IBM System/360 Operating System
PL/I (F) Compiler

Program Logic Manual

Program Number 3605-NL-511

This manual describes +the internal.

design of the IBM System/360 Operating
System PL/I (F) Compiler. It is aimed at
personnel responsible for analyzing program

operations, diagnosing malfunctions, and.

changing the program format for special ox
national language usage. The information

provides a guide for effective use of the

program listings. Program logic informa=
tion is not necessary for the use and
operation of the program; . .therefore, dis-

tribution of this publication is limited to.

those -~ persons with the ‘aforememtioned
requirements. :

Restricted Distribution

Form Y28-6800-1

Program Logic

PREFACE

This publication is organized in three
sections. Section 1 is an introduction
~describing the relationship between the
compiler and the Operating System, and the
overall organization of the compiler. Sec-
tion 2 1is a description of the compiler
phases, including a general description of
each logical phase followed by descriptions
of each of the physical phases contained in
the 1logical phase. Section ‘3 consists of
flowcharts and routine directories. The

flowcharts show the relationship between
the routines of each phase, while the
directories 1list the routines and their
functions.

The appendixes appearing at the end of
the publication contain topics of special
importance and reference material.

The convention has been followed in this
manual of printing all PL/I language items
in block capitals.

Prerequisite to the use of this publica-
tion are the following:

IBM System/360, Principles of Operation,
Form A22-6821

IBM System/360 Operating System, PL/I
(F) Programmer's Guide, Form C28-6594

Major Revision (December 1966)

This edition, Form Y28-6800-1, obsoletes

Form Y28-6800~0.

IBM_System/360 Operating _System, PL/I
Languagqge Specifications, Form C28-6571

Although not prerequisite, the following
publications are related to this manual and
should be consulted:

IBM System/360 Operating System, Program
Logic Summary, Form Y28-6605

IBM System/ 360 Operating System, Sequen-
tial Access_ Methods Program Logic, Form
Y28-6604

IBM_Operating System/360, Operator's

Guide, Form C28-6540

IBM System/ 360 Operating System, Control
Program_Services, Form C28-6541

IBM System/360, System

Programmer's
Guide, Form C28-6550)

IBM__Operating_System/360, Storage Esti-
mates, Form C28-6551

IBM System/ 360 Operating System,
Generation, Form C28-6554

System

IBM System/360 Operating System, PL/I
Subroutine Library, Program Logic__Manu-
al,y, Form Y28-6801

significant

changes have been made throughout the manual, and this new edition should

be reviewed in its entirety.

RESTRICTED DISTRIBUTION: This publication is intended primarily for use by

IBM personnel involved in program design and maintenance.

It may not be

made available to others without the approval of local IBM management.

Copies of this
Branch Offices.

and other IBM publications can be obtained through IBM

A form for reader's comments appears at the back of this publication.

It may be mailed directly to IBM.

Address any additional comments

concerning this publication to IBM United Kingdom Laboratories Ltd.,

Programming Systems
England.

© 1966 International Business Machines Corporation

Publications, Hursley Park, Winchester, Hampshire,

SECTION 1: INTRODUCTION. .

Purpose of the Compiler. .

-

The Compiler and Operating System/360.

~Compiler Organization.

Logical Phases. .

.

Compile-time Processor

Read-In Phase.

- e

Dictionary Phase . .
Pretranslator Phase.
Translator Phase . .
Aggregates Phase . .
Pseudo-Code Phase. .
Storage Allocation Phase
Register Allocation Phase.
Final Assembly Phase . .
Error Editor Phase .

SECTION 2: COMPILER PHASES

Compiler Control and 48-Character Set

Preprocessor. . . .
Compiler Control.
Initialization

- e

S o s o o

a o 8 » o s HJe o

-

=3
V)]
1]

* o o (D

@ 0 s s o

s 8 & s & b

-

Character Translation Tables
Communications Region.

Text and Dictionary Block

Control . . .

Scratch Storage Control.
Storage Requirements .

Phase Loading.

Phase Directory.
Diagnostic Message Control
Input/Output Control .
Program Check Handling
Job Termination.
Compiler Control Modules.

Module AC. . .
Module AD. . .

The DUMP Option.

Module AE. . ..

Module AF. . .
Module AG. . .
Module AM. . .
Module J2. . -

LI I]

-
.
o]

€

. o &

e o & o o

48-Character Set Prepr cessor

Compile-time processor

Line Numbering
Phase AS . .
Phase AV . .
Phase BC . .
Phase BG . .
Phase BM . .
Module BN. .
Phase BW . .

s 8 & o 3 & B

Phase .

$ & & & 3 b 2 b
3 3 e s 0 0

The Read-In Logical Phase.
Statement Numbering.
Statement and Entry Labels

-

& o b a2 & o o

& o & & & 6 b

¢ & o

.

s e b

6 & & 2 & 8 o b o .

4 2 & 8 & 0 & 8 e b o 0 a2 s a2 o0 LRI T)

e & o & o & & 6 4 o B s @&

.

s o & o & 8 b s o

constants. - - - . - - - - - -
Operators. o @ ® e ® e ® e e =
Initial LabelsS « « o « o =« = =
Structure of the Read-In Logical
Phase. « « wu « & e e e ® e ® =
PhaSe CI &v o« ¢ o o o o o = o o
PhaSe CL 2 o ¢ o o o o o o o »
Phase CO v o o 2 o 2 o o o « =
PhaSe CS v v o o o © « « = = «

The Pretranslator Logical Phase.

The Translator Logical Phase

The Aggregates Logical Phase .

CONTENTS

Chains Constructed by Read-In.
Errors and Diagnostic Messages
The Output String. .
Identifiers. . . .

Phase CV . . «

The Dictionary Logical Phase«

Constructing and Accessing
the Dictionarye « ¢« « « « &
Testing for Consistent
Attributes « « ¢« « « o « -
Compiler Pseudo-Variables and
FUnctions « « o « o o o = -
Dictionary Entries Entry
Points. .
Phase EG
Phase EI
Phase EL
Phase EP
Phase EW
Phase EY
Phase FA
Phase FE
Phase FI
Phase FK
Phase .FO
Phase FQ
Phase FT
Phase FV
Phase

Hh
o]
R

& 4 8 6 6 & & 5 4 F B 6 6 0 B
LI TN T B B
o & 3 2 8§ b & b
8 8 3 e s o 8
¢ 5 &8 ¥ & b 4 0 B
[TS T SN T TN U B)
s 5 & & & 8 s & 3
s o & 3 &
¢ & & & & 8 3 8 s &
8 & 8 3 B o

a & & 8 8 5 ¥ 5 0

& o 2 4 &
e« & 5 o ¥ &
¢ 4 8 o b
¢ 3 & 3 b b
& & & 4 8 .
& 6 8 ¥ 8 e
@ 4 b 3 3 B
s & 6 8 8 &
L I R BT T B

el
<
.

Additions to the Text. . .
Phase GA
Phase GK
Phase GP
Phase GU
Phase HF
Phase HK
Phase HP . .

§ &8 & &

e @ @ @

¢ 5 3 3 ¥ B
P e & 8 4 6
* s 4 B
[)
o & o o
& 8 4 B
L] .
& » & & 3 8 B
s 8 ¥ &
s 8 ¢ & § 3 ¥ b
s & 4 B

Phase IA &+ o « « « o =
Phase 1IG .

Phase IL
Phase IM

e ®© w ° w e
¢ @ o e ® e
*« o @ o W »

L]
[]
L

PhasSe JK v u o o « o o » = = o
Phase TP v ¢ o « o o o o = o =

The Pseudo-Code Logical Phase. . . «

L]
]
L]

Pseudo-Code Design . . .

» F 8 5 & & 3 b s

» & 8 3 & 3 o

s 8 & 5 B B

S 6 3 5 B 3 b b s 2

S & B o & 0 b

L]

@ 8 &6 & & o & @ & o b o & & B o 8 o 5§ 5 0 W

Pseudo-Code ItemS. . « « « «
Register Description
The Use of Symbolic Unassigned
Registers . « . o -
The Use of Phy81ca1 Reglsters.
Temporary Descriptors. . . . =
Temporary Workspace. .
Phase LA . .
Phase 1B . .
Phase LD
Phase LG
Phase LR
Phase LS
Phase LV
Phase LW
Phase MB
Phase MG
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase

. w e

-
e« o e o
3

" e e @
¢« o o B
s & 8 2

-
-
-

-
-

-

-
-
N

B
& &6 8§ o & & b b & & b s)
@ o & s & & o i s s
6 o & 3 & b 3
¢ 8 o o 0 0 b 4 s
s & 4 3
» 8 e & & 8 s 2 8 s a2 s s 0
» @ @ & e & b
& 6 ¢ & 8 & b e o a4 b s}
5 e 6 & 0 2 0 b 4 4 4 0 2 2 3 0 s
. "
. o & & s

2
=3
L]
1]
s & & 8 4 @

o]
]
]
l
4
[
f
.
.
.

Allocation
PD e « o
PH .
PL
PP
PT
QF
QJ

The Storage
Phase
Phase
Phase
Phase
Phase
Phase
Phase

s o & & 8

s & o 0 ¥
3 8 e o B
@ o o 8 & 4

L]

e« & 4 & a2 ¢ & » 8 4 &

s 0 s s

The Register Allocation Logical Phase.

Phase RA @ o« « o @ o o o o o o
Phase RF . . ¢ o o o o o o =« «

9
o
]
0
[}
.
.

The Final Assembly
Phase TA .
Phase
Phase
Phase
Phase
Phase
Phase
Phase

Logical

H

=]
a & & & 8 s 8
¢ 6 o & a2 & &
e & 3 & 8 & &
e & b o & &
& & » 8 8 2 &
e 8 o o a2 b & 3
R S S ST S Y
o & o b B 6
DO S Y TR S B S |
¢ o & 3 & ® &
¢ & o & ¢ 8 o

The Error Editor Phase . . .
Phase XA « ¢ o o e o o o o o o

L]
.
L}
.

SECTION 3: CHARTS AND ROUTINE
DIRECTORIES « « =« <« « o o = = o o =

APPENDIX A: GUIDE TO PHASES AND
MODULES « « « w ¢ = « o o @ = o o =

APPENDIX B: RESIDENT TABLES<. « « « «

« 8 s 8 4 b s 0 s
£ =
N Ll

R S }
= =
& w

L T T)
£
=

.287

«290

Organization

Phase

of Keyword Tables290
of First Level Directory. .291
of Second Level Directory .291
Format of Third Level Tables . . .291
Format of Entry Requiring

Additional ComparisonsS. « « «

Format
Format
.291

Directory. . . e e s e = -
Control Code Word - CCCODE. o e

<292
292

APPENDIX C: INTERNAL FORMATS OF

DICTIONARY ENTRIES. « v « « o = = « «
1. Dictionary Entry Code Bytes . - . .

2. Dictionary Entries for Entry Points

.293
»293

.295
Entry type 1 for PROCEDURE,
BEGIN, and ENTRY statements
Entry TYPE 2 o v o o o o« = « o =
Entry Type 3 . o « « « = -
SETS List Format . . . « - o .
Entry Type 8 ¢ o o o o o o o o =«

«~295
«297
«297
.298
-298
299
.299

Entry Type 5 « « « <« »
GENERIC Entry Point. . . .

3. Code Bytes for Entry Dictionary

ENtriesS « o« o« o « o o o 2 a s o = @

-299
+299
-299

ENTRY Code Byte. « « o o « . .
Options Code Byt€e o« « o o o o

4. Dictionary Entries for Data, Label,

and Structure ItemsS . .« + v « ¢ <« =

5. Code Bytes for DATA,
STRUCTURE Dictionary Entries. . . .

6. Format of Variable Information. . .

.300
Label Variables - Obtained
from DECLARE Statement . . .
Dictionary Entries for Data
IteMSe o« o o o o o o = o © o o
Major and Minor - Structure
ENntrieSe v ¢ o o« o « o« « = =

.300
.300
.301
LABEL, and

.303
.303
.303
.304
.304

-305
-305

The First Code Byte - Other 1.
The Second Code Byte - Other 2
The Third Code Byte - Other 3.
The Fourth Code Byte - Other &4
Variable Byte. . . « . « « « «
Data Byt€s o o ¢ ¢ ¢ ¢ o o o o

.305
Uses of the OFFSET1 and OFFSET2
Slots in Data, Label, and
Structure Dictionary Entries. .
STATIC INTERNAL Structures . . .
AUTOMATIC StructuresS. . « « «
STATIC EXTERNAL and Parameter
Structures. « o« « « o « o o = =
CONTROLLED Structures. « « « « «
Non-Structured Arrays in
STATIC INTERNAL o « o o o o o
Non-Structured Arrays in
AUTOMATIC. v o o = - « - -
STATIC EXTERNAL, CONTROLLED or
Parameter Array e o s e e e = =
Non-Structured Scalar Strings
in STATIC INTERNAL . « « <« .
Non-Structured Scalar Strings
in AUTOMATICe 2 2 « o « a2 « «

.308
.308
.308

.308
.308

.308
.308
.308
.308

-309

Non-Structured Scalar Strings 2. Text Formats After The Read-In

in STATIC EXTERNAL, Phase « « « . « e ° o = o o s 2 = = «321
CONTROLLED or Parameter. . . .309 PROCEDURE Statement. e e o o = = o321
Non-Structured Non-String ENTRY Statement. . . . <« . . <« . .322
Scalars in AUTOMATIC or BEGIN Statement. o« o« « « « 2 « « 2322
STATIC INTERNAL . . « « « . « 309 END Statement. « <« « ¢ « = <« - « 322
Non-Structured Non-String IF Statement . o« ¢ o « 2 o o 2 = 2322
Scalars in STATIC EXTERNAL, DO Statement . « <« <« « <« « « -« « 323
CONTROLLED or Parameter309 ON Statement . « . « « « o « « - 2323
ASSIGN Statement «323
7. Other Dictionary Entries.« «309 WAIT sStatement.324
Label Constants - Extracted CALL Statement. . « <« . . . « . .324
by the Read-In Phase.309 GO TO Statement. ¢« « « « « « « 2324
Compiler Labels309 SIGNAL and REVERT Statements. .324
Formal parameter type 1 DISPLAY Statement324
entry. « . « < « . . . <309 DELAY sStatement. « . <« . .325
Dictionary entry for FILE . « 2310 RETURN Statement . . . <« « « . « 325
FILE ConstantS « o « « « « « « « «310 STOP, EXIT, and Null Statements. .325
FILE Parameters and Temporaries. .310 INITIAL Label DECLARE Statements .325
FILE Environment Entries310 DECLARE and ALLOCATE Statements. .325
Dictionary Entries from FORMAT Statements. . «326
Constants . . . e e« e o o e o <310 OPEN and CLOSE Statements.326
Task Identifiers and EVENT Data. .311 READ, WRITE, GET, PUT, REWRITE,
Dictionary Entries for Built-in UNLOCK, and DELETE Statements . .326

Functions . « « <« ¢ o o 2« « o « 2311
Second Code Byte o«312 3. Text Code Bytes on Entry to the

Internal Library Functions312 Translator Phases « o « o « <« o « « « 327
BCD entries. « « « « « « « « o < 312
Dictionary Entry for Parameter 4, Format of Triples « . « « « « o« « « .329

Descriptions. . « « « « . ¢ o -« 2312

ON Statements. . . « . . 2 . « . 312 5. Text Code Bytes in Pseudo-Code. . . .332
ON Condition « ¢« « « ¢ « « <« « . .313
CHECK List Entry -« . « « « « « . 313 6. Text Formats in Pseudo-Code332

PICTURE ENtrye « o « o « « o« « « 4313 Pseudo-code Design . « « « « . « 332
Byte 9 - Code Byte313 RX Instructions. . . . +333
Dictionary Entry for Workspace RS InstructionS. « « « « - = « « 2334
Requirement . . . +« « . « « « . .313 RR Instructions. . «334
Dictionary Entry for Parameter SI Instructions. . « . «33
LiStS o o o o o o o o = « « « o« 2314 SS Instructions. e o = o o 2334
Dictionary Entries for Dope Variable Length Item FLAG. e o o <334
Vector Skeletons.314 Compiler’ Function (Bit 1=1). . . .335
Symbol Table Entry314
Dictionary Entry for AUTOMATIC 7. Text Formats in Absolute Code335
Chain Delimiter314 RR Instructions. . . . « « « . . .336
DED Dictionary Entry314 RX InStructionS. - + « « « « = « 336
DED2 Entries « « w « « « « « « « 315 SS InstructionS. « « « « « 2 « - <336
Dictionary Entry for FED - RS Instructions. . . . « « « « « .336
Format Element Descriptor.. . . .315 SI InstructionS. « « « o« « « « « -336
Label BCD Entries.315
Dope Vector Entries for 8. Second File Statements, and the
TempOrari€S « « « =« o « « « = « 2315 Formats of Compiler Functions and
Record Definition Vector Entry . .315 Pseudo-VariableSe. « « « ¢ « « « « « o .336
Dope Vector Descriptor Entry316 Second File Statements336
Format of a Second File Array Bounds « « o« . « « « o o « 2337
Dictionary Entry.316 Multiplier Function. . « « o « « 337
: String Length statement.338
8. Dimension Table « = . « « « « « . . .316 INITIAL value statements338
’ Second File Statements for
APPENDIX D: INTERNAL FORMATS OF TEXT . .317 DEFINEDe « « o « o « o = « o « 338
1. Text Code Byte after the Read-In 9. Pseudo-Code Phase Temporary Result
PhaS€ . ¢« o « « o « o« o = « « « « = - -318 Descriptors (TMPD). « <« o« o« o » o o « 2339
First Level Table (00 to 7F) . . .318 Temporary Description Stack. . .339
First Level Table (80 to FF) . . .319 Temporary Descriptions in
Second Level Table (00 to 7F) Pseudo-Code . « « « o « « « « - <340

(preceded by second level
marker byte C8) - « «320 10. Library Calling Sequences. . « . « 341
Second Level Table (80 to FF). . 321

11. Descriptions of Terms and
Abbreviations used in Text During a
Compilation « « « « o o « w o = « @

APPENDIX E: STORAGE REQUIREMENTS.
Compiler Requirements and
Dictionary/Text Block
Relationship « « « « « <« « =

APPENDIX F: COMMUNICATIONS REGION
Transfer Vectors. . . « « « « « « =
Communications Region . . . « . . .
APPENDIX G: SYSTEM GENERATION. . . .

APPENDIX H: CODE PRODUCED FOR
PROLOGUES AND EPILOGUES

«341

.350

.350
.352
.352
.353

.356

.358

Prologues and Epilogues « « « « =
APPENDIX I: DIAGNOSTIC MESSAGES. « «
APPENDIX J: COMPILE-TIME PROCESSOR .

1. Internal Formats Of TexXte « « o «
Format of a Dictionary Entry .
Format of an Identifier Value

Block (IVB) ¢ ¢ o o o = o « =
Instruction Codes for the
Compile~-time processor. .

2. Communications Region Use

3. Compile-time Processor, Operating
System, and Compiler Control
InterfacesS. « « o o o o o o o o = =

.358
363
-370

«370
<370

.371
372
375

377

Figure 1. Compiler Data Flow and Data
Sets Used « « o
Figure 2. Logical Phases of the
Compiler and their Corresponding
FUNCtions « o« o o o o o o o o o « @
Figure 3. Compiler Organization and
Control Flow. « . <« -
Figure 4. Input/Output Usage Table .
Figure 5. Storage Map for the Read-In
PhaS@ « « = = o« « o o = o o o« o =« =
Figure 6. Dictionary Entries for an
Internal Entry Point. . . . « . .

14

15
16

26
29

FIGURES

Figure 7. Organization of Read-In
PhaSe « o « o o ¢ ¢ ¢ o o « = o « «
Figure 8. Organization of Keyword
Table ¢« « « ¢« ¢ « o« o « « e e o =
Figure 9. Decision to Include a Second
Offset S10C @ v & & 4 o & @ o o o & «
Figure 10. Dimension Table -
Figure 11. Temporary Descriptions 1n
Pseudo-Code -- Use of TMPD Triple
Fields F5 and F6. « o « « « « « «
Figure 12. The IEMAF Control Sectlon
Figure 13. Bit Identification Table.

L]

.290
.291
.307
.316

- 340
-356
- 357

CHARTS

Chart 00.
Chart AA.

Diagram (Modules AA through AM,

TZ) e o o o o = o

-

Chart 01. Compile-time Processor
Logical Phase Flowchart .

Chart AS. Phase AS
Diagram
Chart AV. Phase AV
Diagram « « . .
Chart BC. Phase BC
Diagram . « « « -
Chart BG. Phase BG
Diagram « « « « o
Chart BM. Phase BM
Diagram . . « «
Chart BW. Phase BW
Diagram

Overall

Overall
bverall

bverall

Overall

Overall

-

Logic
Logic
ioéié
ioéi;
Logic
Logic

Chart 02. Read-In Loglcal Phase

Diagram Flowchart
Chart BX. Phase BX
Diagram . .« « < «
Chart CI. Phase CI
Diagram « « « « -
Chart CL. Phase CL
Diagram « « « « -«
Chart CO. Phase CO
Diagram . « « »
Chart CS. Phase CS
Diagram
Chart CV. Phase CV
Diagram « « « < .
Chart 03.
Flowchart
Chart EG. Phase EG
Diagram « « « « -«
Chart EI. Phase EI
Diagram . « . . «
Chart EL. Phase EL
Diagram « « « « =
Chart EP. Phase EP
Diagram
Chart EW. Phase Ew
Diagram
Chart EY. Phase EY
Diagram « « « « .
Chart FA. Phase FA
Diagram « « « « -
Chart FE. Phase FE
Diagram . « . « =
Chart FI. Phase FI
Diagram . « « « .
Chart FK. Phase FK
Diagram . « « . -
Chart FO. Phase FO
Diagram
Chart FQ. Phase FQ
Diagram . « « « =«
Chart FT. Phase FT
Diagram . « « < .
Chart FV. Phase FV
Diagram « « « < -«

Overall

-

Overall

Overall

Overall

Overall

Overall

Overall

Overall

Overall

Overall

Overall

Overall

Overall
Overall
Overall

Overall

-

Overall

Overall

Overall

-

-

-

-

-

Overall

-

-

-

Logic

« o e

Logic

Logic
Logic
Logic
ioéie

Logic
Logic
Logic

Logic

Logic
ioéi;
ioéi;
io;i;
ioéie
ioéi;
ioéie
Logic
io;ie
ioéi;

e o e

Overall Compiler Flowchart .
Resident Control Phase

Logic

and

Dictionary Logical Phase

. 58

.100
.101
.102
.103
.104
.105
.106
.107
.108
.109
.110
.111

.112

Chart FX. Phase FX Overall Logic
Di@gYam « o« « w o = = v« o © o« < =
Chart 04.
Flowchart « ¢« « o o ¢ @ o o o « «
Chart GA. Phase GA Overall Logic
DiagYam « « « o o o = « o« o « o =
Chart GK. Phase GK Overall Logic
DiagXam « « « « o « o o 2 = o =
Chart GP. Phase GP Overall Logic
Diagram o« ¢ o o o ¢ o « o « « « =
Chart GU. Phase GU Overall Logic
Diagram . « « o« o o =« « 2 « = o =
Chart HF. Phase HF Overall Logic
DiAQgXam « « o o« o o « o « « o o =
Chart HK. Phase HK Overall Logic
DiagYam o« « o o o « o o w o = = =
Chart HP. Phase HP Overall Logic
Diagram o« « o o o o o o o = o o
Chart 05. Translator Logical Phase
Flowchart « « « « ¢ o o o ¢ o o «
Chart IA. Phase IA Overall Logic
Diagram « « . « “ e e e . -
Chart IG. Phase IG Overall Loglc
Diagram . . . « - -
Chart IM. Phase IM Overall Loglc
Diagram . . . - .
Chart 06. Aggregates Logical Phase
Flowchart « s e e .
Chart JK. Phase JK Overall Loglc
Diagram a e e e e . -
Chart JP. Phase JP Overall Loglc
Diagram o« o« o « o o « o« = « = =
Chart 07.
Flowchart « « o o o o o o o o o =
Chart LA. Phase LA Overall Logic
Diagram « « « « o « = o « = = o« =
Chart LB. Phase LB Overall Logic
DiagXam « o o o « « o o« o o = =
Chart LD. Phase LD Overall Logic
Diagram « « « o o = = s o o o o
Chart LG. Phase LG Overall Logic
DiagZam o « o o o« o o o o « 2 = =
Chart LS. Phase LS Overall Logic
Diagram « « « « o o o o o o o o
Chart LV. Phase LV Overall Logic
Diagram « « « e s o = s e e =
Chart LW. Phase LW Overall Logic
Diagram « . « « e o 4 e e o o =
Chart MB. Phase MB Overall Logic
DiagXam « « o o o o = « 2« « « «
Chart MG. Phase MG Overall Logic
Diagram « « « o o o = « « o o« o =
Chart MI. Phase MI Overall Logic
Diagram o« « « o o « o « 2 = = = =
Chart MK. Phase MK Overall Logic
DiagYam « « « o o o o « o « o + =
Chart ML. Phase ML Overall Logic
Diagram « « o o o « o o o o « o
Chart MM. Phase MM Overall Logic
Diagram « . « . e e e e e e e
Chart MP. Phase MP Overall Logic
Diagram e« « « « o « o « + « « @«

Pseudo-Code Logical Phase

-

-

-

Pretranslator Logical Phase

.113
~137
.138
-139
~140
~141
«142
-143
<144
.155
.156
157
.158
«163
.164
.165
-169
-170
<171
<172
.173
<174
175
.176
<177
.178
-179

.180

.181 °

.182

.183

Chart MS. Phase MS Overall Logic Chart PT. Phase PT Overall Logic

Diagram « « « o « o o o « o o o « « « +184 DiAQYamM o« « o o o o o = « =« = « « « « 2201
Chart NA. Phase NA Overall Logic Chart QF. Phase QF Overall Logic

DiagYam « « o « « o o o = o o = « « o« 2185 DiagZam « -« o o o o = « = 2 o o =« o = 242
Chart NG. Phase NG Overall Logic Chart 0J. Phase QJ Overall Logic

Diagram .« « « o « o o 2 « o« o « o « « .186 DiagXam « « o o o « = o o o o o =« « o o243
Chart NJ. Phase NJ Overall Logic Chart 09. Register Allocation Logical
Diagram « « » o o « o « o « o = o « o <187 Phase Flowchart . - - e « - - 256
Chart NM. Phase NM Overall Logic Chart RA. Phase RA Overall Loglc

DiagXam « « o« o o« o « o « « « = « « « .188 Diagram « . « . e o - <257
Chart NT. Phase NT Overall Logic Chart RF. Phase RF Overall Logic

Diagram « « « « « o o o « « = « o « o« 2189 Diagram e o @« a o o o = o o +258
Chart NU. Phase NU Overall Logic Chart 10. Final Assembly Logical Phase
Diagram ¢« « « o o s « o =« o =« « « + - 2190 Flowchart . « & . « o o o o « o o « « 2263
Chart OB. Phase OB Overall Logic Chart TA. Phase TA Overall Logic

Diagram « « « « e e e e o e o o o o <191 Di8gram « o« « o o « o o o = o o o o« o <264
Chart OE. Phase OE Overall Logic Chart TF. Phase TF Overall Logic

Diagram . « . . e o o o o o o o o = 192 Diagram @ o o o o e & o o o 2265
Chart OG. Phase OG Overall Logic Chart TJ. Phase TJ Overall Logic

Diagram « « o « o « « = o o = « o « - 2193 Diagram . . . « © o o o o o e o « 2266
Chart 0S. Phase 0S Overall Logic Chart TO. Phase TO Overall Logic

Diagram o« o « o o o « o o « « o o « o <194 DiagZam o« <« o « o o o o o o o o = « = 267
Chart 08. Storage Allocation Logical Chart TT. Phase TT Overall Logic

Phase Flowchart . « « « « « « « « « « .236 Diagram « « o o o o = = = « « « « = « 2268
Chart PD. Phase PD Overall Logic Chart UA. Phase UA Overall Logic

Diagram « « « « « e = . o o« o o 2237 Diagram « « « « o o = « o < « = = « « 2269
Chart PH. Phase PH Overall Loglc Chart UD. Phase UD Overall Logic

Diagram “ e e o o @ .« o o« o238 Diagram « « « « « « =« 2 = « « = = =« « 2270
Chart PL. Phase PL Overall Loglc Chart UF. Phase UF Overall Logic

Diagram « e e e e e e - e <239 Di8gram « « « o o o o« o o « o « = o « 2271
Chart PP. Phase PP Overall Loglc Chart XA. Phase XA Overall Logic :

Diagram . « o« o« o « ¢ o o o o = « « . J2U0 Diagram « o o o o o = o o o o o o o o« 2272

TABLES

Table AA. Module AA Compiler Control

Resident Control Phase€. « . « « «.c o

Table AAl. Module AaA
RoutinesSubroutine Directory.
Table AB. Module AB Compiler Control
Initialization. « « ¢« o ¢ ¢« o « o« o .
Table ABl. Module AB
Routine/Subroutine Directory. . . .
Table AC. Module AC Compiler Control
Intermediate File Control
Table AD. Module AD Compiler Control
Interphase DUmpinge « o « o« « o <« = &
Table AD1. Module AD
Routine/Subroutine Directory. . . -
Table AE. Module AE Compiler Control
Clean-Up Phase. . « ¢ o « ¢« o o o = o
Table AEl. Module AE
Routine/Subroutine Directory.«
Table AF. Module AF Compiler Control
Sysgen OptionsS. « <« « < . .
Table AG. Module AG COmpller Control
Intermediate File Switching
Table AM. Module AM Compller Control
Phase Marking o o o .
Table AS. Phase AS Re31dent Phase for
Compile-time Processing . « « « « « .
Table ASl. Phase AS Routine/subroutine
DIrEeCtoOrY « « o o o o ¢ o o o o o o
Table AV Phase AV Macro Processing
Initialization. « « « « ¢« o o o o o &
Table AVli. Phase AV Routines/Subroutine
DireCtOry « o e o o o = s o o o o o «
Table BC. Phase BC Initial Scan and
Translation « « « « « « « o o « o =« &«
Table BCl. Phase BCc Routine/Subroutine
DirXecCtory « « o o o o o o o = o o = =
Table BG. Phase BG Final Scan and
Replacement . « « o« ¢ « ¢ o « o o o &
Table BGl. Phase BG Routine/subroutine
DireCtOry o« o o o« o o = o a o o o « =
Table BM. Phase BM Diagnostic Message
Determination and Printing.
Table BM1.
Directory..............
Table "BW. Phase BW Cleanup Phase . . .
Table BX. Phase BX 48-Character Set
PreproCeSSOre « « « « o o o = = PR
Table CA. Module CA Read-In Common
Block 1 . « . « . e o o e @ o o o @
Table CAl. Module CA
RoutinesSubroutine Directory.
Table CC. Module CC Read-In Common
BlOCK 2 2 2 o o o = o ©» o o « = « o @
Table CcCl. Module CC
Routines/Subroutine Directory.
Table CE. Modules CE, CK, CN, and CR
Read-In Keyword Block « « <« « « « o «
Table CI. Phase CI Read-In First Pass.
Table CIl. Phase CI Routine/Subroutine
Directory o« « « « o o« o o - o e e
Table CL. Phase CL Read-In Second Pass

Phase BM Routine/Subroutine.

61
66
68
69
69
69
69
70
70
70
70
70
78
78
79
79
79
80
81
81
82

82
82

90
91
91
92
92

92
93

93
94

Table CL1l. Phase CL Routine/Subroutine
Directory . . . - N
Table CO. Phase CO Read-In Thlrd Pass.
Table COl. Phase CO Routine/Subroutine
DiYECLOXY « o o« o o o o a o o o =
Table CS. Phase CS Read-In Fourth Pass
Table CS1l. Phase CS routine/Subroutine
Directory . . . e % e e e oe o
Table CV. Phase CV Read-In Fifth Pass.
Table CV1i. Phase CV Routine/Subroutine
DiYeCtOXY o ¢ o o o o o o o o o o o =
Table EG. Phase EG Dictionary
Initialization. « o« « « o o o @ = = o
Table EGl. Phase EG Routlne/Subroutlne
DirxeCtOry « « o o« « o a « o o o o « =
Table EI. Phase EI Dictionary Declare
PAaSS ON@e « o o © « @ o « o = o = @« o
Table EIl. Phase EI Routine/Subroutine
Directory « « « « « « « . « o = -
Table EL. Phase EL chtlonary Declare
PaSS TWOe « « o = = = = o « « = « =
Table ELl1. Phase EL Routine/Subroutine
DireCtOYY « « o o o o o o o a o = a =
Table EP. Phase EP Dictionary Entry
III and Call. o« « « o o « o o« =« ® o =
Table EP1. Phase EP Routine/Subroutine
Directory . . « « e o v e e & = o
Table EW. Phase EW chtlonary LIKE . .
Table EWl. Phase EW Routine/Subroutine
Directory . . .« - .
Table EY. Phase EY chtlonary ALLOCATE
Table EYl. Phase EY Routine/Subroutine
DiYeCtOrY « o o o o o o o o o o o = =
Table FA. Phase FA Dictionary Context.
Table FAl. Phase FA Routine/Subroutine
DiYecCtOXy « o o o o o o o « = o« = = =
Table FE. Phase FE Dictionary BCD to
Dictionary Reference. . « « « « « « &
Table FEl. Phase FE Routine/Subroutine
Directory « « « « - - . .
Table FI. Phase FI D1ct10nary Checklng
Table FIl. Phase FI Routine/Subroutine
DiYecCtOXy « o o v a o« ¢ o o o o = = =
Table FK. Phase FK Dictionary
Attribute « v o o ¢ o o« o o o o = o
Table FK1. Phase FK Routine/Subroutine
DirecCtory « o« o o o o o o o o o o a
Table FO. Phase FO Dictionary ON . . .
Table FOl. Phase FO Routine/Subroutine
DiYeCtoXy « o o « o « o o o « o= o o« =
Table FQ. Phase FQ Dictionary Picture
Processor « e o = e a =
Table FQl. Phase FQ Routlne/Subroutlne
DireCtory « « o o « o « 2 2 a 2 o « =
Table FT. Phase FT Dictionary Scan . .
Table FTl. Phase FT Routine/Subroutine
DirecCtory « « o « « o o o o o o o a o
Table FV. Phase FV Dictionary Second
File MEXge€e « « « « o o s o o o o o
Table FV1l. Phase FV Routine/Subroutine
DirXectoXy « ¢« o« o « o o o « o o = « =

- 95
-~ 96

. 96

<114
~114
.115
.115
117
.118
120

.121
.122

122
123

.123
.123

.124
.125

126
.126

.127
.128

.128
.129

.129
.130

.131
.132

.133
.134

~134

Table FX. Phase FX Dictionary
Attributes and Cross Reference. . . .
Table FX1. Phase FX Routine/Subroutine
Directory - . . . « v s e e e e s e
Table GA. Phase GA Pretranslator 1/0
Modification. . . . « o 4 = o @« @
Table GAl. Phase GA Routlne/Subroutlne
DIiXeCtOrY « o« o« o o o = o o' o o o o o
Table GK. Phase GK Pretranslator
Parameter Matching 1. < « « « « ¢ « .
Table GK1. Phase GK Routine/Subroutine
DireCtoOry « o« o v o o o o o = « = = =«
Table GP. Phase GP Pretranslator
Parameter Matching 2.
Table GPl. Phase GP Routine/Subroutine
Directory « « « « « « 4 e e e e
Table GU. Phase GU Pretranslator Check
LiSte o e % ¢ o « o« @ o © o a o o o @
Table GUl. Phase GU Routine/Subroutine
DirXecCtOry « « o« « « o o o o o = = = =
Table HF. Phase HF Pretranslator
Structure Assignment. « . <« « < . o .
Table HFi. Phase HF Routines/Subroutine
DiXeCtoOry « « « « o o o o o o o o = =
Table HK. Pretranslator Array
Assignment. . « « « o 4« . e e o o o
Table HK1. Phase HK Routine/Subroutine
DireCtoOry o o« o« o o o o o« o o o« = =
Table HP. Phase HP Pretranslator iSub
Defining. « « « ¢ o ¢ ¢ ¢ o o o o o @
Table HP1. Phase HP Routine/Subroutine
DirecCtory o o o o o« o = o o o o o o =
Table IA. Phase IA Translator Stacker.
Table IAl1. Phase IA Routine/Subroutine
Directory « . . . « e e e o e o = o
Table IG. Phase IG Translator
Pre-Generic e e e e e e s e
Table 1IGl. Phase IG Routlne/Subroutlne
Di¥E@CLOLXY w o o o = o a o o o o « o o
Table IL. Phase IL Translator
Pre-GenericC « o« o« o« o o e s e o o
Table IM. Phase IM Translator Generic.
Table IMl. Phase IM Routine/Subroutine
Directory o« o« o« o « o o « « e e =
Table JK. Phase JK Aggregates
Structure ProCeSSOr « o« o« « « « = « @
Table JK1. Phase JK Routine/Subroutine
DirectOry « o o« o« o o o o o o o o o =
Table JP. Phase JP Translator Defined
CheCKk ¢« ¢ o o ¢ ¢ e o o o s o« o o o o
Table JP1. Phase JP Routine/Subroutine
Directory
Table JZ. Module JZ Compller COntrol .
Table LA. Phase LA Pseudo-Code Scan. .
Table LAl. Phase LA Routine/Subroutine
Directory . . . - « o s o =
Table LB. Phase LB Pseudo-Code Initial
Table LBl1. Phase LB Routine/Subroutine
Directory « « o« « o« =« o o « .
Table 1LD. Phase LD Pseudo—Code In1t1a1
Table LD1l. Phase LD Routine/Subroutine
DiYECLOXY « o« o o o o o o o o o « o =
Table LG. Phase LG Pseudo-Code DO
EXpansion « « « « « o o « o « 4 o o
Table LG1. Phase LG Routine/Suproutine
DireCtory v« « o o o o o o o o o o o =
Table LS. Phase LS Pseudo-Code
Expression Evaluation . « « . « . . .

.135
.136
-145
.145
146
146
147
.1u8
.149
.150
.151
.152
.153
.153
.154

.154
159

.159
.160
160

.161
161

.162
.166
.167
.168
.168
.168
.195

196
.197

197
.198

.198
-199
.200

.201

Table LSi. Phase LS Routine/Subroutine
Directory . . . “ @ * ¢ o = =
Table LV. Phase LV Pseudo-Code String
UtilitieS o o v o o = o o = = = 2 o
Table LV1. Phase LV Routine/subroutine
DIirectory ¢ o« o o o o « o o = 2 o = @
Table LW. Phase LW Pseudo-code String
Handlinge. « o o o o o o o o o = o o =
Table LW1l. Phase LW Routine/Subroutine
Directory « « o o o o o o o = o o o =
Table MB. Phase MB Pseudo-code
Pseudo-VariableS. « « ¢« o « o o o « =
Table MBl. Phase MB Routine/Subroutine
Directory . . . - . -
Table MG. Phase MG Pseudo-Code In—Llne
FUnctions 1 o o & o o 2« « o o o o o »
Table MGl. Phase MG Routine/Subroutine
Directory . . . e @ 2 2 o s e s e
Table MI. Phase MI Pseudo-Code In-Line
Functions 2 . . .+ . e« o % o s ® @
Table MIl. Phase MI Routlne/Subroutlne
DirecCtory « o o o o o o« = o o u o o
Table MK. Phase MK Pseudo-Code In-Line
Functions 3 . . o« o « 2 o © = o = o =
Table MK1l. Phase MK Routlne/subroutlne
DiXeCtOry « « o « o« = o @ = a = = = =
Table ML. Phase ML Pseudo-Code Calls
and FUNCLioNS « « o « « o o o = 2 o «
Table ML1l. Phase ML Routine/Subroutine
Directory . . <. o« <« o « o & -
Table MM. Phase MM Pseudo—Code Calls
and FunctionS « « o« o « 2 2 o « = «
Table MMl. Phase MM Routlne/Subroutlne
Directory -
Table MP. Phase MP Pseudo-Code BUY
REOYACY v v o o o « s « = o o o« = o« =
Table MPl. Phase MP Routine/Subroutine
Directory . . . « a e e e e e =
Table MS. Phase MS Pseudo—Code
SUDSCIiptSe ¢« ¢ o o o o o « o o o o =
Table MS1. Phase MS Routine/Subroutine
Directory . « o o o o o o o o o o = =
Table NA. Phase NA Pseudo-Code
Branches, ON, Returns « =«
Table NAl. Phase NA Routine/sSubroutine
Directory . . . « = = - e =
Table NG. Phase NG Pseudo-code
Operating System Services
Table NGl. Phase NG Routine/Subroutine
DiXeCtOry « o o o o« o o = o = o o = =
Table NJ. Phase NJ Pseudo-Code RECORD
I/70 @ o e o o o o o @ o o o @ o = o =
Table NJ1. Phase NJ Routine/Subroutine
Directory . . . e e e e e o e e e =
Table NM. Phase NM Pseudo-Code
Executable I/0e¢ o ¢ o =« o« 2 « o « o =
Table NMl. Phase NM Routine/Subroutine
Directory . . . e e % e o & = = =
Table NT. Phase NT Pseudo-Code Data
and FOrmat. « « « o o o o 2 = « « =
Table NT1l. Phase NT Routlne/subroutlne
Directory “ s e e e e e e e
Table NU. Phase NU Pseudo—Code Data
and Format. « . « « « ¢ o o o « = « =«
Table NUl. Phase NU Routine/subroutine
Directory . « « « « « - = “ o o =
Table OB. Phase OB Pseudo-Code
Compiler FunctionsS. . « « « « « o « =

202
.203
.203
.204
.205
.206
.207
.208
.208
.211
.211
.212
.212
.213
.213
.213
.214
.215
<215
.216
.216
217
.217
219
.219
.220
.223
.225
.225
.226
<226
.227
.227

-229

Table OBl1. Phase OB Routine/Subroutine
Directory « o« « o =« o o o e« o o =
Table OE. Phase OE Pseudo-Code
Assignment. . . e o & o & o @ o ° o
Table OEl. Phase OE Routine/Subroutjine
DiYeCtOXy o« o e« o o« o o = « o = o a2 =
Table 0G. Phase OG Library Calling
Sequences . . « - e« o = e o o o =
Table 0Gl. Phase OG Routlne/subroutlne
DireCtOrY o o« o o o o o o o o o o o =
Table 0S. Phase 0S Constant
conversions . . . o e e e e e e e s
Table 0S1. Phase OS Routlne/Subroutlne
DirectOry =« « « o o o o o o o o @ -
Table PD. Phase PD Storage Allocatlon
Static 1. « « .« . . e s e ® e e @
Table PDl. Phase PD Routine/Subroutine
DireCtoOry e o o o o « = o o « o = .
Table PH. Phase PH Storage Allocatlon
Static 2. . . . - e o o e o o o =
Table PH1. Phase PH Routine/Subroutine
Directory . . . o e e e e = e o ‘e @
Table PL. Phase PL Storage Allocation
Symbol Table and DEDS « « o « « « « =
Table PL1. Phase PL Routine/Subroutine
Directory . . . - « e o e = .
Table PP. Phase PP Storage Allocatlon
Sort of AUTOMATIC Chain . . « « « « -
Table PP1. Phase PP Routine/Subroutine
DiYXeCtOry o« « « o o o o 2 = « o = -
Table PT. Phase PT Storage Allocatlon
AUTOMATIC StOrage « « = « « « « « = =
Table PT1l. Phase PT Routine/Subroutine
DiYecCtory « « o « o o o o =« « « « -
Table QF. Phase QF Storage Allocatlon
Prologues . . « . o o o e e o o @
Table QF1. Phase QF Routlne/subroutlne
Directory « .« . « @ e o o =
Table QJ. Phase QJ Storage Allocation
Dynamic StOrage . « -« « « « « 2 o « &
Table QJ1. Phase QJ Routine/Subroutine
Directory « « « « <« « « - o o o o
Table RA. Phase RA Reglster Allocatlon
Addressibility Analysis « . « « « « .

- 230
.231
.231
.232
.233
234
.234
. 204
- 244
.245
246
. 247
.247
.248
<249
.250
.251
.252
.253
. 254
« 255

<259

Table RAl. Phase RA Routine/Subroutine
Directory . . « . . < . . « e o e
Table RF. Phase RF Rengter Allocatlon
Physical Registers. « . <« « « o « +
Table RFl1. Phase RF Routine/Subroutine
Directory . . . - o o
Table TA. Phase TA Flnal Assembly
DCICB GeneratioN. « « « « o « « o o «
Table TAl. Phase TA Routines/Subroutine
Directory . . . “ o o e a = “« o e
Table TF. Phase TF Final Assembly Pass
1.- . - e o o o a ° = =
Table TF1. Phase TF Routlne/Subroutlne
Directory . . . - . P
Table TJ. Phase TJ Flnal Assembly
Optimization. « « « « o o & o o o « «
Table TJ1l. Phase TJ Routine/Subroutine
Directory . . . e e e e e “« v =
Table TO. Phase TO Final Assembly
External Symbol Dictionary. «
Table TOl. Phase TO Routine/Subroutine
DiYXectory « « « « « « o = « « - o o
Table TT. Phase TT Final Assembly Pass
2 4 e e e .. - e ® o e 8 e e =
Table TT1. Phase TT Routine/Subroutine
DireCtOry « « o o o o o o o = o o o
Table UA. Phase UA Final Assembly
Initial Values, Pass l. o« « « o « « o
Table UAl. Phase UA Routine/Subroutine
Directory . . . o e e e o - . e
Table UD. Phase UD Flnal Assembly
Initial Values, PassS 2. « « « « o« « «
Table UD1. Phase UD Routine/Subroutine
Directory . . . « e e = . .
Table UF. Phase UF Final Assembly
Object Listings o« « o « o o o o = o
Table UFl. Phase UF Routine/Subroutine
DireCtOry o« o o o o o = % o o o = = @
Table XA. Phase XA Error Message
EQitOre o« o o o 2 « o o« o a 2 = = =
Table XAl. Phase XA Routine/Subroutine
AirecCtory « o o o o o o o o o o = = =

- 260
«261
.261
-273
.273
274
<274
275
.275
-276
«276
<277
.278
-279
.280
.281
.282
.283
.284
. 286

. 286

PURPOSE_OF_THE COMPILER

The Operating System/360 PL/I (F) Com-
piler analyzes and processes source pro-
grams written in PL/I, and translates them
into object programs in load module form
suitable for input to the Linkage Editor.
When errors are detected in the source
program, appropriate diagnostic messages
are produced. The compiler functions with-
in Operating System/360 and may be used on

machines where at least 45,056 (44K) bytes
of core storage are available for the
compilation (exclusive of storage require-

ments for the Operating System).

THE COMPILER AND OPERATING SYSTEM/360

The PL/I (F) Compiler 1is a processing
program of Operating System/360. The com-
piler consists of a number of phases under
the supervision of compiler control rou-
tines. The compiler communicates with the
control program of the Operating System,
for input/output and other services,
through the control routines.

A compilation is introduced as a Jjob
step under the control of the Operating
System, via the JOB statement, the execute

(EXEC) statement, and the data definition
(DD) statements of the Job Control Lan-
guage, for the inputs/output data sets.

Cataloged procedures are provided to keep
these statements to a minimum. A discus-
sion of the introduction of a compilation
as a job step, and of the available catal-
oged procedures, is given in the publica-
tion IBM System/360 Operating System, PL/I
(F) Programmer's Guide, Form C28-6594.

program to be compiled
appears as input to the compiler on the
SYSIN data set. The compiler uses SYSUT1
(required if the main storage is insuffi-
cient to contain the program) and SYSUT3

The source

(required if the 48-character set or the
compile-time processor 1is wused) as work
data sets. The SYSPUNCH, SYSPRINT, and

SYSLIN data sets are used, depending on the
options specified by the source programmer,
to contain the output from the compiler.

The overall data flow associated with a
compilation, and the data sets used in the
compilation, are illustrated in Figure 1.

SECTION 1: INTRODUCTION

A compilation 1is initiated by loading
the compiler control routines from the Link
Library. The compiler control routines
then carry out their own initialization,
including loading those compiler control
routines which remain in storage throughout
the compilation. These routines perform
the following functions:

1. Act as the interface between the com-
piler phase and the Operating System,
controlling all input/output, storage
allocation, program interruptions,
storage dumping, etc.

2. Supervise the 1loading of compiler
phases in accordance with source pro-
gram options and information obtained
from the source program by the compil-
er phases.

3. Supervise all workspace
compiler for information concerning
the source program. This includes any
spilling from main storage to backing
storage in order to accommodate 1large
source programs, the conversion of

used by the

symbolic references to absolute
addresses, and the conversion from
absolute addresses to symbolic ref-
erences.

4. Provide a number of routines to assist
in compiler debugging.

The compiler options specified are
interpreted and the appropriate action
taken. The environmental options, such as

storage size and device type, are used to
calculate the text and dictionary block
size and the "spill" point (i.e. the point
at which the main storage available is
insufficient to contain the dictionary and
text).

To determine the block size a table
contained in Phase AB is used. The storage
size 1is used as the argument to search the
table. When the correct entry is found,
the text block size and the dictionary
block size values are extracted and used
for the compilation.

The options are instructions to the
compiler. Some of these require a phase to
be 1loaded that would not otherwise be
loaded. When an option of this type is
found, a request for the phase required is
inserted into the status byte in the phase
directory. Other options are in the form
of instructions to a phase that is always
loaded. These instructions are also placed

Section 1 (Introduction): The Compiler and Operating System/360 13

r L}
| source |
| {
| program {
I |
| (SYSIN) |
| |
L T J
I
|
|
v
T - 1
| Compiler |
| I
| (SYSUT1 and SYSUT3 |
|are used as work data sets |
| when required) |
L J
T
|
|
|
v
r T T v T T v T L]
SOURCE | XREF] LIST | DECK | LOAD
option | option | option | option | option
i | | | I | | | |
		I					
			I	1			
v	v	v	v	\'4			
r 1	r - 'lll . 1	r - 1	r)				
] Source			List of			List of	
			identifiers,			object code	
program	1				produced		
o			list of			by the I , I _	
listing]		statement	1	compiler			card images
			numbers I B I				
L JIL JlL IIL Jll J							
SYSPRINT	SYSPRINT	SYSPRINT] SYSPUNCH	SYSLIN				
EXTREF ATR for all SOURCE2							
option option compilations option							
	I						
I							
I							
v v v v							
r 1 r . 1 r 1 r - 1							
External		List of		1]			
		identifiers,		Diagnostic		Listing of	
Symbol		list of				input to the	
		attributes				compile-time	
Dictionary		assumed by		Messages		processor	
		identifiers			1		
L d L J L J L d
SYSPRINT SYSPRINT SYSPRINT SYSPRINT

Figure 1. Compiler Data Flow and Data Sets Used

i)

in coded form in a control code word in the
communications region of the dictionary
(see "Control Code Word -- CCCODE" in
Appendix B).

COMPILER_ORGANIZATION

The PL/I (F) Compiler comprises a number
of logical phases, each of which consists
of several physical phases.

The compiler phases and their corres-
ponding functions are indicated in Figure
2, and the organization of the compiler is
shown in Figure 3.

Control is passed between the phases of
the compiler via the control routines.
After each phase has been executed, it
branches to the control phase, which sel-
ects from its load list the next phase to
be executed.

Communication between the phases is
implemented by the following:

1. The text string. The text string at
the start of the compilation is input
text. This is converted by the
compile~-time processor, if necessary,
into a string which is PL/I source
text. The characters in this string
are translated into a code internal to
the compiler. The phases of the com-
piler gradually process the text until
the final form is the object program,
consisting of a string of machine
instructions. For the compiler pro-
per, the text code bytes used, and
formats of statements at different
stages of the compilation, will be
found in Appendix D.

The text is broken down into a number
of blocks, depending upon the size of
the machine. Each block has a symbol-
ic name which is independent of the
physical location of the block in
storage. Thus, the text blocks may be
moved around in core storage under the
supervision of the compiler control
routines, and spilled on to backing
storage if insufficient main storage
is available.

2. The dictionary. The dictionary con-
sists of a number of blocks, each with
a symbolic name. Part of the first
dictionary block is used as a communi-
cations region (see Appendix F)
between phases, and for this reason
the first block is never spilled, even
when the source program to be compiled
exceeds available storage. The com-
munications region contains such

Section 1 (Introduction):

information as the addresses of the
heads of chains, the symbolic start of
text, etc. The remainder of the dic-
tionary contains all information
relating to identifiers appearing in
the program, temporary storage areas
required, etc. For the compiler pro-
per, the format of all dictionary
entries will be found in Appendix C.

r T
|Logical Phase| Main Functions
| 41

r T

|Compile-time |Executes compile-time

| Processor |statements and produces
l|input for further compiler
| processing.

1

D

+
|Check source program syn-|
|tax; remove superfluous|
|characters.
1

Read-In

T

|Remove BCD identifiers an
|attribute declarations
|replace by symbolic ref-
| erences to dictionary
|entries.

4

Dictionary

- 0
B e AR —

T
Pretranslator|Rearrange I/0 statements; |
|create temporary variables)|
|for procedure argument |
|expressions; convert array|
Jand structure assignments|
Jto DO 1loops: remove 1iSUB|
|expressions.
$- —_—
|Convert PL/I syntactical
|form to internal triple
| form.
1

Translator

e s e s i e

T

|Map all structures and|
|arrays to align elements on|
|correct storage boundaries. |
1

]

|Convert triples to pseudo-
| code.

1

Aggregates

Pseudo-code

T
Storage |Allocate storage for items
allocation |in AUTOMATIC blocks or
|STATIC storage area.
|Allocate physical registers
|in place of symbolic reg-
|isters requested by earlier
| phases.
1

Register
allocation

el — . — s an —— . e, s cnllion

T

|Complete translation to ma-
|chine code; produce loader|
|text; produce object codej
|listing.
1

Final
assembly

Y e e ot . S e et e . S it e S . e e S S S S A it it G S o . St G . S S G P S St g et Y. s oo, s W S

T

|Prints out any necessary
|diagnostic messages.

L

|Exror
|Editor
L

R e,

Logical Phases of the Compiler
and their Corresponding Func~
tions

Figure 2.

Compiler Organization 15

pm—— o ————
~l | > | | |
(1] (1 | | |
~|wd | < | | |
- S 55 1=z |] 6o
B | 10 w0 | Q1
N = | IlH M| <= 1] & |
=0 | FEH O [I |
Ao | [e o e e e >> | o Q| | (o]
| | 1= 31 1A B
] | Il mi . ui
| | | | | |
[————— m———— o e e e e e e e - o e e b e d
| ! | | | Q0 |
| | | i | zZ |
i | g 0|] [|
| LM.A'IIILELE.AIIIIL H w |
o Q | IS EeR-Au| | - 0w |
PR lBEE | I8 8 g |
INZQ b————D _WNU p———— | m Q m |
1o 1000 i | Qo @ m |
| OO0 A “ “ (SR SN “ “ QO A& “
IS S | e e e e ——— o e o e [——
A | | [| |
| | | | |
“ L ol L9
] | | 1 < |
b e o e e SO IH U l<——rt——> {4 &
I Q| = O |
1 a1 | & B
&= m | . w |
| | |]
| | | |
[[S — |
A A
“
e e e e e e e e e e 1T..|I||.|-|.||IIIII|I||...|.|I|“l|l.1r|||||l|..L
|
v |
v e g ey | o ey
| | ! | | |]
| & | I | | | |
| [SAN] | | | | |
| Z | ! 3] | | | B4 |
12 m | | 9] 1 | | Q |
lm al | 24 | < —- —> | 3] |
[o ! =] | | Lp] [}
. vl | e} | | m]
> &1 | 9] | | o] |
1 o | | | |
|] | | | |
| SO | SRS | SS

—~==~—-> CPU Control

~=—=-->> Read/Write Communication

<===~-> Input/Output under 0S/360 Control Program
and Compiler Control Supervision

Compiler Organization and Control Flow

Figure 3.

16

LOGICAL PHASES

The 1logical phases of the compiler and
their main functions are summarized in the
following paragraphs.

Compile-time Processor Phase

The Compile-time Processor Phase reads
input text, executes any compile-time
statements contained in it, and modifies
text as directed, producing modified text
for further compiler processing.

Read-In Phase

The Read-In Phase is the first logical
phase, and 1is responsible for any macro
source program modifications, source pro-
gram syntax checking, and the removal, from
the text string, of all superfluous charac-
ters, such as comments and non-signhificant
blanks.

Dictionary Phase

The Dictionary Phase removes all BCD
identifiers and attribute declarations from
the source string, and replaces them by
symbolic references to dictionary entries.
The dictionary entries contain all the
consistent declared attributes, and all the
attributes specified in the 1language in
default of source program specifications.
Error messages are generated for all incon-
sistent attributes.

Pretranslator Phase

The Pretranslator Phase processes those
features of the language that are more
easily processed in their original PL/I
form, than when the original syntactic form
has been 1lost in later phases. The Pre-
translator carries out these modifications
which include the rearranging of the order
of certain I/0 statements, the creation of
temporary variables for procedure arguments
which are expressions, the conversion of
array and structure assignments to a series
of 'DO' loops surrounding scalar assign-
ments, and the removal of iSUB expressions.

Section 1 (Introduction):

Translator Phase

The Translator Phase converts the origi-
nal PL/I syntactic form to an internal
syntactic form, referred to as "triples."

Triples consist of the original source
program operators and operands, but rearr-
anged so that the operations specified in
the source string may be carried out in
their proper order.

Aggregates Phase

The Aggregates Phase carries out all
structure and array mapping, so that ele-
ments are aligned on the correct storage
boundaries. When it is not possible to
carry out the mapping at compilation time,
such as when the aggregates contain string
lengths or array bounds which are specified
by expressions, object code is produced to
do it at object time. This phase also
checks that items DEFINED on arrays and
structures can be mapped consistently.

Pseudo-Code Phase

The Pseudo-Code Phase converts the tri-
ples to a form closely resembling machine
instructions, in which registers are rep-
resented symbolically, and storage loca-
tions are represented by dictionary ref-
erences with offsets. The final pseudo-
code version of the text also contains a
number of special pseudo-code items for the
guidance of later phases.

Storage Allocation Phase

The Storage Allocation Phase searches
the dictionary for all entries requiring
storage, and allocates offsets to each

item, either within its AUTOMATIC block, or
within the STATIC storage area. Code is
compiled to set up dope vectors and

pointers at object time, for allocations of
controlled variables and temporaries, the
storage for which must be obtained during
the execution of the object program. Pro-
logue code is generated for each block of
the object program.

Compiler Organization 17

Register Allocation Phase

The Register Allocation Phase allocates
physical registers to the symbolic reg-
isters which have been requested by earlier
phases, and also ensures that all the
storage location offsets allocated in pre-
vious phases can be addressed by the inser-
tion of additional instructions, where nec-
essary.

Final Assembly Phase

The Final Assembly Phase completes the
translation to machine code instructions,
by calculating branch destination addresses
inserted symbolically by earlier phases.
Loader text 1is then produced for the
machine instructions, constants, INITIAL
values in STATIC storage, and all the

18

constant data required for block initiali-
zation. ESD, RLD, and INCLUDE cards are
produced to enable the object program to be
edited by the Operating System/360 Linkage

Editor. The Final Assembly Phase also
produces a 1listing of the object code
produced.

Error Editor Phase

The Error Editor Phase is entered at the
end of every compilation. The "dictionary
is examined to determine whether there are
any diagnostic messages to be printed out.
If there are none, the compilation is
terminated by the compiler control. If
there are diagnostic messages to be printed
out, the error dictionary entries are proc-
essed and the messages are printed. The
texts of all the diagnostic messages are
held in modules XG through Y¥X.

COMPILER CONTROL AND 48-CHARACTER SET
PREPROCESSOR

COMPILER CONTROL

When the PL/I (F) Compiler is invoked by
the calling program (€eG.y the Job
Scheduler) of the Operating System, the
Compiler Control module IEMAA is loaded and
entered. IEMAA is resident during the
whole compilation; it controls the follow-
ing functions:

Initialization

Character translation

Text and dictionary block control
Scratch storage control

Phase loading

Diagnostic message control
Input/output control

Program check handling

Job termination

Initialization

Initialization is achieved by module AA
linking to module AB. Module AB performs
the detailed initialization of the compil-
er, and provides the following functions:

Opens SYSIN and SYSPRINT data sets

Constructs a phase directory (for details
refer to Appendix B)

Sets up a communications region in the
dictionary (for details refer to Appendix
F)

Scans option list

Obtains space for text blocks, dictionary
blocks, and scratch storage

Opens SYSUT3 as necessary

Prints a list of options used in current

compilation

SECTION 2: COMPILER PHASES

On return from module AB, the first compil-
er phase is loaded and entered.

Character Translation Tables

character translation tables (see

D.1l) provide the facility for
converting external code to a compiler
internal code, and for converting the
internal code back to the external form.
These tables thus prevent the compiler from
becoming character code dependent, and ena-
ble the scanning routines to process the
input source statements more efficiently.
Note that the contents of these tables are
different during compile-time processing
from the contents during compilation pro-
per.

The
Appendix

Communications Region

The communications region is an area
specified by the control routines, and used
to communicate necessary information
between the various phases of the compiler.
The communications region is resident in

the first dictionary block throughout the
compilation.

Entry to the various compiler control
routines is via a transfer vector. Details

of the transfer vector and the organization
of the communications region appear in
Appendix F. (Note: The use of the communi-
cations region during compile-time process-
ing is described in Appendix J.)

Text and Dictionary Block Control

Block control is achieved by a system of
text and dictionary references. If the
program in storage becomes too large,
blocks are placed on an external file,
SYSUT1. The block control routines contain
the input/output control.

Scratch Storage Control

Scratch storage of 4K bytes is guaran-
teed to all phases. The control routines

Section 2 (Compiler Phases): Control, u48-Character Preprocessor 19

split the #K-block into discrete sections,
and allocates them as required. The sec-
tions are in multiples of 512 bytes.

Storage Requirements

The (F) Compiler requires main

for the following purposes :

storage

Compiler processing phases

Print buffers

Compiler control routines
Dictionary area

Text area

Input/Output buffers
Input/Output routines (BSAM)

The main storage required by each phase
of the compiler need be contiguous only for
each control section.

puring the read-in phases a minimum of
two dictionary blocks and two text blocks
are available in storage simultaneously.

During the rest -0of the compilation four

dictionary blocks and four text blocks are
available in storage simultaneously.

The dictionary and text block size is
chosen according to the amount of main
storage available to the compiler. The
SIZE option, interpreted at invocation

time, provides the value used to determine
the block size. A table contained in Phase
AB is searched, using the SIZE option as an
argument. When the correct entry is found,
the block size is extracted.

details of

Appendix E shows

allocation.

storage

Phase Loading

Phase 1loading routines include phase
marking (where phases are indicated as
wanted or not wanted), phase loading, and
phase deleting facilities. The phase
directory is constructed for this purpose.

20

Phase Directory

Because of the number of phases in the
compiler, the phase directory is split into
halves. The first half 1is constructed
during the initialization of the compiler;
also a list of names of the phases in the
second half is kept in Phase AA. This 1list
is used to pass status indications (i.e.,
whether phases are wanted or not wanted)
from the first half to the second half.
Phase JZ uses the list to construct a new
directory for the second half.

The phase directory is constructed by
use of the BLDL macro and a build 1list.
The format of the build 1list is fully
described in the publication IBM System/360
Operating System, Control Program Services,

Form C28-6541. For details of the phase
directory see Appendix B.
Diagnostic Message Control

Diagnostic message control routines

cause diagnostic messages to be placed in a
chain in the dictionary.

Input/Output Control

The I/0 control routines involved act as
an interface between the compiler phases,
and SYSIN, SYSPRINT, SYSLIN, and SYSPUNCH
data sets. (See Figure 4.)

Program Check Handling

The compiler handles all program checks.
Control can be passed to a phase to enable
it to deal with the check.

Job Termination

The compiler completion code 1is picked
up and control is returned to the calling
program.

The compiler codes are as
follows:

completion

Code Meaning

0 No diagnostic messages issued; com-
pilation completed with no errors;
successful execution expected

< Module- — ————————————— >
r T T T T T T T T T T T T T 1
| | AR | AB |AE® | AS | BX | CI | AS2 | FY | UA | UF | XB | AE | RA“ |
L 4 4 4 1 1 4 4 1 4 4 4 | I I,
v 1} T T T T 1) T) T T T _T + "
Data	I	I		I									
Set		I	I I		! I ! I								
		I					I		!				
SYSIN		OPEN			READ	READ	READ					CLOSE	
			I	I l I !		I I							
SYSLIB			OPEN				READ						CLOSE
				!							I I		
SYSLIN			OPEN			{READ						CLOSE	
			I				! I	I g !					
SYSPRINT		OPEN				WRITE	WRITE	WRITE	WRITE	WRITE	WRITE		CLOSE
		I	I		I I			I					
SYSPUNCH			OPEN						WRITE				CLOSE
I I			I		l	I							
SYSUT1	OPEN?3	OPEN3] i	READ]]	CLOSE				
	I				WRITE		I I						
I				I	I					I			
sYsuT3		OPEN				WRITE	WRITE]					CLOSE	
I						READ	I !						
% L 4 L L AL 1 i L 1 L L J -1 __,'													
*aa, AC, and AE are modules of the control phase, and contain the actual I/0													
routines which interface with the 0/S access methods (BSAM, QSAM). I/0 activity													
shown for other modules indicates that these modules are utilizing the I/O													
routines.													
2AS may read from included data sets in addition to data sets shown in the table.													
3If the SIZE option results in 1K text and dictionary blocks, SYSUT1l is opened by													
Module AB. In the case of other SIZE options, SYSUT1 is opened by Module AA when													
the available main storage is full. The timing depends on the size of program to													
be compiled.													
#At end of compilation. i													
L J

Figure 4. Input/Output Usage Table
4 Warning messages issued; program
compiled; successful execution
expected
8 Error messages issued; program com-
piled but with errors; execution
may fail
12 Severe error messages issued; com-

pilation may be completed but with
errors, successful execution impro-
bable. If a sevVere error occurs
during compile-time processing, a
listing of the PL/I text on SYSUT3
will be printed if the SOQURCE
option is specified. The compila-
tion will be terminated.

16 Terminal error messages issued;
compilation terminated abnormally

COMPILER CONTROL MODULES

In addition to modules AA and AB, furth-
er modules, AC, AD, AE, AF,AG, AM, and JZ
are used in compiler control. The func-
tions of thése modules are briefly des-
cribed in the following paragraphs.

Module AC

Module AC controls reading and writing
operations on SYSUT3, the intermediate
file. It is loaded only if the CHARU8 or
MACRO option is specified, and is deleted
at the end of the Read-In Phase.

Module AD

Module AD performs inter-phase dumping
using TESTRAN.

All currently active storage 1is dumped
at the end of the phases stated or implied
in the DUMP option. The required output is
selected at TESTRAN edit time.

The DUMP Option

The DUMP option specifies where dumping
of main storage is to take place. It may
be specified in one of the following ways:

Section 2 (Compiler Phases): Control, 48-Character Preprocessor 21

1. DUMP, means a dynamic dump is required
(the dump routine will be called by a
running phase)

2. DUMP=(AREA) means a dump of storage
only when a program check occurs

3. DUMP=(AREA,X;,X2, (X3,Xn)s...) means a
dump of storage after the named phase

X1+ X2 €tc., are 2-byte phase names

AREA is any combination of TDPSC:
text blocks

dictionary block

phases loaded

scratch storage

control phase

QnhwooX

The general syntax is:
DUMP[=(AREA, {x|(y,2)},...)]

A single phase name indicates dumping of
storage after this single phase. A pair of
phase names indicates a continuous group of
phases after which dumping of storage is to
occur.

The dump will appear on SYSPRINT,
inserted into the normal compiler output.

Use of the DUMP option is not restricted

by the amount of storage available to the
compiler.

Module AE

Module AE 1is the
Read-In Phase control.

finalization of the

Module AF

Module AF is a control section consist-
ing of a table containing the compiler
options which may be used during a compila-
tion. The table is constructed at system
generation time. The control section is
brought into storage by the initialization
Module AaB at compilation time., A descrip-
tion of the use of Module AF 1is given in
Appendix G.

Module AG

Module AG closes SYSUT3 for output, and
re-opens it for input.

22

The closing and opening operations are
performed in the following order:

CLOSE
alter
(DCB)

macro-type in data control block

OPEN (INPUT)
switch routine ZURD to point at SYSOUT3
DCB

Module AM

Module AM marks phases as either wanted
or not wanted, depending upon the compiler
invocation options. Phases that are always
loaded are marked wanted.

AM is the first compiler phase loaded
after compiler initialization. It tests
the relevant bits in CCCODE and marks the
phases accordingly.

Module JZ

Module JZ builds the second half phase
directory. A build 1list is constructed
from the second half list held in Module
AR; a BLDL is performed on this list. The
phase directory is then reconstructed in
Module AA for the second half of the
compiler.

48-CHARACTER SET PREPROCESSOR

Phase BX is the #48-character set prepro-
cessor. It is loaded on programmer option
and receives, as input, source text in the
48-character syntax.

The preprocessor scans the input text
for occurrences of characters peculiar to
the 48-character set, and converts these to
the corresponding 60-character symbols. It
then puts out the adjusted text onto back-
ing storage ready for Phase CI, the first
pass of the Read-In Phase.

The text is read in record by record.
It 1is then scanned for alphabetic charac-
ters which may be the initial 1letters of
operator keywords, for periods, and for
commas. Items within comments or character
strings are ignored.

When a possible initial letter is disco-
vered, tests are made to determine whether
or not one of the reserved operator key-
words has been found. If one has been

found, it is replaced by its 60-character
set equivalent. Similarly, appearances of
two periods are replaced by a colon, and a
comma-period pair is replaced by a semi-

colon if the comma-period pair is not
immediately followed by a numeric
character.

Allowance is made for the possibility
that a concatenation of characters which is
meaningful in the 48~-character set may be
split between two records.

Before the text is processed a copy of
the original input is preserved. The out-
put from the preprocessor is the trans-
formed text, record by record, followed by
the original text. The Read-In Phase proc-
esses transformed text but prints out the
original.

The preprocessor uses Compiler Control

routine 2URD to obtain input, and routine
ZUBW to place its output onto backing
storage.

Note: If the MACRO option is specified, all
the processing described above is
done by the compile-time processor,
and phase BX is bypassed.

COMPILE-TIME PROCESSOR_PHASE

The compile-time processor consists of
six physical phases. Each of these phases
is executed once, unless an INCLUDE data
set is encountered that contains compile-
time statements. In this case certain
phases will be re-executed.

The compile-time processor moves source
text that does not contain compile-time
statements directly into text Dblocks.
During this process invalid characters are
replaced by blanks, and line numbers are
encoded and inserted into the text.
Compile-time statements are decoded and
translated into an internal form and then
placed directly into text blocks. An entry
is made into the dictionary for each
compile-time variable, procedure, label, or
INCLUDE identifier.

A second pass is then taken over these
text blocks, during which compile-time
statements are executed and the PL/I source
program text is scanned and replacements
are made. The output from this pass is a
PL/I source program contained on SYSUT3.

If during the second pass, an INCLUDE
data set is processed that contains compile
time statements, the entire procedure indi-
cated above is executed recursively to
process this text.

Section 2 (Compiler Phases):

Text and dictionary formats used by the
compile-time processor are contained in
Appendix J.

Line Numbering

As the input is being processed a unique
line number is assigned to every logical
record processed. If a 1listing of the
input is requested, these line numbers are
written out beside the appropriate 1line.
The 1line numbers are also encoded and
inserted into the text so that diagnostics
can be keyed to them. These line numbers
are also output on SYSUT3, to aid the user
in determining from which input 1line a
particular line of output came.

Phase AS

This phase, consisting of one physical
module, is 1loaded if the option MACRO is
specified. It is resident throughout
compile-time processing until the c¢leanup
phase (BW) is invoked.

This phase controls the loading of the
subsequent compile-time processor phases.
The initialization phase (AV) is loaded
only once. The two processing phases (BC
and BG) are loaded and executed once unless
an INCLUDE data set 1is processed that
contains compile-time statements. In this
case phase AS reloads the processing phases
to process this data set.

In addition, phase AS contains a set of
service routines used by both processing
phases. Access to these routines is via a
transfer vector located at the beginning of
phase AS.

Phase AV

This phase consists of one physical
block. Its purpose is to initialize cer-
tain cells in the communications region for
the compile-time processor phases.

Phase BC

Phase BC consists of three physical
modules, BC, BE, and BF. Module BE con-
tains the control routine.

Compile-time Processor Logical Phase 23

Phase BC accepts input text, moving it
into text blocks until a compile-time
statement is found. (For a description of
the use and layout of text and dictionary
blocks, see Appendix J.) When a compile-
time statement is encountered, it is
encoded into a set of interpretive instruc-
tions and, except for compile-time proce-
dures, added to the current text block.
Compile-time procedures are similarly
encoded, but are placed in separate text
blocks.

As compile-time statements are encoded,
all nontkeyword identifiers encountered are
entered into the dictionary, together with
any attributes that are known. Entries are
also made in the dictionary for constants
and iterative DOs.

During phase BC, invalid characters
occurring outside of strings and comments
cause a diagnostic to be printed. They are

Invalid characters
markers of various

converted to blanks.
can thus be used for

sorts in text Dblocks. Diagnostics are
given for syntax errors in compile-time
statements. Line numbers are encoded and
inserted into the text for the use of the
phase BG scan. All input characters are
converted to their EBCDIC representation
before they are processed.
Phase BG

Phase BG consists of two physical

modules, BG and BI. The control routine is
contained in module BG.

In general, the input to phase BG is the
set of chained text blocks and dictionary
blocks created by phase BC. The phase BG
execution 1is essentially that of the
compile-time processor described in the
external specifications. That 1is, its
basic action is to move through text blocks
looking for instances of compile-time vari-
ables or compile-time statements, which it
uses to produce the output text. As line
numbers are encountered in the text, they
are placed into a location containing the
current line number. This is used both for
phase BG diagnostics and by the output
editor.

If a compile-time variable or procedure

reference is found, the scan cursor is
positioned to scan its value. When the
scan of the value is completed, the cursor

is properly positioned back into the text.
If a compile-time variable or procedure
reference is found in this value scan, the
process repeats itself. Such nesting can
occur to a depth of 100.

24

If the scan encounters an encoded
compile-time statement (built by phase BC),
control is passed to an interpreter. This
interpreter executes the statement -- pos-
sibly repositioning the scan cursor -- and
returns to the scan.

The output of this phase is a
source program contained on SYSUT3.

PL/I

Phase BM

Phase BM examines the heads of the error
chains in the first dictionary block, and
programmer options which specify the sever-
ity level of messages required. If there
are no messages, it passes control to the
clean up phase (BW). If diagnostic messa-
ges are required, the phase loads BN to
process them after scanning the chains and
indicating where the text is to be found.

Module BN

The text of all compile-time processor
error messages 1is kept in modules BP
through BV. The messages are ordered by
severity, within these modules. BM will
have listed those modules which contain
messages required for a particular pass.
Module BN loads and releases these modules,
one at a time and extracts the required
messages. When all compile-time error mes-
sages have been processed, module BN
returns control to BM.

Phase BW

The purpose of this phase to set all
tables and communications regions cells to
the values required by the compiler proper.
In addition it will release all text and
dictionary blocks used by the compile-time
processor phases and then pass control to
the next required phase of the compiler.

If a severe or terminal diagnostic has
been produced by the Compile-time processor
a listing of the contents of SYSUT3 will be
printed (provided that the SOURCE option
applies), and compilation will be bypassed.

THE READ-IN LOGICAL PHASE

The Read-In Phase is implemented as five
discrete physical phases, each of which

processes a particular group of statement
types. The phase obtains the input text in
the externally coded form by a call to the
compiler read routine, and converts it to
internal code by means of a translate table
provided by compiler control.

The source text is scanned for syntacti-
cal errors. During this time an output
string is built up, which consists essen-
tially of the input text with comments and
insignificant blanks removed. The source
text is scanned and statements are num-
pered, identified, and diagnosed. Any
required substitutions are made, statement
labels are inserted in the dictionary, and
chains are formed (for example, BEGIN,
PROCEDURE chains). If the SOURCE option
applies, source statements, with their num-
bers, are printed out immediately after
they have been read.

When the input text provides an end-of-
file indication, processing is terminated.
In ERROR situations this may not occur when
a valid external procedure has been
completely processed. By keeping a count
of PROCEDURE, BREGIN, DO, END, ON, and IF
statements, the phase can detect when the
logical end-of-program indication is found.
If there are more records after the end of
the external procedure, they are ignored.

If an end-of-file indication is encoun-
tered before the logical end of the pro-
gram, diagnostic messages are issued and
suitable END statements are inserted to
allow compilation to continue.

The output of the Read-In Phase provides
a syntactically correct output string; a

table of entry and statement labels; chains
of coded diagnostic messages; a set of
switches specifying compilation content

details; a set of chains linking statements
of a particular type, to facilitate subse-
guent scanning; and optionally, a listing
of the source text.

Statement Numbering

All statements are given a sequential
number. This includes each compound state-
ment, each statement contained in a com-
pound statement, block and group delimiting
statements, and null statements. The ELSE
clause 1is not regarded as a statement for
numbering purposes. The numbering of the
statement is indicated on the source list-
ing. Diagnostic messages also refer to
these statement numbers.

Section 2 (Compiler Phases):

Statement and Entry Labels

Statement and entry labels appearing in
the source text are removed and added to a
label table, which is built up in the
region intended for the dictionary. This
region may be extended by further blocks as
required. The 1label table entry is an
embryo dictionary entry, with blank regions
to be filled later by the Dictionary Phase
EG.

When a 1label declaration is found, an
entry is made in the 1label table with a
statement label code, the current (updated)
sequential number, and the current block
level and block count.

Statements having multiple labels give
rise to multiple 1label table entries.
These entries are identical except for the
BCD name.

If the statement following a 1label is

subsequently identified as a PROCEDURE or
ENTRY statement, the label table is re-
accessed, and the entries associated with

the statement are modified

C.2).

(see Appendix

Chains Constructed by Read-In

To provide rapid scanning in the
dictionary phases, the following chains are
constructed by the Read-In Phase:

The CALL chain
The PROCEDURE-ENTRY-BEGIN chain
The DECLARE chain

The ALLOCATE chain

Errors and Diagnostic Messages

As the source text 1is scanned it is
syntactically analyzed. Keywords are iden-
tified and passed as valid only if they may
legally appear within the type of statement
being diagnosed. However, consistency of
attributes and options within a statement
is not normally analyzed. This is left for
Phase EK.

When a syntactical error is detected, an
attempt is made to correct it and an
appropriate diagnostic message is generat-
ed. The main aim of the Read-In Phase is
to present syntactically correct text to
subsequent compiler phases. Certain cor-

Read-In Logical Phase 25

rections are performed without prejudicing
the complete compilation.

Detected errors cause a diagnostic mes-
sage to be added to a diagnostic message
chain in the dictionary area. Each message
is in a coded form with parameters (textual
matter, statement numbers, and so on). The
message is decoded and printed out by the
Error Editor.

Where an error makes it impossible for
the scan of a statement to continue, the
statement is terminated correctly at such a
point as to leave the statement syntacti-
cally correct. The text between that point
and the next semi~colon (not in a comment
or character string) is skipped. The diag-
nostic messages produced in these circum-
stances will include at most the first ten
characters of the text that is skipped.

The Output String

The output string is so arranged that a
complete statement never spans storage
blocks. One of the conditions of a suc-
cessful compilation is that the output
resulting from any statement must not
exceed the block. This restriction, howev-
er, does not apply to DECLARE statements.
Formats of the statements appearing in the
output string are given in Appendix D.2.

Identifiers

All identifiers which are not recognized
as keywords in the source text appear in
the output string.

Constants

All constants appear in the output
string.
Operators

All operators appear in the output

string.

26

Initial Labels

Subscripted 1label variables which are
initialized by attachment to statements are
placed in pseudo-assignment statements in
text, and. then handled as if they were
normal labels.

STRUCTURE OF THE READ-IN LOGICAL PHASE

The Read-In Phase can occupy 16K bytes
of storage for any one pass. A storage map
for this phase is shown in Figure 5.

Bytes
0

r 1

| ca |
4K} i
| cc I

7K % LB Al T v Jl

| CE | CK | CN | CR | CR |

8K } 4 i 1 1 4
r T T L) T 1

] & | cL | co | ©cs | cv |

12k ¢ 1 + + 1 i
| ¢TI | cM | CP | CT | CW |

16K L £z 4 4 4 J

PASS 1 PASS 2 PASS 3 PASS 4 PASS 5
Figure 5. Storage Map for the Read-In Phase

The Read-In Phase consists of five phas-
es or passes, each containing at most five
modules. Modules CA and CC consist of
common routines which are invoked through-
out the phase by each of the passes, in
turn. Modules CE, CK, CN, and CR contain
separate keyword tables. Details of the
organization of these tables are given in
Appendix B. Control for each pass resides
in modules CI, CL, CO, CS, and CV respec-
tively. The following description refers
to the phases by these names.

Phase CI

During phase CI (the first physical
phase of the Read-In Phase) the source text
is read into storage, and character codes
are converted to an internal form. State-
ment types are identified, 1labels are
inserted into the dictionary, and statement
identifiers are replaced by single-byte
codes (see Appendix D.1).

‘A record is kept of block nesting levels
and counts to enable a check to be made for
the 1logical end-of-program indication. 1In
order to do this, certain statements have
to be either partially or completely ana-
lyzed in this pass.

These statements are:

PROCEDURE-END
BEGIN-END
DO-END
IF-THEN-ELSE
ON

If the SOURCE option has been requested,
a listing of the source program, with the
statements numbered by the compiler, is
printed out onto the specified output medi-
um.

Phase CL

The output from phase CI 1is processed

and the statement types listed below are
analyzed in greater detail:

ENTRY FREE

PROCEDURE WAIT

DO READ

Iterative DO WRITE

RETURN DELETE

GO TO UNLOCK

DELAY LOCATE

DISPLAY REWRITE

If any errors are detected during this
pass, diagnostic messages are inserted into
chains in the dictionary as required.

Phase CO

The output from phase CL is processed.

In particular, the DECLARE, ALLOCATE, and
CALL statements are analyzed 1in greater
detail. The syntax of attributes is

checked, but their consistency is analyzed
during phase EK. If the source program
does not contain any of these three state-
ments, this pass is not invoked.

If any errors are detected during this
pass, diagnostic messages are inserted into
chains in the dictionary.

Phase CS

CL or CO is
the syntax of
analyzed,

The output from phase
processed. In particular,
input/output statements is
together with the FORMAT statement. If the
source program contains no input/output
statements, this pass is not invoked.

Section 2 (Compiler Phases):

Phase CV

This phase processes
earlier phases.
qguent processing,
for PROCEDURE,
CATE,

the output from
In order to assist subse-
chains are constructed
ENTRY, BEGIN, CALL, ALLO-
and DECLARE statements.

THE DICTIONARY LOGICAL PHASE

The Dictionary Phase forms a
of identifiers, by first analyzing PROCE-
DURE, BEGIN, DECLARE, and ENTRY statements.
The text is then scanned for contextual use
of identifiers, constants, and pictures.
Finally, every identifier and constant in
the source text is replaced by a reference
to its respective dictionary entry. Dic-
tionary entries are made during this phase
for all implicitly defined identifiers.
The formats of dictionary entries appear in
Appendix C.

dictionary

Constructing and Accessing the Dictionary

The dictionary, during the construction
stage, comprises two parts, the hash table
and the dictionary proper.

To facilitate a search through the dic-
tionary for an entry with a particular BCD,
a method is used of dividing the dictionary
into areas. Each area is characterized by
a property of the BCD of each entry in it.
In practice, these areas are not contiguous
but are chained 1lists, each item in the
list being one dictionary entry long.

The start of each list is in a
known as the hash table.
of a particular identifier with a 1list,
i.e. the characterization of an area, is
achieved by deriving from a given BCD an
address in the hash table.

table,
The association

"Hashing”™ is a process of reducing the
length of the internal representation of
the BCD to one word. This is done by
adding successive four-byte lengths of the
BCD into one four-byte register. This is
then divided by 211, and the remainder is
doubled to give the hash table address
associated with the particular BCD. All
jdentifiers which hash to the same address
are placed in a chain; in particular, all
dictionary entries with the same BCD will
be in the same hash chain.

If TOM, DICK, and HARRY occur in the

same DECLARE statement in that order, and
they all hash to the same address 1in the

Dictionary Logical Phase 27

hash table, the address in the hash table
will point to HARRY's entry, which contains
the address of DICK, which, in turn, con-
tains the address of TOM.

When no further BCD entries are to be
made in the dictionary, and all BCD iden-
tifiers in the source text have been

replaced by dictionary references, the hash
table is deleted.

Testing for Consistent Attributes

A test is made at the start of each list
of attributes, to ensure that any list of
attributes at one level of factoring in a
DECLARE statement is consistent.

compiler Pseudo-Variables and Functions

Expressions specified for array bounds,
string lengths, and initial value iteration
factors must be evaluated at object time,
or at allocation time if the variable is
controlled. The expressions are placed
temporarily at the end of the text, and are
later moved by Phase FV and placed
immediately following the BEGIN, PROCEDURE
or ALLOCATE statement to which the declared
variable belongs. The expression results
are assigned to pseudo-variables generated
by the corpiler. These serve two purposes:
first, the assignment statement appears as
a normal PL/I statement and need not be
treated as a special case; secondly, the
pseudo-variable contains the dictionary
reference of the variable and information
concerning the destination of the
expression. Compiler functions with a
format similar to the pseudo-variables are
also created. The function result is the
specified array bound, or string length.
compiler functions are created for two
purposes: first, to set bounds for base
elerents of structures when the structure
bound is an expression, or to set the
bounds of temporary arrays; and secondly,
to set the storage address of a dynamically
defined item immediately before its use.
The formats of all the compiler
pseudo-variables and functions appear in
Appendix D.S8.

Dictionary Entries for Entxy Points

A PROCEDURE or ENTRY statement may have
more than one label. Each label must have
a data description to indicate the type of

28

a function, and also the type of data to
which the expression in a RETURN
(expression) must be converted. These need
not be the same: there must therefore be
provision for two data descriptions for
each label. A PROCEDURE or ENTRY statement
may specify parameters. The descriptions
of these identifiers, obtained from DECLARE
statements or default rules, are used for
prologue construction, but not for paramet-
er matching. Any data description given on
these statements is to be used for conver-
sion at a RETURN (expression), but not for
determining the result returned by a func-
tion reference.

Parameter descriptions for use in param-
eter matching, and data descriptions used
for determining the type of data returned
by a function reference, may be specified
by the source programmer in an ENTRY dec-
laration. If these are not given, default
and implicit rules must be used to build a
data description, but no parameter descrip-
tion can be given.

Given the foregoing requirements, the
dictionary entries describing an internal
entry point are as given in Figure 6.

The set of dictionary entries A, B, C,
D, E is repeated for each label associated
with the PROCEDURE or ENTRY statement. The
entry F will point to entry A for the first
label only. D will point at the label with
which it is associated. It should be noted
that B and C may coincide.

The entries type 1 for PROCEDURE, ENTRY,
and BEGIN statements are chained amongst
themselves in the following way. Each
entry type 1 belonging to a PROCEDURE or
BEGIN statement contains the dictionary
reference of the entry type 1, of the next
PROCEDURE or BEGIN statement in the source
program, and also of the entry type 1 of
the immediately containing block.

The entries
ENTRY statements
procedure

type 1 of PROCEDURE and

belonging to a single
are chained together in a circu-
lar manner. If there are no ENTRY state-
ments the entry type 1 of the PROCEDURE
statement points at itself.

External entry points are described by
dictionary entries termed entry type 4.
They contain data descriptions of the value
returned when referenced as a function, and
may contain descriptions of parameters.

Formal parameters which are entry points
are termed entry type 5, and parameter
descriptions which are entry points and are
pointed at by types 3, 4, or 5 are termed
entry type 6.

1
r—=>| |
| r-->| Dictionary entry for entry label |
=1 |
It 4
I
o 1
|| ->] Entry type 2. Used to provide]
I | data description of target in |
|} r——| RETURN (expression). |
R .
i
R r 1
I { v
1l r L 1 0r 1
|| t=>] Entry type 3. This entry is used | | Second entry type 2. |
1 | to point at the data description C | Used to provide data description |
| t---| and parameter descriptions for para-|D | of value returned when label A |IC
| r—-—| meter matching. | is invoked as a function. This |
I + Y T | entry may, and usually will, coin- |
(I { | | cide with B. |
| | | | L 4
(| | L 1 t -]
1| | | |
| | v v v
ll T 1 r 1 r - -1
| 1 | Description of | | Description of | | Description of |
11| IE | lEL | |E2
| 1 | first parameter | | second parameter | | each parameter |
l‘ L J L J L 3
|1
|‘ r 1 r - | r h]
| | | Entry type 1 for | | Formal parameter | | Description of para- |
| t->| PROCEDURE or |F | type 1 entry |G | meter used in prologue{H
L-—- | ENTRY statement | | | | construction |
L -d L J L F |
T T
| A | A
| | | |
L 1 | J

Note: There is an entry E for each parameter described in D.

Figure 6.

Phase EG

Phase EG has two main functions. The
first is to set up a hash table, and to

insert the label entries left in the dic-
tionary by the Read-In Phase into hash
chains. The second function of the phase

is to create dictionary entries for PROCE-
DURE, BEGIN, and ENTRY statements, and to
construct chains linking entries of parti-
cular types.

For PROCEDURE-BEGIN statements, entry
type 1 dictionary entries are created (see
appendix C.2), and block header chains are
set wup to link these entries sequentially.
A containing block chain is also set up to
link each entry with that of its containing
block.

Section 2 (Compiler Phases):

type 1 (see Appendix C.2).

Dictionary Entries for an Internal Entry Point

On the appearance of PROCEDURE state-
ments, circular PROCEDURE-ENTRY chains are
initialized to 1link the entry type 1 dic-
tionary entries of the PROCEDURE and ENTRY
statements of the same block. The formal
parameter list is scanned, and formal par-
ameter type 1 entries are- created and
inserted into the hash chain. Details of
the PROCEDURE-ENTRY chains appear in Appen-
dix C.2.

The attribute 1list 1is scanned and an
options code byte is created in the entry
A check is then
made for invalid and inconsistent attri-
butes. CHARACTER and BIT attributes are
processed, and second file statements (see
Appendix D.8) are «created if necessary.
Precision data are converted to binary, and
dictionary entries are created for pictures
(see Appendix C.7).

Dictionary Logical Phase 29

Statement labels are scanned and their
entry type 2 dictionary entries are creat-
ed. The relevant data bytes in the dic-
tionary are completed by default rules (see
Appendix C.3).

For ENTRY statements, entry type 1 dic-

tionary entries are created (see Appendix
c.2), and the circular PROCEDURE-ENTRY
chain is extended. Formal parameters,

attributes, and labels are processed in a
similar manner to those for PROCEDURE
statements, except that the options code
byte is not created.

Phase EI

Phase EI scans the chain of DECLARE
statements set up by the Read-In Phase, and
modifies the statements to assist Phase EK
as follows:

Structure Level Numbers: these are
verted to binary.

con-

Factored Attributes: parentheses enclosing
factored attributes are replaced by special
code bytes, so that Phase EK can distingu-
ish them easily. A factored attribute
table is set up. It consists of slots
corresponding to each factored level. Each
slot contains the address of the attribute
list associated with that level, and the
address of the slot for the containing
level.

The following attributes are processed:

DIMENSION: dimension table entries (see
Appendix C.8) are created in the dictionary
and the source text 1is replaced by a
pointer to the entry. Fixed bounds are
converted to binary and inserted in the
table. A second file statement (see Appen-
dix D.8) is created at the end of the text,
for adjustable bounds, and a pointer to the
statement is inserted in the dimension
table. Identifiers with identical array
bounds share the same dimension table.

PRECISION: precision
are converted to binary.

and scale constants

INITIAL: dictionary entries are created

for INITIAL attributes.

INITIAL CALL: second file statements are
created for INITIAL CALL attributes.

CHARACTER and BIT: fixed length constants
are converted to binary; a code byte marker
is left for * lengths (see Appendix C.8).
Second file statements. (see Appendix D.8)
are created for adjustable length con-
stants, and the source text is replaced by
pointers to the statements.

30

DEFINED: second file statements (see
Appendix D.8) are created and the source
text is replaced by pointers to the state-
ments. In the case of DEFINED attributes
with iSUBs, the iSUBs are made to precede
their coefficient expressions. The syntax
of the isSUB list is also checked.

POSITION: the position
verted to binary.

constant is con-

PICTURE: a picture table entry (see Appen-
dix C.7) 1is created and inserted into the
picture chain; similar pictures share the
same picture table. The source text is
replaced by a pointer to each entry.

USES and SETS: USES and SETS attributes
are moved into dictionary entries, and
pointers to the entries replace the source
text.

LIKE: BCD entries are created for iden-
tifiers with the LIKE attribute.

LABEL: if the LABEL attribute has a 1list
of statement 1label constants attached, a
single dictionary entry is created. The
dictionary entry contains the dictionary
references of the statement label constants
in the list.

All other attributes,
constants are skipped.

identifiers, or

Phase EL

Phase EL, consisting of modules EK, EL,
and EM, scans the chain of DECLARE state-
ments constructed by the Read-In Phase.

An area of storage known as the attri-
bute collection area is reserved. This is
used to store information about the iden-
tifiers, and has entries of a similar
format to that for dictionary entries.

Complete dictionary entries are con-
structed for every identifier found in a
DECLARE statement. These identifiers can
be one of the following types:

1. Data Items (see Appendix C.4)

*true’
(see

2. Structures (in this case, the
level number is calculated)
Appendix C.4)

3. Label Variables (see Appendix C.4)

4. Files (see Appendix C.7)

5. Entry Points (see Appendix C.?2)

6. Parameters (see Appendix C.7)

Identifiers appearing as multiple dec-
larations are rejected and a diagnostic
message is given.

The attributes to be associated with
each identifier are picked up in three
ways.

First, the attributes immediately fol-
lowing the identifier are stored in the
attribute collection area.

Secondly, any factored attributes and
structure level numbers are examined.
These are found by using the 1list of
addresses placed in scratch core storage by
Phase EI. Each applicable attribute is
marked in the attribute collection area,
and any other information, e.g. dimension
table address, or picture table address, is
moved into a standard location in the
attribute collection area. B2ll conflicting
attributes are rejected and diagnostic mes-
sages are given.

Finally, any attributes which are
required by the identifier, and which have
not been declared, are obtained from the
default rules.

After the dictionary entry has been
made, further processing (e.g. 1linking of
chains, etc.) must be done in the follow-
ing cases:

1. DEFINED data

2. Data with the LIKE attribute

3. Files

4. Strings with adjustable lengths

5. Arrays having adjustable bounds

6. GENERIC identifiers

7. structure members

8. Identifiers with INITIAL CALL

9. Identifiers with the INITIAL attribute

declaration 1list has been
it is erased.

After the
fully scanned and processed,

Phase EP

Phase EP first conditionally marks later
phases as 'wanted' or 'not wanted,' accord-
ing to how certain flags in the dictionary
are set on or off. This assists in the
load-ahead technique.

Section 2 (Compiler Phases):

The entry type 1 chain in the dictionary
is then scanned. For each PROCEDURE entry
in the chain, each entry label is examined
for a completed declaration of the type of
data the entry point will return when
invoked as a function. If +this has pre-
viously been given in a DECLARE statement
nothing further is done, otherwise entry
type 2 and 3 dictionary entries are con-
structed from default rules (see Appendix
C.2). If this default data description
does not agree with the description derived
from the PROCEDURE or ENTRY statement, a
warning message is generated.

At each PROCEDURE entry, the chain to

the ENTRY statement entry type 1 is fol-
lowed. Each statement 1is treated in a
similar manner to that for a PROCEDURE

entry type 1.

The CALL chain is then scanned and, at
each point in the chain, the dictionary is
searched for the identifier being called.
If the correct one is not found, a dic-
tionary entry for an EXTERNAL procedure is
made (see Appendix C.2), using default
rules for data description. Before making
the entry, the identifier is checked for
agreement with any of the built-in function
names. If there is agreement, a diagnostic
message 1is generated, and a dummy diction-
ary reference is inserted.

If an identifier is found, it is
examined to see if it 1is an undefined
formal parameter. If it 4is, the formal
parameter is made into an entry point,
again using default rules for data descrip-
tion. If it is not, or if the declaration
of the formal parameter is complete, the

type of entry is checked for the legality
of the call. A diagnostic message is
generated if the item may not be called.

In all cases, the item called is marked
IRREDUCIBLE if it has not previously been
declared REDUCIBLE.

Phase EW

Phase EW is an optional phase, 1loaded
only if any LIKE attributes appear in the
source program.

This phase scans the LIKE chain which
has been constructed by Phase EK, and
completes. the dictionary entry for any
structure containing a LIKE reference.
When a structure in the LIKE chain is
found, its validity is checked, and dimen-
sion data and inherited information are
saved. The dictionary is scanned for the
reference of the "likened" structure and
the entry is checked for validity.

Dictionary Logical Phase 31

This dictionary entry (see Appendix C.4)
is copied into the dictionary, with altera-
tions if there is a difference between the
original structure and this structure with
regard to dimensioned data. If both struc-
tures have dimensions a straight copy is
made; if the structure with the-LIKE attri-
bute has dimensions and the likened struc-
ture has not, the dimension information is
added to the copy; if the structure with
the LIKE attribute is not dimensioned and
the 1likened structure is, then the dimen-
sion data is deleted from the copy. Inher-
ited data 1is added to the copy. If an
error is found, the structure with the LIKE
attribute is deleted and a base element
copy of the master structure is inserted
instead. Where copies of entries occur
which refer to dimension tables with varia-
ble dimensions, the dimension table entry
is copied, and new second file dictionary
entries and statements are created. Simi-
lar entries must be made if the structure
item has been declared to be an adjustable
length string, or has been declared with
the INITIAL attribute.

Phase EY

Phase EY is an optional phase which
processes all ALLOCATE statements in which
attributes are declared.

The second file is scanned first and all
pointers to the dictionary are reversed.
All ALLOCATE statements using the DECLARE
chain are then scanned, and the dictionary
references of allocated items are obtained
by hashing the respective BCD of each item.
The attributes given on the ALLOCATE state-
ment for an item are collected together.

A copy.of the dictionary entry of the
allocated item is then made (see Appendix
C.4), and the ALLOCATE statement is set to
point to it. The dictionary entry is
completed by including any attributes given
on the ALLOCATE statement, and copying any
second file statements from the DECLARE
chain which are not overriden by the ALLO-
CATE statement.

Phase FA

Phase FA scans the text sequentially.
1f, during the scan, qualified names are
found with subscripts attached, they are

reordered so that a single subscript list
appears after the base element name. The
dictionary is scanned and references

obtained for any identifiers which are,
contextually, file or event variables, or

32

programmer-named ON conditions. If no ref-
erence is available, a new dictionary entry
is made. The identifier is then replaced
in the text by the dictionary reference.

If a constant marker is
dictionary is scanned +to check if the
constant is present. If it is not, a new
dictionary entry is made (see Appendix C.7)
and the resulting reference replaces the
constant in the text.

found, the

If a P FORMAT marker is
dictionary is
in agreement.

found, the
scanned for a picture entry
If there is no agreeing

entry, a new dictionary entry is made (see
Appendix C.7) and the picture chain is
updated. The dictionary reference replaces

the format marker in the text.

The CALL chain is removed from CALL
statements. The appearance of PROCEDURE,
BEGIN, END, and DO statements results in

adjustments to the level and count stacks.
If statement introduction code bytes appear

(such as SN, SL, CL, and SN2), the current
statement number is updated. All data
associated with the PROCEDURE, BEGIN,
ENTRY, and DECLARE statements is removed,
leaving only the statement identification
and the keyword.
Phase FE

When an identifier is found, the hash

chain is used to scan the dictionary for a
valid entry. If one is found, its dic-
tionary reference replaces the identifier
in the output text. 1If no valid entry is
found, and the BCD does not agree with any
entry in the tables of BCDs of PL/I built-
in functions, then a dictionary entry is
made as 1if the identifier was declared in
the outermost procedure. However, if the
BCD agrees with a function name, and it is
not in a SETS position, a function entry is
made in the dictionary, and its reference
is used to replace the identifier.

If a left parenthesis is found, the
previous dictionary entry is checked for an
array, function, or pseudo-variable. If it
is one of these, the relevant marker is
inserted in the text before the parenthesis
(see Appendix D.1).

Checks are also made for the positions
of function references in assignment
statements. Any dictionary references
encountered in the input file are moved
directly to the output file.

PROCEDURE, BEGIN, DO, and END statements
cause the current level count to be updat-
ed.

Phase FI
Phase FI scans the text and checks,
where possible, the validity of dictionary

references found. References in a GOTO
statement are checked that they refer to
labels or 1label wvariables and that the
subsequent branch is valid. The code byte
for GOTO is changed to GOOB (see Appendix
D.1) if the branch goes outside the current
block.

References are checked if they appear
where a file is expected. Items in data
lists are checked for validity, and Data
Element Descriptors (DEDs) and symbol bits
are set on for all variables found in the
lists.

Any errors which are found cause diag-
nostic messages to be generated and dummy
references to be placed in the text in
place of erroneous references.

Phase FK

Phase FK scans the attribute collection
area for entries with the SETS attribute.
The SETS 1lists in the dictionary entries
are scanned, and their syntax checked.
Identifiers are counted and replaced by

their dictionary references. Constants are
counted, converted to binary, and arranged
in ascending order in the dictionary entry.

Phase FO

Phase FO makes a dictionary entry for
each ON condition mentioned inside a block.
For ON CHECK conditions multiple dictionary
entries are made (see Appendix C.7), one
for each BCD. If a similar condition is
mentioned more than once in a block, only
one dictionary entry is made for that
condition, except for file conditions, ON
CONDITION, and ON CHECK, when separate
dictionary entries are made for each dif-
ferent BCD name.

SIGNAL and REVERT statements are treated
in a similar manner to ON statements.

The dictionary entries for each BCD name
associated with file or CONDITION condi-
tions are checked and, if in error, the ON,
SIGNAL, or REVERT statement is replaced by
an error statement.
is generated.

The BCD name of each file entry referred
to in ON, SIGNAL, and REVERT statements is

Section 2 (Compiler Phases):

A diagnostic message.

examined. If the BCD is SYSIN or SYSPRINT,
the dictionary reference of the file entry
is placed in a slot in the communications
region.

made to ensure that formal
parameters do not appear in CHECK and
NOCHECK 1lists. A single dictionary entry
is created for each CHECK and NOCHECK 1list
and a pointer to the entry is placed in the
relevant entry type 1.

A check is

When dictionary entries are made for
CHECK lists, one of three different check
codes 1is used depending on whether the BCD
is an ENTRY LABEL, a LABEL CONSTANT, or a
variable.

Dictionary entries are also created for
each ON condition which is disabled for a
particular PROCEDURE or BEGIN block, and
for each ON condition whose status is
changed within the block. Pointers to
these dictionary entries are placed in the
relevant entry type 1.

All dictionary entries for ON conditions
are placed in the AUTOMATIC chain for the
relevant PROCEDURE or BEGIN block.

A further, quite distinct, function of
this phase 1is to substitute error state-
ments for all statements containing dummy
dictionary references (which have been
inserted by previous phases on detecting a
severe error). If a dummy reference is
found in the second file, the compilation
is aborted.

Wherever an element of a label array is
initialized by appearing as a statement
label, an assignment to a compiler label
has been inserted by the Read-In phase.
Phase FO checks the validity of each such
assignment; for each array with this type
of initialization, a second file dictionary
entry is made, and all assignments to the
array are chained.

Phase FQ

Phase FQ checks the validity of each
item in the PICTURE chain in the dictionary
(see Appendix C.7).

The precision for each correct picture
is calculated, together with its apparent
length, and stored in its dictionary entry.
A data byte is created in the entry for use
by Phase FT.

Invalid pictures cause appropriate diag-
nostic messages to be generated.

Dictionary Logical Phase 33

Phase FT

Phase FT performs certain
tasks. These are as follows:

housekeeping

1. The second file entries are scanned
and pointers to each entry are insert-
ed in the associated dictionary entry
(see Appendix C.7).

2. Each item which has a storage class is
inserted into the appropriate chain
for that class (see Appendix C.4).

3. Constants are placed in the constants
chain and their apparent precision is
calculated. Sterling constants are
converted to pence.

4, Dimension tables are separated for
items which are not in structures, but
which are arrays having similar
bounds, but with dJdifferent element
lengths.

5. Items which are members of structures
and which have "inherited" dimensions,
i.e. are contained in a structure
which itself is dimensioned, are made
to inherit their dimensions. If a
base element of a structure inherits
dimensions which are not constant,
second file statements (see Appendix
D.8) are set up to initialize the
bounds in the object time dope vector.

6. Items which have expressions to be
evaluated at prologue time, e.g. par-
ameter descriptions for entry points
and defined items, are placed in the

AUTOMATIC chain for the appropriate
block.
7. The dictionary entry for any item

described by a picture is expanded by
the precision and scale or string
length, extracted from the picture
table entry. Identifiers of different
modes sharing the same picture table
are now placed in separate tables.

8. The 'dope vector required' bit (see
Appendix C.5) is set on where neces-
sary.

9. When a label array is found which has
initjal label statements for any of
its elements, the chained statements
are moved into the second file. The
original statement 1is left in the
text, to be removed by Phase FV.

34

Phase FV

Phase FvV scans the second file and
reverses the pointers to the dictionary.

Dictionary entries for DEFINED data are
completed (see Appendix C.4 and C.5).
Overlay and correspondence defining are
differentiated between, as are static and
dynamic defining. A preliminary check of
the validity of defining is also carried
out.

When PROCEDURE and BEGIN statements are
encountered, any second file statements
associated with data in the AUTOMATIC chain
for that block are inserted in the text
following such statements.

When ALLOCATE statements are found, any
second file statements associated with the
item being allocated are inserted in the
text following the statement.

When a reference to dynamically defined
data is found, the base reference is
inserted into the text following the
defined reference.

When an initial label statement is
encountered in the main text, it is not
copied into the output string.

Phase FX

Phase FX is an optional phase entered
only if the XREF or ATR (cross reference
lister and attribute lister respectively)
options are specified. It scans the STA-
TIC, AUTOMATIC, and CONTROLLED chains, and
the formal parameter lists.

For each identifier it creates an entry
in scratch text storage of the form:
2 bytes

3 bytes 3 bytes

T v 1
Dictionary |Text reference| Text chain |

reference |to this item | |
4 ¥ R J

o e o my

This entry is inserted into a chain of
similar entries in the alphabetical order
of the BCD of the identifier.

If the XREF option is specified, the
text 1is scanned for dictionary references.
When the dictionary reference of an iden-
tifier is found in the text, an entry is
created in a chain of entries from the
dictionary entry of the identifier.

Each member of the <chain which rep-
resents a reference to the identifier, has
the following form:

2 bytes 3 bytes
r T . 1
| Statement number | Text chain |
L L — 4
Each reference chain for an identifier

is in scratch text storage.

The sorted chain of identifiers is then
scanned, and for each entry in the chain
the following actions take place:

1. The statement number of the DECLARE
statement, if any, in which the iden-
tifier was declared is printed

2. The BCD of the identifier is printed

3. If the ATR option is specified, the
dictionary entry of the identifier is
analyzed and its attributes are print-
ed

4, If the XREF option is specified, the
reference chain for the identifier is
scanned, and the statement number con-
tained in each entry is printed

Finally, all scratch storage is released
and control is passed to the Pretranslator
Phase.

THE PRETRANSLATOR LOGICAL_ PHASE

The purpose of the Pretranslator Phase
is to expand those statements in the lan-
guage that can be broken down into simpler
statements, and to insert explicitly gener-
ated statements in place of implied ones.

Second level markers (see Appendix D.1)
are removed from internal compiler codes,
and some of the I/0 statements are changed
into a form more suitable for the pseudo-
code phase.

are examined and the
matching of arguments with parameter
descriptions takes place, with temporary
variables being created where necessary,
e.g., where data conversions are required.

Argument 1lists

ON CHECK
to the

If the compilation contains
conditions the appropriate calls
library routine are provided.

Any structure assignments containing the
BY NAME option are processed.

If any structure assignment statements
or structures in I/0 lists are detected in

Section 2 (Compiler Phases):

the program, they are expanded into scalar
assignments and DO groups.
If the program contains any array

assignments, or array expressions in I/0
lists, these are expanded into DO loops and
scalar assignments or expressions.

If the program contains iSUB references,
the subscripts are computed for the base
array corresponding to the subscripts given
for the defined array.

Additions to the Text

In addition to changing the content of
the text, the Pretranslator introduces some
new symbols and grammatical forms into the
source text. These are as follows:

The Umbrella Symbol: this is designat-
ed by the symbol code X'5E', which is
used to introduce a 1literal as an
operand. It is used only as a bound of
a DO 1loop, or 1in a call of the dope
vector pseudo-variable.

Statements within statements: a list
of statements may be introduced within
another statement. In this case the
inserted 1list is enclosed in parenthe-
ses. Statements in the list are given
no statement number field, but they
have semi-colons at the. end.

I/0_statements: the form of I/0 state-
ments is changed considerably during
the pretranslator phases, as explained
in the description of Phase GaA.

BUY and SELL statements: special
statements are introduced for manipula-
ting temporary storage at object time;
they have a form similar to ALLOCATE
and FREE statements.

Temporary Storage: Pretranslator phas-
es create temporary variables for func-
tion and procedure calls where the
arguments do not match the final param-
eters, where expressions appear as
arguments, for control variables for DO
loops in array and structure assign-
ments, and for iSUB defined subscript
lists. The Pretranslator has no mecha-
nism for evaluating expressions.
Therefore, temporaries which have no
data type are created for expression
arguments with no parameter descrip-
tion. The data type of these temporar-
ies is completed by the Translator
generic phase when the resultant data
type of the expression has been deter-
mined.

Pretranslator Logical Phase 35

When the Pretranslator creates a tem-
porary from an argument which contains
any array with adjustable bounds or
adjustable string length, compiler
functions (see Appendix D.8) are gener-
ated in-line, to set up the adjustable
quantities at object time, to enable
storage of the correct size to be
acquired by means of the BUY statement.

The temporary variables created by the
Pretranslator have dictionary entries
similar to variables declared in the
source program, except that the tempo-
raries do not have BCD names.

Phase GA

Phase GA removes all second level mark-
ers from internal character codes (see
Appendix. D.1). It then reorders the
options so that either EDIT, DATA, or LIST
options appear last.

In data 1lists the DO specification is
moved so that it precedes the relevant
list, and the END statement is added.

In format 1lists iteration factors are

expanded.
Phase GK

Phase GK scans the source text for
function references. ‘'If it finds one, it

inserts a special marker byte before the

argument list, followed by:

1. A code byte giving information about
the type of function, and whether it
was called with the TASK option

2. The current statement number
3. The current block level and count

This phase also inserts a special argu-
ment marker before each argument in the
list, followed by the reference of the
corresponding parameter and a code byte to
show whether. or not the argument is speci-
fied in a SETS list. The number of argu-
ments present is checked against the number
given as required by the corresponding
dictionary entry.

36

Phase GP

Phase GP scans the text for procedure
and function calls with arguments. These
are detected by the special markers insert-
ed by Phase GK.

Temporaries (see Appendix C.U4) are
created for any arguments which are expres-
sions. (An expression is defined as being
any sequence of variables and operators,
other than single variables followed only
by a subscript list, or only by a defined
subscript list and then a subscript 1list).
If a parameter description has been
declared in an entry declaration, the tem-
porary which is created is of the same type
as the parameter description. Otherwise, a
*chameleon' temporary of unspecified data
type is created, its type being subsequent-
ly completed when the expression type has

been determined by the Translator generic
phase.
Expressions are scanned for arrays

(including partially subscripted arrays),
structures, or the end of the expression,
in order to determine the highest form of
aggregate in the expression, so that the
correct type of temporary may be created.

Where the expression contains a partial-
ly subscripted array, a temporary is creat-
ed with a dimensionality equal to the

number of cross sections specified in the
subscript list.
When single arguments are specified

together with parameter descriptions, the
arguments are compared with the parameter
description. If there is a lack of match,
action may be taken in one of two ways.

1. If the data types are
warning message is
temporary is created

compatible, a
printed, and a

2. 1If the data types are incompatible, a
severe error message is printed, and
the parameter description is ignored

When the argument is a single
subscripted
eter,

partially
array which matches the param-
a special temporary is created which

has the same dimensionality as the number
of cross sections in the subscript 1list,
and it appears to be defined upon the

original argument. Code is then generated
to initialize the temporaries, multipliers,
and virtual origin from the dope vector of
the original argument and the subscript
list. Similar action is taken for partial-
ly subscripted structures.

Whenever a temporary is created, a BUY
statement contained in nested statement
brackets 1is inserted in the output text,

followed by the assignment of the
sion or non-matching argument to the tem-
porary. After the end of the PROCEDURE or
function call, all the temporaries generat-

expres-

ed in the call are released by means of a
SELL statement in nested statement brack-
ets.

Temporaries are created for constants
which are specified as arguments to func-
tions defined by the programmer.

If GENERIC entry labels are specified as
arguments to procedures, a special dic-
tionary entry is made which contains the
argument and parameter description dic-
tionary references, to enable the Transla-
tor generic phase to select the correct
generic member.

A warning message is printed whenever a
temporary is created for an item declared
in a SETS list.

When subscript lists for the number of
cross sections are being checked, a severe
error message is printed if a subscript
list contains too many subscripts, and the
statement is deleted.

Phase GU

Phase GU scans the source text for
PROCEDURE, BEGIN, and END statements, and
for statements that may raise a possible

CHECK condition.

A list of all items currently checked is
extracted from the CHECK and NOCHECK lists
present in PROCEDURE and BEGIN statements.

Items contained in statements that may
raise a CHECK condition are examined and
compared with the list of currently checked
items. If the item appears in the list, a
SIGNAL CHECK statement is created for it,
either Dbefore the statement concerned (for
labels and entry names) or after it (for
variables).

Phase dF

The purpose of phase HF is to detect
structure assignment statements, possible
structure expressions in data lists in GET
and PUT statements, and nested statements,
in particular nested structure assignments.

The leftmost structure in an expression
or assignment is wused as a basis for
comparison, and if similar structuring is
not found throughout the expression or

Section 2 (Compiler Phases):

assignment, diagnostic messages are issued.
Any expression containing no structures is
left unchanged.

The base elements of the structures are
found, and if the referenced structures are
dimensioned, a temporary 1is created for
each diménsion. It is then added to the
AUTOMATIC chain for the appropriate block.
Iterative DO loops are constructed, with
the temporaries iterating between the upper
and lower bounds of that particular dimen-
sion. Base elements are assigned, with the
temporaries as subscripts, and with scalars
remaining unchanged. END statements are
created for the DO loops, and SELL state-
ments for the temporaries. The statements
which have been created are nested within
the original statement.

Phase HK

The purpose of Phase HK 1s to detect
array or scalar assignments, possible array
expressions in I/0 1lists in GET and PUT
statements, and nested statements, in par-

ticular nested assignment statements.

The leftmost array in an expression, or
the leftmost array or scalar in an assign-
ment is used as a basis for comparison, and
if similar dimensions or bounds are not
found in the array references, diagnostic
messages are issued. Any expression con-
taining only scalars is left unchanged.

For every dimension in an array a tem-
porary is bought and added to the AUTOMATIC
chain for the appropriate block. Iterative
DO 1loops are constructed, with the tempo-
raries iterating between the 1lower and
upper bounds of that particular dimension
of the array. The assignment statement is
added to the output string with additional.
subscripts where necessary. END statements
are created for the DO 1loops, and SELL
statements for the temporaries.

The statements which have been created
are nested within the original statement,
which is changed to a null statement,
except when it was a scalar assignment.

The syntax of pseudo-variables is also
checked.

Phase HP

Phase HP scans the source text for
references to items defined using iSUBs.
For each reference found, the subscripts

are computed for the base array correspond-

Pretranslator Logical Phase 37

ing to the subscripts given for the defined
array.

The base subscripts are assigned to
temporaries specially created for this pur-
pose. The reference, with its subscript
lists replaced by a list of these temporar-
ies, is added to the text string.

THE_TRANSLATOR_ LOGICAL PHASE

The Translator Phase consists of two
physical phases, the stacker phase and the
generic phase. The purpose of the Transla-

tor is to convert the output from the
Pretranslator into a series of "triples"
(see Appendix D.4). A "triple" is in the
form of an operator followed normally by

two operands.

The translation is achieved by using a
double stack, with one part for operators,
and the other part for operands, and
assigning two weights to each operator.
One weight (the stack weight) applies to
the operator while it is in the stack, and
the other weight (the compare weight)
applies when the operator is obtained from
the input string.

When an operator is obtained from the
input string it is compared with the top
stack operator. Depending on the result of
the comparison, one or other of the two
operators 1is switched on to determine what
action is next to be performed. Apart from
some special cases, this action is usually
either to continue to fill the stack, or to
generate a triple. The special cases lead
to various manipulations of the stack
items, after which the translation process
continues.

For the purposes of translation, the
input text to the translator is considered
to consist of operators and operands only.
This means that I/0 options, etc., are
regarded as operators.

After translation, the text string con-
sists of operands and operators. All
statements start with an operator to indi-
cate a statement number or label, followed
by the statement type, which may be a
single operator, as in the case of RETURN
or STOP, or which may be an operator such
as a function or subscript marker, followed
by a list of arguments. This list may also
include compiler generated statements,
e.g., DO 1loops for I/0 1lists. All I/0
options are regarded as operators and
require no markers before them. The end of
the source text will be marked by a special
operator, and compiler generated code,
which may follow this end-of-program mark-

38

er, will appear between the marker and the
special second-end-of-program marker. The
end of a block of text will be marked by an
EOB operator. The program is now assumed
to be syntactically correct.

Phase IA

Phase IA rearranges the source text into
a prefix form, in which parentheses and
statement delimiters have been removed, and
the operations within a statement have been
so arranged that those with the highest
priority appear first.

As operators and operands are encoun-
tered, they are stored in stacks. Tables
give the priority of each operator as it
appears in the input text and in its stack.

When an operator 1is found during the
scan of the source text, its compare weight
(see Appendix D.4) is - tested against the
stack weight of the top operator in the
stack. If the compare weight is the lesser
of the two, then action is taken according
to the compare operator. This is referred
to as the compare action. Similarly, if
the compare weight for the current operator

found in the scan is greater than or equal
to the stack weight of the top stack
operator, action is taken according to the

This is referred to as
the stack action. Normally, the compare
action 1is to place the compare operator in
the stack, and to continue the scan, plac-
ing any subsequent operand in the stack
until another operator is found. The nor-
mal stack action is to generate a triple,
consisting of the top operator in the stack
and the top two operands, eliminating the
items from the stack, and inserting a
special flag as the operand of the triple
which is now at the top of the stack. The
source (compare) item is then compared with
the new top stack item.

top stack operator.

The output text of the stacking phase is
in the form of a series of triples, i.e.
statement types with no operands, and oper-
ators with one or two operands. If the
result of a triple operation is to be used
in a 1later triple, the appropriate result
is flagged accordingly.

Certain phases are marked wanted or not
wanted at this stage. If the source text
contains an invocation by CALL or function
reference, Phases IL and IM are marked
wanted. If it does not, Phases IL, IM, IN,
10, IP, IQ, MG, MH, MI, MJ, MK, MM, MN, and
MO are marked not wanted. Phases MB and MC
are marked wanted when the source text
contains pseudo-~variables or multiple
assignments; otherwise, they are marked not

wanted. The DO loop processing phases (LG
and LH) are marked in co-operation with the
dynamic initialization phases (LB and LC).
If LB and Lc are requested, the marking of
LG and LH is 1left until that stage of
compilation; otherwise, LG and LH are
marked by Phase IA independently.

Phase IG

Phase IG 1is an optional phase which is
loaded to process array and structure argu-
ments to built-in functions. When aggre-
gate arguments are given for built-in func-
tions they are expanded by the structure
and array assignment phases so that the
built-in functions appear as base elements,
subscripted where necessary.

Phase GP examines these arguments, and
ascertains whether it 1is necessary to
create a dummy. If it is necessary, a
scalar dummy is created, but the assignment
of the argument expression is not inserted
in the text, as this would be an invalid
aggregate assignment.

Phase IG examines the text for a BUY
statement for a dummy for an aggregate
argument to a built-in function, and then
inserts an assignment triple in the correct
place in the text.

Phase IL

This phase immediately precedes the main
generic phase. Its function is to obtain a
block of scratch storage and place the
entire built-in function table in that
area. The starting address of this table

is then placed in a register, and control

is released to the main generic processor.

Phase IM

Phase IM scans the source text for
procedure invocations by a CALL statement,
procedure or library invocations by a func-
tion reference, and assignments to
"chameleon™ dummy arguments (see Phase GP).

Any procedure which is generic and is
invoked by a CALL statement or function
reference is replaced by the appropriate
family member. If the invoked procedure is
non-generic, it is ignored. A generic
library routine invoked by a function ref-
erence is also replaced by the appropriate
family member.

Section 2 (Compiler Phases):

The arguments passed to library routines
are checked for number and type, and a
conversion inserted where necessary and
possible.

The type and location of the result of
all function invocations is placed in the
text which follows the end of the text
which invoked the function. The resulting
type of an expression assigned to a
"chameleon" dummy is determined and set in
the dictionary entry which relates to the
dummy .

THE AGGREGATES_ LOGICAL PHASE

consists of two
structure processor

Phase
the

The Aggregates
physical phases,

{(phase JK) and the DEFINED chain check
(phase JP). :
The structure processor phase carries

out the mapping of structures and arrays in
order to align elements on their correct
storage boundaries.

The DEFINED chain check ensures that
items DEFINED on arrays and structures can
be mapped consistently.

Phase_JK

Phase JK scans the AUTOMATIC, STATIC,
and CONTROLLED chains for arrays, struc-
tures, adjustable 1length strings, and
DEFINED items.

For the base elements of structures
without adjustable bounds or string
lengths, the following calculations are
made:

.

The offset from the start of the major

structure

The padding required to align the ele-
ments on the correct boundary

All multipliers of arrays of struc-
tures.
For all minor structures and major

structures the following calculations are

made:
Size
The offset from the preceding alidnment

boundary with the same value as the
maximum appearing in the structure

Aggregates Logical Phase 39

Where a structure contains adjustable
bounds or string lengths, code is generated
to call the Library at object time.

For arrays, the multipliers are calcu-
lated, unless the array contains adjustable
items, in which case the Library performs
the calculations.

For adjustable structures, arrays, or
strings, code is generated to add a symbol-
ic accumulator register into the virtual
origin slot of the dope vector, and the
accumulator register is incremented by the
size of the item.

Calculations are made in a similar
fashijon for arrays of strings (in struc-
tures or otherwise) with the VARYING attri-
bute. In addition, code 1is generated _ to
set up an array of string dope vectors
which refer to the individual strings in
the array using the dope vector. Code is
also generated to convert the original dope
vector to refer to the array of string dope
vectors, instead of to the storage for the
array.

DEFINED
lowing way:

items are processed in the fol-

Code is generated to set the multipli-
ers and virtual origin address of cor-
respondence defined arrays without
iSUBs in the dope vector of the DEFINED

items from the defining base dope vec-
tor.
Code 1is generated for overlay defined

items where either the DEFINED item,
the Dbase, or both are adjustable. The
code first maps the DEFINED item, if
necessary, calculates +the address of
the start of the storage to be used by
the DEFINED item, and finally, relo-
cates the DEFINED item wusing this
address.

Dope Vector Descriptor dictionary
entries and Record Description dictionary
entries are made for items which need to be

mapped at object time, or which appear in
RECORD-oriented input/output statements.

Phase JP
Phase JP scans the DEFINED chain, and
differentiates between the following:
1. Correspondence defining
2. Scalar overlay defining
3. qndimensioned structure overlay defin-

ing

40

4. Mixed scalar-array-structure-string
class overlay defining

In correspondence defining, this phase
differentiates between arrays of scalars
and arrays of structures. It also checks
that the elements of the defined item may
validly overlay the elements of the base
belong to the same defining class, and that
the base is contiguous.

In scalar overlay defining,
checks that the
overlay the base.

this phase
defined item may validly

For undimensioned structure overlay
defining, this phase checks that the ele-
ments of the defined item may validly

overlay the elements of the base.

For mixed scalar-array-structure-string
class overlay defining, this phase checks
that all elements of the defined item and
all elements of the base belong to the same
defining class (bit or character), and that
the base is contiguous.

THE PSEUDO-CODE LOGICAL PHASE

The Pseudo-Code Phase accepts the output
of the Translator Phase, and converts the
triples into a series of machine-like
instructions. The transformation into
pseudo-code is achieved by a series of
passes through the text; each pass removes
certain triples and replaces them by
pseudo-code, until the entire text is in
pseudo-code form. On completion of this
phase, control is handed to the Storage
Allocation Phase in the output stage.

Pseudo-Code Design

Pseudo-code is essentially a one-for-one
symbolic representation of machine code,
designed so that it can be transformed
directly into executable machine code by an
assembly process.

Pseudo-code 1is constructed in basic
units, the majority of which have a stand-
ard size of three or five bytes. A varia-
ble sized unit, however, is also available
to allow flexibility, its 1length being
specified by a length code within the unit.
The formats of pseudo-code instructions are
shown in Appendix D.6.

A unit consists of a one-byte operation
code followed by normally, a two- or four-
byte field, or on the other occasions by a
variable length field. The bit pattern of

the operation code
unit which it heads.

indicates the type of

Pseudo-Code Items

In addition to there being one pseudo-
code item for each machine instruction
which could be generated, there are also
pseudo-code items which are produced to
convey information from one phase of the
compiler to another.

These items of information have the same
format as a pseudo-code item, so that the
handling and scanning of the source text is
standardized. They do not, however, appear
in the final object code.

Register Description

In all cases where a deneral purpose
register appears in pseudo-code, it will be
described symbolically. When conventional
registers are required in, for example,
calling sequences, the registers will be
referred to physically, as they will be in
all cases of floating-point register usage.

The Use of Symbolic Unassigned Registers

Whenever a new register is required
while pseudo-code 1is being generated, a
symbolic register counter is incremented by
one and, subject to this new value not
being greater than 16,383, it is used as
the symbolic name of the required register.
When this register is no longer required a
DROP pseudo-code item is inserted into the
text to indicate to the Register Allocation

Phase that the physical register allocated
to this symbolic register may be
reassigned.

The Use of Physical Registers

Physical general purpose registers will
be used either as arithmetic registers or
as parameter registers.

With arithmetic registers, it is the
responsibility of the pseudo-code genera-
tion phases to save and restore the reg-
isters as necessary. This will apply both
to the general purpose arithmetic registers
(namely 14 and 15) and to the four
floating-point registers. Although this is

Section 2 (Compiler Phases):

of primary interest to the expression

evaluation phases, it should be realised
that all phases which generate calling
sequences must be aware of the current

status of arithmetic registers, and gener-

ate code to save and restore them as
necessary.
In the case of parameter registers,

however, the Register Allocation Phase will
be able to save and restore them as
required.

Temporary Descriptors

As expressions are evaluated, a Series
of intermediate temporary results are
obtained. These results, or their *address-
es, may be contained in symbolic or
assigned registers, in a dictionary ref-
erence, Wwith or without an index register,
or in workspace. Temporary descriptor tri-
ples (TMPD) are inserted in the text to
enable the correct pseudo-code instructions
to be generated from the triples. The
format of TMPD triples 1is described in
Appendix D.9.

Temporary Workspace

A Dblock of temporary workspace is used
to store intermediate results obtained in
evaluating expressions at object time.
Pseudo-code phases allocate the next avai-
lable workspace location within the block,
and then update the 1location pointer,
whenever the necessity to save an inter-
mediate result arises. The location of the
intermediate result is then described for
later phases by a TMPD in the text. Inter-
mediate results are only required during
the execution of single PL/I statements;
they are never preserved from one statement
to another.

At the end of the pseudo-code phases the
maximum size of the temporary storage
required in each PL/I program block is
placed in a dictionary entry. The required
amount of workspace is then allocated in
each Dynamic Storage Area (DSA) by Phase
PT.

Phase LA

Phase LA is a utility phase which
remains in storage during the whole of the
Pseudo-Code Phase. It provides the main
scanning ' routines to handle input and out-

Pseudo-Code Logical Phase 41

put text during the Pseudo-Code Phase. If
a triple spans input blocks, then the part
of the triple in the first block is copied
into the first four bytes of the second
block, to enable a complete triple to be
returned to the user.

The routines/subroutine directories in
this publication give a complete 1list of
the routines provided, together with brief
descriptions of their functions.

Phase LB

Phase LB scans through the text for
PROCEDURE, BEGIN, and ALLOCATE statement
triples.

Whenever one of these is found, a scan
is made through the immediately succeeding
second file statements; this is to permit
the future initialization of AUTOMATIC and
CONTROLLED arrays.

On completion of this secondary scan,
the action taken depends on which triple
was originally found:

1. For PROCEDURE or BEGIN triples, a scan
is then made of the AUTOMATIC chain in
the dictionary. For any scalar varia-
bles that have been declared INITIAL,
a set. of triples is created and
insertéd into the text.

2. For ALLOCATE triples,
is inserted if the
declared INITIAL.

a set of triples
item has been

Phase LB also marks Phase LG (DO-groups)
as wanted or not wanted; this 1is done in
co-operation with Phase IA.

Phase_ LD

Phase LD scans the STATIC chain for any
variables which have been declared INITIAL.

When a scalar variable 1is found, the
phase constructs two dictionary entries:
one for the constant, and one for the
converted constant.

For arrays, the phase scans the initial
value string, creating an initialization
table in the dictionary. Replication fac-
tors are converted and inserted into the
table; treatment of the constants is then
as described for scalar variables.

Phase 0S converts the constants to their
specified internal form.

42

Phase LG

Phase LG scans the text for DO loops. A
stack is maintained with each entry con-
taining a description of a DO group. The
stacking reflects the nesting of the DO
groups. For each DO or iterative DO triple
a new entry is made at the top of the
stack.

DO specification triples are analyzed
and expressions are assigned to temporar-
ies; subscripts in the control variable are
assigned to binary integer temporaries if
they are themselves variable. At the end
of each specification, pseudo-code and tri-
ples are generated to control the loop.

Triple operators (see Appendix D.4)
peculiar to the specification of DO loops
are removed from the text.

For control variables, other than simple
scalars, text is placed in the DO stack and
used at every appearance of the control
variable 1in the generated text. During
this time, a scan is also made for pseudo-
variables, subscripts, functions, and
argument markers.

Phase LR

The purpose of Phase LR is to save space
during the expression evaluation phase, LS.
It provides the initialization for Phase LS
by obtaining 4,096 bytes of scratch storage
and setting stack pointers. The scan
phase, Phase LA, is initialized and Phase
MP is marked.

The translate table for scanning tri-
ples, and the constants for expression
evaluation are included in this phase and
are moved to the first 1K area of scratch

storage. Finally, control is passed to
Phase LS.
Phase LS

Phase LS scans the source text to con-

vert expression triples to pseudo-code. If
a triple produces a result, it is added to
the temporary work stack.

For the arithmetic triples +,-,%,/,%*,
prefix +, and prefix -, the operands are
combined to give the base, scale, mode, and
precision of the result. If conversion is
necessary, an assignment triple, with the
target and source types as operands, is
inserted in the text. In-line pseudo-code

is generated for all operators except **
and some complex type * and / operators.
In these cases, Library calling sequences
are generated. An intermediate result is
always produced and the triple is removed
from the text.

The operands of comparison triples GT,
GE, egquals, NE, LE, and LT are combined and
converted as for the arithmetic triples.
In-line pseudo-code is generated and the
triple 1is removed from +the text, unless
both operands are string type, in which
case a temporary is created. If the next
triple is a conditional branch, a mask for
branch-on-false is inserted. Otherwise,
the result is a length 1 bit string.

For the string triples CAT, AND, OR,
NOT, and string comparisons, if an operand
is zero, TMPD triples, containing the
intermediate result from the top the stack,
are inserted in the text after the triple.
The result is a CHARACTER or BIT string or
a COMPARE operator.

When subscript triples appear, a symbol-
ic register number is inserted in the

triple. The result contains the dictionary
reference of the array and the symbolic
register.

For function triples, a description of
the workspace for the function result is
inserted in the TMPD triples which follow
the function triples. The function result
is added to the intermediate stack.

For add, multiply, and divide functions,

the function and argument triples are
removed from the text. Arithmetic type
in-line pseudo-code is generated, with

modifications for the precision and scale
factor, and the result is added to the
intermediate stack.

With pseudo-variable triples, a special
marker is added to the intermediate result
stack.

Other triples which may use an inter-
mediate result, are examined. If an oper-
and 1is zero, two or three TMPD triples,
containing the intermediate result from the
top of the stack, are inserted in the text
after the triple. If both operands are
zero, the TMPDs for the second operand
precede those for the first operand.

Phase 1V

Phase LV provides string handling facil-
ities for the pseudo-code phases.

Section 2 (Compiler Phases):

It converts any type of data item to a
CHARACTER or BIT string, and an assignment
triple, with the target and source types
used as the operands, is inserted in the
text.

A string dope vector description is

produced from a standard string descrip-
tion.
Phase LW

Phase LW scans the source text to con-

vert string triples to pseudo-code. If a
result is produced it is added to a stack
of intermediate string results.

For the comparison triples GT, GE,
equals, NE, LE, AND LT, both operands are
already string type. If one operand is
zero, the operand is obtained from the
associated TMPD triples. In-line pseudo-
code is generated if the operands are of
known equal lengths less than or equal to
256 bytes; otherwise, Library calling
sequences are generated. The triple and
any TMPD triples are removed from the text.

In the
AND, OR,
ed to

case of the string triples CAT,

and NOT, the operands are convert-
string type by phase LV. Zero
operands are obtained from associated TMPD
triples. 1In-line pseudo-code is generated
when operands are aligned and are of known
lengths less than or equal to 256 Dbytes.
Lengths must also be equal for and/or
operators; otherwise, Library calling
sequences are generated. The triple and
any TMPD triples are removed from the text,
and the string result is added to the
intermediate result stack.

For TMPD triples, if the intermediate
result described by the TMPD triples is a
string, a complete string description is
moved from the top of the intermediate
stack to the TMPD triples. If the TMPD
triples do not describe a string, they are
ignored.

A Library calling sequence is generated
for the BOOL function, and the associated
triples are removed from the text. - Sub-
script and function triples may produce
intermediate string results.

Phase MB

Phase MB scans
variable markers
markers. A stack
descriptions is maintained,

the text for pseudo-
and multiple assignment
of pseudo-variable
together with

Pseudo-Code Logical Phase 43

the left hand side descriptions of multiple
assignments when they occur. Pseudo-code
and triples are generated for pseudo-
variables and the left hand side
descriptions of multiple assignments are
put out in the correct sequence.

Phase_ MG

Phase MG identifies functions which are
to be coded in-line, and generates, in
their place, the pseudo-code to perform the
relevant function. This phase appears
pefore the normal function processor phase
and removes all trace of the in-line func-
tion.

The scan of the text is conducted by the
general SCAN routine, and control is handed

to the present phase when one of the
following functions is found:

ALLOCATION FLOOR BINARY

BIT IMAG DECIMAL

CEIL REAL FIXED

CHAR STRING FLOAT

COMPLEX TRUNC PRECISION

CONJG UNSPEC

Control 1is also passed to this phase if

ABS is found with real arguments. The
arguments are collected, and the appropri-
ate routine 1is entered to generate the
pseudo-code. When the end-of-program mark-
er 1is encountered the terminating routines
are entered.

Phase MI

Phase MI identifies functions which are
to be coded in-line, and generates , in
their place, pseudo-code to perform the
relevant function. This phase appears
before the normal function processor phase
and removes all trace of the in-line func-
tion.

The scan of the text is conducted by the
general SCAN routine and control is handed

to the present phase when one of the
following functions is found:

MAX MOD

MIN ROUND

If the number of arguments to the MAX or
MIN functions 1is greater than these, a
Library call is generated.

44

Phase MK

Phase MK identifies functions which are
to be coded in-line, and generates, in
their place, pseudo-code .to perform the
relevant function. This phase appears
before the normal function processor phase
and removes all trace of the in-line func-
tion.

The scan of the text is conducted by the
general SCAN routine, and control is passed
the present phase when one of the following
functions is found:

DIM HBOUND

LBOUND SIGN

LENGTH
Phase ML

Phase ML scans the source text for
generic entry name arguments to procedure
invocations.

Such entry names may be floating arith-
metic built-in functions or programmer-

supplied procedures with the GENERIC
attribute. When one is found, the correct
generic family member to be passed is
selected by this phase, depending on the

entry description of the invoked procedure.

Phase MM

Phase MM scans through the source text
for procedure invocations by a CALL state-
ment, or for procedure or Library routine
invocations by a function reference.

Procedure invocations are replaced by an
external standard calling sequence, and
Library routine invocations are replaced by

an external or internal standard calling
sequence as appropriate -(see Appendix
D.10).
Phase MP

Phase MP reorders the BUY and SELL

statements involved in obtaining Variable
Data Areas (VDAs) for adjustable length
strings or temporaries, which were created
by Phase GK. On entering this phase, the
BUY triples precede the code compiled to
evaluate the length of storage required for
the VDA. This evaluation code is. included
between further BUYS and BUY triples, which

themselves are between the BUY triple being
considered and its associated SELL triple.
Phase MP extracts these sections of code
and places them before the BUY triple of
the adjustable string temporary. Since
such BUY triples may be nested, the phase
maintains a count to record the nesting
status.

Phase MS

Phase MS scans the source text for
references to subscripted array elements.

If references are found, pseudo-code is

generated to calculate the offset of the
subscripted element in relation to the
origin of the array. If necessary, further

pseudo-code is generated to check the sub-

script range.

Phase NA

Phase NA gJenerates pseudo-code for the
following triples:

For PROCEDURE' and BEGIN' triples a
Library call 1is generated to the FREEDSA
routine,

For RETURN triples a Library call is
generated, unless a value is to be returned
as the result of a function invocation, in
which case code is first generated to
assign the result to the target field, and
then the Library call is made. If the
function may return the result as more than
one data type, a switch would have been set
at the entry point to the function, and the
RETURN statement would test the switch
value, so that the data type appropriate to
the entry point is returned.

GOTO triples either will be invalid
branches detected by Phase FI, in which
case they will be deleted, or they will be
branches to statement label constants in
the same PROCEDURE or BEGIN block. In this
case, they will be compiled as one-
instruction branches.

Block) triple is a
branch to a label variable, possibly
subscripted, or to a label in a higher
block than the current one (a branch to a
lower Dblock is invalid). A call is gener-
ated to a Library epilogue routine, point-
ing at a double-word slot containing the
address of the 1label and the Pseudo-
Register Vector (PRV) offset (for a 1label

A GOOB (Go Out Of

Section 2 (Compiler Phases):

constant), or the invocation count (for a
label variable).

STOP and EXIT statements are implemented
simply by invocation of the appropriate
Library routine.

For IF triples, if the second operand is
an identifier, or the result of an
expression which is not a comparison, code
is generated to convert it to a BIT string,
if necessary. This BIT string is compared
to =zero, either in-line, or by a call to
the Library.

The second operand may be a mask which
will have been inserted by the expression
evaluation phase as a result of the compar-
ison specified in the IF statement. This
mask is put into a generated instruction to
branch if the condition is not satisfied,
i.e. either to the ELSE clause or to the
next statement.

For ON triples, code is generated to set
flag bits and update the ON-unit address in
the double-word ON slot in the DSA.

For SIGNAL arithmetic condition triples,
in-line code is generated to simulate the
condition. For all other conditions, a
Library error routine is called.

REVERT triples generate code to set flag
bits in the double-word ON slot in the DSA.

Phase NG

Phase NG generates the calling sequences
to the Library for DELAY and DISPLAY state-
ments.

For DELAY
to be a
necessary,
sion.

statements, the argument has
fixed binary integer, and, if
code 1is generated for conver-

For DISPLAY statements, the message must
be a CHARACTER string, or, 1if necessary,
converted to one. A parameter 1list is
built up to pass to the Library.

Phase NJ

Phase NJ and its supporting block, NK,

generate the calling sequences to the
Library module for the RECORD-oriented
input/output statements: DELETE, LOCATE%¥,

READ, REWRITE, UNLOCK*, and WRITE.

Pseudo-Code Logical Phase 45

For each of these calls, the information
contained in the options of the source
statement 1is passed by a parameter list,
constructed as follows:

DC A(DCLCB)
DC A(RDV|IGNORE.integer) | 0
DC A(EVENT.scalar*) | 0

DC A(KEYTO.SDV|KEYFROM.SDV|
KEY.SDV) | O

DC A(REQUEST_CODES)
REQUEST_CODES is a full-word containing

four control bytes with the following mean-
ings:

Byte 1 Operation code
00 READ
04 WRITE
08 REWRITE
0C DELETE
10 LOCATE#*
‘14 UNLOCK#*
Byte 2 Group 1 options_ code
04 IGNORE
08 INTO | FROM
Byte 3 Group 2 options code
04 KEYTO
08 NOLOCK
Byte 4 Reserved (currently 00)

Note that null arguments in the paramet-
er list or REQUEST_CODES are indicated by
Zeros.

Both the parameter list and the
REQUEST_CODES word are constructed in STA-
TIC storage. However, if the argument of
one of the options refers to AUTOMATIC or
CONTROLLED storage, the parameter 1list is
moved to the WORKSPACE storage for the
statement; the argument is then provided
just before the Library call is made.

The DCLCB parameter is taken from the
FILE option of the statement; the FILE
option must be either a file constant or
file parameter.

*Deferred features not included in second

version .

46

The Record Descriptor Vector (RDV) is
assumed to have been constructed by earlier
phases, except in the case of CONTROLLED
strings or CONTROLLED aggregates, when pro-
cedure is as follows:

1. For CONTROLLED aggregates, Phase NJ
creates a Library call, passing the
following arguments through registers:

Register 1 Aa(D.V)
Register 2 A(DVD)
Register 3 A(RESULT.RDV.SLOT)

2. For CONTROLLED strings, the phase gen-
erates code to construct the RDV in
the WORKSPACE storage of the state-

ment, using the dope vector of- the
string.
The IGNORE integer is taken from the

IGNORE option of the statement and if
necessary, converted to an integer.

The EVENT scalar is deferred until third
release.

The KEYTO SDV is derived from the KEYTO
option of a READ statement.

The KEY SDV and KEYFROM SDV are derived

from their respective options. If neces-
sary, they are converted to character
strings.
Phase_ NM

Phase NM generates the calling sequences
to the Library modules for OPEN, CLOSE,
GET, and PUT statements.

For OPEN and CLOSE statements, a param-
eter list is constructed from the options
given. The options are first:checked for
validity with respect to multiple specifi-
cations. The arguments on the options are
checked and converted, if necessary, to the
correct data type. If no file is specified
in an OPEN or CLOSE statement, it is
ignored. The parameter lists are as fol-
lows:

OPEN DC A(DCLCB)
DC A(oCB)
DC A(TITLE.SDV)
DC A(IDENT.SDV)
DC A(IDENT.DED)
DC A(KEYLENGTH)
DC A(LINESIZE)
DC A(PAGESIZE)
CLOSE DC A(DCLCB)
DC A(IDENT.SDV)
DC A(IDENT.DED)

Null arguments are
address constants.

indicated by zero

For GET and PUT statements, the Library
call is in three parts. The initializa-
tion, data transmission (Phase NU), and the
termination. The initialization call
requires a parameter list to be constructed
from the given options. The options are
checked for 1legal combinations and the
arguments examined.

The parameter list when a file is speci-
fied is :

DC A(DCLCB)
DC A(next statement)

DC Al(binary integer) if SKIP or
LINE is given.

For GET and PUT STRING, the argument to
STRING is checked, and the parameter 1list
formed is:

DC A(SDV of string argument)

DC A(DED of string argument)
The termination Library call has no
parameters. As for the initialization, the

routine used depends on the options given
in the statement.

Phase NT

This phase, which is a preprocessor for
Phase NU, has two functions:
1. Initialization of a block of scratch
storage for use by Phase NU

Section 2 (Compiler Phases):

2. Setting up of INCLUDE matrix and
Library routine entries for edit-
directed, STREAM-oriented I/0
statements

The phase -contains all pseudo-code skel-
etons used by Phase NU. 4096 bytes of
scratch storage are obtained and the
pseudo-code skeletons are copied into it.
The address of the scratch area 1is then
passed to Phase NU.

If a flag has been passed from Phase NM,
indicating the presence of edit-directed
I/0, a scan of the text is performed. Data
and format list items encountered during
the scan are associated as far as possible,
and a sufficient set of Library modules are
identified for the edit-directed transmis-
sion specified in the program. The INCLUDE
matrix is updated and dictionary entries
are made for the required Library format-
director routines.

Phase NU
Data/format lists in 1I/0 statements
produce an internal Library calling

sequence (see Appendix D.10) for each data
item and format item pair, using registers
to point at the data item, the data item
DED, and the FED for the format item.

Iterations of data items, as in array
input or output, and of format items, are
achieved by making DO 1loops out of the
iterations.

The data items are transmitted serially,
with program flow going from an item in the
data list, to the corresponding format item
and then to the relevant Library 1I/0
module. On return from the Library module,
control goes to the code for the next data
item or, in the case o0f repeated data
items, to another iteration of the DO loop.

Remote format statements are executed in
a similar way. After the R format item is
met, control is passed directly from the
data list to the format statement until the
end of the format statement. Control - then

returns to the item in the in-line format
code of the EDIT statement following the
appropriate remote format item. However,

if no format elements remain but some data
list elements are still present, control is
passed back to the beginning of the format
statement.

An R format item referring to a 1label
which is not attached to a format state-
ment, will cause an object time error
condition to be raised, and the execution
to terminate.

Pseudo-Ccode Logical Phase 47

Phase OB

Phase OB scans through the text for
compiler functions and compiler pseudo-
variables (see Appendix D.8). When a

compiler function is found,
generated to access the operands of the
compiler functions (e.g., string 1length,
array bound), and to place the operand in
the location specified by the TMPD follow-
ing the function. Assignments to compiler
pseudo-variables are treated 1in reverse;
the result from the TMPD following the
assignment is stored in the array bound or
string dope vector slot specified in the
compiler pseudo-variable.

pseudo-code is

Phase OB also scans the text for BUY,
SELL, and BUY ASSIGN statements. The tem-
porary operands of these statements are
examined, and if they are CAD or short
fixed-length strings, they are allocated
the next available workspace offset, and
the BUY and corresponding SELL statements
are removed from the text.

Phase OE
Phase OE translates the following tri-
ples into pseudo-code:
Assignment
Multiple source assignment
Multiple target assignment
ALLOCATE, FREE, BUY, and SELL

Special assignment

In-line code is generated for the fol-
lowing types of ASSIGNMENT triples:
1. Floating-point to floating-point
2. Fixed binary to fixed binary
3. Fixed decimal to fixed decimal
4. Numeric field to numeric field, if the

pictures
identical

given for the operands are

5. CHARACTER string to CHARACTER string,
if the operands are fixed length and
not more than 256 characters

6. BIT string to BIT string, if the
operands are aligned and multiples of
8 bits, and not more than 2048 pits

7. Label to label

48

8. File constant to file parameter

Library calling sequences are
for those cases of CHARACTER string to
CHARACTER string and BIT string to BIT
string codes not compiled in-line.

compiled

All other assignment triples are tran-
slated into the CONV pseudo-code macro.

If the source operand is a constant, the
type of the target operand is inserted in
the constant dictionary entry, for process-
ing by the constant conversion phase, and
the assignment is translated assuming the
target type.

MULTIPLE ASSIGNMENT triples produce the
same code as for single assignment, except
that the registers used by the operand
concerned must not be changed or dropped.

Library calling sequences are generated
for ALLOCATE, FREE, BUY, and SELL triples,
and pseudo-code markers are left in the

text for insertion of code by Phase QF.

With SPECIAL ASSIGNMENT triples, if the
target is a varying or adjustable string,
storage is obtained if the target is AUTO-
MATIC, or allocated if the target is CON-
TROLLED. The assignment is then translat-
ed. '

Phase 0G

Phase 0OG inserts calling seguences for
all the «calls to the Library conversion
routines represented by the CONVERT P/C
items. It also converts to pseudo-code all
statement numbers, statement labels, PROCE-
DURE, BEGIN, PROCEDURE', BEGIN', and end-
of-program triples.

IGN pseudo-code items
are removed. The amount of temporary
working space required by each block of
program is calculated and placed in the
workspace dictionary entry (see Appendix
c.n.

and JMP triples

The format of the text is
that a pseudo-code
blocks.

converted so
item does not span

The INCLUDE card matrix is formed for
all the conversion modules required.

Phase 0OS

Phase O0S scans through the
chain in the dictionary

constant
and converts the

constants to the required internal form.
These are then stored in a constants pool,
and the offset of each constant from the
start of the pool is saved in the dictiona-
ry entry for that constant.

To permit the correct alignment of the
constant pool, three scans are made of the
constant chain; first to convert all double
word constants, secondly to convert all
single word constants, and thirdly to con-
vert all unaligned constants.

In the first two scans only one pool
entry is made for constants having the same
internal form and value.

A fourth scan 1is made of the constant
chain and all constants required to ini-
tialize static are converted, but instead
of inserting these constants in the con-
stant pool, they are moved into special
dictionary entries constructed by Phase LB.

THE STORAGE ALLOCATION LOGICAL PHASE

The purpose of the Storage Allocation
Phase 1is to ensure that every item requir-
ing storage in a PL/I object program
obtains a unique location of the correct
size, 1located on the correct boundary.
Items requiring storage include PL/I source
program variables, dope vectors, dope vec-
tor skeletons, temporary variables, work
areas, data descriptors, symbol tables,
addressing slots, register save areas, flag
areas, etc. Storage locations are allocat-
ed to items in order of descending align-
ment requirement to avoid wasting storage
by padding to the required alignment.

The Storage Allocation Phase 1is also
responsible for generating prologues. In
generating the prologues, expressions which
determine size of variables, code generated
by the aggregates phase to initialize dope
vectors, and code generated by the initial
values phase, must be extracted and placed
in the correct sequence in the text. Also,
when a variable depends for its size or
initial value upon another variable, the
requests for dynamic storage must be
arranged so that the dependant variable
obtains its storage after the variables
upon which it depends.

Since all AUTOMATIC and CONTROLLED stor-
age is obtained dynamically at object time,
the Storage Allocation Phase generates code
to relocate dope vectors when the allocated
storage address is known.

Section 2 (Compiler Phases):

Phase_ PD

Phase PD is the first STATIC storage
allocatjon phase. It scans the text, and
for every second file statement encountered
sets up a pointer in the associated dic-
tionary which points to the second file
statement. It then sorts the STATIC chain
so that the dictionary entries occur in the
order in which the storage for their items
will be allocated.

Storage is allocated for simple non-
structured, non-external variables, RDVs,
DEDs, SAVE/RESTORE entries, and the BCD of
entry labels and label constants. Storage
is also allocated for dope vectors for all
items in the STATIC chain requiring them,
with the exception of EXTERNAL items.

The external section of the sorted
STATIC chain is scanned and a U#-byte
addressing slot is allocated for each entry
label, label constant, external (entry type
4) entry, built-in function, or EXTERNAL
item. For each EXTERNAL item the size of
the external control section is calculated
and stored in the dictionary entry.

The constants chain is scanned and the
offsets of the storage and dope vectors for
constants in the constants pool are relo-
cated.

The current size of the STATIC INTERNAL
control section is computed and the result
is passed via the communications region to
the next phase.

Phase_ PH

Phase PH is the second STATIC storage
allocation phase. It scans the AUTOMATIC
chain and CONTROLLED chain for all items
requiring a dope vector.

For each such item a skeleton dope
vector dictionary entry is generated in the
STATIC chain (see BAppendix C.7). This
dictionary entry contains a bit pattern
equal in length to that of the dope vector
and containing all those values which are
known at compilation time. In particular,
it contains as much of the relative virtual
origin as is known at compilation time, the
constant bounds and string lengths, and the
constant multipliers.

If the item is dynamically DEFINED, then
the dope vector is preceded by one extra
four-byte slot. (In the case of structures
there is one extra slot for each element of
the structure.) If the item is a dynamic
temporary (temporary type 2) or a CON-

Storage Allocation Logical Phase 49

TROLLED scalar string, the virtual origin
slot is relocated by the length of the dope
vector.

In all <cases the skeleton dope vector
‘dictionary entry is ©pointed at by the
dictionary entry of the associated item.

The sorted STATIC chain is scanned from
the first skeleton argument 1list entry.
For each such entry, space is allocated in
the STATIC INTERNAL control section accord-
ing to the assembled length of the argument
list. The offset of each skeleton argument
list is stored in the OFFSET1 slot of the
dictionary entry.

RDV and DVD entries are found on this
same scan of the STATIC chain. RDV entries
are allocated eight bytes; DVD entries are
allocated the specified length.

A scan is made of the section of the
STATIC chain containing STATIC INTERNAL
arrays. Storage is allocated for each
array according to its size (computed by
Phase JK) and the offset of the relative
virtual origin is relocated to the start of
the STATIC INTERNAL control section. If
the array is of the VARYING type and it
needs a dope vector, then storage is allo-
cated for the secondary dope vector. The
number of elements is calculated for INI-
TIAL .arrays and stored in the associated
INITIAL dictionary entry.

The section of the STATIC chain contain-

ing STATIC INTERNAL structures is scanned.
Storage is allocated for each structure
according to the size of the structure

(computed by Phase JK), and this storage is
placed on the correct boundary on informa-
tion supplied by Phase JK. The structure
member chain for each structure is scanned
and the relative offset of each member is
relocated to the start of the STATIC INTER-
NAL control section. Further, on the
structure member scan, secondary dope vec-
tors are allocated when required, and the
number of elements is calculated for INI-
TIAL arrays.

Phase PL

Phase PL scans the STATIC, AUTOMATIC,
CONTROLLED, structure, and PROCEDURE block
chains for variables which require storage
for their symbol tables and/or data element
descriptors.

When a variable is found which requires
a symbol table, the variable is joined onto
the chain of symbol variables for the
particular block. A symbol table dictiona-
ry entry 1is created for the variable (see

50

Appendix C.7), and a chain is set up to and
from the dictionary entry for the variable.
The new dictiorfary entry is joined onto the
STATIC chain.

The size of the symbol table is calcu-
lated, and its offset from the start of the
STATIC control section is stored in the
symbol table dictionary entry. Throughout
the allocation of STATIC storage a location
counter is maintained to contain the next
free location in STATIC; this counter is
increased appropriately.

All symbol variables require a DED and a
branch is taken to the routine which allo-
cates them.

When a variable is found which requires
a DED, it is determined whether or not the
DED describes a standard type; there are
eight standard types, which consist of the
different kinds of real coded arithmetic
data that can be obtained by the combina-
tion of the attributes FIXED/FLOAT,
BINARY/DECIMAL, LONG/SHORT (default preci-
sions only).

If the DED is of a standard type, a
check is made for an identical DED that may
have already been encountered, so that
there will be only one allocation of stor-
age for any one type of standard DED. If
the DED is not of a standard type, it is
allocated storage of its own.

If the variable does not already have a
symbol table dictionary entry (which con-
tains space for DED information), a DED

dictionary entry is constructed, and the
offset of the DED in the STATIC control
section 1is stored in it. A pointer in the

new entry in the dictionary entry for
variable is also set up.

the

When all data element descriptors and

symbol tables in the compilation have been
processed, all STATIC storage has been
allocated and the total size of the STATIC

control section is placed in a slot in the
communications region.

Phase PP

Phase PP extracts all ON condition
entries and places them at the head of the
AUTOMATIC chain. It then extracts all
temporary variable dictionary entries from
the AUTOMATIC chain and places them in the
zone following the ON conditions in the
chain.

All dictionary entries which are totally
independent of any other variable are
extracted, and also. placed in the zone
following the ON conditions.

The phase tnen extracts all dictionary
entries which depend upon some other varia-
ple in containing blocks or in the zones
already extracted, and places them in the
next following zone. Dependency includes
expressions for string lengths, expressions
for array bounds, expressions for INITIAL
iteration factors, and defined dependen-
cies. This is repeated recursively until
the end of the chain. If some variable
depends upon itself, a warning message is
issued.

A special zone delimiter dictionary
entry 1is inserted between each zone in the
AUTOMATIC chain (see Appendix C.7). A code
byte is initialized in the delimiter to
indicate to Phases PT and QF whether its
following zone contains any variables which

require storage (i.e., it does not consist
entirely of DEFINED items, which do not
require storage), and whether or not the

following zone contains any arrays of VARY-
ING strings.

Phase PT

Phase PT allocates AUTOMATIC storage,
scans the CONTROLLED chain, and determines
the size of the largest dope vector. It
scans the entry type 1 chain, and for each
PROCEDURE block or BEGIN block it allocates
storage for a DSA and compiles code to
initialize the DSA.

A two-word slot in the DSA is allocated
for each ON condition in the block, and
code is compiled to initialize the slot.
Space for the addressing vector and work-
space in the DSA is also allocated.

The AUTOMATIC chain is scanned and dope
vectors are allocated for the items requir-
ing them. Code 1is compiled to copy the
skeleton dope vector, and to relocate the
address in the dope vector.

Storage is allocated for addressing tem-
poraries type 2 and for addressing con-
trolled variables, and for the parameters
chained to the entry type 1.

The first region of the AUTOMATIC chain
is scanned and storage allocated for double
precision variables, single precision vari-
ables, CHARACTER strings, and BIT strings,
"in that order.

The first region of the AUTOMATIC chain
is scanned and storage allocated for
arrays, relocating the virtual origin. For
arrays of strings with the VARYING attri-
bute, the secondary dope vector is also
allocated and code is compiled to initial-
ize the secondary dope vector. Correctly

Section 2 (Compiler Phases):

aligned storage is allocated for struc-
tures. If a structure contains any arrays
of strings with the VARYING attribute, the
storage for the secondary dope vector is
allocated at the end of the structure.

A pointer is set up in the AUTOMATIC
chain delimiter to the second file state-
ment which has been created.

The remaining regions of the AUTOMATIC
chain are scanned and code is compiled to
obtain a Variable Data Area (VDA) for each
region. Code 1is compiled to copy the
skeletons into the dope vectors and to
relocate the addresses in the dope vectors.
During this pass, storage is allocated for
DEFINED items.

Phase QF
Phase QF, which constructs prologues,
scans that text which is in pseudo-code

form at this time with end-of-text block

markers inserted.

When a statement label pseudo-code item
is found, it is analyzed and one of three
things happens:

1. The item is saved if it relates to a
PROCEDURE statement

2. The item is omitted if it relates to a
BEGIN or ON block

3. The item is passed if it relates to
neither of the first two conditijions

When a BEGIN statement is found, a
standard prologue of simple form is gener-
ated, and code is inserted from second file
statements (if there are any) to initialize
the DSA, allocate VDAs and initialize VDAs.

When a PROCEDURE statement is found, it
is first determined whether it heads an ON
block or a PROCEDURE block. If it is an ON
block, a standard prologue (similar to that
for a BEGIN block) is generated. If it is
a PROCEDURE block, a specialized prologue
is generated, dependent on the number of
entry points, the number of entry labels on
a given entry point, the number of paramet-
ers on each entry point, and whether the
PROCEDURE is a function.

The code generated by the prologue con-
struction phase is partly in pseudo-code
and partly in machine code. The machine
code (which is delimited by special pseudo-
code items) has the same form as the code
produced by the Register Allocation Phase
(see Appendix D.7).

Storage Allocation Logical Phase 51

At the end of the prologue, the
statement label item saved earlier is
inserted to mark the apparent entry point.
Code is produced to effect linkage to BEGIN
blocks in such a way that general register
15 contains the address of the entry point,
and general register 14 contains the
address of the byte beyond the BEGIN epilo-
gue.

At the end of the text, any text blocks
that are not needed are freed, and control
is passed to the next phase.

Phase_QJ

Phase QJ scans the text for ALLOCATE,
FREE, and BUY statements.

On finding an ALLOCATE statement, a
routine is called which does a 'look ahead'
for initialization statements associated
with the allocated variable, e.g., adjusta-
ble array bounds or adjustable string
lengths, and places the text references of
each statement in the dictionary entry
associated with each statement.

If the allocated item has a dope vector,
code is generated to move the skeleton dope

vector generated by Phase PH into a block
of workspace in the DSA of the current
block.

Any adjustable bound expressions or
string length expressions are then extract-
ed from the text references, and the
expressions are placed in-line in the text.

Any information required from previous
allocations (specified by * in the ALLOCATE
statement) is extracted from the previous
allocation, and copied into the workspace.

Code generated by Phase JK to initialize
multipliers, etc., is extracted and placed
in~-line, after first loading the variable
storage accumulator with the dope vector
size. Phase JK generates code to increment
the accumulator register by the size of the
item.

If the item has no adjustable paramet-
ers, code is generated to increment the
accumulator by the size calculated at com-
pilation time. If this size is greater
than 4,096, Phase JK generates a constant
dictionary entry, which is wused in this
code.

If the item has any arrays of varying
strings, the size of the array string dope
vector 1is added to a second accumulator
register. Code is generated to add the two
accumulators into the second one, which is

52

a parameter to a Library routine. A rou-
tine is then called which extracts the
Liprary call inserted by pseudo-code and
places it in-line in the text.

Code is ipserted after the Library call
to initialize the dope vector in workspace
to point to the allocated .storage. Code is
generated to transfer the dope vector from
the workspace to the allocated storage.

Any initial value statements associated
with the ALLOCATE statement are extracted
and placed in-line. The initialization
statements are then skipped, and the scan
continues.

The action on encountering a BUY state-
ment is similar to that for the ALLOCATE
statement, with the following exceptions:

1. Bound and string 1length code is in-
line, bracketed between BUYS and BUY
statements - there is therefore no
look ahead

2. There is no initial value
associated with temporaries

code

3. A slot in the DSA is updated with the
pointer to the allocated storage for a
temporary

The action on encountering a FREE state-
ment is to generate code to load a paramet-
er register with the pointer to the allo-
cated storage for the FREE VDA Library call
inserted by the pseudo-code.

THE REGISTER ALLOCATION LOGICAL_ PHASE

The purpose of the Register Allocation
Phase 1is to insert into the text the
appropriate addressing mechanisms for all
types of storage, and to allocate physical
general registers where symbolic registers

are specified or required as base reg-
isters.,

This phase comprises two physical phas-
es, each with a specific function. The
first, Phase RA, processes the addressing

mechanisms, while the second phase,
RF, allocates the physical registers.

Phase

Phase RA

Phase RA scans the text for dictionary
references, the beginnings and ends wof
PROCEDURE and BEGIN blocks, and the start-
ing points of the original PL/I statements.

A dictionary reference, when found, is

decoded into a word-aligned dictionary
address and a code. These are used to
determine what is being referenced. The
corresponding object time address as an

offset and base is then calculated.

If the address required has an offset
less than 4,096 and a base which is either
an AUTOMATIC or STATIC data pointer, no
extra instructions are generated. If this
is not so, extra instructions are inserted
in the text stream to calculate the
required address. The calculation of this
address is broken down into 1logical steps
in a ‘'step table.' On completion, the table
is scanned backwards to determine whether
an intermediate result has been previously
calculated. The steps which have not been
previously calculated are then assembled
into the pseudo-code.

The compiled code is added either to the
output stream or to a separate file. The
code in the separate file is terminated by
a store instruction to save the calculated
address. The extra "insertion file" is
placed in the prologue of the relevant
block by the next phase. Instructions are
stored in-line if the referenced item is
CONTROLLED, if it is a parameter, if fewer
instructions are required to recalculate
the base rather than 1load the stored
address, or if the reference itself is in
the prologue.

All relevant information for PROCEDURE
and BEGIN blocks is stacked and unstacked
at the start and end of the blocks respec~
tively.

At the start of PL/I statements, code is
compiled to keep the required PREFIX ON
slots in the Dynamic Storage Area updated.
On meeting the pseudo-code error marker,
the calling sequence to the Library error
package is generated, and the error marker
removed.

If the STMT option has been specified,
code is generated at the start of each PL/I
statement to keep the statement number slot
in the current DSA up to date.

Phase RF

Phase RF scans the text for register
occurrences, implicit and explicit, and the
start and end of PROCEDURE and BEGIN
blocks. At the beginning of PROCEDURE and
BEGIN blocks all relevant information is
stacked, and is later unstacked at the
corresponding end.

Section 2 (Compiler Phases):

Registers are classified as

symbolic, or base.

assigned,

Assigned registers require the explicit-
ly mentioned register to be used. If that
register is not free it is stored. Symbol-
ic registers may occupy any register in the
range 1 through 8. An even-odd pair may be
requested.” Base registers may occupy any
of registers 1 through 8.

When a register is requested, a table of
the contents of registers 1is scanned, to
determine whether the register already has
the required value. If it does, that is
used. If it does not, and it is not an
assigned register, a search is made for a
free register and this is allocated if one
is found. Should no register be free, a
look~ahead 1is performed to determine which
register it is most profitable to free.

If a register contains a base it need
not be stored on freeing. If a register
contains a symbolic or assigned register,
it may require to be stored when freed,
depending upon whether it has had its value
altered since any storage associated with
it was last referenced.

At a BALR (Branch and Link) instruction
it is insured that all the necessary param-
eter registers are in physical registers,
and not in storage.

No flow trace 1is carried out by the

compiler. Therefore, the register status
is made =zero at branch-in and branch-out
points. An exception is at a conditional

branch. Here the registers are not freed
after having been saved.

Any coded addressing instructions are
expanded when found in-line. At a specific
"insertion point" in a prologue, any
addressing instructions in the "insertion
file" are brought in and expanded.

THE _FINAL ASSEMBLY LOGICAL PHASE

The Final Assembly Phase converts the
pseudo-code output of the register alloca-
tion phase into machine code, the principal
functions being the substitution -of machine
operation codes for pseudo-code operationmns,
and the replacement of PL/I and compiler
inserted symbolic labels by offset values.

Loader text is generated for program
instructions, DECLARE control blocks, and
OPEN file control blocks, initial values
defined in the source program, parameter
lists, skeleton dope vectors symbol tables,
etc. INCLUDE cards are generated to load
those Library routines required for the

Final Assembly Logical Phase 53

execution of the object program. ESD and
RLD cards are generated for external names
and pseudo-registers. An object listing of
the code generated by the compiler is
produced if the option has been specified
by the source programmer.

Phase TA

Phase TA scans the STATIC chain for file
constants and OPEN control block entries.

For file constants a DECLARE control
block is constructed from the file name and
attributes, while checking the attributes
for consistency. For file constants with
the ENVIRONMENT option a Library module is
called to add environment attributes to the
DECLARE control block. A dictionary entry
is constructed, chained from the file con-
stant, containing the core image of the
56-byte DECLARE control block.

For OPEN control block entries an OPEN
control block 1is constructed from the
attributes in the entry, a check is made
for consistency, and another dictionary
entry, chained from the OPEN control block
entry, 1is constructed. This new entry
contains the 8-byte core image of the OPEN
control block.

The contents of the INCLUDE dictionary
entry are passed to the Library INCLUDE
card generation module, and Linkage Editor
INCLUDE cards are produced for Library
module names returned by that module.

The four-byte slot ZPRNAM, in the com-
munications region, is set to contain the
first four characters of the first entry
label of the external procedure, for pur-
poses of object deck serialization.

Phase_ TF

Phase TF scans the text, assigns offsets
to compiler and statement labels, and det-
ermines the code required for instructjons
which reference labels.

The size of each procedure is determined
and stored in the PROCEDURE entry type 1.
A location counter of machine instructions
is also maintained.

54

Phase TJ

Phase TJ scans the text until no further
optimization can be achieved in the final
assembly.

A location ¢eounter is maintained for
assembled code, and offsets are assigned to
labels.

The size of each procedure is determined
and stored in the PROCEDURE entry type 1.
The amount of code required for instruc-
tions to reference labels is also deter-
mined, while attempting to reduce this from
the amount estimated by the first assembly
pass.

This phase also attempts to reduce the
number of Move (MVC) instructions by
searching for consecutive MVC instructions
which refer to contiguous locations.

Phase TO

Phase TO produces ESD cards for the
compiled program. It first makes up six
standard entries for:

(CSECT) (sSD

1. Program Control Section

type)
2. STATIC internal CSECT (SD type)
3. Invocation count (PR type)

4. Entry points to Library
IHESADA and IHESADB (ER type)

routines,

If the external procedure has the MAIN
option, an entry for a one-word CSECT (SD
type) is made up. Entries are made up for
all entry labels in the external procedure
(LD type).

The entry type 1 chain is scanned and an
entry (PR type) is made up for each block
and procedure.

The external section of the STATIC chain
is scanned and entries are made up for:

1. Built-in functions
tions (ER type)

and library func-

2. Files (ER type)
3. STATIC external variables (SD type)
4. External entry names (ER type)

5. Programmer .ON
type)

condition names (SD

The CONTROLLED chain is scanned and an
entry is made up for each CONTROLLED varia-
ble and task name (PR type).

Phase TT

Phase TT scans the text and maintains a
location counter for assembled code.

Loader text (TXT) and relocation direc-
tory (RLD) cards for requested combinations
of load and punch files are generated.

Nested procedures are unnested at object
time by suitable manipulation of the loca-
tion counter. The offset of each procedure
from the start of text is 1left in the
PROCEDURE entry type 1.

Compiler labels are numbered for use by
the object listing phase, and trace infor-
mation is set up at entry points.

Phase UA

Phase UA generates text for the static
internal CSECT; initializes a CSECT for
each static external variable; and, option-
ally (if the LIST option is present), lists
all the text produced for the static inter-
nal CSECT and provides suitable comments.

The phase first scans to the start of
the external section of the STATIC chain,
generating text for entry labels, label
constants, compiler labels, file attri-
butes, 1label variable BCDs, and DEDs for
temporaries. Simple variables found on
this scan are used, together with the
labels, to mark the start of the character
string section of the chain.

The phase then scans to the end of the
external section of the chain, initializing
address constants for external variables,
external entry names, built-in and Library
functions, programmer-defined ON-condition
names, external files, and label constants.
Text is made up for the constants pool.

The third scan of the STATIC chain
starts at the point left by the previous
scan, and generates text for dope vector
skeletons, argument lists, RDVs and DVDs,
and symbol tables. The scan is terminated
at the end of the chain.

Section 2 (Compiler Phases):

Phase UD

Phase UD initializes those items on the
STATIC chain not processed by Phase UA.

The phase first scans to the start of
the external section of the chain, making
up text for simple data, and listing label
variables.

The second scan starts at the head of
the character string section of the chain,
and initializes dope vectors for all static
internal variables which need them.

The third scan corresponds in extent to
the third scan in Phase UA, but generates
text for arrays, and simple and interleaved
structures. At the end of this scan, a
test is made to determine whether the
external procedure of the program has the
MAIN option. If so, a one-word CSECT
(IHEMAIN) is made up, to contain the
address of the principal entry point to the
compilation.

The phase then executes its final scan,
which extends over the external section of
the chain, to initialize a CSECT for each
external variable or external file.

Finally, any incomplete text and RLD
cards are punched out, and an END card is
produced for the compiled program.

Phase UF

Phase UF scans the text, and lists, in
assembly language format, machine instruc-
tions compiled for the source program. It
inserts comments in the listing for state-
ment numbers, statement labels, entry
points, prologues, and procedure bases.

THE ERROR_EDITOR_PHASE

The Error Editor Phase is entered at the
end of all compilations. The first phase,
Phase XA, examines the dictionary and det-
ermines whether there are any diagnostic
messages to be printed out. If there are
none, this phase terminates the compila-
tion.- If there are diagnostic messages 'to
be printed out, Phase XB causes further
modules