File No. S$360-29
Order No. GY28-6800-5

Program Logic

I1BM System/360 Operating System
PL/1 (F) Compiler
Program Logic Manual

Program Number 360S-NL-511

This manual describes the internal design of
the IBM System/360 Operating System PL/I (F)
Compiler. It is aimed at personnel responsible
for analyzing program operations, diagnosing
malfunctions, and changing the program format for
special or national language usage. The
information provides a guide for effective use of
the program listings. Program logic information
is not necessary for the use and operation of the
program; therefore, distribution of this
publication is limited to those described above.

r = _——— m—memesmssesEmem— b}
|Sixth Edition (December 1971) |
] |
IThis is a minor revision of, and obsoletes, Y28-6800-4 and |
| incorporates Technical Newsletters GN33-6018 and GY33-6017.1|
IChanges to the text, and small changes to illustrations, |
lare indicated by a vertical line to the left of the change; |
Ichanged or added illustrations are denoted by the symbol e |
lto the left of the caption. |
1 |
|
|
|
|
1
|
|
|
J

IThis edition applies to Release 20 of IBM System/360
|Operating System, and to all subsequent releases until
lotherwise indicated in new editions or Technical
INewsletters. Changes are continually made to the
Ispecifications herein; before using this publication in
|connection with the operation of IBM systems, consult the
|latest IBM System/360 Bibliography SRL Newsletter, Form
IN20-0360, for the editions that are applicable and current.

| . - = e e O o O o e

Requests for copies of IBM publications should be made to
your IBM representive or the IBM branch office serving
your locality.

Address comments concerning the contents of this publication
to IBM United Kingdom Laboratories Ltd., Programming
Publications, Hursley Park, Winchester, Hampshire, England.

© Copyright International Business Machines Corporation 1966,
1967, 1968, 1969, 1970, 1971

This publication is organized in three
chapters. Chapter 1 is an introduction
describing the relationship between the
compiler and the operating system, and the
overall organization of the compiler.
Chapter 2 is a general description of each
logical phase followed by descriptions of
each of the physical phases contained in
the logical phase. Chapter 3 consists of
flowcharts, tables and routine directories.
The flowcharts show the relationship
between the routines of each phase, while
the tables and directories list the
routines and their functions.

The appendixes contain topics of special
importance and reference material.

The convention has been followed in this
manual of printing all PL/I langquage items
in block capitals.

Prerequisite to the use of this
publication are the following:

IBM System/360:

Principles of Operation, Order No.
GA22-6821

IBM sSystem/360 Operating System:

PL/I(F) Lanquage Reference Manual, Order
No. GC28-8201

PL/I(F) Programmer's Guide, Order No.
GC28-6594

PREFACE

Although not prereguisite, the following
publications are related to this manual and
should be consulted:

IBM System/360 Operating System:

Operatoxr's Reference, Order No.
GC28-6691

Ooperatox's Procedures, Order No.
GC28-6692

System Programmer's Guide, Order No.
GC28-6550

Storage Estimates, Order No. GC28-6551
System Generation, Order No. GC28-655u

Supervisor and Data_Managemént Services,
Order No. GC28-66U46

Supervisor and Data Management Macro
Instructions, Order No. 'GC28-6647

sequential Access Methods, Program Logic
Manual, Order No. GY28-6604

Introduction to Control Program Logic,
Program Logic Manual, Order No.
GY28-6605

PL/I Subroutine bra Program Logic
Manual, Order No. GY¥28-6801

CONTENTS

CHAPTER 1: INTRODUCTION. . . « « « o .
Purpose of the Compiler.
The Compiler énd the Operating System.
Compiler Organization. . «
CHAPTER 2: THE COMPILER LOGICAL PHASES

Compiler Control and #8-Character Set
PreproCeSSOre « o « s o o o « o
Compiler Control. . . « . . .
Initialization « « « « « .
Character Translation. . .
Communication Between Phase
Text and Dictionary Block
CONLTOLl o« o o « « o « o
Block Control Area . . .
Text Block Chaining. . .
Scratch Storage Control.
Storage Requirements . .
Phase Loading.
Phase Directory COnstructio
Diagnostic Message Control
Input/Output Control . . .
Program Check Handling
Job Termination. . . .
Compiler Control Modules.
Module AC.e o « < o
Module AD. <« « <«
The DUMP Option. .
Module AE. « « « «
Module AF. . . - «

Module AG. . «

Module AH. . . .

Modules Al and AJ.
Module AK. .
Module AL. .
Module AM. .
Module AN. ..
Module AT. . -
The TRACE/PATCH Option
Module F1l.
Module J2. « « = o « « o

48-Character Set Preprocessor

s 8 8 6 & 0 0 4 b e

e & o
& 6 8 & 5 8 & 3 o 0 9 s

S 8 6 & & & 3 8 0 0 8 s & 2 0 8 4 s
¢ 8 8 5 ¢ & 8 8 8 & 0 & & & 0 s b 4 0 s & 0 2 0 s g0

4 8 & & 5 4 & & & s 4 8 8 3 8 0 s 0 8
.C‘l..i.lll‘ll.l.‘ll!.lalll‘l.

e
=
]
4]
o

Compile-Time Processor Logical
Line Numbering
Phase AS « « ¢ o =«
Phase AV .« ¢ « « &
Phase BC (BE, BF).
Phase BG (BI, BJ).
Phase BM (BO). . .
Module BN (BP, BV)
Phase BW <« « « « «

s 8 & 0 s 0 @

s 0 s 8 s 0 s

4 6 3 8 8 0 2
8 & & & 8 & »
o s 0. 8 8 s 0

e 4 s 3 & b e s
¢« & 8 8 a2 s s o s

The Read-In Logical Phase€. « « « « .
Statement Numbering. . . « o
Statement and Entry Labels .
Chains Constructed by Read—In.
Errors and Diagnostic Messages

21
21
21

21

21
22
22
22
22
23
23
23
23
23
23
23
23
25
25
25
25
25
26
26
26
26
26
26
26
26

N)® & & & & & & 8 5 6 ¢ s 8 5 » & 86 8 6 45 0 0 8 s s 0
(o]

26.1
26.1

27
27
27
27
28
28
28
28

28
29
29
29

21

29

The Output String. . . .
Identifiers. « « ¢« « o« «
ConstantS. « « ¢« « « «

operators. « « « « « « «
Initial Labels

Structure of the Read-In Loq1ca1

Phase. . .
Phase CI
Phase CL
Phase CO
Phase CS
Phase CV

e s o s 8
s 3 & 8 @

The Dictionary Logical Phase .

Constructing and Accessing

the Dictionary. . . .
Testing for Consistent
Attributes

Compiler Pseudo—Varlables and

Functions . « . « . . .

Dictionary Entries for Entry

Points.
Phase ED
Phase EG(EF) . . .
Phase EI (EH, EJ).
Phase EL (EK, EM).
Phase EP « . . .
Phase EW (EV).
Phase EY .
Phase FA
Phase FE
Phase FI
Phase FK
Phase FO
Phase FQ
Phase FT
Phase FV
Phase FX

¢ & 0 & 8 s b s 0
e & 3 & & & & 8 s s
s 8 & o 8 8 & & o 4
e ¢ & 8 & 4 & s b 8 0

‘e 8 B s 8 8 0 8 & & ¢
s & ¢ 6 & a4 8 2 3 s 0 s s s 0 e
S 8 & & & 8 6 & 8 o 0 s 0 s s 8
® 5 8 8 8 8 6 8 5 3 ¢ & 8 0 s 0

The Pretranslator Logical Phase
additions to the Text. .
Phase GA « « « « « »
Phase. GB (GC). .
Phase GK . . «
Phase GO
Phase GP
Phase GU
Phase HF
Phase HK
Phase HP

LI T T S S

¢ s 8 s 0 s

e & & 8 & @

* e o s s & @

s & s 0o 0 s B 0
e o & & & 8 5 o
¢ o 6 o s 8 8 0 &
* s ¢ 5 5 0 0 8

The Translator Logical Phase
Phase IA
Phase IG
Phase IK
Phase IL
Phase IM
Phase IT
Phase IX
Phase JD

s 8 & 8 & 0 s b
s o 8 8 3 2 @

R T R R S T)

& & & & & o o &

R R L I T

P R T T T 'Y

e 6 8 & 5 8 o o

e & & ¢ 3 ¢

The Aggregates Logical Phase .

‘e 6 8 8 & 8 8 & 8

e & o & & 8 5 2 6 & & o & & a2 o

4 6 ¢ 4 & & s & s s 0

® & & & 8 8 8 8 O s s 3 0 0 & & s

O 8 e 6 6 8 8 8 & 6 8 0 8 8 s 8

_The Optimization Logical Phase

The Pseudo-Code Logical Phase.

Phase JI &« &« 2 ¢ ¢ ¢ ¢ ¢ o o «
Phase JK o o 2 « 2 « o o o « o
Phase JP « « « ¢ o o « o « o @

Phase KA (KB). .
Phase KC . .
Phase KE . . .
Phase KG . . .
Phase KJ « . .
Phase KN . . .
Phase KO (KP,K

Phase KT . .
Phase KU(KV)

s 8 8 8 & ® & o & e
e & 2 8 0o 5 o 3 s

L T R I Y)

Pseudo-Code Design . . .
Pseudo-Code Items. . . .
Register Description . .
The Use of Symbolic Unassigne
Registers -
The Use of Physical Registers.
Temporary Descriptors. . . .
Temporary Workspace.
Phase LB
Phase LD
Phase LG
Phase LR
Phase LS
Phase LV
Phase LX
Phase MA
Phase MB
Phase MD
Phase ME
Phase MG
Phase MI
Phase MK
Phase ML
Phase MM
Phase MP
Phase MS
Phase NA
Phase NG
Phase NJ
Phase NM
Phase NT
Phase NU
Phase OB
Phase OD
Phase OE
Phase 0G
Phase OM .
Phase OP .
Phase 0S .

s a 0 & 8
s & o 0

s ues o 0 s

[
e ¢ 00
-
[
~

e 8 0 6 & 0 5 ¢ s 6 6 4 8 & & 0 2 4 8 0 0 b 8 0 0 @
e 5 8 0 & 5 3 4 b 0 6 8 6 6 s 8 3 & 3 6 4 0 b s s 8 8 a2 s

L L L e e e e e e I e e e I R I S I Y T = - B B A)

e 8 & s & 5 5 s 8 8 6 2 8 8 s 8 8 S s % 4 B B s 8 a4 2 s ¢ b s

e & 8 8 8 2 5 2 & 8 6 s & 2 4 0 s 8 4 0 4 6 2 s s 0 b 2 e s &

8 6 8 3 6 2 8 8 8 5 8 5 0 5 & 8 8 8 4 8 53 8 B s s s 0 a8 s s o

4 & 8 8 8 e 6 8 8 8 6 8 6 6 & & 8 0 s 8 & s & s 8 8 8 e s g 8 @

[] & & & & & a2 8 0 5 3 8 6 & & 8 4 s 0 &+ 2 2 % 4 6 s 0 s b+ e

The Storage Allocation Logical Phase

Phase PA . . .
Phase PD .
Phase PH .
Phase PL .
Phase PP .
Phase PT .

Phase QF
Phase QJ
Phase QU
Phase QX.

4 & 8 6 6 8 0 s 8 8 6 s 0 4 4 s & & & L 4 s A 8 0 8 8 8 2 s s 8 s & s

e & 8 8 3 6 5 8 & ¢ 8 3 8 8 4 B 0 & 8 & 4 8 s 6 s 2 & s 6 & s s s 4 .

The Register Allocation Logical Phase.
Phase RA (RB,RC) . & o ¢ o o o« «
Phase RD . ¢ ¢ v ¢ o« o « o o o «
Phase RF (RG,RH) . . . « . « . .

The Final Assembly Logical Phase
Phase TF
Phase TJ . . .
Phase TO (TQ).
Phase TT . . .
Phase UA . . .
Phase UOD . . .

Phase UE . .
Phase UF (UH)

e o 8 & s o
o o 8 & s & s 0
¢ &8 8 o 8 & &
s 8 & 8 8 8 o 0
s & & 8 8 o s o o
* 8 6 & 8 82 s o s
e o & o 8 s 8 & o

-
-
-
-
-
-
3

¢ & 8 o 8 s o

The Error Editor Logical Phase
Phase XA & ¢ ¢ ¢ o ¢« o ¢ o o o «

CHAPTER 3: FLOWCHARTS, TABLES, AND
ROUTINE DIRECTORIES « « o o « o« « «

APPENDIX A: GUIDE TO PHASES AND
MODULES o o « <« ¢ « « « ¢ o o« « = o &«

APPENDIX B: RESIDENT TABLES.

Organization of Keyword Tables
Format of First Level Directory.
Format of Second Level Directory
Format of Third Level Tables . .
Format of Entry Requiring

Additional Comparisons.

Phase Directory. « « « « ¢« ¢ « o « . .

APPENDIX C: INTERNAL FORMATS OF
DICTIONARY ENTRIES. « -« . « . « « . .

1. Dictionary Entry Code Bytes

2. Dictionary Entries for Entry Points
Entry type 1 €5r PROCEDURE,
BEGIN, and ENTRY statements
Entry Type 2 « o o o
Entry Type 3 « « « .
SETS List Format . .
Entry Type &
Entry Type 5 « « . .
GENERIC Entry Point.

¢ o & 8 & o
o & 8 o 0
e a8 & & 0
L T T R]
e o o 8 @
a s o s s

3. Code Bytes for Entry Dictionary
Entries « « « ¢ o« o o o « o o o @
ENTRY Code Byte. .
Options Code Byte.
Optimization Byte.

4. Dictionary Entries for Data, Label,
and Structure Items
Label Variables - Obtained
from DECLARE Statement . . .
Dictionary Entries for Data
ITteMS. « « o « « o « o o o a
Major and Minor Structure
Entries. « o« ¢« ¢ o o « o o « =«

5. Code Bytes for DATA, LABEL, and
STRUCTURE Dictionary Entries.

I S T Y
o
o

¢ & & o e o s e o
[+
@

.379
.384
.384
-385
.385
.385
.385

.386

.387
.387
.389
.389
.391
.391
.392
392

.393
.393

.393
.393
-394
-394
394
-394
.395

.396

397

The First Code Byte - Other 1. . .397 Symbol Table Entry 409
The Second Code Byte - Other 2 . .397 Dictionary Entry for AUTOMATIC
The Third Code Byte - Other 3. . .398 Chain Delimiter809
The Fourth Code Byte - Other 4 . .399 DED Dictionary Entry410
Variable Byte. . « . «399 DED2 Entries « « ¢« o« « « « « - . U410
Data Bytee -« « o ¢ <« = =« « « . . 400 Dictionary Entry for
FED - Format Element Descriptor .410
6. Format of Variable Information. . . .400 Label BCD Entries.410
Uses of the OFFSET1 and OFFSET2 Dope Vector Entries for
Slots in Data, Label, and Temporaries . « . « « ¢« « « . . 810
Structure Dictionary Entries. . .403 Record Dope Vector Entry41l
STATIC INTERNAL StructuresU403 Dope Vector Descriptor Entry . . .411
AUTOMATIC Structures. . . « .« 2403 Format of a Second File
STATIC EXTERNAL and Parameter Dictionary Entry. « JU411
Structures. . . e e o o o« o <403 Dictionary Entry for a STATIC
CONTROLLED Structures. e o o o o <403 DSA v o o o o o o o o o o o « o o811
Non-Structured Arrays in Dictionary Entry for an Error
STATIC INTERNAL403 Message < J011

Non-Structured Arrays in

AUTOMATIC. « o« « . o o . 403 8. Dimension Table . . «. « « . <« . . . 412
STATIC EXTERNAL, CONTROLLED or

Parameter Array « « « « « « « « o403 9. Dictionary Entries for Initial
Non-Structured Scalar Strings values. « . . e o o o e e ¢ o o o o JU12

in STATIC INTERNAL403 INITIAL Value List413
Non-Structured Scalar Strings

in AUTOMATIC. . . e e o o o« <UBOU APPENDIX D: INTERNAL FORMATS OF TEXT . .U414
Non-Structured 8calar Strings

in STATIC EXTERNAL, 1. Text Code Byte after the Read-In
CONTROLLED or Parameter. . . 404 Phase « « . « « - . . . - U415
Non-Structured Non-String First Level Table (00 to 7F) « . JU15
Scalars in AUTOMATIC or First Level Table (80 to FF) . . .416
STATIC INTERNAL 404 Second Level Table (00 to 7F)
Non-Structured Non-String (preceded by second level
Scalars in STATIC EXTERNAL, marker byte C8) U417
CONTROLLED or Parameter 404 Second Level Table (80 to FF). . 418
7. Other Dictionary Entries.404 2. Text Formats After The Read-In
Label Constants - Extracted Phase e o o o e « s s « . Jb18
by the Read-In Phase.404 PROCEDURE Statement e ¢ o o o o o418
Compiler Labels « . . U404 ENTRY Statement.419
Formal parameter type 1 BEGIN Statement. « « « « « . . « .U419
€NtYYe o« o o o o - « « 804 END Statement.019
Dictionary entry for FILE « « U405 IF Statement . . « U820
FILE COnsStants « « « « « « « « « 8405 DO Statement 420
FILE Parameters and Temporaries. .405 ON Statement420C
FILE Environment Entries0405 ASSIGN Statement420
Dictionary Entries from WAIT. Statement. U421
COnStantS e @ @ e ® o o o e e ."05 CALL Statement‘ ® & e & o ° o o .“21
Task Identifiers and EVENT 30 TO Statement.421
DAt3 « « = o « o « o o« o « « - U406 SIGNAL and REVERT Statements. .422
Dictionary Entries for DISPLAY Statement0422
Built-in Functions.406 DELAY Statement. . « « « « « . « U422
Second Code Byte « o« « o« . « . . LU07 RETURN StatementU422
Internal Library Functions407 STOP, EXIT, and Null Statements. .422
BCD entXieS. v « o « o « o o « « U407 INITIAL Label DECLARE Statements .423
Dictionary Entry for Parameter DECLARE and ALLOCATE Statements. .423
Descriptions. « « « « ¢« « & < o U407 FORMAT Statements. « « « « « « « .#23
ON StatementS. « « « « « « « « « 8407 OPEN and CLOSE Statements.423
ON Condition ¢« « ¢« « o &« &« o« « « .UOS8 READ, WRITE, GET, PUT, REWRITE,
CHECK List Entry . . . « . « - . .U408 UNLOCK, and DELETE Statements . .423
PICTURE Entry. « « « =« « « « « « 2408
Byte 9 - Code Byte408 3. Text Code Bytes on Entry to the
Dictionary Entry for Workspace Translator Phases . « « « « « « « . - U204
Requirement « « « « « ¢« « « « « 409)
Dictionary Entry for Parameter 4. Format of Triples « « « « ¢ « « . - .U26
LiStS e e s e e e e e e . e o = 0“09 .
Dictionary Entries for Dope | 5. Text Code Bytes in Pseudo-Code. . . .429

Vector Skeletons. - « « « « « . U409

6. Text Formats in Pseudo-Code
pseudo-code Design
RX Instructions. .
RS Instructions. .
RR Instructions. .

SI Instructions. -
$S Instructions
variable Length Item
Compiler Function (Bit
Pseudo-code Format between
and IEMRF . « o « « o o « = =

« 8 0 s & @

FLAG .
1=1). .

7. Text Formats in Absolute Code
RR Instructions. . .
RX Instructions.
SS Instructions.
RS Instructions.
SI Instructions.

a o s s »
s 6 o o 8
a 8 8 s 8 0

8. Second File Statements, and the
Formats of Compiler Functions and
Pseudo~VariableS. « « « « o . « « «

Second File Statements
Array Bounds . « « « « « « o
Multiplier Function.
String Length statement. . . .

. INITIAL value statements . . .
Second File Statements for BASE
and OFFSETe « « <« « « « o @
Second File Statements for

DEFINEDe « « o « o o « « o o

9. Pseudo-Code Phase Temporary Result

Descriptors (TMPD). . . « .« . . « &
Temporary Description Stack.
Temporary Descriptions in

Pseudo=Code « o« « o o « o « =

10. Library Calling Sequences. . . .

11. Descriptions of Terms and
Abbreviations used in Text During a
Compilation « « « « ¢ ¢ « & o o o &

APPENDIX E: STORAGE REQUIREMENTS.
Compiler Requirements and
Dictionary/Text Block
Relationship. « « « <« « . .« &

IEMRA

s 8 o 8 s @

429
.429
-430
431
431
431
<431
.431
432

432
.433
.433
.433
.433

.433
-433

<434
434
434
<434
.435
.435
-436
.436
<436
.u36
.438

.438

.439
.449

450

APPENDIX F: COMMUNICATIONS REGION

APPENDIX G: SYSTEM GENERATION. . . .

APPENDIX H: CODE PRODUCED FOR

PROLOGUES AND EPILOSUES -
Prologues and Epilogues

DSA Optimization « «

APPENDIX I: DIAGNOSTIC MESSAGES. . .

APPENDIX J: COMPILE-TIME PROCESSOR .

1. Internal Formats of Text. « . . .
Format of a Dictionary Entry .
Format of an Identifier vValue
Block (IVB) « « o @
Instruction Codes for the
Compile-time processor. . . .

2. Communications Region Use

3. Compile-time Processor, Operating
System, and Compiler Control
Interfaces. « « <« o ¢ ¢ ¢ 2 o o o .

APPENDIX K: TABLE HANDLING ROUTINES
FOR K PHASES. « ¢ 2 o o ¢ o ¢ o « «

Description and Format of

Macro-Instructions.
The IEMKTCA Macro. . « « .
Description of Parameters.
The IEMKTAB Macro. « « « «
Description of Keyword
Parameters. « « « « « « « .
Description of Table Handl1ng
Operations. . « « « « « . . .
Selective Scanning Facilitiy .

APPENDIX L: CONTROL ROUTINES

Compiler Control Routines.

INDEXe « v = = o = o o o o o o o o &

s s o

-451

.458
.460
460
-46u
.U66
474

474
<474

47>
476

479

482
.483

.483
.483
.48y
.485
486

.u87
.u87

.438
.489

.503

FIG

Figure 1. Compiler Data Flow and Data

Sets Used « « ¢« o o ¢ ¢« o o o o o «
Figure 2. Compiler Logical Phases
(Part 1 of 2) . o ¢ o o ¢ o o o o &
Figure 2. Compiler Logical Phases
(Part 2 of 2) . ¢« ¢ ¢ ¢ ¢ o o o o «
Figure 3. Compiler Organization and
CONtIOL « =« ¢ o o ¢ o ¢ o o o o o o
Figure 4. Input/Output Usage Table .

Figure 5. Storage Map for the Read-In

PhaS€ o o ¢« o o o o o o o o « o o @
Figure 6. Dictionary Entries for an
Internal Entry Point. . . . « . «

16
18
19

20
24

30

33

Figure 7. PL/I Phase-in-Storage Map.
Figure 8. Organization of Read-In
PhaSe « o « ¢ o o o ¢ ¢ o o o o o o
Figure 9. Organization of Keyword
Table ¢« ¢ o ¢« ¢ ¢ o ¢ ¢ ¢« ¢ ¢ o « @
Figure 10. Decision t> Include a
Second Offset Slot.
Figure 11, Dimension Trable
Figure 12. Temporary Descriptions in
Pseudo-Code -- Use of TMPD Triple
Fields F5 and F6.« . .
Figure 13. The IEMAF Control Section
Figure 14. Bit Identification Table

.383
.384
.385
402
412

437
.u58
.459

Table AA. Module AA Compiler Control
Resident Control Phase.
Table AAl. Module AA
Routines/Subroutine Directory.
Table AB. Module AB Compiler Control
Initialization. . « . « ¢« . «
Table AB1. Module AB
Routines/Subroutine Directory. . . .
Table AC. Module AC Compiler COntrol
Intermediate File Control
Table AD. Module AD Compiler cOntrol
Interphase Dumping. « « « « « « « « «
Table ADl1. Module AD
Routine/Subroutine Directory. . . -
Table AE. Module AE Compiler Control
Clean-Up Phase€. .« « « o« « o o o o « &
Table AEl. Module AE
Routine/Subroutine Directory. . . -
Table AF. Module AF Compiler control
Sysgen OptionsS. « « « « o « o o & .
Table AG. Module AG Compiler Control
Intermediate File Switching
Table AK. Module AK Compiler control
Closing PhaSe€ « « « ¢ ¢« o « o o o o «
Table AL/AN. Modules AL/AN Extended
Dictionary/Dictionary Phases.
Table AL1/AN1. Modules AL/AN
Routines/Subroutine Directory. . . .
Table AM. Module AM Compiler COntrol
Phase Marking . « « =« ¢ =« ¢ ¢ o o « «
Table AT. Module AT Compiler Debugging
MOAUlEs v =« o o o o 2 o o o o =« o o «
Table AT1. Module AT
Routine/Subroutine Directory. . . -
Table AS. Phase AS Resident Phase for
Compile-time Processing
Table ASl. Phase AS Routine/subroutine
Directory « « ¢ e o o o o o o o o o @
Table AV. Phase AV Macro Processing
Initialization. ¢« 4 . . .
Table AV1l. Phase AV Routine/Subroutine
Directory - .
Table BC. Phase Bc Initlal Scan and
Translation . . < « . ¢ ¢ & ¢ & . . &
Table BCl. Phase BC Routine/Subroutine
DIiXeCtoOry « o « o « o o o o o o « o «
Table BG. Phase BG Final Scan and
Replacement « « « .« e o o o o o o o
Table BGl. Phase BG Rout1ne/subrout1ne
Directory . . . -
Table BGl. Phase BG Routine/subroutlne
Directory (cont'd). « ¢« v ¢ ¢ « o o «
Table BM. Phase BM Diagnostic Message
Determination and Printing.
Table BM1. Phase BM Routines/Subroutine
Directory « o =« o ¢ o o o o o o o o @
Table BW. Phase BW Clean-up Phase. . .
Table BX. Phase BX U8-Character Set
Preprocessor. . « « « o« « - o o
Table CA. Module CA Read-In common
Block 1 ¢ & ¢ ¢ ¢ o ¢ @« o 2 o o o o

86.1

. 94

-.100
.101
.102

.102
103

111
112

TABLES

Table CAl. Module CA
RoutinesSubroutine Directory.

Table CC. Module CC Read-In Common
BlOCK 2 & 2 o « 2 o o s o o o o a o =

Table CCl. Module CC
Routine/sSubroutine Directory. . . .
Table CE. Modules CE, CK, CN, and CR
Read-In Keyword Block
Table CI. Phase CI Read-In First Pass.
Table CI1l. Phase CI Routines/subroutine
Directory . . . e + ® @ s ® « o =
Table CL. Phase CL Reaﬂ—In Second Pass
Table CL1l. Phase CL Routine/Subroutine
DIrectory « « « o« o o o o o o o o o &
Table CO. Phase CO Read-In Third Pass.
Table COl. Phase CO Routines/subroutine
Directory « . « ¢« « & « . . « o o
Table CS. Phase CS Read-In Fourth Pass
Table CSl. Phase CS routine/Subroutine
DIirectory « « « « o ¢ o o o .
Table CV. Phase CV Read-In Flfth Pass.
Table CV1l. Phase CV Routines/Subroutine
Directory . . . e e o o o s o e o o
Table ED. Phase ED, Initialization . .
Table EDl1. Phase ED Routine/Subroutine
Directory e o o e o o & o o
Table EG. Phase EG D1ctlonary
Initialization. « « ¢« ¢ ¢ o ¢ « o « &
Table EGl. Phase EG Routines/Subroutine
Directory « o o o o «
Table EI. Phase EI chtionary Declare
Pass dN€e =« « o+ « « e o o o e o o @
Table EIl. Phase EI Routine/Subroutine
Directory . . . e o o ® o e e o
Table EL. Phase EL Dictlonary Declare
PaSsS TWOe: « « « 2 o + < o o o o o o =«
Table EL1. Phase EL Routine/Subroutine
Directory e o o
Table EP. Phase EP Bictionary Entry
IIT and Call. ¢« o« « « o o o o o « « @
Table EP1l. Phase EP Routine/Subroutine
Directory « « ¢ o« ¢ ¢ o ¢ o ¢ o o - .
Table EW. Phase EW Dictionary LIKE . .
Table EWl. Phase EW Routine/Subroutine
DIrectory « « ¢ o« o ¢ ¢ o o o o o « &
Table EY. Phase EY Dictionary ALLOCATE
Table EYl. Phase EY Routine/Subroutine
Directory © o o e a o a s @
Table FA. Phase FA cht1onary Ccontext.
Table FAl. Phase FA Routine/Subroutine
Directory « « ¢ o« ¢ ¢ ¢ « o o o o o
Table FE. Phase FE Dictionary BCD to
Dictionary Reference. . « « « « « « «
Table FEl. Phase FE Routine/Subroutine
Directory . . . e e o o = @
Table FI. Phase FI chtlonary Checking
Table FI1l. Phase FI Routine/Subroutine
Directory « « « o o « o o« o e o o o &
Table FK. Phase FK Dictionary
attribute . . . - e o
Table FK1l. Phase FK Routine/subroutlne
DirXectory « « « o o o ¢ o o o o o « =«

112
.113

.113

.113
.114

.114
.115

.115
.116

.116
.117

.117
.118

.118
.135

.135

«135

.136
.137
.138
-140
.141
.143

.144
.145

145
.146

.1u46
.147

.148
.149

.150
.150

.151
.152
.152

Table FO. Phase FO Dictionary ON . . .
Table FOl. Phase FO Routine/Subroutine
DIrectory « « « o o o o « o« o o o o «

Table FQ. Phase FQ Dictionary Picture
Processor - - - - - - - -
Table FQl. Phase FQ Routlne/Subroutine
Directory . . . © o e s s o 4 o o a
Table FT. Phase FT Dictionary Scan . .
Table FT1. Phase FT Routine/Subroutine

Directory . . . e o e e o o e o =
Table FV. Phase FV Dictlonary Second
File Merge. . . .

Table FV1l. Phase FV Routinelsubrout1ne
Directory « . « « ® e e o o o s e @
Table FX. Phase FX chtlonary
Attributes and Cross Reference. . . .
Table FX1. Phase FX Routine/Subroutine
Directory « « « . . « o o -
Table F1. Module F1 Compller COntrol.
Table GA. Phase GA DCLCB Generation. .
Table GAl. Phase GA Routine/Subroutine
Directory « . . . “ s e s o o = -
Table GB. Phase GB Pretranslator I/o
Modification. « « « &« « « & & -
Table GBl1l. Phase GA Routine/subroutxne
DIrYeCtOry « « « o « ¢ « a = o « « « «
Table GK. Phase GK Pretranslator
Parameter Matching 1. -
Table GKl. Phase GK Routine/Subroutlne
DIiYeCtOrY « ¢ o « o o « o =« o o o « =
Table GO. Phase GO Preprocessor
Parameter Matching 2.
Table GOl. Phase GO RoutlneISubroutine
Directory e e o o o ®
Table GP. Phase GP Pretranslator
Parameter Matching 2.
Table GPl. Phase GP Routlne/Subroutlne
Directory « o « o o o s o o o o o &
Table GU. Phase GU Pretranslator Check
List. - . « c o = = e o -
Table GU1l. Phase GU Routine/Subroutine
Directory © ® o ® e s = @
Table HF. Phase HF Pretranslator
Structure Assignment. . . . < < . . .
Table HF1. Phase HF Routines/Subroutine
DireCtory « « « o« o o o o o o o o o =
Table HK. Pretranslator Array
Assignment. e @ o e e o o o
Table HK1. Phase HK Rout1ne/Subrout1ne
Directory . . . « o o “« o
Table HP. Phase HP Pretranslator isub
Defining. « . « . . « o v s o o e »
Table HP1. Phase HP Routine/subroutine
Dlrectory - - - - - - - - - - L] - -
Table IA. Phase IA Translator Stacker.
Table IAl. Phase IA Routine/Subroutine
Directory . . . e o o o o o o o o @
Table IG. Phase IG Translator
Pre-Generic« e e o 2 o o
Table IGl. Phase IG Routlne/subrout1ne
Directory . . . e e o o e e o o o
Table IK. Phase IK Translator
Pre-GenericC ¢« « « o« o« « o ¢ o o o o o
Table IL. Phase IL Translator
Pre-GenericC « « o « « o o o s o o « «
Table IM. Phase IM Translator Generic.

.153
.153

.154

.155
.156

.157
.158
.159
.160
.161
.161
.171
.171
.172
.173
.174
.174
.175
.175
.176
177
.179
.180
.181
.182
.183
.183
.184

.184
.194

194
.195
.195
196

.196
-196

Table IM1. Phase IM Routines/Subroutine

Directory . . « « « o« « e e e e
Table IT. Phase IT Post-Generic
ProcCeSSOX « « o o o« o « ¢« o o o

Table IT1l. Phase IT Routlne/Subroutlne
DirXeCtOry « « = « ¢ ¢ o « o o o « o «
Table IX. Phase IX Pointer and Area
Checking. « « « ¢« ¢ ¢ ¢ ¢ ¢ ¢« o & & &
Table IX1l. Phase IX Routine/Subroutine
Directory « « o« « o o « 2 o « o o o &
Table JD. Phase JD Constant Expression
Evaluator . « « « ® e o o o o o o
Table JD1. Phase JD Rout1nelsubroutine
DireCtory « « o « o o o « « s o « o &
Table JI. Phase JI Aggregates
Structure Processor .
Table JI1l. Routine/Subroutine
Directory . « « « « « « & e e e o
Table JK. Phase JK Aggregates
Structure ProCesSsOr « « « « « « o o o
Table JK1. Phase JK Routines/Subroutine
Directory . « . . « « o e
Table JP. Phase JP Tran;lator Deflned
Check « « « - e s o o e o o o
Table JP1. Phase JP Rout1ne/Subrout1ne
Dlrectory - - - - - - - L] - - - -
Table JZ. Module Jz eompller Control .
Table KA. Phase KA Resident Control
MOAUlE:e o« o « « o o o o o o o o o o &
Table KAl. Phase KA Routine/Subroutine
Directory . . . - e e e o s e e
Table KC. Phase KC Do-Loop
Specification SCaNe « « « « s o o o @
Table KCl. Phase KC
Routinessubroutine Directory.
Table KE. Phase KE Dictionary Scan and
DO-Map Build. . . . « o e
Table KEl. Phase KE Routine/subroutlne
Directory . . . - e e o o e o o @
Table KG. Phase K” Do Examine Phase .
Table KGl. Phase KG
Routine/Subroutine Directory.
Table KJ. Phase KJ Subscript Table
Build e o o
Table KJ1. Phase KJ Routinelsubroutlne
Directory . . . - e s o & o @
Table KN. Phase KN Subscript
Optimization. . . e o o o o = o e o
Table KN1. Phase KN
Routine/Subroutine Directory.
Table KO. Phase KO Subscript
Optimization. . . . o o o
Table KOl. Phase KO Routine/Subrout1ne
Directory o« « o ¢ o o o o o o o o o o
Table KT. Phase KT Pseudo-Code Scan. .
Table KT1l. Phase KT Routine/Subroutine
Directory . « « « « « =« e o o o o o
Table RKU. Phase KU Do-loop Control and
Merge Patches . « « « « ¢ o o« ¢ o o &
Table KUl. Phase KU RoutinesSubroutine
DIrectory « « « « o o ¢ « o o o o o @
Table LB. Phase LB Pseudo-Code Initial
Table LB1l. Phase LB Routine/Subroutine
Directory . .
Table LD. Phase LD Pseudo-code Initial
Table LD1. Phase LD Routines/Subroutine
Directory . e o o a 5 s 8 5 ®© = ® =

" e e © e o e o

.197
.198
.199
.199
.199
.200
.200
.205
.205
.206
.207'
.208

.208
.208

. 220
. 220
.221
.221
.221

.222
<222

222
223
.223
. 224
.224
.225

230
.232

.233
.234

.236
.268

.268
«269

269

Table LG. Phase LG Pseudo-Code DO
EXpansion « « « « « ¢« o 2 ¢ o« o o o
Table LGl. Phase LG Routines/Subroutine
" DIirectoOry « « o o o o o o « 4 o o o @
Table LS. Phase LS Pseudo-Code
Expression Evaluation
Table Ls1l. Phase LS Routine/Subroutine
Directory « « o « o « o o ¢ o o « &
Table LV. Phase LV Pseudo-Code Strlnq
UtilitiesS o« o o o o o o o« o o o « o @
Table LV1. Phase LV Routine/Subroutine
Directory « « « « « « = o & .
Table LX. Phase LX Pseudo—Code Strlng
Handling. « « ¢ « « o o o o o o « « =
Table 1LX1l. Phase LX Routine/Subroutine
Directory . . - - “ e s s e v @
Table MA. Phase MA Pseudo—code
Translate and Verify Functions. . . .
Table MAl. Phase MA Routine/Subroutine
DiXeCtOXY « o « o o « o o a o o « o @
Table MB. Phase MB Pseudo-code
Pseudo-VariableS. « « o o ¢ « o o « «
Table MB1l. Phase MB Routine/Subroutine
Directory e = e e o 2 e o @
Table MD. Phase MD Pseudo-Code In-Line
FUNCtions « « =« e o o o o o o« « o o o
Table MD1l. Phase MD Routine/Subroutine
DireCtory « « « « o o a o o o « o o =
Table ME. Phase ME Pseudo-Code In-Line
FUNCtions . « o o s o o o = o s o =
Table MEl. Phase ME RoutlneISubroutine
Directory « « « « o o o o o o s o o &«
Table MG. Phase MG Pseudo-Code In-Line
Functions 1 ¢ ¢ o o o o o o o o o o @

Table MG1l. Phase MG Routine/Subroutine
Directory « . « -
Table MI. Phase MI Pseudo—Code In—L1ne
Functions 2 « o =
Table MIl. Phase MI Rout1ne/8ubrout1ne
Directory « o =
Table MK. Phase MK Pseudo—Code In-Llne

Functions 3 . & « ¢ o« ¢ o @« a o o o @
Table MK1l. Phase MK Routine/Subroutine
Directory . . . - - e .
Table ML. Phase ML Pseudo—Code calls
and Functions « « « « « ¢ o « o o o «
Table ML1. Phase ML Routines/Subroutine
Directory « « « « « « . « e -
Table MM. Phase MM Pseudo—COde calls
and FUnctions « « « « o o o o o o o o
Table MM1l1. Phase MM Routine/Subroutine
Directory . . « = = e o o s e e o
Table MP. Phase MP Pseudo—Code BUY
Reorder . . . - « o o o
Table MP1. Phase MP Routine/Subroutine
DirXe€CtOry « w « o o o o« o « o o « o =

Table MS. Phase MS Pseudo-Code
Subscripts. . « . . e e = o o s ° @
Table MS1. Phase MS Rout1ne/$ubrout1ne

Directory - « « . . « o o @
Table NA. Phase NA Pseudo-Code
Branches, ON, Returns « «
Table NAl. Phase NA Routines/Subroutine
DiXeCtOrY « « « o ¢ o o o o o o o o @
Table NG. Phase NG Pseudo-Code
Operating System Services
Table NGl. Phase NG Routxne/Subroutxne
D1 rectory - - - L3 - - - - - - - . - -

.270
.271
.272
.273
.274
.274
275
.276
277
.278
.279
.280
.281
.281
.282
.282
.284
.284
.287
.287
.288
.288
.289
.289
.289
.290
.291
291
.292
.293
.294
.295
297

«297

Table NJ. Phase NJ Pseudo-Code RECORD
I/70 @ o 2o e ¢ o 2 o o @ o « s o s o
Table NJ1. Phase NJ Routines/Subroutine
DiYeCtOXy « « o 2 ¢ o o o o o o « o
Table NM. Phase NM Pseudo-Code
Executable I/0. . v« ¢ 2o o o a o o o« «
Table NM1. Phase NM Routine/Subroutine
DIrectory « « « o o o o « o a o« o o« =
Table NT. Phase NT Pseudo-Code Data
and FOrmat. « « « o o o o « « o « o &«
Table NT1l. Phase NT Routine/Subroutine
DIirectory « « o« o« ¢ « o o o o o o o =
Table NU. Phase NU Pseujo-Code Data
and Format ListS. « « « « o « o « o o
Table NUl. Phase NU Routine/Subroutine
Directory e o e o o e o o =
Table JB. Phase OB Pseudo-tode
Compiler Functions. . . . e o
Table 0Bl. Phase OB Routinelsubroutlne
DirecCtOry « « « o o « o o o o o o o &
Table OD. Phase OD Pseujo-Code
Assignment. « o @
Table 0OD1. Phase 0D Routinelsubroutlne
DIFECLOXY « « « o« o « o« o « o o o o &
Table OE. Phase OE Pseudo-Code
Assignment. c e e o o @
Table OEl. Phase OE Routine/Subroutlne
Directory . .
Table 0G. Phase 0OG L1brary Calllng
SEQUEeNCEeS « « « « o « o = o « o o o o
Table 20Gl. Phase 05 Routine/Subroutine
DIirecCtory « « « o« o « o o o o o « o
Table OM. Phase OM In-line Data
conversions . . « e e o o o o
Table OMl. Phase OM Routine/Subroutlne
Directory « ¢ « ¢ « o o o o o o o o o
Table OP. Phase OP Further In-line
Conversions e ®© @ ® @ o e =
Table OP1. Phase OP Rout1ne/Subrout1ne
DIirectory « « .« o« « o « o « o o o o o
Table 0S. Phase 0S Constant
Conversions . . . - . .
Table 0S1l. Phase 0S Routine/Subroutlne
Directory « « « o« o« o o o o = o = o =
Table PA. Phase PA DSAs in STATIC
SLOXAGE o = o « o o o o o o o o o o«
Table PAl. Phase PA Routine/Subroutine
Directory « . « « . o o . . .
Table PD. Phase PD Storage Allocatlon
Static 1. . . « .« . .
Table PD1. Phase PD Routine/Subroutine
Directory « « « « « ° o o s o
Table PH. Phase PH Storage Allocation
Static 2. o o
Table PH1. Phase PH Routine/Subroutlne
Directory . . .« . e o « e ® o = s @
Table PL. Phase PL Storage Allocation
Symbol Table and DEDS « « « « « o« « &
Table PL1. Phase PL Routine/Subroutine
Directory« o
Table PP. Phase PP Storage Allocatlon
sort of AUTOMATIC Chain
Table PP1l. Phase PP Routine/Subroutine
Directory o« o
Table PT. Phase PT Storage Allocat1on
AUTOMATIC StOrage - « « « « o « o o o
Table PTl. Phase PT Routine/Subroutine
Directory « « o« « « « s « o« = o = o =

.298
.302
-304
.30%
.305
.305
.306
.306
.307
<309
.310
.310
.311
.311
.312
.313
.314
.314
.315
.315
.316
.316
.329
-329
.330
<330
.331
.332
.333
.333
.334
.335
.336

337

Table QF. Phase QF Storage Allocation
Prologues . « o o « « o o o « o « o &
Table JFl. Phase QF Routine/Subroutine
Directory « « o v« o ¢ o« ¢ o o o o o .
Table JJ. Phase QJ Storage Allocation
Dynamic Storage « « « « « « ¢ « « « .
Table QJ1. Phase QJ Routine/Subroutine
DiXeCtOXyY « o « o o o « o o « o o o =
Table QU. Phase QU Alignment Processor
Table QUl. Phase QU Routines/sSubroutine
DiYeCtOry « ¢« o« « o« o o o « o o o o o
Table QX. Phase QX Print Aggregate
Length Tableée ¢ « ¢ ¢ ¢ ¢ ¢ o o o «
Table QX1. Phase QX Rout1ne/subrout1ne
DireCtory « o« « o o o « o « s o o =
Table RA. Phase RA Register Allocatlon
Addressibility Analysis
Table RAl. Phase RA Routine/Subroutine
DireCtOry « « o« « o« o o o o o« o o o o
Table RD. Phase RD Use Determination
Of Qll EQUS o o o @ © o o o o o o o @
Table RD1. Phase RD
Routine/Subroutine D1rectory. o o o
Table RF. Phase RF Register Allocatlon
Physical Registers. « « « « « « & « .
Table RF1l. Phase RF Routines/sSubroutine
DiXectory « o« « « o o o o o o o = o
Table TF. Phase TF Final Assembly Pass
1 - - - - - - - - - - - -
Table TFl. Phase TF Rout1ne/subrout1ne
Dl rectory - - - - - L] - - - . - - L] -
Table TJ. Phase TJ Final Assembly
Ooptimization. « ¢« « ¢ ¢« « « &« & & &
Table TJ1. Phase TJ Routlnelsubroutxne
Directory « « o« o o o« o o « o« o o o &

.338
.339
340

.341
342

.343
344
344
.3u49
350
.351
.352
.353
.353
.365
«365
.366

.366

Table TO. Phase TO Final Assembly
External Symbol Dictionary. . . « . &

Table Irol. Phase TO Routine/Subroutine
Directory
Table I'T. Phase TT Flnal Assembly Pass
2 ¢« 4 « e o e s o o e s s ° o e o o =
Table TT1l. Phase TT Routines/Subroutine
DIirectory « « o o« « o ¢« o o o o o o o
Table UA. Phase UA Final Assembly
Initial vValues, Pass 1. « « ¢« « « ¢« &
Table UAl. Phase UA Routine/Subroutine
DIiYectory v« ¢ « « o o« o o o o o o o »
Table UD. Phase UD Final Assembly
Pseudo-Code Static DSA'S. « « « « o
Table UD1. Phase UD Routine/Subroutine
DIirectdYy « ¢ « o« o ¢ o o o o o o o =
Table UE. Phase UE Final Assembly
Initial Values, Pass 2. « « « o « o o«
Table UEl. Phase UE Routine/Subroutine
Directory . « . . « o
Table UF. Phase UF F1na1 Assembly
Object Listing. .
Table UF1l. Phase UF Routlne/subroutlne
Directory
Table XA. Phase XA Error Message
Editor. « « . < .
Table XAl. Phase XA Routxne/Subroutine
directory . . . =«
Table 1. Communications Region
Table 2. Zommunications Region
Table 3. Communications Region. Bit
Usage in ZFLAGS .
Table 4. Communications Region.
usage in CCCODE..

Bit

.367
367
-368
.369
.370
.371
372
.37:2
.373
<374
375
.376
.378
.378
452
454
.456
457

Chart 00. Overall Compiler Flowchart .
Chart AA. Resident Control Phase Logic
Diagram (Modules AA through aM, and
JZ) o o o o 2 o o o o o s o s o o o o

Chart AT. Phase AT Overall Logic
Diagram . . . ¢« ¢ ¢ ¢ o e e o @ o o

Chart 01l. Compile-time Processor
Logical Phase Flowchart
Chart AS. Phase AS Overall logic
Diagram . . . « « o o ¢ « 4 o o o «
Chart AV. Phase AV Overall Logic
DiagYam « ¢ « « o © « « o 2 o s o o o
Chart BC. Phase BC Overall Logic
Diagram « « o o o o « « o « = s o o o
Chart BG. Phase BG Overall Logic
Diagram « « o« ¢« o o « o « o o a o o @
Chart BM. Phase BM Overall Logic
DiagrXam « « « « o o o o = = o o o o
Chart BW. Phase BW Overall Logic
DiagYam « « « o « o « « =« o « o o o o
Chart 02. Read-In Logical Phase
Flowchart « ¢« ¢ o« ¢ ¢ ¢« ¢« o « ¢ o o =
Chart BX. Phase BX Overall Logic
Diagram « « « « « o« o« o o o o o o o
Chart CI. Phase CI Overall Logic
Diagram . « <« =« o 2o ¢ ¢ & o ¢ o o o &
Chart CL. Phase CL Overall Loaic
Diagram e o o o o ® s o @
Chart CO. Phase CO Overall Looic
Diagram © s o o o 8 o o a
Chart CS. Phase cs Overall Logic
Diagram e « « o o « o © o = o o o o @
Chart CV. Phase CV Overall Logic
Diagram « « « =« o ¢ o o « « o = « o o
Chart 03. Dictionary Logical Phase
Flowchart . . « ¢ ¢ ¢ ¢ ¢ ¢ o o o o @
Chart EG. Phase EG Overall Logic
Diagram « « « « o o« o o o o o o o o o
Chart EI. Phase EI Overall Logic
Diagram « « o« « o o 2 o o 2 « o o o o
Chart EL. Phase EL Overall Logic
Diagram . « . ¢ o ¢ ¢ ¢ ¢ ¢ o « o o @
Chart EP. Phase EP Overall Logic
Diagram « « « « « « « « o o o o o o =
Chart EW. Phase EW Overall Logic
Diagram « « « « o « o « « o « « = « =
Chart EY. Phase EY Overall Logic
Diagram « « « « ¢ ¢ « o o « « « « = =
Chart FA. Phase FA Overall Logic
Diagram « « « =« « <« ¢ « ¢ ¢ a o o « =
Chart FE. Phase FE Overall Logic
Diagram « « « « o « o ¢ ¢ o a o « o =
Chart FI. Phase FI Overall Logic
Diagram « « « o o o o o « o o o s o =
Chart FK. Phase FK Overall Logic
Di- ag ram - - L] - - - - - - - - - o L] -
Chart FO. Phase FO Overall Logic
Diagram « « ¢ « « o o o o « o o o o o
Chart FQ. Phase FQ Overall Logic
Diagram . « « o « o o « o o o « o o =
Chart FT. Phase FT Overall Logic
Diagram « « « o o ¢« « o © o o o o o o

. 72

. 74
74.1

-104
.105
.106
.107
.108
.109
.110
.119
.120
.121
.122
-123
-124
.125
.126
.127
.128
129
.130
.131
-132

CHARTS

Chart FV. Phase FV Overall Logic
Diagram . « « « « o « « o o @ e o o
Chart FX. Phase FX Overall Loglc
Diagram « « « ¢ o ¢ ¢ 4 ¢ e e o o o .
Chart O4. Pretranslator Logical Phase
Flowchart & ¢ & + . .
Chart GA. Phase GA Overall Loagic
Diagram « « « ¢ « ¢ ¢ &« ¢ o« o & o o
Chart GB. Phase GB Overall Logic
Diagram « « ¢ o ¢ o« ¢ o o o o 2 o o
Chart GK. Phase GK Overall Logic
Diagram ¢ o « o « o ¢ o o o o s o o
Chart 3P. Phase GP Overall Logic
Diagram . « « 2 o o « o o o o o o o o
Chart 30. Phase GU Overall Logic
Diagram « ¢« <« ¢ o« o ¢« o o s o o o &
Chart HF. Phase HF Overall Logic
Diagram « « « 2 ¢ e ¢ « o o o o o o
Chart HK. Phase HK Overall Logic
Diagram . . . o o« ¢« ¢ ¢ ¢ o ¢ o o o @
Chart HP. Phase HP Overall Logic
Diagram « « « o « ¢« ¢ ¢ « s o & . .
Chart 05. Translator Logical Phase
Flowchart - . . . « . . « v o o o
Chart IA. Phase IA Overall Loqic
Diagram e o o o o
Chart IG. Phase IG Overall Logic
Diagram « o « o o o o o o o o « o o
Chart IK. Phase IK Overall Logic
Diagram « « « « « o o o o o o« « o o
Chart IL. Phase IL Overall Logic
Diagram « o « o « o« o o o o s o o o
Chart IM. Phase IM Overall Loaic
Diagram . . . < & ¢ o ¢ o ¢ o o o o &
Chart IT. Phase IT. Overall Logic
Diagram « o
Chart IX. Phase IX Overall Logic
Diagram © e « o o o o o o @
Chart JD. Phase JD Overall Logic
Diagram « o o o o o « o o o o o o o o
Chart 06. Aggregates Logical Phase
Flowchart « « « « o o ¢ o« o ¢ o
Chart JI. Phase JI Overall Louic
Diagram« o
Chart JK. Phase JK Overall Loaic
Diagram « « « « « « o ¢ « o o o o
Chart JP. Phase JP Overall Logic
Diagram « « ¢ o « o « o o o o o o o o
Chart 07. Optimization Logical Phase
Flowchart . . . © o & « « @
Chart KA. Phase KA Overall Logic
Diagram « o o o « e o
Chart RC. Phase Kc overall Loqic
Diagram . . . « o o o @ o o o
Chart KE. Phase KE Overall Log1c :
Diagram « « - « « « o o « « & e o .
Chart KG. Phase KG Overall Loglc
Diagram e e o o @ - o
chart KJ. Phase KJ Overall Logic
Diagram « « « o« o o ¢ o ¢ o o o o o o
Chart KN. Phase KN Overall Logic
Diagram « « « o = ¢ « ¢ o o o o o o &

-133
134
.162
.163
.164
.165
.166
.167
.168
.169
.170
.185
.186
.187
.188
.189
.190
.191
.192
.193
.201
.202
.203
. 204
209
.210
.212
.213
.214
.215
.216

Chart KO. Phase KO Overall Logic Chart OE. Phase OE Overall
Diagram « « o ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o . .217

Chart KT. Phase KT Overall Logic

Logic
Diagram - « o« o o « o o o o o o « o o« .263
Chart 0G. Phase 0G Overall Logic

Diagram . . . ° s e e - - - .218 DIiagram « « .« v o o« o 4 o o o« o « o . .264
Chart KU. Phase KU Overall Logic Chart OM. Phase OM Overall Logic
Diagram - <219 DidQram « « = « = = « « o o « o« « « o 2265
Chart 08. Pseudo-Code Log1ca1 Phase Chart OP. Phase OP Overall Logic

Flowchart « . ¢ ¢ ¢ o ¢« 2 o o o« = « « 2237
Chart LB. Phase LB Overall Logic
Diagram « « o« « o« o o 4 o o « « « « o .238

Chart LD. Phase LD Overall Logic Chart 09. Storage Allocation Log1ca1

Diagram A -239 Phase Flowchart « « « « « « « o « « « 318
Chart LG. Phase LG Overall Logic Chart PA. Phase PA Overall Loaic

Diagram . . . « « « < o o . o200 Diagram . « « ¢« ¢ o ¢ o ¢ o o ¢ o « . L3139

Diagram « « . v ¢ ¢ ¢ « o 2 o« o « « . .266
Chart 0S. Phase 0OS Overall Logic
Diagram « « « « « « « « o o .« <267

Chart LS. Phase LS Overall Logic Chart PD. Phase PD Overall Logic

Diagram s e s e s e s e o . o201 Diagram « « « « « o « o « = « o « = « 320
Chart LV. Rhase LV Overall Logic Chart PH. Phase PH Overall Logic

Diagram e o o2 e e o o« o o o J2U42

DIiagram « o o« o o« o « = « « « « « a « 321

Chart LX. Phase LX Overall Logic Chart PL. Phase PL Overall Logic

Diagram . . . « . « o . o 203 DIiagram « « « o« « « o o o = o o« o « o 322
Chart MA. Phase MA Overall Logic Chart PP. Phase PP Overall Logic

Diagram < e e . - .244 Diagram . « « <« ¢ « ¢ o o o « o o « o 2323
Chart MB. Phase MB Overall Logic Chart PT. Phase PT Overall Logic

Diagram . . . « « + < o < o205 DIiagram ¢« « « « « o o s o o o o« o o o .3204
Chart MD. Phase MD Overall Logic Chart QF. Phase QF Overall Logic

Diagram « o « o o ¢ « o o « o o « o « <286 DidgTaM « o « o « o « o « « « o « « « 2325
Chart ME. Phase ME Overall Logic Chart QJ. Phase QJ Overall Logic

Diagram . . - - . « o o < o o o . . . 247 Diagram « - = « « = « « o « « « « « « 326
Chart MG. Phase MG Overall Logic Chart DU. Phase QU Overall Loaic

Diagram o28 DIilQTaM o« v « = o o « « o « o o o o o 2327
Chart MI. Phase MI Overall Logic v Chart 2X. Phase 0X Overall Logic ,
Diagram . . - « o 209 DidQTAM 2 < v v = « « o o o o o o o o .328
Chart MK. Phase MK Overall Logic Chart 10. Register Allocation Logical

Diagram . . - « . < o o . o -«250 Phase Flowchart « « « « « « « « o « . .3U5
Chart ML. Phase ML Overall Logic Chart RA. Phase RA Overall Logic

Diagram . . « . « « . & . . < <o251 DiagraM « « « < « o o « « o o « o o « 4346
Chart MM. Phase MM Overall Logic Chart RD. Phase RD Overall Logic

Diagram . . « « « 4 o o o o o 2252 Diagram « . « ¢ ¢ o o o o « & e o« o <347
Chart MP. Phase MP Overall Logic Chart RP. Phase RF Overall Loglc

Diagram « « « « « « « « « « o o« « « « .253 pDiagram - e . e« » e « « < J3u8
Chart MS. Phase MS Overall Logic Chart 11. Final Assembly Logical Phase

Diagram « « 2 o o o o o 2 « o o « « o 254 FIOWChArt « « o « « « o « =« » « « = « 2355
Chart NA. Phase NA Overall Logic chart TF. Phase TF Overall Logic

Diagram A A A A A .255 Diagram e @6 ®© ®e ® @ ®o @ o e o e e ® o .356
Chart NG. Phase NG Overall Logic Chart TJ. Phase TJ Overall Logic
Diagram""""""'."'256 Diagram..........-----q357
Chart NJ. Phase NJ Overall Logic Chart TO. Phase TO Overall Logic

Diagram . . « « « < o« - o ¢ 4 o o o . 2257 Diagram « « « « « « « o o« « « o« o o o 2358
Chart NM. Phase NM Overall Logic Chart TT. Phase TT Overall Logic

Diagram « . « « « = o = « o « <« . . .258 Diagram . « « « « « « « « o « o o o « 2359
Chart NT. Phase NT Overall Loaic Chart UA. Phase UA Overall Logic

Diagram « « « « « « o o o o o o o o« . 259 Diagram « « « « = « = « « « = o o« « « 2360
Chart NU. Phase NU Overall Logic Chart UD. Phase UD Overall Logic

Diagram « - = « « « o . o < - o260 Didgram - « « = « « « « « = o « o o « 2361
Chart OB. Phase OB Overall Logic Chart UE. Overall Logic Diagram.362

Diagram . « « « « o « = + < « « o <« . 2261 chart UF. Phase UF Overall Logic

Chart OD. Module OD Overall Logic Diagram e o « «363

Diagram « . « « ¢ « o ¢ ¢ ¢ ¢ o . . . 262 Chart XA. Phase XA Overall Loqic ,
Diagram « « « o « o « o o « o o o o - 360

PURPOSE OF THE COMPILER

The IBM System/360 Operating System PL/I
(F) Compiler analyzes and processes source
programs written in PL/I, and translates
them into a form suitable for input to the
Linkage Editor or Linkage Loader. When
errors are detected in the source program,
appropriate diagnostic messages are
produced. The compiler functions within
IBM System/360 Operating System and may be
used on machines where at least 45,056
(44K) bytes of main storage are available
for the compilation (exclusive of storage
requirements for the operating system).

THE COMPILER AND THE OPERATING SYSTEM

The PL/I (F) Compiler is a processing
program of IBM System/360 Operating System.
The compiler consists of a number of phases
under the supervision of compiler control
routines. The compiler communicates with
the control program of the operating
system, for input/output and other
services, through the control routines.

A compilation is introduced as a job
step under the control of the operating
system, via the JOB statement, the execute
(EXEC) statement, and the data definition
(DD) statements of the Job Control
Language, for the input/output data sets.
Cataloged procedures are provided to keep
these statements to a minimum. A
discussion of the introduction of a
compilation as a job step, and of the
available cataloged procedures, is given in
the publication IBM System/360 Operating
System, PL/I (F) Proarammer's Guide.

The source program to be compiled
appears as input to the compiler on the
SYSIN data set. The compiler uses SYSUT1
(required if the main storage is
insufficient to contain the program) and
SYSUT3 (required if the U48-character set or
the compile-time processor is used) as work
data sets. The SYSPRINT data set is
mandatory. The SYSPUNCH and SYSLIN data
sets are used, depending on the options
specified by the source programmer, to
contain the output from the compiler.

The overall data flow associated with a
compilation, and the data sets used in the
compilation, are illustrated in Figure 1.

CHAPTER 1: INTRODUCTION

A cowpilation is initiated by loading
the compiler control routines from the Link
Library. The compiler control routines
then carry out their own initialization,
including loading those compiler control
routines which remain in storage throughout
the compilation. These routines perform
the following functions:

1. Act as the interface between the
compiler phase and the operating
system, controlling all input/output,
storage allocation, program
interruptions, storage dumping, etc.

2. Supervise the loading of compiler
phases in accordance with source
program options and information
obtained from the source program by
the compiler phases.

3. Supervise all workspace used by the
compiler for information concerning
the source program. This includes any
spilling from main storage to
auxiliary storage in order to
accommodate large source programs, the
conversion of symbolic references to
absolute addresses, and the conversion
from absolute addresses to symbolic
references.

4. Provide a number of routines to assist
in compiler debugging.

The compiler options specified are
interpreted and the appropriate action
taken. The environmental options, such as
storage size and device type, are used to
calculate the text and dictionary block
size and the "spill" point (i.e. the point
at which the main storage available is
insufficient to contain the dictionary and
text).

To determine the block size a table
contained in Phase AB is used. The storage
size is used as the argument to search the
table. When the correct entry is found,
the text block size and the dictionary
block size values are extracted and used
for the compilation.

The options are instructions to the
compiler., Some of these require a phase to
be loaded that would not otherwise be
loaded. When an option of this type is
found, a request for the phase required is
inserted into the status byte in the phase
directory. Other options are in the form
of instructions to a phase that is always
loaded. These instructions are also placed

Chapter 1: Introduction 15

] a
| Source |
| |
| program i
| |
| (SYSIN) |
| |
L T J
|
|
|
v
v N A}
| Compiler]
| |
| (SYSUT1 and SYSUT3 |
{are used as work data sets |
| when required) |
L. T J
|
|
\‘7
T T T T T T T T 1
SOURCE | XREF | LIST | DECK/MACDCK | LOAD
option i option | option | options | option
| | | | | | | | i
v : v : v } v ‘ \'4							
r 1 r 1 T 1 1 3 1 12 1							
Source 1 1	List of {		List of {		ESD,TXT,RILD		
i {		identifiers,			object code		
program I 11	1	produced			caxd@s. PL/I		
]		list of	1	by t?e 111 Source text			(if OBJHM [
listing			staterent	1	compiler		
J } l numbers ! g l } ‘ l specified. !% [!							
L -							
SYSPRINT	SYSPRINT	SYSPRINT	SYSPUNCH i SYSLIN				
[1							
EXTREF ATR for all SOURCE 2							
option option compilations option							
v v v : v							
[} 1 r 1 r 1 r h							
External		List of		List of ([
		identifiers,		compiler		Listing of	
Symbol		list of		options used		input to the	
		attributes		and .		compile-time	
Dictionary		assumed by		Diagnostic		processor]	
		identifiers		Messages i1			
L J L 1 1 1 v 3
SYSPRINT SYSPRINT SYSPRINT SYSPRINT

Figure 1. Compiler Data Flow and Data Sets Used

16

in coded form in the communications region
. of the dictionary, generally in the Control
code word (see CCCODE in Appendix B).

COMPILER ORGANIZATION

The PL/I (F) Compiler comprises a number of
logical phases, each of which consists of
several physical phases as shown in
Appendix A.

The compiler phases and their
corresponding functions are indicated in
Figure 2, and the organization of the
compiler is shown in Figure 3.

control is passed between the phases of
the compiler via the control routines. 2.
After each phase has been executed, it
branches to the control routine, which
selects from its load list the next phase
to be executed.

Communication between the phases is
irplemented by the following:

1. The text string. The text string at
the start of the cmwpilation is input
text. This is converted by the
compile-time processor, if necessary,
into a string which is PL/I source
text. The characters in this string
are translated into a code internal to
the compiler. The phases of the
compiler gradually process the text
until the final form is the object

program, consisting of a string of
machine instructions. For the
compiler proper, the text code bytes
used, and formats of statements at
different stages of the compilation,
will be found in Appendix D.

The text is broken down into a number
of blocks, depending upon the size of
the machine. Each block has a
symbolic name which is independent of
the physical location of the block in
storage. Thus, the text blocks may be
moved around in main storage under the
supervision of the compiler control
routines, and spilled on to auxiliary
storage if insufficient main storage
is available.

The dictionary. The dictionary
consists of a number of blocks, each
with a symbolic name. Part of the
first dictionary block is used as a
communications region (see Appendix F)
between phases, and for this reason
the first block is never spilled, even
when the source program to be comrpiled
exceeds available storage. The
communications region contains such
information as the addresses of the
heads of chains, the symbolic start of
text, etc. The remainder of the
dictionary contains all information
relating to identifiers appearing in
the proaram, temporary storage areas
required, etc. For the compiler
proper, the format of all dictionary
entries will be found in Appendix C.

Chapter 1: Introduction 17

. Logical Phase

Function

pS SR

Compile-time Processor
Read-In

Dictionary

Pretranslator

Translator

r
|
b
|
|
|
|
|
|
|
|
|
|
|
|
|
l .
|
|
|
|
|
|
|
|
|
|
i
|
|
|
|
I
|
|
|

Aggregates

Optimization

Pseudo-Code

p—————-————_—-—_————_..—_—_———_—-——-—-_————————————————_————-——-—_“-—-d

. Processes those features of the language that are more

Reads input text, executes any compile-time statements
contained in it, and modifies text as directed, producing
modified text for further compiler processing.

Checks source program syntax and removes all superfluous
characters, such as comments and non-significant blanks,
from the text string.

Removes all BCD identifiers and attribute declarations from
the source string, and replaces them by symbolic references
to dictionary entries. The dictionary entries contain all
the consistent declared attributes, and all the attributes
specified in the language in default of source program
specifications. Error messages are generated for all
inconsistent attributes.

easily processed in their original PL/I form, than when the|
original syntactic form has been lost in later phases. The|
Pretranslator carries out these modifications which include|
the rearranging of the order of certain I/0 statements, thej
creation of temporary variables for procedure arguments
which are expressions, the conversion of array and
structure assignments to a series of DO-loops surrounding
scalar assignments, and the removal of iSUB expressions.

Converts the original PL/I syntactic form to an internal
syntactic form, referred to as "triples."™ Triples consist
of the original source program operators and operands, but
rearranged so that the operations specified in the source
string may be carried out in their proper order.

Carries out all structure and array mapping, so that
elements are aligned on the correct storage boundaries.
When it is not possible to carry out the mapping at
compilation time, such as when the aggregates contain
string lengths or array bounds which are specified by
expressions, object code is produced to do it at object
time. This phase also checks that items'DEFINED on arrays
and structures can be mapped consistently.

If optimization is requested, the optimization phases
attempt to reorder triples for subscript address
calculations and generate efficient pseudo-code for DO-loop
control. This enables some PL/I programs to compile into
faster object code at the cost of extra compile time.

converts the triples to a form closely resembling machine
instructions, in which registers are represented
symbolically, and storage locations are represented by
dictionary references with offsets. The final pseudo-code
version of the text also contains a number of special
pseudo-code items for the guidance of later phases.

e e e o o o e e e e e e . o . e S S S . Tt S e e e e, o e S

|
|
|
|
|
|
|
|
|
|
!
oF

18

igure 2. Compiler Logical Phases (Part 1 of 2)

= el |

Logical Phase Description |

Searches the dictionary for all entries requiring storage, 1
and allocates offsets to each item, either within its
AUTOMATIC block, or within the STATIC storage area. Code
is compiled to set up dope vectors and pointers at object
time, for allocations of controlled variables and
temporaries, the storage for which must be obtained during
the execution of the object program. Prologue code is
generated for each block of the object program.

Storage Allocation

r
!
b
|
|
|
|
|
|
|
|
|
|

Register Allocation Allocates physical registers to the symbolic registers
which have been requested by earlier phases, and also
ensures that all the storage location offsets allocated in
previous phases can be addressed by the insertion of
additional instructions, where necessary.

Final Assembly Completes the translation to machine code instructions, by
calculating branch destination addresses inserted
symbolically by earlier phases. Loader text is then
produced for the machine instructions, constants, INITIAL
values in STATIC storage, and all the constant data
required for block initialization. ESD and RLD cards are
produced to enable the object program to be edited by the
Operating System/360 Linkage Editor or the Linkage Loader.
The Final Assembly Phase also produces a listing of the
object code produced.

Error Editor Entered at the end of every compilation. The dictionary is
examined to determine whether there are any diagnostic
messages to be printed out. If there are none, the
compilation is terminated by the compiler control. If
there are diagnostic messages to be printed out, the error
dictionary entries are processed and the messages are
printed. The texts of all the diagnostic messages are held
in modules XG through YY.

F'—._—_‘_——"-'_—__—-—-—_—_——_——_-.——_—_——-——-‘__d
b e — — . — — — —— — — —— — — —— — — —— — — — — — —— — —— — ——

1
|
|
|
|
|
|
|
|
|
i
|
|
|
|
|
|
|
|
1
|
|
|
!

Tiqure 2. Compiler logical Phases (Part 2 of 2)

Chapter 1: Introduction 19

1||:||||||||||s|a||||l|||||||1|t|||l||l|||||| ,
o ﬂﬂlld
~~
&|
(m vv“m !
a W _—l llllll —— —— ——— ——— u m m “ A 1 V
O | 1 & (O3]
&lO i o ——————— >>10 Q|
]] | = |
| | i Q Mm
]] I 1
”l|l.|.] ey ﬂlllllll.@.llll'l | SR ——
] _ “ ”] z “
g @@t 1 @ oH “
1O M “ |_ w Q m | | m n [19)] I
=R IeEe | Poog a8 |
e l8gs——>| & 2% |
| & | IO0 % | i O & & |
L__J L b —— e
A |]]
i 1 |
1}] |
. boogr
—n'lu.llll.l-llv S5 [H U] €mmmepe——d
] m |
I K]
I & m
|]
] |
L e s e wed
A A
]
lllllllllllll .I.ll|||l.|.|||-||.11|l.|.I|||I||-..I|.I|.|.l||||.|l|mlll|mi|.lllln||_
! .
Ny ——- e
N I I T |
| [O 2] }] i | |]
le &1 - R N T
[el i [*4 | == o | m |
| B o] | =]]] Lp) [l
[0w | } Q | } |]
1 > <IN | n |] (@} |
[l o | | |]
1] i | 1 |

r
|
|
!
L
r
|
|
|
L
r
|
|
|
L

o ———
|]
]]
y
g S
b M |
= O
P B
2 0w i
i |
e
o ————
| |
gl
1 QO “
ERl
& Bl
KA
I—

——=—==> CPU Control

—————=>> Read/Write Communication

<==-—--> Input/Output under the operating system Control Program
and Compiler Control Supervision

Compiler Organization and Control

Figure 3.

20

Note: For descriptions of terms and
abbreviations used in the text during a
compilation which are mentioned in this
chapter, refer to Appendix D.11.

COMPILER CONTROL AND U48-CHARACTER SET
PREPROCESSOR

COMPILER CONTROL

When the PI/I (F) Compiler is invoked by
the calling program (e.g., the Job
Scheduler) of the operating system, the
Compiler Control module IEMAA is loaded and
entered. IEMAA is resident during the
whole compilation; it controls the
following functions:

Initialization

Character translation

Communication between phases

Text and dictionary block control

Scratch storage control

Storage requirements

Phase loading

Phase directory construction

Diagnostic message control

Input/output control

Program check handling

Compile-step termination

Initialization

Initialization is achieved by module AA
linking to module AB. Module AB performs
the detailed initialization of the
compiler, and provides the following
functions:

Opens SYSIN and SYSPRINT data sets

Constructs a phase directory (for details
refer to Appendix B)

Sets up a communications region in the
dictionary (for details refer to Appendix
F)

CHAPTER 2: THE COMPILER LOGICAL PHASES

Scans option list

Obtains space for text blocks and
dictionary blocks.

Opens SYSUT3 and SYSPUNCH as necessary

Prints a list of options used in current
compilation

Loads phase AN to handle a normal
dictionary, or phase AL if an extended
dictionary is requested.

On return from module AB, the first
compiler phase is loaded and entered.

Character Translation

The character translation tables (see
Appendix D.1) provide the facility for
converting external code to a compiler
internal code, and for converting the
internal code back to the external form.
These tables thus prevent the compiler from
becoming character code dependent, and
enable the scanning routines to process the
input source statements more efficiently.
Note that the contents of these tables are
different during compile-time processing
from the contents during compilation
proper.

Communication Between Phases

The communications region is an area
specified by the control routines, and used
to communicate necessary information
between the various phases of the compiler.
The communications region is resident in
the first dictionary block throughout the
compilation.

Entry to the various compiler control
routines is via a transfer vector. Details
of the transfer vector and the organization
of the communications region appear in
Appendix F. (Note: The use of the
communications region during compile-time
processing is described in Appendix J.)

Text and Dictionary Block Control

Block control is achieved by a system of
text and dictionary references. If the
program in storage becomes too large,

Chapter 2: The Compiler logical Phases 21

blocks are placed on an external file,
SYSUT1. The block control routines contain
the input/output control.

Block Control Area

The block control area contains two tables,
DSLOTS and TSIOTS, and is held in modules
AL/AN. The DSLOTS table contains 70 4-byte
slots, and the TSLOTS table contains 96
4-byte slots. The first six slots in each
table are used by the compiler control
routines for holding general block
information. The remaining slots contain
details of the status and position of text
and dictionary blocks, one slot per block.

The format of each slot is as follows:
1 byte indicator

3 byte address - (a) if the block is in
main storage it
contains the absolute
address of the start
of the block.

(b) if the block is on
disk it contains the
relative track
address of the block
in the spill file.

The format of the indicator byte is X
*ab' where:

ab = FF if the block has not been
allocated

a=8 if the block is in storage

a=20 if the block is .on the spill
file

b=4 if the block is busy (i.e.,
locked into storage)

b=3 if the block is wanted (i.e.,
spillable but preferably kept in
storage).

b=2 if the block is not wanted
(i.e., information to be
retained but block may be
spilt).

b=1 if the block is free (i.e.,

information no longer required).

22

Text Block Chaining

When text blocks are chained, the second
byte of the last but one word of each block
contains the block number of the next block
in the chain.

Scratch Storage Control

Scratch storage of 4K bytes is guaranteed
to all phases. The control routines split
the 4K-block into discrete sections, each
of 512 bytes, and allocates them as
required.

Storage Requirements

The PL/I (F) Compiler requires main storage
for the following purposes :

Compiler processing phases
Print buffers

Compiler control routines
Dictionary area

Text area

Input/Output buffers
Input/Output routines (QSAM)

The main storage required by each phase
of the compiler need be contiguous only for
each control section.

During the read-in logical phase a
minimum of two dictionary blocks and two
text blocks is available in storage .
simultaneously. During the optimization
logical phase, a minimum of three
dictionary and five text blocks is
available in storage simultaneously.

During the rest of the compilation four
dictionary blocks and four text blocks are
available in storage simultaneously.

The dictionary and text block size is
chosen according to the amount of main
storage available to the compiler. The
SIZE option, interpreted at invocation
time, provides the value used to determine
the block size. A table contained in Phase
AB is searched, using the SIZE option as an
argument. When the correct entry is found,
the block size is extracted.

Appendix E shows details of storage
allocation.

Phase loading

Phase loading routines include phase
marking (where phases are indicated as
wanted or not wanted), phase loading, and
phase deleting facilities. The phase
directory is constructed for this purpose.

Phase Directory Construction

Because of the number of phases in the
compiler, the phase directory is split into
halves. The first half is constructed
during the initialization of the compiler;
also a list of names of the phases in the
second half is kept in Phase AA. This list
is used to pass status indications (i.e.,
whether phases are wanted or not wanted) -
from the first half to the second half.
Phase JZ uses the list to construct a new
directory for the second half. (The error
message phases have their own phase
directory, which is built in phase XB and
uses the same space in AA as the phase
directory proper.)

The phase directories are constructed by
use of the BLDL macro and a build list.
The format of the build list is fully
described in the publication IBM System/360
Operating System, Supervisor and Data
Management Services. For details of the
phase directory see Appendix B.

Diagnostic Message Control

Diagnostic message control routines cause
diagnostic messages to be placed in a chain
in the dictionary.

Input/Output Control

The I/0 control routines involved act as an
interface between the compiler phases, and
SYSIN, SYSPRINT, SYSLIN, and SYSPUNCH data
sets. (See Fiqgure 4.)

Program Check Handling

The compiler handles all program checks.
Control can be passed to a phase to enable
it to deal with the check.

| Compile-step Termination

The compiler completion code is picked up
and control is returned to the calling
program.

The compiler completion codes are as
follows:

Code Meaning

0 No diagnostic messages issued;
compilation completed with no
errors; successful execution
expected

4 Warning messages only issued;
program compiled; successful
execution is probable

8 Error messages issued; compilation
completed, but with errors;
execution may fail

12 Severe error messages issued;
compilation may be completed but
with errors, successful execution
improbable. If a severe error
occurs during compile-time
processing, the compilation will be
terminated and, if the SOURCE
option has been specified, a
listing of the PL/I program text
produced by the compile-time
processor will be printed.

16 Termination error messages issued;
compilation terminated abnormally;
successful execution impossible.

COMPILER CONTROL MODULES

In addition to modules AA and AB, further
modules, AC, AD, AE, AF, AG, AH, AI, AK,
AL, AM, AN, and JZ are used in compiler
control. The functions of these modules
are briefly described in the following

paragraphs.

Module AC

Module AC controls reading and writing
operations on SYSUT3, the intermediate
file. It is loaded only if the CHAR4S or
MACRO option is specified, and is deleted
at the end of the Read-In Phase.

Chapter 2: The Compiler Logical Phases 23

Input/Output Usage Table

o T o S e T e, G S e S U St G s S P . W Gt s W ot — e — —— — - —
~
[=]
¥
M nun
Es 1280
(DR mIO
wl 138
o e e s e e s i s s s e e S e S s s e S e e s s e e e e W e O o e e e e s e e o e
g 08 |B 58 8l 181a
2 I 22 By oiB1E
> Pm Pm (5]
l”‘lll"lTW'ljlm IIII‘L1I|11Mn|.l_lll..l..lljlll_lMIill.lTMLTR e arfr cnn aoffen w— — e o
[a
B 2 AP
2 ; JEHE
Tu“lnlllllllthl'lllTl mmm ——— e o e s e e S e s e S e e e e wofn e e e w— . e e -]
m 2] (2] 7] [77] [9] (9]
BB 128 u E Bl OIE
0 - mm m] -
B 1§ 158 3 g Bl &
(o e e e e e e o e e e e o e o e e e e e e e e e e e — e e e e e e e e o]
g 18 leB 8 8 18
4 1B Z & @ 3 &
2 12 183013 2R
w |E 88 3 g §
e e o e e e e e s s e o s e — e e
a 0
2 A
2]
>4
(5] ~
TIMIlILTI-I!.IlTIIlI!LTILflILI.I.II — e o e s . S e s e o e s s — e e e e e s s e e o e e g
% 1@ @ 8 9 @ 1@ Ri418 aiaidig 8 Aidiai8:4
[(7} mST 0l HIHIH HBIHIH B HIHMIBIHEIH
mm PMI QI H H P HIHjHITH§H HiHIHIHIH
5 |6 SEE g |E El1E|§ EIEIEIEIE EIE|EIE|E
o e o e e e e e e e e ——— e e o e e e e e e e e e e o e e e e e e —_—
2 Sm % % ch [] win
i §s | 1d g1g g 518
% k) 3] 519 e % |
TW...I 11‘11|LT||..IL_-.lnTl.l.iﬁl.lllr|LTl...1| — e e e e e e e e bt e s o
2 aid
2 2
BEd
TIT."]T“'lT"'[IIILTlILTmlllllTll-lTl.lllllWMlLT‘I:IIIlT‘LTII.LII‘ll
g el -
2] m Q = Q QIO 1Z2 I8 1H 1> i loIlD [m Q
913 1F gifiz 308 BIEIBEIGIEIBIEIEIEIGIEIE
ja=} =]] [(] 2] [] 5] TR (S
] - H - H M- HiHITH ITH P H e PP PR R A
e e e it e e e s ame S e e e ek e e o ——— S ad w—— vl ao— ——— ke o iy w——l e— w— e —n s o

24

e Figure 4.

Module AD

Module AD performs inter-phase dumping.

All specified active storage is dumped
at the end of the phases stated or implied
in the DUMP option. If the DUMP option
includes either I, for the Annotated
Dictionary Dump, or E, for the Annotated
Text Dump, or both, then phase AD will load
either phase AH, or phases AI and AJ, or
all three, to produce the required output.

The DUMP Option

The DUMP option which is specified in the
PARM field of the EXEC card indicates where
dumping of main storage is to take place.
It may be specified in one of the following
ways:

1. DUMP, means a dynamic dump is required
(the dump routine will be called by a
running phase)

2. DUMP=(area,X;,X3,Xa3s---.Xn) mMeans a
dump of the storage after the named
phase where x is the name of a phase.

Area is any combination of TDPSCIE:
text blocks

dictionary blocks

phases loaded

scratch storage

control phase

annotated dictionary blocks
annotated text blocks

oA

HHOQW0Y

The general syntax is:

DUMP [=((areal, {x|(y,2)},...)] where x,
y and z are phase names.

A single phase name indicates dumping of
storage after this single phase. A pair of
phase names indicates a continuous group of
phases after which dumping of storage is to
occur.

The dump will appear on SYSPRINT,
inserted into the normal compiler output.

If area is omitted the default taken is
DTSP. If a program check occurs and DUMP
has been specified then area will be given
the default DTSPC.

If the area specifies both T and E or
both D and I, only the relevent edited dump
will be printed.

If the area contains P, a message is
printed on completion of every phase,
whether mentioned in the DUMP padrameter or
not.

Use of the DUMP option may cause the
compiler to use about 8K bytes more main
storage than the SIZE option specifies.
This is because SIZE specifies the amount
of main storage the compiler can use for
normal compilation and does not allow for
the internal compiler diagnostic dumps.

Example of an EXEC card using the DUMP
option:

//STEP1 EXEC PROC=PLA1LFC,
PARM.PL1L="'DUMP=(TIP,OE,QU)"*

This statement specifies compilation using
the DUMP option to obtain a printout of the
text blocks, the annotated dictionary, and
the loaded phases after the completion of
compiler phases OE and QU.

Module AE

Module AE is the finalization of the
Read-In Phase control. (See Fig.4, Notel)

Module AF

Module AF is a control section consisting
of a table containing the compiler options
which may be used during a compilation.
The table is constructed at system
generation time. The control section is
brought into storage by the initialization
Module .AB at compilation time. A
description of the use of Module AF is
given in Appendix G.

Module AG

Module AG closes SYSUT3 for output, and
re-opens it for input.

The closing and opening operations are
performed in the following order:

CLOSE
alter macro-type in data control block
(DCB)

OPEN (INPUT)

switch routine ZURD to point at the
SYSUT3 data control block

Chapter 2: The Compiler Logical Phases 25

Module AH

Module AH produces a dump of the
dictionary. It prints out the
communications region in the first block,
and the offsets tables for each block if
the extended dictionary option is in use.
The remainder of each block is printed out
entry by entry. The BCD is translated for
those entries containing BCD. At the end
of the dump, a list of all the dictionary
codes used is given, with an explanation
for each code.

The module is called by phase AD only if
an I is specified in the area field of the
DUMP option.

Modules AI and AJ

Modules AI and AJ are called, if E is
specified in the area field of the dump
option, to provide an ‘'easy-to-read' text
print in which the triples and pseudo-code
items comprising the text are printed
separately. This option is available
between phases IA and OE inclusive.

Module AK

Module Ak is the closing routine of the
compiler. 1Its function is to release main
storage used for dictionary, text blocks,
scratch storage, and completed phases. If
batch compilation is not specified, module
AK closes all the files used by the
compiler. If a batch compilation is
specified, a check is made to determine
whether any source programs are still to be
compiled. Where there are none module AK
closes all files. Where one or more
programs remain to be compiled, the spill
file only is closed, the batch delimiter
card is scanned for syntax errors, and
control is returned to module AA.

Module AL

Module AL contains the control routines for
dictionary and text-block handling for the
extended dictionary.

26

Module AM

Module AM marks phases as either wanted or
not wanted, depending upon the compiler
invocation options. Phases that are always
loaded are marked wanted.

AM is the first compiler phase loaded
after compiler initialization. It tests
the relevant bits in the Control Code word
(CCCODE) and marks the phases accordingly.

Module AN

Module AN contains the routines for
dictionary and text-block handling for the
normal-sized dictionary.

Module AT

Module AT provides extra debugging features
during compiler runs. The three features
of this module are:

1. A °*TRACE' of all instructions executed
between specified locations within
specified compiler modules.

2. A 'FLOW' of branches taken between
specified locations within specified
compiler modules.

3. The ability to VERIFY and REP(replace)
patches within specified compiler
modules.

Note: Features 1 and 2 can be inhibited
until a particular statement is
reached.

The TRACE/PATCH Option

The following must be done to use the
facilities described above in Module AT:

1. 'T' (Trace or Flow) or °‘P' (Verify or
Rep) must be inserted in the compiler
option list.

2. A size of at least 12K less than the
size available must be specified. Do
not attempt to use SIZE=999999.

3. Aas the output will go to a dataset
named TRACEOUT, the following DD card
will also be required in the JCL for
the compile step:

//TRACEOUT DD SYSOUT=A

In addition, control cards will be
required which must be inserted before the
first card of the source program. Up to 10
each of TRACE/FLOW and VERIFY/REP cards are
permitted.

To obtain TRACE/FLOW facilities the
control card should contain the following
information:

* in card column 1
Keyword °*TRACE' or ‘'FLOW'

Two~-letter module name
of start of
Four-digit hexadecimal Trace or Flow

offset of instruction

Two-letter module name

of end of
Four-digit hexadecimal Trace or Flow
offset of instruction
[STAT=nnnnn] where nnnnn is
five-digit decimal PL/I
statement number at
which Trace/Flow is to
start.
Note: This field is
optional and may be
used only if the module
in which TRACE/FLOW is
to start updates ZSTAT.

Example:
* TRACE GB 012B GU 036C

Note: Fields should be separated by at
least one blank, and end in or
before column 72.

To obtain the PATCH facilities the
control card should contain the following
informations

* in card column 1
Keyword °‘VERIFY' or ‘REP'
Two-letter module name

of Patch

Four-digit hexadecimal location

offset

Note: Hexadecimal Patch data may be
separated by commas if desired.

Example:
* VERIFY GB 032A
VERIFY and REP instructions are carried

out as soon as the module concerned is
loaded. If the data does not compare on

Chapter 2: The Compiler Logical Phases

Verify operation, an error message will be
given on the data set TRACEOUT. Note that
Rep operations do not depend on a previous
valid verify operation.

Module F1

Module Fl checks whether Syntax Check
should terminate compilation. The three
options for the Syntax Check are recognized
in module AB and flags are set. On
completion of the Read-in and Dictionary
phases, these flags are tested by module
F1l, which was loaded when phase FX released
control. The decision to terminate or
continue is made based on the flag settings
and the level of error severity encounterel
(by inspecting the heads of the error
chains), and a special message is issued at
this point.

Module JZ

Module JZ builds the second half phase
directory. A build list is constructed
from the second half list held in Module
AA; a BLDL is performed on this list. The
phase directory is then reconstructed in
Module AA for the second half of the
compiler.

48-CHARACTER SET PREPROCESSOR

Phase BX is the U48-character set
preprocessor. It is loaded on programmer
option and receives, as input, source text
in the uW8-character syntax.

The preprocessor scans the input text
for occurrences of characters peculiar to
the 48-character set, and converts these to
the corresponding 60-character symbols. It
then puts out the adjusted text onto
auxiliary storage ready for Phase CI, the
first pass of the Read-In Phase.

The text is read in record by record.
It is then scanned for alphabetic
characters which may be the initial letters
of operator keywords, for periods, and for
commas. Items within comments or character
strings are ignored.

When a possible initial letter is
discovered, tests are made to determine
whether or not one of the reserved operator
keywords has been found. 1If one has been
found, it is replaced by its 60-character
set equivalent. Similarly, appearances of
two periods are replaced by a colon, and a
comma-period pair is replaced by a

26.1

semi~-colon if the comma-period pair is not
immediately followed by a numeric
character.

Allowance is made for the possibility
that a concatenation of characters which is
meaningful in the 48-character set may be
split between two records.

Before the text is processed a copy of
the original input is preserved. The
output from the preprocessor is the
transformred text, record by record,
followed by the original text. The Read-In
Phase processes transformed text but prints
out the original.

The 48-character set preprocessor uses
Compiler Control routine ZURD to obtain
input, and routine ZUBW to place its output
onto auxiliary storage.

Note: If the MACRO option is specified, all
the processing described above is
done by the compile-time processor,
and phase BX is bypassed.

COMPILE-TIME PROCESSOR LOGICAL PHASE

The compile-time processor consists of six
physical phases. Each of these phases is
executed once, unless an INCLUDE data set
is encountered. In this case certain
phases will be re-executed.

The compile-time processor moves source
text that does not contain compile-time
statements directly into text blocks.
During this process invalid characters are
replaced by blanks, and line numbers are
encoded and inserted into the text.
Compile-time statements are decoded and
translated into an internal form and then
placed directly into text blocks. An entry
is made into the dictiomary for each
compile-time variable, procedure, label, or
INCLUDE identifier.

A second pass is then taken over these
text blocks, during which compile-time
statements are executed and the PL/I source
program text is scanned and replacements
are made. The output from this pass is a
PL/I source program contained on SYSUT3
and, optionally, a punched card deck.

If during the second pass, an INCLUDE
data set is processed, the entire procedure
indicated above is executed recursively to
process this text.

Text and dictionary formats used by the
compile~time processor are contained in
Appendix J.

Line Numbering

As the input is being processed a unique
line number is assigned to every logical
record processed. If a listing of the
input is requested, these line numbers are
written out beside the appropriate line.
The line numbers are also encoded and
inserted into the text so that diagnostics
can be keyed to them. These line numbers
are also output on SYSUT3, to aid the user
in determining from which input line a
particular line of output came.

Phase AS

This phase, consisting of one physical
module, is loaded if the MACRO option is
specified. 1It is resident throughout
compile-time processing until the cleanup
phase (BW) is invoked.

This phase controls the loading of the
subsequent compile-time processor phases.
The initialization phase (AV) is loaded
only once. The two processing phases (BC
and BG) are loaded and executed once unless
an INCLUDE data set is processed. 1In this
case phase AS reloads the processing phases
to process this data set.

In addition, phase AS contains a set of
service routines used by both processing
phases. Access to these routines is via a
transfer vector located at the beginning of
phase AS.

Phase AV

This phase consists of one physical module.
Its purpose is to initialize certain cells
in the communications region for the
compile-time processor phases.

Phase BC (BE, BF)

Phase BC consists of three physical.
modules, BC, BE, and BF. Module BE
contains the control routine.

Phase BC accepts input text, moving it
into text blocks until a compile-time
statement is found. (For a description of
the use and layout of text and dictionary
blocks, see Appendix J.) When a
compile-time statement is encountered, it
is encoded into a set of interpretive
instructions and, except for compile-time

Chapter 2: The Compiler Logical Phases 27

procedures, added to the current text
block. Compile-time procedures are
similarly encoded, but are placed in
separate text blocks.

As compile-time statements are encoded,
all non~-keyword identifiers encountered are
entered into the dictionary, together with
any attributes that are known. Entries are
also made in the dictionary for constants
and iterative DO-loops.

During phase BC, invalid characters
occurring outside of strings and comments
cause a diagnostic to be printed. They are
converted to blanks. Invalid characters
can thus be used for markers of various
sorts in text blocks. Diagnostics are
given for syntax errors in compile-time
statements. Line numbers are encoded and
inserted into the text for the use of the
phase BG scan. All input characters are
converted to their EBCDIC representation
hefore they are processed.

Phase BG (BI, BJ)

Phase B5G consists of three physical
rnodules: BG, BI, and BJ, which contain the
control routine, the macro-code
interpreter, and the built-in- function
handler, respectively.

In general, the input to phase BG is the
set of chained text blocks and dictionary
blocks created by phase BC. The phase BG
execution is essentially that of the
compile-time processor described in the
external specifications. That is, its
basic action is to move through text blocks
looking for instances of compile-time
variables or compile-time statements, which
it uses to produce the output text. As
line numbers are encountered in the text,
they are placed into a location containing
the current line number. This is used both
for phase BG diagnostics and by the output
editor.

If a compile-time variable or procedure
reference is found, the scan cursor is
positioned to scan its value. When the
scan of the value is completed, the cursor
is properly positioned back into the text.
If a compile-time variable or procedure
reference is found in this value scan, the
process repeats itself. Such nesting can
occur to a depth of 100.

1f the scan encounters an encoded
cormpile-time statement (built by phase BC),
contrcl is passed to an interpreter. This
interpreter executes the statement --
possibly repositioning the scan cursor --
and returns to the scan.

28

The output of this phase is a PL/I
source program contained on SYSUT3, and,
optionally, as a sequenced card deck.

Phase BM (BO)

Phase BM examines the heads of the error
chains in the first dictionary block, and
programmer options which specify the
severity level of messages required. 1If
there are no messages, it passes control to
the clear-up phase (BW). If diagnostic
messages are required, the phase loads BN
to process\ them after scanning the chains
and indicating where the text is to be
found, from the message directory block,

* module BO.

Module BN (BP, BV)

The text of all compile-time processor
error messages is kept in modules BP
through BV. The messages are ordered by
severity, within these modules. BM will
have listed those modules which contain
messages required for a particular pass.
Module BN loads and releases these modules,
one at & time and extracts the required
messages. When all compile-time error
messages have been processed, module BN
returns control to BM.

Phase BW

The purpose of this phase to set all tables
and communication region cells to the
values required by the compiler proper. 1In
addition it will release all text and
dictionary blocks used by the compile-time
processor phases and then pass control to
the next required phase of the compiler.

If a severe or terminal diagnostic has
been produced by the Compile-time processor
a listing of the contents of SYSUT3 will be
printed (provided that the SOURCE option
applies), and compilation will be bypassed.

THE RFAD-IN LOGICAL PHASE

The Read-In Logical Phase consists of five
discrete physical phases, ¢ach of which
processes a particular groyp of statement
types. The phase obtains the input text in
the externally coded form by a cdll to the
compiler read routine, and converts it to

internal code by means of a translation
table provided by compiler control.

The source text is scanned for
syntactical errors. During this time an
output string is built up, which consists
essentially of the input text with comments
and insignificant blanks removed. The
source text is scanned and statements are
numbered, identified, and diagnosed. Any
required substitutions are made, statement
labels are inserted in the dictionary, and
chains are formed (for example, BEGIN,
PROCEDURE chains). If the SOURCE option
applies, source statements, with their
nurber, and optionally, their block levels
and DO-nest levels, are printed out
immediately after they have been read.

When the input text provides an
end-of-file indication, processing is
terminated. In ERROR situations this may
not occur when a valid external procedure
has been completely processed. By keeping
a count of PROCEDURE, BEGIN, DO, END, ON,
and IF statements, the phase can detect
when the logical end-of-program indication
is found. If there are more records after
the end of the external procedure, they are
ignored.

If an end-of-file indication is
encountered before the logical end of the
program, diagnostic messages are issued and
suitable END statements are inserted to
allow compilation to continue.

The output of the Read-In Phase provides
a syntactically correct output string; a
table of entry and statement labels; chains
of coded diagnostic messages; a set of
switches specifying compilation content
details; a set of chains linking statements
of a particular type, to facilitate
subsequent scanning; and optionally, a
listing of the source text.

Statement Numbering

All statements are given a sequential
number. This includes each compound
statement, each statement contained in a
compound statement, block and group
delimiting statements, and null statements.
The numbering of the statement is indicated
on the source listing. Diagnostic messages
also refer to these statement numbers.

Statement and Entry Labels

Statement and entry labels appearing in the
source text are removed and added to a
label table, which is built up in the
region intended for the dictionary. This
region may be extended by further blocks as
required. The label table entry is an
embryo dictionary entry, with blank regions
to be filled later by the Dictionary Phase
EG.

When a label declaration is found, an
entry is made in the label table with a
statement label code, the current (updated)
sequential number, and the current block
level and block count.

Statements having multiple labels give
rise to multiple label table entries.
These entries are identical except for the
BCD name.

If the statement following a label is
subsequently identified as a PROCEDURE or
ENTRY statement, the label table is
re-accessed, and the entries associated
with the statement are modified (see
Appendix C.2).

Chains Constructed by Read-In

To provide rapid scanning in the dictionary
phases, the following chains are
constructed by the Read-In Phase:

The CALL chain ;

The PROCEDURE-ENTRY-BEGIN chain

The DECLARE chain

The ALLOCATE chain

Errors and Diagnostic Messages

As the source text is scanned it is
syntactically analyzed. Keywords are
identified and passed as valid only if they
may legally appear within the type of
statement being diagnosed. However,
consistency of attributes and options
within a statement are not normally
analyzed. This is left for Phase EK.

When a syntactical error is detected, an
attempt is made to correct it and an
appropriate diagnostic message is
generated. The main aim of the Read-In
Phase is to present syntactically correct
text to subsequent compiler phases.

Chapter 2: The Compiler Logical Phases 29

Certain corrections are performed without
prejudicing the complete compilation.

Detected errors cause a diagnostic
message to be added to a diagnostic message
chain in the dictionary area. Each message
is in a coded form with parameters (textual
matter, statement numbers, and so on). The
message is decoded and printed out by the
Exrror Editor.

Where an error makes it impossible for
the scan of a statement to continue, the
statement is terminated correctly at such a
point as to leave the statement
syntactically correct. The text between
that point and the next semi-colon (not in
a comment or character string) is skipped.
The diagnostic messages produced in these
circumstances will include at most the
first ten characters of the text that is
skipped.

The Qutput String

The output string is so arranged that a
conmplete statement never spans storage
blocks. ©One of the conditions of a
successful compilation is that the output
resultinag from any statement must not
exceed the block. This restriction,
however, does not apply to DECLARE
statements. Formats of the statements
appearing in the output string are given in
Appendix D.2.

Identifiers

All identifiers which are not recognized as
keywords in the source text appear in the
output string.

Constants

All constants appear in the output string.

Operators

All operators appear in the output string.

30

Initial Labels

Subscripted label variables which are
initialized by attachment to statements are
placed in pseudo-assionment statements in
text, and then handled as if they were
normal labels.

STRUCTURE OF THE READ-IN LOGICAL PHASE

The Read-~In Phase can occupy 16K bytes of
storage for any one pass. A storage map
for this phase is shown in Figure 5.

Bytes
0 r 1
| ca |
UK} i
| cc |
7K % T L) 1 L] J‘
| CE | CK | © | CR | CR |
8K | : + + + {
| 6 | ¢ | co | ¢s | cv |
12K | + } r S T
j cT | cM | cp | cT | cw |
16K L L ' N 'y L -

PASS 1 PASS 2 PASS 3 PASS 4 PASS 5
Figure 5. Storage Map for the Read-In Phase

The Read-In Phase consists of five
phases or passes, each containing at most
five modules. Modules CA and CC consist of
common routines which are invoked
throughout the phase by each of the passes,
in turn. Modules CE, CK, CN, and CR
contain separate keyword tables. Details
of the organization of these tables are
given in Appendix B. Control for each pass
resides in modules CI, CL, CO, CS, and CV
respectively. The following description
refers to the phases by these names.

Phase CI

During phase CI (the first physical phase
of the Read-In Phase) the source text is
read into storage, and character codes are
converted to an internal form. Statement
types are identified, labels are inserted
into the dictionary, and statement
identifiers are replaced by single-byte
codes (see Appendix D.1).

A record is kept of block nesting levels
and counts to enable a check to be made for
the logical end-of-program indication. 1In
order to do this, certain statements have
to be either partially or completely
analyzed in this pass.

These statements are:

PROCEDURE-END
BEGIN-END
DO-END
IF-THEN-ELSE
ON

If the SOURCE option has been requested,
a listing of the source program, with the
statements numbered by the compiler, is
printed out onto the specified output
medium.

Phase CL

The output from phase CI is processed and
the statement types listed below are
analyzed in greater detail:

ENTRY FREE
PROCEDURE WAIT
DO READ
Iterative DO WRITE
RETURN DELETE
GO TO UNLOCK
DELAY LOCATE
DISPLAY REWRITE

If any errors are detected during this
pass, diagnostic messages are inserted into
chains in the dictionary as required.

Phase CO

The output from phase CL is processed. 1In
particular, the DECLARE, ALLOCATE, and CALL
statements are analyzed in greater detail.
The syntax of attributes is checked, but
their consistency is analyzed during phase
ER. If the source program does not contain
any of these three statements, this pass is
not invoked.

If any errors are detected during this
pass, diagnostic messages are inserted into
chains in the dictionary.

Phase CS

The output from phase CL or CO is
processed. In particular, the syntax of
input/output statements is analyzed,
together with the FORMAT statement. If the
source program contains no input/output
statements, this pass is not invoked.

Phase CV

This phase processes the output from
earlier phases. 1In order to assist
subsequent processing, chains are
constructed for PROCEDURE, ENTRY, BEGIN,
CALL, ALLOCATE, and DECLARE statements.

THE DICTIONARY LOGICAL PHASE

The Dictionary Phase forms a dictionary of
identifiers, by first analyzing PROCEDURE,
BEGIN, DECLARE, and ENTRY statements. The
text is then scanned for contextual use of
identifiers, constants, and pictures.
Finally, every identifier and constant in
the source text is replaced by a reference
to its respective dictionary entry.
Dictionary entries are made during this
phase for all implicitly defined
identifiers. The formats of dictionary
entries appear in Appendix C.

Constructing and Accessing the Dictionary

The dictionary, during the construction
stage, comprises two parts, the hash table
and the dictionary proper.

To facilitate a search through the
dictionary for an entry with a particular
BCD, a method is used of dividing the
dictionary into areas. Each area is
characterized by a property of the BCD of
each entry in it. 1In practice, these areas
are not contiguous but are chained lists,
each item in the list being one dictionary
entry long.

The start of each list is in a table,
known as the hash table. The association
of a particular identifier with a list,
i.e. the characterization of an area, is
achieved by deriving from a given BCD an
address in the hash table.

"Hashing®™ is a process of reducing the
length of the internal representation of
the BCD to one word. This is done by
adding successive four-byte lengths of the
BCD into one four-byte register. This is
then divided by 211, and the remainder is
doubled to give the hash table address
associated with the particular BCD. All
jdentifiers which hash to the same address
are placed in a chain; in particular, all
dictionary entries with the same BCD will
be in the same hash chain.

If TOM, DICK, and HARRY occur in the
same DECLARE statement in that order, and

Chaptcr 2: The Compiler Logical Phases 31

they all hash to the same address in the
hash table, the address in the hash table
will point to HARRY's entry, which contains
the address of DICK, which, in turn,
contains the address of TOM.

When no further BCD entries are to be
made in the dictionary, and all BCD
identifiers in the source text have been
replaced by dictionary references, the hash
table is deleted.

Testing for Consistent Attributes

A test is made at the start of each list of
attributes, to ensure that any list of
attributes at one level of factoring in a
DECL2ARE statement is consistent.

Compiler Pseudo-Variables and Functions

Expressions specified for array bounds,
string lengths, and initial value iteration
factors must be evaluated at object time,
or at allocation time if the variable is
controlled. The expressions are placed
temporarily at the end of the text, and are
later moved by Phase FV and placed
immediately following the REGIN, PROCEDURE
or ALLOCATE statement to which the declared
variable belongs. The expression results
are assigned to pseudo-variables generated
by the corpiler. These serve two purposes:
first, the assignment statement appears as
a normal PL/I statement and need not be
treated as a special case; secondly, the
pseudo~variable contains the dictionary
reference of the variable and information
concerning the destination of the
expression. Compiler functions with a
format similar to the pseudo-variables are
also created. The function result is the
specified array bound, or string length.
Compiler functions are created for two
purposes: first, to set bounds for base
elerents of structures when the structure
bound is an expression, or to set the
bounds of temporary arrays; and secondly,
to set the storage address of a dynamically
defined item immediately before its use.
The formats of all the compiler
pseudo-variables and functions appear in
Appendix D.8.

Dictionary Entries for Entxry Points

A PROCEDURE or ENTRY statement may have
more than one label. Each label must have
a data description to indicate the type of

32

data returned when the label is invoked as
a function, and also the type of data to
which the expression in a RETURN
(expression) must be converted. These need
not be the same: there must therefore be
provision for two data descriptions for
each label. A PROCEDURE or ENTRY statement
may specify parameters. The descriptions
of these identifiers, obtained from DECLARE
statements or default rules, are used for
prologue construction, but not for
parameter matching. Any data description
given on these statements is to be used for
conversion at a RETURN (expression), but
not for determining the result returned by
a function reference.

Parameter descriptions for use in
parameter matching, and data descriptions
used for determining the type of data
returned by a function reference, may be
specified by the source programmer in an
ENTRY declaration. If these are not given,

" default and implicit rules must be used to

build a data description, but no parameter
description can be given.

Given the foregoing requirements, the
dictionary entries describing an internal
entry point are as given in Figure 6.

The set of dictionary entries A, B, C,
D, E is repeated for each label associated
with the PROCEDURE or ENTRY statement. The
entry F will point to entry A for the first
label only. D will point at the label with
which it is associated. It should be noted
that B and C may coincide.

The entries type 1 for PROCEDURE, ENTRY,
and BEGIN statements are chained amongst
themselves in the following way. Each
entry type 1 belonging to a PROCEDURE or
BEGIN statement contains the dictionary
reference of the entry type 1, of the next
PROCEDURE or BEGIN statement in the source
program, and also of the entry type 1 of
the immediately containing block.

The entries type 1 of PROCEDURE and
ENTRY statements belonging to a single
procedure are chained together in a
circular manner. If there are no ENTRY
statements the entry type 1 of the
PROCEDURE statement points at itself.

External entry points are described by
dictionary entries termed entry type 4.
They contain data descriptions of the value
returned when referenced as a function, and
may contain descriptions of parameters.

Formal parameters which are entry points
are termed entry type 5, and parameter
descriptions which are entry points and are
pointed at by types 3, 4, or 5 are termed
entry type 6.

)
and I
| r-=>| Dictionary entry for entry label

L

A

[—— e

|1

|

i

R r 1

| |t=>]| Entry type 2. Used to provide |

H | data description of target in |

|| ¢=—| RETURN (expression). i

Pt 1

i

| r 1

11 | v

I or L 1 T -1

|| +=>] Entry type 3. This entry is used | | Second entry type 2. |

] | to point at the data description C | | Used to provide data description |

| t-—] end parameter descriptions for para-|D | of value returned when label A |C

| r—| meter matching. l | is invoked as a function. This |

I 1 ¢t T T T 4 | entry may, and usually will, coin- |

| | | | | cide with B. |

|| | | | L 4

{1 | L 1 L 1

I | | |

11 v v Y

I I) r 1 r 1

| | | Description of | | Description of | | Description of |

1 |E | |E2 | |E2

{ | | first parameter | | second parameter | | each parameter |

I' L J t J L J

i

ll .= 1 r L] r ; L]

| | | tntxy type 1 for | | Formal parameter | | Description of para- |

| t->| PRCCEDURE or |IF | type 1 entry |G | meter used in prologue|H

L-—— | ENTRY statement | | | | construction i
L J L J L]

A

T
! A
|
L

J

o o e o

Hote: There is an entry E for each parameter described in D.

Figure 6.
Phase ED

Phase ED contains a set of subroutines, for
processing certain of the tasking and list
processing attributes, and tables of
generic and non-generic built-in functions.
The rhase obtains 1K of scratch storage,
into which it moves the routines and
t.ables, setting a slot in the
comrunications region to point at them.
This address is later picked up and used by
phase FL.

| Phase EG(EF)

Phase EG has two main functions. The first
is to set up a hash table, and to insert
the label entries left in the dictionary by

Dictionary Entries for an Internal Entry Point

the Read-In Phase into hash chains. The
second function of the phase is to create
dictionary entries for PROCEDJRE, BEGIN,
and ENTRY statements, and to construct
chains linking entries of particular types.

For PROCEDURE-BEGIN statements, entry
type 1 dictionary entries are created (see
Appendix C.2), and block header chains are
set up to link these entries sequentially.
A containing block chain is also set up to
link each entry with that of its containing
block.

BEGIN statements are scanned for the
ORDER/REORDER option, and the optimization
byte is created in the entry type 1 (see
Appendix C.2).

On the appearance of PROCEDURE
statements, circular PROCEDURE-ENTRY chains
are initialized to link the entry type 1

Chapter 2: The Coﬁpiler Logical Phases 33

dictionary entries of the PROCEDURE and
ENTRY statements of the same block. The
formal parameter list is scanned, and
formal parameter type 1 entries are created
and inserted into the hash chain. Details
of the PROCEDURE-ENTRY chains appear in
Appendix C.2.

The attribute list and the options are
scanned and an options code byte and
optimization byte are created in the entry
type 1 (see Appendix C.2). A .check is then
made for invalid and inconsistent
attributes. CHARACTER and BIT attributes
are processed, and second file statements
(see Appendix D.8) are created if
necessary. Precision data are converted to
binary, and dictionary entries are created
for pictures (see Appendix C.7).

Statement labels are scanned and their
entry type 2 dictionary entries are
created. The relevant data bytes in the
dictionary are completed by default rules
(see Appendix C.3).

For ENTRY statements, entry type 1
dictionary entries are created (see
Appendix C.2), and the circular
PROCEDURE-ENTRY chain is extended. Formal
parameters, attributes, and labels are
processed in a similar manner to those for
PROCEDURE statements, except that the
options code byte is not created.

Phase EI (EH, EJ)

Phase EI scans the chain of DECLARE
statements set up by the Read-In Phase, and
modifies the statements to assist Phase EK
as follows:

Structure Level Numbers: these are
converted to binary.

Factored Attributes: parentheses enclosing
factored attributes are replaced by special
code bytes, so that Phase EK can
distinguish them easily. A factored
attribute table is set up. It consists of
slots corresponding to each factored level.
Each slot contains the address of the
attribute list associated with that level,
and the address of the slot for the
containing level.

The following attributes are processed:

DIMENSION: dimension table entries (see
Appendix C.8) are created in the dictionary
and the source text is replaced by a
pointer to the entry. Fixed bounds are
converted to binary and inserted in the
table. A second file statement (see
Appendix D.8) is created at the end of the

34

text, for adjustable bounds, and a pointer
to the statement is inserted in the
dimension table. Identifiers with
identical array bounds share the same
dimension table.

PRECISION: precision and scale constants
are converted to binary.

INITIAL: dictionary entries are created
for INITIAL attributes.

INITIAL CALL: second file statements are
created for INITIAL CALL attributes.

CHARACTER and BIT: fixed length constants
are converted to binary; a code byte marker
is left for * lengths (see Appendix C.8).
Second file statements (see Appendix D.8)
are created for adjustable length
constants, and the source text is replaced
by pointers to the statements.

DEFINED: second file statements (see
Appendix D.8) are created and the source
text is replaced by pointers to the
statements.

POSITION: +the position constant is
converted to binary.

PICTURE: a picture table entry (see
Appendix C.7) is created and inserted into
the picture chain; similar pictures share
the same picture table. The source text is
replaced by a pointer to each entry.

USES and SETS: USES and SETS attributes
are moved into dictionary entries, and
pointers to the entries replace the source
text.

LIKE: BCD entries are created for
identifiers with the LIKE attribute.

LABEL: if the LABEL attribute has a list
of statement label constants attached, a
single dictionary entry is created. The
dictionary entry contains the dictionary
references of the statement label constants
in the list.

OFFSET and BASED: Second file statements
are made and text references are inserted
in the DECLARE statements for these
attributes.

AREA: Fixed-length specifications are
converted to binary; second file statements
are made for expressinns; a code byte,
followed by the length of text reference,
is inserted in the DECLARE statement text.

All other attributes,
constants are skipped.

identifiers, or

Phase EL (EK, M)

Phase EL, consisting of modules EK, EL, and
EM, scans the chain of DECLARE statements
constructed by the Read-In Phase.

An area of storage known as the
attribute collection area is reserved.
This is used to store information about the
jdentifiers, and has entries of a similar
format to that for dictionary entries.

Complete dictionary entries are
constructed for every identifier found in a
DECLARE statement. These identifiers can
be one of the following types:

1. Data Items (see Appendix C.4)

2. Structures (in this case, the 'true'
level number is calculated) (see
Appendix C.4) ’

3. Label variables (see Appendix C.U4)
4., Files (see Appendix C.7)

5. Entry Points (see Appendix C.2)

6. Parameters (see Appendix C.7)

7. Event Variables

8. Task Variables.

Identifiers appearing as multiple
declarations are rejected and a diagnostic
message is given.

The attributes to be associated with
each identifier are picked up in three
ways.

First, the attributes immediately
following the identifier are stored in the
attribute collection area.

Secondly, any factored attributes and
structure level numbers are examined.
These are found by using the list of
addresses placed in scratch storage by
Phase EI. Each applicable attribute is
marked in the attribute collection area,
and any other information, e.g. dimension
table address, or picture table address, is
moved into a standard location in the
attribute collection area. All conflicting
attributes are rejected and diagnostic
messages are given.

Finally, any attributes which are
required by the identifier, and which have
not been declared, are obtained from the
default rules. ' :

After the dictionary entry has been
made, furtner processing (e.qg. 1linking of

chains, etc.) must be done in the
following cases:

1. DEFINED data

2. Data with the LIKE attribute

3. Files

4, strings with adjustable lengths

5. Arrays having adjustable bounds

6. GENERIC identifiers

7. Structure members

8. 1Identifiers with INITIAL CALL

9. Identifiers with the INITIAL attribute

After the declaration list has been
fully scanned and processed, it is erased.

Phase EP

Phase EP first conditionally marks later
phases as ‘'wanted' or ‘not wanted,'
according to how certain flags in the
dictionary are set on or off. This assists
in the load-ahead technique.

The entry type 1 chain in the dictionary
is then scanned. For each PROCEDURE entry
in the chain, each entry label is examined
for a completed declaration of the type of
data the entry point will return when
invoked as a function. If this has
previously been given in a DECLARE
statement nothing further is done,
otherwise entry type 2 and 3 dictionary
entries are constructed from default rules
(see Appendix C.2). If this default data
description does not agree with the
description derived from the PROCEDURE or
ENTRY statement, a warning message is
generated.

At each PROCEDURE entry, the chain to
the ENTRY statement entry type 1 is
followed. Each statement is treated in a
similar manner to that for a PROCEDURE
entry type 1.

The CALL chain is then scanned and, at
each point in the chain, the dictionary is
searched for the identifier being called.
If the correct one is not found, a
dictionary entry for an EXTERNAL procedure
is made (see Appendix C.2), using default
rules for data description. Before making
the entry, the identifier is checked for
agreement with any of the built-in function
names. If there is agreement, a diagnostic
message is generated, and a Qummy
dictionary reference is inserted.

Chapter 2: The Compiler Logical Phases 35

If an identifier is found, it is
examined to see if it is an undefined
formal parameter. 1If it is, the formal
parameter is made into an entry point,
again ‘using default rules for data
description. If it is not, or if the
declaration of the formal parameter is
complete, the type of entry is checked for
the legality of the call. A diagnostic
message is generated if the item may not be
called. 1In all cases, the item called is
marked IRREDUCIBLE if it has not previously
been declared REDUCIBLE.

Phase EW (EV)

Phase EW is an optional phase, loaded only
if any LIKE attributes appear in the source
program.

This phase scans the LIKE chain which
has been constructed by Phase EK, and
completes the dictionary entry for any
structure containing a LIKE reference.
When a structure in the LIKE chain is
found, its validity is checked, and
dimension data and inherited information
are saved. The dictionary is scanned for
the reference of the "likened" structure
and the entry is checked for validity.

This dictionary entry (see Appendix C.4)
is copied into the dictionary, with
alterations if there is a difference
between the original structure and this
structure with regard to dimensioned data.
If both structures have dimensions a
straight copy is made; if the structure
with the LIKE attribute has dimensions and
the likened structure has not, the
dimension information is added to the copy:
if the structure with the LIKE attribute is
not dimensioned and the likened structure
is, then the dimension data is deleted from
the copy.' Inherited data is added to the
copy. If an error is found, the structure
with the LIKE attribute is deleted and a
base element copy of the master structure
is inserted instead. Where copies of
entries occur which refer to dimension
tables with variable dimensions, the
dimension table entry is copied, and new
second file dictionary entries and
statements are created. Similar entries
must be made if the structure item has been
declared to be an adjustable length string,
or nas been declared with the INITIAL
attribute.

Finally, the newly completed structure
is scanned by the ALIGN routine in phase
EV, to provide correct explicit/inherited/
default alignment attributes for its base
elements.

36

Phase EY

Phase EY is an optional phase which
processes all ALLOCATE statements.

The second file is scanned first and all
pointers to the dictionary are reversed.
All ALLOCATE statements using the DECLARE
chain are then scanned, and the dictionary
references of allocated items are obtained
by hashing the respective BCD of each item.
The attributes given on the ALLOCATE
statement for an item are collected
together.

A copy of the dictionary entry of the
allocated item is then made (see Appendix
C.4), and the ALLOCATE statement is set to
point to it. The dictionary entry is
completed by including any attributes given
on the ALLOCATE statement, and copying any
second file statements from the DECLARE
chain which are not overriden by the
ALLOCATE statement.

In the case of an ALLOCATE statement in
which a based variable is declared, no copy
of the original dictionary entry is
required. The BCD is replaced by the
original dictionary reference.

All pointer qualified references in the
text are checked to determine that the
qualified variable is based. For every
occurrence of a variable with a different
pointer a new dictionary entry is made. 1If
the variable is a structure the entire
structure is copied. A PEXP second file
statement is made for the pointer and the
*defined’' slot in the new dictionary entry
is set to point to it instead of to the
declared pointer.

The BCD of the pointer and the based
variable in the text are replaced by the
new dictionary reference followed by
padding of blanks which will be removed by
phase FA.

The based variable can be the qualified
name of a structure member. If this is so,
the name is checked for validity. Only the
first part or lowest level of the qualified
name in the text is replaced by the :
dictionary reference of the member. It is
preceded by a special marker to tell phase
FA that a partially replaced name follows.

Phase FA

Phase FA scans the text sequentially. If,
during the scan, gualified names are found
with subscripts attached, they are

reordered so that a single subscript list

appears after the base element name. The
dictionary is scanned and references
obtained for any identifiers which are
contextually, file, event, pointer
variables, or programmer-named ON
conditions. If no reference is available,
a new dictionary entry is made. The
identifier is then replaced in the text by
the dictionary reference.

If a constant marker is found, the
dictionary is scanned to check if the
constant is present. If it is not, a new
dictionary entry is made (see Appendix C.7)
and the resulting reference replaces the
constant in the text.

If a P FORMAT marker is found, the
dictionary is scanned for a picture entry
in agreement. If there is no agreeing
entry, a new dictionary entry is made (see
Appendix C.7) and the picture chain is
updated. The dictionary reference replaces
the format marker in the text.

The CALL chain is removed from CALL
statements. The appearance of PROCEDURE,
BEGIN, END, and DO statements results in
adjustments to the level and count stacks.
I1f statement introduction code bytes appear
(such as SN, SL, CL, and SN2), the current
statement number is updated. All data
items associated with the PROCEDURE, BEGIN,
ENTRY, and DECLARE statements are removed,
leaving only the statement identification
and the keyword.

Phase FE

When an identifier is found, the hash chain
is used to scan the dictionary for a valid
entry. 1If one is found, its dictionary
reference replaces the identifier in the
output text. If no valid entry is found,
and the BCD does not agree with any entry
in the tables of BCDs of PL/I built-in
functions, then a dictionary entry is made
as if the identifier was declared in the
outermost procedure. However, if the BCD
agrees with a function name, and it is not
in a SETS position, a function entry is
made in the dictionary, and its reference
is used to replace the identifier.

1f a left parenthesis is found, the
previous dictionary entry is checked for an
array, function, or pseudo-variable. If it
is one of these, the relevant marker is
inserted in the text before the parenthesis
(see Appendix D.1).

Checks are also made for the positions
of function references in assignment
statements. Any dictionary references
encountered in the input file are moved
directly to the output file.

PROCEDURE, BEGIN, DO, and END statements
cause the current level count to be
updated.

Phase FI

Phase FI scans the text and checks, where
possible, the validity of dictionary
references found. References in a GOTO
statement are checked that they refer to
labels or label variables and that the
subsequent branch is valid. The code byte
for GOTO is changed to GOOB (see Appendix
D.1) if the branch is to a label constant
outside the current PROC or BEGIN block.
If the branch is to a label variable, GOOB
is set up unless a label value list was
given at the declaration, and all members
of the list lie within the current block.

List processing based variables in
ALLOCATE, FREE, READ, WRITE, and LOCATE
statements are marked as requiring a Record
Dope Vector (RDV). Variables in TASK and
EVENT options on CALL statements are
checked for validity.

References are checked if they appear
where a file is expected. Items in data
lists are checked for validity, and Data
Element Descriptors (DEDs) and symbol bits
are set on for all variables found in the
lists.

Any errors which are found cause
diagnostic messages to be generated and
dummy references to be placed in the text
in place of erroneous references.

Phase FK

Phase FK scans the attribute collection
area for entries with the SETS attribute.
The SETS lists in the dictionary entries
are scanned, and their syntax checked.
Identifiers are counted and replaced by
their dictionary references. Constants are
counted, converted to binary, and arranged
in ascending order in the dictivnary entry.

Phase FO

Phase FO makes a dictionary entry for each
ON condition mentioned inside a block. For
ON CHECK conditions multiple dictionary
entries are made (see Appendix C.7), one
for each BCD. If a similar condition is
mentioned more than once in a block, only
one dictionary entry is made for that

Chapter 2: The Cowmpiler Logical Phases 37

condition, except for file conditions, ON
CONDITION, and ON CHECK, when separate
dictionary entries are made for each
different BCD name.

SIGNAL and REVERT statements are treated
in a similar manner to ON statements.

The dictionary entries for each BCD name
associated with file or CONDITION
conditions are checked and, if in error,
the ON, SIGNAL, or REVERT statement is
replaced by an error statement. A
diagnostic message is generated.

The BCD name of each file entry referred
to in ON, SIGNAL, and REVERT statements is
examined. If the BCD is SYSIN or SYSPRINT,
the dictionary reference of the file entry
is placed in a slot in the communications
region.

A check is made to ensure that formal
parameters do not appear in CHECK and
NOCHECK lists. A single dictionary entry
is created for each CHECK and NOCHECK list
and a pointer to the entry is placed in the
relevant entry type 1.

When dictionary entries are made for
CHECK lists, one of three different check
codes is used depending on whether the BCD
is an ENTRY LABEL, a LABEL CONSTANT, or a
variable.

List Processing POINTER and OFFSET
variables in CHECK lists are treated as
data variables. BASED variables may not
appear in CHECK lists.

A dictionary entry is made for the list
processing AREA condition. This condition
is always enabled and may not appear in a
condition prefix.

Dictionary entries are also created for
each ON condition which is disabled for a
particular PROCEDURE or BEGIN block, and
for each ON condition whose status is
changed within the block. Pointers to
these dictionary entries are placed in the
relevant entry type 1.

All dictionary entries for ON conditions
are placed in the AUTOMATIC chain for the
relevant PROCEDURE or BEGIN block.

A further, quite distinct, function of
this phase is to substitute error
statements for all statements containing
dummy dictionary references (which have
been inserted by previous phases on
detecting a severe error). If a dummy
reference is found in the second file, the
compilation is aborted.

Wherever an element of a label array is
initialized by appearing as a statement

38

label, an assignment to a compiler label
has been inserted by the Read-In phase.
Phase FO checks the validity of each such
assignment; for each array with this type
of initialization, a second file dictionary
entry is made, and all assignments to the
array are chained.

Phase FQ

Phase FQ checks the validity of each item
in the PICTURE chain in the dictionary (see
Appendix C.7).

The precision for each correct picture
is calculated, *ogether with its apparent
length, and stored in its dictionary entry.
A data byte is created in the entry for use
by Phase FT.

Invalid pictures cause appropriate
diagnostic messages to be generated.

Phase FT

Phase FT performs certain housekeeping
tasks. These are as follows:

1. The second file entries are scanned
and pointers to each entry are
inserted in the associated dictionary
entry (see Appendix C.7).

2. Each item which has a storage class is
inserted into the ‘appropriate chain
for that class (see Appendix C.4).

3. Constants are placed in the constants
chain and their apparent precision is
calculated. Sterling constants are
converted to pence.

4. Dimension tables are separated for
items which are not in structures, but
which are arrays having similar
bounds, but with different element
lengths.

5. Items which are members of structures
and which have "inherited" dimensions,
i.e. are contained in a structure
which itself is dimensioned, are made
to inherit their dimensions. If a
base element of a structure inherits
dimensions which are not constant,
second file statements (see Appendix
D.8) are set up to initialize the
bounds in the object time dope vector.

6. Items which have expressions to be
evaluated at prologue time, e.q.

parareter descriptions for entry
points and defined items, are placed
in the AUTOMATIC chain for the
appropriate block.

7. The dictionary entry for any item
described by a picture is expanded by
the precision and scale or string
length, extracted from the picture
table entry. Identifiers of different
rodes sharing the same picture table
are now placed in separate tables.

8. The 'dope vector required' bit (see
Appendix C.5) is set on where
necessary.

9. When a label array is found which has
initial label statements for any of
its elements, the chained statements
are meved into the second file. The
original statement is left in the
text, to be removed by Phase FV.

10. Dictionary entries similar to label
BECD entries are made for all TASK
variakles.

Phase FV

Phacse FV scans the second file and reverses
the pointers to the dictionary.

Dictionary entries for DEFINED data are
completed (see Appendix C.4 and C.5).
Overlay and correspondence defining are
differentiated between, as are static and
dynanic defining. A preliminary check of
the validity of defining is also carried
out.

Wwhen PROCEDURE and BEGIN statements are
encountered, any second file statements
associated with data in the AUTOMATIC chain
for that block are inserted in the text
following such statements.

when ALLOCATE statements are found, any
second file statements associated with the
iter being allocated are inserted in the
text following the statement.

when a reference to dynamically defined
data is found, the base reference is
inserted into the text following the
defined reference.

When an initial label statement is
encountered in the main text, it is not
copied intc the output string.

The dictionary reference of a POINTER in
a PEXP (pcinter expression) second file
statement is inserted into the defined slot
of the associated based variable. If the

based variable is a structure this
reference is propagated throughout the
structure. The PEXP statement is then
deleted.

A similar procedure is performed for
BVEXP (based variable expression) second
file statements whereby the dictionary
reference of the AREA is inserted into the
dictionary entry of the associated OFFSET
variable.

ADV second file statements referring to
a BASED variable are checked for compliance
with the (F) implementation rules. If the
rules are obeyed, the dictionary entry of
the 'bound' variable is inserted in the
appropriate slot in the multiple table
éntry.

If an MTF statement refers to a based
variable the appropriate bound slot is
copied from one multiple table entry to the
other.

Phase FX

Phase FX is an optional phase entered only
if the ATR (attribute list) or XREF
(cross-reference list) option is specified.
It scans the STATIC, AUTOMATIC, and
CONTROLLED chains, and the formal parameter
lists.

For each identifier it creates an entry
in text scratch storage of the form:
2 bytes

3 bytes 3 bytes

T T g
Dictionary |Text reference| Text chain

reference {to this item |
1 L

o o ——
e s o

This entry is inserted into a chain of
similar entries in the alphabetical order
of the BCD of the identifier.

If the XREF option is specified, the
text is scanned for dictionary references.
When the dictionary reference of an
jdentifier is found in the text, an entry
is created in a chain of entries from the
dictionary entry of the identifier. If the
identifier is that of a BASED item, an
entry is also created in a chain of entries
from the dictionary entry of the associated
pointer.

Each chain member thus represents a text
reference to an identifier and has the
form:

2 bytes 3 bytes

1] v
| Statement number |
L L

Text chain

e s e

Chapter 2: The Compiler Logical Phases 39

Each reference chain for an identifier
is in text scratch storage.

The sorted chain of identifiers is then
scanned, and for each entry in the chain
the following actions take place: '

1. The statement number of the DECLARE
statement, if any, in which the
identifier was declared is printed

2. The BCD of the identifier is printed.

3. If the ATR option is specified, the
dictionary entry of the identifier is
analyzed and its attributes are
printed. Foxr variables having
constant dimensions and/or constant
string lengths, these dimensions and
lengths are printed.

Except for file attributes, the
attributes printed will be those
obtaining after conflicts have been
resolved and defaults applied. Since
the file attribute analysis does not
take place until after the attribute
list has been prepared (see Phase GAa),
file attributes in the list are those
supplied by the programmer, regardless
of conflicts.

4. If the XREF option is specified, the
reference chain for the identifier is
scanned, and the statement number
contained in each entry is printed

Finally, all scratch storage is released

and control is passed to the Pretranslator
Phase.

THE PRETRANSLATOR LOGICAL PHASE

The purpose of the Pretranslator Phase is
to expand those statements in the language
that can be broken down into simpler
statements, and to insert explicitly
generated statements in place of implied
ones.

Second level markers (see Appendix D.1)
are removed from internal compiler codes,
and some of the I/0 statements are changed
into a form more suitable for the
pseudo-code phase.

Argument lists are examined and the
matching of arguments with parameter
descriptions takes place, with temporary
variables being created where necessary,
e.g., where data conversions are required.

If the compilation contains ON CHECK

conditions the appropriate calls to the
library routine are provided.

40

Any structure assignments containing the
BY NAME option are processed.

If any structure assignment statements
or structures in I/0 lists are detected in
the program, they are expanded into scalar
assignments and DO groups.

I1f the program contains any array
assignments, or array expressions in I/0
lists, these are expanded into DO loops and
scalar assignments or expressions.

If the program contains iSUB references,
the subscripts are computed for the base
array corresponding to the subscripts given
for the defined array.

Additions to the Text

In addition to changing the content of the
text, the Pretranslator introduces some new
symbols and grammatical forms into the
source text. These are as follows:

The Umbrella Symbol: this is
designated by the symbol code X*S5SE°',
which is used to introduce a literal as
an operand. It is used only as a bound
of a DO loop, or in a call of the dope
vector pseudo-variable.

Statements within statements: a list
of statements may be introduced within
another statement. 1In this case the
inserted list is enclosed in
parentheses. Statements in the list
are given no statement number field,
but they have semi-colons at the end.

1/0 _statements: the form of I/0
statements is changed considerably
during the pretranslator phases, as ’
explained in the description of Phase
GB.

BUY and SELL statements: special
statements are introduced for
manipulating temporary storage at
object time: they have a form similar
to ALLOCATE and FREE statements.

Temporary Storage: Pretranslator
phases create temporary variables for
function and procedure calls where the
arguments do not match the final
parameters, where expressions appear as
arguments, for control variables for DO
loops in array and structure
assignments, and for iSUB defined
subscript lists. The Pretranslator has
no mechanism for evaluating
expressions. Therefore, temporaries
which have no data type are created for
expression arguments with no parameter

description. Such temporaries are
known as 'chameleon' temporaries.
data type of these chameleon
temporaries is completed by the
Translator generic phase when the
resultant data type of the expression
has been determined.

The

When the Pretranslator creates a
temporary from an argument which
contains any array with adjustable
bounds or adjustable string length,
compiler functions (see Appendix D.8)
are generated in-line, to set up the
adjustable quantities at object time,
to enable storage of the correct size
to be acquired by means of the BUY
statement.

The temporary variables created by the
Pretranslator have dictionary entries
similar to variables declared in the
source program, except that the
temporaries do not have BCD names.

Phase GA

Phase GA is an optional phase which scans
the STATIC chain for file constants and
OPEN control block entries.

For file constants a DECLARE control
block is constructed from the file name and
attributes, while checking the attributes
for consistency. Por file constants with
the ENVIRONMENT option a dictionary entry
is constructed, chained from the file
constant, containing the storage image of
the 56-byte DECLARE control block.

For OPEN control block entries an OPEN
control block is constructed from the
attributes in the entry, a check is made
for consistency, and another dictionary
entry, chained from the OPEN control block
entry, is constructed. This new entry
contains the 8-byte storage image of the
OPEN control block.

Wwhen the COBOL option is encountered in
the ENVIRONMENT string of a FILE statement,
phase GA sets the low-order bit in the
fifteenth byte of the FILE dictionary
entry. Although this action overwrites the
dictionary reference of the ENVIRONMENT
string, it is permissible since GA is the
only phase which processes this string.

The EXCLUSIVE second level marker is
recognised in the file attribute dictionary
entry during the diagnostic check and
construction of the DCLCB or the OCB.

Phase GB (GC)

Phase GB, containing Modules GB and GC,
processes 1/0 statements. GB removes all
second level markers from internal
character codes (see Appendix D.1). It
then reorders the options so that either
EDIT, DATA, or LIST options appear last.

In data lists the DO specification is
moved so that it precedes the relevant
list, and the END statement is added.

In format lists iteration factors are
expanded.

RECORD I/0 statements for which the
COBOL file option is recognized are
examined for validity by GC. Diagnostics
are put out for LOCATE and READ SET
statements for which COBOL files are used.
A temporary variable is created to assist
such data transfers as occur when a COBOL
record is read into or written from a
structure which does not consist entirely
of one of the followig:

e doubleword data

e fullword data

e halfword binary data

s character string data

e aligned bit string data

e a mixture of character string and
aligned bit string data

I/0 activity found within a PROCEDURE or
BEGIN block causes the bit X'10' to be set
to one in the optimization byte of its
entry type 1. '

Phase GK

Phase GK scans the source text for function
references. If it finds one, it inserts a
special marker byte before the argument
list, followed by:

1. Two code bytes giving information
about the type of function, and
whether it was called with the TASK
option

2. The current statement number

3. The current block level and count

This phase also inserts a special

argument marker before each argument in the
list, followed by the reference of the

Chapter 2: The Compiler Logical Phases 41

corresponding parameter and a code byte to
show whether or not the argument is
specified in a SETS list. The number of
arquments present is checked against the
number given as required by the
corresponding dictionary entry.

NULL, NULLO, and EMPTY built-in
functions are recognised and converted to
constants.

Phase GO

This phase acts as a pre-processor for
phase GP.

Phase GP

Phase GP scans the text for procedure and
function calls with arguments. These are
detected by the special markers inserted by
Phase GK.

Temporaries (see Appendix C.4) are
created for any arquments which are
expressions. (An expression is defined as
being any sequence of variables and
operators, other than single variables
followed only by a subscript list, or only
by a defined subscript list and then a
subscript list). If a parameter
description has been declared in an entry
declaration, the temporary which is created
is of the same type as the parameter
description. Otherwise, a ‘chameleon'
temporary of unspecified data type is
created, its type being subsequently
completed when the expression type has been
determrined by the Translator generic phase.

Expressions are scanned for arrays
(including partially subscripted arrays),
structures, or the end of the expression,
in order to determine the highest form of
aggregate in the expression, so that the
correct type of temporary may be created.

Where the expression contains a
partially subscripted array, a temporary is
created with a dimensionality equal to the
number of cross sections specified in the
subscript list.

When single arguments are specified
together with parameter descriptions, the
arguments are compared with the parameter
description. If there is a lack of match,
action may be taken in one of two ways.

1. If the data types are compatible, a

warning message is printed, and a
temporary is created

42

2. If the data types are incompatible, an
error message is printed, and the
parameter description is ignored

When the argument is a single partially
subscripted array which matches the
parameter, a special temporary is created
which has the same dimensionality as the
number of cross sections in the subscript
list, and it appears to be defined upon the
original argument. Code is then aenerated
to initialize the temporaries, multipliers,
and virtual origin from the dope vector of
the original argument and the subscript
list.

Whenever a temporary is created, a BUY
statement contained in nested statement
brackets is inserted in the output text,
followed by the assignment of the
expression or non-matching argument to the
temporary. After the end of the PROCEDURE
or function call, all the temporaries
generated in the call are released by means
of a SELL statement in nested statement
brackets.

In all argument temporaries created by
phase GP, other than those created for
constants, a special flag bit is set on
(see Appendix C.2), but in the case of
temporaries created for arguments to
built-in functions, this bit is turned off
by phase IM. This bit is used in phase QU
when halfword instructions replace fullword
instructions in the manipulation of
halfword binary operands which are
temporary arguments.

Temporaries are created for constants
which are specified as arguments to
functions defined by the programmer.

If a TASK, EVENT, or PRIORITY option is
present in a CALL statement, then any
temporaries which are created are of the
*not sold' type.

If GENERIC entry labels are specified as
arguments to procedures, a special
dictionary entry is made which contains the
argument and parameter description
dictionary references, to enable the
Translator generic phase to select the
correct generic member. .

A warning message is printed whenever a
temporary is created for an item declared
in a SETS list.

When subscript lists for the number of
cross sections are being checked, a severe
error message is printed if a subscript
list contains too many subscripts, and the
statement is deleted.

Phase GU

‘Phase GU scans the source text for
PROCEDURE, BEGIWN, and END statements, and
for staterents that may raise a possible
CHECK condition.

A list of all items currentlv checked is
extracted from the CHECK and NOCHECK lists
present in PROCEDURE and BEGIN statements.

Items contained in statements that may
raise a CHECK condition are examined and
compared with the list of currently checked
items. If the item appears in the list, a
SIGNAL: CHECK statement is created for it,
either before the statement concerned (for
labels and entry names) or after it (for
variables).

Phase HF

The purpose of phase HF is to detect
structure assignment statements, possible
structure expressions in data lists in GET
and PUT statements, and nested statements,
in particular nested structure assignments.

The leftmost structure in an expression
or assignment is used as a basis for
comparison, and if similar structuring is
not found throughout the expression or
assignment, diagnostic messages are issued.
Any expression containing no structures is
left unchanged.

Thie base elements of the structures are
found, and if the referenced structures are
dimensioned, a temporary is created for
each dimension. It is then added to the
AUTOMATIC chain for the appropriate block.
Iterative DO loops are constructed, with
the temporaries iterating between the upper
and lower bounds of that particular
dirension. Base elements are assigned,
with the temporaries as subscripts, and
with scalars remaining unchanged. END
statements are created for the DO loops,
and SELL statements for the temporaries.
Tne statements which have been created are
nested within the original statement.

Phase HK

The purpose of Phase HK is to detect array
or scalar assignments, possible array
expressions in I/0 lists in GET and PUT
statements, and nested statements, in
particular nested assignment statements.

The leftmost array. in an expression, or
the leftmost array or scalar in an
assignment is used as a basis for
comparison, and if similar dimensions or
bounds are not found in the array
references, diagnostic messages are issued.
Any expression containing only scalars is
left unchanged.

For unsubscripted arrays which are
equally spaced in storage only one
temporary is bought. For all other arrays
a temporary is bought for each dimension,
except in the case of certain partially
subscripted arrays where the number may be
minimized. €Each temporary will be added to
the AUTOMATIC chain for the appropriate
block. If the ON-condition name
SUBSCRIPTRANGE is enabled for any
statement, a temporary will be bought for
each dimension in all cases. Iterative DO
loops are constructed: for an unsubscripted
array expression of dimensionality N, the
temporary will iterate between the lower
bound of the Nth dimension and an evaluated
product so that all elements of the array
are processed; while for other arrays the
temporaries will iterate between the lower
and upper bound of the particular dimension
of the array. The assignment statement is
added to che output string with additional
subscripts where necessary. End statements
are created for the DO loops, and SELL
statements for the temporaries. The
statements which have been created are
nested within the original statement.

The syntax of pseudo-variables is also
checked.

Phase HP

Phase HP scans the source text for
references to itews defined using iSUBs.
For each reference found, the subscripts
are computed for the base array
corresponding to the subscripts given for
the defined array.

The subscripts of the defined .array are
assigned to temporaries specially created
for this purpose, which are then used to
replace the iSUBs in the defining subscript
list. The base array, with the subscript
list so formed, replaces the defined array
in the text.

THE TRANSLATOR LOGICAL PHASE

The Translator Phase consists of two
physical phases, the stacker phase and the
generic phase. The purpose of the

Chapter 2: The Compiler Logical Phases 43

Translator is to convert the output from
the Pretranslator into a series of
"triples™ (see Appendix D.4). A "triple"
is in the form of an operator followed
normally by two operands.

The translation is achieved by using a
double stack, with one part for operators,
and the other part for operands, and
assigning two weights to each operator.
One weight (the stack weight) applies to
the operator while it is in the stack, and
the other weight (the compare weight)
applies when the operator is obtained from
the input string.

When an operator is obtained from the
input string it is compared with the top
stack operator. Depending on the result of
the comparison, one or other of the two
operators is switched on to determine what
action is next to be performed. Apart from
some special cases, this action is usually
either to continue to £ill the stack, or to
generate a triple. The special cases lead
to various manipulations of the stack
items, after which the translation process
continues.,

For the purposes of translation, the
input text to the translator is considered
to consist of operators and operands only.
This means that I/O options, etc., are
regarded as operators.

After translation, the text string
consists of operands and operators.
statements start with an operator to
indicate a statement number or label,
followed by the statement type, which may
be a single operator, as in the case of
RETURN or STOP, or which may be an operator
such as a function or subscript marker,
followed by a list of arguments. This list
may also include compiler generated
statements, e.g., DO loops for I/0 lists.
All 1/0 options are regarded as operators
and require no markers before them. The
end of the source text will be marked by a
special operator, and compiler generated
code, which may follow this end-of-program
marker, will appear between the marker and
the special second-end-of-program marker.
The end of a block of text will be marked
by an EOB overator. The program is now
assumed to be syntactically correct.

All

Phase IA

Phase IA rearranges the source text into a
prefix form, in which parentheses and
statement delimiters have been removed, and

the operations within a statement have been .

so arranged that those with the highest
priority &ppear first.

4y

As operators and operands are
encountered, they are stored in stacks.
Tables give the priority of each operator
as it appears in the input text and in its
stack.

When an operator is found during the
scan of the source text, its compare weight
(see RAppendix D.4) is tested against the
stack weight of the top operator in the
stack. If the compare weight is the lesser
of the two, then action is taken according
to the compare operator. This is referred
to as the compare action. Similarly, if
the compare weight for the current operator
found in the scan is greater than or equal
to the stack weight of the top stack
operator, action is taken according to the
top stack operator. This is referred to as
the stack action. Normally, the compare
action is to place the compare operator in
the stack, and to continue the scan,
placing any subsequent operand in the stack
until another operator is found. The
normal stack action is to generate a
triple, comnsisting of the top operator in
the stack and the top two operands,
eliminating the items from thz stack, and
inserting a special flag as the operand of
the triple which is now at the top of the
stack. The source (compare) item is then
compared with the new top stack item.

The output text of the stacking phase is
in the form of a series of triples, i.e.
statement types with no operands, and
operators with one or two operands. If the
result of a triple operation is to be used
in a later triple, the appropriate result
is flagged accordingly.

Certain phases are marked wanted or not
wanted at this stage. If the source text
contains an invocation by CALL or function
reference, Phases IL and IM are marked
wanted. If it does not, Phases IL, IM, IN,
10, IP, IQ, MG, MH, MI, MJ, MK, MM, MN, and
MO are marked not wanted. Phases MB and MC
are marked wanted when the source text
contains pseudo-variables or multiple
assignments; otherwise, they are marked not
wanted. The DO loop processing phases (1G
and LH) are marked in co-operation with the
dynamic initialization phases (LB and IC).
If LB and LC are requested, the marking of
LG and LH is left until that stage of
compilation; otherwise, LG and 1LH are
marked by Phase IA independently.

When ALLOCATE and FREE statements occur,
phase NG is marked wanted. When LOCATE
statements occur, phase NJ is marked
wanted.

Phase IG

Phase IG is an optional phase which is
loaded to process array and structure
arguments to built-in functions. When
aggregate arguments are given for built-in
functions they are expanded by the
structure and array assignment phases so
that the built-in functions appear as base
elements, subscripted where necessary.

Phase GP examines these arguments, and
ascertains whether it is necessary to
create a dummy. If it is necessary, a
scalar dummy is created, but the assignment
of the argument expression is not inserted
in the text, as this would be an invalid
aggregate assignment.

Phase IG examines the text for a BUY
statement for a dummy for an aggregate
argument to a built-in function, and then
inserts «n assignment triple in the correct
place in the text.

Phase IX

This phase immediately precedes the phase
IL and shares with it the initialization
processes required by the main generic
phase IM. It obtains text block storage
and moves into it routines and a table that
will be used later by the main generic
phase. Part of the storage is reserved for
use by the main generic phase as a nested
function stack area. cControl is passed to
phase IL. ’

Phase IL

This phase immediately precedes the main
generic phase IM and completes the
initialization process begun by phase IK.
It obtains 4K bytes of scratch storage and
places in it the entire built-in function
table and a list of constants used by the

| main generic phase. Registers are set to
point to the built-in function table, to
the list of constants, and to the nested
function stack area reserved by phase IK.
Further text block storage is obtained for
use by the main generic phase and a
register is set to point to it. Control is
passed to rphase IM.

Phase IM

This phase is the main generic processor.
It scans the source text for procedure
invocations by a CALL statement, procedure
or library invocations by a function
reference, and assignments to "chameleon"
dummy arguments (see Phase GP).

Any procedure which is generic and is
invoked by a CALL statement or function
reference is replaced by the approgpriate
family member. If the invoked procedure is
non-generic, it is ignored. A generic
library routine invoked by a function
reference is also replaced by the
appropriate family member.

The arguments passed to library routines
are checked for number and type, and a
conversion inserted where necessary and
possible.

The type and location of the result of
all function invocations is placed in the
text which follows the end of the text
which invoked the function. The resulting
type of an expression assigned to a
"chameleon®™ dummy is determined and set in
the dictionary entry which relates to the
dummy .

The argument bit, set on for all
argument temporaries created by phase GP,
is turned off for arguments of built-in
functions.

Phase IT

Phase IT scans the source text for function
triples and, in particular, the built-in
functions for which code will be generated
in-line. Further tests are made to detect
the functions which, according to the
method used to generate in-line code, are
optimizable. This applies only to the
SUBSTR, UNSPEC, and INDEX functions. All
references to 'chameleon' temporary
assignments within the scope of these
functions are removed subject to certain
restrictions imposed by the function
nesting situation.

Phase IX

Phase IX checks that POINTER and AREA
references are used as specified by the
language. This phase is loaded only if
POINTER or AREA references are found,
declared either explicitly or contextually.
Error messages are produced if errors are
found and the statement in error is erased.

Chapter 2: The Compiler Logical Phases 45

Data type triples in the text are
scanned and a stack of temporary results is
created containing the values:

X'40' for POINTER
X'02' for AREA
X'00*' for any other data type

The maximum permitted number of
temporaries at any one point in a program
is 200. The compilation is terminated if
this tfigure is exceeded.

Phase Jb

Phase JD scans the text for concatenation
and unary prefixed triples with constant
operands. These are evaluated and the
results are placed in new dictiomary
entries. The references are passed through
a stack into the corresponding result slots
in the text.

-TAE_AGGREGATES LOGICAL PHASE

The Aggregates Phase consists of three
physical phases, the preprocessor (phase
JI), the structure processor (phase JK) and
the DEFINED chain check (phase JP).

The structure processor phase carries
out the mapping of structures and arrays in
order to align elements on their correct
storage boundaries.

The DEFINED chain check ensures that
itess DEFINED on arrays and structures can
be mapped consistently.

Phase JI1

The first function of phase JI is to obtain
scratch storage in which the text skeletons
contained in phase JJ are to be held.

Phase JJ is then loaded, and its contents
are moved to the scratch storage for
subsequent use by phases JI and JK. Phase
JJ is then released and control is returned
to phase Jl.

The main function of phase JI is to
expedite data interchange activities. A
scan of static, automatic, and controlled
chains is performed. The chains are
reordered so that all data variables appear
before non-data items. Adjustable PL/I
structures and arrays are detected. Each
entry in tne COBOL chain is mapped as.far
as possible at compile-time, removed from

46

the chain, and placed in the appropriate
AUTOMATIC chain.

Phase JK

This phase scans the AUTOMATIC, STATIC, and
CONTROLLED chains for arrays, structures
(including COBOL structures), adjustable
length strings, DEFINED items, AREA, and
POINTER arrays and structures, TASK and
EVENT arrays, and TASK and EVENT arrays in

structures.

For the base elements of structures
without adjustable bounds or string
lengths, the following calculations are
made:

The offset from the start of the major
structure

The padding required to align the
elements on the correct boundary

All mulitipliers of arrays of
structures.

For all minor structures and major
structures the following calculations are
made:

Size

The offset from the preceding alignment
boundary with the same value as the
maximum appearing in the structure

Where a structure contains adjustable
bounds or string lengths, code is generated
to call the Library at object time.

For arrays, the multipliers are
calculated, unless the array contains
adjustable items, in which case the Library
performs the calculations.

For adjustable structures, arrays, or
strings, code is generated to add a
symbolic accumulator register into the
virtual origin slot of the dope vector, and
the accumulator register is incremented by
the size of the item.

Calculations are made in a similar
fashion for arrays of strings (in
structures or otherwise) with the VARYING
attribute. In addition, code is generated
to set up an array of string dope vectors
which refer to the individual strings in
the array using the dope vector. Code is
also generated to convert the original dope
vector to refer to the array of string dope
vectors, instead of to the storage for the
array.

The routine which generates code for
arrays of VARYING strings is also used to
generate code for the initialization of
arrays of TASK, EVENT, and AREA variables.

DEFINED items are processed in the
following way:

Code is generated to set the
multipliers and virtual origin address
of correspondence defined arrays
without iSUBs in the dope vector of the
DEFINED items from the defining base
dope vector.

Ccode is generated for overlay DEFINED
items if they do not fall into the
class which is to be addressed
directly. The code first maps the
DEFINED item, if necessary, calculates
the address of the start of the storage
to be used by the DEFINED item, and
finally, relocates the DEFINED item
using this address.

Dope vector descriptor dictionary
entries and record dope vector dictionary
entries are made for items which need to be
mapped at object time, or which appear in
RECORD-oriented input/output statements.

Phase JP

Phase JP scans the DEFINED chain, and
differentiates between the following:

1. correspondence defining
2. Scalar overlay defining

3. Undimensioned structure overlay
defining

4. Mixed scalar-array-structure-string
class overlay defining

In correspondence defining, this phase
differentiates between arrays of scalars
and arrays of structures. It also checks
that the elements of the defined item which
may validly overlay the elements of the
base belong to the same defining class, and
that the base is contiguous.

In scalar overlay defining, this phase
checks that the defined item may validly
overlay the base.

For undimensioned structure overlay
defining, this phase checks that the
elements of the defined item may validly
overlay the elements of the base.

For mixed scalar-array-structure~string
class overlay defining, this phase checks

that all elements of the defined item and
all elements of the base belong to the same
defining class (bit or character), and that
the base is contiguous.

THE OPTIMIZATION LOGICAL PHASE

The optimization logical phase consists of
several physical phases and is loaded if
OPT=2 is specified in the PARM field of the
EXEC statement.

The work done during the Optimization
Phase can be split into two parts. The
first consists of testing the text and
dictionary to see if optimization is
permissible. As a result of these tests,
tables are built pointing to optimizable
text. The second part consists of code
generation and modification requiring
scanning of the tables built in the first
part, and direct references to the text and
dictionary.

All code generation resulting in text
expansion is placed in a patch file, and
the point of insertion in the text is
overwritten with a PTCH triple pointing to
the patch. The last physical phase merges
the patch text into the main program text.

Optimized code is produced for subscript
address calculations and iterative DO-loop
control. In the case of subscripts most of
the optimized code consists of reordered
triples, but optimized loop control code is
generated as pseudo-code using BXLE, and
BXH instructions.

Only simple loops and subscript lists
are optimized, and the variables involved
must be real, fixed binary, scalar integers
and the constants must be decimal integers.

The two main problems in deciding
whether it is permissible to optimize code
are:

1. Aliasing of variables

2. The action of the program for
exceptional conditions

Optimization is inhibited where it is
difficult, or impossible, to decide that
optimization will produce an object program
which will execute according to the rules
of PL/I. The keyword REORDER, indicates to
the Optimization Phase, that ON-units for
exceptional computational conditions may be
ignored. This enables more cases to be
optimized than for the default setting of
ORDER.

Chapter 2: The Compiler Logical Phases 47

Three types of subscript optimization
are performed:

1. Transformation Where possible, a
- control variable used as a subscript

is transformed such that, instead of a
'subscript * multiplier + virtual
origin' address calculation, each
iteration produces a simple increment
of a register to access the next
element.

2. Invariance Where possible, an
invariant subscript calculation inside
a DO-loop is moved outside.

3. Commoning Where possible, a common
subscript expreéssion is only
calculated once and this value is
.placed in a register to be used at
later occurrences.

For array expressions an attempt is made
to combine the incrementing of a
transformed control variable with the BXLE
or BXH of the optimized loop control code.

The text is optimized starting from the
innermost of a nest of iterative DO-loops
and working outwards. This enables patch
code, which moves out of a DO-loop, to be
included in the processing of the enclosing
DO-loop, hence moving out code as far as
possible in a nest of loops.

Phase KA (KB)

contains utility routines and common data
space used by the later optimization
phases. Details of the utilities are given
in Appendix K.

The utilities enable the optimization
phases to build and process tables in text
blocks without concern for physical block
boundaries, status of text blocks, or
maintaining pointers to first, last, and
current table entries.

The facilities provided:

1. Define a table using a table control
block area.

2. Add new entries to the end of a table.
Table entries may be of fixed or
varying length and a table can contain
more than one type.

3. Scan a table forwards or backwards.

- 4. Make direct reference to table
elements.

5. Delete a table.

48

6. Specify locking of entries.

7. Remove all locks on table entries.

Phase KC

Phase KC scans the text for DO-loop
specifications. If the loop is potentially
optimizable, then any expressions in the
initial, the TO, or the BY specifications
are assigned to temporary variables. The
expression and the assignment are moved
outside the loop and are replaced in the
specification by a simple reference to the
temporary variable.

Text is also scanned for ON-units. The
occurrence of each type of ON-unit is
recorded by the appropriate bit in the mask
used by Phase KG.

Phase KE

Phase KE performs a scan of the dictionary
and a scan of the text. The purpose of
these scans is to mark variables 'unsafe’
if they can possibly be affected by change<
to other variables (i.e., aliases).
Variables are marked unsafe if they are
EXTERNAL, DEFINED, defined upon, BASED, or
PARAMETERS, or if they are (or might be
through being arguments of procedure calls!
arguments of the ADDR built-in function.

In addition, during the text scan, the
DO MAP table is created. This table
contains an entry for each DO-loop and
procedure in the source text. Each entry
contains information describing the loop o
procedure and giving its location in the
text. A chain is constructed through thes
entries giving the order in which they are
to be processed by subsequent K phases.

Phase KG

Phase KG scans the text corresponding to
each DO MAP entry in turn and builds up tv
lists which are chained off the DO MAP
entry. The USE list is a list of all the
real, fixed binary, scalar integer
variables which are used within the loop.
A flag byte indicates whether the wvariabl:
is assigned to or is invariant in the loo

The SUBS/REGION list consists of two
types of entry:

1. A SUBS entry which contains the text

reference of a SUBSCRIPT triple
referring to an array for which
SUBSCRIPTRANGE is not enabled.

2. A REGION entry which contains the text
reference of a triple which results in
an assignment to one or more
variables. There are four types of
REGION boundaries:

a. A GLOBAL region boundary which
contains the text reference of a
point where the value of any
variable could be changed.

b. A PARTIAL SAFE boundary which
contains the text reference of a
point where an assignment is made
to a variable which is a SAFE real
fixed binary scalar integer,
followed by the dictionary
reference of this variable.

c. A PARTIAL UNSAFE region boundary
which contains the text reference
of a point where an assignment is
made to an UNSAFE variable (not
just a scalar). The dictionary
reference is not inserted in this
case.

d. 2An ITDO region boundary which
contains the text reference of an
ITDO triple corresponding to an
enclosed loop.

Phase KJ

Phase KJ creates the SUBS TABLE from the
SUBS/REGION list produced by phase KG. The
DO MAP created by KE provides the order of
processing and further information.

The Region entries from the SUBS/REGION
list are copied directly into SUBS TABLE
whenever they occur. The SUBS entries from
the list are expanded to contain
information on the type of expression
involved at this point. The USE list
created by KG provides information during
this analysis. The SUBS/REGION list is
deleted by this phase.

The iterative specification triples of
each DO-loop are inspected, and the spare
operands used to set flags to indicate
whether this loop is optimizable for BXLE
or BXH loop control code.

Phase KN

Phase KN provides initialization of the
scratch storage area used by phase KoO.

An initial text scan is made in DO MAP
sequence, to remove offsets from
optimizable subscript lists and produce
hash totals for optimizable subscript
expressions. The hash totals are placed in
the SUBS/REGION table and are used in phase
KO to speed up the matching process.

Phase KO (KP,KQ)

Phase KO processes text in the order
specified in the DO MAP, i.e., working
through a nest of iterative DO-loops and
procedures from innermost outwards.

The three types of subscript
optimization: transformation of the control
variable; invariance; and commoning; are
performed and optimized code is generated
and inserted in a patch file. The code to
be replaced in the original text is
overwritten with NOP's and a PTCH triple
points to the patch text.

All three types of subscript
optimization require searches for multiple
occurrences of the same expression in the
text. This is done by scanning the SURS
TABLE for matching triple expressions in
optimizable subscript lists. When a match
is found a chain is constructed in the SUBS
TABLE between the matched elements. The
code is generated for one chain at a time)

Code generated for optimized subscripts
may be inserted:

1. Before the ITDO triple, i.e., where an
invariant subscript calculation is
moved out of a loop or where the
initial setting of a transformed
control variable is required.

2. Before the ITD' triple, i.e., for the
incrementing code of a transformed
control variable.

3. RAfter the ITD' triple, i.e., the
DROP's for symbolic registers used in
the optimized code.

4. At the point of use in the subscript
list.

For array expressions the incrementing code
for a transformed control variable will be
deleted if a BXLE or BXH can be generated
which will increment the transformed
control variable and control the number of
iterations of the loop.

Chapter 2: The Compiler Logical Phases 49

USSL declarations may be inserted in the
optimized code to indicate that registers
have griority and need not be saved and
restored at branch points. The register
allccator ghase gives these registers
priority over normal symbolic registers.

Phase KT

Phase KT is a renamed replacement of phase
LA vwhich is now obsolete. It is always
loaded. This phase is a utility phase
which remains in storage throughout the
remainder cf the Optimization Phase and the
whole of the Pseudo-Code Phase. It
provides the main scanning routines to
handle input and output of text containing
trirles and pseudo-code.

The routine/subroutine directories in
Chagter 3 give a complete list of the
routines provided, together with brief
descriptions of their functionms.

Phase KU(KV)

Phase KU has three main functions performed
during a single text scan.

The first function is DO-loop control
optimization. Each ITDO triple encountered
during the text scan is checked to
determine whether or not it has been
flagged as being optimizable by a previous
phase. If not flagged the scan is
continued. All DO-loop control
specifications headed by an ITDO triple
flagged as optimizable are replaced in text
by an optinized pseudo-code group using the
BXH and BXLE instructions. There are three
basic forms to this optimized pseudo-code
control specification, the particular one
used for any loop depending on the type of
steg.

The seccnd function is to detect each of
the PTCH triples inserted into text by a
previous phase. The corresponding patches
are obtained from patch file text blocks
and are processed as necessary before being
inserted into text in place of the PTCH
triple. .

The last function is that of the
subscript list processing. Each innermost
subscript list encountered, as indicated by
the presence of a SUBS triple in the main
text, is checked for the occurrence of COMA
or COMR triples within it. The SUBS triple
is then altered as may be necessary.

50

THE BRSEUDO-CODE LOGICAL PHASE

The Pseudo-Code Phase accepts the output of
the Translator Phase, and converts the
triples into a series of machine-like
instructions. The transformation into
pseudo-code is achieved by a series of
passes through the text; each pass removes
certain triples and replaces them by
pseudo-code, until the entire text is in
pseudo-code form. On completion of this
phasé€, control is handed to the Storage
Allocation Phase.

Pseudo-Code Design

Pseudo-code is essentially a one-for-one
symbolic representation of machine code,
designed so that it can be transformed
directly into executable machine code by an
assembly process.

Pseudo-code is constructed in basic
units, the majority of which have a
standard size of three or five bytes. A
variable sized unit, however, is also
available to allow flexibility, its length
being specified by a length code within the
unit. The formats of pseudo-code
instructions are shown in Appendix D.6.

A unit consists of a one-byte operation
code followed by normally, a two- or
four-byte field, or on the other occasions
by a variable length field. The bit
pattern of the operation code indicates the
type of unit which it heads.

Pseudo-Code Items

In addition to there being one pseudo-code
item for each machine instruction which
could be generated, there are also
pseudo-code items which are produced to
convey information from one phase of the
compiler to another.

These items of information have the sam
format as a pseudo-code item, so that the
handling and scanning of the source text i
standardized. They do not, however, appea
in the final object code.

Register Description

In all cases where a general purpose
register appears in pseudo-code, it will t
described symbolically. When conventional

registers are required in, for example,
calling sequences, the registers will be
referred to physically, as they will be in
‘all cases of floating-point register usage.

The Use of Symbolic Unassiqgned Registers

Whenever a new register is required while
pseudo-code is being generated, a symbolic
register counter is incremented by one and,
subject to this new value not being greater
than 16,383, it is used as the symbolic
name of the required register. Wwhen this
register is no longer required a DROP
pseudo-code item is inserted into the text
to indicate to the Register Allocation
Phase that the physical register allocated
to this symbolic register may be
reassigned.

The Use of Physical Registers

Physical general purpose registers will be
used either as arithmetic registers or as
parameter registers.

With arithmetic registers, it is the
responsibility of the pseudo-code
generation phases to save and restore the
registers as necessary. This will apply
both to the general purpose arithmetic
registers (namely 14 and 15) and to the
four floating-point registers. Although
this is of primary interest to the
expression evaluation phases, it should be
realised that all phases which generate
calling sequences must be aware of the
current status of arithmetic registers, and
generate code to save and restore them as
necessary.

In the case of parameter registers,
however, the Register Allocation Phase will
be able to save and restore them as
required.

Temporary Descriptors

As expressions are evaluated, a series of
intermediate temporary results are
obtained. These results, or their
addresses, may be contained in symbolic or
assigned registers, in a dictionary
reference, with or without an index
register, or in workspace. Temporary
descriptor triples (TMPD) are inserted in
the text to enable the correct pseudo-code
instructions to be generated from the
triples. The format of TMPD triples is
described in Appendix D.9. :

Temporary Workspace

A block of temporary workspace is used to
store intermediate results obtained in
evaluating expressions at object time.
Pseudo-code phases allocate the next
available workspace location within the
block, and then update the location
pointer, whenever the necessity to save an
intermediate result arises. The location
of the intermediate result is then
described for later phases by a TMPD in the
text. Intermediate results are only
required during the execution of single
PL/1I statements; they are never preserved
from one statement to another.

At the end of the pseudo-code phases the
maximum size of the temporary storage
required in each PL/I program block is
placed in a dictionary entry. The required
amount of workspace is then allocated in
each Dynamic Storage Area (DSA) by Phase
PT.

Phase LB

Phase LB scans through the text for
PROCEDURE, BEGIN, and ALLOCATE statement
triples.

Whenever one of these is found, a scan
is made through the immediately succeeding
second file statements; this is for any IDV
(initial dope vector) statement referring
to a variable replication factor in the
array initial string: Processing of these
statements and of the corresponding array
initial strings is then carried out.

on completion of this secondary scan,
the action taken depends on which triple
was originally found:

1. For PROCEDURE or BEGIN triples, a scan
is then made of the AUTOMATIC chain in
the dictionary. For any scalar
variables that have been declared
INITIAL, a set of triples is created
and inserted into the text. For any
array declared INITIAL, the initial
string is scanned, and a mixture of
triples and pseudo-code is generated.

2. For ALLOCATE triples, if the item has
been declared INITIAL, the initial
string is scanned, and a mixture of
triples and pseudo-code is generated.

Phase LB also marks Phase LG (DO-groups)

as wanted or not wanted; this is done in
co-operation with Phase IA.

Chapter 2: The Compiler Logical Phases 51

Phase 1D
!

Phase LD scans the STATIC chain for any
variables which have been declared INITIAL.

When a scalar variable is found, the
phase constructs two dictionary entries:
one for the constant, and one for the
converted constant.

For arrays, the phase scans the initial
value string, creating an initialization
table in the dictionary. Replication
factors are converted and inserted into the
table; treatment of the constants is then
as described for scalar variables.

Phase 08 converts the constants to their
specified internal form.

Phase 1IG

Phase LG scans the text for DO loops. A
stack is maintained with each entry
containing a description of a DO group.

The stacking reflects the nesting of the DO
groups. FoOr each DO or iterative DO triple
a new entry is made at the top of the
stack.

DO specification triples are analyzed
and expressions are assigned to
temporaries; subscripts in the control
variable are assigned to binary integerx
temporaries if they are themselves
variable. At the end of each
specification, pseudo-code and triples are
generated to control the loop.

Triple operators (see Appendix D.4)
peculiar to the specification of DO 1oops
are removed from the text.

'For control variables, other than simple
scalars, text is placed in the DO stack and
used at every appearance of the control
variable in the generated text. During
this time, a scan is also made for
pseudo-variables, subscripts,. functions,.
and argument markers.

Phase LR

Thne purpose of Phase LR is to save space
during the expression evaluation phase, LS.
It provides the initialization for Phase LS
by obtaining 4,096 bytes of scratch storage
and setting stack pointers. The scan phase
is initialized and Phase MP is marked.

52

The translate table for scanning
triples, and the constants for expression
evaluation are included in this phase and
are moved to the first 1K area of scratch
storage. Subroutines required by phase LS
are also moved into scratch storage at this

time. Finally, control is passed to Phase
LS.
Phase Ls

Phase LS scans the source text to convert
expression triples to pseudo-code. If a
triple produces a result, it is added to
the temporary work stack.

For the arithmetic triples +,-,*,/, #x,
prefix +, and prefix -, the operands are
combined to give the base, scale, mode, and
precision of the result. If conversion is
necessary, an assignment triple, with the
target and source types as operands, is
inserted in the text. 1In-line pseudo-code
is generated for all operators except #**
and some complex type * and / operators.
In these cases, library calling sequences
are generated. An intermediate result is
always produced and the triple is removed
from the text.

The operands of comparison triples GT,
GE, equals, NE, LE, and LT are combined and
converted as for the arithmetic triples.
In-line pseudo-code is generated and the
triple is removed from the text, unless
both operands are string type, in which
case a temporary is created. If the next
triple is a conditional branch, a mask for
branch-on-false is inserted. Otherwise,
the result is a length 1 bit string.

For the string triples CAT, AND, OR,
NOT, and string comparisons, if an operand
is zero, TMPD triples, containing the
intermediate result from the top of the
stack, are inserted in the text after the
triple. The result is a CHARACTER or BIT
string or a compare operator.

When subscript triples appear, a
symbolic register number is inserted in the
triple. The result contains the dictionary
reference of the array and the symbolic
register.

For function triples, a description of
the workspace for the function result is
inserted in the TMPD triples which follow
the function triples. The function result
is added to the intermediate stack.

For add, multiply, and divide functions,

. the function and argument triples are

removed from the text. Arithmetic type
in-line pseudo-code is generated, with

modifications for the precision and scale
factor, and the result is added to the
- intermediate stack.

With pseudo-variable triples, a special
marker is added to the intermediate result
stack.

Other triples which may use an
intermediate result, are examined. If an
operand is zero, two or three TMPD triples,
containing the intermediate result from the
top of the stack, are inserted in the text
after the triple. If both operands are
zero, the TMPDs for the second operand
precede those for the first operand.

Phase LV

Phase 1LV provides string handling
facilities for the pseudo-code phases.

It converts any type of data item to a
CHARACTER or BIT string, and an assignment
triple, with the target and source types
used as the operands, is inserted in the
text.

A string dope vector description is
produced from a standard string
description.

Phase LX (IW, LY)

Phase LX consists of three modules, LW, LX,
and LY. Module LW acts as a pre-processor
for LX and LY, moving constants into
scratch storage prior to loading the
string-handling modules.

Phase LX scans the source text to
convert string triples to pseudo-code. If
a result is produced it is added to a stack
of intermediate string results.

For the comparison triples GT, GE,
equals, NE, LE, AND LT, both operands are
already string type. If one operand is
zero, the operand is obtained from the
associated TMPD triples. 1In-line
pseudo-code is generated if the operands
are aligned and are of known lengths less
than or equal to 255 bytes; otherwise,
library calling sequences are generated.
The triple and any TMPD triples are removed
from the text.

In the case of the string triples CAT,
AND, OR, and NOT, the operands are
converted to string type by phase LV. Zero
operands are obtained from associated TMPD
triples. 1In-line pseudo-code is generated

when operands are aligned and are of known
lengths less than or equal to 255 bytes.
For the CAT operator, the first operand
must be a multiple of 8 bits unless the
strings involved are less than or equal to
32 bits in length. 1In-line code is also
generated for the following cases involving
non-adjustable varying strings:

1. Character string concatenation of

varying strings with lengths less than
256 bytes.

2. Bit string operations for AND, OR,
NOT, concatenation, and comparison
where the strings are aligned and are
less than 33 bits in length.

Otherwise, library calling sequences are
generated. The triple and any TMPD triples
are removed from the text, and the string
result is added to the intermediate result
stack.

For TMPD triples, if the intermediate
result described by the TMPD triples is a
string, a complete string description is
moved from the top of the intermediate
stack to the TMPD triples. If the TMPD
triples do not describe a string, they are
ignored.

In-line code is generated for the BOOL
functions AND, OR, and EXCLUSIVE OR, when
the third argument is a character or bit
string constant and the first and second
arguments are aligned and of known lengths
less than or equal to 255 bytes. Otherwise
library calling sequences are generated.
Subscript and function triples may produce
intermediate string results.

Phase MA

Phase MA generates pseudo-code for both the
in-line invocations of TRANSLATE and VERIFY
and for the invocations which call a
library routine. It is optional depending
on the presence of the TRANSLATE or VERIFY
function in the source program.

Three kinds of tables are handled:
1. Compile-time created (up to three)
2. Floating, initialized by in-line code

3. Floating, initialized by library
subroutine

When three constant tables have been -
created at compile-time, any further
occurrence of this case, will cause the
constants of both the second and third
arguments to be handled via the library.

Chapter 2: The Compiler Logical Phases 53

Blocks which have RECURSIVE, TASK, or
REENTRANT attributes will have their own
table, otherwise one table will be used for
many blocks.

Phase MB

Phase MB scans the text for pseudo-variable
markers and multiple assignment markers. A
stack of pseudo-variable descriptions is
maintained, together with the left hand
side descriptions of multiple assignments
when they occur. . Pseudo-code and triples
are generated for pseudo-variables and the
left hand side descriptions of multiple
assignments are put out in the correct
sequence.

Phase MD

Phase MD uses the SCAN routine to scan the
text for ADDR and STRING built-in functions
for which it generates in-line code. It
appears before the normal function
processor phase and removes all trace of
the in-line function. The general SCAN
routine passes control when these functions
are found.

For all cases of ADDR the generated code
establishes the start address of the
argument. If structure name arguments are
present the structure chain is hashed for
the first base-element. For array names
the address of the first element is
calculated.

If the argument to the STRING function
is contiguous in main storage, and its
length is known at compile-time, an
adjustable string assignment is generated.
Otherwise the library routines IHESTGA and
IHESTGB are called to produce the
concatenated length and to concatenate the
elements of the array or structure
argument.

Phase ME

Phase ME identifies 2ll invocations of the
SUBSTR function and pseudo-variable, all
UNSPEC, STATUS, and COMPLETION functions,
and those invocations of the INDEX function
which can be implemented in-line; and
generates pseudo-code to perform these
functions at object time. The scan of the
text is conducted by the general SCAN
routine, and all trace of the invocations
of these functions is removed before the

i

S4

normal function processor phase is loaded.
When the end-of-program marker is
encountered the terminating routine is
entered.

Phase MG

Phase MG identifies functions which are to
be coded in-line, and generates, in their
place, the pseudo-code to perform the
relevant function. This phase appears
before the normal function processor phase
and removes all trace of the in-line
function.

The scan of the text is conducted by the
general SCAN routine, and control is handed
to the present phase when one of the
following functions is found:

ALLOCATION FLOOR BINARY
BIT IMAG DECIMAL
CEIL REAL FIXED
CHAR TRUNC FLOAT
COMPLEX PRECISION
CONJG

Ccontrol is also passed to this phase if
ABS is found with real arguments. The
arguments are collected, and the
appropriate routine is entered to generate
the pseudo-code. When the end-of-program
marker is encountered the terminating
routines are entered.

Phase MI

Phase MI identifies functions which are to
be coded in-line, and generates , in their
place, pseudo-code to perform the relevant
function. This phase appears before the
normal function processor phase and removes
all trace of the in-line function.

The scan of the text is conducted by the
general SCAN routine and control is handed
to the present phase when one of the
following functions is found:

MAX
MIN

MOD
ROUND

If the number of arguments to the MAX or
MIN functions is greater than three, a
library call is generated.

Phase MK

Phase MK identifies functions which are to
be coded in-line, and generates, in their
place, pseudo-code to perform the relevant
function. This phase appears before the
normal function processor phase and removes
all trace of the in-line function.

The scan of the text is conducted by the
general SCAN routine, and control is passed
to the present phase when one of the
following functions is found:

DIM HBOUND

LBOUND SIGN

LENGTH FREE
Phase ML

Phase ML scans the source text for generic
entry name arguments to procedure
invocations.

Such entry names may be floating
arithmetic built-in functions or
programmer-supplied procedures with the
GENERIC attribute. When one is found, the
correct generic family member to be passed
is selected by this phase, dependinc on the
entry description of the invoked procedure.

Phase MM

Phase MM scans through the source text for
procedure invocations by a CALL statement,
or for procedure or library routine
invocations by a function reference.

Procedure invocations are replaced by an
external standard calling sequence, and
library routine invocations are replaced by
an external or internal standard calling
sequence as appropriate (see Appendix
D.10).

If a CALL is accompanied by a TASK,
EVENT, or PRIORITY option, library module
IHETSA is loaded rather than IA4ESA, and the
parameter list is modified to include the
addresses of the TASK and EVENT variables
and the relative PRIORITY.

Phase MP

Phase MP reorders the BUY and SELL
statements involved in obtaining Variable
Data Areas (VDAs) for adjustable length

strings or temporaries, which were created
by Phase GK. On entering this phase, the
BUY triples precede the code compiled to
evaluate the length of storage required for
the VDA. This evaluation code is included
between further BUYS and BUY triples, which
themselves are between the BUY triple being
considered and its associated SELL triple.
Phase MP extracts these sections of code
and places them before the BUY triple of
the adjustable string temporary. Since
such BUY triples may be nested, the phase
maintains a count to record the nesting
status.

Phase MS

Phase MS scans the source text for
references to subscripted array elements.

If references are found, pseudo-code is
generated to calculate the offset of the
subscripted element in relation to the
origin of the array. If necessary, further
pseudo-code is generated to check the
subscript range.

Optimization of constant subscript
evaluation is carried out on arrays having
subscripts which are integer constants, and
for which the corresponding dope vector
multipliers are constant. This applies to
arrays with fixed-length elements.

Phase NA

Phase NA generates pseudo-code for the
following triples:

For PROCEOURE' and BEGIN' triples a
Library call is generated to the FREEDSA
routine.’

For RETURN triples a library call is
generated, unless a value is to be returned
as the result of a function invocation, in
which case code is first generated to
assign the result to the target field, and
then the library call is made. If the
function may return the result as more than
one data type, a switch would have been set
at the entry point to the function, and the
RETURN statement would test the switch
value, so that the data type appropriate to
the entry point is returned.

GOTO triples either will be invalid
branches detected by Phase FI, in which
case they will be deleted, or they will be
branches to statement label constants in
the same PROCEDURE or BEGIN block. In this
case, they will be compiled as
one-instruction branches.

Chapter 2: The Compiler lLogical Phases 55

GOLN triples are compiled into
one-instruction branches to the compiler
label number in operand 2 of the triple.

A GOOB (Go Out Of Block) triple is a
branch to a label variable, possibly
subscripted, or to a label in a higher
block than the current one (a branch to a
lower block is invalid). A call is
generated to a library epiloaue routine,
pointing at a double-word slot containing
the address of the label and the
Pseudo-Register Vector (PRV) offset (for a
label constant), or the invocation count
(for a label variable).

STOP and EXIT statements are implemented
simply by invocation of the appropriate
library routine.

For YIF triples, if the second operand is
an identifier, or the result of an
expression which is not a comparison, code
is gencrated to convert it to a BIT string,
if necessary. This BIT string is compared
to zero, either in-line, or by a call to
the library.

The second operand may be a mask which
will have been inserted by the expression
evaluation phase as a resunlt of the
comparison specified in the IF statement.
This mask is put into a qgenerated
instruction to branch if the condition is
not satisfied, i.e., either to the ELSE
clause or to the next statement.

For ON triples, code is generated to set
flag bits and update the ON-unit address in
the double~-word ON slot in the DSA.

¥Yor SIGNAL arithmetic condition triples,
in-line code is generated to simulate the
condition. For all other conditions, a
library error routine is called.

REVERT triples generate code to set flag
bits in- the double-word ON slot in the DSA.

Phase NG

Phase NG generates the calling sequences to
the library for DELAY and DISPLAY and WAIT
statements.

It generates code to call the library
routines which handle ALLOCATE and FREE
statements whose arguments are BASED
variatles.

For DELAY statements, the argument has
to be a fixed binary integer, and, if
necessary, code is generated for
conversion.

56

For DISPLAY statements,
be a CHARACTER string, or, it necessary,
converted to one. A parameter list is
built up to pass to the library.

the message must

For WAIT statements, the parameter list
is built up in workspacve. 1t consists of
the address of the scalar expression
(converted to a fixed binary inteqer),
followed by the addresses of the
event-names that appear in each WAIT
statement. If the scalar expression option
does not appear, the address of the total
number of event-names is used.

For the tasking option WAIT, whose
argument is an EVENT array, the phase makes
a 4-byte entry in the parameter list,
containing the number of dimensions
involved, and the address of the EVENT
array dope vector. If the WAIT statement
contains an EVENT array and no scalar
expression, the first byte of the parameter
list is set to X'FF'.

For ALLOCATE and FREE statements, with
based variables as arguments, a parameter
list is built in workspace before a call is
made to one of the entry points to IHELSP.
The parameter list is an 8-byte RDV
followed by the address of the AREA
variable from the IN option if present.

For ALLOCATE, the pointer-variable in
the SET option is given the value returned
by IHELSP.

Phase NJ

Phase NJ and its supporting block, NK,
generate the calling sequences to the
library module for the RECORD-oriented
input/output statements: DELETE, LOCATE,
READ, REWRITE, UNLOCK, and WRITE.

For each of these calls, the information
contained in the options of the source
statement is passed by a parameter list,
constructed as follows:

A (DCLCB)

A (RDV | COUNT | PNTR2 | SDV?) | 0

A (EVENT|LABEL“) | 0

A (SDV.KEYTO|SDV.KEYFROM|SDV.KEY) |0
A (REQUEST_CODES)

BRBAR

expr in IGNORE (expr)

pntr in READ SET (pntr)

SDV of varying string in READ INTO
(varying string)

Compiler label as result of LOCATE

WP

F—3

REQUEST CODES is a full-word containing
four control bytes with the following
meanings:

Byte 0 Operation code
00 READ
04 WRITE
08 REWRITE
0C DELETE
10 LOCATE
14 UNLOCK
Byte 1 Group 1 options code
00 SET
O4 IGNORE
08 INTO|FROM
Byte 2 Group 2 options code
04 KEYTO
-08 NOLOCK
Byte 3 Group 3 options code

04 VARY INTO
08 VARY KEYTO
0C BOTH

Note that null arquments in the
parameter list or REQUEST CODES are
indicated by zeros.

Both the parameter list and the
REQUEST _CODES word are constructed in
STATIC storage. However, if the argument
of any of the options refers to AUTOMATIC,
CONTROLLED, or BASED storage, the parameter
list is woved to the workspace storace for
the statement; the arqument is then
provided just before the library call is
made.

In the case of the LOCATE statement, the
phase is respongible for generating code to
set the pointer variable with the pointer
value returned in the first word of the RDV
by the library. If the PASED variable was
a structure with a REFER option in an
extent definition, it is also responsible
for generating code to initialize the
extent variable named in the REFER option.

The DCLCB parameter is taken from the
FILE option of the statement; the FILE
option rust be either a file constant or
file paramreter.

The record dope vector (RDV) is assumed
to have been constructed by earlier phases,
except in the case of CONTROLLED or BASED
variables or CONTROLLED or BASED ‘
aggregates, when the procedure is as
follows:

1. For CONTROLLED or BASED aggregates,
Phase NJ creates a library call to
IHESTRA, passing the following
arguments through registers:

Register 1 A(D.V)
Register 2 A(DVD)
Register 3 A(RESULT.RDV.SLOT)

2. For CONTROLLED or BASED strings, the
phase generates code to construct the
RDV in the workspace storage of the
statement, using the dope vector of
the string.

The IGNORE expression is taken from the
IGNORE option of the statement and if
necessary, converted to an integer.

The EVENT scalar is taken from the EVENT
option of the statement.

The KEYTO SDV is derived from the KEYTO
option of a READ statement.

The KEY SDV and KEYFROM SDV are derived
from their respective options. If
necessary, they are converted to character
strinas.

The PNTR is taken from the SET triple of
the statement or from the BASED variable of
the LOCATE triple if no SET triple appears.

Phase NM

Phase NM generates the calling sequences to
the library modules for OPEN, CLOSE, GET,
and PUT statements.

For OPEN and CLOSE statements, a
parameter list is constructed from the
options given. The options are first
checked for validity with respect to
multiple specifications. The arguments on
the options are checked and converted, if
necessary, to the correct data type. If no
file is specified in an OPEN or CLOSE
statement, it is ignored. The parameter
lists are as follows:

Chapter 2: The Compiler Logical Phases 57

o
B
2
8

A(DCLCB)
ACOCB)
A(TITLF.SDV)
A(IDENT.SDV)
A(IDENT.DED)
A(RKEYLENGTH)
A(LINESIZE)
A(PAGESIZE)

CLOSE A(DCICR)

K8 B 8K KB K KA

A(IDENT. SDV)
DC A(IDENT.DED)

Null arguments are indicated by zero
address ccnstants.

For GET and PUT statements, the library
call is in three parts. The
initialization, data transmission (Phase
NU), and the termination. The
initialization call requires a parameter
list to be constructed from the given
options. The options are checked for legal
combinations and the arguments examined.

The parameter list when a file is
specified is :

DC A(DCLCB)
DC A(next statement)

DC A(binary integer) if SKIP or
LINE is given.

For GET and PUT STRING, the argument to
STRING is checked, and the parameter list
formed is:

DC A(SDV of string argument)
DC A(DED of string argument)

The termination library call has no

parameters. BAs for the initialization, the

routine used depends on the options given
in the statement.

Phase NT
This phase, which is a preprocessor for
Phase NU, has two functions:

1. 1Initialization of a block of scratch

storage for use by Phase NU

58

2. Setting up of INCLUDE matrix and
library routine entries for
edit-directed, STREAM-oriented I/O
statements

The phase contains all pseudo-code
skeletons used by Phase NU. 4096 bytes of
scratch storage are obtained and the
pseudo-code skeletons are copied into it.
The address of the scratch area is then
passed to Phase NU.

If a flag has been passed from Phase NM,
indicating the presence of edit-directed
I/0, a scan of the text is performed. Data
and format list items encountered during
the scan are associated as far as possible,
and a sufficient set of library modules are
identified for the edit-directed
transmission specified in the program. The
INCLUDE matrix is updated and dictionary
entries ar= made for the required library
format-director routines.

Phase NU

Data/format lists in I/0 statements produce
an internal library calling sequence (see
Appendix D.10) for each data item and
format item pair, using registers to point
at the data item, the data item DED, and
the FED for the format item.

Iterations of data items, as in array
input or output, and of format items, are
achieved by making DO loops out of the
iterations.

The data items are transmitted serially,
with program flow going from an item in the
data list, to the corresponding format item
and then to the relevant library 1I/0
module. On return from the library module,
control goes to the code for the next dJdata
item or, in the case of repeated data
items, to another iteration of the DO loop.

Remote format statements are executed in
a similar way. After the R format item is
met, control is passed directly from the
data list to the format statement until the
end of the format statement. Control then
returns to the item in the in-line format
code of the EDIT statement following the
appropriate remote format item. However,
if no format elements remain but some data
list elements are still present, control is
passed back to the beginning of the format
statement.

An R format item referring to a label
which is not attached to a format statement
will cause an object time error condition
to be raised, and the execution to
terminate.

Phase OB

Phase OB scans through the text for
corpiler functions and compiler
pseudo-variables (see Appendix D.8). When
a compiler function is found, pseudo-code
is generated to access the operands of the
compiler functions (e.g., string length,
array bound), and to place the operand in
the location specified by the TMPD
following the function. Assignments to
compiler pseudo-variables are treated in
reverse; the result from the TMPD following
the assignment is stored in the array bound
or string dope vector slot specified in the
compiler pseudo-variable.

Phase OB also scans the text for BUY,
SELL, and BUY ASSIGN statements. The
temporary operands of these statements are
exarined, and if they are CAD or short
fixed-length strings, they are allocated
the next available workspace offset, and

the BUY and corresponding SELL statements
are removed from the text.

Phase OD

This phase contains the translate and test
table used by SCAN, and other tables and
constants for phase OE. A block of scratch
storage is obtained into which the tables,
routines, and constants are moved. A
pointer to the beginning of this area is
passed to OE in a register.

Phase OE
Phase OE translates the following triples
into pseudo-code:
Assignment
Multiple source assignment
Multiple target assignment
ALLOCATE, FREE, BUY, and SELL
Special assignment

In-line code is generated for the
following types of ASSIGNMENT triples:

1. Floating-point to floating-point
2. Fixed binary to fixed binary
3. Fixed decimal to fixed decimal

4. Numeric field to numeric fieid, if the

pictures given for the operands are
identical

5. CHARACTER string to CHARACTER string,
if the operands are fixed length and
not more than 256 characters

6. BIT string to BIT string, if the
operands are aligned and not more than
2040 bits

7. Label to label
8. File constant to file parameter
9. POINTER/OFFSET to POINTER/OFFSET

10. FIXED CHARACTER string to VARYING
CHARACTER string and VARYING CHARACTER
string to VARYING CHARACTER string
provided that:

1. The length of the source operand
is not greater than 256 bytes

2. The length of the target string is
not aoreater than 256 bytes, if the
maximum length of the source
string is not known.

3. For FIXED CHARACTER string to
VARYING CHARACTER string the
length of the FIXED string is not
greater than 256 bytes.

Library calling sequences are compiled
for those cases of CHARACTFR string to
CHARACTER string and BIT string to BIT
string codes not compiled in-line.

After checking both AREA operands, ARERA
assignments are performed by the library.

All other assignment triples are
translated into the CONV pseudo-code macro.

I1f the source operand is a constant, the
type of the target operand is inserted in
the constant dictionary entry, for
processing by the constant conversion
phase, and the assignment is translated
assuming the target type.

MULTIPLE ASSIGNMENT triples produce the
same code as for single assignment, except
that the registers used by the operand
concerned must not be changed or dropped.

Library calling sequences are generated
for ALLOCATE, FREE, BUY, and SELL triples,
and pseudo-code markers are left in the
text for insertion of code by Phase QF.

With SPECIAL ASSIGNMENT triples, if the
target is a varying or adjustable string,
storage is obtained if the target is
AUTOMATIC, or allocated if the target is

Chapter 2: The Compiler Logical Phases 59

CONTROLLED.
translated.

The assignment is then

Phase 0G (OL)

Phase OG converts to pseudo-code all
statement numbers, statement labels,
PROCEDURE, BEGIN, PROCEDURE', BEGIN', and
end-of-program triples.

The CONVERT pseudo-code macro is
examined in conjunction with the
OPTIMIZATION parameter and pseudo-code is
generated in one of three forms:

1. Code to call the library conversion
package

2. Code to perform the conversion
"in-l1ine"

3. A modified CONV macro which is passed
to phase OM or OP for processing.
In=line conversion phases which are
not required (OM and/or OP) are marked
unwanted.

IGN pseudo-code items and JMP triples
are removed. The amount of temporary
working space required by each block of
program is calculated and placed in the
workspace dictionary entry (see Appendix
c.7.

The format of the text is converted so
that a pseudo-code item does not span
blocks.

The INCLUDE card matrix is formed for
all the conversion modules required.

Phase OM

Phase OM is called when either optimization
levels 00 or 01 are specified. This phase
scans the pseudo-code for the CNVC macros,
which phase OG has placed into the text as
~ 28-byte entries containing a transfer
vector to select the appropriate conversion
routine within OM, and replaces any such
macros with in-line code.

The conversions inserted by phase OM are
controlled by phase 0G. When OPT=0,
certain of the simpler FIXED DEC to
PICTURE, PICTURE to FIXED DEC, and FIXED
DEC to FIXED BIN conversions are passed to
OM. When OPT=1, the remainder of the
feasible FIXED DEC to or from PICTURE and
FIXED DEC to FIXED BIN conversions are
passed to OM together with FIXED DEC to
CHAR conversions.

60

Certain FIXED DEC to PICTURE
conversions, which phase 0G cannot itself
efficiently detect to be uneconomic when
performed in-line, are recognized by phase
OM, which inserts the calls to the
appropriate library routines.

Phase OP

Phase OP generates in-line code to perform
BINARY to BIT string, BIT string to BINARY,
and FLOAT to FIXED BINARY conversions.

Phase 0S

Phase 0S scans through the constant chain
in the dictionary and converts the
constants to the required internal form.
These are then stored in a constants pool,
and the offset of each constant from the
start of the ool is saved in the
dictionary entry for that constant.

To permit the correct alignment of the
constant pool, three scans are made of the
constant chain; first to convert all double
word constants, secondly to convert all
single word constants, and thirdly to
convert all unaligned constants.

In the first two scans only one pool
entry is made for constants having the same
internal form and value.

A fourth scan is made of the constant
chain and all constants required to
initialize static are converted, but
instead of inserting these constants in the
constant pool, they are moved into special
dictionary entries constructed by Phase LB.

THE STORAGE ALLOCATION LOGICAL PHASE

The purpose of the Storage Allocation Phase
is to ensure that every item requiring
storage in a PL/I object program obtains a
unique location of the correct size,
located on the correct boundary. Items
requiring storage include PL/I source
program variables, dope vectors, dope
vector skeletons, temporary variables, work
areas, data descriptors, symbol tables,
addressing slots, register save areas, flag
areas, etc. Storage locations are
allocated to items in order of descending
alignment requirement to avoid wasting
storage by padding to the required
alignment.

The Storage Allocation Phase is also
responsible for generating prologues. 1In
generating the prologues, expressions which
determine size of variables, code generated
by the aggregates phase to initialize dope
vectors, and code generated by the initial
values phase, must be extracted and placed
in the correct sequence in the text. Also,
when a variable depends for its size or
initial value upon another variable, the
requests for dynamic storage must be
arranged so that the dependant variable
obtains its storage after the variables
upon which it depends.

Since all AUTOMATIC and CONTROLLED
storage is obtained dynamically at object
time, the Storage Allocation Phase
generates code to relocate dope vectors
when the allocated storage address is
known.

Phase PA

The purpose of phase PA is to determine the
eligibility of the automatic chains of any
block for STATIC DSAs. Any chain not so
far found to be ineligible for a STATIC DSsa
is scanned to determine the DSA size.
STATIC DSAs are generated for any chains of
less than 512 bytes.

Dictionary entries are generated for
STATIC DSAs. This phase also acts as a.
spill area for routines used in phases PD
and PH.

Phase PD

Phase PD is the first STATIC storage
allocation phase. It scans the text, and
for every second file statement encountered
sets up a pointer in the associated
dictionary which points to the second file
statement. It then sorts the STATIC chain
so that the dictionary entries occur in the
order in which the storage for their items
will be allocated.

Storage is allocated for simple
non-structured, non-external variables,
RDVs, DEDs, SAVE/RESTORE entries, and the
BCD of entry labels and label constants.
Storage is also allocated for dope vectors
for all items in the STATIC chain requiring
them, with the exception of EXTERNAL items.
A full word address slot is allocated in
STATIC for each STATIC DSA.

The external section of the sorted
STATIC chain is scanned and a U-byte
addressing slot is allocated for each entry

label, label constant, external (entry type
4) entry, built-in function, or EXTERNAL
item. For each EXTERNAL item the size of
the external control section is calculated
and stored in the dictionary entry.

The constants chain is scanned and the
offsets of the storage and dope vectors for
constants in the constants pool are
relocated.

The current size of the STATIC INTERNAL
control section is computed and the result
is passed via the communications region to
the next phase.

Phase PH

Phase PH is the second STATIC storage
allocation phase. It scans the AUTOMATIC
chain and CONTROLLED chain for all items
requiring a dope vector.

For each such item a skeleton dope
vector dictionary entry is generated in the
STATIC chain (see Appendix C.7). This
dictionary entry contains a bit pattern
equal in length to that of the dope vector
and containing all those values which are
known at compilation time. In particular,
it contains as much of the relative virtual
origin as is known at compilation time, the
constant bounds and string lengths, and the
constant multipliers.

Skeleton dope vectors are not put into
the STATIC chain for AUTOMATIC variables in
any block whose DSA is in STATIC, except
when the variable dimensions bit is set to
one -

If the item is dynamically DEFINED, then
the dope vector is preceded by one extra
four-byte slot. (In the case of structures
there is one extra slot for each element of
the structure.) If the item is a dynamic
temporary (temporary type 2) or a
CONTROLLED scalar string, the virtual
origin slot is relocated by the length of
the dope vector.

In all cases the skeleton dope vector
dictionary entry is pointed at by the
dictionary entry of the associated item.

The sorted STATIC chain is scanned from
the first skeleton argument list entry.
For each such entry, space is allocated in
the STATIC INTERNAL control section
according to the assembled length of the
argument list. The offset of each skeleton
argument list is stored in the OFFSET1 slot
of the dictionary entry.

Chapter 2: The Compiler Logical Phases 61

RDV and DVD entries are found on this
same scan of the STATIC chain. RDV entries
are allocated eight bytes; DVD entries are
allocated the specified length.

A scan is made of the section of the
STATIC chain containing STATIC INTERNAL
arrays. Storage is allocated for each
array according to its size (computed by
Phase JK) and the offset of the relative
virtual origin is relocated to the start of
the STATIC INTERNAL control section. 1If
the array is of the VARYING type and it
needs a dope vector, then storage is
allocated for the secondary dope vector.
The number of elements is calculated for
INITIAL arrays and stored in the associated
INITIAL dictionary entry.

The section of the STATIC chain
containing STATIC INTERNAL structures is
scanned. Storage is allocated for each
structure according to the size of the
structure (computed by Phase JK), and this
storage is placed on the correct boundary
on information supplied by Phase JK. The
structure member chain for each structure
is scanned and the relative offset of each
member is relocated to the start of the
STATIC INTERNAL control section. Further,
on the structure member scan, secondary
dope vectors are allocated when required,
and the number of elements is calculated
for INITIAL arrays.

Phase PL

Phase PL scans the STATIC, AUTOMATIC,
CONTROLLED, structure, and PROCEDURE block
chains for variables which require storage
for their symbol tables and/or data element
descriptors.

When a variable is found which requires
a symbol table, the variable is joined onto
the chain of symbol variables for the
particular block. A symbol table
dictionary entry is created for the
variable (see Appendix C.7), and a chain is
set up to and from the dictionary entry for
the variable. The new dictionary entry is
joined onto the STATIC chain.

The size of the symbol table is
calculated, and its offset from the start
of the STATIC control section is stored in
the symbol table dictionary entry.
Throughout the allocation of STATIC storage
a location counter is maintained to contain
the next free location in STATIC; this
counter is increased appropriately.

All symbol variables require a DED and a

branch is taken to the routine which
allocates them.

62

When a variable is found which requires
a DED, it is determined whether or not the
DED describes a standard type; there are
eight standard types, which consist of the
different kinds of real coded arithmetic
data that can be obtained by the
combination of the attributes FIXED/FLOAT,
BINARY/DECIMAL, LONG/SHORT (default
precisions only).

If the DED is of a standard type, a
check is made for an identical DED that may
have already been encountered, so that
there will be only one allocation of
storage for any one type of standard DED.
If the DED is not of a standard type, it is
allocated storage of its own.

If the variable does not already have a
symbol table dictionary entry (which
contains space for DED information), a DED
dictionary entry is constructed, and the
offset of the DED in the STATIC control
section is stored in it. A pointer in the
new entry in the dictionary entry for the
variable is also set up.

When all data element descriptors and
symbol tables in the compilation have been
processed, all STATIC storage has been
allocated and the total size of the STATIC
control section is placed in a slot in the
communications region.

| Phase PP (PO)

Phase PP extracts all ON condition entries
and places them at the head of the
AUTOMATIC chain. It then extracts all
temporary variable dictionary entries from
the AUTOMATIC chain and places them in the
zone following the ON conditions in the
chain.

All dictionary entries which are totally
independent of any other variable are
extracted, and also placed in the zone
following the ON conditions.

The phase then extracts all dictionary
entries which depend upon some other
variable in containing blocks or in the
zones already extracted, and places them in
the next following zone. Dependency
includes expressions for string lengths,
expressions for array bounds, expressions
for INITIAL iteration factors, and defined
dependencies. This is repeated recursively
until the end of the chain. If some
variable depends upon itself, a warning
message is issued.

A special zone delimiter dlctionary
entry is inserted between each zone in the
AUTOMATIC chain (see Appendix C.7). A code

byte is initialized in the delimiter to
indicate to Phases PT and QF whether its
following zone contains any variables which
require storage (i.e., it does not consist
entirely of DEFINED items, which do not
require storage), and whether or not the
following zone contains any arrays of
VARYING strings.

Phase PT

Phase PT allocates AUTOMATIC storage, scans
the CONTROLLED chain, and determines the
size of the largest dope vector. It scans
the entry type 1 chain, and for each
PROCEDURE block or BEGIN block it allocates
storage for a DSA and compiles code to
initialize the DSA.

A two-word slot in the DSA is allocated
for each ON condition in the block, and
code is compiled to initialize the slot.
Space for the addressing vector and
workspace in the DSA is also allocated.

Two words are allowed for tasking
information in the DSA if the TASK option
is on the external PROCEDURE of the
compilation.

The AUTCMATIC chain is scanned and dope
vectors are allocated for the items
_requiring them. Code is compiled to copy
the skeleton dope vector, and to relocate
the address in the dope vector.

Where there is a block with its DSA in
STATIC, dope vector initialization is not
performed for the variables in the first
region of the AUTOMATIC chain. Address
slots in dope vectors for variables in the
remainder of the chain are relocated.

Storage is allocated for addressing
temporaries type 2 and for addressing
controlled variables, and for the
parameters chained to the entry type 1.

The first region of the AUTOMATIC chain
is scanned and storage allocated for double
precision variables, single precision
variables, halfword binary variables,
CHARACTER strings, and BIT strings, in that
order.

The first region of the AUTOMATIC chain
is scanned and storage allocated for
arrays, relocating the virtual origin.
arrays of strings with the VARYING
attribute, the secondary dope vector is
also allocated and code is compiled to
initialize the secondary dope vector. ‘
Correctly dligned storage is allocated for
structures. If a structure contains any
arrays of strings with the VARYING

For

attribute, the storage for the secondary
dope vector is allocated at the end of the
structure.

A pointer is set up in the AUTOMATIC
chain delimiter to the second file
statement which has been created.

The remaining regions of the AUTOMATIC
chain are scanned and code is compiled to
obtain a Variable Data Area (VDA) for each
region. Code is compiled to copy the
skeletons into the dope vectors and to
relocate the addresses in the dope vectors.
During this pass, any DEFINED items which
are to be addressed directly have the
storage offset and the storage class copied
from the data item specified as the base
identifier.

Phase QF

Phase QF, which constructs prologues, scans
that text which is in pseudo-code form at
this time with end-of-text block markers
inserted.

When a statement label pseudo-code item
is found, it is analyzed and one of three
things happens:

1. The item is saved if it relates to a
PROCEDURF. statement

2. The item is omitted if it relates to a
BEGIN or ON block

3. The item is passed if it relates to
neither of the first two conditions

When a BEGIN statement is found, a
standard prologue of simple form is
generated, and code is inserted from second
file statements (if there are any) to get
the DSA, either dynamically, or in the case
of eligible bottom-level blocks, by using
the supplementary LWS made available at
initialization time. Code is also inserted
to initialize the DSA and to allocate and
initialize any VDAs.

When a PROCEDURE statement is found, it
is first determined whether it heads an ON
block or a PROCEDURE block. If it is an ON
block, a standard prologue (similar to that
for a BEGIN block) is generated. 1If it is
a PROCEDURE block, a specialized prologue
is generated. This takes account of the
manner of getting the DSA, the number of
entry points, the number of entry labels on
a given entry point, the number of
parameters on each entry point, and whether
the PROCEDURE is a function.

Chapter 2: The Compiler Logical Phases 63

Prologue code is generated for AUTOMATIC
schlar TASK, EVENT or ARFA variables, in
order to perform the initialization
required when these variables are
allocated.

The code generated by the prologue
construction phase is partly in pseudo-code
and partly in machine code. The machine
code (which is delimited by special
pseudo-code items) has the same form as the
code produced by the Register Allocation
Phase (see Appendix D.7).

DSA optimization is performed under
certain conditions (see Appendix H).

At the end of the prologue, the
statement label item saved earlier is
inserted to mark the apparent entry point.
Code is prcduced to effect linkage to BEGIN
blocks in such a way that general register
15 contains the address of the entry point,
and general register 14 contains the
address of the byte beyond the BEGIN
epilogue.

At the end of the text, any text blocks
that are not needed are freed, and control
is passed to the next phase.

Phase QJ

Phase QJ scans the text for ALLOCATE, FREE,
and PUY statements.

On finding an ALLOCATE statement, a
routine is called which does a 'look ahead'
for initialization statements associated
with the allocated variable, e.g.,
adjustable array bounds or adjustable
string lengths, and places the text
references of each statement in the
dictionary entry associated with each
statement.

If the allocated item has a dope vector,
code is generated to move the skeleton dope
vector generated by Phase PH into a block
of workspace in the DSA of the current
block.

Any adjustable bound expressions or
string length expressions are then
extracted from the text references, and the
expressions are placed in-line in the text.

Any information required from previous
allocations (specified by * in the ALLOCATE
statement) is extracted from the previous
allocation, and copied into the workspace.

code generated by Phase JK to initialize

multipliers, etc., is extracted and placed
in-line, after first loading the variable

64

s?orage accumulator with the dope vector
size. Phase JK generates code to increment
the accumulator register by the size of the
item.

If the item has no adjustable
parameters, code is generated to increment
the accumulator by the size calculated at
compilation time. If this size is greater
than 4,096, Phase JK generates a constant
dictionary entry, which is used in this
code.

If the item has any arrays of varying
strings, the size of the array string dope
vector is added to a second accumulator
register. Code is generated to add the two
accumulators into the second one, which is
a parameter to a library routine. A
routine is then called which extracts the .
library call inserted by pseudo-code and
places it in-line in the text.

Code is inserted after the library call
to initialize the dope vector in workspace
to point to the allocated storage. Code is
generated to transfer the dope vector from
the workspace to the allocated storage.

The code generated by phase JK to
initialize arrays of varying strings,
tasks, events, and areas is then inserted
in the output stream.

Any initial value statements associated
with the ALLOCATE statement are extracted
and placed in-line. The initialization
statements are then skipped, and the scan
continues. The last two steps are also
performed for LOCATE (based variable) and
ALLOCATE (based variable) statements.
Action for a BUY statement is similar to an
ALLOCATE statement, with the following
exceptions:

1. Bound and string length code is
in-line, bracketed between BUYS and
BUY statements - there is therefore no
look ahead

2. There is no initial value code
associated with temporaries

3. A slot in the DSA is updated with the
pointer to the allocated storage for a

temporary

The action on encountering a FREE
statement is to generate code to load a
parameter register with the pointer to the
allocated storage for the FREE VDA Library
call inserted by the pseudo-code.

Phase QU

Phase QU scans the pseudo-code text in
search of instructions which have
misaligned operands. (A misaligned operand
has the UNALIGNED attribute and is not
aligned on the boundary appropriate to its
data type). When such an instruction is
found, QU inserts a move character (MVC)
instruction in the pseudo-code text to move
the operand to or from an aligned workspace
area, and substitutes the address of this
workspace for the operand address in the
original instruction. If the address of a
misaligned operand is loaded into a
register, a note is made of that register.
QU thereafter treats the instructions which
refer to it as if they referred to the
operand itself, by inserting a move
character instruction, and substituting the
workspace address for the reference in the
instruction.

In handling misaligned operands, phase
QU uses storage beginning at offset 32 from
register 9 for its workspace.

Whenever a load address (LA) instruction
is found which lies within the calling
sequence of a library routine and which
loads the address of a misaligned argument
of that routine, an aligned workspace
address is substituted in the instruction,
and the requisite move character
instruction is stacked. It is not inserted
in the output text until the instruction is
encountered that loads register 15 prior to
the exit to the library routine, or in the
case of EDIT-directed I/O routines, until
the appropriate branch-and-link (BALR)
instruction is encountered. The stacked
move character instruction is inserted into
the output before the exit to the routine
if the argument in question is an input
argument to the routine, and after the
return from the routine if it is an output
arqument.

Whenever a fixed binary temporary of
precision < 16 is encountered in the text,
the dictionary is checked to see if this is
a member of an argument list (phase GP will
have set bit). If it is, the instructions
referring to it are altered to halfword.
"he displacement in any Load Address
referring to the temporary is incremented
by 2.

References to halfword binary items are
replaced by halfword instructions where
PL/1 permits. Where possible and
desirable, fullword instructions are used
to perform calculations, and only LH/STH
instructions used to access storage.

Fullword conversion is inserted into the
library calls marked by phases LS and NG.

In handling halfword binary items, phase
QU uses U4 bytes, beginning at offset 0 from
register 9, for workspace. -«

Phase QX

Phase QX is the 'AGGREGATE LENGTH TABLE'
printing phase. It is entered only if the
ATR (attribute list) or XREF (cross
reference list) options are specified. 1It
scans the STATIC, AUTOMATIC, CONTROLLED and
COBOL chains, and, for each major structure
or non-structured array that is found, an
entry is printed in the AGGREGATE length
table.

An AGGREGATE LENGTH TABLE entry consists
of the source program DECLARE statement
number, the identifier and the length (in
bytes) of the aggregate. 1In the case of a
CONTROLLED non-BASED aggregate no entry is
printed for the DECLARE statement, but an
entry is printed for each ALLOCATE for the
aggregate, the source program ALLOCATE
statement number being printed in the
'statement number' column.

Where the length of an aggregate is not
known at compilation the word “"ADJUSTABLE"
is printed in the 'length in bytes' column
of the entry for that aggregate. If an
aggregate is dynamically defined, the worad
"DEFINED" appears in that column. An entry
for a COBOL mapped structure (i.e., a
structure which a COBOL record is read into
or written from), has the word " (COBOL)"
appended, but such an entry will appear
only if the structure does not consist
entirely of one of the following:)

e doubleword data

e fullword data

¢ halfword binary data

e character string data

e aligned bit string data

* a mixture of character string and
aligned bit string data

If a COBOL entry does appear, it is
additional to the entry for the PL/I mapped
version of the structure.

Before printing begins the aggregate
length table entries are sorted so that the
identifiers appear in collating sequence
order.

Chapter 2: The Compiler Logical Phases 65

THE REGISTER ALLOCATION LOGICAL PHASE

The purpose of the Register Allocation
Phase is to insert into the text the
appropriate addressing mechanisms for all
types of storage, and to allocate physical
aeneral registers where symbolic registers
are specified or required as base
registers.

This phase comprises two physical
phases, each with a specific function. The
first, Phase RA, processes the addressing
mechanisms, while the second phase, Phase
RF, allocates the physical registers.

An additional phase RD is called in
between RA and RF when the optimization
option is 2 or greater. This paase
attempts to optimize the storing and
loading of registers in use over compiler
generated branches.

Phase RA'(RB,RC)

Phase RA scans the text for dictionary
references, the beginmninas and ends of
PRCCEDURE and BEGIN blocks, and the
starting points of the original PL/X
statements.

A dictionary reference, when found, is
decoded into a word-aligned dictionary
address and a code. These are used to
deterrine what is being referenced. The
corresponding object time address as an
offset and base is then calculated.

If the address reguired has an offset
less than 4,096 and a base which is either
an AUTOMATIC or STATIC data pointer, no
extra instructions are generated. If this
is not so, extra instructions are inserted
in the text stream to calculate the
required address. The calculation of this
address is broken down into logical steps
in a ‘'step table.' On completion, the table
is scanned backwards to determine whether
an intermediate result has been previously
calculated. The steps which have not been
previously calculated are then assembled
into the pseudo-code.

The corpiled code is added either to the
output stream or to a sevparate file. The
code in the separate file is terminated by
a store instruction to save the calculated
address. The extra "insertion file" is
placed in the prologue of the relevant
block by the next phase. Instructions are
stored in-line if the referenced item is
CONTROLLED, if it is a parameter, if fewer
instructions are required to recalculate
the base rather than load the stored

66

address, or if the reference itself is in
the prologue.

If no addressing code is generated, a

special item is put in text to tell phase
RF what base to use.

All relevant information for PROCEDURE
and BEGIN blocks is stacked and unstacked
at the start and end of the blocks
respectively.

At the start of PL/I statements, code is
compiled to keep the required PREFIX ON
slots in the Dynamic Storage Area updated.
On meeting the pseudo-code error marker,
the calling sequence to the library error
package is generated, and the error marker
removed.

If the STMT option has been specified,
code is generated at the start of each PL/I
statement to keep the statement number slot
in the current DSA up to date.

Phase RD

Phase RD examines all EQUs and determines
their uses. A table is set up in scratch
text blocks containing a four-byte slot for
each EQU. The number of text blocks
required is calculated from the value in
the ZMAXEQ field in the communications
region. The first text block, containing
the slots for the first N-4 EQU values
(where N = text block size), is locked into
main storage so that these slots can be
accessed by direct addressing.

The other slots are accessed via their
text references, and their text blocks are
brought into storage as needed, by the
compiler control routines. A dictionary of
text block numbers for each range of EQU
values is kept in the phase. This allows
for a maximum of 64 text blocks, i.e.,
under the smallest SIZE parameter a maximum
of 16K EQU values are allowed.

The table is built up during a pass of
the program text. At the end of the text
pass the table is scanned. Any EQU which
is not used is deleted. Any EQU which is
either before the first use or used more
than once is flagged by setting the first
bit of the EQU value on. During this scan
of the table, the current table text block
is locked into storage and released when
the scan is completed for the block.

| Phase RF_(RG,RH)

Phase RF scans the text for register
occurrences, implicit and explicit, and the
start and end of PROCEDURE and BEGIN
blocks. At the beginning of PROCEDURE and
BEGIN blocks all relevant information is
stacked, and is later unstacked at the
corresponding end.

Registers are classified as assigned,
symbolic, or base.

Assigned registers require the
explicitly mentioned register to be used.
If that register is not free it is stored.
Symbolic registers may occupy any register
in the range 1 through 8. An even-odd pair
may be requested. Base registers may
occupy any of registers 1 through 8.

When a register is requested, a table of
the contents of registers is scanned, to
determine whether the register already has
the required value. If it does, that is
used. If it does not, and it is not an
assigned register, a search is made for a
free register and this is allocated if one
is found. Should no register be free, a
look-ahead is performed to determine which
register it is most profitable to free.

If a register contains a base it need
not be stored on freeing. If a register
contains a symbolic or assigned register,
it may require to be stored when freed,
depending upon whether it has had its value
altered since any storage associated with
it was last referenced.

At a BALR (Branch and Link) instruction
it is ensured that all the necessary
parameter registers are in physical
registers, and not in storage.

No flow trace is carried out by the
compiler. Therefore, the register status
is made zero at branch-in and branch-out
points. An exception is at a conditional
hranch. Here the registers are not freed
after having been saved.

Any coded addressing instructions are
expanded when found in-line. At a specific
"insertion point® in a prologque, any
addressing instructions in the "insertion
file" are krought in and expanded.

THE FIRAL ASSEMBLY LOGICAL PHASE

The Final Assembly Phase converts the
pseudo-code output of the register
allocation phase into machine code, the
principal functions being the substitution

of machine operation codes for pseudo-code
operations, and the replacement of PL/I and
compiler inserted symbolic labels by offset
values.

Loader text is generated for program
instructions, DECLARE control blocks, and
OPEN file control blocks, initial values
defined in the source program, parameter
lists, skeleton dope vectors, symbol
tables, etc. ESD and RLD cards are
generated for external names and
pseudo-registers. An object listing of the
code generated by the compiler is produced
if the option has been specified by the
source programmer.

Phase TF

Phase TF scans the text, assigns offsets to
compiler and statement labels, and
determines the code required for
instructions which reference labels.

The size of each procedure is determined
and stored in the PROCEDURE entry type 1.
A location counter of machine instructions
is also maintained.

Phase TJ

Phase TJ scans the text until no further
optimization can be achieved in the final
assembly.

A location counter is maintained for
assembled code, and offsets are assigned to
labels.

The size of each procedure is determined
and stored in the PROCEDURE entry type 1.
The amount of code required for
instructions to reference labels is also
determined, while attempting to reduce this
from the amount estimated by the first
assembly pass.

This phase also attempts to reduce the
number of Move (MVC) instructions by
searching for consecutive MVC instructions
which refer to contiguous locations..

Phase TO (TQ)

Phase TO sets the four byte slot ZPRNAM, in
the communication region, to contain the
first four characters of the first entry
label of the external_procedure, for the
purpose of object deck serialization.

Chapter 2: The Compiler Logical Phases 67

Phase TO also produces ESD cards for the
compiled program. It first makes up six
standard entries for:

1. Program Control Section (CSECT) (SD
type) allowing room for the compiler
subroutines if these are present.

2. STATIC internal CSECT (SD type)
3. Invocation count (PR type)

4. Entry points to library routines,
IHESADA and IHESADB (ER type)

5. IHEQERR (PR)

6. TIHEQTIC (PR)

If the external procedure has the MAIN
option, an entry for a one-word CSECT (SD
type) is made up. An entry is made for the
CSECT 1H entry and entries are made up for
all entry labels in the external procedure
(LD type).

The entry type 1 chain is scanned and an
entry (PR type) is made up for each block
and procedure.

The external section of the STATIC chain
is scanned and entries are made up for:

1. Built-in functions and library
functions (ER type)

2. Files (ER type)
3. STATIC external variables (SD type)
4. External entry names (ER type)

5. Programmer ON condition names (SD
type)

The CONTROLLED chain is scanned and an
entry is made up for each CONTROLLED
variable and task name (PR type).

The size of the program control section
is incremented to include thne compiler
subroutines.

All STATIC DSAs are put into the STATIC
INTERNAL control section, their combined
sizes being allowed for when the size of
the CSECT is calculated.

Module TQ is used to produce a list of
library conversion routines required for
execution of the program. ER type entries
are made up for each name in the list.

68

Phase TT

Phase TT scans the text and maintains a
location counter for assembled code.

Loader text (TXT) and relocation
directory (RLD) cards for requested
combinations of load and punch files are
generated.

Nested procedures are unnested at object
time by suitable manipulation of the
location counter. The offset of each
procedure from the start of text is left in
the PROCEDURE entry type 1.

Compiler labels are numbered for use by
the object llstlng phase, and trace
information is set up at entry points.
Phase TT also generates the text for the
compiler subroutines. These subroutines
are put out in one of the following
combinations:

1. EPILOGUE subroutine
DYNAMIC PROLOGUE subroutine
STATIC PROLOGUE subroutine

2. EPILOGUE subroutine
DYNAMIC PROLOGUE subroutine

3. EPILOGUE subroutine
STATIC PROLOGUE subroutine

Phase UA

Phase UA generates text for the static
internal CSECT; initializes a CSECT for
each static external variable; and,
optionally (if the LIST option is present),
lists all the text produced for the statlc
internal CSECT and provides suitable
comments.

The phase first scans to the start of
the external section of the STATIC chain,
generating text for entry labels, label
constants, compiler labels, file
attributes, label variable BCDs, and DEDs
for temporaries. Simple variables found on
this scan are used, together with the
labels, to mark the start of the character
string section of the chain.

The phase then scans to the end of the
external section of the chain, initializing
address constants for external variables,
external entry names, built-in and library
functions, programmer-defined ON-condition
names, external files, and label constants.
Text is made up for the constants pool.

The third scan of the STATIC chain
starts at the point left by the previous

scan, and generates text for dope vector
skeletons, argument lists, RDVs and DVDs,
and symbol tables. The scan is terminated
at the end of the chain.

Phase UA makes up RLD cards for the
address slots for STATIC DSA's and for the
address slot of the start of the epilogue
subroutine, if generated.

Text cards are output to initialize all
AREA's, EVENT's, and TASK's. Arrays of
AREA's, will have a text card for each
element.

Phase UD

Phase UD generates RLD and TXT cards to set
up dope vectors at link-edit and load time.

TXT cards are generated for each STATIC
DSA, containing its length, which is found
in the STATIC DSA entry.

TXT and RLD cards are generated to set
up the dope vectors for structured items
snd any non-structured items appearing in
the AUTOMATIC chains. The TXT cards are
derived from the skeleton dope vector
entries. The RLD cards are generated for
each virtual origin slot.

When the last STATIC DSA has been
processed control is released from phase
UD.

Phase UE

Phase UE initializes those items on the
STATIC chain not processed by Phase UA,

The phase first scans to the start of
the external section of the chain, making
up text for simple data, and listing label
variables.

The second scan starts at the head of
the character string section of the chain,
and initializes dope vectors for all static
internal variables which need them.

The third scan corresponds in extent to
the third scan in Phase UA, but generates
text for arrays, and simple and interleaved
structures. At the end of this scan, a -«
test is made to determine whether the
external procedure of the program has the
MAIN option. If so, a one-word CSECT
(IHFMAIN) is made up, to contain the
address of the principal entry point to the
compilation.

The phase then executes its final scan,
which extends over the external section of
the chain, to initialize a CSECT for each
external variable or external file.

Finally, any incomplete text and RLD
cards are punched out, and an END card is
produced for the compiled program. If the
OBJNM parameter is present for batch
compilation, phase UD punches a NAME card
to follow the END card.

Phase UF (UH)

Phase UF scans the text, and lists, in
assembly language format, machine
instructions compiled for the source
program. It inserts comments in the
listing for statement numbers, statement
labels, entry points, prologues, and
procedure bases.

Phase UF contains module UH which
generates NAME from a dictionary reference.
UF also lists the text for the compiler
subroutine. This is done by releasing UH

. and loading module UI which performs this

function. Upon termination of this phase
module UI passes control to phase Xa.

THE ERROR EDITOR LOGICAL PHASE

The Error Editor Phase is entered at the
end of all compilations. The first phase,
Phase XA, examines the dictionary and
determines whether there are any messages
to be printed out. If there are none, this
phase terminates the compilation. If there
are diagnostic messages to be printed out,
phase XB is loaded and the third section of
the phase directory is completed. Phase XC
is then loaded and this together with phase
XA causes further modules (XF, and blocks
XG to YY) to be loaded, which process the
error dictionary entries and print out the
appropriate messages.

Phase XA

Phase XA examines the heads of the error
chains in the first dictionary block, and
the programmer options which specify the
severity level of messages required. If
there are no diagnostic messages to be
printed, this phase prints out a completion
message and completes the compilation. If
diagnostic messages are required, the phase
loads module XB which completes the phase
directory for Compiler Control. Phase XB

Chapter 2: The Compiler Logical Phases 69

is then released and phase XC and the
message address block XF are loaded.

The error editor then scans down the
error message chains and marks each error
dictionary entry with an indication of
where the associated message is to be
found. This information is obtained from a
table in module XF.

The text of all error messages is kept
in modules XG through YY. The messages are
ordered, by severity, within these modules.
#jodule XA will have listed those modules
which contain messages required for a
particular compilation. Module XC loads
and releases these modules, one at a time,
and extracts the required messages. Having
loaded a particular module, the phase scans
down the associated error message chain in
the dictionary for error entries associated

70

i

with the module. It accesses the error
message text and scans it.

The message to be printed is built up in
a print buffer in internal compiler code.
This involves a translation from EBCDIC
mode, which is used for the message text
skeleton. The message is completed by the
insertion of a statement number, an
identifier, or a numeric value as specified
by the message dictionary entry. The
message is segmented, where necessary, to
avoid spilling over a print line,
translated to external code, and finally
printed out.

When all error message dictionary
entries have been processed, module XB
returns control to phase XA, which passes
contrxol to module AA for termination of the
compilation.

CHAPTER 3:

Rote: For descriptions of terms and
abbreviations used in the text during a
compilation which are mentioned in this
chapter, refer to Appendix D.1l1.

This chapter provides a complete guide
to the compiler logic, in the form of
flowcharts and associated tables and
routine directories, arranged in phase
order.

Flowcharts

The flowcharts are presented at three
levels of detail -- overall, logical phase,
and physical phase. The overall compiler
flowchart (Chart 00) points to the logical
phase flowcharts (Charts 01 through 11),
each of which appears at the head of the
set of physical phase flowcharts to which
it points. The physical phase flowcharts
point (by means of identifiers placed next
to the blocks) to the various routines
used. Entry points to physical phases are
labeled.

wWhere transfer is effected between
modules within a physical phase, the entry
label into the entered module is shown as
follows:

1. Where the means of transfer is a
transfer vector, an asterisk is shown
as the label on the flowchart, and a
note at the foot of the chart states
that the transfer vector table is
located at the start of the module.

2. When transfer is made from a decision
block, the block representing the entry
is labeled.

With the exception of *fall-through”
branches, all branches from decision blocks
are labeled where possible. Where the
branch is actually a branch table, this
fact is indicated on the chart, and the
label of the. branch table is given.

FLOWCHARTS, TABLES, AND ROUTINE DIRECTORIES

In some cases, additional labels have
been given, to assist in following the
program flow.

Tables and Routine Directories

For each physical phase, a table is
provided, which lists the operations
performed and identifies the routines and
subroutines involved. Where applicable, a
routine directory follows the table. This
provides an alphanumerically arranged list
of the routines and subroutines contained
in the phase, and states their function.

In some cases, a physical phase
comprises more than one module; this means
that routines contained in different
modules may be listed together in omne
routine directory. To assist in
cross-reference to the compiler listings,
the following convention has been adopted:
if a routine is contained in a module whose
label is not identical to that of the phase
under discussion, the label of the
containing module is inserted in
parentheses after the routine name in the
directory.

In the case of a phase sharing a routine
contained in another phase, the label of
the containing module is indicated in
parentheses after the routine name in the
"Subroutines Used"” column. The routine
will not then appear in the routine
directory for the phase under discussion,
but will be found in the routine directory
for the containing phase.

Chart and Table Identification

Identification of tables and physical
phase flowcharts is based on the phase
label.

Chapter 3: Flowcharts, Tables, and Routine Directories 71

e Chart 00.

LI SR LT LYY
: ENTRY
SEEISAREENE R RS

LR AR SR LR ST)
* *

L e e i T

* COMPILE-TIML #*<

:PRE-PROCESSOR :
FEBHSISRENASERENE

AEEED] SO RRE AR
*
* - RETURN *
» *
SIS TI 2 LT)

tthl..t‘tttO"c
PRINT
‘ATTRIB AND *

Overall Compiler Flowchart

A WIZ 2T P L)
. 0
e e It L

.
#eeeeee—->% COMPILER *
. .

CONTROL *
INITIALIZATION #
L T e L L]

.*
B2 .,
.* *.
S . *
YE..-. olI,gIHACRO .

- NO L% .
—-—+.I5 IT CHARUS .

.. ..
LY
* YES

LTy I Y T T
* *
* EXECUTE FORTY *
EIGHT CHARACTER#
:PRE-PROCESBOR :

FERSSEEESREIAEUS S

5

>

SEISAE2 S0 1R RN

.
Pl D DL B P 2 2 e
» .
*+ READ-IN *
* *
FEEEEREE RS EAE R

*EOEEP28 y“‘.""
‘—O—’-t-t-t-‘-‘-:
: DICTIONARY :
FEREREER BRSNS R

62" ..
o a,
YES .* A'I'RIXR .

CROSS RF. ENC! Gt L OP’K‘ o*
* TABLE *

FEEERRE SRS RS E

“u, o*
, L%
* NO

SERESKIA SNSRI RS
* *
P T Y B Y
*<
: OPTIMIZATION :
P T P T T

72

>

t‘t‘tﬂzoyooottttt
b APPSR 5
:PRE-TRANSLATOR :
FEEEEERAAREEEINESE

A’
SARRRT20 40020044
* .
PR DX g 2N Y B A T
» +
* TRANSLATOR :
SEIBERRAAESERRES

v
L S o
* *
e L DL BT SR B
* »
: AGGREGATES :
FERIEERB RS SARER NS

LER CONTKOL PEEFORMS IUITIALIZETION
ES PHASE LOAD RESOLVES SYMEOLIL
ND_DICTIONARY. REFENENCES - ANE Do, JTROLS
TERFACES EETWEEN THE CONPILER AN
ERATING SYSTEM

o ZDm|

THE COMPILE-TIME PRE-PROCESSOR ACCEPT3 INPUT CORTARINING
THE COHPILEETIHE STATLHEIVI‘S QF PL/I AJD

H!
SULTING FROM EXBCU’I‘ION OF THE’.oE STATEME.ITS.

THE PORTY EIGHT CHARACTER SET PREPROCFSSOR

ACCBPTS SOURCE PROGRAHS HRI'IT IN THE FCRTY
EIGHT CHARACTER SYNTAX OF PL/I ANL CONVLRTS THEN

INTO SIX‘I‘Y CHARACTER SYNTAX

THE REAL-IN_LOGICAL PHASE CHECKS THE SYNTAXOF
THE SOURCE PROGRAM, REMOVES SUPERFLUOUS
CHARACTERS AND LEAVES CLRTAIN CHAINS IN THE
PROCESSED TEXT TO AID LATER PHASES.

THE DICTIONARY LOGICAL PHASE CONSTRUCTS THE
DICTIONARY OF IDENTIFIERS FROM INFORMATION IN
DECLARE STATEMENTS AND FROM CONTEXT LSt
REFLACES BCD IDENTIFIERS IN THE Tex®T BY REFERENCES
TO THE DICTIONARY.

THE PRE-TRANSLATOR LOGICAL PHASE MANIPULATES THE
TEXT RRANGING I/0 STATEMENTS TING TEMPORARY
VARIABLBS WHERE PARAMETERS D MATCH THEIR
CORRESPONDING ARGUMENTS, CONVERTING ARRAY AND

U ASSIGNMENTS TO DO LOOPS, AND REMOVING
1IsuB !XPRESSI NS.

T ISLATOR LOGICAL PHASE CONVERTS THE
P;EI g%‘t“RCE A_COMPUTER-ORIENTED FORM
CALLED 'TRIPLES'. GENERIC SELECTION IS AL
CARRIED OUT.

THE AGGREGATBS LOGICAL PHA%E MAPS_ALL

CTUR! RAY N ELEMENTS
CORRECT STORAGE BOUNDARIES. PSEUDO-CODE
Ig PROW%EI‘B) TO CARRY OUT INITIALIZATION AT

Chart 00. Overall Compiler Flowchart (cont'd)

FORM

THE PSEUDO -CODE LOGICAL PHASE PERFORMS MANY
VER THE TEXT. EACH PAS&LEggVERTS SOME

SEESSP2 54084882
PSR LS00 SRS * 8+ PASSES O
P e e o T o OF THE TEXT CONTEXT TO A
: 00A2 $ecwewe==>¢ PSEUDO-CODE ¢ ASSEMBLY IANGUAGE, CALLED PSEUDO-CODE.

‘ LOGICAL PHASE ‘
t‘...‘tt“‘.tt.“

SESESEEE PSS90

SEESSB2SEEIESRES
* *

Lo B T ottt bt Bt

o Y S

ALL IDENTIPIERS
REGIONS.

NO
—— ATR OPTION

* _ALLOCATION *
e, . * LOGICAL
s, .* LA T TR T T P 2

¢ YES

/
*9C1eSH S S RRNS

s PRINT OUT *
AGGREGATE
¢ LENGTH TABLE *

THE REGISTER AL
PHYSICAL REGIS

SE——— %

4
280 ADISHE IS0 44 SEEBAD2 4 AR AN e rn
* * * 1* ECT TL

Pabebabebabatabad P R T P T P I %

REGISTER %—-————-->$FINAL ASSEMBLY *
cATION | ¢ + LOGICAL PHASE *
I I IS LTS 1] SRR SRS S S
...
E2 *,
. ..
NO .# IS LIST '#.
=% OPTION ON .*
' .*
*, .
*, %
YES

1
SSSF244% 45020508

* PRODUCE *
OBJECT LISTING

SdR SRR ERERRREE

S >

’GZ. ..
NO .* __ ANY .,
---‘.‘DIAGNOSTICS..‘
.. o
¥, %
+* YES

7
$*SH24 ¢SSR EN S

* PRINT OUT
DIAGNOSTIC
* MESSAGES *

L AA A i P22l

>

v

J2 *.
«* ANY *,
* MORE *,
*.COMPILATIONS .#%-—
*, INTH

"¢ BATCH.*
*

et

tt.txzcoototooo

RETURN TO
‘CALLING PRDGRAH:
tttt..oo.oaoott

Chapter 3: Flowcharts,

LOCAT
ANALYSIS OF OBJECT T.
TERS I

IME B ADDRESSES
TRANSE%TION TO MACHINE CODE.

10N
IME

Tables,

THE STORACE ALLOCATION LOGICAL PHASE SCANS THE
DICTIONARY AND ALLOCATES OBJECT TIME STORAGE PFOR

TEMPORARLES AND ADMINISTRATIVE
PROLOGUES ARE CONSTRUCTED.

LOGICAL PHASE PERFORMS
ADDRESSIBILITY AND ALLOCATES
N PLACE OF SYMBOLIC ONES.

FINAL ASSIM%%Y LOGICAL PHASB ESTRBLISBES

COMPLETES

LOADER TEXT IS

and Routine Directories

73

® Chart AA.

Resident Control Phase lLogic Diagram (Modules AA through aM, and JZ)

s
. L]
s Bl ¢
* -
e
A
ZINIT OPNF. l
o.o.onzottattotn .5‘5 ShIesses e PRO:EQ..A“..””“” 0".25220550 uonou
sesenireetaeeee LOAD * opgu SYSIN, %
* SYSPRINT * ‘ BUILD FIRST ‘
*CA| moemt-----»xugrngxx TION :—-—-----):g!sﬂg%b SYSUT3 : ----- --—): HALF Or PHASB ‘----—--->‘§2335§?ag1‘?g3>'
SsesesstRtsete + PHASE IEMAB 3 o RAGE FTC3 D et LIST
"es B35 8 0059094038 ..'.‘.“'.0".‘..
e esen eses
- * » * * *
¢ Bl $ea * B4 9 ¢ E2 *¢-
* L] . L]
"0 .. S48 l 11} l NO
. L ',
essssnL 80000 0sse B2 ‘s, SeesIBIsesesE N Es B Tl BS' e,
: : YES .+ B EXTENDED '0 NO : : » . mco x .. is .
. T «*IS 48 ..
¢ RELEASE IEMAF * ——, DICTIOHRFY eSmcmcwaaa=>® LOAD IEMAN FommcnmeeD ¥, SPBC B L SPECIS‘IIEI.)(.
: : *.REQUI RSD : : .. . o ‘e ..
Seesssres et IR N FreseEsLIITEIINGS l R e L0t
S, e + YES " YES
A *55¢ 684 * *
‘a3 ‘ . * By * L
* <=% B2 * * C3 $e. . .
".. * * * *» 544 LA 221
NOS### e . .
-t %, s D1 *
c1 .. c2 ., B2 HT3I NS S 0 2000 SESBSCUSIS* BB E S0 » »
) *, * L d » * s
No .¢° IP THIS A ¢. YES IS SAME ¢. YES * * * *
-=—=%, BATCH JOB -’----——-—)‘ T!PB OF DICT..,%~~ * LOAD IEMAL * * OPEN SYSPUNCH $-—ee-.
. " *.REQUIRED .* * * - .
.. .. N . - - - .
., . $, PRS2 T IIT T 1S 12 2] BESSEEFSRNES RIS
968 * e e
- L d * * ’
* B2 ¢ * By
. . . .
e L2l ..“.'
NODUMP * B4 *
SeseaDLISISSSIE . .
. » oo
» . .
-—>: LOAD IEMAC :
[» * Al i1 e e
006094 200 SIS * * * * * *
e *E2 # « By * * E5 ¢
. . . »
L] D1 £ d 880 *He (131
. .
s
OPENBW NOMP 5 LODFST
SHerIEL S sesraey SEEE2s00eRRL e :t‘ttsatttt.t'.tt :O‘toau“tt.““t “eeeriSessRseRne
.
‘OP!H SYSUT3 FOR® ¢PRINT LIST OF * LEASE IEMAM TO * *LOAD A COMPILER®*
- OBTPUT bt OPTIONS --o-----)‘INITIA!.IIA'EION ‘--—----->‘ MARK LATER | Gttt > PHASE +
: : . okl 3 : :
:‘.‘.‘.“...‘.“‘ 3550045005084 EI 22222 212222221 EEREBESEEERPE 4 CISENSPSBB A SRS
e
. .
* Fl S A [}
sone l NOTE: ;
* .. SESSEF20855 098808 IEMXX IS ANY ONE ‘U""‘S':!.....'..
5 Hls PﬂASE *. YES ‘ EXECUTE IEMAC : gﬂ’hggé I‘;ggglxitgxl‘D .‘.‘ ‘IBHXX -8 ‘
. EMBX -‘--——---—>‘TO OPE SYSUTB . IN THE FOLLOWING ‘ F1 ‘<—---‘Cll.l. l COHP!LBR'
. B " FOR INP! CHARTS ".'. PHASE
. *, ,. SEEEANEERSSRSHI S BESIIREREIS BN S
*
l NO
1° ", TessIG2enssrustae c3' s, Faaade LALLIEEIASS
.o
] EXECUTE Ime * ‘iAS Im *, YES ‘
* HAB IT I!H(.V ‘!En-o->‘ TO TIDY UP '-—n--—> . LOADED ‘-------—>‘ RELEASE IEMAC »
. . b4 * AFTER READ-IN * . * ‘
... ..‘ Sttt e Q“O‘..."...‘.‘O
NO
m e, $esesmsesntany
B *, * !xlg%gz I?Fl ."‘
s, YES s TQ ' 4 * *
ebmmemaeas>® SYNTAX CHECK ‘—-—->. ES *
*SH BRU%N' -
SATE ILATION® s
SEEEEERSEERRERINS
NO
-*, ZEND
J1 ;.‘ 0“‘00200‘;0“;.0 AS :t‘é;ggtttttto-.: :'Ettggot;c‘.’;;ot:
+*END O . EXECUT) EMT!
o ALF *., * o *, Y] # SCAN BATCH *
.. SERgT EIST ‘!EE---—->:T°!§¥R:D s':°“°:------>t Tnggz ::‘“ o -E§~-R-->tPICKU§ sgv:klr!o -->% BELIMITER ¢
g . .
“‘. o ¥ * CTOR . . * SYNPAX ERRORS ¢
*, . BEPFEES RSN SRS ., .8 ‘.““.‘“‘““'.‘ - »
*"NO .
A
<
¥,
RSB 368880458
Kl *. :.;5;525“;;%“: . * K4 * ‘0oto|(5.tatooo.s‘
o ., RE .. * .
ns nn‘mm sJes__ by yn”gzwﬁvﬁn!'--—---—” couuul‘mﬂs [el ¢ RELEASE AR $-—-—-—-— >:cu.r.§§a PROGRAMY
. .' COD! FoR BATCH . . !:B. - . FTIY I I
Ce, .0 Seassssneneserens . .® LTI T PR T TR
* NO
atee '
. .
* BG »
s

74

eChart AT.

Phase AT Overall Logic Diagram

INIT
A2 s, A3 Y
SEED AT SRS SRS .. 1 it E .
'!NTRY FROM RDCD* 18 HIS NO ASES *, NO
IN AB ‘—‘———K-->‘ TBACEACONTROL ‘~------->‘.LOAR!DIB!!ORE.
O.tt‘t“..‘..“ . K2 .vogvgp,
., .
* YES ‘e YES
CNTRL
t.tt‘szttttOOt.tQ S4B Isssessses 0“‘08“0!.‘.0.0“
TRUCT * RY OUT ANY = * INS sessp5esevensns
‘ CONTROL TABLE ‘ & REP OR VERIFY * ¢ TRACE HARKEK ' SRETURN TO ROCD ¢
-==$ENTRY . * TS S >eIF RE%UESTED IN®ccccccaa > IN AB -
* xm - EM * * .
* * * . 9896898808090
CHESEESAERBRER NS ETIX YT TR RL LY 2 I T AR P TR Py Y
l NO
LOAD . PATCLOAD .
c2 o SERSECIsssR NS c4 .
"0‘01“‘0‘.¢‘0 OWAS RBF AND VERIFY ' ¢ IS A o,
¢ ENTRY FROM VERIFY . !as * TR ACE .,
* PHASE LOADING ‘--------)‘.REQUESTED e >' MESSAGES IF * -------- > N HANTBD IN (#eceea
* ROUTINE IN AA 15 ' NECESSARY * *. ot
ooat..octtaotot * PHASE.* * * ., PHASB .
. AEEEERRESEBERRE SN
et YES
TRACLOAD
S SDYSS eSS IS
* Ld *$28D5s0 880088
& INSERT THE ¢ . RETURN TO *
* START OR ettt T3 >*LOADING ROUTINE®
0 TRACE MARKERS * . .
. L T P P
0““.““‘.‘00.‘
TRACRELS
“t‘tzZ“t*a“ttt
“‘tzl.t..ttt“ t.tt23‘#t‘otttt
ENTRY rgon ' UPDATE TRACE ‘ RETURN TO _ *
tpgnsz DELETING ‘---——---)tCONTROL TABLES ‘-—------)‘DELETE ROUTINE :
tt..‘t‘.o.‘..tt ttt‘##.tt‘tt‘t.
ttt“#ttt‘t..t‘..
TRACEIT -, ok,
N F3 -, ttt.‘putt“tt'.“

SESRFL 00 S84 .*1IS THIS®*. ., ' MOVE END SEEAFSERRERERES
¢ ENTRY FROM # -*A START OR *. YES S IT A *. NO T ACE HARK!RS 0 SRETURN CONTROL ¢
* INTERRUPT $oceceem>%, END TRACE .%#---———-=>#%, START TRACE .#eocee—- -->' AND INSERT $—wceeee->%VIA SUPERVISOR #
¢ BANDLER IN AR * ¢, MARKER .¥ RK ST TRACE ¢ . PHAS .

SEFEEERREERES P ., .* . . MARKERS sesdtssesitsesse

.« ot ., .* LRI r i T T Y PY
* NO * YES
o, ..
G3 -, Gl », 0.0QOGS‘OO’OOO‘O.
PR Ty I T T . ., o* ... ORBSTORB OPCODE. *
& RETURN TO . .¢ IS THE _ *. .*IS TRACE TO*. NO *OVERWRITE NEXT *
* INTERRUPT _* s, STHTFLG PLAG e¥mccacaa>¥, START YET . $cc-cce-- >* OPCODE WITH *
* HANDLER IN AA * SET .. .* STARI TRACE *
[T P T e L] ‘e, .. ., o* - MARKER *
. ., . . ot SESBEBERESERE 0
& YES , * YES
522 HISERAER SRR O‘tttﬂutlttttottt sessrlSeeenteseee
#RBSTORE OPCODE. * *PRINT HEADINSS #
OVERWIRTE * GE RETORN * $SET ON STMTFLG *
OPREVIOUS oPCODE‘ $ADDRESS IN PSW * FLAG *
* WITH START *IN PIE TO THAT 0 * *
* TRACE MARKER ' & OF TRACE RTN . *
L et err e 1 2 30000to‘n¢ttoo“‘ eSS EEEENERESS
ttt‘#a3tt.‘tt“tt 4
sEeBTURESEREEES e J5es R eE0N
*SET OPF STMTFLG‘ * GO VIA * ‘RBTURN CDNTROL ‘
‘ SUPERVISOR T0 ' -->‘ IA SUPBRV
O * E ROUTINE ¢ TO PHASE '
* ottatototoott.o t.‘ot.t#t‘.ttoo
tt“‘tttit‘t#‘tt‘
TRACE JBPT l
tttooxzttt‘ntcott ARSI LS RAS SRS SEEKUeISREnIs O seaseKSedvnss et

S064K1 400240448 *PUT INSTRUC ION® *EXECUTE INSTRN.* * M

!NTR! TO_TRACE * *AND ITS ADDRESS* UT CC, CEBANGED#* * PRINT TRACE ¢ GET NEXT .

ROUTINE ‘——-—---—>* INTO TRACE S ~>¢ REGISTERS AND #-cvoeeee > LINE ———e-=<=>%* INSTRUCTION ¢

% PFRINT LINE * STORAGE INTO * .

tootoattaooo.to . * LIN . .
LTI Y II PE R DT AESESRARBRINESEOR SERSFLSBBERNGENS T IT TSI ST 1

EXIT FROM THE ABOVE LOOP WILL OCCUR
INTERRUPT OCCURS ON ERCOUNTERING AN E
CODE BEING TRACED.

EN A
D TR

Chapter 3: Flowcharts, Tables and Routine Directories

PRIVILEGED OPERATION
ACE MARKER IN THE

74.1

Table AA. Module AA Compiler Control Resident Control Phase

L
|Main Processing
Statement or Operation Type | Routine

oy

Routine Called

|Initializes the compiler ZINIT
|

| Parameters passed: General register 1 points at
|the passed parameters

|Entry to the operating system: GETMAIN(R),
{TIME, LINK, SPIE
[N

LOADW, ABORT

v

|Deletes a list of loaded phases RELESE
| Parameters passed: PAR1 -- address of list of
|phases to be deleted

|Entry to the operating system: DELETE

L

ZUERR, ABORT

e e e e e e e e e e e o

4
+
|
|
|
|
|
|
4
bl
|
|
|
|
|
4
T
|

[

|Deletes a list of loaded phases and passes
|control to either the next requested phase or
| the next named phase

RLSCTL

|

|Parameters passed: PARl1 -- address of list of
|phases to be deleted; PAR2 -- address of name
j{of phase to which control is to be given, or

| zero

| Parameters returned: PAR1 -- load point of new
| phase

|Entry to the operating system: DELETE,

| LOAD (EPLOC) , LOAD(DE), LINK

L

|Module AD if inter-
|phase dumping is req-
juired; Module AE if it
|is end of Read-In
|{Phase; ZUERR, ABORT

1)
|Loads the required phase and returns control to|LOADX
|the caller. The phase may be loaded again

|

| Parameters passed: PAR1 -- address of name of
|phase to be loaded

|Parameters returned: PARL -- load point of

| phase

|Entry to the operating system: LOAD(DE)

i

ZUERR, ABORT

} -
|Marks phases as 'wanted' and 'not wanted' REQEST

|

| Parameters passed: PAR1 -- address of

|1list of phase names to be marked 'wanted;’
|PAR2 -- address of list of phase names to be
|marked 'not wanted'

|Entry to the operating system: None
L

— s e —— — — — —— S i o, S S et st s

g
&

ABORT

} :
|Puts a record out to SYSLIN ZULF

Parameters passed: PAR1 -- address of output
record

Entry to the operating system: PUT LOCATE (QSAM)

LFERRX

'
r

Puts a record out to SYSPUNCH 2UsP

Parameters passed: PAR1 -- address of output
|record

|Entry to the operating system: PUT LOCATE (QSAM)
L

|
|
|
|
|
|
|
|
]
|
|
+
|
|
|
|
|
I
|
I
}
|
|
|
|
|
|
|
L
v
|
|
|
|
|
+
|
]
|
|

|
i

SPERRX

oo o e s e s s s e e et 2 el . o S am—

b——.———-.—lb—————-dl——_—-————-—Jb_———_—_——db_—.—————————.——db_—————dh—-————— — et o e =

Chapter 3: Flowcharts, Tables, and

Routine Directories

75

Table AA. Module AA Compiler Control Resident Control Phase (cont'd)

r T -
| . |Main Processingj]
! Statement or Operation Type | Routine |Routine Called |
4 1 1
T T
|Deletes currently loaded phases and passes | ZABORT, ABORT TModule AD if dump op- }
:control to the Error Editor | |tion specified; RLSCTL |
| | |
|Entry to the operating system: LOAD(EPLOC) if | | |
|dumwp option specified | [
}_ 2 _% 1 JI
L)
|Picks up completion code and returns control to|ZEND | ZUPL }
|{the program that called compiler { i |
Entry to the operating system: TIME, FREEMAIN,		
DELETE		
b + + :		
jHandles all program checks	PIH	ZUERR
Parameters passed: ARINT holds address of		
routine wanting to handle interrupt. ARMASK		[
holds mask indicating which interrupts it is		
{desired to handle i i		
Entry to the operating system: None		
L 1 i 3		
Table ARl1. Module AA Routine/Subroutine Directory		
T i 1		
Routine/Subroutine	Function l	
L 1 -		
r T i]		
ABORT	Deletes currently loaded phases, passes control to error editor.	
]		
BLRERR	Enters message "REFERENCED BLOCK NOT IN USE", then terminates [
,	compilation.	
CONSLD	Takes dictionary reference and p01nts at relevant slot in dlctxonaryl	
jcontrol block area (DSLOTS).		
CONSLT	Takes text reference and points at relevant slot in text block	
	control area (TSLOTS).	
	.	
DFREE	Finds dictionary block which can be written on disk to make room forj	
i	a new block in storage.	
!		
LFERRX	Marks error on SYSLIN data set. N	
	-	
LOADX	Loads required phase and returns control to caller. The phase may	
\	be loaded again.	
	i	
LOADW	Loads required phase and returns control to caller.	
FIE	Handles all program checks.	
	I	
PLERRX	Prints record on SYSPRINT data set. Pagination (paging action) is	
.	performed automatically.	
{		
RDERRX	Marks error on SYSIN data set.	
{READX	Reads a block from disk. {	
RELESE -	Releases all loaded phases. =	
REQEST {Marks phases as 'wanted' or 'not wanted.'		
,		
RLSCTL	Releases all loaded phases and passes control to next required or	
	named phase. }	
L L

Takle ARl. Module AA Routine/Subroutine Directory (cont'd)

'inoutine/Subroutinej Function]
4

iSPERRx iMarks error on SYSPUNCH data set.]
ZABORT ;Deletes currently loaded phases and passes control to error editor. :

| ZEND |Picks up the completion code for the compilation and returns control}
|to ZINT to continue the batch, or to the operating system at the end|

|of a single or batch compilation. |

ZINIT ‘Initializes the compiler. :
=ZULF_ }Puts record out to SYSLIN data set. {
ZUsP lPuts record on to SYSPUNCH data set. J

Chapter 3: Flowcharts, Tables, and Routine Directories 77

Table AB. Module AB Compiler Control Initialization

r T
| |Main Processing
| Statement or Operation Type | Routine Routine Called
(8 . 4
1] 1
|Issues a BULDL macro instruction on all phases |PROPEN None
|in compiler, and constructs a compacted phase |
|dictionary |
i |
|Entry to tihe operating system: BLDL |
N 4 v
1] 1
|Prints initial heading and performs scan of | OPTPROC None
jcption list. Default options are taken where |
|necessary |
|
|Parameters passed: General register 1 points to]
|option list passed at invocation time |
|EnLry to the operating system: TIME, |
| PUT LOCATE (QSAM) |
b 4
|

r : "

|Makes the initial space allocation for text and|OPENR
{dictionary blocks. Sets up communication

iregion

|
|Entry to the operating system: GETMAIN(R)

None

|Opens spill file if text and dictionary blocks
|are 1K

OPENSP

|Entry to the operating system: OPEN
i

None

€
|Obtains the guaranteed 4K of scratch storage GETSCR

|Entry to the operating system: GETMAIN(R)
L

None

1 8 .

| Loads intermediate file writer (Module AC).
|=ets buffer sizes for SYSUT3 and opens the data
|set

NODUMP

|Entry to the operating system: LOAD(EPLOC),
| OPEN
L

ZUPL (AR)

v
|Prints out list of options for this compilation|NDMP

|)
|Enters error messages generated when SYSIN,
| SYSPRINT opened

PJ13

|Entry to the operating system: None
L

ZUERR (AR)

]
|Reads first card and stores. Uses as heading
|if required

RDCD

ZURD, ZUERR, ZUPL
(all in A3d)

eturn to pre-initializer in IEMAA ABOUT

MCD

ntry to the operating system: OPEN

on
ZUERR

e o . o et e o

R
Opens SYSPUNCH if MACDCK specified
E
L

|

|

-

|

4

T

|

|

|

|

1

Bl

i

|

|

4

T

|

|

|

|

|

|

4

T

|

|

|Entry to the operating system: None |

L L

p

|

|

|

|

L

Bl

|

|

L

1

|

|

1

}

|

|

|

+

oads dictionary handling control routines | LODCNTL

| (phase IEMAN or IEMAL depending on normal \

|dictionary or extended dictionary being |

{specified in the options) |
{
|
L

{Entry to the operating system: LOAD ,
L

None

h——_———-b———db——d-——-ﬂ-—.———d-_——ah———_——dh————J‘h————dh———'——dh——_———_———-‘h—— — v — it e ol

T
|
|
iR
v
|
|
|
|
|
4
T
|
I
|
|
|
|
|
|
3
L)
I
|
|
|
|
L
\
|
|
|
|
L
T
|
|
|
4
T
|
|
|
|
|
]
1
T
| zuP
|
|
1
1)
|
|
|
|
'y
]
|
|
4
1
|
|N
4
¥
|
|
|
1
}
I
|
|
|
|
i
1

78

Table ABl. Module AB Routine/Subroutine Directory

L 8 T
{RoutinessSubroutine| Function]
L 3 1
T T
|{ABOUT | Returns control to pre-initializer in Module AA.]
| |
| GETSCR |Obtains scratch storage. |
|
| NDMP | Prints lists of options for current compilation. |
| |
| NODUMP |Loads intermediate file writer module AC. Sets buffer sizes for |
| | SYSUT3 and opens data set. |
| I
OPENR	Makes initial space allocation for text and dictionary blocks. Sets
	up communications region.
OPENSP	Opens spill file.
CPTPROC	Prints initial heading and performs scan of option list.
PJ13	Enters diagnostic messages generated when SYSIN and SYSPRINT data
	sets are opened. !
	:
PROPEN	Issues BLDL macro instruction and constructs phase directory.
	I
RDCD	Reads first card. i
L 4 J	
Table AC. Module AC Compiler Control Intermediate File Control	
[4 T . . Ll]	
.	Main Processing]
Statement or Operation Type	Routine
[KR 1l d	
v . v T)	
Writes a record onto SYSUT3	IEMAC
I	
Parameters passed: PAR1 -- address of output	
xecord; PAR2 -- length of record	I i
Entry to the operating system: PUT LOCATE (QSAM)	
L 4 4 4	
r T T	
jLink to file switching routine (Module AG)	ENDED
Entry to the operating system: LINK	
L - 4 [} J	
Table AD. Module AD Compiler Control Interphase Dumping	
r T T 1	
	Main Processing
Statement or Operation Type	Routine] Routine Used
L i i]	
¥ v T b	
Debugging aids. This routine contains a dump-	IEMAD
ing prograxm which is invoked by use of the DUMP	
joption -	puMP
L y L L J	
Table AD1. Module AD Routine/Subroutine Directory	
r ” T 1	
{Routine/Subroutine	Function
L 4 4	
L) 1) 1	
DUMP	Converts contents of specified area of main storage to hexadecimal,
i lprints the result. |
L 1 J

Chapter 3: Flowcharts, Tables, and Routine Directories 79

Table AE. Module AE Compiler Control Clean-Up Phase

T

o —

|Main Processing
Statement or Operation Type | Routine

Routine Called

{Input and intermediate file control. Current
|input file is closed and IEMAC is deleted if
| present

IEMAC
(

Entry to the operating system: CLOSE(current
input file), DELETE

L

Module AQC)

g
=}
o

|
Entry to the operating system: OPEN

ZUERR (AR)

Expands the number of blocks in storage to four NbTDCK
| text and four dictionary, if running with th
|44k size option '

|
|Entry to the operating system: GETMAIN
L

$
|
|
|
|
|
!
1)
|Opens SYSLIN and SYSPUNCH data sets if requiredTNOTuS
|
|
+
|
|
|
|
|
L

e e e s . s e S s e s s = — — c— n o — o

2
o
<]
o

e e e e s s it s s i s s e — — . D e @b

Table AE1l. Module AE Routine/Subroutine Directory

Function

r-— T
| foutine/Subroutine|
L 1

€ T
| NOTLS | Opens SYSLIN and SYSPUNCH data sets as required.

| NOTDCK | Expands number of blocks in storage.
L i

b e ot e s e o

Table AF. Module AF Compiler Control Sysgen Options

Function

- ——

Subroutines

|This module contains no executable instructions. It is
|generated at SYSGEN time and passes the default options
jand values to the compiler

[}

e e e o

None

b e e e ey e

Table AG. Module AG Compiler Control Intermediate File Switching

Function

Subroutines,

| Switches SYSUT3 from an output file to an input file

e o

|Entries to the operating system: OPEN and CLOSE
L

Ll
|
1
| None
|
|
1

e o s s b e o)

Table AK. Module AK Compiler Control Closing Phase

Function

- -

Subroutines

|[Closes files, frees scratch core and deletes unwanted
| phases -

|1f batch compiling, scans batch delimiter card for correct
{syntax and updates completion code.

|Entries to the operating system: TIME, CLOSE, FREEPOOL,
| DELETE, and FREEMAIN
[

o e o o s s . it et s, e

ZURC(RAA)

e o . — e o —— — i =]

80

Table AL/AN. Modules AL/AN Extended Dictionary/Dictionary Phases

T
|Main Processing
Statement or Operation Type | Routine

Routine Called

— s s

Releases scratch storage allocated by 2UGC ZURC ZUERR, ABORT
Parameters passed: PAR1 -- a count of the
number of entries to ZUGC to be released
Entry to the operating system: FREEMAIN if
storage being replaced is outside the guaran-
teed 4K block

Inserts diagnostic message in the dictionary ZUERR

T
|
|
t
|
|
|
|
|
[
|
%
| ZDRFAB, ZDICRF, ZDICAB
|

$
{
|
|
|
|
|
|
$
I
Parameters passed: PARS5 -- numeric parameter |
(if any); PAR6 -- message number; PAR7 -~ add-|
|
|
|
t
|
|
|
|
|
|
|
|
+
l

ress of text (if any) or dictionary reference
(if any); PAR8 -- length of text (if any)
Entry to the operating system: None

— . o Gt T S A e — . o Sut comom) G wmn.

Takes a dictionary reference and points at the
relevant slot in the dictionary block control
area (DSLOTS)

CONSLD None

Parameters passed: PAR1 -- dictionary
reference

Parameters returned: Address of slot in GRA
Entry to the operating system: None

e —— —— —————

|Takes a text reference and points at the
| relevant slot in the text block control area
| (TSLOTS)

CONSLT

Parameters passed: PAR1 -- text reference
Parameters returned: Address of slot in GRA
Entry to the operating system: None

— g — - o—

Allocates space for a text block TRYMRT DFREE, TFREE, 2UPL,
ABORT :
Parameters passed: Relative track address of
the block (if block is on disk) in RDTTR.
Ootherwise RDTTR is zero

Parameters returned: Address of block in GRO
Entry to the operating system: GETMAIN(VC) if
storage available. OPEN if no space left

for text blocks

|
|
|
|
|
|
+
|
|
I
|
|
I
|
|
I
%
|

Allocates space for a dictionary block TRYMRD DFREE, TFREE, ZUPL,
Parameters passed: Relative track address of
block (if block is on disk) in RDTTR. Other-
wise RDTTR is zero |
Parameters returned: Address of block in GRO |
Entry to the operating system: GETMAIN(VC) if |
storage available. Open if no space left for
dictionary blocks

1

e — s i — —— st —— — — ———— — — —

S
{Investigates the dictionary block control used |DFREE
| (DSLOTS), to find which block can be written on|
|to disk to make space for a different block in |
|storage

CONSLD, ZUERR, ABORT,
WDREAD, WRTRD, WDWRIT

: Parameters passed: Relative track address of
| block required in storage in RDTTR. RDTTR=0
| if a block is being created

| Parameters returned: Address of block in

|

|

L

storace in BLOKAD
Entry to the operating system: None

b e o e e S e S s e ad ———— v— —r— — o S o e Sl . o = i — i i e Sl c— - — — — ——— o D c— — — — —— i) - e o, s, e, . s) s i s o e, s e D e e =

o oo o . . e e s, e i e s S s S S oy

S ——

Chapter 3: Flowcharts, Tables, and Routine Directories 81

Table AL/AN. Modules AL/AN Extended Dictionary/Dictionary Phases (cont'd)

’

Statement or Operation Type

- e o oy

T T
|Main Processing| Routine Called

Routine

{Investigates the text block control area

| (TSLOTS), to find which block can be written
|onto disk to make space for a different block
|in storage

Parameters passed: Relative track address
block required in storage in RDTTR. RDTTR=0
if a block is being created

Parameters returned: TFREE

Entry to the operating system: None

)
3
=1
(<]

CONSLD, ZUERR, ABORT,
WDREAD, WRTRD, WDWRIT

Create space in storage by writing on disk

Parameters passed: RDTTR=0, BLOKAD contains
address of block that can be written out
Parameters returned: BLOKAD contains address
of block in stoxage that is now available
Entry to the operating system: WRITE (BSAM),
CHECK, NONE

1

s s i c— ——— —— . — — —— ——— —— — — e w—
3
-
=]

WRITEX

|
|
|
|
|
|
}
|
I
|
|
!
|
|
|
k
!
|

into its place in storage

Parameters passed: RDTTR contains relative
track address of plock to be read. BLOKAD
contains address of block to be written
Parameters returned: NOTTR contains relative
track address of block in storage

CHECK, NOTE

Writes a block onto disk and reads a second one|WRTRD

READX, WRITEX, ZUERR,
ABORT

|
|
|
|
%
| Entxry to the operating system: WRITE(BSAM),
i
3
|Reads a block from disk into space already
javailable in storage

Parameters passed: RDTTR holds relative track
address of block to be read. BLOKAD holds
address cf space in storage

Parameters returned: BLOKAD holds address of
block in storacge

Entry to the operating system: None

i o o e o e st e e . i A e s . e i, A . s e e e e i, i o o e S s . o

READX

Writes a block onto disk

Parameters passed: TEMP4 holds relative track
address of space on disk
Entry to the operating system: XDAD(WI), WAIT

2UPL, ZEND

Parameters passed: TEMPU holds relative track
address of block on disk

Parametexrs returned: PAR1 -- address of input

area
Parameters returned: PARZ -- record length

Entry to the operating system: GET MOVE (QSAM)

ZUPL, ZEND

Reads a record from SYSIN

Parameters passed: PAR1 -- address of input
area
Parameters returned: PAR2 -- record length

Entry to the operating system: GET MOVE (QSAM)

|
|
|
|
|
]
|
L
3
|
|
|
|
|
5
|Reads a block from disk
|
|
|
|
]
|
|
}
|
|
|
|
|
|
L

None

[e o . ot e e . ot e it e e o s s s S e S S e e S S e . e e .

e e ot e et s St et . S S . v A D . - ——— a—— D — c——— —— —— o c—— — it — e G . —— —— — s, i wlit et T— s i, c— et s e ws s, et cma . c— . o —a— stk e e o

82

Table AL/AN. Modules AL/AN Extended Dictionarys/Dictionary Phases (cont'd)

Statement or Operation Type

T
|Main Processing
Routine

Routine Called

Puts a record out to SYSPRINT. Pagination
(paging action) is performed automatically

Parameter: passed: PAR1 -- address of output
buffer. PAR3 -- address of output buffer
containing page headina (if any)

Entry to the operating system: PUT LOCATE
(CEAN)

. ———— o —— — . T S o S

PLERRX

| Finds a new text block. Optionally chains the
|new block to the current block and changes the
| status of the current block

Parameters passed: PAR1 -- optionally, a
reference to the current block. PAR2 -~ a
status and chain indicator

Paraneters returned: PAR1 -~ reference to new
block; PAR2 -- absolute address of the
beginning of block

Entry to the operating system: None

+
UTXTC

CONSLT, TRYMRT, ZUERR,
ABORT, BLKERR

Flnds the next text block in the chain.
Optionally, changes the status of the current
block

Parameters passed: PAR1 -- a reference to tne
current klock; PAR2 -- a status indicator
Parameters returned: PAR1 -- reference of the
next block in the chain. PAR2 -- absolute
address of next block in chain

Entry to the operating system: None

e i e i e e e e s e o o . S . . S e s, . S e e, e

CONSLT, TRYMRT, BLKERR

—qpa—_——————.——q——_——-——_—

Changes the status of the referenced text block

Parameters passed: PAR1 -- a reference to the
block. PAR2 + 3 -- required 'status' byte
Fntry to the operating system: None

|
|
4
4
T

|
|
|
|
|
|2U
|
|
|
|
|
|
|
|
|
|
'
| ZCHAIN
|
|
|
|
|
|
|
|
|
1
| ZALTER
|
|
|
|
+

e o e e . e e e e e

CONSLT, BLKERR

converts a text reference to an absolute
address and optionally, does not chanae status
of the block

——— — ———— ——

Parameters passed: PAR1 -- reference to be
converted and option iniicator bit
Parameters returned: PAR1 -- the absolute
address

Entry to the operating system: None

CONSLT, TRYMRT, BLKERR

Converts an absolute address to a text
reference

the block containing the absolute address;
PAR2 -- the address to be converted

Parameters returned: PBR1 -- the required text
reference

Entry to the operating system: None

Parametaors passed: PAR1 -- a text reference to

CONSLT, BLKERR, ZUERR,
ABORT

Bnters messace 'REFERENCED BLOCK NOT IN USE®
into dictionary and then terminates compilation
Fntry to the operating system: lione

[s o G " —— ——— — —. —] “— . omon o A SO

|
I
|
|
|
|
I
I
|
%
|
I
]
|
|
|
|
!
|
1
|
|
|
8

ZUERR, ABORT

o e e i s o o e s e et v s e . . S S e s . O s S e o

b e e it s s e s s st o e s e i e i et e S et e s, et sl s . . s, e, el s o S e — s i i e s i e . o r— — —— o — — v > i) — e e e e s e s el . W el

Chapter 3: Flowcharts, Tables, and’

Routine Directories

83

Table AL/AN. Modules AL/AN Extended Dictionary/Dictionary Phases (cont'd)

Routine

- ——

Statement or Operation Type

L] v
|Main Processing| Routine Calles

| Supplies storage space for scratch purposes.

|Allocation is made in 512 bytes at a time

| Parameters passed: PAR1 -- a count of the
‘number of 512 byte blocks required

allocated storage
Entry to the operating system: None

TRYMRT, ZUERR, ABORT

Converts an absolute address to a dictionary
reference -]
Parameters Eassed' PAR1 -- any reference to
the block containing the absolute address;
PAR2 -- the absolute address to be converted
Parameters returned: PAR1 -- the requlred

|
4
+
|
|
|
Parameters_returned: PAR1 -~ address of the |
|
|
4
$
|
|

Entry to the operating system: None

CONSLD, ZUERR, ABORT,
BLKERR

N

Converts a dlctlonary reference to an absolute |ZDRFAB
address
Parameters passed: PAR1 -—-the dictionary
reference ’ .
Parameters returned: PAR1 -- the absolute
address)]
Entry to the operating system: None

CONSLD, TRYMRD, BLKERR

|
|
|
|
t
I
|
|
|
|
|
| dictionary reference
|
i
Ll
|
|
|
|
|
|
|
F
|

Makes an unaligned dictionary entry and ZNALAB

returns an absolute address

Parameters passed: PAR1 - address of entry to
be made; PAR2 -- length of entry
Parameters returned: PAR1 -- address of entry

block
Entry to the operating system: None

ZDRFAB, ZDABRF, TRYMRD,
ZUPL, ZUERR, ABORT,
CONSLD

|
|
|
|
{ in dictionary. PARU4 -- some reference to the
|
|
t
|

Makes an aligned dictionary entry and returns ZDICAB

an absolute address

Parameters passed: PAR1 -- address of entry to
be made; PAR2 -- length of entry
Parametexrs returned: PAR1l -- address of entry
in dictionary. PAR4 -- some reference to the
block

Entry to the operating system: None

ZDRFAB, ZDABRF, TRYMRD,
2UPL, ZUERR, ABORT,

|
3
1]
|
|
|
!
]
|
|
5N
v
|
|
|
|
|
|
|
|
]
}
|
|
|
|
|
|
|
4
)
|
|
]
|
|
!
|
|
|
4
v
|
I
| CONSLD
I .

|
!
I
|
|
1
v

Makes an unaligned dictionary entry and ZNALRF

returns dictionary reference

Parameters passed: PAR1 -- address of entry to
be made; PAR2 -- length of entry

entry in dictionary. PARY4 -- absolute address
of the entry ;
Entry to the operating system: None

| ZDRFAB, ZDABRF, TRYMRD,
| ZUPL, ZUERR, ABORT,
| CONSLD

e e e o S e . e e e e S S S i S S S St i, A il G, i P S S S St s e S e e . s

Makes an aligned dictionary entry and returns a|ZDICRF
dictionary reference

Parameters passed: PAR1 ~- address of entry to
be rade; PAR2 -- length of entry

Parameters returned: PAR1 -- reference of
entry in dictionary. PAR4 -- absolute address
of the entry

Entry to the operating sxstem- None

|
|
|
|
|
|
|
|
t
|
|
|
}
| Parameters returned: PAR1 -- reference of
{
|
{
(%
L}
|
|
|
|
|
|
|
|
|
i

P s e cm c— ——— a— c— a——

!
|
|
|
|
I
}
| ZDRFAB, ZDABRF, TRYMRD,
| ZUPL, ZUERR, ABORT,
|
!
|
|
I
|
|
L

1
|
|
4
I
|
|
|
|
I
|
i
|
|
|
|
|
I
I
|
i
|
|
|
|
|
I
|
i
|
|
|
|
|
|
|
|
|
4
|
!
I
|
|
|
|
|
|
4
1
|
|
|
|
|
|
|
|
I
J
1
|
|
CONSLD]
I
|
|
|
|
|
J

84

Table AL1/AN1. Modules AL/AN Routine/Subroutine Directory

L2 T
{RoutinesSubroutine| Function i
1 4 1
v ¥
| TFREE {Finds text block which can be written on disk i
	to make space for a new block in storage.
TRYMRD	Allocates space for a dictionary block.
TRYMRT	Allocates space for a text block.
WDREAD	Reads a block from disk into storage.
WDWRIT	Creates space in storage by writing a block on i
disk.	
WRITEX	Writes a block on disk.
WRTONL	Writes on last block on disk.
WRTRD	Writes a block onto disk, reads a second one
	into its place in storage.
ZALTER	Changes status of referenced text block.
ZCHAIN	Finds next text block in chain.
ZDABRF	Converts an absolute address to a dictionary
	reference.
ZDRFAB	Converts a dictionary reference to an absolute
	address.
ZDICAB {Makes an aligned dictionary entry and returns	
absolute address.	
ZDICRF	Makes an aligned dictionary entry and returns
‘dictionary reference.	
ZNALRF	Makes unaligned dictionary entry and returns
dictionary reference.	
ZNALAB	Makes unaligned dictionary entry and returns
absolute address.	
ZTXTAB |Converts text reference to an absolute address. |
: |
ZTXTRF |Converts absolute address to a text reference. |
I
ZUERR | Inserts diagnostic message in dictionary. =
ZURD |Reads a record from SYSIN.
2UGC Supplies storage space for scratch purposes.
ZURC Releases scratch storage.
ZUPL Puts record out to SYSPRINT data set.
ZUTXTC Obtains a new text block.
]

Chapter 3: Flowcharts, Tables and Routine Directories

85

Table AM. Module AM Compiler Control Phase Marking

v T
. |Main Processing| }
Function 1 Routine | Routines Used |
L
L
Marks all non-optional phases and |IEMAM {REQEST, RLSCTL (both in AA) 1
all phases influenced by compiler | | |
‘|invocation-time options | | |
L ')
eTable AT. Module AT Compiler Debugging Module

L

| Statement or Operation Type

v
|Main Processing

Routine

Routines Used

constructs control tables
Entry to the operating system: None
N

!
Reads in control cards and |
[

|

INIT

CNTRL,NXTFLD , TROFFSET, ZUPL(AA) ,
| ZURD (AR)

B Ll
Entered each time a phase is loaded|
so that replacing (REP) or
|verifying may be done. Inserts
|start or end trace/flow markers
| (privileged operations)

|Entry to the operating system: None
H :

LOAD

ot

PATCLOAD, TRACLOAD ,ATCALL, HEXOUT,
JBPT

v
|Entered each time a phase is
deleted and updates control tables

Entry to the operating system: None

TRACRELS

e e e e . s o e e

Entered from Interrupt Handler in
|module AA after privileged
joperation encountered (0C2
interrupt) signifying trace/flow

before starting or after ending
trace/flow

Entry to the operating system: None
I

marker. Carries out initialization

TRACEIT

ATCALL, JBPT

|Analyzes each instruction to be
|traced. Executes the instruction
and prints a line containing: the
instruction, its address, the
resulting condition code, and the
subsequent contents of registers
and storage used by the
instruction.

Entry to the operating system: PUT
|MODE (Qosam)

P s s s e o s i o e e S . o D s S, S —

TRACE

CALL, FULLSUB, FULL2, JBPT,FULLAD

o e e e i . . s 4 s e e e S . s . s s e o e s e e S e

b e . e e e s s e e s i S o e s et et s e i e s e A s e o e e e D e s e D e e

86

eTable ATl. Module AT Routine/Subroutine Directory

¥ T

| Routine/subroutine | Function

8 'y

v]

| ATCALL |Calls the print routine and then clears the print line.

| |

| CALL |Similar function to ATCALL but contained within TRACE routine.
|

| CNTRL |Carries out replacing (REP) and verifying in phases loaded before
{AT. Inserts start trace markers in phases loaded before AT.

R

|

1

i

|

|

|

|

|

| |
FULLAD	Determines address of storage to be altered by instruction currently
	being traced.
FULLSUB	Translates hexadecimal to a character representation of hexadecimal.
{Used in TRACE routine.	
FULL2	Analyzes instructions to be traced and moves information to the
	print line.
HEXOUT	Similar function to FULLSUB. Used in routine LOAD.
INIT	Builds control fields using information from control cards in the
	input. (
JBPT |Prints a line of trace information. |

| , |

LOAD |Controls subroutines PATCLOAD and TRACLOAD. |

|

NXTFLD |Skips blank characters on input control cards. |

| |

PATCLOAD |{Carries out replacing (REP), if requested, after each phase is |

i | loaded. |
| |

| TRACE |Traces each instruction and prints trace information. |
| |

TRACEIT | Describes whether TRACE/FLOW must start or end.]

| | |
| TRACLOAD |Inserts start trace markers in phases after they have been loaded. |
| |

| TRACRELS |Updates control tables when a phase is deleted. |
| : |

| TROFFSET |Translates character representation of hexadecimal to hexadecimal. |
L i J

Chapter 3: Flowcharts, Tables and Routine Directories 86.1

Chart 01. Compile-time Processor Logical Phase Flowchart

OISR 20088080004

sessn10s000 0 ORESIDENT ASe
. FNTRY . P T T T P e g
¢ FRCM FHASE AA $=ceee-o_>* CONTROLS .
. * 1CADING OF *

LT TTTY PYY P Y SEHASES BG®

AV, EC,
sosssossseieilone

[aand VLRI TY T TS

SINITIALIZN AVe
P e e e T Y

¢ INITIALIZES ¢
SCCMM. REGION § ¢
ECRATCH STORAGE

LR L Y Y T

S0 C608208000 ¢

SINITIAL SCAN B
Lo bt e B b

-=>¢ INITIA N
:AND TRA%SE%ION:

S0BeIsSNGNIEENEI S

. ssevsD20s0es00tse
SFINAL SCAN _ BG*
Smbebotobrtatabad
SFINAL SCAN AND *
¢ REPLACEMENT *
. HAS. *
LI I ET T YT Y 2

2 e

1eS .+’ INCLUDED ‘o..

7 eENCOUNTEREDS
.. et

SARIIP200004300 00
*DIAGNOSTIC = BMs
DIt S g S O T e
* DIAGNOST: *
‘HHSAGS CO‘S’ROLO
b PHASE .
40060008 80008808

(<

SHE99G2002040008 0
. .

* PRINTS .
® DIAGNOSTICS *
: IN DICTIONARY :

CEISE9680308000 0

ooootazox.ooootco
SCLEAN~-UP BwWe
L T B Y
¢ RE-INITIALIZE *
¢ COMN. REGION *

*
BEOSS00S 0000 E SO
290 ¢
.02 *
->% Al ¢
* .
e

Chapter 3: Flowcharts, Tables, and Routine Directories 87

Chart AS. Phase AS Overall Logic Diagram

.
CM
E
+
ADRP s

LOADW
A

EE I TP R PR UL Y

Al * EBASE BC *

* * Fetobobobabatotab

¥ C2 #e-ade LOAD *

* * PHASE BC INTC ¥
ELTT] .

LRI T TR Y R TR T Y

LT P I PR T
*

* USE EHASE BC
* TO PROCEES
: ‘INPUT' TEXT
AERAR RIS LY

“raen

SEIIIEISA2NONS NS
*

xrel

.

-

TURN -
INCLUDE-SW *
OFF *

.

*

VEHIIISRABISHRES

LOADW
Ry ST LT T TR Y
* EBASE BG *
P B R T ST P

* LOAaD *
* PHASE BG INTO :
LT R TR e S T

BRONRGINIEAN IR IR
* *
USE PHASE BG ¢
‘TG _PRODUCE *
OUTPUT :

.

PIPEBIIIIRSINIES

sane

INCTST .t
:¥] ..
.t »

.* Is *. YES
*. INCLUDE-SW . %-===>
., ON -*

., .t
*

100 200NN ENRES

* RETURN *
TO

PHASE BA *

ARRRALERINNS

*
*
[31]

88

11
-
*C2
.
tees

*
*

Chart AV. Phase AV Overall Logic Diagram

IuIT
*es00p 20000000000
.

¢ INITIALIZE

.
*COMMUNICATIONS #—v-w-
¢ REGION *

seseINEIIESIIIOIILSE

Chapter 3: Flowcharts, Tables, and Routine Directories

soesesIeseenenane
* CREATE IJPUT ¢
AND OUTPUT ’

»
--->% BUFFERS

‘SCP}-TCH STCRAGL'
.O.'Ot‘t oontuoo

LRS- ST T2 S TR R TY 2
.

.
* MOVE TOKSCN ¢
* TABLE INTO .
:SCRATCR STORAGE:

DR R TR L T

WHL0L S
SEFEICTIERERE RIS

FERERAESAERN RN

SPeRADIEREsEINES
* Dep! *
* AND BUFFER ¢
¢ AR FOR_U:
¢ AND SYS .
* INCLUDE
T T T

L) X LR T IT AT I NS
* SET UP *
* KE D TABLE *
* IN_SCRATCH .
* STORAGE .

* .
FEEERERENRNNRIES

LP

SESSIF IS804 4400
* *
R |
: EXTERNAL CODE ¢
*

‘TO EBCDIC *
LRI T T T Y

WWOBCD 1
*E598GI .‘..‘t.‘
L d

* CT;ONA
‘BﬂggY gUILTO
*+ IN FUNCTION t
b4 UBSTR

ttoto0ooooonto..s

t.oosﬂ;iyotttooot
: SET UP %é’l‘ :
$PROCEOURE TEXT

: AND 1IVB'S
S48 0800 400

WWCHNBEG
FEEEETIHINCRR IR S
bd AT
* DI ONAR *
* Ei IES FOR *
¢ DECIMAL ONE .
*ZERO § WU 0
SEEEIREEIRINIERRY

baaade SALAA LIS
' CREATE IVB'S

c.oboxncoooatoooo
SET UP BASIS '

.
'FOR VALUES ‘!‘RUB’-------->' FOR_UNDEFINED ‘
AND FALSE *

BESEAEHANCEISIOSS

ENTRY CHAINS
SEIESEER SIS RN SRS
e
BC_
->% A3 ¢
. .
L1212

89

Chart BC.

...Q‘El......‘...
- *
* TURN .
* PROC~SW ON $<——u—-.
* *
* »
SRS BEB VIV S R4S
PROC

PERFIF ISR
L] *
¢ DPROCESS
¢ PROCEDURE *
+ STATEMENT ¢
SER PPN NSRBI EI

s

. *

* D2

- *

R L]

. * ¥
* D2 <~
* *

*hes

20

'TB \
Ses4p2es

STA'

remnEw

LRI 2 2 2]

L1AZ .
E2
o*
YES .* Is
——

.

RECOGNIZE *
TEMENT :<

Sk
.

.
LA AR L LS

"

*,
IT *,

PROCEDURE ..‘

.*

., _.®
* uo

L1A

LAB:
ATTAC
STAT!

srane R

EARER T2 L 1Y

L1E4P
Pidbdd)
- ENCO?E

.
-
TEVRRNS

o',
HZ

2 'uns
*l THE E

———

.
« PROC
*

BLLTIT ¥

1s

b
SS

ELS

D TO

MENT

LTI 22

naen

b d
*

STNNT
e]

'USES AND TESTS *
A PUSH N *

sttt

..

1T s, YES
ND FOR_
PROC .

1

.
NO

[e

.,
*
SW ON .
*

———————

e e d

Phase BC Overall Logic Diagram

PH1SCN
LI T R T
.

START
INITIAL SCAN

seonn

.
.
*
»
*

SeeBIEEREEERERS

LAt
* *
* C3 >
‘ L

————aDt
*

.“0‘5“.‘0‘0.00.‘
uET UP SPECIAL ‘
LXIT LABEL ¢
DICT. *

*
sesearstsNREIINIS

11

PINDPC
.‘:oncao o428 0000
PUT CHARS *

' NTO TEXT

* BLOCKS UNTIL *
*HIT_NEXT MACRO *
* STATEMENT .
LR T P v

D3 .
* .,
.. HIT *.
END-OF-FILE .#
*, ..
., ..
., ¢
YES
E3° s, SSISIEGSINER RSB S
* * * .
o IS *, NO * ND=OF~ *
*. INCLUDE-SW .®=cce—eewu>¢ ECODEP 5 *
. N K * TEXT BLOCK :
N ELITIRSI AR IS 21
YES
e
*BG *
~>¢ B3 *
- .
sene

SEeSIFI0sEs NN
*

ADD_CODE
TO CALL CLEANUP
b TO TE, .
* BLOC! *
*
SEEESFEBAEIE RSN %
hen
G ¢
->.553 *
. e
(23 1]
SEESEHIS RS SN AN
* .
TURN *
PROC SW OFF :
* L d
P T T T T

po———————

Adld]

. .
$#C3
L] -
seee

Chart BG. Phase BG Overall Logic Diagram

£
PR2SCN
SEseIBIENsEerIee
SGET NEXT TOKEN *
‘-.-.-.-W—;Et‘u-l‘_:
+ STARTS
$TOK-PTR TO GET *
* NEXT TOKEN »
P 1 X T LT
e,
..C3 ,.,

L .,
. WHAT IS IT .
.. ..
., ..

. .

I

| .

“".’?!..m.un..“: mx?ﬁnnzonn«u. ‘”"‘25...93.“......: moggnopq“unun Du'{ﬁuosnnunu
L3 * » * .
.1 RETIVE *
: END OF TEXT : : IDENTIFIER : : m CODE : : OTHER :(-- :PERC“IT sIGH :
. - » - * .
sessssstssessesEe cerssertenctnsnes ssssssensnasteane sene adee T ' seee

. . Iy
¢ py e BN
. . ->¢ A1 *
e L d
X 4 seee
E1" el 2" e, E3" e, SEEIEUEIIISIIINS
- . .* *ee NO .*° I .'o :.toootvt
.. 18 ., YES .* . . . P -S40 S
—!9‘. LEV-BIT O _.* ——=®, ACTIVATED .* —, Amos ALL .¢ * *
L o* .. 4 . *. CLEANUP .¢ $ OUTPUTS TOKEN =
.. .. .,
.~ .. cesssssesetsseine
YES * NO YES
L DS .
seee
. .
. Dy e DACLN v
. . L ST LI T
covsFiesensetes oy * CALL CLEANUP #
: :-‘-.-.—--R“;;-‘-:
. 'CALLER THROW
T ™ . *« IN .
0030400900885 * 8E' z ol L]
M T T T T I
%,
SIRSAGLISERNRER S G2 .,
: Nor + + PROCEDURE " ». N0
-->:vu.ufmm'xsm H —>e0 Rl ‘
. . e, o
sesssessensesssee ..
YES
DAEQ! PENT 'PRT .
02“‘1110--...‘”” oA H anr
¢ g - . . DO . . PRET _ ¢
. = . . CEMENT ¢ P R S b
$ STACK TP ¢ * ON ARGS. GET * >+ MAY 8 .
: EN PP 4 3 JALGE R’ ¢ Y ToK-PTR 8
PETTTYY 111 TP PR 12 4
e by P2S——
SHINRT 206000600 J3° ".
¢ PUSH -BIT, * . ..
s TOK=: * o® WAS .,
* VALUE O * ®. IT INCLUDE .*---
e STACK . ‘-. .0.
sesssesssetINeES Te, o0’
YES
SEsRIR200000R0 000 S208IK30eresv e
H H H N .
—-® LEV-BIT = 1 ¢ . mc%n-su ..
: i i :
sersensestsontens ssesesseseecntses
sesne
BC_
* A3e
o

Chapter 3: Flowcharts, Tables, and Routine Directories 91

Chart BM. Phase BM Overall Logic
YAQ 01
LA SSAL LI LT FESRERICE IR RN
* . he ESTABLISH b
. SLT b * LEVEL OF .
* SEVERITY CODE $w=ve-ee->¢ DIAGNOSTIC *
: : * PRINT OUT :
CRESEESIEIINOEORS L Y T
XAl o
B2 *

4
SEEIECLRER SV IR S
*

' *. PROCESSED. ¢
, .
* *

“ut

A7
SESEACSSRENREES
. *

e ANY e,
YES .+" ENTRIES “+. NO

Diagram
XA2
SseBIsssenseeens
* PUT OUT
> MESSAGE -—
L R Y] 1
senee
«BW ¢
* pl1e
LR

SHEECINIINRIISR 4 2SR ECUISE 804040
M * MAKE UP * * RELEASE he
PosBm Lol ENe i gRg Lo R
) —————— ——————— ———————— ‘
: B K : * CHAINS : : {EEDED : BLOSK +
.
SRS ESEERERRS S TAEREREEER AN RSN SEEE2BH RN 0N BEESBESEBRESAN S
shhs
. *
* DU *.>
* *
oo v
pu’ e,
+* HAVE e,
o wE *. YES
* ,PROCESSED ALL.%-=-
. ENTRIES .
R
* L ddAdd
SBW *
¢« Ale
LR
*
22 o Xal2a
T T LT YT o [T VI E3 s, SESEGEEserenes
* * * - o* €, PRINT QUT
. GET TO hd * LOAD .* IS THIS A *. YES # APPROPRIATE ¢
: HEAD OF CHAIN :---— -->: NEXT BLOCK :--------)‘..NE" CHAIN ..'-- ----- >‘55VERITY HBADE!}
. + . . ‘e, .
R AL 222 L2 L) SEEEFREEAS RS EIN S S ., .;l SEEEERIEE RO RO RN
* NO
ot &,
XAsgotttG1ot..‘.t‘t‘ ., G3" s
hd . % IS e, . ., onee
* GET_TO * «* SKELETON *. {0 .* *, YES * *
-=>% HEXT ENTRY tomeewne=d®, IN CURRENT .%-—ce—ee<>%.END OF CHAIN .%—-w=D>* DU &
* IN CHAIN b *. BLOCK .* ., . * *
. e . . . oee
SENRERREREORIERS
A * YES
‘l..
. *
« GL
- * THSERRHINSERCEEE SN S5ESEHUS SRS 00
T . ESSA . * STATEMENT #
. NUMBER * * NUMBER b
* TO PRINT - D% TO PRINT b4
: BUFFER : : BUFFLR :
PITTTTITI YT e “e, L0l LTI T T T
* NO
XAH0
SEERRTIPROIRBS RN LA INPAL TR A LY LY LI AT RIS 1T 1) PESTUBSESESO RS R
. . . C. . . Hg’sskgl . * PUT OUT
. ACCESS . SCAN . . g
v MESERGE A-cmceea->t MESSAGE $-----—-->t TEXT IN #eee—m—m-> DIAGNOSTIC
: SKELETON * - SKELETON * : BUF;‘EE : MESSAGE »
AEERESREARIEROERE SevsesRERIRSEISOS “rsessesERsEEIRES SeseseeRtattaer
-t
K& .,
+% WAS . res
MO‘.‘ THIS

92

. *, YES * .

« LAST ENTRY .#-e=aD>% DU ¢

#.IN CHAIW .* * *
., " e

- .

Chart BW. Phase BW Overall Logic Diagram

SOEIONLI00 0000
. .

RELEASE
ANY LCADFD
PHASES

seee

*
.
.
.
+

AISEFNSBE08080 0

on‘.ou1o‘oooooot:
. -
* EELEASE ALL ¢
*ACTIVE TEXT AND®
: LICT BLOCKS *

SeereIBREERREREIS

SR8 S(C1EINIAIBS
. EE *

ANY
* OUTSTANDING =
:SCRATC4 STORAG!:
sesPsePIsRIIERES

p1” e, S4eD280s s IeI00R
. .
«*COMPILATION®. NO * PRINT *
4, REQUIRED B] SYSUT3 —
', - . .
., .’
.. SENBENEIELIIREY
* YES srnee
AR *
* Hys

[T S T2 T LY YT
. *
* CLOSE SYSUT1 *
: AND SYSPUNCH :

.

»
SIFSIESBIRENSES

sseseF1eses00s0es

*
* REALLOCATE *
* AND *
: DICT BLOCKS ¢
ERAA ISRl A2 P L L)
G1" e, [adddd A AL T TTY R
.t * L4 .
. IK *. YES . OPEN .
‘..TEXT DLOCKS..O--——---->: SPILL FILE :
‘e, Yy M .
s, . 9002050005080
No
<

.""Hlt‘.t.t‘o..
* *
SCOMMGHTCATIONS * -
: 'g%ms :
BESSSA PSR SRBS S

sese
*CI ¢
=>% A1 ¢
. s
seee

Chapter 3: Flowcharts, Tables, and Routine Directories 93

Takle AS. Phase AS Resident Phase for Compile-time Processing

r T BRL3 1
| . |Main Processing]| |
| Statement or Operation Type | Routine | Subroutines Used]
(8 L 4

¥ T T "'
|Initializes switches for | ADRP | None]
| compile-time processor i | “
b t + :
|Loads phases for compile-time | ADRP |LOADX (ARA) |
| processor | | |
b + + -——{
|Determines whether Phase BC should |ADRP {None |
| be reloaded | | |
L i . J

94

Table AS1. Phase AS Routine/subroutine Directory

1] T
|Routine/Subroutine} Function }
L iR 4
1} T 1
| ADRP l|Initializes switches for compile-time processor. |
|
| BCRUP2 |Backs up token pointer two places. |
| | |
|CHBLK |Changes currently busy IVB block status and gets a new block
| |
| CLSBUF |Handles calls to close and write out the buffer. Loads and bases |
| iphase BJ if necessary. i
| | |
| COMENT |Scans the limits of a comment, transfers each character into the |
i | output buffer. |
| |
ENDIVB	Closes an IVB chain.
FREVAL	Releases a chain of IVBs containing a no longer needed value and
	returns chain to free list.
GETIVB	Removes an IVB from the free chain for use by the calling routine.
GNRC	Updates TORPTR to point to the next character in a particular input
	stream.
HASH	Accepts an EBCDIC identifier as input and outputs an index. The i
	index indicates the beginning of the HASH chain with which the i
	identifier is associated.
INCTST	Determines whether Phase BC needs to be reloaded on return from
	Phase BG.
I]	
INPUT {Reads in an input record from the source data set or from included	
}	text.
INRD	Reads physical records from the included data set; unblocks and
	sends them back one logical record at a time.
	_
NXTTXT	Gets a new text block and sets up address slots.
OUTPIC	Outputs a single character into one of the three output media:
	IVB's, text blocks, or external records.]
SRHDIC	searches the dictionary for the presence of a named item.
. ‘	
STRING	Scans the limits of a string constant, transfers each character to
	output.
TOKSCN	Examines text, character by character recognizing and returning each
	logical unit of text (called a token). Tokens include identifiers,
	constants, operators, delimiters, etc.
UPREWL	Updates temporary linecount slot.
YAG2	Loads processor phases for the compile-time processor.
L L |

Chapter 3: Flowcharts, Tables, and Routine Directories 95

Table AV. Phase AV Macro Processing Initialization

{ TMa' Pro i f 1
in Processing |
| Statement or Operation Type | Routine { Subroutines Used |
i . 4 4
| S s T T - -1
|Initializes communication area for |INIT | None |
|compile-time processing | | 1
L iy 4 d
L3 T T
|Allocates push down stack from | INIT | None]
| scratch storage | | i
F , $ 1 .
{Allocates translation tables | INIT | None i
[i L J
r . R N T T 1
|Enters SUBSTR into dictionary | INIT | None |
L i 1 4
r . . L v h)
|Creates dictionary entries and | INIT | None |
jvalues for constants pool | | |
L 'y L 3
Table AVl. Phase AV Routine/Subroutine Directory
r L] 1
| Routine/Subroutine Function |
L 4 4
r T 1
| INIT |Entry point to the initialization phase. This initializes the |
| | communication region for compile-time processing. |
| |
| AWNO4SB |Allocates the push down stack (to be used by Phases BC and BG) from |
i | scratch storage. |
| | |
| WHOVLP |Sets up tables to translate external code to EBCDIC; tests the |
I | BCD, EBCDIC option. |
| |
| WWOBCD | Enters built-in function SUBSTR into dictionary. |
| |
WWCHNBEG	Creates dictionary entries and values for compile-time constant
	pool.
	:
WWMOVEIT	Moves Subroutine package into core for use by BC.
INCLUDE	INCLUDE Processor
LABELS (BC	LABEL List Processor.
GOTO Subroutine {GOTO Statement Processor.	
.	
ACT Package)	Active/Deactivate Processor.
ELSE	ELSE Clause Processor.
L L J

96

Table BC. Phase BC Initial Scan

and Translation

14 T -T 1
| |Main Processingj |
| Statement or Operation Type | Routine | Subroutines Used |
L N 4 4
v T T 1
|Recognizes statement type | PH1SCN | TOKEN, DELETE |
[1 i 3
1 T T |
}|Scans until next % character | PH1SCN | FINDPC |
L 4 4
k } RS 4
| Processes PROCEDURE statement {PH1SCN | TOKEN, DELETE, IDSRCH, |
| | | ADDSP (FREVAL, OUTPTC) |
L 1 4 4
1) v) - 1
|Processes labels attached to | PH1SCN | IDSRCH |
| statement | | |
b ¢ t 4
|Encodes statement into internal | PHLSCN | PARSE, TOKEN, IDSRCH, ADDSP |
| text | | DELETE, CHECK |
b 4 + {
|€leans up after INCLUDE in initial |PH1SCN | None |
|scan | | |
k 4 + 1
|Begins statement identification | PHLSCN | None |
| process S | | |
L L i - 3
Chapter 3: Flowcharts, Tables, and Routine Directories 97

Table BCl.

Phase BC RoutinesSubroutine Directory

[;;utine/SUbroutinei Function o o }
{ADCONS TOhtains the dictionary reference of a constant, entering it ;;;o th;|
| |dictionary if necessary.

;ADDSP |Adds a processor-created item to the dictionary.

}ADICT |Adds a normal itein to the end of the appropriate hash chain and

i
| ADPROC (BF)

|
|ASSIGN
|

| CHECK

l
|
|DECLAR {BF)

=}

=
&
~
[ne]
(e}
~

YWDSR

K
PARSE (BE)

PIFY
FH1SCN (BE)

RETURN

[}
=]
[v7]
w

n

3

TMT (BE)

TOKEN

UPDLIN

Pm e e e " i s o S s S

| returns the dictionary reference.

!
|Processes PROCEDURE statement.

|Processes assignment statements.

|Checks back for undefined labels and identifiers not declared within
jthe block.

.|Declare statement processor.

|
|Skips over bad text up to the end of a statement, field or
| procedure.

| DO statement processor.

|Checks stack for possible THEN's or ELSE's after statement is
{completed.

|
|Scans source text, character by character, searching for macre
| percent character.

|
|
i
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
|Obtains the dictionary reference of an identifier, entering it in |
|the dictionary if necessary. |
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

J

| IF statement processor.

|Checks for single or multiple keywords.

|
|Parses and generates interpretive macro ccde for compile-time
| expressions.

|Provides special handling for end of included text.

|Mpin controlling routine for phase.

|
| Processes RETURN statement for PROC.

|Collects labels into label list and identifier statement tyre o
|first two tokens of statement. :

|Diagnoses statement type and builds label list.

|
|Returns significant tokens to PH1ISCN and writes out diagnostics for
|tokens in error.

|Generates an update linecount instruction.
L

%8

Note: See also BC Subroutine Package in Table AV1.

Table BG.

Pnase BG Final Scan and

Replacement

r = -=-T - -3
| |Main Processing| |
| §tatement or Operation Type | Routine | Sabroutines Used |
|8 Xl 1
L . T L {
|Ein2l scan for replacements | PH2SCN | OUTPUT, 'TOK3CN, SRHDIC |
[4 3
b % t ~~ -1
| Recognition of end of text | PH2SCN | OUTPUT, TOKSCN, SRHDIC |
IS 1 3
8 T T sTTTEsssssss "
|Recognition of an identifier | PH2SCH |OUTPUT, TOKECN, SKADIC |
} L 4
[} T v - —""-—--"---"
|Recogniticn cf macro action | PH2SCN | OUTPUT, TOKSCN, SRHDIC |
i i 1
r - T T - -4
|Recognition of % character | PII2SCN | OUTPUT, TOKSCN, SRHDIC |
L 4 4
r -—{- T - 1
|Recognition of other characters | PH2SCN | OUTPUT, TOKSCH, SRHDIC |
 — t 4 e e 4
|Terminates and cleans up INCLUDE | PH2SCN | OUTPUT, TOKSCN, SRHDIC |
|handling | i |
b ¥ 4 -4
|Re-establisnes scan at next higher |PH2SCN | OUTPUT, TOKSCN, SRHDIC |
{level text | | |
- $-- } i
{Performs replacement on activated |PH2SCN | OUTPUT, TOKSCN, SRHDIC |
jidentifiers | { |
L L S -4
Chapter 3: Flowcharts, Tables, and Routine Directories 99

Table BGl.

Phase BG

Routine/subroutine Directory

T
| koutine/Subroutine|
L i

Function

-

|CLOUT (BJ)

|
| CONVRT

DACLN

D
FUNCIN(BJ)
G

Fj
=3
=}
-
0

H
2
(9]
[*]
2
=]

INTPRT (BI)

OUTIPT

o
o
boN
[
0
2

g

ROIRV (BI)

e
[~
4]
s

| PUNCH (BJ)
‘SYNCH

| TPEEK
=ZAASIGN (81)

|
| ZACOMP (BI)

i
| ZACONCAT (BI)

|

| ZACVT (BI)
|

| ZALGCL (BI)

|
| ZAPUSH (BI)
L

+
|Closes output buffer, and writes out record on SYSUT3.

|Handles conversions between the three data types used in the
|compile-time processor .
|

|Terminates INCLUDE text handling and frees text blocks containing
|included text.

| Re-establishes scan at next higher level text.
|

|Recognizes and processes end of text condition.
|

|Recognizes and processes identifier in text.

|

|Recognizes and processes macro action character.

"|Recognizes character and outputs it.

|Handles replacement operation for text identifiers.

|Recognizes % character and recalls Phase BC if appropriate.
|Randles built-in functions.

| Picks up a two-byte dictionary reference from scrubbed text,
|performs error checking, resolves indirect references, and returns

|both relative and absolute address.

| INCLUDE control routine. Opens DCB, finds member, sets up buffer,
land initiates look-ahead read.

| Interprets the macro code generated by the Phase I scan.
|

|Handles the output of tokens.

|

| Scans text blocks.

|
| Pops the top temporary off the Phase II stack.

| Special entry point to interpreter for invocation of procedures
| found in source program text.

| Pushes next available temporary onto the Phase II stack.

| Punches down output record, in source code, on MACDCK option.
|Synchronizes linecount, closing buffer if necessary.

| Scans for procedure reference argument list left-parenthesis.
|Performs identifier assignments for INTPRT.

|Performs all logical comparison operations for INTRPT.

| Performs string concatenations for INTPRT.

‘Converts stack items to required type by °'RETURNS' attribute.
|Performs all logical operations for INTPRT.

|Performs stack maintenance for INTPRT.
[}

__——————_—_—-——-_.————-——_——_———_—-—-.——_——_—_——-——_————_—_—_—-——_—_.—_—__Ai-_.

100

Table BGl. Phase BG Routine/subroutine Directory (cont'‘'d)

T T
| Routine/Subroutine|
L L

Function

L 3
| ZARITH (BI)
|
| ZATRAI (BI)
|
| ZATRAN (BI)

|
| 2ISUBS (BJ)
L

}

| Performs all arithmetic operations for INTPRT.

| :

|Bandles transfers from included text to including text.
| Performs all transfer operations for INTPRT.

|Puilt-in function SUBSTR.
L

Chapter 3: Flowcharts, Tables, and Routine Directories

101

e e — —— v — i e o

Table BM. Phase BM Diagnostic Message Determination ani Printing

H v . T 1
| . |Main Processing| |
| Statement or Operation Type | Routine | Subroutines Used |
I8 iy 4 4
(3 T N

|Determines whether error messages |XA | None]
|are to be printed | | |
b } 1 —
|Scans error message text skeletons |XAS8 | Xa50, XA70, XA90, XA110, ZUPL |
|an3 prints them out | | |
L 4 J
Table BMl. Phase BM Routine/Subroutine Directory

1) L]

| Routine/Subroutine| Function }
L . 4 ——— 1
L} L] |
| XA |Determines whether error messages are to be printed. |
| N |
| XA0 | Sets severity code. |
| |
| Xa01 |Establishes which message types to suppress. |
i | |
| X2l jCounts number of error chains to be processed. |
| | |
1Xa2 |Puts out messages if there are no diagnostics. |
1 | |
| Xa4 |Prints out "COMPILER DIAGNOSTIC MESSAGES". |
| | |
| Xa7 | First scan of message chains. {
| |
| XA8 | Scans error message text skeletons and prints them.]
i | |
Xa3 (BN)	Scans to head of next non-empty chain.
XA12A	Selects and prints header for messages of given severity.
	:
1XA30 (BN)	Gets next entry in message chain.
:	
XA32 (2N)	Puilds up first part of message in buffer. ‘

1XA35 (BN) | Accesses message skeleton. |
XAu0 (BN)	Puts out completed message.
XA50 (BN)	Moves message text to print buffer. {
1	
XA70 (BNW) {Converts binary statement number to character representation, and	
	moves it to print buffer.
1Xa90 (B8M)	converts binary numeric value to character representation and moves
	it to print buffer.
Xa110 (BN)	{Moves identifier from dictionary entry to the print area.
2UPL	Prints a line on SYSPRINT data set.
L 1 J

102

Table BW. Phase BW Clean-up Phase

.
]
]
|
|

Main Processing

Statement or Operation Type Routine

Subroutines Used

e a—y

|Resets all tables and
| communications region cells to the
|value required by the compiler

| proper
L

IEMBW

o e o e o e e o
R
2
]
=]
1)
e e e s e e e =

Chapter 3: Flowcharts, Tables, and Routine Directories 103

Chart 02. Read-1In Logical Phase Flowchart

%

AL L VI L T
48 * 43-CHAR BX+*
o* CHMACTER *. YES Sotbobobatotatobod
., SET L#mcoea-ao>* CONVERT TO b
‘.‘OPTION '.. : 60 CHARACTER :
A SERsREIEERTLRENES
NO
<.
SEEAIBLEESERRRNES
* 1ST PASS CI*
Pt TSP a4
* LIST IF REQ'D #
*AND C .
INTERNAL CHARS ¢
SHERERRESREIERENS
CEEHECIAREEEI SRS
MAKE DI ENTRY
*FOR_LABELS AND *
* CHECK_FOR *
‘ LOGICAL END ‘
OF PROGRAM
PO L1
SeREADLIEESRERESS
* 2ND PASS CL*
P T St SR ey
* SCAN TEXT TO *
*ANALYZE SYNTAX ¢
* OF STATEMENTS *
SersErRs R BB EL
51' ‘» SEERUEDINMRERIEES
* 3RD PASS CO*
.* ALLOCATE YES PO Aty i e
* .DECLARE, ALL. R ==>% SCAN TEXT TO *
‘STATEHtNTS-‘ *ANALYZE SYNTAX *
L ¢ OF STATEMENTS #
T Pt T T
NO
<.
b
F1 s, ARREAF2RMMIR RO A
+® ANY &, * UTH PASS CS*
.*STREAM I1/0 *. YES L D T T et T e
*. OR FORMAT .#%~—=c-===>% SCAN TEXT TO *
*STATEMENTS. * *ANALYZE SYNTAX *
, . * OF STATEMENTS #
LR R P T e T
* NO
£.
SHEEIGLESSELER IS
‘ 5'l‘l'l PASS Cv*
Y TR T T P T

HAK CHAINS OF *
:C:L DECLARE :

T T I e Y
ene
*03 *
~>% A1 *
. s
e

104

Chart BX. Phase

BAl
LRI TIYS TR R E 2 T LY
. *

BX Overall Logic Diagram

e
* *
* A2 »
- »

s e

<

BA1A
PSSR0 000000
.

M READ AND * * SCAN FIRST *
—-—D4 COPY ONE bl et > d COPY OF *
: RECORD be * THE TEXT :
P I T YT T Y VT sossseseessersese
¢
%L BAT0
Bl ., oo‘t.a)oot.ooo.to
. ., . READ ONE
4 NEAR *. YES * RECCRD ‘
.. END OF e e 44 AHBEAD AND e
‘..RECORD * ¢ TACK IT ON : A
“e, e L T T Y P TIY Y Y
¢ NO
., BA25, BAUS
o‘oo $C24vensrenns
* *
. SET .
-2>¢ APPRDPRIA’I‘E P
b SWITCH Of : A
ssesessasLtteeny
v
BN BA25,BASO
p1’ s, *iesap2esessrense
o ., . *
g END *, YES b SET *
*. OF COMMENT ,%-—==v=-=>¢ APPROPRIATE #---
‘¢9R STRINS-‘ + SWITCH OFF :
‘e, L0 2SS LIRRERERIEAS
* NO
V
.. BAS B
El .. E3 ., ASPAELIISISEI R ee
.*
% POSSIBLE . YES " IN *. YES . *
*. KEYWGRD . >%. COMMENT .%ccommma-D# IGNORE $oee
PERIOD, OR. *.0R STRING.* . £ A
+.COMAA. * oL . .
e . P T T P e T T
NO 1 NC
., .‘-
Fl ., ., Bllatto‘ruo.tcu‘ooo
° : o+ ’omu-on ‘e, YES : By R .
¥ END N I .
.. OF ‘---->' A2 ' .. KEYWORD PR RS e OPERATOR o
, RECORD . *, o* * SYMBOL .
. “esns’ +
., . .. P I I T TS TR ey
‘YES I NO ‘

BA90 \. %, ok, BAUO
SseeaGIeReEIERENY G3" . Gu” e, $2809GGER IR,
M WRITE * . *, o ., .
. ON . *. YES -* FOLLOWED . YES * REPLACE .
e BACsING bd ., PERIOD e®emmmeee>¢, BY.PERIOD . #-cecee-- >4 BY *
* RE * . * *, " * COLON *
* *, . . .
ssestssassssesess snsesessssassnens

* NO * NO
ers
. .
=>% R2 ¢
<. » *
: 80 4 eve
.t . %
H1® .. L T T T R T HI® e, HY e, sssesHSeesIN IS
.. ., . * .. ' .* ., . .
o NEXT ¢. YES * ADJUST e o* *. YES .. FOLI.OHED *, NO . .
- >* TEXT D s .. COMMA P e e et ———— > IGNORE .
IN CORE # l pmuon
. v .. o .. + .
P SEREIIRELLRIINSS “ . asessesettessanes
NO Ll 1 NO e YBS
» - I
s A2
* * l -)' A2 0
sees
Tases®
3 . BA29Q
ssessJissnsssnees ., S5008TSeeRas00000
. . .. IR . .
* * % FOLLOWED *. NO * REPLACE .
be IGNORE * . P PRI, ¥ .
* * *, DIGIT .» * SEMI-COLON hd
* * '
P Y T PR T . ,* seseeeessneseren,
* YES
sevs esee
. * . .
* A2 * s A2+
. . SensKUSIISIRIIIS . *
sees . . e sres
. . . .
b IGNORE $ocead>® A2 #
. . * .
. . vees
sesasssssessteses

Chapter 3: Flowcharts, Tables, and Routine Directories

105

Chart CI.

NOTE:

Phase CI Overall Logic Diagram

CONTROL g PASSED DIRB LY ?ROM' PHASE AA IF

R_SET OR COMPILE-TIME PROCESSOR

PLST
'0“‘52..“0““‘

RSTART §8-CHA|
JHersAlsseenaeareIs NOT SPECIFIED
*

* MAIN scAN +
+ OF TEXT *
* *
* .
ARSI T I S22 2123
e
* *
* Bl *->
* L]
e e
...

.o TEST “#.
.FOR_LABEL OR*. YES
*. U PREFIX

*, OH‘IONS ot

* AND/OR PR%FXX

t4-=-—mmm->s OPTIONS

DICTIONARY ‘

¥emmomeead$, COUNT IS
. *., ZER

o,

% TEST ¢.
«* IF LEVEL ¢. NO

P Jabe

*, "
., e
YES
eV e,
.

SESEEFUIESREEOE
*

*

* DELETE THE *
* LAST "LND* *
» [3
* *
SEERESIVSISEIEIES

*
e, Sessterastenteeee
"e" NO
I<
PROC'ENTRY' CESEIC 2N NSRS RRS S
F mswc Jtes . ex.ockawon . S
. ..
., FORABESG: CraYES___ -->3 TEVEL € s>t E2 3
S?ATEHE“T. s s
', * LRSS BE SO ENNES
NO
ot
STID pt’ . p2° e, th‘.“.DB.E;“..."
. .. -
o TEST ., S 4 TEST *. YES * BLOCK AND/OR *
. kElOR . S JEOR, l#mmme--eo>e LEVEL COUNT.
+ KETWORD, . . o *T0 QUTPUT TEXT
. .. . e seseisEisteat oy
* NO NO
et e
* E2 >
\ one
ASSIGN %, STAT2
1-:1 ., SRESSEEese0s s
T ST *. * (131
R_NULIL OR*, YES NSFER M * *
. ASSIGNHKNT ‘-—-—--—)‘ STATBHENT TO #*——-=>% Bl *
.. STATENEN’{.‘ UTPUT TEXT * aes
Te, L0 Ty
* NO
BADSTI 4
T ST LT
* .
* SKIP *
- TO NEXT .
: SEMI-COLON :
EEAXIAS I IR A2 2]
e
* -
s B1 *
* *
“oee

106

Chart CL. Phase CL Overall Logic

TEST POR:
nEAb
SEER
focatE.
OCK

SE
GNO
UNL

TEST FOR:

ALLOCATE, DECLARE
oufls“ i‘t%“l‘ds‘émn '
fe, prOCL

WAtTe
thooszz.
RE,

Diagram
e e
- *
s B2 *
» *
880
I«
SCNA ..
B2 . SES0SRISSENEsERER
. * . L
ST ES * PROCESS *
*.FOR SPECIFIC .¢———ce--. ->e gﬁ *
IOR : STATEMENT :
.‘. ." SREHEINEBRBEE LN
NO
hed
. b
->% F2 %
L] .
3 sene
c2' ‘s, :to.oc:oc‘oooo.o:
.+ TEST FOR's. YES * _MARK .
*.1/0 S’I’ATSHENT Voo > 74°] PHASES *
. . * AS *WANTED' ¢
., ¥ * *
., . * AIEITE I LI LRI 2)
NO
AN \
D2 ., .."‘Ra‘—r‘..‘.ﬁt‘
. ., * ; ANS FER .
. *, YES ¢ STATEMENT TO ¢
%, FOR OTuBR eVeeee ¢ OUTPUT TEXT #---
¢STATEMENTS. * ITH
. . s CHECKING *
., .t LSRR SRS
NO
N NOTE:
E2 ‘. oF

5.4 ..
.* ’!‘!ﬁ'! FOR s,

.. PROGRAH o*

“e, 00

GOES TO FHASE CS IF PROGRAM

CONTAIN A

DECLARE,
)

CALL, OR ALUJCA‘I‘E STATEMEN

NO shens
e $CQO _*
. . * Bl#
* F2 > o
. . *
e
BADST %
SEISEF24 000000000 F3 e,
b .
* SKIP TEXT TO ' TEST
* SEMI-COLON *-
‘KEYHORD ELSE : . 'ELSE’ ‘-
Sesssseerarrarins N
1 NO
LT
* .
+ B2 *
. »
LT

Chapter 3:

ERGEBFUIIRSIREEES
‘ ’

.. ‘. YES TRANSFPER
------->¢.. FOR z-------->¢stE STATEMENT *

#TO CUTPUT TEXT ‘
..‘t.‘t'.'.ot.“.

Flowcharts, Tables, and Routine Directories

107

:....33‘....“.‘

Chart CO. Phase CO Overall Logic Diagram
.. DECL ..
SCANZ e B2" e, .
o meer "te. ves +"JEST FOR "+, YES * DRLETE :
>) WS TERIS Bt "B o
I ¢, DECLARE .¢ M
, o ., " * L]
*, o ., ¢ ARRL I I RIS]
shnse * RO * NO
Ld *
* Bl
» L
L1321] <
.. ECDL
Ccl1 ., A9 4C24 40000800 ¢
o * zEsr "o wEs 4 CHECK gYNTAX 4 R
tZ‘ 1 EOR _It--Z----->: DECLARATION $---->4 B1 3
~JLLOCRIE, . * ALLOCATION * e
*, . SP0RVES SR ENS SRS
NC
le
.. CALLOP
» ., :0.005200.0.‘00.:
" TEST e. YE *+ FRCCEES .

. t-_§----->‘

: FOR -
*., CALL . STATENENT
“e. o SOAEARBNNNR A0S
Ne
<
RN SCANT
El AISISE2NNE R ONIE S
e o BMBEy
ti.sogn KD oF .Z-------->: 2e22 94 sg-'f s
‘el R + "PHCcEssing. +
*, . * SR GRS ERAGR AR
*"yEs
E13d]
l #CS *
->% B2 %
* *
*8e

108

Chart CS. Phase CS Overall Logic

Diagram

NOTE:

INPUT FROM PHASE CL IF PROGRAM
DO TAIN DgC“%gRE, CALL

CR

ALLOCATE STATEMI

TEST FOR: 0]
SCNA ...
READ, WRITE, B2 .., 4954 4RI40 0NN
8§§g ngbsg ! “s. YES * PRocEss THE
. . *
REWRLTE, DELETE .. TEST P Yo, > A NT . $eme
LOCATE, ' IGNORE, ’ v STATEME M
UNLOCK
*, . SRSV EIESS G0 S
I NO
s FOR
‘C2 *. ':"’."5..”..........

.+ IEST FOR '+. YE

¢. "FORMAT'
*

. . * *
., ¢ SEXESS SRR IS RNE D
* NO
'RT:

‘DZ ., :unnaunon.u

+% TEST FOR . NO . TRANS%R *
., ND OF . #coccaao >4 ["

*, PROGRAM . STATEY 12

Chapter 3: Flowcharts, Tables, and Routine Directories

.
Vet FORRKRLIEE L.

: OUTPUT TEXT :
SERIEIIEFSEISINS

109

Chart CvV.

TEST FOR:

Ebera. Cht
DECLARE ‘

110

Phase CV Overall Logic Diagram

SCNA ot SCNZ
.82 t.. :.O.tBi.t‘.‘...t:
.¢" TEST e, YES ¢ PROCESS ¢
., FO! «¥oceecaa->® LABEL(S) *
,LABEL(S) . .
., . . »
., .® HSERSES 2200000
L d
<.
o, 'OAl
c2 . :.0..C3t.t.‘.t.‘.
. . L d
NO .»* TEST *. YES * PROCESS *
e==®. FOR PREFIX . %mm-=cae=>® PREFIX *
« OPTIONS .* * OPTIONS :
.O, ... AR A AL R AL TR Y
.
v
., oCL
. $s2edDILesONSCE e
«% TEST . * *
«* FOR CHECK #. YES * NECESSARY *

¢: AND NOCHECK [#-—--—--_>¢ PSEUDO

P
*

LISTS . : STATEMENT
. .
L LLAIIIT T PR Ty
o, IN
E2 ., SEERSEUS IS SRR
. . ¢ SLOT THESE
. *, YES * STATEMENTS
-, TEST . * > INTO THE
. . A . RELEVANT
.. o * CHAINS
*, % P TR T T Y PR
* NO l
E2TT)
» .
o', CHEKON *J2
F2_ e, SSSSAF s bestene s *
«* TEST *. M SURROUND * haddd
.* FOR AN _*, YES * THE ON-UNIT
ON-STATEMENT .$-—-wucwud>*
. ot * PROC-END
., R * *
LI LI LI LT LY TP
I NO
o 3
G2 s, :'0..{;3"#“0'".
*
. TEST . YES PROCESS .
.. FOR B ->* END *
END . *
. . * .
., ., LRI LI T L I 2
NO l
e
- *
% * B2 ¢
H2 ., - .
. R seae
* TEST - YE
*, FOR ESD OF . #e—e
.. PROGRAM'.‘
., .
NO eene
LRl SEG *
* Ale
* J2 s> '
. * .
*hes
TRTSC N
622020800000 04
* * rees
* TRANSFER * *
* STATEMENT #———->s B2 *
. WITHOUT * . *
* CHECKING * Laddd
stestrstinitetner

*
.
.
.
.
-
*

Table BX. Phase BX 48-Character Set Preprocessor

r v T b |
| |Main Processingj |
| Statement or Operation Type | Routine | Subroutines Used |
[y 4 $ 3
¥ T T |
|Translates keyword table to | BAOO | None |
|internal code and initializes | | i
L 4 4 d
1 8 T T 1
|Reads a record | BA1 | ZURD (ARA) |
k + t -
| Scans text | BA1A | None |
4 3 43

v \J 1

Handles operators and keywords | BAS | None |
i 4 4

1) T 1

|Replaces operator keywords |BA11 | None |
L i 1l 4
L ¥ v 1
| Replaces comma-dot by semi-colon {BA20 | None |
jwhere applicable { | |
t + + 4
|Deals with quote marks | BA25 | None |
t 1 4]
v v L] b
|Maintains parenthesis level count |BA30 | None |
i i .y 4
¥ ¥ 1 B
| Replaces period-period by colon | BAUO | None |
L N L d
r T T T
| Processes a slash | BAS0 | None |
L L iR d
L3 T 13 1
|Reads one record ahead in case of |BA70 | None |
| need | | |
b ¥ 4 {
{Restores the situation when a read |BAS80 | None |
|ahead has taken place | | |
L 1 4 J
8 T v 1
|Puts out converted text and | BASO | ZUBW |
joriginal text onto backing store | | |
| T § L 3

Chapter 3: Flowcharts, Tables, and Routine Directories 111

Table CA. Module CA Read-In Common Block 1

¥

| Function Subroutines
[N

v

| Provides subroutines common to all five

ACONST, DECINT, EXP, EXPAND, EXPLST, IDENT,
|passes of the read-in phase
L

MVCHAR, OPTOR, SCONST, SINGLE, SQUID

e s e e e
PSS S

Table CAl. Module CA Routine/Subroutine Directory

iRoutine/Subroutinei Function]
| ACONST |Checks for a valid arithmetic constant.]
DECINT | Checks decimal integer. }
| EXP IDiagnoses expressions. }
|EXPAND Expands iterations of string constants and picture characters. :
| EXPLST Checks for a list of expressions separated by commas but enclosed in{
| : parentheses. |
| IDENT Checks for a valid identifier. :
| MVCHAR =Moves text from one address to another. %
| OPTOR |Checks for an operator and replaces the two-byte operators by :
| . |one-byte codes. |
| SCONST }checks for a valid string constant. }
| SINGLE }Diagnoses a single expression in parentheses. i
iSQUID lChecks for a valid subscripted and qualified identifier. i

112

Table CC. Module CC Read-In Common Block 2

i Function I Subroutines }
{Provides subroutines common to all five iCHAR, CHECR, KEYWD, MESAGE, NONEX, i
{passes of the read-in phase !NULINS, OPTEST, PICT, PREC, SOFLOW J
Table CCl. Module CC Routine/Subroutine Directory
iRoutine/subroutinei Function]
{CHAR]Diagnoses the CHARACTER and BIT data attributes. }
{CHECR =Tests the top entry in the stack. }
| KEYWD }Identifies keywords and hands back the replacement character to the :
| |caller. |
| MESAGE =Provides a diagnostic message. :
| NONEX |Checks stack for non-executable statements. :
'{Nuuns |Inserts null statement in output text. =
| OPTEST |Tests the output string and moves text to the output. =
| PICT =Diagnoses a picture. It uses a TRT table set up for the purpose. :
| PREC |Diagnoses the precision, and the attributes and format items which {
| |use it. |
!sbfLow 1Bumps stack pointer and checks for stack overflow. i
Table CE. Modules CE, CK, CN, and CR Read-In Keyword Block
i Function i Subroutines
1]

| Provides tables of keywords in internal
jcode, together with replacement code.

| No functional code exists in these modules.
|Refer to Appendix B for details of keyword
| tables.

L

None

T S—
e e b e

Chapter 3: Flowcharts, Tables, and Routine Directories 113

Table CI. Phase CI Read-In First Pass

13 L] L3

| |Main Processing| ‘

l Statement or Operation Type | Routine | Subroutines Used |
;| 1 ¥ |

[} Al ¥

|Controls main scan, identifies | RSTART |ASSIGN, BADST1, BEGIN, DO,]

|stat?ments, and analyzes some in | |ELSE, BUMP, END, EOP, ERROR, IF, |

|detail | |ON, POPLST, PROC, READ, SIGRVT, |

| | | STAT2, STRING, plus those |

| i | subroutines contained in modules CA|

| | |and cc]

L L 1 J

Table CIl. Phase CI Routine/Subroutine Directory

r

| Routine/Subroutine Function

L

r
|ASSIGN (CG)

|
| BADST1

BEGIN (CG)

o
[=]
2
g

DO (CG)
ELSE (CG)

END (CG)

NTRY

=
[e]
L]

ERROR (CG)
IF (CG)
ON (CG)
P

OPLST

—— D, R S A . {— —— G— —— G S G (N S - S S — - — — — — —— d—

]
8
0

;—_
5
o

RSTART

IGRVT (CG)

0

TAT2 (CG)

4]

mn
<]
[
=}

TRING (CG)

P — e S —— ——— ——— - a——

AlRecovers from failure to recognize a statement type; skips to next

Diagnoses an assignment statement.

semi-colon.

Checks the BEGIN statement and makes an entry in the first pass
stack.

Advances the input Data Pointer (DP), skips blanks, if any, forcing
source text to be read into storage as necessary.

Checks the DO statements and makes an entry in the first pass stack.

| tnstacks an IF compound statement.
|
Processes three different types of END statements; PROCEDURE-BEGIN;
DO; iterative DO.

|

| Processes ENTRY statement.

|

| Processes end-of-program marker, and returns to compiler control in
|order to load next pass. i

——— — ——— —— —— ———— — — —— — ——— — ol w—]

|Handles false starts on possible statements.

|Scans the IF statement and makes entry in first pass stack.

Diagnoses the ON statement and makes entry in first pass stack. o
I .

Removes prefix options from the text and places them in the
dictionary. |

Scans the PROCEDURE and ENTRY statement and makes an entry in the
first pass stack.

Reads source text into storage, translating it into internal code,
except for character strings; removes comments; prints source
listing and prefix options.

Controls the first pass scan. Enters statement labels into the
dictionary.

|
Scans SIGNAL and REVERT statements.

|Handles all other statements.

| statement identifier routine.

e o e coms S e ——— — a—

| Scans character strings.
i

[y
[
&

Table CL. Phase CL Read-In Second Pass

v Ll . R T 2]
| |Main Processing] |
i Statement or Operation Type | Routine | Subroutines Used |
L 3 0y 1
L v Ll

|Scans for statements handled in | SCNA | BUMP, DELAY, DSPLAY, DO, FREE, }
this pass, analyzing them in		GOTO, ITDO, LABEL, PROC, RETURN,
detail. Skips over other statements		TRTSC, plus those subroutines
		contained in modules CA and CC
L L L J
Table CL1. Phase CL Routine/Subroutine Directory

r T R]
|Routine/Subroutine| Function |
'y } 4
v T

| BUMP | Increments the input Data Pointer (DP), skipping over blanks, }
| |obtaining a new text block if necessary. |
| I
| DELAY | Processes DELAY statements. |
| |
DSPLAY	Processes DISPLAY statements.
DO	Processes DO statements.
EOP	Processes end-of-program marker, and releases control to phase CO or
	CS, or CV (CO and CS are optional phases).
FREE	Processes FREE statements.
GoTO	Processes GOTO statements.
ITDO	Processes iterative DO statements.
{ LABEL	Diagnoses LABEL attributes.
OPTION	Bandles OPTIONS attribute on PROCEDURE or ENTRY statements.
PROC (CM)	Analyzes PROCEDURE attributes and options, and completes the i
	diagnosis of PROCEDURE and ENTRY statements.
	!
RETURN	Processes RETURN statements.
	.
scNA	[Main controlling routine of this pass.
TRTSC	Skips over all other statements.
[} 1 J

Chapter 3: Flowcharts, Tables, and Routine Directories 115

Table CO. Phase CO Read-In Third Pass

r T -
| |Main Processingf
i Statement or Operation Type | Routine | Subroutines Used
b t +
IScans for DECLARE, CALL, and | SCAN2 |ATTLST, BUMP, CALLOP, DECL, DEFIND
|ALLOCATE statements. Analyzes | | DIMS, ENTRY, ENVMNT, EOP,
|syntax of attributes by calling | | GENRIC, LABEL, LIKE, USES, IVLIST,
|appropriate subroutines | |and those subroutines contained in
l } |modules CA and CC

L

Table COl. Phase CO Routine/Subroutine Directory

l--—-—-——-l-_—_‘

T
| Routine/Subroutine
L

Function j
{ATTLST |Processes an attribute list. (Recursive) }
}BDCL {Processes DECLARE or ALLOCATE statement. =
}BUMP }Advances Data Pointer (DP), obtaining new input block if necessary. :
{CALLOP (cP) =Checks CALL statements and options. !
}DECL !Processes the DECLARE and ALLOCATE statements.
}DEFIND ‘Checks the DEFINED attribute.
LINS :Examines the dimension specifications.
ENTRY |Checks the ENTRY attribute.

ENVMNT (CP)

IVLIST (CP?
|LAREL (CP)
{LIKE
|PSGUID (CP)

|
|REFER (CP)

|Removes environment information from the text and inserts it into
|the dictionary.

| Processes the end-of-program marker, and releases control.

|
| Processes the GENERIC attribute.

| Processes the INITIAL attribute.
|

|Analyzes LABEL attribute.

| Processes the LIKE attribute.

|Checks for a gualified subscripted identifier-in parenthesis. .

|Checks the REFER attribute.
:SCANZ =Scans for DECLARE, CALL, or ALLOCATE statements, moves others to. the
H |output string unaltered.
‘SCANT =Moves text to semicolon without alteration.
‘USES iDeletes the now obsolete USES and SETS attributes from text.
t

b et e e e o S — A — S . G S D G S c— S S oy T S ———— ——— — —

116

Table CS. Phase CS Read-1In Fourth Pass

g — sy

Statement or Operation Type | Routine

_-T s > v - -
|Main Processing]

I Sub!outines U
+ p— 4

|Controls main scan and identifies |SCNA
|1/0 statements for further analysisj|

| EOP, FORMAT, GET, LIST,

sed

OPEN,

| READ, TRTSC, plus those subroutines|

| | |contained in modules CA ani CC |
L —t e e e e e o v e e e e e o J
Table CS1. Phase CS routine/Subroutine Directory
r v .= |
| Rout ine/Subroutine| Function]
b — 4
| i |
EOP	Processes end-of-program marker and releases control.
	’
FORMAT (CT)	Processes the FORMAT statement and format lists.
GET (CT)	Processes GET and PUT statements.
{LIST	Processes data lists.
OPEN (CT)	Diagnoses OPEN and CLOSE statements.
READ	Checks the syntax of RECORD 1/0 statements READ, WRITE, REWRITE, and
	DELETE. This routine also checks for permissible combinations of
	these statements.
I	
sCHA	Main scan of this pass.
TRTSC	Skips over all statements other than I/0, moving them to the output
] |text.
R L |
Chapter 3: Flowcharts, Tables, and Routine Directories 117

Table CV. Phase CV Read-In Fifth Pass

¢ T T

| |Main Processingj]
| Statement or Operation Type | Routine | Subroutines Used |
1 L 4

v A T 13 _---"
Identif§es stagements for which it	SCNA	CALLIN, CHAIN, DECL3, DO3, END3,
must build chains		ENTRY3, EOP, POAl, PROC3, TRTSC,
		and those subroutines contained in
		modules CA and CC.
L I} 1 =4
Table CVl. Phase CV Routines/Subroutine Directory

T . . T 1
| Routines/Subroutinel Function |
— 4 4

T

|CALLLN (CW) |Makes up the CALL chain. 1
| |
| CHAIN | Forms chains. |
| | |
{ CHECKON |Checks the fifth pass stack for ON entry, in order to insert |
| | PROC-END statements round the ON unit. |
| |]
|DECL3 {Chains the DECLARE statement to the appropriate PROC or BEGIN [
| |statement. |
i | |
}DO3 |[Makes a stack entry for DO block. |
| | |
JEND3 |Checks the fifth pass stack. |
| .= | |
{ ENTRY3 |Makes an entry in the ENTRY chain. |
| | |
{EOP (CW) | Processes end-of-program marker, and releases control. |
i |
JILABSN (CW) |Creates pseudo-assignment statements for initial labels. (
| |
| POAl |Analyzes prefix options in greater detail. |
| | ’ |
{PCCl | Processes check lists. |
| i
| PROC3 |Makes an entry in the PROCEDURE-BEGIN chain. |
| |
| SCNA {Main controllinc routine of the pass. |
| : |
5CNZ	Extracts statement number for label entry.
TRISC	Skips over statements not required for analysis in this phase.
L ! |

118

Chart 03.

SEEBBA L1400 48080 0

'INIT!ALIZN ! ‘
Sobetubatab-tab-t

‘0.‘.0..‘.“‘. -

SEEOSBL40S 0N G SR
CREATE DICT ENT#
FOR P!

LT TR ey L 2

SheseCIete et erEsn

¢FOR NEXT PHASE *
PRI P 2 2T Tt 1

\
€000IDINEEEIEENS
$DECL PASS 2 EK$

¢SCAN DECL CHAIN®
* Y FOR ¢

MAKE El
EACH DEC VARIAB
LI T I e e 2T

\
SSESSL 14 bR ES

* ACC T
SSEFELBESEINES 00

A’
SEVEEPLEE PG RS GRS

t..:o(ﬂt--.notoot:

.

¢ CHAIN MAKING ¢

#DIC ENTRIES FOR®
NAL ENTRY :

LI TS PE T 1

u1 ‘e,
. DOES ‘s,

SEESIH2ES4 8004004
KE EWs

Smbrbobatobotabab

PROGRAM °#. YES
. COMAIN LIgE ¢ $emwanaac>$SCAN LIRE CHAIN:

#.ATTRIBUT 3L (EXEAND ALL
. . SLIKEN UcTse
, , ‘0.‘0.‘.“‘.“““
* NO
£,
J1° e, e
th‘.wca'rs ;ﬁt :Ao . "TE e EY:
*PTR. QUALIFIER.%==----—->®COPY DICT ENTRY®
IN PROGRAM. $OF ALLOCD & PTR*
LESR SQUALFD VARIABLS®
e do
<
SS9 K 1000000800 .0"‘[2.0.".....
SCONTEXT FAS T
P ey e L T T 2o ENTRIES FOR t
*SCAN TEXT. nAth-------McoNsﬂNrs USED »
SENTRY FOR COND * +IN THE PROGRAM ¥

* NAMES & FILES *
LTl i e 1Y

.000000.00000‘000

Chapter 3+ Flowcharts, Tables, and Routine Directories

Dictionary Loaical Phase Flowchart

S8000p 0000000000

‘BCD-DICT REF FE‘
~tebobebutot

-->: LHA‘!GE BCD
0

TO ‘

DICTIONARY 0
REFERENCES

onoootuoouo

o.‘a.ggonoo.oaoco
*CHECK F.

.- O-o-t—o~t-o-o-
$CHECK_VALIDITY *
* OF DICTIONARY ¢
* REI NCES b
SIEEROEIEEIS NN

.. S0090CUSIIILOISILS
‘ATTRIBUTES 1334
.. i} YES &~ %-6-#-4-s-s- P b
*.ATTRIBUTE IN ‘----—--~>‘PROC£SS hkTS [304
. PROGRAN . USES LISTS IN &
. . "l' HE DICTIONARY #
eseeassssetbotin.

[FEA LI EIT L
*ON .
Sobobobababubobud

I .
+7 ENTRIES FOR ¢
ol NS *
.“““..‘.“.0“

:‘;i;ggo ‘;;.0“‘
N *

‘ERRO%RC B

¢ ANY

. o.uoruooo‘oo'0'o
ANY .. *PICTURE

PO et P S t~t-

YES
.. IN THE ‘-------->‘CHECK VALIDITY ‘
PICTURE

CHAIN
. . OO‘.OO."‘O‘OO“‘

SEEHAGINEE AR 0NN

*CLAS:! ONSTS *
L T T R ey T

[T ETY onoouo
¢ _UNCOMMON

* .
$DINERSION Bl

DICT. ENTRIES :
too‘oon'otto”on

6800320008800 ¢
+ 28D FILMRGE FV*
SAETER ALLOGATE o > RRIENTSSOR ¢
¢ PROC OF ‘BEGIN ¢ $BASED w.nmax.zs-

ou.nguooooo-tto.
* 85

’.‘..‘.‘..‘."‘.. .“..“‘..“.‘..‘
¥,
., sPeKUseseRNstE e
«* ATR *.
«* OR XREF ¢. YES RINT ATR
: R CelE s " ARDIOR XREP |
‘.E.IEQUIR!D..‘ LISTING
“e, Lo seessereesettEee
.
L ad . sese
l *04 *0y
=>4 Bl * =>4 B1 ¢
‘... shes

Chart EG. Phase EG Overall Logic Diagram

LIy SEY YT P
. .
* INITIALIZE #
* HASH TABLE .
* L d
. .
. .

PREEIRSEERSRES

CAA.

1

BHSSIBLIARCESERN R
* INSERT LABELS *
IN HASH CHAINS,
¢ CHECKING FOR *
* MULTIPLE *
* DEFINITION .
SRR EREEREINRES

CA7 \ y
S8 SCIIS220% 0028
* L d
* SCAN *
* PROC-BEGIN *
* CHAIN *
» * shes
EEERESES PB4 E RS * *
. $ D2 *
LE 2] . *
» Ll LEEE]
* D1 *->
* *
e A’
%, CAPROC RP
D1 », SEERED2S SRS NEET SESOADISREEIRIESS
. .. . ¢ SCAN FORMAL *
¥ *. YES * GENERATE bd *PARAMETER LIST *
., PROC +#remmceenD>® ENTRY TYPE 1 #-ceeww-->* AND CREATE
.-, ot : : ¢ F.P. TYPE 1 2
Te, .n; sessssssseIen, T T I
W
: 8A
B1° . AEHISE2S 0020404 SEESFETINSSEN SRS
. ., - »
.* *. YES * CREATE . * CHAIN .
., BEGIN e#mmcemamed>® ENTRY TYPE 1 #ce—mwwc->% ENTRY TYPE 1 »
*, o . * * *
., ., * * * .
*, 8 SEES PR FAISNSR NS SESERIPE SRS SR SR
»
Ne"i
SEI *
>4 A2
* *
ey
NOTE: SEEIFIESNSR 4004
* *
GOES PHASE EP * UPDATE .
IF THERE ARE RO * MAPSTACK *
DECLARE STATEMENTS : :
LRSS R AL BERES Y
900
» -
*+ D1
L *
LI LT

TE
:--------): ENTRY TYPE 2

(AL YT T TR YY
* .

ENTRY

coesw
seew

SIS0 0000 84S

SO4SEPUISIIEIN S
. MOVE .
* _SUBROUTINES ¢
¢ INTO SCRATCH *
. CORE :
.

*
SEIBESSISEIESO SN

FEIICUTRESS RN
RELEASE

: CONTROL

S804 00000404

“on

'YPBL
SEREADUISERIIOSS S

FOR THE L4
STATEMENT LABEL
S04 05508050

sesseDSEeeNOONS
. »

* . VARIOUS .
®ecceecea->* ENTRY DICT
: ENTRIES :
BEASAFE0000 08300

S4094ES40000 00000
* DATE
MAPSTACK IN o
SCRATCH .
STORAGE :
PREIISEEE0ER0000 0

s

TYPW
*EESSF5890800000 0
* .
. SCAN .
¢ ENTRY CHAIN 3
* »

SHESEIIBI 0090008

120

GS ..

s,
NO .,
.‘ ENTRY .

: . o‘.

. ..
1 YES

L3214

. .

* D2 ¢

. .

LA X2

Chart EI. Phase EI Overall Logic Diagram
€C6S00
USSP 004000
. L[]
* SCANS .
+ SOURCE TEXT ¢
. . L2111
S49ES0ESBENENIGO N . *
¢ Bl ¢
* .
e
o o o e e e L
CCGSE ccGs2
Ssesep2ess st SENSSBINEEEEGNES
» PICk up . M
* NEXT ENTRY ¢ * CONTINUE .
¢ IN DECLARE * . M
: CHAIN : : DECLARATION :
SESPPRABIELBSS 4D SHSEEIEPSES RN S
<
.. CCFLP,C
c2” », 50(:3.'..-...‘:
.+ TEST s, b
¢ "FOR %. YES . Rgu{czqs '
FACTORED . #---=—-—->e —
SATTRIBUTES. + « BIBEECRAR o
. BHASES o
.,‘,‘ SEPESRIE PSS 400
ST FOR
i : BIT, PICTURE CCGSAT p2° e sesseDI*sE e s0 S
GEREACTER: I' NED,, ¢ BARTIALLY = ¢
POSITION .. YES PROCESS THE *
xnmstoks mt'mu., *. TEST .__-.._-_->. ATTRIBUTE o o---
mrg % LABEL . . ASSIST LATER * A
PRECISTON ofrs PHASES .
*, ¢ EI I TIPS TR YY)
NO
... ENTRY
E2 ., CESEIEICENREB NS
L% TEST "o, ® KEEP A COUNT +
.¢"_ "FOR . YES S oaneSEariE. o °
*. ENTRY OR .-—------->tPARBNTl-l§ S
+. GENERIC .+ SASSIST ACTOR!D
. . SATTRIBUTE SCAN *
., ¢ LA T2 T LA Y 1)
*“no
l.
.. 'ms-r '.. coes
.. FOR e. Mo .
., END e¥emead>® B3 &
«. BECRRE .o .
., .. s
., L®
" YES
€8GS00 ...
G2
.o TEST ‘e,
NO .*" FOR END *.
€I

Chapter 3:

Flowcharts,

Routine Directories

121

Chart EL.

ECHSKP
SN 408000040

L d
* »
¢ INITIALIZE ¢
¢ EASS CONTROL *
¢ 70 IEMEM
» L]
* *

LAAAL AT T

SCANO
ooc‘tg1o«.ttoot':
.
¢ SCAN CHAIN -
~>% OF PROCEDURE #
: STATEMENTS :
L L e Y T T T
e
S
*
. Bl .
sene
-.o
.. 5 'o
%, OF CHAIN
., .
o
. ®
* YES
1 ot;t.
-)0‘31 .
‘.ot

122

SCANY

Q_......-—--).

SIEC 24000000404

*

SCAN CHAIN
¥ DECLARE

STATEMENRTS

*
AAAAA R I I I T)

L]
END {414

‘s, NO .
.l D!CL?%ATION ‘—-------)oxu DEC!

., .
*

[Si——— }

D T

Phase EL Overall Logic Diagram

o'

C3

.¢" END__ e,
. OF CHAIN .
., »*

..

.
.®
Rl

* KO

CDCLSC

“.“Da.."."’.‘

FICR UP NEXT
Tf1ER *
%ARAfION *

IDENT

LS A2 L]

DCIDPR

PEEEEINS
DECIDE
NATURE
IDENTIFIER
[TYTTTTYY

.
»
.
.
»
.

ATLSCN
Qoottpzt

O
AL L1 L)

LRl 2 2]

XYY

Lad i 1]

sassasOe .
»

* ATTR:%UT}S IN »
‘

.ocnt.to

CDFATT
$8409G 304

* APP%Y

* FACTO

: ATTRIB s
L]

A998 89

INPATT
nnoago-
IMPL
ANC D
ATTRI

senee

05988009

*
ggurs s

*
seseRNee

FEESASRS

senne

ahaiddldd

"‘0“‘.‘

?%um

SEI22 1110

snees

CDICER
$6488J304

-
* DIC
B

K
5&3!
IDENTIFIER

ahidddd

ssene

BI040 0000

YES * *
‘---->: Bl »

Chart EP. Phase EP Overall Logic Diagram
NOTE:
INPUT FROM PHASE EG If THERE
PHSMRE ARE NO DECLARE STATEMENTS
SEESSR1 0080000009
¢ CCNDITIONALLY '
s GARLEANDS .
* NOT WANTED b
* shse
SEBV B9800 408 0 Ll *
¢ B2 *
* L4
seee
KPL20 LBPRCC EPL75 LFL1INY 1
SIEVSBL oSS SINI S .'..'32‘.‘....". *3993R3e —“.".‘. se0s0 - sdrrcnsnns
N . ; coNsTRUC . .
¢ FIRST ENTRY ¢ 0 TO DICT ‘ ENTE ES * *+ GC TC LICT ’
* t---_-_-_>t 'NTRY FO) t_---_--->‘ Typg 2 N [GOt 1] . ENTRY Fusx .
: ENTRY TYPE 1 : FIRST LABEL » Tipl NUI * : NEXT LAEEL .
.
EPEBBEEFREBVH S04 S PHEEISFINESSBNN S ."O‘...E‘:E“‘..‘ SIS PIEIINETLIINIITTS
EPLUO .,
BOSOSCLI20B0 8809 c3 -
* GO TO NEXT * R ., (211
. ENTRY IN * i *. YES ¢ *
* PROCEDURE =~ #—cem—wm ~>®, PROCEDURE .#%-w--D>% B2 *
* ENTRY CRAIN # ., R
» . ., . snee
S0P NIREBSEIRGS ., ,*
NO
1 WG
EPL600O N BN
ooc‘op1noo.-to.on n3 .. ono..;.oououu‘ DS .,
» T TE . - ..
. RE’ER! ‘ YES .* zm QOF NG GO TO WEXT ‘ "
¢ OF START OP bas *, ENTRY CHRIN ‘-——----->’ ITFM IN CHAIN '--------)‘ FRCCECURE .*
* CALL CHAIN . . .* ., B
. . ., . ., K3
sresessesssttsnes . . Teraessssansssees e
. * YES
s l L T
Ld * *

+ E1 $-> ->% B2 ¢
. . .
sose e

.., .. EPL34O B CCICEN
Bl ., aoooq,zon.o‘ttoo E3 ., EY4 ' $580eSG0s000s 0
0 ., ?C . ., «* IS *. *MAKE DIC'LIOHAR!'
.* END *, N0 ‘ D CTIONARY ‘ R4 ., < *IDENTIFIER *. NC ¢ ENTRY USING
*. OF CALL _i#eecoa——> £or 1 §mmm-me->el KNOUN leco—eeoo>e] TRULLT-NT le-<------>% DEFAULT RULLS :
‘.. CHAIN ..' : IDENTIFIER : ‘-. ‘.‘ '.F“U 'IION‘.‘ : FCR DRTA TYFF *
‘e, .8 SEOEIIIIINIRIEINS “e, .0 ‘e, e esaseseesIIErOY
* YES * YES * YES
e
l_ SEW_*
>® AL * 1
¢ Ve
e
.9, EPL360
CONT%O%HP ssznoag o .!3 c.‘ :o0otrnt oosa‘oo: :o.g.ps. .E‘.;..:
P ETIONA . . :
;ﬂmgg 3 g&ri-on;imm 20 fr i >a ERsRer s + DIETIoNARY
Te. VA{ID o b INSERT DUMMY * b EFERENCE *
. * ngz! ENCE . . *
5, . BESERFSSSB B0 00 2420890850 08000 8
* YES
EPL360 1 EPL290
29839G3498080800 % SR EGUIReEsEeese
* REPLAC] be TEXT .
: opciiomasy o >+ TGEREXT <
. EFERENCE TTTTTTT. ITEM IN o TR
. * CALL CHAIN .
Se008s0sasesteRe se0sessstonseonee
<
R311)
L4 »
¢ E1 e
. .
e

Chapter 3: Flowcharts, Tables,

and Routine Directories

123

Chart EW.

Phase EW Overall Logic Diagram

BEGN
SEEEOATesIRGREIEe
¢ INITIALIZE. ¢
* G SCRA' .
* STORAGE AND
* FIRST ITEM IN #
¢ LI CHAIN .
AL TS PSRt
aee
. .
* Bl *.>
* *
seee
FWSTAT
L R T
. »
* SAVE ACDRESS *
* CODE BYTES .
: LEVEL ETC :
stessterstseerten
CESCN \
Feenecy
‘SCAN DICTIONARY'
* FOR STRUCTURE #
: WITH SAME BCD :
T TR TR
v
.91;5'0, :tto.nzto:oontooc ootoon;oc.tctooat
* .
e e e § T e
‘.STRUCTURE." : :"""" R S Eu o
‘e, 8" O‘t.‘ttl...‘.t‘.t SEEsRINIBRRIEIRS
YES
EWNOLK . EWORDM ¥, EVWICOPY
., ., *SEsEEIsesssenssy
.4 éS ., +*1IS TEIS‘. - *
+* ORIGINAL *. NO «* ELEMENT YES *COPY STRUCTURE #
-—2%, STRUEEURE B L DIHE“SION!D ‘-———--—->' ELEMENT NT *
. DIMENS- . .. o .
¢.IONED.* ., " *
*, L.¥ ., L CEPNRREITEESEEES
YES NO
EWELTS -*. EWONDM
F1~ e, LT T T T iy
«*1S THIS*. * EXPAADS . * CALCULATE NEW ¢
+* _ELEMENT YES * . * UHB!§ CF *
‘.'DIHENSIONED P St : SCRA'IEEHHITH : : Dlginclﬁ 8“5. :
‘e, .t . * * *
.o S SIVENSIONS. b3 AR T H
NO
Euc?§¥¢0c1o"tt«otc'. e
.
togp morme § e
¢ SCRATCH =+ * o VDINERGE L
* * +IONS ¢
SEEIEESLEEGR SRS . o
*
[2 ———
EWINCE \ EWELDM
tto‘.ﬂl‘ﬂ.‘t“'.‘ SEERN[2E 000 e
* Ha§5 g ‘ COP NTRY. be
* ENTI PD TE ' *
« “PORWARD AND ‘<-—-----‘ DIHE“S%GHS IF »*
: HASH CHAINS : . :
sresesteEILEIRIIE L T T
Li21] e
. I3
. J1 4> €32 -
. . l
seee 1eee
o %, .*, WEND
J1i *, J2 *, S 0T IS 400N
+*1IS THIS* «¢IS THIS*. . GO TO *
NO .*# THE END . HE END ¢, YES * END ROUTINE ¢
~—=#%, OF A NEW ==>%. OF THE LIKE .%#~-=w~--->#% TO RELEASE .
.. STRUCTURE. ‘-. CHAIN ..‘ :SCRBTCH STORRGE:
‘e, Ce, L0 SOEENREESINOR SRS
vas ¢ Ko sees
l ¢EY *
<>¢ Al *
seee « e
- o8
. . NOTE:
ALIQQ.‘.KI."‘...‘.‘. . B
* CORRECT . s CONTROL I
: it or mEh
: ST{UCTUEB :
SESIEBRES SRS ARSS

124

I

EW2ENT

e,

RNC ot EWELDM
TIRES otootgsoootooo..o
IS .. COPY ENTRY Up o
-* THIS A *. NC FCINT o
., MAJOR ‘-------->' INTO SCRA1CH. M
¢, STRUCTURE. ¢ ALD DEFAULT o
. o * ‘ VALUES .
€, .* L L T T T LT YRS

* YES
EWHECH

ottttnb.o.ttloot. L L T P TP YT T YTy

‘BRROR EFSSAGE. ‘(
»

s
. CHANG] EAEgg

ENTRY .
.tontntnoocooc..o
‘l..
J2

e

“oe
LR

CHEIGHESEREEINS

*SCAN DIMINSION ‘
- TA !

L
'DIHENSION ENTRY‘
ontoto‘co»tovoooo

reerHye e
i, stk orer ¢
: FOR ENTRY :
I XTI IITISEL 123

seeseses
*

Ju° e,
“*Enp g '
L
DIMENSION
¢, TABLE .

* *

e’

* PUT COPY INTO ¢
* DICTICNARY. :

------ - UPDATE
L
'.O“O“.!..“OO.

e

., . *
WL a e
* *

LIIT)

Chart EY.

Phase EY Overall Logic Diagram

NOTE:
INPUT FROM PHASE EP OR
1EMEY PHASE EW (OPTIONAL)
[T ST TR P P 3 .
. *
. REVERSE *
* SPCOND FILE ¢
: POLITERS :
SERAREEINIREEIHIS
EY16 \
LR Ty eI TSI Y
* SCAN PROC ¢
* AND DECLARE o
¢ CHAINS R *
¢ _ALLOCATE .
* STATEMENTS ¢
sessEIOESIEIS
M—— 4
%, IEMEX
c1 s, $9008C20000080000
., . .
. END _OF *, YES . *
.. CHA1INS PR 2 SCAN TEXT *><
. . A * .
. " * »
., ., LAZZI SRR LRI LY]
* NO
EY1? .. %, EY14
S84 10880000800 D2 e, D3 *. SEISADUSISOIISO S
. * . . «* D.E. *. * he
¢ EXRMINE EsCﬁ be B PO{N’!’ZR *. YES .%LR X MADE*. NO * COPY *
¢ ITEN AND PICK ¢ *. CUALIFIER .%-=--e=-<>® ,FOR VAR WITH .%=ece-=-=>*VARIABLE'S D.E.®
¢ UP ATTRIBUTES } ., o *.THIS PTR .¢ : s
S495000480880004 0 Te. L0 “a, el S924080000 9040000
* NO * YES
]' <
EY21 B
SEEOSE1 000800004 E2 .. SsessEIssasest0s
¢ IF ITEM 1S *
STRUCTURE, CHECK NO .® END .. ® REPLACE PTR *
DESCRIPTION IN --=#%, OF TEXT _. ¢ AND VARIABLE *
* ALLOCATE Hs'l'ﬁ * ., .® *IN TEXT BY D.R.¢
¢ RATION ¢ ., . . *
289804900000 00000 s, e B0460000900080009
¢ YES
l seee
SFA_*
->% A2
. .
Ty
DICBLD \
SH9SOF1040808080 4 NOTE:
:EMRY %: ggc; : D ICTIONARY ENTRY
+.E. =
* 1TEN, COPYISG * D.E. = gIC%%ONA%Y REFERENCE
SATTRIEBUTES FROM?*
ECLARATION ¢
T I T Y P T
VEST
$4080G1 RS04 990
SO et
— ssgc ’%n .
+ CECLARATION *
shseetisnee

Chapter 3: Flowcharts, Tables, and Routine Directories

125

Chart FA.

126

CE]Z
LT ST IITI Y

MOVE _BYTE

FROM_INPUT

OUTPUT AREAS
I T TR Y 2]

snsaae

[
.
.
.
*
.
.

sses

. .

o P1 s>
.

%“O‘B1t‘.t.t.‘.t
. ou' »
* TEXT POINTER *
b CALL .
: CENDTS :
SRR ICENIEEIEIIRE

CE30
S2408CLES00000 080
. .

* _BUMP

NPUT
: TEXT INTER

. . -
SECAEOIBNNINESESS

CEINT
SesePLeeetnntes

ROUTINE

- *
- *
¢ CALL CECON ¢
s CBBksTRws -
* *
L .
SERISESIRENEN B SN S

CEISUR
SESHO 1‘0‘0..‘0.0

. VE_S

+ AND BINARY
: CONSTA
-
*

LYY YY)

TO OUTPUT
SEESIRISISEBRINS

MACIRALSS il I

CLEAR FLAGS :

M BRACKET COUNT :
L T T Y

CESMCL
t.
o
.

CEKPRC
teseegiearsnsanee
0 UPDATE 5 .
‘COUHT AND SKIP *
* OVER CHAINS :

.
SO EEPRRENGEC LS

[e,

LEMFA

CE300
[aiedd KA LI

LA AR T T Y

CEKEY
“QO.FZ‘O...'..!.
OPICK LA WORD*

AND EXECUTE ¢

* *
: TRANS!

-8
rd
it

-
seses

CEDWAX
DI A St
* TE. oM
INPUT TO OUTPUT
¢ TL. IL ¢
:= SIGN IS FDUND:
SHENSRGEELEEISRSS

CEKPFR
ShEERH20 N 00N

* .
¢ GO TO PICTURE *
* ROUTINE
: INIEMFE)
92040 ENSREES

CERDCL
:0..0320.".0...0

*
:REMOVE SN. ETC :
: OUTPUT TEXT :

SEINRENNNTIRENGLS

>
SHE0IK20 4B 0Nty
. .
* SKIP INPUT .
* POINTER TO .
: SEMICOLON :
L T T R TR PR TR

e

L *

* Bl o

- *

seee

Phase FA Overall Logic Diagram

CE2L
sessa seesrorsye
*SAVE 24D LEVEL ¢
‘COD: BYTE THAT

FOLLOWS
: SET_2ND LEVEL

ERESREBERSSIS IS S

conae

sesssiiletnese s
SUBSCRIPTS
‘TO END OF
QUALIFIED
sasssssseenrsetee

srane
snnae

‘ “JB.“‘..“O.
»
*
* INPUT POINTER +
¢+ TOVER CHALW ¢
SRR ESOERINSN

CEKEOB
Ootton;oooot'ooo

GET_ NEXT

. BLOCK

: IN CHAIN
tesstsettastanne

.
*
.
.
.
.
.

.,
—ee>e confERTOAL |

CEBNK
SESRETUSEINSSN S EY
VALID DICT *

LA T R T 2T L

.
Gu
.‘ Xﬁ

DECLARATION

.,
. NO

.ototuuca
. IDbNTIElBk :
> !

ooo.tn

SsessssesIRErINLSE

CEKIDC

oooooan'ooooouaoo

.
' UP“ATL BLOCK #
. QUNT *
- L d
* .
. .

ERISIIBEEIAS

CEKEQP

3
.
.
: ARD SCRATCH :
20000 RENNEONINEIY
ssre
SFE *
=>¢ Al *
. .

eree

‘-—--—---)0

$ e
.

CELP, CLAP
o.ooopstooooooooo
*FOR {

FOR ReDUCE .
‘ BRACKET COUNT ‘

ooooo.o-.oo‘.ooto

CE.CN
(LA AUHA LRI T R Y
. .
GO Ty SCAN .
DICTICNARY :
. .
seetsssese .

* STATEHNENT
'NUMBER MOVE S
‘ ETC T
.O.‘..."Ot‘.t.t

¢
h".'.aﬁ"““’.tt
'Mov: BLOCK LrVL~
* COLUT AND
turﬂn rc G/P M o
Ko

1Lt
‘LONUITI CCHO.
‘OOO‘OOO..'...O

CENL|

otoooottw
. NEW M
* 7T kT BLYCK, ¢
. Lntck TEXT M
¢ HUT O .
. *ﬁhd BLOU| .
TR IY Y X T YY)

Chart FE.

Phase FE Overall Logic Diagram

(114
. L
. A2 »
. *
he s
<
CE30
:O.‘.,\z‘.."‘...:
» BUMP .
¢ INPUT POINTER ¢
s BY 1 :
SESBBSOEPENESRS AT I TS L)
3
R KPRC l
Bl ., S49SSB20004RN0ENS SeeespIetseesnsee
+""pRoc OR''+. YES e * INPUT POINTER +
. BEGIN SR 5 4 ournms ——ee >s NP .
. .. » * STATENENT ¢
., N . L] * *
., '}.{0 S0P OESEROIS P22 0E2E RIS RSN S
v
RA CEKEND
c1 ., cooooczt‘o.ooouot
.. .. SMOVE STA'
.. * YES * TG OUTRUT,
., END O_—-—-——-).!NSERTING L MD.------—~--—-—--->
. .. C OF CONTRIN-
. .- + € ShcSionk
., . S50 SER IS G0
No
‘
CEKON
D], 464D 24%4 4040000
. $MOVE STATEMENT $
o ogxggézkr T E >4 S INSERTING L' moo
*. STATEMENT. ¢ . 4 C AFTER IDENT $ 3
.. .. S68EIE SR NNNER
NO
z
R CEID ... CEPFDR
‘51 o.‘ :no-gzuun.": E3 ' :uugunnuon:
. . YES * SCAN .) y s, NO . MAKE .
. IDENTIFIER 'i0foeem—u>® DICTIONARY $ec-coce>e’ FOUND i o-eo—-->s DICRIONARY +
. ENTRY .
., ® . * ., Al * *
-« = SEESAEEENEEEBI0S * SESUIS SR 00D S0
No YES
<
)’
... CEDDRE
.Pl .. :.‘."2....0.9‘.: ..0“!‘}.“...‘.‘.‘FH‘..‘."..'
.+" DICT e YES UPDATE » ' : % MOVE pICT REF *
.l kP .-..._..-__>- INPUT POINTER ® . mpw RoTuTER $ommncaou>$TO OUTPUT TEXT #---
.Y . OVER REF ¢ OVER BCD ¢ A A
..".:QZ SESPEH NN ESEEES O RES SRS EIE S .‘.‘6‘.‘.‘.‘..‘..
L)
... CELP 1 CE32
.(;1 ., G2" s, :onoa;ououou: :to“qunonnou
¢ LEl ‘e, YES RECEDING ¢, YES NSERT . * _ INSERT
«. BRACKET --------».nxc'r REP FOR :*¢oooe—-c->> SOBSCRIPT & * PUNCTION OR 0---
‘e '. i RA '.0 M (ER_IN : : PSE VAR
‘e, .o ‘e, o SEEEIEIRIHCNNERE P T T TP T T 2
* NO *
2988
* .
-3¢ A2 *
* .
*Eee
RS CEKEOP ..
Rl ..‘ H2 ‘,. :‘l‘tﬂ)t..‘.‘.“:
. “e. ¥ES . “e. ¥ES . START *
. EOP P St FPIRST O-..----..-)O or n p LE ¢
., o® ., .. .
. o ., . o .
*, . *, * OSSOSO S S SIS S
. RO * NO
l ‘...‘
14 -
e >. A2 .
stes
s A2 ¢
..'.‘ *e * L
cone J2* ooooo.: :notgaitco '-.0‘
VAKE INCLUDE *
~cm DICT :my‘-_----...» 5 AR us-r -
: it
00..‘...'. 40090
:‘0.:
‘Fiit
L

Chapter 3: Flowcharts, Tables, and Routine Directories 127

Chart FI. Phase FI Overall Logic Diagram
*80 stee
* * * L]
* Az * * A3
L] * * *
88 ‘e
:‘.;;2%;;.;;;‘..: cns?&!.;%z;;“..;“: cm?£§.'A30“ﬁ“..“
o LO B * »
e SN G ol SR P N
¢ FIRST INPUT - NCH $<mmmmmmsy TEXT POINTER 3
. BLOCK . . * teee
R AT T YT LT] LA T RT3 R4 000 800080008 . .
ol
AXX 1]
[
RR [.. ‘ ...
B2 ., EDREF B3 ., CECMBK * . CEJI.JI‘AI:"ES.\.I.”..".
.» ., I8 e 1 e, .
80e:® 15 11 00 Tie¥ES >e! xz!uongwcoro"‘no o0 LEVEL NBORE -+ 23 >% SCANBOINTER
e e . JRLi-re e Y P et M
., .t #OK R PORMAT® +., TERO .o . BY 3 .
. . - - . .
., .0 s, ., ¢ V2030000940000 80 0
. *YEs NO
490
* *
.c1° 'o,' :!to‘cz;ot.g.to: cmﬂetigatno‘;ttoto :;;;:‘gu.oooo;;ooo : A2 :
. . TRANSLA' . ON L d LATE B E * "o
47 18 1T e, . BYTE . SDEDENDIRG, WHBT- * AND
*. REYWORD _.®—ccooo—u>s ECUTE ¢ *RER -nums% N EXECUTE *
.. .. RELEVA . * ""OR OUT O * RELEVANT »
.. .. * TRANSPER ¢ + KNOWN n.ocxs . * * LYY
, ¥ {11 LRSI T AR TY) L4 *
NO ¢ LS5 v
* *
shos
y A’
.. ... CERFMT _ e,
D1 *, D3 ., D4 *, se9saDSESee0008 40
.. lugwr . seee +% VALID . 3 SUEERRO
. tN ot ane o' mror Le >e." OR'LAEEL ebC S
tpmzmns!st *een e, o . VARIABLE .+ 777 spuMNY nvsazncn' T
“e, o0f ‘o, 0" csasssrsassssenss
+"YES *'YES *'YES
| >l
."“
c“’....‘nl.‘....’... : BS :
s FOR (BUMP he 12237
CK| UNT, *
$ FOR) REDUCE %
: .
CEESRISRSSINNEN NS
CEKSN CEKON
SENEIGL1 IS :“..Gz“...‘.‘f:
: wghite, by
4 REST OF ENTRY : s ¢ CONDITION :
R IR I A4 T 2122 2 21 9029822404000 9 !
CcEP! CcEl
c“’s;’nmn"unn ggenuznnnnu c“i‘."i..a, CEREND, ‘02..}]5.0&00.0‘0‘
s iE e * urggﬁ BLOCK ¢ UPDATE BLOCK
* ALL FLAG! * _ UPDN . s UPDATE . EVEL ARD QOURT AND. o
* CLEAR ERA . . . * BLOCK LEVEL * s b S *
s couNT. . 4 AND counr % + TAND cOUNT ¢ +uMB EiIa0 Erc. H s LENGTH OF 3
PERE SRS EEREN4R L2080 405900 004 % P04 0000 0
(221
£l *
l * A3 <~
. +
CEFNMK, senn
CEDDGL : CEISUB CEPSME' _ .o, l
bbb bbddd P89 D L[R2 111121 J ., ‘..OQJSQ bt bd
S ol LNk s e o} 2 b o vl e yms SCRAEE LURCHEGN
*
: VAR 3 . . * ps 220110 BTONS au.c--------» OR PSEUDO-VAR ¢
BY P psiuno VAR $ a cBhemamr 3 et 17 B, CONVER TO PUNCTION 3
SHEVRSAVSISBONS Y S PRSE 4080004 * . VS90S 42000380884 %
o0
- »
* A3 *<-
» *
-;o. l NO
.. ... CEKEO! ..
CEFILE ..+, CEDICK .. ks e,
o *rulS 2 *te. wo o IR .. N ‘s
. BIENTRY Tleno...) lDERIRED OR A . it *. LAST EOP _.»
':" - FORNAL pmm ‘e .
‘e, .o° ‘s, .8 ‘e, el
o tes I noo‘ \'Eg..
l . * l *
> . ps » ->~F§2 .
see s .

128

Chart FK. Phase FK Overall Logic Diagram
ssee
. *
« Al e
. L]
e
GETSCR A
SECEER 20502550044 $sesspJe00an0 b
$ GET SCRATCH ¢ 1SEAN. AS;RE%I{:’E H
¢ INITIALIZE #ee-—ewwo>® _ FOR HEX *
s TCONSTANT * REFERENCE RO
. C * ¢ "SETS ENTRY *
SIS 240000000 SE00884000800885 ¢
. NDFO
B3 . EL A TR T I 2 1)
.. .. . RELEASE .
.+ END e, YES » GRATC
., F #ecieeee=>* STORAGE. PO
*. AREA .+ . RELEA .
., .’ .) .
., € CPB0E SR04 R0
NO
s
* »
* C3 >
- *
s e
FO2
S600MCINEREREIESS
* 8] L d
¢ orTidmRy s
. ENTRY 3
EER LIRS 221122]
! L]
03" e, uoupunncuuo onngsouounu
.+ END OF ¢, YE $COUSTANTS LIST &
., LIST ’--E-----). !g'rﬁlfns .-----—_-). g TACK L]
. . . ANDC mg{ IN ENTAY
., . ¢ IN SETS
., .* ..‘..‘....“.....‘.0..'.0.
L]
wo (211
. .
-3¢ A ¢
. L]
*ee
... CESCN -, CEIDLP
E3 ., 50 :o.-ogsa‘ooo.tooo
® . .
. ., %{E * SCAN FOR -
#. IDENTIFIER _.#%cecmeaaa>é QUALI D ‘-------->O P .
<, o ot % QUALIFICATION o
R “e. Lo TTTTITYTIY
]' NC .
.., CENQUL -
SESSSF 200000000 F3 ., SSOSFUes0s¢ 080 e
PY, . .
* FLAG BIT * YES .+
. N SETS e -=%. ASTERISK .+ * HASH BCD .
. RY . ., R . .
¢ BUMPS BTR ¢
A T T I I T Y) , L& SS90 ECRR RS
NO
CONPRO ...
ouotczonnn”o 53 ., "onqno--tn"ou
:]g'ggg ‘ YES .s° MAL *. ‘ SCAN HASH ‘
s SONOF tce---tES, Z gﬁ%ﬁm . ¢ CHAIN SAME 3
§ CONSTANT - : .
LA AR T TI L 1 1) ., ,‘. PS8 050968¢00400 4
NO
...
unogzo--o.nno: .Hq ., :onouso“n"u:
- .
. * . . ERROR, .
. ﬁoﬁ . . FOUND ———Dt .
: TERMINATE : ‘.‘ ..‘ : CIAGNOSTIC :
264006 EGE S0 * * 2884840008000
*“Ygs
(111}
.
-)‘ [ok } .
>
l out
. ..
seeseJiobsssssees J2° Egno.nuoootnot J4 » 2884500000 00000
. . o23upars . INSERT L% KNOWN e, . .
. ACK . Low ONSTAM “e. HIGH Ns'ra N ' 34 ATssgl g ERROR. .
. Y [LRt 4 H!'ﬂl NBX’I‘ P * SLOT I TACK *—-. *.OF & - 3 .
. DOWN_ONE . * FOLLOWING ¢, ARATION . DIAGNOSTIC .
. LACE * .. ¢ CURRENT ENTRY
PEESS00¢SENBESES ' S¢S EEEE RSO SO0 S ., .0 SOEC G ¢SSP 00400
" SAME ‘0.". * YES
*C3
. .
s 608
- .
POERR2 s C3e
$¢8¢¢K2408000000¢ S4SesKise00see 000 * L]
e SOURCE . . ERT . s00e
. . . ERROR. . . ngcnomv .
¢ C3 #Caeus HR&%‘E . . EFERENCE *
. . * DIAGNOSTIC * * 1N SETS .
s * L *
PSS EEBASISOSSE GO LI I T X1 L]
seee
* .
*C3
. *
seae

Chapter 3: Flowcharts, Tables,

and Routine Directories

129

.
Chart FO. Phase FO Overall Logic Diagram
... HOMOVE R .
Al ., SEEEIN24 40000800 Al ., LY *.
NEED : : '.‘ °RO . N . ., C
. . PROC *. NC . ..
.l ——>% 3 P — ~==>%, CR BEGIN .#—Sceeeoo N : P YU
;TEXT BE . . SCAN TEXT M > ..CR BEGIN N .)'A . (1 . . >
., .. . * ., .. ., .t
., . Ly Y T YT
YES A * YES * YES
o o o 0 e e
\’ 14 Q3 v
.....Bl.——.‘...“. ".“Ba""".‘.‘ SRESMESSEOSIRRE S
: ..‘. . R‘l %ODIET . MAKE CIC NT .
ENT R _EACH #* *M CICT.ENTRY®
. SCAN TEXT t<--..-o Bl t e ——————— DICAELED - s FOR EREFIX *
* CONDITION . * CHANGE BYTE ¢
* oooo * PREFIX *
EEAL X 22 1) .""". SESIPICRORIINISEROETS LA R TR R A R TR 2]
. FKMVIT P ot
c1 *, ““‘Cz....‘..‘.‘ .‘OO.CBOOQO“.... Cu .,
.+ .. b MAKE DICT ot . cree
4 PROC *, YES * SAVE DICT REF ENTRY FOR_EACH ‘ CHECK $. WC * *
.. OR e¥eceemwea>*0F ENTRY TYPE 10-- ----- ->% DISABLED ‘--------)‘ OR NOCUECK .%--=_D>% GU »
‘- BEGIN .‘ . CONDITION *. L18T .* .
0 * - snee
‘, .' SEPXRSEABERINISRN S EAZ AT ALY RS Y .,
+ WO YES
< -—
su‘ Ce, 't.ooa5not’tottot
LIST ‘e YES MAKL LhBLL ¢
N ITEM = LABEL .#ececccaac >' VARIlBlh BCL ¢
VARIAELE g DICT ENTRY :
‘. SIPOSPE2 N30 808009
lKJ
... LABCD -t
El ‘.‘ ‘..“Ez".“.‘... :.O'.Eu. “‘.“.: .EE) .,
o “e. YES ‘HAKB DICT BmﬂY‘ . MAKE * «* END OF
.. END T “R FIX * * CH=-CCNDITION #-—ce--o -, LIST
‘o . CHANGE B 'E : : DICT ENTRY * ’.‘ o
P DT T T T costraessataneae : .
NO * VES
o8
. .
->% G4 *
» *
A’ *eEs
FEPRQOC ., MVSIG ot BEFCHL
F1 ., 000005200..000;:: F3 *, (AL TATET ST T 2] SS9 8F 3 "Ott'l.
o* ., * . ., * .
. ON, . ‘SCAN AUTO CHI\IN‘ * ENTRY *. NC *MARE DICT_ENTRYs® 'HAKE CHECK 1151"
‘. SIGN‘ .'----*---) FOR ENTRY FOR #c—cceao.b%, PRESENT e #emmmea—o>* FOR CONDITION * DICT ENTR
OR nmﬁ'{. *THIS CONDITION ‘ ‘. ‘-‘ : : ’
"o, .0 t"t‘....‘tto'#o. ‘e, 0" SEEEREIESENONEREE o.cg.oo;ot..ooo‘n
* YES
| >i<
o, FPO10 .t
G1 *, t.o.ocgtn...anno SEGUIIEOIEINS LS
* ., «* _FIRST E . » (11T
‘H%EII.T!‘A‘%AY..‘YBS >, ETATEIIQEQI'?LFOI‘!.‘YE >: rS)ngND“%IvliE : >. STAT, KEE'I‘ TO :): Bl :
‘ASSIGNHLNT. - ARRAY - OR ARRAY % 3 OUTBUT TEXT ¢ A e, 4
R R BEISIISEI6S N0 CEEIRERIIIIRRIBSS
*+ NO shas
* L4
s GU
» N
> rene
Vv
H1® s, SEsesIebetrtenny
.® . *MOVE STATEMENT, *
" BROcRAM oelES s REVIOUS &
e, o : $INITIAL STATEMTS
‘o, L0 sessshteeRReItEES
* NO 1980
l cpg .
o Ale
.
.
BE’I§¥0031toooo.toto
M MOVE 0
* STATEMENT b4
*+ OQOUTPUT TE :
P T T Y T

130

e Chart FQ.

Sesep1ssss0s00s
13 13

Phase FQ Overall Logic Diagram

: FQB1 :
5600889800000 e
* *
s B2 ¢
. *
s4sse
CYTABL FNT
SR EIBLeSsERGRe .“E;gg;.;i‘;;.‘: t;;a;sa;‘;;;;‘;;'
* . 'URE ¢
SINITIALIZE AND ¢ ¢ CALCULATE _ ¢ ¢ CHARACTER. ¢
¢ PICK UP START $------ ——>¢POSITION CE KEY$--wo—a-->® CALCULME
¢ oromN g 1 SercTome mhbLe + + OGoE"Eyres.
9040808 * ‘l“ stssessr e “.EQEEOE' E%‘.“
* »
* B2 ¢
. *
Ll
CYNINE CYsppM cw
SS4eeF1 o800t s SEGGEF 24080800008 SESEIFIos 0000004
M . * PROCESSES ¢
Poopme L sk 0 CREE G
: CHI{A‘.‘I‘! 9 : : S‘}g.b : : CHARACTER V :
e e SRS EREESNS SIS
CYRO"Q‘GI.O..!..‘.' Cchge’.Gz.’..‘..‘.. cx BEESSGI* 44008000
* * ¢ PROCESSES * . *
+ TROGeEES : $ CHARACTERS + $ CHARACTERs &
: CHRRRCTER K : : CR, DB : : Bes :
L d * . B4 INIEEETRE S
CYGtOOQOnI‘C'OOOOOO: C‘lsg‘.‘_n‘ : C!S?EH Hise ..
L d
¢ PROCESSES ¢ ¢ PROCESSES » + PROCESSES o
¢ PICTURE = ¢ * PICTURE _ * ¢ _PICTURE ¢
* CHARACTER G ¢ CHARACTERS 6,7 * *CHARACTERS B,H *
SRS BB IERSSR00S SEEEA05000 000440 SEEENAER AN RN S
CYEK .. CYENDD
‘Jl .,. :..OQJ?.‘O“;..‘: ‘O."Ja...'.'.":
¢’ IS THIS ¢, NO ¢PICTURE_LENGTH * #END QP PICTURE *
‘. STERLING _.#-ce-—-——>¢ AND PRECISION * CHAIN .
+.PICTURE .+ 2 ARE CORRECT 3 : :
.., ... SEUSERSE 2080834 RIS LI A LA T 2]
*"yes
'
* *
* B2
SEEEAK18600800 008 .
* 0 UGR * e st PSSR S080 604
SAGAIN, CHECKINGS s e . .
¢ INDIVIDUAL $--—->* B2 ¢ . FTA2 .
* FIELDS - . » . .
- * 908 LRI AT 22 1]
SES0EES B IENOISN

Chapter 3: Flowcharts,

s =D

BY’ ".‘
.¢" EXECUGTE '*.
: AREROBRIATE [o---|---
,ROUTINE .
. L
*
CYCPBS
SS9 FYss0088000s
*+ PROCESSES *
* PICTURE .
¢ CHARACTERS ¢
: « ¢+ /7 B :
S0P SERSEOES e Y
cyz
CESEEGUSESYISESIS
* *
¢ PROCESSES *
. PICTURE .
* CHARACTER 2 3
AT T IR R 2T)
CYSTM
Se6sHU IS INR NS
*
! A PROCESSES ¢
s CHARACTER H ¢
FESEFSERRTIBEIEN S
Tables,

CYE
B06SFSe000s0s e

. .
* .
* FRCCESSES ~ ¢
. PICTURE .
: CHARACTER E :
060000800000 00¢
S5898G5000000000 9
04 .
P
: CHA{ CTER Y :
SE90080804000800 0
YP
S80S SE0 00000084
Ld *
: Pgoc:gglzzs :
: cnamnn ¥ :
S0 HP00R2S 000804

and Routine Directories

131

s .
Chart FT. Phase FT Overall Logic Diagram
C1
Sssssp20 000N
. .
e SCANS .
* SECOND FILE *
* -
. .
EATTEIT RIS T ITT Y]
> <
AC2 . F3
B ., BT Je 00NN
«#% TEST . * OINT *
+2 SECOND ex1E e s CICTIONARY +
* ¢ STATEMENT. * ¢ ENTRY AT THE *
$MARKER. * * TATEMENT
. o * R TP T T P T T T T
* NO
...
c2” e,
.. ..
NO .»* TEST .
---%, FOR END OF .*
. TEXT .
., ..
, .
* YES
eee
* -
* D2 +->
. *
ey
B1Aa
S92 29 834000
. L]
* *
:DICTIONARY SCAN:
* *
4SRN ER NN NS
TEST FOR:
DATA VARIABLE,
STRI .4, TRVECT
EVENT VARIABLE, E2 .. b aaadd ¥ hddhbbtddd i d
uB!&AVLRIABLE. . *. * CHAIN THE *
CONSTANT . TEST *, YES * DICTIONARY s
LABEL CO"S’!‘BW, 4, DICTIONARY ,#--e——aoa >*ENTRY INTO THE *
PROC s, ENTRY . * APPROPRIATE *
ENTRE . - . CHAIN *
FILE DARAMETERS ., 'I‘IO SIS RERSEENBINIS
BUIL
BUILTIN'GENERIC,
FILE
FO -t
F3 s, SESSIFYUSSISEII L
.. .. ¢ GIVE DIMENS, +
% TEST FOR *. YES *TO BASE_ELEMENT?*
*, INHERITED .#%~===-==<>*CREATE 2ND FILE®*
*DIMENSIONS. * *STATEMENTS FOR *
. o *VARIABLE BOUNDS+*
5, % LRI r T I E R s)
*"NO
<
G2 e, SE00EGIENNRE RIS
«* TEST #, * *
. FOR El *, NO * SKIP TO HEXT *
.0F DICTIONARY.#--w——---> DICTIONARY *
. ot . ENTRY * ,
*, «® * »
Ll «® SESS LRSS e SRS
YES
Ll
U
->¢ Bl *
. aees
EE 1] - -
* D2 ¢
. .
s

132

Chart FV.

0
esssepIssEsesEEe

REVERSE
SECOND FILE

POINTERS
PIESEISRSENGEERES

snene
ssaee

9
0‘00.(:1‘0.0..“0.

Phase FV Overall Logic Diagram

. SCRAT .
* STORAGE AND *
* PICK UP START *
. OF TEXT :
“sesasessees
FV10
I AR T TP TS
. .
. IDENTIFY .
-2 TEXT ITEM <
* : I\ A
.
ssEssEEEIRIEERSS
NO
.. DEFTST o DEFMOV
E1 .., E2 L PRI ETI TR S
.., * *
4 *. YE - *DYNAMICALLY*. YES . ADD BASE .
. DICT. REF ,®ewoc——oD>, DEFINED B > REFERENCE *
., .* ., .* * TO OUTPUT *
., . . o * *
. . . ssesssesannenenes
+"NO .
ot 18
[$HHIE2e 0t e eraan
.* ., AN
" ¢, YES ALLOCATE LIST ¢
*. ALLOCATE -‘--—----->‘HAKING BPmTE‘<---~--—--—-—--—
., L * STATEMENT FOR ¢
., .. M e
. . LT T T T T Y T
* NO
NO
DATCPY ..
EREERG2 b N0 0 SRS 63" e,
* ADD 2ND FILE * .* .,
‘STATENENTS FOR * .* END *. YES
EACH TTEM TO #-cocmeeod>s. OF LIST O .
UTPUT e .
SeeseEEESERIEESES Ca, e
*
'
.t 19 DATCPY
g1 e, uc;ouzooonutoo :oooo 30..;;:”‘:
Y ‘e, YES ,$0F ENTRY TYPES 3 * RETURNS
. PROC P $emeeoao->¢ ADJUST STRING *
. . 1 L . * ADD 2ND FILE ¢
. -* * * *STATEMENT TO OP*
o~ e Sessrssesenssnnes T T O
NO
[YES
.. 20 . FV3u TCPY .0,
g1 el Seeredenneeranes :‘OO.JB.O0.0‘.“O noooguoonuoc: Js e
I . o .
. ., YES PICK UP * AUTO * SFILE STATEMENT: END *
.l BEGIN PR -—)‘ ENTRY TYP! 1 $ommacaD>e C N FOR '--------)‘FOR VA'!%ABI.B TO‘—*------>. CF CHAIN
., .* * * BLOCK * ., o
- " - ., .
“e, L% eersesscttrereen sEssssssEnssT e Crecsssessrrasses oot
* NC A NO
L
K1 e,
.,
. ¢, YES
—— EOP L e,
‘e . l
. .e
ssens
*FX =
A

Chapter 3: Flowcharts, Tables,

T

and Routine Directories

133

Chart

134

. .
FX. Phase FX Overall Logic Diagram
L YL LTS
. D IEMFY.
* GET SCRATCH ¢
* STORAGE AND ¢
*TEXT BLOCK FOR *
SORT TABLE .
I T T T T
<
FX0000 .,
Se4esB2etserrsnry ‘B%IL ., Fxogﬁgoosuootoooooto
. . . .
* SCAN STATIC * .*ATTRIBUTE, *. NO * : *
* CHAIN $ecmeeeo>®COMPILER LABEL. ¢-—e-ew->® SORT EWTRY * e
* * ON CONDITION#* * . . .
» * *,NAME .* - . ., e
A4S B 0000040 ., . SERESFIEIISSROE S R 1
/l\ I YES I p 41
FX0100
BA0eeC200ssb00 000
*
$SCAN PROC-BEGIN®*
* CHAIN -
. .
* .
SI004E0EEREIENNIS
YES
. ot FX0120 ot
D2 . D3 SeessaDULEENEIN I DS '
. . .* * .
. END *, NO * ANY . NO *SCAN AUTOMATIC * .* N ..
I oF D e >%. PARAMETERS . #—=-—-—mc! >e CHAIN P > g .
. CHAIN .» . . A * *. CHAIN .+
. .. PR » . .
. o « . SV EFEEEBENINGY . .0
* YES * YES A * NO
sane
. .
* E2 %> J' J,
. LI T2 —
e
FX0170 FX0101 .,
SEESRE24NN000NRNS SESERETIRSNRN RIS ES
2SCAN CONTROLLEDS : SORT : £S .+ BCDo ON' s
* CHAIN . ¢ PARAMETERS #$-----d b mmmmmewoene-o%. CCNDITION .*
: : : : ‘EQTRY TYPE.'
PAAEEEERERNIRNES FERISEEIERINRRANS el e
* 20
FX0250 o' o £X0010 .
SERSRFLIIRISINNS F2° e, F3' e, SesssFustesstssen SIOPEFSEEs040 0004
. *, » . . .
- YES .+ END OF *. NO « *ALLOCATION *, NO be . * .
-->% SCAN TEXT $<-----—=sl CHAIN . #-------->% SORT ENTRY % [l-—-o- + SORT ENTRY 3
P Py ‘e, o - . . .
PEITTTT T R R T P Y PR . .* P T T T T T SeebssIsERIILRES
Ty
- »
* G2 %o
*
senn “ene
.t FXPRNT FXBCD
Gl e, SEIEG2ERRNNNNNNSE s24G3eserssesens
. .
.* END OF *, YES * * * PRINT BCD *
.. TEXT . ~>#SCAN SORT CHAIN#ewe——co=> AND DCL NO.
*, . * * * (IF ANY) L4
.. o . * sens
*, e SEEEIERIREEIASANS SEEAANEREIRRRN S . .
*"No ¢ G2 *
sese
A
] o
ot 3.‘. H“.‘.. us' e
H: . *eSEIH2 RN ENDS H
g 1 ., * ADD STATEMENT # * .. " .,
NO .* *, YES *NUMBER '§0 CHAIN® . ATTR . NO XREF END OF ..
<-~#¢, DICT REF P H e FOR THIS DI b .. LISTING S —a>®, LISTING SORT .
‘.. ..‘ ENTRY : REQD . EQD . CHAIN .+
‘e, . SEEESESEEEIESIONE Ce, L0 . o ‘e, .
. * YES * YES * YES
l. sees
GA_
>¢ Al *
saes
! REFMOV
N L e e] T30 0s 00000000 SeeJUIERSESESR0E
* AND, IF ITEM * SCAN CHAIN OF
* IS BASED, TO ¢ * PRINT * * STATEMENT .
*CHAIN FOR DICT * ATTRIBUTES ———— NUMBERS AND ————
: N * PRINT THEM ¢
RS RERSEANGREE E0ARNEIERIRRINY esseesssstasnane

Table ED. Phase ED, Initialization

P

8 v * v

| {Main Processingj

| Statement or Operation Type | Routine | Subroutines Used

t 4 L .)

1 3 T L

|Sets up routines in scratch storage|SETUP | None

| for phase EL }

i L L

Takle ED1. Phase ED Routine/Subroutine Directory

v 1
| Routine/Subroutine| Function |
g 1 {
| EVENT | |
| TASK B |
| CELL |Routines for processing declared attributes. These set up |
| BASED |information in the attribute collection area of scratch core, |
| POINTER | for reference by CDICEN, etc., in phase EL. }
| OFFSET | |
1 L J

Table EG. Phase EG Dictionary Initialization

{]Main Processing :
1 Statement or Operation Type l Routine Subroutines Used |
IHashes lakels ECAAl 1CHASH, CBCDL2 i
[PROCEDURE—BEGIN chain ECA'I iNone
iEEGIN ECAaA iNone
EPROCEDURE ECAPROC ICANATP, CFORP
EENTRY ECMO i CANATP, CFORP
iFormal parameters ECFORP ECHASH, CBCDL2)
iAttribute list ICANATP ECAPREI, CATCHA, CATBIT, CATPIC
{Creates entry type 2 entries for ICTYPBL EENTZF, CDEFAT
|labels | |
H H L

Chapter 3: Flowcharts, Tables, and Routine Directories 135

® Table EGl. Phase EG Routine/Subroutine Directory

[Rbutine/Subroutinei Function

|caral |Scans label table and hashes labels.

=CANATP Processes attribute 1list.

:CAPROC Processes PROCEDURE statements.

| CAPRE1 Processes precision data.

| CATBIT Processes BIT attribute.

| CATCHA =Processes CHARACTER attribute.

=CATPIC |Processes PICTURE attribute.

{CAG =Scans the PROCEDURE-BEGIN chain for the relevant statements, and

. |sets bits in Dictionary entries for optimization options on
| PROCEDURE and BEGIN statements.

CAS8A | Processes BEGIN statements.

{CAlO Processes ENTRY statements.

=CBCDL2' | Traverses the hash chain looking for entries with the same BCD as
| ‘ |that just found.

=CDEFAT lCompletes data byte for entry type 2 entries by default rules.
=CFORP |Processes formal parameter lists.

=CHASH |Obtains an address in the hash table for an identifier.
}CTYPBL RCreates entry type 2 entries for labels.

EENTZF ' |Creates or copies second file statements.

}TYPW Scans ENTRY chain.

=OPTN1 (EF) {Checks containing block options, for inheritance.

{OPTNZ (EF) Processes procedure options.

=OPTN3 (EF) |Performs post processing, makes STATIC DSA decisions.

iATTRBT (EF) iProcesses POINTER, OFFSET, and AREA attributes.

b————_————_—_————_—_—_———————-———_——.—-——————_———-ﬂ-_d

136

Table FEI.

Phase EI Dictionary Declare Pass One

4 T L) -1
| |Main Processing| |
| Statement or Operation | Routine | Subroutines Used
L } 4
[3 T b |
| Scans DECLARE statement | CCGSO0 None |
'8 i R |
v T 4
| Scans text |cCGs2 | None |
! KN 3 J
¥ T T 1
| Processes structure level |CCGSCM | None |
(8 L] 1 3
T T i
|Factored attribute, left | CCFLP | CFPMCR |
| parenthesis | 1 |
b ¥ + '
| Factored attribute, right | CCFRP | None |
| parenthesis | | |
t + 4 {
|Data following DEFINED attribute | CCDEF | NEWBLK, CTXTRM |
L 1 1 4
v T T 1
| POSITION | POSIT | None |
8 i . Y 4
v T T 4
| CHRARACTER, BIT | CHABIT | CTXTRM |
i L [l y}
L 3 T T 4
| PICTURE | CATPIC | None J|
L 1 1
v T T s |
| LIKE | LIKE | None |
L) 1 i]
¥ v T 1
| KEY | KEYED | None }
[} i N L
v L3 - 1
| Dirension | CDDIMS | CTXTRM, AST, TOMENE, ERRORB |
[N L iy d
T T 1
|Precision | CDPREC | ERRNEG, SCLBIG I
b L 3 § |
1 T T 1
| INITIAL | EJINIT | CECON, EHINIT |
[i L 4
r T T 1
| INITIAL CALL | INCALL | CTXTRM |
(4 4 L d
T -T 1
fonsz'r |OFFSET | CTXTRM |
'8 i LN 4
T L} T 1
| BASED | BASED | PTVEXP !
i 1 L
T b T 1
| AREA | AREA | CTXTRM |
L L 1 J

Chapter 3: Flowcharts, Tables, and Routine Directories

137

Table EIl.

Phase EI Routine/Subroutine Directory

iRoutine/Subroutinei Function O
iAREA TProeesses AREA attribntes.

lAST Deals with the case of+* dimension bounds mixed with non -#* bounds.
BASED (ER) ﬁ:gzy point in OFFSET routine, at which second file statement is
=CATPIC Processes PICTURE attributes.

CCDEF Processes data following DEFINED attribute.

CCFLP | Processes factored attributes (left parenthesis).

CCFRP | Processes factored attributes (right parenthesis).

CCGSCM Processes structure level.

| CCGSAT Attribute routine selector.

%CCGSE Scans DECLARE chain.

=CCGSOO |Scans text.

=ccssz ' | Scans source text.

|
|CDDIMS (EJ)
|CDPREC (EJ)

|
|CECON (EH)
I

|
| CFPMCR
|
| CHABIT
|
|CSGS00

|
| CTXTRM
EHINIT (EH)

JINIT (EJ)

)

RRNEG

=

,RRORB

g =

|Processes dimension attributes.
Processes precision attributes.

Makes a dictionary entry for a constant unless one has already been
made. Returns the dictionary reference of the constant entry.

|Oobtains more storage for the factored attribute table.

|
| Processes CHARACTER and BIT attributes.

|
|Detects end of DECLARE chain.

| Tests for space in current text block and obtains new block if
| necessary. ’

| Processes the INITIAL attribute except for the initialization of
|label variables and INITIAL CALL.

| T

| Processes INITIAL attribute and LABEL with a label-constant list.

|Deals with the case of a negative precision specification.
' .
|Deals with the case of lower dimension bound declared greater than
| the upper bound.

4

\-———-—_.—-—-—-——-——-—_—_.—_————_———_————_—_————._.._.__.——_—_——-——-JI-.—-

138

Table EI1l. Phase EI Routine/Subroutine Directory (cont'd)

1) L
tRoutine/Subroutinel Function }
|r t —
I
| GENTRY Keeps a count of parentheses in GENERIC and ENTRY processing. |
| |
|INCALL (EJ) Processes INITIAL CALL attributes. |
| I
| IVROOM (EH) Checks if there is space in scratch storage for another entry. If |
| not, it makes a dictionary entry and chains it to the previous one |
| or to the C8 in text as required. |
| | : |
|IVPUTL (EH) | Places a dictionary reference in the 'initial list®' for a label |
| |constant. If the constant is not known, a dummy reference is]
| inserted. |
| I
| IVPUTC (ER) Places a dictionary reference in tne ‘'initial list' for a constant. |
| | |
|IVPUTO (EH) [Places the dictionary reference of zero in the 'initial list' for a |
| negative or imaginary replication factor. |
| |
| KEYE | Processes KEY attributes. |
| : | |
| LIKE Processes LIKE attributes. |
| |
| NEWBLK |Obtains new text block. |
| | |
|OFFSET (EH) | Processes OFFSET attributes. |
! | |
| POSIT | Processes POSITION .attributes. |
| | |
| PTVEXP (EH) |Entry point in OFFSET routine, at which secondfile statement is]
| |mace. |
| I
| SCLBIG |Deals with the case when a precision specification for fixed-point |
| |data is declared too large. |
| | |
| SECON |Creates a dictionary entry for a constant provided the appropriate |
| | entry has not been already made. |
| | I
| SETS | Processes USES and SETS attributes. |
| |
{ TOMENE |Deals with the case when the number of dimensions declared is |
| |
L J

|greater than 32.
L

Chapter 3: Flowcharts, Tables, and Routine Directories 139

Table EL. Phase EL Dictionary Declare Pass Two

[} Ll T A
i |Main Processing] |
| Statement or Operation Type | Routine | Subroutines Used |
i 1 4 4
¥ R 1 T
|Scans chain of DECLARE statements |CGENSC | CDCLSC }
[N 4 ']
) T T
| Scans each item of DECLARE | cbCcLsC | ATLSCN, BCDPR, CDFLT, CDICEN,]
| statement | | CDIMAT, DCIDPR, INTLZE, POSTPR, |
| | | SELMSK, STRPR |
b ¥ + -——
|Initializes each identifier | INTLZE | DCIDPR
|declared | | |
b 4 $ 1
| Processes factor brackets and level|DCIDPR | TEMSCN, BCDPR |
| nuwbers | | |
L 1 4 , |
v T T 1
|Scans for next level number | TEMSCN | CDATPR |
L 4 4 4
1 1 L) 1
|Processes BCD of identifier | BCDPR | BCDISB, CHASH, SELMSK |
i 3 i3 v
¥ 1] L) 1
|Hashes BCD of identifier | CHASH | None i
1 L ¥
1) i B
Scans list of attributes following |ATLSCN | CDATPR |
identifier | | i
} + 4
|Applies factored attributes | CDFATT | CDATPR |
L Y L J
1) T T : |
{Applies implicit attribute | IMPATT | None |
L 1 1 y]
r T T § 1
|Attributes controlling routine | CDATPR | CDAT40, CDAT41, CDAT42, CDATU3, |
| | | CDATU4Y4, CDATUS5, CDAT48, CDATHY,]
1	CDAT4A, CDATH4B, CDATHC, CDATUD,	
		CDAT4F, CDATS4, CDATSS, CDATS6,
		CDAT57, CDATS8, CDATS9, CDAT60,
		CDAT61, CDAT62, CDAT63, CDAT6U4,
		CDAT69, CDAT6A, CDATB4, CDATBS]
L 1 4 J

140

Table EL1l.

Phase EL Routine/Subroutine Directory

h————_—-——-————-—-———_—_———_—.————-———.—————_.——_—_————————_.————-—_.——dh-—d

{Routine/Subroutinei Function
{ATLSCN I8cans the list of attributes following the identifier.
!BCDISB |Checks for multiple declarations, etc.
}BCDPR {Processes BCD of identifier.
=CDATPR (EK) ‘Attribute controlling routine.
=CDAT40 (EK) }Processes DECIMAL attribute.
=CDATM1 (EK) %Processes BINARY attribute.
=CDATu2 (EK) %Processes FLOAT attribute.
:CDATuB (EK) :Processes FIXED attribute.
:CDATua (EK) !Processes REAL attribute.
=CDATHS (EK) =Processes COMPLEX attribute.
}CDATMG (EK) | Processes precision attributes.
=CDAT68 (EK) lProcesses VARYING attribute.
=CDATu9 (ER) | Processes PICTURE attribute.
}CDATQA (EK) | Processes BIT attribute.
{CDAT&B (EK) }Ptocesses CHARACTER attribute.
{CDAT“C (EK) :Processes FIXED DIMENSIONS attribute.
:CDATQD (EK) {Processes LABEL attribute.
ICDATQF (EK) =Processes ADJUSTABLE DIMENSIONS attribute.
{CDATSS (EK) | Processes ENTRY attribute.
=CDAT59 (EK) =Processes GENERIC attribute.
=CDAT5A (EK) {Processes BUILT-IN attribute.
}CDAT60 (EK) | Processes EXTERNAL attribute.
=CDAT61 (EK) | Processes INTERNAL attribute.
}CDAT62 (EK) | Processes AUTOMATIC attribute.
=CDAT63 (EK) | Processes STATIC attribute.
:CDAT6R (EK) }Processes CONTROLLED attribute.
{CDAT69 (ER) =Processes INITIAL attribute.
iCDATGA (EK) lProcesses LIKE attribute.
Chapter 3: Flowcharts, Tables, and Routine Directories 141

Table ELl.

Phase EL Routine/Subroutine Directory (cont'd)

inutine/Subroutinei Function 1
l'CDATﬁB (EK) {Processes DEFINED ATTRIBUTE. %l
!CDATGC (EK) =Processes ALIGNED attributes. {
!CDATGD (EK) }Processes UNALIGNED attribute. :
{CDAT70 (EK) | Processes AREA attribute. }
=CDAT88 (EK) =Processes POS attribute. :
=CDCLSC =Scans each item of DECLARE statement. :
=CDFATT (EM) lApplies factored attributes. }
;CDFLT (EM) |Applies default attributes. :
=CDICEN (EM) =Constructs dictionary entry. }
:cGENSC (EM) |Performs phase initialization and scans chain of DECLARE statements.}
=CHASH.(EM) }Hashes BCD of identifier. =
{DCIDl ‘Main scan routine. %
:DCIDPR }Processes factor brackets and level numbers. :
IECHSKP (EK) }jInitializes and passes control to Module EM. :
:IMPATT (EM) }Applies implicit attributes. :
EINTLZE |Performs initialization for each identifier declared. :
=POSTPR =Post—processor. ;
{SCANH (EM) =Scans chain of DECLARE statements. :
:SELMSK lSelects correct test mask to be initialized. :
=STRPR =Processes inheriting of dimensions in structures; ‘
iTEMSCN lScans ahead for next level number. i

142

Table EP. Phase EP Dictionary Entry III and Call

-
|Main Processing

Statement or Operation Type | Routine Subroutines Used
! :

e e s e s)
S
1]

$
Scans for PROCEDURE entries type 1 |ENTRY3
|

g z
=}
o

i
|Follows chain of ENTRY statement |EPLU4O
|entry type 1 entries from a
|PROCEDURE entry type 1
L

o o e

L T
|Examines all labels belonging to an|LBPROC
|entry type 1, constructing an entry|

|type 2 or 3, if necessary
[8

2
S
o

¥
|Follows CALL chain in text making EPL290

jdictionary entries for entry points
[N

e . o e

T

|Examines the first character of an |CDIMAT
|identifier and sets a flag

|indicating the range in which it

e e o e e e e e e e o e o e o e e v o e e i s e e e e e s e . e e o
gl &
=} =]
[] 1]

|
|1lies |
b +
|Applies default rules | CDFLT None
L 4
3 T
|Given an identifier calculates its |CHASH None
joffset in the hash table |
L ey
r t -
jconstructs a dictionary entry | CDICEN None
i d
) R
| Sets address slot to zero or the | FNDEND None
]end of the dictionary |
[1]
[] L]
|Constructs list of numbers of known|BLDST2 None
|blocks |
b :
|Built in function name | SCANBF None
L L

b e aden s ceee cadn e e e s s o s s s i s s s s, wrdoes e o s e, e e ol oo e v, el et el e . o

Chapter 3: Flowcharts, Tables, and Routine Directories 143

Table EP1. Phase EP Routine/Subroutine Directory

[R;utine/Subroutinei Function }
{BLDSTZ iConstructs list of numbers of known blocks. ___1
| CDICEN ‘Constructs dictionary entry. ‘
{CDIMAT =Sets flag for default routine. {
}CDFLT }Applies default rules. :
=CHASH =Ca1cu1ates offset in hash table for given BCD. :
| ENTRY3 :Scans ENTRY chain for PROCEDURFE statewents. }
}EPL20 :First entry in entry type 1 chain. :
!LPLHO ‘=8cans ENTRY chain for ENTRY statements type 1. {
iEPL75 {Return point from LBPROC routine. :
| EPL100 | Processes new entry label. }
{EPL29O {Scans CALL chain. :
{ EPL340 | Searches built-in function table for BCD of identifier. ‘
}EPL360 }Blanks out BCD in text. {
|EPL600 }Scans the CALL chain. }
}FNDEND }Sets address slot for label. ;
| LBPROC | Processes labels of PROCEDURE or ENTRY statements. :
=PHSINT {Initialization of phase. l
| PHSMRK {Marks later modules as 'wanted' or 'not wanted'. }
QSCANBF lchecks for built-in function name. i

144

Table EW. Phase EW Dictionary LIKE

¥ T T 1
| |Main Processing| i
| Statement or Operation Type | Routine | Subroutines Used |
| N N i I, 4
! < v T 1
|lScans LIKE chain | EWBEGN | ENCOPY, EWELDM, EWINCH, EWONDM |
L 4 4
¥ T L
|Updates hash chain for new entry | EWHSCN |None }
L 4 1
L } v L ----_4
|Calculates start of structure data |EWVART | None |
}from start of variable information | | |
i . 4 i 4
v T T 1
|Changes error entry to base element|EWCHEN | None
| - d "y d
L 3 T T 1
|{Copies dimension table entry and | EW2FNT | EWNWBK |
|second file statement { | |
L L 1 J
Table EWl. Phase EW Routine/Subroutine Directory
¥ L)
|Routines/Subroutine| Function
L L

|ALIGN (EV)
|BASED (EV)
=cnscu
:EWBEGN
{EWCHEN
{EWCOPY

|
| EWDCCY (EV)
|

‘EWELDM
}EWELTS
:EWEND
:EWERNC
:EWHSCN
=EWINCB
}EWNOLK
}EWNWBK (EV)
‘EWONDM
;gwonnm
=EWSTRT

|
| EW2FNT (EV)
L

T
|Provides correct alignment of base elements in likened structure.

|Inserts or deletes defined slot, where only one structure is based.
|scans dictionary to find entry corresponding to BCD in text.

| Scans LIKE chain.

|Changes error entry to base element.

|Copies dictionary entry into scratch storage.

|
|Copies initial dictionary entries and associated second file
| statements, etc.

jCopies entry into scratch storage with dimension data removed.
| Tests whether the likened structure is dimensioned.

|Bandles transfer of control to next .phase.

|

|Processes erroneously "likened"™ major structure.

| Updates hash chain for new entry.

| Completes entry copy and places it in dictionary.

| Tests whether original structure is dimensioned.

|Obtains new dictionary block and terminates current one in use.
|Copies entry into scratch storage, inserting dimension information.
}Processes dimension information in original structure.’

|Tests validity of likened structure.

|copies second file statement and associated dictionary reference.
1

—— — - — ———— — —— - s el s o]

b s e i e it S e, S —

Chapter 3: Flowcharts, Tables, and Routine Directories 1

45

Takle EY. Phase EY Dictionary ALLOCATE

3
|
| Statement orx Operation Type
L
r

4

T
|Main Processing

1
|]
| Routine | Subroutines Used |
1§ 1 4
T T
|Scans text for explicitly | IEMEX |EY14 }
| pointer-qualified based variables | | |
L 3 4 4
[3 v T
|Copies dictionary entries for |EY1Y | HASH, ATPROC, DICBLD, STRCPY]
explicitly qualified based 1 | 1
variables | | |
+ + .
Second file pointers. Scans | IEMEY | ATPROC, DICBLD, HASH, STRCPY |
ALLOCATE statements i | |
3 4 d
R T a1
|Completes copied dictionary entry |ATPROC with | MOVEST |
| for an allocated item | second entry | |
| |point ATPROD | i
; + + 4
|Controls ATPROC and ATPROD routines|STRCPY | ATPROC, ATPROD |
| for each member of a structure | | |
L L L J

Table EY1.

Phase EY Routine/Subroutine Directory

¥
| Routine/Subroutine

L]
| Function
s

-

DICBLD

——— — o a— —— —p—

[}

Y16

i
< =
[ST
=

g
2]
=4

EMEX

- N M
o]

t
B =
"

MOVEST (EZ)

STRCPY

[e e Gt e o S s D e P O S ot G

T
ATPROC/ATPROD (EZ) |Complete copied dictionary entry for allocated item by including

|attributes from ALLOCATE and second file statements.

|Collects attribute given for an identifier and copies its dictiomary
|entry.
|

| Processes ALLOCATE statements.
|

|Processes identifier in ALLOCATE statement.

| Processes major structures.

|Hashes BCD of identifier to obtain its dictionary reference.

|Scans text for explicitly pointer-qualified variaSles.

jCopies dictionary entries for explicitly qualified based variables.
=5cans second file, reverses pointers. Scans ALLOCATE statements.
|Copies second file statement and associated dictionary entry.

|
|Controls ATPROC and ATPROD for each member of structure.
L

e oo i o o c— — — — — —— A —— — — —— — —— — — —— et — e e

146

Table FA. Phase FA Dictionary Context

¥ R} v = b}
| |Main Processing| i
| Statement or Operation Type | Routine | Subroutines Used |
[N 4 d
r T L e "
|Scans text |CE30 | CENDTS, CETRAN |
L i 4 4
1) T T 1
|Reorders subscripts; makes |CEID | CESCN |
|dictionary entry for file and eventj | [
| variables | | |
b + + |
{1dentifies keywords | CEKYWD | CEKEND, CEKEOB, CEKEOP, CEKON, |
| | | CEKPRC, CEKSND |
1 4 [l d
1) T T a
|Scans dictionary | CESCN | CESTUC, CEYES, CFPDER, CFPDR2, |
i { | CHASH, CE3XX |
F ¢ + !
|Makes dictionary entry for | CFPDR2 | CDFLT, CDICEN, CDIMAT, CEONCK |
| variables | | |
b + + !
Scans dictionary entry for	CECON	CHASH
constants and makes new entry, if		
necessary.		
b ¢ + 4		
{	Scans PICTURE chain entry and makes	CEPICT
new entry, if necessary.	i	
L L i J
Chapter 3: Flowcharts, Tables, and Routine Directories 147

Table FAl.

Phase FA Routine/Subroutine Directory

[Rdutine/SubroutineI Function i
{CDFLT IDetermines default attributes for identifier. 1
{CDICEN | Constructs default dictionary entry for identifier. {
‘CDIMAT }Determines default scale for identifier. :
}CEBNK |Transfer point for zero or blank. }
=CECON (FB) |Scans dictionary entry for constants. :
=CEDWAX }Subscript prime text marker. {
;CEID =Reorders subscripts and makes dictionary entries for files and event}
[|variables. |
:CEINT -|Transfer point for constant routine. }
=CEISUB | Transfer point for iSUB. ‘
=CEKCEN |Transfer point for CALL to get over chain. :
‘CEKDCL ' =Removes SN from DECLARE statements. }
{CEKEND | Processes END keyword. I
=CEKEOB =Processes end-of-block marker. :
:CEKEOP aﬂandles end-of-program marker, or start of second file. :
ECEKEY {Transfer point for keyword. =
=CERIDO |Transfer point for iterative DO. %
=CEKON | Processes ON keyword. :
‘CEKPFR =Transfer point for picture format item. ‘
=CEKPRC =Processes PROCEDURE keyword. {
=CEKSN |Moves SN, etc., to output stream. {
=CEKSND }Processes start of second file statement. ;
=CERYWD =Identifies keywords. {
=CELP =Transfer point for left parenthesis. :
CENDTS |End of text block in output file routine. :
|CEONCK |Makes entry for programmer-named ON conditionm. }
CEPFDR |Makes dictionary entry for variables. l
CEPICT (FB) =3cans picture chain entry. =
CERP |Transfer point for right parenthesis. ‘
=CESCN |Scans dictionary. {
ECESMCL }Handles semicolon. :
iCESTUC iPoints at next entry in structure chain. j

148

Table FAl.

Phase FA Routine/Subroutine Directory (cont'd)

r T -
|Routine/Subroutine]| Function !
[[I
LB T -
|CETRAN |Translates keyword into transfer instruction.
| ! |
|CEYES |Compares structure levels. |
| | |
JCE2L | Transfer point for second level marker.]
| |
|CE30 |Controlling Scan of text. |
|] |
CE31	Tests for end of block.
CE32	Moves one byte to output stream.
CE300	Switches to appropriate routine.
	!
CE3XX	Compares identifier in text with entry in dictionary.
CFPDER (FB)	Makes dictionary entry for ordinary identifier.
CFPDR2 (FB)	Makes dictionary for formal parameter.
CHASH	Hashes identifier.
i	
{CHASHC	Hashes constant.
IEMFA	Initializes phase.
L 1 J	
Table FE. Phase FE Dictionary BCD to Dictionary Reference	
r a	
	Ma1n Proces31ng
Statement or Operation Type	Routine } Subroutines Used
i 1 .l 4	
3 T B} B	
{Scans text	CE30
L 4 L J	
L 8 T v b}	
Scans dictionary	CESCN
b + 4 {	
jChecks for array, function, orx	CELP
pseudo-variable if left parenthesis	
is found	
b { $ {	
Tests for end of text block	CENDTS
i L R ¥	
L) T v b	
Identifies keywords	CEKYWD
L L i1 J	
v v T b}	
Makes dictionary entry	None
i i L J
Chapter 3: Flowcharts, Tables, and Routine Directories 149

Table FEl. Phase FE Routine/Subroutine Directory

-

iRoutine/Subroutinel Function }
{CDFLT iApplies default rules. _1
| CDICEN ‘Constructs dictionary entry. {
{CDIMAT ‘Sets flag for default routine. }
| CEFNCT }Tests validity of function reference in text. l
CEKEND {Processes END keyword. =
| CEKEOB =Processes end-of-block marker. :
| CEREQP =Processes end-of-program marker, or start of second file. I
CEKIDO ‘ }Processes iterative DO keyword. {
CEKPRC }Processes PROCEDURE keyword. :
CEKYWD |Identifies keyword. =
|CELP Checks for array, function, or pséudo-variable if left parenthesis }
i : |is found. |
|CENDTS | }Tests for end of text block in output file. =
}CESCN Scans dictionary. :
| CESTUC Points at next entry in structure chain. =
{ CETRAN %Translates keyword into transfer instruction =
| CEYES | Compares structure levels. :
|{CE30 |COntrolling scan of text. :
| CE3XX Compares identifier in text with dictionary entry. {
=CFDICN (FF) Makes dictionary entry. =
=CFPDER Makes dictionary entry for statement with ordinary identifiers. :
{CFPDR2 Makes dictionary entry for formal parameters. . {
ECHASH LCalculates offset in hash table for given BCD. J

Table FI. Phase FI Dictionary Checking

{ iMain Processing }
! Statement or Opgration Type 1 Routine Subroutines Used J
[Scans text ‘ ECESTRT | CEREYW ,i
iIdentifies keywords iCEKE‘IW ECEKEOB, CEKEOP, CEKIDO, CEKSN j
iChecks GOTO statement references ICEGOTO INone E
iConverts GOTO to GOOB, if necessaryECEGOB ENone i
iChecks file references 'CEFILE iNone]
ichecks data list items for wvalidity|CEDTCK iNone i

150

Table FI1l. Phase FI Routine/Subroutine Directory

[Routine/Subroutinei Function i
viCECMBK ITests value of previous second level marker. —1
=CEDDOL =Processes function names used as control variables for DO groups. }
CEDOND IProcesses end of iterative DO groups. :
=CEDREF | Tests whether dictionary reference needs to be checked. ‘
CEDTCK Checks data list items for validity. ;
|CEFILE |Checks file references. }
CEFNMK | Processes function markers. =
CEGOB Converts GOTO to GOOB, if necessary. }
CEGOTO Checks GOTO statement references. :
CEISUB Processes iSUBs. :
=CEJUMP lBumpsiscan pointer over dictionary reference. :
CEKEND Processes END statements. l
=CEKEOB :Processes end-of-block marker. :
CEKEOP Processes end-of-program marker. ‘
CEKEYW Identifies keywords. }
=CEKIDO | Processes iterative DO keyword. %
=CEKON =Processes ON statements. %
}CEKSN Processes statement number. !
%CELRCT/CERPCT Process left and right parentheses. =
=CEOOPS Checks validity of keywords in the text. =
=CEPRBG Processes PROCEDURE and BEGIN statements. ;
:CERFMT |Processes remote format references. {
=CESMCL {Processes semicolons. :
;CESTRT lCOntrolling scan of text. i
Chapter 3: Flowcharts, Tables, and Routine Directories 151

Table FK. Phase FK Dictionary Attribute

r
i
|
L

T L)
|Main Processing|

L]
|
Statement or Operation Type | Routine Subroutines Used |
4 4
T T
|SCans attributes area for SETS | FO1A None }
|lists | |
t 1 %
| Scans SETS list |FO2 None |
L i 4 |
1) T T
| Processes constants | CONPRO | None }
L 5 1 4 3
1] 1 T
|Processes identifiers | CESCN |CESTUC, CE3XX, CHASH]
L 1 i J

Table FK1. Phase FK Routine/Subroutine Directory

iRoutine/Subroutinei Function }
{EEIDLP {SCans qualified name. i
%CENQUL Processes unqualified name. =
}CESCN |Processes identifier. :
=CESTUC Finds address of next structure in chain. }
|CE3XX Compares current BCD with BCD in hash chain. }
=CHASH Calculates offset in hash table for given BCD. =
ECMPERR |Provides termination error action. {
}CONPA | Inserts constant in ordered stack. :
{CONPRO %Processes constants. {
!ENDFO Releases control. =
=FOERR2 Diagnoses constant greater than 255. ‘
}FélA |Scans attribute tidy-up area. . %
=F02 |Scans SETS list. :
lrou Completes SETS dictionary entry. =
iGETSCR iobtains scratch storage. j

152

Table FO. Phase FO Dictionary ON

H T T - 1
| |Main Processing| |
| Statement or Operation Type | Routine | Subroutines Used |
L L 4 J
13 T T 1
|Scans input text for ON, SIGNAL, | FKMVIT | BEFTRN, CENDTS, QP |
{and REVERT statements | | 1
L 1 1 4
1 3 T T 1
|Moves second file from input text |F2 | CENDTS, BEFTRN]
|block to output text block | | |
L 3 S 4 4
v T Ll 3
| Makes dictionary entries for ON- | FKDCEN | LABCD |
|conditions found in ON, SIGNAL, and| | |
| REVERT statements | | I
L 4]l J
v T T 4
|Examines BCD of file entries |MVSIG | CENDTS |
|referenced in ON, SIGNAL, and | | i
| REVERT statements; scans previous | | |
{entries for ON conditions | | |
L 4 d
T T b
Processes CHECK and NOCHECK list. |BEFCHL | CENDTS, LABCD |
1 4 d
T 1§ 1
|Creates dictionary entries for | NOMOVE | QP {
|condition prefixes |] |
L L I J
Table FOl. Phase FO Routine/Subroutine Directory
r v h)
| Routine/Subroutine| Function |
L 4 4
L] b 3
| BEFCHL | Processes CHECK and NOCHECK list. i
| |
| BEFTRN |Replaces statements containing dummy dictionary references by error |
| | statements, and generates error message. |
| |
| CENDTS |Requests a new text block for output. |
| |
| FKDCEN |Makes dictionary entries for ON conditions found in ON, SIGNAL, and |
} | REVERT statements. |
| | . |
| FRMVIT |Scans input text for ON, SIGNAL, and REVERT statements. |
| |
| FKNOCK |Processes CHECK and NOCHECK lists.
|
| FKPROC | Scans input text for ON, SIGNAL, and REVERT statements.
| |
|FP010 (FP) |Chains initial label statements and makes second file dictionary
| jentries for each label array initialized in this way.
|
|F2 |Moves second file from input text block to output text block.
|
| LABCD |Creates a dictionary entry for each label constant and each entry
i |label mentioned in a CHECK list.
|
| MVSIG | Examines BCD of file entries referenced in ON, SIGNAL, and REVERT |
{ |statements; scans previous entries for ON conditionms. |
| |
| NOMOVE (FP) |Creates dictionary entry for condition prefix. |
| | |
{Q3 | Processes condition prefixes changed in current block. |
| |
QP |Determines which condition prefixes require dictionary entries. |
| | |
|R8 | Moves statement to output buffer. |
L L J
Chapter 3: Flowcharts, Tables, and Routine Directories 153

@ Table FQ. Phase FQ Dictionary Picture Processor

i TMain Processin;T 1
l Statement or Operation Type 1 Routine 1 Subroutines Used J
'Controls scan of PICTURE chain; ICYBRB ICYEK, CYFIND, CYTABL }
linitializes l | !
iPicture character 9 ICYNINE None }
Picture characters s, §, +, -. ECYSDPM lNone 1
tPicture character Vv ICYV iNone 1
iPicture character E ICYE iCYCZI 1
4

{Picture character K ICYK ECYC21]
|iPicture characters CR, DB iCYCRDB ENone j
iPicture characters 1,2,3 ECYOTT iNone]
[Picture character P ICYP INone]
EPicture character 2 ECYZ ENone]
EPicture character #* ECYAST iNone]
iPicture character Y ICYY INone i
iPicture character G ECYG INone]
iPicture characters 6, 7, 8, H ECYSSEH ENone E
iPicture character M ECYSTM ENone i
iPicture character F ECYF iNone i
{Converts integer constants to scaleICYC97 TCYCONV i
| factor | | |
b ¥ = {
!Calculates scale factor lCYFNT -_lfone l

154

Table FQl.

Phase FQ Routine/Subroutine Directory

iRoutine/Subroutinei Function o T —}
iCYAST ;Processes picture character *. 1
=CYBR2 !Identifies picture character. }
}CYBRB %Controlling scan of PICTURE chain. :
%CYCONV }Converts integer constant to scale factor. =
=CYCPBS }Processes pictufe characters slash (/), comma(,), point (.), and B. :
=CYCRDB iProcesses picture characters CR, DB. }
=CYC21 IAdjusts data to terminate picture before illegal character. :
=C!C97 :converts integer constant to scale factor. :
=CYE =Processes picture character E. :
‘CYEK :completes entry for correct picture. :
}CYENDD |Releases control at end of picture chain. {
%CYF =Processes picture character F; %
=CYFIND |Obtains code for next charactexr in picture. :
{CYFNT |Calculates scale factor. {
=CYG :Processes picture character G. ;
}CYK =Processes picture character K. :
}CYNINE lProcesses picture character 9. :
{CYOTT =Processes picture characters 1,2,3. :
:CY? %Processes picture character P. I
:CYSDPM =Processes picture characters s, §, +, -. }
{CYSS {Processes picture characters 6,7. =
;CYSSEH =Processes picture characters 8,H. %
lCYSTM %Processes picture character M. :
=CYTABL |Code table for'piéture characters. ;
}CYV | Processes picture character V. :
=CYY gProcesses picture character Y. :
iCYZ iprocesse3 picture character Z. }

Chapter 3: Flowcharts, Tables, and Routine Directories 155

Table FT. Phase FT Dictionary Scan

r T T == 1
| |Main Processing]]
| Statement or Operation Type | Routine | Subroutines Used

" 1 1 i
[] T T]
| Scans second file |aC1 | None |
[8 3 3 4
L] T T

|Scans dictiouary |B1 | None]
} 4 ¢ -{
|Data variables | DATVAR | None |
' 4 1 1
L) . T T b |
|Event or label variables | EVLABV | None [
t L 4

r T T -4
| Dimension attributes |FO | None |
[N 4 4 J
) N T T 1
| Scans AUTOMATIC chain 1G2 | None |
b 1 L

] T T '{
|Scans STATIC chain |G3 | None |
[N L 1 J
I - T T 1
| Scans CONTROLLED chain |GE1 | None |
L 3 L J
L 3 v T 1
|Sets dope vector required bit |pin | None |
L 1 L |
i 1} T a
| ENTRY type 1 entries | QAL | None [
[N kN i - 3
¥ T v b
|ENTRY type 2 entries |QA3 | PROPIC |
i 4 1]
1 b T a
| ENTRY type 3 entries |oRa2 | None |
L 4 1 I |
v T 1
|ENTIRY type 4 entries QX | None |
L 1 4 d
v T T 1
|ENTRY type 5 and 6 entries oAl | PROPIC |
L } 1 3
v T 1 1
|Constants | CONST | None i
b + ¢ {
| Structures | STRUCT | AJDMRT, MKDMTB, MVTXT |
L L L 4

156

Table FT1.

Phase FT Routine/Subroutine Directory

iRoutine/Subroutinei Function]
~{AC1 18cans second file. }
gACZ Detects second file statement marker. %
=AF3 Points relevant dictionary entry at statement. }
=AJDMRT Modifies second file statements to initialize dope vectors for base :
| elements, rather than for the containinc structures. |
:51 18cans dictionary. ;
!BIA lInitializes dictionary scan. f
%CONST Processes constants. :
!DATVAR | Processes data variables. :
{EVLABV Processes event or label variables. {
=FO |Processes dimension attributes. :
:FULIN IMoves initial label statement to the second file, colliecting :
| together all statements for the same array. |
}GEI =Scans CONTROLLED chain. :
}GZ =Scans'AUTOMATIC chain. }
=G3 =Scans STATIC chain. :
:MKDMTB |Creates Jdimension tables. l
{MVTXT =Moves text blocks. :
| PROPIC | Zxtracts precision data from picture tables. ?
:?IA : Sets 'dope vector required' bit. =
{QAl : 2rocesses ENTRY type 5 and 6 entries. }
}QAZ } Processes ENTRY type 3 entries. ‘
=QA3 : >rocesses ENTRY type 2 entries.’ :
=QAH }Procn sses ENTRY type 1 entries. ;
:Qx =DIOCPSSE§ ENTRY type 4 entries. :
:STRUCT = Processes structures. ;
iTRVECT i Transfer vector for appropriate chaining routine. J

Chapter 3: Flowcharts, Tables, and Routine Directories 157

Table FV. Phase FV Dictionary Second File Merge

—_——— e oy

T
|Main Processina
Statement or Operation Type | Routine

|Reverses second file pointers;
|scans text for block heading

| statements; allocates statements
|and references to dynamically
|defined data

1S

IEMFV

T
|
|
1
T
|
|

DATCPY,
MOVE

Subroutines Used

DEFMOV,

DEFTST, F2MOVE,

3

|Exemines ADF references in second DEFCOM
|£ile; completes defined item
{dictionary entry

T T

None

|refer to dvnamically defined data |
} L

None

[3 T
|Examines dictionary references and |DATCPY
|moves any associated second file |
|statements to the output string
1

F2MOVE,

MOVE

b e s e e e e e

r .
|Inserts dictionary reference of
|pointer in associated based
|variable entry

L

2
3
b o]

None

v

jrrocesses adjustable extents on
|cased arrays

]

3l 3
al &
< <

¢ -
| Processes adjustable lengths on
{based strings

L

b e e o o o e e e —

|
|
|
5 8
T
|
|
|

-4
l
|
4
T
|
|
x
1
T
|
1
|
1
T
|
|
L
+
|
|
L

L A

158

Table FV1.

Phase FV Routine/Subroutine Directory

1) v b |
|Routine/3ubroutine| Function |
t L
r T ._.|
| DATCPY |Moves second file statements associated with dictionary reference toj|
| joutput string. |
| | |
| DEFCOM (FwW) | Examines ADY¥ references in second file; completes defined item i
| |dictionary entry. |
| | |
| DEFMOV |Modifies text references to dynamically defined data. |
| I
| DEFTST |Detects dictionary references which refer to dynamically defined |
| |data. |
| | I
| FVO |Scans second file reversing pointers. |
| | |
|FV9 |Initializes text scan. |
| | |
| FV10 | Scans text. l
| !
|FVié6 |Releases control. |
| | |
|Fvis |Processes ALLOCATE statements. |
| | |
|FV19 | Processes PROCEDURE statements. |
| | |
|FV20 | Processes BEGIN statements. |
| | |
| FV34 | Scans AUTOMATIC chain. |
| |
{FVPTR | Inserts D.R. of pointer in associated based variable entry. |
| | |
{Fvapv | Processes adjustable extents on based array. |
| ! |
| FVSDV | Frocesses adjustable lengths on based s*trings. |
| |
| F2MOVE |Moves second file statement to output string. |
| i |
| IEMEV |Controlling scan of second file; invokes processing routines. |
| | |
| MOVE |Yoves text from input string to output string. |
L '} J
Chapter 3: Flowcharts, Tables, and Routine Directories 159

Table FX. Phase FX Dictionary Attributes—and Cross Reference

r

Statement or Operation Type

T T
|Main Processing}
Routine

Subroutines Used

cans STATIC chain for all items X0000

FX0010

|
4 - mmmmmm ey
|
4
T

|

t

|
T
|
|

| FX0010, FX0101, FX0105, FX0120

|
L
L)
IS F

b

| Scans PROCEDURE-BEGIN chain FX0100
I

T

| Scans CONTROLLED chain for F
|non-parameter DECLARED, CONTROLLED
|dictionary entries

|8

X0170

1
L
1
T

g
=}
(1]

|Scans parameter list from PROCEDURE
|and ENTRY statements
[

FX0101

1

FX0010

1 3
|Soxts BCD of variables and creates

FX0010
|entries in scratch text storage ,
8

4

+
L}
4

g
=
(1]

T
| Scans circular chain of ENTRY

|statement dictionary entries
| associated with a particular
| PROCEDURE statement

[N +

|
T

FX0101

|
|
|
| ¥X0105
|
|
|
|

[)

| Scans AUTOMATIC chain associated
jwith particular PROCEDURE or BEGIN
| block

L

FX0120

FX0010

T
|Prints heading line for tables FXHD

et e e s e . e e i e o s s e e s e e e

ATTMOV

Scans sorted chain of identifiers XPRNT

g - —_

FX0299

|

|

1

|
|according to options specified |

%

\F

L

Ll

{FX0299

|Determines attributes of a given
{identifier if the ATR option is
|specified

IR

ATTMOV, FXBCD, FXDCLWY, FXEND,
REFMOV

L)
|Scans the chain of references for a|REFMOV

|specified) and prints them in
|]external decimal form
L

FXDCLN

|
|
1
|
|given identifier (if XREF is |
|
|
1
v

T

|Converts EBCDIC of particular
|attribute to required external form
land woves it to print area

[l

ATTMOV

P . o s as st

g
3
o

jconverted it from internal form to

{
|
|
t i
| Prints BCD of identifier having | FXBCD
|
|external form |
1 3R

2
o]
3
®

=

L]

|Converts an intermal binary number |FXDCLN
{to external decimal form and moves |

|it to print buffer
L

o cven

g
3
o

v L)
|Frees all scratch tex:t storage and |FXEND

|releases control to next phase |
L L

2
o}
5]
D

o e e s e i o o e et e o e s

160

Table FX1.

Phase FX Routine/Subroutine Directory

T
Routinessubroutine|
L

Function

-|ATTMOV (FY)

|
|FXBCD (FY)
|

=rxncnu (FY)
||FXEND (FY)
‘FXHD (FY)
=FXPRNT (FY)
arxoooo
=rxoo1o
=Fx0030
}rxo1oo
=Fxo101
=rxo1os

ry

o
(=] [«]
= =
~ N
o o

!

0250

&)

X0299

REFMOV (FY)

[o ——— o ——— — —— — — — — — c— —

}
|Converts EBCDIC data to required form, moves data to print area.

|
| Moves

identifier BCD to print area, determines options to be

| printed.

|Converts binary number to external BCD, moves it to print area.

| Frees

scratch storage, releases modules, releases control.

|Prints heading line for table according to options specified.

|Scans

| Scans

|
| Sorts

|
| Tests

| Scans

| Scans

| Scans

sorted chain of identifiers.

STATIC chain.

BCD of variables and creates entry in text for each item.
for end of STATIC chain.

PROCEDURE-BEGIN chain.

parameter list from PROCEDURE and ENTRY statements.

circular chain of ENTRY statement dictionary entries

|associated with a particular PROCEDURE statement.

| scans AUTOMATIC chain associated with particular PROCEDURE or BEGIN

| block.

|Scans

CONTROLLED chain for nonparameter DECLARED CONTROLLED

|dictionary entries.

| Scans

|Determines attributes of a given identifier if the ATR option is

text, making chain of references to each dictioary entry.

| specified.

| Moves

the references to an identifier to the print buffer and

|prints.
4

bt it s G — — — ——— ———— —— — — — — — ——— ——— ————— ——— — — — — e w— i amt ol

eTable F1. Module F1 Compiler Control

Function

L]
|Main Processing

| Routine Routines Used
i

| None
L

Checks whether syntax check should IIEMFl | ZABORT, ZUPL, RLSCTL
terminate compilation

{Entry to the operating system:

|
|
|
i

R e =

Chapter 3: Flowcharts, Tables and Routine Directories

161

Chart O4. Pretranslator Logical Phase Flowchart

’

«*.

B1® s, S IBISERRRARO0S .
o* *, *DCES GA
.* FILE *., YES '-t-t-‘-‘-t-.o.-t
‘. OR_GPE P Puia . 4 REATE
‘.SONSTBNT‘.’ ‘ DCBS ANC OCES ‘
N ‘0'00‘00‘*‘.0."‘
1 NC
¥,
1 SHESEC20RENERES
. I1/0 *1/0 MOL GB#*
.ns'm 'l‘c AND *, YES ' L t-t-t .-t-s
*, 2ND P S MODIFY
’, H KEFS o ‘I/O PARAMETERS * :
'» o Teresssannsasens
*+“Ke
<
p1° . LV T T Topwey
<% ANY *, ‘VA’IC GK#*
+* FUNCTION +. YES b -*-‘-’-‘—‘—‘-#
, REFERENCES . > HECK »
*.CR OFT=1 .# * Pnnauntzn .
, - * MATCHING *
. ¢ et RIRE RGNS
* NO
o ¥,
.+ CANY s,
NO .* FUNCTION =,
Cemmmmm - —————— ---‘..FBPEHENCES .-“
., N
. .
* YES
SEFFSF 20 %NS ‘.‘.'FS.“‘.‘..‘.
* GO#* SMATCH2 GP
Vo B P Yo o B G = bobololafbofadafal
‘ PRE- PROCBSSCR ‘---—--->’ SECOND CHECK ‘
FOR G| . : * ON PARAMETERS ‘
3249000000000 804 SSRGS RS PR EN
<
.
61 ». SHESEGFREREREA S
«* ., *CHECK LIST GU*
. ANY %, YES $ebobabobobatabaB
*, CHECR ‘—————-—->‘ PﬁOC!BD CHECK *
#, LISTS .* CONDITION *
. «® ‘ INTS L]
. e T T I
* NO
<
¥,
m e o.n-ouzwo.tootttt
. *STRUCT BE*
.’ QRUCT '. YES t-a-o-‘-o-a-t-o-o
BSS JGNM, o ‘------—-)‘ PROCESS *
BXPR * STRUCTURE
* ASSIGNMENTS +*
O. sesnisssseseatNs
. NO
1(
..
a1 e, $2eeea20nseranees
- ammay e, vEs SRR 254
. ASSIGRMENTS : Vormmana=dd PROQCESS .
OR EXPRESS- AR *
+JONE .* * ASSIGNMENTS *
*, * LA AR L PRt Ll
* NO
l<
.
R1° e, 22224 20N0senaaey
. ., *ISURS BP*
. ANY ABS Pt S SRR e
0.;5031355%8@ ‘—-------)‘ PROCBSS&%ZHS *
T . s usinG 15uBs
. .4 PR 212+
* NO
12231 t1 111
l_ €05 * l 05 *
>% Al * ->% Al
. e s s
sene YY)

162

Chart GA.

IL0000
SesAsAIISRACO IS
Ld .

e

*
:INITIAL!!ATION

. .
000068 NEIESIIS

[mee—————

1L0100 ..
Bl ..
¥ .,
.* END OF *. YES
'.§TATIC CHAIN..‘---
‘e, .
s, e

‘t‘..cltytoﬁtt‘tz
.

* GET NEXT

* ENTRY IN

: STATIC CHAIN
SEP0REIRRERIRERNES

XYY

Phase GA Overall Logic Diagram

ILOl
.

*s20s0RRBONREINES

1L0118 .4,

B3 ‘..
NO .s' ANy e,
--=+0 ATTRIBUTEE I+

. .

.
* YES

IL0117
SEEE4CINEIEISSRES
Ld -

* CHECK ATTRIBS
+ AND MAKE OPEN
& CONTROL BLOCK

CEPESEEIEIITRSIRES

L

v
HEIEIDIHSEERE 400

IL0120
SEESEFLCsse st tS
+ *
¢ CHECK ATTRIBS
¢ AND MAKE OPEN
: CONTROL BLOCK

FIESEIIRIBEERIONS

snne

<

.
EREHFIISEASEI RIS

....... ———>

IL0114
$ESPREISROIR e RbnN
. *
: GET_ENVMNT *

: (MAY BE NULL) :
FEEEBIBEERSROBERS

P

..
E4 .,
15
COBOL IN #. YES
ENVMNT P B
STRING ‘.'
EP
* NO

}

seeseTSe st

* *
*SET COBOL _FLAG
>% ON IN ATTRIB *
. ENTRY .

.
LT T TP Y T Y T Y

IHE?EV,

IL0l
EHIREFIRRERI NN .

*

CHECK AND PLACE

IN SKELETON *
DCLCE *

-

e

BEAREEEAREERIGRE S

“"‘Glt‘".l.t.‘..
* MAKE DICT b
i b NTRY AND *
—-~% CHAIN PROM b
: STATIC ENTRY :

*

008402 ES

Chapter 3: Flowcharts, Tables, and Routine Directories

163

Chart GB. Phase GB Overall Logic Diagram

MR
A LSRRI T TS
* *
* INITIALIZE »
* TEXT POINTERS *
* LOAD IEMGJ *
* et
D T T T T M .
* D2 »
e . .
* * seee
* Bl :-) A
s
R6 ., A4 ., Ay .., Al l.NO
CES 2RISR EIERS B2 ., B3 ., Bu BS ..
* * .* ., .* . .t .. .* .
* * -* FORMAT *. NO -* LOCATE *. NO - READ *. N * WR1T! ..
b SCAN TEXT #owoocwawd®, STATEMENT .#-c—a-e-u>¢, STATEMENT STATEMENT .#-------o>, OR REWR%TB .*
* * ., .t ., *, STATEMENT. ¢
* * ., " *. I ‘. . .., "
L T T YT T 18 .’ L
. .
s YES) YES “s'YES * YES
* L
<=% Bl * l l
L L
*ee s
AFORMT o, .O. ,0,
FL T T P I T T P c3 ., ., .
* FORLST Rl ., ,Q ., - '
P o-.-.-‘-o NO .*
--=%* SCANS b *. COBOL FIL * .. .‘--- ----‘ .*
. b (SB! ‘_3) . oS E.. COBOL FILB l< COBOL FILE e
* R .. Ce, . .o
?‘.."‘.“O".... ., .* ., .
* YES Y YES .“”. * YES
s 01
. .
< [S — seas
Ag o,
*XBEEDISSSISR AN RN D2 *, baddd ki IIIII LTI 2] ..‘.'Dl“.“..."‘ ..‘.‘DS. .‘......
*SCAN STATEMENT * * . e * WRIT&
LE L xmm eman Te Ppmmeesd | BeEEReel | bl
* TRANSMI NG e, STATBMEN‘L . * STATEMENT b ‘S'I‘RUCTURES (HAP) ‘ SAND COBOL MA|
HLR OPTIONS # o+ * COPY INS! ’INSBRT EUY/SBLL‘
AL Y P ‘ . ¥ R AR A PRI I L] ‘ ..'..".......‘ R P Ty
*"no o - e
* * L4
1 ‘ D2 ¢ * Bl ¢
. . .)
Teees e ey sene
14 . . * .
o, -.. % Bl * * Bl *
El .. . - » . .
. * . seen sene
*. N NE “s. NO *
s, '1ONS P e Pl Y OF TEXT e¥emmad® Bl ¥
*. SKIFPED . . o * *
s ., T s sehe
* . . . - .
* YES YES $ F3 »
[. *
l *GK sty
-): A3 ¢
*h%e
FORLST 4
FEEEST]SS40 004N SEESRFIS R4 240D S SPESEFSSE 44200
* * * *
* RETURN TO * * SCANS * * OUTPUT AND b
——D SCAN FOR * * FORMAT LIST . *
A *SKIPPED OPTIONS* * . b (SEE C2) .
* e - * * *
SEEARIRNSREBRNRE S * * PEEERSFRS RIS R AR S At AR I R 22)
LY + F1 * A
* * * Sk e
* F1 * LTIy * *
. * A * G3 s>
e . *
\ sane Y)
., LAB178 -, B
Gl ., PESRRG2REN RN G3 ., G4 ..
.+ . .* ., ..
«* FORMAT *. YES bbb ek et tmh ded ot g «* ITERATION * RIGHT
*. OPTION P e SCANS * ., FACTOR ————3% PARINTH!SIS
*. . * FORMAT ST * . .
., ‘e, .-
. . SEEESREEIBINNARNS L.
*"NO *
e
* »
* F1 #<-
* .
1 e 1 NO
oo SCAN2 o, A’
H1 ., H2 ., (e T I TT TP T T YY AEISOHSEEIEI SN S
o* *. " .. * * * UNSTAC! .
o DATA *, * IOES . & OUTPUT BUY ’ * DICTIONA b
., EDIT OR e ¥memmneaa>%, IT CONTAIN .* .. AND TEMP * . FERENCE *
*. LIST * *, ‘TDO o* :ITDO STATEMENTS* : OF TEM :
Te, 8" . e P T T YT PressEssRILL RIS
NO s + YES
« H2 »
*
e
., LLDOIT ok, FSA \
J1 ., tttt.azot.ctsotto J3 ., FESIITUS #0008 PEREITSISS RS0S4
no .+** enp *va PR R AR END N BT + _ourpur . + ourPur anp
L 04:0r STRTBMENT .+ SCRN 70 THE 3. ¥ ¢ PARENTHESIS .#-c-—-—-->% FOLLOWING #--—————->% SELL TEMP
‘.‘ o : REELACEOIT BY : *, POLL o* FORMAT ITEM = * STATEMENTS :
“u, 6 tatta‘:}‘s.o‘totot “w, e D PP YT Y P R P YT
* YES * YES f
v
"% 0
* » L *
* Bl * MKROOM *G) s
- . “.‘.xz..‘.“"“ $5420KIS s 20800 * *
L2321 MA! O0OM - * s sees
'IN OUTPUT TEXT ‘ & DICTIONARY . * *
AND INSERT ‘-—- * REFERENCE $eeud>t FI »
: END STATEMENT * . : OF TEMP * ‘.‘..
SERESRIERB SRR OES LTI R TR T T
*eee
» .
*H2
. .
e

164

Chart GK. Phase GK Overall Logic Diagram

(LRI XTI L YT Y
* L]
! R
{ o Rt
SEBERSEERRIS RSN
Ty
*
» B3 *=>
. .
Y
BASCAN
:uugao;‘%;&"u:
>3 s@gq&éL:
: IND COUNT :
00080 SS90 G N
NO
BAPVM o, BATST3 ot
sesesCIesnsiserer c2’ e, .,
* SET '!g{lﬂ‘-_ - 4 1§ ., .* *.
: INBGB“IHIC. :< YBS‘.. VR% UDO- ‘..< ¢ 8..‘ VPSSUDO- ‘-.
H FEvit. '*.;suaéﬁ“:'.c' .., KER . '
SHESIESELIIRNRONS ‘o.‘.c' !? .
BAFM 4
:tt;;gz;nounu p3" e,
.
* EBYTE FOR - S .* Fi ..
SGERERT ARBPOR YB3t TNSRERY
: BU!%:IJ"IN : ‘-‘ FO o*
tere TINSTION et ‘e, o0
NO
BARECQ : RS P
$3FeeE2erasnerany B3 ToseERsesrersray
. . o OP . YES ¢ OUTPUT »
.--.---__-----——):PUSB DOWN STRCK: L H%ﬁ% ...z-—'----)‘ ARGUMENT :
. * s, . * .
P T TR . .. SeasbeeRsItEINLS
.
No ean
. .
l . Ty e->
. .
! v e 4
“’?’5.“".--.."."- F3' e, BADEL 4" e, SE4EEFSEesEstee
. 'ERS * M
be i3 % LI * . END OF *. N o §g5 *. NO QUTPUT *
* AND SETS LIST * .l TE. P o=t #. DELIMITER A .%-c--em=o>¢ END-LIST .
SFOR NON-BUILT- * . .- l .. . ¢ MARKE] *
* IN P IONS ¢ ., .. ., .t * .
I i T .o . . . SesesesIB RIS
. « YES s YES
l e * .‘.“.
$GP *+ ¢ .
->0G§1 L] B3 * . % G5 s>
. s * *

“oen sone
sesssGlececsesnes BALPQ ‘cg; 'o.. * :lt' G b se¥racsenerersres
* . -

T ARGNO =0 8¢ a: u'gx'i& *ie : ADD QMR TO 3 ¢ AGAT -§§Fc1- :
- e ® .
. I0N. ¢
* * . * . *« POP UP STACK ¢
SEELOSBESISASSING .. .;BS A d i . setssee
Riger AL
* G5 * * B3 s
. SeTenH20enestssee . .
ser ¢ ARGNO = 1 # oy
¢ OUTPUT PRIOR *
: TEXT, TE! . :
b4 .
SRR AR, SO0NTS
$sETS CObE BYTE
seessesitasssates
BARE!;'.I“K ittt .Kg' ';.. N?SE;'K“"‘""‘: sevesRUssesrsase veus
*0OUT! . 8T0
BE < ot RITH RO, o nene >+ ARSUNERT umo > ‘SERRT 08 So--->s B3 %
: ARGENENT : T o . ARGUMENTS. ¢ "'"'": S00RE Ty :'_"'" + ARGUMENT) ¢ " *ronet
sessesertsssINIIE o sesenesnsrssetne sessesesssetEtee
sore
. . .
. Py e
. .
anas

Chapter 3: Flowcharts, Tables, and Routine Directories

Chart GP.

166

Phase GP Overall Logic Diagram
808 900
L d L]
. » .
: A3 : M H3
2900 LX)
A
s
EXSCAN,M1 .o, .l.""
53 .. ‘A') ‘.'
.+ BARANETER"s. YES . Te.
., D[SCRIPTION D S ARGUMENT .
eess .. e - SCALAR .
: B1 : ., .0 ., L,
. M “e'No * NO
*90 1 ‘l
2 \
LSIiEEzon1o sesvenry “’21!3'352.......... '.' ., Bs e,
. o * ‘ . . .
>+ FORPRGIMENT o< + ROCREGATE o< LRl Ul e i ."go"“m“. 5
— JG—— ———————, . -, N
[T LIST '3 : DUMMY : ..‘é‘c‘a{ﬂ{’ . R ﬁ'é%nﬁ%%ﬁassTE
sesssssesersesane P T T YT TP TP ‘e, 0 . -PATCH.
* YES ..“‘ YES (122 s YES
L] L]
* Hl » ® H1 »
. L * Ld
*40 e EEd 1]
BS10 : B3 :
c1” e, - .
. *908
.* END « YES
‘.. OF TEXT Ig D
.
Lddll]
*GU Yy
. Al® . .
. t D4 o->
Si L e%. 33 .t I
B .Dl R BS .Dz ., M6 'na ‘.. °°’¥32£g§3. coooo;o:
- . . CR] SCALA!
20 nun.w"m e >el mcﬁgmrr bt >o. ‘DEBCRYBTION o128 >+ gg;'n;‘lt:gk .
+.FUNCTION .° " cousmm.~' ., peL IR TYPE :
“e, o ‘o, o0 Ce. L0 2es00000s0st0 e
. NO * NG
968
* Ld
l * E3 > A
'8
STC Ll * soee : :
TE 1° " . B2 s, nuogs.ouotnot » B *
L R ** 1s . CREATE SCALAR ' eee
&-=*. ARG #eceeeeo>#. ARGUMENT . #a-.
* mNSTANT " tm.tngssxog.o : Eﬁ%o“ :
K ‘e, 0" seessesIsseetseee
NO *90 0
* »
«A3 e
e
M2 . }
LT e LE RN
NO_ .+ BUTLT-IN . NO_.* PARAMETER +. ’
<-=¢., FONCTION _l<e———m——el IPTION .+
‘e, .o ‘e, Y
., .t . e
K YES YES -
l \
... MY ot o, ot 10
‘ xs .. .GZ 0.‘ .63 0.. su o. ooo.ogso‘tt‘ooooo
NO_ .+ ARGUMENT "+, .*" PARAMETER *. NO 18 ‘e. NO A_PARTIALLY *
<-=%, AN ENTRY * ., SCALAR C#ece——>%] ARGUMENT PEIENNICY 3 UNSUB ImD-‘--------)‘ 5 BSCRIFTED ¢
., g . . *. SCA o* IGGREGATE. \GGREGATE *
., . g ’, ® L. " *
., .0 s, . s . ‘e, 284004000000 00000
* YES YES YES YES
" st
ks L
* H1 s> l * H3 >
. .
eee cane - choks1, B
seessj{1esssessnes nz' ‘e, H12‘.“‘“3.! sesevens CHECRS, M JHe ;o ., He S E;"
» Ll *, * .,

* ERROR . NO . MGU NT », * WARNING . * AGGR'GATE . NO NC . REDUCED .
——— MESSAGE '<---—--—'. R . * MESSAGE . « STRUCTU! RBS e¥eacy=want, ARGUMENT .
. . ., o* * * s, MA' u ' TRUCTURE,

. ., R 4 * ., «MATCH. *
Teessnsessasneane . . sessestseasasene .. . oe
YES YES e * YES
s 8 . *
- » s HL »
* J3 D> * *
. . oo
sene - v
CHCKT gg. ‘e, COP!EI‘%;‘".......’ CHECKT au’ -‘. CHEC st
" ., * Clé&% %N . «* DO *, DO .
PRRCSANE TeYES RO L i) * Pheks D 1.0 MR L
“.DATA TYPE. ST : B : T el MATCH e 1 Te., MATCH .o
- PPN 3K £43: 50004 “e. L' ‘e, e
NO 88 3 (212 * YES
* * l * *
% B1 * < ¢ H3 »
. * »
244 '8 Rl 1)
* *
.
SE520K2008 000890 * Bl : le‘zz!'xs.."“.".
R ;P
1 . * C! \"} CTO .
: MESSAGE : : D an RRG :
........""..“’: PEERRS28300800 0
e
* *
¢ Dy o
- *
eone

Chapter 3: Flowcharts, Tables, and Routine Directories

Chart GU. Phase GU Overall Logic Diagram
sene e
» L L] >
¢ Al * A2
- . * *
seee seee
ASCAN
1eesenteseeeeties Se0asp20000000 000
GET SCRATCH % . *
. * L d
¢ CHECK TABLE. #-v-uo—--D$ SCAN TEXT *
e 11 W :
S JENTEOINTERSL P P T T
B2 e,
" END . YES
., OF TEXT * e
‘e, .0 ceee
., . . *
NO e *C3 ¢
*HF ¢ . .
. A e
e
*
ATST3 . AS'R‘HT ENDST ASPECL , AENDNO SC
c2 ., iocgooo.t.'oto ss484CHss00svsnne s9800C50000000 08 %
4 . ' HOU%ERD!EPING * ' UFDI'I'E CHECK '
*, YES *FOR S * TABLE F
¢. STATEMENT ,%-c—ee-- ->% ‘---——-—-)’ PRO‘ OR BEGIN ‘
. . ‘IF-SHITCH ONCE ‘ TATEMENTS *
eses ., e .
L d * *, . * ..“0.“‘..‘..“0 "“...Q."‘..‘.'
* Dl e NO
* * 988
[T * .
* D4 *-o
l :
A i
AFM ATESTS .. BSCAN
*seeaDIISRINEISES D2° s, $essenussesrrseey
* CAL] . . *
- 'R .
-t . * c -_------0 0
‘SIG%EUC . b SCAN TEXT < SIGNA% CBLCKED
* RESET FM . .
PORRLE 23 o4 4 1 ., Tesranasaseseeens *e0000TE00SINEY
seee
03 .
s a2 e
* .
sees
ABGNDO ATESTS ., BTEST3 ..
SOOUIEIIFFIRSIERS E2° s, CHEAIEIH RIS 0 004 .
- * * * * . s,
o SET YES .*° ELSE . ¢ pRurRuT . YES .+ ..
(3 IP-SHI‘I’CH St OR $mmm * PR ING *leenwn