status word from the maximum
block size and subtracting the result from the area address.

Access Methods: BSAM 63



If the length specified in the READ macro instruction for format-U
records is less than the length of the actual physical record, the extra
bytes of data are not transmitted.

The first four bytes on format-V blocks contain control information
passed with the record, when read. The area specified by the area
operand must be large enough to accommodate the maximum record size.

L—- AND E-FORM USE: The L-form macro instruction results in a macro
expansion consisting of only a parameter list (DECB). The format of the
DECB is described in Appendix B.

The E-form macro instruction results in a macro expansion consisting
of only executable instructions. The E-form macro instruction uses the
DECB built for it by the L-form macro instruction.

If the E-form is used, either a DECB symbol or (1) must be specified;
if (1) is specified, the address of a DECB must be loaded into register
1 before execution of this macro instruction. Any E-form parameter
replaces the corresponding specified optional or required parameter in
the DECB. If a parameter is not specified in the L-form, it must be
specified in the E-form. Certain required parameters for the E- and
I-form are:

r T T 1
| Operand | L-Form | E-Form |
L [ 1 {
L} Ll ¥

| decb | required | decb- |symbol |
| | | M I
[ [ , [ , |
| type i required | required |
] | | |
| MF | MP=I, | MF=E i
L L L 4

EXAMPLE: In example 1, a DECB, with the symbolic name ADECB, is pro-
duced as part of the in-line expansion. It indicates that forward-
reading of the next block in the data set associated with data control
block INDCB should be performed using area INAREA. The length operand,
not written in this example, is required for format-U records.

In example 2, the type operand indicates backward reading of a block
of records from the data set associated with the data control block
INDCB. For format-U records, 100 bytes are transmitted from INAREA+99
to INAREA. If 'S' is specified for the length, the maximum block size
is transmitted. For records other than format-U, the length parameter
is ignored.

EX1 READ ADECB,SF,INDCB,INAREA
EX2 READ ADECB,SB,INDCB,INAREA+99, 100
WRITE —— Write a Block (S)

The WRITE macro instruction writes (for BSAM) a block of data from
virtual storage on a physical sequential data set. To allow overlap of
the I/0 operation with processing, the WRITE macro instruction returns
control to the user's program before the output operation is complete.

64



il T
Name | Operation|Operand
] ()

T 1
[symbol} |WRITE | decb-symbol, type-SF,dcb-addr,area-addr
| [,length- {"S'|value}]
i

b o e b e el

o e o —

decb
specifies the name to be assigned to the data event control block
(DECB) , constructed as a part of the expansion of this macro
instruction. (Refer to Appendix B, Table 7 for an illustration of
the DECB.)

type
specifies SF for sequential forward writing of the block as part of

the data set.

dcb
specifies the address of the data control block opened for the data
set being processed.

area
specifies the starting address of the area in virtual storage that
contains the block of data to be written. The user must construct
the record-length information in front of each block of format-V
records.

length

specifies, for format-U records, the number of bytes to be trans-
mitted. If 'S' is written, the maximum block length (specified in
the data control block) for the data set is used. If this paramet-
er is specified for format-F or format-V records, it is ignored.
For format—-F blocks, the length value is obtained from the DCBBLK
field of the data control block. For format-V blocks the length
value is obtained from the first two bytes of the output area (LL).

CAUTION: Abnormal termination occurs if:

1. A WRITE macro instruction is issued with record length longer than
a track, unless track overflow is specified in the DCB macro
instruction.

2. The data control block specified is not validly opened.

3. The DECB specified is already in use by a previous READ or WRITE
macro instruction; i.e., it has not been checked.

4. An attempt is made to issue a WRITE macro instruction which causes
the number of unchecked READ and WRITE macro instructions to exceed
the DCBNCP parameter in the data control block.

5. An attempt is made to write on a device which cannot execute the
required operation,e.g., write on the card reader.

6. An attempt is made to write a data set opened for INPUT or RDBACK.

If this macro instruction is included in a module that is declared
privileged (through use of the DCLASS macro instruction), the address of
a save area must be placed in register 13 before execution of this macro
instruction.

PROGRAMMING NOTES: The WRITE macro instruction returns control before
actual transmission of data is completed. To determine whether a write
operation has been completed, the CHECK macro instruction must be issued
for that DECB. The DECB employed for the write operation and the virtu-

Access Methods: BSAM 65



al storage the block occupies must not be altered or used until the
CHECK macro instruction is issued for that DECB.

If a track selected by a WRITE macro instruction is flagged as defec-
tive, an alternate track is automatically utilized. For any device, the
operator is notified automatically if any intervention is required to
complete the operation.

If the data set has been opened for UPDAT, the following considera-
tions apply.

e The WRITE macro instruction returns a block to a physical sequential
data set residing on a direct-access device. The data set must be
opened with the UPDAT option. Only the most recently read block can
be updated and returned.

e The update mode is provided only for data sets on direct-access
devices. Although it is not necessary to update and return each
block, the sequence of operations for those blocks that are updated

must be:
READ Block A
CHECK Await completion of read

WRITE Block A

CHECK Await completion of write

Thus, only the block last read, or its replacement, can be returned
to the data set. Two READ macro instructions can be issued without
an intermediate WRITE; this causes the first block to remain
unchanged on the device.

L- AND E-FORM USE: The L-form macro instruction results in a macro
expansion consisting of only a parameter list (DECB). The format of the
DECB is described in Appendix B.

The E-form macro instruction results in a macro expansion consisting
of only executable instructions. The E-form macro instruction uses the
DECB built for it by the L-form macro instruction. Only MF=E should be
written for the MF= operand in the E-form, because it is the DECB symbol
which names the parameter list of the L-form.

If the E-form is used, either a DECB symbol or (1) must be specified.
If (1) is specified, the address of a DECB must be loaded into register
1 before execution of this macro instruction. Any E-form parameter
replaces the corresponding specified optional or required parameter in
the DECB. If a parameter is not specified in the L-form, it must be
specified in the E-form. Certain required parameters for the EF and L
forms are:

66



r H H 1
| Operand | L-Form | E-Form |
; : : + 1
| decb | required | decb- |symbol |
| | | M |
| | _ | [
| type | required | required |
| | | |
| MF | MF=L | MF=E |
L i i 4

EXAMPLE: The proper use of a WRITE macro instruction for format-U reco-
rds is shown. A data event control block is constructed as part of the
in-line macro expansion. A WRITE operation is to be performed from AREA
to the data set defined by DCBOUT. Eight-hundred data bytes are to be
transmitted for a format-U record, but for formats-V or -F, the length
parameter is ignored.

EX1 WRITE ADECB, SF, DCBOUT, AREA, 800

CHECK ——- Wait for and Test Completion of READ or WRITE Operation (R)

The CHECK macro instruction (for BSAM) waits, if necessary, for com-
pletion of an I/0 operation requested by a READ or WRITE macro instruc-
tion and detects any errors and exceptional conditions that may occur.
If read or write operations are completed normally, the program resumes
execution at the instruction after the CHECK macro instruction.

As required, the CHECK macro instruction passes control to appropri-
ate exits that are specified by the user in the data control block for
error analysis (SYNAD) and end-of-data set (EODAD) . The CHECK macro
instruction automatically initiates volume switching for input data
sets. Additional space for output data sets is automatically obtained
when current space is filled and more WRITE macro instructions are
issued.

The user must issue a CHECK macro instruction to test the I/0 opera-
tion associated with a data event control block (DECB) before modifying
or reusing it.

1 )
Name |Operation|Operand
L [l

| (n

1
!
1
v
]
I
L

N e

T T
[symbol] | CHECK | decb- Jaddrx

|

L

decb
specifies the data event control block (DECB), created as part of
the expansion of a READ or WRITE macro instruction.

If (1) is written, the DECB address must be loaded into parameter
register 1 before execution of this macro instruction.

CAUTION: If this macro instruction is included in a module that is
declared privileged (through use of the DCLASS macro instruction), the
address of a save area must be placed in register 13 before execution of
this macro instruction.

PROGRAMMING NOTES: The CHECK macro instruction must be used to test for
completion of every READ or WRITE operation. For each data set, the
CHECK macro instruction must be issued in the same order in which the
READ or WRITE operations were requested. A CHECK must be issued before

Access Methods: BSAM 67



the number of outstanding READ or WRITE macro instructions exceeds the
DCBNCP count (specified in the DCB macro instruction) in the data con-
trol block for the data set.

If the CHECK macro instruction tests a DECB that has not been posted
as complete, the user's task waits until the event is completed.

If the CHECK macro instruction tests a READ operation that attempted
to gain access to a block after the last block of a data set had been
read, control is passed to end-of-data set exit (EODAD) whose address is
provided in the EODAD field of the data control block. The task is
abnormally terminated if an EODAD address is not supplied. Refer to
Appendix C for contents of registers when the EODAD routine is entered.

If the CHECK macro instruction determines that the READ or WRITE
operation was not completed correctly because of an I/0 error, control
is given to the user's Synchronous Error Exit (SYNAD) routine. Refer to
Appendix B.

The RETURN macro instruction may be used to return to the calling
program from the SYNAD routine. The program may then proceed, if
desired, as if an error had not occurred. For input from any device, or
for output to a unit record device, processing may be continued. In all
other cases, the data control block should be closed.

The task is terminated if an error is detected by the CHECK macro
instruction and the user has not provided a SYNAD routine.

If the CHECK macro instruction detects an end-of-volume condition,
when processing a multivolume data set, processing continues with the
next volume. If there are no additional volumes, the user's EODAD rou-
tine is entered.

A hardware-detected incorrect-length block is not interpreted as an
error by the CHECK macro instruction if format-U records or truncated
blocks of format-F records are being read. To determine length of the
block actually read, the user can examine the channel status word (part
of status indicators pointed to in the DECB) after issuing the CHECK
macro instruction. The first byte of a format-U record read backwards
from magnetic tape may be located by the same method.

The following table lists the results of incorrect-length error in
which length of the record read is different from the DCBBLK for
formats-F and U, or the 1LL field for format-V.

68



r T 1
| RECFM | Control Passed To SYNAD |
L 4

I i 1
| Fixed (F) | Yes ]
[ 1

v ¥ ',
| Fixed blocked (FB) |If block is short by a nonmultiple |
| |of LRECL |
L [] "
T . T

| Fixed standard (FS) | Yes |
L

I 1
| Fixed blocked If block is short by a |
| standard (FBS) nonmultiple of LRECL* |
1

I i
| Variable (V) Yes |
1

F 1
| Variable blocked (VB) Yes |
1 (1 _'
| | T

| Undefined (U) | No |
1 ]

k 1
|*If block is short by a multiple of LRECL, next record causes an end- |
| of-volume condition. If current volume is last of the data set, con-—-|
| trol is passed to EODAD. If current volume is not the last, proces- |
| sing continues on next volume. |
L 1

EXAMPLE: The CHECK macro instruction tests for completion of I/0 opera-
tions in the order in which they are requested. The operand field con-
tains the name of the data event control block specified in the read or
write request.

EX1 READ INDECB,SF,INVEN,WORK, 100
CHECK INDECB
EX2 WRITE OUTDECB, SF,MNTHRPRT,WORK, 100
CHECK OUTDECB
DODECB —-- Remove Unchecked DECBs From a Data Set's DECB Queue (R)

The DODECB macro instruction (for BSAM) removes all unchecked DECBs
from a queue of unchecked DECBs maintained by the system. If all of the
DECBs within the queue have not been posted complete, the I/0 requests
associated with them are purged. DQDECB will not proceed until all
DECBs have been posted complete either due to the purge or the fact that
they have actually completed.

Access Methods: BSAM 69



T T
Name | Operation|Operand
1

r
|
1
r
|
|
L

b e e s e

[
[symbol]IDQDECB }decb— addrx
| | (n
1

L

decb
specifies a data event control block (DECB) associated with the
data set for which the DECB dequeueing will be performed. The DECB
need not currently be in the DECB queue.

If (1) is written the DECB address must have been loaded into para-
meter register 1 before execution of this macro instruction.

PROGRAMMING NOTES: The DQDECB macro instruction is normally used in the
SYNAD routine when multiple READ or WRITE macro instructions have been
issued without an intervening CHECK. If DQDECB is issued, all unchecked
READ or WRITE requests must be reissued. The I/0 operations associated
with the data set that were not checked are removed from the system. If
any of these DECBs are checked after the DQDECB without an intervening
READ or WRITE, the CHECK will be treated as a NOP.

This facility is of use to users of the IMSK facilities of the DCB
when they have multiple READ or WRITE requests unchecked and want to
initiate their own exrror retry procedures, or to the user with multiple
unchecked READ or WRITE requests who wants to reinitiate the sequence of
I/0 operations.

Upon return from DOQDECB, register 0 contains a count of the number of
unchecked DECBs in the queue, and register 1 contains a pointer to the
1ist of unchecked DECBs. This queue is read-only and is only valid
until the next I/0 operation is initiated on the data set.

GETBUF -- Get a Buffer From a Pool (R)

The GETBUF macro instruction (for BSAM) obtains a buffer from a spe-
cified buffer pool. Buffers acquired by a GETBUF must be returned by a
FREEBUF before they may be obtained again.

T T
Name | Operation|Operand
1 (R

r
|
1
r
|
|
L

e e e e e

v T
[symbol] | GETBUF | dcb- jaddrx {,register-absexp
| | M

L

1

dcb
specifies the address of the data control block opened for the data
set being processed.

If (1) is written, the address must have been loaded into register
1 before execution of this macro instruction.

register
specifies a general register into which the control program is to
place the address of the buffer.

CAUTION: The following error conditions result in termination of the
task:

1. The dcb operand specifies an invalid data control block.
2. Buffer size is 0 or greater than 32,760.

70



3. Number of buffers in pool is 0 or greater than 255.
4. Data control block not open.

The address of a save area must be placed in register 13 before
execution of this macro instruction.

PROGRAMMING NOTES: A buffer pool must have been assigned to the data
control block by use of a GETPOOL, or the buffer option in the DCB macro
instruction; i.e., BUFL= and BUFNO= are supplied in the DCB macro
instruction. Each successive GETBUF macro instruction issued obtains a
buffer in the order in which it exists in the buffer pool. For example,
if a buffer pool contains five buffers, five successive GETBUF macro
instructions would obtain five successive buffers from the buffer pool.

Buffers must be returned to the pool by the FREEBUF macro instruction
before they can be obtained again.

If no buffer is available within the pool, the contents of the
register specified in the GETBUF macro instruction will be set to zero
rather than an address.

The address of the buffer pool is placed in the DCBBCN field of the
data control block.

EXAMPLE: The GETPOOL macro instruction is used to define a buffer pool
of 10 buffers of 100 bytes each. The GETBUF macro instruction is used
to obtain the address of an available buffer in register 5. That buffer
is then used to hold an input block when a data set is being read. (The
length operand is not required in the READ macro instruction) . The
buffer is released by the use of the FREEBUF macro instruction.

GETPOOL INDCB, 10, 100
OPI:E:N (INDCB, (INPUT))
GE;:BUF INDCB, (5)
REI:\D DECB1, SF,INDCB, (5)
FR]:E:EBUF INDCB, (5)

FREEBUF -- Return a Buffer to a Pool (R)

The FREEBUF macro instruction (for BSAM) returns a buffer (previously
obtained by a GETBUF macro instruction) to a buffer pool so that it will
be freed and can be obtained again by GETBUF. It is not necessary to
free all buffers prior to issuing the CLOSE macro instruction.

Access Methods: BSAM 71



T T T 1
| Name |Operation|Operand |
% } 4 1
| [symbol] | FREEBUF |dcb-|addrx|,register-absexp |
| | | m I
L X A1 J
dcb
specifies the address of the data control block opened for the data
set being processed.
If (1) is written, the address must have been loaded into parameter
register 1 before execution of this macro instruction.
register

specifies the general register that contains the address of the
buffer being returned to the pool.

CAUTION: Error conditions that result in termination of the task are:

1. The dcb operand specifies the address of an invalid data control
block.

2. Buffer pool address is not in data control block (GETBUF was not
invoked before FREEBUF) .

3. Buffer address specified by user does not belong to buffer pool.

4. Buffer specified by user is not in use (GETBUF was not used to
obtain buffer) .

The address of a save area must be placed in register 13 before
execution of this macro instruction.

PROGRAMMING NOTES: To release a buffer by FREEBUF, a buffer pool must
have been assigned to the data control block, and the specified buffer
must have been obtained by the GETBUF macro instruction.

GETPOOL -- Get a Buffer Pool (R)

The GETPOOL macro instruction (for BSAM) requests allocation of an
area of virtual storage for use as a buffer pool. The buffer pool is
assigned to the specified data control block:

T T L]

| Name | Operation|Operand

[ L 4

r 1 !

| [symbol] | GETPOOL |dcb-|addrx|,|number-value,length-value

| | | M (0)

L 4 L

dcb
specifies the address of the data control block to which the buffe
pool is to be assigned. If (1) is written, the address must be in
parame