PL/1 Programming

Joan K. Hughee

{11

PL/T Programming

dohn Wiley & Sone

Now York [ondon Sydney Toronfo

Copyright © 1973, by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

No part of this book may be reproduced by any means,
nor transmitted, nor translated into a machine language’
without the written permission of the publisher.

Library of Congress Cataloging in Publication Data:

Hughes, Joan Kirkby
PL/1 programming.

Bibliography: p. 677
1. .PL/l (Computer program language). |. Title.

QA76.73.P25H83 001.6'424 72-7399
ISBN 0-471-42032-8

Printed in the United States of America

109 8

This book is dedicated to

D. Michael Tucker
IBM Systems Engineering Manager, Riverside, California

David P. Goldsmith
Director of Development, National Bank Americard,
San Francisco, California .

Lily Claus
IBM Executive Secretary, Los Angeles, California

Bonnie Gee
Consultant, Los Angeles, California

To the Reader

When something becomes part of a culture’s humor, it seems that it is
deeply entrenched in that culture. The subject of computers has found
its way into our humor as shown in the following cartoon which pokes
some gentle fun at programming :

THE WIZARD OF ID BY PARKER AND HART

© Freld Enterpris

Programming—whether it becomes a career for you or not-—can
be fun. It's like playing a game (but is considerably more challenging
than Tic Tac Toe)—a game for which you can get paid. Personally, |
find an excitement about working in the field of computers because

1. it teaches you to think logically, and

2. it allows you to creatively solve problems that have never been
solved by man before.

PL/I is a powerful language that can be used to solve both business
and scientific problems. In this text, | have tried to present the PL/I
fanguage in as simple and logical a manner as possible. But, in addition,
I have also tried to avoid weaknesses | have found in some college
books | had to read. For example, the answers to the checkpoint
questions are indeed in that chapter. A comprehensive /ndex is pro-

Cartoon used by permission of John Hart and Field Enterprises, Inc.

vii

Vlll Preface

vided so that you should be able to quickly reference a technical point
or locate the answer to a question. If you are new to the field of com-
puters, you will find the glossary in Appendix G most helpful in looking
up the definitions of new terms. The suggested lab problems at the
end of each chapter reinforce the technical material presented in that
chapter. Many of the lab problems have been “field tested” in the
programming classes | have taught at the IBM Los Angeles Education
Center. My appreciation goes to not only my students in IBM classes
but also to my students in Pierce College (Woodland Hills, California)
evening classes for their assistance and feedback.

To the Instructor

PL/l is so comprehensive that a 1000 page book could be written and
still, some things would be left unsaid. | have spent months wrestling
with which topics to include and how to organize those topics.

| decided to present List-Directed //O in Chapter 1 so that your
students could—after reading only the first chapter of this book—
actually code a complete (although simple) PL/l program that would
compile and execute. And, of course, getting the students involved in
doing at an early stage of a class gets their attention, their interest, and
their commitment to the subject. (Either that, or they drop the course.)
The material is organized on a “need to know"” basis. Stream //0
is presented before record //0 because it appears to me that is the way
it is taught in so many colleges today. Arrays are presented when the
iterative DO is presented ; structures are discussed in the chapter dealing
with record I/0O because we do not need to use structures until we
program using the RECORD form of 1/0. There are well-defined lab
problems at the end of each chapter. For some of the problems, flow-
charts are provided if the student wishes to use them. Lab problems
include suggested test data (thereby saving you time in making up
representative sample test data) and sample output for the students to
check their solutions against. Lab problems are carefully designed to
reinforce the material presented in each chapter. The chapters are
modular and self-contained to a large degree. The result is that you
could teach according to your own sequence of topics and assign
reading that is not in the sequence of this book. For example, there
would be little loss of continuity, if any, if you wanted to teach record
I/O before stream 1/0:

Record 1/0 first: Chapters 1, 2, 3,4, 8
Stream 1/O first: Chapters 1, 2, 3, 4,5

Preface IX

Chapter 6 (Built-in Functions) and Chapter 7 (How to Write Sub-
routines and Functions) can be assigned any time after Chapters 1,
2, and 3 have been read. Chapter 11 deals with a most interesting
aspect of PL/I—dynamic storage allocation. This chapter assumes
only that the reader knows about subroutines (Chapter 7 material).

If you are teaching trimester or quarterly courses, chances are
that you would not have time for the material presented in Chapter 10
(/Indexed and Regional File Programming Concepts). | always felt
remiss about leaving out this important topic in some of the college
classes | have taught, because | know from my industry experience
with IBM just how important direct access device programming really
is—particularly now with the trend into data base and data com-
munications.

Appendix A will undoubtedly be a valuable reference for you as
an instructor. It contains a list of PL/I keywords and examples of their
use.

I wish to extend my appreciation to Professor Richard Conway
for permission to use his material on Cornell University’'s own PL/I
compiler—called PL/C. (See Appendix C and Appendix A, in that
order.) Also, | wish to express appreciation to two members of his
staff in the Department of Computer Science at Corneli—Steven
Worona and Mark Bodenstein—who reviewed, for technical accuracy,
the PL/C entries in the comparison charts in Appendix A. My thanks
also go to the Wiley staff: Gene Davenport, Editor; Bernard Scheier,
Manager, Palo Alto Production; Elodie Sabankaya, Designer; Phyllis
Niklas, Copy Editor; Linda Riffle, Editorial Supervisor; and Tom Wolf,
Production Assistant.

There is a Teacher's Manual accompanying this text. | have
included sample solutions to the lab problems, as well as some teaching
notes and visual aids that might be useful to you in teaching PL/l.
Having taught hundreds of students the PL/l language, | have so
many thoughts on the problems (and joys) of teaching PL/I that
space here does not permit a full treatment. Feel free to contact me
personally (Joan K. Hughes c/o John Wiley & Sons, Inc., 605 Third
Ave., New York, N.Y. 10016) if you have any questions on PL/I or
the teaching of PL/I.

Joan K. Hughes

chapter

chapter

chapter

chapter
chapter
chapter

chapter

chapter

chapter

w

N o o b~

9

chapter 10

chapter 11

appendix A

Getting Started
Writing Programs

File Declarations, Conditions,
and Pictures

DO’s and Dimensions
Stream |I/O
Built-in Functions

How to Write Subroutines and
Functions

Introduction to Record I/O and
Structures

Programming Consecutive Files

Indexed and Regional File
Programming Concepts

Storage Classes and Scope of
Identifiers

Keywords Available in Various
PL/lI Compilers

appendix B Bibliography

appendix C Data Conversion Rules

141

111
171
239
309

351

389
455

501

567

617
677
678

Xi

Xii Contents

appendix D

appendix E

appendix F
appendix G

Data Formats and Number
Systems

PL/C: The Cornell University
Compiler for PL/I

File Declaration Charts
Glossary of PL/I Terms

Index

681

702
705
709
733

A——
s
—_—
f— .
(5 v
P]
&)

A new programming language, in fact, NPL—for New Programming
Language—was one of its early names, has been added to the array
of computer programming languages in use today. PL/I (note that
Roman numeral | is always used) is a programming language that
meets the needs of both scientific and commercial programmers,
affords a flexibility heretofore available only to assembler language
programmers, and takes advantage of new computer architecture
developments. ,

Because PL/l incorporates many facilities, its richness has
permitted use in a wide variety of applications. At Yale University,
where more than ten high-level languages are available, it is used in
place of assembly language to write the utility programs.that support
the operating system. It is also used by musicologists and linguists for
complex character manipulations that can only be accomplished with
difficulty in other languages. Bell Telephone Laboratories used PL/I
to process tapes recorded with a variety of non-standard word lengths.
At MIT’s Project MAC, the GE 645 operating system is written in a
subset of PL/I. Corporations such as Union Carbide, Eastman Kodak,
and General Motors do a significant amount of their programming in
PL/I. This ranges from engineering graphics to accounts receivable
applications.” {

PL/l was developed (the first preliminary report is dated 1964)
jointly by IBM and representatives of two customer groups—SHARE,
a scientific users’ organization, and GUIDE, its commercial counterpart.
The objective of the working committee was to synthesize into one
language the best features of the many existing languages, to incor-
porate the latest theoretical advances in language design, and to build
into the new language features allowing control of the contemporary
hardware configurations (for example, multiprocessors, real-time
access devices, and direct access storage units).

tL. Frampton, “How Does PL/l Compare with Its Forebears?” Computer Decisions,
May 1970.

2

Getting Started 3

The most important forerunners of PL/I are

1. FORTRAN—arrays and scientific features
2. ALGOL—particularly the block structure
3. COBOL—structures and direct access storage maintenance

Major computer manufacturers such as CDC (Control Data
Corporation) and Burroughs have announced their PL/I compilers.
However, at the time of publication of this text, the majority of PL/I
compilers have been produced by IBM. Some of these compilers are
listed in Figure 1.1. Each of the listed language compilers is designed
to run under a specific operating system. Although these implementa-
tions of PL/I have a great deal of similarity with respect to the language
capabilities, there are a number of small details or restrictions that set
them apart from each other. Wherever possible, these differences will
be noted in the summaries following each chapter. PL/I D will be
referenced in the text as being the subset language, while the other
IBM compilers above are referred to as having full language capabilities.

There are also a number of PL/| compilers provided by IBM for
use with a computer terminal. A terminal (which in many cases re-
sembles an electric typewriter) is attached via telephone lines to a
computer so that information entered through the keyboard may be
processed by the computer. Some of the IBM PL/| terminal languages
are listed below.

Computer terminal languages
DOS ITF PL/I
OS ITF PL/I
TSO ITF PL/I
TSS PL/I F
CALL 360

The meanings of the above abbreviations include the following:

DOS Disk Operating System

0S Operating System

ITF Interactive Terminal Facility
TSO Time-Sharing Option

TSS Time-Sharing System

Appendix B contains a bibliography of IBM reference manuals related
to PL/I programming including the above terminal languages.

ﬁLanguage IBM reference)
compiler IBM computer Operating system manual number
PL/I D S/360, Model 25 Disk Operating System (DOS) or GC28-8202
and higher, or Tape Operating System (TOS)
S/370
PL/lI F S/360, typically Operating System (0OS) GC28-8201
Model 40 and
higher, or S/370
DOS PL/I S/360 or S/370 Disk Operating System (DOS) SC33-0005
Optimizing
Compiler
0S PL/I S/360 or S/370 Operating System (OS) SC33-0009
Checkout
and
Optimizing
‘Compilers
\ P Y,

FIGURE 1.1

IBM PL/I compilers.

Getting Started)

Programming. begins when you decide on a method for solving a
particular problem. This is the creative part of programming. The
subsequent steps are more mechanical. After arriving at a method of
solution (during which time you may have drawn a flowchart to depict
your logic), you write the PL/I statements on coding sheets—any
general-purpose 80-column coding sheets will do. If you are a student
learning PL/I, you will probably have to punch your own program or
perhaps key it into the computer through a typewriter terminal. Assum-
ing the program is punched into cards, the source program deck is
then taken to the computer for compilation. Compilation is a translation
process. A PL/l compiler is a program that will take your source state-
ments and translate them into the language the computer “under-
stands.” This language is in binary and often is referred to as machine
language. The machine language equivalent of your PL/l program is
called the object program. The object program is always placed (by the
PL/! compiler) on some external storage medium, such as cards,
magnetic tape, or disk—most often on disk.

Figure 1.2 depicts the steps involved in compiling and executing
a PL/] program. It shows the source program as being punched into
cards. These cards are read and translated by the PL/I compiler into a
machine language program, which we previously termed an object
program. The linkage editor has the job of preparing an executable
program in the format required by main storage. The linkage editor
takes the object program from an external storage medium and com-
bines it with other programs or subprograms which the object program
requires to execute properly. These other programs or subprograms are
typically catalogued in libraries stored on tape or disk. Core image
program or Joad module is typical of the name given to program output
from the linkage editor. Although load modules are customarily retained
on a disk or magnetic tape for future or repeated use, the programs
must be brought into main storage before they can be executed.

All of the various system programs, such as the PL/I compiler or
the linkage editor, are executed only when instructions are given to
execute them. These instructions are referred to as JCL, for Job Contro/
Language. Some of the statements that make up the JCL must “sur-
round” your PL/| source program to cause it to be compiled and
executed. The format that job control statements take depends on the
operating system you are using (e.g., DOS or OS). Because JCL

Source
program

SOURCE

PL/L
compiler

Tape

Object
program

Disk PL/I

libraries

Linkage
editor

Core image

program” or -
“load module’’

Disk

Tape

EXECUTABLE Execute

FIGURE 1.2 Program stages in System/360 or System/370.

Getting Started 7

can be a study in itself and because it is independent of programming
languages, job control statements are not covered in this text.

As an introduction to PL/l programming, let us examine a small program
that will find the grade-point average of five examination marks. Assume
the numeric grades are 100, 90, 80, 70, and 90. These grades can be
punched into 80-column cards—say, one numeric grade per card.
The program we are abolit to look at will read (input) these five values,
find the sum of the numeric grades, and divide the sum by five to give
the grade-point average (mean). The mean will then be printed.

It is good programming practice to begin your PL/l programs with
a comment. For example :

/* PROGRAM TO CALCULATE GRADE POINT AVERAGE =/

As you can see, a PL/I comment begins with /* and ends with */.
Comments, which have no effect on the execution of a program,
generally may appear anywhere in a PL/l program. In fact, comments
may be embedded within a PL/I statement wherever blanks are allowed.
Comments are not considered to be PL/I statements; thus, the first
PL/I statement in the program is the PROCEDURE statement :

AVER: PROCEDURE OPTIONS (MAIN);
— N J

| » Must specify for
main programs

> May be abbreviated
as PROC

> Programmer selects
this name (label)

The PROCEDURE statement must always be labeled. In the example,
AVER is termed a /abel. A label is separated from the rest of the PL/I
statement with a colon (:). The label may be a combination of alpha-
betic and numeric characters, but the first character of the name or
label must be alphabetic. The PROCEDURE statement is not executable.
It is simply a way of telling the compiler that this statement marks the
beginning of the block of PL/I statements. A distinction is made here

8 PL/l Programming

between main procedures and subprogram procedures, which, while
different, also begin with a PROCEDURE statement but without the
OPTIONS(MAIN). For example :

SUBRT: PROCEDURE;

(Subprogram procedures are covered in detail in Chapter 7.) Following
the PROCEDURE OPTIONS (MAIN) statement, the statement to input
the data (examination marks) should be specified. This could be
accomplished with the statement

GET LIST(A,B,C,D,E);

Notice how all PL/I statements are ended with a semicolon (;). When
the GET statement above is executed, the five values (100,90,80,70,90)
punched in cards will be read into the computer and assigned corre-
spondingly to the variables named A, B, C, D, and E. Thus, A will con-
tain the value 100, B the value 90, C the value 80, and so on. Variables
are names which represent data or are names to which data may be
assigned.

The next programming step would be to calculate the grade-point
average. This could be accomplished by the following assignment
Statement :

MEAN=(A+B+C+D+E)/5;

Expression

Arithmetic assignment statement

The sum of A, B, C, D, and E is computed first because all arithmetic
operations specified within parentheses are performed before arith-
metic operations that appear outside the parentheses in an expression.
The slash (/) indicates a divide operation. Thus, the sum is divided by
5. The quotient is placed in the variable named MEAN. The equal
sign (=) is referred to as the assignment symbol because it denotes the
assignment statement. The assignment statement does not necessarily
represent equality. The assignment statement can be verbally stated
as, “Assign the value of the expression on the right of the assignment
symbol (=) to the variable on the left of the assignment symbol.”

The final step in this sample program is that of printing the results.
This could be accomplished with the following statement:

PUT LIST('AVERAGE IS’,MEAN) ;

Getting Started 9

This statement generates output to a system printer, generally a line
printer. The printout would look like this :

2
1 5

AVERAGE IS 86

~<——— Print positions

Why print position 1 and then 25?7 Data printed with a PUT LIST
statement are automatically aligned on predetermined tab positions.
These positions are 1, 25, 49, 73, 97, and 121. (It is possible that
in some installations, these predetermined tab positions have been
altered and thus may not match the positions stated above.) In the
PUT LIST statement, two data items were output :

1. The literal ‘"AVERAGE IS’
2. The contents of the variable called MEAN

Notice how the literal was surrounded with single quotation marks
in the PUT LIST statement; however, on output, the single quote
marks are removed before the literal is printed. This literal is a character-
string constant. A constant is an arithmetic data item or string data
item that does not have a name and whose value cannot change.
Other types of PL/I constants will be discussed later. The constant 5
in the assignment statement previously introduced is an example of an
arithmetic data item. String constants are surrounded by single quote
marks ; arithmetic constants are not surrounded by any punctuation
marks.

Logically, our grade-point average program is finished. A RETURN
statement could be specified to indicate the logical point at which
the program should terminate execution. It would be coded:

RETURN; /+ LOGICAL END #/

Following the RETURN statement, an END statement must be specified
which indicates the physical end of our program. For example :

END; /+ PHYSICAL END =/

If a RETURN statement is to be immediately followed by an END
statement in your program, then the RETURN statement may be
omitted, for the END statement may be used to mark both the logical

' 10 PL/l Programming

and physical end of a procedure block. (Procedure block and program
are being used here as synonyms; however, a program actually con-
sists of one or more procedure blocks.) The END statement may,
optionally, contain the label of the procedure it is ending. For example :

END AVER:

\——» The label affixed to the PROCEDURE
OPTIONS (MAIN) statement

Here, then, is the complete program :

/* PROGRAM TO CALCULATE GRADE POINT AVERAGE #/
AVER: PROCEDURE OPTIONS(MAIN);

GET LIST(A,B,C,D,E);

MEAN=(A+B+C+D+E)/5;

PUT LIST('AVERAGE IS',MEAN) ;

END;

Default Attributes

Data names (variables) beginning with the letters | through N
usually represent whole numbers only—that is, integers. Thus, MEAN
may contain only the integer portion of an arithmetic result. For the
input data suggested, the result after summation and division is 86.0.
However, if the input values had been, for example, 100, 90, 80, 70,
94, then a mixed number (a number composed of an integer and a
- fraction) of 86.8 would be the result of the arithmetic operations. If
the value 86.8 is assigned to MEAN, only the integer portion of the
number is retained. In this case, the .8 would be dropped. ‘

Of course, having variable names which represent only whole
numbers can work to our advantage. Suppose it is desired to give the
grade-point average as a whole number, but rounded off. That is, if
the average’s fraction is .5 or more, round up to the next whole number
so that a calculated average of 86.8 would be 87 on the printout.
This could be accomplished by the statement: ‘

MEAN=(A+B+C+D+E)/5+.5;

The expression (A+B+C+D+E)/5+.5 will be computed in such a
manner that intermediate results allow for mixed numbers to be re-
tained. When the result is assigned to MEAN, the fractional part is
then truncated (dropped). Variables that begin with the letters A
through H, O through Z, or the symbols @, #, $ are assumed to have

Getting Started 11

the attributes FLOAT DECIMAL. An attribute is a descriptive property
associated with a name. FLOAT DECIMAL data are represented inside
the computer in a floating-point format. It is not important that you
know how this data looks inside the computer, but you should know
how to interpret floating-point notation in the printed form which is
explained as follows (where X represents any decimal digit) :

XXXXXXE £ XX

L_____> Exponent of the value

Fractional portion of
the value

Decimal point

First significant digit
of the value

Assume the following assignment statement had been coded :
AVERAGE=(A+B+C+D+E)/5;

If the result is 86, the grade-point average is printed in the following
form:

8.60000E+ 01
e —

I—» Think of E+01 as the multiplier 101
(since 10" is equal to 10, multiply
8.6 by 10 to give result of 86.)

In the above example, the E+01 floats the decimal point to the right
01 places so that AVERAGE will equal 86.
If the average were 86.8, then this would be printed :

8.68000E+ 01

Thus, through the FLOAT DECIMAL variables it is possible to retain
and print out mixed numbers. However, for business programming, this
scientific notation is not desirable, because the floating-point format—
though understood by the mathematician—is not acceptable to the
accountant. The solution to the problem lies in giving the PL/l pro-
grammer the facility to specify other attributes for his data.

When variables begin with the letters | through N (or A through
H, etc.), we have seen that certain attributes are assumed. These

12 PL/I Programming

assumptions by the PL/l compiler are said to be default attributes.
A default is an alternative attribute or option assumed when none has
been specified.

The DECLARE Statement

If a programmer does not want the default attributes to apply
to his variables, then the desired attributes may be specified through
the DECLARE statement. For example, assume we would like to print
the grade-point average to the nearest tenth of a point:

AVERAGE IS 86.8

When it is desired to work with mixed numbers but not in the floating-
point format, declare your data to have the FIXED DECIMAL attributes :

DECLARE MEAN FIXED DECIMAL(4,1);

l-——» Number of fractional
digits
Total number of digits

(including the fractional
portion)

Attributes : may also be
expressed as DECIMAL
FIXED because the order
of these keywords is not
significant

Variable
May be abbreviated DCL

In the above example, the total number of digits specified is four, to
allow for the maximum grade-point average (i.e., 100.0). It is also
possible to declare FIXED DECIMAL variables as representing whole
numbers. For example :

DECLARE AVERAGE FIXED DECIMAL(3);
/* OR */
DECLARE AVERAGE FIXED DECIMAL(3,0);

In a DECLARE statement, if you specify only the attribute FIXED, the
attribute DECIMAL will be assumed by default. However, if you
specify only the attribute DECIMAL, the attribute FLOAT will be

Getting Started 13

assumed by default. If you are programming business applications,
then you should either use variables that begin with the letters |
through N to represent data that are within the range of +32,767
or declare variables to have the FIXED attribute.

Let us assume, then, that for this grade-point average program,
we are including the following DECLARE statement:

DECLARE MEAN FIXED(4,1);

The variables A, B, C, D, and E could also be declared to have the
FIXED DECIMAL attributes. For example :

DCL (A,B,C,D,E) FIXED(3);
Specifies a maximum of three
digits for each variable named

Attribute : DECIMAL will be
assumed by default

Variables within parentheses :
when grouped together like
this, it means that each variable
is to represent data of the
attributes specified

Abbreviation for DECLARE

DECLARE statements may appear anywhere in a PL/l procedure.
Typically, they are placed at the beginning of a procedure—perhaps
immediately following the PROCEDURE statement. Here, then, is the
program including the DECLARE statements ;

/* PROGRAM TO CALCULATE GRADE POINT AVERAGE =/
AVER: PROCEDURE OPTIONS(MAIN);

DCL MEAN FIXED(4,1);

DCL (AB,C,D,E) FIXED(3);

GET LIST(A,B,C,D,E);

MEAN=(A+B+C+D+E)/5;

PUT LIST('AVERAGE IS’,MEAN) ;

END;

Identifiers

The general term identifiers is given to names of data (MEAN,
A, B, C, D, and E in the grade-point average program), names of

14 PL/l Programming

procedures (AVER in the same program), names of files (there were
no defined or specified files in this program), labels of PL/| statements
(only the PROCEDURE statement was labeled), and keywords (such
as GET or PUT). ,

Keywords constitute the vocabulary that makes up the PL/I
language. When keywords are used in proper context, they have a
specific meaning. Appendix A provides a list of keywords available for
various PL/l compilers.

- An identifier for data names and statement labels may be from
1 to 31 alphabetic characters (A—Z, (@,#,%), numeric digits (0-9),
and break (_) characters,} providing that the first character is alphabetic.
Some examples are

RATE_OF_PAY $TWO
CONTINUE LOOP_3
PERCENT PIE_A_LA_MODE

Note that in PL/Il, the characters (@, #, and $ are considered to be
alphabetic.

Names of procedures and files may be a maximum of six or seven
characters long, depending on which PL/I' compiler you are using.
Some examples of procedure and file names are

PAYROL CALC
CARDIN PRINTR
P1 FILEA

Note that, generally, special characters such as the break character (_),
or the # or (@ may not be used in file names or procedure names
even though they are allowed for other identifiers such as names of
data.

4 Number of characters allowed for procedure
names or file names
Subset language 1Tto 6
\Full language 1to7 j

+The break character is the same as the typewriter underline character. It can be used
within a data name, such as GROSS_PAY, to improve readability. A hyphen cannot be
used because it would be treated as a minus sign.

Getting Started 15

Statement Format

PL/I is said to be free-form; that is, a statement may contain
blanks as needed to improve readability of the source program. A
PL/l statement may be continued across several cards. For example:

Second (A,B,C,D,E);
card

One PL/1

statement First | GET LIST
card

Or, one card may contain several PL/! statements. For example :

GET LIST(A, B, C, D, E); MEAN=(A+B+C+D+E)/5;

The reason that more than one statement may appear on a card is that
a semicolon (;) terminates a PL/| statement. If a programmer inadver-
tently omits a semicolon at the end of a PL/I statement, thereby causing
two statements to “run’’ together, the compiler may flag the combined
statements as being in error. Sometimes the compiler can detect
where the semicolon was to appear and insert one for you. Flagging
of errors of this and other types is referred to as compiler diagnostics.

Because PL/! is free-form, no special coding sheets are required.
Following is the generally accepted standard :

COLUMN 1 Reserved for use by the operating system

COLUMNS 2-72 May contain one or more PL/I statements
or part of a statement

COLUMNS 73-80 May contain program identification name
and/or a card sequence number; the
compiler, however, does not check for
consecutive order of sequence numbers

List-Directed Input

List-directed data transmission is the first form of input/output
discussed because it is easy to learn (thereby allowing you to start

16 PL/l Programming

writing PL/|l programs quickly), and, although it would not be used in
production-type jobs, it can be a useful debugging or program checkout
tool.

In the grade-point average program, the input statement

GET LIST(AB,C,D,E);

caused data to be read from the system input device which is typically
a card reader. For this type of input, each data value must be separated
by a delimiter such as a blank. For example, the five values could have
been punched into one card :

100 90 80 70 90 j

Because the data can be separated by one or more blanks, each value
could have been punched on a separate card:

90 W
70 j

80 7

90 w

| 100]

The input data could also have been separated by a comma and blanks.
For example :

l 100, 90,80,70, 90 \

or by only a comma and no blanks. For example :

(100,90,80,70,90 W

Notice that there is no comma following the last data item in the input
stream. The term stream is used because in list-directed input or output
data transmission, data are treated as one continuous stream of
characters. In understanding this concept, it might be helpful to think
of the data characters in an input stream as being on a conveyor belt.

Getting Started 17

A number of characters—perhaps decimal digits—will be “taken’ off
the conveyor belt and assigned to the appropriate variable by the GET
LIST statement. Just how many digits are combined and assigned to
one variable is determined by the blank or comma that separates each
data item in the stream. Thus, characters are read (i.e., the conveyor
belt is moved) until a blank or comma is encountered. That group of
characters, then, would make up one data item. Assuming the data
are punched in cards, when there are no more data on one card, then
the next card would be input, and the “conveyor belt analogy’” would
continue. Another way of looking at the stream concept is to imagine
taping all the cards in an input deck end-to-end:

R R SR T

As a further illustration of the stream concept, assume we have
the following data card with the values from the grade-point average
program punched in the following manner:

100 90 80 70 90 W

and we have written the statement
GET LIST(A,B,C);

Here, of course, A will take on the value of 100, B, the value of 90,
and C, the value of 80. Now, assume the next statement in the PL/I
program is

GET LIST(D,E);

The variable D will take on the value 70, and E, the value 90. A new
card record is not read, because there are still some values contained
on the first card. In other words, the card (or print line) is an artificial
boundary, as seen by PL/l. Another way the five values from a single
card could have been read is

GET LIST(A);
GET LIST(B);
GET LIST(C);
GET LIST(D);
GET LIST(E);

1 8 PL/l Programming

Although the above method is obviously inefficient, it does illustrate
the use and flexibility of stream data transmission.

PL/l Constants Used in List-Directed 1/O

Any type of PL/l constant may appear in the input stream for
list-directed input. For example :

12.98, 1011B, 'JOHN GEFE’, "111'B

]——> Bit-string constant

Character-string constant

Binary constant

Decimal constant

These and other types of PL/I constants may appear in the input stream.
Let us consider some of them now.

Decimal fixed-point constants consist of one or more decimal
digits and optionally, a decimal point. If no decimal point appears,
then the data item is assumed to be an integer. Some examples are

3.1415 +52.98 —-100 .0003

Decimal fixed-point constants are contrasted with decimal floating-
point constants, which have the E-notation defined previously in this
chapter. Some examples of decimal floating-point constants, along
with their decimal fixed-point equivalents, are given below :

Decimal floating- Decimal fixed-
point constant point equivalent
12.E+05 or 12E5 1200000.
3141593E-6 3.141593

AE-07 .00000001
—A45E+11 —4500000000000.
84E 84

On S/360 or S/370, the range of decimal floating-point exponents is
approximately 10-78 to 10+75 power.
A string is a sequence of characters or bits that is treated as a

Getting Started 19

single data item. A character-string may include any character recog-
nized by the computer system. Any blank included in a character-
string is considered part of the data and is to be included in the count
of the length of the string. When written in a program, character-
string constants must be enclosed in single quote marks. Some
examples are

‘'THE ROAD NOT TAKEN’
‘DR. STRETCH, CHIROPRACTOR’
‘182156 BURBANK BLVD.'

If it is desired to represent an apostrophe within the character-string
constant, it must be written as two single quotation marks with no
intervening blanks. Consider the following constant :

‘'SHAKESPEARE”S HAMLET

which will be stored inside the computer as

[SIHIA[K[E[SIPIE[A[R[E| " [S] [H]AIM]LIE]T]

It is also possible to specify a repetition factor for string constants.
. This feature is useful when a pattern in the string data exists. For
example, the character-string constant for the city of Walla Walla
could be written

(2)'WALLA
l————+ The blank is included as one of
the characters to be repeated

Repetition factor which must be
surrounded by parentheses

and gives the following character-string with a length of 12:
WIAJLJL[A] [W]AJL[L]A]]

If a character-string constant appears in the input stream and is to be
read using a GET LIST statement, then the variable in the GET state-
ment should have the attribute CHARACTER. The DECLARE statement
must be used to specify a variable to have the CHARACTER attribute.

20 PL/l Programming

For example, to read 'WALLA WALLA'’, the following would be coded :
May be abbreviated CHAR

l—————> Character-string length

DECLARE CITY CHARACTER(12);
GET LIST(CITY);

I Because CITY has been
declared to represent
character-string data, a
character-string constant
from the input stream may
be assigned to CITY

Here is another example of the DECLARE statement and an assignment
statement that assigns a character constant to the variable declared :

DCL NAME CHAR(20);
NAME="TOM ANDERSON’;

T|O|M}| |A[NID|E|R|S|O|N

The name TOM ANDERSON is less than 20 characters, which is the
length declared for NAME. In this case, unused positions of the
variable will be padded on the right with blanks.

So far, we have been considering decimal data constants and
character-string constants. Another type of data that we may work
with in PL/l is binary data. (If you are not familiar with the binary
number system, you may wish to consult Appendix D for an explana-
tion.) First, the question must be raised, “Why use binary numbers
in a PL/l program when it is difficult to ‘think’ in binary?” What is
more, because we live in a decimal world, binary numbers will ulti-
mately have to be translated to decimal to be meaningful. Another
disadvantage of writing binary numbers is that it is difficult to represent
binary fractions easily. (For example, try writing the binary equivalent
for the decimal number 5.1.) The advantages of using binary data,
however, are significant enough to override the disadvantages stated
above. The advantages are these :

1. Conserves space: Generally, the binary method of representing
data inside a computer requires the least amount of storage of
any data format available.

Getting Started 21

2. Saves execution time. Less computer time is required to operate
on binary data than is needed for decimal data. Thus, a program
operating on binary data will, in most cases, execute faster than
the equivalent program operating on decimal data.

Most PL/I programs will be written so that they operate on both
binary and decimal data. Let us examine, then, the types of binary
constants that we may either input using GET LIST or express in a
PL/I source program.

A binary fixed-point constant expresses a number using binary
notation. It is written as one or more binary digits followed by the
letter B. Here are some examples of binary fixed-point constants:

Constant Decimal equivalent
10110B 22
111118 31
—101B -5
10000B 16
4 I

Binary fixed-point constants

Subset
language Whole binary numbers only, e.g., 111B

Full
language Mixed binary numbers are allowed, e.g., 111.01B

J

Decimal floating-point constants were introduced previously in
this chapter. Usually, this type of data is used only by the scientific
programmer. In PL/I, it is also possible to express floating-point
constants in binary. Although this feature is not used too often, it
does provide a flexibility not generally available in high-level languages.

A binary floating-point constant consists of a field of binary
digits followed by the letter E, followed by a decimal integer exponent
followed by the letter B. The field of binary digits may contain a binary
point, and of course, a plus or minus sign. The exponent may be signed.
As with decimal data, the exponent indicates the displacement of the
binary point. For example :

Constant Equivalent
11011E3B (11011000), = (216) 4
10110.1E0B (10110.1), = (22.5),,

1011.E-3B (1.011), = (1.75),,

22 PL/l Programming

On S/360 or S/370, the range of binary floating-point exponents is
approximately 2-260 to 2+252 power.

If you have some previous knowledge about S/360 or S/370,
then you know that there is only one form in which floating-point data
are represented inside the computer, namely, floating hexadecimal. As
we have seen, PL/I allows two forms of floating-point. The compiler
will automatically convert these forms to the internal format (floating
hexadecimal) for representation in main storage. Thus, in a PL/|
program there are two forms of floating-point that may be coded,
but both forms will appear in the same format inside the computer.
The circumstances under which' a scientific programmer might code
binary floating-point constants rather than decimal floating-point
constants are these:

1. The nature of the problem being solved dictates that binary is a
more convenient form than decimal.

2. The programmer needs to express constants to the nearest bit
rather than the nearest decimal digit.

A bit-string (bit is the abbreviation for binary digit) constant is
written in a program as a series of binary digits enclosed in single quote
marks and followed by the letter B. Bit-strings are valuable for general
use as logical switches; they can be set to 1 or O as indicators that may
be necessary later in the program for decision-making. Bit-strings are
being increasingly used in information retrieval. Many “yes” or “no”
answers can be recorded as a bit-string in a relatively small area. Here
are some examples of bit-string constants:

1B

‘11111010110001°B

(64)'0'B
The parenthesized number preceding the last example is a repetition
factor which specifies that the following bit or bits are to be repeated
the specified number of times. The example shown would result in a
string of 64 binary zeros.

Do not confuse a bit-string with a binary fixed-point data item.
Bit-strings are usually not used in calculations as binary fixed-point
data may be. Instead, bit-strings may be used in a program to indicate
whether or not certain conditions exist (yes or no, 1 or O, true or false).
Bit-strings can also be used as a compact method of describing char-
acteristics. For example, assume a television and movie casting agency
is using a computer to keep track of the thousands of Hollywood “bit-

Getting Started 23

part” actors (no pun intended) available for movie and television work.
When the studio has determined its requirements for “extras,” that
request is sent to the casting agency. On what basis does the agency
select the actors to fill this request? Or, when a request for a particular
type of actor comes to the agency, how does the agency select from
the thousands of possible actors the right person for the part? One
method would be to describe the various talents (comedy, heavy
dramatic) and characteristics (age, hair color, height) of the actors in
terms of bit-strings, for example:

10011011
[N——

!———> 1 = Male, 0 = Female
00 = Blue eyes
01 = Brown eyes

11 = Green eyes

1 = Plays heavy dramatic
0 = No heavy roles

1 = Plays comedy
0 = Does not play comedy

\
1 = Plays character roles
0 = Does not play character roles

> etc.

These bit-strings could be stored on tape or disk files. When a request
for a certain type of actor is made, a bit-string of the desired character-
istics is defined. Using this bit pattern as a guide, the files of bit-strings
can be easily searched by a PL/I program for the person who most
closely resembles the desired characteristics. You can see from the
above example, how a lot of information about a person can be com-
pacted into a small “space.” Large companies, having computerized
their personnel records, use the method of coding bit-strings to describe
employees’ capabilities and talents.

Here, then, is a summary of the PL/l constants we have just
examined :

1. Decimal fixed-point: 3.14159, —5280, 45.3

2. . Decimal floating-point: 12E5, +12.E+05, 84E, —76E+7,
3E-17

3. Character-string : ‘DR. SPITZ, DOG TRAINER’, (2)'TOM ’

24 PL/I Programming

4. Binary fixed-point: 10110B, 111B, —101B
5. Binary floating-point: 11011E3B, 10110.1E, —.11101E+02B
6. Bit-string:‘1'B, ‘01011'B, (32)'0'B

These, and other types of constants may appear not only in the input
stream for GET LIST but also in PL/I program statements. For example :

J=K+1B;

Add a vinary one to K
and assign the result to J

List-Directed Output

Because PL/| constants may be data items in the PUT LIST
statement, the statements,

PUT LIST(50,'ABC’,123,127);
PUT LIST(23,86,87)

would give us this output:

1 25 49 73 97 121 ==— Tab positions
50 ABC 123 127 23
86 87

First line

Second line

In PUT LIST, the stream concept still applies. The data items specified
for output will be printed beginning at predetermined tab positions.
Notice how the first data item in the second PUT LIST statement was
printed on the first line with data items from the first PUT LIST state-
ment. From this you can see that a PUT statement does not necessarily
cause data to be printed beginning on a new line. Qutput begins
wherever that last output was ended. Notice that nothing was printed
in tab position 121. This is because the line size for a PUT LIST is
120 positions. It has been shown that the tab positions are 1, 25, 49,
73,97, and 121. How, then, does one output to a print position beyond
120 if the line size for PUT LIST is 120 maximum positions? The
answer is that certain attributes or characteristics are assumed for the
output file (e.g., the line printer) associated with the PUT LIST state-
ment. One of these characteristics is that the line size is 120 positions.
As will be seen later, it is possible to define a file whose line size is
greater than 120 print positions, in which case tab position 121 would

Getting Started 25

be used in the list-directed printed output (assuming the line printer
has more than 120 print positions).

Constants, variables, or expressions may be specified as data
items in a PUT LIST statement. For example:

| These are the data items
—A—
PUT LIST(A,5,C+D);
T

' Expression: C will be multiplied by
D; then the product will be printed

Constant
Variable

Assume it is desired to print one value on one line and a second
value on the next line. This can be accomplished through the PAGE
and/or SKIP options. The PAGE option causes the paper in the line
printer to advance to the top of a new page. The SKIP option causes
the paper in the line printer to be advanced the number of lines specified.
If the number of lines is not explicitly stated, a SKIP(1) is assumed.

Whenever a PUT LIST is first executed in your program, there is
an automatic skip to a new page on the line printer. Thereafter you must
specify the printer contro/ options as your program logic dictates. For
example:

PUT PAGE LIST('ABC’) ; /* START A NEW PAGE =/
PUT SKIP LIST(123); /* SKIP ONE LINE BEFORE PRINT =/
PUT SKIP(2) LIST(127); /* SKIP TWO LINES BEFORE PRINT */

l-—> Number of lines to skip

A SKIP(0) causes a suppression of the line feed. For example, suppose
it is desired to print a heading on a new page and underline that heading
(e.g., STANLEY P. SMERSCH & ASSOCIATES). These statements

would accomplish it:

PUT PAGE LIST('STANLEY P. SMERSCH & ASSOCIATES);
PUT SKIP(O)LIST((31)"_); /= A REPETITION FACTOR OF 31
UNDERSCORE CHARACTERS IS SPECIFIED =/

Since SKIP(0) prevents advancing of the paper in the printer, we
simply go back to the beginning of the line on which the previous

26 PL/l Programming

information was printed. Using the break character in the second
PUT statement above causes the heading to be underlined.

4 . .
Maximum number of lines that may be sklppedw
at any one time
Subset
language 3
Full
fanguage | No maximum ; however, you cannot skip beyond
the end of a page
- J

The LINE option may be used to indicate the line of the page on
which you would like information to be printed. For example:

PUT PAGE LINE(10) LIST(A,B,C);

This indicates that a new page should be started and that the values of
A, B, and C should be printed starting on line 10 of that new page.
It is also possible to write

PUT LINE(10) PAGE LIST(A,B,C);

The effect is the same as in the previous example. This is because
when PAGE and LINE are specified in the same PUT statement, there
is a hierarchy governing which option is exercised first. The order of
priority is PAGE first, then LINE.

The PAGE, SKIP, and LINE options may also appear by them-
selves. For example:

PUT PAGE; /% START A NEW PAGE =/
PUT SKIP(2); ~/* SKIP TWO LINES */
PUT LINE(15); /* SET CURRENT LINE COUNTER TO 15 #/

In this example, there is a comment about the current line counter.
This is an internal counter provided by PL/l for keeping track of
vertical spacing on the line printer. Every time a line is printed during
the execution of your PL/I object program, the line counter is auto-
matically incremented by one. When the value in the line counter
reaches a predetermined maximum, it is reset and the process begun
again for a new page. The maximum value for the line count is a system
standard which is defined at each computer installation or which may

Getting Started 27

be specified through a special option called PAGESIZE—this will be
explained later.

In PL/I there is a special operation that facilitates manipulation of
string data. The operation is called concatenate. It means “to join
together” string (character or bit) data. As an illustration, assume that a
heading is to be printed on a report that contains lines 80 characters
long. The heading is

PAYROLL REGISTER

and it is desired to center the heading above the printout. This would be
accomplished by having 32 leading blanks, followed by the literal data,
followed by 32 trailing blanks. It would be coded:

PUT LIST((32)" ‘||"PAYROLL REGISTER’||(32)" ');
e = el SN

SJ32 trailing blanks

Concatenation symbol
(two stroke marks)f

Heading

Concatenation symbol

A repetition factor of
32 leading blanks has
been specified

Suppose it is desired to write the bit-string constant
11111111111111110000000000000000

where there are 16 ones and 16 zeros in one string. Using the repetition
factor and the concatenation operator allows us to write the PL/I
constant as follows:

(16)"1'B[|(16)'0'B
e e e —

‘——» B for bit
16 zero bits
Concatenation operator

B for bit
16 one bits

TThe stroke character is above the Y on a keypunch.

28 PL/l Programming

Statement Format

PL/I statements take the general form

LABEL: KEYWORD STATEMENT OPTIONS;

Consist of Keywords and programmer-defined
Identifiers and/or Constants

|->Selected by
the
programmer

Selected from the PL/I
language

Selected from the PL/I
language and identifies the
type of PL/I statement

— Selected by the
programmer ; not all
statements need be labeled

For example :

READ_STMT: GET LIST(A,B,C);
—_—

—_—
L———» Statement option: LIST is a

keyword ; A, B, C are
programmer-defined
identifiers

Keyword : identifies this
statement as a GET
statement

Statement label : defined by
the programmer

Getting Started 29

Character Sets

There are 60 characters in the PL/l language. They include :

Extended alphabet of 29 characters
$@#H#ABCDEFGHIJKL
MNOPQRSTUVWXY?Z

Ten decimal digits
0123456789

21 special characters
Blank
Equal or assignment symbol
Plus sign
Minus sign
Asterisk or multiply symbol
Slash or divide symbol
Left parenthesis
Right parenthesis
Comma ,
Foint or period
Single quotation mark or apostrophe
Percent symbol %
Semicolon ;
Colon :
“Not” symbol
“And” symbol
“Or” symbolt
“Greater than” symbol
"Less than” symbol
Break character
Question mark

I+ 1l

~ o~ %

AV T]

-~

The question mark, at present, has no specific use in the language,
even though it is included in the 60-character set.

Special characters may be combined to create other symbols;
for example, < = means “less than or equal to,” — = means "“not
equal to.” The combination ** denotes exponentiation (X**2 means
X2, X**3 means X3). Blanks are not permitted in such character

+The | symbol is called a stroke character.

30 PL/l Programming

combinations. For example,

L Blank here is invalid

1 Valid method of expressing
“greater than or equal to”

A special 48-character set is also available as an alternative to the
60-character set. This 48-character set is provided as a convenience
to the programmer and would be used instead of the 60-character
set if some of the special characters (> % ; : etc.) were not graphically
available on the printer on which the source program is to be listed.
Normally, a special print cartridge must be mounted on the printer
in order for such characters as ; or : or # to be printed. The problem
is that, even though the various print cartridges are interchangeable,
some computer installations do not have a cartridge with all the re-
quired characters for PL/l. If the programmer writes programs using
the punctuation from the 60-character set, but the line printer on
which the source program is being listed does not have the proper
characters, certain characters will not be printed. For. example,

Card input Printer output

Note that it is not an “error” when the semicolon is not printed. It
presents a problem to the programmer while debugging his PL/I
program, for he will often have to resort to reading his source cards to
verify that certain characters have indeed been punched.

Because certain symbols (e.g., > <) from the 60-character set
are not available in the 48-character set, we must have a means to
express such functions as “greater than” or “less than.” Figure 1.3
illustrates how various punctuation marks and operations are expressed
in each of the character sets. The small “b” in the 48-character set
comparison operators indicates that a blank must appear at that place.
Note that (@, #£, ?, and the break character (_) are not available in the
48-character set. When using the 48-character set, the special operators
CAT, NE, NL, NG, GT, GE, LT, LE, NOT, OR, and AND are reserved

SUM=A+B ;

/ Explanation 60-character set 48-character set\
Alphabetic letters A through Z A through Z
$ $
@ Not available
Not available
Numeric digits 0123456789 0123456789
Punctuation
Period .)
Comma , ,
Single quote ’ ’
Parentheses () ()
Colon :
Semicolon :
Arithmetic ' + — % [xx + — x [%%
Special
Blank
Break — Not available
Percent % !/
Question mark ? Not available
Concatenation || bCATb
Equal = =
Greater than > bGTb
Greater than or equal > = bGEb
Less than < bLTb
Less than or equal <= bLEb
Not less than - < bNLb
Not greater than - > bNGb
Not equal - = bNEb
Not - bNOTb
Or | bORb
D
_ And & bANDb)

FIGURE 1.3 Expressing punctuation and operations in 60- and 48-
character sets.

32 PL/l Programming

keywords that must be surrounded by one or more blanks and cannot
be used by the programmer for any other purpose. For example :

IF AEE B THEN Y=1;

' I Must have a blank

"Less than”

Must have a blank

The following statement is invalid :

SUM=GE+VALUE; /# INVALID IN 48 CHARACTER SET =/

|—————> This is a reserved keyword when using the

48-character set; it can only be used to
denote a logical operation

All elements that make up a PL/I program are constructed from
the character sets. On S/360 and S/370, a set of 256 character is
allowed. Included in this full set of characters but not in the 48- or
60-character set are such items as lowercase letters and additional
mathematical symbols. In PL/I, character-strings and comments may
contain any character from the full 256-character set. Appendix D
contains a chart defining the full character set.

In some compilers, to indicate which character set you wish to
use in your PL/I program, a special statement, called the PROCESS
statement, may be used. In this, a number of options may be specified,
one of which is the character set you wish to use. If you specify that
the 48-character set is to be used, you may still use any character from
the 60-character set (except # (@ _). The reverse, however, is not
true; when specifying the 60-character set to mean >, <, =, etc,
none of the 48 special symbols may be used. Thus, such keywords as
LT, GT, or CAT may not be used to mean, respectively, /ess than,
greater than, or concatenate; nor could the 48-character set symbol
for a semicolon (,.) be specified.

You should consult the appropriate Programmer’s Guide for the
PL/I implementation you are working with for a detailed description of
the keywords that may appear in the PROCESS statement. A sample
of the PROCESS statement specifying the 48-character option is
shown in Figure 1.4.

Getting Started 33

4 PL/1 D PROCESS 48C \

*

*

PL/I F PROCESS (‘CHAR48’) ;

DOS PL/I Optimizing

*

PROCESS CHARSET(48)

*

OS PL/I Optimizin PROCESS CHARSET(48
\ p - g (48) /

FIGURE 1.4 PROCESS statement examples.

(In OS, the PARM parameter in the EXEC job control statement is
used to specify CHAR48 or CHARGO for the first procedure com-
piled. If more than one procedure is compiled at the same point in
time, then the PROCESS statement is used for the subsequent
procedures.)

PL/l Program Stages: In this chapter, you were introduced to the stages
of a PL/I program. The first stage is to decide on a method for solving a particular
problem and, perhaps, draw a flowchart to depict your logic. Next, you write
the PL/I statements on coding sheets. The statements are punched into cards,
which are referred to as a source program deck. Compilation is the translation
process in which the PL/l compiler reads your source statements and translates
them into machine language. The machine language equivalent of your PL/I
program is called the object program; this is placed on an external storage
medium, such as cards, magnetic tape, or disk. The linkage editor is a program
that prepares an executable program in the format required by main storage.
Job Control Language statements must surround your PL/I source program
to cause it to be compiled and executed.

PL/l Comments: A comment begins with /* and ends with */. Because
the compiler takes the first card of your PL/I program and prints that information
at the top of every page of output of the source listing, it is a good idea to have
a comment heading your source program statements.

The PROCEDURE Statement: The PROCEDURE statement tells the
compiler that this statement marks the beginning of the block of PL/| state-
ments. There are two types of procedures: main procedures and subprogram
procedures.

34 PL/l Programming

Identifiers: Names of data, procedures, files, labels of PL/I statements, and
keywords are all given the general term identifiers. An identifier for data names
and statement labels may be from one to 31 alphabetic characters (A—Z, @,
#. $), numeric digits (0—9), and break (_) characters, providing that the first
character is alphabetic. Names of procedures and files may be a maximum of
six characters for the subset language and seven characters for the full language.

Statement Format: PL/| is said to be free-form; that is, a statement may
contain blanks to improve readability of the source program. The general
practice is to punch PL/| statements in columns 2 through 72 only.

Default Attributes: These are attributes assigned to identifiers when none
has been explicitly declared. Variables that begin with A through H, O through
Z, (@, #, or $ default to the attributes DECIMAL FLOAT(6). (The 6 is the number
of digits of precision.) Identifiers that begin with the letters | through N default
to FIXED BINARY(15), where the 15 is the number of bits of precision. The
attributes FIXED BINARY were not discussed in this chapter because, so far,
we have only been concerned with declaring decimal data and character-strings.
The | through N variables may be assigned decimal numbers even though their
default attributes include BINARY. The decimal integer value that can be
represented in 15 bits of precision must be within the range of —32,768 to
+32,767.

The DECLARE Statement: This statement is used to define attributes for
variables that represent data. Following are examples of the attributes introduced
in this chapter:

DCL A FIXED DECIMAL(5);
DCL B FIXED(5,2);

DCL C CHARACTER(10);
DCL (D,E,F) CHAR(4);

List-Directed I/O: Input data may be separated by a comma or one or more
blanks. The input data must be in the form of valid PL/l constants (e.g., ‘ABC’,
12.5, 1101B, 57E). Output is to tab positions 1, 25, 49, 73, 97, and 121. Ex-
amples are

GET LIST(A,B,C);
GET SKIP LIST(AB,C);

PUT LIST(A#B);

PUT SKIP LIST(X,Y,Z);

PUT PAGE LIST('HEADING');

PAGE, SKIP, and LINE Options: The PAGE option causes the paper in
the line printer to advance to the top of a new page. The SKIP option causes the
paper in the line printer to be advanced the number of lines specified (e.g.,

Getting Started 35

PUT SKIP(2);). A SKIP(0) causes a suppression of the line feed. The LINE
option may be used to indicate the line of the page on which you would like
information to be printed (e.g., PUT PAGE LINE(10);). PAGE, SKIP, and
LINE may not be specified in the same PUT statement for the subset language,
but all three are allowed in the full language. The order of priority is PAGE
first, then SKIP, then LINE.

Character Sets: There are 60 characters in the PL/l language. They include
an extended alphabet of 29 characters, 10 decimal digits, and 21 special char-
acters. Special characters may be combined to create other symbols. A special
48-character set is also available as an alternative to the 60-character set.
This 48-character set would be used instead of the 60-character set if some of
the special characters (> % ; : etc.) were not graphically available on the
printer on which the source program is to be listed.

The END Statement: This statement is used to mark the physical end of a
procedure and may also be used to logically end a procedure.

The Assignment Statement: This statement is denoted by the presence of
the assignment symbol (=). The value of the expression on the right of the = is
assigned (moved) to the variable on the left of the = symbol.

1. Distinguish between source and object programs.

2. Explain compilation and execution.

3. In what card columns may PL/| statements generally be punched?

4. What is the /inkage editor?

5. What is a keyword?

6. What are the colon (:) and semicolon (;) punctuation marks used for in
PL/l statement syntax?

7. (True or False) Only one PL/I statement may be punched in a card.

8. Why would a programmer want to write a program using the 48-character
set instead of the 60-character set?

9. What characters other than A through Z are considered to be alphabetic
in the 60-character set? the 48-character set?
10. What are reserved words? Give examples.

36

11.

12.

13.

PL/l Programming

How do you specify which character set you would like to use in your
PL/! program?

Write the following fixed-point decimal constants as floating-point
decimal constants, where the floating constants are expressed as fractions :
—15 7.6 0.00000098

Write the following literals as character-strings :

WEEKLY ACTIVITY REPORT (center heading on a 132 print position line)
DUM DE DUM DUM
PROGRAM’'S RESULTS

14.

15.

16.

17.
18.
19.

20.

21.
22.

23.

24.

25.
26.

Write DECLARE statements for the following :

(a) A five-digit fixed decimal number with two fractions

(b) A ten-position character-string

(c) A seven-digit fixed decimal number (no fractions)

In list-directed input, how may data values in the input stream be
separated ? .

When using list-directed output, how many tab positions are assigned
by default on the printer?

How are comments indicated in a PL/l program?

Where may comments appear in a PL/| program?

Indicate the tab positions at which each of the data items would be printed
when the following two statements are executed in sequential order in a
program:

PUT LIST(5,10,15);
PUT LIST('THIS IS SOME FUN AND MARKS THE END OF JOB’,
‘07/07/77°);

Can we tell, from the following statements, just how many cards con-
taining punched data will be read?

GET LIST(A,B,C));

GET LIST(D,E);
What is string data?
Give the fixed-point decimal equivalent of the following floating-point
numbers: .39E—-07 .2678E+02 4.59E+00 7.23E+09
Given: A=10.75; B=2.9; C=123.4. What will |, J. and K contain after the
following statements are executed (assuming I, J, and K are integers)?

1=A; J=B; K=C;

If the programmer does not declare attributes for his variable names, what
does the PL/l compiler do about it?
What are character-strings used for in programming?
What is an advantage of using bit-strings to describe an item or a person
or event?

Getting Started 37

“What is not fully understood
is not possessed.”

GOETHE

In describing the elements of PL/I, a number of terms that were perhaps un-
familiar to you were used. You may wish to review the following words before
proceeding to the next chapter. Appendix G also provides a glossary of PL/I

terms.

assignment symbol
attribute

binary

break character
compilation
compiler

compiler diagnostic
concatenate
constant

core image program
data item

data name

default

DOS
exponentiation
external storage
floating-point
flowchart
48-character set
full language
identifier

JCL

keyword

linkage editor
load module
logical end
machine language
object program
operating system
0Ss

physical end
printer control options
procedure block
program
repetition factor
reserved keyword
60-character set
source program
stream

string

stroke character
subset language
tab position
truncate

variable

38 PL/l Programming

Following are a few beginning programs you may wish to code and run on a
computer. The emphasis in the first two problems is on using list-directed 1/0
and the DECLARE statement to define FIXED DECIMAL and CHARACTER
data. The third problem uses floating-point data as well as fixed-point format.
After coding the problems, punch them into cards. Be sure that the last statement
in each program is an END statement. To compile and execute your programs,
you will need job control statements. Consult your instructor or someone
closely associated with the computer you will be using to assist you in the
preparation of job control statements.

1. Write a program to read these data items from the input stream:
ITEM_DESCRIPTION 20 characters maximum

ITEM_NUMBER 6 characters (alphabetic and numeric)
PRICE 5-digit field with two decimals (XXX.XX)
QUANTITY 3-digit field (XXX)

Compute the extension (EXT) by multiplying PRICE by QUANTITY. Print
results as shown in Figure 1.5. Suggested sample input might be

‘WIDGIT’,"1234AB’,4.95,13

DESCRIPTIUN PART NUMBER UNIT PRICE QUANTITY EXTENSION
WIDGIT 1234A8 4.95 13 64.35
END OF J0B =-- YOUR NAME GOES HERE

FIGURE 1.5 Sample output format for Problem 1.

2. Punch your name and address into a card. Write a program to read this
data and print an address label. For example, if the input is

'JOHN WILLIAM HUGHES’,"123 ELM ST.’ ANYTOWN,SOMESTATE',91405
then output should be

JOHN WILLIAM HUGHES
123 ELM ST.

ANYTOWN, SOMESTATE
91405

Getting Started 39

3. Area of a Triangle

Problem Statement: Write a PL/I program to find the area of a triangle, given
the base and height, where

1

Area = > Base x Height

j

Height

Also, find the area of a second triangle where only the lengths of the sides are
known. The formula is

Area = ./S(S — A)(S—B)(S - C)
where A, B, and C are the triangle’s sides and

_A+B+C

S 2

A

To find the square root of a value is to raise it to a half power. For example :
AREA=RESULT**.5;
L Double asterisks denote exponentiation

Purpose of the Problem: To code arithmetic calculations in floating-point but
print fixed-point answers.
Input: Suggested input data might be:

Base Height A B C
10.0 145 10.0 15.5 20.0

40 PL/lI Programming

Output: Assuming the above input values are used, output would be the
results shown in Figure 1.6.

AREA DF TRIANGLE 1 IS 72.5

AREA OF TRIANGLE 2 IS 76.0

FIGURE 1.6 Sample output from Problem 3.

This chapter presents some PL/I statements you will need to use in
writing meaningful and complete programs. These statements include:

Assignment statement
GO TO statement

IF statement
DECLARE statement

Before examining the above statements in detail, let us consider a
problem that illustrates a need for these statements.

Assume it is desired to read 100 values and find the sum and the
average of these values. Previously, when it was desired to read five
values, it was accomplished with one input statement :

GET LIST(A,B,C.D,E);

However, the above approach would be a cumbersome method to use
in the reading of 100 data items. Thus, another solution must be
implemented. A method commonly used is to input one value at a time
and accumulate that amount into a variable. When 100 values have
been read and accumulated, then the average will be calculated.
A flowchart that describes a method for solving the summation problem
is given here.

Let us look at the PL/I statements needed to solve this probiem.
The first step, which may take several PL/l statements, is called an
initialization step. Typically, in this step, variables are assigned pre-
determined values. For example:

SUM=0;
COUNTER=100;

It is necessary to assign SUM to a zero value before accumulating the
data items into SUM. This initialization step is analogous to clearing
an adding machine before attempting to find the sum of a new column
of numbers. Assigning COUNTER to 100 establishes an identifier that
indicates the number of times an instruction (or group of instructions)
is to be repeated. Each time a data item is read, the value 1 will be

42

l

SUM =
4 COUNTER

0
=100

Read one
input data
item into
VALUE

Add VALUE
to SUM

Subtract

1" from
COUNTER

Does
COUNTER =
0?

Compute
AVERAGE

l

44 PL/l Programming

subtracted from COUNTER. When COUNTER is equal to zero, we
know that the required number of data items has been processed.
The next step in this program is to read a data item,

READ: GET LIST(VALUE);
and add that value to SUM:
SUM=SUM+VALUE;
Next, 1 is to be subtracted from COUNTER,
COUNTER=COUNTER-1;

~and COUNTER is to be tested for a nonzero condition to determine if
more values are to be read from the input stream. This testing may be
accomplished by the IF statement. For example :

IF COUNTER— =0 THEN GO TO READ;
_—

| S —]
|—> A PL/I statement

If the result of this
expression is true (i.e.,
COUNTER is not equal to
zero), then execute the
statement following the
keyword THEN

If the expression tested in the IF statement is not true, then go to the
instruction immediately following the IF statement. The following
instruction would be the statement that computes the average:

AVERAGE=SUM/100;

The result could then be printed or perhaps used in another computa-
tion in the prcgram.

The repetitive processing of data is called a foop. There are three
steps that must be performed in the programming of a loop:

1. Initialize a counter: This is a programming step that sets up an
identifier to indicate the number of times a segment of instruc-
tion is performed. For example:

COUNTER=20;

Writing Programs 45

2. Modify counter: After a specified sequence of instructions
have been performed, it is necessary to modify the counter by
“1,” indicating that there has been one pass through the set of
instructions. For example, if COUNTER has been set to 20,
indicating the number of repetitions a program is to cycle
through, then the following statement might be coded :

COUNTER=COUNTER-1;

Notice that here a “countdown” technique is being used. If
“1" is subtracted from COUNTER each time the program steps
are performed, when the COUNTER reaches zero, we know
that the required number of steps have been performed. Another
way in which a loop could be programmed is to start the counter
at avalue of “1” and increment it each time through the sequence
of statements. When the counter reaches the limit (e.g., 20),
the loop is terminated.

3. Test counter. To determine if the maximum number of
repetitions has been performed, the program must test the
counter. If we are using the countdown technique, then the
following statement might be used to test the counter:

IF COUNTER=0 THEN GO TO PROGRAM_END;

Or, if we are counting up from “1,” this statement might be
coded

IF COUNTER>20 THEN GO TO PROGRAM_END;

Figure 2.1 shows a flowchart that specifies the programming
steps required to find the sum, average, high, and low values—given
20 input data items. The shaded flowchart symbols indicate the steps
that accomplish or control the program loop. Figure 2.2 shows the
PL/l programming solution to this flowchart. The statements in this
program should look familiar to you. The GET LIST and PUT LIST
statements were explained in Chapter 1. The assignment, GO TO,
and |F statements are explained in detail in the following paragraphs.
Notice the END statement in the program. It has a label following the
word END. It is optional to place a label here; but, if you do, it must
be the label identifier that appears on the PROCEDURE statement.
Programmers often include the PROCEDURE label in the END state-
ment for purposes of documentation. For example :

START

% Initialize
unter to

LOW =
data value

Read 1st

data value
from a
card

Move data
value to SUM,
HIGH, LOW

Read
next data
value

Find
Add to average

SUM

HIGH =
data

FIGURE 2.1 Flowchart to find sum, average. high, and low values.

Writing Programs

PROB2: PROCEDURE OPTIONS(MAIN);

FINI:

IF A=B THEN GO TO FINI;

END PROB2;
L Optional

The END statement

may also be labeled

47

Because the identifiers all begin with the letters | through N, it is
assumed that the data the program is manipulating is in the form of

integers only.

One thing to be sure to observe about this program is that the
counter (ICTR) is initialized to 19 rather than 20, as you might have
thought it should be. Actually, there are only 19 repetitions in the
program because the first data value is read and assigned to SUM,
IHIGH, and ILOW. That leaves 19 values to be read and accumulated
into SUM, as well as compared with the contents of IHIGH and ILOW.
Thus, ICTR is initialized to 19—the number of repetitions after the
first data value is read and processed.

PROB2:

LOoP:

PROCEDURE OPTIONS{MAIN);

IDIVSR = 20;

ICTR = 193

GET LIST {IVALUE};

ISUM = IVALUES

IHIGH = IVALUE;

ILOW = IVALUE;

GET LIST(IVALUE)};

ISUM = ISUM + IVALUE;

IF IVALUE > IHIGH THEN IHIGH = IVALUE;
IF IVALUE < ILOW THEN ILOW = IVALUE;
ICTR = ICTR - 13

IF ICTR ~= 0 THEN GO TO LOOP;

IAVER = ISUM/IDIVSR3:

PUT PAGE LIST{'SUM',*AVERAGE",*HIGH','L0OW");
PUT SKIP{2)LIST{ISUM,IAVER,IHIGH,ILOW)
END PROB2;

FIGURE 2.2 PL/l program to find sum, average, high,
and low of 20 values.

48 PL/l Programming

You will be using this type of statement often because it specifies which
arithmetic and logical operations should take place and/or causes
data to be moved from one storage area to another.

Here is an example of an arithmetic assignment statement :

EXTENSION=PRICE+QTY;

In this type of PL/I statement, the system will compute the expression
on the right side of the assignment symbol (=) and assign the result
to the variable, EXTENSION on the left. The equal (=) sign in the
arithmetic assignment statement means rep/ace the vaiue of the variable
on the left of the assignment symbol with the value of the expression
on the right of the assignment symbol. The arithmetic assignment
statement is not an algebraic equation, although, in the above example,
it looks like one. This is because the assignment symbol is identical
to the equal sign. However,

N=N-1;

is a valid arithmetic assignment statement. Clearly, in this example,
the statement is not an equation.

Expressions specify a computation and appear to the right of the
assignment symbol in an assignment statement. A variable is a term
used to indicate a quantity that is referred to by name and a constant
is an actual number. A name is classified as a variable because it can take
on different values during the execution of a program, whereas a
constant is restricted to one value. In PL/l when we want to compute
new values, we combine variables and constants together into expres-
~sions. The actual arithmetic operations to be performed upon the data
variables are indicated by operators and PL/I built-in functions.

Arithmetic Operations

Thé PL/I symbols for the five basic arithmetic operations are:

Symbol Operation
ok Exponentiation
* Multiplication
/ Division
+ Addition

Subtraction

Writing Programs 49

Multiplication must always be indicated with the asterisk (*) operator.
Multiplication in PL/l cannot be implied as it can be in algebraic
notation. For example, the expression

(a+b)(c+d)
would be written in PL/| as
(A+B)*(C+D) or MULTIPLY(A+B,C+D)

The second form shows the use of a built-in function, which we will
come to later. Note, also, the use of capital letters in the expression.
Only capital letters are used in PL/Il statements.

Let us summarize some rules regarding arithmetic expressions:

Rule 1. The order in which arithmetic operations are performed is

1. Exponentiation (raising a number to a power, moving from
right to left in an expression)

2. Muttiplication or division (whichever appears first, moving from
left to right in an expression)

3. Addition or subtraction (whichever appears first, moving from
left to right in the expression)

Rule 2. Parentheses are also used in expressions to affect the order
of arithmetic operations. They serve the same function as do parentheses
and brackets in algebraic equations. When parentheses are specified,
the expression within the parentheses will be evaluated first, starting
with the innermost pair of parentheses and solving according to the
hierarchy established previously in Rule 1.

It is important to understand how the use of parentheses can
affect the order in which arithmetic operations are performed. For
example, in the expression

A+B/C
the order of execution is:

1. Divide Bby C
2. Add A to the quotient

However, if the expression
(A+B)/C

b0 PL/l Programming

were given, the order of operations is:

1. AddAtoB
2. Divide sum by C

In some cases, the use of parentheses does not change the order of
arithmetic operations in an expression. For example:

A*xB+C
is the same as
(A*B)+C

A good rule to follow is, when in doubt about the order of arithmetic
operations, use parentheses. Specifying extra parentheses to clarify
the order of operations—perhaps just for documentation purposes—
is valid and does not affect the efficiency of the arithmetic expression.

Rule 3. A prefix operator is an operator that precedes, and is associ-
ated with, a single operand. The prefix operators in PL/I are

= Not
+ Positive sign
- Negative sign

Prefix operators are contrasted with infix operators, which specify a
specific operation such as addition, subtraction, multiplication, etc.
For example :

Y=Xsx—A:
L Prefix operator (negative sign)
» Infix operator (exponentiation)
In the above statement, X is raised to the —A power. When prefix
operations are indicated in an expression, they are performed before
infix operations. The prefix operators do not have to be separated

from the infix operators with parentheses as is the restriction in other
high-level languages. For example, the PL/l statement

Y=Xx—A;

would have to be written in other languages that contain a similar
type of arithmetic statement as

Y=Xxx(—A)

Rule 4. Any expression or element may be raised to a power and
the power may have either a positive or negative value. For example :

Writing Programs 51

X#%2

(X+5)*=3

Xk — A
The exponent itself may be an expression:

Xxx(142)
Rule 5. /f two or more operators of the highest priority appear in the
same expression, the order of priority of those operators is from right
to left. For example, prefix operations are performed on the same level
as exponentiation (see Figure 2.3, below). In the expression

— Axx2

the order of operations is:

1. Exponentiation
2. Prefix operation, negation

As a further example, in the expression

—Axx—Y
the order of operations is:
1. Negation (—Y)
2. Exponentiation
3. Negation
The expression
AxxBxxC
is evaluated in PL/I as
Axx(B**C)

Comparison Operations

The following operations are used to test (compare) two data
items to determine the relationship that exists between them:

Symbols Operation

GEor > = Greater than or equal to
GTor > Greater than

NE or - = Not equal

= Equal

LT or < Less than

LE or <= Less than or equal to
NL or 4 < Not less than

NG or — > Not greater than

B2 PL/I Programming

Typically, the comparison operators listed above are used in an IF
statement. For example :

IF A>=B THEN GO TO CONTINUE;

These operators may also be used in an assignment statement. Note
the results assigned to the variable on the left of the assignment symbol
in the following examples:

A=B=C;
N~

L— If B = C, then A will be assigned a value of 1
If B is not equal to C, then A will be assigned a value of O
A=B>C;

| A=1ifB>C
A = 0 if B is not greater than C

Bit-String Operations

These operations involve either the establishing of true or false
conditions regarding the relationship of expressions or the manipulation
of bit-string data. The three bit-string operations in PL/I are:

Symbol Operation
(=) NOT
(&) AND
(1 OR

As an illustration of the establishing of true or false conditions of
expressions, consider the following example :

A=B>C AND D<E:
l————» If D < E, then the result is a 1 for “true”’

Logical operation

If B is not greater than C, then the result
is a O for “false”

The identifier A will be set equal to a 1 if both expressions have a 1
generated as a result of a comparison operation. In all other cases,
A in the above example will be set to zero.

There are four possible combinations of true/false conditions:

Writing Programs 53

First expression Second expression
True True
True : False
False , True
False False

Substituting a 1 for true and a O for false, the following tables define
the result (either a 0 or a 1) for the AND and OR operations :

AND OR
1&1-1 111 -1
1&0-0 1101
O&1-0 0|1-1
0&0-0 0/0-0

L—> Result t—» Result

The NOT operation simply yields a result of the opposite condition:
if abitisa1, resultis O; if a bitis a 0, resultis a 1. For example :

/* ASSUME B="1'B */

' |———> An operand
NOT symbol
A='0'B
Notice that there is only one operand with the NOT operation.

The ANDing or ORing of bit-string data is often referred to as a
Boolean operation.t In either logical operation, two bit-strings are
compared, one bit with one bit at a time. The result is a bit-string accord -
ing to the rules illustrated above.

Using the AND operation on bit-strings is a way of “turning off”
bits. In the following example, the resulting bit-string will contain a 1

bit whenever there is a corresponding 1 bit in both operands. (Some-
times the second operand is referred to as a mask.)

1111010011111000 — First operand
AND 0000100000001010 — Second operand (mask)
0000000000001000 — Result

+1t is said that the founding of Boolean algebra was marked when George Boole (1815—
1864) wrote a treatise on “The Mathematical Analysis of Logic.” Boole applied his algebra
to sets and to sentences; its use in the foundation of mathematics and in switching
circuits which led to the development of computers came later.

54 PL/l Programming

Using the OR operation is a way of “turning on” bits. Notice from
the following example that the resulting bit-string will contain a 1 bit
whenever there is either a 1 bit in the first or second operand or both.

1111000011110000 — First operand
OR 0001001100110001 — Second operand (mask)
1111001111110001 — Result

Note also that if you are ANDing or ORing bit-strings of unequal
length, the shorter string is automatically expanded with zeros to
match the length of the longer string.

String Operation

There is only one string operation: concatenation (]|). This
operation may be specified for bit-strings or character-strings. It
simply means that two strings are to be joined together to form one
longer string. For example :

A="JOHN ’;

B='SMITH’;

C=A||B; /* C=JOHN SMITH #/
C=B||, ‘||A; /* C=SMITH, JOHN =/
D='1100'B;

E='0001'B;

F=D||E; /* F=11000001 */

The various PL/I operations have been introduced. Because any
number of operations may be specified in an expression, it is necessary
to establish a priority in which these operations take place so that we
may predict the results of expressions. The hierarchy of these operations
is summarized in Figure 2.3.

Special Form of the Assighnment Statement

A form of the assignment statement available only in the full
language PL/I compilers is the statement where more than one identifier
(variable name) may appear to the left of the assignment symbol. For
example :

AB,C=0;

This statement causes A, B, and C each to be assigned a value of zero.

(Levels 60-character set 48-character set \
1 prefix +, prefix —, **, — prefix +, prefix. —, %%, NOT
2 *l / *! /
3 infix +, infix — infix +, infix —
4 | CAT
5 >=, > 0=, =<, <=, <, 2> GE, GT, NE, =, LT, LE, NL, NG
6 & AND
7 OR
N | Yy,

FIGURE 2.3 Complete hierarchy of PL/l operations.

h6 PL/l Programming

Any value or expression may appear to the right of the assignment
symbol in this type of statement. For example :

WXY.Z=1+J;

This statement causes a branch or transfer to a labeled PL/| statement.
The statement is written :

GO TO LOOP;
I—————> Label identifier in the PL/I program
PL/1 keyword

It is only permissible to transfer to executable statements. For example,
the DECLARE statement and the PROCEDURE statement are not
executable statements; therefore you would not specify a branch to
these statements.

The IF statement is used in a PL/l program when a test or decision is
to be made between alternatives. Comparison operators are used to
specify the test to be made.

IF (with Transfer of Control)

In this statement type, if the result of evaluating the expression
is true, a transfer or branch is made to another point in the program.
For example:

IF A<O THEN GO TO NEGATIVE;

[——-> Transfer to a PL/| statement
labeled NEGATIVE

Writing Programs b7

IF (without Transfer of Control)

In this statement type, a single statement will appear as the action
to be taken if the expression (condition) tested is true. For example:

IF A=B THEN X=X+1;
N—— N

1 A single statement which will be
executed if A=B

Any condition may be tested here

IF A>B THEN PUT SKIP LIST(VALUE);

l—> Almost any PL/I statement may
follow the THEN keyword

If the condition tested is true, the statement following the THEN
keyword is executed before the program proceeds to the next sequential
statement. If the condition tested is false, the statement following the
THEN keyword is ignored and the program continues immediately
with the next sequential statement. The following diagram represents
this type of IF (where exp stands for expression) :

e

False

OC~—

I (exp)

The Compound IF

This IF statement is called compound because it contains two
PL/I statements. Its form includes the use of the keyword ELSE. Here
is a logical diagram of the compound IF:

THEN statement

ELSE statement

h8 PL/l Programming

If the condition tested is true, we execute the statement following the
THEN; if the condition tested is false, we perform the statement
following the ELSE. For example:

IF A=B THEN X=1; ELSE X=2; PUT LIST(X);
—— —
i——» Second statement in the
Compound IF

First statement in the
compound |F

In this example, X will be set equal to 2 when A is not equal to B. It is
important to understand that, if A is equal to B (in which case X will be
set to 1), then the ELSE clause is ignored. The next sequential instruc-
tion here would be PUT LIST.

Nested IF Statements

There may be IF statements contained in either the THEN or
ELSE clause of another IF statement. For example :

IF A=B THEN IF A=C THEN X=1; ELSE X=2; ELSE X=3;

To help clarify the pairing of the THEN and ELSE clauses, it would be
more understandable to show the above statement in the following
manner :

IF A=B
THEN IF A=C
THEN X=1; /* A=B AND A=C =%/
ELSE X=2; /* A=B BUT A—=C #/
ELSE X=3; /* A-=B */

A logical diagram of this nested IF statement would look like this:

& THEN X=1;
{exp) <7
S THEN — IF %
IF Eﬁ< ®ELSE X=2;
%

S
® ELSE X=3;

In a series of nested IF statements, each ELSE clause is paired with the
closest IF that is not already paired, starting at the innermost level.
The conditions in the IF are tested in the order in which they are written.
As soon as a condition tested is false, the testing of subsequent con-

Writing Programs 59

ditions is stopped and the matching ELSE clause is executed. Control
is then transferred out of the entire series of nested IF statements.

In the nest of IF statements, an associated ELSE clause may or
may not appear for the outermost IF. But every nested |IF must have an
associated ELSE clause whenever any |F statement at the next outer-
most level requires an associated ELSE. For example:

—IF
THEN IF...
THEN IF...
[:THEN...;
ELSE . .. ;
ELSE IF
[:THEN...;
ELSE ... ;
L_ELSE ... ;

The use of nested IF statements, at this point, may seem a bit compli-
cated. However, let us look at an example where the use of nested IF
statements actually simplifies our programming task. Assume a com-
pany is looking for prospective employees who, ideally, are 30 years
of age or younger and who weigh less than or equal to 250 pounds.
There are four possibilities or categories of people who could apply
for the job. These options are summarized below :

<30 yrs <30 yrs >30 yrs > 30 yrs
<250 Ibs > 250 lbs <250 lbs > 250 Ibs

Age OK Age OK Age not OK Age not OK
Weight OK Weight not OK Weight OK Weight not OK

"“"HIRE"” “DO NOT HIRE” “CONSIDER” “OVERAGE AND

OVERWEIGHT”

Here are the nested IF statements to test for the four possible conditions :
IF AGE< =30

THEN IF WEIGHT < =250
THEN PUT LIST('HIRE'||[NAME) ;
ELSE PUT LIST('DO NOT HIRE'||NAME) ;
ELSE IF WEIGHT < =250
THEN PUT LIST('CONSIDER’||NAME) ;
ELSE PUT LIST(NAME||'OVERAGE AND OVERWEIGHT') ;

60 PL/I Programming

A Null ELSE in Nested IF Statements

Earlier, a nested IF statement was shown which set X equal to 1,
2, or 3, depending on the condition tested. The statement was

IF A=B
THEN IF A=C
THEN X=1;
ELSE X=2;
ELSE X=3;

In other words :

Set X=1when A=Band A=_C.
Set X=2when A=BbutA—-=C.
Set X = 3 when A — = B.

Now, let us assume that we would like to do the following:

Set X=1 when A=B and A=C.
Set X = 3 when A — = B.

However, for the condition of A = B but A — = C, we do not want to
alter X. This situation builds the case for the use of the null ELSE.
The null ELSE is an ELSE with a null statement as its clause. The null
statement is simply a semicolon. For example:

Or, it may be a semicolon with a label attached to it:
POINT:

The null ELSE is, as its name implies, a nonoperative statement. It gives
no direction to the computer. Rather, its effect is to supply the necessary
ELSE clause to be associated with the innermost IF. Our example would
be written as follows :

IF A=B
THEN IF A=C
THEN X=1;
ELSE; /+ THIS IS A NULL ELSE =/
ELSE X=3;

Consider what would have happened had you omitted the null ELSE.

Writing Programs 61

The statement would have been written

IF A=B
THEN IF A=C
THEN X=1; /+* A=B AND A=C =/
ELSE X=3; /* A=B BUT A==C %/

Notice that for the condition under which we did not want to change
X, X was erroneously set equal to 3.

These examples have illustrated the nesting of IF statements only
to the second level. Deeper nesting is allowed and follows the same
reasoning and rules.

The DO-Group in an IF Statement

The IF statement is designed to execute one statement following
the THEN or ELSE clause. Sometimes, however, it is necessary to
execute more than one statement following the THEN or ELSE. This
can be accomplished through the use of a DO-group. The DO-group
is simply a series of PL/| statements headed by the word DO and
terminated by the keyword END. For example: »

o

1;
2;
Z=3;
END;

-<T|<D

Placing the above DO-group in an |F statement gives us the necessary
flexibility of being able to execute more than a single statement
following a THEN or ELSE. The following example utilizes multiple
DO-groups:

IF A=B
THEN DO;
X=1;,Y=2; Z=3;
END;
ELSE DO; ‘
X=4; Y=5; Z=6;
END;

We have now encountered two uses of the END statement. You are
already aware that END must be the very last statement in your PL/I
source program. Yet, as you can see from the above example, the END

62 PL/l Programming

may appear to be embedded in your PL/I program. However, the PL/I
compiler can always tell by the context which END represents the
true end of your program because each DO in the program has its
own END.

Bit-String Operators in the IF Statement

The operators AND (&) and OR (]) can be useful in the IF state-
ment to eliminate nested IF statements. For example, the nested IF
statement,

IF A=B THEN IF C— =D THEN GO TO POINT_5;
could also be written using the AND operation. For example :
IF A=B & C— =D THEN GO TO POINT_5;

When the AND symbol (&) is specified, both the expression to the left
and the expression to the right of the & symbol must be true for the
statement following the THEN to be executed. If either expression is
not true, the statement following the THEN is bypassed.

For a comparison expression containing the OR (|) operator,
consider the following example :

IF A=B|C=D THEN GO TO LOC_1;

In this case, if either the expression to the left or the expression to the
right of the OR symbol (|) is true, the statement following the THEN is
executed. If both expressions are true, the system would still branch to
the place called LOC_1 in the above example. The only condition that
would keep the program from transferring to LOC_1 is if A is not
equal to B and C is not equal to D.

If you are thoroughly familiar with the types of data (e.g., packed
decimal, fixed-point binary, floating-point, EBCDIC) provided on a
S/360 or S/370, continue with your reading of this section on the
DECLARE statement. If not, turn to Appendix D for a discussion of the
various data formats available on S/360 or S/370.

Writing Programs 63

The DECLARE statement is needed in two instances :

1. When the programmer does not wish to use the data formats
which are assigned by the compiler by default (i.e., I-N for
fixed binary data or A—H and O-Z for floating-point data) or
assigned by the programmer through the use of the DEFAULT
statement.t

2. When information is to be supplied to the compiler that a
variable represents a data aggregate.

DECLARE statements may appear anywhere following the PRO-
CEDURE statement. It is common to find a number of DECLARE
statements placed at the beginning of a PL/l program because it is
logical to declare the attributes of the data before writing the instruc-
tions which process that data and it is easier to find the DECLARE
statements if you want to alter them later.

Base and Scale Attributes
Consider this example of a DECLARE statement:
DECLARE PRICE DECIMAL FIXED(5,2) ;

N~
I——» Precision attribute
Scale attribute

Base attribute

Programmer-selected
identifier called variable

A PL/I keyword

A DECLARE statement always begins with the keyword DECLARE
as its statement identifier. Its statement body contains one or more
variables and a description of the characteristics of the value of each
variable. The words used to describe the characteristics of data are
called attributes. In the above DECLARE statement, the variable is
PRICE. It is declared to have the base attribute DECIMAL, the scale

+The DEFAULT statement, which is available in the optimizing compilers, will be described
later.

64 PL/l Programming

attribute FIXED, and the precision attribute (5,2). Another way in
which the above statement could be written is

DCL PRICE FIXED DEC(5,2);

because most attributes may appear in any sequence, and abbreviations
of some words are allowed. (The precision attribute must follow either
the base or the scale attribute in the DECLARE statement.) Attributes
are separated by one or more blanks.

When a variable has its attributes described in a DECLARE
statement, it is said to be declared exp/icitly. When variable names begin
with the letters | through N and are simply used in a program without
appearing in a DECLARE statement, the FIXED scale attribute, the
BINARY base attribute, and a precision attribute of (15, 0) are assumed,
and that variable is said to be declared /implicitly. Variables beginning
with any alphabetic letter other than | through N and not described
in a DECLARE statement or the DEFAULT statement are implicitly
declared to have the attributes DECIMAL FLOAT(6).

One of the biggest problems for the beginning PL/I programmer
is failing to realize that, if he does not declare the base, scale, and
precision of data items, the compiler will assume certain attributes
by default. Often, these default assumptions are not those which the
programmer desired.

More than one variable name may be specified in a DECLARE
statement. For example:

DECLARE INTEREST FIXED DECIMAL(3,3), PRINCIPAL FIXED
DECIMAL(9,2);

L Blank is optional

Must have a comma
to separate each
data item.

Thus, in the above example INTEREST and PRINCIPAL were both
described in one DECLARE statement.

The Precision Attribute

The precision attribute specifies the number of significant digits
of data and/or the decimal point alignment. The precision of a variable
is either attributed by default or it is declared along with the base
and/or scale, and it is never specified alone. It must follow either

Writing Programs 65

(or both) the base or scale in the declaration. For example :
DECLARE VALUE FIXED DECIMAL(7,2)

N Number of fractional
digits
Number of significant
digits including the
fractional digits

In the above example, VALUE may contain up to a seven-digit number
of which two are fractional. Thus, its form may be stated as

XXXXX.XX

where X represents any decimal digit. If there are no fractional digits,
then you may omit the comma and second digit of the precision
attribute. For example:

DECLARE QUANTITY FIXED DECIMAL(5);

The above statement is equivalent to ;
DECLARE QUANTITY FIXED DECIMAL(5,0);.

It was stated previously that the precision is never specified alone.
Thus, using the above DECLARE as an example, had the FIXED scale
and DECIMAL base attributes been omitted, the statement

DECLARE QUANTITY(5,0);

becomes an /nvalid precision declaration.
For floating-point data, declare only the number of significant
digits. For example:

DCL PI FLOAT DECIMAL(6);
P1=3.14159;

Do not specify fractions in the precision attribute for floating-point
data. For example:

DCL Pl FLOAT DECIMAL(6,5);
is invalid.

The Length Attribute

The word precision refers only to arithmetic data. In referring to
string data, the term /ength is used. The length is the number of char-

66 PL/l Programming

acters or bits a data item is to contain. For example :
DECLARE NAME CHARACTER (20);

(N Length attribute of 20
alphameric characters

Blank here is optional

PL/I keyword for declaring
character-string data

Variable name

The Mode Attribute

Mode specifies whether a variable has the REAL or COMPLEX
attribute. If the mode is not declared, REAL is assumed. In the full
language implementations of PL/I, either mode may be declared for
variables. The following information is of value only to those who
have the need to use complex quantities in their programming solutions
of various problems. Thus, if the expression

84 2/

=1

has no meaning to you, you will not miss anything by skipping to the
next section of this chapter. In the compl/ex mode, an arithmetic data
item has two parts: (a) a real part, and (b) a signed imaginary part.

There are no complex constants in PL/l. A complex value is
obtained by a real constant and an imaginary constant. An imaginary
constant is written as a real constant of any type followed by the letter
|. Here are some examples:

where / is

151
7.14E101
1101.001BI

Each of these is considered to have a real part of zero.
A complex value with a nonzero real part is represented in the
following form:

[+]—1] Real constant {+|—} Imaginary constant
Thus, a complex value could be written as
46+ 21

Writing Programs 67

The keyword attribute for declaring a complex variable is COMPLEX.
For example :

DCL A FLOAT DECIMAL(6) COMPLEX;

A complex variable may have any of the attributes valid for the different
types of real arithmetic data. Each of the base, scale, and precision
attributes applies to both fields.

The standard arithmetic operations are provided for complex data.
For example :

DCL (X,Y,SUM,DIFF,PRODUCT,QUOTIENT,POWER)
COMPLEX DECIMAL FLOAT(6);

‘GET LIST(X,)Y);

SUM=X+Y:

DIFF=X-Y;

PRODUCT=XxY;

QUOTIENT=X/Y;

POWER=Xx*x3;
- COMPLEX variables aIIowed\
Subset language No
Full language Yes
N)

Factored Attributes

When the same base, scale, and precision could apply to more
than one variable, then the attributes may be factored. Here is an
example:

DECLARE (A, B, C) FIXED DECIMAL(7,3);
——— s

\—> Notice that base and scale
attributes may appear in either
sequence: FIXED DECIMAL or
DECIMAL FIXED

Indicates that all of the variables
in the list, separated by commas
and enclosed in parentheses, have
the FIXED DECIMAL(7,3)
attribute

68 PL/l Programming

The above example is equivalent to

DECLARE A FIXED DECIMAL(7.3), B FIXED DECIMAL(7,3),
C FIXED DECIMAL(7,3);

Here is an example of nesting of factored attributes :
DCL (A FIXED(5,2), B FLOAT(6), (C, D) FIXED(9,3))DECIMAL;

In this statement, A is declared as FIXED DECIMAL(5,2) ; B is FLOAT
DECIMAL(6) ; and C and D are FIXED DECIMAL(9,3).

The INITIAL Attribute

In addition to declaring the base, scale, and precision of an
arithmetic variable or the length of a string, it is also possible to set that
variable to an initial value by adding the INITIAL attribute in the
DECLARE statement.

DECLARE AMT FIXED DECIMAL(7,2) INITIAL(24.50);

It is important to understand that the DECLARE statement is not
executable. Therefore, when the value of a variable is initialized through
the use of the INITIAL attribute (the assigning of 24.50 in the above
example), this is done once only and before any of the PL/I executable
statements in a blockt are performed by the computer. Another method
for assigning values to a variable is to use the assignment statement.
For example:

AMT=2450;

Under certain circumstances, using the INITIAL attribute to initialize
a variable to a predetermined value can result in greater program
efficiency than if the assignment statement were used to initialize a
variable. To accomplish this efficiency, another attribute must be added
to the DECLARE statement. For example:

DCL AMT FIXED DECIMAL(7,2) INITIAL(24.50) ST%TIC;

L A storage class to be explained in
Chapter 11

Here are some examples of the use of the INITIAL attribute.
Note that the constant specified after the keyword INITIAL must be
enclosed in parentheses.

+There are two types of blocks in PL/I: procedure blocks and begin blocks. So far, you
have only been introduced to procedure blocks; begin blocks will be covered later.

Writing Programs 69

DECLARE CTR FIXED BINARY(15) INITIAL(O);

l L, CTR will be set equal
to O at the start of
your PL/l program
execution

DECLARE HDNG CHARACTER(22)
INITIAL('WEEKLY ACTIVITY REPORT') ;

I A character-string constant must be
enclosed in single quote marks
within parentheses following the
INITIAL

DECLARE (A, B, C) FIXED DECIMAL(7,3) INITIAL(Q);

You may specify only one
constant for the variables
A, B, and C because the

- INITIAL attribute has
been factored ; this
statenant causes A, B,
and C to be initialized to
the value of zero

DECLARE (X,Y,Z) FLOAT DECIMAL(16) INITIAL(1,2,3);
N ——

L ILLEGAL: even though three variables
are specified (X, Y, and 2), because
they are factored, only one constant
may be given following the keyword
INITIAL

To accomplish the above type of initialization and still factor the
common attributes, you must code :

DCL (X INIT(1), Y INIT(2), Z INIT(3)) FLOAT DECIMAL(16);

Note that expressions following the parentheses in the INITIAL attribute
are /invalid in all compilers except the optimizing compilers:

DECLARE VALUE FIXED DECIMAL INITIAL(7+5):
DECLARE AMT FIXED DECIMAL(5,2) INITIAL(I%2);
DECLARE MSSG CHAR(20) INITIAL(‘ERROR’||(15)"+");

70 PL/I Programming

As mentioned earlier, certain keywords may be abbreviated for the
convenience of the programmer. For example :

DCL VALUE FIXED DEC(9) INIT(12345.) ;

l For INITIAL
For DECIMAL
For DECLARE

Partially Declared Identifiers

We have seen that characteristics of arithmetic data are normally
described with three basic attributes: base, scale, and precision. It is
possible to make a partial declaration of variables. To declare partially
a variable name is to specify one of the following:

1. The base: DCL A DECIMAL, B BINARY;
2. The scale: DCL C FIXED, D FLOAT;
3. The base and precision: DCL AA DECIMAL(16),
BB BINARY(53);
4. The scale and precision: DCL CC FIXED(9,2), DD FLOAT(16);

The chart in Figure 2.4 summarizes the defaults that will be taken
for partially declared variables. To summarize some of the points
implicit in the chart, note that when you specify only the base (BINARY

- Declared attributes Default attributes
DECIMAL FIXED (5,0)
DECIMAL FLOAT (6)
BINARY FIXED (15,0)
BINARY FLOAT (21)
DECIMAL FLOAT(6)
BINARY FLOAT(21)
FIXED DECIMAL(5,0)
FLOAT DECIMAL(6)
None—initial character [—N BINARY FIXED (15)
_ None—all others DECIMAL FLOAT(6) y.

FIGURE 2.4 Default attributes for partially declared identifiers.

Writing Programs 71

or DECIMAL), the scale will default to FLOAT and the precision to
21 for BINARY or 6 for DECIMAL. In other words, when you write

DECLARE K9 DECIMAL;
it is equivalent to
DECLARE K9 DECIMAL FLOAT(6);

When you specify only the scale (FIXED or FLOAT), the base will
defauit to DECIMAL. Thus, when you write .

DECLARE A2 FIXED;

it is equivalent to

DECLARE A2 FIXED DECIMAL(5); /* OR =/
DECLARE A2 FIXED DECIMAL(5,0);

Precision may not be specified alone.

Because you may wish to reference the following section at a later
time, for each data type, pertinent facts are concisely presented and
examples of DECLARE statements are given. Also, you may wish to
review the material in Appendix D before continuing in this chapter.

S$/360, S/370 Data Format Name: packed

Type of Data: coded arithmetic

Default Precision: 5 decimal digits (99999.)

Maximum Precision: 15 decimal digits (999,999,999,999,999.)
Examples:

DCL A FIXED DECIMAL, B DECIMAL FIXED, C FIXED, D FIXED(5),
E FIXED(5,0), F FIXED DEC, G DEC FIXED;
/* A,B,C,D,EF, and G ARE EQUIVALENT =/
DCL AMT FIXED(7) INITIAL(12345); /* AMT=0012345. =/
DCL PRINCIPAL FIXED(9,2) INIT(24.00);
DCL RATE FIXED(3,3) INIT(.045);

72 PL/1 Programming

Note carefully in the following examples how a number will be
altered to fit the declared precision (whether intended or not) :

DCL HOURS FIXED(3,1) INIT(42.6); /x HOURS=42.6 x/
DCL HOURS FIXED(5,2) INIT(42.6); /* HOURS=042.60 */
DCL HOURS FIXED(1,1) INIT(42.6); /x HOURS=.6 #/

DCL HOURS FIXED(3,2) INIT(42.6); /* HOURS=2.60 */
DCL HOURS FIXED(7,4) INIT(42.6): /* HOURS=042.6000 */
DCL HOURS FIXED(5,0) INIT(42.6); /* HOURS=00042. */

A negative scale factor may also be specified for FIXED DECIMAL
data. For example :

DCL A FIXED(3,-2);

[N The negative scale factor means, in this
case, the assumed decimal point is two
places to the rightmost digit (e.g., XXX00.,
where X is any decimal digit)

Comments: This is the type of data that commercial programmers
most often use. The FIXED DECIMAL format provides the capability
needed for monetary calculations. It is more efficient to declare the
precision of fixed decimal data as an odd number (5, 7, 9, etc.) of
digits. There are several terms in PL/I which refer to this data type:

FIXED, FIXED DECIMAL, or DECIMAL FIXED

This format can be used to represent mixed numbers (e.g., 12.98),
fractions (.035), or whole numbers (144).

S$/360, S/370 Data Format Name: fixed-point

Type of Data: coded arithmetic

Default Precision: 15 bits (equivalent to 32,767 in decimal)
Maximum Precision: 31 bits (equivalent to 2,147,483,647 in
‘decimal)

Examples:

DCL A FIXED BINARY, AA BINARY FIXED, AAA FIXED BIN(15);
/* THE ABOVE THREE ITEMS ARE EQUIVALENT */

DCL ICTR INITIAL(500); /+ ICTR=500 AND DEFAULTS TO
FIXED BINARY */

Writing Programs 73

DCL VALUE FIXED BIN(8) INITIAL(11110011B);
DCL T FIXED BIN(31, 6); /* FULL LANGUAGE FEATURE */
DCL EVENT FIXED BIN(31) INIT(—2147483647);

Comments: Notice from the examples above that either binary or
decimal constants may be used to initialize FIXED BINARY variables.
Generally, instructions that perform arithmetic operations on FIXED
BINARY data have a faster execution time than instructions that operate
on other data types. Thus, fixed-point binary data should be used
whenever execution time of a program is a primary consideration.
This does not apply, however, if you are going to be converting,
repeatedly, binary data to characters for output.

Variables that begin with the letters | through N default to FIXED
BINARY(15).

r FIXED BINARY :
Number of bytes used Type of data allowed
Subset
language 4 Integers only
Full 2 if precision <= 15 Integers, fractions, or
9 language 4 if precision > 15 mixed numbers)

$/360, S/370 Data Format Name: floating-point

Type of Data: coded arithmetic

Default Precision: 6 decimal digits

Maximum Precision: 16 decimal digits (33 in the OS PL/|
Optimizing Compiler)

Range of Exponent: 10-781t0 10+75

Ex~mples:

DCL A FLOAT, B FLOAT DECIMAL, C DECIMAL FLOAT, D DECIMAL,

E DEC, F DEC(6), G FLOAT DEC(6);
/* AB,C,D,EF, AND G ARE EQUIVALENT =/

74 PL/l Programming

DCL PI FLOAT(6) INITIAL(3.141569); /+ PI=3.141569 */
DCL MILE FLOAT INIT(.528E+04); /+* MILE=5280. */
DCL LIGHT_YEAR FLOAT INIT(6E + 12);

/ * LIGHT_YEAR = 6,000,000,000,000 */

Comments: Because of the range of the exponent of floating-point
data, scientific programmers find this data format useful for working
with very large or very small numbers that do not require more than 16
digits of accuracy. ldentifiers whose letters begin with anything other
than | through N will default to FLOAT DECIMAL(6). Notice in the
first DECLARE statement above, that a number of keywords may be
used to specify this type of data. Notice, also, that fixed-point decimal
constants (e.g., 3.14159) or floating-point decimal constants (e.g.,
6E+12) are used to initialize floating-point variables. Floating-point
data is not suitable for commercial programs where dollars and cents
accuracy is required.

S$/360, S/370 Data Format Name: floating-point

Type of Data: coded arithmetic

Default Precision: 21 bits (1,048,576 in decimal)

Maximum Precision: 53 bits (109 in OS PL/I Optimizing Com-
piler)

Range of Exponent: 2-260 g 2+252

Examples:

DCL A FLOAT BINARY, B BINARY FLOAT, C BINARY, D BIN(21),
E FLOAT BIN, F FLOAT BIN(21);
/+ AB,C,D,E, AND F ARE EQUIVALENT %/

DCL ALPHA BINARY INIT(101101E5B);
/+ ALPHA=10110100000 */

DCL BETA FLOAT BIN(53) INIT(1011E + 72B);

DCL GAMMA BINARY FLOAT INIT(1111E—06B);

Comments: In main storage, there is no difference between the
format of FLOAT DECIMAL data and FLOAT BINARY data. The
difference exists externally for the convenience of the programmer.
Usually, FLOAT BINARY data format is used in highly specialized
areas such as where the programmer desires to contro/ the number of
bits of precision generated when decimal fractions are converted to
binary fractions. To draw an analogy, we know that the decimal fraction
1/3 is a continuing fraction (.33333333333 on to infinity). Perhaps, for

Writing Programs 75

computation purposes, you only want to use the value .33. You are
controlling the number of digits of precision by using two decimal
digits to represent or approximate 1/3. The same situation can occur in
working with binary data. For example, in its binary equivalent, the
decimal number 1/10 will be a continuing fraction. If the programmer
so desires, he may indicate the precision that 1/10 is to have for
purposes of a specific computation. Just as we said that two decimal
digits would be used to approximate 1/3, we could also say that,
through the use of FLOAT BINARY(12), only 12 bits will be used to
approximate the decimal fraction 1/10.

S$/360, S/370 Data Format Name: character

Type of Data: alphameric

Default Length: none

Maximum Length: varies with the compiler; see Summary at the
end of this chapter

Examples:

DCL NAME CHARACTER(9) INITIAL(JOHN JINX);
NAME=[J[O[H[N] [J [T [N[X]

DCL NAME CHAR(10) INIT('JOHN JINX);
NAME=[JJO[H[N] [J [T [N[X] |

DCL NAME CHAR(8) INIT('JOHN JINX');
NAME=[JJO[H[N] [J [T [N]

Comments: Notice from the above examples how character-string
data is padded with blanks on the right if the assigned character
constant is shorter than the declared length of the character-string.
If the character constant is /onger than the declared length of the
character-string, then truncation to the right of the data occurs. In
the following example, notice the use of the repetition factor and
concatenation to center the heading WEEKLY ACTIVITY REPORT
in the middle of a 120 print position line. Only the leading 49 blanks
had to be specified. To the right of the literal heading, blanks are
automatically padded or filled in.

DCL PRINT_LINE CHAR(120);
PRINT LINE=(49)" '||'WEEKLY ACTIVITY REPORT";

76 PL/! Programming

In some levels of PL/I, although it is not recommended, you may do
arithmetic on data having the CHARACTER attribute. In this case, the
numeric characters are automatically converted to the coded arith-
metic form FIXED DECIMAL.
(o Arithmetic operations allowed on CHARACTE?
attribute data providing data contains valid
arithmetic constants in character form

Subset language No
Full language Yes J
_

It has been illustrated that when a smaller character-string is
assigned to a larger character-string field, there is padding on the
right with blanks. There may be some instances, however, when it is
not desired to have this padding with blanks. A string value is not
extended with blanks when it is assigned to a character-string variable
that has the VARYING attribute. To illustrate :

DCL NAME CHAR(20) VARYING;

;—> This attribute causes the

length specification of
NAME to be effectively
adjusted to describe the
length of each data item
assigned to it

Maximum length of the
string

In the above example, NAME so far has a length of zero (called a nul/
string) because no character-string has been assigned to it. When the
statement

NAME ="MIKE TUCKER’;

is executed, NAME will have a length of 11 because there are 11
characters in the character-string constant. If the statement

’ NAME="MIKE";
is specified, NAME now has a length of 4. If the statement
NAME =";

Writing Programs 77

which contains no characters, is assigned to NAME, the length be-
comes zero again. Incidentally, the character-string constant ‘', or
one with a repetition factor of zero, is referred to as a null string because
it contains no character. The VARYING attribute may be specified for
identifiers that have the CHARACTER or BIT attribute. Truncation will
occur if the length of an assigned string exceeds the maximum length
declared for the varying-length string variable. For example :

DCL X BIT(4) VARYING;
X="11001'B; /* X="1100'B =/

The rightmost bit in the string constant was truncated when assigned
to X.

4 VARYING attribute
Subset language No
Full language Yes)

S§/360, S/370 Data Format Name: none, as bits are packed to the
nearest byte

Type of Data: logical

Default Length: none

Maximum Length: varies with the compiler; see Summary at the
end of this chapter

Examples:

DCL ITEM BIT(9) INITIAL(‘111100001°'B);
DCL PATTERN BIT(16) INIT((8)10'B);
/* PATTERN="1010101010101010'B */
DCL ITSY BIT(8) INIT('1111'B); /# ITSY='11110000'B #/
DCL SYMPTOMS BIT(4) INIT(‘0011100'B);
/* SYMPTOMS ='0011'B */

Comments: Notice from the examples above that bit-string con-
‘stants are enclosed in single quote marks followed by a B. Also, note
that bit-string data are assigned from left to right in the field as are
character-string data. Thus, if a smaller bit-string is assigned to a

78 PL/l Programming

larger field, there is padding on the right with zeros. If a bit-string is
larger than the field to which it is being assigned, then the leftmost bits
only (as many as will fit) are assigned. In other words, those on the
right in bit-string data are truncated. Do not confuse a bit-string with a
binary arithmetic data item. Bit-strings are usually not used in calcula-
tions. Instead, they may be used in a program to indicate whether or
not certain conditions exist (yes or no, 1 or O, true or false). Note this
use of data with the BIT attribute. In the following example, the identifier
SWITCH is being tested for a true or false condition:

DCL SWITCH BIT(1);

SWITCH="1'B;
IF SWITCH THEN GO TO TRUE_COND;

SWITCH is an expression, of the type ultimately required in this position
—BIT(1). The above IF statement accomplishes the same operation
as if this statement had been coded :

IF SWITCH="1"'B THEN GO TO TRUE_COND;

Besides arithmetic data and string data, a PL/l programmer can define
and use statement-label data. We label PL/I statements which our
program will reference. For example :

LOOP1: GET LIST(A, B, C);
IF A=0 THEN GO TO EOJ;
PUT LIST(A+B+C);
GO TO LOOP1;

It is obvious from the context that LOOP1 is the label of a PL/I state-
" ment. Moreover, LOOP1 is a statement-label constant; i.e., its value
will never change—LOOP1 will always be the label of the GET state-
ment. PL/l also allows statement-label variables. A statement-label
variable is a programmer-defined identifier which has been given the
LABEL attribute in a DECLARE statement. For example:

DECLARE LBL LABEL INITIAL (LOOP1);
/* LOOP1 MUST BE A LABEL ATTACHED TO
A PL/I STATEMENT IN THIS PROGRAM; L.E,, IT
MUST BE A STATEMENT LABEL CONSTANT. =/

Writing Programs 79

LOOP1: GET LIST(A, B, C);

GO TO LBL;
/* PROGRAM CONTROL IS TRANSFERRED TO
THE VALUE OF LBL, CURRENTLY LOOP1 =/

The above example illustrates a form of /indirect addressing. Instead of
directly addressing a location (that is, branching to a label in our
program), we specify another location (in this case, it is named LBL) ;
in that location is the name of the place to which our program should
transfer. To use an analogy, assume that good ol’ Joe invited some of
the boys over for poker one Friday night. When Joe informed his wife
of the poker party, she informed him she was having her bridge group
over that same evening. The conflict was easily solved when good
neighbor Sam said the poker party could be held at his house. Instead
of calling his friends, Joe simply had them come to his house as
originally planned. When they arrived, Joe gave them the directions to
Sam’s house. The idea here, of course, is that in this “human situation”
the poker players went to one /ocation (Joe's house) to pick up the
address of where they ultimately were to go (Sam’s house). Interestingly,
the terms address and /ocation are also programming terms because of
their similarity in function.

A statement-label variable may assume many values during the
execution of a program. For example:

DCL LBL LABEL;
INPUT: GET LIST(A,B,C);

IF A=1 THEN LBL=TYPE1;

ELSE IF A=2 THEN LBL=TYPE2;
ELSE LBL=TYPES;

GO TO LBL;

TYPE1: —
TYPE2: —
TYPE3: —

80 PL/l Programming

Arithmetic Operations on Mixed Data Types

This section has dealt with the various data formats on S/360
and S/370 and the PL/I keywords that describe these formats. Before
leaving the topic of data formats, one question must be raised and
answered: “What happens when, for example, a FIXED DECIMAL
value is to be added to a FIXED BINARY value?” A computer cannot
do arithmetic operations on two values having unlike data formats.
Likewise, logical operations cannot be performed on unlike string
data. Therefore, when mixed data types appear in an arithmetic expres-
sion, the PL/l compiler automatically inserts the appropriate instructions
to cause one of the data items to be converted to the data format of the
other. The rules for conversion are these :

1. If the base of the data items differs, DECIMAL is converted to

BINARY.

2. If the scale of the data items differs, FIXED is converted to
FLOAT.

3. If CHARACTER and BIT are specified, then BIT is converted to
CHARACTER.

Figure 2.5 iliustrates these conversions.

The DEFAULT statement, which is available in the two IBM PL/I
optimizing compilers, is provided to enable the programmer to define
default attributes for identifiers other than those to which PL/I would
normally default. To put it another way, this statement is used to over-
ride the PL/l language default attributes; it consists of the keyword
DEFAULT followed by one or more keyword options.

The RANGE Option

This option specifies the identifiers to which the associated default
rules are to be applied. Following are some examples of this option in
the DEFAULT statement:

DEFAULT RANGE (A:D) FIXED;

L, Identifiers that begin with A through D
will default to FIXED(5), 5 being the
standard PL/| default precision for
FIXED data

(Values to be operated on

Conversion that takes place

Comments w

DCL A FIXED DEC,
B FLOAT DEC;
Y=A+B;

A is converted to FLOAT DEC

Scale is different: thus,
FIXED — FLOAT

DCL C FIXED DEC,
D FIXED BIN;
I=C=D;

C is converted to FIXED BIN

Base is different; thus,
DECIMAL — BINARY

DCL E FIXED DEC,
F FLOAT BIN;
Z=E/F;

E is converted to FLOAT BIN

Both base and scale are different ; thus,
FIXED — FLOAT
DECIMAL— BINARY

DCL G FIXED DEC,
H FIXED DEC;
R=G-H;

None

Base and scale are already the same

DCL K CHAR(13),
| CHAR(5),
J BIT(8)

K=1]]J;
Y I

J is converted to
CHARACTER(8)

String data formats are different; thus,
BIT - CHARACTER
before concatenation is performed

FIGURE 2.5 Examples of data conversions that take place in mixed expressions.

82 PL/l Programming

DEFAULT RANGE (*) FIXED;

|———> Asterisk specifies that all identifiers
(names beginning with A through Z, @,
$, #) will default to a FIXED DECI-
MAL data item with a precision of (5)
digits ‘

DEFAULT RANGE (PRO) FLOAT;

l———> All identifiers whose first three letters are
PRO will default to FLOAT(6)

DEFAULT RANGE (A,C,R,T) FIXED BINARY;

L Identifiers that begin with either A, C,
R, or T will default to FIXED BINARY
with a precision of 15 bits

Note that in the above examples, which specify coded arithmetic
attributes (e.g. FIXED, FLOAT, FIXED BINARY), precision may
not be specified. The assumed precision in each case will be the
standard PL/l default precision unless declared explicitly or contextu-
ally elsewhere.

The VALUE Option

This option is used where it is desirable to specify the default
precision of coded arithmetic data or the length of string data. For
example :

DEFAULT RANGE (A:D) FIXED DECIMAL

VALUE (FIXED DECIMAL (7,2));

Base and scale
attributes

Precision attribute

In this example, identifiers that begin with A through D will now default
to FIXED DECIMAL with a precision of (7,2).

This option is also used to specify the length of character- and/or
bit-strings. For example :

Writing Programs 83

DEFAULT RANGE(C:E) CHARACTER VALUE (CHAR(20));

L, Identifiers that begin with C through E
default to CHAR(20)

DEFAULT RANGE (TT) BIT VALUE (BIT(8));

N Identifiers that begin with the letters
“TT" default to bit attribute with a
length of eight

If only the precision attribute is to be specified, thereby leaving the base
and scale attributes to be assumed by default, then the following form
of the DEFAULT statement may be used:

DEFAULT RANGE (A:D) VALUE (DECIMAL FLOAT(15));

If this DEFAULT statement appears in a program in which identifiers

whose names begin with A through D would normally be declared by

default, those identifiers will specifically default to DECIMAL

FLOAT(15) rather than to the standard default of DECIMAL FLOAT(6).
In the statement

DEFAULT RANGE (*) VALUE (FIXED BINARY(31),
FIXED DECIMAL(15), FLOAT BINARY(53),
FLOAT DECIMAL(15));

the asterisk (*) refers to a// identifiers; the attributes in parentheses
following the keyword VALUE are the precisions that will apply if
variables are partially declared (i.e., only as to base and scale attributes).
Thus, if the statement

DECLARE A FIXED;

is encountered in the program, the identifier A will default to FIXED
DECIMAL with a precision of 15 because FIXED DECIMAL(15) was
specified in the VALUE option list. Or, as another example, if the
statement

DCL B BINARY;

is encountered, the identifier B will default to BINARY FLOAT(53)
because when BINARY is specified alone, the assumed scale is FLOAT,
and the precision specified in the VALUE option list for FLOAT BINARY
is b3. Notice what happens, however, when either a base or scale

84 PL/l Programming

attribute is specified in the DEFAULT statement and an identifier is
only partially declared :

DEFAULT RANGE (A:H) FIXED VALUE (FIXED BINARY(31),
FIXED DECIMAL(15)) :

Assuming this DEFAULT statement, if we write
DECLARE A BINARY;

then the identifier A will default to FIXED BINARY(31). This is because
only two data attributes were specified in the VALUE option list:
FIXED BINARY and FIXED DECIMAL. By declaring A to be BINARY,
the only attribute that could apply for purposes of adding the missing
scale is the FIXED attribute. Thus, if we write

DECLARE B DECIMAL;

the identifier B will default to FIXED DECIMAL(15).

A program may not contain both a DEFAULT statement to estab-
lish default rules and another DEFAULT statement to modify these rules
or restore the standard default rules for the same range.

4 The DEFAULT statement)
Subset language Not available
Full language Provided in the PL/I optimizing compilers
but notin PL/I F
. J

To obtain a higher rate of return on capital invested, businesses are
interested in maximizing sales while minimizing inventory. The ratio
of sales to inventory can be determined by a simple formula, the results
of which provide useful guidelines for inventory management. For
example, if the ABC Company has determined that its stock turnover is
once a year, but its closest competitor turns its stock over three times a

Writing Programs 85

year, then ABC is possibly carrying too large an inventory. Faster
turnover of stock-on-hand might improve ABC'’s profits.

To find its stock turnover rate, the ABC Company determined the
retail value of its inventory by month for the past 12 months to be the
following :

Month Value of inventory
January $90,000
February 92,000
March 94,000
April 83,000
May 87,000
June 91,000
July 89,000
August 90,000
September 92,000
October 94,000
November 88,000
December 8§,OOO

The company’s gross retail sales (S) for this period were $523,000.

There are 12 inputs representing the retail inventory values for
each month. The company'’s gross retail sales figure becomes additional
input. The program shown'in Figure 2.6 reads the retail sales figure

"

~ oW

10
11
12
13
14
15

16
17

/% CALCULATION OF STOCK TURNDVER RATE */

STOCK:

LOOP:

PROCEDURE OPTIONS{MAIN);
DECLARE S FIXED DECIMAL{9,2); /*--S IS TOTAL
RETAIL SALES——————%/
DECLARE ‘A FIXED DECIMAL(9,2); /*--—A IS AVERAGE RETAIL
INVENTORY VALUE-—-—%/
DECLARE R FIXED DECIMAL{2,1)3 /%-——R IS RATE OF STCCK

TURNOVER———————wmmm */

ICTR = 13
GET LISTI(S);
GET LISTU{VALUE); /¥*=-——VALUE IS MONTH'S

INVENTORY AMOUNT—————%/
SUM = SUM + VALUE;
ICTR = ICTR + 13
IF ICTR <= 12 THEN 6O TO LOOP;
A = SUM/12; /#———AVERAGE RETAIL VALUE-%/
R = S/A3 /¥——-STOCK TURNOVER RATE-—%/

PUT SKIP LISTU*TOTAL RETAIL SALES*',S)3

PUT SKIP{2)LIST('AVERAGE RETAIL INVENTORY VALUE',A);

PUT SKIP{2)LIST('RATE OF STOCK TURNOVER FOR 12 MONTH]|
'PERIDDY4R) 3

PUT PAGE LIST{'END OF JOB'};

END STOCK:

FIGURE 2.6 Calculation of stock turnover rate.

86 PL/l Programming

first and then the inventory values by month (thereby creating the
need for a /oop operation). The average monthly inventory value is
found simply by adding the 12 months’ values and then dividing by
12. Next, the rate of stock turnover is determined by the formula

R=K

where R is the rate of stock turnover, S is gross retail sales, and A
is the average stock value. Desired output is

TOTAL GROSS RETAIL SALES XXXXXX.00
AVERAGE RETAIL INVENTORY VALUE XXXXXX.00
RATE OF STOCK TURNOVER FOR 12 MONTH PERIOD X.X

Observations Regarding Figure 2.6

1. The PL/I comments are written in such a manner that they
stand out on the page.

2. A comment precedes the PROCEDURE OPTIONS(MAIN)
statement. This card will be printed as a heading on every
page of the source program listing provided by the PL/l compiler.

3. The first output statement was PUT LIST. Because this is the
first PUT LIST statement in the program, there will be an
automatic advance to a new page when the statement is ex-
ecuted. Hence, it is not necessary to say PUT PAGE LIST.
Had we done so, an extra sheet of printer paper would have
been ejected and wasted. (Exception: this does not apply in
optimizers.)

4. The last PUT LIST statement of this case study printed an end-
of-job message so there will be no question as to whether or
not the job ran to successful completion. Notice that this message
will print on a new page.

5. Because LIST I/O is being used, all of the data this program is
to process could be punched on one input card. For example:

Writing Programs 87

1 2 2 3 3 4 5 5 6 6 7
1 8 4 0 6 2 8 4 0 6 2 8 4 80

523000 90000 92000 94000 83000 87000 91000 89000 90000 92000 94000 88000 85000

Figure 2.6 shows the printout from the PL/l compiler. Notice
how the compiler inserted statement numbers to the left of each PL/I
source statement. These numbers are used by the programmer as
references when debugging a PL/l program. Although there are no
diagnostics shown, the compiler does assist the programmer im-
measurably by providing as many diagnostic messages as possible.
In interpreting them, be aware that an error in one statement may
cause several subsequent statements to be flagged as being in error.
Yet, there may be nothing wrong with them. When the first error is
corrected, the subsequent errors will automatically clear up. This is
particularly true if you have an error in a DECLARE statement.

Actually, diagnostics may be generated at two different times:

1. When errors are detected during: compile time
2. When errors are detected during execution time (also called
object time)

Following your source program listing, compile-time diagnostics
(describing errors found by the compiler) will be printed. Execution-
time diagnostics (describing errors encountered while your program is
in execution) may also be printed. For an explanation of how to inter-
pret execution-time diagnostics, consult the appropriate programmer’s
guide for the PL/lI implementation you are using. Typically, this topic
will appear in the guide’s index under the heading “object-time
diagnostics.” Figure 2.7 shows the computer output from the execution
of this program. Results are for the values shown in observation
number 5 above.

TOTAL GROSS RETAIL SALES 523000.00
AVERAGE RETAIL INVENTORY VALUE 89583.31
RATE OF STGCK TURNOVER FOR 12 MONTH PERIOD 5.8

FIGURE2.7 Computer output from stock turnover rate program.

88 PL/l Programming

A Program Loop: The repetitive processing of data is called a loop operation.
Program loops have three steps:

1. Initialize a counter
2. Modify counter
3. Test counter

The Assignment Statement: You will be using this type of statement often
becauses it specifies which arithmetic and logical operations should take place
and/or causes data to be moved from one storage area to another. The assign-
ment symbol (=) in the arithmetic assignment statement means “replace the
value of the variable on the left of the equal sign with the value of the expression
on the right of the assignment symbol.” Expressions specify a computation and
appear to the right of the assignment symbol in an assignment statement. A
variable is a term used to indicate a quantity that is referred to by name, and a
constant is an actual number. There are a number of operations that may be
performed in expressions. They include:

1. Arithmetic operations: The order in which arithmetic operations are
performed is (a) exponentiation (raising a number to a power, moving
from right to left in an expression) ; (b) multiplication or division (which-
ever appears first, moving from left to right in an expression) ; (¢) addition
or subtraction (whichever appears first, moving from left to right in the
expression). When parentheses are specified, the expression within the
parentheses will be evaluated first, starting with the innermost pair of
parentheses. A prefix operator is an operator that precedes, and is
associated with, a single operand. The prefix operators in PL/Il are
—, +, and " 1. Consider the following valid PL/I statement:

Y=X=*-W;

In the above example, the prefix (—) does not signify a subtraction
operation ; it simply means to find the negative (i.e., reverse the sign)
of W. When prefix + (positive) and prefix — (negative) symbols are
indicated in an arithmetic expression, they are performed before infix
+ (addition) and infix — (subtraction) are performed. Note that the
prefix operators do not have to be separated from the infix operators
with parentheses as is the restriction in other high-level languages.
The expression A**B=*xC is evaluated by PL/l as A*+(B*xC), because
each exponentiation operation is performed moving from right to left
in the expression. A form of the assignment statement not available in
the subset languages but available in full language compilers is the
statement where more than one identifier (variable name) may appear to

2.

Writing Programs 89

the left of the equals sign (e.g., A,B,C=0;). This statement causes
A, B, and C each to be assigned a value of zero.
Comparison operations: These operations include :

Symbol Operation
GE or > = Greater than or equal to
GT or > Greater than
NE or 1= Not equal
= Equal
LT or < Less than
LE or < = Less than or equal to
NL or 1 < Not less than
NG or—1 > Not greater than

Bit-string operations:

AND OR NOT
1&1-1 111-1 101
1&0-0 1101 —11-0
0&1-0 0|1-1
0&0—-0 0{0-0

The anding or oring of bit-string data is often referred to as a Boolean
operation.
String operation: The concatenation operation may be specified for bit-
or character-strings. It simply means to join two strings together to form
one longer string, for example :

J - J

110" B||"11" B> 11011

Refer to Figure 2.3 for the complete hierarchy of PL/| operations.

The GO TO Statement: This statement causes a branch or transfer to a
labeled PL/I statement (e.g., GO TO READ;).

The Null Statement: The null statement is simply a semicolon, or a semi-
colon with a label attached to it. It is an executable statement, but nothing
happens.

The IF Statement: The |F statement is used in a PL/l program when a test
or decision is to be made between alternatives.

1.

IF (with transfer of control): In this statement, if the condition is true,
a transfer or branch is made to another point in the program (e.g., IF
CTR=0 THEN GO TO EOJ;).

IF (without transfer of control): In this statement, a single statement
will appear as the action to be taken if the condition is true (e.g., IF
X<0 THEN X=1;).

PL/l Programming

The compound IF: This IF statement is called compound because it
contains two PL/| statements. Its form includes the use of the keyword
ELSE. If the condition tested is true, the statement following the THEN
is performed ; if the condition tested is not true, the statement following
the ELSE is performed (e.g., IF A=B THEN X=1; ELSE X=2;).

Nested [F statements: There may be IF statements contained in either
the THEN or ELSE clause of another IF statement; for example :

IFA=B
THEN IF A=C
THEN X=1: /* A=B=C =/
ELSE X=2; /* A=B but A"1=C */

ELSE X=3; /+* AT1=B %/

A null ELSE in nested IF statements: The null ELSE is an ELSE with
a null statement (recall the semicolon) as its clause. It is, as its name
implies, a nonoperative statement. It gives no direction to the computer.
Rather, its effect is to supply the necessary ELSE clause to be associated
with the innermost |F; for example:

IF A=B
THEN IF A=C
THEN X=1;
ELSE; /x THIS IS A NULL ELSE =/
ELSE X=3;

The DO-group in an IF statement: The IF statement is designed to
execute one statement following the THEN or ELSE clause. If it is desired
to execute more than one statement following the THEN or the ELSE,
a DO-group may be specified ; for example :

IF A=B
THEN DO;
X=1;Y=2,; Z=3;
END;
ELSE DO;
X=4; Y=5; Z=6;
END;

Bit-string operators in the IF statement: The operators AND (&) and
OR (]) can be used in the |F statement to eliminate nested IF statements;
for example, the nested IF statement

IF A=B THEN IF C 17=D THEN GO TO POINT_5;
could also be written using the comparison operator AND ; for example :

IF A=B & C1=D THEN GO TO POINT_5;

Writing Programs 91

The DECLARE Statement: The DECLARE statement is needed when the
programmer does not wish to use the data formats which are assigned by the
compiler by default, or when information is to be supplied to the compiler to
reserve storage for a number of data items. The words used to describe the
characteristics of data are called attributes. Most attributes may appear in
any sequence, and abbreviations of some words are allowed. Attributes are
separated by one or more blanks in the DECLARE statement. Attributes covered
include :

1. Base (DECIMAL or BINARY)

2. Scale (FIXED or FLOAT)

3. Precision (number of significant digits and/or decimal point alignment)
4. Length (number of characters or bits for string data)

5. Mode (REAL or COMPLEX)

When a variable has its attributes described in a DECLARE statement, it is said
to be declared explicitly; when variable names are simply used in a program
without appearing in a DECLARE statement, they are said to be declared
implicitly. (One of the biggest problems for the beginning PL/I programmer is
failing to realize that if he does not DECLARE the base, scale, and precision of
data items, the compiler will assume certain attributes by default. Often these
default assumptions are not those which the programmer desires.) The precision
of a variable is either attributed by default or it is declared along with the base
and/or scale, and it is never specified alone. Figure 2.8 summarizes the allowable
lengths, precisions, and ranges for each type of data we may work with in
PL/I.

Factored Attributes: When the same base, scale, and precision could apply
to more than one variable, then the attributes may be factored ; for example :

DECLARE (A.,B,C) FIXED;
DCL (W FIXED, X FLOAT(6)) DECIMAL;

The INITIAL Attribute: In addition to declaring the base, scale, and precision
of an arithmetic variable or the length of a string, it is also possible to set that
variable to an initial value by adding the INITIAL attribute in the DECLARE
statement ; for example :

DCL CTR FIXED(3) INITIAL(100);
DECLARE NAME CHARACTER(15) INIT('PATTI WILLIAMS’);

Partially Declared Identifiers: We have seen that characteristics of
arithmetic data are normally described with three basic attributes: base, scale,
and precision. Itis possible to make a partial declaration of variables by specifying
either:

Base
Scale
Base and precision
Scale and precision

pPwN=

a FIXED DECIMAL | FIXED BINARY | FLOAT DECIMAL | FLOAT BINARY CHARACTER BIT \
Subset 1 to 15 decimal 1 to 31 bits 10-78 to 10+75 2-260 g 2+252 1 to 255 for 1 to 64 bits
language digits (whole 1 to 16 decimal 1 to 53 bits variables
numbers digits 1 to 255 for
only) constants
Full 1 to 15 decimal 1 to 31 bits 10-78 to 10+75 2-260 o 2+252 1 to 32767 1 to 32767 bits
language digits (mixed 1 to 16 decimal 1 to 53 bits? for variables for variables
numbers digits? 1 to 1000 for 1 to 8000 bits
allowed) constants for constants)

2For OS PL/! optimizing compiler, 33 decimal digits maximum.
bFor OS PL/1 optimizing compiler, 109 bits maximum.

FIGURE 2.8 Summary of allowable precisions.

Writing Programs 93

When you specify only the base (BINARY or DECIMAL), the scale will default
to FLOAT and the precision to 21 for BINARY or 6 for DECIMAL. When you
specify only the scale (FIXED or FLOAT), the base will default to DECIMAL.
The chart in Figure 2.4 summarizes the defauits taken for partially declared
identifiers.

PL/l Data Attributes: Following are the data types provided in PL/]:

1.

FIXED DECIMAL: This is the type of data that commercial program-
mers most often use. It is more efficient to declare the precision of fixed
decimal data as an odd number (5, 7, 9, etc.) of digits. This format can
be used to represent mixed numbers (e.g., 12.98), fractions (.035), or
whole numbers (144).

FIXED BINARY: Identifiers beginning with | through N default to
FIXED BINARY(15).

FLOAT DECIMAL: Because of the range of the exponent of floating-
point data, scientific programmers find this data format useful for working
with very large or very small numbers. Identifiers whose letters begin
with anything other than | through N will default to FLOAT DECIMAL(6).
Floating-point data is not suitable for commercial programs where
dollars and cents accuracy is required.

FLOAT BINARY.: There is no difference between the internal format
of FLOAT DECIMAL data and FLOAT BINARY data. The difference
exists externally for the convenience of the programmer in being able
to declare precision in terms of bits.

CHARACTER: Character-string data is padded with blanks on the
right if the assigned character constant is shorter than the declared length
of the character-string. If the character constant is longer than the
declared length of the character-string, then truncation to the right of
the data occurs. A string value is not extended with blanks when it is
assigned to a character-string variable that has the VARYING attribute.
In the full language level of PL/I, you may do arithmetic on data having
the character attribute (although it is not recommended). In this case,
the numeric characters are automatically converted to the coded arith-
metic form FIXED DECIMAL.

BIT: Bit-string data is assigned from left to right in the field as is
character-string data. Thus, if a smaller bit-string is assigned to a larger
field, there is padding on the right with zeros. If a bit-string is larger than
the field to which it is being assigned, then the leftmost bits only (as
many as will fit) are assigned. Bit-strings are usually not used in calcula-
tions. Instead, they may be used in a program to indicate whether or not
certain conditions exist (yes or no, 1 or 0, true or false).

LABEL: A statement-label variable is a programmer-defined identifier
which has been given the LABEL attribute in a declare statement. A
statement-label variable may assume many values (i.e., “labels” of
PL/I statements) during the execution of a program.

94 PL/l Programming

Data Conversions: The rules for conversion are these:

1. If the base of the data items differs, DECIMAL is converted to BINARY.

2. If the scale of the data items differs, FIXED is converted to FLOAT.

3. If CHARACTER and BIT are specified, then BIT is converted to CHAR-
ACTER.

Following is a summary of the data conversions allowed:

(Arith- | CHAR- N
v meticz | ACTER | Arith- BIT CHAR- BIT
to to metic | to ACTER to
CHAR- Arith- to Arith- to CHAR-

ACTER metic BIT metic BIT ACTER

Subset
language No No Yes? Yes? No Yes
Full
\ language Yes Yes Yes Yes Yes Yes)

a Arithmetic refers to any coded arithmetic data item (FIXED, FLOAT, FIXED BINARY, etc.)
5The maximum number of bits allowed is 31.

-

What does the = symbol mean in an arithmetic assignment statement?
2. In the PL/I statement below,

Y=A+B/C;

identify the following:
(a) Operation symbol(s)
(b) Expression(s)
(c¢) Arithmetic assignment statement(s)
3. What function(s) do parentheses serve in arithmetic expressions?

4. |Indicate the order in which arithmetic operations will be performed in the
following expressions :
(@) A=xX+B=*X () X*x2/Y*x2
() ((A=X)+B)=*X (d) —Y=*B

@

8.

Writing Programs 95

(True or False) The null statement is executable.
Write the IF statement to set X=1if A=Band X=2 if A—= B.
Write the nested IF statements to set X to the following:

X=1]X=2 [X=3 [Xx=4

A=B{A=8B A—=B|lA— =8B These are the conditions which
C=D|C—m=D|C—a=D|C=D determine how X is to be set

What are the purposes of the END statement?

(To answer questions 9 through 12, you may need to reference Appendix D.)

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

Show how these values would be represented in bytes in the packed
decimal format (use decimal notation):

+123 +45,045 —9999 123.45
What is a PL/I term for packed data?
What is the largest decimal number that may be specified using the packed
decimal data format on S/360 or S/370?

How many bytes does it take to represent 2,147,483,647 in fixed-point
binary? In packed decimal?

Which type of programmer, commercial or scientific, would be most
likely to use data in the floating-point format?

Select the values that could be assigned to the short-form floating-point
data format without losing precision of the value.

.0000039 12,345,678. 1,000,000,000. 43.79
Where may DECLARE statements appear in your PL/I program?
What purpose(s) does the DECLARE statement serve?

Given that X and Y are DECIMAL FLOAT(6), must they be explicitly
declared in a PL/| program?

Which data type provides for fastest execution time on arithmetic opera-
tions?

(a) FIXED DECIMAL (b) FIXED BINARY

Which takes more storage ?

(a) DCL ALPHA FIXED(7) (b) DCL ALPHA FIXED(6)
Is one of these statements more efficient than the other?

(a) K=K+1; (b) K=K+1B;

Using the chart in Figure 2.4, what are the default attributes for the
following partially declared identifiers?

(a) DCL ALPHA; (f) DCL INPUT;
(b)) DCL HENRY FIXED; (g9) DCL COST FIXED(5,2) ;
(c) DCL LEAF FLOAT; (h) DCL PLUS FLOAT DECIMAL;

(d) DCL HELP_IN BINARY; (/) DCL MASON BINARY FIXED;
(e) DCL COUNT DECIMAL; (/). DCL DIXON FLOAT(6);

Using the chart in Figure 2.8, indicate which of the following examples are

23.

24,

25.
26.

27.
28.
29.

30.

PL/l Programming

valid and which are invalid in the subset language. Also, which are invalid
in the full language?

(a) DCL GOOD FIXED(5);

(b) DCL SHIP FIXED(16);

(c) DCL LOLLIPOP FIXED BIN(31,2);

(d) DCL SHIRLEY FIXED BIN(32);

(e) DCL TEMPLE FLOAT(7,2);

(f) DCL BLACK CHARACTER(275);

What is the value that will be placed in each of the following identifiers?
(a) DCL A FIXED DECIMAL(5,2); A=12345;

(b) DCL B FIXED BINARY; B=32769;

(c) DCL C FIXED DECIMAL; C=4376;

(d) DCL D FIXED BINARY; D=36;

() DECLARE ANAME BIT(8) INIT ("11'B);

(f) DECLARE BNAME BIT(3) INIT("11011'B);

(g) DECLARE CNAME BIT(10) INIT("111'B);

Given the following statements, to what point will the program transfer?

DECLARE T_POINT LABEL INIT(CONT);

GO TO T_POINT;
What happens when there is a transfer to the last physical END statement
in a main procedure?
What is the difference, internally, between FLOAT DECIMAL and FLOAT
BINARY?
What will SONG contain given the following DECLARE?

DECLARE SONG CHAR(12) INIT('MISSISSIPPI MUD);

How many bytes will the following bit-strings require?
(a) "11'B (c) "110000111°B
() ‘11111001'B (d)y ‘0B
In the following mixed data type expressions, indicate the data conversion
that takes place:
(a) DCL A FIXED BINARY, B FIXED DECIMAL; A=A+B;
(b) DCL A CHARACTER(3), B BIT(3); A=B;
Consider the following sequence of arithmetic assignment statements to
be executed in the order they are written. After each statement has been
executed, show the current values of the variables A, B, and C, assuming
each was originally zero.

A B C
A=5;
B=—A;
C=A/B-1;
C=C+1;
B=B*B+C;

Writing Programs 97

A B C
A=A*x2-B;
B=B-C+A;
C=B=C;
B=B/2;
A=C/B+12;
31. Match the following constants with their PL/1 attributes :

(a) ‘'011000'B (1) FIXED DECIMAL(5,2)
(b)y 01011101B (2) FIXED BINARY(8)
(¢) 01011101 (3) DECIMAL FLOAT(3)
(d) & ‘(4) CHARACTER(b5)
(e) 34.5E2 (5) BINARY FLOAT(5)
(f) 101.11E3B (6) DECIMAL FIXED(8)
(g) 101.11 (7) CHARACTER(1)
(h) 101.11B (8) BINARY FIXED(5,2)
(7Y 'ABCDE’ (9) BIT(6)
() 101.11E3 (10) DECIMAL FLOAT(5)

(11) BIT(8)

(12) NO-MATCH

assignment symbol

base

bit-string operators

Boolean

byte

comparison operators
compile-time versus object-time
concatenation

counter

data aggregate

DO-group

exponent

expression

factored attributes

implicit versus explicit declaration
infix

initialize

length attribute

loop

mixed expression

mode attribute

null ELSE

null string

packed data

partially declared attributes
precision

prefix

range versus precision
scale ‘
statement-label variable
truncate

93 PL/1 Programming

1. Drill on the DECLARE Statement

Problem Statement: Write a series of declarations for the constants listed in
the table given here. Print the values defined.

Purpose of the Problem: To gain practice in declaring various data types
available in PL/l as well as use of the INITIAL attribute and various PL/I
abbreviations (BIN,CHAR,DCL,DEF,INIT,PIC,PROC).

Input: There is no input from any device. Instead, declare identifiers to have
the necessary attributes for the constants listed in the table.

Process: Assign the constants given in the table (using the INITIAL attribute)
to the appropriate variable names you have selected (or you may use the names

#1, #2, #3, etc.).

mame Attribute Constant Comments \
#1 | CHARACTER Love's a Four Letter Word
#2 | FIXED DECIMAL | 1929
#3 | BIT 0101010101010101 Specify a repetition

factor in writing
this constant

#4 | FIXED DECIMAL | —19,402.13
#5 | FIXED DECIMAL | 000000212

#6 | CHARACTER The Road Not Taken
#7 | FLOAT BINARY 1011E+12B
#8 | FIXED BINARY — 35000
#9 | CHARACTER | 436559005
#10 | FIXED BINARY 1111B
N Y,

NOTE: It is only possible to print (using PUT LIST) the decimal equivalent for the binary
constants in items #7 and #10 above. Can you determine the decimal equivalents of
these values?

Output: Print results using PUT LIST. A sample of the output is shown in
Figure 2.9.

2. Inventory Audit Report

Problem Statement: Wirite a program to read five data cards where each card
contains:

Part number (ITEM#)
Unit price (PRICE)
Quantity on hand (1QTY)

Writing Programs 99

LOVE'S A FOUR LETTER WORD
1929
‘0101010101010101°*3
-19402.13
212
THE ROAD NOT TAKEN
4.505600E+04
-35000
436559005
15

FIGURE 2.9 Sample
output from Problem 1.

Compute the extension (EXT) by multiplying PRICE*IQTY. For each data card
read, print a line using PUT LIST. Be sure to include the appropriate DECLARE
statements for the ITEM# (as a character-string), PRICE, 1QTY, and EXT of
each variable.

Purpose of the Problem: To program a loop operation and perform arithmetic
calculations.

Card Input: Use the data below. Each punched value should be separated
by a blank in the input stream.

ITEM# PRICE 1QTY
1001° 20.00 030
2104° 07.30 030
‘4030° 01.05 150
‘3035’ 17.50 002
2200’ 01.45 010

Printer Output: Start output on a new page in the format shown in Figure 2.10.
Flowchart: See Figure 2.11.]

3. Salesmen’s Total Sales and Commission Report

Problem Statement: Write a program to total the sales for each of four sales-
men for each day of a one-week period. Accumulate total sales for each sales-

INVENTORY AUDIT REPDORT

PART NUMBER PRICE QUANTITY EXTENSIGON
1001 20.00 30 600.00
2104 7.30 30 219.00
4030 1.05 150 157.50
3035 17.50 2 35.00
2200 1.45 10 14.50

FIGURE 210 Sample output from Problem 2.

START

Declare
attributes
for
variables

]

ICTR=1

Print
heading

Compute
extension

Print
detail
line

Add “1”
to ICTR

FIGURE 2.11

END

Flowchart for Problem 2.

Writing Programs 101

man and compute a 10% commission. Print total sales and commission for
each salesman.

Purpose of the Problem: To practice programming a loop within a loop
(nested loops).

Card Input: See Figure 2.12.

100.25 75.40 137.50 263.20 179.45
200.15 157.34 257.30 236.05 45.80
152.20 510.00 136,25 435.06 50.45
251415 150.00 263.52 255.04 B87.60

FIGURE 2.12 Sample card data for
Problem 3.

Printer Output: If the suggested input values are used, output should be as
shown in Figure 2.13.

SALESMAN TOTAL SALES COMMISSION
1 755.80 75.58
2 896.64 B9,66
3 1283.96 128.39
4 1007.31 100.73

FIGURE 2.13 Sample output from Problem 3.

Flowchart: A program flowchart is provided in Figure 2.14.

4. Sort Three Values

Problem Statement. Write a PL/l program to read three values using GET
LIST. Sort (arrange) these values into ascending sequence and print them on
the line printer using the PUT LINE () LIST form of list-directed output.
Purpose of the Problem. To give you practice in using the IF statement and
the DO-group; also to cause you to think about how the contents of variables
may be exchanged (switched) in a program.

Card Input: It is suggested that you punch the values 4376, 752, 2040 ; one
data item per card. You can then rearrange your input cards and execute your
program two or three times in order to check out the logic in your program.
Printer Output: |If the suggested input values are used, output should be as
shown in Figure 2.15.

Hint on Getting Started: Notice in Figure 2.15 that the three input values are
to be listed in a column starting with the second tab position (print position
25). This is easy to accomplish if, in your PUT LIST statement, you output a

START

0

Print
heading

)

C=T=*.1

inin

[w)
]
o

Read

w

Bl

T=T+s
D=D+1

0 -
No

FIGURE 2.14 Flowchart for Problem 3: SM,

Print
SM

]

SM =SM + 1

Yes

®

No

salesman number;

D, day: S, day’s sales; T, total sales; C, commission.

Writing Programs 103

ORDER OF INPUT VALUES 4376
752
2040
SORTED VALUES ARE: 752
2040
4376

FIGURE 2.15 Sample output from
Problem 4.

character constant of a “blank” to the first tab position, for example :

PUT LIST(ORDER OF INPUT VALUES'K1);
PUT SKIP(2)LIST(" ",K2);
PUT SKIP(2)LIST(" " ,K3);

1 Causes a blank to be output at
- first tab position on printer

Flowchart: A program flowchart is given in Figure 2.16.

5. Using the Iterative Solution

An Jterative solution, which might also be referred to as a “trial and error”
approach, may be used in solving for an unknown quantity when there is no
simple algebraic method for solution. For example, the equation

X8 — X4 = 650

is to be solved for X. In solving for X that will be accurate to four decimal places,
the process will be time-consuming and subject to error. Thus, this is a perfect
exercise for the computer. In a computer solution, we begin by converting the
above equation to

X6 - X4—-650=0

and then start with a trial value of X and evaluate the function (X® — X4 — 650).
If the value is negative, try a larger X. When this process produces a positive
value for the function, do the following :

1. Decrease the trial X to its previous (negative producing) value,
2. Reduce the increment to 1/10 its former size.
3. Start the evaluation—increment process again.

When a satisfactory number of decimal places have been computed, stop the
calculation and print the value of X. To produce four accurate decimal places,
five should be computed. Thus, stop the iterative process when a positive
result has been reached with the increment .00001. In calculating for various

Switch
K1 and
K2

]

Switch
Yes K1 and
K3

No]

Switch
Y
& K2 and
K3

FIGURE 2.16 Program flowchart for
Problem 4.

Writing Programs 105

trial values, the table given here shows the progression of data in the solution
of this problem. Most efficient use of the computer can be obtained by beginning
with a reasonable initial value of X. Each problem must be examined separately.

x x5 x4 x6— x*—-650
1.00000E+00 1.00000E+00 1.00000E+00 -6.500C0E+02
2.000C0E+00 6.40000E+C1 1.60000E+01 -6.02000E+02
3.00000E+00 7.29000E+02 8.10000E+01 -2.00000E+00
4 ,00000E+00 4.,0960CE+C3 2.56000E+02 3.19000E+03
34100CCE+00 8.87502E+C2 9.23520€401 1.45150E402
3.01000E+00 T.43699E+C2 8.20852E+01 1.16135€+01
3.00100E+00 7+430455E+C2 8.11078E+01 -6.53076E-01
3 .00200E+00 T«31916E+02 8.12159E+01 6.99463E-01
3.00110E+00 7.30598E+02 8.11184E+01 -5.20020€-01
3.00119E+C0 T«30744E+C2 8.11291E+01 -3.85493E-01
3.00129E400 7+30888E+C2 8.11398E+01 -2.51953t-01

L]
.
L]

L]
.
.

In this case, a first approximation of X can be obtained as follows :
X8 — X4 = X4(X2—- 1) = 650
X4(X + 1)(X—1) =650
X6 =~ 650

X = (650)7/6 = 2.94 .. Start with X =3

Input: The program generates data, so there is no input of data in this exercise.
Output: Sample output might read as follows:

THE VALUE OF "X’ IN THE EQUATION (X*%6 —X**4=650) 1S NN.NNNN
where N is any decimal digit. (The answer is 3.00148.)

6. Table of Time and Distance Traveled
Problem Statement: An object dropped from a height travels the distance (d)
in feet (neglecting air resistance),

1
d=—at?
> a

where

a = 32.174 (ft/sec?; the gravitational constant)
t = time (sec)

Write a program that will generate a table of distances for times of 1 sec, 2 sec,
3 sec, etc., up to and including 100 sec.

Purpose of the Problem: To program a loop operation as well as perform
arithmetic operations including exponentiation.

Input: There is no input data to this program.

1 06 PL/l Programming

TIME IN SECONDS ' DISTANCE TRAVELED
16
64

144

257

402

579

188

1029

1303

10 1608

11 1946

12 2316

13 2718

14 3153
:::::::::::jr ﬁ_——-—“_-“‘-~_4

97 151362
98 154499

99 157668
100 160869

~—— — |

FIGURE 2.17 Sample output for Problem 6.

VRNV WN

Output: Suggested output format is shown in Figure 2.17.

7. Find the Roots of a Quadratic Equation
Problem Statement: Write a PL/l program to find the roots of the quadratic
equation of the general form
ax2+ bx+c=0
using the solution formula

—b + /b2 — 4ac
2a
When the discriminant is negative, the roots are imaginary. In this case, the

program should branch around the computation of the roots and print only
a, b, and c and the message NO SOLUTION.

Purpose of the Problem: To note the necessity of providing for branching out
(in this case, unconditionally) from each segment of a program entered as an
alternative.

Input: Test this program using at least four sets of data. Suggested input:

A B C
— 23.12 00.0 274.2
3 2 4

1 -1 -6
-1 2 -2

Writing Programs 107

A VALUE B VALUE C VALUE ROOT1 ROOT2
-2.31200E+01 0.00000E+00 2.74200E+02 =3.44381E+00 3.44381E+00
3.00000E+00 2.00000E+00 4.00000E+00 NO SOLUTION
1. 00000€+00 -1.00000E+00 -6.00000E+00 3.00000E+00 -2.00000E+00
~1.00000E+00 2.00000E+00 -2.00000E+00 NO SOLUTION

FIGURE 2.18 Sample output for Problem 7.

Output: Sample output is illustrated in Figure 2.18.

8. Fihd the Greatest Common Divisor)
Problem Statement: Find the greatest common divisor of pairs of integers
(A and B) that are read from punched cards. The greatest common divisor (gcd)
is the largest integer that divides evenly into' A and B. For example, 24 and 16
have common divisors of 2, 4, and 8; thus, the gcd is 8. (If the gcd is 1, the
numbers are said to be “relatively prime” or “prime to each other.” For example,
15 and 22 have only the value 1 as a common divisor.)

Purpose of the Problem: To use the IF statement to test the relationship
-between values and to code a program iteration.

Input: Read any number of pairs of values and find the gcd. When a pair of
numbers are equal (e.g., 99, 99), terminate the program. Suggested input is

88 36 27 14 24 16 6 12 99 99

Processing: To find the gcd use the Euclidean algorithm given here: Let a
and b represent the pair of values in question. Divide a by b, obtaining a quotient
of q and a remainder of r,, which is less than b and greater than or equal to
zero. Thus,

a=baq, +r,

When the remainder (r) is equal to zero, b is the gcd. If the remainder is not
equal to zero, consider

b=rag,+r,
where
O<r,<r,
Should r, equal zero, r, is the gcd. Continuing in this manner, we obtain:
T, =1r,05 + 15
r,=r,0, +1,

rn——2 = I'n—-1qn + rn

where O <r_<r _, andr =0. Thus, r _, is the gcd of a and b.
Example7: Find the gcd of 88 and 36:

88 =36(2) + 16

108 PL/l Programming

Because 16 < 36 and 16 # 0, we shift left and proceed:

36 =16(2)+4
Because 4 #+ 0, we again shift left and proceed:
16=4(4)+0 r, =4 (gcd)

Because 0 has been reached, 4 is the gcd of 88 and 36.
Example2: Find the gcd of 27 and 14:

27 =14(1) +13 1340
14 =13(1) +1 1#0
13=1(13) + 0 r, =1 (gcd)

Thus, 1 is the gcd; 27 and 14 are relatively prime.
Output: Sample output is illustrated in Figure 2.19.
Flowchart: See Figure 2.20.

GREATEST COMMON DIVISOR OF THE FOLLOWING VALUES IS
36 8

GREATEST COMMON DIVISOR OF THE FOLLOWING VALUES IS
27 14

GREATEST COMMON DIVISOR OF THE FOLLOWING VALUES IS
24 16

GREATEST COMMON DIVISOR OF THE FOLLOWING VALUES IS
12 6

FIGURE 2.19 Sample output for Problem 8.

Print
heading
and A, B
values

Find
quotient (Q)
and
remainder (R)

No A=8B
B=R
Yes

FIGURE 2.20 Suggested flowchart for Problem 8.

ehapter 3

At the beginning of this book, you were introduced to PL/I program-
ming through the problem of finding the grade-point average for five
examination marks. Here is that first program:

AVER: PROCEDURE OPTIONS(MAIN):
GET LIST(A,B,C,D,E);
MEAN = (A+B+C+D+E)/5;
PUT LIST('AVERAGE IS’,MEAN) :
END;

Seldom would a program be written just to process one set of data as
the above program does. Rather, a number of sets of values would be
read and processed. Thus, a program loop would be constructed so as
to process multiple sets of input data. Now, the question is—just how
many sets of data are there? Typically, it is not known how many
records (punched cards, in this case) there are to be processed each
time a program is executed. For example, is the grade-point average
program to calculate the mean score for 20 students? 30 students?
50 students? Because it is desirable to code a generalized program
that could handle any number of students, there must be a way of
determining when there are no more input data records. In IBM
operating systems, the end of a card data deck is indicated by the
following job contro! statement:

1 2 345 80

/ *

When the /# card is read by the system input routines, an end-of-file
condition is raised signifying that no more GET statements to that file
may be executed. One of two possible courses of action may now
be taken:

112

File Declarations, Conditions, and Pictures 113

1. System action: The system immediately terminates the job
with an abnormal ending error message unless this is over-
ridden by programmer-defined action. :

2. Programmer-defined action: The PL/| programmer may specify
the action to be taken when the end-of-file condition is de-
tected. This is done with the statement

ON ENDFILE(CARDIN) GO TO PRINT_TOTALS;
—_———

L, A label of a statement in
the program at the begin-
ning of an end-of-job
routine

File name specified in a
DECLARE statement and
used in one or more
statements

PL/l keywords specifying
the ON statement and the
ENDFILE condition

The ON statement need be executed only once in your program
(unless program logic dictates otherwise), for once you have specified
what action is to be taken when the end-of-file is detected, that
information is “remembered.” Special symbols other than /* are used
to mark the end of a tape or disk file; thus, all files have a method for
marking the physical end-of-file. The end-of-file condition is detected
when you attempt to read the end-of-file marker. As illustrated above,
the ON ENDFILE statement must contain the name of the file for which
an end-of-file condition is to be tested and action taken.

A PL/I file is represented in the program by a file name which is
declared to have the FILE attribute. For example :

DECLARE CARDIN FILE. ..

It is through the use of this name that we will access or create the data
records which are stored on an external device such as cards, disk,
or magnetic tape. The collection of records which we will think of as
a file is called a data set. We must describe for PL/I the exact nature
of the data set that we are to access through our file name. For example,
we must specify the direction of data transmission (e.g., INPUT or
OUTPUT) ; and we must specify the form of the records contained in

114 PL/l Programming

the data set (are they all the same size? do their lengths vary?), the
length of the records in the data set (How many bytes long are they?),
and the location of the data set (is it on tape or disk? or, is it a card
or printer data set?). Let us look at an example of a file declaration:

DCL CARDIN FILE INPUT STREAM ENVIRONMENT(F(80)) ;

This declaration describes a file, to be called CARDIN in this program,
whose data transmission direction is INPUT, and whose records shall
be accessed only by the stream input keyword GET. In this case, the
file specifications are being made in the DECLARE statement. In some
operating systems (such as OS), however, many of the file attributes
may be specified in job control statements and need not be specified
in your program. Another place where file attributes may be specified
is in the OPEN statement. For example:
OPEN FILE(CARDIN)INPUT;

Before out PL/I program can communicate with a data set, that file
must be opened. (With stream 1/0, and record 1/0 in the full language,
the opening of files is automatic; therefore, it would not be necessary
for you to include the OPEN statement in your program.) The open-
ing of files is necessary because it is at that time that device readiness
is checked (e.g., is the power on and is the device in a ready state?)
and all attributes for the file are merged. In other words, some at-
tributes may be specified in job control statements, others (but not
the same ones) may be in the DECLARE statement, and still other
attributes may be in the OPEN statement. It is at open time that at-
tributes from these three sources are combined to form the description
of the data set out program is going to communicate with.

The method in which you specify file attributes depends upon
which implementation of PL/| you are using. In PL/! F and OS PL/I
optimizing compilers, most of the information can be specified in
job control statements. However, in PL/l D, and DOS PL/| optimiz-
ing compilers, the information is required in the DECLARE state-
ment. The OS compilers recognize the various specifications unique
to DOS PL/l compilers and issue a warning message that certain
specifications are being ignored. This ensures a high degree of upward
compatibility between compilers. In previous chapters, differences
have been cited between the subset and full language implementations:

Subset Full

PL/1 D DOS PL/I Optimizing Compiler
PL/I F
0S PL/! Optimizing Compiler

File Declarations, Conditions, and Pictures 115

However, the specifications that would appear in the ENVIRONMENT
attribute are related to the operating system, not the language imple-
mentation. The operating systems and some of the compilers that are
provided are

DOS oS
PL/I D PL/1 F
DOS PL/I Optimizing OS PL/I Optimizing Compiler
Compiler 0OS Checkout Compiler

Let us look below at an example of a declaration of a file which will
be used to access card records from the IBM 2540 Card Reader.
Notice that the ENVIRONMENT attribute’s options are placed in
parentheses following the keyword ENV (ENV is the abbreviation for
ENVIRONMENT). Also, the options are to be separated from each
other by a blank or other delimiter. The parentheses are delimiters,
so the following example does not need a blank between the F(80)
option and the MEDIUM option.

Here is an.example of a declaration for a data set associated with
a line printer:

DCL PRINTR FILE STREAM OUTPUT ENV(F(132)MEDIUM
(SYSLST,1403)) ;

Most of the keywords in a file declaration may appear in any sequence.
Comparing the PRINTR file declaration with CARDIN, you will see
that the sequence of keywords has been altered (INPUT STREAM
versus STREAM OUTPUT). Following are some points to keep in mind
when declaring files under a specific operating system, using a particu-
lar PL/I impiementation.

1. The MEDIUM option: For PL/I D and DOS optimizing com-
pilers, this option must be specified. The MEDIUM option is
used to specify a symbolic device name and the type of device
on which the data set is stored or through which we will access
the data. Within parentheses following the keyword MEDIUM,
specify SYSIPT for card input and SYSLST for line printer
output as the symbolic device name. The physical device
numbers you specify are dependent upon the type of devices
attached to the computer on which your PL/l program is to be
run. Some of the more commonly used IBM devices are

Card read/punch: 2540, 1442
Card readers : 2520, 2501
Line printers: 1403, 1443

116 PL/l Programming

DCL CARDIN FILE INPUT STREAM ENV(F(80)MEDIUM(SYSIPT,2540)) ;

L Specifies the
physical device on
which the data
resides; in this

case, the IBM
2540 Card Read/
Punch

L» Stands for System Input;
this is a symbolic unit
name which is needed by
some operating systems

L> This keyword indicates that follow-
ing in parentheses will be infor-
mation describing the physical
device with which the data set is
to be associated

> The record type and length option of the
ENV attribute in this case specifies that
records are fixed length (F) and all of them
are 80 bytest

L, The abbreviation of the ENVIRONMENT keyword
—the options follow this keyword and are en-
closed in parentheses; notice that the options
within the ENV attribute are separated by at least
one blank unless another delimiter is present; for
example, there need not be a blank between the
F(80) and the word MEDIUM because the right
parenthesis serves as a delimiter

> The STREAM attribute specifies that this is a file whose
records will be accessed with stream 1/O statements
(GET and PUT)

L, The INPUT attribute indicates that only GET statements may be
issued to this file; a PUT would be illegal

L The FILE attribute specifies that CARDIN is a file name

L» A programmer-defined file name; it may be from 1 to 6 characters long for the
subset language and 1 to 7 characters for the full language PL/I implementation

TThe optimizing compilers use the option F BLKSIZE(80) instead of F(80). At the time of
publication of this book, either F(80) or F BLKSIZE(80) could be specified for the fuil
language implementations.

File Declarations, Conditions, and Pictures 117

2. Therecord form and record size option: The Fin the ENVIRON-
MENT section of the file declaration specifies the record type as
being fixed length. For card input, the record type is always
fixed and must always be 80 bytes long [e.g., F(80) or F
BLKSIZE(80)]. For line printer output, the record type can be
variable (V instead of F). However, for purposes of simplicity,
we will limit our discussion in this chapter to fixed-length
record types. The record length of a printer data set—that is,
the number of printed positions on a line—may be any value
as long as that value does not exceed the maximum number of
print positions for the line printer that you are using. Typically,
a line printer is either 120, 132, 144, or 150 print positions wide.
Thus, F(132) might be the specification you would write in the
ENVIRONMENT section of the file declaration statement.

The list-directed input statement where a file name is explicitly
specified takes this general form:

GET FILE(file name)LIST(data names) ;

Using the previous DECLARE statement for the CARDIN file, we could
specify the following :
GET FILE(CARDIN)LIST(A,B,C,D,E);
e ——
t——— Data names

File name, which must be in
parentheses

Keyword added to the GET
statement when a file name
is to be specified

Here is an example of a list-directed file declaration and output
statement for a line printer that has 120 print positions:

DCL PRINTR FILE OUTPUT STREAM PRINT ENV(F(121)
MEDIUM(SYSLST,1403)) ;
PUT PAGE FILE(PRINTR)LIST(A,B,C.D);

The PRINT attribute is added to the file declaration statement for
stream files associated with a line printer so that the carriage control
options such as PAGE and LINE may be specified in the PUT statement.
(The PRINT attribute applies only to files with the STREAM and OUT-
PUT attributes.) It indicates that the file is eventually to be printed—

118 PL/l Programming

that is, the data associated with the file is to appear on printed pages,
although it may first be written on some other medium. The PRINT
attribute causes the initial byte of each record of the associated data
set to be reserved for a printer control character. The printer control
character is initialized through the use of such keywords as PAGE,
SKIP, or LINE in your PUT statement. It was indicated that the line
printer referenced in the above example has 120 print positions.
Notice that the record size was specified as F(121)—one greater than
the number of actual printing positions on a line. The extra position
had to be added to the record size to provide the initial position
necessary to contain the printer control character.

The following is an example of the DECLARE and PUT statements
for operating on a STREAM 1/0 file having the PRINT attribute :

DCL PRINTR FILE OUTPUT STREAM PRINT ENV(F(133)
MEDIUM(SYSLST,1403)) ;

DCL AREA CHAR(133);

PUT FILE(PRINTR)PAGE LIST(AREA);

Without the PRINT attribute, we have the following DECLARE and
PUT:
DCL PRINTR FILE OUTPUT STREAM ENV(F(132)
MEDIUM(SYSLST,1403)) ;
DCL AREA CHAR(130);
PUT FILE(PRINTR) LIST(AREA);

Notice that the record size—F(132)—is one less than that in the first
example, because the first position of the output area will not be used
for a carriage control character. Quote marks are supplied around
character-strings output to non-print files. AREA (130 characters long)
and two single quote marks add up to a record length of 132. This
means there will be a space of one line before print.

Stream files without the PRINT attribute may output to a printer
immediately. Immediately, in this context, means from main storage
to the printer. However, on medium- to large-scale systems, it is both
possible and frequently desirable to output print data to an external
storage device such as tape or disk. The data would be kept there
for subsequent printing. When this is the case, it is necessary to precede
each print record with the appropriate carriage control character
(hence, PRINT must be specified) so that the program dumpingt
these records to the printer at a later.time will know how to control

. tUsually means the writing of data from one storage medium to another.

File Declaratiohs, Conditions, and Pictures 119

the carriage. The dump program need not be written in PL/I. In fact,
there are standard utility programs} (typically supplied by the computer
manufacturer) to print these records. These utility programs usually
require that the first position of each print record contain a carriage
control character.

Returning to the grade-point average program, let us look at the
PL/l statements (including a file declaration) that accomplish the
input and processing of an undetermined number of students’ grades.
The output will consist of printing each student’s name and his grade-
point average. '

AVER: PROCEDURE OPTIONS(MAIN);
DCL NAME CHAR(20);
DCL CARD FILE INPUT STREAM ENV(F(80)MEDIUM

(SYSIPT,2501)) ;
- ON ENDFILE(CARD) GO TO EOJ;

LOOP: GET FILE(CARD)LIST(NAME,A,B,C.D,E);
MEAN=(A+B+C+D+E)/5;
PUT SKIP(2)LIST(NAME ,MEAN) ;
GO TO LOOP;

EOJ: END;

When file names are omitted from a GET or PUT, two file names
are assumed : SYSIN for the standard input file and SYSPRINT for the
output file. Thus, the statements

GET LIST(AB,C);
PUT LIST(AB,C);

are equivalent to

GET FILE(SYSIN)LIST(A,B,C);
PUT FILE(SYSPRINT)LIST(A,B,C);

These files need not be declared, as a standard set of attributes is
applied automatically. (Note: the EXTERNAL attribute is explained
later.) In addition to these attributes, the following options are default
for the SYSPRINT file :

LINESIZE = 120 print positions
PAGESIZE = 60 lines per page

1The name given to programs that facilitate (among other things) data transfer between 1/0
devices; for example, card-to-tape, card-to-printer, tape-to-tape, tape-to-disk, tape-to-
printer, disk-to-printer.

120 PL/l Programming

/
- SYSIN SYSPRINT)
Subset STREAM, INPUT, STREAM, OUTPUT,
language | EXTERNAL, F(80) PRINT, EXTERNAL, F(121)
Full STREAM, INPUT STREAM, OUTPUT,
Y language | EXTERNAL, F(80) PRINT, EXTERNAL, V(129)“’J

ay stands for variable-length record as contrasted with F for fixed-length record. With
V-type records, each record size may vary in length; however, no record may be larger
than 120 print positions,

In the subset language implementations, you may not use the file
names SYSIN and SYSPRINT unless they are explicitly declared as
files. For example :

DCL SYSIN FILE INPUT STREAM ENV(F(80)MEDIUM
(SYSIPT,2540)) ;

Actually, SYSPRINT could not be used for a file name, because it is
longer than six characters—the maximum allowed in the subset
language.

4)
Methods for referencing the standard
default files SYSIN and SYSPRINT

Subset language GET LIST(...); PUT LIST(...);
Full language GET FILE(SYSIN)LIST(. . .);
PUT FILE(SYSPRINT)LIST(. . .);
g /

In the full language, these two standard file names and their
attributes do not have to be explicitly declared. Although there is really
no advantage to coding

GET FILE(SYSIN)LIST(A,B,C);
instead of
GET LIST(A,B,C);

File Declarations, Conditions, and Pictures 121

there is an advantage in being able to reference the SYSIN file in the
ENDFILE statement. For example :

ON ENDFILE(SYSIN) GO TO WRAP_UP;

Thus, we may take program-specified action to the end-of-file condition
without having to explicitly declare the SYSIN file. This flexibility is
not provided in the subset language.

During the execution of a PL/| program, there are a number of conditions
that could arise. A condition is an occurrence, within a PL/l program,
that could cause a program interrupt. It may be the detection of an
unexpected error or of an occurrence that is expected, but at an un-
predictable time. There are a number of conditions that may occur
during input or output operations. Some of these include:

ENDFILE A condition indicating that the end of a given file has
been reached

ENDPAGE A condition indicating that the end of a page of
printed output has been completed

TRANSMIT A condition indicating that an input or output device
did not transmit data correctly

RECORD A condition indicating that the size of a record in a
given file does not match the record size declared in
the PL/l program

In addition to conditions related to 1/0O operations, there are conditions
that may occur during arithmetic operations—for example, overflow,
which indicates that a value has exceeded the maximum precision
allowed by the computer hardware.

The ON Statement

The ON statement is used to specify action to be taken when any
subsequent occurrence of a specified condition causes a program
interrupt. ON statements may specify particular action for any of a

122 PL/I Programming

number of different conditions. The ON statement takes the form
ON condition on-unit;

L A single statement or block

of statements that specifies
action to be taken when that
condition arises

Also referred to as an “‘on-
condition” ‘

For example:
ON ENDFILE(DETAIL) GO TO NEXT_MASTER;

This statement specifies that when an interrupt occurs as the result of
trying to read beyond the end of the file named DETAIL, control is to
be transferred to the statement labeled NEXT_MASTER.

When execution of an on-unit is successfully completed, control
will normally return to the point of the interrupt or to a point immediately
following it, depending upon the condition that caused the interrupt.

For all of the conditions, a standard system action exists as a part
of PL/l, and if no ON statement is in force at the time an interrupt
occurs, the standard system action will take place. For most conditions,
the standard system action is to print a message and terminate execution.

There are a number of conditions that may be raised during 1/0
operations. These include :

ENDFILE(file name)
ENDPAGE(file name)
RECORD (file name)
TRANSMIT(file name)
CONVERSION

SIZE

In addition to conditions related to 1/O operations, there are some
conditions that may be raised during arithmetic operations. These
include :

CONVERSION

FIXEDOVERFLOW

OVERFLOW

UNDERFLOW

ZERODIVIDE

SIZE

If you compare the names in the above list with the conditions that

File Declarations, Conditions, and Pictures 123

may occur during |/O operations, you will see that CONVERSION
and SIZE are common to both lists. Following are descriptions of the
arithmetic conditions and one of the I/O conditions. Discussion of
the other I/O conditions will be deferred until later.

I/O Conditions

The ENDFILE Condition. The ENDFILE condition can be raised
during a GET or READ operation ; it is caused by an attempt to read the
end-of-file delimiter of the file named in the GET or READ statement.
After ENDFILE has been raised, no further GETs or READs should be
executed for the file. One form of the ON statement for this condition is

ON ENDFILE(CARDIN)GO TO END_RT;
Another form of this statement is
ON ENDFILE(CARDIN) BEGIN;

Any block of coding
. may appear here

END;
The begin block is described in detail later. It is being introduced here
because it may be used in the full language. The begin block as shown
above starts with the word BEGIN and ends with the word END (as
does a DO-group). This block of coding is similar to a subroutine.
One of the characteristics of a subroutine is that it has a universal entry
and exit facility ; that is, the subroutine may be entered from any point
in another program (or the same program) and exited by returning
control to the instruction following the one which called the sub-
routine.

In the above example, the begin block will be entered when the
ENDFILE condition is detected for the CARDIN file. When the END
statement is encountered, there is an automatic return to the statement
following the READ or GET that caused the ENDFILE condition to be
raised. Following is an example of a complete begin block:

ON ENDFILE(SYSIN)BEGIN; :
TOTAL=TOTAL+ DETAIL;
PUT SKIP(3)LIST(TOTAL);
PUT PAGE LIST('NUMBER OF
CUSTOMERS PROCESSED’,COUNT);
GO TO WRAP_UP;
END;

124 PL/I Programming

(Begin blocks)
allowed following Allowable PL/I statements
an on-unit following an on-unit
Subset No GO TO statement
language Null statement
GO TO, Null, GET/PUT,
Full ves READ/WRITE, or a
_ language begin block)

Arithmetic Conditions

The CONVERSION Condition. The CONVERSION condition
occurs whenever a conversion is attempted on character-string data
containing characters which are invalid for the conversion being
performed. This attempted conversion may be made internally or
during a stream input operation.

Here is an example of when the CONVERSION condition would
be raised during an internal operation :

DCL X BIT(4);
DCL Y CHAR(4) INIT("10AB");
X=Y; /+ CONVERSION CONDITION RAISED =/

In the above example, the CONVERSION condition is raised because
the character-string in Y contains a character other than a O or 1.

All conversions of character-string data are carried out character-
by-character in a left-to-right sequence, and the condition occurs
for the first illegal character. When such a character is encountered,
an interrupt occurs (provided, of course, that CONVERSION has not
been disabled), and the current action specification for the condition
is executed. When CONVERSION occurs, the contents of the entire
result field are undefined.

The FIXEDOVERFLOW Condition. The FIXEDOVERFLOW con-
dition occurs when the precision of the result of a fixed-point arith-
metic operation exceeds N digits. For S/360 and S/370 implementa-
tions, N is 15 for decimal fixed-point values and 31 for binary fixed-
point values.

File Declarations, Conditions, and Pictures 125

DCL (A,B,C) FIXED DECIMAL(15);

A=40000000;

B =80000000;

C=A+B; /+* FIXEDOVERFLOW CONDITION BECAUSE RESULT
WILL BE LARGER THAN 15 DIGITS =/

The OVERFLOW Condition. The OVERFLOW condition occurs
when the magnitude of a floating-point number exceeds the permitted
maximum. (For S/360 and S/370 implementations, the magnitude of a
floating-point number or intermediate result must not be greater than
approximately 1075 or 2252, Compare this with UNDERFLOW.)

A=D55E71;

B=23E11;

C=A«B; /+ OVERFLOW CONDITION BECAUSE RESULTING
EXPONENT IS GREATER THAN 1075 =/

The UNDERFLOW Condition. The UNDERFLOW condition occurs
when the magnitude of a floating-point number is smaller than the
permitted minimum. (For S/360 arid S/370 implementations, the
magnitude of a floating-point value may not be less than approximately
10-78 or 2-260))

A=23E-71;

B=3E-9;

C=A*B; /+ UNDERFLOW CONDITION BECAUSE RESULTING
EXPONENT IS LESS THAN 10-78 %/

The ZERODIVIDE Condition. The ZERODIVIDE condition occurs
when an attempt is made to divide by zero. This condition is raised for
both fixed-point and floating-point division.

A=15;
B=0;
C=A/B; /+* ZERODIVIDE CONDITION =/

The SIZE Condition. The SIZE condition occurs when high-order
(i.e., leftmost) nonzero binary or decimal digits (also known as signifi-
cant digits) are lost in an assignment operation (i.e., assignment to a
variable or to an intermediate result) or in an input/output operation.
This loss may result from a conversion involving different data types,
bases, scales, or precisions. The SIZE condition differs from the
FIXEDOVERFLOW condition in an important sense. We noted that
FIXEDOVERFLOW occurs when the length of a calculated fixed-point

1 26 PL/l Programming

value exceeds the maximum precision allowed. The SIZE condition,
however, occurs when the value being assigned to a data item exceeds
the declared (or default) size of the data item. The SIZE condition can
occur on the assignment of a value regardless of whether or not the
FIXEDOVERFLOW condition arose in the calculation of that value.
The SIZE condition may also occur during stream input for the same
reason.

The declared size is not necessarily the actual precision with
which the item is held in storage; however, the limit for SIZE is the
declared or default size, not the actual size in storage. For example, a
fixed binary item of precision (20) will occupy a full word in storage,
but SIZE is raised if a value whose size exceeds FIXED BINARY (20)
is assigned to it.

Standard System Action

In the absence of your program specifying an action to be taken
when conditions are detected, a standard system action will take place.
For most conditions, the standard system action is to print a message
and then raise the ERROR condition. The ERROR condition is raised
as a result of the standard system action for any other on-unit. Unless
otherwise specified, when the ERROR condition is raised, the system
action is to terminate the PL/| program and return control to the operat-
ing system.

Condition Prefixes

Some conditions are always enabled unless explicity disabled.
When a condition is enabled, it means that, if the condition occurs,
either programmer-defined action or system action will take place.
Thus, when conditions are disabled, errors may go undetected. The
I/0 conditions are always enabled and may not be disabled. The
following computational conditions are enabled unless the programmer
specifies that they should be disabled :

CONVERSION
FIXEDOVERFLOW
OVERFLOW
UNDERFLOW
ZERODIVIDE

The SIZE condition, conversely, is disabled unless enabled by the
programmer.

File Declarations, Conditions, and Pictures 127

Conditions are enabled or disabled through a condition prefix
which is the name of one or more conditions separated by commas,
enclosed in parentheses, and prefixed to a statement by a colon.
The word NO preceding the condition name indicates that the con-
dition is to be disabled. For example:

(NOFIXEDOVERFLOW): CALC: SUM=A+B+C;
L Label attached to this assign-

ment statement

FIXEDOVERFLOW condition
is disabled during the execu-
tion of this statement

Notice how the condition name precedes the statement’s label. Of
course, the label is optional. If it is desired to disable or enable a con-
dition for the entire execution of a procedure, specify the condition
prefix on a PROCEDURE statement. For example :

(SIZE,NOFIXEDOVERFLOW) : PROG1: PROC OPTIONS(MAIN) ;

In the above example, the SIZE condition is enabled and the FIXED-
OVERFLOW condition is disabled during the execution of the procedure
labeled PROG1. Continuing with this example, assume it is later
desired to disable the SIZE condition during the execution of a single
statement. The following could be coded:

(NOSIZE) : Y=A=*B/C;

Even though some conditions may never be disabled, it does not
mean that some action must take place for those conditions. It is
possible to specify a nu// action for conditions that cannot be disabled.
For example, the ENDPAGE condition is raised when the maximum
number of specified lines has been printed on a page. Recall that the
ENDPAGE condition may not be disabled. However, in some cases,
it may be desired to continue printing beyond the end of a page because
the printer paper is a continuous form. The following nul// form of this
statement could be specified in your program :

ON ENDPAGE (SYSPRINT);

The null form of the ON statement simply indicates “‘no action should
be taken for this on-unit.”” A null action may be specified for any of the
exceptional conditions except CONVERSION, ENDFILE, and KEY.
(The KEY condition will be covered in Chapter 10.)

128 PL/I Programming

The SIGNAL Statement

The programmer can simulate the occurrence of a condition
through the use of the SIGNAL statement. Execution of the SIGNAL
statement has the same effect as if the condition had actually occurred.
If the signaled condition is not enabled, the SIGNAL statement is
treated as a null statement. One of the uses of this statement is in
program checkout to test the action of an on-unit and to determine that
the correct program action is associated with the condition. The general
form is

SIGNAL condition;
I————» Any condition name may appear here

In programming, we are often concerned not only with the val/ue that
data variables may have but also with the way data /ooks. As an ex-
ample, let us consider a payroll program that computes earnings and
prints a payroll check for each employee of a firm. In such a program,
we would probably have a variable named NET_PAY into which we
would place the amount each employee earned after all taxes and
deductions were subtracted. NET_PAY would contain the amount for
which the payroll check should be written. In a PL/I program, we might
declare the variable to have the attributes FIXED DECIMAL(7,2).
From a discussion of S/360 and S/370 data formats in Appendix D,
we know that this is stored internally as packed decimal data, two
digits per byte. A NET_PAY value of $1032.75 would appear in storage
as

[01]03[271]5 +]

This form is readily acceptable to the computer for computation. How-
ever, it is not acceptable to the printer, because the printer prints one
character per byte, whereas we have two digits per byte in our field
named NET_PAY. Another objection that might be raised is that no
real decimal point appears in the data, and we know that the stock-
holders of the firm would object if we printed the payroli checks with no
decimal point in the amount field. (Employees would probably not
complain.) The bank on which we write the payroll check probably

File Declarations, Conditions, and Pictures 129

would like the dollar amount of each check to be written in a specific
form and would not be willing to cash a check that looked like this:

XYZ COMPANY
Pay to the order of JOHN JONES 0103275+

1st Big Bank
Anytown, USA

The bank would prefer to have the amount of the check printed with a
decimal point in the proper location, separating the dollars from the
cents, suppressing the printing of the leading zero, as well as supplying
a dollar sign and commas.

So, we have a number of problems to solve in transferring the
NET_PAY that we have computed into a form which is acceptable to
the printer, the stockholders, the employees, and the bank. To solve
our problems, we use the PICTURE attribute. The PICTURE attribute
provides, as its name implies, a picture of the form we want the data
in the variable with the PICTURE attribute to assume. At the same time,
we do not want to /nvalidate the value of the data to be stored there.
To illustrate what is meant by invalidation, recall from the example
above that when each digit of our packed decimal field was converted
into a character for printing, we produced a check written for the
amount 0103275+ . By doing this, we changed the va/ue of the number
from 1032.75 to 103275. We still want to be able to treat such a variable
as an arithmetic quantity preserving the correct value. In the payroll
NET_PAY problem, we would declare a new variable with the PICTURE
attribute. For example :

DCL NET_PAY_PRINT PICTURE '$22,2722V.ZZ’;

The picture of NET_PAY_PRINT is provided in the PICTURE
attribute. The picture is made up of characters which have special
meaning when they appear between the apostrophes following the
keyword PICTURE. In the example above, the Z's indicate that we
want a decimal digit (0—9) to appear in each position that a Z appears.
If, however, that digit is a leading or nonsignificant zero, we want a
blank to appear in the value of the variable. This action is called zero
suppression; hence, the character Z is a means of specifying that
action. The dollar sign, comma, and decimal point in our example are

130 PL/1 Programming

called insertion characters. With them we specify that we want to
insert those characters into the value of our variable. The V character
in our picture is used to specify the position of the implied decimal point.
Our picture shows a total of seven Z's (each representing a digit), five of
them to the left of the implied decimal point (V) and two of them to the
right. (Do you recognize a precision of (7,2)?)

We would use the variable NET_PAY_PRINT in the printing of
the value of each payroll check. But, before we can do this, we must
place the value of NET_PAY into the pictured variable NET_PAY_
PRINT. To accomplish this, we would use the assignment statement

NET_PAY_PRINT=NET_PAY;

This statement tells the compiler to generate object program instruc-
tions and to place the value of NET_PAY (a packed decimal field)
into the variable NET_PAY_PRINT, and when doing so to make the
value /ook like the picture which is described in the PICTURE attribute
of NET_PAY_PRINT. After such an assignment, the value of NET_
PAY_PRINT in main storage would be the following:

s [1].Jof[3[2] [7]5]

This corresponds to our picture :

$ZZ,ZZZ\./ZZ

Notice that the V, which specifies where decimal alignment is to be
performed, does not occupy a byte location, but merely serves to
logically point out the separation of the fractional part of the value
from the integer part. The decimal point does not cause alignment in a
picture.

With the PICTURE attribute, we have solved the problems that
were facing us. We have maintained the value of NET_PAY, but have
represented that value in a form which is readily acceptable to the
printer and to those people concerned with the check being printed.

This example illustrates a few of the many characters which can
be used to specify the picture form we want our data to assume. In the
following pages, many more picture specification characters, as the Z,
comma, dollar sign, etc. are called, will be described and their uses
explained. The example shows one use of the PICTURE attribute:
to edit output data into a form acceptable for printing. There are a
number of reasons for using PICTURE data:

File Declarations, Conditions, and Pictures 131

To edit data.

To validate data.

To treat arithmetic quantities as character-strings.
To treat character-strings as arithmetic quantities.

PwnN =

The general form of the PICTURE attribute specification follows:

PICTURE ‘picture specification characters’

—

L—— A string of the special characters
(enclosed in apostrophes) which
describes the way we want the
data to appear

The keyword PICTURE, which
can be abbreviated PIC

There are two types of PICTURE attributes covered in this text : decimal
picturest and character-string pictures.

The decimal picture specifies the form that an arithmetic value is to
assume. It allows character insertion (e.g., the decimal point and comma
in the example above), zero suppression (Z picture character), decimal
point alignment (indicated by a V which stands for virtual point
picture character), and signs (+, —, and the commercial debit and
credit symbols—DB and CR). The decimal picture causes the data to
be stored internally in character form—each digit, insertion character,
and sign occupies one byte. Even though it has the appearance of a
character-string, the data item declared with the PICTURE attribute
retains the attributes necessary to qualify it as an arithmetic quantity;
i.e., base, scale, and precision. The base and scale are implicitly
DECIMAL and FIXED, respectively. (We never declare a variable to
have both the PICTURE attribute and either DECIMAL and/or FIXED.)
The precision is determined by the number of 9's and Z’s in the picture
and the location of the V picture character.

tIn some PL/I manuals, you will see decimal picture referred to as numeric character
picture. The trend is toward the use of the preferred term, decimal picture.

132 PL/l Programming

Here are some examples of simple picture declarations :
DCL (A, B) PICTURE ‘99999Vv99’;

N Indicates position of decimal
point alignment

9’s indicate that any decimal
digit may appear here; the
precision of this variable is
(7,2)

In the above example, both A and B will occupy seven bytes of storage.
The V or decimal alignment character does not require a byte of storage.
Another way in which the above statement could have been written is

DCL (A, B) PICTURE ‘(5)9V99’ INIT (0);

L Both A and B will be set
to O

Repetition factor (must
be in parentheses inside
the apostrophes)
specifies that 5 picture
character 9's are to
replace the string (5)9 in
the picture

Decimal Picture Specification Characters

A number of characters may be used to describe numeric data in a
picture. The basic picture specification characters include:

9 Indicates any decimal digit

V Indicates the assumed location of a decimal point; it does not
specify an actual decimal point character in the character repre-
sentation of the data item, thus, no additional main storage is
needed if a V appears in the picture; if no V is specified, then it is
assumed that the decimal point is to the right of the number; a
V may not appear more than once in a picture

S Indicates that the sign of the value (+ if > 0 and — if < 0) is to
appear in the character representation of the variable; the S
picture specification may appear to the left or right of all digit
positions in the picture

File Declarations, Conditions, and Pictures 133

+ Indicates that a plus sign (+) is to appear in the character
representation of the variable if the value is greater than or equal
to zero and that a blank is to appear if the value is less than zero

— Indicates that a minus sign (—) is to appear in the character
representation of the variable if the value is less than 0 and
that a blank is to appear if the value is greater than or equal to
zero

The chart in Figure 3.1 shows some picture examples using the above
characters. Notice the numbers referring to comments. These comments
explain the corresponding example.

Comment 1. The decimal point alignment of the picture and its data
caused the two most significant digits of the constant to be truncated
as follows:

'999v09
Lo
12345 00

| |
T———— Zeros are filled in

Comment 2. The picture specified here indicated a fractional number
only. Thus, when a whole number is assigned to a fractional number,
the whole number is lost, but the corresponding picture will be set to
zero.

Comment 3. In this example, realize that there is automatic decimal
point alignment of the V in the picture with the decimal point in the
constant :

lgvgl
1%3.4%

Comment 4. A negative constant was specified, but the picture did
not include provision for a sign. The minus sign was dropped, making
the value positive in main storage. Erroneously, only 9's were specified
in the picture—no “S" for sign or " —"" for possible negative values.

Comment 5. These two examples correct the previous example’s
problem—that of losing the negative sign.

Comment 6. When an S appears in the picture, a sign must precede
or follow the numeric value; it cannot be embedded in the numeric
value.

Coded arithmetic

form (conversion Input value
Number of occurs prior to placed in the
PICTURE bytes of main arithmetic corresponding Internal decimal Comment
specification storage used operation) picture picture result number
99999 5 FIXED(5) 12345 123454
99999V 5 FIXED(5) 12345 123457
999VvV9a9 5 FIXED(5,2) 123.45 1 23/\45
999Vv99 5 FIXED(5,2) 12345 345/\00 1
V99999 5 FIXED(5,5) 12345 00000 2
99999 5 FIXED(5) 123 001 23/\
999V9a9 5 FIXED(5,2) 123 12300
9Vv9 2 FIXED(2,1) 123.45 3/\4 3
999va9 5 FIXED (5,2) —123.45 123A45 4
S999VIa9 6 FIXED(5,2) —123.45 -1 23/515 b
—999Vv99 6 FIXED(5,2) —123.45 -1 23/g5 5
S999V99 6 FIXED(5,2) +123.45 +1 23/{15 6
999VI9S 6 FIXED(5,2) —123.45 1 23/515— 6
_ +999VvVa9 6 FIXED(5,2) +123.45 +1 23A45 7)
FIGURE 3.1 Examples of decimal pictures. (Note: In the fifth column, the » indicates that the assumed

decimal point is here. In the sixth column, the numbers given refer to numbered comments in the text.)

File Declarations, Conditions, and Pictures 135

Comment 7. Here, the value being placed in the picture may have a
+ sign or no sign.

Arithmetic Operations on Decimal Picture Data

When an arithmetic operation is specified for decimal picture data,
the data will automatically be converted to the coded arithmetic form
FIXED DECIMAL. For example, assume the program statements

DCL SUM PIC'9999’, (A,B) PIC'999;
SUM=A+B;

are coded. To add A to B and assign the results to SUM, the following
steps are performed automatically :

1. Convert A from decimal picture to FIXED DECIMAL data format.
2. Convert B from decimal picture to FIXED DECIMAL data format.
3. Add A and B together. » ,

4. Convert the results to numeric character form (PICTURE).

5. Place the results in the variable called SUM.

Editing Data for Printed Output

As we saw in the introduction to this chapter, we frequently have
the need to edit data in order to improve its readability. For example,
instead of printing the value

45326985.76

we might edit the data by inserting a dollar sign and commas so that the
output would look like this:

$45,326,985.76

There are a number of characters that may appear in pictures for the
purpose of editing data. The data declared with pictures that contain
these “editing’’ characters can be used in calculations, but it is very
inefficient to do so and it should be avoided. Editing characters are
actually stored internally in the specified positions of the data item.
The editing characters are considered to be part of the character-string
value but not part of the variable’s arithmetic value.

Data items with the PICTURE attribute to be used as output
(i.e., to a printer or a punched card) usually receive their values via an
assignment statement. Values are normally developed during a pro-
gram’s execution using a coded arithmetic data type. When final results

1 36 PL/l Programming

are obtained, the values are assigned to pictured data variables for
printing and/or punching. A wide variety of output editing is required
‘in many ‘applications. To meet these requirements, a large number of
picture specification characters can ‘be used to create the properly
edited fields for output. -Let us discuss the functions of the more
commonly-used editing characters.

The Z may be used to cause the suppression of leading zeros in the data
field, replacing the nonsignificant zeros with blanks. Figure 3.2 shows
some examples of how PICTURE with the Z character will cause zeros
to be suppressed (that is, replaced with blanks) in the character
representation of the data variable.

(PICTURE Value to be assigned Internal character N
specification to variable representation
77779 100 bb100
772779 0 bbbb0
77777 0 bbbbb
ZZ7ZV99 123 12300
7Z7ZvV7Z 1234 23400
77Zv7Z .01 bbbb1
Z77\99 0 bbb00
Z9999 0 b0000
27ZNZ9 ILLEGAL PICTURE—if a Z appears to the right
of the V character, then a// digits to the right
must be specified as Z
272977 INVALID PICTURE—all Z characters must ap-
_ pear to the left of all 9's D

FIGURE 3.2 Pictures illustrating zero suppression.

If a value is to have leading blanks as well as a sign, then the “S”*
PICTURE character may be used. For example:

DCL A PIC'SZZZ9’;

~—~—
. Any numeric digit
Blanks or a numeric digit

Sign (+ or —)

File Declarations, Conditions, and Pictures 137

In the above example, a sign will always appear in the leftmost position
of the character-string representation.

The decimal point is an /nsertion character, meaning that the decimal
point will be inserted in the output field in the position where it appears
in the picture specification. For example:

DCL PRICE PIC'999V.99" INIT(12.34) ;
PUT LIST(PRICE) ; /* 012.34 IS OUTPUT */

Note that if the PICTURE is specified without the ‘decimal point, the
output will appear as follows:

DCL UNIT_COST PIC'999V99’ INIT(12.34) ;
PUT LIST(UNIT_COST) ; /* 01234 IS OUTPUT */

Do not think of the decimal point as causing alignment; only the V
accomplishes this function. Consider the following :

DCL VALUE PIC'999.99 INIT(12.34) ;
PUT LIST(VALUE) ; /* 000.12 IS OUTPUT */

Because the V accomplishes the function of alignment and the decimal
point the function of inserting a physical indication of this alignment,
we normally specify the V and the decimal point in adjacent positions
in our picture specification.

In the above example, no V is specified, thus the implied decimal
point is to the right of the number. When the constant 12.34 is aligned
with the implied V, we have this undesirable result:

PICTURE —— 999.99V

L TheVisimplied
Valug ——M8M8 12.34
assigned L——— Decimal point in the value is
aligned with the V

Result ——————— 000.12

|——————> PICTURE indicates a decimal

point to be inserted here

Leading zeros are
automatically added

1 38 PL/l Programming

The usual case is to place the V to the left of the decimal point in a
picture specification, although it may appear to the right of the decimal
point :

DCL PRICE PIC'999.V99' INIT(12.34) ;
PUT LIST (PRICE) ; /* 012.34 1S OUTPUT */

In this example, the output is the same as if the V had appeared to the
left of the decimal point. However, in other cases, the position of the
V in relationship to the decimal point is most significant. To illustrate, -
let us look at what happens when zero suppression is specified in a
PICTURE containing a V and a decimal point (small “b” represents a
blank) :

DCL A PIC'ZZZV.99' INIT(.05) ;

PUT LIST(A) ; /* bbb.05 IS OUTPUT */

DCL B PIC’'ZZZ.V99' INIT(.05) ; ,
PUT LIST(B) ; /* bbbb05 IS OUTPUT */

The rule to be derived from the above example is this: When the V is
to the left of the decimal point, the V may be thought of as “guarding”’
the decimal point; hence, if leading zeros are to be suppressed, the
decimal point will not be replaced with a blank. However, if the V is
to the right of the decimal point in the picture and leading zeros are
to be suppressed, the decimal point will be replaced by a blank when-
ever the integer portion of the number is zero. We may conclude that
the V ought normally to be located to the left of the decimal point in
the picture.

The comma is another jnsertion character. 1t will be inserted in the
output field in the position corresponding to its location in the PICTURE.
For example: :

DCL BIG_VALUE PI1C"999,999V.99’ INIT(104056.98) ;
PUT LIST(BIG_VALUE) ; /* 104,056.98 IS OUTPUT */

If zero suppression is specified, the comma is inserted only when a
significant digit appears to the left of the comma; otherwise, the
comma is replaced with a blank, as the following example illustrates :

File Declarations, Conditions, and Pictures 139

DCL AMT PIC'Z2ZZ,2ZZV.99';

AMT=450.75;

PUT LIST(AMT); /+ bbbb450.75 IS OUTPUT =/
AMT=1450.75;

PUT LIST(AMT); /= bb1,450.75 IS OUTPUT =/
AMT=0;

PUT LIST(AMT); /* bbbbbbb.00 IS OUTPUT =/

The blank is- another insertion character. It is used to insert blanks to
the right of a value on output. (Of course, to obtain blanks on the left
of the value, the Z picture character may be used.) Here are some
examples:

DCL A PIC'999V.99BBB’;
DCL B PIC'Z2,ZZZV.99(7)B’;

in the subset language, the B picture character may only appear to the
right of a decimal picture. The following example is valid only in the
full language implementations:

DCL D PIC’'99B99B9Y’;

4 B insertion character w
Subset
language May appear only to the right of a decimal picture
Full
q language May be embedded in the decimal picture J

The $ character is a drifting character. 1t specifies a currency symbol in
the character representation of numeric data. This character may be
used in either a static or drifting manner. The static use of the $ specifies
that a currency symbol will always appear in the position fixed by its

140 pL/1 Programming

location in the picture. In the drifting form, there are multiple adjacent
occurrences of the character. A drifting dollar sign specifies that
leading zeros are to be suppressed and that the rightmost suppressed
zero will be replaced with the $ symbol. Here are some examples :

DCL A PIC'$999V.99' INIT(12.34);

PUT LIST (A); /* $012.34 IS OUTPUT */

DCL B PIC’s$$$V.99" INIT(12.34);

PUT LIST (B); /* b$12.34 IS OUTPUT */

DCL C PIC's$,$$$V.99(5)B" INIT(1024.76);

PUT LIST (C); /* $1,024.76bbbbb IS OUTPUT */
DCL D PIC'$sZ,ZZZV.99" INIT(12.34);

PUT LIST (D); /* sbbb12.34 IS QUTPUT */

These editing characters may also be either drifting or static. The follow-
ing examples should be self-explanatory :

DCL A PIC'S999 INIT(12);

PUT LIST (A); /* +012 IS OUTPUT */
DCL B PIC'SSS9’ INIT(12);

PUT LIST (B); /* b+12 1S QUTPUT */
DCL C PIC '9999S’ INIT(1234);

PUT LIST(C); /* 1234+ IS QUTPUT */
DCL D PIC'—= - -9’ INIT(-12);

PUT LIST (D); /* b-121S OUTPUT */
D=+12;

PUT LIST (D); /* bb12 IS OUTPUT */
DCL E PIC'+99" INIT(144); /* ERROR */
PUT LIST (E); /* +44 1S PRINTED */
DCL F PIC'999V.99S" INIT(- 123.45);
PUT LIST(F); /* 123.45- IS OUTPUT */

File Declarations, Conditions, and Pictures 141

The asterisk is a fill character and is used in much the same way
as the Z. The "asterisk fill” capability is useful in applications that
require check protection. For example, in using a computer to print
checks or statements indicating amounts paid, it is desirable to precede
the dollar and cents amounts with leading asterisks so as to preclude
any tampering with or modification of those amounts. The asterisk
cannot appear with the picture character Z, nor can it appear to the
right of a 9 or any drifting character. Here are some examples:

DCL PAY PIC «x++x9V.99" INIT(104.75);

PUT LIST (PAY); /x x%%104.75 1S OUTPUT =/

DCL AMT_PAID PIC s #%%xV_x«" INIT (84350),

PUT LIST (AMT_PAID); /* *x843.50 IS OUTPUT =/
AMT_PAID=.75; /+ SEE PICTURE DECLARED ABOVE «/
PUT LIST (AMT_PAID); /* **x%x75|S OUTPUT =/

DCL PAYS PIC’'s ***V .99’ INIT(4.75);

PUT LIST (PAYS); /* $**+x4.75 IS OUTPUT =/

DCL QTY PIC +*=" INIT(123);

PUT LIST(QTY); /+123 IS OUTPUT =/

The paired characters CR and/or DB specify the sign of numeric fields.
They are used most often on business report forms (e.g., billing,
invoicing).

CR Indicates that the associated positions will contain the letters
CR /f the value of the data is negative, otherwise, the positions
will contain two blanks; the characters CR can only appear to
the right of a// digit positions in a PICTURE

1 42 PL/1 Programming

{

/
DB Is used in the same fashion as the CR, except that the letters

DB appear in the associated print positions if the value is
négative

DCL D PIC "99V.99CR’ INIT(—-12.34);

PUT LIST(D); /* 12.34CR IS OUTPUT

DCL E PIC '99V.99DBBBBB’ INIT(—-12.34);

PUT LIST(E) ; /* 12.34DBbbbb IS OUTPUT */

DCL F PIC 'S999V.99CR’; /= INVALID PICTURE BECAUSE
BOTH 'S’ and ‘CR’ ARE SPECIFIED =/

DCL G PIC "'99V.99CR’ INIT (+12.34);

PUT LIST(G); /* 12.34bb IS OUTPUT */

Both DB and CR will appear in the edited field of negative values.
However, there are some business applications where either a “‘debit”
or “credit” applies to a positive value. For example, if you have a
savings account, your account is debited each time a withdrawal is
made and credited each time a deposit is made; for example:

500.00 CR
120.00 DB
35.00 DB
100.00 DB
75.00 CR

Assume it is desired to print the above list with the CR and DB designa-
tions. Assume, also, that the source data we are about to edit will be
preceded with a minus sign if the value is a debit amount; otherwise,
the value is assumed to be positive and, therefore, a credit amount.
Thus, the input stream would appear as

(500 -120.00 -36.00 -100.00 75.00 1

The following programming example illustrates a technique that
might be used to list the above values with the CR and DB designa-
tions, even though some of the input values are positive. Notice that
AMT is converted to a negative value by prefixing a minus sign. Then,
when AMT is edited into the AMT_CR field, the picture characters
CR will be included in the edited result.

File Declarations, Conditions, and Pictures 143

DCL AMT FIXED(7,2);

DCL AMT_CR PIC'ZZ,ZZZV.99CR’;

DCL AMT_DB PIC'ZZ,ZZZV.99DB’;

GET: GET LIST (AMT);

IF AMT>0 THEN DO;
AMT = —AMT;
AMT_CR=AMT;
PUT SKIP LIST (AMT_CR);
END;

ELSE DO;
AMT_DB=AMT;
PUT SKIP LIST (AMT_DB);
END;

GO TO GET;

In business data processing, sometimes numeric values punched
in a card have an overpunch for sign representation. An overpunch is
simply a 12-punch for a + sign or an 11-punch for a — sign over one
of the digits in a predetermined column of a multidigit field. The use of
overpunches has the advantage of minimizing the number of card
columns required to represent signed numeric data. Thus, for example,
the value of —154 could be represented in only three card columns
because the sign (—) can be punched over the units position (i.e.,
the 4). Figure 3.3 shows this as its first example.

000000000006000009000¢ 000 90000000000000000000000000000000000800000
1234587831001 ROUSETRODHN NUMSHTUNONQLNMSHTBSNN2PUTSE NI
R R R R R R A R R SRR R R KRN RRRRRRIRANRY
2222222 : 2222222222222222222222222222222222222
333333313 ¥373933793399337933392333233333333232333333333333333333
‘ VTR Ty Y Iy rY T Yy YTL T Y TYeTIIY)
5555555555555555555555555555555555555
6556665668 il S 6E666666666666566666666666666666666666
1117111171171 3 R R R R R AR AR RARRRRRRRRRRARAEE
$885666808080088888858888888888888888888
9999999999999999999999999999999999939993

HQOHERIIERINDHBRSIBIIIROUBHTRRABNRNNBEI BB ‘

9999999893998
12354358678 v0nny
13x F19938

5

Lo o

FIGURE 3.3 Overpunches in numeric fields.

144 PL/l Programming

The following special characters are used in a PICTURE to indicate
an overpunch in the units position of a numeric field :

T Indicates that the associated position will contain a digit over-
punched with the sign of the data

| Indicates that the associated position will contain a digit over-
punched with a 12-punch (representing +) if the value is
zero or positive ; otherwise, it will contain only the digit with no
overpunching, indicating the value is negative

R Indicates that the associated position will contain a digit over-
punched with an 11-punch (representing —) if the value is
negative; otherwise, it will contain the digit with no over-
punching, indicating the value is positive or zero

The picture characters T, |, and R cannot be used with any other sign
characters (i.e., S, —, and +) in the same PICTURE. Only one over-
punch may appear in a fixed-point number. Figure 3.4 shows some
examples of pictures with these overpunch characters and the results
when data is assigned to these pictures.

/ N\
Overpunch
Subset May appear only in the units position
language of the numeric field
Full May appear in any digit position of
language the numeric field)

Another type of PICTURE attribute is the character-string picture
specification. Its form is like decimal pictures, except that the characters
which make up the picture specification are A, X, and 9. Furthermore,
the data item declared with the character-string picture does not
have the arithmetic attributes of base, scale, and precision, but does
have the character-string /ength attribute.

Coded arithmetic
form (conversion

Value assignéd

Coded arithmetic

—

Number of occurs prior to to the value when
PICTURE bytes of arithmetic corresponding | Internal decimal used in a
specification core used operation) picture picture result calculation
999VaT 5 FIXED(5,2) - +123.45 1234E +123/515
999VvaT 5 FIXED(5,2) —123.45 123/le -1 23/{15
999l 4 FIXED(4) +1234 123D +1234
999 4 FIXED(4) 1234 1234 —1234
99R 3 FIXED(3) 123 123 +123
99R 3 FIXED(3) —-123 12L -123
N\ J

FIGURE 3.4 Pictures illustrating overpunched digits.

146 PL/l Programming

The actions performed by the picture specification characters for
character-string pictures are as follows:

A Specifies that the associated position of the picture may contain
the alphabetic characters A through Z or a blank; this picture
specification character is not available in the subset language

X Specifies that the associated position of the picture may contain
any character

9 Specifies that the associated position of the picture may contain
only the digits O through 9 or biank

Some examples of character-string pictures are shown in Figure 3.5,
where “b" represents a blank.

The comma and decimal point insertion characters may not be

specified in a character-string picture; the B insertion character may
not be specified. For example:

DCL OUTPUT_FIELD PIC'BBBXXXXX'; /* INVALID */

is illegal. The minus sign may only appear in a decimal picture. It may
not be used in character-string pictures.

/ Allows X and \
- Allows the 9 in the
A PICTURE same PICTURE?
character? (e.g., PIC'XX999)
Subset
language No No
Full
K language Yes Yes)

The character-string PICTURE attribute is used primarily in data
validation rather than in output editing. If you are programming using
full tanguage PL/I, then the following example is applicable: Assume
an inventory item is identified by a part number which consists of

File Declarations, Conditions, and Pictures 147

4 Source Source data in PICTURE Characteri
attributes constant form specification string value
CHAR(4) ‘ABCD’ AAAA ABCD
CHAR(4) ‘ABCD’ XXXX ABCD
CHAR(5) ‘ABCDb’ AAAAAA ABCDbb
CHAR(b5) '12Q21° 99A99 12Q21
CHAR(b) ‘#B123 XA999 #B123
CHAR(5) "12bbb’ 99XXX 12bbb
CHAR({b) "12ABY’ 99AAA INVALID
CHAR(b) ‘AB123° AAA99 INVALID
CHAR ‘L26.7° A99X L26.7

S HAR(b) 6 9)

FIGURE 3.5 Examples of character-string pictures.

alphabetic and numeric characters such as
"1237AB’

e

l—~——> Assume last two characters should always
be alphabetic

First four characters are always numeric

On input, this part number could be validated by reading it into a picture
that contains A and 9 picture specifications. For example :

DCL PART_NUM PIC ‘9999AA’;
DCL ITEM CHAR(6);

GET LIST (ITEM, ETC);
PART_NUM=ITEM;

When ITEM is assigned to PART_NUM, data validation occurs. If the
part number consists of four leading digits followed by two alphabetic
characters, we know that the part number is in the correct form. Of
course, we do not know if it is an actual part number in our inventory
without doing further checking.

If the number is incorrectly punched as

"123ABC’

and read into ITEM, the CONVERSION condition is raised when ITEM
is assigned to PART_NUM. The raising of this condition means that

148 PL/1 Programming

an error has occurred. In this example, it would be a data validation
error. Here is a programming example illustrating its use:

/¥ THIS EXAMPLE APPLIES TO FULL LANGUAGE
IMPLEMENTATIONS #/

TEST: PROC OPTIONS (MAIN);
DCL PART_NUM PIC ‘9999AA’;
DCL ITEM CHAR(6);
ON ENDFILE(SYSIN) GO TO EOJ;
ON CONVERSION GO TO ERROR:
GET: GET LIST (ITEM);
PART_NUM=ITEM;
PUT LIST (ITEM);

GO TO GET;

ERROR: PUT LIST ('INVALID PART NUMBER:, ITEM);
GO TO GET;

EOJ: END;

The DEFINED attribute is a very useful feature of PL/l. How it works
will be introduced here, but the many uses of this attribute will be
illustrated throughout the remainder of this book. The DEFINED
attribute allows you to equate two or more different names to the same
storage area. In addition, one of the names being declared may represent
either all or part of the same storage as that assigned to the other. For
example, the statements

DECLARE NAME CHAR(20) INITIAL('JAMES WILEY RHOADES');
DECLARE FIRST CHAR(5) DEFINED NAME;

would produce the following storage layout :

JIAIMIE|S| [W|IJLJEJY| [RIHIOJAIDIE]|S]|
[N ——
FIRST

NAME
In this example, NAME and FIRST occupy the same storage area. How-
ever, FIRST will be equated only to the five leftmost characters (i.e., it

will be left justified in the NAME field) of the string inasmuch as FIRST
has a length attribute of five. NAME is considered to be the base

File Declarations, Conditions, and Pictures 149

identifier; this is the variable name to which other variable names are
equated or “defined.”” The PL/I term for this function is overlay defining.
You may only specify the INITIAL attribute for the base identifier.
Also, the base identifier must be equal to or greater than any of the
other variables that are overlay defined on it. Finally, more than one
item may be overlay defined on a base identifier. For example :

DCL A CHAR(8),
B PIC'ZZ9V.99CR’ DEFINED A,
C PIC'9,999V.99' DEFINED A;

Here is an ILLEGAL example of overlay defining:

DCL A CHAR(8);
DCL B PIC'ZZ9V.99CR’ DEF A;
DCL C PIC'9,999V.99" DEF B; /+ ILLEGAL =/

In this case, B can overlay define A, but C cannot overlay define B.
The base identifier cannot have the DEFINED attribute. To accomplish
what was intended in the illegal statement, we can code

DCL C PIC '9,999V.99" DEF A;

Following is a list of possible base identifiers and the type of items that
may be overlay defined on them.

Base identifier Defined item
A coded arithmetic variable A coded arithmetic variable of the
same base, scale, and precision
A label variable A label variable
String variable String variable
PICTURE attribute or. PICTURE or CHARACTER attribute
CHARACTER attribute variable
variable

The POSITION attribute may be specified in overlay defining of bit-
and character-strings. For example :

DECLARE LIST CHARACTER (40),
A_LIST CHARACTER (10) DEFINED LIST,
B_LIST CHARACTER (20) DEFINED LIST POSITION (21),
C_LIST CHARACTER (10) DEFINED LIST POSITION (11);

150 PL/l Programming

In this example of overlay defining, A_LIST refers to the first ten
characters of LIST, B_LIST refers to the twenty-first through fortieth
characters of LIST, and C_LIST refers to the eleventh through twentieth
characters of LIST.

(- POSITION attribute \
Subset language No
Full language Yes

This case study illustrates a number of PL/I features described in
Chapter 2 and in this chapter. These features include

Declaring coded arithmetic data
Factoring of attributes

The INITIAL attribute

The DEFINED attribute

Editing of output data using PICTURE

Problem Description

Following each day of business, a savings and loan company
summarizes the transactions which occurred during the day. The
purposes of the summary are the following:

1. To determine if the transactions balance; i.e., have any clerical
mistakes been made during the day?

2. To provide a breakdown of the total amount on hand at the end
of the day into cash on hand and checks on hand.

3. To calculate the source of cash to be available for the next day’s
business.

4. To calculate the amount to be deposited in the company’s bank
account.

This savings and loan company, by policy, always begins each day
with $60,000.00 in cash. This figure becomes the data item named

File Declarations, Conditions, and Pictures 151

CASH_FUND in our program. It is given the initial value of $60,000.00
and is never changed. Other input data to the program incliude :

MORTGAGE_RECEIPTS The amount received during the day in

payment of mortgage loans

SAVINGS_RECEIPTS The amount received during the day from

CASH_PAID

CASH_ON_HAND

customers’ deposits into their accounts
The amount paid to customers who
withdraw from their savings accounts
The total amount of cash on hand at the
end of the day, including the initial
$60,000.00

CHECKS_ON_HAND The total amount of checks on hand at

the end of the day

To provide the necessary information for the summary, certain values
must be computed. These are

TOTAL_RECEIPTS

TOTAL_ON_HAND
RECONCILIATION

MORTGAGE_RECEIPTS + SAVINGS_
RECEIPTS N

CASH_ON_HAND 4+ CHECKS_ON_HAND
To determine if an error has been made in the
handling of cash during the day, we must take
into account the amount we started with at the
beginning of the day (CASH_FUND), the
amount of cash the company paid out during
the day (CASH_PAID), the total receipts for
the day from mortgage payments and savings
(TOTAL_RECEIPTS), and the total dollar
amount in cash and checks on hand at the end
of the day (TOTAL_ON_HAND). If we start
with the TOTAL_ON_ HAND at the end of the
day and subtract from it the amount we started
the day with (CASH_FUND), we should derive
the net effect of the day’s business on the
company. (It may be either negative or posi-
tive.) Next, if we subtract the CASH_PAID
during the day from the TOTAL_RECEIPTS,
we shouid also find the net effect of the day’s
business on the company. By comparing these
two numbers, we can determine whether an
error has been made and, if so, if it was in a

152 PL/l Programming

REIMBURSEMENT

customer’s favor or in the company’s favor.
An easy way to do this is to subtract one
number from the other, storing the result in
the data item named RECONCILIATION. For
example :
RECONCILIATION=(TOTAL_ON_HAND —
CASH_FUND)— (TOTAL_RECEIPTS—
CASH_PAID) ;
If RECONCILIATION is negative, then there is
cash shortage (an error in a customer's
favor) ; if it is positive, then there is a cash
overage (an error in the company’s favor) ; and
if it is equal to zero, then daily cash balances.
The desired output for this information is a
print line in one of these formats:
SHORTAGE $50.00
(if RECONCILIATION < 0)
or
OVERAGE $33.50
(if RECONCILIATION > 0)
or
DAILY CASH RECONCILES
(if RECONCILIATION = 0)
Notice that a numeric value is to be printed
only if a shortage or overage occurs, not if
daily cash reconciles.
If the CASH_ON _HAND is less than
$60,000.00, then the cash fund must be re-
imbursed to meet the company policy figure
of $60,000.00 in cash. This data item is the
amount of the reimbursement.

DEPOSIT Ali of the checks received during the day must be
deposited, as well as any cash in excess of the CASH_
FUND minimum of $60,000.00. Therefore, this figure
will be either CHECKS_ON_HAND or, if CASH_ON_
HAND > CASH_FUND, then CHECKS_ON_HAND +
(CASH_ON_HAND — CASH_FUND).

Figure 3.6 shows a summary of the desired output; a general flowchart
depicting program logic is shown in Figure 3.7.

File Declarations, Conditions, and Pictures 153

A
)
=
=
)
on
[
)
I
an
XY
<
[T
on
ow
—w
N
"]
aw
Vouw
SO
[-17)
ou
ob

a3

.4 ﬁ‘ - :Ml 1

Ll | L Lad | J

FIGURE 3.6 Output format for daily cash
report case study.

Programming Techniques Used in Case Study

Figure 3.8 shows a compiled program listing. Following is an
explanation of the statements in the program.

Source Statement 2. Notice the factoring of attributes where all
the declared variables have the sgme attribute.

Source Statement 3. Notice the use of the INITIAL attribute to
assign $60,000 to the identifier called CASH_FUND.

Source Statement4. When the first output statement fora STREAM
file to the printer is issued, there is an automatic skip to a new page.
This PUT LIST statement causes the first line of the report to be
printed.

Source Statement 6. Input data is read. Sample data could be
punched into one card as follows:

156000.00 8050.00 5000.00 55000.00 23000.00

Source Statements 7-9. TOTAL_RECEIPTS, TOTAL_ON_HAND,
and RECONCILIATION are calculated.

Source Statements 10-17. The test, using IF's with DO-groups,
is made to determine if CASH_ON_HAND is greater than or less than
$60,000. The DEPOSIT and REIMBURSEMENT are determined by
the CASH_ON_HAND figure.

START

Read cash
figures
for the
day

Determine
cash overage
or shortage

|

Cash
No on hand Yes
= 60,000
Reimbursement)
= 60,000 - Reimbursement
cash on hand =
it = Deposit =
cEZSI?sS l;(:n_ checks on
hand hand + (cash
on hand - 60,000)
Print
results
END

FIGURE 3.7 General flowchart for daily cash report.

cwd W

O X~

10
11
12
13
14
15
16
17

18
19
20
21
22
23
27
28
29
30
31
32
33
34
35
36

File Declarations, Conditions, and Pictures 155

/% DAILY CASH REPORT —-- CASE STUDY */

CASH:

/% ELIT

PROC OPTIONS(MAIN);

DCL (MORTGAGE_RECEIPTS,SAVINGS_RECEIPTS,CASH_PAID,
CASH_ON_HAND CHECKS_ON_HAND,TOTAL_RECEIPTS,
TOTAL_ON_HAND,RECONCILTATION,DEPOSIT,REIMBURSEMENT)

FIXED(9,2)3

DCL CASH_FUND FIXED {9,2) INIT {60000);

PUT LIST (*DA T L Y C ASH R EPORTY;

PUT SKIP LIST {'ROCK OF GIBRALTER SAVINGS AND LOAN?');

GET LIST (MORTGAGE_RECEIPTS,SAVINGS_RECEIPTS,

CASH_PAID,CASH_ON_HAND,CHECKS_ON_HAND) 3

TOTAL_RECEIPTS = MORTGAGE_RECEIPTS + SAVINGS_RECEIPTS;

TOTAL_ON_HAND = CASH_ON_HAND + CHECKS_GN_HAND;

RECONCILIATION ={TOTAL_ON_HAND — CASH_FUND)

~{TOTAL_RECEIPTS — CASH_PAID)};

IF CASH_ON_HAND < CASH_FUND THEN DO;

REIMBURSEMENTY = CASH_FUND — CASH_ON_HAND;
DEPOSIT = CHECKS_ON_HAND;
END;
ELSE DO;
REIMBURSEMENT = 03
DEPOSIT = CHECKS_ON_HAND + (CASH_ON_HAND-CASH_FUND);
END;

DATA FOR OUTPUT */

DCL OUTPUT PIC'$888,$39V. 99, HEADING CHAR (21)3

DCL OUT CHAR (11) DEFINED GUTPUT;

OUTPUT = RECONCILIATIONS

If RECONCILIATION < O THEN HEADING = *'SHORTAGE';

ELSE IF RECONCILIATION > O THEN HEADING = 'OVERAGE?!;

ELSE DO; HEADING = *DAILY CASH RECONCILES?; OUT=' *'; END:

PUT SKIP{3) LIST {HEADING,0OUTPUT);

OUTPUT = CASH_ON_HAND;

PUT SKIP(2) LIST (*CASH ON HAND',0UTPUT);

OUTPUT = CHECKS_ON_HAND3

PUT SKIP{2) LIST (*CHECKS ON HAND',0UTPUT);

OUTPUT = REIMBURSEMENT;

PUT SKIP{2) LIST (*CASH FUND REIMBURSED BY?',0UTPUT);

OUTPUT = DEPOSIT; :

PUT SKIP(2) LIST (*AMOUNT OF OEPOSIT',QUTPUT);

END3

FIGURE 3.8 Daily cash report program listing.

Source Statement 18. The identifier OUTPUT is declared with
editing characters which include the floating dollar sign and automatic
zero suppressing, comma insert, and decimal point insert. Each value
that is to be printed will be “edited” when the value is assigned to
OUTPUT. The HEADING is declared for the purpose of assigning to
it the first detail line of literal output (e.g., either OVERAGE, SHORTAGE,
or DAILY CASH RECONCILES).

Source Statement 19. A character-string of 11 positiohs is overlay
defined on the picture called OUTPUT. The length of 11 characters

156 PL/l Programming

was selected because OUTPUT is 11 bytes long; i.e.,
112]3]4[5]6]7]8] [9]10]1
slslslsl TslslTo|vl.To I9

L——-‘ V does not require a

byte in the PICTURE

Zero suppression
ends at this point

The reason for using define overlay in this program is explained in the
paragraph describing source statements 23-27.

Source Statements 20-22. RECONCILIATION is edited by
assigning it to OUTPUT. If RECONCILIATION is negative, then first
detail line of print is to be the literal SHORTAGE followed by amount
of shortage. If RECONCILIATION is positive, then first detail line is to
be the literal OVERAGE foliowed by the amount of overage.

Source Statements 23-27. If RECONCILIATION is zero, then
first detail line is to be the literal DAILY CASH RECONCILES followed
by blanks in the amount field of the report. Statement 27 consists of
printing HEADING followed by OUTPUT. There is one case, however,
when OUTPUT should contain blanks—when daily cash reconciles.
OUTPUT is a picture depicting a numeric field. Hence, only digits O
through 9 may be assigned to this picture. It is not possible to assign
blanks directly to the identifier called OUTPUT, because a blank is not
a numeric character. The solution to the problem is to use define overlay
on OUTPUT to give that area of main storage the CHARACTER
attribute as well as the PICTURE attribute. Statement 25 is

OouT ="";

The above statement is valid because OUT has the CHARACTER
attribute. The statement causes, in effect, OUTPUT to be cleared to
blanks. Thus, when the statement

PUT SKIP(3) LIST(HEADING,OUTPUT);

is encountered in the program, blanks will be printed following
HEADING.

Source Statements 28-36. These statements accomplish the
assigning of the calculated results to OUTPUT for purposes of editing

e

File Declarations, Conditions, and Pictures 157

the data. Each remaining detail line is printed by a separate PUT
SKIP LIST statement. The program is logically ended when the END
statement is encountered.

File Declarations: A PL/I file is represented in the program by the file name
which is declared to have the FILE attribute. It is through the use of this name
that we will access or create the data records which are stored on an external
device such as a disk or tape or cards. The collection of records is called a data
set. The ENVIRONMENT attribute of the DECLARE statement describes the
physical environment of the data set. The MEDIUM option is used in the
DOS/TOS operating system to specify a symbolic device name and the type
of device on which the data set is stored or through which we will access the
data. Within parentheses following the keyword MEDIUM, specify SYSIPT
for card input and SYSLST for line printer output as the symbolic device name.
The physical device numbers you specify are dependent upon the type of
devices attached to the computer on which your PL/I program is to be run.
The F in the ENVIRONMENT section of the file declaration specifies the record
type as being fixed length.

Standard PL/I File Names: The identifiers SYSIN and SYSPRINT are the
file names for the standard input and output files, respectively. The statements

GET LIST(A, B, C);
PUT LIST(A, B, C);

are equivalent to

GET FILE(SYSIN) LIST(A, B, C);
PUT FILE (SYSPRINT) LIST(A, B, C);

These files need not be declared, because a standard set of attributes is applied
automatically. In subset languages, you may not use these file names unless
they are explicitly declared as files. However, when you write

GET LIST(A, B, C);
PUT LIST(A, B, C);

the attributes of the SYSIN and SYSPRINT files are assumed for the GET and
PUT operations, respectively.

Conditions: The ON statement is used to specify the action to be taken when
an exceptional condition arises. An exceptional condition is the occurrence of an

158 PL/l Programming

unexpected event or an expected event at an unpredictable time. in the absence
of your program specifying an action to be taken, when these exceptional
conditions are detected, a standard system action will take place. For most
conditions, the standard system action is to print a message and then raise the
ERROR condition which usually results in termination of your PL/l program.
Some conditions are always enabled unless explicitly disabled. When a condition
is enabled, it means that, if the condition occurs, either programmer-defined
action or system action will take place. Thus, when conditions are disabled,
errors may go undetected. The 1/O conditions are always enabled and may not
be disabled. Conditions are enabled through a condition prefix which is the
name of one or more conditions separated by commas, enclosed in parentheses,
and prefixed to a statement by a colon. The word NO preceding the condition
name indicates that the condition is to be disabled. Through the use of the
SIGNAL statement, the programmer may simulate the occurrence of any of
the exceptional conditions. Execution of the SIGNAL statement has the same
effect as if the condition had actually occurred. (See Figure 3.9.)

The PICTURE Attribute: This attribute provides a picture of the form we
want the data in the variable with the PICTURE attribute to assume. There are a
number of reasons for using PICTURE:

1. To edit data.

2. To validate data.

3. To treat arithmetic quantities as character-strings.
4. To treat character-strings as arithmetic quantities.

Decimal Picture: This type of picture specifies the form that an arithmetic
value is to assume. The base and scale are implicitly DECIMAL and FIXED,
respectively. The precision is determined by the number of 9’s and Z's in the
picture and the location of the V picture character.

Decimal Picture Specification Characters: The basic picture specifica-
tion characters include 9, V, S, +, —.

Arithmetic Operations on Decimal Picture Data: In order for an arith-
metic operation on decimal picture data to take place, the data must be con-
verted to the coded arithmetic form FIXED DECIMAL.

Editing Data for Printed OQutput: Data items with the PICTURE attribute
to be used as output usually receive their values via an assignment statement.
Values are normally developed during a program’s execution using coded
arithmetic data type. When final results are obtained, the values are assigned to
data variables for printing and/or punching.

Specifying Overpunched Signs with the PICTURE Attribute: In
business data processing, sometimes numeric values punched in a card have an
overpunch for sign representation. An overpunch is a 12-punch for a + sign
or an 11-punch for a — sign over one of the digits in a predetermined column

File Declarations, Conditions, and Pictures 159

of a multidigit field. The use of overpunches has the advantage of minimizing
the number of card columns required to represent signed numeric data.

Character-String Picture: The characters which make up this type of
picture are A, X, and 9. The data item declared with the character-string picture
does not have the arithmetic attributes of base, scale, and precision, but does
have the character-string length attribute. Figure 3.10 shows the picture specifi-
cation characters covered in this chapter.

Character-String
X Position may contain any character
A Position may contain any alphabetic character’
9 Position may contain any decimal digit or blank’

Digit and point specifiers
9 Any decimal digit
V Assumed decimal point and subfield delimiter

Zero suppression characters
Z Digit or blank
* Digit or

Static or drifting characters?
$ Digit, $, or blank
S Digit, £+ sign, or blank
+ Digit, +, or blank
— Digit, —, or blank

Insertion characters .
. If zero suppression and no digit, a blank will appear
Decimal point
B Blank

Credit, debit, and overpunched signs
CR CRiffield<0
DB DBiffield<0
T Digit will be overpunched by sign
I Digit will be overpunched by + if field > = 0’
R Digit will be overpunched by — if field < O

FIGURE 3.10 Picture specification characters. (1: Not available in
subset language. 2: These are also zero suppression characters.)

~

output operation

r Normally . Normal return to
Type of enabled/ What the programmer (if null on-unit Standard system
condition ON-condition disabled Cause should do or result is used) action
Input/output ENDFILE Enabled An attempt to read past Not attempt to READ | Null on-unit cannot ERROR condition
(file name) (cannot be the file delimiter of the or GET again from be specified
disabled) file named in the GET file ; CLOSE the
or READ statement file
ENDPAGE Enabled PUT statement resulting Write a required (1) Resulting from New page started
(file name) (cannot be in an attempt to start a footing (or total data transmission :
disabled) new line beyond the lines) and skip to current line
limit specified for the another page (2) Resulting from
current page LINE or SKIP
option : action
specified by option
is ignored
Standard ERROR Enabled (1) Another ON-condition | Dependent upon Control returned to Message printed
system (cannot be for which it is the requirements of the operating and control
action disabled) standard system action installation system control returned to
(2) An error for which program operating
there is no ON- system control
condition program
(execution
terminated)
Computational | CONVERSION Enabled llegal conversion attempt | Undefined Nult on-unit cannot ERROR condition
conditions (cannot be on character-string data be specified
disabled) internally or on input/

Enabled

FIXEDOVERFLOW Result of arithmetic fixed- | Undefined The point logically ERROR condition
(can be point operation that following the point
disabled) exceeds maximum of the interrupt
precision aliowed (15
for decimal, 31 for
binary)
OVERFLOW Enabled Magnitude of a floating- Undefined The point logically ERROR condition
(can be point number greater following the point
disabled) than permitted of the interrupt
maximum
SIZE Disabled Nonzero high-order binary | Undefined The point logically ERROR condition
(can be or decimal digits are lost following the point
enabled) in an assignment of the interrupt
operation (i.e., assign-
ment to a variable or an
intermediate result) or in
an input/output
operation
UNDERFLOW Enabled Magnitude of a floating- Invalid floating-point | The point logically Message printed
(can be point number smaller value set to O foliowing the point and execution
disabled) than allowable minimum of the interrupt continues
ZERODIVIDE Enabled Attempt to divide by zero Undefined The point logically ERROR condition
(can be following the point
disabled) of the interrupt

J

FIGURE 3.9

1 62 PL/1 Programming

The DEFINED Attribute: This attribute allows you to equate two or more
different names to the same storage area. In addition, one of the names being
declared may represent either all or part of the same storage- as that assigned
to the other. The base identifier is the variable name to which other variable
names are equated or “defined.” The PL/l term for this function is overlay
defining. Only the base identifier may be initialized if the INITIAL attribute
is specified. The base identifier must be equal to or greater than (in length) any
of the other variables that are overlay defined on it.

The POSITION Attribute: This attribute may be specified in overlay
defining of bit- and character-strings. It allows you to specify a position within a
string on which another variable may be overlay defined. Not available in the
subset language.

1. When an end-of-file mark is encountered, what are the two possible
courses of action that may be taken?

2. In which PL/I compilers referenced in this text must the MEDIUM option
be included?

3. (True or False) File names may be the same length as any other PL/I
identifier—1 to 31 characters long.

4. For the optimizing compilers, how would the record form
F(80)
be specified ?
5. What does the PRINT attribute accomplish in a file declaration statement?

6. In which language implementation (subset or full) is the following
statement valid?

ON ENDPAGE(SYSPRINT) GO TO HDNG_RT;

7. What are the default attributes for the SYSIN file?
8. What is the ON statement used for?

9. Under what conditions is the ERROR condition raised?
10. What does the condition prefix accomplish?
11. What does the nu// form of the ON statement indicate ?
12. How can the programmer simulate the occurrence on an ON condition?
13. Distinguish between FIXEDOVERFLOW and SIZE.

14.

15.

16.

17.
18.

19.
20.

21.

22.

File Declarations, Conditions, and Pictures 1063

How many bytes of storage will each of the following identifiers require?
(a) DECLARE PRICE PICTURE ‘999Vv99’;

(b) DECLARE QUANTITY PICTURE '9999’;

(¢) DECLARE BACK_ORDERED PICTURE 'S999999’;

(d) DECLARE AMT PIC 'SSSSV99’;

(¢) DECLARE FLD PICTURE *(5)X(7)9";

Each time that a decimal picture is to be used in a calculation, what
conversion takes place?

Give the numeric results after the following identifiers are initialized :

(a) DCL GROSS_PAY PIC '9999V99’ INIT (550);

(b) DCL REORDER_QTY PIC 999" INIT (1000);

(c¢) DCL HOURS_WORKED PIC ‘99" INIT (40.75) ;

(d) DCL INTEREST_DUE PIC '999V99’ INIT (3.4567);

What are the uses of the PICTURE attribute?

Given the following DECLARE, what would the output values look like?
DECLARE AVALUE PICTURE ‘ZZZ99';

(a) AVALUE=12345;

(b) AVALUE=123;

(c) AVALUE=0;

What is overlay defining? Why use it?

Are the following assignment statements valid in the subset language,
given the following DECLARE statement?

DCL A PIC'99999', B CHAR(5);

(a) A=B;

(b) B=A;

Write the PICTURE that will cause the value 123.45 to be output with
three leading blanks and four trailing blanks (i.e., bbb123.45bbbb—
where b stands for blank).

What is an overpunch? Why is it used?

base identifier decimal picture

byte decimal point alignment
coded arithmetic data disabled

condition prefix drifting character

data set dump program

164 PL/l Programming

editing ; overpunch.
enabled static character
file system action
insertion character utility program
null on-unit zero suppression
on-unit 11-punch
overlay defining 12-punch

1. Drill Using the PICTURE Attribute

Problem Statement: Worite a series of declarations for the constants listed
below. Print the values defined.

Purpose of the Problem: To gain practice in declaring various data types
using the PICTURE attribute.

Input: Read the following data items into variables that contain the PICTURE
attribute describing the data items.

Input PL/I constant Comments
5123.45 Insert comma (i.e., 5,123.45) on output
‘THE QUICK BROWN FOX’
‘123AB’
-23.75
000212 Suppress leading zeros
2048.95 Include a drifting dollar sign on output
00123.45 Include asterisk insertion (i.e., **123.45)
0678.90 Insert a drifting + sign (i.e., +678.90)
—1950430.75 Insert commas and drifting dollar sign and

CR symbol separated from the value by

a blank (i.e., $1,950,430.75 CR)
00.33 Print this value two ways using zero

suppression (i.e., .33 and 33)

Output: See Figure 3.11.

2. Price list

Problem Statement: Compute a table of prices for handy reference. Calculate
price of one item, two items, three items, all the way up to 100 items for a unit
price called PRICE.

File Declarations, Conditions, and Pictures 165

59123,45
THE QUICK BROWN FOX
12348
-23.75
212
$2048.95
*%123.45
+678.90
$149504430.75 CR
+33
33

FIGURE 3.11 Problem 1 sample output using suggested test data.

Purpose of the Problem: To gain experience in programming a “loop” opera-
tion as well as to do some editing of output data (e.g., zero suppression and
comma insert).

Card Input: Suggested test data are

1234 15.26
Printer Qutput: See Figure 3.12.

3. Extending Prices

Problem Statement: Write a program to read data cards for a part number
(ITEM), unit price (PRICE), and quantity (1QTY). Compute the extension by
multiplying PRICExIQTY. For each data card read, print a detai/ /ine which

PRICE TABLE FOR ITEM # 1234

QUANTITY PRICE

15.25
30.50
45.75
61.00
16.25
91.50
106.75

,——"———__—_"-——__q_____-_________,—/
B ——

NV W N

96 1,464.00
97 1y479.25
98 19494.50
99 1+509.75
100 19525.00

FIGURE 3.12 Problem 2 sample output using '
suggested test data.

166 >PL/I Programming

Column 1

Column 8

r— Column 14

‘011" 20.00 30
‘2104 7.30 30.
‘4030° 1.05 150.
‘3035 1750 2
‘22000 1.45 10

FIGURE 3.13 Problem 3
suggested test data.

consists of ITEM, PRICE, 1QTY, and EXTENSION. Also, keep a “running total”
of the extensions. When the end-of-file condition is detected, compute TAX
by multiplying TOTAL by 5%, add TAX to TOTAL to give amount due (AMT),
and print TOTAL, TAX, and AMT.

Purpose of the Problem: To declare PL/l coded arithmetic data as well as
pictures for editing purposes and to use the ON statement.

Card Input: Suggested test data are shown in Figure 3.13.

Printer Output: If you use the suggested input data, your output to the line
printer should be like that shown in Figure 3.14.

Flowchart: See Figure 3.15.

Programming Hint: Notice from Figure 3.14.that when the total lines are to be
printed, each of the three lines starts with the literal constant (e.g., “TOTAL")

PART NUMBER PRICE QUANTITY EXTENSION

1001 20.00 30 600.00
2104 7.30 30 219.00
4030 1.05 150 157.50
3035 : 17.50 2 35.00
2200 1.45 10 14.50

TOTAL 1026.00

TAX 51.30

AMOUNT DUE $1,077.30

/—

FIGURE 3.14 Problem 3 sample output using suggested test data.

Start

DECLARE
variables

]

Set
TOTAL =0

Write

page
heading

Read card
for
ITEM, PRICE,
and QTY

End

Yes

of file

Compute
EXTENSION

(]

TOTAL =
TOTAL +
EXTENSION

Write
ITEM,

" PRICE, QTY,
EXTENSION

Y

Compute
TAX =
TOTAL * .05

+ .005

¥

Compute
AMT DUE =
TAX + TOTAL

Write
TOTAL, TAX,
and
AMT DUE

FIGURE 3.15 Flowchart for Problem 3.

168 PL/l Programming

beginning at the third tab position (print position 49). This can be accomplished
by the following:

PUT SKIP LIST(",", |’, 'TOTAL', TOTAL)
L, Variable name containing

accumulated results

Literal constant to start at
third tab position

Literal constant of a
"blank” causes us to skip
over these tab positions

4. Powers of Two Table

Problem Statement: \Write a program to generate a powers of two table where
the output values range from 2° to 230,

Purpose of the Problem: To use exponentiation, to program a loop, and to
edit data using the PICTURE attribute.

Input: There is no input for this problem, as thé program generates the results.
Output: See Figure 3.16.for suggested printer layout.
5. Fibonacci Numbers

Problem Statement: Leonardo of Pisa, who is also called Leonardo Fibonacci,
originated the following sequence of numbers in the year 1202 :

0,1,1,2,3,5,8,13,21, 34, ...

In this sequence, each number is the sum of the preceding two and is denoted
by F, (F for Fibonacci and n for number). Formally, this sequence is defined as

Fb=0
F, =1
Fn+2 = Fn+1 + Fn
where
N>0

Write a program to print out the first 55 terms of a Fibonacci sequence.

Purpose of the Problem: This is a good computer exercise in addition, as the
hand method of calculation makes the solution impractical. Fibonacci wrote,
“It is possible to do [the addition] in this order for an infinite number of months.”
Input: There is no input data, as the program will generate the sequence.
Output: Sample output is shown in Figure 3.17.

2 TO THE N-TH POWER N
1 o

2 1

4 2

8 3

16 4

32 5

64 6

128 7

256 8

512 9

1,024 10

2,048 11

44096 12

85192 13
16,384 14
32,768 15
659536 16
131,072 17
262y 144 18
524,288 19
1,048,576 20
290974152 21
4y 194,304 22
B8y388,608 23
16,777,216 24
33,5544432 25
679108y 864 26
134,217,728 27
26844354456 28
536, 87C+ 912 29
1,073,741,824 30

FIGURE 3.16 Sample output for
Problem 4.

FIBONACCT SEQUENCE OF NUMBERS

0 1 1 2 3

5 8 13 21 34

55 89 144 233 377

610 987 1597 2584 4181

6765 10946 17711 28657 46368

75025 121393 196418 317811 514229
832040 1346269 2178309 3524578 5702887
9227465 14930352 24157817 39088169 63245986
102334155 165580141 267914296 433494437 701408733
1134903170 1836311903 2971215073 4807526976 7178742049
12586269025 20365011074 32951280099 53316291173 86267571272

FIGURE 3.17 Sample output for Problem 5.

thapter 4

PL/I has the facilities for arranging data in collections that can be
referred to by a single name. There are two types of data aggregates in
PL/l: arrays and structures. Structures will be covered in a later
chapter. In this chapter, we will look at arrays in detail and examine
some PL/| statements that are used to manipulate arrays.

An array is a table of data items in which each item has the same attribute
as every other item in the array. An array has storage reserved for it by
means of a DECLARE statement. For example :

DECLARE TEMPERATURES(365)FIXED(4,1);

In the above DECLARE statement, TEMPERATURES is the name of the
array. It is declared with four attributes :

1. (365) is the number of elements in the array

2. DECIMAL is the base attribute of all its elements
3. FIXED is the scale attribute of all its elements

4. (4,1) is the precision attribute of all its elements

As you can see, the attribute defining the number of elements in an
array is placed immediately after the name of the array in the DECLARE
statement. A precision attribute, if written, must always follow a base
or scale attribute; thus, you can tell, by its position in the DECLARE
statement, whether an attribute is a precision attribute or whether it
defines the number of elements in an array.

Bounds

In declaring the size of an array, a bound is specified. In the
example,

DCL TEMPERATURES(365)FIXED(4,1);

172

DO’s and Dimensions 173

the number 365 specifies the upper bound of the array. The lower
bound in this example is assumed to be 1.

In the full language, it is possible to specify both a lower and
an upper bound. For example:

DCL TABLE (0:11) FIXED;

L Upper bound

Colon separates upper and lower
bound

Lower bound

The extent is 12 because there are 12 elements between 0 and 11.
It is also possible in the full language to specify a negative value
for bounds. For example :
DCL GRAPH (—5:+5);
L Upper bound

Lower bound

Thus, the array GRAPH might be thought of as follows::
—5-4-3-2-10 +1+2+3+4+5
Graph | e J

|——> Last (eleventh)
element in the
array

First element in
the array

Here is another example of specifying upper and lower bounds

with the array pictured in a vertical manner (note the use of the INITIAL

attribute) :

1 74 PL/l Programming

DCL L'IST(—2 :6) INIT(91,20,82,11,73,48,19,16,70) ;

List (—2) 91
(-1) 20
(0) 82
(1) 11
(2) 73
(3) 48
(4) 19
(5) 16
(6) 70
4 .
Specifying the bound of an array)
Subset May not specify lower bound—it is always
language assumed to be 1; bounds must be expressed
as decimal integer constants
Full If upper bound only is specified, then lower bound
language is assumed to be 1, or both an upper and lower
bound may be declared ; bounds can be con-
N stants, variables, expressions, or asterisks

Dimensions

The number of sets of upper and lower bounds specifies the
number of dimensions in an array. For example, 12 data items could be

R s T it e -

DO’s .and Dimensions 175

arranged in two groups of six items each. The array could be declared,
DCL TABLE(6,2) FIXED;

L — Second dimension

First dimension

and could be thought of as a two-dimensional table. For example :

Column 1 Column 2

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

T
I
|
|
|
I
|
i
t
|
I
|
t
|
|
I
|
1
|
t
|
|
1
|

In referring to two-dimensional arrays, sometimes the terms rows
and columns are used. These terms, however, are not used to describe
parts of arrays that have more than two dimensions.

Here is an example of declaring a two-dimensional array in which
the upper and lower bounds are explicitly declared:

DCL AXIS(—3:3,—4:4)INIT((63)0);

Axis —4-3-2-10 1 2 3 4
-3(0(0|0O|OjO|O|O|O]O
-24{0(0}0|0|0|0}j0|0 0
-1]0]0]0]0]0}j0f0|0]0O
0(0|0j0]0|J0j0j0O(0O]|O
110{0/(0|0|0O|Of0O|O|O
210|0j0;0|0}j0j0]0]O
31010(0(0j010{010|0

176 PL/lI Programming

There are 63 elements in the AXIS array. Notice how the INITIAL
attribute specified an iteration factor of 63 in a pair of parentheses
preceding the O constant. This causes all elements of the AXIS array
to be initialized to zero. Had the statement

DCL AXIS(—3:3,—4:4)INIT(0);

been declared, only the first position (upper leftmost corner of the
array) would be initialized to zero.

A three-dimensional array could also be declared. For example,
assume it is desired to store statistical data on the urban and rural
population of each state in the United States for ten decades. The
statement declaring such an array could be written

DCL POPULATION(2,50,10);
L Decades
States
Urban, rural reference

In some PL/I implementations, more than three dimensions may be
specified.

4 Generally, the number of dimensions allowed\
Subset language 3
Full language 15 J
\

Subscripting

We reference an element of an array by means of a subscript.
For example :

T=TEMPERATURES(2) ;

l—> Subscript

— Array name

Second item in the array named
TEMPERATURES is assigned to T

DO’s and Dimensions 177

Assume that a two-dimensional table of salesmen’s commission
rates is to be defined for three products a company sells. A salesman’s
commission rate depends on the quantity he sells. For example:

4 Commission rate for iterﬁ
Quantity sold #A1 #H2 #3
1-50 0.01 - 0.01 0.02
51-100 0.02 0.015 0.025
101-500 0.025 0.022 0.03
501-999 0.03 0.031 0.035
1000 or more 0.032 0.035 0.04

N J

To declare this table we would write
DCL COMMISSION(5, 3) FIXED(3, 3);

where the table could be pictured as follows::

1 - 2 3

1] 0.01 0.01 0.02

e

2 0.02 0.015 é.OZ@——-—» COMMISSION(2,3)

3] 0.026 @)2} 0.03

4| 003 0333!\ 0.035
N

5 0.032 0.035 \)\{4

N
COMMISSION(3,2)

In the above example, row 1 contains the commission rates for 1-50
units sold ; row 2 contains rates for 51—100 units sold ; row 3 for 101—
500 units sold, etc. Column 1 corresponds to item #1, column 2 to
item #2, and column 3 to item #3. To retrieve the salesman’s commis-
sion rate if he sold 450 units of item #1, we could code

RATE=PRICE+QTY*COMMISSION(3.1) ;

1 78 PL/l Programming

Variable Subscripts. Subscripts need not be constants, as illus-
trated above, but also may be variables. For example :

K=3;
T=TEMPERATURE(K) ;

. Because K was assigned a value of 3, it
will be the third element of
TEMPERATURES that is assigned to T

Here are some other examples of retrieving values from the COM-
MISSION array (note the use of variable subscripts) :

J=3;
RATE=PRICE*QTY*COMMISSION(J,1);
/* COMMISSION(3,1) IS BEING REFERENCED =/

K=2;
RATE=PRICE*QTY*COMMISSION (J,K) ;
/* COMMISSION(3,2) IS BEING REFERENCED #/

The following example is invalid because the value assigned to K is
outside the declared range of the COMMISSION array :

K=7;
RATE=PRICE=*QTY*COMMISSION(1,K) ;

SUBSCRIPTRANGE Condition. In the full language compilers,
referencing a location outside the bounds of the array will cause the
SUBSCRIPTRANGE condition to be raised if the condition is enabled.
Because this condition is always disabled unless the programmer
enables the on-unit, it will be necessary to enable the condition. This
is done in the same way that other on-units previously discussed are
enabled. For example :

(SUBSCRIPTRANGE): RATE=PRICE*QTY*COMMISSION(1,K);

Or, to enable the condition for the entire procedure, prefix the keyword
SUBSCRIPTRANGE to the PROCEDURE statement. For example :

(SUBSCRIPTRANGE): PROG: PROCEDURE OPTIONS(MAIN);
The abbreviation for SUBSCRIPTRANGE is SUBRG. To specify the

DO’s and Dimensions 179

action to be taken should the SUBSCRIPTRANGE condition be raised,
you might code

ON SUBSCRIPTRANGE GO TO ERROR; /* OR =/
ON SUBSCRIPTRANGE BEGIN;

END;

If your program does not specify action to be taken for the SUBSCRIPT-
RANGE condition, then system action is taken (providing the condition
occurs and is enabled). The system action is to print an error message
and then raise the ERROR condition. The ERROR condition terminates
your job unless you have specified otherwise (e.g., ON ERROR GO
TO CONTINUE;). The SUBSCRIPTRANGE condition is a useful
debugging tool, for it is during the program checkout phase that you
are most likely to inadvertently specify a subscript that references a
nonexistent position of an array.

4 SUBSCRIPTRANGE condition available\
Subset language No
Full language Yes

g gt Y,

In those compilers for which SUBSCRIPTRANGE is not available,
extra care must be taken by the programmer to guard against referencing
a position outside of the declared array. This is particularly true if the
programmer is specifying the array as a receiving field. For example:

DCL TABLE(5);
K=50;
TABLE(K)=0;

In this case, zero will be assigned TABLE(50), which is not part of
the declared array. Typically, any position outside of an array could still
be part of your program; hence, the value assigned destroys perhaps
part of an instruction or another data item. Often, this kind of destruc-
tion causes a program to “hang-up.” The computer may simply "“stop”
and the programmer has no clues as to “what went wrong.”

1 80 PL/l Programming

Subscript Expressions. In addition to constants and variables, any
valid PL/I arithmetic expression may be specified as a subscript. For
example:

T—TEMPERATURES(J—1+K) ;
e —
L Subscript expression

Subscripted Subscripts. Subscript expressions may include sub-
scripted items resulting in nested subscripts. For example:

DCL X(5) INIT(10,20,30,40,50) ;
DCL Y(3) INIT(3,2,1);
1=3;

Z=X(Y()):

L Y(l) is the subscript expression for X ;
Y(Il) is actually Y(3) because | = 3;
the value of Y(3) is 1

Because the subscript expression of
X results in a value of 1, it is X(1) that
is assigned to Z

Because X(1) contains the value of
10, Z=10

A case where nested subscripts are extremely useful is illustrated in
Problem 3 at the end of this chapter.

Cross Sections of Arrays

So far we have seen that a subscript is an element expression
specifying a location within a dimension of an array. A subscript may
also be an asterisk, in which case it specifies the entire extent of the
dimension. This extent is referred to as a cross section of an array.

A subscripted name containing asterisk subscripts represents not
a single data element, but rather a larger part of the array. For example,
assume PERCENT has been declared as follows:

DCL PERCENT(3,4);

PERCENT(*,1) refers to all of the elements in the first column of the
array. It specifies the cross section consisting of PERCENT (1,1),
PERCENT(2,1), and PERCENT(3,1). PERCENT(2,*) refers to all of

DO’s and Dimensions 181

the data items in the second row of the array [i.e., PERCENT(2,1),
PERCENT(2,2), PERCENT(2,3), and PERCENT(2,4)].

As an illustration of how cross sections of arrays may be useful
in manipulating data, the following arrays are declared:

DCL PERCENT(3,4), PRICE(3), TOTALS(3);

Assume the arrays pictured below have been assigned the values
shown in the various elements.

Percent (1) (2) (3) (4) Price Totals
I (1) | 0.04 | 0.02 | 0.04 | 0.03 (1) | 4.00
:: (2) | 0.06 | 0.03 | 0.05 | 0.04 (2) | 2,50
v (3) | 0.05 | 0.03 | 0.06 | 0.05 (3) | 3.60

+———— Salesman ————

The PERCENT array represents commission rates various salesmen
receive for three different items they sell. To find the commission paid to
salesman 4 for selling a single unit of each of the three items, the follow-
ing could be coded:

TOTALS=PERCENT(*,4)*PRICE;

Each element in the fourth column of the PERCENT array is muitiplied
by the corresponding element of the PRICE array, and the product is
assigned to the corresponding element of the TOTAL array. Note
that a cross section of an array is considered to be an array expression;
thus, any other array appearing in an arithmetic operation with the
cross section must have the same bounds and dimension as the cross
section.

(Cross sections of arrays

Subset language No

Full language Yes
_ gtad Y,

1 82 PL/l Programming

I/0 Operations and Arrays

In the absence of explicit element specifications, data items are
read into arrays starting with the lowest numbered subscripted element
and finishing with the highest subscripted element. For example :

DCL TEMP(20) PIC'999V9';
GET LIST(TEMP) ;

Columns 1—-4 will be read into TEMP(1), columns 5—8 into TEMP(2),
and so on, to columns 77—80, which are placed in TEMP(20).

If a multi-dimensional array is specified, then the right-hand
subscript varies most rapidly. For example, if the array

DCL AMT(20,4) CHAR(1);
GET LIST(AMT);

is defined, data is read into the AMT array elements in this order:

AMT(1,1)
AMT(1,2)
AMT(1,3)
AMT(1,4)
AMT(2,1)
AMT(2,2)
AMT(2,3)
AMT(2,4)
AMT(3,1)

AMT(20,3)
AMT(20,4)

Data items are assigned to an array in row major order, that is, with the
rightmost subscript varying most rapidly. Here is an example for a
three-dimensional array :

DCL TABLE(2,34);
GET LIST(TABLE);

|——————> As many data items are read as

necessary to fill the entire array

DO’s and Dimensions 183

To determine the number of elements in the above array, simply
multiply each bound by the next: 2x3+x4=24 elements. Elements of -
this array will be filled in the following order:

TABLE(1,1,1) « First position filled
TABLE(1,1,2)
TABLE(1,1,3)
TABLE(1,1,4)
TABLE(1,2,1)
TABLE(1,2,2)
TABLE(1,2,3)
TABLE(1,2,4)
TABLE(1,3,1)
TABLE(1,3,2)
TABLE(1,3,3)
TABLE(1,3,4)
TABLE(2,1,1)
TABLE(2,1,2)
TABLE(2,1,3)
TABLE(2,1,4)
TABLE(2,2,1)
TABLE(2,2,2)
TABLE(2,2,3)
TABLE(2,2,4)
TABLE(2,3,1)
TABLE(2,3,2)
TABLE(2,3,3)
TABLE(2,3,4)

The INITIAL Attribute for Arrays

Here are some examples of the INITIAL attribute applied to the
declaration of arrays:

DCL A(50) FIXED INITIAL(O);

l———> Value to be placed into
first element of the array

Only the first element, A(1), will be initialized to a value of zero. If

184 PL/l Programming

it is desired to initialize the entire array to zeros, then an iteration
factor must be specified.

DCL A(50) FIXED INITIAL((50)0);

L\—> Element value
Iteration factor

l Initialize entire array
to minus one

DCL B(9,9) INIT((81)—1);

Here are some general rules for using the INITIAL attribute to

initialize arrays:

1.

2.

Only one constant value may be specified for an element
variable. More than one value may be given for an array.
Constant values specified for an array are assigned to successive
elements of the array in the order where the right-hand subscript
varies most rapidly. The example

DECLARE A(2,2) INITIAL(1,2,3.4);

results in the following:

A (1)(2)
A(1,1) <1
A(1,2) <2 Mmil1]2
A(21)«3 or
A(2,2) « 4 23] 4

If too many constant values are specified for an array, excess
ones are ignored; if not enough are specified, the remainder
of the array is not initialized.

Each item in the list may be a constant or an iteration specifica-
tion. The iteration specification has one of the following general
forms :

(iteration factor) constant
(iteration factor) (item [,item] .. .)

The iteration factor must be a decimal integer constant equal to
or greater than one.

If only one parenthesized decimal integer constant precedes a
string initial value, it is interpreted as a repetition factor for the

o i

DO’s and Dimensions 185

string. If two appear, the first is taken to be an initialization
iteration factor, and the second, a string repetition factor. For
example :

DCL TABLE(10) CHAR(2) INIT((2)°A);

causes the first element of the array TABLE to be initialized to
the character-string value AA because (2) ‘A’ is equivalent to
‘AA’. Should it be desired to initialize the first two elements of
TABLE, then the following statement would be specified :

DCL TABLE(10) CHAR(2)
INIT((2) (2)'A");
—v—/

L Repetition factor gives a character-
string value of "AA’

Iteration factor specifying number
of array elements to be initialized

5. If it is desired to skip certain elements of an array during initial-
ization, an asterisk may be specified to indicate the skip. For
example :

DCL A(3) INIT(10,%,30);

Here, A(1) will be initialized to 10, A(3) will be initialized to 30,
and A(2) will not be initialized.

Array Assignment

There are two types of move operations that may be specified for
arrays : scalar-to-array and array-to-array.

Scalar-to-Array. In this type of array assignment, an entire array
is assigned a single (scalar) value. For example :

DCL MONTHS(12) FIXED(4,1);
MONTHS=0;

Each element in the MONTHS array will be set to zero. To assign a
value to a single element of the array, a subscript must be specified.
For example :

MONTHS (5)=72.6;

Array-to-Array. In this case, one array may be moved (assigned) to

186 PL/1 Programming

another array, providing the arrays have identical bounds. For example :

DCL A(5,5), B(5,5);
A=0; /+*+ SCALAR-TO-ARRAY ASSIGNMENT =/
B=A; /+* ARRAY-TO-ARRAY ASSIGNMENT =/

Array Expressions

An array expression is an expression whose evaluation yields an
array result. All operations performed on arrays are performed on an
element-by-element basis. All arrays referred to in an array expression
must have identical bounds.

Prefix Operators and Arrays. When a prefix operator is specified
for an array, the result is an array of identical bounds in which each
element is the result of the operation having been performed. For
example : '

If A is the array 1 3 |-5b

4 |-2|-7

6 (12 (13|
then —A is the array -11-3| 5

-4} 2 |7

-6 |-12|—-13

Infix Operators and Arrays. When an infix operator is specified
for an array and a scalar variable, the result is an array of identical
bounds in which each element is the result of the infix operation having
been performed. For example:

If A is the array 5 110 {15

20 | 25 | 30

then Axb is the array

Here is another example :

If A is the array

then A+ 2 is the array

DO’s and Dimensions 187

25|50 {75

100(125|150
1 2 |3

4 | 56

314|656

6|7 |8

All operations on the array are performed on an element-by-element
basis in an order in which the rightmost subscript varies most rapidly.
To illustrate the effect of this order of operations, assume

Ais

If the statement

is specified, the result is the following array :

Alis

11213

45| 6
A=A*A(1,2);

2| 4|12

16 | 20 | 24

Note that the original value for A(1,2), which is 2, is used in evaluation
for only the first two elements of A. Since the result of the expression
is assigned to A, changing the value of A, the new value of A(1,2) is
used for all subsequent operations. The first two elements are multiplied
by 2, the original value of A; all other elements are multiplied by 4,

the new value of A(1,2).

1 88 PL/l Programming

When an infix operator is specified for two arrays, both arrays
must have the same number of dimensions and identical bounds.
The result is an array with dimensions and bounds identical to those of
the original arrays; the operation is performed upon the corresponding
elements of the two original arrays.

If A is the array 2 4 3
6 1 7
4 8 2
and if B is the array 1 5 | 7
8 3 4
6 3 1
then A+ B is the array 3 9 |10
14 4 | 11
10 11| 3
and A=*B is the array 2 120 |21
48 | 3 | 28
24 |24 | 2

Data Conversion in Array Expressions. The examples in this
discussion of array expressions have shown only single arithmetic

i G

i

-

DO’s and Dimensions 189

operations. The rules for combining operations and for data conversion
of operands are the same as those for element operations.

Arrays and the LABEL Attribute

Usually, arrays are used to manipulate arithmetic data or perhaps
character- or bit-strings. However, it is also possible to declare an
array to have the LABEL attribute, in which case each element of the
array may contain a label. For example:

DCL X(4) LABEL INITIAL(READ,WRITE,CALC,ERROR) ;
READ: GET LIST(A,B);
IF A=0 THEN GO TO X(1);
ELSE IF A>B THEN GO TO X(2);
ELSE IF A<B THEN GO TO X(3);
ELSE GO TO X(4);
WRITE: PUT SKIP LIST(A,B);
GO TO READ;
CALC: Y=A+B/100;
PUT SKIP LIST(A,B,Y)
GO TO READ;
ERROR: PUT SKIP LISTCERROR’, A,B):
GO TO READ:

Here is another capability of the LABEL attribute and arrays
available only in the full language.

DCL L(4) LABEL;

|-=3;
GO TO L(I);

Notice that the L array was not initialized. Instead, the subscripted

1 90 PL/l Programming

array names may be the actual labels of PL/| statements. For example:

L(1): M=N+1;

L(2): M=N—2;

L(3): M=N=2;
L(4): M=N/2;
l The system builds into the L array the
addresses of these subscripted labels
é Allows subscripted labels to be affixed to a\
statement [e.g., L(1): M=N+1;]
Subset language No
Full language Yes
g J

Array Manipulation Built-in Functions

Built-in functions are subroutines that extend the basic facilities
of the PL/I language. These small programs are called built-in because
they are standard with the PL/l language and have the attribute
BUILTIN. The built-in functions we are going to examine here are
those functions that facilitate the manipulation of array data.

Two of the array built-in functions (ANY and ALL) require bit-

DO’s and Dimensions 191

string arguments. All other array functions require floating-point data
format arguments. For example :

TOTAL=SUM (ARRAY);

!—, Generally, the array argument

will be converted to floating-point
if it is not in that form*

Built-in function to find the sum
of all elements in an array

The result is assigned to this
variable

All of the functions require array name arguments and return, as a
result, a single value. Because only a single value is returned from these
functions, a function reference to any array function is an element
expression as contrasted with an array expression, which has been
previously discussed.

The SUM Built-in Function. This function finds the sum of all
the elements in an array. For example :

DCL GRADE(5) FIXED(2) INIT(90,85,76,93,81);
AVERAGE=SUM(GRADE)/5;

i——A The array argument

Built-in function name

Result is assigned to AVERAGE

A word of caution is given to the commercial programmer. In
compilers the arguments to these built-in functions will be converted
to floating-point (if they are not in that form) before the function is
invoked. The results of calculations performed on floating-point data

*In the optimizers and checkout compilers, the function is done in the scale of the argument.

1 92 PL/l Programming

may not be accurate to the degree that you would like. For example,
assume the following values are to be summed:

43.10
57.38
9.10

109.58
However, if the following had been coded :

DCL TABLE(3) FIXED(5,2);

DCL TOTAL FIXED(7,2);

GET LIST (TABLE);

/+ ASSUME TABLE (1)=43.10
TABLE (2)=57.38
TABLE (3)=9.10 */

TOTAL=SUM (TABLE);

with the above set of values which will be converted to floating-point
for the SUM function, TOTAL would contain the value 109.57. This
result is not correct—it is a penny off. The problem, of course, is in
decimal—binary conversion and back, and has nothing to do with the
adequacy of the programming of the conversion routines. To obtain
the correct answer, it would be necessary to code the following :

TOTAL=SUM(TABLE)+.005;

The .005 rounds off the intermediate floating-point result to give the
correct answer—in this case, 109.58. The best solution in this type of
problem is to stay in decimal; and if this is done, then the SUM
function cannot be used.

The PROD Built-in Function. This function finds the product of
all the elements of an array. For example :

DCL ALIST(5) INIT(1,2,3,4,5);
PRODUCT=PROD(ALIST);

l—— The array argument

Built-in function name

Result is assigned to PRODUCT

M R L e s

DO’s and Dimensions 193

The statement invoking the PROD function is equivalent to the
following arithmetic operation:

PRODUCT=ALIST(1)*ALIST(2)*ALIST(3)*ALIST(4)*ALIST(5); -

The computation is always carried out in floating-point arithmetic in
the subset language and PL/I-F. In the other compilers, arithmetic is
done in the scale of the argument.

The POLY Built-in Function. This function is used to form a
polynomial expansion in floating-point from two arguments. For
example, assume the GRADE array has been declared and initialized
to the following values:

Grade (1) 90
(2) 85

(3) 76

(4) 93

-(B) 81

Then, if the statements

X=105;
ANSWER =POLY(GRADE X) ;

l——» An element variable

Must be a one-dimensional
array

Built-in function name

Result is assigned to ANSWER

are coded, the following arithmetic operations are performed:
90 + 85X + 76X2 + 93X3 + 81X+

The values, 90, 85, etc., are the values contained in the GRADE array,
and X is a constant value defined in the second argument of the

1 94 PL/l Programming

POLY function. The result, then, may be expressed as

Y a(m) * x e |
j=0

where

a is the first argument (a one-dimensional array)
x is the second argument

m is the lower bound of the a array

n is the upper bound of the a array

It is also permissible to specify the second argument, x, as a one-
dimensional array. In that case, the value returned by the POLY
function is defined as* ‘

n—m =1
a(m) + > [a(m +0) * J] x(p + i)]
j=1 i=0

where a, x, m, and n are the same as defined above and p represents
the lower bound of the second argument.

The ALL Built-in Function. This function is used to test all bits
of a given bit-string array. If a// bits in the same position within each
element are ‘1°'B’s, then the result is a "1’B; otherwise, the result is
a '0'B. You may recognize this operation as being the same in logic as
the rules of the Boolean AND operation. Here is an example :

DCL BIT_ARRAY(4) BIT(6);
DCL RESULT BIT(6) ;
RESULT=ALL(BIT_ARRAY);

I————» Argument must be an array; if

the elements are not bit-strings,
they are converted to bit-strings

Built-in function name

Resulting bit-string is assigned
to RESULT

Assume that the BIT_ARRAY elements have b=en initialized to the

DO’s and Dimensions 195

following bit-string configurations::

BIT_ARRAY (1)
2)
(3)
(4)

RESULT

When a// bits are ‘1'B’s,
the resulting bit is a ‘1'B

The ANY Built-in Function. This function is used to test the bits
of a given bit-string array. If any bits in the same position of the elements
of an array is a "1'B, then the result is a "1'B; otherwise, the result is
‘0’B. You may recognize this operation as being the same in logic as the
Boolean OR operation. Here is an example:

DCL BIT_ARRAY(4) BIT(6);
DCL RESULT BIT(6);
RESULT=ANY(BIT_ARRAY);

!-—— Argument must be an array ; if

the elements are not bit-strings,
they are converted to bit-strings

Built-in function name

Resulting bit-string is placed
here

Assume that the BIT_ARRAY elements have been initialized to the
following bit-string configurations;

BIT_ARRAY (1)
(2)
(3)
(4)

195 PL/lI Programming

RESULT

When any of the bits is a
‘1'B, the resulting bit is
a ‘1B

Assume that the temperature for each day of a given year has been
punched into a card. It is desired to input these values and find the
mean (average) temperature for the year. The statements to accomplish
this are simple. First, we begin by declaring an array to contain the
year's daily temperatures as well as a single variable to contain the
mean:

DCL TEMPERATURES(365) FIXED(4,1);
DCL AVERAGE_TEMPERATURE FIXED(4,1);

Next, it would be necessary to read the values into the array. This
can be accomplished with the following GET LIST statement:

GET LIST(TEMPERATURES);

Notice that only the array name is specified in parentheses following
the keywords GET LIST. In this case, data items will be read from the
input stream until the entire array has been filled with data or an
end-of-filte condition is detected. Here, it would not be desirable to
have an end-of-file condition detected before the entire array was set
equal to the daily temperatures for the year. The next step is to find
the average yearly temperature. This is easily accomplished through
the use of the SUM built-in function:

AVERAGE_TEMPERATURE=SUM(TEMPERATURES)/365;

The above problem becomes a bit more complex if it is desired
to write a generalized program that takes into account the number of
days in leap year (366) as well as the number of days in a non-leap
year (365). To do this, our program must first determine the number
of days in the year for which the average temperature is to be found.
Assume that YR is an identifier containing the year for which the mean
is to be found. Leap years are those years whose dates are evenly

SERFEL TS

DO’s and Dimensions 197

divisible by four [i.e.,, 1972, 1976, 1980, etc.—except for century
years (i.e., 2000 is not a leap year)]. Thus, if any given year is divided
by 4 and there is no remainder from the division, we know that the
year is a leap year. There is a built-in function that facilitates the
testing of a remainder after a divide operation. The function is called
MOD (for modulo). For example:

Y=MOD(YR.4);

L———» Divisor

Dividend

Built-in function name

Remainder of YR/4 is placed into Y,
providing that YR is positive

The purpose of the MOD function is not to obtain a remainder, but to
return the smallest positive number that must be subtracted from the
first argument in order to make it exactly divisible by the second argu-
ment. This means that if the first argument is positive, the returned
value is the remainder resuiting from a division of the first argument by
the second. If the first argument is negative, the returned value is the
modular equivalent of the remainder. For example, MOD(—-29,6)
returns the value 1:

—4
6[—29

—24
—5 Remainder

6 -5=+1

!——— Result returned by MOD

—5 was the remainder after division

Divisor

198 PL/l Programming

To determine the number of days in the year, then, we could code
the following statements :

IF MOD(YR,4)=0 THEN LIMIT=1;
ELSE LIMIT=0;
NO_DAYS=365+LIMIT;

However, as the solution to this problem is developed, you will see
that we need to have the variable LIMIT contain the number of days
in February. Thus, the following coding will be used:

IF MOD(YR,4)=0 THEN LIMIT=29;
ELSE LIMIT=28;
NO_DAYS=337+LIMIT;

(The constant 337 was selected because that is the number of days
in the months of the year excluding February.) It will be necessary to
declare the TEMPERATURES array with enough elements to include
the extra day in leap year. For example:

DCL TEMPERATURES(366) FIXED(4,1);

If we wish to read temperatures into this array using the statement

GET LIST(TEMPERATURES) ;

366 values will be taken from the input stream and assigned to the
corresponding elements of the array. A total of 366 values will be read,
because that is the declared length of the TEMPERATURES array.
However, for a non-leap year, we would only want to read 365 values.
The problem, then, is how do we write a program that will input 365
values on one occasion and 366 values on another occasion? The
jterative DO statement provides a simple solution. There are three
general forms of the DO statement:

DO’s and Dimensions 199

(Example : Comment A
Type 1| DO; This DO-group is
. noniterative ;
generally, it is
. executed only
END; once

Type 2| DO WHILE(expression) ; Used to specify

. repetitive execu-
tion of the state-
. ments within the
END; group

Type 3| DOi=nTOjBY k WHILE (expression); |Used to specify
. repetitive execu-
tion of the state-
. ments within the
END; roup
? _

The DO-Group—Noniterative

Type 1 has already been explained in Chapter 2. Recall that this
DO-group is to be treated logically as a single statement. It is used
in an |F statement to specify a group of statements to be executed in
the THEN clause or the ELSE clause.

The DO WHILE

Type 2 is the DO WHILE statement. It specifies that the instruc-
tions contained between the DO and its corresponding END are to be
executed repetitively as long as the expression following the WHILE
is true. For example, in controlling the number of temperatures to be
summed, we could code the following (recall that NO_DAYS has

200 PL/l Programming

previously been set to either 365 or 366, depending on whether or
not we are reading data for a leap year) :

I=1;

TOTAL=0;

DO WHILE (I<=NO_DAYS);
TOTAL=TOTAL+TEMPERATURES(l);

I=1+1;

END;
AVERAGE_TEMPERATURE=TOTAL/NO_DAYS;

The statements contained in the DO-group will be executed a repetitive
number of times; they will be executed as long as “I” is less than or
equal to the limit found in NO_DAYS. The expression following the
WHILE is tested before any statements in the DO-group are executed.
Thus, it is possible that the statements following a DO WHILE and
terminated with an END may never be executed. This would occur
when the expression tested is false. When using the DO WHILE, a
program must always provide, in some way, for the modification of
the expression following the WHILE, so that eventually the expression
is no longer true. Do you see what would happen had the statement

I=1+1;

not been included in the above example? It is obvious that the pro-
gram would be caught in an interminable loop. One solution to the
problem could be to use this form of the DO WHILE:

DO I=1 BY 1 WHILE(I<=NO_DAYS);

Here is another example of the DO WHILE:

DCL SWITCH BIT(1) INIT("1'B);
DO WHILE(SWITCH) :

L—» As long as SWITCH is true (i.e.,

. ='1'B), the DO-group will be
END; repetitively executed

The DO-Group—lterative

The format of the type 3 DO solves our problem of reading data
using GET LIST where the number of input values may be either 365

EE

DO’s and Dimensions 201

or 366. Here is one solution :

DO I=1 TO NO_DAYS;
GET LIST(TEMPERATURES(1));
END;

Before continuing with the calculation of the average temperature
problem, let us pause to consider the DO statement in more detail.
Note the terminology used to describe various parts of the iterative DO :

DO I=1 TO 10 BY 1;

‘ I___—> Modification value
Keyword

Limit value

Keyword

Initial value

Control variable

Keyword

The iterative DO statement performs the following steps in the sequence
listed :

1. Initialize the control variable: This variable (I, in the above
example) will be set equal to the initial value (1, as specified
above). Greater program efficiency results if you select a
FIXED BINARY identifier for your variable. You may not modify
this variable inside the DO-loop, although it is permitted to
reference it on the right side of the assignment symbol.

2. Test control variable: If the control variable is less than or
equal to the limit value, execute the sequence of statements that
follow the DO ; otherwise, transfer to the statement following the
END statement that terminates the DO.

3. Execute statements following the DO: The statements headed
by the DO and terminated by ‘the END are exectuited.

4. Modify control variable: The modification value is added to the
control variable. Using the example above, the constant 1 is
added to the contents of |. After the modification of the control
variable, return to step 2.

202 PL/l Programming

Consider the value of the contro/ variable each time through the
loop. For example, in the statement

DO K=1 TO 100 BY 5;

the first time through the loop, K will be equal to 1. The second time
through the loop, K will be equal to 6. Recall that the modification
value, in this case 5, is to be added to the control variable (5 + 1 = 6).
The third time through the loop, K will be equal to 11. The last time
through the loop, K will be equal to 96. When the modification value
of 5 is added to K, K becomes 101. Then, when the test on the control
variable is performed, the DO-loop is terminated, because K is greater
than the limit value.

The preceding explanation of the steps performed in a DO-loop
apply when the modification value is positive. It is also possible to
specify a negative modification value, in which case a “count down”
operation is in effect. For example, in the loop

DO K=60 TO 1 BY —1;

END:

the steps performed would be the following:

1. Initialize K to 60.

2. Test K: If the control variable is greater than or equal to the
limit value, execute statements that follow the DO ; otherwise,
transfer to the statement following the END. (In the above
example, when the loop is terminated, K will be equal to 0.)

3. Execute statements following the DO.

4. When END is encountered, modify K by —1. Then, return to
step 2.

So far, you have been introduced to this form of the DO :

DO I=1 TO 100 BY 1;

Notice in the following variation of the above DO statement that the
BY 1 and the 7O 100 have been reversed:

DO I=1 BY 1 TO 100;

DO’s and Dimensions 203

Also, if the modification value is a 1, it is not necessary to specify it.
For example, the statement

DO I=1 TO 100;

END ;

accomplishes the same number of iterations as if

DO I=1 TO 100 BY 1;

END;

had been coded. Or, the limit value may be omitted from the DO. For
example :

DO I=1 BY 1;

END;

In the above, the termination of the DO-group must be accomplished
by other coding within the DO, as there is no comparison made with a
limit value. However, if there is no other coding to terminate the DO,
the control variable will eventually be increased to the point where an
overflow (FIXEDOVERFLOW or OVERFLOW) condition is raised.

In a DO, the initial value, the limit value, and the modification
value may be specified in the form of constants, variables, or expressions.
In addition, these values may be whole numbers, fractions, or mixed
numbers, and they may be positive or negative. Here are some examples:

DO I=K«2 TO K«56 BY J-4;
DO A=.1TO 1 BY .1;

DO B=15 TO 10 BY .025;
DO J=5 TO -5 BY —1;

204 PL/l Programming

Here is another variation of the DO—it makes use of the multiple
specification:

DO ICNT=1 TO 10, 21 TO 30, 41 TO 50;

[———— Implied DO ICNT =21 to 30;

END ;

In this example, the loop would be executed 30 times. ICNT goes from
1 to 10; then ICNT is initialized to 21 and goes to 30; finally, ICNT is
set to 41 and goes to 50 in the loop. Upon exit from the loop, ICNT
would contain the value of 51. Note that it is not necessary to specify
any numeric sequence or pattern in this form of the DO. For example:

DO K=1 TO 5, 8 TO 18 BY 2, 50 TO 55, 40 TO 44;

END;
Another form of the DO is shown below :
DO J=1,8,9,11,6,13;

END;

The statements in the above DO-loop will be executed a total of six
times. The first time through the loop, J will be a 1; the second time,
J will be an 8; the third time J will be a 9; etc. Upon exit from the loop
J will be a 13.

It is also possible to include the WHILE option with the iterative
DO we have been examining. For example:

DO K=1 TO 10 WHILE(X>100);

END;

As in the case of the iterative DO, the expression following the WHILE
is tested before statements following the DO are performed. If the
expression is true, the DO-loop will be executed. If X remains greater

DO’s and Dimensions 25

than 100, the loop will be performed a maximum of ten times. However,
if the expression is false, in this example, when X< =100, then there
is a transfer to the statement following the END statement.

In the following example, the DO specifies that the group is to be
executed at least ten times, and then (providing that A is equal to B)
once more:

DO I=1 TO 10, 11 WHILE(A=B);

END;

If “BY O were inserted after the 11,
DO I=1 TO 10, 11 BY 0 WHILE(A=B);

END;

then execution would continue with | set.to 11 as long as A remained
equal to B. Note that a comma separates the two specifications. A
succeeding specification is considered only after the preceding specifi-
cation has been satisfied.

Nested DO-Groups
DO-groups may be nested within other DO-groups. For example :

DO I=1 TO 99;
DO J=1+1 TO 100;

END;

END;

All statements in the range of the inner DO must be within the range of
the outer DO. This arrangement of DO-groups is refefred to as nested

206 PL/I Programming

DO-groups and takes the following form (brackets are used to indicate
the range of the DO-groups) :

DO
DO

%

The following configuration is not valid :

DO
DO

It is possible to transfer out of a DO-group before the maximum number
of iterations have been performed. However, the rules of the PL/I
language are that it is not permitted to transfer to a statement in an
iterative DO-group.

For an example of nested DO-groups, let us return to the problem
of calculating the average temperature for the year. Recall that all
temperatures for the year are in the TEMPERATURES array. TEMPERA-
TURES(1) through TEMPERATURES(31) contain the daily tempera-
tures for the month of January; TEMPERATURES(32) through either
TEMPERATURES(59) for non-leap year or TEMPERATURES(60) for
a leap year contain the daily values for the month of February; and
so on. Assume it is desired not only to find the average yearly tempera-
ture but also to calculate the average monthly temperature. The average
temperature for each month is to be placed into a 12-element array
called MONTHS. Recall, also, that it was the MOD function that
established the number of days in February. For example:

IF MOD(YR,4)=0 THEN LIMIT=29; ELSE LIMIT=28;

The identifier LIMIT contains the number of days in February. Now
let us look at the nested DO-groups needed to calculate average
monthly temperatures :

J=1;
M=1;

OUTER: DO K=31,LIMIT,31,30,31,30,31,31,30,31,30,31;
TOTAL=0; | S

DO’s and Dimensions 207

INNER : DO L=M TO K+M-1;
TOTAL=TEMPERATURES(L) + TOTAL;
END INNER;
MONTHS(J) =TOTAL/K;
J=J+1;
M=L;
END OUTER;

The variable J is used to identify the month for which the average
temperature is being calculated. Thus, J will start at 1 and go to 12.
The variable M is used to identify the julian dayt. It will start at 1 and
go up to 365 or 366.

The outer DO statement consists of 12 specifications; each
specification represents the number of days in each month beginning
with January. The DO-group will be executed 12 times, because 12
specifications are listed. The variable TOTAL is used to accumulate
each month’s temperatures.

The inner DO-group sums the temperatures for a given month.
(Note the expression specified for the limit value in the inner DO.)
When all the values for a given month have been accumulated, there
is a transfer out of the inner DO. The transfer is to the statement in the
outer DO that calculates the average monthly temperature and assigns
that value to the corresponding position of the MONTHS array [e.g.,
MONTHS(1) contains the January average temperature, MONTHS(2)
contains the February average temperature, etc.]. The variable J is
then incremented to point to the next month for which the mean is to
be found. The variable M is set equal to L, where L is pointing to the
next sequential numbered day in the year. When the

END OUTER;
statement is encountered, K is set equal to the next specification in
the DO, and there is a transfer to the statement

TOTAL=0;

The nested DO-groups are concluded when the mean has been found
for each of the 12 months in the year.
Figure 4.1 summarizes the allowable forms of the DO statement.

tJulian day numbers are the days of the year numbered consecutively; e.g., julian day
“32" would be February 1.

Gom

TO BY WHILE Example Explanation
0 (0 0 0 DO; Merely delimits a group
0 0 0 w DO WHILE (X>0); Do-group performed only
if WHILE is true
0 All other combinations with the fromi omitted are invalid
w | W w W DO 1=1TO N BY 2 WHILE | If the WHILE is true, re-
(X>0); peat DO-group a maxi-
mum of N/2 times
W | W w 0 DOI=1TONBY 2; Without the WHILE speci-
assumed to fied, it is implied to be
be true true ; hence, repeat DO -
group a maximum of
N/2 times
W | W 0 0 DOI=1TON; Repeat DO-group a maxi-
assumed to | assumed to mum of N times; ex-
be 1 be true ample implies :

DOI1=1TONBY 1;

Wi DD T e

0 0 0 DOI=2; Execute DO-group once;
assumed to | assumed to | assumed to the example implies the |
be the be 1 be true following DO :
same as DO 1=2TO 2BY 1
from WHILE(0=0);
value
0 w w DO 1=2 BY 2 WHILE Repeat DO-group as long
(X>0); as WHILE is true; DO
is stopped by "not-
true” WHILE
0 W 0 DO 1=2BY 2; The DO is stopped only
assumed to by other coding
be true
0 0 w DO I=2 WHILE (X>0); DO once if WHILE is
assumed assumed to true ; example implies
from be 1 DO 1=2TO 2BY 1
value WHILE (X>0);
W 0 w DO =1 TO N WHILE If the WHILE is true, re-
assumed to (X>0); peat DO-group a maxi-
be 1 mum of N times
J
FIGURE 4.1 Allowable forms of the DO statement. (Key: W = written; O = not written.)

210 PL/I Programming

The term FROM used in the chart refers to the initial value assigned to
the control variable; i.e.,

DO I=1 TO 50 BY 2 WHILE(A=1);

[

The word from in
Figure 4.1 refers
.to the starting
value

The Repetitive Specification of a Data Item

In stream [/0, data list elements may contain a repetitive specifica-
tion which is similar to the iterative DO. For example:

GET LIST((TEMPERATURES(l) DO I=1 TO NO_DAYS));

|- Each repetitive specification must S
be enclosed in parentheses

Even if the repetitive specification is
the only element in the data list, this
outer set of parentheses is required

In the case of the repetitive specification of a data item, an END state-
ment is not used to terminate the DO in the data list.

Repetitive specifications may be nested; that is, an element of a
repetitive specification can itself be a repetitive specification. Each
DO portion must be delimited on the right with a right parenthesis,
with its matching parenthesis added to the beginning of the entire
repetitive specification. For example :

GET LIST(((A(1,J) DO i=1 TO 5) DO J=3 TO 7));

When DO portions are nested, the rightmost DO is at the outer level.
Thus, the above GET statement is equivalent to

DO J=3 TO 7;
DO I=1 TO 5;
GET LIST(A(1,J));
END;

END;

Here is an example of several data list items containing repetitive
specifications :

GET LIST((A(I)DO I=1 TO 50),(B(J),C(J)DO J=1 TO 12));
L S o

DO’s and Dimensions 211

Returning to the calculation of temperatures problem, Figure 4.2
shows a flowchart for a program that will read daily temperatures for a
given year and calculate the average yearly temperature. You have
already seen segments of the program given in Figure 4.3; the entire
program is shown to tie together those segments that were explained
in this chapter. The topics illustrated in the program include :

1. Array manipulation

2. Nested DO-groups

3. DO in STREAM I/0O

4. Initialization of arrays in a DECLARE
5. MOD and SUM built-in functions

Comments About the Program

Before studying the following comments, examine the program
shown in Figure 4.3. Some of the statements should be familiar to you,
so they will not be explained.

Statement 5. The SUM built-in function is used to total all values
in the TEMPERATURES array. It is necessary to initialize the 366th
element of this array to a zero value because on non-leap year, only
the first 365 elements will contain meaningful data. If we do not
initialize the 366th element, the value in TEMPERATURES(366) is
unpredictable.

Statement 10. The variable K is used as an index variable in state-
ment 19. Normally, we would implicitly or explicitly declare index
variables to have the FIXED BINARY(15) attributes, for that is the most
efficient method. However, because K will subsequently be used in an
arithmetic operation (see statement 24), K was declared to have the
FIXED DECIMAL attributes. This avoids, in statement 24, having a
mixed data type of arithmetic operation. (See Chapter 2 for a review of
mixed data type operations.)

Statements 11-14. The year for which the subsequent temperature
data applies is read. Then the MOD function is invoked to determine
if YEAR is a leap year. Finally, NO_DAYS is set equal to the number of
days in YEAR.

Statements 15—-16. The GET LIST statement reads values into the
TEMPERATURES array, and the AVERAGE_TEMPERATURE is com-
puted. N ,

Start

Read the

NO_DAYS=365

NO_DAYS=366

Read as many
temperature
as NO_DAYS

Calculate

average
yearly
temperatures

Calculate
average
monthly
temperature

If ENDFILE
detected before
all data read

Print

error
message

FIGURE 4.2 Temperatures flowchart.

DO’'s and Dimensions 213

1 TEMPS: PROC OPTIONS{MAIN);

2 DCL CARDIN FILE INPUT STREAM ENV {(F(80)MEDIUM{SYSIPT,2540)):
3 ON ENDFILE{CARDIN) GO TO ABENDS

4 DCL TEMPERATURES{366) FIXED(4,1)3

5 TEMPERATURES(366) = 03

6 DCL MONTHS{12) FIXED(4,1):

7 DCL AVERAGE_TEMPERATURE FIXED{(4,1);

8 DCL TOTAL FIXED(641)3

9 OCL YEAR FIXEDU(4)3

10 DCL K FIXEDI(3)3

11 GET FILE(CARDIN)ILIST(YEAR):

12 IF MOD{YEAR,4) = O THEN LIMIT=29; ELSE LIMIY =283

14 NO_DAYS = 337 + LIMIT3

15 GEYT FILE{CARDIN)LIST{(TEMPERATURES{I)} DO I=1 70O NO_DAYS)):
16 AVERAGE_TEMPERATURE = SUM(TEMPERATURES) / NO_DAYS +,05:
17 J =13

18 M =13

19 OUTER: DO K=31,L1MIT,31,30,31,30,31,31,30,31,30,31;

20 TOTAL = 03

21 INNER: D0 L = M TO K+¢M-13

22 TOTAL = TEMPERATURESIL) + TOTAL:

23 END INNERS

24 MONTHS(J) = TOTAL / K3

25 Jd = J + 13

26 M o= L3

27 END OUTER:

28 PUT LISTU'JANUARY? , *FEBRUARY' , *MARCH? , * APRTL'} 3

29 PUT SKIP LISTU{MONTHS{(I) DO I=1 TO 4}};

30 PUT SKIP{2ILIST{"™MAY?, ' JUNE', Y JULY', ' AUGUST ') 3

31 PUT SKIP LIST((MONTHS(I) DO I=5 70O 8));

32 PUT SKIP{2ILIST{'SEPTEMBER' ' OCTOBER' ,"NDVEMBER ', * DECEMBER?)3
33 PUT SKIP LIST{{MONTHS({I) DD I=9 TO 12)});

34 PUT LINE(I3LIST{"AVERAGE YEARLY TEMPERATURE ISt*):

35 PUT SKIP(2)LIST (AVERAGE_TEMPERATURE) S

36 RETURNS

37 ABEND: PUT LIST{'LESS THAN 365 TEMPERATURES WERE TNPUT'}:
38 FINI: END;

FIGURE 4.3 Sample program to calculate average temperatures.

Statements 17-27. This sequence of statements was explained
in this chapter under the heading “Nested DO-Groups.” All the
temperatures for a given month are accumulated into the variable
TOTAL. Upon exit from the inner DO, TOTAL is divided by K, where
K is the number of days in a given month. In statement 10, K was
declared to have the FIXED attribute. Had K been allowed to default
to FIXED BINARY(15), and then been divided into TOTAL, which
has the attributes FIXED DECIMAL (6, 1), the accuracy of the average
monthly temperature would have been affected. For example, the
average monthly temperature (calculated on a desk calculator) would
be a value of 64.4; in PL/lI where K is FIXED BINARY(15), TOTAL
is FIXED DECIMAL(6, 1), and TOTAL is divided by K, the quotient
would be 64.3. This error in accuracy is due to the mixed data types
in arithmetic operations. Recall that when FIXED BINARY data is
combined in arithmetic expressions with FIXED DECIMAL, the
DECIMAL base will be converted to BINARY. Thus, TOTAL will be

21 4 PL/l Programming

converted to FIXED BINARY. In the conversion, the fractional portion
of TOTAL may only be an approximation of the decimal fraction (e.g.,
.1 in decimal can only be approximated in binary ; the binary equivalent
in this case will never be exactly equal to the decimal fraction). This
approximation of the fractions affects the accuracy of the result.
The solution to this problem is to avoid mixed data types in the same
arithmetic expression. Hence, K and TOTAL were declared as FIXED
DECIMAL, and we will obtain the accurate answer when the statement

MONTHS(J) =TOTAL/K;

is executed.

Statement 36. The RETURN statement causes the program to be
terminated. The statement

GO TO FiNI;

could appear in place of the RETURN. Either statement accomplishes
the same function. RETURN indicates to “return to the calling program.”
(The calling program in this case is the operating system.) The END,
when it is encountered as the logical end of the program, also accom-
plishes a “return to the calling program’ operation.

Statement 37. In the event that less than 365 temperatures are
specified in the input stream, the ENDFILE statement specifies a
transfer to this “abnormal ending” routine. Thus, an error message
will be printed and the program terminated.

Figure 4.4 shows the sample output from the temperatures calcu-
lation program. Upon closer inspection of this output, you may be
wondering why the numeric values are not “lined-up” or left-justified
under the month’s name. That is, the output is this:

JANUARY
65.4
not this:
JANUARY
65.4

The reason for the indentation of the temperatures under their respective
headings has to do with the rules for data conversion. The output

DO’s and Dimensions 21 5

JANUARY FEBRUARY MARCH APRIL
62.9 57.4 55.8 63.3

MAY JUNE JULY AUGUST
72.9 79.3 98.5 91.2

SEPTEMBER OCTOBER NOVEMBER DECEMBER
85.6 75.3 65.8 66.0

AVERAGE YEARLY TEMPERATURE IS

12.8

FIGURE 4.4 Output from sample program to find average
temperatures.

temperatures have the attributes FIXED DECIMAL (4, 1). The rule for
converting FIXED DECIMAL data to a character-string is this:

Character-string length = Precision of decimal value +3

The constant of 3 was selected to allow room for the following :

1. A leading blank

2. A minus sign, if value is negative; otherwise, a blank for a
positive value

3. A decimal point, if the value is a mixed number

Thus, in Figure 4.4, we see the numeric data printed as character-strings
of length 7. To illustrate :

123 45 6 7« Print positions

JANUARY
60.9

L Decimal point insert
Leading zero on the data value (i.e.,
060.9) is automatically replaced by

a blank

Blank for positive values

Leading blank

216 PL/I Programming

“Now,” said Rabbit, “'this is a Search and I've organized it—"
“Done what to it?” said Pooh.

“QOrganized it. Which means—well, it's what you do to a
Search when you don't all look in the same place at once.”

from The House at Pooh Corner
by A. A. Milne

The binary search technique is a method that may be used for locating
data in a table. As an illustration, assume that two tables are stored on
a direct access device. These tables consist of codes and corresponding
premiums. For exampile :

Codes (1) 107 Premiums (1) | 25.90
(2) 137 (2) | 35.16
(3) 243 (3) | 14.75
(4) | 375 (4) | 47.35
(5) | 49 (5) 5.23
(6) | 503 (6) | 15.34
(7) | 620 (7) 410
(8) | 745 (8) 5.95
(9) | 847 (9) | 13.46
Codes (10) 960 Premiums (10) | 10.57

In an insurance application, each code in the table identifies a
specific type of coverage offered by the insurer. The corresponding
premium is the cost that the insured must pay for that coverage. Typi-
cally, the tables in which the codes and premiums are stored are fairly
large, although only ten items are shown here for purposes of simplicity.

Assume that both tables (Codes and Premiums) are read into
main storage from the direct access device in the initialization phase of
the program. The codes in the table called “Codes” are referred to as
the table arguments. These codes are in ascending sequence.

Assume that it has been determined that several coverages are

DO’s and Dimensions 217

to be included in a given insurance policy for a customer. Codes
indicating the types of coverage desired, along with the customer name,
are punched into a card; e.g.,

1 20 80

-
K. R. LUND 375{243: 491:107

[

|
oo
e
|
o

These card codes (a maximum of 20 per customer) are referred to as
the search arguments. The program reads each search argument from
the card and “searches” the codes table for an equal code. When
equality is found, the corresponding premium should be added to a
total. When all premiums have been summed up for a given customer,
the customer’'s name and total premiums due are printed. If a card
contains an invalid code (one not in the table), an error message is
printed and the card record is bypassed. The term table function is often
associated with table look-up techniques. The table function in this
case is the retrieval of the corresponding premium and the accumulation
of premiums to give a total for each customer. Because the purpose
of this case study is to illustrate the binary search technique, the
program keeps to a minimum the processing and formatting of output.

One method for locating a code in the codes table is to take the
search argument and compare it with each table argument, beginning
at the top of the table and sequentially continuing down the table
until either an equal compare occurs or the end of the table is reached.
Because the search arguments (card codes) are in random order, each
new search through the codes table must begin at the top of the
table. If the codes table contains 500 table arguments, the sequential
method of comparing is time-consuming. If the table arguments are
sequentially organized, as they are in the codes table, another way to
locate the desired code is to use the binary search method. In a binary
search, the technique is to take the search argument and compare it
with the middle table argument. For example, if there are 500 table
arguments, the search argument is to be compared with the 250th
table argument. If the search argument is greater than the table argu-
ment, we know that the corresponding code for the search argument
must lie within the second half of the table. This method allows us to
eliminate searching half of the table with just one compare. Of course,

21 8 PL/l Programming

Table arguments

Codes _ 107

Search argument P — 137

K. R. LUND 375 T 243

=~ 375

491

503

620

745

847

960

for this method to work, the table arguments must be sorted into
ascending sequence. The binary search method is so named because
the technique is to divide each remaining portion of the table in half
and compare the search argument with the table argument until an
equal compare occurs or the last compare has been made. What is
so striking about this method is that after two compares, three-fourths
of the table has been eliminated from the search.

Figure 4.5 illustrates a generalized algorithm for a binary search.
To see the logic of the algorithm, it is suggested that you select a
search argument and work through the flowchart using the ten-
element codes table illustrated in the introduction of this case study.
Figure 4.6 illustrates a solution to the insurance premium calculation
program.

Comments About the Case Study

Statements 4—9. The single variables and arrays are declared. The
array CODES will contain the table arguments and the array PREM
will contain the corresponding insurance premiums. The array CCODE
has been dimensioned for 20 elements, thereby allowing for up to
20 codes to be specified per customer.

Statements 10-12. The table arguments and premiums are initia-
lized with data from input cards.

Set
LOW = MID + 1

Search argument >
Table argument

FIGURE 4.5 Algorithm for binary search.

Start

Read table
arguments
into main
storage

Read a
search
argument

Set LOW = 1

]

Set HIGH =
number of
elements

Error

Set MID =
(LOW -; HIGH)

X

_Compare _
search argument _Search argument =
with Tabl
table argument able argument

e
Search argument <
Table argument

Set
HIGH = MID - 1

routine:
“code not
in table”

Retrieve and
process
table
function

220 PL/l Programming

1 CASE: PROC OPTIONS({MAIN);

2 DCL CARD FILE INPUT STREAM ENV(F{8O)IMEDIUM{SYSIPT,2540))3
3 ON ENDF ILE{CARD)IGO TO EOJ3

4 DCL NAME CHAR(20};

5 DCL CCODE{20) FIXED(3):

6 DCL (MID,HIGH,LOW) FIXED(3)3

7 DCL TOTAL FIXED(5,2);

8 DCL CODES{10) FIXED(3);

9 DCL PREM({10} FIXED{(S,2):

10 DO J =170 10;

11 GET FILE(CARDILISTICODES(J)PREMIJI))
12 END3

13 Pl: GET FILE(CARD)LIST{NAME,CCODE);

14 TOTAL = 03

15 00 J =1 70 203

16 IF CCODE(J)=0 & TOTAL —-=0 THEN GO TO PRINT;
17 IF CCODE(J)=0 & TOTAL=0 THEN GO TO P13

18 LOW = 13

19 HIGH = 103
20 P2 If HIGH < LOW THEN DO3
21 PUT SKIP LIST{'UNABLE TO FIND CODE IN TABLE FOR'):
22 PUT SKIP LIST(CUSTOMER_RECORD};
23 GO YO P13

24 END 3
25 - MID = (LOW + HIGH) /23
26 IF CCODE(J) > CODES{MID) THEN NOD3:
27 LOW = MID +1;

28 GO TO P23
29 END:
30 IF CCODE(J) < CODES(MID) THEN DO
31 HIGH = MID - 13

32 GO TO P23

33 END;

/* RETRIEVE DATA & PROCESS */

34 TOTAL = TYOTAL + PREM{MID);

35 END;

36 PRINT: PUT SKIP LIST{NAME,TOTAL):

37 GO 1O P13

38 EOQJ: END3

FIGURE 4.6 Solution for table look-up using binary
search technique.

Statement 13. A customer card is read. It contains the customer’s
name and up to 20 codes indicating type of insurance coverage.

Statement 14. TOTAL is set to zero. The premiums due for each
type of coverage are accumulated into TOTAL.

Statement 15. A DO-loop is established to process a maximum of
20 codes.

Statement 16. When a code in the card is zero, it means that there
are no more search arguments in the input record. If TOTAL is nonzero,
then it is time to print the customer’s name and total amount due in
premiums.

Statement 17. Should a search argument be zero and the TOTAL

B s

DO’s and Dimensions 221

is zero, then this card record is probably in error. It is simply by-passed.
In standard applications, however, it would be advisable to print an
exception message whenever a record is by-passed, because its format
does not match the expected format.

Statements 18-19. LOW and HIGH are initialized.

Statements 20-24. The relationship of HIGH to LOW is tested.
Should HIGH be less than LOW, then there was no corresponding
table argument for the specified search argument. In this case, an
error message is printed and there is a branch to the place in the
program (P1) where another card record is to be read.

Statement 25. The midpoint of the argument table is calculated.

Statements 26—33. The search argument is compared with the
table argument. The HIGH or the LOW point indicator is adjusted,
depending on the relationship between the search argument and the
table argument.

Statement 34. Should the search argument match the table argu-
ment, then the data is to be retrieved from the PREM array and pro-
cessed. The “processing’ consists of simply accumulating the premium
into TOTAL.

Statement 35. This END statement terminates the DO in state-
ment 15.

Statements 36—37. The customer's name and total amount due
is printed, and then control is returned to statement 13.

Statement 38. The program is terminated when the end-of-file
condition is encountered.

Arrays: An array is a table of data items in which each item has the same
attribute as every other item in the array. An array has storage reserved for it by
means of a DECLARE statement.

Bounds: In declaring the size of an array, a bound is specified. All arrays
have upper and lower bounds. When a single bound is specified, it is the upper
bound. The lower bound would then be assumed to be 1.

222 PL/l Programming

Dimensions: The number of sets of upper and lower bounds specifies the
number of dimensions in an array. In referring to two-dimensional arrays,
sometimes the terms rows and columns are used. Maximum number of
dimensions allowed in subset language is 3; in full language, 15.

Subscripting: We reference an element of an array by means of a subscript
which appears in parentheses following an array name in an expression; e.g.,
TABLE(7) refers to the seventh element in the array called TABLE. Subscripts
may be constants, variables, expressions, or subscripted subscripts; e.g.,
TABLE(J(K)).

SUBSCRIPTRANGE Condition: In the full language PL/l compilers, refer-
encing a location outside the bounds of the array will cause the SUBSCRIPT-
RANGE condition to be raised if the condition is enabled. Because this con-
dition is initially disabled, it will be necessary to enable the condition in your
program. The SUBSCRIPTRANGE condition is a useful debugging tool, for
it is during the program checkout phase that you are most likely to inadvertently
specify a subscript that references a nonexistent position of an array.

Cross Sections of Arrays: In the full language, a subscript may also be
an asterisk, in which case, it specifies the entire extent of the dimension. This
extent is referred to as a cross section of an array. A subscripted name containing
asterisk subscripts represents not a single data element, but, rather, a larger part
of the array ; e.g., PERCENT(*,1) refers to all of the elements in the first column
of the array called PERCENT.

I/0 Operations and Arrays: In the absence of explicit element addressing,
data items are read into arrays starting with the lowest numbered subscripted
element and finishing with the highest subscripted element. If a multidimensional
array is specified in an 1/O statement, the right-hand subscript varies most
rapidly.

Array Assignments: There are two types of move operations that may be
specified for arrays—scalar-to-array and array-to-array :

1. Scalar-to-array: In this type of array assignment, an entire array is
assigned a single value.

2. Array-to-array: In this case, one array may be assigned to another
array, providing the arrays have identical bounds.

Array Expressions: An array expression is a single array variable or an
expression that includes at least one array operand. Array expressions may
also include operators (both prefix and infix), element variables, and constants.
Evaluation of an array expression yields an array result. All operations performed
on arrays are performed on an element-by-element basis. All arrays referred to
in an array expression must have identical bounds.

Arrays and the LABEL Attribute: Usually, arrays are used to manipulate
arithmetic data or perhaps character- or bit-strings. However, it is also possible

[Er e i

DO’s and Dimensions 223

to declare an array to have the LABEL attribute, in which case, each element of
the array may contain a label.

Array Manipulation Built-in Functions: Aill of these functions require
array name arguments, and they return, as a result, a single value. Because only
a single value is returned from these functions, a function reference to any
array function is considered an element expression, as contrasted with an array
expression. The array manipulation built-in functions include :

1. The SUM built-in function: This function finds the sum of all elements
in an array.

2. The PROD built-in function: This function finds the product of all the
elements of an array. Not available in the subset language.

3. The POLY built-in function: This function is used to form a polynomial
expansion from two arguments.

4. The ALL built-in function: This function is used to test all bits of a given
bit-string array. If all bits in the same position within each element are
1'B’s, then the result is a ‘1'B; otherwise, the result is a ‘0’B.

5. The ANY built-in function: This function is used to test the bits of a
given bit-string array. If any in the same position of the elements of an
array is a ‘1'B, then the result is a "1'B; otherwise, the result is '0'B.

The DO Statement: There are three general forms of the DO statement :

1. The DO-group—noniterative: Specifies that the DO-group is to be
treated logically as a single statement. It is most often used in an IF
statement to specify a group of statements to be executed in the THEN
or ELSE clause.

2. The DO WHILE: Specifies that the instructions contained between the
DO and its corresponding END are to be executed repetitively as long as
the expression following the WHILE is true.

3. The DO-group—iterative: Specifies that instructions contained be-
tween the DO and its corresponding END are to be executed repetitively
until the index variable is greater than the limit value; e.g., DO K=1
to 100; when K=101, loop is terminated. Review Figure 4.1 for a sum-
mary of the various formats of the DO statement.

The Repetitive Specification of a Data Item: In stream 1/0, data list
elements may contain a repetitive specification which is similar to the iterative
DO: eg.,

GET LIST((TABLE(K) DO K=5 TO 10));

Nested DO-Groups: DO-groups may be nested within other DO-groups.
All statements in the range of the inner DO must be within the range ef the
outer DO. It is possible to transfer out of a DO-group before the maximum
number of iterations have been performed. However, the rules of the PL/I
language are that it is not permitted to transfer to a statement in an iterative
DO-group.

224 PL/l Programming

10.

In a DECLARE statement, how can you tell whether an attribute is a
precision attribute or whether it defines the number of elements in an
array?

In reference to an array, what are bounds?

When a /ower bound is not specified in an array declaration, what is it
assumed to be?

(True or False) A one-dimensional array would appear differently in
main storage from the way a two-dimensional array of the same number
of elements would appear.

How do you reference individual elements of an array?

Under what circumstances will the SUBSCRIPTRANGE condition be
raised?

What will C contain when the following assignment statements are
executed ?
DCL A(3) FIXED BINARY INIT(55,56,57);
DCL B(5) FIXED BINARY INIT(3,3,2,21);
K=2;
C=A(B(K));
Given the statement
DECLARE X(10);
which of the following statements are equivalent?
(a) GET LIST(X);
(b) GET LIST((X(K) DO K=1 TO 10));
(c) DO K=1TO 10;
GET LIST(K) ;
END;

Given the declaration and input statement,

DECLARE TIC(3,3);

GET LIST(TIC);
what will TIC(2,3) contain if the input stream consists of these values
(in the order shown, reading from left to right) :

1,2,3,45,6,7,8 9
(True or False) The following statement causes all elements of the
array to be initialized to zero:

DCL A(100) INIT(0);

11.

12.

13.

14.

15.
16.
17.

18.

19.

DO’s and Dimensions 225

Write the DECLARE statement to initialize all 20 elements of an array
called CODE. Each element is to be five characters long and contain the
alphameric characters

99999
Use the INITIAL attribute.
Write the DECLARE statement to initialize to zero only the first and last
elements of a five-element, one-dimensional array. Use the INITIAL
attribute.

Is the following assignment statement valid? Why or why not?

DCL A(6), B(2,3);

GET LIST(A) ;

B=A;
Array built-in functions perform arithmetic operations on what type of
arguments (e.g.. fixed-point, floating-point, character-string, bit-string,
etc.)?

Identify the array built-in functions that operate on bit-strings.
What are the four steps performed automatically in an iterative DO ?

Given the following iterative DO, what will K be equal to upon exit from
the loop?

DO K=1 TO 50 BY 2;

END;
In which of the following PL/| statement types may a repetitive specifica-
tion appear?
(a) Assignment statement
(b) DECLARE statement
(c) Stream |/O statements (GET and PUT)
(d) lterative DO statement

What value would K contain after each of the following program segments
had been executed?

(a) J=3; (b) J=3;
K=4, L=10;
DO M=1toJ; K=2;
K=K+M; DO M=JtoL;
END; K=K+ M
IF K<250 THEN GO TO OUT;
END;

OUT: PUT LIST(K);

226 PL/l Programming

array iterative DO

array expression multiple specification
bound nested DO

control variable repetition factor

cross section repetitive specification
data aggregate row major order
dimension subscript

element subscripted subscript

iteration factor

1. Removing Blanks from Character Data

Problem Statement. Read data cards; remove any blanks from these character-
strings that may be imbedded within the data by “'squeezing up” the data. For
example, if input data is

‘NOW IS THE TIMFE

then, compacted data would be
NOWISTHETIME

Print compacted message.

Purpose of the Problem: To gain experience using arrays and the iterative DO
and/or DO WHILE statements.

Input: Make up your own data for this problem.

Qutput. Should be the compacted message with no imbedded blanks.

Programming Hint: Because you are to read character-strings from the input
stream, it will be necessary to use the DEFINED attribute so that you may
operate on individual characters within the string. That is, it will be necessary
for you to define overlay an array—whose attributes are CHARACTER() —on

iR e e e

DO’s and Dimensions 227

the input character-string. Assume character-strings will have a maximum
length of 75.

FIGURE 4.7 Suggested input data for Problem 2.

2. Sorting an Array of Numbers

Problem Statement: Read ten numbers into an array. Sort the numbers into
ascending sequence, i.e., so that the smallest number is in the first element
of the array and the highest number is in the last element of the array. Print
the numbers after you have sorted them. '

Purpose of the Problem: To gain experience in the manipulation of arrays and
subscripts within DO-loops.

Input Data: Ten numbers in a card in random sequence. Suggested input is
shown in Figure 4.7.

Output Layout Description: See Figure 4.8.

Flowchart: See Figure 4.9. The sorting technique used here is called a
“bubble sort.” The numbers in the array are “flip-flopped” whenever any two
adjacent numbers are not in the proper sequence. The solution calls for searching
through the array until a complete pass can be made without making a single
exchange. When this occurs, the numbers will be in sequence.

SORTED NUMBERS
-99
-41
-31

0
2
5
31
63
72
99

FIGURE 4.8 Problem 2 sample output
using suggested test data.

Set
switch

= ‘g'B

—

DO I =
1t09

Yes Exchange Set
N(} with switch
N{I +1) ='1"B

I

FIGURE 4.9 Flowchart for Problem 2.

Rt S B R

DO’s and Dimensions 229

3. Tag Sorting of Character-Strings

Problem Statement: Read ten character-strings into an array. Using the ''tag
sorting” method (described below), sort the character-strings into ascending
alphameric sequence. Print the character-strings in alphabetic sequence.

Purpose of the Problem: To gain experience in the use of arrays, subscripts,
and DO-loops. This problem demonstrates the use of a subscripted subscript.
It also shows the value of the tag sort method of sequencing.

Input Data: Ten character-strings, each 50 characters maximum in length.
Each string occupies one card image in the input stream and is in the form
acceptable to list-directed 1/0, i.e., is enclosed in quotes. The strings are in
random alphameric sequence in the input stream. Make up your own data for
this problem.

Output Layout Description: Use list-directed output, printing names in a
column.

Flowchart: Use the flowchart for Problem 2.

Tag Sorting Description: Refer to Problem 2 concerning the exchange method
of sorting. The technique employed in that exercise “flip-flopped” the numbers
within the array whenever any two adjacent numbers were not in the proper
sequence. It continued to do this until a complete pass could be made through
the array without making a single exchange. At that point, the numbers were in
sequence. The exchange sorting technique involves a great deal of data
movement, because we physically change the location of the data in the array
we are sorting. In Problem 2, the cost of moving the numbers around was not
too great because each number occupied a small amount of main storage.
However, in this problem we are sorting long strings of data. The cost of data
movement here would be much greater. And, of course, the longer the strings
to be sorted, the greater that cost. Another method of sorting, called tag sorting,
will help us eliminate much of the data movement.

In this approach, we will declare two arrays. The first array will contain
the data (character-strings) to be sorted. For example:

DCL STRINGS(10) CHARACTER (50) ;
The second array will contain the subscripts of the first array :

DCL SUBSC(10)FIXED BINARY(15);

230 PL/l Programming

The second array should be initialized at the beginning of the program to contain
the numbers 1-10 in the first through tenth elements. A picture of the arrays
before sorting might help.

STRINGS(1)
STRINGS(2)
STRINGS(3)
STRINGS(4)
STRINGS(5)
STRINGS(6)
STRINGS(7)
STRINGS(8)
STRINGS(9)

STRINGS(10)

STRINGS

Array containing data to

be sorted

WINEGARDEN, R

QUIGLEY, W

CLAUS, L

KRISE, V

DEMPSEY, D

BENCKE, P

GEE, J

EINSTEIN, A

CHAMBERS, M

RUNDLE, A

SUBSC
Array containing subscripts
STRINGS
1 SUBSC(1)
2 SUBSC(2)
3 SUBSC(3)
4 SUBSC(4)
5 SUBSC(5)
6 SUBSC(6)
7 SUBSC(7)
8 SUBSC(8)
9 SUBSC(9)
10 SUBSC(10)

Now we are ready to begin sorting. Notice that the subscript array acts
as a list of pointers into the data array. In tag sorting, we must always use the
subscript array in accessing the data in the data array. We do this by nesting
subscripts. Nested subscripts are also referred to as subscripted subscripts. An

example of this is

STRINGS (SUBSC (1))

The element of STRINGS to which this refers is that element whose subscript

is found in the Ith element of SUBSC!

Tag sorting now merely becomes an exchange sort where we compare
the elements in the data array, but when an exchange is required, we exchange

T

DO’'s and Dimensions 231

not the data but the subscripts. The coding could be:

IF STRINGS(SUBSCR(!)) >STRINGS(SUBSC(I+1)) THEN DO;
TEMP =SUBSC(I) ;

SUBSC(l) =SUBSC(I+1) ;

SUBSC(I+1) =TEMP;

SW="1'B:

END;

Notice that the data in the array named STRINGS is never moved, only the
subscripts are moved.

After one comparing pass through the data array, the two arrays would
look like this:

STRINGS SUBSC

(1) WINEGARDEN, R 2 M
(2) QUIGLEY, W \\ 3 (2)
(3) CLAUS, L ? 4 (3)
(4) KRISE, V % 5 (4)
(5) DEMPSEY, D \ 6 (5)
(6) BENCKE, P y/\ 7 (6)
(7) GEE, J </\ 8 (7
(8) EINSTEIN, A / 9 (8)
(9) CHAMBERS, M % 10 (9)
(10) | RUNDLE, A 1 (10)

Just as in exchange sorting, you must keep making passes through the data -
array (always referenced through the subscript array) until no exchanges are
required. At that point, the data is still not in sequence (because we did not
move the data). However, the subscript array contains the subscripts of the
data in the right sequence.

232 PL/I Programming

The two arrays, after sorting, look like this:

STRINGS SUBSC
(1) WINEGARDEN, R ’ 6 (1)
(2) QUIGLEY, W 9 2)
(3) CLAUS, L 3 (3)
(4) KRISE, V 5 4)
(5) | DEMPSEY, D 8 (5)
(6) BENCKE, P 7 (6)
%) GEE, J : 4 (7)
(8) EINSTEIN, A 2 (8)
(9) CHAMBERS, M 10 (9)
(10) | RUNDLE, A 1 (10)

The data can now be printed in sequence using nested subscripts.

4. Dollar Bill Change

Problem Statement: Write a program to calculate the number of different
ways a dollar bill can be broken into change (e.g., 1 x 50¢, 1 x 25¢, -25 x 1¢
is one way; 2 x 25¢, 2 x 10¢, 6 x 5¢ is another). Print the answer.

Purpose of the Problem: To write a program using five nested DO-loops,
one of which will be a DO WHILE statement.

Input: There is no input to this problem, as the program will generate the
data.

Output: Print the answer (which is 292) using PUT LIST.

5. Theory of Organizational Relationships

Problem Statement: The complexities of managing people may be described
in terms of mathematical formulas.f As the number of people a manager must
manage increases, so does the possible number of basic relationships increase.

tReference: A FORTRAN Primer with Business Administration Exercises, C20-1605,
IBM, 1964.

DO’s and Dimensions 233

As will be seen, from the computer output of this problem, added numbers of
subordinates illustrates the geometric increase in the complexities of managing
people. Three types of subordinate—manager relationships may be identified as :

1. Direct single: The manager relates directly and individually with his
immediate subordinates. The number of relationships is equal to the
number of subordinates, n. Thus,

SUBORDINATES =n

2. Direct group: The manager interacts with each possible combination
of subordinates. For example, if A as the manager has three subordinates,
B, C, and D, the direct group relationships are

B with C B with D
C with B C with D
D with B D with C

B with C and D

C with Band D

D with B and C

The number of direct group relationships with n subordinates is defined
with the following formula:

GROUP =n(2"/2 — 1)

3. Cross: Subordinates relate with each other. For example, subordinates
B, C, and D can relate to each other in these ways:

BtoC BtoD
CtoB CtoD
DtoB DtoC

The number of cross relationships may be stated as follows:
CROSS =n(n - 1)

From the above analysis, the formula to yield the total number of possible
relationships with n subordinates is:

TOTAL = n(27/2 + n— 1)

Write a PL/l program that will first input the number of different sub-
ordinate values. Then read as many n’s as indicated. For each value of n,
compute the number of relationships in each category described above (i.e.,
SUBORDINATES, GROUP, CROSS) plus TOTAL. Print a table showing the
number of subordinates and the number of relationships for each type.
Purpose of the Problem: To use arrays, referencing the elements by subscripts,
to use the iterative DO statement, and to use the repetitive specification in
GET and PUT statements.

234 PL/I Programming

Input: Suggested input might be

8 1 2 3 4 5 10 15 20

I

Number of subordinates

The number of input quantities
that follow (referred to as IN in
the flowchart for this problem)
Qutput: Sample output is shown in Figure 4.10.

Flowchart: See Figure 4.11.

‘6. Compute Standard Deviation

Problem Statement: Write a program to compute the arithmetic mean (X)
and standard deviation (S,) of a maximum of 100 data items stored in an
array. Use the formulas

n

where n is the number of data items. (Note, in the second formula, that the
numerator under the radical is the sum of squares, not the square of a sum.)

Purpose of the Problem: To manipulate array data in a mathematical type of
program.

Input: Make up your own data for this problem.

Output: Print the standard deviation using list-directed output. Sample output
might be in this form:

STANDARD DEVIATION IS 3.90459E +02

RELATIONSHIPS WITH VARIABLE NUMBER OF SUBORDINATES

NUMBER OF SUBORDINATES CROSS RELATIONSHIPS GROUP RELATIONSHIPS TOTAL
1 o o 1
2 2 2 6
3 6 9 18
4 12 28 44
5 20 15 100
10 90 5110 5210
15 210 245745 245970
20 380 10485740 10486140

FIGURE 4.10 Sample output for Problem 5.

Bl R T

“

DECLARE
arrays

Print
heading

Read
SUB(!) where
I =11t IN

Set up DO--loop
to compute
relationship types

4

N=SUB(l}

T

Compute
GROUP (1)
CROSS (i)
TOTAL (1)

End
of loop?

FIGURE 4.11

Flowchart for Prob- Write SUB (I)

lem 5. (For steps 8283?3 ((Il))
marked with an as- TOTAL (1)

terisk, use repetitive
specification in the
GET or PUT state-
ments.)

236 PL/1 Programming

7. Prime Number Generation .
Problem Statement: A prime number is a number that is not divisible by any
number other than itself and the number 1. All prime numbers other than the
number 2 are odd; but all odd numbers are not prime numbers. Write a program
to determine the numbers that are prime between 1 and 100 and print them out.
Purpose of the Problem: To program nested DO-loops in a mathematical
type of problem that also makes use of integer divide as a means of determining
whether a divisor goes into a dividend without a remainder; i.e.,

Quotient and Remainder = 0

Divisor)Dividend

Input: There is no input, as the program will generate the data.

Processing: The fact that prime numbers are odd suggests that only odd
numbers should be tested for possible prime values; this cuts the computation
time. Further time-saving results by restricting the divisors to previously proved
prime numbers, because even numbers will not divide into odd numbers and
odd numbers that are not prime are divisible by one or more prime numbers.
This, then, becomes the logic of the program. The only other problem is to
devise a method for determining whether a divisor goes into a dividend without

PRIME NUMBERS BETWEEN 1 AND 100

FIGURE 4.12 Sample output for
Problem 7.

Start

t

DECLARE
K to be a
100-element
array

Print
heading

1]

DO | =3 to
100 by 2

|

DOJ=1to M

o

a possible
prime number2

M=M+1
K{M) =1

FIGURE 4.13 Flowchart for Problem 7.

238 PL/l Programming

a remainder. One method is to divide whole numbers by whole numbers and
then multiply the quotient by the divisor. If a value divides without a remainder,
the dividend is recovered after multiplication. For example:

N=1xK;
IF N*K =1 THEN GO TO NO_REMAINDER;
If the number divides with a remainder, a number smaller than the dividend
results—indicating that the number is a possible prime number.
Output: See Figure 4.12 for sample output format.
Flowchart: See Figure 4.13 for suggested program logic.

il i i

thapter 5

Ctream 1/0)

ln stream /0, all input and output data are considered to be in the
form of a continuous stream of characters. In stream input, characters
from the input stream are converted to the internal attributes of the
identifiers specified in the GET statement. On output, coded arithmetic
data is automatically converted back to character form before the output
takes place.

You have already been introduced to one of the forms of stream
I/O: list-directed. This chapter will discuss the remaining forms:
edit-directed and data-directed. The DISPLAY/REPLY statement will
also be covered.

Introduction

Each form of stream /O offers the PL/l programmer certain
advantages and disadvantages. Advantages of list-directed 1/O are
that it is easy to code and it is a useful debugging tool. A disadvantage
of GET LIST is that the data items must be PL/l constants separated
by blanks or commas and, hence, more space is usually required to
represent the data on the input medium than in other types of stream
input.

A disadvantage of PUT LIST for printed output is that data may
be printed beginning only at predetermined ‘“‘tab positions” on the
printer. There is, therefore, little flexibility in the formatting of data to
provide a meaningful and esthetically pleasing report.

Edit-directed /O eliminates some disadvantages of list-directed
1/0. Edit-directed 1/0 is not as easy to code, but you will find that it
provides for considerable efficiency in the representation of input
data and offers a great deal of flexibility in the formatting of output
data.

240

B RS G

Stream 1/0 241

Assume that the input data below is to be read using list-directed
input. The card data would have to be punched as follows :t

RATE | [H DEDUC-
EMPLOYEE| | NAME OF WRK?) TlONUSC

NUMBER PAY

1 2|3[3 3[3|13 4/4|4 4
1 8(9(0 9(0|1 5(6{7 012 7

‘435928’| | DAVID P. GOLDSMITH "} {10.55] |41.3}| |103.21

In this example, a minimum of 47 card columns would be needed to
represent the data that would be read using the following GET LIST
statement :

GET LIST(EMP#,NAME,RATE,HOURS,DEDUCTIONS) ;

Using edit-directed input, the number of card columns needed to
represent the above data can be reduced significantly because no
blanks are needed to separate the data items in the input stream and
no punctuation marks are needed to indicate the type of input data

- (e.g., single quotation marks surrounding character data or a decimat

point indicating the true decimal value). The data to be input using
GET EDIT could be punched as follows:

7 212 2
415 8

435928 | DAVID P. GOLDSMITH |10551413| 10321

Implied decimal point

As can be seen, only 36 columns are needed to represent the payroll
information for edit-directed input, as compared to 47 columns for
list-directed input. However, with no punctuation marks or delimiters
in the input stream to indicate the characteristics of the various data

tRecall that data items for list-directed input must be PL/| constants. Hence, the character-
strings must be surrounded by single quotation marks.

242 PL/I-Programming

fields, it will be necessary for the GET EDIT statement to provide this
information through a format /ist. Here is one form of this statement:

GET EDIT (data list) (format list) ;

|———> Must be enclosed in parentheses ;

the list describes characteristics of
the external data; that is, it indi-
cates how the data items on an
external medium are to be inter-
' preted

> Must be enclosed in parentheses; data items on the
external medium are converted to the attributes of
the data list identifiers and placed at the locations of
those identifiers

L Indicates edit-directed data transmission

To input the card data illustrated, the following statement could
be coded:

GET EDIT (EMP#,NAME,RATE,HOURS,DEDUCTIONS)
(COLUMN (1),A(6),A(20),F(4,2),F(3,1),F(5,2));

The data Jist consists of EMP#, NAME, RATE, HOURS, DEDUCTIONS.
The format list consists of the items COLUMN(1), A(6), A(20), etc.
The arrows in the above example point to the format item corre-
sponding to each data item. These format items describe the appearance
of data on an external medium. The COLUMN(1) format item indicates
that input begins at column one or position one of the external storage
medium. The A format item describes alphameric data, and the F
format item describes fixed-point numeric data. The numbers in
parentheses following the A and F specifications describe the width
of the input field. Thus, six characters will be taken from the input
stream and assigned to EMP# ;1 20 characters will be assigned to
NAME; four digits, of which two are fractions, will be assigned to
RATE ; and so on. Notice that we have not yet declared the attributes

TEMP#, in this case, is being treated as an alphameric field rather than a fixed-point
numeric field, because fixed numeric fields are generally used to identify data that will be
used in calculations. However, it would also be correct to specify an F format item for the
employee number (EMP#).)

e e e

Stream 1/0 243

of EMP#, NAME, RATE, etc. It is important to understand that ex-
ternal data formats do not have to match the data declarations which
describe the way data will appear in main storage. Let us look at a
sample DECLARE statement for these data items:

DCL EMP# CHAR(6),
NAME CHAR(25),
RATE FIXED(4,2),
HOURS FIXED(3,1),
DEDUCTIONS FIXED(5,2) ;

Notice that NAME is declared to be a character-string of length 25 in
main storage, whereas only 20 characters were taken from the input
stream and assigned to NAME. Because NAME has a length attribute
of 25, there will be padding on the right of the field with blanks.
Other fields in the above DECLARE, such as RATE or HOURS, have
precision attributes that match the width specifications of their corre-
sponding format items. But, remember, it is not necessary that they
match.

Format items may be divided into three categories:

1. Data format items: These are items describing the format of
the external data. These items describe whether data in the
stream are characters or arithmetic values in character form and
how long they are. In the above format list, the A specifies
alphameric data (hence, CHARACTER data), and the F indicates
arithmetic values in the fixed-point notation (as contrasted
with floating-point notation which is an E format item).

2. Control format items: These are items describing page control,
line control, and spacing operations. In the above format list,
COLUMN(1) is a control format item.

3. Remote format ijtem: This item indicates that one or more
data format items and/or control format items are located
remotely from the GET or PUT EDIT statement in a FORMAT
statement. Here is an illustration of this type, which will be
discussed in greater detail later:

GET EDIT(EMP#,NAME,RATE,HOURS,DEDUCTIONS) (R(RFMT)) ;

|
|

RFMT: FORMAT(COLUMN(1),A(5).A(20),F(4.2),F(3,1).,F(5,2));

244 PL/I Programming

The remote format item, R(label), is useful when the same
format list or parts of a list apply to more than one GET or
PUT EDIT statement. Using the R format item would eliminate
redundant coding in the specification of identical format items.

Syntax Rules

The paragraphs below explain the way in which GET EDIT and
PUT EDIT work.

All Data List I1tems Have Corresponding Format Items. In the
statement

GET EDIT(A,B) (F(5), F(6,2));

the format item F(5) specifies that five columns in the input stream
are to be interpreted as a fixed decimal constant, its value to be assigned
to the variable A. The value of the fixed decimal constant in the next
six columns in the input stream is to be assigned to B. The item F(6,2)
further specifies that, of the six positions, two represent the fractional
part of the value. f the characters in the input stream were 123456,
then the value 1234.56 would be assigned to B. With this specifica-
tion, it is also permissible to have the decimal point appear with the
data in the input stream. For example, the specification for 123.4
would be F(5,1), where the width (5) includes the decimal point.
If the data value in the input stream has a decimal point specified that
does not match the format description, the decimal point in the stream
overrides the GET EDIT format item. For example, if

DCL A FIXED(8,3);
GET EDIT(A) (F(8));

is coded and the input value is 12.34, then A will be given the value
of 12.34.

If There Are More Format Items than Data Items, the Extra
Format Items Are Ignored. For example:

GET EDIT(A, B) (F(4), F(5), F(6));

L———» Ignored

Format item describing B

— Format item describing A

B A L

Stream 1/0 245

If There Are Less Format Items than Data Items, There Is a
Return to the Beginning of the Format List. For example:

GET LIST(A, B, C) (F(4), F(5));
—_— NY——

L———> Two format items

Three data items

Here, the first format item will be used again to describe a remaining
data list item. Thus, in the above example,

F(4) describes A's external data
F(5) describes B’s external data
F(4) describes C’'s external data

The Data List Item Need Not Have the Same Width Specifica-
tion as the Corresponding Format Item. In the example

DCL NAME CHAR(25);
GET EDIT(NAME) (A(20));

20 characters are taken from the input stream and assigned to NAME,
Because NAME has a length attribute of 25, there will be padding
on the right with blanks before assigning the value to NAME. Here
is an example for an arithmetic data item:

DCL RATE FIXED(5, 2);
GET EDIT(RATE) (F(4, 2));

Four characters are taken from the input stream, converted to the
internal attributes of FIXED DECIMAL (5,2), and assigned to RATE.

1/0 Continues Until the Data List Is Exhausted. Because stream
1/0 continues until all data items have been read or written, it is possible
to handle more than one record with just one GET or PUT statement.
For example :

DCL A CHAR(70), B CHAR(40);
GET EDIT(A,B) (A(70),A(40));

246 PL/l Programming

The following picture illustrates how the data from two cards will be
assigned to A and B :

|
[
|
[/
1 70!71 8o[1 30
I
I
|
|
|
!
I
I

Suppose it is desired to take the first 70 columns of the first card
and assign them to A, as above, but to take columns 1-40 of the
second card and assign them to B. To accomplish this, the COLUMN
control format item could be specified. For example:

DCL A CHAR(70), B CHAR(40) ;
GET EDIT(A, B) (COLUMN(1),A(70),COLUMN (1),A(40));

@

|

|

|
BB

\

-
~
o

-

40

i
]
!
!
]
|
{
|
|
|

In some implementations of PL/I, the COLUMN control format
item is not available. To accomplish the above spacing between cards,
however, the X control format item, which is available in all implementa-

tM-20 PL/I.

Stream 1I/0 247

tions of PL/I, could be specified. Here is an example:
DCL A CHAR(70), B CHAR(40);
GET EDIT(A, B) (A)70), X(10), A(40));

|——» On input, 10 columns are to be
spaced over and ignored

Control format item to signify
horizontal spacing

| |

A | B |

' :

! |

1 70,71 80[1 40’
|

|

! !

| |

| |

| |

| |

! !

A(70) X(10) A(40)

s
Format items

- J

Assume it is desired to read the first 40 columns of ten cards and
list the cards on the printer. How would this be accomplished using
GET and PUT EDIT? The following coding is proposed as a solution :

DCL CARD_DATA CHAR(40);

DO I=1TO 10;

GET EDIT(CARD _DATA) (COLUMN(1),A(40));
PUT EDIT(CARD_DATA) (COLUMN(1), A(40));
END;

Notice that COLUMN may be used for both an input and output
control format item. On output to a printer, COLUMN refers to print
position.

Data List Items May Be Names of Data Aggregates. The edit-
directed examples you have seen so far have shown only single data

248 PL/l Programming

elements in the data list. It is possible, however, to specify the name
of an array as a list item. For example :

DCL TABLE(100) ; .
GET EDIT(TABLE) (COLUMN(1), F(6, 2));

|———> External format of the

data

Data begins in column
one; each card will have
one value punched into
it

The appearance of the
array name here indi-
cates that the entire ar-
ray is to be filled with
data

TABLE is an array representing 100 data items. The format list
has one control item and one data specification: COLUMN(1) and
F(6,2), respectively. The first data item read—TABLE(1)—exhausts
the format list. For the second input value, there is a return to the
beginning of the format list. Thus, for each new value read, input
begins with column one. If we wished to read only part of the above
array, a DO-group would be included in the following manner:

GET EDIT((TABLE(K) DO K=1 TO 50)) (COLUMN(1), F(6, 2));

Note the required parentheses in the above statement. Each repetitive
specification must be enclosed in parentheses. If a repetitive specifica-
tion is the only element in a data list, two sets of outer parentheses are
required because the data list must have one set of parentheses and
the repetitive specification must have another.

If a multidimensional array is specified without a DO-group to
qualify the order and/or number of items to be processed, then the
rightmost subscript varies most rapidly. For example, the PUT state-
ment for the TT array

DCL TT(81,9);
PUT EDIT(TT) (F (10));

TR

S

i5s

stream1/0 249

causes data to be output in the following order :-
TT(1,1), TT(1,2), TT(1,3), TT(1,4), ..., TT1(81,8), TT(81,9)

Several nested DO’s may be specified in a GET or PUT statement.
When DO portions are nested, the rightmost DO is at the outer level
of nesting. For example:

DCL TT(81, 9);
GET EDIT(((TT(l, J) DO I=1TO 81)DO J=1TO 9)) (F(10));

Note the three sets of parentheses, in addition to the set used to delimit
the subscript. The outermost set is the set required by the data list;
the next is that required by the outer repetitive specification. The third
set of parentheses is that required by the inner repetitive specification.
This statement is equivalent to the following nested DO-groups:

DOJ=1TO9;
DO I1=1TO 81;
GET EDIT(TT(1, J)) (F(10));
END;

END;

Values are given to the elements of the array TT in the following
order :

TT(1, 1), TT(2, 1), TT(3, 1), TT(4, 1), ..., TT(80, 9), TT(81, 9)

If, within the data list of a GET statement, a variable is assigned
a value, this new value is used if the variable appears in a later reference
in the data list. For example:

GET EDIT(N, (X(I) DO I=1TO N)) (COLUMN(1), F(4, 2));

When this statement is executed, a new value is assigned to N. Next,
elements in the X array are assigned values in the order of X(1),
X(2), ..., X(N).

All elements of an array have the same attributes. However, it may
be possible that data read into an array may have varying external data
formats. For example, assume that half of an array shall be filled with
data in the external form of F(3) and the other half in the form of F(4).

250 PL/l Programming

Here are the statements to accomplish this:

DCL TABLE(50) ;
GET EDIT(TABLE) (25 F(3),25 F(4));
e~ ~——

‘-—> External format item

Blank must appear here
Repetition factor

L——————» External format item

Blank must appear here

Repetition factor

Input Data Items May Be Pseudo-Variables. The SUBSTR
built-in function ‘is used to manipulate smaller parts of string data
(i.e., SUB STRings). For example, to extract the last five characters
of a 20-position character-string called TITLE, the following would be
coded :

S=SUBSTR(TITLE,15,5) ;

L—» Number of characters to be
extracted

Starting position in the string

L Character-string name

Built-in function

Receiving field

SUBSTR may also be a pseudo-variable. Pseudo-variables are built-in

[E i S T R

Stream 1/O 251

functions that may be designated as a receiving field. For example:

SUBSTR(N1,1,3) =SUBSTR(N2,5,3) ;

l———» Number of characters to
be moved

Starting with position 5

L————— Character-string name

Size of the receiving field

Starting position to which
characters are moved

Character-string name;
that is, the “receiving
field”

Pseudo-variables (e.g., SUBSTR) may appear on the left side of an
assignment symbol or in a GET statement. For example :

DCL NAME_FIELD CHAR(35);
GET EDIT(SUBSTR(NAME_FIELD,5,20)) (A(20));

Twenty characters from the input stream will be assigned to NAME_
FIELD, beginning with position five of the character-string.
Here is another example :

GET EDIT(K,SUBSTR(NAME_FIELD,K,4)) (F(2),A(4));

When this statement is executed, a new value is assigned to K. That
value is then used as an argument in the SUBSTR pseudo-variable.
For example, if the input stream consisted of the digits 28, then that
value is assigned to K. The SUBSTR pseudo-variable in effect, therefore,
has the parameters

SUBSTR(NAME_FIELD, 28,4)

[———> Value assigned to K in the GET

statement

252 PL/I Programming

Suppose an error had been made in the punching of the data;
assume the digits 28 had been transposed so that the input stream
begins with the digits 82. Consider the effect when the GET statement
is now executed:

GET EDIT(K,SUBSTR(NAME_FIELD,K,4)) (F(2),A(4));

Because K now has a value of 82, the parameters in the SUBSTR
pseudo-variable become

SUBSTR(NAME_FIELD,82,4)

\——r Starting position of NAME_FIELD
to which data is to be assigned

However, NAME_FIELD was declared to have a maximum length of
35 characters. Clearly, there is no position 82 in the character-string,
and thus, the above situation is in error. In the full language, the con-
dition called STRINGRANGE is raised. This condition is raised when
there is a reference to a position outside the length of the character- (or
bit-) string. This condition, by default, is disabled. Thus, if you anticipate
the STRINGRANGE condition to be raised, you must enable the
condition ; e.g.,

(STRINGRANGE)PROG1: PROC OPTIONS(MAIN) ;

I Enabled for entire procedure’s execution
In your program, you might code
ON STRINGRANGE BEGIN;

iEND;
/* OR */ ON STRINGRANGE GO TO ERROR;

In the subset language, where STRINGRANGE is not available, extra
care must be taken by the programmer to guard against referencing
a position outside the string length. Typically, any position outside
the string data area could still be part of your program; hence, the
value assigned to that outside position destroys, perhaps, part of an
instruction or another data item. Often, this kind of destruction causes
a program to “hang up’’ and the programmer has no clues as to “what
went wrong.”’

B s i

Stream 1/0 253

4 STRINGRANGE condition)
Subset language No
Full language Yes

o notes D

Output Data Items May Be Built-in Functions. When included
as a data item in a PUT statement, the specified built-in function is
invoked and the value it returns is output. For example:

PUT EDIT(DATE) (P'99/99/99');

l——» P format item edits the date returned
by the DATE built-in function; P
format is available in full language
implementations but not in subset
languages

L > Built-in function
PUT EDIT(SUBSTR(NAME_FIELD,5,8)) (SKIP,A(8));

l>The value in NAME_FIELD starting
at position 5 for a length of 8 is to
be printed

Built-in function

Output Data Items May Be PL/l Constants. This capability is
particularly useful for the printing of literal data; i.e., character-string
constants.

PUT EDIT('WEEKLY ACTIVITY REPORT’) (PAGE, COLUMN(40),A);

Data Items May Consist of Element Expressions. Operational
expressi‘ons may be specified in the data list of a PUT statement. For
example :

PUT EDIT(A*3,B+C/D) (F(10), F(8, 2));

Such expressions may not involve arrays or structures in the subset
languages.

254 PL/l Programming

More than One Data List and Corresponding Format List
May Be Specified. Here is another variation of the edit-directed
I/O statements:

GET EDIT(data list) (format list) (data list) (format list) . .. ;

You may specify as many pairs of data lists and format lists as
you wish. This format is useful when there are a lot of data items to
be specified and it is desired to keep the format item closer to the
specified data item so as to improve readability of the program by
clarifying which format items belong to which data items. For example :

PUT EDIT (A B,C) (PAGE,F(12),F(15,3),A)
(D,E,F) (B(10),F(5,2),COLUMN (60),A)
(G,H) (LINE(5),F(8),A(22));

Subset Language Restrictions

Arithmetic data items may have only the format items-F (fixed-
point) or E (floating-point) specified. For example, the statements

DCL HOURS FIXED(3) :
GET EDIT(HOURS) (A(3)); /* INVALID IN SUBSET LANGUAGE
IMPLEMENTATIONS #/

are invalid, because the A format item may be specified for data that
has the CHARACTER attribute only. The following data types may
be input or output using the F or E format item specifications :

FIXED BINARY
FIXED DECIMAL
FLOAT BINARY
FLOAT DECIMAL

Remember, E and F describe external data formats. It is possible, for
example, to read a value according to an E format item and have that
value converted to the internal form of FIXED BINARY or FIXED
DECIMAL. The reverse is true for the F format item ; datd may be input
according to the F format item and converted to FLOAT BINARY or
FLOAT DECIMAL, as well as, of course, FIXED BINARY and FIXED
DECIMAL.

[Tt

Stream I/O 255

Another format item is the B (for bit-string data). Here is an
example :

DCL STRING1 BIT(16) ;
GET EDIT(STRING1)(B(10));

The format item B(10) specifies that ten characters are to be taken
from the input stream, converted to a bit-string, and then assigned
to STRING1. Because STRING1 is longer than the input length, the
six rightmost bits of STRING1 will be filled with zeros. The characters
in the stream must be composed of 1's and 0's or a CONVERSION
error will occur. In

DCL STRING BIT(10);
GET EDIT(STRING) (B(16));

sixteen characters will be taken from the input stream, but only the
ten leftmost characters from the input stream will be converted and
assigned to STRING.

In

DCL VALUE FIXED BINARY(31);
GET EDIT (VALUE) (B(31)); /# INVALID IN SUBSET LANGUAGE
IMPLEMENTATIONS =/

the GET EDIT is invalid, because VALUE is an arithmetic data item,
and thus, it may only be described with the F or E format item.

Writing Headings

To see the flexibility that edit-directed output provides us in the
writing of headings - on printed output, assume the following literal
data is to be printed:

ala
6|7

~a

30|

4[a[4la
1/2|3{4}5

3¢L
|

)
o~

6 7(7{7{7i7(7{7
6(7|18(9|0]1)|2{3{4|5;6|7

X

J1 9T

4(45]5(8(5/5(5 515|6|616(6(6{6
8|s|o]1[2{3|4|5 8[9(0}1[2{3]4|5]
|*|!I
!

3
T " ™ 11

Assume that the date in the above heading has been read into the
following character-strings:

DCL(MM,DD,YY) CHAR(2);

Our program may manipulate the month, day, and year through the

256 PL/! Programming

names MM, DD, and YY, respectively. To output the Payroll Register
heading, we may begin by coding the following statement :

PUT EDIT('PAYROLL REGISTER -- WEEK ENDING") (PAGE, A(31));

I—,v Field width of 31

For alphameric
(CHARACTER) data

Control item to start output
on a new page

Literal data

On output, however, it is not necessary to specify the field width fol-
lowing the A format item if the field width is to be the same length as
the data item. Thus, the above statement could be shortened by coding

PUT EDIT('PAYROLL REGISTER - - WEEK ENDING’) (PAGE,A);

‘——» Width is automatically
calculated as being
equal to the length of
the data item—in this
case, 31

Next, the date is to be output:
PUT EDIT (MM, /',DD,"/", YY) (A, A A AA);
—————

l——» Because width is auto-

matically calculated,
only the “A” need be
specified

Notice that there are five fields of the A format item. When the same
format item is to be repeated a number of times, a repetition factor may
be specified. Thus, the above statement could be coded

PUT EDIT(MM,/,.DD,"/' YY) (5 A) ;

|——~—» Must have a blank here

Repetition factor

BBEL LBt g g, DT - -

Stream 1/0 257

in full language implementations, the repetition factor may be
specified in parentheses; e.g.,

PUT EDIT (...) (COLUMN(5), (10)A(12));

l————> Repetition factor in

parentheses
and it may be an expression as well; e.g.,

K=10;
PUT EDIT (...) (SKIP, (K)A(10));

I—» Repetition factor may be any expression

Returning to the Payroll Register headings, we see that the next line
of output could be coded

PUT EDIT('EMPLOYEE NO. NAME','RATE HOURS DEDUCTIONS
NET PAY’) (SKIP(2), A, COLUMN (40),A) :

A SKIP(2) causes one blank line of output. The first literal will be
output, automatically beginning in print position one, because of the
SKIP to a new line. The second literal ('RATE HOURS DEDUCTIONS
NET PAY") will be output beginning in print position 40, which was
indicated by the COLUMN (40) format item.

The above explanation separated parts of the output into several
PUT EDIT statements so that various points could be illustrated more
simply. However, to code the output of these two heading lines in a
PL/l program, only one statement need be written:

PUT EDIT('PAYROLL REGISTER—WEEK ENDING’,
MM,'/,DD,/’,YY,EMPLOYEE NO. NAME’,
'‘RATE HOURS DEDUCTIONS NET PAY’)
(PAGE, 6 A, SKIP(2),A,COLUMN (40),A) ;

Or, here is another way in which the above statement may be coded:

PUT EDIT('PAYROLL REGISTER—WEEK ENDING’,
MM,’/,DD,’/",YY,"EMPLOYEE NO. NAME’,
‘RATE HOURS DEDUCTIONS NET PAY’)
(PAGE, 6 A, SKIP(2),A,X(21),A) ;
e~

|—-> In effect, the spacing of 21
positions causes the next
data item to be output
beginning at print position
40 [i.e., COLUMN (40)]

258 PL/l Programming

Note that commas are always used to separate the data list items and
the format items. Thus, blanks separating these items would be used
only if it is desired to improve readability of the GET or PUT. Of course,
remember that a blank is required between the repetition factor and
the format item to which it applies. A blank is not required following
the repetition factor in the format list if there is another punctuation
mark separating the repetition factor from the format items to which
it applies. For example, assume data is to be output where the format
consists of F(5), F(3, 1), F(5), F(3, 1), F(5), F(3, 1). As you can see,
there are three pairs of (F(5), F(3, 1)) format items. The following
statement would accomplish the output of data items according to
this pattern of format items:

PUT EDIT(A,B,C,D,E F) (PAGE, 3(F(5), F(3, 1)));

I———» The left parenthesis serves
as the delimiter between the
repetition factor and the
format items to which it
applies; hence no blank is
needed

L Repetition factor
File Declarations
The declaration of files was introduced in Chapter 3. Here is a

list of some of the attributes and options that may appear in your
DECLARE statement for stream files:

Attributes/options Comment

FILE Optional

STREAM Default if not specified

INPUT/OUTPUT OUTPUT is default if file has PRINT
attribute

PRINT See explanation in following paragraphs

ENVIRONMENT ENV is the abbreviation

MEDIUM Use only in DOS/TOS

SYSIPT System input device}

- SYSLST System output devicet

SYSPCH System punch devicet

F(blocksize) Fixed-length record

F BLKSIZE(n) Fixed-length record for the optimizing
compilers

tThese keywords follow the MEDIUM option and apply only to PL/l D and DOS PL/!
optimizing compilers.

Stream 1/0 259

Some examples of stream file declarations include

DCL CARDIN FILE STREAM INPUT ENV(F(80)MEDIUM
(SYSIPT,2501)); /* A PL/1 D EXAMPLE */

DCL PUNCH FILE STREAM OUTPUT ENV(F BLKSIZE(80)
MEDIUM(SYSPCH, 2540); /* A DOSPL/I OPTIMIZING
COMPILER EXAMPLE =/

DCL PRINTR FILE STREAM PRINT OUTPUT ENV(F(133));
/* A PL/I F EXAMPLE =*/

DCL TAPE FILE OUTPUT STREAM ENV(F BLKSIZE(800));

/* AN OS PL/I OPTIMIZING COMPILER EXAMPLE */
Note that keywords may appear in any sequence in the DECLARE
statement.

The place where attributes are specified may depend on the
operating system you are using. For PL/I D, and DOS PL/I optimizing
compilers, all attributes should be specified in the DECLARE state-
ment. However, in PL/I F and OS PL/l optimizing compilers, the file
attributes may be specified in job control statements, the OPEN
statement, or the DECLARE statement.

The PRINT Attribute. When a file has this attribute, the first
position of the output area is reserved for a carriage control character.

For example, if you wish to output a 60-position print line, the following
file declaration might be coded:

DCL PRINTR FILE OUTPUT STREAM PRINT
ENV(F(61) MEDIUM (SYSLST, 1403));

[Not required for OS

Record size is equal to
desired print line size plus 1
position for carriage control
character

The carriage control character is placed into the first position of the
output area through the use of control format items or control options;
e.g.

PUT FILE (PRINTR)EDIT(A,B,C) (PAGE, 3 F(10));

l—> This format item causes the
first position of the output
area to be initialized to the
code that causes an advance
to a new page

260 PL/l Programming
PUT FILE(PRINTR)PAGE EDIT(A,B,C)(3 F(10));

l This contro! option accom-
plishes the same function as
the format item does

PAGE and LINE may be specified only for stream files that have the
PRINT attribute. COLUMN and SKIP, which can be used to accomplish
carriage control operations, may be specified for either PRINT or
non-PRINT files.

The OPEN/CLOSE Statements

Stream files are automatically opened when the first GET or
PUT to that file is issued. In the case of a file with the PRINT attribute,
there is an automatic advance to a new page for the first PUT to that
file. The reason for using the OPEN statement is so that additional
file attributes and/or options may be specified. The options are
PAGESIZE and LINESIZE. They may only appear in an OPEN state-
ment—never in a file DECLARE statement. To illustrate :

OPEN FILE(PRINTR)PAGESIZE(50) ;

‘—» Specifies number of lines to be
output per page of print; if
PAGESIZE is not specified, the
default is 60

The following option is available in the full language implementa-
tions, but not the subset PL/I:

OPEN FILE(PRINTR) LINESIZE(120);

‘——» Specifies number of print positions
per printed line; if this option is
used, it is not necessary to specify
a record size [e.g., F(133)] in the
file declaration

Stream 1/0 261

(Some attributes and options that may be\
specified in the OPEN statement
Subset language PAGESIZE
Full language STREAM or RECORD LINESIZE
INPUT or OUTPUT PAGESIZE
PRINT
N J

Here are some examples:

OPEN FILE(PRINTR) PRINT OUTPUT STREAM PAGESIZE(45)
LINESIZE(133); /+ FULL LANGUAGE =/
OPEN FILE(CARDIN) STREAM OUTPUT; /+ FULL LANGUAGE =/
OPEN FILE(PRINTR) PAGESIZE(55); /* OK FOR SUBSET
LANGUAGE =/ '

Options and/or attributes in the OPEN statement may be specified
in any sequence.

Only the file name is specified in the CLOSE statement (no
options or attributes). For example:

CLOSE FILE(TAPE);

If astream file is not explicitly closed by the CLOSE statement, it will
automatically be ciosed when the PL/I program is logically terminated.
However, should your program abnormally terminate (e.g., through
an error condition such as the CONVERSION on-unit), files will also
be closed.

Data Format ltems

A(w). Oninput, a string of length w characters is read into a variable.
If the variable’s declared length attribute is greater than w characters,
blanks are padded on the right; if the length is less than w characters,
input data will be truncated on the right. On output, the data item is
left-justified in the field and, if necessary, padded on the right with
blanks.

262 PL/1 Programming

A. Allowed for output only ; the length of the character-string variable
is the value of the declared character-string length. Character-strings
enclosed in apostrophes may also be included as data list items. They
are handled in the same manner as are character-string variables.

(Internal data

Format specification

Output result)

ABC12 A ABC12
ABC12 A(3) ABC
ABC12 A(7) ABC12bb |

-

A format item

Subset language The data item corresponding to the A format

item must have the CHARACTER attribute

The above restriction does not apply to the

Full language
N y

full language implementations

B(w). On input, a string of length w characters is read into a variable
having the BIT attribute. If the variable’s declared length attribute is
greater than w characters, 0’'s are padded on the right; if the length is
less than w characters, input data will be truncated on the right. On
output, a bit-string is converted to a character-string of O's and 1's
and left-justified in the output field. The bit-string data is padded with
blanks on the right if the bit-string is shorter than w.

B. Allowed for output only; the length of the bit-string variable is the
value of the declared bit-string length.

Internal value Format specification Output result
1101 B 1101
1101 B(4) 1101
1101 B(3) 110
1101 B(6)

1101bb J

o

Stream |/0 263

4 B format item h
Subset language The data item corresponding to the B format
must have the BIT attribute
Full language The above restriction does not apply to the
full language implementations)

C. Complex variables are specified in one of two forms:
C(real format)

| - An E or F format may be specified here;
this format is used for both the real and
imaginary parts of the complex number

C(real format,, real format,)

L An E or F format may be specified for the
imaginary part of the complex value

An E or F format may be specified for the
real part of the complex value

E(w, d). The input stream contains data in floating-point notation
(e.g., .B7E+13). On input, if no decimal point is punched, the format
specification d represents the number of fractional decimal places. The
letter w represents the total number of characters including the decimal
point (if punched), signs, and the designation E. If a blank field is input
under the E specification, the CONVERSION condition is raised.

On output, the exponent always requires four characters, E+ xx,
and the number is printed with d fractional decimal places. The sign,
blank or minus, of the number precedes the decimal point. The number
is right-justified in the field of w characters. It is not necessary to include
a space, for the sign if the number is positive.

The number of significant digits output will be equal to 1 plus d.
For example, if 175.36E+ 05 is the internal value and the output format
specification is E(10,2), then the output result will be bbl.75E+07. This
is because out of a field width (w) of ten, two positions (d) will be
fractional digits. The number of significant digits will be three (d+1).
Thus, only the leftmost three digits of the value (175.36E+05) will

264 PL/l Programming

appear in the output stream. To illustrate :

w

o

bbl.75E+07

If the value 175.36E+05 is output according to the specification
E(15, 5), the result is ,

bbbb0.17536E+ 08

If it is desired to print five digits of significance where more than one
integer digit is to appear in the output value, the E(w, d, s) format may
be specified.

E(w. d, s). On input, the s is ignored. The decimal point is assumed
to be d digits from the right of the fraction ; if a decimal point is punched,
the actual decimal point overrides the d specification.

On output, s indicates the number of significant digits to be output
to the left of the decimal point. If s is not specified [i.e., E(w,d)], the
number of significant digits to the left of the decimal point will default
to 1.

4 Internal value | Format specification | Output result \

175.36E+05 E(12, 2, 5) bb175.36E+ 05
175.36E+05 E(12, 0. 5) bb17536E+03
175.36E+05 E(12, 5, 5) bb.17536E+ 08
_ J
() E format item \
Subset language The data item corresponding to the E format
item must be in arithmetic coded form
(FIXED BINARY, FIXED DECIMAL,
FLOAT BINARY, FLOAT DECIMAL)
Full language The above restriction does not apply to full
Y language implementations)

Stream 1/0 265

F(w). The input or output field consists of w characters containing a
fixed-point decimal value. On input, if no decimal point is punched, the
number is assumed to be an integer. A minus sign precedes a negative
number. For positive values, a + sign is optional.

On output, the data is punched or printed as an integer and no
decimal point will appear. For negative values, a minus sign will appear
to the left of the value; for positive values, a blank will appear. There is
automatic zero suppression to the left of the number.

internal value | Format specification Output result A
123 F(3) 123
-123 F(3) SIZE error
—-123 F(4) —-123
123 F(b bb123

N ® J

If w is not large enough to contain the output value, the SIZE
error condition is raised, and the results of the output field are undefined.

F(w, d). Oninput, if no decimal point is specified, it is assumed that
there are d decimal places to the right of the field. For example, if the
input stream contains the digit characters 1234 and the format item
F(4,2) is specified, input value becomes 12.34. If a decimal is actually
punched, its position overrides the d specification.

On output, a decimal point is punched or printed if the d specifi-
cation is greater than zero. If w is not large enough to contain the output
value, then asterisks will appear in the output field, and the SIZE
condition is raised. Notice in the fourth example in the table that if
fewer fractional digits are output than the data item contains, the
fraction is rounded off.

rInternal value | Format specification Output
123.45 F(4,0) b123
123.45 F(6.2) 123.45
123.45 F(7.3) 123.450
123.45 F(6,1) b123.5
123.45 F(b,2 SIZE error

_ 2 y

266 PL/l Programming

F(w,d,p). The designation p is a scaling factor; it must always be
written with a sign. It effectively multiplies the value of the data item
in the stream by 10 raised to the power of the value of p. Thus, if p
is positive, the number is treated as though the decimal point appeared
p positions to the right of its given position. If p is negative, the number
is treated as though the decimal point appeared p positions to the
left of its given position. The given position of the decimal point is
that indicated either by an actual point, if it appears, or d, in the absence

of an actual point.

fValue in the
input stream

Format specification

Resulting \
internal value

12345.67 F(10, 2, —2) 123.4567
1234567 F(10, 2, +2) 1234567
1234567 F(10, 2, +1) 12345670 .

Internal value

Format specification

Resulting output

12345
12345

N

F(6, 2, —2)
F(6, 2, +3)

123.45

123.45 W,

-

F format item W

Subset language

The data item corresponding to the F format
item must be in arithmetic coded form
(FIXED BINARY, FIXED DECIMAL,
FLOAT BINARY, FLOAT DECIMAL)

Full language

N\

The above restriction does not apply to full
language implementations

/

dEalami T

S

Stream |/O 267

P('picture specification’). This format item is available only in
full language compilers. The ‘picture specification’ consists of any
character allowed in the PICTURE declaration (see Chapter 3).

On input, the picture specification describes the form of the data
item expected in the data stream and, in the case of a numeric picture
item, how its arithmetic value is to be interpreted. Note that the picture
specification should accurately describe the data in the input stream,
including characters represented by editing characters. if the indicated
character does not appear in the stream, the CONVERSION condition
is raised.

On output, the value of the associated element in the data list is
edited to the form specified by the picture specification before it is
written into the data stream.

flnput value Format specification Resulting internal value)
bb15 PzZZ9’ 0015
1234 P'99V99’ 12,34
AB123 P'AA999 AB123
AB123 P'99999’ CONVERSION error
_ _/
Internal value Format specification Resulting output
12.34 P’$$$$V. 99" $12.34
—12.34 P'S999V.99’ —-012.34
2112.34 P’$$,$$$V.99CR’ $2,112.34
—2112.34 P’'$$,$$$V.99CR’ $2,112.34CR
15 P'ZZZ9' bb15
0 P'ZZZ9’ bbb0
12.34 P’sxxxV 99" *x12.34
N D

268 PL/1 Programming

Simulating P Format in the Subset Language. The need for
P format most often arises when it is desired to edit data (i.e., insert
dollar sign, comma, CR symbol, etc.). In previous chapters, you have
seen how to accomplish editing—typically, by assigning data to
identifiers that contain PICTURE editing characters. For example :

DCL PRICE PIC'$$$,5$8V.99";
PRICE=1050.78; /* PRICE=$1,050.78 =/

In the subset language implementations of PL/l, we have a
problem because it is not permitted to output (using edit-directed 1/0)
directly from a PICTURE that contains insertion characters (i.e.,
$, *, CR, DB, etc.). Thus, the following PUT EDIT (assuming the
above DECLARE and assignment statements apply) would be invalid:

PUT EDIT(PRICE) (A(10));

l————> A format items apply only to data

that has the CHARACTER attri-
bute; in this example, even though
PRICE appears in main storage in
character format, the attribute of
PRICE is PICTURE (do you see the
subtle distinction ?)

The following examples, however, do not violate the rule in the subset
language that you may not output directly from a picture that contains
insertion characters:

DCL A PIC'999V99’ INIT(12.34);

DCL B PIC'XXXX' INIT('ABCD") ;

PUT EDIT(A,B) (F(6,2),A(5));

/* ON OUTPUT, A=b12.34 AND B=ABCDb =/

There are two methods that may be used for printing from a
PICTURE identifier with editing characters. The first method is perhaps
the easiest to understand. A built-in function called CHAR is provided
in PL/I. This function converts its argument to a character-string. For
example :

RN

[e yts

Stream 1/O 269

DCL PRICE PIC’$$$,8$$V.99";
PRICE=1050.78;
PUT EDIT(CHAR(PRICE)) (COLUMN(40),A(10)) ;

|—4 Format item for

character-string
data

— Argument to CHAR
built-in function

This built-in
function returns a
value that has the
CHARACTER
attribute with a
length equal to the
precision (in this
example) of
PRICE

The other method for simulating P format is to use overlay defining.
This method is more efficient than the method of invoking the CHAR
built-in function each time a PICTURE value is to be treated as a
character-string. For example:

DCL PRICE PIC'$$$,$$$V.99";

DCL PR CHAR(10)DEFINED PRICE;
PRICE=1050.78; /* EDIT DATA #/
PUT EDIT (PR) (COLUMN(40), A(10));

l——» Format item matches

attribute of PR, which is
a character-string

Because PR is overlay
defined on PRICE, the
edited value $1,050.78
will be printed

270 PL/l Programming

Control Items

When control items appear inside the format list, they are called
control format items ; if they appear outside the format list, they are
called control/ options. For example :

PUT SKIP EDIT(A,.B) (SKIP(3),F(7.2));

|————> Control format item

Control option

Control items are performed in the order in which they appear in a
GET or PUT statement. For example :

PUT PAGE EDIT(A,B) (F(5),PAGE,F(7,2)):

A will be printed on a new page and B will be printed on the following
new page because of the position in the format list of the PAGE
control format item. In this example,

PUT PAGE EDIT (A,B)(F(5), F(7,2)):

is equivalent to

PUT EDIT(A,B) (PAGE, F(5), F(7,2));

A control item has no effect unless it is encountered before the data
list is exhausted. For example:

PUT EDIT(A) (F(8),SKIP);

l———» This control item will be

ignored, because the data list
was satisfied by the format
item F(8)

COLUMN(n). On input, this format item positions the input
stream to the nth byte or card column of the record. On output, it
positions the output stream to the nth byte in the record or the nth

Stream |/0O 271

print position on the line printer. In the full language implementations,
the abbreviation COL may be used in place of COLUMN.

LINE(n). Used for output only, this format item specifies that the
next data item is to be printed on the nth line on a page of a PRINT
file. LINE may be specified only for stream files that have the PRINT
attribute. If the specified line has already been passed on the current
page, or if the specified line is beyond the limits set by the PAGESIZE
option of the OPEN statement (or by default), the ENDPAGE condi-
tion is raised. ENDPAGE is raised only once per page; consequently,
printing can be continued beyond the specified PAGESIZE after the
ENDPAGE condition has been raised the first time. If the response to
the on-unit does not start a new page, the current line number may
increase indefinitely.

It would not be logical to specify a line number that is negative
or zero [i.e., LINE(—3) or LINE(O)]; however, if a negative or zero
value is specified, PL/l will substitute LINE(1) for the illogical
specification.

PAGE. According to the rules of the PL/l language, PAGE may
only be specified for stream files that have the PRINT attribute. PAGE
causes a skip to the first print line of the next page.

SKIP. On input, SKIP means to start or continue reading at the

beginning of the next logical record. On output, its meaning is
summarized below :

Format item Action taken \

SKIP(0) Suppresses line feed
SKIP or SKIP(1) Starts printing on the next line
SKIP (expression) Causes “expression minus 1" lines to be

left blank before printing on the next line;
in subset language, a maximum of
SKIP(3) may be specified /

-

X(w). On input, w characters are ignored. On output, w blanks are
inserted into the stream.

272 PL/l Programming

Remote Format Item

The R format item allows a FORMAT statement to replace this
specification. For example :

PUT EDIT(A,B,C) (R(OUT1));

l——» A label constant or an element
label variable that has as its value
the statement label of a FORMAT
statement ; the FORMAT state-
ment includes a format list that is
taken to replace the format item;
the statement label may not be
subscripted

OUT1: FORMAT(PAGE,F(5,2),SKIP,2 F(8));

A FORMAT statement may not
contain an R format item

If the GET or PUT statement is the single statement of an on-unit,
e.g.,

ON ENDPAGE(PRINTR)
PUT FILE(PRINTR)EDIT('"HEADING") (PAGE,A);

then the input or output statement may not contain a remote format
item.

A remote format item may be combined with other format items.
For example :

GET EDIT(A,B,C,D,E,F) (F(1),R(INP),A(7),R(INP));
INP: FORMAT(F(5),E(15,2));

In the above example, the data items and their corresponding format
specifications are

F(1)
F(5)
E(15,2)
A(7)
F(5)
E(15,2)

TMgoOow>

B RS EEEGS T. e

Stream 1/0 273

The STRING Option

The STRING option may appear in a GET or PUT statement in
place of the FILE option. For example, instead of

GET FILE (INPUT) EDIT (A,B,C) (F(5),F(6),F(7));

; File name

Option keyword

the statement

GET STRING(DATA)EDIT (A,B,C) (F(5),F(6),F(7));

| Name of an element data area,
representing character-string data

Option keyword

may be specified. The STRING option causes internal data movement;
it does not cause an |/0O operation. It offers another method for effecting
data movement, the assignment statement being the most common.

In addition, it offers a method for causing the conversion of
character-type data to a coded arithmetic form; this feature is par-
ticularly useful in the subset language, as it provides a fairly straight-
forward method for converting character data to arithmetic form.

The following example illustrates a character-string-to-character-
string data movement. Assume that NAME is a string of 36 characters
and that FIRST, MIDDLE, and LAST are string variables:

GET STRING (NAME) EDIT
(FIRST, MIDDLE, LAST)
(A(15),A(1),A(20)) ;

This statement specifies that the first 15 characters of NAME are to
be assigned to FIRST, the next character to MIDDLE, and the remaining
20 characters to LAST.

The PUT statement with the STRING option in the following
example specifies the reverse operation :

PUT STRING (NAME) EDIT
(FIRST, MIDDLE, LAST)
(A(15), A(1), A(20);

274 PL/l Programming

This statement specifies that the values of FIRST, MIDDLE, and
LAST are to be concatenated (in that order) and assigned to the string
variable NAME.

In addition, the STRING option may be used to effect character-
string-to-arithmetic or arithmetic-to-character-string conversion. For
example :

DCL NAME CHAR(20), EMP# CHAR(7);
DCL HOURS FIXED(3,1), RATE(4,2) ;
DCL RECORD CHAR(80);
PUT STRING(RECORD) EDIT
(NAME, EMP#, HOURS*RATE)
(A(20), A(7), F(8)):

This statement specifies that the character-string value of NAME is
to be assigned to the first (leftmost) 20 character positions of the
string named RECORD, and that the character-string value of EMP#
is to be assigned to the next seven character positions of RECORD.
The value of HOURS is then multiplied by the value of RATE, and the
product is to be handled like F format output and assigned to the next
eight character positions of RECORD.

Sometimes records of different formats appear in the same file.
Each record, then, would carry with it an indication of its format in
the form of a code. For example :

f DETAIL Purchases for this month
(DETAIL

Purchases for this month

1 MASTER
—\ Customer name and address
/ CUSTN ITEM
Data area
‘ NAME QTyYy
OR\ ADDR PRICE

[t L e

Stream 1/0 279

The STRING option facilitates manipulation of these differing card
formats in the same file. For example:

DCL CARD CHAR(80) ;

GET EDIT(CARD) (A(80));

IF SUBSTR(CARD,1,1)="1" THEN
GET STRING(CARD)EDIT
(CUSTN,NAME,ADDR)
(X(1),A(6),X(3),2 A(20)) ;

IF SUBSTR(CARD,1,1)="2" THEN
GET STRING(CARD)EDIT
(ITEM, QTY, PRICE)
(X(1).A(8).F(3).F(7.2)):

Note that print option format items (e.g., COLUMN, SKIP, etc.) may
not be specified in the STRING option of a GET or PUT.

Conditions

There are a number of exceptional conditions that may occur
during stream 1/O; ENDFILE, ENDPAGE, CONVERSION, SIZE,
TRANSMIT, and ERROR. Some of the conditions were introduced in
Chapter 3. Here is additional information on three of these conditions.

The CONVERSION Condition. This on-unit is raised if any alpha-
meric characters appear within a field of data that is to be a numeric
field. For example, a blank is an alphameric character that will cause
the CONVERSION condition to be raised if it is embedded within a
numeric field. Thus, the data

1 5

|
|
57 98{
|
|

input by the statement

GET EDIT(VALUE) (COLUMN(1),F(5));

276 PL/l Programming

will cause the CONVERSION condition to be raised. However, a
blank (but not any other alphameric character) may appear before a
numeric value, in which case the leading blank is interpreted to be a
leading zero on input. For example, given the data field

1 s

[
5798:
|
|

and the edit-directed statement

GET EDIT(VALUE) (COLUMN(1),F(5));
will cause the identifier VALUE to be set to 05798. If a blank follows
a numeric field, e.g.,

1 5

[
|
5798 |
[
[

it is ignored. Thus, if the above data field were input with the statement
GET EDIT(VALUE) (COLUMN(1),F(5));

then VALUE would contain 5798. If the entire field is blank, it is
interpreted as zero.

The SIZE Condition. This on-unit may be raised during output if
the width specification for a FIXED BINARY or a FIXED DECIMAL
number is not large enough to contain the total value. For example, if

VALUE = —123;
and it is output using the specification
PUT EDIT(VALUE) (F(3));

the SIZE condition will be raised, providing it has been enabled. To
print the above negative value, a minimum field width of four must
be specified. According to the rules of the PL/I language, the results
of the output field are undefined. In some compilers, the output field
is filled with asterisks ; in other compilers, high-order truncation occurs,
and that value will be output; in still other compilers, blanks may
appear. It varies with the compiler you are using.

[S R ek

Stream I/O 2717

The ENDPAGE Condition. The ENDPAGE condition is raised
when a PUT statement results in an attempt to start a new line beyond
the limit specified for PAGESIZE. This limit can be specified by the
PAGESIZE option in an OPEN statement. If PAGESIZE has not been
specified, an installation-defined system limit applies. The attempt to
exceed the limit may be made during data transmission (including any
format items specified in the PUT statement) by the LINE option, or
by the SKIP option. ENDPAGE is raised only once per page. When
the ENDPAGE condition is raised, the standard system action is to
skip to a new page and continue executing. '

PL/I maintains a current line counter which is incremented by 1
each time a new line is printed. When this line counter exceeds the
maximum number specified by the PAGESIZE option (or the default)
the ENDPAGE condition is raised. Thus, at this point, the current line
counter is one greater than the maximum page size value.

After ENDPAGE has been raised, a new page may be started in
either of the following ways:

1. Execution of a PAGE option or a PAGE format item.
2. Execution of a LINE option or a LINE format item specifying a
line number less than or equal to the current line number.

When either of these occurs, a new page is started in the same way
that it is when a PAGE option is executed ; i.e., ENDPAGE is not raised
and the current line is set to 1. If a new page is not started, the current
line number may increase indefinitely. When ENDPAGE is raised, it is
possible to continue writing on the same page.

In the full language, a begin block may foliow the ENDPAGE
keyword. For example:

ON ENDPAGE (PRINTR) BEGIN;

END;

This begin block is treated like a subroutine in that the block is entered
when the ENDPAGE condition is raised and returns to the place in
the program immediately following the point of interruption. In the
subset language, only a GO TO or a null statement may follow the on-
unit. Thus, if a group of statements is to be logically performed, it
will be necessary for the program to handle the branching “into” and

278 PL/l Programming

“out of” the group of statements. In Figure 5.1, an 80/80 list program is
coded two ways: one for full language implementations and the other
for subset implementations. Studying the subset program solution first
will give you an appreciation of some of the features of the full language
PL/l capabilities (e.g., default files, begin blocks, LINESIZE). The
80/80 list program copies a card file onto a line printer, printing 45 lines
per page. Notice how the statement,

SIGNAL ENDPAGE(PRINTR) ;

was used to cause a heading to be printed on the first page of output.
The loop operation consists of reading cards and printing on the
printer. In this program, the ENDPAGE condition will be detected
before the PUT FILE statement is executed for the forty-sixth time. In
the HDNG routine in the subset example, it is necessary—after printing
the heading and incrementing the page counter—to return control to

/* 80/80 LIST FOR FULL LANGUAGE IMPLEMENTATIONS */
1 LIST: PROC OPTIONS(MAIN);
2 DCL DATA CHAR(80);
F 3 DCL PAGE_NG FIXED(2)INIT(1);
Ul & ON ENDPAGE (SYSPRINT) BEGIN;
L| s PUT EDIT('80/80 LISTING -- PAGE?,PAGE_NO}
L {PAGE,COL{25)yA,F(3));
6 PUT SKIP(2);
k 7 PAGE_NO = PAGE_NO + 13
Nl 8 END;
s| 9 OPEN FILE(SYSPRINT) PAGESIZE(45) LINESIZE(80);
vl 10 ON ENDFILE(SYSIN) GO TO EOJ;
Al 11 SIGNAL ENDPAGE(SYSPRINT);
G| 12 LOOP: GET EDIT(DATA)(A(80));
E| 13 PUT EDIT(DATA)(A);
14 GO TO LOOP;
15 E0J: END3
/% 80780 LIST FOR SUBSET IMPLEMENTATIONS */
1 LIST: PROC OPTIONSIMAIN);
2 DCL PAGENO FIXED(2) INIT{(L};
s 3 DCL CARDIN FILE INPUT STREAM ENV(F(80)MEDIUM(SYSIPT,2540));
v 4 DCL PRINTR FILE OUTPUT STREAM PRINT
B ENVUF(81IMEDIUM(SYSLST,1403));
s 5 DCL DATA CHAR(80);
E 6 ON ENDFILE(CARDIN) GO TO EOJ3
T 7 ON ENDPAGE{PRINTR) GO TO HONG3
8 OPEN FILE(PRINTR) PAGESIZE(45)3
L 9 SIGNAL ENDPAGE(PRINTR);
ﬁ 10 LOOP: GET FILE(CARDIN)EDIT(DATA) (COLUMN(1),A(80));
g 1 PUT: PUT FILE(PRINTRIEDIT(DATA) (SKIP,A);
| 12 G0 TO LOOP;
Al 13 HONG: PUT FILE(PRINTRIEDIT('80/80 LISTING -- PAGE *,PAGEND)
G (PAGE,COLUMN(25) 1A, F{(3))3
E 14 PUT FILE(PRINTRISKIP(2);
15 PAGENO = PAGENO + 13
16 GO TO PUT;
17 E0J: END;

FIGURE 5.1 An 80/80 list program coded two ways.

Stream 1/0 279

the PUT statement so that the forty-sixth detail line is printed. Then, of
course, the program continues until ENDFILE condition occurs.

A Built-in Function for PRINT files

There is a built-in function that is available in the full language
called LINENO, which finds the current line number for a file having
the PRINT attribute and returns that number to the point of invocation.
For example :

I=LINENO(PRINTR);

‘——» Must be the name of a file having the

PRINT attribute

Built-in function (not available in the
subset language)

The value returned by this function is
a binary fixed-point integer of default
precision specifying the current line
number

4 LINENO built-in function)

Subset language No

Cull language Yes)

This form of stream 1/0 is available in the full language implementations
only. Data-directed 1/0 gives the programmer the flexibility of trans-
mitting self-identifying data. This means that each data item in the
input stream is in the form of an assignment statement that specifies
both the value and the variable to which it is to be assigned. For

280 PL/l Programming

example, the input stream could contain the following assignment
statements :

A=12.3, B=57, C="ABCDEF, D="1110'B;

Notice that the values are in the form of valid constants. Statements
are separated by a comma and/or one or more blanks; a semicolon
ends each group of items to be accessed by a single GET statement.
Here is an example of a data-directed statement for the input of the
above items :

GET DATA (A, B, C, D);

All names in the stream should appear in the data list; however,
the order of the names need not be the same. Thus, the GET statement
could have been written

GET DATA (C, B, A D);

Also, the data list may include names that do not appear in the stream;
ed.,
GET DATA (A, B, C, D, E);

In this case, E is not altered by the input operation. However, it is an
error if there is an identifier in the input stream but not in the data list.
For example, C and D are in the input stream but not in the data list:

GET DATA (A, B); /* ERROR #/

This error raises the NAME condition, which may be handled in your
program in the same manner as with other on-units; for example:

ON NAME (SYSIN) BEGIN;

END;

It is possible (and not contradictory) to omit entirely data list names
in the GET statement; for example:

GET DATA;

In this case, the names in the stream may be any names known at the
point of the GET statement. A data list in the GET statement is optional,
because the semicolon determines the number of items to be obtained
from the stream. If the data list includes the name of an array, sub-

Stream |/0 281

scripted references to that array may appear in the stream although
subscripted names cannot appear in the data list. The entire array need
not appear in the stream; only those elements that actually appear in
the stream will be assigned. For example, the following could be coded:

DCL TABLE(50) FIXED(5, 2);
GET DATA(TABLE);

where the input stream consists of the following assignment state-
ments :

TABLE(3)=7.95, TABLE(4)=8.43, TABLE(7)=50;

Although the data list has only the name of the array, the associated
input stream may contain values for individual elements of the array.
In this case, three elements are assigned; the remainder of the array
is unchanged. The maximum number of elements permitted in a list
for data-directed input is 320.

On output, each data item is placed in the stream in the form of
assignment statements separated by blanks. The last item output by
each PUT statement is followed by a semicolon. Leading zeros of
arithmetic data are suppressed. The character representation of each
value reflects the attributes of the variable, except for fixed-point
binary and floating-point binary data which appear as values expressed
in fixed-point decimal notation.

For PRINT files, data items are automatically aligned on preset
tab positions described for list-directed 1/O. For example, given the
statements,

DCL (A, B) FIXED INIT(0);
DCL C FIXED BIN INIT(175);
PUT DATA (A, B, C):

output would be to the default file SYSPRINT in the format
A=0 B=0 C=175;

l————» Tab position 49

Tab position 25

Tab position 1

The data list may be an element, array, or structure variable, or a
repetitive specification involving any of these elements or further

282 PL/l Programming

repetitive specifications. Subscripted names can appear. In addition,
any of the printer spacing options described for list-directed 1/0 may
be specified for data-directed 1/0; e.g.,

PUT PAGE DATA (A, B, C);
PUT SKIP(3) DATA (A, B, C);
PUT LINE(5) DATA (A, B, C);

It is also possible to specify
PUT DATA;

in which case, all variables known to the program at the point of the
PUT statement will be output. This feature is a powerful debugging
tool.

There is a built-in function that may be particularly useful to
you when using the form of GET DATA where no data list is specified.
The function is called COUNT ; it determines the number of data items
that were transmitted during the last GET or PUT operation on a given
file and returns the result to the point of invocation. For example:

DCL INPUT FILE INPUT STREAM;
GET FILE (INPUT) DATA;
I=COUNT (INPUT);

|—————» The argument represents the file to be

investigated ; this file must have the
STREAM attribute

Built-in function that counts the

number of element data items transferred
during a GET or PUT ; the value re-
turned by this function is a binary
fixed-point integer of default precision
specifying the number of element data
items transferred during the last GET

or PUT operation on “‘file name”

If a begin block or another procedure is entered during a GET or
PUT operation, and within that begin block or procedure a GET or PUT
is executed for the same file, the value of COUNT is reset for the new
operation and is not restored when the original GET or PUT is continued.

SRR

Stream |/O 283

The DISPLAY statement is available in all compilers; it-facilitates
machine operation communication with the PL/l program in execution.
The basic format is

DISPLAY('SAMPLE MESSAGE GOES HERE');

I———» Should be a CHARACTER

variable or constant or
expression

The REPLY option allows the operator to reply. For example :

DCL RESPONSE CHAR(3);
DISPLAY (IS EXCEPTION TAPE MOUNTED? TYPE YES OR NO’)
REPLY(RESPONSE) ;

In the above example, when the operator enters either the words YES
or NO, his reply will be placed into the program variable, RESPONSE.
Execution of the program is suspended until the operator has entered
his reply. For this reason, it is not good practice to overuse this type
of man/machine communication in a program. Typically, if the DISPLAY
statement is used, it is used without the REPLY option.

(Maximum number of characters allowed R
DISPLAY REPLY
Subset language 80 255
k Full language 72 72 J

In the full language, there is an option that may be specified in the
DISPLAY/REPLY statement that will, to a degree, override the sus-
pension of program execution until the operator has entered his

284 PL/l Programming

reply. For example:

DCL RESPONSE (CHAR(3);
DISPLAY('IS EXCEPTION TAPE MOUNTED? TYPE YES OR NO’)
REPLY (RESPONSE) EVENT (E1);

WAIT(E1) ;

‘——» Program execution will not continue unless the
“event” is complete; the “event” in this case would
be complete when the operator signals “end-of-
message input”

The variable E1 is contextually declared (by its appearance in an
EVENT option) to have the EVENT attribute. Conversion between event
variables and other data types is not possible.

4 EVENT attribute R
Subset Language No
Full Language Yes J
e

It is possible to enter messages through the console typewriter
in either capital or lowercase letters. It would provide an added
flexibility to our program if we allowed either capital or lowercase
messages to be entered. It is easy to incorporate this flexibility into
our program once it is understood how capital and lowercase letters
are represented in bytes of main storage. Appendix D shows a complete
list of the binary representations of alphameric data; a few samples
are shown below :

A =11000001 B =11000010 J=11010001 Z=11101001
a = 10000001 b= 10000010 j=10010001 z=10101001

From an observation of these bit patterns, you can see that the only
difference between capital letter and its lowercase counterpart is that
the second bit from the left is a 1" for capital letters and a ‘0" for
lowercase letters. Thus, if the operator enters a lowercase message

[(T

stream 1/0 28b

into our program via the console typewriter, all our program has to
do to convert lowercase to capital letters is to insert a 1 bit into the
second position of each byte.

The OR (|) operation in PL/Il is generally used to test logical
relationships of data. For example:

IF A=B|C=D THEN GO TO CALC;

l If either A = B or C = D, the state-
ment following the THEN is executed

However, when the OR operation is applied to bit-strings, it has a
different function, for it may be used to modify bit-string data according
to the following rules:

-1
-1

-1

o—\o—\

Thus, if we had the first operand shown below ORed to the second
operand, which is sometimes referred to as a mask, note the restilts:

10000001 — Bit code for “a"”
OR 01000000 — Mask
11000001 — Result from an OR operation

The result, of course, is the bit code for capital letter “A.” Suppose
the same mask is to be ORed to the bit code for a capital “A"” ;

11000001 ~ Bit code for A"
OR 01000000 — Mask
11000001 — Result from an OR operation

Here, the result is still a capital “A.” Thus, ORing the mask shown above
to either capital or lowercase letters will always yield capital letters.
For our program to change lowercase to capital letters, it will be
necessary to manipulate the alphameric character as a bit-string for
purposes of merging in the 1 bit in the second position of the byte.
To do this, we need to invoke the UNSPEC built-in function. This

286 PL/l Programming

function allows you to unspecify any data item so that it will be treated
as a bit-string. Its general format is

UNSPEC (K);

‘———»The argument that is to be treated as a bit-
string without conversion taking place

Assume it is desired to have the operator enter a maximum eight-
character reply. For example:

DCL RESPONSE CHAR(8) ;
DISPLAY ('ENTER CANCEL OR CONTINUE’) REPLY (RESPONSE);

The following statement would be written to change lowercase into
capital letters. Of course, if capital letters already appear in RESPONSE,
the ORing of a bit in the second position of each byte will not alter that
bit pattern.

UNSPEC(RESPONSE) = UNSPEC(RESPONSE) | (8) ‘01000000'B ;

L—» Indicates bit-string
constant
Repetition factor for
the bit-string con-

stant; result is a bit-
string of length 64

— Symbol for the OR
operation

Built-in function

Pseudo-variable

Pseudo-variables are built-in functions that may be specified as
receiving fields. It was necessary to use UNSPEC on the right side of
the assignment symbol to treat RESPONSE as a bit-string for purposes
of ORing a 1 bit into the second position from the left in each of the
characters in the message. UNSPEC on the left of the assignment
symbol causes the receiving field, which is RESPONSE, to be treated
as a bit-string with no conversion. This is necessary in order to assign
the bit-string on the right of the assignment symbol to the variable on
the left. Had the variable on the left been a character-string, e.g.,

RESPONSE=UNSPEC(RESPONSE) | (8) ‘01000000'B;

Bit-string expression

Character-string

Stream |/0O 287

then the rules for PL/I assignments of different data types specify
that the bit-string is to be converted to characters. Recall that
RESPONSE has previously been declared as CHAR(8). Because of
the use of the UNSPEC function, RESPONSE now becomes a bit-
string ; on the right side of the assignment symbol in the above example,
it has a bit length of 64 (8 characters = 64 bits). For example:

11000011 11000101 (64 bits)

In converting bits to characters, only the leftmost eight bits of this
string would be converted to characters when placed into a variable
with the CHARACTER attribute. Thus, if the above bit-string were
assigned to RESPONSE (without the use of the UNSPEC pseudo-
variable), which has the CHARACTER attribute, RESPONSE would
contain the characters 11000011 rather than the word ‘CONTINUE".

This case study illustrates a number of facilities of edit-directed I/O0—
repetitive specifications, SKIP, COLUMN, remote format items (R),
nested format lists, and the STRING option of the GET statement.
The program is designed to produce a series of bar charts graphically
depicting the net sales of each item produced by the Acme Company
in the last three years. The net sales figure for each item is to be dis-
played by month as a horizontal bar across the page, with each print
position representing 1000 units sold. Figure 5.2 illustrates this bar
chart.

Data for this graph is punched into cards. There are two types
of cards:

1. Order records: These contain the gross orders for a particular
item for each month of a given year. The letter O punched in
column 79 identifies this card type.

2. Cancellation records: These contain cancellations for the
corresponding item. The letter C punched in column 79 identifies
this card type.

(It is more common to use digits 1 and 2 to represent card types and
it is more common to punch these values in column 80—rather than
79—however, the formats described above were selected to illustrate
some edit-directed 1/0 coding techniques.)

*Alo1siy sojes awoy 104 Jeyd Jeg z'G IHNDI4

exxdokkrxx J30
xR xkRFREEEE AON
sEskkxkeksky 100
Fdkkdokkk ko dokkkkkks d3S
ok Sk ok Ok Rk ook ko kokokok Rk R okok R OOV
kR dkdokodokok Rk & R dkook kR ook dokok ok ko k% 1O
Aok kR R ok ok ko ok ook R ROk R kR kR Rk kR kxR Rk Ry NOT
3 o o o ok sk kool ok ok A o g koK o R R o Rk ko R R AR R R AR AR RREK AV W
ok kR Rk AR ROk ok R R AR R R R R KK kR ok ook Rk Rk Rk kR kR R R Rk Rk R Rk R Rk Rk UdV
ook ok ook ek ok ok ok ok o Ak ook sk ok ook ok ok ok Rk ok Rk kR Rk R R Rk R Rk Rkkk YW
% oKk ok ok Rk R ok R R ok Rk R Rk R Rk R Rk Rk ok kool kR Rk ke ke 934
R kAR R AR R R R Rk ok ok Rk Rk Rk ko k. NV €

=¥xxxsxx 330
wxikkkkk AON
gk kkk 130
ok EFkkeks d3S
Ak kR ok R kkk DNV
ek o ok o ok ok ok ok kR ook Rk ok ok 1A
wF Rk kR ok Rk Sk kR ok gk Rk ok gk NAC
Aok ko ok ok ok ok R kol kR R ok ok Rk Rk Rk kkkk AVH
e o ook ook ek s okl ko ek kol o e ol sk okl ok ok o ek s ok ol Rk 3 ok ko o ook R bk ok Xk Aok ok R kok R Rk Rk okk 3 d VY
ok o e o o e 3 e ok ko R R R ok ek Rk R R Rk Rk WY W
% koo Rk Rk kR ok ok ok ok or ok koo dolokok ok kR kR R kbR Rk sk 933
ok R okkok ok Rk Rk kR ok vk Rk kR R dokk R kR Rk kR Rk EkkE NV P r4

*%xx 330
*xxkxkxkx AON
wkkkkksk 100
gk kkssrarke sk d3S
FxkkkERERxskkrkkxrEx OOV
Bk ok ook ook ok ofok ko kol R R R Rk ok ook ook okokdokk ok R ook Rk Rk k. 1AM
e 0ok e e o ek sk o o o ok o o o koo B e ok o ekl ook ook kokkok ook NOIE
LE e e e s e T R e 2 T 22 N /Y]
EE e L s R L2 2o ST P2 T T
ot s sk ok ok Aok kol b ko ok o kol ok skl ook ok Aok o ok ok d A ok ook R kR ok ok A ok o oKk Rk AN
E 2 L e e L L L TR E F]
FRAH AR AR RRE RS RRE X BERE R Rk xkRE X kkkx NVI 1

i I i I I t | I | “OW # ¥A
60006 00008 0000L 0G0GC9 000606 0000% 0000€ 00002 00001
0333040 SLINN L3N €210 °ON W3 il

1¥VH3 A¥0LSIH S37vS

Stream |/0 289

Figure 5.3 shows the record layout for each type of input card.
Notice that an item number is punched in positions one through four
of each card; however, four columns are then used to represent
quantity ordered for each of twelve months, whereas, only three
columns are used for quantity cancelled for each of twelve months.
Typically, identical field widths (four columns, in this case) for quantity
ordered and quantity cancelled would be selected in the design of these
record layouts. However, having two different card formats in the
input -stream will illustrate the need for using the GET STRING option
of edit-directed 1/0. The net sales figures per month are determined by
subtracting quantity cancelled from quantity ordered.

Because it is desired to compare sales history for the past three
years, there ‘will be up to six records per item—one order record and
one cancellation record for each of three years. Assume the cards are
arranged in ascending sequence by item number; thus, all six records
for a given item will be together in the file. However, the six records
may be in any order. The cards could also have been sorted into
sequence by year within item number. This has been intentionally
avoided for this case study to illustrate how the same thing may be
accomplished by program logic. For this reason, columns 77 and 78
of the input cards have been used to designate the year to which the
order or cancellation record applies (e.g., year 1" or year “2” or year
"“3™). A flowchart is given in Figure 5.4, and the source program is
shown in Figure 5.5. The following is an explanation of the PL/I
statements in the program.

Statement 2. The variables declared in this statement include
ITEM and NEXT_ITEM. These two variables are used for comparing
the item numbers read from cards. The current item number is assigned
to NEXT_ITEM on input. This is then compared with the old item
number found in ITEM. As long as ITEM and NEXT_ITEM are equal,
we know that we are still reading orders and cancellations for the
same item. When NEXT_ITEM is not equal to (i.e., greater than) ITEM,
we may then assume that all records have been read for a particular
item and that it is time to print the bar chart for that item. Later in the
program NEXT_ITEM will be assigned to ITEM, now becoming the
old item number against which the next item number will be compared.

Statement 4. A remote format statement is specified because there
are two GET statements (7 and 12) that each require the same format
list.

ORDER RECORD

1 1 2 2 3 3 4 4 5 5 6 6 77778
1 5 0 5 0 5 0 5 0 5 0 5 0 5 67890
ITEM QUANTITIES ORDERED YR
NO. UNUSED #
JAN | rEB [MAR [APR [MaY [JuN JJuL Jaucg [sep JocT Inov | DEC

TYPE = 'O’j

' UNUSED

CANCELLATION RECORD
1 1 2 2 2 3 3 4 4 4 5 77778
1 5 9 3 7 1 5 9 3 7 1 5 9 3 67890
TEM QUANTITIES CANCELLED R|
NO. UNUSED #
JAN [FEB]MARJAPR [MAY[JUN [JUL [AUG [SsEP [ocT [NOV [DEC
TYPE = 'C'
UNUSED

FIGURE 5.3 Layout of order and cancellation records.

Read
next
data card

Start

END_OF_INPUT
=0

Read
first data
card

ITEM=

=

NEXT_ITEM

GET STRING GET STRING
for for
orders cancels

END.-
OF_INPUT
=0?

NET=
ORDERS —
CANCELS

ENDFILE

END_OF_INPUT Print
=1 heading

S

DOI =11t 3

DO J=11to 12
No
Yes
No
Yes
ITEM=
NEXT_ITEM

FIGURE 5.4 Flowchart for sales history chart.

292 PL/l Programming

1 SALES: PROC DOPTIONS(MAIN) 3
2 DCL (ITEM,NEXT_ITEM) CHAR({4), TYPF CHAR(1),
YR FIXED BINARY(1S5), FIELDS CHAR(60),
END_OF_INPUT BIT (1) INIT ('0'8),
(ORDERS,CANCELS,NET) (12 ,3) DECIMAL FIXED{S5) INIT({(36)0),
MO(12) CHAR(3) INIT(*JAN', 'FEB',"MARY, T APRT ," MAY! , * JUN T,
TJUL!, TAUGY, 'SEPYy 'OCT ', *NOV! ,*DEC)5
3 DCL LIMIT FIXED;S
4 REM: FORMAT(ALG) yAL60),XT12),F(2),A(1));
5 DCL CARDN FILE INPUT STREAM ENVIF(B0)MEDIUMISYSIPT, 2540));
6 ON ENDFILE(CARDN) GO T0O END3
7 GEY FILF{CARDN)EDI TANFXT_ITEM,FTELDS ,YR,TYPE) (R{REM))3
8 ITEM = NEXT_ITEM;

9 GO TO SKIP;

10 FND: FND_OF_INPUT = ']1'B3

11 GO TO SKIp;

12 AGAIN: GET FILE(CARDN)EDITINEXT_ITEM,FIELDS, YR, TYPE){SKIP,R(REM));
13 IF ITEM = NEXT_TTEM THEN D03

14 SKiP: IF TYPE = O

THEN GET STRING(FIELDS) EDIT
((ORDERSI{T,YRY NO I =1 T0 12))(F(5))3

15 ELSE GET STRING(FIFLDS) EDIT
(({CANCELS(I,YR)}) DO I =1 TO 12))(F(4));
16 IF ~END_OF _INPUT THEN GO TO AGAIN;
17 ENDS
13 NET = CRDFRS — CANCELS3
19 PUT EDIT{'SALES HISTORY CHARTY *){PAGE,CCLUMN{(47),A)

{*ITEM NO. *,ITEM, 'NET UNITS ORDERED')
(SKIP(2)y 2 AyCOLUMN(48),A)

((1,*0000' D01 =1 7O 10))
(SKIP,COLUMN(18), 10 (F{2),A,X(4}))}

{'YR # MD.',('|" DO T = 170 10))
{SKIP,COLUMNI2) ,A, COLUMN(21), 10 AL10)})3

20 DorI =170 3;

21 PUT EDIT(I)(SKIPI2),F(3));

22 DOy =170 12;

23 PUT EDIT (MO{J}){COLUMN(T),A(4));
24 LIMIT = NET{J,I)/1000 + .5;
25 DO K =1 TO LIMITS

26 PUT EDIT(***)(A)}3

27 END 5

28 END 3

29 END3

ED] ITEM = NEXT_ITFM;

31 TF -END_QOF_INPUT THEN GO TO SKIP3

32 FINT: END SALFS;

FIGURE 5.5 Case study program: sales history bar charts.

Statement 5. The card input file is defined. Because STREAM is
the default attribute for files, it need not be specified in this file declara-
tion.

Statement 6. This statement specifies the action to be taken when
the ENDFILE condition is raised.

Statement 7. This statement reads the first card. There are no control
format items [e.g., SKIP, COLUMN(1), etc.] in this statement because
reading will automatically begin with column one of the first input
card.

Stream 1/0 293

Statement 12. This statement reads all subsequent cards. Notice
that a control format item now had to be specified because of the
nature of stream input. The SKIP causes reading to begin with the
first column of the next record. Had SKIP been omitted from this GET
statement, a logical error would result. This is because the card type
is punched in column 79. Thus, column 79 is the last column “taken”
from the input stream. Without the SKIP, input for the second GET
statement would begin in column 80. Clearly, this is an error, because
data for each new record read with a GET begin in column one.

Statements 14 and 15. These statements test for card type and,
based on whether each is an ORDERS or CANCELS card, the appro-
priate GET STRING statement is executed. This option is useful in
this case study because there are two different card formats in the
input stream. All cards are read with the GET EDIT statement and then
reread (i.e., reformatted) with the GET STRING option once the card
type has been determined.

Statement 16. This statement tests the end-of-input-file indicator
set by the program when the ENDFILE condition is raised. Because
END_OF_INPUT has the BIT attribute, it may be tested with the
NOT (—) bit-string operator. Recall that a “1’'B is a “true” condition.
By testing for the ““not true” condition, this IF statement is specifying
that, “should END_OF_INPUT contain a ‘0'B, then go to AGAIN;
else go to the next statement.

Statement 18. Array arithmetic is used to determine net sales.

Statement 19. Several heading lines are output with this one PUT
EDIT statement. Notice this variation of the PUT statement; a data list
is followed by a format list, and then another data list is followed by
another format list, and so on.

Statement 20. This DO statement establishes the loop operation
to output three years of sales history.

Sfatement 21. This PUT statement causes the year designation
(e.g., 1, 2, or 3) to be printed.

Statement 22. This DO statement establishes the loop operation
for the printing of the horizontal bar representing sales figures for each
month of each year.

Statement 23. The alphameric designation for a given month is
output.

294 PL/lI Programming

Statement 24. The net sales figures are scaled down because each
asterisk on printer output represents 1000 units sold. Thus, if 60,000
units were sold, then 60 asterisks will appear on one line. The number
of asterisks for output is assigned to the variable called LIMIT. The
+.5 is used to round off the sales figure to the nearest dollar.

Statements 25—-27. These statements cause one line of asterisks
to be printed. The number of asterisks printed is determined by the
value in LIMIT.

Statements 28—-29. These end the other DO’s specified.

Statement 30. The current item number (NEXT_ITEM) is saved in
the variable (ITEM) that held the old item number.

Statement 31. This statement tests the END_OF_INPUT indicator.
By testing for the “‘not true” condition, this IF statement is specifying
that, “should END_OF_INPUT contain a ‘0'B, then go to SKIP; else
go to FINL.”

Edit-Directed I/O Eliminates Some Disadvantages of List-Directed I/O:
It provides for considerable efficiency in the representation of input data and
offers a great deal of flexibility in the formatting of output data. The general
form of edit-directed I/0 statements is

GET EDIT(data items) (format items) ;

The following points should be remembered when using the GET EDIT and
PUT EDIT statements:

1. All data list items have corresponding format items. There are three

types:

(a) Data format items: These are items describing the format of
the external data.

(b) Contro/ format items: These are items describing page control,
line control, and spacing operations.

(c) Remote format item: This item indicates that one or more data
format items and/or control format items are located remotely
from the GET or PUT EDIT statement in a FORMAT statement.

10.

1.
2.

stream 170 295

If there are more format items than data items, the extra format items
are ignored.

The data list item need not have the same width specification as the
corresponding format item.

Input continues until alt data items have been read.

Data list items may be names of data aggregates. It is possible to
specify the name of an array as a list item. If an array