
Systems Reference Library

IBM System/360 Operating System

PLII (F)

Programmer's Guide

Program Number 360S-NL-Sll

File No. 5360-29 OS
Order No. GC28-6594-7

This publication is a companion volume to IBM System/360
Operating System: PL/I (F) Language Reference Manual, Form
C28-8201. Together, the two books form a guide to the
writing and execution of PL/I programs under the control of
an IBM System/360 Operating System that includes the PL/I
(F) Compiler. The Programmer's Guide is concerned with the
relationship between a PL/I program and the operating
system. It explains how to compile, link edit, and execute
a PL/I program, and introduces job control language, the
linkage e¢itor, and other essential features of the operating
system.

Eighth Edition (January, 1971)

This is a major revision of, and obsoletes, C28-6594-6 and
Technical Newsletter GN33-6016. In addition to incorporating
information from the Technical Newsletter this new edition
contains changes to the description of the PL/I sorting
facilities and a number of minor changes throughout. Changes
to the text, and small changes to illustrations, are
indicated by a vertical line to the left of the change;
changed or added illustrations are denoted by the symbol •
to the left of the caption.

This edition applies to Release 20 of the IBM System/360
Operating System, and to all subsequent releases until other­
wise indicated in new editions or Technical Newsletters.
Changes are continually made to the specifications herein;
before using this publication in connection with the
operation of IBM systems, consult the latest IBM System/360
Bibliography SRL Newsletter, Form N20-0360, for the editions
that are applicable and current.

The information contained in this publication concerning
Model 195 support is for planning purposes only.

Requests for copies of IBM publications should be made to
your IBM representative or the IBM branch office serving
your locality.

A form for reader's comments is provided at the back of
this publication. If the form has been removed, comments may
be addressed to IBM United Kingdom Laboratories Ltd.,
Programming Publications, Hursley Park, Winchester,
Hampshire, England.

© Copyright International Business Machines Corporation
1966,1967,1968,1969,1970,1971

This publication and IBM Systeml360
Operating system: PL/I. (F) Language
Reference.Manual form a complementary pair
Prograuuner's Guide is concerned with the
relati<:>nship between a PL/I program and IBM
Syste~'360 Operating System; it explains
how to compile, link edit, and execute a
PL/I pJrogram. rhe Programmer' s Guide is
concerned with the relationship between a
PL/I pJrogram and IBM System/360 Operating
System;~ it explains how to compile, link
edit, and execute a PL/I program.

Pari: 1 is intended primarily for the
casual (non-specialist) programmer or for
the ne'lI1comer to IBM System/360; the reader
is assumed to have only an elementary grasp
of PL/I and an awareness of the basic
concepts of electronic data processing~. 2
and 3 are designed for use either as
reference material or for reading as an
introduction to the features they describe.

PREREQUISITE PUBLICATION

The reader is assumed to have a working
knowled.ge of PL/I; he should therefore be
familiar with the material contained in the
following publication:

IBM SvstenV360 Operating system: PL/I·· (F)
Language Reference Manual, Order No.
GC28-8201

RECOMM:I!:NDEDPUBLICATIONS

The text of the Programmer's Guide refers
to the following publications for
information outside its scope:

IBM Sy:stem/360 Operating system:

PL/I (F) Compiler, Program Logic Manual,
Order No. GY28-6800

PL/I Subroutine Library Program Logic
Manual, Order No. GY28-6801

Advalllced Checkpoint/Restart Planning
Guiae, Order No. GC28-6708

1For example, as described in Introduction
to IBM Data processing Systems, Order No.
GC20-1684.

Preface

Concepts and Facilities, Order No.
GC28-6535

Linkage Editor and.Loader, Order No.
GC28-6538

Job. Control Language .. User' s Guide, Order
No. GC28-6703

Job.Control Language Reference, Order No.
GC28-6704

System.Generation, Order No. GC28-6554

Utilities, Order No. GC28-6586

system :Control Blocks" Order No.
GC28-6628

Messages and Codes, Order No. GC28-6631

Job.Control Language Charts, Order No.
GC28-6632

supervisor and Data Manaqement services,
Order No. GC28-6646

Supervisor.and Data Management Macro
Instructions, Order No. GC28-6547

Programmer's Guide.to Debugging, Order
No. GC28-6670

Queued Telecommunications Access Method
Message Processing ',Program Services,
Order No. GC30-2003

Queued Telecommunications Access Method
Message Control Program, Order No.
GC30-2005

Sort/Merge, Order No. GC28-6543

In addition to the publications listed
above, the following contain information
that may be helpful to the user:

IBM System/360 Operating System:

Operator's Reference, Order No.
GC28-6691

Operator '. s Procedures, Order No.
GC28-6692

system Programmer's Guide, Order No.
GC28-6550

Storage Estimates, Order No. GC28-6551

PL/I Subroutine Library, Computational
Subroutines, Order No. GC28-6590

3

IBM System/360:

Principles of ,Operation, order No.
A22='682I

4

PART 1:: BASIC ·PROGRAMMING WITH
THE PL/I (F) COMPILER • • • 11

CHAPTER 1: INTRODUCTION TO THE
OPERATING SYSTEM. • • •

IBM Sys·tem/360 Operating System. •
Job Scheduler • • •
PL/I (F) Compiler •
Linkage Editor. • • • • • •
Linkage Loader. •

Job Control Language •
Format of Job Control Statements. •
JOB statement • •
EXEC Statement. • • • • • .•
DO Statement. • • • •
Delimiter statement •

Executing a PL/I Program •

CHAPTER 2: HOW TO RUN A SIMPLE PL/I
PROGRAlM • • • • • •.•

Job Control statements
Further Information •

CHAPTER 3: HOW TO CREATE AND ACCESS A
SIMPLE DATA SET

Using a Data Set • •

How to Create a Simple Data Set. •
Type of output Device (UNIT=) •
Volume Serial Number (VOLUME=SER=).
Name of Data set (DSNAME=) •••••
Format of the Records (DCB=) ••••
Auxiliary'Storage Required (SPACE=)
Disposition of Data Set (DISP=)

How to ,~ccess an Existing Data Set
Type of Input Device. •
Volume Serial Number.
Name of Data Set. • • •
Format of the Records •
Auxiliary Storage Required.
Disposition of Data Set • .•
special-PUrpose Parameters.
syst,em Output (SYSOUT=) •.•
Data in the Input Stream •.•

Standard Files •

Examples

PART 2: USING ALL THE FACILITIES

• 13

• 13
• 13
• 14
• 14
• 14

• 14
• 14
• 16
• 16
• 16
• 17

• 17

• 20

• 20
• 21

• 22

• 22

• 22
• 23
• 23
• 24
• 24
• 24
• 24

• 25
• 25
• 25
• 25
• 25
• 25
• 26
• 26
• 26
• 26

• 26

• 26

OF THE PL/I (F) COMPILER • 29

CHAPTER 4: JOB INITIALIZATION. • 31

Introduction • • 31

Contents

JOB Statement. • • ,.

Job Scheduling ,.. ••••
Job scheduling and the Control

Program. • • • • • • •
Primary Control Program (PCP)
MFT Control Program •
MVT Control Program

CHAPTER 5: COMPILATION •

Introduction •
Compilation

• • 31

• • 32

• • 32
• • 33

33
35

• • 37

• • 37
• • 37

Job Control Language for Compilation • • 39
EXEC Statement. • • • • 39
DD Statements • • • • • 40
Example • • • • • • • • • 43

Optional Facilities ••
Control Options • • •
Preprocessor Options. •
Input Options. ,.
Output Options .•
Listing Options

Listing,. • • • • •

• • 43
• • 44

46
47

• • 48
48

49
• • 49
• • 50

Options used for the Compilation.
Preprocessor Input. .• • • • •
Source Program. • • • • • ••
Attribute and Cross-Reference
storage Requirements. • • •

• • 50
Table • 50

51
Table of Offsets. •• • • •
External Symbol Dictionary. •
statistics. • • •• '.
Object Module • • •
Diagnostic Messages •
Return Code • • • • • • • •

Batched Compilation.
The PROCESS Statement •
Job Control Language for Batched
processing • • • • • • • •

Compile-Time Processing.. • • •
Invoking the Preprocessor •
The %INCLUDE Statement. •

• • 52
• • 52

54
• • 54
• • 56
• • 56

57
• • 57

• • 58

• • 58
• • 59

• • • 60

Dynamic Invocation of the Compiler • 61

CHAPTER 6: LINKAGE EDITOR AND LOADER • • 63

Introduction • • • • • • • • •
Choice of Linkage Program •

Linkage Editor • •• • • • • •
Module Structure. • • • • • •
Linkage Editor Processing •

• • 63
• • 63

• • 64
• • 64

65

Job Control Language for Link-Editing •• 66
EXEC Statement. • • • • • • 66
DD Statements • • •• • • • .• • • 67

5

Example • • • • • •

Optional
LIST.
MAP.
XREF.
LET •
XCAL.
NCAL.
SIZE.

Facilities.

Listing. • • • • • • • • •
Control Statements and Errors •
Diagnostic Message Directory. •
Module Map. • • • • • • • • • •
Cross-Reference Table
Return Code • • • •

Additional Processing.
Format of Control statements. •
Module Name • • • • • • • •
Additional Input Sources.
Overlay Programs. • •

Linkage Loader • • • •
Module structure. • • • • •
Linkage Loader Processing •

• 68

• 69
• 69
• 69
• 69
• 69
• 69
• 69
• 70

• 70
• 70
• 71
• 71
• 72
• 72

• 72
• 72
• 73
• 73
• 74

• 77
• 77
• 78

Job Control Language for Link-Loading. • 80
EXEC Statement. • • • • • • • 80
DD Statements • • • • 80

Optional Facilities. •
Control Statements.
Options in the PARM
CALL I NOCALL I NCAL ••
EP. • • •
LETINOLET ••
MAPINOMAP ••
PRINTINOPRINT •
SIZE. • • • •
RESINORES ••
Default options

Listing. • • •

Parameter.

Module Map. • • • •
Explanatory Error or Warning
Messsages. • • • • • • • •

Diagnostic Messages • • • • • •

• 83
• 83
• 83
• 84
• 84
• 84
• 84
.. 84
• 84
• 85
• 85

• 85
• 85

• 85
.. 86

CHAPTER 7: EXECUTING THE LOAD MODUL:E • • 87

Introduction • • • •

Load Module processing • •
Identifying the Module.

Job Control Language for Execution
EXEC statement. • • • •
standard DD Statements.
User DD Statements. • •

Listing. • • • • • • • •
contents of SYSPRINT Listing ••
Return Codes. .• .. • • • • • • •

communication with Program during
Execution • • • • • • • • • • .. •

6

• 87

• 87
• 87

• 88
• 89
.. 90
• 91

• 91
• 91
• 92

• • • 92

CHAPTER 8: CATALOGED PROCEDURES. • •

Introduction ..

PL/I Cataloged Procedures Supplied by

9:3

• .. 93

IBM • • • .• • • • • • .. • • • • .. 93
Compile and Punch Object Deck

(PLIDFC) • • • • • .. • • .• • • 93
Compile and Write Object Module

(PLILFC) . • • • • • • .• • • • • 93
Compile and Link-Edit (PLILFCL) • • • 94
Compile, Link-Edit, and Execute

(PLILFCLG) • .. • • • .. • • • •• 95
Link-Edit and Execute (PLILFLG) .. • • 95
Compile, Load and Execute (PLILFCG) • 9'5
Load and Execute (PLILFG) • .. • 96
Dedicated Workfiles • • 96

Using Cataloged Procedures

Altering Cataloged Procedures.
Temporary Modi:fication. • •
Permanent Modification. • •

• • 97

97
97

• .1010

CHAPTER 9: DATA SETS AND PL/I FILES. • .101

Introduction • .101

Data Sets. • • • • lOt
Data Set Names. • .101
Record Formats. • .10:2
Data Set Organization • • .104
Labels. • • • • • ~ .. • • .105
Data Definition (DO) Statement. • •• 105
Files and Data sets • • .. • .. • .107

Operating system Data Management .. •
Buffers • • • • .• • .'

• .107
• .10;~

Access Methods. • • ..
Data Control Block. •
Opening a File. .. • • • •
Closing a File. •

Auxiliary storage Devices.
Card Reader and Punch •
Paper Tape Reader • •
Printer • • • • • • • •
Magnetic Tape • • • • •
Direct-Access Devices •

CHAPTER 10: STREAM-ORIENTED
TRANSMISSION. • • ..

Record Format. .. •'. • ..
Fixed-Length Records. • • •
Variable-Length Records
Undefined-Length Records. •
Choice of Record Format •

Buffers •••

DCB Subparameters.

Creating a Data Set. • • • • ..
Essential Information •
Example .. • • • • • •

Accessing a Data Set

• .109
• .1110
• .111
• .11:2

• .11:2
• .11:2
• .. 11:2
• .11:2
• .113
• .113

.. • .111[J

• .ll/[J
• .lll[J
• .11/~
• .111[J
.. .ll'tJ

• .115

• •• 115

• .11'5
• .1115

.117

• .117

Essen.tial Information • • • • •
Magnetic Tape Without Standard
Labels • • • • • • •

Record Format •
Example •• •

PRINT Fil es • • •
Record Format •
Example •••
Tab Control Table

Standard Files

CHAPTER 11: RECORD-ORIENTED
TRANSMI SSION • • • • ,e •

Record Format. •
Choice of Record Format

.117

.118

.118

.119

.119

.120

.120

.120

.122

• 124

.124
• 124

Buffers. • • • • • • • • • .125
creating and Accessing Data Sets. • .125

CONSECUTIVE Data Sets. • • • • • • • •
creating a CONSECUTIVE Data Set • •
Accessing a CONSECUTIVE Data Set. •
Example of CONSECUTIVE Data sets. •
printing and punching Cards

INDEXED Data sets •••
Indexes • • • • • • • • •
Creating an INDEXED Data Set ••
Accessing an I~DEXED Data Set • • •
Reorganizing an INDEXED Data Set. •
Examples of INDEXED Data sets •

REGIONAL Data Sets • .• • • • .• • •
creating a REGIONAL Data Set. •
Accessing a REGIONAL Data Set •
Examples of REGIONAL Data Sets.

.125

.125

.126
• 128
.129

.130

.130
• 131
• 137
.138
.138

.139

.141

.143

.144

Teleproc.essing • • • • • • • .152
Introduction. .. • • • • • .152
Messa.ge Processing Program (MPP) ••• 153
How to Run an MPP • • • • • • • .153

CHAPTER 12: LIBRARIES OF DATA SETS .155

Introduc·tion • .155

Structurle of a Partitioned Data set. • .155
Direct.ory • • • • • ••• • .155

Creating a Partitioned DaLa Set. •
Space Parameter • • • • • •

processing a Member. • • • • •
Processing with PL/I. •

Operatin9 System Utility Programs.

System Libraries • • • • •
Link JLibrary. • • • • •
Procedure Library • •
PL/I Subroutine Library

.156

.157

.15t

.159

.160

.161

.161

.161

.161

Private Libraries.
Job Library • •
step Library. •

CHAPTER 13: MULTITASKING.

Introduction • • • • • • •

• .161
• .161
• .162

• .163

• .163

Multitasking Requirements. • • • .163
systenV360'Requi;rements •• 163
Operating system Requirements •••• 163
Programming Requirements. • • .163

Multitasking Management. ~ • •
Trans fer of Control,. • • • • • •
Use of Priorities in PL/I •
programming considerations.
Input/Output Handling •
Task Termination.

Multiprocessing. • . •
Synchronization •

CHAPTER 14: OTHER FACILITIES OF THE
OPERATING SYSTEM •

Introduction

Dump of Main storage

• .164
• .164
• .166
• .167
• .1'69
• .172

• .173
• e 174

• .175

• .175

• .175

• .176
• .177

Checkpoint/Restart Interface •
Types of Restart •••••••
Checkpoint/Restart Requirements and
Diagnostic Aids. • • • • • •

Job Control Language Details.
PL/I CALL Statement Details •
Restriction on Use of

Checkpoint/Restart • • • • •
Effect of Checkpoint/Restart on

Data Sets. • • • • •

.178
• .178
• .180

• .183

• .183

Sort Interface ••••••••••••• 184
PL/I Sort Environment •••••••• 184
User' Control of SORT ddnames ••••• 186
Defining the Sorting Application. • .187
Entry Point lHESRTA • .189
Entry Point lHESRTB .• • • .191
Entry Point IHESRTC • • • .193
Entry Point IHESRTD • • • .195
Sorting Variable-Length Records • • .191
Use of PL/I Sort in a Multitasking

Environment. • •••••• 198

CHAPTER 15: PL/I AND OTHER LANGUAGES • .201

Introduction • • • .201

Data set Interchange •• 201
PL/I-FORTRAN Data set Interchange •• 201
PL/I-COBOL Data Set Interchange ••• 203

Linkage with Other Languages •••••• 204
PL/I (F) Environment and

Communications ••••••••••• 204
Communication with Other Languages •• 212

7

PART 3: APPENDIXES. • • • • • • • .217

APPENDIX A: PROGRAMMING EXAMPLES. .219

Example 1: Simple PL/I Program • • .219
Listing • • • • • • • • • • • • .219

Example 2: Compiler and Linkage-Editor
Listings. • • • • • • • • • • • .226

Listing. • • • • • • ••••• 227

APPENDIX B: PARAMETERS OF DD STATEMENT .249

APPENDIX C: VERSIONS OF THE PL/I (F)
COMPILER. • • • • • • • • • • • •

APPENDIX D: SYSTEM REQUIREMENTS. •

Control Program Options.

Machine Requirements • • • •

.261

.267

.267

.267

APPENDIX E: PL/I LIBRARY SUBROUTINES • .270

APPENDIX F: SHARED LIBRARY. •

Introduction

.279

.279

How to Create a Shared Library. .. .279

How to Use a Shared Library. • .281

8

Using standard IBM Cataloged
Procedures .. • • .. • • • .. • 282

providing Your Own cataloged
Procedures. • • • • • • .283

APPENDIX G: IBM SYSTEM/360 MODEL 91
AND MODEL 195 • • • • .. • • • • ... 287

APPENDIX H: COMPILER DATA SETS • • .289

APPENDIX I: ON, RETURN, AND USER
COMPLETION CODES. • .291

ON-Codes 291

Return Codes and User Completion codes .294
step Abend Facility • • .295
Return Codes. • • • • • .295

APPENDIX J: IMPLEMENTATION CONVENTIONS
AND RESTRICTIONS. • • • .297

APPENDIX K: DIAGNOSTIC MESSAGES 313

Source Program Diagnostic Messages • • .313

Compile-Time Processing Diagnostic
Messages. • • • • • • • • • • • .. • • .. 445

Object-Time Diagnostic Messages. • .467

INDEX. .oo • • • • • • • • .506

Figure 1-·1. A JOB statement • • • • 15
Figure 1-·2. An EXEC statement • .. • 16
Figure 1-3. A DD Statement (Using a

Continuation Card). • • .. _. • • • • 18
Figure 1-·4. Typical Sequence of Job
Control ,statements for Compile,
Link-Edi.t, and Execute steps.. •• 19

Figure 1--5. Typical Sequence of Job
Control statements for Compile and
Load-and-Execute steps. • -.. .. • • .. • • 19

Figure 2-·1. Job Control Cards for the
Execution of.a simple PL/I Program ••• 20

Figure 3-·1. Creating a CONSECUTIVE
Data Set.: Essential Parameters of DD
Statement .. • • • • • • • • • • • • • .. 23

Figure 3-· 2. Accessing a CONSECUTIVE
Data Set.: Essential Parameters of DD
statement • • • • •• • • • • • • • 25

Figure 3-·3. creating a simple
CONSECU'l~IVE Data Set. • .. • • • • • • • 27

Figure 3-·4. Accessing a Simple
CONSECU'l'IVE Data Set. • • • • • • • 27

Figure 5-'1. PLII (F) Compiler:
Simplifi.ed Flow Diagram • • • • • • 38

Figure 5-· 2. standard Data sets for
Compilat,ion • • • • • • • • • • • • 40

Figure 5-·3. Characteristics of
CompileI: Data Sets. • • • • • • • • • • 41

Figure 5-·4. Compiler Options,
Abbreviations, and standard Defaults. • 44

Figure 5-· 5.. Optional Components of
Compiler Listing. • .. • • • • .. 49

Figure 5-·6. Typical Standard ESD
Entries • .. • • • • • • • • • • • .. 53

Figure 5-·7 .. An Example of Batched
Processing_ • • • .. • • • • .. • • • 59

Figure 5-· 8. Execution of the Programs
Compiled in Figure 5-7 60

Figure 5-· 9. Using the Preprocessor to
Create a Source Deck. • • • • • • • .. • 60

Figure 5-·10. Placing Source
Statements in a New Library .. • • .. 61

Figure 5-· 11. Including Source
Statements from a Library • • .. • • 62

Figure 6-·1. Basic Linkage Editor
Processing. • • .. • • • • • • • • • 66

Figure 6-·2. Linkage-Editor Data Sets •• 67
Figure 6-·3. Processing of Additional

Data Sources. • .. • • .. • • • • • • 74
Figure 6-'4. Program Suital:>le for

Overlay Structure • • • • • • • • .. • • 75
Figure 6-· 5. Overlay Tree Structure

for Proqram of Figure 6-4 • • • • • • .. 76
Figure 6-·6. Compiling, Link-Editing,

and Executing an Overlay Program. • • • 76
Figure 6-,7. Loader Processing (SYSLIB
Resolution) • • • 78

Figure 6-· 8. Loader Processing
(Link-Pack Area and SYSLIB
Resolution) • • • • • • • • • • • • • • 79

Figure 6-·9. Automatic Editing • 79

Figures

Figure 6-10. Linkage-Loader Data Sets • 81
Figure 8-1. Cataloged Procedure

PL1DFC (Compile and Punch Object
Deck) • • •• • • • • .. • • • • • .. •• 93

Figure 8-2. Cataloged Procedure
PL1LFC (Compile and Write Object
Module) • • • .. • 94

Figure 8-3. Cataloged Procedure
PL1LFCL (Compile and Link-Edit) • .• 94

Figure 8-4. Cataloged Procedure
PL1LFCLG (Compile, Link-Edit, and
Execute). • • .. • • • • • -. 95

Figure 8-5. Cataloged Procedure
PL1LFLG (Link-Edit and Execute) • • 95

Figure 8-6. Cataloged Procedure
PL1LFCG (Compile, Load-and-Execute) 96

Figure 8-7. Cataloged Procedure
PL1LFG (Load-and-Execute) • -. .• 96

Figure 8-8. Invoking Cataloged
Procedure PLlLFLG • • • .. • • • 99

Figure 8-9 Executing PL1DFC as an
In-Stream P~ocedure • .• • • • • • • • .100

Figure 9-1. A Hierarchy of Indexes ••• 102
Figure 9-2. Fixed-Length Records •••• 103
Figure 9-3. Variable-Length Records ••• 103
Figure 9-4. Associating a File with a
Data Set. • • • • • • • • • • • • • • .108

Figure 9-5. Data Management Access
Methods for Record-Oriented
Transmission 110

Figure 9-6. How the Operating System
completes the Data Control Block. • • .111

Figure 9-7. Card Read Punch 2540:
Stacker Numbers 112

Figure 10-1.. Creating a Data Set:
Essential Parameters of DD Statement •• 116

Figure 10-2. Using Stream-Oriented
Transmission to Create a Data set ••• 117

Figure 10-3. Accessing a Data Set:
Essential Parameters of DD Statement •• 118

Figure 10-4. Using Stream-Oriented
Transmission to Access a Data Set .• • .119

Figure 10-5. Using a PRINT File •••• 121
Figure 10-6. Tabular Control Table

(Module IHETAB) • • • .. • • • • .. .122
Figure 10-7. Making a Temporary

Change in Tab Settings ••••••••• 123
Figure 11-1. Creating a CONSECUTIVE
Data Set: Essential Parameters of DD
statement .. • .. •••••••••••• 126

Figure 11-2. DCB Subparameters for
CONSECUTIVE Data Sets ••••••••• 126

Figure 11-3. Accessing a CONSECUTIVE
Data Set: Essential Parpmeters of DD
Statement .. • .. • • • • • • • • • • 127

Figure 11-4. Creating and Accessing a
CONSECUTIVE Data Set. • • • • • • • • .128

Figure 11-5. ANS Printer and Card
Punch Control Characters. • •• • • •• 129

Figure 11-6. 1403 Printer Control
codes. • • • . • • • • • . • •• .129

9

Figure 11-7. 2540 Card Read Punch
Control Codes • • • • • • • • .130

Figure ll-B. Printing with
Record-Oriented Transmission. • • .130

Figure 11-9. Index Structure of
INDEXED Data Set. • • • • • • • • .131

Figure 11-10. Adding Records to an
INDEXED Data Set. • • • • • • • • .132

Figure 11-11. Creating an INDEXED
Data Set: Essential Parameters of DD
Statement • • • • • • • • • • • • .133

Figure 11-12. DeB Subparameters for
INDEXED Data Set. • • • • • • • .134

Figure 11-13. Record Formats in an
INDEXED Data Set. • • • • • • • .136

Figure 11-14. Record Format
Information for an INDEXED Data Set. .136

Figure 11-15. Accessing an INDEXED
Data Set: Essential Parameters of DD
Statement • • • • • ,. • • • .. • • .13B

Figure 11-16. Creating an INDEXED
Data Set. • • • • • • • .. • .. • • .139

Figure 11-17. Updating an INDEXED
Data Set. • • • • • • • • • • • • .140

Figure ll-lB. Creating a REGIONAL
Data set: Essential Parameters of DD
Statement • • • • • • • • • • .142

Figure 11-19. DCB Subparameters for
REGIONAL Data Set • • • • • • • • • • .142

Figure 11-20. Accessing a REGIONAL
Data Set: Essential Parameters of DD
Stat ement • • • • • • • • • • • • • • • 143

Figure 11-21. Creating a REGIONAL(l)
Data set. • • • • • • • • • • • • • • .145

Fi,gure 11-22. Accessing a REGIONAL(l)
Data set 146

Figure 11-23. Creating a REGIONAL(2)
Data Set. • .. • • 147

Figure 11-24. REGIONAL (2) Data Sets:
Direct Update e 14B

Figure 11-25. REGIONAL(2) Data Sets:
Sequential Update and Direct Input. • .149

Figure 11-26. Creating a REGIONAL(3)
Data Set. • • • • • .. • • • • • • • • .150

Figure 11-27. REGIONAL(3) Data Sets:
Direct Update • ,. • • • • • • .. • • • .151

Figure 11-2B. REGIONAL(3) Data Sets:
sequential Update and Direct Input. G .152

Figure 11-29. PL/I Message Processing
Program. • • .. • .. • • • • ... e .153

Figure 12-1. A Partitioned Data set e .156

10

Figure 12-2. A Partitioned Data Set
Directory Block ~ • • • • .'. • •157

Figure 12-3. Contents of Directory
Entry • • • • .'. • • • •.• '. • .157

Figure 12-4. Placing an Object Module
in a New Library ~ •••••• 15B

Figure 12-5. Placing a Load Module in
an Existing Library • • • • • oO'. • • .159

Figure 12-6. Using a PL/I Program to
Create a Member of a Partitioned Data
Set. ' 160

Figure 12-7,. Updating a Member of a
Partitioned Data Set. • • • • • • • • .160

Figure 12-B,. Use of JOBLIB statement •• 162
Figure 13-1. Transfer of Control
within a Multitasking Program ••••• 165

Figure 13-2. Flow of Control through
a Program , '. • • • .. .167

Figure 14-1. Return Codes from
Checkpoint Module IHECKP. • • • • .lB2

Figure 14-2. Auxiliary Storage
required for Sort.. • ,. • • .'. • .lB5

Figure 14.3. DD Statements for
Sort/Merge. • • • • .186

Figure 14-4. PL/I Program Invoking
IHESRTA '. • • • • • • •••••• 191

Figure 14-5. PL/I Program Invoking
IHESRTB • • • • • • • • • • • • .193

Figure 14-6. PL/I Program Invoking
IHESRTC • • • • • • • • • • .. • • 195

Figure 14-7. PL/I Program Invoking
IHESRTD • • • • • • • .197

Figure 14-8. Using IHESRTA to Sort
Variable-length Records • • • • • .200

Figure 15-1. FORTRAN-PL/I Data
Equivalents. • • • • • • .202

Figure 15-2. COBOL-PL/I Data
Equivalents • • .. • • ,. • ,. • • .204

Figure 15-3. Initial Entry to
Procedures with the MAIN Option ••••• 206

Figure 15-4. PL/I-FORTRAN: Example of
Named Common Storage. .'. • • • • • • • 214

Figure D-l. Control Program Options •• 267
Figure D-2. Minimum system

Requirements. • .. • .. • • .. • • .. • 268
Figure 0-3. possible Minimum
Configurations of Main Storage. .. .269

Figure F-l. Shared-Library Module
Groups ••••• ,. • • • .. • • • • .280

Figure 1-1. Main ON-Code Groupings ••• 292
Figure 1-2. Detailed ON-Code
Groupings ••••••••••••••• 292

PART 1: Basic Programming with the PL/I (F) Compiler

Part 1: Basic Programming with the PL/I (F) Compiler 11

12

Chapter 1: Introduction to the Operating System

In IBM System/360, programs are usually
executed as part of a group of programs
collecti'V'ely termed an operating. system.
This chapter introduces IBM System/360
Operatinq System:l. (the operating system
that includes the PL/I (F) compiler), and
describes the job control language that
enables programmers to define the
requir,ements of their programs for the
operating system. Chapter 2 illustrates
the'use of job control language for running
asimplePLII program. The two chapters
are complementary; the first briefly
describes the operating system and job
control language, and the second
demonstrates how to use them to execute a
PL/I program. Chapter 3 introduces the
concept of storage of data and shows how to
use a simple data set.

IBM Sys~tem/360 Operating System

IBM system/360 Operating system consists of
a control program and a number of
processing programs that together assist
both the operator and the programmer in the
use of IBM System/360. The operating
system relieves the programmer of routine
and time-consuming tasks by controlling the
allocation of storage space and
input/output devices. Through the language
translators that may be included, it makes
programming easier by permitting the use of
high-lev'el languages such as PL/I. And it
increase~s the throughput of the machine
because it can proces,S a stream of jobs
without interruption by the operator; it
provides automatic transition from one job
to another.

'rhe control :program supervises the
execution of all processing programs and
provides services that are required in
common by the processing programs during
their eJ!:ecution. It has four main
elements::

1. Supervisor: The supervisor program is
the! control center of the operating
system, and controls and coordinates
all. activity within it.

2. Master scheduler: The master scheduler
forms a two-way communication link

:l.IBM System/360 operating System is
frequent:ly referred to as 'the operating
system,' or simply 'the system.'

between the operator and the operating
system.

3. Job scheduler: The job scheduler reads
and analyzes the input job stream (the
sequence of control statements and
data entering the system), allocates
input/output devices as necessary,
initiates the execution of processing
programs, and provides a record of the
work processed.

4. Data management routines: The data
management routines control
input/output operations, regulate the
use of input/output devices, and
provide access to the data held in
them.

The processing programs of the operating
system include service programs (for
example, the linkage editor) and language
translators (for example, the PL/I (F)
compiler) provided by IBM, as well as
programs that are written by the user and
incorporated as part of the system.

All the programs of the operating system
are stored in system,libraries, which are
held in auxiliary storage on a -
direct-access storage device.

The most important components of the
operating system that directly concern the
PL/I programmer are the job scheduler, the
PL/I (F) compiler, the linkage editor, and
the linkage loader, all of which are
discussed below. The operating system is
described in IBM system/360 Operating
system: Concepts and.Facilities.

JOB SCHEDULER

The job scheduler is the component of the
operating system that handles
communications between the programmer and
the services provided by the operating
system. A simple programming language
called job control language (JCL) enables
the programmer to specify his requirements
to the operating system. The statements of
this language indicate to the job scheduler
the start and name of the job, specify the
programs that are to be executed, and
define the auxiliary storage requirements
of the programs. In response to the job
control statements, the job scheduler
allocates the input/output units required,
notifying the operator of any tapes or disk

Chapter 1: Introduction to the Operating system 13

packs that must be mounted, and then
requests the supervisor program to initiate
the execution of the specified programs.
After the execution of each program the job
scheduler prints a record of the work done.

PL/I (F) COMPILER

The PL/I (F) compiler is a program that
translates PL/I source programs in'to IBM
system/360 machine instructions. The set
of instructions produced by a compilation
is termed an object.module. An ob-ject
module is not in a form suitable for
loading into main storage and subsequent
execution: first it must be processed by
the linkage editor.or the linkage loader.
(Chapter 5 discusses the compiler and
describes the object module it produces.)

LINKAGE EDITOR

The linkage editor is a program that
converts object modules into a form
suitable for loading into main storage for
execution; a program in this form is termed
a load module. The output (load module)
from the linkage editor is always placed in
a library, from which the job scheduler can
load it for execution.

The linkage editor can combine
separately produced object modules and
previously processed load modules into a
single load module. It can make changes to
sections of a load module: only sections
that are affected by the changes need be
re-compiled. It also permits a program
that is too large for the space available
in main storage to be divided so that i,t
can be loaded and executed segment by
segment.

Chapter 6 discusses the linkage editor
and the differelJ.ces between object modules
and load modules.

LINKAGE LOADER

The linkage loader is a program tha~
converts object modules into load modules,
loads them into main storage and executes
them, all in one job step. It can combine
object or load modules into a single load
module for execution: this load module is
always placed in main storage" never in a
library.

14

The use of the linkage loader and the
options available are discussed in Chapter
6.

Job Control Language Examples

The following discussion of the job control
language is an overview. Job control
language is fully described in IBM
System/360 Operating.System: Job control
Langauqe.User's Guide, and Job Control
Language.Reference: however the most
significant parameters of the DO statemen't
are also described in Appendix B.

Job control language is the means by
which a programmer communicates with the
job scheduler; i,t allows the programmer to
describe the work he wants the operating
system to do, and to specify the
input/output facilities he requires. Only
seven types of s'tatetnent are involved, of
which four are relevant to this discussion:
the JOB statement, the execute (EXEC)
statement, the data definition (DO)
statement, and a delimiter statement.

The JOB statement identifies a job to
the job scheduler. In IBM System/360
Operating System" a job is an independent
request for the facilities of the operating
system; it comprises one or more job step~~.
A job starts with a JOB statement and
continues until the next JOB statement is
encountered.

The EXEC statement identifies a job stE~p
to the job scheduler. A job step involves
a request for the execution of a program.
Job steps can be interrelated: data can bE~
passed from one job step to the next, and
the execution of one job step can depend on
the successful execution of a preceding
step. (No such relationship exists betweEm
jobs; they are independent of one another.)
A job step starts with an EXEC statement
and continues until the next EXEC or JOB
statement is encountered.

DO (data definition) statements describe
the input/output facilities required in a
job step ..

The delimiter (/*) separates data in the
input stream from the succeeding job
control statements.

FORMAT OF JOB CONTROL STATEMENTS

A job control statement consists of one or
mo're aO-byte records. Since aO-column
punched cards are the most common input

Name of
job

Accounting
information

Programmer's
name

...-"'-EX t1PtE: JOB (2345, A 1111), J. ilL GGS
100 0 00 0 (l] I1J

(]]D (I] 0 0 m
rno no 0 0 0 0 0 0 0 0 0 0 0 0 0 000 0 0 0 DOnO DOC 0 DOnO nOD 0 0 0 COO 0
'r"!"3'r'56 7 H 9101112131415161718192021222l212S26'i!'282930JI313334~3637383940414143444,46414849,OSl51,3,45556515859606161636465666168691011111314151071181980
(1)1101111 10111111111CJlI1[]1101 1 11 1 1111111111111111111 i 11111111 1'1111111,11111111111

22222222222202202222222222222022220222

3 3 3 3 3 3 3 iD3 3 3 3 3 3 3 303 303 3 3 3 3 30303033 3 3 3 33

44444044444444444044

5 5 [] 5 5 5 5 5 05 5 5 5 505 5 505 5 5 5 5 505

6 6 6 6 6 6 6 6 6 6 6 (] 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 606

7 7 707 707 7 7 7 7 1 7 7 7 7 7 7 7 77 7 77 7 7 7 7 7 7 7 (1]7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 77 77 7 77 7 7 7 7 7 7 7 7 7 7 77 7 7 7 7 7 7 7 7 7

~ 8 8 8 8 8 8 8 8 8 8 8 8 808 8 8 808 8 8 8 8 (]]a 08 a 8 & 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 a 8 8 8 8 8 8 8 8 8 8 8

99
I 2 3 4 5 6 7 6 9 10 11 12 13 14 15 16 II 18 19 20 21 2223242528 27 282930 31 323334 353631 38 39 .0 41 42 4344414641 48495051 525354 ,:' ,6 ,1 5S ,9" ,: bl '.J :4 6H6 67 66 69 10 II 12 13 74 15 16 71 16 19 60

113M UNITED KINGDOM LIMITED, ~OBI

Figure i--i. A JOB Statement

medium for the job stream, the following
discussion refers to card columns rather
than to bytes.

JOB, 'BXEC, and DD statements have the
same format, examples of Which appear in
Figures :iL-l, 1-2, and 1-3. These
statement,s are identified by / / in card
columns :IL and 2. Each statement can
contain four fields (name, operation,
operand, comments), which are separated by
one or more blanks; the name field starts
in coluinn 3. A job control statement must
not extend beyond column 71; if necessary
it can be:! continued on another card, as
shown in Figure 1-3.

The .lliime field, which begins in column ,
3, can range from one to eight characters
1n length, and can contain any alphameric
(alphabe1:ic or numeric) or national (Ii) $ #)
characters. The first character must be
alphabetic or national. This field is
somtimes omitted. The name identifies the
statemeni:. and enables other job control
statemeni:.s (or PL/I statements) to refer to
it.

The ~~eration field specifies the type
of job cc:mtrol statement (JOB, EXEC, DO).
Whether it.he name field is used or not, the
operation field must be preceded by at
least once blank.

The QPerand field can contain one or
more pari5lmeters separated by commas; these

param~ters pass information to the job
scheduler, and, for the JOB, EXEC and DO
statements, are of two types, pOSitional
and keyword. Positional parameters must be
placed at the beginning of the operand
field, and are identified by their pOSition
relative to other parameters. If a
positional parameter is omitted, its
absence is indicated by a comma, unless it
is the last positional parameter, when the
comma is omitted. A keyword parameter
consists of a keyword followed by an equals
sign, which is followed by a single value
or a list of subparameters; keyword
parameters may appear in. any order, and
their omission need not be indicated.

The comments- field is intended for
programmer's notes. It has no fixed
format, and can contain any information.
The comments field is the only field that
can include blanks.

The following paragraphs contain a
general description of the functions of the
JOB, EXEC, DO, and delimiter statements;
these, and other job control statements,
are discussed further under appropriate
headings in later chapters. IBM System/360
Operating system: .Job Control Language,
User'.S Guide, and Job Control Language
Reference, gives a full description of all
the job control statements, their formats
and parameters ..

Chapter 1: Introduction to the Operating system 15

JOB STATEMENT

The JOB statement (Figure 1-1) indicates
the start of a job and the end of the
preceding job. It assigns a name to the
new job. which is used by the job scheduler
in the messages it passes to the operator
and prints on the program 1isting~ The
parameters (none of which need appear
unless your installation has made some of
them mandatory) include the programmer's
name and accounting information.

EXEC STATEMENT

The EXEC statement (Figure 1-2) marks the
start of a new job step and the end of the
preceding job step. It requests the job
scheduler to fetch a load module from the
system library (or from another library)
and cause it to be executed; other load
modules can be loaded dynamically during
the execution of the first. but only one
can be named in the EXEC statement. The
first parameter (PGM=) names the program to
be executed. Sometimes the EXEC statement
passes information to the program that it
calls (PARM parameter). and it may include
accounting information and specify
conditions for bypassing the job step.

DD STATEMENT

In IBM System/360, a collection of data
held in an auxiliary storage device (a reel
of magnetic tape, a disk pack. etc ••) is
termed a data set. A DD statement (Figure
1-3) identifies a data set and describes
its attributes. There must be a DD
statement for each data set that is useal or
created in a job step. The DD statement:s
are placed immediately after the EXEC
statement for the step.

The parameters of the DD statement
contain such information as the name of the
data set, the name of the volume on which
it resides, the type of device that holals
the data set, the format of the records in
the data set, and the method that will be
used to create or access the data set. The
name of the DD statement provides a
symbolic link between the file named in a
PL/I program and ·the actual name and
location of the corresponding data set.
The DD statement allows the programmer to
leave the specification of his data set
requirements until he is ready to execute
his program, and enables him to relate t,he
file in his program to different data sets
on different occasions. Some data set
information can be given in the PL/I
ENVIRONMENT attribute rather that in a DD
statement.

Name of
job step

Program to Information being passed
be executed to program IEMAA

, r 'r / ~-/-/~P~L~1~L~~~X~~~C~P~G~M-=~I~~A~~~4'~P~A~R~~~=~'~----------------------------------~
om 0 OO[D 0 OJ IDJ

000 OD D Dm IlJ [I] 0
mO 0 D D D DnO 0 0 DOD DOD 0 DOnO 0 0 0 0000 C ono 0 G 3 0 0 0 DOC 0 0 0 0 0 0 0 000000000000000000000000000000
W3 4 5 6 7 I 'r'10 11 72131415161718 191021W21212~2627281930 3131~343~3Sl7383940 41414J444~46474849505151535455565758596061626J64656667686970 II 11 7374757677787980

[1]1 101 1 1 1 1 1 1 1 1 1 1 1 1 1 III 1 101 1 1 1 1 101 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Iii I 1 I 1 1 I

222222222222222222222222222222222222220222

3 3 30303 3 3 303 3 3 3 3 3 3 3 3 303 3 3 3 3 303 3 303 3 3 303

44444444444444044404444440444440444044

555555505055555550555555555055555055055055

6 6 6 6 6 6 6 6 6 6 6 6 6 6 606 6 6 6 6 6 6 6 6 606 6 [)6 6 6 6 Os 6

7 707 7 7 7 707 7 7 [J]7 77 7 77 77 077 77 71 77 7 7 77 71 77 7 77 7 7 7 7 77 7 7 7 7 77 7 77 7 77 77 7 7 77 7 77 77 7 7 77 7 7 7 7 7

8 8 8 8 8 8 8 8 8 8 8 8 8 8 808 8 8 8 808 8 8 8 rna 8 8 8 Os 8 8 8 8 808

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 ng 9 9 9 9 9 9 n 9
1234587'9~l1tlQ~~I6~I619~~n21NW28n28H~~n~~~~n»»d~~o«~«c«u~~~~~e56H5656~~~~"~~~U"ronn73H~~77n~~

IBM UNITED KINGDOM LIMITED ~081

Figure 1-2~ An EXEC Statement

16

Chapt:er 3 discusses the creation and
access of simple data sets: Chapter 9 is a
completE! discussion of data management for
a PL/I program.

DELIMITER STATEMENT

The delimiter statement consists of the
charactE!rS /* in card columns 1 and 2. It
separatE!S data in the input stream from the
job cont:rol statements that follow the
data. Dqta in the input stream is usually
preceded by a DD statement with the operand
*, for E!xample:

//SYSIN DD *
If the data includes cards that have // in
the first two columns, it is preceded by a
DD statE!ment with the operand DATA, for
example:

/ /Sl~SIN DD DATA

Executi:ng a PL/I Program

A job consists of one or more job steps,
and each job step normally uses one or more
data se·t:s. Thus the sequence of job
control statements for a single job
comprises a JOB statement followed by the
EXEC and DO statements for each job step.
Figure 1-4 illustrates such a sequence; it
has beel simplified by omitting all the
parameters in the various statements.

The execution of a PL/I program requires
two or t:hree job steps:

1. Compilation: The compiler converts the
PL/I statements into machine
instructions, which form an object
module.

2. Link-editing or link-loading: The
linkage editor processes the object
module produced in step 1, and forms
it into a load module that can be
eXE~cuted. The linkage loader converts
the object module into a load module
and executes it.

3. EXE~cution: The load module formed by
the linkage editor is loaded into main
storage and executed.

The sequence of job control statements
in Figmre 1-4 might be used for compiling,
link-editing, and executing a PL/I program.

The ~JOB statement would probably have to
include certain parameters required by the

installation. The parameters needed and
the values used with them vary from
installation to installation; it is your
responsibility to supply the correct
information in this statement.

The EXEC statement for the first job
step (named PL1L) requests the execution of
the program IEMAA, the PL/I (F) compiler;
the DO statements defining the data sets
required for this step follow the EXEC
statement. SYSPRINT and SYSIN refer to the
printer and the card reader, respectively,
as they do in the other job steps. The
object module produced by the compiler is
placed in the data set identified by
SYSLIN. SYSUTl and SYSUT3 define data sets
used as workfiles.

The second EXEC statement (LKED) causes
program IEWL, the linkage editor, to be
executed, •. The linkage editor finds its
primary input (the object module) in the
data set referred to by the DO statement
named SYSLIN; it may seek further input
from the private library identified by
SYSLIB. The load module produced by the
linkage editor is placed in the data set
identified by SYSLMOD. SYSUT1 defines a
data set used as a workfile.

The last EXEC statement (GO) requests
the execution of the load module created by
the linkage editor in the previous step; a
special form of the PGM parameter is used
for this.

The sequence of job control statements
using the linkage loader is shown in Figure
1-5.

Cataloged Procedures

Often the/same set of job control
statements is used over and'over again (for
example, to specify the compilation,
link-editing, and execution of many
different PL/I programs). To save
programming time and to reduce the
possibility of error, sets of standard
series of EXEC and OD statements can be
prepared once and 'cataloged' in a system
library; such a set of statements is termed
a cataloged procedure.

To retrieve a cataloged procedure, an
EXEC statement is used in which the first
parameter (PROC=) names the procedure. The
effect is the same as if the job control
statements of the cataloged procedure
appeared in the job stream in the place of
the EXEC statement that calls the
procedure. In such an EXEC statement, the
keyword PROC can be omitted; the name of
the procedure stands alone as if it were a

Chapter 1: Introduction to the Operating System 17

Name of DO
statement

Name of
data set

Type of device
(2400 series
magnetic tape

drive)

Record format

//TC:: Tl '0'0 DSNAMC::=Tl='" LC::,lr.'tIT=24
o rno DO {DO 0

DO 0 0
UlJo mo 0 0 0 0 000 0 0 0 0 no 0 0 0 ([Jo 0 no 0 c rTTlo G 3 0 0 0 0 000 oa 0 0 0 rno 0 0 0 0 0 0 0 no 0 0 0 0 0 0 0 0 no 0 0 0 0 0 0 0 0 0
123 4W7 U 9101J12IJI41516J718'i(2021222124252627'i(293031~351617181940414143444H641484950515253545S56575859~616261646566676869'ltl1711314751077781980
(1]11110111111101111111111111111111111111111111111111 i 111111111111111111111111111

2 2 2 202 2 2 2 2 2 202 2 2 2 2 2 2 2 2 2 2 2 2 2 2 202 2 2 2 2 202 2 02 (1]2 2 2 202 2 2 2 2 2 2 2 202 2 2 2 2 2 2 2 202 2 2 2 2 2 2 2 2 2 2 2

33033033333333333303303033303333303(1333 a03 3 3 3 3 3 3 3 3(1)3 3{D3 3 303 303 3 3 3 3 303 3 3 3 3 3 3 3 3 3

44444444004044404444444404444404440444444444444444444444444444440444444444444444

5550555555555055055555055055555555555505555550555555505555555055 555 5055555555555

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 60606 6 6 6 6 6 6 606 6 6 6 6 6 6 606 6 6 6 6 6 6 606 6 6 6 6 6 6 6 606 6 6 6 6 606 [J]& 6 6 6 & 6 6 6 6 6 6 6 6

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 77 77 7 7 7 7 77 7 7 7 7 77 7 77 7 77 7 7 7 7 7 7 7 7 7 7 7 7 7 7 77 77 7 77 7 7 7 77 7 77 7 77 77 7 7 7 7 77 7 7 7

8 8 8 8 a 8 8 8 8 8 8 8 8 8 8 8 8088 8 8 808 8 8 808 8 8 808 8 8 (D8 8 8 8 8 8 80808 Os 8 8 8 808 rn8 8 8 8 808 81lJa 8 8 8 8 8 8 8 a 8

9 ng 9 9 9 9 ng 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 [l]s 9 9 9 9 9 909 9 9 9 9 9 909 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 J7 18 19 20""22 23 24 25 26 ~ 28 29 30 3' 32 33 34 ~5 36 37 38 39 .0 41 '12 4344 4H6 4~ 4849 50 51 52 53 54 5~' 56 57 58 59 60 61 62 !3 64 61 6~ 67 68 69 70 71 72 13 74 75 76 77 78 79 80

IBM UNITED KINGDOM LIMITED ~081

Disposition (new data set,
to be filed at end of job)

" // DISP=(NC::W,KC::C::P)
(IJ 00 OJ

o 0 0 m
mo 0 0 no 0 0 0 0 mo 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 COo 0 0 G 3 0
'r"r'3 4 5 If 7 H 910 1J'ifr114 1516 17 18192021222124252627 282930 31313334 351837 3a3940 41424344 4546 41484950515253545556515859606162636465666168691011 7113 74 75 7. 77 787980

0)11 i 111111111111111111111111111

2222202222222022

3 3 3 3 3 3 J 3 3 J 3 3 OJ 3 3 J 3 3 3 J 3 3 J 3 J 3 J 3 3 3 3 3 3 3 33 3 J 3 3 3 3 33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

444044

5 5 5 5 5 5 5 5([1)5 5 5 [l)5 05

66666660666066 6 6 6 6 6 6 6 6 66666666666666666666

777777077 7 7 7 7? 77077 7 7 7 7 7 7777777 77 7 7 7 7 717 7 7 7 717 7 7777 77 7 7 7 7 77 7777777 77 '17 7 77 77 77 7 7 7

88 a a 8 8 sma 8 808 8 8 808 8 a 8 8 a 8 8 8 8 8 8 8 8888888 a 8 a 8 8 8 888 a 8 8 8 8 8 8 8 8 8 8 8 8 888888881188888 a 8 8 8 8 8

9 9 9 9 ng 9
I 2 3 4 '!' 6 I 8 9 10 11 12 13 14 15 16 11 18 19 20 21 22 2324 25 26 27 282930 3' 32333053631 38 39 ~o 41 424344 4146 41 48495051 52 53 545~· 56 17 S8 596081 &2 !3 64 6516 67 68 69 10 71 72 13 14 7576 7116 79 80

IBM UNITfD KINGDOM LIMITED ~081

Figure 1-3. A DO statement (Using a continuation Card)

positional parameter. For example, the
following EXEC statements have the same
effect:

18

// EXEC PROC=PL1LFCLG

// EXEC PL1LFCLG

The job control statements in Figure '1-4
(apart from the JOB statement and the DD
statements named SYSIN) are the same as
those in the cataloged procedure PL1LFCLG.
You can use this cataloged procedure, which
is supplied by IBM, for compiling,
link-editing, and executing a PL/I program.
Chapter 2 illustrates the use of PL1LFCLG.
Chapter 8 is a complete discussion of
catalo.ged procedures; it describes the IBM
cataloged procedures for PL/I and tells you
how to modify them and how to catalog your
own procedures.

//EXAMPLE JOB Start of job
//PL1L EXEC PGM=IEMAA
//SYSP:RINT DD
//SYSLIN DD
/ /SYSUT1 DD
/ /SYSUT3 DD
//SYSIN DD *

Cards containing PL/I source
statemeQts come here

/*
//LKED EXEC PGM=IEWL
//SYSLIB DD
/ /SYSLlMOD DD
/ /SYSU'T1 DD
//SYSPRINT DD
//SYSLIN DD
//GO EXEC PGM=*.LKED.SYSLMOD
//SYSPRINT DD
//SYSIN DD *

Cards containing data to
be processed by the PL/I
program come here

/*

,
I
I
I
I

I
I
I
I
J ,
I

I
I
J ,
I
I
I

I
I
I
J

> First job
step

> Second job
step

> Third job
step

//NEXT JOB Start of next
job

Figure 1-4. Typical Sequence of Job
Control Statements for
Compile, Link-Edit, and
Execute Steps

//EXAMPLE JOB
//PL1L EXEC PGM=IEMAA
//SYSPRINT DD
//SYSLIN DD
//SYSUT1 DD
//SYSUT3 DD
//SYSIN DD *

Cards containing PL/I source
statements come here

/*
//GO EXEC PGM=LOADER
/ /SYSLI B DD ,
//SYSLIN DD
//SYSLOUT DD
//SYSPRINT DD
//SYSIN DD *
Cards containing data to
be processed by the PL/I
program come here

/*
//NEXTJOB JOB

Start of job ,
I
I
I
I
> First job

I step
I
I
I
J ,
I
I
I
I
I
> Second job

I step
I
I
I
J

Start of next
job

Figure 1-5. Typical Sequence of Job
Control Statements for Compile
and Load-and-Execute Steps

If a procedure is programmer-written, it
can be tested as an in-stream procedure
before it is placed in the procedure
library. An in-stream procedure is a
series of job control statements enclosed
between a,PROC and a PEND statement
appearing in the job stream. An in-stream
procedure can be executed any number of
times during a job and has the same content
restrictions as a cataloged procedure. For
further information about in-stream
procedures, refer to the publication IBM
system/3600peratinq-System: Job Control
LanquageReference.

Chapter 1: Introduction to the Operating System 19

Chapter 2: How to Run a Simple PL/I Progam

For a PL/I program that uses only
punched-card input and printed output, the
job control statements shown in Figure 2-1
are sufficient~. Appendix A includes an
example of a simple PL/I program that uses
these statements.

//EXAMPLE JOB
// EXEC PL1LFCLG
//PL1L.SYSIN DD *
Insert here the cards
containing your PL/I
so~rce statements.

/*
//GO.SYSIN DD *
Insert here the cards
containing the data to
be processed by your
program.

If your program
requires no
externa 1 data,
omit these
sta tements.

/*

Figure 2-1. Job Control Cards for the
Execution of a Simple PL/I
Program

Job Control Statements

//EXAMPLE JOB
EXAMPLE is the name of the job. Your
job. name must not have more than eight
alphameric or national characters; the
first character must be alphabetic or
national. No parameters are given for
this statement. If any are needed they
will depend on your installation; the
minimum requirement is probably an
account number and your name. Before
writing the JOB statement, ensure that
you are familiar with the conventions
established by your installation for
the JOB statement and its parameters.

// EXEC PL1LFCLG
PL1LFCLG is the name of a cataloged
procedure supplied by IBM. When the
job scheduler encounters the name of
such a procedure in an EXEC statement,
it substitutes for the EXEC statement a
series of job control statements that
have been written previously and
cataloged in a system library. The

~Chapter 9 contains a complete discussion
of data management.

20

cataloged procedure PL1LFCLG contains
three job steps:

PL1L: The PL/I (F) compiler processes
your source statements and
translates them into a set of
machine instructions (an object~
module).

LKED: The linkage editor creates a
load module from the object
module produced by the compiler.
A load module is a series of
machine instructions that are in
a form suitable for loading int.o
main storage and subsequent
execution; only load modules can
be loaded and executed.

GO: The load module created in step
LKED is loaded into main storag'e
and executed.

//PL1L.SYSIN DO *

/*

This statement indicates that the data
to be processed in step PL1L follows
immediately in the card deck. SYSIN is
the name that the compiler uses to
refer to the device on which it expects
to find this da'ta. (In this instance,
the device is the card reader, and the
data is your PL/I program.)

This signifies the end of, the data.

//GO.SYSIN 00 *

/*

This statement indicates ·that the data
to be processed by your program (in
step GO) follows immediately in the
card deck.

This statement marks the end of the
. data to be processed by your program.

Note: You could have used the IBM cataloged
procedure PL1LFCG in place of PL1LFCLG.
This procedure cOnsists of two job steps:

PL1L: The PL/I (F) compiler processes the
source statements and produces an
object module.

GO: The object module is converted to a
load module" loaded into main
storage and executed.

FUR'llHER INFORMATION

Chapter 8 describes the cataloged procedure
PL1LFCLG and other PL/I cataloged
procedures supplied by IBM. Chapters 5, 6,
and 7 deal with the job steps (compile,
linkage, and execute) that are included in
PL1LFCG and PL1LFCLG.

Chapter 2: How to Run a Simple PL/I Prog~am 21

Chapter 3: How to Create and Access a Simple Data Set

A data set is any collection of data in
auxiliary storage that can be created or
accessed by a program. It can be punched
onto cards or a reel of paper tape: or it
qan be recorded on magnetic tape or on a
qirect-access device such as a magnetic
disk or drum. A printed listing can also
be a data set, but it cannot be read by a
program.

Data sets that are created or accessed
by PL/I programs must have one of three
types of organization: CONSECUTIVE,
INDEXED, or REGIONAL or must be a
teleprocessing data set. The items of data
in INDEXED and REGIONAL data sets are
~rranged according to 'keys' that you
supply when you create the data sets.
CONSECUTIVE data sets do not use keys: when
you create such a data set, data items are
iecorded consecutively in the order in
Which you present them. You can read the
data items from a CONSECUTIVE data set only
i'n the order in Which they were presented
or, in the case of a data set on magnetic
tape, in the order in which they were
presented or in the reverse order.
Teleprocessing data sets are organized as
consecutive groups of data items.

This chapter explains how to create and
a,ccess simple CONSECUTIVE data sets stored
on magnetic tape or on a direct-access
device. It is intended to provide an
i.ntroduction to the subject of data
management, and to meet the needs of those
programmers who do not require the full
input/output facilities of PL/I and IBM
S~stem/360 Operating System. Chapters 9,
fo, and 11 contain a full explanation of
t'he relationship between the data
~anagement facilities provided by PL/I and
tihose provided by the operating system.

U sing a Data Set

To create or access a data set, you must
not only include the appropriate input and
output statements in your PL/I program, but
you must also supply certain information to
the operating system in a DO statement. A
DD statement describes a data set and
indicates how it will be handled: the
information it supplies enables the job
scheduler to allocate the necessary
auxiliary storage devices, and permits the

22

compiler to use the data management
routines of the operating system to
transmit data.

IBM System/360-0perating system: PL/I
(F) Language Reference Manual describes the
input and output statements that you will
need to use in your PL/I program.
Essentially, you must declare a file
(explicitly or contextually) and open it
(explicitly or implicitly) before you can
begin to transmit data. A file is the
means provided in PL/I for accessing a data
set, and is related to a particular data
set only while the file is open: when you
close the file, the data set is no longer
available to your program. This
arrangement allows you to use the same file
to access different data sets at different
times, and to use different files to access
the same data set.

Contextual declaration and implicit
opening' are performed" where required, in
any of the input/output statements GET,
PUT" READ, WRITE, LOCATE, and REWRITE.

You must provide a DO statement for each
data set that you will use in each job
step. If you use the same data set in more
than one job step, each step which refers
to that data set must have a DD statement
for the data set.

If you are using a cataloged procedure,
such as PL1LFCG or PLlLFCLG (described in
Chapter 2), the DD statement for any data
set processed by your program must appear
in job step GO, in which your program will
be executed. To signify its inclusion in
this job step, you must prefix the name of
the DD statement with the name of the job
step. (For example, / /GO. LIST DD... would
indicate a OD statement named LIST in step
GO.) The DD statement for the data set in
the input stream (e.g., GO.SYSIN), if it is
used in a PCP system, must be the last DD
statement in your card deck.

How to Create a Simple Data Set

When you create a new data set, you should
supply the following information to the
operating system:

Type of: output device that
will wX'ite or punch your
data sert.

Serial number of the volume
(tape x'eel, disk pack,
etc.) t,hat will contain
your data set.

Name of your data set.

Format of the records in
your data set.

Amount of auxiliary storage
required for your data set
(direct-access devices
only).

Disposition of your data set
at the end of the job step.

Parameter of
DD Statement

UNIT=

VOLUME=SER=

DSNAME=

DCB=

SPACE=

DISP=

Note: You can use the abbreviations VOL for
VOLUME and DSN for DSNAME.

To give this information in the DD
statement, use the parameters listed above.
Appendix B contains a description of these
parameters; the following paragraphs
discuss their use in creating a CONSECUTIVE
data set. Figure 3-1 summarizes this
discussion.

TYPE OF OUTPUT DEVICE (UNIT=)

You must always indicate the type of output
device (magnetic tape or disk drive, card
punch, printer, etc.) that you want to use
to create your data set. Usually the
simplest way to do this is to use the UNIT
parameter, although for a printer or a card
punch it is often more convenient to use
one of the special forms of DD statement
discussed at the end of this chapter.

In the UNIT parameter" you can specify
either the type number of the unit (for
example, 2311 for a disk drive) or the name
of a group of devices (for example, SYSDA
for any direct-access device). Appendix B
includes a list of the valid type numbers;
the group names are established for a
system during system generation.

VOLUME SERIAL NUMBER (VOLUME=SER=)

A unit of auxiliary storage such as a reel
of magnetic tape or a'magnetic disk pack is
termed a volume; a volume can contain one
or more data sets, and a data set can
extend to more than one volume. Each
volume is identified by a serial number
that is recorded within it (and usually
printed on the label attached to it).
Although a deck of cards" a printed
listing, and a reel of paper tape can be
considered to be volumes, they do not have
serial numbers.

r---------------------T---, I I Parameters of,DD Statement I
I Storage Device ~---------------------T---------------------~--------------------~
I I When required ,What you must state , Parameters I

~---------------------+---------------------+---------------------+---------------------~
I I I Output device I UNIT= or SYSOUT= I
I All I Always ~---------------------+_--------------------~
I I I Block sizeS. I DCB=BLKSIZE= I
~------.---------------+---------------------+---------------------+---------------------~
I Direct access only 'Always I Auxiliary storage I SPACE: I
I I I space required I I
~---------------------+-----------~---------+---------------------+---------------------~
I I Data set to be used I I I
I I by another job step I Disposition I DISP= I
I , but only required I I I
I I by this job I I I

I Direct access and ~---------------------+---------------------+---------------------~
I standard labeled I Data set to be kept , Disposition I DISP= I
, magnetic tape I after end of job ~---------------------+_--------------------~
I , , Name of data set 'DSN= I
I ~---------------------+---------------------+---------------------~
I I Data set to be on I Volume serial number' VOL=SER= I
I I particular volume I I I

~---------------------~---------------------~---------------------~---------------------~ IS.Alternatively, you can specify the block size in your PL/I program by using the I
I ENVIRONMENT attribute. I L ___ J

Figure 3-1. Creating a CONSECUTIVE Data Set: Essential Parameters of DD Statement

Chapter 3: How to Create and Access a Simple Data Set 23

You need speGify a volume serial number
only if you want to place the data set on a
particular volume. If you omit the VOLUME
parameter, the job scheduler will print in
your program listing the serial number of
the volume on which it placed the data set.

The VOLUME parameter has several
subparameters. To specify a 'volume serial
number, you need only the SER (serial
number) subparameter (for example
VOLUME=SER=12354).

NAME OF DATA SET (DSNAME=)

You must name a new data set if you want to
keep it for use in future jobs. If the
Qata set is temporary (required only for
the job in which, it is created), you can
still name it" but you need not: if you
omit the DSNAME parameter, the operating
system will assume that the data set is
temporary, and will give it a temporary
name. (Any name you give to a temporary
data set must be prefixed with the
characters ii; for example. DSNAME='&TEMP.)

FORMAT OF THE RECORDS (DCB=)

You can give record-format information
either in your PL/I program (ENVIRONMENT
attribute or LINESIZE option) or in a OD
statement. This discussion refers only to
the DD statement, and does not apply if you
decide to give the information in your
program; refer to IEM System/360 Operating
system: ',PL/I', (F) ,Language Reference "Manual
for a description of the ENVIRONMENT
attribute and the LINESIZEoption.

The records in a data set must have one
of three formats: F (fixed length), V
(variable length), U (undefined length).
F-format and V-format records can be
blocked or unblocked; V-format records can
be spanned.

In most cases, you must specify a block
size. If you do not give a ,record size,
unblocked records of the same size as the
block size are assumed. Note that, if you
are using a PRINT file to produce p:rinted
output, you do not need to specify a block
size in your DD statement or in your PL/I
program; in the absence of other
information, the compiler supplies a
default line size of 120 characters. If
you do not state the' record format,
U-format is assumed (except for data sets
associated with PRINT files, for wh.ich
V-format is the default).

24

To give record-format information in a
DD statement, use the subparameters RECFM
(record format), BLKSIZE (block size), and
LRECL (logical record length) of the DCB
parameter. The DCB parameter passes
information to the operating system for
inclusion in the data control'block, which
is a table maintained by the data
management routines of the operating system
for each data set in a job step; it
contains a 'description of the data set and
how it will be used. If your DCB parameter
includes more than one subparameter, you
must enclose the list in parentheses. For
example:

DCB= (RECFM=FB, BLKSIZE=1000,LRECL=50)

AUXILIARY STORAGE REQUIRED (SPACE=)

When you create a data set on a
direct-access device, you must always
indicate the amount of space that the data
set will occupy. Use the SPACE parameter
to specify the size and number of the
blocks that the data set will contain. If
you may want to extend the data set in a
later job or job step, ensure that your
original space allocation is sufficient for
future needs; you cannot make a further
allocation later. If the SPACE parameter
appears in a DD s'tatement for a
~on-direct-access device. it is ignored.

DISPOSITION OF DATA SET (DISP=)

If you want to keep a data set for use in ia
later job step or job, you must use the
DISP parameter to indicate how you want it
to be handled. You can pass i,t to another
job step, keep it for use in a later job"
or enter its name in the system catalog.
If you want to keep the data set, but do
not want to include its name in the system
catalog, the operating system will request
the operator to demount the volume in which
it resides and retain it for you. If you
do not include the DISP parameter, the
operating system will assume that the data
set is temporary and will delete it at the
end of the job step.

The DISP parameter can contain three
positional subparameters. The first
indicates whether the data set is new or
already exists, the second specifies what
is to be done with it at the end of the job
step, and the third indicates how it should
be treated if the job step is terminated
abnormally by the operating 'system. If you
omit either of the first two, you must
indicate its absence by a comma.

For example,

DISP= (, CATLG , DELETE)

indicatE~s that the data set is to be
catalogE~d if the job step termina.tes
normally, and deleted if it is berminated
abnormally: the omission of the :first
subpar~~eter indicates that the data set is
assumed by default to be new~

How to .Access an Existing Data Set

When you want to read or update an existing
data set., your DO statement should include
informat:ion similar to that given when the
data set: was created. However, for data
sets on labeled magnetic tape or on
direct-access devices, you can omit several
parametE~rs because the information they
contain was recorded with the data set by
the opel~a ting system when the data set was
created., Figure 3-2 summarizes the
essential information.

Except in the·· special case of data in
the input stream (described below), you
must al~,ays include the name of the data
set (DSNAME) and its disposition (OISP).

TYPE OF INPUT DEVICE

You can omit the UNIT parameter if the data
set is cataloged or if it was created with
DISP=(,.PASS) in a previous step of the same
job. Ot:herwise, it must always appear.

VOLUME SERIAL NUMBER

You can omit the VOLUME parameter if the
data set is cataloged or if it was created
with DISP=(,PASS) in a previous step of the
same job. Otherwise it must always appear.

NAME OF DATA SET

The DSNAME parameter can either refer back
to the DD statement that defined the data
set in a previous job step, or it can give
the actual name of the data set.· (You
would have to use the former method to
refer to an unnamed temporary data set.)

FORMAT OF THE RECORDS

You must always state a block size for
punched cards or paper tape: otherwise,
record-format information is not required.
Block size can also be specified in your
PL/I program, using the ENVIRONMENT
attribute.

AUXILIARY STORAGE REQUIRED

You cannot add to, or otherwise modify, the
space allocation made for a data set when
it was created. Accordingly, the SPACE
parameter is never required in a OD
statement for an existing data set.

r-------··--,
I Parameters of DD Statement I
~-----------------------------------T-------------------------T-------------------------~
I When required I What you must state I Parameters I
~------------------------------------+-------------------------+-------------------------~
I I Name of data set I DSN= I
I Always ~-------------------------+_------------------------~
I I Disposition of data set I OISP= I
~------------------T-----------------+-------------------------+_------------------------~
I IAlI devices I Input device I UNIT= I
IIf data set not .-----------------+-------------------------+------------------------~
Icataloqed IMagnetic tape andl Volume serial number I VOL=SER= I
I Idirect access I I I
~------------------~-----------------+-------------------------+-------------------------~
IFor pWlched cards or paper tape I Block size~ I DCB=BLKSIZE= I
~------.-----------------------------~-------------------------~-----~-------------------~ 11 Alternatively, you can specify the block size in your PL/I program by using the I
I ENVIRONMENT attribute. I l __ J

Figure 3-2. Accessing a CONSECUTIVE Data Set: Essential Parameters of DO Statement

Chapter 3: Bow to Create and Access a Simple Data Set 25

DISPOSITION OF DATA SET

You must always include the DISP parameter
to indicate to the operating system that
the data set already exists. Code DISP=SHR
if you want to read the data set, DISP=OLD
if you want to read and/or overwrite it, or
DISP=MOD if you want to add records to the
end of it.

You need not code the second term of the
DISP parameter if you want the data. set to
resume the status it had before the job
step; existing data sets will continue to
exist, and newly created data sets will be
deleted.

SPECIAL-PURPOSE PARAMETERS

Three parameters of the DD statement have
special significance in that they permit
you to use a very simple form of DD
statement; they are SYSOUT, which is
particularly useful for printed or
punched-card output, and *, and DATA, which
allow you to include data in the input
stream.

SYSTEM OUTPUT (SYSOUT=)

A system output device is any Wlit (but
usually a printer or a card punch) that is
used in common by all jobs. The computer
operator allocates all the system output
devices to specific classes according to
device type and function. The usual
convention is for class A to refer to a
printer and class B to a card punch; the
IBM-supplied cataloged procedures assume
that this convention is followed.

To route your output via a system output
device, use the SYSOUT parameter in your DD
statement. The only essential additional
parameter is the block size (if not already
specified in your PL/I program by using the
ENVIRONMENT attribute). Thus, if you want
to punch cards, you can use the DD
statement

//GO.PUNCH DD SYSOUT=B,DCB=BLKSIZE=80

DATA IN THE INPUT STREAM

A convenient way to introduce data to your
program is to include it in the input job
stream with your control statements. Data

26

in the input stream must, like job control.
statements, be in the form of SO-byte
records (usually punched cards), and must
be immediately preceded by a DD statement
with the single parameter * in its operand
field, for example:

//GO.SYSIN DD *
To indicate the end of the data, include a.
delimiter job control statement (/*). A DD
statement that introduces data in the input
stream must be the last DD statement in the
job step.

If your data includes records that
commence // in the first two columns use
the parameter DATA, for example:

//GO.SYSIN DD DATA

Standard Files

PL/I includes two standard files, SYSIN for
input and SYSPRINT for output. If your
program includes a GET statement without
the FILE option, the compiler inserts the
file name SYSINi if it includes a PUT
statement without the FILE option, the
compiler inserts the name SYSPRINT.

If you use one of the IBM-supplied
cataloged procedures to execute your
program, you will not need to include a DD
statement for SYSPRINTi step GO of the
cataloged procedures includes the
statement:

//SYSPRINT DD SYSOUT=A

Note that no block size is specified in
this DD statementi the block size for the
data set associated with SYSPRINT is
supplied by the (F) compiler. However, if
your program uses SYSIN, either explicitly
or implicitly, you must always include a
corresponding DD statement.

Examples

The examples of simple applications for
CONSECUTIVE data sets shown in Figures 3-3
and 3-4 should need no further explanation.
The first program evaluates the familiar
expression for the roots of a quadratic
equation and records the results in a data
set on magnetic disk and on punched cards.
The second program reads the disk data set
created in the first and prints the
results.

//J001PGEX JOB
// EXEC PL1LFCLG
//PL1L.SYSIN DD *

CREATE: PROC OPTIONS(MAIN);
DCL PUNCH FILE STREAM OUTPUT,

DISK FILE RECORD OUTPUT SEQUENTIAL,
1 RECORD, 2CA,B,C,Xl,X2) FLOAT DEC(6) COMPLEX,

ON ENDFILECSYSIN) GO TO FINISH;
OPEN FILECPUNCH), FILECDISK);

NEXT: GET FILE(SYSIN) LISTCA,B,C);
Xl=(-B+SQRTCB**2-4*A*C»/(2*A);
X2=(-B-SQRT(B**2-4*A*C»/(2*A);
PUT FILE(PUNCH) EDIT (RECORD) (C(EC16,9»);
WRITE FlLECDISK) FROMCRECORD)i
GO TO NEXT;

FINISH: CLOSE FlLECPUNCH), FILECDISK);
END CREATE;

/*
//GO.PUNCH DD
/ /GO. DISK DD.
//

SYSOUT=B,DCB=BLKSIZE=80
UNIT=2311,VOLUME=SER=D186,DSNAME=ROOTS,
DCB=(RECFM=FB,BLKSIZE=400,LRECL=40),

// SPACE=CTRK,Cl,l»,DISP=CNEW,KEEP)
//GO.SYSIN
5 12 4

DD *
4 -10 4
5 16 2
4 -12 10
5 12.9
29 -20 Li·
/*

Figure 3-3. Creating a Simple CONSECUTIVE Data Set

//J027PGEX JOB
/ /COLEEX: EXEC PL1LFCLG
//PL1L.S:YSIN DD *

ACCESS: PROC OPTIONSCMAIN)i
DCL RESULTS FILE RECORD INPUT SEQUENTIAL,

1 RECORD, 2 CA,B,C"Xl,X2) FLOAT DEC(6) COMPLEX;
ON ENDFILECRESULTS) GO TO FINISH;
PUT FILE (SYSPRINT) EDIT C • A' , • B' , • C' I' "Xl' , " X2 ')

(XC7),3CA,XC23»,A,XC22),A);
OPEN FILE(RESULTS);

NEXT: READ FILECRESULTS) INTOCRECORD);
PUT FILE(SYSPRINT) SKIP EDIT(RECORD) (C(FC12,2»);
GO TO NEXT;

FINISH: CLOSE FILECRESULTS);
END ACCESS;

/*
//GO.RESULTS DD UNIT=2311,VOLUME=SER=D186,DSNAME=ROOTS,DISP=COLD,KEEP)

Figure 3·-4. Accessing a Simple CONSECUTIVE Data Set

Chapter 3: How to Create and Access a Simple Data Set 27

28

PART 2: Using all the Facilities of the PL/I (F) Compiler

Part 2: Using all the Facilities of the PL/I (F) Compiler 29

30

Introduction

The operating system requires certain
preliminary information about a job in
order ·to be able to process it. For
exampl,e, it must be able to recognize the
beginning and end of a job, and it requires
detail:s of the job environment (for
example, which control program is used).
Most of this information is provided in the
job control language: the remainder is
either information already known to the
operator because it is established for your
installation, or information you will have
to giv j9 the operator for your particular
job. l?or example, if you have a choice o:f
control programs, you must tell the
operator which one you want.

The information given in the job control
languaqe is provided in the JOB statement
and its parameters. The JOB statement
indica1:es the beginning of a job and (in
batch processing) the end of a previous
job: the parameters provide information
about t,he job environment. Full details of
the purpose and syntax of this statement
are gi"en in IBM system/360 Operating
System:: Job Control -Language User's Guide"
and Jol? Control Language Reference. The
use of the JOB statement and its parameters
is described briefly here, together with
job scheduling and the types of control
program available.

JOB Statement

The JOB statement is always the first
statemEmt in your job. It identifies the
job to the operating system; in particular,
it identifies the job to the job scheduler
so that~ the latter can begin job
processing. The job scheduler has three
main components:

1. Re!ader/interpreter: This checks the
job control language and (if required)
'st~ores the data from the input stream
on a direct-access device and places
control information about the job in
ant input queue.

2. Indtiator/terminator: This selects the
n€!xt job step for execution, and
allocates devices and resources.
After processing, it terminates the
job step. After processing of the
last job step, it terminates the job.

Chapter 4: Job Initialization

3. Output writer (MFT or MVT): This
handles the transmission of data from
output data sets to a system output
device (such as a printer or a
card-punch) •

The JOB statement also provides
information on:

1. Work control; for example, accounting
information and the programmer's name.

2. Job environment; for example,
information relating to the control
program under which the job will be
executed.

..
Note that the JOB statement does not select
the control program for you; it merely
allows you to specify information required
by the control program yOu are using_ The
information to be given in the job
statement fields is described below.

Name Field

A valid job name must appear in this field.
certain words must not be used as job names
as they are command statements used by the
operator to communicate with the operating
system. Examples of these are SPACE and
JOBNAMES; ,you must find out whether these
or other names are used as command
statements at your installation.

Jobs being executed concurrently should
have different job names.

Operation Field

The word JOB must appear in this field.

Operand Field

The full set of positional and keyword
parameters used with the JOB statement is:

positional

Accounting information

programmer's name

Chapter 4: Job Initialization 31

Keyword

CLASS

COND

MSGCLASS

MSGLEVEL

PRTY

REGION

ROLL

TYPRUN

The use of these is discussed in the IBM
System/360 Operating System:. 'Job Control
Language.Reference.

Although all these parameters are
optional as far as the operating system is
concerned, some or all of them will be
mandatory at your installation, and some
will not be available to you. Therefore,
before using any of them, you need to know:

1. Which parameters are mandatory at your
installation.

2. Which parameters are optional at your
installation.

3. What happens if you omit an optional
parameter that is required for a
particular job. If there is no
default for this parameter, the job
could terminate at this point.

4. What happens if you include an
optional parameter that is no·~
required for a particular job. The
parameter might be ignored or the job
could terminate.

Note: The examples given in this manual
omi t the parameters of the JOB sta'tement
because of this installation dependence.

Job Scheduling

JOB SCHEDULING AND THE CONTROL PROGRAM

The operating system uses one of two forms
of scheduling to process your job:
sequential scheduling or priority
scheduling. The type of scheduling
employed for your job depends on the
control program used.

32

Sequential scheduling

Each job is processed in the order in which
it exists in the input stream. Only one
job at a time can be processed; all other
jobs in the input stream must wait until
this job is finished. Each job is executE~d
as a single task.

sequential scheduling is used by the
primary control program (PCP).

Priority Scheduling

The jobs in the input stream are placed in
input queues and selected for processing
according to previously determined
priorities. Jobs are processed in a
multiprogramming environment, that is,
several jobs can be processed concurrently.
Each job step can be executed as a single
task or as several tasks:

1. One job step, one task: Each job step
is executed as a task. The number of
tasks that can exist concurrently is
fixed, and is restricted to the number
selected for execution (that is, tasks
cannot be created during execution of
the job step).

Jobs are processed in this way with
the MFT (multiprogramming with a fixed
number of tasks) control program.

2. One .job step,' several tasks: Each job
step is executed as a task.
Additional tasks (subtasks) can be
created dynamically during execution
of the job :step. Therefore the numb4er
of tasks that can exist qoncurrently
is variable, and depends on the number
of subtasks created.

Jobs are processed in this way with
the MVT (multiprogramming with a
variable number of tasks) control
program.

Control Program

The three control programs currently
available in the operating system are:

PCP

MFT

MVT

Your installation may have only one of
these control programs" or it may have two
or all of them. You must find out which
control program or programs are available
to you and design your source program
accordingly. To assist you in the choice
(if you have one), a brief description of
each c~ont rol program is given below,
together with the set of JOB statement
paramE~ters applicable to that program.
FurthE!r details of the control programs are
contained in the following publications:

IBM .System/360 operating System:

cOlncepts and Facilities

QJ2lerator'. s Reference

QE,erator's Procedures

storage Estimates

PRIMARY CONTROL PROGRAM (PCP)

JOB Statement Parameters

Accounting information

Programmer's name

COND

MSGLEVEL

The jolb stream is read in from a card or
tape d l9vice, and is loaded into main
storagca. Only one input reader is
available at one time.

Job Selection

Only one job can be processed at a time.
The whole of main storage and all resources
are allocated to that job; no other job can
qain control until this job has completed
execution.

Task EJtecution

The job scheduler programs are executed as
tasks: each job step of the job to be
processed is executed as part of a job

scheduler task. These job steps are
executed sequentially.

Output

System output is put out through the SYSOUT
stream; problem program output can be put
out through the SYSOUT stream or a user
data set. Up to eight output writers are
available: each one writes one class of
output onto one device (such as a printer).
Each output class is designated by one of
the letters A through Z •. Class A is the
standard system output class: there must
always be a device available for this
class.

MFT CONTROL PROGRAM

JOB Statement Parameters

Accounting information

Programmer's name

CLASS

COND

MSGCLASS

Z.:SGLEVEL

PRTY

'l~RUN

The job stream is read from a card or a
tape device., or from a direct-access
device, and is stored on a direct-access
device. If there is any error in the job
control statements for a job, that job is
terminated. Up to three input readers are
available.

Job Selection

Jobs are placed in an input queue: up to
fifteen input queues are available. The
queue selected depends on the job class, as
specified in the CLASS parameter of the JOB
statement. A job is placed in an input
queue according to its priority, as

Chapter 4: Job Initialization 33

specified in the PRTY parameter of the JOB
statement.

A job with the highest priority is
placed at the head of the queue; tha't with
the lowest at the end. A job with a
plriori ty the same as a job already i:n the
q~eue, is placed immediately behind ,that
job.

If a job is not given a priority, a
default priority is given to it by the
system, and it is placed in an input queue
at the appropriate place.

In MFT, main storage is divided into
partitions. One partition is allocated to
one job at a time. Partitions are
independent units of main storage. The
work being done in one partition cannot
affect work being done in another
partition: data cannot be left in a
partition for use by the next job st.ep to
be loaded.

I Up to fifteen partitions are available
for user jobs (there are other partitions
but they are not available to you):

I therefore up to fifteen jobs can be
processed concurrently. The number of
partitions at a given time" and the size of
each one, may be fixed for a particu.lar
installation, but usually both the numbe]:'
and size can be selected by the operator.
The minimum size of a user partition is 8K
bytes. You must find out the conventions
on partitions at your installation.

Partitions are arranged in order of
priority. The partition with the highest
main-storage address has the highest
priority; partitions with successively
lower addresses have successively lower
priorities. A task is the work executed in
a particular partition. Partitions, not
job steps, compete for control; if a job
step enters a wait state or completes
execution, control passes to the partition
waiting with the highest priority. Neither
job class nor job priority have any affect
on competition between tasks for control.

The selection' (by the initiator) of jobs
for execution depends on the relationship
between the partitions and the input queues
(that is, the job classes). A partition
can service up to three job classes: a job
class can be allocated to more than one
partition. If a partition services more
than one job class, it searches those
classes for jobs in a predetermined order.
For example:

34

Partitions: Highest priority PO
Pi
P2

Lowest priority P3

Class Job Class Job Class Job

A 1 B 1 C 1
2 2 2
3 3 3

Allocations:

Class A: PO, Pi

Class B: PO, Pi, P2

Class C: P2, P3

Partition PO: A" B

Partition Pi: A, B

Partition P2: B"
C

Partition P3: C

In this configuration, when the job step
in PO completes execution, class A is
searched to see if there are any jobs
waiting'for selection. If there are not,
class B is searched. Similarly Pi searches
A and then B, P2 searches B and then C, and
P3 searches C only., A job in class A can
be selected for PO or Pi, whichever is the
first 'available; a job in B can be selected.
for PO, Pi or P2, and a job in C for P2 or
P3.

Task Execution

Once a job has been selected for
processing~ its job steps are executed
sequentially. When a job step enters a
wait state, control passes to the job step
waiting in the next highest priority
partition, irrespective of the job class 01:
the waiting job step.

Other ,Considerations

Your installation may have the time-slicin9
facility.. Execution time is divided
('sliced') into a number of discrete
periods. One period is allocated to one
job, the next period to another job, and se)
on, among all the jobs to be processed.
The total execution time for one job is
interleaved with that for other jobs, and
thus all jobs are kept moving. Usually onE~
particular class is reserved for
time-sliced jobs; if your job is to be
time-sliced you must find out the
time-slicing class at your installation.
Similarly, if you use the TYPRUN parameter.,
one class may be reserved for jobs whose
processing is to be delayed.

If your installation has a shared PL/I
library, this could affect the amount of
space available in a partition or even the
parti ticm size .•

output

The output.stream from the job is stored
temporarily on a direct-access device. The
output data is stored in an output queue:
each mellilber of the queue is associated with
an output class, as designated in the
SYSOUT parameter. If system and problem
program data are in the same class, they
are placed in the queue member in the
order:

Syst.em messages at job initiation

Problem program data

System messages at job termination

Up to 36 output queues are available. The
contents of each output class are written
out by a system output ,writer onto the
device (printer, punch, or tape) associated
with that class. Up to 36 system output
writers are available; each output writer
can service up to eight output classes.

MVT CONTROL PROGRAM

JOB statement Parameters

Accounting information

Programmer's name

CLASS

COND

MSGCLASS

MSGLEVEL

PRTY

REGION

ROLL-

TYPRUN

The job stream is read from a card or a
tape device p or from a direct-access
device, and is stored on a direct-access
device. If there are any errors in the job
control statements for a job, that job is
terminated. As many input readers as are
required can read input streams.

Job Selection

Jobs are placed in a single input queue,
and are arranged within the queue according
to their priorities, as specified in the
PRTY parameter of the JOB statement.

A job with the highest priority is
placed at the head of the queue; that with
the lowest at the end. A job with a
priority the same as a job already in the
queue, is placed immediately behind that
job.

If a job is not given a priority, a
default priority is given to it by the
system, and it is placed in the input queue
at the appropriate place.

In MVT, main storage is divided into
regions. The amount of storage required
for a region is specified in the REGION
parameter. The number of regions that can
exist concurrently depends on the total
size of main storage and on the region
sizes specified. Each job is executed in
one region. Regions are independent units
of main storage; work being done in one
region cannot affect work being done in any
other region. Data cannot be left in a
region for use by the next job step to be
loaded.

A region is not a permanent division of
main storage. It exists only for the
duration of the job step for which it was
created. When a job is selected for
execution, a region is created for it. A
region does not have a priority and does
not compete for control with other regions;
such competition is between the tasks in
the regions.

The selection of jobs for execution from
the input queue depends on the job class
and priority. Jobs are queued in order of
priority or, if they have equal or no
priority, in order of arrival in the queue.
Job class has no affect on job position in
the input queue. Jobs are selected by one
of several initiators •. When an initiator
is allocated to a job class, it selects

Chapter 4: Job Initialization 35

only the jobs in that class: the order of
taking them is determined by the job
priority. An initiator can be allocated to

:more than one job class, and will search
the classes in predetermined ordero Up to
,fifteen job classes are available: the
: number of initiators depends on thE~ number
,of job classes allocated to each one.

, For example, if there are three
initiators:

InitCA) for jobs in class A

Init CB) B

InitCC) C

and there are eleven jobs in the input
queue as follows:

Job -Class Priority

B 10
B 9
A 8
A 8
B 7
C 4
A 3
C 2
C 1
A 0
A 0

then, when the job scheduler requires the
next job for processing~ if InitCA) is the
first initiator to be given control, it
ignores the two B jobs at the head of the
queue and selects the first A8 job.. The
next time InitCA) receives control it
selects the second A8 job (assuminq the
contents of the queue have remained the
same) and so on through all the class A

·jobs: A3, AO, AO. When InitCA) cannot find
any jobs to select, InitCB) is given
control and selects the class B jobs in the
order: Bl0, B9, B7. Similarly, when
InitCC) receives control, it selects the
class C jobs in the order: C4, C2, Cl.

More than two initiators can run
together and one initiator can interrogate
more than one class depending on the
installation standards.

, Task', Execution

Once a job has been selected for
processing, its job steps are executed
sequentially: each job step is a task.

36

Each task competes for control with all the
other tasks being executed. Each task has
a limit priority that depends on:

1. The value in the PRTY parameter in the
JOB statement.

2. The value in the DPRTY parameter in
the EXEC statement for that job step ..

3. If neither of these is specified, a
default value is supplied by the job
scheduler.

Each task also has a despatching
priority; this can be changed during
execution but cannot be greater than the
limit priority. The tasks compete for
control-on the basis of the current values
of their despatching priorities. Note that
in MVT a priority can be specified on the
EXEC statement; this does not affect the
sequential execution of the job steps in a
job but can affect considerably the chances
of an existing task gaining control.

Once a task is being executed, it can
create subtasks dynamically.A subtask has a
limit and despatching priority in the same
way as the originating task, and competes
for control with all the tasks and subtasks
being-executed.

Other-considerations

If your installation has the time-slicing
facility described above in 'MFT Control
Program,' note that usually one particular
priority is reserved for time-sliced jobs ..
Similarly, priorities are reserved for jobs
whose processing is delayed by'use of the
TYPRUN parameter; and for the message
control or message processing programs in
teleprocessing. You must find out the
conventions at your installation. If your
installation has a shared PL/I library,
this could affect the region size. Region
sizes can be affected during execution by
rollout/rollin.

Output

MVT output follows the same conventions as
those for MFT output. If your installaticm
has a universal character set CUCS) printc~r
that will be used as an output writer, you
must assign a separate output class to each
character set image in the system library.

Introdufction

The PL/:[(F) compiler translates PL/I
source :3tatements· into machine
instructions. A set of machine
instrudtions suc~ as is produced by the
compiler is termed an object· module. (If
appropriate control statements are inserted
among the PL/I source statements, the
compilelt:' can create two or more object
modules in a single run by means of batch
compilat.ion.)

Howe',er.. the compiler does not generate
all the machine instructions required to
repres~lt the source program; instead, for
frequenltly used standard routines such as
those that handle the allocation of main
storage space and the transmission of data
between main and auxiliary storage, it
inserts references to standard subroutines
that art? stored in the PL/I subroutine
library.. An object module produced by the
compileJ::- is not ready for execution until
the appJt"opriate library subroutines have
been included; this is the task of an
operating system service program, the
linkage editor or the linkage loader, which
is described in Chapter 6. A module that
has been processed by the linkage editor or
linkage loade~ is termed a load module.

While it is processing a PL/I source
program" the compiler produces a listing
that contains information about the source
program and the object module derived from
it, together 'with diagnostic messages
relatin~J to errors or other conditions
detected during compilation. Much of this
informat:ion is optional, and is supplied
only in response to a request made by
including appropriate 'options' in the PARM
parametE~r of the EXEC statement that
requests execution of the compiler.

The compiler also includes a facility,
the ~)rocessor or compile-time processor,
which ca.n modify the source statements or
insert additional source statements before

, compilat:ion commences.

COMPILATION

The compiler comprises a control module
that remains in main storage throughout
compilat:ion, and a series of subroutines·
(termed phases) that are loaded and
executed in turn under the supervision of

Chapter 5: Compilation

the control module. Each phase performs a
single function or a set of functions, and
is loaded only if the services it provides
are required for a particular compilation.
The control module selects the appropriate
phases in accordance with the content of
the source program and the optional
compiler facilities that you select.
Figure 5-1 is a simplified flow diagram of
the compiler.

The data that is processed by the
compiler is known throughout all stages of
the translation process as text.
Initially, the text comprises the PL/I
source statements submitted by the
programmer; at the end of compilation, it
compr~ses the machine instructions that the
compiler has substituted for the source
statements, to which is added some
reference information for use by the
linkage editor.

The source program must be in the form
of a data set identified by a DD statement
with the name SYSIN; frequently" the data
set is a deck of punched cards. The source
text is passed to the read-in phase either
directly or via one of two preprocessor
phases:

1. If the source text is in the PL/I
48-character set, the 48-character-set
pr·ocessor translates it into the
60-character set. You must indicate
the need for translation by specifying
the CHAR48 option. 1

2. If the source text contains
preprocessor statements, the
compile-time-processor phase executes
these statements in order to modify
the source 'program or introduce
additional statements. The
compile-time processor includes a
facility for translating statements
written in the 48-character set into
the 60-character set. To request the
services of the compile-time
processor, specify the MACRO option.

Both preprocessors place the translated
source text in the data set defined by a DD
statement with the name SYSUT3. The
read-in phase takes its input either from
this data set or from the data set defined
by the DD statement SYSIN. This phase

1The compiler options are discussed under
'Optional Facilities,' later in this
chapter.

Chapter 5: compilation 37

48-CHARACTER­
SET

PROCESSOR

60 -CHARACTER-SET
TEXT VIA SYSUr 3

CHAR 48

SOURCE TEXT
(FROM SYSIN)

CHAR60

READ-IN
PHASE

~TlONARY
~HASE

~NSLATION
~HASES

FINAL­
ASSEMBLY

PHASE

OBJECT MODULE

(TO SYS LIN 0 R SYSPUNCH)

Lgure 5-1. pur (F) Compiler: Simplified Flow Diagram

38

COMPILE -
TIME

PROCESSOR

PROCESSED SOURCE
TEXT VIA SYSUT 3

check:s the syntax of the source statements
and rfemoves any comments and nonsignificant
blank characters.

Aft.er read-in, the dictionary phase of
the c()mpiler creates a dictionary that
contains entries for all the identifiers in
the source text. The compiler uses the
dictionary to communicate descriptions of
the eJLements of the source program and the
object: program between phases. The
dictionary phase of the compiler replaces
all iclentifiers and attribute declarations
in thE~ source text with references to
dictionary entries.

Translation of the source text into
machine instructions involves several
compil.er phases. The sequence of events
is:

1. RearJ;'angement of the source text to
f:acilitate translation (for example,
by replacing array or structure
a.ssignments with DO loops that contain
element assignments).

2. Conversion of the text from the PL/I
syntactic form to an internal
syntactic form.

3. Mapping of arrays and structures to
ensure correct boundary alignment.

4. Translation of text into a form
similar to machine instructions; this
text form is termed pseudo-code.

5. S·torage allocation: the compiler makes
provision for storage for STATIC
v,ariables and generates code to allow
AUTOMATIC storage to be allocated
during execution of the object
p:cogram. (The PL/I library
subroutines handle the allocation of
storage during execution of the object
p:t:'ogram.)

The final-assembly phase translates the
pseudo··code into machine instructions, and
then creates the external symbol dictionary
(ESO) and relocation dictionary (RLD)
requirf:!d by the linkage programs. The
external symbol dictionary is a list that
includes the names of all subroutines that
are rejeerred to in the object module but
are "not. part of the module; these names,
which are termed external references,
includE~ the names of all the PL/I library
subroU't:ines that will be required when the
object program is executed. The relocation
dictionary contains information that
enable!.:; absolute storage addresses to be
assignE~d to locations within the object
module when it is loaded for execution.
Chaptel: 6 contains a fuller discussion of
the ext:ernal symbol dictionary and the

relocation dictionary, and explains how the
linkage programs use them.

Job Control Language for Compilation

Although you will probably use cataloged
procedures rather than supply all the job
control statements required for a job step
that invokes the compiler, it is necessary
to be familiar with these statements so
that you can make the best use of the
compiler, and if necessary modify the
statements of the cataloged procedures.

The IBM-supplied PL/I cataloged
procedures for compilation are:

PL10FC Compile only (object module on
punched cards).

PL1LFC Compile only (object module
stored on magnetic-tape or
direct-access device).

PL1LFCL Compile and link edit.

PL1LFC~ Compile, link edit, and
execute.

PL1LFCG Compile, load, and execute.

Chapter 8 describes these cataloged
procedures and how to modify or override
the statements they contain.

The following paragraphs describe the
essential job control statements for
compilation; they use statements from the
PL/I cataloged procedures as examples.
Appendix B contains a description of the
parameters of the DO statement that are
referred to.

EXEC STATEMENT

The basic EXEC statement is:

// EXEC PGM=IEMAA

By using the PARM parameter of the EXEC
statement you can select one or more of the
optional facilities offered by the
compiler; these facilities are described
later in this chapter. The use of the
other parameters of the EXEC statement is
as described in Chapter 7, 'Ex~cuting the
Load Module'.

Chapter 5: Compilation 39

r---T---------------T---------------, I Purpose I ddname I Associated I
I I ICompiler Option I
~---+---------------+---------------~ Primary input (PL/I source statements) SYS:IN

Punched card output SYSPUNCH DECK, MACDCK

Load module output SYSLIN LOAD

To contain overflow from main storage SYSUTl

storage for: SYSUT3

1. Converted source module when 48-character set
used

CHAR48

2. Source statements generated by preprocessor MACRO, COMP

Listing SYSPRINT

Library containing source statements for insertion by SYSLIB MACRO
preprocessor L __ ~ _______________ ~ _______________ J

Figure 5-2. Standard Data Sets for Compilation

DD STATEMENTS

The compiler requires several standard data
sets, the number depending on the optional
facilities that you request. You m~~t
define these data sets in DD statements
with the standard names listed in Figure
5- 2. The DD sta tements SYSIN and SYSPRINT
are always required, and you should take
uhe precaution of including SYSUTl in case
insufficient main storage is available to
the compiler. In addition, if you specify
any of the options listed in Figure 5-2,
you must include the associated DD
statement.

Figure 5-3 summarizes the
characteristics of the compiler data sets.
You can place any of them on a
direct-access device; if it is likely that
you will do so, include the SPACE parameter
in the DD statements that define the data
sets. The amount of storage space
allocated in the standard cataloged
procedures (Chapter 8) should suffice for
most applications; however, Appendix H
explains how to calculate the requirements
for auxiliary storage.

Primary-Input (SYS~N)

The primary input to the compiler must l~ a
CONSECUTIVE data set containing PL/I source
statements. These source statements must
comprise one or more external procedures;
if you want to compile more than one
external procedure in a single run, you

40

must separate the procedures in the input
data set with *PROCESS statements
(described under 'Batched Compilation'
later in this chapter)~

Eighty-column punched cards are commonly
used as the input medium for PL/I source
programs. However, the input data set may
be on a direct-access device, magnetic
tape, or paper tape. The data set may
contain either fixed-length records,
blocked or unblocked, or undefined-length
records; the maximum record size is 100
bytes. The compiler always reserves 1000
bytes for two buffers for this data set;
however, you may specify a block size of
more than 500 bytes providing sufficient
space is available to the compiler. (Use
the SIZE option to allocate the additional
space: refer to 'Optional Facilities,'
later in this chapter.)

The standard PL/I cataloged procedures
do not include a DD statement for the inpuit.
data set; consequently, you must always
provide one. The following example
illustrates the s·tatements you might use bo
compile., link-edit, and execute a PL/I
program placed in the input stream:

//COLEGO JOB
// EXEC PL1LFCLG
//PL1L.SYSIN DD •

Insert here the source statements of
your PL/I program

/*

Chapter 8 describes how to add DD
statements to a cataloged procedure. Note

r---------T--------------------T-----------~----------T-----------T-----------T-----------,
I ddnamE~ I Possible Device I Record IRecord Sizel Default I Reserved I No. of I
I I classes~ I Format I (bytes) IBlock Size IBuffer Areal Buffers I
I I I I I (bytes) I (bytes) I I
~-------,-+--------------------+-----------+-----------+-----------+-----------+---------~
SYSlN SYSSQ or input job F, FB, U i 100 (max) I 1000 2

streamCspecified I I
by DD *) I

t
SYSPUNCH SYSSQ, SYSCP F,FB

SYSLlN SYSSQ F,FB

SYSUTl SYSDA F

SYSUT3 SYSSQ F, FB, U

SYSPRlNT SYSSQ or. SYSOUT V, VB
device

SO SO

SO SO

1024

SO

125 129

400

400

160

25S

1

1

2

SYSLlB ' SYSDA F, FB, U 100 (max)
~--_----_i--------------------~~----------~-----------~--_________ ~ ___________ ~ _________ ~
I~SYSSQ Magnetic-tape or direct-access device I
I SYSCP Card punch I
I SYSDA Direct-access device I L ___ J

Figure 5--3. Characteristics of compiler Data Sets

that you must qualify the name of the added
DD statelrnentwith the name of the job step
within the cataloged procedure to which it
refers C:in this example, PL1L).

Output (SYSPUNCH,SYSLIN)

The complIer places the object module in
the data set defined by the DD statement
SYSLIN if you specify the option LOAD, and
in the da.ta set defined by SYSPUNCH if you
include 1:he option DECK; you may specify
both options in one program. The object
module is in the form of SO-byte
fixed-length records, blocked or unblocked.
The compiler always reserves 400 bytes for
buffers for each of the output data sets;
however, you may specify a block size of
more than 400 bytes providing sufficient
space is available to the compiler~ (Use
the SIZE option to allocate the additional
space: refer to 'Optional Facilities',
later in this chapter.)

The cataloged procedure PL1DFC includes
the DO st:atement

//SYSPUNCH 00 SYSOUT=B

'I'his stat.ement specifies that the data set

~The E-I€!vel linkage editor does not accept
blocked records; specify blocked records
for SYSLIN only if you are using the
F-Ievel linkage editor.

is to be routed via the system output
device of class B, which is usually a card
punch. (However, the DD statement SYSPUNCH
need not refer to a card punch.)

The other cataloged procedures that
include a compilation job step contain the
following DD statement:

//SYSLlN DD DSNAME=&&LOADSET,
// DlSP=(MOD,PASS),
// UNlT=SYSSQ,
// SPACE=(SO,(250,100»

This statement defines a temporary data set
named &&LOADSET on a magnetic-tape or
direct-access volume; if you want to retain
the object module after the end of your
job, you must substitute a permanent name
for &&LOADSET (i.e., a name that does not
commence &&) and specify KEEP in the
appropriate DlSP parameter for the last
step in which the data set is used. The
term MOD in the DlSP parameter allows the
compiler to place more than one object
module in the data set, and PASS ensures
that the data set will be available to the
next job step (link-edit) providing a
corresponding DD statement is included
there. The SPACE parameter allows an
initial allocation of 250 eighty-byte
records and, if necessary, 15 further
allocations of 100 records (a total of 1750
records, which should suffice for most
applications).

Chapter 5: Compilation 41

Workspace. '(SYSUT1,' SYSUT3)

The compiler may require two data sets for
use as temporary workspace. They are
defined by DD statements with the names
SYSUT1 and SYSUT3.

SYSUT1 defines a data set, known as the
spill file, which the compiler uses for
overflow text and dictionary blocks when
compiling large source programs or when
less than 57,344 bytes (56K bytes) of main
storage are available for compilation.
This data set must be on a direct-access
device. It is good practice to include
this DD statement even when you use the
SIZE option to allocate more than 56K bytes
to the compiler. The cataloged procedures
include the following (or a similar)
statement:

//SYSUT1 DD UNIT=SYSDA,
// SPACE=(1024,(60,60)"CONTIG),
// SEP=(SYSUT3,SYSLIN)

Although the SEP parameter is not
essential, its employment increases the
efficiency of access to the compiler da"ta
sets. You should never need to modify this
DD statement.

The compiler requires the data set
defined by SYSUT3 only when you use the
48-character set or when you employ the
preprocessor. In each case, the compiler
places the processed text on this data set
before commencing compilation proper. All
the cataloged procedures use the following
DD statement:

//SYSUT3 DD UNIT=SYSSQ,
// SPACE=(80,(250,250»,
// SEP=SYSPRINT

Note that if a job being run under MVT
has a number of job steps, and each job
step requires a data set for use as
temporary workspace, the result is a
considerable overhead in time and space.
To reduce this as far as possible, you can
use dedicated workfiles. These are
workspace data sets which are created by
the initiator when the job is selected for
execution. They can be used by each job
step (in the job selected) that requires
temporary workspace; they are dele-ted when
the job is terminated.

To use dedicated workfiles in your job,
you must first make sure that your
installation has an initiator that can
generate them. If it has, you can use
these workfiles by specifying the ddname of
the initiator workfile as the dsname of the
workspace data set in your job stream; this
data set must be specified as a temporary

42

data set. For example, if an initiator has
three dedicated workfiles as follows:

//SYSUT1 DD
//SYSUT2 DD
//SYSUT3 DD

(parameters)
(parameters)
(parameters)

then, if you want the workspace for the
SYSUTl and SYSUT3 data sets in a job step
to be provided by the initiator workfiles,
code:

//SYSUTl DD
//SYSUT3 DD

DSNAME= '& &SYSUT1, •••
DSNAME=&&SYSUT3, •••

The result is that this job step uses
dedicated workfiles as workspace; the
SYSUT1 and SYSUT3 DD statements in your job
stream are ignored. The IBM-supplied
cataloged procedures for PL/I include
SYSUT1 and SYSUT3 DD statements with a
dsname specified in this way.

There are several restrictions on the
substitution.of dedicated workfiles for
workspace data sets in the job stream; for
example. only direct-access devices are
supported. You should consult your system
programmer on the conventions and
restraints that apply·at your installation
to each type of workspace data set.

Listing (SYSPRINTl

The compiler generates a listing that
incl udes all the source statements that it~
processed, information relating to the
object module, and, when necessary,
diagnostic messages. Most of the
information included in the listing is
optional, and you can specify those parts
that you require by including the
appropriate compiler options. The
information that ma.y appear, and the
associated options, are described under
'Listings', later in this chapter.

You must define the data set on which
you wish the compiler to place its listing
in a DO statement named SYSPRINT. The da"t:a
set must have CONSECUTIVE organization.
Although the listing is usually printed, it
can be written on any magnetic-tape or
direct-access device,. For printed output I'
the following statement will suffice:

//SYSPRINT DD SYSOUT=A

The compiler always reserves 258 bytes
for buffers for the data set defined by the
DO statement SYSPRINTi however, you may
specify a block size of more than 129 bytc:!s
provided sufficient main storage is
available to the compiler. (Use the SIZE
option to allocate the additional main

storage: refer to 'Optional Facilities'~
later in this chapter.)

Source s~atement Library' '(SYSLIB)

If you use the preprocessor %INCLUDE
statement to introduce source statements to
your program from a library, you can eithe:t"
define the library in a DD statement with
the name SYSLIB, or you can choose your own
ddname (or ddnames) and specify a ddname in
each %INCLUDE statement. (Refer to
'Compile'-Time Processing', later in this
chapter.) The DD statement SYSLIB is not
included in the compilation job step of the
standard cataloged procedures (and it has a
differen't, function in the link-edit step) ..

Note that for SYSLIB, the maximum record
size pennit,ted is 100 bytes and the maximum
block si:!!:e is 500 bytes.

EXAMPLE

The following example is a typical sequence
of job control statements for compiling a
PL/I pro<Jram. The compiler options DECK
and NOLO}!lD, which are described below, have
been specified in order to obtain an object
module as a card deck only. Chapter 6
includes a sequence of job control
statement.s for link-editing such a card
deck.

//COMP JOB
// EXEC F'GM=IEMAA,PARM='DECK,NOLOAD'
//SYSPUNCH DD SYSOUT=B
//SYSUTl DD UNIT=SYSDA,
// SPACE=(1024,(60,60)"CONTIG)
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
Insert here the source statements to be

compiled

/*

OptionallPacilities

The (F) cfompiler offers a number of
optional :facilities that you can select by
including the appropriate keywords in the
PARM paralll:leter of the EXEC statement that
invokes i .,t,. The PARM parameter is a
keyword~parameter: code PARM= followed by
the list of options, separating the options
wi th comm.iS and enclosing the list within

single quotation marks1: for example:

//EXEC PGM=IEMAA,PARM='SIZE=72K,LIST'

The length of the option list must not
exceed 100 characters, including the
separating commas: however, many of the
option keywords have an abbreviated form
that you can use to save space. You may
specify the options in any order.

If you are using a cataloged procedure,
you must include the PARM parameter in the
EXEC statement that invokes the procedure
and qualify the keyword with the name of
the procedure step that invokes the
compiler 1 for example:

// EXEC PL1LFCLG,PARM.PL1L=('SIZE=100K',
// L,E,A)

The compiler options are of two types:

1. Simple pairs of ke¥words: a positive
form (e.g., LOAD) that requests a
facility, and an alternative negative
form (e,.g. " NOLOAD) that rejects that
facility.

2. Keywords that permit you to assign a
value to a function (e.g., SIZE=56K).

During system generation, your
installation can specify for each option
except OBJNM a default value that will
apply if the option is not otherwise
specified. For those options for which
your installation does not allocate a
default value, standard default values
apply. Figure 5-4 lists all the compiler
options with their abbreviated forms and
the standard default values. The following
paragraphs describe the options in five
groups:

1. Control options, which establish the
conditions for compilation (e.g.,
amount of main storage available,
degree of optimization).

2. Preprocessor options. which request
the services of the preprocessor and
specify how its output is to be
handled.

3. Input options, which specify the
format of the input to the compiler.

4. output options, which specify the type
of data set that will contain the
object module.

11f only one option appears, the quotation
marks can be omitted.

Chapter 5: Compilation 43

r---T---------------T---------------, I Compiler options I Abbreviated I Standard I
I I Names I Defaults I
~--------------T-----------------------------+---------------+---------------~ I I SIZE=yyyyyylyyyK1999999 I SIZE I 999999 I
I I OPT=n I 0 I 1 I
I Control I STMT I NOSTMT I ST I NST I NOSTMT I
I options I OBJNM=aaaaaaaa I N I I
I I OBJIN I OBJOUT I OBJI N I OBJOUT I OBJOUT I
I I EXTDIC I NOEXTDIC I ED I NED I NOEXTDIC I
I I SYNCHKT I SYNCHKS I SYNCHKE I SKTI SKS I SKE I SYNCHKT I
~--------------+-----------------------------+---------------+---------------~
I Preprocessor I MACRO I NOMACRO I M I NM I NQMACRO I
I opti ons I COMP I NOCOMP I C I NC I COMP I
I I MACDCK I NOMACDCK I MD I NMD I NOMACDCK I
~--------------+-----------------------------+---------------+.---------------~ I Input I CHAR60lCHAR48 I C60lC48 I CHAR 6 0 I
I options I BCD I EBCDIC I BlEB I EBCDIC I
I I SORMGIN=(rnmm,nnn(,ccc) I SM I (2,72) I
~--------------+------------------.-----------+---------------+---------------~ I Output I LOAD I NOLOAD I LD I NLD I LOAD I
I options I DECK I NODECK I 0 I NO I NODECK I
~--------------+-----------------------------+---------------+----------~----~

Listing
options

LINECNT=xxx LC 50
OPLISTINOOPLIST OLINOL OPLIST
SOURCE21NOSOURCE2 S21NS2 SOURCE2
SOURCE I NOSOURCE SINS SOURCE
NESTINONEST NT I NNT NONEST
ATRINOATR AINA NOATR
XREF I NOXREF X I NX NOXREF
EXTREFINOEXTREF EINE NOEXTREF
LIST I NOLIST LINL NOLIST
FLAGWIFLAGEIFLAGS FWIFEIFS FLAGW
DUMP(argument-list») DP[(arg-

list)) L ____________ ~ __________________ . ___________ ~~ ______________ ~ ______________ _

• Figure 5-4. Compiler Options, Abbreviations, and Standard Defaults

5. Listing options, which specify the
information to be included in the
compiler listing.

CONTROL OPTIONS

The SIZE option specifies the amount of
main storage available for the compilation.
code this option in one of the following
ways:

44

SIZE=yyyyyy specifies that yyyyyy bytes
of main storage are available for
the compilation. You need not
supply leading zeros.

SIZE=yyyK specifies that yyyK bytes of
main storage are available for the
compilation (lK=1024 bytes). You
need not supply leading zeros.

SIZE =999999 instructs the compiler to
obtain as much main storage as it

can. If it finds less than 45,056
bytes (44K bytes), it prints a
message and attempts to continuE~
compilation; this attempt may not,
however, be successful. If you
know that less than 48K bytes of
main storage are available, do not
specify SIZE=999999, 'but give the
precise amount .•

The following notes may help you select
the optimum size for a compilation:

1. For compilation in an MFT partition or
an MVT region, specify at least 8K
bytes less than the partition or
region size.

2. If you specify less than 57,344 bytes
(56K bytes), the spill file (defined
by the DO statement SYSUT1) will be
opened.

3. Compilation speed is improved if the
SIZE value is increased to the point
where the spill file will not be
opened. The SIZE value also
determines the si ze of the dictiona.ry
and text blocks:

Ma~in storage -Available Block-Size
(bytes) (bytes)

45,056 - 57,343 (56K) 1,024
57,344 - 73,727 (72K) 2,048
73,728 - 135,167 (132K) 4,096

135,168 - 172,031 (168K) 8,192
172,032 or more 16,384

The available storage is that
specified in the SIZE option less any
s.pace required for data set buffers
(see note 4, below).

If the spill file has to be used
either for text or dictionary blocks,
dia.gnostic message IEM38981 will be
printed. Note that spilled text
blocks can be processed more
efficiently than spilled dictionary
blocks. The spill file will therefore
be used for text blocks before it is
used for dictionary blocks.

For each compilation, the message
"AUXILIARY STORAGE WILL NOT BE USED
FOR DICTIONARY WHEN SIZE=nnnk" is
printed. Use of this size for 'a
rece::>mpilation will provide a more
efficient use of main storage but
might result in the spilling of text
blocks (and the production of message
IEM3898I)

4. The compiler reserves part of the main
stol:'age available to it for use as
data set buffers (intermediate storage
areas for data transmitted between
main and auxiliary storage). The
compiler uses one buffer each for the
data sets defined by SYSLIN and
SYSPUNCH, and two buffers each for
SYSPRINT and SYSIN; in each case, the
sizE~ of the buffer is equal to the
block size of the corresponding data
set. If you specify a block size for
any of the data sets that requires
morE~ buffer space than the compiler
normally reserves, you should allow
for the extra space in your SIZE
opti.on by adding the following
quantities to the 44K bytes minimum
required by the compiler:

(2 *' SYSIN block size) - 1000 bytes

(2 * SYSPRINT block size) - 258 bytes

SYSPUNCH block size - 400 bytes

SYSLIN block size - 400 bytes

5. The text block size determine~ the
total number of pairs of parentheses
used for factoring attributes in a
DECLARE sta tement:

Text Block size Pairs of Factor
(bytes) Parentheses

l,024(lK) 146
2,048(2K) 292
4,096(4K) 585
8,192(8K) 1171

16,,384 (16K) 2340

The OPT option specifies the type of
optimization required:

OPT=O instructs the compiler to keep
object-program storage requirements
to a minimum at the expense of
object-program execution time.

OPT=l causes object-program execution
time to be reduced at the expense
of storage.

OPT=2 has the same effect as OPT=l, and
in addition requests the compiler
to optimize the machine
instructions generated for certain
types of DO-loops and expressions
in subscript lists. IBM System/360
Operating-System:PL/I (F) Language
Reference Manual includes a
discussion of DO-loop and
subscript-expression optimization.

There is little difference in
compilation time for optimization levels 0
and 1, but specifying OPT=2 could result in
a substantial increase in compile time.

STMT,or NOSTMT

The STMT option requests the compiler to
produce additional instructions that will
allow statement numbers from the source
program to be included in diagnostic
messages produced during execution of the
compiled program.

The use of this option causes
degradation of execution time. However
you can get information about statement
numbers and their associated offsets by
referring to the TABLE OF OFFSETS. (See
'Options Used for the Compilation,' below.>

Chapter 5: Compilation 45

The OBJNM option allows you to name the
load module that will be created by the
linkage editor from the compiled object
module. (If you do not specify a name, the
linkage editor will use the member name
from the DSNAME parameter of the DD
statement SYSLMOD in the link-edit job
step; see Chapter 6.> The option causes
the compiler to place a linkage editor NAME
statement at the end of the object module.
The NAME statement has the effect of
assigning the specified name to the
preceding module when the module is
link-edited. The format of the option is

OBJNM=aaaaaaaa

where 'aaaaaaaa' represents a name
comprising not more than eight characters,
the first of which must be an alphabetic
character. The format of the resultant
NAME statement, which is described fully in
Chapter 6, is

~NAME~aaaaaaaa(R>

where ~ represents a blank character.

The principal purpose of the OBJNM
option is to facilitate the use of the
linkage editor to create a series of load
modules from the output of a batched
compilation. (Refer to 'Batched
compilation', later in this chapter.> You
can also use it to cause the linkage editor
to substitute the new load module for an
existing module of the same name in a
library.

OBJIN' or OBJOUT

You must specify the option OBJIN if you
intend to execute the compiled program on
an IBM System/360 Model 91 or 195. The
special considerations for PL/I programs
executed on Models 91 and 195 are discussed
in Appendix G.

EXTDIC or NOEXTDIC

The EXTDIC option causes the compiler to
use a dictionary with a capacity of 1.5
times that of the normal dictionary if the
dictionary block size is 1K bytes" and 3.5
times that of the normal dictionary if the
block size is greater than 1K bytes. This
permits successful compilation of large
programs that would otherwise overflow the
dictionary capacity. As the use of EXTDIC

46

reduces compilation speed, specify this
option only when the source module cannot
be compiled with the standard dictionary.

Programs that are large enough to
require the EXTDIC option will be compiled
very much more quickly if a large storage
area is available. Ideally, enough storage
should be available to hold the dictionary
throughout compilation. As a rough
guideline, the SIZE option should specify
about 100,000 bytes plus 75 bytes for each
identifier in the source module. Do not
use the EXTDIC option when SIZE specifies
less than 47,104 bytes.

SYNCHKT" .SYNCHKS or SYNCHKE

This option specifies the conditions foz:'
termination after syntax checking if errors
are detected. The option has three valu.es
specifying termination according to the
severity of. errors.

SYNCHKE terminates compilation if errors
of severity ERROR or above are found during
the syntax checking stages of compilation.

SYNCHKS terminates compilation if errors
of severity SEVERE or above are found
during the syntax checking stages of
compilation.

With the SYNCHKS or SYNCHKE in effect., a
message is written to SYSPRINT stating:-'

'SYNTAX CHECK COMPLETED. COMPILATION
CONTINUES' or 'SYNTAX CHECK COMPLETED.
COMPILATION TERMINATED'

whichever is appropriate.

When using the value SYNCHKT compilat:ion
is terminated immediately an error of
severity TERMINATION is encountered durlng
the syntax check. In this case the synt.ax
check is not completed, and therefore no
special message is printed.

With SYNCHKT in effect the option is
effectively turned off, and no special
messages will be generated.

PREPROCESSOR OPTIONS

MACRO "or NOMACRO

Specify MACRO when you want to employ the
compiler preprocessor. The use of the
preprocessor is described under
'Compile-Time Processing,' later in this
chapter.

COMP or NOCOMP

Specify this option if you want the PL/I
source module produced by the preprocessor
to be cClmpiled immediately. The source
module i.s then read by the compiler from
the data set identified by the DD statement
SYSUT3.

MACDCR or.· NOMACDCR

specify "the option MACDCR if you want the
output from the preprocessor in the form of
a card deck. This output is written
(punched) in the data set specified by the

DD statement SYSPUNCH.

INPUT Op~rIONS

CHAR60 0~'CHAR48

If the P:L/I source statements are written
in the PI./I 60-character set. specify
CHAR60; if they are written in the
48-character set, specify CHAR48. IBM
system/360 operating.System:'PL/I (F)
Language· Reference Manual lists both
characte:r sets. (Note that the compiler
will acc1ept source programs written in
either character set if you specify
CHAR48.)

BCD or EJ~CDIC

The compiler will accept source statements
in which the characters are represented by
either o:f. two codes; binary coded decimal
(BCD) and extended binary-coded-decimal
interchange code (EBCDIC). For binary
coded decimal, specify the option BCD; for
extended binary coded decimal interchange
code, spc~cify the option EBCDIC. Whenever
possible t, use EBCDIC since BCD· requires
translation and is therefore less
efficien1t:. IBMsystem/360 Operating
System:PL/I (F). Language Reference Manual
lists thE;! EBCDIC representation of both the
48-character set and the 60-character set.
The 029 Keypunch punches characters in
EBCDIC~f()rm without multipunchingi to
obtain EBCDIC using the 026 you must
multipunch some characters.

SORMGIN

The SORMGIN (source margin) option
specifies the extent of the part of each
input record that contains the PL/I source
statements. The compiler will not process
data that is outside these limits. The
option can also specify the position of an
ANS carriage control character to format
the listing of source statements produced
by the compiler if you include the SOURCE
option. The format of the SORMGIN option
is: '

SORMGIN=(mmm.nnn[,ccc])

where mmm represents the number of the
first byte of the field that
contains the source statements l•

nnn represents the number of the last
byte of the source statement
field, and

ccc represents the number of the byte
that will contain the control
character.

The value mmm must be less than or equal
to nnn, and neither must exceed 100. The
value ccc must be outside the limits set by
mmm and nnn. The valid control characters
are:

b Skip one line before printing o Skip two lines before printing
Skip three lines before printing

+ Suppress space before printing
1 Start new page

Chapter 11 contains a full description of
the use of printer control characters. If
you do not specify a position for a control
character, a default position defined by
your installation may apply. You can
nullify this,default position by specifying
the carriage control character to be zero
(for example, SORMGIN=(1,72,0».

I f the value ccc is grea"ter than the
value set by the LRECL subparameter of the
DCB parameter, the compiler may not be able
to recognize it; consequently the listing
may not have the required format. If the
character specified is not a valid control
character. a blank is assumed by default.

Source statements genera-ted by the
preprocessor always have a source margin
(2,72). Columns 73-80 contain information
inserted by the preprocessolC'; this
information is described under 'Listing,'
below.

Chapter 5: Compilation 47

OUTPUT OPTIONS

LOAD or NOLOAD

The LOAD option specifies that the compiler
is to place the object module in the data
set defined by the DD statement.with the
name SYSLIN.

DECK or NODECK

The DECK option specifies that the compiler
is to place the object module, in the form
of 80-column card images, in the data set
defined by the DD statement with ·the name
SYSPUNCH. Columns 73-76 of each card
contain a code to identify the object
module: this code comprises the first four
characters of the first label in the
external procedure represented by the
module. Columns 77-80 contain a 4-digit
decimal serial number: the first card is
numbered 0001, the second 0002, etc.

LISTING OPTIONS

The listings produced by the compiler when
you specify the following options are
described under 'Listing' below.

LINECNT

The LINECNT option specifies the number of
lines to be included in each page of a
printed listing, including heading lines
and blank lines. Its format is:

LINECNT=xxx:

OPLIST or NOOPLIST

The OPLIST option requests a list: showing
the status of all the compiler options at
the start of compilation.

SOURCE2 or NOSOURCE2

The SOURCE2 option requests a listing of
the PL/I source statements input to the
preprocessor.

48

SOURCE or NOSOURCE

The SOURCE option requests a listing of ,the
PL/I source sta·tements processed by the
compiler,. The source statements listed ,are
either those of the original source program
or the output from the preprocessor.

NEST· or NONEST

The NEST option specifies that the source
program listing should indicate for each
statement,. the block level and the level of
nesting of a DO-group.

ATR or NOATR

The ATR option requests the inclusion in
the listing of a table of source program
identifiers and their attributes.
Attributes with a precision of fixed binary
(15.0) or less are flagged •••••••••• ,. An
Aggregate Length Table. giving the length
in bytes of all major structures and
non-structured arrays in the source
program, will also be produced when the ATR
option is specified.

XREF or NOXREF

The XREF option requests the inclusion i.n
the listing of a cross-reference table t~hat
lists all the identifiers in the source
program with the numbers of the source
statements in which they appear. If you
specify both A'l'R and XREF, the, two tablE~s
are combined. An Aggregate Lengh Table
will also be produced when the XREF opti.on
is specified.

EXTREF or NOEXTREF

The EXTREF option requests the inclusion of
a listing of the external symbol dictionary
(ESD).

LIST or.NOLIST

The LIST option requests a listing of the
machine instructions generated by the
compiler (in a form similar to System/3fiO
assembler language instructions).

FLAGWo~ FLAGE or FLAGS

The diagnostic messages preduced by the
PL/I (F) cempiler are graded in erder ef
severity. The FLAG eptien specifies the
minimum level ef severity that requires a
message to. be printed:

FLAGW List all diagnestic messages

FLAGE I.ist all diagnestic messages
except 'warning' messages

FLAGS List enly 'severe' errers and
'terminatien' errers

The sevcE~rity levels are discussed under
'Listin9,' belew.

The DUMP eptien requests a fermatted
listing en SYSPRINT ef the compiler
medules c, cempiler sterage. and cempiler
centrel blecks if an unreceverable errer is
enceuntE~red. The DUMP eptien can also. be
used wit:h eptienal arguments; the nature
and purpese ef these arguments are
discussE~d in the publicatien IBM System/360
Operating system; PL/I. (F) Cempiler.
PregramLegic. Order No.. GY28-6800.

This facility she~ld enly be used in the
event ef: a cempiler failure.

Listing

During cempilatien. the cempiler generates
a listing that centains infermatien about
the cempilatien and about the seurce and
lead meClules. It places this listing in
the data set defined by the DD statement
SYSPRIN'I' (usually eutput to. a printer).
The fell.ewing descriptien ef the listing
refers t.e its appearance en a printed page ..

The l.isting cemprises a small ameunt ef
standarol infermatien that always appears,
tegether with these items ef eptienal
infermat.ien requested in the PARM parameter
ef the DD statement that inveked the
cempiler er that were applied by default.
Figure 5·-5 lists the eptienal cempenents ef
the list.ing and the cerrespending cempiler
eptiens.

The first page ef the cempiler listing
is identified by the cempiler versien
number and the eperating system release
number in the tep left-hand cerner, and by
the heading OS/360 PL/I COMPILER (F) in the

center. Starting'with thi.s page, all the
pages ef the listing are numbered
sequentially in the tep right-hand cerner.
On Page 1. immediately under the page
number, the date ef cempil.atien is recerded
in the ferm yy. ddd (yy=yea.r, ddd=day).
Page 1 also. includes a sta.tement ef the
eptiens specified fer the cempilatien,
exactly as they are written in the PARM
parameter ef the EXEC statement.

The listing always ends with a statement
that no. errers er warning cenditiens were
detected during the cempilatien er with ene
er mere di'agnestic messages. The fermat ef
the messages is described under 'Diagnestic
Messages,' be lew... If yeur machine includes
the timer featur.e, the listing cencludes
with a statement ef the CPU time taken fer
the cempilatien and the elapsed time during
the cempilatien; these times will differ
only in a multipregramming envirenment.

The fellewing paragraphs describe the
eptienal parts ef the listing in the erder
in which they appear. Appendix A includes
a fully annetated example ef a cempiler
listing .•

Listings

optiens for the
cempilatien

Preprecesser input

Seurce pre gram

Statement nesting level

Attribute table

Optien Required

OPLIST

SOURCE 2

SOURCE

NEST

ATR

Cress-reference table XREF

Aggregate-length table ATR er XREF

External symbol dictienary EXTREF

Object medule LIST

Diagnestic messages fer FLAGS, FLAGE,
severe errers, errers, FLAGW
and warnings

Figure 5-5. Optienal Cempenents ef
Cempiler Listing

OPTIONS USED FOR THE COMPILATION

If the eptipn OPLIST applies, a cemplete
list ef the eptiens fer the cempilatien.
including the default eptiens, fellews the
statement ef the eptiens specified in the
EXEC statement. This infermatien appears
twice, the secend list being in a standard

Chapter 5: cempilatien 49

format to facilitate the automatic
collection of operating-system usage
statistics.

PREPROCESSOR INPUT

If both the options MACRO and SOURCE2
apply, the compiler lists the input
statements to the preprocessor, one record
per line. The lines are numbered
sequentially at the left.

If the compiler detects an error or the
possibility of an error, during the
preprocessor phase, it prints a message on
the page or pages following the input
listing. The format and classification of
the error messages are exactly as described
for the compilation error messages
described under 'Diagnostic Messages,'
below.

SOURCE PROGRAM

If the option SOURCE applies, the compiler
lists the source program input, one record
per line; if the input statements include
carriage control characters, the lines will
be spaced accordingly. The statements in
the source program are numbered
sequentially by the compiler, and the
number of the first statement in the line
appears to the left of each line in which a
statement begins. The statements contained
within a compound (IF or ON) statement are
numbered as well as the compound statement
itself; and, when an END statement closes
more than one group or block, all the
implied END statements are included in the
count:

1 P: PROC:
2 X: BEGIN;
3 IF A=B
4 THEN A=l:
5 ELSE DO;
6 A=O;
7 C=B;
8 END X;
10 D=E;
11 END:

If the source statements were generated
by the preprocessor, colUmns 73-80 contain
the following information:

50

Column

73-77 Input line number from which the
source statement was generated.
This number corresponds to the
line number in the preprocessor
input listing.

78,79 Two-digit number giving the
maximum depth of replacement for
this line. If no replacement
occurred, the columns are blank.

80 tE' signifies that an error
occurred while replacement was
being attempted. If no error
occurred, the column is blank.

Statement Nesting-Level

If the options SOURCE and NEST apply, the
block level and the DO level are printed to
the right of the statement number under
appropriate headings:

STMT LEVEL NEST

1
2
3
4
5
6
7
8
9

1
2
2
2
2
3
2
1

1
2
1
1
1

A: PROC O~IONS(MAIN);
B: PROC(L);

DO 1=1 TO 10;
DO J=l TO 10;

END:
BEGIN;

END;
END B:

END A:

ATTRIBUTE AND CROSS-REFERENCE TABLE

If the option ATR applies, the compiler
prints an attribute table containing an
alphameric list of the identifiers in the
program together with their declared and
default attributes. If the option XREF
applies, the compiler prints a
cross-reference table containing an
alphameric list of the identifiers in the
program together with the numbers of the
statements in which they appear. If both
ATR and XREF apply, the two tables are
combined.

Except for file attributes, the
attributes printed will be those that
obtain after conflicts have been resolved
and defaults applied. Since the file
attribute analysis does not take place
until after the attribute list has been
prepared, the attributes that appear in the
list for a file are those supplied by you"
regardless of conflicts.

If either of the options ATR and XREF
applies, the compiler also prints an
aggregat;e-Iength table, which gives, where
possible, the lengths in bytes of all major
structures and all non-structured arrays in
the progrram.

Attribut~e Table

If an identifier was declared explicitly,
the number of the DECLARE statement is
listed under the heading DCL NO.. The
statement numbers of statement labels and
entry laLbels are also given under this
heading.

'l'he attributes INTERNAL and REAL are
never included; they can be assumed unless
the respective conflicting attributes
EXTERNAI, and COMPLEX appear.

For'a: file identifier, the attribute
EXTERNAL appears if it applies; otherwise,
only explicitly declared attributes are
listed.

E'or an array, the dimension attribute is
printed first; the bounds are printed as in
the array declaration, but expressions are
replaced by asterisks.

For a. character string or a bit string,
the length preceded by the word • STRING, ,
is print.ed as in the declaration, but an
expression is replaced by an asterisk.

Cross Re~ference Table

If the cross-reference table is combined
with the~ attribute table, the numbers of
the statements in which an identifier
appears follow the list of attributes for

. that identifier. The number of a statement
in which a based variable identifier
appears will be included, not only in the
list of statement numbers for that
variable~, but also in the list of statement
numbers for the pointer associated with ito

Aggregat.e Length Table

Each ent.ry in the aggregate-length table
consists: of an aggregate identifier
preceded by a statement number and followed
by the length of the aggregate in bytes.

'l'he s·tatement number is the number
either of the DECLARE statement for the
aggregat.e or, for a CONTROLLED aggregate,

of an ALLOCATE statement for the aggregate.
An entry appears for every ALLOCATE
statement involving a CONTROLLED aggregate,
since such statements have the effect of
changing the length of the aggregate during
execution. Allocation of a BASED aggregate
does not have this effect, and only one
entry, which is that corresponding to the
DECLARE statement, appears.

The length of an aggregate may not be
known at compilation, either because the
aggregate contains elements having
adjustable lengths or dimensions, or
because the aggregate is dynamically
defined. In these cases, the word
'ADJUSTABLE' or 'DEFINED' appears in the
LENGTH IN BYTES column.

An entry for a COBOL mapped structure,
that is,. for a structure into which a COBOL
record is read or from which a COBOL record
is written, has the word '(COBOL)'
appended, but such an entry will appear
only if the structure does not consist
entirely of:

1. doubleword data, or

2. fullword data, or

3. halfword binary data, or

4. character string data, or

5. aligned bit string data, or

6. a mixture of character string and
aligned bit string data.

If a COBOL entry does appear it is
additional to the entry for the PL/I mapped
version of the structure.

STORAGE REQUIREMENTS

If the option SOURCE applies, the compiler
lists the following information under the
heading STORAGE REQUIREMENTS on the page
following the end of the aggregate-length
table:

1. The storage area in bytes for each
procedure.

2. The storage area in bytes for each
BEGIN block.

3. The storage area in bytes for each ON
unit.

4. The length of the program control
section (CSECT). The program control
section is the part of the object
module that contains the executable
part of the program.

Chapter 5: Compilation 51

5. The length of the static internal
control section. This control section
contains all storage for variables
declared STATIC INTERNAL.

TABLE OF OFFSETS

If the options SOURCE, NOSTMT, and NOLIST
apply, the compiler lists, for each primary
entry point, the offsets at which the '
various statements occur. This information
is found, under the heading TABLE OF
OFFSETS AND STATEMENT NUMBERS WITHIN
PROCEDURE, following the end of the storage
requirements table.

EXTERNAL SYMBOL OICTIONARY

If the option EXTREF applies, the compiler
lists the contents of the external symbol
dictionary (ESO) for the object module.
The ESO is a table containing all the
external symbols that appear in the module.
(The machine instructions in the object
module are grouped in blocks called control
sections; an external symbol is a name that
can be referred to in a control section
other than the one in which it is defined.>
The information appears under the following
headings:

SYMBOL - An 8-character field that
identifies the external symbol.

TYPE - Two characters from the following
list to identify the tYPE! of ESD
entry:

52

SD - Section definition: the name
of a control section within
this module.

CM - Common area: a type of
control section that contains
no executable instructions.
The compiler creates a common
area for each non-string
element variable declared
STATIC EXTERNAL without the
INITIAL attribute.

ER - External reference: an
external symbol that is not
defined in this module.

PR - pseudo-register: a field in a
communications area, the
pseudo-register vect:or (PRV),
used by the compiler and the
library subroutines.

LD - Label definition: the name of
an entry point to the
external procedure other than
that used as the name of the
program control section.

ID - Four-digit hexadecimal number: the
entries in the ESO are numbered
sequentially, commencing from
0001.

AODR - Hexadecimal representation of the
address of the symbol: this field
is not used by the compiler, since
the address is not known at
compile time.

LENGTH - The hexadecimal length in bytes of
the control section (SO, CM, and
PR entries only).

Standard.ESD Entries

The external symbol dictionary always
starts with seven standard entries (Figw~e
5-6):

1. Name of the program control section
(the control section that contains t.he
executable instructions of the object
module). This name is the first label
of the external procedure statement ..

2. Name of the static internal control
section (which contains storage for
all variables declared STATIC
INTERNAL). This name is the first
label of the external procedure
statement, padded on the left with
asterisks to seven characters if
necessary. and extended on the right:
with the character A.

3. IHEQINV: pseudo-register for the
invocation count (a count of the
number of times a block is invoked
recursively) ..

4. IHESADA: entry point of the library
routine that obtains automatic storage
for a block.

5. IHESAOB: entry point of the library
routine that obtains automatic storage
for variables whose extents are not
known at compile time.

6. IHEQERR: pseudo-register used by thE~
library error-handling routines.

7.. IHEQTIC: pseudo-register used by thE!
library multitasking routines.

r-'----------------------------------,
SYMBOL TYPE IO ADOR LENGTH I

I
FIGS SO 0001 000000 00033A

***FIG5A SO 0002 000000 00005F

IHEQINV PR 0003 000000 000004

IHESAOA ER 0004 000000

IHESADB ER 0005 000000

IHEQERR PR 0006 000000 000004

IHEQTIC PR 0007 000000 000004 L_. ___________________________________ J

Fitgure 5-6. Typical standard ESO
Entries

Other ESO Ent ries

The rema1n1ng entries in the external
symbol dictionary vary, but generally
include the following:

1. section definition for the 4-byte
control section IHEMAIN, which
contains the address of the principal
entry point to the external procedure.
This control section is present only
if the procedure statement includes
the option MAIN.

2. section definition for the control
section IHENTRY (always present).
EXf:!cution of a PL/I program always
starts with this control section,
which passes control to the
appropriate initialization subroutine
of the PL/I library: when
initialization is complete, control
passes to the address stored in the
control section IHEMAIN.
(Initialization is required only once
dwring the execution of a PL/I
program, even if it calls another
external procedure: in such a case,
control passes directly to the entry
point named in the CALL statement, and
noit to IHENTRY.)

3. LO···type entries for all names of entry
points to the external procedure
except the first.

4. A JPR-type entry for each block in the
compilation. The name of each of the
pseudo-registers comprises the first
label of the external procedure
statement, padded on the left with
as·terisks to seven characters if
necessary, and extended on the right
wi't:h an eighth character selected from
one of two tables used by the

compiler. If the number of blocks
exceeds the number of characters in
the first table, the first character
of the pseudo-register name is
replaced by a character taken from the
second table, and the last character
recycles. If the first character thus
overwritten is the start of the
external procedure name rather than an
asterisk, the compiler issues a
warning message (since identical
pseudo-register names could be
generated from different procedure
names) •

These pseudo-registers are termed
display pseudo-registers.

Example:

X: PROC:
Y: PROC:

Z: BEGIN;
END X:

The display pseudo-registers for X, Y,
and Z would have the names:

*·.··.XB·
···*··XC

······xo
5. ER-type entries for all the library

routines and external routines called
by the program. The list includes the
names of. library routines called
directly by compiled code (first-level
routines), and the names of routines
that are called by the first-level
routines.

6. CM-type entries for non-string element
variables declared STATIC EXTERNAL
without the INITIAL attribute.

7. sO-type entries for all other STATIC
EXTERNAL variables and for EXTERNAL
file names.

8. PR-type entries for all file names.
For EXTERNAL file names, the name of
the pseudo~register is the same as the
file name: for INTERNAL file names,
the compiler generates names as for
the display pseudo-registers.

9. PR-type entries for all controlled
variables. For external variables,
the name of the variable is used for
the pseudo-register name: for internal
variables, the compiler generates
names as for the display
pseudo-registers.

Chapter 5: Compilation 53

STATISTICS

If the option SOURCE applies, the compiler
lists the following information after the
ESD (or, if the option NOEXTREF applies,
after 'storage Requirements'):

1. Number of records processed by the
preprocessor (MACRO records).

2. Number of records processed by the
compiler.

3. Number of statements processed by the
compiler.

4. Size of object module (in bytes).

OBJECT MODULE

If the option LIST applies, the compiler
generates a map of the static internal
control section and lists the machine
instructions of the object program in a
form similar to System/360 assembler
language. The machine instructions are
described in IBM System/360: Principles of
operation. The following descriptions of
the object module listings include many
terms that can be properly defined only in
the context of an explanation of the
mechanism of compilation and the structure
of the object program: such an explanation
is beyond the scope of this manual.

Both the static internal storage map and
the object program listings start on a new
page. If the LINECNT option specifies 72
or fewer lines per page and the number of
lines to be printed (including skips)
exceeds the specified line count,
double-column format is used. If the
LINECNT option specifies more than 72 lines
per page or the number of lines to be
printed (including skips) is less than the
specified line count, single-column format
is used.

static Internal storage Map

The first 52 bytes of the static internal
control section are of a standard form and
are not listed. They contain the following
information:

54

DC F'4096'
DC AL4(SI.+X'1000·)
DC AL4(SI.+X'2000')
DC AL4(SI.+X'3000')
DC AL4(SI.+X'4000')
DC AL4(SI.+X'5000')

DC AL4(SI.+X'6000'}
DC AL4 (SI. +X'7000")
DC VL4 (IHESADA)
DC VL4(IHESADB)
DC A(DSASUB)
DC A(EPISUB)
DC A(IHESAFA)

SI. is the address of the static
internal control section, and IHESADA,
IHESADB, and IHESAFA are library
subroutines. DS.ASUB and EPISUB are
compiler routines for getting and freeing
dynamic storage areas (DSAs).

The remainder of the static control
section is listed, each line comprising the
following elements:

1. Six-digit hexadecimal offset.

2. Up to eight bytes of hexadecimal tex-t.

3. Comment indicating the type of item -to
which the text refers; a comment
appears against the first line only of
the text for an item.

The following abbreviations are used for
the comments (xxx indicates the presence of
an identifier>:

DED FOR TEMP
or DED

FED

Data element descriptor
for a temporary or for a
programmer's variable.

Format element descriptor.

DV •• xxx Dope vector for a static
variable.

DVD.. Dope vector descriptor.

D.V. SKELETON Dope vector skeleton for
an automatic or controlled
variable.

ROV.. Record dope vector.

A •• xxx Address of external
control section or entry
point, or of an internal
label.

ARGUMENT Argument list skeleton~
LIST

CONSTANTS Constants.

SYMTAB

SYM •• xxx

FILE •• xxx

Symbol table entry.

Symbolic name of label
constant or label
variable.

File name.

ON •• Ji~XX

ATTRIB

xxx

programmer-declared
ON-condition.

File attributes.

static variable. If the
variable is not
initialized, no text
appears against the
comment, and there is also
no static offset if the
variable is an array.
(This can be calculated
from the dope vector if
required.)

Object ?rogram Listing

The object program listing includes
comments of the following form as an aid to
identification of the functions of the
components of the program:

* STATEMENT NUMBER n - identifies the
start of the code generated for
source listing statement number n.

* PROCEDURE xxx - identifies the start of
the procedure labeled xxx.

* REAL ENTRY xxx - heads the
initialization code for an entry
point to a procedure labeled xxx.

* PROLOGUE BASE - identifies the start of
the initialization code common to
all entry points to that procedure.

* PROCEDURE BASE - identifies the address
loaded into the 'base register for
-t:h e procedure.

* APPARENT ENTRY xxx - identifies the
point of entry into the procedure
for the entry point labeled xxx.

* END PROCEDURE xxx - identifies the end
IDf the procedure labeled xxx.

* BEGIN BLOCK xxx - indicates the start
of the begin block with label xxx.

* END BLOCK xxx - indicates the end of
-the begin block with label xxx.

* ·INrrIALIZATION CODE FOR xxx - indicates
it:hat the code following performs
initial value assignment or dope
v'ector initialization for the
variable xxx.

whereever possible, a mnemonic prefix is
used to identify the type of operand in an
instrud~ion, and where applicable this is
followed by a source program identifier.
The following prefixes are used:

A ••

AE ••

BLOCK.

C ••

CL.

DED ••

DV ••

Address constant

Apparent entry point (point in
the procedure to which control
passed from the prologue).

Label created for an otherwise
unlabeled block (followed by the
number of the block).

Constant (followed by a
hexadecimal dictionary
reference).

A label generated by the
compiler (followed by a decimal
number identifying the label).

Data element descriptor

Dope vector

DVD.. Dope vector descriptor

FVDED •• Data element descriptor of
function value.

FVR.. Function value

IC. Invocation count
pseudo-register.

ON, ••

PRe •

RDV ••

RSW ••

SI.

SKDV ••

SKPL ••

ST ••

ON-condition name

pseudo-register

Record dope vector

Return switch

Address of static internal
control section.

Skeleton dope vector, followed
by hexadecimal dictionary
reference.

Skeleton parameter list,
followed by hexadecimal
dictionary reference.

Symbol table entry

SYM.. Symbolic representation of a
label.

TCA.. Temporary control area: a word
containing the address of the
dope vector of the specified
temporary.

TMP. .. Temporary, followed by
hexadecimal dictionary
reference·.

TMPDV,. • Temporary dope vector, followed
by hexadecimal dictionary
reference

Chapter 5: compilation 55

VO ••

WP1.
WP2.
WS1.
WS2.
WS3.

Virtual origin

Workspace, followed by decimal
number of block which alloca"tes
workspace

A listing of the various storagE~ areas
is not produced, but the addresses of
variables can be deduced from the object
program listing.

Example:

A=B+l0El; in the source program
produces :

0002CA 78 00 B 058 LE O.B

0002CE 7A 00 B 064 AE 0,C •• 08F4

0002D2 70 00 B 060 STE O,A

A and B are STATIC INTERNAL variables at an
offset of X'60' and X'58', respectively,
from the start of the control section.

DIAGNOSTIC MESSAGES

The compiler generates messages that
describe any errors or conditions that may
lead to error that it detects during
compilation. Messages generated by the
preprocessor appear in the compiler listing
immediately after the listing of the
statements processed by the preprocessor;
all other messages are grouped together at
the end of the listing. The messages are
graded according to their severity:

56

A' warning message calls attention t:o a
possible error, although the statement
to which it refers is syntactically
valid.

An ~ message describes an attempt
made by the compiler to correct an
erroneous statement (although it may
not specify the corrective action)e

A severe error message specifies an
error that cannot be corrected. by the
compiler. The incorrect statement or
part of a statement is deleted., but
compilation continues. However, if a
severe error is detected during the
preprocessor stage, compilation is
terminated after the compiler has
listed the source program.

A'termination error message describes
an error that forces the termination of
the compilation.

The compiler lists only those messages
with a severity equal to or greater than
that specified by the FLAG option:

Type of Message Option

warning
error

FLAGW
FLAGE
FLAGS severe error

termination error Always listed

Each error message is identified by an
8-character code~

1. The first three characters are IEM,
which identify the message as
emanating from the F compiler.

2. The next four characters are a 4-diglt
message number. Appendix K lists all
the compiler messages in numeric
sequence.

3. The last character is the letter I,
which is the operating system code for
an informative message.

At the end of a compilation, a message
is printed giving the value for the SIZE
option that will prevent the spill file
being used for dictionary blocks if the
program is recompiled.

RETURN CODE

The compiler returns a completion code to
the operating system to indicate the degree
of success it achieved. This code appears
in the job scheduler END OF STEP message as
• RETURN CO DE. '

0000

0004

0008

0012

0016

Meaning

No diagnostic messages issued;
compilation completed without
error; successful execution
anticipated.

Warning messages only issued;
compilation completed; successful
execution probable.

Error messages issued;
compilation completed, but with
errors; execution may fail.

Severe error messages issued;
compilation may have been
completed, but with errors;
successful execution improbablE!.

Termination error messages
issued; compilation terminated
abnormally; successful execution
impossible.

Note: This return code is
returned for all levels of
termination when the syntax check
option is used.

Batched Compilation

The batched compilation facility of the
compile:r allows you to compile more than
one exbernal procedure in a single
execution of the compiler. The compiler
creates an object module for each external
procedure and places them sequentially in
the data set identified by the DD statement
SYSPUNCH or SYSLIN. Batched compilation
can increase compiler throughput by
reducinq operating system overheads, but
has the disadvantage that a termination
error dtetected during the compilation of
one extc?rnal procedure will prevent the
compila'tion of those that follow it.

To specify hatched compilation, you must
include a compiler PROCESS statement in
front of each external procedure except the
first. This statement indicates to the
compile:t: that it must process another
procedu:re, and it allows you to specify new
options for each compilation. The first
procedu;re in the batch does not require a
PROCESS statement since the EXEC statement
that invokes the compiler contains all the
information that it requires.

Note that the return code given for a
batched compilation is the highest code
that would be returned if the procedures
were crnnpiled independently.

THE PROCESS STATEMENT

The fonnat of the PROCESS statement is

* PHOCESS (' options') ;

where 'options' indicates a list of
compi lelt: options exactly as specif ied in
the PAru1 parameter of an EXEC statement;
the list. of options must be enclosed within
sinqle quotation marks. The asterisk must
be in the first byte of the record (card
column :U, and the keyword PROCESS may
follow in the next byte (column) or after
any nU~Jer of blanks. Blanks are also
pennitted between:

1 . Thc~ keyword PROCESS and the
op:ion-list delimiter (left
parenthesis).

2. The option-list delimiters and the
start or finish of the option list.

3. The option-list delimiter and the
semicolon.

The options in the option list may
include any of those described under
.f Optional Facilities,' • earlier in this
chapter. The options must be separated by
commas, and there must be no embedded
blanks. The options apply to the
compilation of the source statements
between the PROCESS statement and the next
PROCESS statement. If you omit any of the
options, the default values apply; there is
no carryover from the preceding EXEC ,
statement or PROCESS statement. The number
of characters is limited only by the
length of the record. If you do not wish
to specify any options, code

* PROCESS;

The input record that contains the
PROCESS statement must be in EBCDIC code.

TheOBJNM Option

The OBJNM option determines how the object
modules in a batch will be link-edited
together. The appearance of this option in
the PARM parameter of the EXEC statement or
in a PROCESS statement causes the compiler
to place a linkage-editor NAME statement at
the end of the object module resulting from
the compilation of the external procedure
to which the option refers. When the batch
of object modules is link-edited, the
linkage editor places all the modules
between one NAME statement and the
preceding NAME statement into the same load
module; it takes the name of a load module
from the NAME statement that follows the
last object module that is to be included.
For example, consider the-following source
statements (assuming the option OBJNM=A in
the EXEC statement):

ALPHA: PROC OPTIONS (MAIN) ;

END ALPHA;
* PROCESS;

BETA: PROC OPTIONS(MAIN};

END BETA;
* PROCESS ('OBJNM=B');

GAMMA: PROC;

END GAMMA;

Chapter 5: Compilation 57

compilation of these source statements
would result in the following object
modules and NAME statements:

object module for ALPHA
NAME A (R)

Object module for BETA
Object module for GAMMA

NAME B (R)

From this sequence of object modules and
control statements, the linkage editor
would produce two load modules, one named A
containing the object program for procedure
ALPHA, and the other named B containing the
object programs for the procedures BETA and
GAMMA.

You should not specify the OBJNl-1 option
if you intend to process the object modules
with the linkage loader. The loader
processes all object modules with the same
name into a single load module; if there is
more than one name, the loader recognizes
the first one only and ignores the others.

JOB CONTROL LANGUAGE FOR BATCHED PROCESSING

The only special consideration relating to
job control statements for batched
processing refers to the data set defined
by the DD statement SYSLIN. If you include
the option LOAD, ensure that this DD
statement contains the parameter
DISP=(MOD,KEEP) or DISP=(MOD,PASS); the
standard cataloged procedures specify
DISP=(MOD,PASS). If you do not specify
DISP=MOD, successive object modules will
overwrite the preceding modules.

Under pCP or MVT, if you do not specify
sufficient primary extents for the data
sets defined by SYSLIN or SYSPRINT, you may
get an abnormal termination with a system
completion code of 80A, in which case you
should increase the primary extents and run
the job again.

Example

Figure 5-7 is an example of a simple
batched processing program. It illustrates
the use of a single invocation of the
cataloged procedure PL1LFCL to compile four
procedures and link-edit them into three
load modules. Figure 5- 8 illustra"tes how
these load modules could later be executed.

The EXEC statement COLE in Figure 5-7
specifies the options for the compilati.on

58

of the procedure FIRST; of the options
specified, only SIZE applies to the
compilations of the other procedures. The
OBJNM option (abbreviated to 'N') ensures
that FIRST will be link-edited into a load
module named PGM1, which will contain no
other procedures~

The first PROCESS statement requests a
listing of the external symbol dictionary
for the object module compiled from
procedure SECOND 8 The second PROCESS
statement includes the option N=PGM2, which
causes the compiler to insert a linkage
editor NAME statement at the end of the
object module compiled from the procedure
PRINT; since this option does not appear in
the preceding PROCESS statement, the object
modules for procedures SECOND and PRINT
will be combined in a single load module
(named PGM2) by the linkage editor.

The third PROCESS statement names the
load module that will contain the procedure
THIRD, and also requests that only error.,
severe error, and termination error
messages be listed by the compiler.

The DD statement LKED.SYSLMOD overrides
the corresponding statement in the
cataloged procedure, and has the effect of
requesting the linkage editor to place th~~
load modules in the private library PUBPG1~,
from which they can later be called for
execution. In Figure 5-8, this library is
named again in the DD statement JOBLIB; a
library specified by a DD statement of this
name serves as an extension of the system
program library for the duration of the job
in which the statement appears. (Chapters
6 and 12 discuss the linkage editor and
program libraries, respectively.)

Compile-time Processing

The compile-time facilites of the (F)
compiler are described in IBMSystem/360
Operating system: PL/I (F) Language
Reference Manual. These facilities allow
you to include in a PL/I program statemen"ts
that, when they are executed by the
preprocessor stage of the compiler, mOdify
your source statements or cause source
statements to be included in your program
from a library. The following discussion
supplements the information contained in
the Language manual by providing some
illustrations of the use of the
preprocessor and explaining how to
establish and use source statement
libraries.

//J067PGEX JOB
//COLE J~XEC PL1LFCL,PARM.PL1L='SIZE=999999,N=PGM1,A' ,PARM.LKED='LIST'
//PL1L.8YSIN DD *

FIRST: PROC OPTIONS(MAIN);
DO I=1250 TO 1500 BY 50;

DO J=10, 15, 20;
K=SQRT(I/J):
PUT SKIP(2) DATA;

END FIRST;
* PROCESS (' EXTREF') ;

SECOND:: PROC OPTIONS (MAIN) ;
DCL PRINT ENTRY EXT,

A(5) INIT(1,2~4,8,16),
B(5) INIT(3,5,7,9,11),
C(5,5);

DO I=l TO 5;
DO J=l TO 5;

C(1,J)=12*A(I)/B(J);
END;

END;
CALL PRINT (A,B,C);
END SECOND:

* PROCESS (' N=PGM2') :
PRINT: PROC (THOR,TVERT,ARRAY);

DCL THOR(*),TVERT(*),ARRAY(*,*);
I=DIM(THOR,l);
PUT EDIT (THOR) (X(7), (I) F(7,2»;
DO J=l TO DIM(TVERT,l);

PUT SKIP EDIT(TVERT(J), (ARRAY(J,K) DO K=l TO I»(F(7,2»;
END PRINT;

* PROCESS (, N=PGM3 , FE') ;
THIRD: PROC OPTIONS(MAIN);

ON ENDFILE(SYSIN) GO TO FINISH;
NEXT: GET DATA(A,B);

C=A+8*B**2/3;
PUT SKIP DATA:
GO TO NEXT;

FINISH: END THIRD;
/*
//LKED.SYSLMOD DD UNIT=2311,VOLUME=SER=D186,DSNAME=PUBPGM,DISP=OLD

Figure ~.-7. An Example of Batched processing

INVOKING THE PREPROCESSOR

The preprocessor stage of the compiler is
executed only if you specify the option
MACRO and include a DO statement with the
name SYSUT3 in the compilation job step.
The compiler uses the data set to hold the
preprocE~ssed source statements until
compilat~ion begins. The information that
you must: include in the DD statement is
describ€~d under 'DD Statements,' earlier ill
this chapter. The standard cataloged
procedures for compilation all include an
appropriate DO statement.

The t~erm MACRO owes its origin to the
similarity of some applications of the
compile-·time facilities to the macro
languaqe! available with such processors as

the System/360 assembler. Such a macro
language allows you to write a single
instruction in your program to represent a
sequence of instructions that have
previously been defined.

Three other compiler options, MAeDCK,
SOURCE2., and COMP, are meaningful only when
you also specify the MACRO option. All are
described earlier in this chapter.

Figure 5-9 is a simple example of the
use of the preprocessor to produce a source
deck for a procedure SUBFUN; according to
the value assigned to the preprocessor
variable USE, the source statements will
represent either a subroutine or a
function.

Chapter 5: Compilation 59

//J067PGEl JOB
//JOBLIB DD UNIT=2311,VOLUME=SER=D186,DSNAME=PUBPGM,DISP=OLD
//Jl EXEC PGM=PGMl
//SYSPRINT DD SYSOUT=A
//J2 EXEC PGM=PGM2
//SYSPRINT DD SYSOUT=A
//J3 EXEC PGM=PGM3
IISYSPRINT DD SYSOUT=A
/ISYSIN DD *
A=27, B=42; A=39, B=17; A=15; B=19; A=12, B=7;
/*

Figure 5-8. Execution of the Prog:rams Compiled in Figure 5-7

//J068PGEX JOB
I/CO EXEC PLlDFC,PARM.PL1D='NOLOAD,NODECK,MACRO,MACDCK,NOCOMP'
//PL1D.SYSIN DO *

SUBFUN: PROC(CITY);
DCL IN FILE RECORD,

1 DATA,
2 NAME CHAR(10),
2 POP FIXED(7),

CITY CHAR(10);
%DCL USE CHAR;
%USE="SUB'; 1* FOR FUNCTION, SUBSTITUTE %USE='FUN' */

NEXT:
OPEN FILE(IN);
READ FILE(IN) INTO(DATA);
IF NAME=CITY THEN DO;
CLOSE FILE(IN);
"IF USE='FUN' "THEN %GO TO Ll;
PUT FILE(SYSPRINT) SKIP LIST (D,ATA) ; END;

%Ll: ;
%L2: ;

%GO TO L2;
RETURN(POP); END;
ELSE GO TO NEXT;
END SUBFUNi

Figure 5-9. Using the Preprocessor to Create a Source Deck

THE %INCLUDE STATEMENT

IBM system/360 operating System: PLII (F)
Language Reference Manual describes how to
use the "INCLUDE statement to incorporate
source statements from a library into a
PL/I source program~ (A library is a type
of data set that can be used for the
storage of other data sets, termed members.
Thus, a set of source statements that you
may wish to insert into a source p:rogram by
means of a %INCLUDE sta'tement must exist as
a data set (member) within a libra:ry.
Chapter 12 describes how to create a
library and how to place members in it.)

The %INCLUDE statement includes one or
more pairs of identifiers. Each pair of
identifiers specifies the name of a DD
statement that defines a library and, in
parentheses, the name of a member of the
library. For example, the statement:

%INCLUDE DD1(INVERT),DD2(LOOPX)

60

specifies that the source statements in
member INVERT of the library defined by the
DO statement DOl, and those in member LOOPX
of the library defined by DD2, should be
inserted into the source prog~am. The
compilation job step must include
appropriate DD statements.

If you omit the ddname from any pair o:f
identifiers in a %INCLUDE statement, the
preprocessor assumes the ddname SYSLIB. In
such a case" you must include a DD
statement with the name SYSLIB. (Note that
the IBM-supplied cataloged procedures do
not include a DO statement with this name
in the compilation job step.)

Source statements in a library must be
in the form of fixed-length records of not
more than 100 bytes. The records can be
blocked; the maximum blocking factor is 5.
The source margin for input records
specified by the SORMGIN option applies
equally to included statements.

//J069PGEX JOB
//STEP1 EXEC PGM=IEBUPDTE,PARM=NEW
//SYSPRINT DD SYSOUT=A
//SYSUT2 DD DSNAME=NEWLIB,DISP=CNEW,KEEP),UNIT=2311,
// VOLUME=SER=D186,SPACE=CCYL,C4,,1»
//SYSIN DD *
./ ADD NAME=FUN,LEVEL=OO,SOURCE=O

SUBFUN: PROCCCITY);
DCL IN FILE RECORD,

1 DATA,
2 NAME CHAR(10),
2 POP FIXED DEC(7),

CITY CHAR(10);
OPEN FILECIN);

NEXT: READ FILECIN) INTOCDATA);
IF NAME=CITY THEN DO;

CLOSE FILECIN) i
RETURN (POP) i
END;

ELSE GO TO NEXT i
END SUBFUNi

./ ENDUP
/*

Figure 5-10. Placing Source Statements in a New Library

You can use the operating system utility
program IEBUPDTE to place source statements
in a library. This facility is described
in the publication IBM.System/360 Operatinq
System,.Ultilities.

Example~~

Figures 5-10 and 5-11 are simple
illustrations of how to place source
statements in a library and how to include
these s1:.a tements in a source program.

The program in
source statements
in a ne\i library.
source statements
procedure.

Figure 5-10 places the
of the procedure SUBFUN
In this example, the

will represent a function

Figure 5-11 illustrates the use of a
%INCLUDE statement to include the source
statements for SUBFUN in the procedure
TEST. ']~he library NEWLIB is defined in the
DD statE~ment PL1L.SYSLIB, which is added to
the stat:ements of the cataloged procedure
PL1LFCLG for this job. Since the source
statement library is defined by a statement
wi th thE! name SYSLIB, the %INCLUDE
statement need not include a ddname.

Dynami4:! Invocation of the Compiler

Note: The following discussion assumes that
you are familiar with IBM System/360
assemblE!r language.

You can invoke the CF) compiler from an
assembler language program by using one of
the macro instructions CALL, LINK, XCTL, or
ATTACH. If you use the XCTL macro
instruction, you cannot specify any options
for the compilation: the default options
will apply. However, if you use CALL,
LINK, or ATTACH, you can specify:

1. Options for the compilation.

2. Alternative ddnames for the data sets
to be used by the compiler.

3. The number of the first page of the
compiler listing.

Code the macro instructions as follows:

r---------T---------T---------------------,
I Name I Operation I Operand I
~---------+---------+---------------------~
I[symbol] I CALL IIEMAA,C[optionlist] I
I I I [,[ddnamelist] 1
I I 1 [,pagenbr]]),VL 1
I 1 1 1
I symbol 1- LINK 1 EP=IEMAA, 1
1 I ATTACH IPARAM=([optionlist] 1
I 1 I[,[ddnamelist] I
I I I [, pagenhr]]) , VL=l I L _________ i _________ i _____________________ J

For a full explanation of these macro
instructions, refer to IBM System/360
Operatinq System: Supervisor and ~ata
Manaqement Macro Instructions.

Chapter 5: compilation 61

//J069PGEl JOB
/ / COLEEX EXEC PL1LFCLG, P ARM. PL1L=' MACRO, LOAD I' NODECK' , PARM. LKED==' ,
//PL1L.SYSLIB DD UNIT=2311,VOLUME=SER=D186,DSNAME=NEWLIB,DISP=OLD
//PL1L.SYSIN DD *

TEST: PROC OPTIONSCMAIN);
DCL NAME CHAR(10),

NO FIXED(7);
ON ENDFILE(SYSIN) GO TO FINISH;

AGAIN: GET FILE(SYSIN) LIST(NAME);
NO=SUBFUN(NAME);
PUT DATA (NAME, NO) ;
GO TO AGAIN;
%INCLUDE FUN;

FINISH: END TEST;
/*
//GO.IN DD UNIT=2311,VOLUME=SER=D186,DSNAME=POPLIST,DISP=OLD
//GO.SYSIN DD *
, ABERDEEN'
'DONCASTER'
/*

Figure 5-11. Including Source statements from a Library

The entry-point name IEMAA is the
symbolic name of the (F) compiler.

62

The address parameters are:

'optionlist': the address of a
variable-length list of compiler
options. The list must begin on a
halfword boundary. The first two bytes
contain a binary count of the number of
bytes in the list (excluding the count
field). Options in the list must be
separated by commas; the list must not
include blanks or zeros.

'ddnamelist': the address of a
variable-length list of alternative
names for the data sets used by the
compiler. The list must begin on a
halfword boundary. The first it.wo bytes
contain a binary count of the number of
bytes in the list (excluding the count
field). Each entry in the list must
occupy an 8-byte field; the sequence of
entries is as follows:

Entry

1
2
3
4
5
6
7
8
9

10

Alternative Name

SYSLIN
not applicable
not applicable
SYSLIB
SYSIN
SYSPRINT
SYSPUNCH
SYSUT1
not applicable
SYSUT3

If a ddname is shorter than eight
bytes, fill the field on the right wi1~h
blanks. If you omit an entry, fill i1:.s
field with binary zeros; however, you
may entirely omit entries at the end of
the list.

'pagenbr': the address of a 6-byte
field containing the number is to be
used as the first page number of the
compiler listing. The page number must
begin on a halfword boundary, and the
first halfword must contain the bina~I
value 4 (the length of the remainder of
the field). The other four bytes
contain the page number in binary form.

VL or VL=l: specifies that the sign bit
in the last word of the parameter list
is to be set to 1.

Chapter 6: Linkage Editor and Loader

Introdu(~tion

An object module produced by the compiler
requires further processing before it is
sui tablE~ for execution. It must be
converted into a load module which can be
loaded into main storage and executed.
Conversion and execution is performed, in
either one or two job steps, by one of two
operating system programs, the linkage
editor <:md the linkage loader. This
chapter describes these programs and the
circumst:ances in which each can be used to
the best, advantage. Both programs are
fully dE~scribed in IBMSystem/360 Operating
system: .Linkage.Editor and Loader.

Thet:wo linkage programs require the
same kind of input, perform the same basic
process (the resolution of external
references within the object module), and
produce the same result, that is, a load
module for execution. They differ in the
way they are used and in what they do with
the load modules they create.

Linkage loader: Execution by the linkage
loader l:'equires one job step, in which a
load module is created, loaded into main
storage., and executed.

Linkage .editor: The linkage editor does no·t
cause the load modules it creates to be
loaded and executed. Instead, each load
module is placed in a program library; a
further job step is required for the
loading and execution of such a load
module.

CHOICE OF LINKAGE PROGRAM

The two programs are compatible in the
following respects:

1. Al1 object modules acceptable as input
to a linkage editor are acceptable as
input to a linkage loader.

2. All load modules produced by a linkage
editor, except those produced with the
NE (not editable) attribute are
acceptable as input to a linkage
loader. (When the NE attribute is
produced, the resulting load module
has no external symbol dictionary and
cannot be reprocessed; the external
symbol dictionary is discussed below
in the linkage-editor section.)

If you want to keep the load module, or
use facilities that are not available to
the linkage loader, such as providing an
overlay structure, you must use the linkage
editor. The linkage loader is essentially
a one-shot program checkout facility with
limited application.

The differences between the two programs
can be summarized as:

Linkage editor:

1. Does not cause the load module to be
executed.

2. Can produce more than one load module
from a batched compilation.

3. Always places load modules in a
library, from which they can be loaded
for execution in a later job or job
step.

4. Can accept input from other sources as
well as the primary input source.

5. Can provide an overlay structure for a
program.

6. Can be used to modify existing load
modules.

Linkage.loader:

1. Requires only one job step for
processing, loading, and execution.

2. Can only produce one load module from
a batched compilation.

3. Always loads this module into main
storage and executes it.

4. The load module exists only for the
duration of the job step.

5. Can accept input only from the primary
source.

6. Cannot provide an overlay structure
for a program, or modify existing load
modules.

Performance Considerations

The execution time of a load module is the
same whether it is created by the linkage
editor or the linkage loader. However, the

Chapter 6: Linkage Editor and Loader 63

editing and loading time for a module is
greatly reduced when the linkage loader is
used. This is achieved by reductions in:

1. Scheduling time: The object program is
processed, loaded, and executed in one
job step.

2. Processing time: The linkage loader
can process a module in approximately
half the time required by the linkage
editor, because:

a. Linkage editor intermediate and
I/O operations are eliminated.

b. The I/O time for reading modules
can be reduced by the use of
improved buffering techniques and
chained scheduling.

3. Amount of . auxiliary sto:rage: If the
linkage loader input is the object
module in a compile~load-and-go job,
the auxiliary storage that would be
required by the linkage editor
intermediate and output data sets is
not needed. If the linkage loader
input is taken from modules
link-edited into a library, the
auxiliary storage requirements for the
library can be reduced by storing the
modules with unresolved library
references; these references can be
resolved at load time.

Linkage Editor

The linkage editor is an operating system
service program that creates load modules.
It always places the load modules in a
library, from which the job scheduler can
call them for execution~

The input to the linkage editor can
include object modules, load modules, and
control statements that specify how the
input should be processed. The ou1:put from
the linkage editor comprises one or more
load modules.

In addition to its primary function of
converting object modules into loaci
modules, the linkage editor can also be
used to:

• Combine previously link-edi·ted load
modules

• Modify existing load modules

• Construct an overlay program

A module constructed as an overlay
program can be execut.ed in an area of main

64

storage that is not large enough to contain
the entire module at one time. The linkage
editor subdivides the module so that it can
be loaded and executed segment by segment.

MODULE STRUCTURE

Object and load modules have identical
structures. They differ only in that a
load module has been processed by the
linkage editor and stored in a library wi·th
certain descriptive information required by
the job schedule:r; in particular, the
module is marked as 'executable' or 'not
executable.' A module comprises three typ1es
of information:

• Text (TXT)

• External symbol dictionary (ESD)

• Relocation dictionary (RLD)

The text of an object or load module
comprises the machine instructions that
represent the program to be executed.
These instructions are grouped in blocks
termed control sections; a control section
is the smallest separately executable uni1:.
within a program.. An object module creatE~d
by the PL/I (F) compiler includes the
following control sections:

• Control section for the shared library
transfer vector.. (This is an area uSE~d
for communication between library
modules in the PL/I shared library and
those in the partition or region.)

• Program control section: contains the
executable part of the program.

• Static internal control section:
contains storage for all variables
declared STATIC INTERNAL and for
constants and static system blocks.

• Control sections termed common areas:
one common area is created for each
EXTERNAL file name and for each
non-string element variable declared
STATIC EXTERNAL without the INITIAL
attribute •

• IHENTRY: execution of a PL/I program
always starts with this control
section, which passes control to the
appropriate initialization routine;
when initialization is complete,
control passes to the address stored in
the control section IHEMAIN.

• IH~mIN: for a procedure with the MAIN
option, contains the starting address
for execution of the PL/I program.

• cont:rol sections for PL/I library
modules link-edited with the program.

External. Symbol Dictionary

The external symbol dictionary (ESD)
contains a list of all the external symbols
that appear in the module. An external
symbol is a name that can be referred to in
a control section other than the one in
which it~ is defined.

The names of the control sections are
themselves external symbols, as are the
names of variables declared with the
EXTERNAl, attribute and entry names in the
external procedure of a PL/I program.
References to external symbols defined
elsewhel~e are also considered to be
external symbols; they are known as
external·references. Such external
references in a PL/I object module always
include the names of the PL/I subroutine
library modules that will be required for
the execution of the program. They may
also include calls to your own subroutines
that arE! not part of the PL/I subroutine
library, nor already included within the
object module. Part of the linkage
editor's job is to locate the subroutines
referred to, and to include them in the
load module that will be executed.

Relocation Dictionary

At execution time, the machine instructions
in a IOcLd module (including the
instruct:ions generated by the PL/I (F)
compileI:) use two methods of addressing
locations in main storage:

1. Names used only within a control
section have addresses related to the
starting point of the control section ..

2. Other names (external names) have
absolute addresses so that any control
section can refer to them.

The I:elocation dictionary (RLD) contains
informat~ion that enables the absolute
addressE!s to be established when a module
is loadE!d into main storage for execution.
These addresses cannot be determined
earlier because the starting address is not
known until the module is loaded. The
linkage editor consolidates the RLD entries
in the input modules into a single

relocation dictionary when it creates a
load module.

LINKAGE EDITOR PROCESSING

A PL/I compiled program cannot: be executed
until the appropriate PL/I subroutine
library modules have been incorporated.
The library modules are included in two
ways:

1. By incorporation in the load module
during linkage editing.

2. By dynamic call during execution.

The first method is used for most of the
PL/I subroutine library modules; the
following paragraphs describe how the
linkage editor locates the modules. The
second is used for modules concerned with
input and output (including those used for
opening and closing files), and for the
modules that issue the execution time error
messages. Appendix E lists all the library
modules, indicating which are loaded
dynamically.

In its basic processing mode, which is
illustrated in Figure 6-1, the linkage
editor accepts data from its primary input
source, a data set defined by a DD
statement named SYSLIN. For a PL/I
program, this input data is the object
module created by the compiler. The
linkage editor uses the external symbol
dictionary in the input module to determine
whether the module includes any external
references for which there are no
corresponding external symbols in the
module: it attempts to resolve such
references by a method termed automatic
library call.

External symbol resolution by automatic
library call involves a search of the
library defined by a DD statement named
SYSLIB; for a PL/I program this will be the
PL/I subroutine library (SYS1.PL1LIB). The
linkage editor locates the modules in which
the external symbols are defined Cif such
modules exist), and incorporates them in
the load module it is creating.

The linkage editor always places the new
load module in the library defined by the
DD statement named SYSLMOD.

Any linkage editor processing additional
to the basic mode described above must be
requested by linkage editor control
statements placed in the primary input.
These control statements are described at
the end of this chapter under 'Additional
Processing. '

Chapter 6: Linkage Editor and Loader 65

(prima:ry input)
r------------,
I I
I PL/I I
I object 1----,
I module I I
I I I SYSLMOD
l _____________ J I r-------------, r-------------,

l ________ > I I I
I I I Output I
I Linkage ~-------------> I module I
I edi tor I load module I library I

r-------->I I I I r-------------, I L _____________ J L _____________ J

I I I
I PL/I I I
I library r---J

I (SYS1.PL1LIB)I
I I l _____________ J

SYSLIB
(call library)

Figure 6-1. Basic Linkage Editor Processing

Main Storage Requirements

Two levels of the linkage editor are
currently available; each has a number of
different versions. The E-level is
available in 15K, 18K, and 20K versions;
the F-Ievel is available in 44K, aSK, and
128K versions. The capabilities and
capacities of each version are described in
system/36 0 Operating.System: LinkaqeEditor
and Loader.

Job Control Language for Link-Editing

Al though you will probably use catcLloged
procedures rather than supply all the job
control statements required for a job s·tep
that invokes the linkage editor, it is
necessary to be familiar with these
statements so that you can make the bes·t
use of the linkage editor and, if
necessary, modify the statements of the
cataloged procedures.

The IBM-supplied PL/I cataloged
procedures that refer to the linkage editor
are:

PLILFCL
PLILFCLG
PLILFLG

Compile and link-edit
Compile, link-edit, execute
Link-edit and execute

Chapter 8 discusses these cataloged
procedures and describes how to modify or
override the statements they contain.

The following paragraphs describe the
essential job control statements for

66

link-editing; they use statements from the
PL/I cataloged procedures as typical
examples. Appendix B contains a
description of the parameters of the DD
statements that are referred to.

EXEC STATEMENT

The name IEWL is an alias for the
linkage-editor program. If you use the
name IEWL in the EXEC statement that
invokes the linkage editor, the job
scheduler will load the version to which
this name corresponds. Normally this would
be either the one which is the largest
available within your operating system, Ol~
the one which is the most suitable for your
job. You should consult your systems
programmer if you need to know what
versions of the linkage editor are
available at your installation, and how to
invoke them. The basic EXEC statement is:

// EXEC PGM=IEWL

By using the PARM parameter of the EXEC
statement, you can select one or more of
the optional facilities offered by the
linkage editor; these facilities are
discussed under 'Optional Facilities,'
below. The use of the other parameters of
the EXEC statement is as described in
Chapter 7, 'Executing the Load Module.'

r------·-----T-------------------------~---------T----------------------------, I ddname I Function I Possible device classes1. I
~------.-----+-----------------------------------+----------------------------~ I SYSLIN I Primary input data, normally the I SYSSQ or the input job I
I I output from the compiler I stream (specified by DD *) I
~------.-----+-----------------------------------+----------------------------~ I SYSL~~OD I Output for load module I SYSDA I
~------.-----+----------------------------.-----+------------~---------------~
I SYSU'l'l I Additional workspace I SYSDA I
~------.. -----+-----------------------------------+----------------------------~ I SYSPRINT I Listing, including diagnostic I SYSSQ or SYSOUT device I
I I messages I I
~------"-----+-----------------------------------+-----------~----------------~ I SYSLIB I Automatic call library (usually I SYSDA I
I I the PL/I subroutine library) I I
~------,----~-----------------------------------~----------------------------~
11 SYSSQI Magnetic-tape or direct-access device I
I SYSDA, Direct-access device I L ______ . __ J

Figure 6-2. Linkage-Editor Data Sets

DO STATEMENTS

The linkage editor always requires four
standard data sets. You must define these
data sets in DD statements with the
standard names SYSLIN, SYSLMOD, SYSUT1" and
SYSPRINT.

A fifth data set, defined by a DO
statement with the name SYSLIB, is
necessar.y if you want to use the automatic
library call facility. The five standard
data se'ts are summarized in Figure 6-2.

Primary.Input (SYSLIN)

The primary input source must be a
CONSEcurIVE data set containing one or more
object lDodules and/or linkage-editor
control statements; a load module cannot be
part of the primary input, although it can
be introduced by the control statement
INCLUDE.. For a PL/I program, the primary
input source is usually a data set
containing an object module created by the
compiler. The data set may be on
magnetic-tape or on a direct-access device,
or you can include it in the input job
stream. In all cases, the input must be in
the form of aO-byte F-format records.

'.rhe cataloged procedure PL1LFLG includes
the DD statement:

//SYSLIN DD DDNAME=SYSIN

This statement specifies that the
primary input data set must be defined in, a
DD statE~ment named SYSIN. If you use this
catalogue procedure, you must supply this
DD statE~ment, specifying the qualified
ddname I~KED.SYSIN. For example, to

link-edit and execute a PL/I object module
placed in the input stream, you can use the
following statements:

//LEGO JOB
// EXEC PL1LFLG
//LKED.SYSIN DO *
Insert here the object module to be

link edited and executed

/*

Note:

1. If modules with identical names appear
in the primary input, the linkage
editor processes only the first of
them.

2. You can include load modules or object
modules from one or more libraries in
the primary input by using a linkage
editor INCLUDE statement; refer to
'Additional Processing,' below.

Output (SYSLMOD)

The linkage editor always places the load
modules that it creates in a library
defined by a DO statement with the name
SYSLMOD. (A library is a type of
direct-access data set that can be used for
the storage of other consecutive data sets,
frequently load modules); the data sets
stored in a library are termed members. To
store a member in a library, include the
parameter DSNAME=dsname(membername) in the
DD statement that defines the library;
replace 'dsname' with the name of the
library, and 'membername' with the name of
the member.)

Chapter 6: Linkage Editor and Loader 67

The PL/I cataloged procedures include
the following DD statement:

//SYSLMOD
//
//
//
//

DD DSNAME=&&GOSET(GO),
DISP=(MOD,PASS),
UNIT=SYSDA,
SPACE=(1024,
(50,20,1) ,RLSE)

This statement defines a temporary
library named &&GOSET and assigns the name
GO to the load module that the linkage
editor will place in it. If you want to
retain the load module after execution of
your job, you must replace this DD
statement with one that de:fines your own
permanent library. For example, assume
that you have a library called USLIB on
2311 disk pack serial number 371; to name
the load module MOD1 and place it in this
library, code:

//LKED.SYSLMOD DD DSNAME=USLIB(MOD1),
// UNIT=2311,
// VOLUME=SER=371,
// DISP=OLD

The size of a load module must not
exceed 512K bytes (512 * 1024 bytes) for
programs executed under PCP or MFT; a much
larger load module is permitted for MVTQ
The SPACE parameter in the DD statement
SYSLMOD used in the PL/I cataloged
procedures allows for an initial allocation
of 50K bytes and, if necessary, 15 further
allocations of 20K bytes (a total of 350K
bytes); this should suffice for most
applications.

Workspace (SYSUT1)

The linkage editor requires a temporary
data set on a direct-access device for use
as extra workspace. The DD statement that
defines this data set must have the name
SYSUT1. The following statement contains
the essential parameters:

//SYSUTl DD UNIT=SYSDA,
// SPACE=(1024,(200,20»

You should never need to modify the DD
statement SYSUT1 in a cataloged procedu:re.

If your installation supports dedica·ted
workfiles, these.can be used to provide
workspace for the link-edit job step. For
details of these workfiles and their use,
see 'Workspace (SYSUT1,SYSUT3)' in Chapter
5, 'Compilation.'

68

Listing. (SYSPRINT)

The linkage edi to:r generates a listing that
includes reference tables relating to the
load modules that it produces and also,
when necessary, diagnostic messages. The
information that may appear is described
under 'Listing,' below.

You must define the data set on which
you wish the linkage editor to place its
listing in a DD statement named SYSPRINT.
The data set must have CONSECUTIVE
organization. Although the listing is
usually printed, it can be written on any
type of magnetic-tape or direct-access
device. For printed output, the following
statement will suffice:

//SYSPRINT DD SYSOUT=A

Automatic Call Library (SYSLIB)

If you want the linkage editor to resolve
external references by automatic library
call, you must use aDD statement with the
name SYSLIB to define the library which the
linkage editor must search. You can cause
the linkage editor to search more than one
library by concatenating the DD statements
that define the libraries: include the
ddname SYSLIB in the first statement and
leave the name fields of the following
statements blank.

The link-editing of a PL/I object module
normally requires the presence of a SYSLIB
statement that refers to the PL/I
subroutine library (SYS1.PL1LIB).

The automatic call library can contain
load modules or object modules, but not
both.

EXAMPLE

The following example is a typical sequence
of job control statements for link-editinsr
a PL/I object module. The DD statement
SYSLIN indicates that the object module
will follow immediately in the input
stream; for example, it might be an object:
deck created by invoking the PL/I (F)
compiler with the DECK option (see Chapter
5). The DO statement SYSLMOD specifies
that the linkage editor should name the nE~W
load module LKEX., and that it should placE~
it in a new library named MOOLIB; the
presence of the SPACE parameter and the
keyword NEW in the DISP parameter indicatE~s
to the operating system that this DD

stateme!:nt requests the creation of a new
library.

//LINK JOB
//. EXEC PGM=IEWL
//SYSLMOD DD UNIT=2311,
// VOLUME=SER=D186,
// DSNAME=MODLIB(LKEX),
// DISP=(NEW,KEEP),
// SPACE=(CYL,(10,10,1»
//SYSUTl DD UNIT=2311,
// SPACE=(1024,(200,20»
//SYSPRINT DD SYSOUT=A
//SYSLIB DD DSNAME=SYS1.PL1LIB,
// DISP=OLD
//SYSLIN DD *
Insert here the object module to be
link-edt ted

Optiona~l Facilities

The linkage editor provides a number of
optional facilities that you can select by
including the appropriate keywords from the
following list in the PARM parameter of the
EXEC statement that invokes it:

LIs~r

MAP or XREF
LET or XCAL
NCAl.
SIZg

The PARM parameter is a keyword
parametE2lr. Code PARM= followed by the list
of options, separating the names of the
options with commas and enclosing the list
within single quotation marks. For
example::

// EXEC PGM=IEWL,PARM=ILIST,MAP'

If you are using a cataloged procedure,
you must. include the PARM parameter in the
EXEC statement that invokes the procedure.
and qualify the keyword PARM with the name
of the procedure step that invokes the
linkage editor. For example:

// EXEC PL1LFCLG,PARM.LKED='LIST,XREF'

':l"he j:ollowing paragraphs describe the
optional facilities. The listing produced
by the options LIST, MAP, and XREF are
described under 'Listing,' below.

LIST

The LIST option specifies that all linkage
editor control statements processed should
be listed in the data set defined by the DD
statement SYSPRINT.

MAP

The MAP option requests the linkage editor
to produce a map of the load module; this
map indicates the relative locations and
lengths of the control sections in the
module.

XREF

The XREF option requests the linkage editor
to produce a map of the load module and a
cross-reference list of all the external
references in each control section. XREF
includes MAP.

LET

The LET option requests the linkage editor
to mark the load module 'executable,' even
if slight errors or abnormal conditions are
found during link-editing.

XCAL

The XCAL option requests the linkage editor
to mark the load module as executable even
if errors or abnormal conditions, including
improper branches between control sections,
are found during link-editing. XCAL, which
includes LET, applies only to an overlay
module.

NCAL

The NCAL option specifies that no external
references should be resolved by automatic
library call. However, the load module is
marked 'executable' (providing there are no
errors).

You can use the NCAL option to conserve
storage space in private libraries since,
by preventing the resolution of external
references during link-editing, you can

Chapter 6: Linkage Editor and Loader 69

store PL/I load modules without the
relevant PL/I library subroutines; the DD
statement SYSLIB is not required. Before
executing such load modules, you must
link-edit them again to resolve the
external references, but the load module
thus created need exist only while it is
being executed. You can use this technique
to combine separately compiled PL/I
routines in a single load module.

SIZE

The SIZE option specifies the amount of
main storage, in bytes, to be allocated to
the linkage editor; it applies only to the
F-Ievel linkage editor. Code the SIZE
option as a keyword parameter with the
following format:

SIZE=(valuel,value2)

For 'valuel' substitute a decimal
integer number representing the number of
bytes of main storage to be allocated to
the linkage editor, including the
allocation for the load module buff:er
specified in value2.

For 'value2' substitute a decimal
integer number representing the number of
bytes of main storage to be allocat.ed for
the load module buffer. The linkage editor
uses the load module buffer when it reads
in load module records, and also to retain
information for subsequent writing of
output records.

You can specify both values as the
actual number of bytes (for example,
SIZE=(45056,6144» or as a multiple of 1024
bytes (for example, SIZE=(44K,6K». Valuel
must exceed value2; the following table
lists the minimum and maximum values and
the minimum difference between valuel and
value2 for the three designs of the F-Ievel
linkage editor:

Linkage Valuel Value2 Valuel -
Editor Value2

Min Max Min Max (Min) -

44K 44K 6K lOOK 38K
88K 88K 6K lOOK 44K

l28K 128K 6K lOOK 66K

If you specify SIZE incorrectly, or if
you omit the parameter, a default value set
at system generation is used~

70

Listing

The linkage editor always lists, in the
data set defined by the DD statement
SYSPRINT, any errors or abnormal conditions
that it discovers. It will also list the
following additional information if you
specify the appropriate options:

Listings

Control statements
processed by the
linkage editor

Map of the load module

Cross-reference 'table
of external references

Option Required

LIST

MAP or XREF

XREF

The following paragraphs describe the
elements of the listing; the sequence in
which they appear differs between the
E-Ievel and F-Ievel linkage editors.
Appendix A includes a fully annotated
example of a linkage editor listing.

A statement of the level of linkage
edi tor and the options specified appears a,t
the head of the listing.

CONTROL STATEMENTS AND ERRORS

During processing, the linkage editor notE!S
the occurrence of error and other
conditions as it encounters them; these
notes appear as a list immediately after
the heading statement. If you specify the
LIST option, this list also includes all
control statements processed by the linkage
editor.

Each entry in the list comprises a
7-character code followed by the name of
the control statement to which the code
applies. For a control statement, the code
is always IEWOOQO. All other codes refer
to explanatory,. error, or warning messages;
each code comprises:

1. The letters lEW, which identify
linkage editor messages.

2. A 3-digit message number.

3. A l-digit severity code as follows:

Meaning

o A condition which will not cause
an error during execution. The
output module is marked
'executable.'

1

2

3

4

A condition that may cause an
error during execution. The
output module is marked
'executable.'

An error that could make
execution impossible. The output
module is marked 'not executable'
unless LET is specified.

An error that will make execution
impossible. The output module is
marked 'not executable.'

An error condition from which no
recovery is possible. Linkage
editor processing is terminated,
and no output other than
diagnostic messages is producedQ

At t:he end of the list of messages, the
E-Ievel. linkage editor places a statement
of the disposition of the load module; the
F-Ievel. linkage editor places this
statememt at the end of the listing, just
before the Diagnostic Message Directory
(see be!low). The disposition statements,
with one exception, are self-explanatory;
the exc:eption is:

****modulename DOES NOT EXIST BUT HAS
BEE:N ADDED TO DATA SET

The message normally appears when a request
has beem made for the, linkage editor to
substi t:ute the new load module for an
existing module. It indicates that the
linkage~ editor was unable to locate the
existing module, but has placed the new
module in the data set named in the DD
statemEmt SYSLMOD. If you name a new
module by including a name in the DSNAME
paramet:er of the DD statement SYSLMOD, the
linkagE~ editor assumes that you want to

, replacE~ an existing module (even if the
data SE~t is new).

DIAGNOSTIC MESSAGE DIRECTORY

When pJ:'ocessing of a load module has been
comple't:ed, the linkage editor lists in full
all thE~ diagnostic messages whose numbers
appear in the preceding list. IBM
System(360 operatinq,system: Linkage Editor
and Loader contains explanations of all the
linkagE:! editor messages and their probable
causes., and suggests how to cope with them.

The warning message IEW0461 frequently
appears in the linkage editor listing for a
PL/I program. It refers to external
references that have not been resolved
because NCAL was specified (in this
instance, in a linkage editor LIBRARY
statement). The references occur in PL/I
library subroutines that are link-edited
with your program as a result of automatic
library call. Some library modules may, in
turn, call other library modules. Any
library module that calls a secondary
module that may only occasionally be
required is preceded by a LIBRARY
statement. This specifies that the
references to the secondary modules should
not be resolved unless these modules are
already part of the input to the new load
module, that is, they are external
references. For those secondary modules
that are required, the compiler generates
another external symbol dictionary
containing 'alternative names for the
modules. These new references can be
resolved, and the required modules are
placed in the new load module. If the
secondary modules in turn call other
modules, the process is repeated.

MODULE MAP

The linkage editor listing includes a
module map only if you specify the options
MAP or XREF. The map lists all the control
sections in the output module and all the
entry names in each control section. The
control sections are listed in order of
appearance in the load module; alongside
each control section name is its address
relative to the start of the load module
(address 0) and its length in bytes. The
entry points within the load module appear
on the printed listing below and to the
right of the control sections in which they
are defined; each entry point name is
accompanied by its address relative to the
start of the load module.

Each control section that is included by
automatic library call is indicated by an
asterisk. For an overlay module, the
control sections are arranged by segment in
the order in which they were specified.

After the control sections, the module
map lists the pseudo-registers established
by the compiler. pseudo-registers are
fields in a communications area, the
pseudo-register vector (PRV), used by the
PL/I library subroutines and compiled code
during execution of a PL/I program. The
storage occupied by the PRV is not
allocated until the start of execution of a
PL/I program; therefore, it does not form
part of the load module. The addresses

Chapter 6: Linkage Editor and Loader 71

given in the list of pseudo-registers are
relative to the start of the PRV.

At the end of the module map, the
linkage editor supplies the following
information:

1. The length of the PRV.

2. The relative address of the
instruction with which execution of
the load module will commence (ENTRY
ADDRESS).

3. The total length of the module. For
an overlay module, the length is that
of the longest path.

All the addresses and lengths given in
the module map and associated information
are in hexadecimal form.

CROSS-REFERENCE TABLE

The linkage editor listing includes a
cross-reference table only if you specify
the option XREF. This option produces a
listing that comprises all the information
described under 'Module Map,' above,
together with a cross-reference table of
external references. The table lists the
location of each reference within the load
module, the symbol to which the reference
refers, and the name of the control section
in which the symbol is defined.

For an overlay module, a cross-reference
table is provided for each segment. It
includes the number of the segment in which
each symbol is defined.

Unresolved symbols are identified in the
cross-reference table by the entry
$UNRESOLVED. However, if a symbol was not
resolved owing to the use of the NeAL
option or a LIBRARY statement, it is
identified by $NEVER-CALL.

RETURN CODE

The linkage editor returns a" completion
code to the operating system to indicate
the degree of success it achieved. This
code appears in the job scheduler END OF
STEP message as 'RETURN CODE.' The code is
derived by multiplying the highest
diagnostic message severity code by four.

72

0000

0004

0008

0012

0016

Meaning

Normal completion

warning,. but execution should be
successful

Errors, execution may fail

Severe errors, execution
impossible

Termination error

The code 0004 almost invariably appears
after a PL/I program has been link-edited"
because some external references in the
PL/I library subroutines have not been
resolved. (Refer to 'Diagnostic Message
Directory,' above.>

Additional Processing

The basic function of the linkage editor is
to create a single load module from the
data that it reads from its primary input
source, but it has several other facilitif~s
that you can call upon by using linkage
editor control statements. The use of
those statements of particular relevance 1:.0
a PL/I program is described under
functional headings, below. All the
linkage editor control statements are fully
described in IBM system/360 Operating
system: Linkage Editor and Loader.

FORMAT OF CONTROL STATEMENTS

A linkage editor control statement is an
80-byte record that contains two fields.
The operation field specifies the operation
required of the linkage editor; it must bE~
preceded and followed by at least one blGillk
character. The operand field names the
control sections, data sets, or modules
that are to be processed, and it may
contain symbols to indicate the manner of
processing; the field consists of one or
more parameters separated by commas. SomE~
control statements may have multiple
operand fields separated by commas.

The position of a control statement in
the linkage editor input depends on its
function.

In the following descriptions of the
control statements, items within brackets
[] are optionall1 you may omit them at your
discretion.

MODULE NAME

A load module must have a name so that the
linkage editor and the job scheduler can
identify it. A name comprises up to seven
charactf~rs, the first of which must be
al phabet.i c.

You can name a load module in two ways:

1. If you are creating a single load
module, it is sufficient to include
its name as a member in the DSNAME
parameter of the DD statement SYSLMOD.

2. If you are creating two or more load
modules in a single execution of the
liJrlkage editor, you will need to use
thc3 NAME statement. (The PL/I (F)
canpiler can supply the NAME
statements when you use the
bat.ch-compilation feature: see Chapter
5.)

The tormat of the NAME statement is:

NAME membername [(R)]

f'or I, membername ' substitute the name of
the module. (R), if present, signifies
that the load module is to replace an
existinc:J load module of the same name in
the dati:t set defined by the DD statement
SYSLMOD.

The NAME statement must appear in the
primary input to the linkage editor (the
data set: defined by the DD statement
SYSLIN)i if it appears elsewhere, the
linkage editor ignores it. The statement
must follow immediately after the last
input m~dule that will form part of the
load module it names (or after the INCLUDE
statemerlt that specifies the last module.)

Al terna1~i ve Names

You can use the ALIAS statement to give a
load module an alternative name; a load
module can have as many as sixteen aliases
in addi·tion to the name given to it in a
SYSLMOD DD statement or by a NAME
statement.

'l'he format of the ALIAS statement is:

ALL~S symbol

For "symbol' substitute any name of up
to seven characters: the first character
must be alphabetic. You can include more
than one name in an ALIAS statement:

separate the names by commas, for example:

ALIAS FEE, FIE, FOE, FUM

An ALIAS statement can be placed before,
between, or after the modules or other
control statements that are being processed
to form a new load module, but it must
precede the NAME statement that specifies
the primary name of the new module.

To execute a load module, you can
include an alias instead of the primary
name in the PGM parameter of an EXEC
statement. Providing the alias is not also
the name of an entry point within the
module, execution will commence at the
normal entry point (which, for a PLiI
program, is the control section IHENTRY).
Do not use a NAME or an ALIAS statement to
give a PL/I load module a name that is an
entry name other than IHENTRY. If you do,
the initialization routines which are
called from IHENTRY before control is
passed to your program will be bypassed and
your program will not execute successfully.
Generally. you should not give a PLII
module a name or an alias name that begins
with 'I' (except IHENTRY).

ADDITIONAL INPUT SOURCES

The linkage editor ~an accept input from
sources other than the primary input
defined in the DD statement SYSLIN. For
instance., the automatic library call
facility enables the linkage editor to
include modules from the library named in
the DD statement SYSLIB. You can name
additional input sources by means of the
INCLUDE statement, and you can direct the
automatic call mechanism to alternative
libraries by means of the LIBRARY
statement.

INCLUDE Statement

The INCLUDE statement causes the linkage
editor to process the module or modules
indicated. After the included modules have
been processed, the linkage editor
continues with the next item in the primary
input. If an included sequential data set
also contains an INCLUDE statement, that
statement is processed as if it were the
last item in the data set (Figure 6-3).

The format of an INCLUDE statement is:

INCLUDE ddname [(membername)]

Chapter 6: Linkage Editor and Lo~der 73

Primary Input
Data Set

!

end

INCLUDE

Sequential
Data Set ---! ---

end
INCLUDE'

end ----

not
processed

Library
Member

end

Figure 6-3. Processing of Additional Data Sources

Replace 'ddname' with the name of a DD
statement that defines eithe:r a sequential
data set or a library that contains the
modules and control statements to be
processed. If the DD statement defines a
library, replace 'membername' with the
names of the modules to be processed,
separated by commas. You can specify more
than one ddname, each of which may be
followed by any number of member names in a
single INCLUDE statement. For example, the
statement

INCLUDE Dl(MEM1,MEM2),D2(MODA,MODB)

requests the inclusion of the members MEMl
and MEM2 from the library defined by the DD
statement D1, and the members MODA and MODB
from the library defined by D2.

LIBRARY statement

The basic function of the LIBRARY statement
is to name call libraries in addition to
those named in the DD statement SYSLIB.
For this purpose, the format of the
statement is similar to that of the INCLUDE
statement:

LIBRARY ddname(membername)

Replace 'ddname' with the name of a DD
statement that defines the additional call
library, and 'membername' with the names of
the, modules to be examined by the automatic
call mechanism; separate the module names
with commas.

You can also use the LIBRARY statement
to specify external references that should
not be resol ved, or to specify tha·t no
external references should be resolved.
(Refer to IBM System/360 Operating System:
Linkage Editor and Loader.)

74

OVERLAY PROGRAMS

To reduce the amount of main storage
required for the execution of a program,
you can organize it into an overlay
structure. An overlay program is divided
into segments, which can be loaded and
executed successively in the same area of
main storage. To construct such a program,
you must use linkage editor control
statements to specify the relationship
between the segments. Note that one
segment" termed the root segment must
remain in main storage throughout the
execution of the program.

Designing the Overlay structure

Before preparing the linkage editor control
statements, you must determine the overlay
tree structure from the program. A tree is
a graphic representation that shows which
segments occupy main storage at different
times. The design of tree structures is
discussed in IBM System/360 Operating
System: Linkage Editor and Loader, but, for
the purposes of this chapter, Figures 6-4
and 6-5 contain a simple example.

The tree in Figure 6-5 represents the
. execution of the PL/I program of Figure

6-4. The program comprises six procedures,
A, B, C, Dr E, and F. The main procedure A
calls procedures Band F. Procedure B
calls procedure c, which, in turn, calls
procedures D and E. (Note that only
procedure A requires the option MAIN.)

The main procedure (A) must be in main
storage throughout the execution of the
program. Since the execution of procedure
B will be completed before procedure F is
called, the two procedures can occupy the
same storage; this is depicted by the lin.:!s
representing the two procedures in Figure
6-5 starting from the common point (node)

r------------------------,
IA: PROC OPTIONS(MAIN); I
I I
I I
I Clli.L B; I
I I
I I
I Clli.L F; I
I I
I I
I END Ai I L ________________________ J

r-----------------------,
IB: PROC; I
I I
I I
I Cl~L C; I
I I
I I
I END B; I L ______ • _________________ J

r------·---------------,
I C: PROC; I
I I
I I
I C.z:!~LL D; I
I I
I I
I CALL E; I
I I
I I
I END C; I L ______ • _________________ J

r-----------------------,
I D: PROC; I
I I
I I
I I
I I
I END D; I L ______ .. _________________ J

r------·-----------------,
lEi PROC: I
I I
I I
I I
I I
I END E: I L ______ . _________________ J

r-----------------------,
IF: PRoe; I
I I
I I
I I
I I
I END F; I L _______________________ J

Figure 6-4. Program Suitable for Overlay
structure

X. ProQ.edure B must remain in storage
while procedures C, D, and E are executed,
but procedures D and E can occupy the same

storage; thus the lines representing
procedures D and E start from the node Y.

The degree of segmentation that can be
achieved can be clearly seen from the
diagram. since procedure A must always be
present, it must be included in the root
segment.. Procedures F, 0, and E can
usefully be placed in individual segments,
as can procedures B and C together; there
is nothing to be gained by separating
procedures Band C, since they must be
present together at some time during
execution.

Control. statements

To specify to the linkage editor how you
want a load module structured, use the
control statements INSERT and OVERLAY. You
must include the attribute OVLY in the PARM
parameter of the EXEC statement that
invokes the linkage editor; if you omit
this attribute, the linkage editor will
ignore the control statements.

The OVERLAY statement indicates the
start of an overlay segment. Its format
is:

OVERLAY symbol

Replace 'symbol' with an arbitrary
symbol representing the node at which the
segment starts (for example, X in Figure
6-5). You must specify the symbolic origin
of every segment, except the root segment,
in an OVERLAY statement.

An INSERT statement positions control
sections in an overlay segment. Its format
is:

INSERT control-section-name

Replace 'control-section-name' with the
names of the control sections (that is,
procedures) that are to be placed in the
segment: if you include two or more names
in the statement, separate them with
commas. The INSERT statements that name
the control sections in the root segment
must precede the first OVERLAY statement.

Creatinq-anOverlay structure

The most efficient method of defining an
overlay structure, and the simplest for a
PL/I program, is to group all the OVERLAY
and INSERT statements together and then
place them in the linkage editor input
(SYSIN) after the modules that form the

Chapter 6: Linkage Editor and Loader 75

I
I
I
I Procedure A
I
I

r-------------.L-----------,-,
I X I
I I

Procedure B I I Procedure F
I I
I I

-+- I
I
I

Procedure C I
I
I

r-------------.L-------------,
I Y I
I I
I Procedure D I Procedure E
I I
I I
I I

Figure 6-5. Overlay Tree Structure for Program of Figure 6-4

program. The linkage editor initially
places all the input modules in the root
segment, and then moves those control
sections that are referred to in INSERT
statements into other segments.

This method has the advantage that you
can use the batch compilation facility of
the compiler to process all the procedures
in one run and place the object modules in
a temporary CONSECUTIVE data set. You can
then place the linkage editor control
statements in the input stream,
concatenating them with the data set that
contains the object modules. (Do not use
the compiler OBJNM option to name the
object modules: if you do, the NAME'
statements inserted by the compiler will
cause the linkage editor to attempt to
create separate load modules rather than a
single overlay module.)

Figure 6-6 illustrates how you could use
the PL/I cataloged procedure PLILFCLG to
create and execute the overlay structure of
Figure 6-5.

An alternative approach instead of batch
compilation is to compile the procedures
independently and store them as load or
object modules in a private library. You
can then use an INCLUDE statement to place
them in the input to the linkage editor
(SYSLIN).

76

//CREX JOB
// EXEC PLILFCLG,PARM.LKED='OVLY'
//PLIL.SYSIN DD *

Source statements for procedure A

*PROCESS

Source statements for procedure B

* PROCESS

Source statements for procedure C

*PROCESS

Source statements for procedure D

*PROCESS

Source statements for procedure E

*PROCESS

Source statements for procedure F
/*
//LKED.SYSIN DD *

OVERLAY X
INSERT B,C
OVERLAY Y
INSERT D
OVERLAY Y
INSERT E
OVERLAY X
INSERT F

/*

Figure 6-6. compiling, Link-Editing, and
Executing an Overlay Program

If an INSERT statement contains the name
of an €!xternal procedure, the linkage
editor will move only the related program
control. section, which has the same name.
All other control sections established by
the compiler, and all the PL/I library
subrout.ines, will remain in the root
segment .•

It is important that PL/I library
subroutines be in the root segment, since
the PL/I (F) compiler does not support
exclusive calls (calls between segments
that do not lie in the same path). For
example" in the structure of Figure 6- 5,
procedures in the segment containing 0;
could call procedures in the segments
containing A, B, C, and D, but not in the
segments containing E or F. Procedures in
the segments containing B and C could call
procedures in the segments containing A, B,
C, D, and E, but not in the segment
containing F. A procedure in the segment
containing B may not call a procedure in
the segment containing A if this latter
procedure calls a procedure in the segment
containing F.

Note: The library modules IHETABS and
IHEMAIN must be in the root segment.

Howe'V'er, certain modules may not be
required by all segments, in which case you
can move them into a lower segment. To do
this, compile the procedures using the
compile:r option EXTREF, and then examine
the exbernal symbol dictionary. For
example, if in the structure of Figure 6-5
the module IHESNS is called only by the
segment containing E, you can move into
that seqment by placing the control,
statemeat INSERT IHESNS immediately after
the sta-tement INSERT E.

Similarly, you can move data control
section::; from the root segment to lower
segment::;. For example, to move the static
internal control section for procedure F
into th,e segment containing F, place the
statement INSERT ******FA after the
statement INSERT F. Note that values
assigned to static data items are not
retained when a segment is overlaid. (A
storage area in static constitutes static
data fo:r this purpose, but still has the
same US4~ as a DSA). Therefore, do not move
static (lata from the root segment unless it
comprises only:

1. Values set by the INITIAL attribute
and then unchanged (i.e., read-only
da1:a).

2. Values that need not be retained
bet.ween different loadings of the
seqment.

An alternative method of creating an
overlay structure is to obtain object decks
for the procedures that form the program,
and then to intersperse OVERLAY statements
among them in the linkage editor input.
This method requires more care, since you
must move into the root segment all static
internal control sections (unless they are
read-only) and control sections that refer
to external variables not included in a
common area. The linkage editor
automatically places common areas and any
library subroutines that are used in common
by different procedures, in the common
segments of the paths in which they are
referred to. For example, if only
procedures D and E of Figure 6-5 require
the subroutine IHEOST, the linkage editor
will place it in the segment that contains
procedures Band C; but if procedure F also
refers to IHEOST, the linkage editor will
place it in the root segment.

Linkage Loader

The linkage loader is an operating system
program that creates and executes load
modules. The modules created are always
placed directly into main storage (never in
a library) and executed.

The input to the linkage loader is a
single object or load module or several
object or load modules, or a mixture of
both types. The output is always a single
load module in main storage.

The linkage loader does not support the
linkage editor control statements (ALIAS,
CHANGE, ENTRY, INCLUDE, INSERT, LIBRARY,
NAME, OVERLAY, REPLACE, SETSSI). The
presence of any of these in the job streaIrl
will not be treated as an error; the job
will continue to be processed, and the name
of the statement is printed on SYSLOUT
together with a diagnostic me~sage.

The linkage loader compensates for the
absence of the facilities provided by these
control statements by allowing the
concatenation of both object and load
modules in the data set defined by the
ddname SYSLIN, and by allowing an entry
point to be specified in the EP option of
the PARM parameter (see below in 'Optional
Facilities').

.MODULE STR UCTURE

The structure of a module which is the
input to the linkage loader is the same as
that for a module which is the input to the

Chapter 6: Linkage Editor and Lo.ader 77

linkage editor. This structure has already
been described in 'Module Structure,' in
the linkage editor section.

LINKAGE LOADER PROCESSING

The linkage loader processes the input
module or modules in order to resolve all
external references in control sections.
Once this has been accomplished, the load
module is loaded into main storage and
executed. The basic functions are:

1. Resolution of external references
between control sections in program
modules.

2. Resolution of other external
references by inclusion of modules
from the PL/I subroutines library
(situated either on a direct-access
device or in main storage).

3. Automatic editing by deleting
duplicate copies of program modules.

4. Using the relocation dictionary (RLD)
to obtain absolute addresses for
control sections; if a particular
control section is not in main storage

Object and/or
Load Modules

A

B

c

SYSLIN

Object 2[

'Load Modu I es

D

G

SYSLIB -- called automatically when references
were unresolved at the end of input
from SYS LI N •

when required, the RLD is saved until
the control section has been loaded.

In its basic processing mode, which is
illustrated in Figure 6-7, the linkage
loader accepts data from its primary input
source, a data se-t defined by a DD
statement named SYSLIN. For a PL/I
program, this input data is the object
module created by the compiler. The
linkage loader uses the external symbol
dictionary in the input module to determine
whether the module includes any external
references for which there are no
corresponding external symbols in the
module: it attempts to resolve such
references by a method termed automatic
library call.

External symbol resolution by automatic
library call involves a search of the
library defined bya DD statement named
SYSLIB; for a PL/I program this will be the
PL/I subroutine library (SYS1.PL1LIB).
The linkage loader locates the modules in
which the external symbols are defined (if
such modules exist), and incorporates them
in the load module :it is creating. If all
the external references have been resolved
satisfactorily, the load module is
executed.

A

B

C

D

G

Main Storage

Figure 6-7. Loader Processing (SYSLIB Resolution)

78

Object and/or
Load Modu les

A

c

SYSLIN

,')-----""""~
Object m:
Load tv\odu les

o

,"'--------'
SYSLIB -- called automatically when

references remain unresolved
at the end of input from
SYSLIN and after searching
the link pack area.

User' 5 Region

A

B

Link Pack Area

Main Storage

References made in B to
0, E, F, and G are
resolved to the link
pack area.

Modules in link pack
area must be
reentrant.

Figure 6-8. Loader processing (Link-Pack Area and SYSLIB Resolution)

Object and/or _------------ ---_
Load Modules .",. - - - - _
~------L""-

E .,..
0

A
B
C
o

The first copy is
loaded

SYSLI N Main Storage

Figure 6- 9. Automatic Editing

If you are using the MVT or MFT control
program" the linkage loader will first
search t:he link-pack area for library
modules (see Figure 6-8) before searching
the PL/I subroutine library. (The
link-pack area is an area of main storage
in which frequently used load modules are
stored permanently; they can be accessed by
any job running under MVT.) Library
modules for PL1LIB must not be loaded into
the link-pack area. If there is more than
one copy of a program module in SYSLIN. the
linkage loader will load the first one and
ignore the rest (see Figure 6-9).

Main Storage Reguirements

The minimum main storage requirements for
the linkage loader are:

1. storage for loader code: At least 10K
bytes.

2. Storage for data management access
method routines: At least 4K bytes.

3. storage for buffers and tables used by
the linkage loader: At least 3K bytes.

Chapter 6: Linkage Editor and Loader 79

4~ storage for the program to be
executed.

Thus the minimum main storage required
when a program is to be processed by the
linkage loader is at least 17K bytes for
the linkage loader and its associated
routines and data areas, and, in addition,
whatever amount of main storage is required
for the program to be executed. If the
loader code and the data management access
routines are stored in the link-pack area,
then the amount of main storage required
for program execution is 3K bytes for the
loader data area and, in addition, the
amount required for the problem program,.

Job Control Language for Link-Loading

For most purposes, the IBM-supplied
cataloged procedures are sufficent to
provide the job control statements required
for link-loading. 'However, you may want to
supply your own job control statements or
you may want to know which job control
statements are required in order to
construct your own cataloged procedures;
therefore a brief discussion of the
statements required or used by the linkage
loader is given below.

The IBM-supplied cataloged procedures
for the linkage loader are:

PL1LFG
PL1LFCG

Load-and-execute
Compile, load-and-execute

These are fully described in Chapter 8,
'Cataloged Procedures,'which also includes
a description of the methods used to modify
or override the statements in them.

EXEC STATEMENT

The name of the linkage loader program is
I EWLDRGO; it also has the alias name
LOADER. Either of these can be used in the
basic EXEC statement:

// EXEC PGM=IEWLDRGO
// EXEC PGM=LOADER

The alias name LOADER is used in the
IBM-supplied cataloged procedures; this
name will be used for references to the

80

linkage loader pz'ogram in the remainder of'
this section.

By using the PARM parameter of the EXEC
statement, you can select one or more of
the optional facilities available with the
linkage loader; these are described in
'Optional Facilities,' below. The use of
the other parameters of the EXEC statement~
is as described in Chapter 7, 'Executing
the Load Module.'

DD STATEMENTS

The linkage loader always requires one
standard data set. You must define this
data set in a DD statement with the
standard name SYSLIN.

Three other standard data sets are
optional and if you use them/, you must
define them in DD statements with the
standard names SYSLOUT, SYSPRINT, and
SYSLIB. The four standard data sets are
summarized in Figure 6";'10. The ddnames
SYSLIN, SY3LIB and SYSLOUT for the loader
data sets are those specified at system
generation. Other ddnames for these data
sets may have been specified at system
generation for your installation; if they
have, your job control statements must use
these ddnames in place of those given
above. The IBM-supplied cataloged
procedures PL1LFCG and PL1LFG use the
ddnames shown above; your system programmE~r
will have to modify these procedures if the
ddnames that apply at your installation are
different.

primary Input (SYSLIN)

Input to the linkage loader must be
sequential and may be one of the followinq:

1. Object module:

2.

a. Output from the compiler.

b. One member of a partitioned data
set containing object modules.

Load Module:

One member of a partitioned data set
containing load modules.

r-----------T--'--------------------------------T----------------------------,
I ddna:me I Function I possible Device Classes~ I
~------.-----+-----------------------------------+----------------------------~
I SYSLIN I Primary input data, normally I SYSSQ or the input job I
I I the output from the compiler I stream (specified by DD .) I
~------,-----+----------------------------------+----------------------------~
I SYSLOUT I Loader messages and module map I SYSSQ, SYSDA. or SYSOUT=A I
I I listing I I
~------.. -----+----------------------------------+-------.---------------------~
I SYSPRINTI PL/I execution-time messages and I SYSSQ, SYSDA, or SYSOUT=A I
I I problem program output listing' I I
~------... ----+----------------------------------+----------------------------~
.I SYSLIJ3 I Automatic call library (usually I SYSDA I
I I the PL/I subroutine library) I . I
~------... ----.L----------------------------------.L----________________________ ~
11 SYSSQ Magnetic-tape or direct-access device I
I SYSDA Direct-access device I
I SYSOU:P=A Normal printed output class for system output I L_~ ____ . ___ J

Figure 6-10. Linkage-Loader Data sets

3. A concatenation of object modules,
load modules or a mixture of both
types.

The IBM-supplied cataloged procedure
PL1LFCG includes a SYSLIN DD statement; if
you want. to modify this statement. you must
refer to it by the qualified ddname
GO.SYSLIN. The IBM-supplied cataloged
procedul:e PL1LFLG does not include a SYSLIN
DD statE~ment: you must supply one. using
the qualified ddname GO.SYSLIN.

A utomatj!c Call Library (SYSLI,B)

The SYSI.IB data set. is searched to resolve
those external references that remain when
all the external symbols that refer to
locations within the program module have
been resolved. This data set is always a
partitioned data set; usually it is the
PL/I subroutine library, SYS1.PL1LIB. but
any library can be used provided it has the
correct ddname. Libraries can be
concatenated; the first library DD
statement must have the ddname SYSLIB. the
others must appear immediately after it in
the job stream and must have the name field
blank. The concatenated libraries can
contain object or load modules but not a
mixture of both.

The IBM-supplied cataloged procedures
PL1LFCG and PL1LFG both include a SYSLIB DD
statement. If you want to modify this
statement, you must refer to it using the
qualified ddname GO.SYSLIB.

Loader Listing '(SYSLOUT)

The messages produced by the linkage
loader, the module map that can be produced
by the MAP option (see 'Optional
Facilities,' below). and other information
related to the linkage loader program can
be written onto this data set. The SYSLOUT
data set must be CONSECUTIVE organization
and must have been specified at system
generation; otherwise. all the loader
information will be put out on SYSPRINT. A
printed listing can be produced by
allocating this data set to the system
output class associated with a printer.
This is usually designated by:

//SYSLOUT DD SYSOUT=A

The IBM-supplied cataloged procedures
PL1LFCG and PL1LFG include this statement;
if you want to modify the statement, you
must refer to it with qualified ddname
GO.SYSLOUT.

PL/I Execution-Time Messages and Problem
Program Listing (SYSPRINT)

PL/I execution-time messages and output
produced by the problem program are written
on this data set. The data set must be of
CONSECUTIVE organization. A printed
listing can be obtained in the same way as
for the loader information:

//SYSPRINT DD SYSOUT=A

The IBM-supplied cataloged procedures
PL1LFCG and PL1LFG both include this
statement; if you want to modify it, you
must refer to it using the qualified ddname
GO.SYSPRINT.

Chapter 6: Linkage Editor and LQader 81

Examples

A typical sequence of job control
statements for a compile-load-and-go job
is:

//PGEX1 JOB

// EXEC PGM=LOADER
//SYSLIN DD DSNAME=*.PL1L.SYSLIN,
// DISP=(OLD,DELETE)
//SYSLIB DD DSNAME=SYS1.PL1LIB,DISP=SHR
//SYSLOUT DD SYSOUT=A
//SYSPRINT DD SYSOUT=A

Here a PL/I program has been compiled in a
job step with the step name PL1L: the
resultant object module has been placed in
the SYSLIN data set. Because this module
is to be loaded and executed in the same
job as the compilation, the SYSLIN
statement can use the backwards reference
as shown. If the compilation and
load-and-go steps were in different jobs,
the SYSLIN reference would have to specify
a permanent data set, cataloged or
uncataloged.

'The IBM-supplied cataloged procedure
PL1LFCG includes SYSLIN statements in both
the compile and the load-and-go steps: you
do not need to specify this statement
unless you want to modify it. The
IBM-supplied cataloged procedure PL1LFG
does not include a SYSLIN statement: you
must supply one, using the qualified ddname
GO.SYSLIN.

A more complicated example is given
below; it has three concatenated input data
sets (one of which is an object deck), and
two libraries to be searched for external
references. The job control statements
differ slightly, according to the control
program used:

PCP

// EXEC PGM=LOADER
//SYSLIN DD DSNAME=OBJMOD,
// UNIT=SYSSQ,
// VOLUME=SER=30103,
// DISP=COLD,KEEP)
// DO DSNAME=MOOLIBCMOD55},OISP=SHR
// DO DDNAME=IN
//SYSLIB DD OSNAME=SYS1.PL1LIB,
// DISP=SHR
// DD DSNAME=PRIVLIB,DISP=SHR
//SYSLOUT DD SYSOUT=A
//SYSPRINT DO SYSOUT=A
//IN DO *
Object deck to be input to the linkage
loader

82

Here the input data sets are:

1. OBJMOD: An uncataloged data set
containing the object module output
from a compilation.

2. MODLIB: A cataloged data set
containing a library of load modules;
the member to be included here has the
name MOD55.

3. IN: An object deck to be included in
the job stream.

The two libraries to be searched for
external references are the PL/I subroutine
library (SYS1.PL1LIB) and a private
library, PRIVLIB.

The IN DD statement shown here is only
required if you want to include in the job
stream an object deck for input to the
linkage loader. The statement

// DD ODNAME=IN

specifies that the IN data set is to be
concatenated with other data sets to form
the SYSLIN data set. The statement

//IN DO *
specifies that the IN data set is to be
read from the job stream. Because PCP does
not permit the use of more than one data
set in the input stream for a single job
step" you therefore cannot assign the input
stream data to more than one data set.
This means that you cannot have execution
data in the input stream when there is an
object deck, concatenated as shown, in the~
input stream.

Note: If execution data in the input strealm
is required when using an object deck, the!
linkage editor must be used so that each
input stream data set is in a separate job
step.

If you use the cataloged procedures
PL1LFCG and PL1LFG, you can modify or add
to the statements in these procedures to
generate the sequence described above.
Modified or added statements must be
ref erred to in the correct order; this is::

PL1LFCG:

PL1L.SYSLIN (if you want to modify the
data set for the output from
the compiler)

GO.SYSLIB
GO.SYSLIN
GO.SYSIN
GO.IN

PL1LFG:

GO.SYSLIB
GO.SYSLIN
GO.SYSIN
GO.IN

MFT or j~VT

// EXEC PGM=LOADER
//SYSLIN DD DSNAME=OBJMOD,
// UNIT=SYSSQ,
// VOLUME=SER=30104,
// DISP=(OLD,KEEP)
// DD DSNAME=MODLIB(MOD55),DISP=SHR
// DD DDNAME=IN
//SYSLIB DD DSNAME=SYS1.PL1LIB,
// DISP=SHR
// DD DSNAME=PRIVLIB,DISP=SHR
//SYSLOUT DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//IN DD *
Object deck for input to linkage loader

/*
//SYSIN DD *
Execution data, if any, to be placed here

'The input data sets and the two
librarices are as described above.

If you want to include" in the job
stream, both an object deck' and execution
data~ the job control language is less
complicated than with PCP because both MFT
and MVT permit the use of more than one
data set in the, input stream for the same
job step. Hence both IN and SYSIN can have
the DD * notation.

If you use the cataloged procedures
PL'lLFCG or PL1LFG, you can modify or add to
the statements in those procedures to
generatce the sequence described above.
Modified or added statements must be
referred to in the correct order; this is:

PL1LFCG:;.

PL1L.SYSLIN (if you want to modify the
data set for the output from
the compiler)

G9·SYSLIB
GO.SYSLIN
GO.IN
GO.SYSIN

PL1LFG:

GO.SYSLIB
GO. SY~3LIN
GO.IN
GO.SYSIN

these can be in any order

these can be in any order

Optional Facilities

CONTROL STATEMENTS

The linkage loader does not support the
linkage editor control statements (ALIAS,
CHANGE, ENTRY, INCLUDE, INSERT, LIBRARY,
NAME, OVERLAY, REPLACE, SETSSI). The
presence of any of these in the job stream
will not be treated as an error; the job
will continue to be processed, and the name
of the statement is printed on SYSLOUT
together with a diagnostic message.

The linkage loader compensates for the
absence of the facilities provided by these
control statements by allowing the
concatenation of both object and load
modules in SYSLIN, and by allowing an entry
point to be specified in the EP option of
the PARM parameter (see below).

OPTIONS IN THE PARM PARAMETER

The linkage loader provides a number of
optional facilities that you can select by'
including the appropriate keywords from the
following list in the PARM parameter of the
EXEC statement that invokes it:

CALL I NOCALL I NCAL
EP
LET I NOLET
MAP I NOMAP
PRINT I NOPRINT
SIZE
RES I NORES

If any other keywords appear in the PARM
parameter, they will be ignored and when
processing is complete the keywords and a
diagnostic message will be printed on
SYSLOUT.

PARM Parameter Format

The basic format of the PARM parameter
field is:

PARM=' [option list] [/pgmparm] ,

where 'option list' is a list of linkage
loader options, and
'pgmparm' is a parameter to be passed
to the main procedure of the PL/I
program to be executed.

The conventions for passing a parameter
to the main procedure of a PL/I program are
described in Chapter 7. In the examples

Chapter 6: Linkage Editor and Loader 83

given below, the program parameter is
referred to as PP.

If both loader options and a program
parameter occur in the PARM parame'ter, the
loader options are given first and are
separated from the program parameter by a
slash. If there are loader options but no
program parameter, the slash is omitted.
If there is more than one option, the
option keywords are separated by commas.

The PARM parameter field can have one of
three formats:

1. If the special characters '/' or '='
are used, the field must be enclosed
in single quotes:

PARM=' MAP, EP=FIRST/PP'
PARM='MAP,EP=FIRST'
PARM='/PP'

2. If these characters are not included,
and there is more than one loader
option, the options must be enclosed
in parentheses:

PARM= (MAP, LET)

3. If these characters are not included,
and there is only one loader option,
neither quotes nor parentheses are
required:

PARM=MAP

If you want to modify the PARM parameter
options specified in a cataloged procedure,
you must refer to the PARM parameter by the
qualified name PARM.procstepname, for
example, PARM.GO.

CALL I NOCALL I NCAL

The CALL option specifies that an attempt
to resolve external references will be made
by an automatic search of the data set
named in the SYSLIB DD statement. If this
statement does not exist in the job stream,
the option is ignored.,

The NOCALL and NCAL options specify that
no automatic search will be made. The term
'NCAL' is included to preserve
compatibility with the linkage editor.

EP

The EP option specifies the entry-point
name.

EP=epname

84

where 'epname' is an external name which is
to be assigned as the entry point of the
program to be executed. If all the input
modules are load modules, you must specify
EP=IHENTRY.

LET I NOLET

The LET option specifies that the linkage
loader will try to execute the problem
program even if a severity 2 error
condition has been found.

The NOLET option specifies that, if a
severity 2 error condition has been found,
the linkage loader will not execute the
problem program.

MAP I NOMAP

The MAP option specifies that the linkage
loader will produce, on SYSLOUT, a map of
the load module to be executed. This map
includes a list of the external names and
their absolute addresses, a list of the
pseudo-registers, the total length of the
module, and the absolute address of its
entry point. If there is no SYSLOUT DD
statement, the option will be ignored. The
module map is described fully in 'Listing'
below.

PRINT I NOPRINT

The PRINT option specifies that the SYSLOUT
data set will be opened and used for
diagnostic messages and other linkage
loader information.

The NOPRINT option specifies that the
SYSLOUT data set will not be opened.

SIZE

The SIZE option specifies the maximum
amount of main storage, in bytes, that can
be used by the linkage loader to process
and execute the problem program. Code the
option in one of the following formats:

SIZE=10K
SIZE=(lOK)
SIZE=10240
SIZE=(10240)

RESINORES

The RES option specifies that an attempt to
resolve external references will be made by
an automatic search of the link-pack area.
This search will be made after the primary
input has been processed but before the
SYSLIB data set is opened.

'I'he NORES option specifies that the
link-pack area will not be searched.

DEFAULT OPTIONS

Defaults for all the options except EP can
be established at system gemerati'on. If no
such de:faults were specified, the linkage
loader i:lSsumes defaults as follows:

CALJ[" NOLET, NOMAP, PRINT, SIZE=100K,
RES

It is your responsibility to find out the
defaults in operation at your installation.

Listing

The linkage loader can provide listings on
the SYSI,OUT data set: the SYSPRINT data set
is used by the problem program. The
contents; of each is:

Data Set

SYSLOUT

SYSPRINT

Contents

Linkage loader explanatory
messages and diagnostic
messages, and (optionally)
a module map

PL/I execution-time diagnostic
messages: problem program
output

The SYSLOUT listing is described here;
the SYSPRINT listing is described in
Chapter 7, 'Executing the Load Module.'

'l'he items in the SYSLOUT listing appear
in the following sequence:

1. A statement identifying the level of
linkage loader used.

2. Module map (if specified).

3. Explanatory error or warnjng messages.

4. Diaqnostic messages.

MODULE MAP

If the MAP option is specified, a module
map appears in the SYSLOUT listing. The
map lists all the control sections in the
module to be executed, and all the entry
names (other than the first one) in each
contrbl section. The information for each
reference is:

1. The control-section or entry-point
name.

2. An asterisk, if the control section is
in a module loaded from the SYSLIB
data set.

3. An identifier, as follows:

SD Section definition: the name of
the control section.

LR Label reference: identifying an
entry point in the control
section other than the primary
entry point.

CIM Common area: an EXTERNAL file,
or a non-string element variable
declared STATiC EXTERNAL without
the INITIAL attribute.

4. Absolute address of the control
section or entry point.

Each reference is printed left to right
across the page and starts at a tab
position. This gives the impression that
the references are arranged in columns, but
the correct way to read the map is
line-by-line, not down each column.

The module map is followed by a similar
listing of the pseudo-registers. The
identifier used here is PR, and the address
if the offset from the beginning of the
pseudo-register vector (PRV). The total
length of the PRV is given at the end.

The total length of the module to be
executed, and the absolute address of its
primary entry point, are given after the
explanatory messages and before the
diagnostic messages.

EXPLANATORY ERROR OR WARNING MESSSAGES

The linkage loader always lists details of
any error or warning conditions that it
discovers during processing. The format of
the messages is given in 'Control
Statements and Errors,' in the linkage
editor section of this chapter.

Chapter 6: Linkage Editor and Loader 85

DIAGNOSTIC MESSAGES

When the module to be executed has been
processed, the linkage loader prints out in
full all the diagnostic messages referred
to above. IBM System/360 Operating Syst~~
Linkage ditor and.Loader contains
explanations of these messages and the

86

probable cause of the errors noted in them,
and suggests how to rectify these errors.

The warning message IEW100l almost
always appears in the listing. The
explanation for this is the same as that
for IEW0461, described above in 'Diagnostic
Message Directory,' in the linkage editor
section of this chapter.

Chapter 7: Executing the Load Module

Introduction

To execute a program, it must be in the
form of a load module or an object module.
If in load-module form you must use an EXEC
statemE~nt to request the job scheduler to
load and execute. If in object-module form
you must use an EXEC statement to request
the job scheduler to load and execute the
loader which will process the module and
pass control to it.

~jodules for execution are selected from
one of two sources:

1. A partitioned data set which is a
module library. The modules are
either object modules created by the
compiler or load modules created by
the linkage editor.

2. A sequential data set which is an
object module created by the compiler.

partitioned data sets and module
librariles are des cribed in Chapter 12,
sequential data sets are described in
Chapter 9.

This chapter describes the selection of
the object or load module for execution,
the job control statements required for
load module execution, and the messages and
other da.ta printed on the output listing.

Load M()dule Processing

IDENTIFYING THE MODULE

The data. set containing the module to be
selected for execution is identified in one
of two ways:

1. Jobs using the linkage editor: The
data set is identified in the PGM
parameter of the EXEC statement for
the execution job step.

2. Jobs using the linkage loader: The
data set is identified in a DD
statement with the name SYSLIN in the
execution job step.

Jobs Using the Linkage Editor

The data set exists in a library created in
a previous job step of the same job, 'or in
a previous job.

Library Created' in' a ,Previous Job Step:
The basic reference is:

//stepname EXEC PGM=*.prevstepname.ddname

where 'prevstepname' is the name of the job
step in which the library is created.

If the data set is the output data set
created by the linkage editor, code:

//stepname EXEC PGM=*.linkname.SYSLMOD

where 'linkname' is the link-edit stepname.

If you use the cataloged procedures
PL1LFCLG or PL1LFLG, the code generated is:

//GO EXEC PGM=*.LKED.SYSLMOD

Library, Created'inaPrevious'Job: If the
library is a system library (SYS1.LINKLIB),
code:

//stepname EXEC PGM=progname

where 'progname' is the member name of the
module in the system library.

If the library is a private library used
as a job library, the syntax is the same as
for the system library. The private
library must be identified in a JOBLIB DD
statement placed immediately after the JOB
statement.

If the library is a private library used
as a step library, the syntax is the same
as for the system library. The private
library must be identified in a STEPLIB DD
statement which follows the EXEC statement
that initiates the job step.

Jobs Using the Linkage Loader

The data set exists in a library or is a
single module, created in a previous job
step of the same job or in a previous job.

Library Created' in' a-Previous Job step:
The basic reference is:

Chapter 7: Executing the Load Module 87

//SYSLIN DD DSNAME=*.stepname.ddname,
// DISP=(disp)

where '*.stepname.ddname' refers to the
name of the DD statement that
describes the data set in which the
member of the library is created.

'disp' is the set of terms for the
disposition of the data se1:: before
and after the job step.

If you use the cataloged procedure
PL1LFCG with input from a library, you must
override the SYSLIN DD statements in both
job steps. The ddnames for the input data
set you are using must be qualified as
PL1L.SYSLIN and GO.SYSLIN respectively. If
you use the cataloged procedure PL1LFG, you
must supply the SYSLIN DD statement, using
//GO.SYSLIN.

Library Createdina.PreviousJob: If the
library is the system library, code:

//SYSLIN DD DSNAME=dsname,DISP=(disp)

where 'dsname' is the name of the member of
the library.

'disp' is as defined previously in
this chapter.

If the library is a private library, the
syntax is the same as for the system
library.

If the library is neither cataloged nor
in a job library, it must be described
fully in the SYSLIN DD statement. (A
cataloged data set, which can be a library
or a single module, has its name in the
system catalog and can be called by
specifying the name only.) Code:

//SYSLIN DD DSNAME=dsname(mbname),
// DISP=(disp),
// VOLUME=volume,
// UNIT=unit

where 'dsname' is the name of the library.

'mbname' and 'disp' are as defined
previously in this chapter.

'volume' is the set of terms defining
the volume and its usage.

'unit' specifies the storage device.

If yo~ use the cataloged procedure
PL1LFCG or PL1LFG, the same considerations
apply as for a library created in a
previous job step.

Module Created ina.Previous·Job step: The
basic reference is:

88

//SYSIN DD DSNAME=dsname,DISP=(disp)

where 'dsname' is the name of the temporary
or permanent dat~ set.

., disp' is as defined previously in
this chapter.

The cataloged procedure PL1LFCG generates
the appropriate SYSLIN DD statement. If
you use the cataloged procedure PL1LFLG,
you must supply this statement, using the
qualified ddname //GO.SYSLIN.

Module Created ina Previous Job: The
reference for the SYSLIN DDstatement
depends on whether the data set is
cataloged or not.. For a cataloged data
set, code:

//SYSLIN DD DSNAME=dsname,DISP=(disp)

where 'dsname' is the name of the catalog led
data set.

'disp' is as defined previously in
this chapter.

If the data set is uncataloged, code:

//SYSLIN DD DSNAME=dsname,
// DISP=(disp),
// VOLU~volume,
// UNIT=unit

where 'dsname' is the name, of the data set.

'disp', 'volume', and 'unit' are as
defined previously in this chapter.

If you use the cataloged procedures
PL1LFCG or PL1LFG, the same considerations
apply ap for libraries created in a
previous job step.

Job Control Language for Execution

You can use a cataloged procedure to
generate the job control statements or you
can supply them yourself. The IBM-supplied
cataloged procedures that apply to this
step are:

PL1LFCG
PL1LFCLG
PL1LFG
PL1LFLG

Compile, load-and-execute
Compile, link-edit, and execute
Load-and-execute
Link-edit, and execute

These procedures are described in
Chapter 8, 'Cataloged procedures,' which
includes an account of the methods used to
modify or overwrite any of the statements
in the procedures.

If you want to supply your own job
control statements, the statements required
for thE:! execution job step are described
below.

EXEC S'.l~ATEMENT

The basic form of the EXEC statement
require~s only the PGM parameter:

// EXEC PGM=reference

where 'reference' has one of two forms:

1. Jobs using the linkage editor: a
reference to the data set containing
the load module. This has already
be'en described in 'Identifying the
Load Module' in this chapter.

2. Jobs using the linkage loader: the
n~ne of the loader program:

PGM=LOADER

ThE:! use of the linkage loader is
described in Chapter 6, 'Linkage
Editor and Loader.'

WhilE~ the PGM parameter is the only
mandatOl:Y parameter as far as the operating
system is concerned, some or all of the
other parameters available may be mandatory
at your installation. The use of these
parametE~rs is discussed here.

ACCT PaI:~ameter

The accounting procedure at your
installation may require you to provide
information here, if each job step is to be
charged separately.

COND Parameter

This is a useful parameter if your
execution job step is dependent on the
successful completion of a previous job
step. The use of the EVEN and ONLY
subparam,eters allows you precise control
over the conditions under which this job
step can be executed. '

PARK ,Parameter

The PL/I CF) compiler provides a facility
for passing, in this job step, a single
parameter to the main procedure of the PL/I
program. The data specified in the PARM
parameter field can be up to 100 characters
long and must be enclosed in quotation
marks. Any character in the character set
available can be specified. The associated
parameter in the main procedure should be
declared CHARACTER(100) VARYING.

The PARM parameter is a useful means of
passing data to a load module. For
example, if the SYSIN file is already
associated with a user data set, any extra
data required can be quickly inserted by
being specified in this parameter. Another
use is to pass data that can be employed to
determine how the program will be executed
and which category or categories of output
will be produced. Both the PL/I CF)
compiler and the linkage editor use the
PARM parameter in this way; the characters
passed represent various options which
determine, for example, the information to
be printed on the output listing.

If you want to use the PARM parameter
for the second of these purposes, you
should include, at the beginning of your
PL/I program, code to convert the parameter
characters to variables, and code to set a
series of program switches. For example:

STOCK: PROCCINPARM) OPTIONS(MAIN);
DCL INPARM CHAR(100) VAR,

1 VALUES BASEDCP),
2 (TERMA,

TERMB,
TERMC,
TERMO,
TERME) ,CHAR C 1) ,

2 NUMBER PIC'9999',
2 SPEC CHAR(l),
2 CTCHAR CHAR(3),

P=ADDR (INPARM) ;
Ll:IF TERMA=TERMB THEN GO TO ••• ;

ELSE IF CTCHAR='I/M' THEN ••• ;
L2:IF TERMC,=TERMD THEN GO TO ••• ;

ELSE GO TO ••• ;
L3:IF TERMA=TERME THEN GO TO ••• ;

ELSE IF SPEC='.' THEN ••• :
L4:IF NUMBER~1000 THEN ••• :

ELSE IF NUMBER<10 THEN ••• :

END STOCK:

Chapter 7: Executing the Load MO,dule 89

If this program, once compiled and
link-edited (or loaded), is executed wit:h
the following EXEC statement:

II EXEC PGM= ••• ,PARM='ABCDE1414*I/M'

then the elements of the structure variable
VALUES will have the following values:

TERMA = 'A'
TERMB = 'B'
TERMC = 'c'
TERMD = 'D'
TERME = , E'
NUMBER = '1414'
SPEC ' *'
CTCHAR = '11M'

These values will then be used in the four
switching statements to determine which
parts of the program will be executed and
therefore what output the program will
produce.

The result of the pointer assignment
statement is that the elements in VALUES
now have the appropriate values from the
parameter field. If any character in the
parameter field is omitted for a particular
job, it must be replaced by a blank: this
will create a blank in the corresponding
VALUES element. The existence of a blank
or blanks in these variables must be
considered when the switching statements
are coded, in order to avoid erroneous
switching.

GET STRING or SUBSTR could be used in
place of the pointer assignment, if the
context was such that they offered an
advantage.

DPRTY Parameter

If your load module is executed using the
MVT control program, you can specify the
priority for each job step. For details of
this usage, see 'MVT Control Program' in
Chapter 4, 'Job Initialization.'

The priority value specified in the EXEC
statement is always overridden by a
priority value specified in the JOB
statement; if no priority is specified in
the JOB statement, the value specified in
the EXEC statement is assumed. I:f neither
statement includes a priority parameter,
the installation default (if any) is
applied.

90

REGION Parameter

If your load module is executed using the
MVT control program, you can specify a
region size for the job step. For details
of this usage, see 'MVT Control Program' in
Chapter 4, 'Job Initialization.'

A region size specified in the EXEC
statement is always overriden by a region
size specified in the JOB statement. If a
region size is not specified in the JOB
statement, the size specified in the EXEC
statement is assumed. If neither is
specified, the installation default (if
any) is applied.

ROLL Parameter

If your load module is executed using the
MVT control program, you can obtain extra
space dynamically in main storage by means
of this parameter.

TIME Parameter

If your load module is executed using the
MVT control program, you can specify the
maximum time that this job step can use the
CPU, by means of this parameter. The time
specified here overrides the default time
for the job class. This parameter is
useful if there is a possibility that your
program might go into a permanent loop or'
if your program requires a long execution.
time.

STANDARD DD STATEMENTS

Three standard data sets can be used for
the execution job step. These are:

Purpose

Input
Output
Dump

ddname

SYSIN
SYSPRINT
SYSABEND, SYSUDUMP,
or PL1DUMP

Of these, only SYSPRINT is necessary in
every job. If it is omitted, the system
messages will be put out on the operator" s
console and the other output data will he
lost. If your installation has
multiple-console support (MCS), you must
find out on which console or consoles the
system messages will appear.

Input ~SYSIN)

If you want to include data in the input
stream., you can do so by means of a DD
statemE:!nt of the form: / /ddname DO *
immediately preceding the data. (A data
set in the input stream does not have to be
called SYSIN; it can have any name.) The
data should be 80-byte F-format unblocked
records (for example, punched cards).
Code:

//SYSIN DD *
input: data

/*

The SYSIN DD statements with this notation
must be: the last statement in the job
control statements for the job step for
PCP. If the data includes the characters
// in col.umns 1 and 2 replace //SYSIN DD *
by //SYSIN DD DATA.

The IBM-supplied cataloged procedures
PL1LFCG# PL1LFCLG, PL1LFG, and PL1LFLG do
not include a SYSIN DD statement. If you
want to use one, you must qualify the
ddname 1with the step name, that is, code
//GO.SYSIN.

Output (SYSPRINT)

System a.nd problem program output can be
put out through the system output streams.
The advantage of this is that each output
stream can be associated with an output
device, such as a printer; this device is
speci f,ied in the SYSOUT parameter of the DD
statement for the output data set. If, as
is usual, output stream A is associated
with a printer, the statement

//SYSPRINT DD SYSOUT=A

will result in all SYSPRINT data appearing
in a printed listing.

The SYSPRINT data can include both
system output (for example, diagnostic
messages. from job control statements) and
problem program output. If you want system
and' problem program ouput to'be on separate
listings, you can arrange this by means of
the MSGCLASS parameter in the JOB
statement, see Chapter 4, 'Job
Initialization.'

The IBM-supplied cataloged procedures
PL1LFCG, PL1LFCLG, PL1LFG, and PLILFLG
include this statement in the execution job
step.

Dump (SYSABEND, SYSUOUMP, '" or PL1DUMP)

If you want to obtain a printed listing of
any of these dumps, code one of the
following:

/ /SYS}~BEND DO SYSOUT=A

//SYSUDUMP DD SYSOUT=A

//PL1DUMP DD SYSOUT=A

For further information on DD statements
for dumps, see Chapter 14, 'other
Facilities of the Operating System'.

USER DD STATEMENTS

In execution of your program, you can
create data sets or you can access data
sets already created. For the types of
data set that can be Qsed with a PLiI
program, see Chapter 9, 'Data sets and PL/I
Files.' For the methods of creating or
accessing these data sets, see Chapter 10,
'stream-Oriented Transmission,' and Chapter
11, 'Record-Oriented Transmission.'

The IBM-supplied cataloged procedures
PLILFCG, .PL1LFCLG, PLILFG, and PL1LFLG do
not include statements for user data sets.
If you want to include such statements, you
must code them with the ddname qualified
with the step name, that is, code
//GO.ddname.

Listing

CONTENTS OF SYSPRINT LISTING

The SYSPRINT listing that you obtain with
your job consists of some or all of the
following entries, usually in the sequence
given:

1. Job output, in the format established
by any PUT FILE(SYSPRINT) statements
in your PL/I source program.

2. Execution-time diagnostic messages
produced by the PL/I library. These
have the format:

lHEdddI Message text

where'ddd' is a decimal number.

3. Dump of part of or all main storage.
The important information here for you
is the completion codes.

Chapter 7: Executing the Load Module 91

4. Diagnostic messages from any operating
system facility which has an interface
with your PL/I program. For example,
checkpoint or sort messages would be
printed here.

5. Job scheduler messages, showing the
final disposition of the data sets
used in the job. These messages are
printed in pairs, as follows:

IEFdddI
IEFdddI

Data set name Disposition
Volume serial number of
data set

where 'ddd' is a decimal number. The
two messages numrrers are always the
same for each pair.

6. Step completion information. This
depends on your installation but will
probably contain the step name, step
time, clock time, date and return
code. The return code is always zero
unless you include statements in your
PL/I program to create a return code.

7. Job completion information (if this is
the last step). This depends on your
installation but will probably include
job name, job time, clock time, and
date.

Of these, only the job scheduler messages
and the step and job completion information
will appear in every job. The other items
will depend on the nature of the source
.program and how successfully it executes.

RETURN CODES

The COND parameter causes the job scheduler
to test the return codes put out at the end
of every job step. These codes indica·te
the degree of success of the job step: they
show, for example, whether the program can
be expected to complete normally and
whether the output data will be as
required. Such codes are returned as a
matter of course at the end of the
compilation and linkage-editor job steps
(see Chapters 5 and 6 respectively),
therefore you do not have to take any
action to supply them.

When the execution job step terminates,
a return code is produced to indicate
whether or not it terminated successfully.

92

Zero

Non-zero (value depends
on cause)

Termination

Normal

Abnormal

The return code is provided by the PL/J[
library error~handlingsubrbutines. You
can generate a return code in your program
by coding the statements shown below; this
code is added to the value provided by the
PL/I library and is printed on the listing.

Single-task processing:

DCL IHESARCENTRY(FIXED BINARY(31,O»;

CALL IHESARC(expression):

Multitask processing:

DeL IHETSAC ENTRY(FIXED BINARY(31,O»;

CALL IHETSAC(expression):

Note: The entry point IHETSAC is applicable
to the major task only.

On evaluation, the expression supplies the
required value for the return code.
IHESARC and IHETSAC must be declared as
fullword binary, otherwise errors may occur
in the returned code because of the
halfword binary feature.

Communication with Program during Execution

The DISPLAY statement provides a means of
communicating with the load module for the
PL/I program during execution. The program
can put out, on the operator's console, aL
message of up to 72 characters in length •..
If a reply is expected, the syntax of thE~
reply message must use a 2-digit code
provided by the operating system. The
operator uses this code as a prefix to the
reply message.

If your installation has
multiple-console support (MCS), you must
find out on which console your messages
will appear. The PL/I implementation of
the route and descriptor codes in MCS is
restricted to:

PL/I Statement

DISPLAY
DISPLAY with REPLY

Route
Code

2
1

Descriptor
Code

7
7

If SYSPRINT is not available, the consol.e
on which error messages will appear is
designated by route code 11 and descriptor
code 7. These error messages will be
truncated to 72 characters if they exceed
this length.

Introduction

A cataloged procedure is a set of job
control statements stored in a system
library, the procedure library
(SYS1.PROCLIB). It comprises one or more
EXEC statements, each of which may be
followed by one or more DD statements. You
can retrieve the statements by naming the
catalog,ed procedure in the PROC parameter
of an EKEC statement in the input job
stream. When the job scheduler encounters
such an EXEC statement, it replaces it in
the input stream with the statements of the
catalogced procedure.

The use of cataloged procedures saves
time and obviates errors in coding
frequent:.ly used sets of job control
statements. Even if the statements in a
catalogE:!d procedure . do not match your
requirements exactly, you can easily modify
them or add new statements for the duration
of a job.

This chapter describes seven cataloged
procedw~es supplied by IBM for use with the
(F) compiler, and explains how to invoke
them and how to make modifications to them ..

PL/I Cat:aloged Procedures supplied by IBM

The following paragraphs do not fully
describe: the individual statements of the
IBM cataloged procedures, since all the
parameters are discussed elsewhere in this
manual. Note that the cataloged procedures
described here are the standard PL/I
cataloged procedures. It is recommended
that each installation review these
procedur~~s and modify them to obtain the
most efficient use of the facilities
available and to allow for installation
conventions: refer to 'Permanent
Modification,' at the end of this chapter.

Chapter 8: Cataloged Procedures

The standard PL/I cataloged procedures
are:

PL1DFC Compile and punch object deck

PL1LFC compile and place object
module on magnetic-tape or
direct-access device

PL1LFCL Compile and link-edit

PL1LFCLG Compile, link-edit, and execute

PL1LFLG Link-edit and execute

PL1LFCG Compile" load-and-execute

PL1LFG Load-and-execute

COMPILE AND PUNCH OBJECT DECK (PL1DFC)

The cataloged procedure PL1DFC (Figure 8-1)
comprises only one job step, in which the
(F) compiler is executed with the DECK
option. (IEMAA is the symbolic name of the
compiler.) In common with the other
cataloged procedures that include a
compilation job step, PL1DFC does not
include a DD statement for the compiler
input data set; you must always supply an
appropriate statement with the qualified
ddname PL1D.SYSIN. Because the EXEC
statement includes the options DECK and
NOLOAD, the compiler will place the object
module in card-image form in the data set
defined by the DD statement SYSPUNCHi
conventionally, the system output device of
class B is always a card punch.

COMPILE AND WRITE OBJECT MODULE (PL1LFC)

The cataloged procedure PL1LFC (Figure 8-2)
is similar to PL1DFC: it differs only in
that the options specified for the
compilation are LOAD and NODECK, and the DD

//PL1D EXEC PGM=IEMAA,PARM='DECK,NOLOAD',REGION=52K
//SYSPRINT DD SYSOUT=A
//SYSPUNCH DD SYSOUT=B
//SYSUT3 DD DSNAME=&&SYSUT3,UNIT=SYSDA,SPACE=(80,C250,250»,
// DCB=BLKSIZE=80
//SYSUTl DD DSNAME=&&SYSUT1,UNIT=SYSDA,SPACE=(1024,(60,60)"CONTIG),
// SEP=(SYSUT3,SYSPUNCH),DCB=BLKSIZE=1024

F-igure 8--1. cataloged Procedure PL1DFC (Compile and Punch Object Deck)

Chapter 8: Cataloged Procedures 93

//PL1L EXEC PGM=IEMAA,PARM='LOAD,NODECK',REGION=52K
//SYSPRINT DO SYSOUT=A
//SYSLIN DO DSNAME=&&LOADSET,DISP={MOD,PASS),UNIT=SYSSQ,
// SPACE=(SO,(250,100»
//SYSUT3 DO DSNAME=&&SYSUT3,UNIT=SYSDA,SPACE=(SO,(250,250»,
// DCB=BLKSIZE=SO
//SYSUT1 DD DSNAME=&&SYSUT1,UNIT=SYSDA,SPACE=(1024, (60,60) ,.CONTIG),
// SEP=(SYSUT3,SYSLIN),DCB=BLKSIZE=1024

Figure S-2. Cataloged Procedure PL1LFC (Compile and Write Object Module)

//PL1L EXEC PGM=IEMAA,PARM='LOAD,NODECK',REGION=52K
//SYSPRINT DO SYSOUT=A
//SYSLIN DD DSNAME=&&LOADSET,DISP= (MOD., PASS) , UNIT=SYSSQ,
// SPACE=(SO,(250,100»
//SYSUT3 DD DSNAME=&&SYSUT3,UNIT=SYSDA,SPACE=(SO,(250,250»,
// DCB=BLKSIZE=80
/ /SYSUT1 DD DSNAME=&&SYSUT1, UNIT=SYSDA,SPACE= (1024, (60,,60) , ,CONTIG),
// SEP=(SYSUT3,SYSLIN),DCB=BLKSIZE=1024
//LKED EXEC PGM=IEWL,PARM='XREF,LIST',COND=(9,LT,PL1L),REGION=96K
//SYSLIB DD DSNAME=SYS1.PL1LIB,DISP=SHR
//SYSLMOD DD DSNAME=&&GOSET(GO),DISP=(MOD,PASS),UNIT=SYSDA,
/ / SPACE= (1024, (50,20,1) ,RI.SE)
//SYSUT1 DD DSNAME=&&SYSUT1,UNIT=SYSDA,SPACE=(1024,(200,20»,
// SEP=(SYSLMOD,SYSLIB),DCB=BLKSIZE=1024
//SYSPRINT DD SYSOUT=A
//SYSLIN DO DSNAME=&&LOADSET,DISP=(OLD,DELETE)
// DD DDNAME=SYSIN

Figure 8-3. Cataloged Procedure PL1LFCL (Compile and Link-Edit)

statement SYSLIN replaces SYSPUNCH. The
LOAD option causes the compiler to place
the object module, in a form suitable for
input to the linkage editor, in the data
set defined by the DD statement SYSLIN.
This DD statement defines a temporary data
set named &&LOADSET, since the cataloged
procedure assumes that a link-edit job step
will follow. If you want to retain the
load module, you must substitute your own
DD statement for the one supplied. Input
data for this cataloged procedure requires
the qualified ddname PL1L.SYSIN.

COMPILE AND LINK-EDIT (PL1LFCL)

The cataloged procedure PL1LFCL (Figure
8-3) comprises two job steps: PL1L, which
is identical with cataloged procedure
PL1LFC, and LKED,'which invokes the linkage
editor (symbolic name IEWL) to link-edit
the object module produced in the first
step.

Input data for the compilation job step
requires the qualified ddname PL1L.SYSIN.

The COND parameter in the EXEC statement
LKED specifies that this job step should be
bypassed if the return code produced by the
compiler is greater than 9 (that is, if a
severe or termination error occurred during
compilation) •

94

The DD statement SYSLIB specifies the
PL/I subroutine library, from which the
linkage editor will read appropriate
modules for inclusion in the load module.

The linkage editor always places the
load modules it creates in the library
defined by the DO statement SYSLMOD. This
statement in the cataloged procedure
specifies a new temporary library &&GOSET,
in which the load module will be placed Clnd
given the member name GO (unless you
specify the OBJNM option for the
compilation). In specifying a temporary
library, the cataloged procedure assumes
that you will execute the load module in
the same job; if you want to retain the
module, you must substitute your own
statement for the DO statement SYSLMOD.

The sta temen-t DDNAME=SYSIN following it.he
DD statement SYSLIN allows you to
concatenate a data set defined by a DD
statement with the name SYSIN with the
primary input to the linkage editor; for
example, you could place linkage-editor
control statements in the input stream by
this means.

//PL1L EXEC PGM=IEMAA,PARM='LOAD,NODECK',REGION=52K
//SYSPRINT DD SYSOUT=A
//SYSLIN DD DSNAME=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSSQ,
// SPACE=(80,(250,100»
//SYSUT3 DD DSNAME=&&SYSUT3,UNIT=SYSDA,SPACE=(80,(250,250»,
// DCB=BLKSI ZE=8 0
//SYSUTl DD DSNAME=&&SYSUT1,UNIT=SYSDA,SPACE=(1024,(60,60)"CONTIG),
// SEP=(SYSUT3,SYSLIN),DCB=BLKSIZE=1024
/ /LKED I~XEC PGM= IEWL, PARM= I XREF, LIST' , COND= (9, LT, PL1L), REGIONc:96K
//SYSLIB DO DSNAME=SYS1.PL1LIB,DISP=SHR
//SYSLMOD DD DSNAME=&&GOSET(GO),DISP=(MOD,PASS),UNIT=SYSDA,
// 'SPACE=(1024,(50,20,1),RLSE)
//SYSUTl DD DSNAME=&&SYSUT1, UNIT=SYSDA, SPACE = (1024, (200,20»,
// SEP=(SYSLMOD,SYSLIB),DCB=BLKSIZE=1024
//SYSPRl:NT DD SYSOUT=A
//SYSLIN DD DSNAME=&&LOADSET,DISP=(OLD,OELETE)
// DO DDNAME=SYSIN
/ /GO EXEC PGM=*. LKEO. SYSLMOD, COND= ((9; LT, LKED) " (9, LT, PLlL))
//SYSPRINT DO SYSOUT=A

Figure 8,-4. Cataloged Procedure PL1LFCLG (Compile, Link-Edit, and Execute)

COMPILE, LINK-EDIT, ANO EXECUTE (PL1LFCLG)

The cataloged procedure PL1LFCLG (Figure
8-4) comprises three job steps, PL1L and
LKED, which are identical with the two job
steps of PL1LFCL, and GO, in which the load
module created in the step LKEO is
executede The third step will be executed
only if no severe or termination errors
occur in the preceding steps.

Input data for the compilation job step
requires the qualified ddname PL1L.SYSIN;
input data for the execution job step
requires the name GO.SYSIN.

LINK-EDIT AND EXECUTE (PL1LFLG)

The cataloged procedure PL1LFLG (Figure
8-5) comprises two job steps, LKED and GO,
which arE~ similar to the steps of the same
names in PL1LFCLG. In the job step LKED,
the DD statement SYSLIN does not define a
data set, but merely refers the job
scheduler to the DD statement SYSIN, which
you must supply with the qualified ddname
LKED.SYSIN. This DO statement defines the

data set from which the linkage editor will
obtain its primary input. Execution of the
step GO is conditional on successful
execution of the step LKED only.

COMPILE, LOAD AND EXECUTE (PL1LFCG)

The cataloged procedure PL1LFCG (Figure
8-6) achieves the same result as PL1LFCLG.
However, instead of using three job steps
(compile" link-edit, and execute), it has
only two (compile, and load-and-execute).
In the second job step of PL1LFCG, the
operation system loader program is
executed; this program link-edits the
object program produced by the compiler and
then executes the load module immediately.

Input data for the compilation job step
requires the qualified ddname PL1L.SYSIN.

Note that the REGION parameter of the
EXEC statement GO speoifies 96K bytes.
Since the loader requires about 17K bytes
of main storage, there are about 79K bytes
for your program: if this is likely to be
insufficient, you must modify the REGION
parameter.

//LKED EXEC PGM=IEWL,PARM='XREF,LIST',REGION=96K
//SYSLIB DO DSNAME=SYS1.PL1LIB,DISP=SHR
//SYSLMOD DD DSNAME=&&GOSET(GO),DISP=(MOD,PASS),UNIT=SYSDA,
// SPACE=(1024,(50,20,1),RLSE)
//SYSUT1 DD DSNAME=&&SYSUT1, UNIT=SYSDA,SPACE= (1024, (200,20»,
// SEP=(SYSLMOD,SYSLIB),DCB=BLKSIZE=1024
//SYSPRINT DD SYSOUT=A
//SYSLIN DD DDNAME=SYSIN
//GO EXEC PGM=*.LKED.SYSLMOD,COND=(9,LT,LKED)
//SYSPRINT DD SYSOUT=A

Figure 8-5. cataloged Procedure PL1LFLG (Link-Edit and Execute)

Chapter 8: cataloged Procedures 95

//PL1L EXEC PGMFIEMAA,PARM:'LOAD,NODECK',REGION=52K
//SYSPRINT DD SYSOUT=A
//SYSLIN DD DSNAME=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSSQ,
// SPACE=(80, (250,100»
//SYSUT3 DD DSNAME=S&SYSUT3,UNIT=SYSDA,SPACE=(80,(250,250»,
// DCB=BLKSIZE=80
//SYSUT1 DD DSNAME=SSSYSUT1,UNIT=SYSDA,SPACE=(1024,(60,60)"CONTIG),
// SEP=(SYSUT3,SYSLIN),DCB=BLKSIZE=1024
//GO EXEC PGM=LOADER,PARM='MAP,PRINT';REGION=96K,COND=(9,LT,PL1L)
//SYSLIB DD DSNAME=SYS1.PL1LIB,DISP=SHR
//SYSLIN DD DSNAME=&&LOADSET,DISP=(OLD,DELETE)
//SYSLOUT DD SYSOUT=A
//SYSPRINT DD SYSOUT=A

Figure 8-6. Cataloged Procedure PL1LFCG (Compile, Load-and-Execute)

//GO EXEC PGM=LOADER,PARM='MAP,PRINT';REGION=96K
//SYSLIB DD DSNAME=SYS1.PL1LIB,DISP=SHR
//SYSLOUT DD SYSOUT=A
//SYSPRINT DD SYSOUT=A

Figure 8-7. Cataloged Procedure PL1LFG (Load-and-Execute)

The use of the loader imposes certain
restrictions on your PL/I program; before
using this cataloged procedure, refer to
Chapter 6, which explains how to use the
loader.

LOAD AND EXECUTE (PL1LFG)

The cataloged procedure PL1LFG (Figure 8-7)
achieves the same result as PL1LFLG.
However, instead of using two job steps
(link-edit and execute), it has only one.
In this job step, the operating system
loader program is executed. This program
link-edits and executes an object program
placed in a data set defined by a DD
statement with the name SYSLIN; you must
supply this DD statement with the qualified
ddname GO.SYSLIN.

Note that the REGION parameter of the
EXEC statement specifies 96K bytes. Since
the loader requires about 17K bytes of main
storage, there are about 79K bytes for your
program; if this is not likely to be
sufficient, yqu must mOdify the parameter.

The use of the loader imposes certain
restrictions on your PL/I program; before
using this cataloged procedure, refer to
Chapter 6, which explains how to use the
loader.

DEDICATED WORKFILES

All the cataloged procedures that: require
the use of workspace data sets in any

96

job step include DDstatements that permit
the substitution of dedicated workfiles 'for
these data sets.. In such a DD statement.,
the dsname is coded:

DSNAME=&&ddname

where 'ddname' is the ddname of the
dedicated workfile that is to be
substituted for the workspace data set.
This substitution only occurs if:

1. The job is being processed under MVT.

2. An initiator that generates dedicabed
workfiles is used to select the job.

Dedicated workfiles may be used for the
SYSUTl and SYSUT3 work data sets for the
PL/I (F) compiler. Dedicated workfiles :may
also be used for the SYSLIN data set in
compile-link-edit-and-go or compile-Ioad­
and-go jobs. However, care should be taken
to specify a block size (which must be a
multiple of 80 bytes) for this data set, as
the compiler will not override an
unsuitable block size left in the dedicated
workfile DSCB by a previous job (this is
because the compiler cannot know if SYSLIN
is a permanent data set, perhaps
erroneously specified, for which the blo,ck
size may not be overriden). This block
size may be specified either in user JCl, or
the cataloged procedure used. If it is
specified in a cataloged procedure, care!
must be taken to ensure that the block size
is overridden by user JCL when the
procedure is used to update a permanent
SYSLIN data set with a block size different
to that specified in the procedure.

Note that the standard cataloged
procedures PLlJ .. FC, PL1LFCL, PL1LFCLG, and

PL1LFCG use the dsname LOADSET and specify
UNIT=SYSSQ for SYSLIN. They assume that
SYSLIN 'will not use a dedicated workfile.
These may be modified to do so subject to
the above restrictions on block size, and
provided UNIT is changed to specify
UNIT=SYSDA.

For'a complete description of the use of
dedicabed workfiles, see IBM System/360
Operatil~g system: system Programmer's
Guide.

U sing C~ataloged Procedures

'l'o invoke a cataloged procedure, specify
i ts nam(~ in the PROC parameter of an EXEC
statement. For example, to use the
cataloged procedure PL1DFC, you could
include the following statement in the
appropriate position among your other job
control statements in the input stream:

// EXEC PROC=PL1DFC

Note that you need not code the keyword
PROCi if the first operand in the EXEC
statement does not begin PGM= or PROC=, the
job schE~duler interprets it as the name of
a cataloged procedure. Thus, the following
statement is equivalent to that given
above:

// EXEC PL1DFC

when the job scheduler encounters the
name of a cataloged procedure in an EXEC
statement, it extracts the statements of
the cataloged procedure from the procedure
library and substitutes them for the EXEC
statement in the input job stream. If you
include the parameter MSGLEVEL=l in your
JOB stat~ement, the job scheduler will
include the original EXEC statement in its
listing, and will append the statements of
the cataloged procedure. In the listing,
catalogE!d procedure statements are
identifi.ed by XX or X/ as the first two
charactE!rS; X/ signifies a statement that
has been modified for this invocation of
the cataloged procedure.

An EXEC statement identifies a job step.
which can require either the execution of a
program or the invocation of a cataloged
procedure. A cataloged procedure includes
one or more EXEC statements, which identify
procedu:r:e steps. However, an EXEC
statement in a cataloged procedure cannot
invoke a.nother cataloged procedure: it must
request ,the execution of a program. Thus a
job comprises one or more job steps, each
of which involve one or more procedure
steps.

It will usually be necessary for you to
modify the statements of a cataloged
procedure for the duration of the job step
in which it is invoked, either by adding DO
statements to it or by overriding one or
more parameters in the EXEC or DD
statements. For example, all the cataloged
procedures that involve compilation require
the addition of a DD statement with the
name SYSIN to define the data set that
contains the source statements. Also,
whenever you use more than one standard
linkage-editor procedure step in a job, you
must modify all but the first cataloged
procedure that you invoke if you want to
execute more than one of the load modules:
this sp'ecial case is discussed in 'Altering
Cataloged procedures,' below.

Altering Cataloged Procedures

You can modify a cataloged procedure
permanently by rewriting the job control
statements that are stored in the procedure
library. Alternatively, you can make
temporary changes by including parameters
in the EXEC statement that invokes the
cataloged procedure or by placing
additional DO statements after the EXEC
statement.

Permanent alterations should be made
only by system programmers responsible for
maintaining the procedure library. Some of
the considerations that may influence their
decisions as to whether and how to modify
the standard cataloged procedures are
discussed below.

Most programmers find it necessary to
make temporary modifications whenever they
use a cataloged procedure. Such changes
apply only for the duration of the job step
in which the procedure is invoked and only
to that job step: they do not affect the
copy of the cataloged procedure stored in
the procedure library.

TEMPORARY MODIFICATION

Temporary modifications can apply to EXEC
or DO statements in a cataloged procedure.
To change a parameter of an EXEC statement,
you must include a corresponding parameter
in the EXEC st~tement that invokes the
cataloged procedure: to change one or more
parameters of a DO statement, you must
include a corresponding DO statement after
the EXEC statement that invokes the
cataloged procedure. Although you may not
add a new EXEC statement to a cataloged
procedure. you can always include
additional DO statements.

Cha.pter 8: Cataloged Procedures 97

EXEC stat ement

If a parameter of an EXEC statement that
invokes a cataloged procedure has an
unqualified name, that parameter applies to
all the EXEC statements in the cataloged
procedure. The effect on the cataloged
procedure depends on the parameter:

PARM applies to the first procedure
step and nUllifies any ot:her PARM
parameters.

COND and ACCT apply to all the
procedure steps.

TIME and REGION apply to all the
procedure steps and override existing
values.

For example, the statement

// EXEC PLiLFCLG,PARM='SIZE=999999',
// REGION=144K

invokes the cataloged procedure PL1LFCLG,
substitutes the option SIZE=999999 for LOAD
and NODECK in the EXEC statement PLiL, and
nullifies the PARM parameter in the EXEC
statement LKED; it also specifies a
regional size of i44K for all threE!
procedure steps.

'10 change the value of a parameter in
only one EXEC statement of a catalc)ged
procedure, or to add a new parameter to one
EXEC statement, you must identify the EXEC
statement by adding its name as a suffix to
the parameter name; separate the parameter
name and the step name with a period. For
example, to alter the region size for
procedure step PLiL only in the preceding
example, code:

// EXEC PROC=PLiLFCLG,
// PARM='SIZE=999999',
// REGION.PLiL=144K

A new parameter specified in thE;!
invoking EXEC statement overrides
completely the corresponding paramE:lter in
the procedure EXEC statement. This is
particularly important with the PAI~
parameter. For example, the statement

// EXEC PLiDFC,PARM.PLiL='SIZE=999999,
// EXTREF'

would bE:! in error if the standard compiler
default options applied. The default
options NODECK and LOAD would apply, rather
than the options DECK and NOLOAD specified
in the procedure EXEC statement.
Consequently, the compiler would attempt to
open the data set defined by the DD
statement SYSLIN, which does not exist in
the cataloged procedure PL1DFC.

98

You can suppress all the options
specified by a parameter by coding the
keyword and equal sign without a value.
For example, to suppress the bulk of the
linkage-editor listing when invoking the
cataloged procedure PLiLFCLG, code:

// EXEC PLiLFCLG,PARM.LKED=

DD statement

To add a new DD statement to a cataloged
procedure, or to modify one or more
parameters of an existing DD statement, you
must include, in the appropriate position
in the input stream, a DD statement with a.
name of the form 'procstepname.ddname'. If
'ddname' is the name of a DD statement
already present in the procedure step
identified by 'procstepname,' the
parameters in the new DD statement override
the corresponding parameters in the
existing DD statement; otherwise, the new
DD statement is added to the procedure
step. For example, the statement

//PLiD.SYSIN DD *
adds a DD statement to the step PLiD of
cataloged procedure PLiDFC, and the effect
of the statement

//PL1D.SYSPRINT DD SYSOUT=C

is to modify the existing DD statement
SYSPRINT (causing the compiler listing to
be transmitted to the system output devicE!
of class C).

overriding DD statements must follow the
EXEC statement that invokes the cataloged
procedure in the same order as the
corresponding DD statements of the
cataloged procedure. DD statements that
are being added must follow the overriding
DD statements for the procedure step in
which they are to appear. If you are using
an operating system with PCP, an overriding
or additional DD statement with the operand
* or DATA must be the last DD statement for
the procedure step.

To override a parameter of a DD
statement, code either a revised form of
the parameter or a replacement parameter
that performs a similar function (e.g.,
SPLIT for SPACE)., To nullify a parameter II
code the keyword and equal sign without a
value. You can override DCB subparameters
by coding only those you wish to modify;
that is, the DCB parameter in an overriding
DD statement does not necessarily overrid4~
the entire DCB parameter of the
corresponding statement in the cataloged
procedure.

Multiple Invocation of Cataloged Procedures

You can invoke different cataloged
procedures, or invoke the same procedure
several times, in the same job. No special
problems are likely to arise unless more
than one of these cataloged procedures
involves a link-edit step, in which case
you must take precautions to ensure that
all your load modules can be executed.

'The linkage editor always places a load
module that it creates in the library
identified by the DD statement SYSLMOD. In
the absence of a linkage editor NAME
statement (or the compiler OBJNM parameter
option), it uses the member name specified
in the DSNAME parameter as the name of the
module. In the standard cataloged
procedures, the DD statement SYSLMOD always
specifi,es a temporary library named
&&GOSET, and gives the member name GO.

Consider what will happen if, for
example, you use the cataloged procedure
PL1LFCLG twice in a job to compile,
link-edit, and execute two PL/I programs,
and do not individually name the two load
modules that will be created by the linkage
editor. The linkage editor will name the
first module GO, as specified in the first
DD statement SYSLMOD. It will not be able
to use ,the same name for the second module,
since the first module still exists in the
library &&GOSET; therefore it will allocate
a temporary name to the second module (a
name that is not available to your
program). step GO of the cataloged
procedure requests the job scheduler to
initiat,e execution of the load module named
in -the DD statement SYSLMOD in the step
LKED, that is, to execute the module named
GO' from the library &&GOSET. Consequently,
the first program module will be executed
twice and the second not at all.

You can use one of the following methods
to obviate this difficulty:

1. Delete the library &&GOSET at the end
of the step GO of the first invocation

//J070PGEX JOB
// EXEC PL1LFLG,PARM=

of the cataloged procedure by adding a
DD statement of the form:

//GO.SYSLMOD DD DSNAME=&&GOSET,
// DISP=(OLD,DELETE)

2. Modify the DD statement SYSLMOD in the
second and subsequent invocations of
the cataloged procedure so as to vary
the names of the load modules. For
example:

//LKED.SYSLMOD DO OSNAME=&&GOSET(G01)

and so on.

3. Use the OBJNM· option to give a
different name to each load module.

Example

Figure 8-8 is an example of the use of the
cataloged procedure PL1LFLG. It assumes
that an object module 'already exists in the
data set SOURCE1, which is on the 2311 disk
pack with the serial number 0186.

The PARM parameter in the EXEC statement
nullifies the corresponding parameter of
the first EXEC statement in the cataloged
procedure,; its effect is to suppress most
of the linkage-editor listing.

Two of the DD statements in the example
refer to the procedure step LKED; one of
them overrides the existing statement
SYSLMOO, and the other adds a new statement
SYSIN. The overriding statement SYSLMOO
causes the linkage editor to place the load
module in the existing private library PLIB
and give it the name CAT. The new
statement SYSIN defines the data set that
contains the object module that is to be
link-edi ted,. (The ddname SYSIN is equated
with the name SYSLIN by the DDNAME
parameter of the DD statement SYSLIN in the
cataloged procedure.)

Data to be processed when the program
CAT is executed is introduced in the input
stream and is identified by the DD
statement SYSIN, which is added to the job
step GO.

//LKED.,sYSLMOD DD UNIT=2311,VOLUME=SER=D186,DSNAME=PLIB(CAT),
// DISP=(OLD,PASS)
//LKED.SYSIN DD UNIT=2311,VOLUME=SER=0186,DSNAME=SOURCE1,DISP=OLD
//G0.Sy,sIN DD *
17324 259 7312 841 977 2193 21
/*

Figure 8-8. Invoking Cataloged Procedure PL1LFLG

37052

Chapter 8: cataloged Procedures 99

PERMANENT MODIFICATION

To make permanent modifications to a
cataloged procedure, or to add a new
cataloged procedure, use the system utility
program IEBUPDTE, which is described in IBM
system/360 Operating system: utilities. --­
The following paragraphs discuss some of
the factors you should have in mind when
considering whether to modify the standard
cataloged procedures for your installation.
For further information on writing
installation cataloged procedures, see IBM
system/360 Operating System: Syste~
Programmer's Guide.

In general, installation conventions
will dictate the options that you include
in the PARM, UNIT, and SPACE paramE~ters of
the cataloged procedures, and also the
blocking factors for output data sets.

If your installation is using the MVT
option of the operating system, you may
need to modify some or all of the REGION
parameters and SYSPRINT DD statements in
the cataloged procedures.

'The minimum region size for compilation
should be at least 8K bytes larger than the
largest value that will be specified in the
compiler SIZE option (excluding
SIZE=999999) •

In those cataloged procedures that
invoke the linkage editor, a region size of
96K is specified for the link-edit step.
You can reduce this value if you are using
the E-Ievel linkage edi-tor o.r the 44K
F-level linkage editor. The minimum region
sizes for the E-level linkage editor are:

Linkage Editor

E15
E18
E44

Region

24K
26K
54K

For the F-Ievel linkage editor, the region
size should be at least 8K bytes larger
than the largest value to be specified in
the SIZE option. You must alter the REGION
parameter if you are using the 128K bytes I'

F-Ievel, linkage editor,.

Note that, under MVT the operating
system requires 52K bytes of main storage
within a region when initiating or
terminating a job step. If you specify a
region size of less than 52K bytes,
completion of a job may be held up until
52K bytes are available.

If your installation does not use MVT,
you can delete the REGION parameter from
all cataloged procedures .•

If the data set defined by a DD
statement with the name SYSPRINT may be OIl
a direct-access device, you should add a
SPACE parameter to the statement.

A modified cataloged procedure can be
tested by converting it to an in-stream
procedure and executing it any number of
times during a job. Figure 8-9 shows how
to convert PL1DFC to an in-stream procedure
and execute it twice.

For further information about in-stream
procedures and symbolic parameters, refer
to the publication IBM System/360 Operatil~
System: Job Control Language Reference.

r--,
//CONVERT JOB PL1PROG,MSGLEVEL=1
//PL1COMPL PROC (Symbolic parameters are optional)

(PL1DFC procedure as it exists in the procedure library)

//ENDCOMPL PEND
// EXEC PL1COMPL
//PL1D.SYSIN DO *

(Input Data)

/*
// EXEC PL1COMPL
//PL1D.SYSIN DD *

(Input Data)

1/* L __ J

Figure 8-9, Executing PL1DFC as an In-Stream Procedure

100

Introduction

This chapter describes briefly the nature
and orc:ranization of data sets, and the da'ta
management services provided by IBM
System/360 Operating System, and explains
how thea compiled program produced by the
PL/I Or> compiler uses them.

In IBM System/360 operating System, a data
set is any collection of data that can be
created and accessed by a program. A data
set may be a deck of punched cards; it may
be a sE2!ries of items recorded on magnetic
tape OJ: paper tape; or it may be recorded
on a direct-access device such as magnetic
disk, drum, or data cell. A printed
listinq produced by a program is also a
data SE~t, but it cannot be read by a
program. A PL/I compiled program uses the
data management routines of the operating
system to create and access data sets.

A data set resides on one or more
volume£3. A volume is a standard unit of
auxiliary storage that can be written on or
read by an input/output device (for
exampIE~, a reel of tape, a disk pack, or a
card dE!ck); a unique serial number
identifies each volume (other than a
punched-card or paper-tape volume or a
magnetic-tape volume with either no labels
or nonstandard labels).

A magnetic-tape or direct-access volume
can contain more than one data set;
conversely, a single data set can span two
or more magnetic-tape or direct-access
volumes.

DATA SE~ NAMES

A data set on a direct-access device must
have a name so that the operating system
can refer to it. A data set on magnetic
tape must have a name if the tape has
standard labels (see 'Labels,' below>. A
name consists of up to eight characters,
the first of which must be alphabetic ..
Data sE~ts on punched cards, paper tape,
unlabeled magnetic tape or nonstandard
labeled magnetic tape do not have names.

Chapter 9: Data Sets and PL/I Files

You can place the name of a data set,
with information identifying the volume on
which it resides, in a catalog that exists
in the volume that contains the operating
system. Such a data set is termed a
cataloged data set. To retrieve a
cataloged data set, you do not need to give
the volume serial number or identify the
type of device; you need only specify the
name of the data set and its disposition. ..
The operating system searches the catalog
for information associated with the name
and uses this information to request the
operator to mount the volume containing
your data set ..

If you have a set of related data sets,
you can increase the efficiency of the
search for a particular member of the set
by establishing a hierarchy of indexes in
the catalog. For example, consider an
installation that groups its data sets
under four headings: ENGRNG, SCIENCE,
ACCNTS, and INVNTRY (Figure 9-1). In turn,
each of these groups is subdivided; for
instance, the SCIENCE group has subgroups
called PHYSICS, CHEM, MATH, and BIOLOGY.
The MATH group itself contains three
subgroups: ALGEBRA, CALCULUS, and BOOL. To
find the data set BOOL, the names of all
the indexes of which it is part must be
specified, beginning with the largest group
(SCIENCE)" followed by the next largest
group (MATH), and finally the data set name
BOOL. The names are separated by periods.
The complete identification needed to find
the data set BOOL is SCIENCE.MATH.BOOL;
such an identifier is termed a qualified
~,. The maximum length of a qualified
name is 44 characters, including the
separating periods; each component name has
a maximum length of eight characters. (Do
not use data set names that'begin with the
letters SYS and have a P as the nineteenth
character.. The names assigned by the PCP
operating system to unnamed temporary data
sets are of this form. They are deleted
when the operating system utility IEHPROGM
is used with a SCRATCH statement that
includes the keywords VTOC and SYS.>

Some data sets are updated periodically,
or are logically part of a group of data
sets, each of which is related to the
others in time.. You can relate such data
sets to each other in what is termed a
generation data group.. Each data set in a
generation data group has the same name
qualified by a unique parenthesized
generation number (for example, STOCK(O),
STOCK(-l), STOCK'(-2». The most recently
cataloged data set is generation 0, and the

Chapter 9: Data Sets and PL/I Files 101

preceding generations are -1, -2, and so
on. You specify the number of generations
to be saved when you establish the
generation data group.

I
I r---------T------.L-------T----------,

I I I I
I I I I

ENGRNG SCIENCE ACCNTS INVNTRY
I
I

r------T--~---T-------,
I I I I
I I I I

PHYSICS CHEM MATH BIOLOGY
I
I

r----~-----T--------,
I I I
I I I

ALGEBRA CALCULUS BOOL

Figure 9-1. A Hierarchy of Indexes

~'or example, consider a generation data
group that contains a series of data sets
used for weather reporting and forecasting;
the name of the data sets is WEATHER. The
generations for the group (assuming that
three generations are to be saved) are:

WEATHER (0)
WEATHER (-1)
WEATHER (-2)

When WEATHER is updated, the new d,ata set
is specified to the operating system as
WEATHER(+1). When it catalogs the new data
set, the operating system changes ·the name
to WEATHER(O), changes the former
WEATHER(O) to WEATHER(-1), the former
WEATHER(-1) to WEATHER(-2), and deletes the
former WEATHER(-2).

For instructions on how to crea·te a
generation data group, refer to IBM
system/360 Operating system: Job-COntrol
Language and IBM System/360 operating
system: Utilities.

RECORD FORMATS

The items of data in a data set are
arranged ~~ blocks separated by interblock
gaps (IBG)1; a block is the unit of data
transmitted to and from a data set. Each
block contains one record, part of a record

1Although the term 'interrecord gap' is
widely used in operating system manuals, it
is not used here; it has been replaced by
the more accurate term 'interblock gap.'

102

or several records; a record is the unit of
data transmitted to and from a program.
When writing a PL/I program, you need
consider only the records that you are
reading or writing; but when you describe
the data sets that your program will crea1:e
or access, you must be aware of the
relationship between blocks and records.

If a block contains two or more records,
the records are said to be blocked.
Blocking conserves storage space in a
volume because it reduces the number of
interblock gap's, and it may increase
efficiency by reducing the number of
input/output operations required to process
a data set. Records are blocked and
deblocked automa·tically with the aid of the
data management routines of the operating
system.

The records in a data set must be in one
of three formats: fixed-length,
variable-length, or undefined-length.
Fixed-length and variable-length records
can be blocked .or unblocked;
undefined-length records cannot be blocked.
The following pa:ragraphs describe the thrlee
record formats.

Fixed-Length Records

In a data set with fixed-length (F-format
and FB-format) records, (see Figure 9-2)
all records have the same length. If the
records are blocked, each block contains .an
equal number of fixed-length records
(although the last block may be truncated
if there are insufficient records to fill
it). If the records are unblocked, each
record constitutes a block.

Because it can base blocking and
deblocking on the constant record size, the
operating system can process fixed-length
records faster than variable-length
records. The use of 'standard" FS-format
and FBS-format further optimizes the
sequential processing of a data set on a
direct-access device.. A standard format
data set contains fixed-length records and
must have no embedded empty tracks or short
blocks (apart from the last block). With a
standard format data set, the operating
system can predict whether the next block
of data will be on a new track, and, if
necessary, can select a new read/write head
in anticipation of the transmission of that
block.

Note~

1. A PL/I program never places embedded
short blocks in a data set with
fixed-length records.

Unbloc:ked records (F-format):

r--Block--, r--Block--, r--Block--,

r-----'----, r---------, r--------, r---
I .Reco:rd I lBG I Record I lBG I Record I lBG I L _____ , •• ___ J L _________ J L _________ J L __ _

Blocked records (FB-format):

r-'------------Block------------,

r----------T--------T---------, r--------T---
I RecOJrd I Record I Record I lBG I Record , L __________ .L _______ .L _________ J L ________ J. __ _

Figure 9-2. Fixed-Length Records

2. A data set can be processed as a
st.andard data set even if it was not
cl:eated as such, providing it contains
no embedded short blocks or empty
t~:acks.

VariabJLe..,.Length Records

V-format permits both variable-length
records and variable-length blocks. The
first four bytes of each record and of each
block contain control information for use

V-format:

by the operating system (including the
length in bytes of the record or block).
Variable-length records can have one of
four formats: V, VB, VS, or VBS (Figure
9-3).

V-format signifies unblocked
variable-length records. Each record is
treated as a block containing only one
record, the first four bytes of the block
contain block control information, and the
next four contain record control
information.

r--T--'·----------, r--T--T----------------, r-""--T--
lelle21 Record 1 I lBG le11e21 Record 2 'lBG ,e1Ie2,
, I I I I I , 'I I , L __ J. __ J. ___________ J L __ .L-_.L _______________ J L-._.L __ .L __

VB-format:

r--T--T----------T--T---------------, r--T---r----------
lellc21 Record 1 IC2, Record 2 'lBG ,e1,e2, Record 3
I I I I , I I I , L __ .L __ .1. ___________ .L __ .L ________________ J L __ .L __ .L _________ _

VS-format:

r--T--T'----------, r--T-~-----------------, r--T--T------------,
le11e21 Record 1 I lBG IC11e21 Record 2 , lBG lelle2, Record 2 I lBG
I I I (entire) I I I I (first segment) I I I ,(last segment), L __ .L __ .L. __________ J L __ .L __ .L _________________ J L __ .L __ J. ______________ J

VBS-format:

r--T--T----------T--T-----------------, r--T--T----------------,...--T---------
le11c21 Record 1 le21 Record 2 I lBG lel1e21 Record 2 le21Record 3
I I I (entire) I I (first segment) I I I I (last segment) I I L __ .L __ .L __________ J. __ J. _________________ J L __ J. __ .L ________________ J. __ .L ________ _

el: Block control information
c2: Record or segment control information

Figure 9-3. Variable-Length Records

Chapter 9: Data sets and PL/l Files 103

VB-format signifies blocked
variable-length records. Each block
contains as many complete records as it can
accommodate. The first four bytes of the
block contain block control information,
and the first four bytes of each record
contain record control information~

VS-format is similar to V·-format, but
differs in that the length of a record can
exceed the block length; if necessary, a
record is segmented and continued in
consecutive blocks. Each block contains
only one record or segment of a record.
The first four bytes of the block contain
block control information, and the next
four contain record or segment control
information (including an indicati()n of
whether the record is complete or is a
first, intermediate, or last segment).

VBS-format differs from Vs-format in
that each block contains as many complete
records or segments as it can accommodate;
each block is, therefore, approximately the
same size (although there can be a
variation of up to four bytes, since each
segment must contain at least one byte of
data).

VS-format and VBS-format records are
known as spanned records because they can
start in one block and be continued in the
next. Segmentation and reassembly are
handled automatically by the PL/I (F)
compiler. The use of spanned records
allows you to select a block size,
independently of record size, that will
combine optimum usage of auxiliary storage
space with maximum efficiency of
transmission. Note that spanned records
cannot be specified for stream-oriented
files.

Undefined-Length Records

U-format permits the processing of records
that do not conform to F- and V-formats.
The operating system and the PL/I (F)
compiler treat each block as a record; your
program must therefore perform any blocking
or deblocking that you require.

DATA SET ORGANIZATION

The data management routines of the
operating system can handle five types of
data set, which differ in the way data is
stored within them and in the permitted
means of access to the data. Four of these
types of data set, sequential, indexed
sequential, direct, and telecommunications

104

are recognized by the PL/I (F) compiler ill
the data set organizations CONSECUTIVE,
INDEXED, and REGIONAL; and the file
attribute TRANSIENT respectively; the fift:h
type, partitioned, has no corresponding
PL/I organization~.

In a sequential (or CONSECUTIVE) data
set, records are placed in physical
sequence. Thus, given one record, the
location of the next record is determined
by its physical position in the data set.
Sequential organization is used for all
magnetic tapes, and may be selected for
direct-access devices. Paper tape, punchE:!d
cards, and printed output are sequentially
organized.

An indexed sequential (or INDEXED) data
set must reside in a direct-access volume '.
Records are arranged in collating sequenc.:!,
according to a key that is associated with
every record. An index or set of indexes
maintained by the operating system gives
the location of certain principal records,.
This permits direct retrieval, replacement,
addition, and deletion of records, as well
as sequential processing.

A direct (REGIONAL) data set must be in
a direct-access volume. The records with:in
the data set can be organized by a PL/I
program in three ways: REGIONAL(l),
REGIONAL(2), and REGIONAL(3): in each case,
the data set is divided into regions, each
of which contains one or more records. A
key that specifies the region number and,
for REGIONAL(2) and REGIONAL(3), identifies
the record, permits direct access to any
record; sequential processing is also
possible. There are no indexes.

A telecommunications data set
(associated with a TRANSIENT file in a PL/I
program) is an input or output message
queue set up by the message control
program. A key embedded in the record
provides identification of the sending
terminal.

In a partitioned data set, independent
groups of sequentially organized data, each
called a member, are stored in a
direct-access volume. The data set
includes a directory that lists the
location of each member. Partitioned data
sets are often called libraries.

~Do not confuse the operating system data
set organizations 'sequential' and 'direct'
with the PL/I file attributes SEQUENTIAL
and DIRECT. The attributes refer to how
the file is to be processed, and not to the
way the corresponding data set is
organized.

'I'he PL/I (F) compiler includes no
special facilities for creating and
accessing partitioned data sets; however,
there is ready access to the operating
system :facilities for partitioned data sets
through job control language. Chapter 12,
'Libraries of Data sets,' is a guide to the
use of partitioned data sets for the PL/I
programmer.

LABELS

The operating system uses recorded labels
to identify magnetic-tape and direct-access
volumes and the data sets they contain, and
to store data set attributes (record size,
block size, etc.). The attribute
information must originally come from a DO
statement or from your program. Once the
label is written, however, you need not
specify the information again.

Magnetic-tape volumes can have standard
or nonstandard labels, or they can be
unlabeled. Standard labels have two parts:
the ini,tial volume label, and header and
trailer labels. The initial volume label
identifies a volume and its owner; the
header and trailer labels precede and
follow each data set on the volume. Header
labels contain system information,
device-dependent information (for example,
recording technique), and data-set
characteristics. Trailer labels are almost
identical with header labels, and are used
when maqnetic tape is read backwards.

Direct-access volumes have standard
labels. Each volume is identified by a
volume label, which is stored in a standard
location in the volume. This label
contains a volume serial number and the
address of a volume table of contents
(VTOC). The table of contents, in turn,
contains a label (termed a data set control
block (DSCB» for each data set stored in
the volume.

DATA DEFINITION (DO) STATEMENT

A data definition (DD) statement is a job
control statement that describes a data set
to the operating system, and is a request
to the operating system, for the allocation
of input/output resources. Each job step
must include a DO statement for each data
set tha't is processed by the step.

Chapter 1 describes the format of job
control statements. The operand field of
the DD statement can contain keyword
parameters that describe the location of

the data set (for example, volume serial
number and identification of the unit on
which the volume will be mounted) and the
attributes of the data itself (record
format, etc.).

The DO statement enables you to write
PL/I source programs that are independent
of the data sets and input/output devices
they will use. You can modify the
parameters of a data set or process
different data sets without re-compiling
your program; for example, you can modify a
program that originally read punched cards
so that it will accept input from magnetic
tape merely by changing the DO statement.

Name of DD Statement

The name that appears in the name field of
the DO statement (ddname) identifies the
statement so that other job control
statements and the PL/I program can refer
to it. A ddname must be unique within a
job step; if two DD statements in one job
step have the same name, the second
statement is ignored. With the two
exceptions noted below, a DD statement must
always, have a name.

If the job step in which the DD
statement appears is part of a cataloged
procedure, the ddname must be qualified by
the name of the procedure step. For
example, a DO statement that describes a
data set to be processed in step GO of the
cataloged procedure PL1LFCLG might have the
ddname GO.MSTR. (Note that the PL/I source
program would refer to this DD statement
only by its unqualified name MSTR.)

For input only you can concatenate two
or more sequential or partitioned data sets
(that is, link them so that they are
processed as one continuous data set) by
omitting the ddname from all but the first
of the DO statements that describe them.
For example, the following DO statements
cause the data sets LIST1, LIST2, and LIST3
to be treated as a single data set for the
duration of the job step in which the
statements appear:

//GO.LIST DD DSNAME=LIST1,DISP=OLD
// DO DSNAME=LIST2,DISP=OLD
// DD DSNAME=LIST3,DISP=OLD

When read from a PL/I program the
concatenated data sets need not be on the
same volume, but the volumes must be on the
same type of device, and the data sets must
have similar characteristics (block size,
record format, etc.). You cannot process
concatenated data sets backwards.

Chapter 9: Data Sets and PLII Files 105

Parameters of DD statement

The operand field of the DD statement
contains keyword parameters that you can
use to give the following information:

1. The name of the data set (DSN1~
parameter) •

2. Description of the device and volume
that contain the data set (UNIT,
VOLUME, SPACE, LABEL, and SYSOUT
parameters).

3. Disposition of the data set before and
after execution of the job step (DISP
parameter) •

4. Data set characteristics (DCB
parameter) •

1he following paragraphs summarize the
functions of these groups of parameters.
Appendix B describes the essential
parameters and explains how to use them.
For full details of all the parameters,
refer to IBM svstem/360 op'erating System:
Job Control Language User's Guide, and Job
Control Language Reference

Naming the Data Set

The DSNAME parameter specifies the name
of a newly defined data set or refers to
the name of an existing data set. You need
not specify the DSNAME parameter for a
temporary data set (one that exists only
for the duration of the job step in which
it is created); the operating system will
give it a temporary name.

Describing the Device and Volume

The UNIT parameter specifies the type of
input/output device to be allocated for the
data set. You can specify the type by
giving the actual unit address, the type
number of the unit (e.g., 2400 for magnetic
tape), or by naming a group of uni-ts
established at system generation.

The VOLUME parameter identifies the
volume on which 'the data set resides. It
can also include instructions for mounting
and demounting volumes.

The SPACE parameter specifies the amount
of auxiliary storage required to
accommodate a new data set on a
direct-access device.

The LABEL parameter specifies the type
and contents of the data set labels for
magnetic tape.

The SYSOUT parameter allows you to route
an output data set through a system output

106

device. A system output device is any unit
(but usually a printer or a card punch)
that is used in common by all jobs. The
computer operator allocates all the system
output devices to specific classes
according to, device type and funct,!on. The
usual convention is for class A to refer 1:.0
a printer and class B to a card punch; thE~
IBM-supplied cataloged procedures assume
that this convention is followed.. If you
use the SYSOUT parameter, the only other
information you may have to supply about
the data set is the block size, which you
can specify either in the DCB parameter or
in your PL/I program.

Disposition of the Data Set

The DISP parameter indicates whether a
data set already exists or is new, and
specifies what is to be done with it at the
end of the job step. At the end of a job
step, you can delete a data set, pass it to
the next step in the same job, enter its
name in the system catalog or have it
removed from· the catalog, or you can retain
the data set for future use without
cataloging it.

The REWIND option of the ENVIRONMENT
attribute allows you to use the DISP
parameter to control the action taken when
the end of a magnetic-tape volume is
reached or when a magnetic-tape data set is
closed. Refer to IBM System/360 Operatin<!
System: PL/I (F) Language Reference Manua~
for a description of the REWIND option.

Data set Characteristics

The DCB (data control block) parameter
of the DD statement allows you to describE~
the characteristics of the data in a data
set, and the way it will be processed, at
execution time. Whereas the other
parameters of the DO statement deal chiefly
with the identity, location, and disposal
of the data set, the DCB parameter
specifies information required for the
processing of the records themselves. For
DCB usage, see 'Data Control Block,' belm",.

The DCB parameter contains a list of
subparameters that describe:

1. The organization of the data set and
how it will be accessed (DSORG, OPTCD,
CYLOFL, NCP, NTM, and LIMCT
subparameters) •

2. Device dependent information such as
the recording technique for magnetic
tape or the line spacing for a print.~r
(CODE, DEN, MODE, PRTSP, STACK, and
TRTCH subparameters).

3. The record format (BLKSIZE, LRECL,
RECFM, KEYLEN, and RKP subparameters:>.

4. The number of data management buffers
that are to be used (BUFNO
slJlbparameter> •

5. The printer or card punch control
characters (if any> that will be
inserted in the first byte of each
rE!cord (RECFM subparameter).

You can specify BLKSIZE, BUFNO, LRECL,
NCP, RE:CFM, and TRKOFL in the ENVIRONMENT
attribute of a file declaration in your
PL/I program instead of in the DCB
parameter.

You cannot use the DCB parameter to
overrid.e information already established
for the data set in your PLII program (by
the file attributes declared and the other
attribu.tes that are implied by them). DCB
subparameters that attempt to change
informa"tion already supplied are ignored.
You can use only the DCB subparameters
given above; if you specify any others,
they will be ignored.

Data in the Input Stream

You can introduce data to your program
by including it in the input job stream
with your job control statements. The data
must be- in the form of 80-byte records
(usually punched cards), and must be
immediately preceded by a DO statement with
the single parameter * in the operand
field, for example:

//GO.SYSIN DO *

To indicate the end of the data, include
the delimiter job control statement /*;
this delimiter is not essential if you are
using an operating system with MFT or MVT
because the operating system will generate
//SYSIN DO * statements for other data sets
in the input stream.

If your data includes records that
commence //, use the parameter DATA
instead., for example:

//GO.SYSIN DO DATA

In this case, the delimiter (/*> is always
necessary.

when using an operating system with PCP,
you can include only one data set in the
input stream for a job step, and the DO
statement that defines it must be the last
DD statement in the job step; for MFT and
MV'l', you can include more than one such
data se:"t in a job step. All three variants
of the operating system supply full DCB
subparameters for data sets in the input
stream.

FILES AND DATA SETS

When you write a PL/I program, you do not
need to know which data sets you will use
or where the volumes that contain them will
be mounted. PL/I uses a conceptual 'file'
as a means of accessing a data set. When
an OPEN statement is executed, the file is
associated with a data set through the
TITLE option, which refers to the name of
the DO statement (ddname) that describes
the data set; if the OPEN statement does
not include the TI~LE option, the compiler
takes the DO name from the first eight
characters of the file name, padding it
wi th bl anks if necessary .•

The OPEN statement indicates the name of
the DO statement that describes the data
set to be associated with the file that is
being opened; the DO statement specifies
the type of device that will access the
data set, the serial number of the volume
that contains the data set, and the name of
tbe data set (see Figure 9-4). If the DO
statement refers to a cataloged data set,
it need supply only the name of the data
set and its disposition; the operating
system can use the name to obtain unit and
volume information from the system catalog.

Since the link between the PL/I file and
the data set exists only while the file is
open, the same file can be associated with
different data sets during the execution of
a single program; and the same data set can
be accessed through different files.
Furthermore, the use of a 00 statement to
define the data set, the volume that
contains it, and the device on which they
will be placed, enables you to defer your
choice until execution time; and you can
use the same program to process different
data sets on different devices' without
re-compiling the program.

Operating System Data Management

The object program produced by the PL/I (F)
compiler uses the data management
facilities of the operating system to
control the storage and retrieval of data.
The compiler translates each input and
output statement in a PL/I source program
into a sequence of machine instructions
that includes a branch to the appropriate
PL/I library interface subroutine; this
subroutine initiates the flow of control
through any other PL/I library subroutines
that are required. These subroutines issue

Chapter 9: Data sets and PL/I Files 107

Figure 9-4. Associating a File with a Data Set

108

operating system assembler language macro
instructions:l.. that request the data
management routines of the operating system
to peri:ormthe required input or output
operations. Most of the library
subrout:ines required by a PL/I program are
includE~d with the object program in the
load m()dule produced by the linkage editor.
Howevel~, some library subroutines,
including those that handle the opening and
closinq of files, are loaded dynamically
during the execution of the object program;
the storage they occupy is released as soon
as they have finished their work.

~he operating system data management
routinE!S control the organization,
location, and cataloging of data sets, as
well as the storage and retrieval of the
records they contain. They create and
maintain data set labels, indexes, and
catalo<Js; they move data between main
storagE! and auxiliary storage; and they can
use thE! system catalog to locate data sets
and request the operator to mount and
demount: volumes as required.

BUFl"ERS

The dat:a management routines can provide
areas of main storage (buffers), in which
data carn be collected before it is
transmitted to auxiliary storage, or into
which it can be read before it is made
available to a program. The employment of
buffers permits the blocking and deblocki,ng
of records, and may allow the data
management routines to increase the
efficie!ncy of transmission of data by
anticipating the needs of a program.
Anticit~tory buffering requires at least
two buf:fers: while the program is
processing the data in one buffer, the next
block of data can be read into another.

'l'he operating system can further
increase the efficiency of transmission in
a program that involves many input/output
operations by employing chained scheduling.
In chai.ned scheduling, a series of read or
write operations are chained together and
treated as a single operation. For chained
scheduling to be effective, at least three
buffers are necessary. (TO specify chained
scheduling, code OPTCD=C in the DCB
subparameter of the DO statement: See
Appendi.x B.)

The data management routines have two
ways of making data that has been read into

:l..The macro instructions are described in
IBM system/360 Operating system: Supervisor
and at:a Management Macro Instructions.

a buffer available to a program. In the
move mode, the data is actually transferred
from the buffer into the area of main
storage occupied by the program. In the
locate ~ode, the program can process the
data while it is still in the buffer; the
data management routines pass the address
of the buffer to the program to enable it
to locate the data. Similarly a program
can move output data into the buffer or it
can build the data in the buffer itself.

ACCESS METHODS

Data management has two techniques for
transmitting data between main storage and
auxiliary storage: the queued technique and
the basic technique,.

The queued access technique deals with
individual records, which it blocks and
deblocks automatically_ A record is
retrieved by the GET macro instruction and
written by the PUT macro instruction. The
first time a GET macro instruction is
issued, the data management routines place
a block of records in an input buffer and
pass the first record to the program that
issued the instruction; each succeeding GET
passes another record to the program. When
the input buffer is empty, it is
automatically refilled with another block.
Similarly, the PUT macro instruction places
records in an output buffer and, when the
buffer is full, writes out the records.
Since the queued access technique brings
records into main storage before they are
requested, it can be used only for
sequential processing.

The basic access technique uses the READ
and WRITE macro instructions for input and
output. These instructions move blocks,
not records. When a READ macro instruction
is issued, the data management routines
pass a block of data to the program that
issued the instruction; they do not deblock
the records. Similarly, a WRITE macro
instruction transmits a block to auxiliary
storage. However, when the PL/I library
subroutines employ the basic technique,
they deblock the input records before
passing them to the PL/I program, and block
output records before issuing a WRITE macro
instruction.

The combination of data-set organization
and an access technique is termed an access
method. The access methods used by the
PL/I subroutine library are:

QSAM: Queued sequential access method

QISAM: Queued indexed sequential access
method

Chapter 9: Data sets and PL/I Files 109

r---------------T----------------------------------T------------,
I Data Set I File Attributes I Access I
I Organization I I Methods I
~---------------+------------T--------T------------+------------~
I I I INPUT I BUFFERED I QSAM I
I CONSECUTIVE I SEQUENTIAL I OUTPUT ~------------+------------~
I I I UPDA'rE I UNBUFFERED I BSAM I
~---------------+------------+--------+------------+------------~
I I I INPUT I BUFFERED I I
I I SEQUENTIAL I OUTPUT I or I QISAM I
I INDEXED I I UPDATE I UNBUFFERED I I
I ~------------+-----.---+-----------+_----------.-~
I I DIRECT I INPU'r I I BISAM I
I I I UPDATE I I I
~---------------+------------+-----.---+-.-----------+-----------,-~
I I I INPU'r I I I
I I SEQUENTIAL I UPDA'rE I BUFFERED I QSAM/BSAM1. I
I I ~-----,---~ or ~------------~
I I I OUTPUT I UNBUFFERED I BSAM I
I REGIONAL ~-----------+--------+-----------+_-----------~
, , I INPUr , I I
, I DIRECT , OUTPUT I I BDAM I
I I I UPDATE I I I
~---------------+------------+--------+------------+------------~
, TELEPROCESSING, TRANSIENT I INPUT I BUFFERED I QTAM I
I I I OUTPUT I I I
t---------------~------------~--------~-·-----------~------------~
I1.QSAM is used for REGIONAL(l) BUFFERED but not KEYED. I l ___ J

Figure 9-5. Data Management Access Methods for Record-Oriented Transmission

BSAM: Basic sequential access method

BISAl-l: Basic indexed sequential access
method

BDAM: Basic direct access method

QTAM: Queued telecommunications access
method

'I'he PL/I library subroutines us,e QSAM
for all stream-oriented transmission. They
implement PL/I GET and PUT statements by
transferring the appropriate number of
characters from or to the data management
buffers, and use GET and PUT macro
instructions in the locate mode to fill or
empty the buffers. (For paper tape,
however, the library uses the move mode to
permit translation of the transmitt,ed
characters before passing them to t,he pr.J/I
program.)

Figure 9-5 lists the access methods that
the PL/I library subroutines use for
record-oriented transmission.

LJote that an access method identified
with one data set organization can be used
to process a data set usually thought of as
organized in a different manner. E'or
example, the PLII (F) compiler uses BSAM
and QSAM for the sequential processing of
REGIONAL data sets.

110

DATA CONTROL BLOCK

A data control block (DCB) is an area of
main storage that contains information
about a da ta set and the volume that
contains it. The data management routines
of the operating system refer to this
information when they are processing a data
set; no data set can be processed unless
there exists a corresponding DCB. For a
PL/I program, a PL/I library subroutine
creates a DCB for the associated data set
when a file is opened.

A data control block contains two types
of information: data set characteristics
and processing requirements. The
characteristics include record format,
record size, block size, and data set
organization. The processing information
may specify the number of buffers to be
used, and it may include device-dependent
information (for example, printer line
spacing or magnetic-tape recording
density), and special processing options
that are available for some data-set
organizations.

The information in the DCB comes from
three sources:

1. The file attributes declared
implicitly or explicitly in the PL/I
program. However, when link-editing
more than one load or object module

together, take care that the first
m()dule to be included contains
dc:!clarations of any files which are
referred to but not declared in
subsequent modules.

2. The data definition (DO) statement
that describes the data set.

3~ 11: the data set" already exists; the
data set labels.

OPENING A FILE

'I'he eXE!cution of aPL/I OPEN statement
associcttes a file with a data set. This
requirE!s the merging of the information
describing the file and the data set. If
any conflict exists between file attributes
and dat;a set characteristics the
UNDEFINEDFILE condition will be raised.

'The data management subroutines of the
PL/I library create a skeleton data control
block for the data set, and use the file
attributes from the DECLARE and OPEN
stateroemts, and any attributes implied by
the declared attributes, to complete the
data cClntrol block as far as possible
(F'igurE~ 9-6). They then issue a data
managenlent OPEN macro instruction, which

calls the operating system data management
routines to check that the correct volume
is mounted and to complete the data control
block. The operating system routines
examine the data control block to see what
information is still needed and then look
for this information, first in the DO
statement, and finally, if the data set
already exists and has standard labels, in
the data set labels. For new data sets,
the open routines begin to create the
labels (if they are required) and to fill
them with information from the data control
block.

Neither the DO statement nor the data
set label can override information provided
by t.he PLII pr,ogram: nor can the data set
label override information provided by the
DD statement.

When the DeB fields have been filled in
from these sources, control returns to the
PL/I library subroutines. If any fields
have still not been filled in, the PL/I
OPEN subroutine provides default
information for some of them: for example,
if LRECL has not been specified, it is now
provided from the value given for BLKSIZE.

------------------------,
PL/I PROGRAM

DD STATEMENT

DATA SET LABEL

i DeL MASTER FILE ENV(F(400~.40)); i
I I

~_c:~~r::I~~~~~:E!!; ______ ~_

1

DA TA CONTROL BLOCK

-:------ - - ---- -.,------,
I Record format 1 FB I
'- - - - __ - _______ L _____ I

r - - - - - ~ - - - - - - - - - - ... - - - - - --, I ,
I / /MASTER DD UNIT=2400, ' I Block size ,400 :
I ,
1 VOLUME=S 791, I 1--- - - - - - - - - - -f. - - - - --t

I DSNAME=LIST,' I Record length ' 40 I
I 1 I" I

i ;~~:~~~::~3.% T" 2ic~~~~~~---~~~r---~~~J
1 . LRECL=100) I I Number of buffers I 3 1
~-_- __ -----_---------_~ I I' ,- - - - - - - - - - - - - r - - - - - -K. Recording density , 1600 :

:-;e~~r~ ~:r::;:; - - - -7--. ----I 3 L -- - - - - - - - - - __ .1 __ - -- ...

: Record length= 1 00 I

I Blocking fac tor =4 :
, Recording density=1600 I L _______________ " _______ J

Note: Note the order in which information from one source is overwritten by that
from another.

Figure 9-6. How the Operating system completes the Data Control Block

Chapter 9: Data Sets and PLiI Files 111

CLOSING A FILE

The execution of a PLiI CLOSE statement
dissociates a file from the data set with
which it was associated. The PL/I library
subroutines first issue a data management
CLOSE macro instruction and then w when
control returns from the operating system
data management routines, release the data
control block that was created when the
file was opened. The data management
routines complete the writing of labels for
new data sets and update the labels of
existing data sets.

Auxiliary Storage Devices

The following paragraphs state the record
formats that are acceptable for various
types of auxiliary storage device w and
summarize the salient operational features
of these devices.

CARD READER AND PUNCH

F-format w V-format w and U-format records
are acceptable to both the card reader and
punch; the control bytes of V-format
records are not punched. Any attempt to
block records is ignored.

£ach punched card corresponds to one
record; you should therefore restrict the
maximum record size to 80 bytes (EBCDIC
mode) or 160 bytes (column-binary mode)"
To select the mode w use the MODE
subparameter of the DO statement; if you
omit this subparameterw EBCDIC is assumed.
(The column-binary mode increases the
packing density of information on a cardw
punching two bytes in each column. Note
that only six bits of each byte arE~
punched; on input w the two high-order bits
of each byte are set to zero; on output,
the two high-order bits are lost.)

'Ihe card Read Punch 2540 has five
hoppers (stackers) into which cards are fed
after reading or punching. Two stackers
accept only cards that have been read, and
two others accept only those that have been
punched; the fifth (center) stacker can
accept either cards that have been read or
those that have been punched. The two
stackers in each pair are numbered 1 and 2,
and the center stacker is numbered 3
(Figure 9-7).

The Card Read Punch 2520 has two
stackers w into which cards can be read or

112

punched. The Card Reader 2501 has only on.e
stacker.

r-------READ------,

I
I

111 2 1 3 1 2 111 L _____ ~ _____ ~ _____ ~ _____ ~ _____ J

L------PUNCH------J

Figure 9-7. Card Read Punch 2540: Stacker
Numbers

cards are normally fed into the
appropriate stacker 1 after reading or
punching. You can use the STACK
subparameter of the DO statement to select
an alternative pocket for reading or
punching. For punching onlyw you can
select the stacker pocket dynamically by
inserting a ANS or System/360 code in the
first byte of each record; you must
indicate which code you are using in the
RECFM subparameter of the DO statement.
The control character is not punched.

PAPER TAPE READER

The paper tape reader accepts F-format and.
U-format records; each U-format record is
followed by an end-of-record character.
You can use the CODE subparameter of the DO
statement to request translation of data
from one of the six standard paper tape
codes to system/360 internal representation
(EBCDIC). Any character found to have a
parity error is not transmitted.

PRINTER

The printer accepts F-format, V-format w and
U-format records; the control bytes of
V-format records are not printed. Each
line of print corresponds to one record;
you should therefore restrict your record
size to the length of one printed line.
Any attempt to block records is ignored.

You can use the PRTSP subparameter of
the DO statement to select the line spacing
of your output w or you can control the
spacing dynamically by inserting a ANS or
System/360 code in the first byte of each
record; you must indicate which code you
are using in the RECFM subparameter of thE~
DO statement. The control character is not
printed. If you do not specify the line
spacing w single spacing (no blanks between
lines) is assumed.

MAGNETIC TAPE

Nine-track magnetic tape is standard in IBM
System/360, but some 2400 series
magnetic-tape drives incorporate features
that facilitate reading and writing 7-track
tape. ~rhe translation feature changes
charactc~r data from EBCDIC (the 8-bit code
used in system/360) to BCD (the 6-bit code
used on 7-track tape) or vice-versa. The
data cOllversion feature treats all data as
if it w~:!re in the form of a bit string,
breakinq the string into groups of eight
bits fOJr reading into main storage, or into
groups of six bits for writing on 7-track
tape; tile use of this feature precludes
reading the tape backwards. If you want to
employ 1:ranslation or data conversion,
include the TRTCH (tape recording
technique) subparameter in your DO
statement.

You Gan specify F-format, V-format, or
U-format. records for 9-track magnetic tape,
but V-format records are acceptable on
7-track tape only if the data conversion
feature is available. (The data in the
control bytes of V-format records is in
binary form; in the absence of the data
conversion feature, only six of the eight
bits in each byte are transmitted to
7-track tape.)

The maximum recording density available
depends on the model number of the tape
drive that you use; single-density tape
drive units have a maximum recording
density of 800 bytes per inch, and
dual-density tape drive units have a
maximum of 1600 bytes per inch. For
9-track tape, a single-density drive offers
only the 800 bytes per inch density; the
standarcl density for a dual-density drive
is 1600 bytes per inch, but you can use the
subparameter DEN (density) of the DO
statement to specify 800 bytes per inch.
For 7-tl7ack tape, the standard recording
density for both types of drive unit is 800
bytes pE~r inch; you can use the DEN
subparameter to select alternatives of 200
or 556 bytes per inch.

Note: When a data check occurs on a
magnetic-tape device with short length

records (12 bytes on a read and 18 bytes on
a write), these records will be treated as
noise.

DIRECT-ACCESS DEVICES

Direct-access devices accept F-format,
V-format" and U-format records.

The storage space on these devices is
divided into conceptual cylinders and
tracks. A cylinder is usually the amount
of space that can be accessed without
movement of the access mechanism, and a
track is that part of a cylinder that is
accessed by a single read/write head. For
example, a 2311 disk pack has ten recording
surfaces, each of which has 200 concentric
tracks; thus, it contains 200 cylinders,
each of which includes ten tracks.

When you create a new data set on a
direct-access device, you must always
indicate to the operating system how much
auxiliary storage the data se1=. will
require. The way to do this is to use the
SPACE parameter of the DD statement to
allocate space in terms of blocks, tracks,
or cylinders. If you request space in
terms of tracks or cylinders" bear in mind
that space in a data set on a direct-access
device is occupied not only by blocks of
data, but by control information inserted
by the.operating system; if you use small
blocks, the control information can result
in a considerable space overhead. The
following reference cards contain tables
that will enable you to determine the
amount of space you will require:

2301 Drum storage Unit, Form X20-1717

2302 Disk storage Drive, Form X20-1706

2303 Drum Storage Unit, Form X20-1718

2311 Disk Storage Drive, Form X20-1705

2314 Storage Facility, Form X20-1710

2321 Data Cell Drive, Form X20-1704

Chapter 9: Data Sets and PL/I Files 113

Chapter 10: Stream-Oriented Transmission

Stream-oriented transmission allows a PLII
program to ignore block and record
boundaries and treat a data set as a
continuous stream of data items in
character form. For output, the data
management subroutines of the PL/I library
convert the data items from the program
variables into character form if necessary,
and build the stream of characters into
records for transmission to the data set.
For input, the library subroutines ·take
records from the data set and separate them
into the data items requested by the
program, converting them into the
appropriate form for assignment to ·the
program variables. Because stream-oriented
transmission always treats the data in a
data set as a continuous stream, it can be
used only to process data sets with
CONSECUTIVE organization.

Record Format

Although in stream-oriented transmission a
PL/I program sees a data set as a
continuous stream of data items, the data
set actually comprises a series of discrete
records in one of the three formats,
fixed-length, variable-length, and
undefined-length. Fixed-length and
variable-length records can be blocked or
unblocked; variable-length records,
however, cannot be spanned.

When you create a data set, you must
specify the record format either in your
PL/I program or in a DD statement. In the
PL/I program, you can state the record
format directly in the ENVIRONMENT
attribute, or you can indicate it
indirectly in the LINESIZE option of an
OPEN statement; the ENVIR.ONMENT attribute
and the LINESIZE option are described in
IBM System/360 Operating system: PLII (F)
Language Reference Manual. To specify the
record format in a DD statement, use the
DCB subparameters RECFM, BLKSIZE, and
LRECL; these subparameters are described in
Appendix B.

FIXED-LENGTH RECORDS

In a data set with fixed-length records,
each record, except possibly the last,
contains the same number of characters.
Although the options and format items PAGE,

114

LINE, and SKIP, and the format item COLUMN
can cause a new output record (line) to be
started, the current record is not
truncated, but is padded to the specified
length with blanks. The minimum length of
a fixed-length record is 1 byte, except fo:r
magnetic tapes of density 800 per inch or
less, in which case records of this length
are treated as noise,.

VARIABLE-LENGTH RECORDS

Variable-length output records are filled
with characters up to the maximum length
specified, unless they are truncated by tbe
execution of one of the options or format
items PAGE, LINE" SKIP, or COLUMN. If
necessary, a variable-length record is
padded with blanks to ensure that it
contains the minimum ten characters of data
that are required by the operating system.
(With the eight bytes required for block
and record control fields, this gives a
minimum block size of 18 bytes.)

UNDEFINED-LENGTH RECORDS

Undefined-length records are processed in ia
similar manner to variable-length records,
but, since the minimum length for these
records is 1 byte, padding is never
required.. In the case of magnetic tapes o:f
density 800 bytes per inch or less, i-byte
records are treated as noise.

CHOICE OF RECORD FORMAT

For a data set that is intended to be
printed, you can usefully relate the record
size to the length of the printed line (fo:r
example. by using the LINESIZE option);
this is discussed under 'PRINT Files,'
below. Similar considerations apply when
you use the SKIP option or format item or
the COLUMN format item with a non-PRINT
file. For all other data sets that you
create by stream-oriented transmission,
program considerations do not affect the
choice of record format (unless the data
set will later be processed by
record-oriented transmission). You will
not normally gain any advantage by blocking
your records; for unblocked records,

specify a block size, but no record size.
Choose the maximum block size consistent
with the amount of main storage available
to your program and with the
characteristics of the output device you
are using. (The larger the block size, the
fewer requests need be made to the data
management routines for the transmission of
a block of data to or from auxiliary
storage; such requests carry a substantial
time overhead.)

E'or a direct-access device, the ideal
block size is the capacity of one track:
th,is co:mbines maximum transmission
efficiency with optimum use of auxiliary
storage space. A block can exceed the
capacity of one track only if your
installation includes the track overflow
feature; this allows the block to be
continu1ed on the next track. Although
track overflow can increase data-packing
efficiency, it reduces transmission speed.
'1'he use of small blocks wastes storage
space because a block of system information
precede3 each block of data on the track.
For ex~nple, there are more than 60 bytes
of system information for each block in the
2311 disk drive: a'track can contain one
block of 3625 bytes, but only 55 blocks of
five b~tes (i.e., 275 bytes of data).
(Refer ito the reference cards listed under
'Direct--Access Devices,' in Chapter 9, for
further information.)

Unit record devices (card readers and
punches I' and printers) and paper-tape
readers do not support blocked records.
With a unit record device, each record
begins on a new card or line regardless of
the blocking factor. For example, if you
specify LRECL=20, BLKSIZE=SO for a card
punch, only the first 20 columns of each
card will be punched: if you read these
cards in, the stream will contain 60 blank
charactE~rs between each of the original
records.. If the record size exceeds the
capacity of a card (SO bytes) or the
maximum length of a line (132 characters
for the 1403 printer), the record is
truncatE~d.

In gEmeral, fixed-length records are
transmi1:ted faster than variable-length or
undefinE!d-length records. For maximum
efficiency in sequential processing of a
data s~; on a direct-access device, specify
'standard' format records (RECFM=FS or
RECFM=FBS). If you use variable-length
records" VBS-format allows you to specify
block size independently of record size
(and thus to select the optimum block
size).

Buffers

Stream-oriented transmission requires the
use of at least one data-management buffer.
and ideally at least two buffers. You may
gain some advantage by specifying three
buffers for a low-speed device such as a
printer, and you should specify at least
three if you use chained scheduling. (For
an explanation of chained scheduiing" see
Chapter 9 'Buffers'.)

You can request buffers either in your
PL/I program (in the ENVIRONMENT attribute)
or in a DD statement (BUFNO subparameter).
If you omit the information or specify zero
buffers, the operating system will allocate
two buffers.

DCB Subparameters

Figure 11-2 lists the DCB subparameters
that are applicable to a data set processed
by stream-oriented transmission; they are
described in Appendix B. You can specify
record format,. block size, record size, and
number of buffers in the ENVIRONMENT
attribute instead of in the DeB parameter p

Creating a Data Set

Any data set that you create using
stream-oriented transmission must have
CONSECUTIVE organization, but it is not
negessary for you to specify this in the
ENVIRONMENT attribute, since CONSECUTIVE is
the default organization.

Your program deals only with data items,
and not with records and blocks as they
will exist in the data set. Accordingly,
you need not concern yourself with the
actual structure of the data set beyond
specifying "a block size (which is always
necessary), unless you propose to use
record-oriented transmission to access the
data set at a later date.

To create a data set, you must give the
operating system certain information either
in the DD statement that defines the data
set or in your PL/I program. The following
paragraphs indicate the essential
information, and discuss some of the
optional information you may supply.
Appendix B describes the parameters
referred to, and explains how to code them:
the ENVIRONMENT attribute and the LINESIZE
option are discussed fully in IBM
System/360 Operating system: PL/I (F)
Language Reference Manual.

Chapter 10: Stream-Oriented Transmission 115

ESSENTIAL INFORMATION

You must supply the following information:

1. Device that will write or punch your
data set (UNIT, SYSOUT, or VOLUME
parameter of DO statement).

2. Block size: you can give the block
size in the DO statement (BLKSIZE
subparameter of DCB parameter), or in
your PL/I program (in the ENVIRONMENT
attribute or the LINESIZE option).

Note: If you do not specify a record
size, unblocked records are assumed
and the record size is determined from
the block size. If you do not specify
a record format, U- :format is assumed
(except for PRINT files: see 'PRINT
Files,' below).

If you want to keep a magnetic-tape or
direct-access data set (that is, you do not
want the operating system to delete it at
the end of your job), the DO statement must,
name the data set and indicate how it is to
be disposed of (DSNAME and DISP
parameters). The DISP parameter alone will
suffice if you want to use the data set in

a later step but will not need it after thE~
end of your job.

If you are creating a data set on a
direct-access device, you must specify the
amount of space required for it (SPACE
parameter of DD statement).

If you want your data set written on a
particular magnetic-tape or direct-access
volume, you must indicate the volume serial
number in the DD statement (SER or REF
subparameter of VOLUME parameter). If you
do not supply a serial number for a
magnetic-tape data set that you want to
keep, the operating system will allocate
one and request the operator to print the
number on your program listing.

If your data set is to follow another
data set on a magnetic-tape volume, you
must use the LABEL parameter of the DD
statement to indicate its sequence number
on the tape.

Figure 10-1 summarizes the essential
parameters of the DO statements used for
creating a data set with stream-oriented
transmission.

r--------------------T------'--'.
I 1 Parameters of DO Statem~t ,
I storage Device ~------,-------------T-------------------.....,.---------------------·1
I , When required I What you must state , Parameters I
~-------------------+------,------.--------+--------------------+--------------------·1
I I I Output device I UNIT= or SYSOUT= or I
I All I Always' I VOLUME=REF= ,
I I ~---------------------+_---------------------~ I I I Block size~ I DCB=BLKSIZE= I
~--------------------+-------------------+---------------_._--+-------------------_.,
I Direct access only I Always I storage space I SPACE= I
I I I required I I
~------------------+------------------+-------------------+------------------_.,
I Magnetic tape only I Data set nat first I Sequence number I LABEL= I
I I in volume and for I I I
1 I magnetic tapes t~hat I I ,
I I do not have I I I
I , standard labels , I I
~------------------+----------------,---+---------------------+-------------------_.,

Diz:'ect access and
standard labeled
magnetic tape

I Data set to be used I I I
I by another job step I Disposition I DISP= ,
I but is not required I I I
I after end o:f job J I I
~------------,---------+-----------------,---+-------------------i
, Data set to be kept I Disposition , DISP= ,
I after end o:f job ~------------------+--------------------i , I Name of dataset I DSNAME= ,
~---------------------+---------------------+_--------------------i I Data set to be on I Volume serial number, VOLUME=SER= or ,
I particular 'volume I I VOLUME=REF= I

~--------------------J.-------------------J.---------------------L---------------------,f
'~Alternatively, you can specify the block size in your PL/I program by using either I
I the ENVIRONMENT attribute or the :LINESIZE option. ,
L ______________ ~---------------__ --__ -------------------------________________________ J

Figure 10-1. Creating a Data Set: :Essential Parameters of DO Statement

116

//J0301?GEX JOB
/ /COLE1~X EXEC PL1LFCLG, PARM. PL1L=' SIZE=99999 9' , PARM. LKED=' LIST'
//PL1L .. SYSIN DD *

PEOPLE: PROC OPTIONSCMAIN):
DCL WORK FILE STREAM OUTPUT,

1 REC,
2 FREC,

3 NAME CHAR(20),
3 NUM CHAR(1),
3 PAD CHAR(24),

2 VREC CHAR(35),
IN CHAR (SO) DEF REC;

ON ENDFILE(SYSIN) GO TO FINISH:
OPEN FILE(WORK) LINESIZE(400);

MORE: GET FILE(SYSIN) EDIT (IN) (A(80»:
PUT FILE(WORK) EDIT(IN)(A(45+7*mJM»;
GO TO MORE;

FINISH: CLOSE FILE(WORK);
END PEOPLE;

/*
//GO.WORK DD UNIT=2311,SPACE=(400,10),DISP=(NEW,KEEP),DSNAME=PEOPLE,
// VOLUME=SER=D186
//GO.SYSIN DD *
R.C.ANDERSON
B.F.BENNETT
R. E.COI.E
J.F.COOPER
A.J.COHNELL
E.F.FERRIS
/*

0
2
5
5
3
4

202848 DOCTOR
771239 PLUMBER
698635 COOK
418915 LAWYER
237837 BARBER
158636 CARPENTER

VICTOR HAZEL
ELLEN VICTOR JOAN ANN OTTO
FRANK CAROL DONALD NORMAN BRENDA
ALBERT ERIC JANET
GERALD ANNA MARY HAROLD

Figure 10-2. Using Stream-Oriented Transmission to Create a Data set

EXAMPLE records the data set contains; or you can
open the file for output, and extend the
data set by adding records at the end.

Figure 10-2 illustrates the use of
stream-'oriented transmission to create a
data se~t on a 2311 disk drive. The data
read from the input stream by the standard
file SYSIN includes a field VREC that
contain.s five unnamed 7-character
subfields; the field NUM defines the number
of these subfields that contain
information. The output file WORK
transmi"ts to the data set the whole of the
field FREC and only those subfields of VREC
that contain information. The data set has
U-forma"t unblocked records (by default)
with a maximum block size of 400 bytes
(defined by the LINESIZE option in the
statement that opens the file WORK). All
blocks except the last will contain exactly
400 bytes.

Accessing a Data Set

A data set that you access using
stream-oriented transmission need not have
been created by stream-oriented
transmission, but it must have CONSECUTIVE
organization, and all the data in it must
be in character form. You can open the
associated file for input, and read the

To access an existing data set, you must
identify it to the operating system in a DD
statement. The following paragraphs
indicate the essential information you must
include in the DD statement, and discuss
some of the other information you may
supply: this discussion does not apply to
data sets in the input stream, which are
dealt with in Chapter 9 "Data Sets and PL/I
Files". Appendix B describes the
parameters referred to, and tells you how
to code them.

ESSENTIAL INFORMATION

If the data set is cataloged, you need
supply only the following information in
the DO statement:

1. The name of the data set (DSNAME
parameter). The operating system will
locate the information that describes
the data set in the system catalog,
and, if necessary, will request the
operator to mount the volume that
contains it.

Chapter 10: Stream-Oriented Transmission 117

r---------------------------------------.--, I Parameters of DD statement I
~-----------------------------------T-------------------------T-------------------------~ I When required I What you must state I Parameters I
~-----------------~--------------.+---.---------------------+-------------------------~
I I Name of data set I DSNAME= I
I Always ~-------------------------+-------------------------~
I I Disposition of data set I DISP= I
~-----------------T-----------------·+-------------------------+-------------------------~ I 'All devices I Input device I UNIT= or VOLUME=REF= I
IIf data set not ~-----------------+-------------------------+_------------------------~ I cataloged 'Standard labeled' I ,
I Imagnetic tape andl Volume serial number 'VOLUME=SER= I
I Idirect access , , I
~-----------------~-----------------.+-------------------------+-------------------------~ ,Magnetic tape: if data set not , sequence number I LABEL= I
I first in volume or which does not , , Ii
I have standard labels I , II
~----------------------------------.-+-------------------------+-----------------------~I
I If data set does not have standard , Block size2.. I DCB=BLKSIZE= II
I labels , I ~

~-----------------------------------~------------------------~-------------------------~ I2..Alternatively, you can specify the block size in your PL/I program by using either II
I the ENVIRONMENT attribute or the J .. INESIZE option., II l ___ J,

Figure 10-3. Accessing a Data Set: Essential Parameters of DD statement

2. Confirmation that the data set already
exists CDISP parameter). If you are
opening the data set for output with
the intention of extending it by
adding records at the end, code
DISP=MOD; otherwise, to open the data
set for output will result in it being
overwritten.

If the data set is no·t cataloged" you
must, in additon, specify the devic~:! that
will read the data set and, for
magnetic-tape and direct-access devices,
give the serial number of the volume that
contains the data set (UNIT and VOLUME
parameters).

If the data set is on paper tape or
punched cards, you must specify the block
size either in the DD statement (BLKSIZE
subparameter) or in your PL/I program
CENVIRONMEN'I' attribute).

If the data set follows another data set
on a magnetic-tape volume, you must use the
LABEL parameter of the DD statement to
indicate its sequence number on the tape.

figure 10-3 summarizes the essential
parameters of the DO statements for data
sets accessed using stream-oriented
transmission.

MAGNETIC TAPE WITHOUT STANDARD LABELS

If a magnetic-tape data set has nonstandard
labels or is unlabeled, you must specify

118

the block size either in the DD statement
(BLKSIZE subparameter) or in your PL/I
program (ENVIRONMENT attribute). But the
DSNAME parameter is not essential if the
data set is not cataloged.

PL/I data management includes no
facilities for processing nonstandard
labels. To the operating system, such
labels appear as data sets preceding or
following your data set. You can either
process the labels as independent data setB
or use the LABEL parameter of the DD
statement to bypass them: to bypass the
labels, code LABEL=(2,NL) or LABEL=(,BLP).

RECORD FORMAT

When you use stream-oriented transmission
to read a data se't, you do not need to know
the record format of the data set (except
when you must specify a block size); each
GET statement transfers a discrete number
of characters to your program from the dati:t
stream.

If you do give record-format
information, it must be compatible with the
actual structure of the data set. For
example, if a data set was created with
F-format records, a record size of 600
bytes, and a block size of 3600 bytes, you
can access the records as if they were
U-format with a maximum block size of 3600
bytes; but if you specify a block size of
3500 bytes, your data will be truncated.

//J033PGEX JOB
/ /COLEE~X EXEC PL1LFCLG,PARM. PL1L=' SIZE=999999' ,PARM.LKED=" LIST'
//PL1L.SYSIN DD *

PEOPLE:: PROC OPTIONS (MAIN);
DCL WORK FILE STREAM INPUT,

1 REC,
2 FREC,

3 NAME CHAR(20),
3 NUM CHAR(2),
3 SERNO CHAR (7) ,
3 PROF CHAR(16),

2 VREC CHAR(35),
IN CHAR(80) DEF REC;

ON ENDFILE(WORK) GO TO FINISH;
OPEN FILE(WORK):

MORE: GET FILE(WORK) EDITCIN,VREC)CA(45),A(7*NUM»;
PUT FILE(SYSPRINT) SKIP EDIT (REC) (A);
GO TO MORE;

FINISH: CLOSE FILE(WORK):
END PEOPLE;

/*
//GO.WORK DD DSNAME=PEOPLE,DISP=COLD,KEEP),UNIT=2311,VOLUME=SER=D186

Figure 10-4. Using Stream-Oriented Transmission to Access a Data Set

EXAMPLE:

The program im Figure 10-4 reads the data
set cre!ated in Figure 10-2 and uses the
standard file SYSPRINT to list the data it
contai~~. CSYSPRINT is discussed later in
this chapter.) Each set of data is read,
by the GET statement, into two variables:
FREe, "'hich always contains 45 characters;
and VRE:C, which contains the number of
charact.ers generated by the expression
7*NUM. Note that the DISP parameter of the
DD stat,ement could read simply DISP=OLD; if
the second term is omitted, an existing
data se~t will not be deleted.

PRINT Files

Both the operating system and PL/I include
feature!s that facilitate the formatting of
printed! output. The operating system
allows you to use the f.irst byte of each
record for a printer control character: the
control characters, which are not printed,
cause t,he printer to skip to a new line or
page. In PL/I, the use of a PRINT file
provide!s a convenient means of controlling
the layout of printed output in
stream-'oriented transmission: the compiler
automat:ically inserts printer control
charact,ers in response to the PAGE, SKIP,
and LI~~ options and format items.

You can apply the PRINT attribute to any
STREAM OUTPUT file, even if you do not

intend to print the associated data set
directly,. When a PRINT file is associated
with a magnetic-tape or direct-access data
set, the control characters have no affect
on the layout of the data set, but appear
as part of the data in the records.

The compiler reserves the first byte of
each record transmitted by a PRINT file for
an ANS control character, and inserts the
appropriate characters automatically.
Figure 11-5 lists the ANS control
characters; a PRINT file uses only the
fo~lowing five characters:

New Page
Single line space
Double line space
Triple line space
Suppress space

1
b (blank) o
+

The compiler handles the PAGE, SKIP, and
LINE options or format items by padding the
remainder of the current record with blanks
and inserting the appropriate control
character in the next record. For V- or
U-format files, this padding is not done if
the current line length is equal to or
greater than the length of a noise record.
If SKIP or LINE requests more than a triple
line space, the compiler inserts sufficient
blank records with appropriate control
characters to accomplish the required
positioning,. In the absence of a printer
control option or format item, when a
record is full the compiler inserts a blank
code (single line space) in the first byte
of the next record.

Chapter 10: Stream-Oriented Transmission 119

RECORD FORMAT

You can limit the length of the printed
line produced by a PRINT file eithE!r by
specifying a record size in the ENVIRONMENT
attribute or in a DD statement, or by
'giving a line size in an OPEN statement.
The record size must include the extra byte
for the printer control character, that is,
it must be one byte larger than the length
of the printed line (five bytes larger :for
V-format records). The value you specify
in the LINESIZE option refers to the number
of characters in the printed line; the
compiler adds the control bytes.

The blocking of records has no affect on
the appearance of the output produced by a
PRIHT file, but it does result in more
efficient use of storage space when the
file is associated with a data set on
magnetic tape or a direct-access device.
If you use the LINESIZE option, ensure that
your line size is compatible with your
block size: for F-format records, blocksize
must be an exact multiple of (line size +
1); for V-format records, blocksize mus·t be
,at least nine bytes greater than line size.

Although you can vary the line size for
a PRINT file during execution by closing
the file and opening it again with a ne'lli
line size, you must do so with caution if
you are using the PRINT file to create a
data set on magnetic tape or a
'direct-access device: you cannot change the
record format established for the data set
when the file is first opened. If the line
size specified in an OPEN statement
conflicts with the record format already
established, the UNDEFINEDFILE condition
will be raised; to prevent this, either
specify V-format records with a block size
at least nine bytes greater that the
maximum line size you intend to use, or
ensure that the first OPEN statement
specifies the maximum line size. (Note
that, if your program is processed by an
operating system with MFT or MVT, output
destined for the printer may be temporarily
stored on a direct-access device, unless

,you ~pecify a printer by using UNIT=, even
if you intend it to be fed directly to the
printer.)

since PRINT files have a default line
size of 120 characters, you :need not give
any record format information for them. In
the absence of other information, the
compiler assumes V-format records; the
complete default information is:

120

BLKSIZE=129

LRECL=125

RECFM=VA

EXAMPLE

Figure 10- 5 illustrates the use of a PRIN'I'
file and the printing options of the
stream-oriented transmission statements to
format a table and write it onto magnetic
tape for printing on a later occasion. The
table comprises the natural sines of the
angles from 00 to 3590 54' in steps of 6'.

The statements in the ENDPAGE ON-unit
insert a page number at the bottom of each
page, and set up the beadings for the
following page. After the last line of the
table has been written, the statement PUT
FILE(TABLE) LINE(54) causes the ENDPAGE
condition to be raised to ensure that a
number appears at the foot of the last
page; the preceding statement sets the flag
FINISH to prevent a further set of headings
from being written.

The DD statement that defines the data
set that this program creates includes no
record-format information; the compiler
infers the following from the file
declaration and the line size specified in
the statement that opens the file TABLE:

Record format = V (the default for a
PRINT file)

Record size = 98 (line size + one byte
for printer control
character + four bytE:!s
for record control
field')

Block size = 102 (record size + four
bytes for block
control field)

Figure 11-8 uses record-oriented
transmission to print the table created in
Figure 10- 5.

TAB CONTROL TABLE

Data-directed and list-directed output to a
PRINT file is automatically aligned on
preset tabulator positions; the tab
settings are stored in a table in the PL/I
library module IHETAB (Figure 10-6). The
functions of the fields in the table are as
follows:

//J035PGEX JOB
//COLEEX EXEC'PL1LFCLG,PARM.PL1L='SIZE=999999',PARM.LKED='LIST'
//PL1L.SYSIN DD *

SINE: PROC OPTIONS (MAIN) :
DCL TABLE FILE STREAM OUTPUT PRINT,

TITLE CHAR(13) INIT('NATURAL SINES'),
HEADINGS CHAR(90) INIT(' 0 6 12 1

8 24 30 36 42 48 54'),

/*

PGNO FIXED DEC(2) INIT(l),
FINISH BIT(l) INIT('O'B),
VALUES(0:359,0:9)FLOAT DEC(6):

ON ENDPAGE(TABLE) BEGIN:
PUT FILE(TABLE) EDIT('PAGE',PGNO) (LINE(55),COL(87),A,F(3»:
IF FINISH='O'B THEN DO:
PGNO=PGNO+1:
PUT FILE(TABLE) EDIT (TITLE 1 I' (CONT"D)' ,HEADINGS)

(PAGE,A,SKIP(3),A);
PUT FILE(TABLE) SKIP(2):
END:
END;

DO 1=0 TO 359:
DO J=O TO 9;

VALUES(I,J)=I+J/10:
END;

END:
VALUES=SIND(VALUES);
OPEN FILE(TABLE) PAGESIZE(52) LINESIZE(93);
PUT FILE(TABLE) EDIT(TITLE,HEADINGS)(PAGE,A,SKIP(3),A):
DO 1=0 TO 71:

PUT FILE(TABLE) SKIP(2);
DO J=O TO 4;

K=5*I+J;
PUT FILE(TABLE) EDIT (K,VALUES (K,*»(F(3),10 F(9,4»;
END;

END;
FINISH='l'B:
PUT FILE(TABLE) LINE(54):
CLOSE FILE(TABLE):
END SINE:

//GO.T,ABLE DO UNIT=2400, DISP= (NEW, CATLG, DELETE) , DSNAME=SINES

Figure 10-5. Using a PRINT File

PAGE:5IZE

LINE:5IZE

Reserv,ed bytes

Tab COlllnt

Tab:a.. - Tabn

Halfword binary integer
that defines the default
page size.

Halfword binary integer
that defines the default
line size.

Reserved for left and
right margin facilities.

Number of tab position
entries in table (maximum
255). If tab count = 0,
the tab positions are not
used: each data item is
put out as if a PRINT
file were not being used.

Tab positions within the
print line. The first
position is numbered <1,
and the highest position

is numbered 255. The
value of each tab should
be greater than that of
the tab preceding it in
the table; otherwise, it
will be ignored. The
first data field in the
printed output begins at
the left margin (position
1), and thereafter each
field begins at the next
available tab position.

You can alter the tab control table and
either replace it permanently in the PL/I
library (SYS1.PL1LIB, see Chapter 12) or
insert it in the linkage editor input
stream for use in a single program. To
change the tab settings, you must change
the values in the assembler language
control section (listed in Figure 10-6).

Chapter 10: Stream-Oriented Transmission 121

Figure 10-1 illustrates how to make a
temporary change in the tab settings. The
first job step (ASLE) uses the IBM-supplied
assembler language cataloged procedure
ASMFC to assemble a new control section for
IHE'l'AB, which retains the standard default
line size and page size, but introduces new
tab settings 30, 60, and 90. The second
job step uses the cataloged procedure
PL1LFCLG to compile, link edit, and execute
a PL/I program. The procedure step LKED
includes two additional DD statements: TAB,
which defines the data set that contains
the assembled control section (passed from
step ASLE), and SYSIN, which permits the
linkage editor INCLUDE statement to be
inserted in the input stream. The INCLUDE
statement causes the new tab control table

Byte o 1 2

(instead of the library module IHETAB) to
be link edited with the PL/I object module.

Standard Files

PL/I includes two standard files, SYSIN fo:r
input and SYSPRINT for output. If your
program includes a GET statement that does
not include the FILE option, the compiler
inserts the file name SYSINi if it includes
a PUT statement without the FILE option,
the compiler inserts the name SYSPRINT.

If you do not declare SYSPRINT, the
compiler will give the file the attribute
PRINT in addition to the normal default

3

r------------------------~-------------------------,
Word 1 I PAGESIZE I LINESIZE I

~-----------T------------+-,-----------T-----------__I
2 I (Reserved) I (Reserved) I Tab count I Tab~ I

~------------+------------+------------+------------~
3 I Tab2 I Tab3 I Tab... I Tab... I L ___________ +------------~------------+------------J

I I I I I

I I I I I
~----------+------------+-,----------+-----------__t

m I Tabn I I I I L ____________ ~ ____________ ~ ____________ ~ ____________ J

(a) Tab control table

r---~---------------------T------------------------_,
I 60 I 120 I
~------------T------------+------------T------------~
I 0 I 0 I 5 I 25 I
~------------+------------+------------+------------~
I 49 I 13 I ~1 I 121 I L ____________ ~ ____________ ~ ____________ ~ ____________ J

(b) standard form of table

TAB TITLE ' IHETAB'
IHETAB CSECT

ENTRY IHETABS
IHETABS DS OD
PAGESIZE DC AL2 (60)
LINESIZE DC AL2(120)

DC H'O'
NOTABS DC ALl (ENDTABS-*-l)
TABl DC AL1(25)
TAB2 DC ALl(49)
TAB3 DC AL1(13)
TAB4 DC ALl (91)
TAB5 DC ALl (121)
ENDTABS EQU *

END

(c) Control section IHETAB

Figure 10-6. Tabular Control Table (Module IHETAB)

122

/ /NEWT1!LB JOB
//ASLE EXEC ASMFC
//ASM.SYSPUNCH DO DSNAME=&&TAB,UNIT=SYSSQ,SPACE=(TRK,l),DISP=(NEW,PASS)
//ASM.SYSIN DO *
TAB TITLE 'IHETAB'
IHETAB CSECT

ENTRY
IHETABS: OS
PAGESIZ,E DC
LINESI Z:e: DC

NOTABS
TABl
TAB2
TAB3
ENTABS

/*

DC
DC
DC
DC
DC
EQU
END

IHETABS
OD
AL2(60)
AL2(120)
Ii' 0'
ALl (ENDTABS-*-l)
ALl(30)
AL1(60)
ALl (90)

//COLEEX EXEC PL1LFCLG,PARM.LKED='LIST'
//PL1L.SYSIN DD *

Here follow the source statements of the PL/I program

/*
//LKED.TAB DD DSNAME=&&TAB,DISP=(OLD,DELETE)
//LKED.SYSIN DD*

INCLUDE TAB
/*
//GO.SYSIN DO *

Here follows data for the PL/I program
/*

Figure 10-7. Making a Temporary change in Tab settings

attributes; thus, the complete file
declaration will be SYSPRINT FILE STREAM
OUTPUT PRINT EXTERNAL. Since SYSPRINT is a
PRINT file, the compiler also supplies a
default line size of 120 characters and a
V-format record. Therefore, you need give
only a :minimum of information in the
corresponding DD statement; if your
installation uses the usual convention that
the system output device of class A is a
printer, the following is sufficient:

//SYSPRINT DD SYSOUT=A

If YIDU use one of the IBM-supplied
catalog,ed procedures to execute your
program, even this DD statement is not
required, since it is already included in
the GO :step.

You can override the attributes given to
SYSPRIN'r by the compiler by explicitly
declaring or opening the file. If you do
so, bea.r in mind that this file is also
used by the error-handling routines of the
compile.r, and that any change you make in
the fo~~at of the output from SYSPRINT will
also apply to the format of execution-time
eTror messages. when an error message is
printed, eight blanks are inserted at the
start 6:f each line except the first;

consequently, if you specify a line size of
less than nine characters (or a block size
of less than ten bytes for F-format or
U-format records, or less than 18 bytes for
V-format records), the second and
successive lines will not be printed, and
the error-message routine will be locked in
a permanent loop_

The compiler does not supply any special
attributes for the standard input file
SYSIN; if you do not declare it, it
receives only the normal default
attributes. The data set associated with
SYSIN is usually in the input stream; if it
is not in the input stream, you must supply
full DD information.

Opening a STREAM File

Note that if a stre~oriented file is
opened for output and closed without any
PUT statements being executed for it, a
blank record will be transmitted. If the
file is a print file, the first byte of the
record will contain a carriage control
character to skip to a new page.

Chapter 10: Stream-Oriented Transmission 123

Chapter 11: Record-Oriented Transmission

In record-oriented transmission, data is
transmitted to and from auxiliary storage
exactly as it appears in the progr~n
variables; no data conversion takes place.
A record in a data set corresponds to a
variable in the program.

You can employ record-oriented
transmission to process data sets wi th t.he
three types of organization recognized by
PL/I (CONSECUTIVE, INDEXED, and REGIONAl,)
and teleprocessing data sets. The creation
and accessing of each type of data set are
discussed under appropriate headings below.

Record Format

When you create a data set, you mus·t
specify a block size; you can also specify
a record size. If you omit the record
size, the records will be unblocked and
their size will be determined by the block
size. In your PL/I program, you can state
the record format in the ENVIRONMENT
attribute, which is described in IBM
system/360 Operating. system: PL/I-(F)
Language Reference Manual; alternatively,
you can state the record format in a DD
statement, using the subparameters RECFM,
BLKSIZE, and LRECL (which are described in
Appendix B).

with the following exceptions,
record-oriented transmission can handle all
three record formats (fixed-length,
variable-length, and undefined-length).
Fixed-length and variable-length records
can be blocked or unblocked;
variable-length records can be spanned.
The exceptions are:

1. CONSECUTIVE data sets: you cannot read
variable-length records backwards.

2. REGIONAL (1) and REGIONAL(2) data sets:
only unblocked fixed-Iength~ecords
are accepted.

3. REGIONAL (3) data sets: you can use all
three formats, but the reco~ds must be
unblocked.

The record size (or block size if YOll
omit the record size) that you should
specify is governed by the size of the
program variable from which you will
transmit your data. For fixed-length
records, the record size should equal the
size of the variable; the maximum size of

124

variable-length and undefined-length
records must be enough to accept the
largest record you will transmit. If these
conditions are not met, the RECORD
condition will be raised. To determine tbe
record size required for a data aggregate,
you may need to refer to the information on
structure mapping included in IBM
System/360 Operating.System: PL/I (F)
Language Reference Manual.

CHOICE OF RECORD :FORMAT

For maximum efficiency in data
transmission, use blocked records whenever
they are permitted, and select the maximum
block size consistent with the amount of
main storage availabl~ to your program and
with the characteristics of the output
device you are using. (The larger the
block size, the fewer requests need be made
by the data management routines for the
transmission of a block of data to or from
auxiliary storage; such requests carry a
substantial time overhead.>

For a direct-access device, the ideal
block size is the capacity of one track;
this combines maximum transmission
efficiency with optimum use of auxiliary
storage. A block can exceed the capacity
of one track only if your installation has
the track overflow feature; this allows the
block to be continued on the next track.
Although track overflow can increase
data-packing efficiency, it reduces
transmission speed. The use of small
blocks wastes storage space because a block
of system information follows each block of
data (except the last on the track). For
example, there are more than 60 bytes of
system information for each block in the
2311 disk drive; a track can contain one
block of 3625 bytes, but only 55 blocks of
5 bytes (i.e., 275 bytes of data). (Refer
to the reference cards listed under
'Direct-Access Devices,' in Chapter 10, for
further information.)

Unit record devices (card readers and
punches, and printers) and paper-tape
readers do not support blocked records.
With a unit record device, each record
begins on a new card or line regardless of
the blocking factor. For example, if you
specify LRECL=20, BLKSIZE=SO for a card
punch, only the first 20 columns of each
card will be punched.. If the record size
exceeds the capacity of a card (SO bytes)

or the maximum length of a line (132
characters for the 1403 printer), the
record is truncated.

In general, fixed-length records are
transmitted faster than variable-length or
und~fined-Iength records. For maximum
efficiency in sequential processing of a
data set on a direct-access device, specify
'standard' format records (RECFM=FS or
RECFM=FBS). If you use variable-length
records u VBS-format allows you to specify
block size independently of record size
(and thus to select the optimum block
size).

Buffers

When YOll use a SEQUENTIAL BUFFERED file to
process a data set, you can specify the
number of data management buffers to be
used eiither in your PL/I program (in the
ENVIRONI~NT attribute) or in the DD
statemelt (BUFNO subparameter). If you
omit this information or specify zero
buffers l , the operating system will allocate
two buffers. Tw:o buffers are sufficient
for efficient transmission in most cases,
but you may gain some advantage by
specifying three buffers for a low-speed
device such as a printer. You should
specify at least three buffers if you use
chained scheduling. Blocked records are
not supported for UNBUFFERED files.

Although a buffer specification for a
DIRECT file will be ignored, and even if
the filE~ is declared UNBUFFERED, the data
managemEmt routines of the PL/I library
sometimE~s use work buffers termed hidden
buffers., Hidden buffers are used for:

1. UNBUFFERED access of CONSECUTIVE data
set:s with V-format records (the buffer
contains the V-format control bytes
and the data).

2. INDEXED data sets (the buffer contains
a lO-byte control field and the data) ..

3. SEC!UENTIAL access of a REGIONAL (2) or
REGIONAL (3) data set declared KEYED
(so that the key and the record can be
tralnsmi tted from contiguous storage
arE!as) •

CREATING AND ACCESSING DATA SETS

To creat.e or access a data set, you must
gi ve thE! operating system certain
informat.ion, either in the DD statement
that defines the data set or in your PL/I

program,. The following sections indicate
the essential information that you must
supply when processing CONSECUTIVE,
INDEXED., REGIONAL, and teleprocessing data
sets, and discuss some of the optional
information you may supply. The
discussions do not refer to data sets in
the input stream, which are covered in
Chapter 10. Appendix B describes the
parameters referred to, and explains how to
code them; the ENVIRONMENT attribute is
described in IBM System/360 Operating
system: PL/I (F) Language Reference Manual.

CONSECUTIVE Data Sets

CREATING A CONSECUTIVE DATA SET

In a CONSECUTIVE data set, records are
stored sequentially in the order in which
you write them; there are no keys. Figure
11-1 summarizes the essential information
you must pass to the operating system when
creating a CONSECUTIVE data set. You must
specify:

1. Device that will write or punch your
data set (UNIT, SYSOUT, or VOLUME
parameter of DD statement).

2. Block size: you can give the block
size in the DD statement (BLKSIZE
subparameter of DCB parameter), or in
your PL/I program (in the ENVIRONMENT
attribute).

Note: If you do not specify a record
size, unblocked records are assumed
and the record size is determined from
the block size. If you do not specify
a record format, U-format is assumed.

If you want to keep a magnetic-tape or
direct-access data set (that is, you do not
want the operating system to dnlete it at
the end of your job), the DD statement must
name the data set and indicate how it is to
be disposed of (DSNAME and DISP
parameters) .• The DISP parameter alone will
suffice if you want to use the data set in
more than one job step but will not need it
after the end of your job.

If you are creating a data set on a
direct-access deVice, you must specify the
amount of space required for it (SPACE
parameter of DD statement).

If you want your data set written on a
particular magnetic-tape or direct-access
volume, you must indicate the volume serial
number in the DD statement (SER or REF
subparameter of VOLUME parameter). If you
do not supply a serial number of a

Chapter 11: Record-Oriented Transmi~sion 125

r---------------------T--~--, 1 I Parameters of DD statement ,
I Storage Device ~---------------------T---------------------~--------------------~
, , When required I What you must state I Parameters ,

~---------------------+---------------------+---------------------+---------------------~ I I , output device 1 UNIT= or SYSOUT= or I
, All I Always I 1 VOLUME=REF= 1
1 , r---------------------+---------------------~ , I , Block size1. 1 DCB=BLKSIZE= I
r---------------------+---------------------+---------------------+_--------------------~ , Direct access only 1 Always , storage space , SPACE: ,
, , , required I I
~---------------------+---------------------+----------------~----+---------------------~ , Magnetic tape only ,Data set not first ,sequence number I LABEL= ,
I I in volume and for , , ,
, , magnetic tapes that , I I
, , do not have' , I
I , standard labels I , ,
~---------------------+---------------------+---------------------+---------------------~ , Data set to be used , I I

I by another job step , Disposition , DISP= I
, but not required at , , ,
, end of job, , ,

Direct access and
standard labeled
magnetic tape

~-------------.--------+---------------------+---------------------~ , Data set to be kept , Disposition , DISP= ,
, after end of job ~---------------------+---------------------~
·1 , Name of data set ,DSNAME= ,

~---------------------+---------------------+---------------------~ 1 Data set to be on I volume serial number, VOLUME=SER= or 1
1 particular volume 1 , VOLUME=REF= I

~--------_------------~-------------.------__ ~---------------______ L-____________________ ~

I1.Alternatively, you can specify the block size in your PL/I program by using the 1
, ENVIRONMENT attribute. , L _______________________________________ . __ J

Figure 11-1. Creating a CONSECUTIVE Data Set: Essential Parameters of DD Statement

magnetic-tape data set that you want to
keep, the operating system will allocate
one, inform the operator, and print the
number on your program listing.

If your data set is to follow another
data set on a magnetic-tape volume, you
must use the LABEL parameter of the DD
statement to indicate its sequence number
on the tape.

Figure 11-2 lists the DCB subparameters
that are applicable to CONSECUTIVE data
sets; they are described in Appendix B.
You can specify record format (RECFM),
block size (BLKSIZE), record size (LRECL),
and number of buffers (BUFNO) in the
ENVIRONMENT attribute instead of in a DD
statement.

ACCESSING A CONSECUTIVE DATA SET

You can access an existing CONSECTUIVE data
set in three ways. You can open the
associated file for input, and read the
records the data set contains; you can open
the file for output, and extend the data

126

r----------,.--------------------------1i
ISubparameterl Specifies II

~----------+---------------------------~I
BLKSI ZE 1 Maximum number of bytes per II

Ihl~k ~
BUFNO I Number of data management II

I buffers II
CODE IPaper tape: code in which II

Ithe tape was punched ~I
DEN IMagnetic tape: tape il

,recording density ,I
LRECL ,Maximum number of bytes per I

I record
MODE ICard reader or punch: mode

lof operation (column binary
lor EBCDIC)

OPTCD IOptional data-management
Iservices and data-set
1 attributes

PRTSP ,printer line spacing (0, 1,
12, or 3)

RECFM IRecord format and
I characteristics

TRTCH ,Magnetic tape: tape
Irecording technique for
,7-track tape ___________ J. ___ . ______________________ _

Figure 11-2. DCB SUbparameters for
CONSECUTIVE Data Sets

r--------------------------------~--, I Parameters of DD statement I
~------·-----------------------------T-------------------------T-------------------------~
I When required I What you must state I Parameters I
~-----------------------------------+-------------------------+-------------------------~ I I Name of data set I DSNAME= I
I Always ~-------------------------+-------------------------~
I I Disposition of data set I DISP= I
~------·-----------T-----------------+-------------------------+-------------------------1 I IAII devices I Input device I UNIT= or VOLUME=REF= I
I If dat·a set not ~-----------------+------------------------+-------------------------~ I cataloged IStandard labeled I I I
I I magnetic tape and I Volume serial number I VOLUME=SER= I
I Idirect access I I I
~------... ---------J.~----------------+-:...----------------______ +-___________________ ---__ ~
I Magnetic tape: if data set not I Sequence number I LABEL= I
I first in volume or which does not I I I
I have s·tandard labels I I I
~-----------------------------------+-----------------------+-------------------------~
IIf data set does not have standard I Block size~ I DCB=BLKSIZE= I
I labels t I I
~------._----------------------------J.--------------------_____ L _________________________ ~

I :l.Alternatively, you can specify the block size in your PL/I program by using the I
I ENVIRONMENT attribute. I L ______ • ___ J

Figure 11-3. Accessing a CONSECUTIVE Data Set: Essential Parameters of DD statement

set by adding records at the
end; or you can open the file for update,
and read and rewrite each record in turn.
(The opE:!rating sY,stem does not permit
updatinq a CONSECUTIVE data set on magnetic
tape; you must read the data set and write
the updated records into a new data set.)

'1'0 access an existing data set, you must
identify it to the operating system in a DD
statement. The following paragraphs, which
are su~rnarized in Figure 11-3, indicate the
essential information you must include in
your DD statement,. and discuss some of the
other information you may supply; this
discussion does not apply to data sets in
the input stream., which are dealt with in
Chapter 9 'Data Sets and PL/I Files'.
Appendi>~ B describes the DD parameters
referred to, and tells you how to code
them.

Essentia~l' Information

If the data set is cataloged, you need
supply only the following information in
the DD statement:

1. The! name of the data set (DSNAME
paI~ameter) • The operating system will
locate the information that describes
the! data set in the system catalog,
and, if necessary, will request the
operator to mount the volume that
contains it.

2. Confirmation that the data set already
exists (DISP parameter) oW If you open
the data set for output with the
intention of extending it by adding
records at the end, code DISP=MOD;
otherwise, to open the data set for
output will result in it being
overwritten.

If the data set is not cataloged, you
must, in addition, specify the device that
will read the data set, and, for
magnetic-tape and direct-access devices,
give the serial number of the volume that
contains the data set (UNIT and VOLUME
parameters) '.

If the data set is on paper tape or
punched cards, you must specify the block
size either in the DD statement (BLKSIZE
subparameter), or in your PL/I program
(ENVIRONMENT attribute).

If the data set follows another data set
on a magnetic-tape volume, you must use the
LABEL parameter of the DD statement to
indicate its sequence number on the tape.

MaglieticTape without Standard Labels

If a magnetic-tape data set has nonstandard
labels or is unlabeled, you must specify
the block size either in the DD statement
(BLKSIZE subparameter) or in your PLII
program (ENVIRONMENT attribute). The
DSNAME parameter is not essential if the
data set is not cataloged.

Chapter 11: Record-Oriented Transmission 127

PL/I data management includes no
facilities for processing nonstandard
labels. To the operating system, such
labels appear as data sets preceding or
following your data set. You can either
process the labels as independent data sets
0r use the LABEL parameter of the DD
statement to bypass them; to bypass the
labels code LABEL=(2,NL) or LABEL=(~BLP).

Record Format

If you give record-format information, it
must be compatible with the actual
structure of the data set. For example, if
a data set was created with F'-format
records, a record size of 600 bytes f and a
block size of 3600 bytes, you can access
the records as if they were U-format wit.h a
maximum block size of 3600 bytes; but if
you specify a block size of 3S00.bytes,
your data will be truncated.

//J034PGEA JOB

EXAMPLE OF CONSECUTIVE DATA SETS

Figure 11-4 illustrates both creation and
accessing of CONSECUTIVE data sets on
magnetic tape. The program merges the
contents of two existing data sets, DSl and
DS2, and writes them onto a new data set,
DS3; each of the original data sets
contains lS-byte fixed-length records
arranged in EBCDIC collating sequence. Th-9
two input files, INl and IN2, have the
default attribute BUFFERED, and locate mode
is used to read records from the associated
data sets into the respective buffers. The
output file, OUT, is not buffered, allowing
move mode to be used to write the output
records directly from the input buffers.

//COLEEX EXEC PL1LFCLG,PARM.PLIL=" SIZE=999999, ,PARM.LKED="LIST'
//PLlL.SYSIN DD •

MERGE: PROC OPTIONS(MAIN):
DCL (IN1,IN2,OUT) FILE RECORD SEQUENTIAL,

(ITEMl BASED(A),ITEM2 BASED(B» CHAR(lS);
ON ENDFILECIN1) BEGIN;

ON ENDFILE(IN2) GO TO FINISH:
NEXT2: WRITE FILE(OUT) FROM(ITEM2);

READ FILE(IN2) SET(B);
GO TO NEXT2;
END;

ON ENDFILE(IN2) BEGIN;
ON ENDFILE(IN1) GO TO FINISH;

NEXTl: WRITE FILE(OUT) FROM(ITEM1);
.READ FILE (IN1) SET (A) ;
GO TO NEXT1;
END;

OPEN FILE(IN1) INPUT,
FILE(IN2) INPUT,
FILE (OUT) OUTPUT ;

READ FILE(IN1) SET(A);
READ FILE(IN2) SET(B);

NEXT: IF ITEM1>ITEM2 THEN DO;
WRITE FILE(OUT) FROM(ITEM2):
READ FILE(IN2) SET(B);
GO TO NEXT;
END;

ELSE DO;
WRITE FILE(OUT) FROM(ITEM1);
READ FILE(IN1) SET(A);
GO TO NEXT;
END;

FINISH: CLOSE FILE(IN1),FILE(IN2),FILE(OUT):

/*
//GO.INl
//GO.IN2
//GO.OUT
//

END MERGE:

DO DSNAME=DS1,DISP=(OLD,KEEP),UNIT=2400,VOLUME=SER=33731
DO OSNAME=DS2 ,DISP= (OLD ,KEEP) , UNIT=2400" VOLUME=SER=9876S5
DO DS~AME=DS3,DISP=(NEW,KEEP),UNIT=2400,

OCB= (RECFM=F, BLKSIZE=lS)

Figure 11-4. Creating and Accessing a CONSECUTIVE Data Set

128

r------y----------------------------------,
I Code I Action I
~------+---------------------------------~

b Space one line before
'- printing (blank code)
o Space two lines before printing

Space three lines before printing
+ Suppress space before printing
1 Skip to channel 1
2 Skip to channel 2
3 Skip to channel 3
4 Skip to channel 4
5 Skip to channel 5
6 Skip to channel 6
7 Skip to channel 7
8 Skip to channel 8
9 Skip to channel 9
A Skip to channel 10
B Skip to channel 11
C Skip to channel 12
V Select stacker 1
W II Select stacker 2

~--_--~L----------------------------------~
IThe channel numbers refer to the printer I
Icarriage control tape. (See IBM 1403 I
I printel:-Component' Description.) I L ____________________________ ...;. _____________ J

Figure 11-5. ANS Printer and Card Punch
Control Characters

PRINTING AND PUNCHING CARDS

You cannot use a PRINT file for
record-oriented transmission, and
record-oriented transmission statements
cannot include the printing options (PAGE,

SKIP, etc). Nevertheless, you can still
exercise some control over the layout of
printed output by including a printer
control code as the first byte of each of
your output records: you can also use
similar control codes to select the stacker
to which cards punched by your program are
fed.

The operating system recognizes two
types of code for printer and card punch
commands, ANS code and machine code. You
must indicate which code you are using,
either in the RECFM subparameter of your DO
statement or in the ENVIRONMENT attribute
in your PL/I program. If you specify one
of these codes, but transmit your data to a
device other than a printer or a card
punch, the operating system will transmit
the control bytes as part of your records.
If you use an invalid control character,
'space one line' or 'stacker l' will be
assumed.

The ANS control characters (Figure 11-5)
cause the specified action to occur before
the associated record is printed or
punched.

The machine code control characters
differ according to the type of device.
Figure 11-6 lists the codes for the 1403
printer, and Figure 11-7 gives those for
the 2540 Card Read Punch. There are two
types of command for the printer, the one
causing the action to occur after the
record ,has been transmitted, and the other
producing immediate action but transmitting

r-----------------T-----------------------T-----------------,
I Print and then I I Act immediately I
I act I Action I (no printing> I
~------------------~ I------------------~
I Code byt e I I Code byte I
~------------------+-----------------------+----------------~

00000001 Print only (no space) i
00001001 Space 1 line i 00001011
00010001 Space 2 lines ! 00010011
00011001 Space 3 lines 00011011
10001001 Skip to channel 1 10001011
10010001 Skip to channel 2 10010011
10011001 Skip to channel 3 10011011
101.00001 Skip to channel 4 10100011
101.01001 Skip to channel 5 10101011
101.10001 Skip to channel 6 10110011
101.11001 Skip to channel 7 10111011
11000001 Skip to channel 8 11000011
110101001 Skip to channel 9 11001011
110110001 Skip to channel 10 11010011
110111001 Skip to channel 11 11011011
11100001 Skip to channel 12 11100011

~--_----.. ---------.L-----------------------.L-----------______ ~
I'l.'he cha.nnel numbers refer to the printer carriage control I
I tape. (see IBM 1403 Printer Component Description.> I L _______ .. _______________________________ ' ____________________ J

Figure 1.1-6. 1403 Printer Control Codes

Chapter 11: Record-Oriented Transmis~ion 129

no data (i.e., you must include the second
type of command in a blank record).

The essential requirements for producing
printed output or punched cards are exactly
the same as those for creating any other
CONSECUTIVE data set (described above).
For a printer, if you do not use one of the
control codes, all data will be printed
sequentially, with no spaces between
records; each block will be interpreted as
the start of a new line. When you specify
a block size for a printer or card punch,
and are using one of the control codes.,
include the control bytes in your block
size; for example, if you want to print
lines of 100 characters, specify a block
size of 101.

Example

The program in Figure 11-8 uses
record-oriented transmission to read and
print the contents of the data set SINES,
which was created by the PRINT file in
Figure 10-5. since the data set SINES was
cataloged, only two parameters are requ:ired
in the DD statement that defines it. The
output file PRINTER is declared with the
ENVIRONMENT option CTLASA, ensuring that
the first byte of each record will be
interpreted as an ANS printer control code.
The information given in the ENVIRONMENT
attribute could alternatively have been
given in the DD statement as follows:

DCB=(RECFM=UA,BLKSIZE=94)

//J036PGEX JOB

r------------T------------------, I Code bytes I Action I
~---~--------+------------------~ I 00000001 I Select stacker 1 I
I 01000001 I Select stacker 2 I
I 1000qOOl I Select stacker 3 I L ____________ ~ __________________ J

Figure 11-7. 2540 Card Read Punch Control
Codes

INDEXED Data Sets

A data set with INDEXED organization can
exist only on a direct-access device. Each
record in the data set is identified by a
key that is recorded with the record. A
key is a string of not more than 255
characters; all the keys in a data set must
have the same length. The records in the
data set are arranged according to the
collating sequence of their keys. Once an
INDEXED data set has been created, the keys
facilitate the direct retrieval, addition,
and deletion of records.

INDEXES

To provide faster access to the records in
the data set, the operating system creates:
and maintains a system of indexes to the
records in the data set,. The lowest level
of index is the track index. There is a
track index for each cylinder in the data
set; it occupies the first track (or
tracks) of the cylinder, and lists the keys
of the last records on each track in the
cylinder.. A search can then be directed t:o
the first track that has a key that is
higher than or equal to the key of the
required record.

//COLEEX EXEC PL1LFCLG,PARM.PL1L='SIZE=999999'iPARM.LKED='LIST'
//PL1L.SYSIN DD *

PRT: PROC OPTIONS(MAIN);
DCL TABLE FILE RECORD INPUT SEQUENTIAL,

PRINTER FILE RECORD OUTPUT SEQUENTIAL ENV(V(102) CTLASA),
LINE CHAR(94);

ON ENDFILE(TABLE) GO TO FINISH;
NEXT: OPEN FILE(TABLE), FILE(PRINTER);

READ FILE(TABLE) INTO(LINE);
WRITE FILE(PRINTER) FROM(LINE)J
GO TO NEXT;

FINISH: CLOSE FILE(TABLE),FILE(PRINTER);
END PRT;

/*
//GO.TABLE DD DSNAME=SINES,DISP=OLD
//GO.PRINTER DD SYSOUT=A

Figure 11-8. Printing with Record-Oriented Transmission

130

If the data set occupies more than one
cylinder, the operating system develops a
higher level index called a cylinder inder.
Each entry in the cylinder index identifies
the key of the last record in the cylinder.
To incrle~ase the speed of searching the
cylinder index, you can request in a DO
statemeat that the operating system develop
a maste:~ index for a specified number of
cylinde:r.s; you can have up to three levels
of mastcer index. Figure 11- 9 illustrates
the ind4ex structure. The part of the data
set that contains the cylinder and master
indexes is termed the index area.

When a INDEXED data set is created, all
the re<;()rds are written in what is called
the prime data area. If more records are
added la.ter, the operating system does not
rearranqe the entire data set; it inserts
each ne~v record in the appropriate position
and mOVE~S up the other records on the same
track. Any records forced off the track by
the insertion of a new record are placed in
an Qverj:low area. The overflow area can
consist "either of a number of tracks set
aside in each cylinder for the overflow
records from that cylinder (cylinder
overf lmi area), or a separate area for all
overflo~i records (independent overflow
area).

Figure 11-10 shows how the records in
the overflow area are chained together and

Cylinder Index

to the track index so as to maintain the
logical sequence of the data set. Each
entry in the track index consists of two
parts:

1. The normal entry, which points to the
last record on the track.

2. The overflow entry, which contains the
key of the first record trans~erred to
the overflow area and also points to
the last record transferred from the
track to the overflow area.

If there are no overflow records from the
track, both index entries point to the last
record on the track. An additional field
is added to each record that is placed in
the overflow area. It points to the
previous record transferred from the same
track; the first record from each track is
linked to the corresponding overflow entry
in the track index.

CREATING AN INDEXED DATA SET

When you create an INDEXED data set, your
program must write the records in the data
set sequentially in the order of ascending
key values; the associated file must be
opened for SEQUENTIAL OUTPUT.

Master Index

.----.. ---------... 200 300 375 450

10 0

Oat
10 I

a

Oat
151

a
0

Cylinder 1

100 200

Data Data
20 40

Data Data
175 190

200

Data
100

Data
200

500 600

1000 1200

Track
Index

Prime
Data

Prime
Data

Overflow

700 900

1500 2000

Cylinder 11

1500 2000

Figure 11-9. Index Structure of INDEXED Data Set

Chapter 11: Record-Oriented Transmission 131

Normal Entry

Initial Format 100 Track
1

Overflow Entry

200 Track
2

200 Track I T rOlck
---JL..-___ --L __ 2 __J Index

10
20 _____ --'-_____ 40 _____ ...L-____

1OO
_____J1 Prime

Data

150 175 190 200 I

L...-_________ '--_. _______ ---l __________ --' _________JI Overflow

Add Records
25 and 101

40

100

10

101

Track
1

Track
1

100

200

20

150

Track
2

25

175 190

Track
Index

Prime
Data

Overflow

Add Records
26 and 199

26
Track

1 100
Track 3
Record 3 190

Track
2 200

Track 3
Record 4

TI"1::lck
Index

10 20

101 150

25

175

26

190

Prime
DOlta

r---l~o::::l~0--~:--T-ra-lc-k--~---2~~--------r-----~-------~----~~------~
Overflow

Figure 11-10. Adding Records to an INDEXED Data Set

Once an INDEXED data set has been
created, it can be extended if the file is
reopened for SEQUENTIAL OUTPUT. However,
it is your responsibility to ensure that
the key of the first record to be added to
the data set is higher than the highest key
already contained in the data set. Failure
to ensure this will cause diagnostic
message IHE031I to be printed and the
program will terminate abnormally with a
system completion code of 031.

You can use a single DD statement to
define the whole of the data set (index
area, prime area, and overflow area), or

132

you can use two or three statements to
define the areas independently. If you use
two DD statements, you can define either
the index area and the prime area together,
or the prime area and the overflow area
together.

If you want the whole of the data set to
be on a single volume, there is no
advantage to be gained by using more than
one DD statement except to define an
independent overflow area (see 'Overflow
Area,' below). But, if you use separate DD
statements to define the index and/or
overflow areas on volumes separate from

that which contains the prime area" you
will increase the speed of direct access to
the rea)rds in the data set by reducing the
nUItlber of access mechanism movements
required.

When you use two or three DD statements
to define an INDEXED data set, the
statements must appear in the order: index
area; prime area; overflow area. The first
DD state!ment must have a name (ddname), but
the name! fields of a second or third DD
statement must be blank. The DD statements
for the prime and overflow areas must
specify ,the same type of unit (UNIT
paramete!r) • You must include all the DCB
informat,ion for the data set in the first
DD state:ment; DCB=DSORG=IS will suffice in
the other statements ..

Essential Information

In general, all the information given above
for the creation of a CONSECUTIVE data set
on a direct-access d.evice applies equally
to an INDEXED data set. The following
paragraphs discuss only the constraints
imposed by the use of INDEXED organization
and the additional information you must
supply or may want to give. Figure 11-11
summarizes all the essential parameters
required in a DD statement for the creation
of an INDEXED data set, and Figure 11-12
lists the DCB subparameters needed.

Appendix B contains a description of all
the parameters of the DD statement.

You cannot place an INDEXED data set on
a system output (SYSOUT) device.

You must request space for the prime
data area in the SPACE parameter. Your
request must be in units of cylinders
unless you place the data set in a specific
position on the volume (by specifying a
track number in the SPACE parameter). In
the latter case, the number of tracks you
specify must be equivalent to an integral
number of cylinders, and the first track
must be the first track of a cylin.der other
than the first cylinder in the volume. You
can also use the SPACE parameter to specify
the amount of space to be used for the
cylinder and master indexes (unless you use
a separate DD statement for this purpose).
If you do not specify the space for the
indexes, the operating system will use part
of the independent overflow area; if there
is no independent overflow area, it will
use part of the prime data area.

In the DCB parameter, you must always
state the data set organization (DSORG=IS),
and in the first (or only) DD statement you
must also give the length of the keys
(KEYLEN).

r-------'--, I Parameters of DD Statement I
~-------,·---------------------------T------------------------T------------------------~
I When required I What you must state I Parameters I
1--------.. ----------------------------+------------------------+-------------------------i
I I Output device I UNIT= or VOLUME=REF= I
I i--------------------------+-------------------------i
I I storage space required I SPACE= I
I Always t-------------------------+-------------------------~
I I Data control block I I
I I information: refer to I DCB= I
I I Figure 11.12 I I
I--------.----------------------------+-~-----------------------+-------------------------i
I I Name of data set and I I
IMore than one DD statement I area (index, prime, I DSNAME= I
I I overflow) I I
t-------·----------------------------+-------------------------+--------------------~----i
IData set to be used in another job I I I
I step but:. not required after end I Disposition I DISP= I
lof job I I I
t------------------------------------+-------------------------+-------------------------i
I Data se1: to be kept after end I Disposition I DISP= I
lof job t-------------------------+-------------------------i
I I Name of data set I DSNAME= I
~------------------------------------+--------------~----------+-------------------------i I Data se1: to be on particular I Volume serial number I VOLUME=SER= or I
I volume I I VOLUME=REF= I L ____________________________________ ~ _________________________ ~ _________________________ J

,F'igure 11-11. creating an INDEXED Data Set:: Essential Parameters of DD Statement

Chapter 11: Record-Oriented Transmission 133

Name of Data Set

If you use only one DD statement to define
your data set, you need not name the data
set-unless you intend to access it in
another job. But, if you include two or
three DD statements, you must specify a
data set name, even for a temporary data
set.

The DSNAME parameter in a DD statement
that defines an INDEXED data set not only
gives the data set a name, but it also
identifies the area of the data set to
which the DD statement refers:

DSNAME=nameCINDEX)

DSNAME=nameCPRIME)

DSNAME=nameCOVFLOW)

If the data set is temporary, prefix its
name with &&. If you use one DD statement
to define the prime and index or prime and
overflow areas, code DSNAME=name(PRIME)i if
you use only one DD statement, code
DSNAME=name(PRIME), or simply DSNAME=name.

Record Format and-Keys

An INDEXED data set can contain both fixed­
and variable-length records, blocked or
unblocked. You must always include the
subparameter RECFM in your DD statement Ol~
specify the record format in your PL/I
program (ENVIRONMENT attribute).

The key associated with each record can
be contiguous with or embedded wi thin'- the
data in the record; you can save s~orage
space in the data set if you use blocked
records with embedded keys.

r--------------------------.--,
I DCB Subparameters I
~---------------------------T-------------------------------------~---------------------~
I I To specify I subparameters I
~--------------------------+--------------------------------.-----+--------------------~
I I Record format j. I RECFM= F, FB, FBS" I
I I I V2 , or VB2 I
I ~-------------------------------------+-------------------.-~
I I Block siz ej. I BLKSIZE= I
I These are always required ~-----.--------------------------------+-------------------.-~
I IData set organization I DSORG=IS I
I ~-----.--------------------------------+-------------------.-~
I IKey length IKEYLEN= I
~-------------------------+-----.--------------------------------+-------------------.-~
I ICylinder overflow area and I I
I I number of tracks per cylinder f or IOPTCD=Y and CYLOFL= I
I Include at least one of loverflow I-'ecords I I
I these if overflow is l-----.-----.-----------------------------+-------------------~
I required IIndependent overflow area IOPTCD=I I
~-------------------------+-----------.---------------------------+-------------------~

IRecord lengthj. ILRECL= I
.-------------------------------------+--------------------~
IEmbedded key (relative key position) IRKP= I
~--------------------------------------+--------------------~

Thes e are optional I Master inclex I OPTCD=M I
~--------------------------------------+--------------------~
IAutomatic processing of dummy records IOPTCD=L I
~--------------------------------------+--------------------~
I Number of data management buffersj. I BUFNO= I
~-------------------------------------+--------------------~
I Number of tracks in cylinder index I NTM= I
Ifor each master index entry I I

~---------------------------~--------------------------------------~--------------------~
Ij.Alternatively, can be specified in ENVIRONMENT attribute. I
I I
12For V or VB format records, it is essential that RKP is specified with a value that I
I is equal to or greater than 4. I L ___ J

Note: Full DCB information must appear in the first, or only, DD statement. Subsequent
statements require only DSORG=IS.

• Figure 11-12. DCB Subparameters for INDEXED Data set

134

If the records are unblocked, the key of
each record is recorded in the data set in
front o,f the record even if it is also
embedded within the record (Figure 11-13,
(a) and (b», If blocked records do not
have embedded keys, the key of each record
is recorded within the block in front of
the record, and the key of the last record

(a) Unblocked records, non-embedded keys

in the block is also recorded in front of
the block (Figure 11-13(c». When blocked
records have embedded keys, the individual
keys are not recorded separately in front
of each record in the block; the key of the
last record in the block is recorded in
front of the block (Figure 11-13(d».

r--~ --'------, r---T--------, r---T-------,
IKeYI Data I IKeYI Data I I Key I Data I L ___ .L __ .•• _____ J L ___ .L ________ J L ___ .L ________ J

(b) Unblocked records, embedded keys

r-----Data------, r-----Data------, r-----Data------,

r---T--·---T---T-----' r---T-----T---T----' r---T-----T---T-----'
IKeYI IKeYI I IKeYI IKey I I IKeYI IKeYI I L __ --L ______ .L ___ .L _____ J L ___ .L _____ .L ___ .L _____ J L ___ .L _____ .L ___ .L _____ J

A A
I I
L-samE~ key-J

(c) Blocked records, non-embedded keys

r"---T---T----------T---T----------T---T---------, r--T--T----
IKeylKeYI Data IKeYI Data IKeYI Data I IKeylKeYI L ___ .L ___ • .L _________ .L ___ .L __________ .L ___ .L _________ J L ___ .L ___ .L __ _

A A
I I
L-----·-------same key-------------J

Cd) Blocked records, embedded keys

r-----Data-----, r-----Data-----'r-----Data------,

r---T---·'--T---T-----T-----T---T-----T-----T---T-----, r---T-----T----
IKeYI IKeYI I IKeYI I IKeYI I IKeYI I L ___ .L ___ , __ .L ___ .L _____ .L _____ .L ___ .L _____ .L ____ .l.-__ .L _____ J L ___ .L __ __ .L-__ _

A A
I I
L----------------same key----------------·-J

(e) Unblocked variable length records, RKP>4

r-----Data------,

r---T--T·--T-----T---T-----'
IKeYIBllRll IKeYI I L ___ .L __ .L. __ .L ____ .L ___ .L _____ J

A A
I I
L----same key---J

Cf> Blocked variable length records, RKP>4

r------Data-----, r------Data-----, r------Data-----,

r--~-~·--T----T---T-----T--T-----T---T-----T--T-----~--T-----'

IKeYIBllJRll IKeYI IRII IKeYI IRII IKeYI I L ___ .L __ .L. __ .L ___ .L ___ .L _____ .L __ .L _____ .L ___ .L _____ .L __ .L _____ .L ___ .L ____ J

A A
I I
L-----···-----------------same key----------------------J

Chapter 11: Record-Oriented Transmission 135

(g) Unblocked variable length records, RKP=4

r-Data,

r---T-~--T--~-----'
IKeylBIIRIIKeYI I L ___ ~ __ ~ __ ~ ___ L-____ J

A A
I I
L-same keyJ

Ch) Blocked variable length records, RKP=4

r-Data, r-Data, r- Data,

r---T--T--T---T-----T--T---T-----T--T---T-----'
\Key \BI\RIIKeYI IRII Key I I RIIKey\ I L ___ J. __ J. __ J. ___ ~ _____ ~ __ ~ __ -.l. ____ __L_._.J. __ ._J. ____ J

A A
I I
L--------------same key-------------J

Figure 11-13. Record Formats in all INDEXED Data Set

If you use blocked records with
non-embedded keys, the record size that you
specify must include the length of the key,
and the block size must be a multiple of
this combined length. Otherwise, record
size and block size refer only to the data
in the record. (See Figure 11-14.)

If you use records with embedded keys,
you must include the DCB subparameter RKP
to indicate the position of the key within
the record. For fixed-length records the
value specified in the RKP subparameter is
one less than the byte number of the first
character of the key: that is, if RKP=1.,
the key starts in the second byte of the
record. The value assumed if you omit this
subparameter is RKP=O, which specifies that
the key is not embedded in the record but
is separate from it.

For variable-length records, the value
specified in the RKP subparameter must be
the relative position of the key within the
record plus four. The extra four bytes
takes into account the 4-byte control field
used with variable-length records. For
this reason you must never specify RKP less
than four. When deleting records you must
always specify RKP equal to or greater than
five, since the first byte of the data is
used to indicate deletion.

Note: For unblocked records, the key, even
if embedded, is always recorded ill a
position preceding the actual data.

Consequently, the RKP subpa.rameter need not
be specified for fixed length unblocked

136

r-----------T-------~-----~-------------,
I I RKP I LRECL\ BLKSIZE I
~-----------+---.-----+-----+-------------~
I I Not zero I R I R * B I
I Blocked ~--------+------+-------------~
I records IZero or I R + KI B * (R+K) I
I lomitted I I \
~----------+--------+------+------------.-~
I I Not zero I R I R I
I Unblocked ~---.---+------+-------------~
I records I Zero or I R I R I
I lomi·tted I \ I
~----------+---.-----+------+-------------~
I V-Blocked I >4 I ~R+4 I ~1*(R+4)+4 \
I records I I I I
~----------+--------+------+-------------~
I V-Unblocked I >4 I ~R+4 I ~R+8 I
I records I I I I
~-----------+--------+------+------------~
I V-Blocked \ =4 I~R+K+41~1*(R+K+4)+4 \
I records I I \ I
~-----------+--------+------+-------------~
IV-Unblocked I =4 1~+K+41 ~R+K+8 \
I records \ I \ \
~-----------~------~------~-------------~
IR = Size of data in record
I
\K = Length of keys (as specified in
\ KEYLEN subparameter)
I
IB = Blocking factor
\
I Example: For blocked records,
I non-embedded keys, 100 bytes of
I data per record, 10 records per
I block, key length = 20:
I LRECL=120,BLKSIZE=1200,RECFM=FB L __ J

Figure 11-14. Record Format Information
for an INDEXED Data Set

records as the default RKP value is o.
Under these circumstances the key is only

record~~d once in the block. For variable
length records the minimum RKP value is 4
and the RKP must always be specified.

overf19w Area

I·f you intend to add records to the data
set on a future occasion, you must request
either a cylinder overflow area or an
independent overflow area, or both.

For a cylinder overflow area, include
the DCB sUbparameter OPTCD=Y and use the
subparc~eter CYLOFL to specify the number
of trac~s in each cylinder to be reserved
for oVE!rflow records. A cylinder overflow
area hals the advantage of a short search
time fc)r overflow records, but the amount
of spac:e available for overflow records is
limited, and much of the space may be
unused if the overflow records are not
evenly distributed throughout the data set.

For an independent overflow area, use
the DCE: subparameter OPTCD=I to indicate
that ov'erflow records are to be placed in
an area. reserved for overflow records from
all cylinders, and include a separate DD
statement to define the overflow area. The
use of an independent overflow area has the
advantage'of reducing the amount of unused
space for overflow records, but entails an
increased search time for overflow records.

It is good practice to request cylinder
overflow areas large enough to contain a
reasonable number of additional records and
an independent overflow area to be used as
the cylinder overflow areas are filled.

If the prime data area is not filled
during creation, you cannot use the unused
portion for overflow records, nor for any
records subsequently added during direct
access (although you can fill the unfilled
portion of the last track used). You can
reserve space for later use within the
prime da.ta area by writing 'dummy' records
during creation: see 'Dummy Records,'
below.

Master l;ndex;

If you ~1ant the operating system to create
a mastel~ index for you, include the DCB
subparameter OPTCD=M, and indicate in the
NTM subparameter the number of tracks in
the cylinder index you wish to be referred
to by each entry in the master index. The
operating system will automatically create
up to three levels of master index, the,
first two levels addressing tracks in the
next. lower level of master index.

Dummy Records

You cannot change the specification of an
INDEXED data set after you have created it.
Therefore, you must foresee your future
needs where the size and location of the
index, prime, and overflow areas are
concerned, and you must decide whether you
want the operating system to identify and
skip dummy (deleted) records ..

If you code OPTCD=L, the operating
system will flag any record that is named
in a DELETE statement by placing the bit
string (8)'l'B 'in the first byte.
Subsequently, during SEQUENTIAL processing
of the data set, such records will be
ignored: if they are forced off a track
when the data set is being updated, they
will not be placed in the overflow area.
Do not specify OPTCD=L when you are using
blocked records with non-embedded keys; if
you do, the string (8) "1" B will overwrite
the key of the Udeleted' record.

You can include a dummy record in an
INDEXED data set: by setting the first byte
of data to (8)' l"B and writing the record
in the usual way.

ACCESSING AN INDEXED DATA SET

You can open an existing INDEXED data set
for sequential or direct access, and for
input or update in each case. sequential
input allows you to read the records in
ascending key sequence, and in sequential
update you can read and rewrite each record
in turn: during sequential access, if
OPTCD=L was specified when the data set was
created, dummy records are ignored. Using
direct input, you can read records using
the READ statement, and in direct update
you can read or delete existing records or
add new ones.

Note that only one DIRECT UPDATE file
should be open at anyone time to add
records to an INDEXED data set. Further,
if two files are open simultaneously, one
for sequential and one for direct
processing of the same INDEXED data set,
some records might become inaccessible to
the SEQUENTIAL file due to changes to track
indexes made for the DIRECT file when it
adds records to the data set. The records
that may be inaccessible are those added to
the INDEXED data set in the following ways:

1. Records added to the end of the data
set.

2. Records written directly into the
overflow area of the data set.

Chapter 11:'Record-Oriented Transmission 137

r--, I Parameters of DD statement I
~--------------------------------·-T--·--------------~------T--·-----------------------·~
I When required I What you must state I Parameters ,
~---------------------------------.-+-----------------------+-------------------------~
I I Name of data set I DSNAME= I
I Al ways ~--------------.--------+--------------------------~
I I Disposition of data set I DISP= I
I ~-----------------------+--------------------------~
I I Data Set Organization I DCB=DSORG=IS I
~--------------------------------+------------------------+-------------------------~
I I Input device I UNIT= or VOLUME=REF= I
I If data set not cataloged ~------------------------+_-----------------------.-~
I I Volume serial number I VOLUME=SER= I L __________________________ . ________ i _________________________ ~ _________________________ J

• Figure 11-15. Accessing an INDEXED Data Set: Essential Parame·ters of DO statement

3. Records·· written on -the overflow area
when forced out of the prime data area
by records being added to the prime
data area.

'1'0 access an existing INDEXED data set,
you must identify it to the operating
system in one, two or three DD statements;
the DO statements must correspond 'with
those used when the data set was created.
The following paragraphs indicate the
essential information you must include in
each DD statement, and Figure 11-15
summarizes this information. Appendix B
describes the parameters referred to, and
tells you how to code them.

If the data set is cataloged, you need
supply only the following information in
each DD statement:

1. The name of the data set (DSNAME
parameter). The operating system will
locate the information that describes
the data set in the system catalog
and, if necessary, will request the
operator to mount the volume that
contains it.

2. Confirmation that the data set already
exists (DISP parameter).

3. Confirmation that the data set
organization is INDEXED (DSORG
subparameter'of the DCB parameter).

If the data set is not cataloged, you
must, in addition, specify the device ·that
will process the data set and give the
serial number of the volume that contains
it (UNIT and VOLUME parameters).

Note: If you add a new record to a data set
whose overflow areas are already full, the
new record will not be added to the data
set and the file will remain unchanged; the
KEY condition will be raised. To reduce
the likelihood of this occurrence, ensure
that your overflow areas are sufficiently

138

large, and reorganize the data set at
regular intervals (see below).

REORGANIZING AN INDEXED DATA SET

It is necessary to reorganize an INDEXED
data set periodically because the addition
of records to the data set results in an
increasing number of records in the
overflow area. Therefore, even if the
overflow area does not eventually become
full, the average time required for the
direct retrieval of a record will increase.
The frequency of reorganization depends on
how often the data set is updated, on how
much storage is available in the data set,
and on your timing requirements.

Reorganizing the data set also
eliminates records that are marked as
• deleted,' but are still present within the
data set.

There are two ways to reorganize an
INDEXED data set:

1. Read the data set into an area of ma:in
storage or onto a temporary
CONSECUTIVE data set, and then
recreate it in the original area of
auxiliary storage.

2. Read the data set sequentially and
write it into a new area of auxiliaI~y
storage; you can then release the
original auxiliary storage.

EXAMPLES OF INDEXED DATA SETS

Figure 11-16 illustrates the creation of a
simple INDEXED data set. The data set
contains a telephone directory, using the
subscribers' names as keys to the telephone
numbers.

/ /J0021)GEX JOB
//CREA'l?E EXEC PL1LFCLG,PARM.LKED='LIST'
//PL1L.SYSIN DD *

TELNOS: PROC OPTIONS(MAIN);
'DCL DIREC FILE RECORD SEQUENTIAL KEYED ENV(INDEXED),

CARD CHAR (80) ,
NAME CHAR(20) DEF CARD,
NUMBER CHAR(3) DEF CARD POS(21),
IOFIELD CHAR(3);

ON ENDFILE(SYSIN) GO TO FINISH;
OPEN FILE(DIREC) OUTPUT;

NEXTIN: GET FILE(SYSIN) EDIT(CARD)(A(80»;
IOFIELD=NUMBER;
WRITE FILE(DIREC) FROM (IOFIELD) KEYFROM(NAME),
GO TO NEXTIN;

FINISH: CLOSE FILE(DIREC);
END TELNOS;

/*
/ /GO. DIREC DD
//
//
//
//
//
//

UNIT=2 311, SPACE= (CYL, 1) , DCB: (RECFM=F" BLKSI ZE=3" DSORG=IS,
KEYLEN=20,OPTCD=LIY,CYLOFL=2),DSNAME=TELNO(INDEX),
DISP=(NEW,KEEP),VOLUME=SER=D186

DD UNIT=2311, SPACE= (CYL,4) , DCB=DSORG=IS"DSNAME=TELNO(PRIME) "
DISP=(NEW,KEEP),VOLUME=SER=D186

DD UNIT=2 311" SPACE= (CYL" 4) , OCB=DSORG=I S,
DSNAME=TELNO(OVFLOW),DISP=(NEW,KEEP),VOLUME=SER=D186 .

//GO.SYEiIN DD
ACTION,(3.
BAKER,R ..
BRAMLEY"O.H.
CHEESEM1\N , L.
CORY,G.
ELLIOTT I' D •
FIGGINS., S •
HARVEY,C.D.W.
HASTINGS,G.M.
KENDALL"J .G.
LANCAS TE~R, W. R •
MILES,R.
NEWMAN,l-i. W.
PITT,W.H.
ROLF,D.E:.
SHEERS,C:.D.
SUTCLIFFE,M.
TAYLOR,G.C.
WILTON ,I •• W.
WINSTONE,E.M.
/*

* 162
152
248
141
336
875
413
205
391
294
624
233
450
515
114
241
472
407
404
307

Figure 1.1-16. Creating an INDEXED Data Set

The program in Figure 11-17 updates this
data set and prints out its new contents.
The input data includes codes to indicate
the operations required:

A: Add a new record
C: Change an existing record
D: Delete an existing record

REGIO:NrAL Data Sets

A dpta set with REGIONAL organization can
exist only on a direct-access device. A

REGIONAL data set is divided into regions
that are numbered consecutively from zero.
The following paragraphs briefly describe
the three types of REGIONAL organization.

In a REGIONAL(l) data set, a region is a
record. Each record in the data set is
identified by its region number, an
unsigned decimal integer not exceeding
16777215. Region numbers start from 0 at
the beginning of the data set. There are
no recorded keys.

Chapter 11: Record-Oriented Transmission 139

//J041PGEX JOB
/ /COLEEX EXEC PL1LFCLG, PARM. PL1L=' SIZE=999999',~ PARM. LKED=" LIST'
//PL1L.SYSIN DO *

DIRUPDT:PROC OPTIONS(MAIN);
DCL DIREC FILE RECORD KEYED ENV(INDEXED),

NUMBER CHAR (3) ,
NAME CHAR(20),
CODE CHAR(l);

ON ENDFILE(SYSIN) GO TO PRINT;
ON KEY(DIREC) BEGIN;

IF ONCODE=51 THEN PUT FlLE(SYSPRINT) SKIP EDIT
('NOT FOUND: ',NAME) (A(15),A);

IF ONCODE=52 THEN PUT FlLE(SYSPRINT) SKIP EDIT
('DUPLICATE: ',NAME) (A(15),A);

END;
OPEN FILE(DIREC) DIRECT UPDATE;

NEXT: GET FILE(SYSIN) EDIT(NAME,NUMBER,CODE)(A(20),A(3),X(56),A(1»;
IF CODE='A' THEN WRITE FlLE(DlREC) FROMCNUMBER) KEYFROM(NAME);
ELSE IF CODE='C' THEN REWRITE FlLE(DIREC) FROM (NUMBER)

KEY (NAME) ;'
ELSE IF CODE='D' THEN DELETE FlLE(DIREC) KEY(NAME);

ELSE PUT FILE(SYSPRINT) SKIP EDITe'INVALID CODE:';
NAME) (A(15),A);

GO TO NEXT;
PRINT: CLOSE FILE(DIREC);

PUT FILE(SYSPRINT) PAGE;
OPEN FILE(DIREC) SEQUENTIAL INPUT;
ON ENDFlLE(DlREC) GO TO FINISH;

NEXTIN: READ FILE(DIREC) INTO(NUMBER) KEYTO(NAME);
PUT FILE(SYSPRINT) SKIP EDIT (NAME, NUMBER) (A);
GO TO NEXTIN;

FINISH: CLOSE FILE(DIREC);
END DIRUPDT;

/*
//GO.DIREC DO DSNAME=TELNO(INDEX),DISP=(OLD,KEEP),UNIT=2311,
// VOLUME=SER=D186,DCB=DSORG=IS
/ / DO DSNAME=TELNO (PRIME) , DISP= (OLD, KEEP) " UNIT=2311,
// VOLUME=SER=D186,DCB=DSORG=IS
// DO DSNAME=TELNO(OVFLOW) ,DISP=(OLD,KEEP) ,UNIT=2311"
// VOLUME=SER=D186.DCB=DSORG=IS
//GO.SYSIN DO *
NEWMAN,M.W.
GOODFELLOW,D.T.
MILES,R ..
HARVEY,C.D.W.
BARTLETI',S.G.
CORY,G.
READ,K.M.
PITT,W.H.
ROLF,D.F.
ELLIOTT,D.
HASTINGS,G.M.
BRAMLEY,O.H.
/*

516450
889

233
209
183

336
001

515
114

291875
391

439248

• Figure 11-17. Updating an INDEXED Data Set

140

C
A
o
A
A
o
A

o
C
o
C

REGJCONAL(2) organization is similar to
REGION}~(l), but differs in that a key is
recordE~d with each record. The record key
is a st:ring of not more than 255
charact:ers. A record is written in the
first ~racant space after the beginning of
the track that contains the region number
specified in the WRITE statement: for
retrieval, the search for a record begins
on the track that contains the region
number specified in the READ statement, and
may continue through the data set until the
record has been found.

A REGIONAL(3) data set is similar in
organization and in operation to a
REGIONA:L(2) data set, with the difference
that each region corresponds to one track
of the direct-access device and is not a
record position. Therefore, depending on
the record size, a region can contain one
or more records.

The major advantage of REGIONAL
organizcltion over other types of data set
organizCltion is that it allows you to
control the relative placement of records;
by judicious programming, you can optimize
record access in terms of device
capabili.ties and the requirements of
particular applications. REGIONAL (1)
organization is most suited to applications
where there will be no duplicate region
numbers, and where most of the regions will
be filled (obviating wasted space in the
data set). REGIONAL (2) and REGIONAL(3) are
more appropriate where records are
identified by numbers that are thinly
distributed over a wide range. You can
include in your program an algorithm that
derives the region number from the number
that identifies a record in such a manner
as to optimize the use of space within the
data set; duplicate region numbers will
occur, but their only effect might be to
lengthen the search time for records with
duplicabe region numbers.

REGIONAL(l) and REGIONAL(2) data sets
can contain only F-format unblocked
records, but a REGIONAL(3) data set can
have unblocked records of all three
formats, F, V, and U. The examples at the
end of this section illustrate typical
applications of all three types of REGIONAL
organizat:ion.

CREATING A REGIONAL DATA SET

You can use either sequential or
direct-access to create a REGIONAL data
set.

In sequential creation, you must present
records in order of ascending region
numbers: for REGIONAL(l) and REGIONAL(2)
the region number for each record must
exceed that of the preceding record since
each region can contain only one record.
In all cases, dummy records (identified by
(8) .• 1" B in the first byte) are placed
automatically in regions whose numbers are
skipped.

For direct creation, one of the PL/I
library subroutines formats the whole of
the data set when you open the
corresponding file. For REGIONAL(l) and
(2), and for REGIONAL(3) with F-format
records, formatting involves filling the
data set with dummy records; for
REGIONAL (3) with U-format or V-format
records, a record, called the capacity
record, is written at the start of each
track to indicate an empty track. During
creation, you can present records in any
order.

Essential Information

In general, all the information given above
for the creation of a CONSECUTIVE data set
on a direct-access device applies equally
to a REGIONAL data set. The following
paragraphs discuss only the constraints
imposed by the use of REGIONAL organization
and the additional information you must
supply or may want to give. Figure 11-18
summarizes all the essential parameters
required in a DD statement for the creation
of a REGIONAL data set, and Figure 11-19
lists the DCB subparameters you will need
to use. Appendix B contains a description
of all the parameters of the DD statement.

You cannot place a REGIONAL data set on
a system output (SYSOUT) device.

Chapter 11: Record-Oriented Transmission 141

r---,
I Parameters of DD statement I
~-----------------------------------T-------------------------~------------------------~ I When required I What you must state I Parameters ,
~--------------------------------+-----------------------+-------------------------,~ I , Output device , UNIT= or VOLUM$=REF= I
I ~------------~----------r-'------------..:.---------~
I I storage space required ,S'PACE= ,I -
I Always r----------------------+----------------------.~ I , Data control block , I
I , information:refer to I DCB= I
I I Figure 11-19, I
~-----------------------------------+-------------------~-----+-------------------------~
IData set to be used in another job I I I
Istep but not required in another ,Disposition I DISP= I
I job I I I
~----------------------------------+--.--------------------+-------------------------.~
IData set to be kept after end I Disposition I DISP= I
I of j ob ~-----------------------+--------------------------~
I I Name of data set i DSNAME= I
~-----------------------------------+-----------------------+------------------------.. ~ ,Data set to be on particular I volume serial number I VOLUME=SER= or ,
I volume I I VOLUME=REF= I L __________________________________ J. _______________________ .L _________________________ .J

Figure 11-18. Creating a REGIONAL Data Set: Essential Parameters of DD Statement

In the DCB parameter, you must always
state the data set organization (DSORG=DA).
For REGIONAL(2) and REGIONAL(3), you must
also state the length of the recorded key
(KEYLEN): refer to IBM System/360 operating
system: PL/I (F) Language Reference Manual
for a description of how the recorded key
is derived fro~ the source key supplied in
the KEYFROM option.

For REGIONAL(2) and REGIONAL(3), if you
want to restrict the search for space to
add a new record, or the search for an
existing record, to a limited number of
tracks beyond the track that contains the
specified region, use the LIMCT
subparameter of the DCB parameter. If you
omit this parameter, the search will
continue to the end of the data set, and
then from the beginning back to the
starting point.

r--, I DCB Subparameters I
~---------------------------~------------------------------------~--------------------~
I I To specify I Subparameters I
~----------------------------+--------------------------------------+--------------------~ I I IRECFM=F or I
I IRecord format~ IRECFM=V REGIONAL(3) I
I I I or only I
I I IRECFM=U I
IThese are always required ~--------------------------------------+--------------------~
I I Block siz e~ I BLKSI ZE= . I
I ~--------------------------------------+--------------------~
I IData set organization I DSORG=DA I
I ~--------------------------------------+-------------------.-~
I IKey length (REGIONAL(2) and (3) only) IKEYLEN= I
~---------------------------+--------------------------------------+-------------------.-~ I ,Limited search for a record or space I I
I Ito add a record (REGIONAL (2) and (3) ILIMCT= I
IThese are optional I only) I I
I ~--------------------------------------+--------------------~ I INumber of data management buffers~ I BUFNO= I
~--_------------------------J.----_----------------------_________ --J. __________________ • __ ~
I~Alternatively, can be specified in ENVIRONMENT attribute. I L __ • __ J

Figure 11-19. DCB Subparameters for REGIONAL Data Set

142

ACCESSING A REGIONAL DATA SET

You can open an existing REGIONAL data set
for sequential or direct access, and for
inputoJt." update in each case. Using
sequential input with a REGIONAL(l) data
set you can read all the records in
ascending region-number sequence; and in
sequential update you can read and rewrite
each record in turn. sequential access of
a REGIONAL(2) or REGIONAL(3) data set will
give you the records in the order in which
they appear in the data set, which is not
necessaz:ily region-number order. Using
direct j.nput, you can read any record by
supplying its region number and, for
REG IONAI, (2) and REGIONAL (3), its recorded
key; in direct update, you can read or
delete €!xisting records or add new ones.
The opez'ating system ignores dummy records
in a.REGIONAL(2) or REGIONAL(3) data set:
but a pZ'ogram that processes a REGIONAL(l)
data set must be prepared to recognize
dummy records.

To access a REGIONAL data set, you must
identify it to the operating system in a DD

statement. The following paragraphs
indicate the minimum information you must
include in the DD statement; they are
summarized in Figure 11-20. Appendix B
describes the parameters referred to and
explains how to code them.

If the data set is cataloged, you need
supply only the following information in
your DD statement:

1. The name of the data set (DSNAME
parameter). The operating system will
locate the information that describes
the data set in the system catalog
and, if necessary, will request the
operator to mount the volume that
conta ins it .•

2. Confirmation that the data set already
exists (DISP parameter).

If the data set is not cataloged, you
must, in addition, specify the device that
will read the data set and give the serial
number of the volume that contains the data
set (UNIT and VOLUME parameters).

r-------.··--,
, Parameters' of DD Statement I
~-------···--------------------------T----------.--------------~------------------------~
, When required I What you must state I Parameters I
~-------... --------------------------+-----------------------+------------------------~
I I Name of data set I DSNAME= ,
'Always ~-----------------------+_------------------------~
, , Disposition of data I DISP= I
, , set I ,
~-------.. ---------------------------+------------------------+_------------------------1
I . , Input device I UNIT= or VOLUME=REF= ,
IIf data set not cataloged ~-------------------------+-------------------------~
, , Volume serial number I VOLUME=SER= I l _______ ~ __________________________ ~ ________________________ ~ _________________________ J

Figure 11-20. Accessing a REGIONAL Data set: Essential Parameters of DD Statement

Chapter 11: Record-Oriented Transmission 143

EXAMPLES OF REGIONAL DATA SETS

REGIONAL(1) Data Sets

Figures 11-21 and 11-22 illustrate the
creation and updating of a REGIONAL(l) data
set.

Figure 11-21 uses the same data as
Figure 11-16, but interprets it in a
different way: the data set is effectively
a list of telephone numbers with the names
of the subscribers to whom they are
allocated. The telephone numbers
correspond with the region numbers in the
datp set, the data in each occupied region
being a subscriber's name. The SPACE
parameter of the DD statement requests
space for 1000 twenty-byte records (i.e.,
for 1000 regions); since space is never
allocated in units of less than one track
and one 2311 track can accommodate 45
twenty-byte records, there will in fact be
1035 regions. Note that there are no
recorded keys in a REGIONAL(l) data set.

The data read by the program in Figure
11-22 is identical with that used in Figure
11-17, and the codes are interpreted in the
same way. Like Figure 11-17,. this program
updates the data set and then lists its
contents. Note that before each new or
updated record is written the existing
record in the region is tested to ensure
that it is a dummy~ this is necessary
because a WRITE statement can overwrite an
existing record in a REGIONAL(l) data set
even if it is not a dummy. Similarly,
during the sequential reading and printing
of the contents of the data set, each
record is tested and dummy records are not
printed.

REGIONAL(2) Data Sets

Figures 11-23, 11-24, and 11-25 illustrate
the use of REGIONAL(2) data sets. The

144

programs in these figures perform the same
functions as those given for REGIONAL(3),
with which they can usefully be compared.

The figures depict a library processing
scheme, in which loans of books are
recorded and reminders are issued for
overdue books. Two data sets, STOCK2 and
LOANS2 are involved. STOCK2 contains
descriptions of the books in the library,
and uses the 4-digit book reference numbers
as recorded keys; a simple algorithm is
used to derive the region numbers from the
reference numbers. (It is assumed that
there are about 1000 books, each with a
number in the range 1000-9999.) LOANS 2
contains records of books that are on loan;
each record comprises two dates, the date
of issue and the date of the last reminder.
Each reader is identified by a 3-digit
reference number" which is used as a region
number in LOANS2; the reader and book
numbers are concatenated to form the
recorded keys.

In Figure 11-23, the data sets STOCK2
and LOANS2 are created. The file LOANS,
which is used to create the data set;
LOANS2, is opened for direct output merely
to format the data set; the file is closed
immediately without any records being
written onto the data set. It is assumed
that the number of books on loan will not
exceed 100; therefore the SPACE parameter
in the DD statement that defines LOANS2
requests 100 blocks of 19 bytes (12 bytes
of data and a 7-byte key: see Figure
11-24). Direct creation is also used fox'
the data set STOCK2 because, even if the
input data is presented in ascending
reference number order, identical region
numbers might be derived from successive
reference numbers.

//J010PGEX JOB
/ /COLE:E~X EXEC PL1LFCLG, PARM. PL1L=' SIZE=999999' , PARM. LKED=' LIST'
//PL1L.SYSIN DD *

CRR1: PROC OPTIONS(MAIN):
DCL NOS FILE RECORD OUTPUT DIRECT KEYED ENV(REGIONALC1»,

CARD CHAR(80),
NAME CHAR C 20) DEF CARD,
NUMBER CHAR(3) DEF CARD POS(21),
IOFIELD.CHAR(20):

ON ENDFILE CSYSIN) GO TO FINISH:
OPEN FILE CNOS) :

NEXT: GET FILE(SYSIN) EDIT(CARD)CAC80»:
IOFIELD=NAME:
WRITE FILECNOS) FROMCIOFIELD) KEYFROMCNUMBER):
GO TO NEXT:

FINISH: CLOSE FILECNOS):
END CRR1:

/*
//GO.NOS
//
//

DD UNIT=2311,SPACE=C20,1000),DCB=CRECFM=F,BLKSIZE=20,
DSORG=DA),DISP=CNEW,KEEP,DELETE),DSNAME=NOS,
VOLUME=SER=D186

//GO.S;{SIN DD *
ACTIONI,G.
BAKER,H.
BRAMLEY,O.H.
CHEESM1~N, L.
CORY,G ..
ELLIOT~~, D.
FIGGINS,E.S.
HARVEY II C • D. W.
HASTINGS,G.M.
KENDALl., J • G.
LANCAS~rER, W.R.
MILES,n.
NEWMAN I' M. W •
PIT'.r,W .. H.
ROLF,D .. E.
SHEERS.,C.D.
SUTCLI]~FE ,M.
TAYLORI,G.C.
WILTON"L.W.
WIN3TONE,E.M.
/*

162
152
248
141
336
875
413
205
391
294
624
233
450
515
114
241
472
407
404
307

Figure 11-21. Creating a REGIONAL(1) Data Set

Figure 11-24 illustrates the updating of
the dat.a set LOANS2. Each item of input
data, read from a punched card, comprises a
book number, a reader number, and a code to
indica1:e whether it refers to a new issue
(I), a returned book (R), or a renewal. (A).
The position of the reader number on the
card allows the 8-character region number
to be derived directly by overlay defining.
The DA~m built-in function is used to
obtain the current date. This date is
wri tten in both the issue-date and
remindE~r-date portions of a new record or
an updated record.

The program in Figure 11-25 uses a
sequen1:ial update file CLOANS) to process
the records in the data set LOANS2, and a
direct input file (STOCK) to obtain the
book d~:!scription from the data set STOCK2
for USE~ in a reminder note. Each record

from LOANS2 is tested to see whether the
last reminder was issued more than a month
ago: if necessary, a reminder note is
issued and the current date is written in
the reminder-date field of the record.

REGIONAL(3) Data Sets

Figure 11-26, 11-27, and 11-28, which
illustrate the use of REGIONAL(3) data
sets, are similar to the REGIONAL(2)
figures, above: only the important
differences are discussed here.

To conserve space in the data set
STOCK3, U-format records are used. In each
record, the author's name and the title of

Chapter 11: Record-Oriented Transmission 145

//J042PGEX JOB
//COLEEX EXEC PL1LFCLG,PARM. PL1L=' SIZE=999999 ',PARM.LKED=/'LIST'
//PL1L.SYSIN DD *

ACR1:

NEXT:

RITE:

PROC OPTIONS(MAIN)~
DCL NOS FILE RECORD KEYED ENV(REGIONAL(l»,

NAME CHAR(20),
CNEWNO,OLDNO) CHAR(3),
CODE CHAR(l),
IOFIELD CHAR(20),
BYTE1 CHAR(l) DEF IOFIELD;

ON ENDFILE(SYSIN) GO TO PRINT;
OPEN FILE(NOS) DIRECT UPDATE;
GET FILECSYSIN) EDIT(NAME,NEWNO,OLDNO,CODE)

(A(20),2 A(3),X(53),A(1»;
IF CODE='A' THEN GO TO RITE;
ELSE IF CODE='C' THEN DO;

DELETE FILE(NOS) KEY (OLDNO) ;
GO TO RITE;
END;

ELSE IF CODE='D' THEN DELETE FILE(NOS) KEY(OLDNO);
ELSE PUT FILE(SYSPRINT) SKIP EDIT('INVALID CODE:',

NAME) (A(15),A);
GO TO NEXT:
READ FILE(NOS) KEY (NEWNO) INTO(IOFIELD);
IF UNSPEC(BYTE1)=(8)'l'B THEN WRITE FlLE(NOS) KEYFROM(NEWNO)

FROM (NAME) ;
ELSE PUT FILE(SYSPRINT) SKIP EDIT

('DUPLICATE:',NAME) (A(15),A);
GO TO NEXT;

PRINT: CLOSE FlLE(NOS)i
PUT FILECSYSPRINT) PAGE;
OPEN FILE (NOS) SEQUENTIAL INPUT;
ON ENDFlLE(NOS) GO TO FINISH;

NEXTIN: READ FILE(NOS) INTO(IOFIELD) K~~TO(NEWNO);
IF UNSPEC(BYTE1)=(8)'l'B THEN GO TO NEXTIN;
ELSE PUT FILE(SYSPRINT) SKIP EDIT(NEWNO,IOFIELD)(A(5),A);
GO TO NEXTIN;

FINISH: CLOSE FILE(NOS);
END ACR1;

/*
//GO.NOS DD DSNAME=NOS,DISP=(OLD,KEEP),trnIT=2311,VOLUME=SER=D186
//GO.SYSIN DO *
NEWMAN,M.W.
GOODFELLOW,D.T.
MILES,R.
aARVEy,C.D.W.
BARTLETT,S.G.
CORY,G.
READ,K.M.
PITT,W.H.
ROLF,D.F.
ELLIOTT,D.
HASTINGS,G.M.
BRAMLEY,O.H.
/*

516450
889

233
209
183

336
001

515
114

472875
391

439248

Figure 11-22. Accessing a REGIONAL(1) Data Set

C
A
D
A
A
D
A

D
C
D
C

the book are concatenated in a single
character string, and the lengths of the
two parts of the string are written as part
of the record. CONTROLLED storage is used
for the structure in which the records are
built because varying-length strings are
'not penni tted by the PL/I (F) compiler in
structures that are referred to in
record-oriented transmission statements.

The average record (including the recorded
key) is assumed to be 60 bytes; therefore
the average number of records per track
(i.e., per region) is 25, and there will be
40 regions.

146

In Figure 11-26, the data set STOCK3 is
created sequentially; duplicate region

/ /JOll1?GEX JOB
/ / COLE1~X EXEC PL1LFCLG, PARM. PL1L=' 81 ZE= 99 9 99 9' • PARM. LKED=" LIST'
//PL1L~SYSIN DD *

CRR2: PROC OPTIONS(MAIN);
DCL (LOANS,STOCK) FILE RECORD KEYED ENV(REGIONAL(2»,

NUMBER CHAR(4),
1 BOOK,

2 AUTHOR CHAR(2S),
2 TITLE CHAR(SO),
2 QTY FIXED DEC(3),

INTER FIXED DEC(S),
REGION CHAR (8):

ON ENDFILE(SYSIN) GO TO FINISH;
OPEN FILECLOANS) DIRECT OUTPUT:
CLOSE FILE(LOANS);
OPEN FILE(STOCK) DIRECT OUTPUT;

NEXT: GET FILE(SYSIN) LIST(NUMBER,BOOK);
INTER=(NUMBER-l000)/9;
REGION=INTER;
WRITE FILE(STOCK) FROM (BOOK) KEYFROM(NUMBERIIREGION):
GO TO NEXT:

FINISH: CLOSE FILE(STOCK);
END CRR2;

/*
//GO.LOANS DD
//

UNIT=2311,SPACE=(19,100),DCB=(RECFM=F,BLKSIZE=12, ,
DSORG=DA,KEYLEN=7),DISP=(NEW,KEEP,DELETE),DSNAME=LOANS2,

// VOLUME=SER=D186 '
/ /GO. S,]~OCK DD
//

UNIT=2311,SPACE=(81,(100,20»,DCB=(RECFM=F,BLKSIZE=77, ,
DSORG=DA,KEYLEN=4),DISP=(NEW,KEEP,DELETE),DSNAME=STOCK~,

// VOLUME=SER=D186 i

//GO.SYSIN DD *
'1015' 'W.H.AINSWORTH' 'THE ADMIRABLE CRICHTON' 1
'1214' 'L.CARROLL' 'THE HUNTING OF THE SNARK' 1
'3079' 'G.FLAUBERT' 'MADAME BOVARY' 1
, 3083' 'V. M. HUGO' 'LES MISERABLES' 2
'3085' 'J.K.JEROME' 'THREE MEN IN A BOAT' 2
'4295' 'W.LANGLAND' 'THE BOOK CONCERNING PIERS THE PLOWMAN' 1
'5998' 'W.SHAKESPEARE' 'MUCH ADO ABOUT NOTHING' 3
'6591' 'F.RABELAIS· 'THE HEROIC DEEDS OF GARGANTUA AND PANTAGRUEL' 1
'8362' 'H.D.THOREAU' 'WALDEN, OR LIFE IN THE WOODS' 1
'9765' 'H.G.WELLS' 'THE TIME MACHINE' 3
/*

Figure 11-23. creating a REGIONAL(2) Data Set

numbers are acceptable since each region
can contain more than one record.

In E'igure 11-21 ,the region number for
the dat,a set LOANS3 is obtained simply by
testin9 the reader number: there are only
three l:,'egions, since a 2311 track can hold
36 ninE~teen-byte records.

The only notable difference between
Figure 11-28 and the corresponding
REGIONAL (2) figure is in the additonal
processing required for the analysis of the
records read from the data set STOCK3. The
records are read into a varying-length
character string and a based structure is
overlaid on the string so that the data in
the record can be extracted.

r
Chapter 11: Record-Oriented Transmission 147

//J043PGEl JOB
//COLEEX EXEC PL1LFCLG,PARM.PL1L='SIZE=99999',PARM.LKED='LIST'
//PL1L.SYSIN DD *

DUR2:

NEXT:

PROC OPTIONSCMAIN):
DCL 1 RECORD,2CISSUE,REMINDER) CHAR(6),

SYSIN FILE RECORD INPUT SEQUENTIAL,
LOANS FILE RECORD UPDATE DIRECT KEYED ENVCREGIONAL(2»,
CARD CHAR(80),
BOOK CHAR C 4) DEF CARD,
READER CHAR(3) DEF CARD POS(10),
CODE CHAR(1) DEF CARD POS(20),
REGION CHAR(8) DEF CARD POS(5);

ON ENDFILECSYSIN) GO TO FINISH;
OPEN FILECSYSIN),FILE(LOANS);
ISSUE,REMINDER=DATE;
READ FILE(SYSIN) INTOCCARD);
IF CODE='I' THEN WRITE FILE (LOANS) FROMCRECORD)

KEYFROM(READERIIBOOKIIREGION)1
ELSE IF CODE='R' THEN DELETE FILE(LOANS)

KEY(READERIIBOOKIIREGION);
ELSE IF CODE='A' THEN REWRITE FILE(LOANS) FROM(RECORD)

KEY (READER I I BOOK I I REGION) :
ELSE PUT FILE(SYSPRINT) SKIP LIST

('INVALID CODE:' ,BOOK, READER) ,
GO TO NEXT:

FINISH: CLOSE FILE(SYSIN),FILE(LOANS):
END DUR2;

/*
//GO.LOANS DO DSNAME=LOANS2,DISP=(OLD,KEEP),UNIT=2311,VOLUME=SER=D186
//GO.SYSIN DO *
3517 095 X
5999 003 A
3083 091 R
1214 049 I
/*

Figure 11-24. REGIONAL(2) Data Sets: Direct Update

148

/ /J0431?GE3 JOB
//COLEI~X EXEC PL1LFCLG,PARM.PL1L=' SIZE=999999 '"PARM. LKED= 'LIST'
//PL1L.SYSIN DD *
SU~2: PROC OPTIONS(MAIN);

DCL LOANS FILE RECORD SEQUENTIAL UPDATE KEYED ENV(REGIONAL(2»,
STOCK FILE RECORD DIRECT INPUT KEYED ENV(REGIONALC2»,
(TODAY,LASMTH) CHAR(6),
YEAR PIC '99' DEF LASMTH,
MONTH PIC '99' DEF LASMTH POS(3),
1 RECORD,2(ISSUE,REMINDER) CHAR(6),
LOANKEY CHAR(7),
READER CHAR(3) DEF LOANKEY,
BKNO CHAR(4) DEFLOANKEY POS(4),
INTER FIXED DEC(S),
REGION CHAR(8),
1 BOOK,

2 AUTHOR CHAR(2S),
2 TITLE CHAR(SO),
2 QTY FIXED DEC(3);

TODAY,LASMTH=DATE;
IF MONTH='Ol' THEN DO;

MONTH= '12' ;
YEAR=YEAR-1;
END;

ELSE MONTH=MONTH-1;
OPEN FILE(LOANS),FILE(STOCK);
ON ENDFILE(LOANS) GO TO FINISH;

NEXT: READ FILE(LOANS) INTO (RECORD) KEYTO(LOANKEY);
IF REMINDER<LASMTH THEN DO;

REMINDER=TODAY;
REWRITE FILE(LOANS) FROMCRECORD);
INTER=(BKNO-1000)/9;
REGION=INTERi
READ FILE(STOCK) INTO (BOOK) KEY(BKNOIIREGION);
PUT FILE(SYSPRINT) SKIP(4) EDITCREADER,AUTHOR,TITLE)
CA,SKIP(2»;
END;

GO TO NEXT;
FINISH: CLOSE FILE(LOANS),FILE(STOCK);

END SUR2;
/*
//GO.LOANS DD DSNAME=LOANS2,DISP=COLD,KEEP),UNIT=2311,VOLUME=SER=D186
//GO. S'l'OCK DD DSNAME=STOCK2,DISP= (OLD, KEEP), UNIT=2311, VOLUME=SER=D186

Figure 11-2S. REGIONAL (2) Data Sets: Sequential Update and Direct Input

Chapter 11: Record-Oriented Transmission 149

//J006PGEX JOB
//COLEEX EXEC PL1LFCLG,PARM.PL1L='SIZE=999999',PARM.LKED='LIST'
//PL1L.SYSIN DD *

CRR3: PROC OPTIONS (MAIN) :
DCL (LOANS,STOCK) FILE RECORD KEYED ENV(REGIONAL(3»,

1 CARD,
2 NUMBER CHAR(4),
2 AUTHOR CHAR(25) VAR,
2 TITLE CHAR(SO) VAR,
2 QTYl FIXED DEC(3),

(Ll,L2,X) FIXED DEC(3),
1 BOOK CTL,

2 (L3,L4) FIXED DEC(3),
2 QTY2 FIXED DEC(3),
2 DESCN CHAR(X),

INTER FIXED DEC(5),
REGION CHAR (8) :

ON ENDFILE(SYSIN) GO TO FINISH;
OPEN FILE(LOANS) DIRECT OUTPUT;
CLOSE FILE(LOANS);
OPEN FILE(STOCK) SEQUENTIAL OUTPUT;

NEXT: GET FILE(SYSIN) LIST(CARD):
Ll=LENGTH(AUTHOR):
L2=LENGTH(TITLE);
X=Ll+L2;
ALLOCATE BOOK;
L3=Ll;
L4=L2;
QTY2=QTY1;
DESCN=AUTHORIITITLE;
INTER=(NUMBER-l000)/225;
REGION=INTER:
WRITE FILE(STOCK) FROM(BOOK) KEYFROM(NUMBERIIREGION);
FREE BOOK;
GO TO NEXT;

FINISH: CLOSE FILECSTOCK);
END CRR3;

/*
//GO.LOANS DD
//
//
//GO.STOCK DD
//
//

UNIT=2311,SPACE=(19,100),DCB=(RECFM=F,BLKSIZE=12,
DSORG=DA,KEYLEN=7),DISP=(NEW,KEEP,DELETE),DSNAME=LOANS3,
VOLUME=SER=D186

UNIT=2311,SPACE=(60,Cl000,20»,DCB=(RECFM=U,BLKSIZE=110,
DSORG=DA,KEYLEN=4),DISP=(NEW,KEEP,DELETE),DSNAME=STOCK3,
VOLUME=SER=D186

//GO.SYSIN DO •
'1015' 'W.H.AINSWORTH' 'THE ADMIRABLE CRICHTON' 1
'1214' 'L.CARROLL' 'THE HUNTING OF THE SNARK' 1
'3079' 'G.FLAUBERT' 'MADAME BOVARY' 1
'3083' 'V.M.HUGO' 'LES MISERABLES' 2
'3085' 'J.K.JEROME' 'THREE MEN IN A BOAT' 2
'4295' 'W.LANGLAND' 'THE BOOK CONCERNING PIERS THE PLOWMAN' 1
'5998' 'W.SHAKESPEARE' 'MUCH ADO ABOUT NOTHING' 3
'6591' 'F.RABELAIS' 'THE HEROIC DEEDS OF GARGANTUA AND PANTAGRUEL'
'8362' 'H • D./THOREAU , 'WALDEN, OR LIFE IN THE WOODS" 1
'9765' 'H.G.WELLS' 'THE TIME MACHINE' 3
/*

Figure 11-26. creating a REGIONAL(3) Data Set

150

1

//J0441?GEl JOB
//COLE]~X EXEC PL1LFCLG,PARM. PL1L=' SIZE=999999 1 , PARM. LKED= , LIST'
//PL1L .. SYSIN DD *

DUR3:

NEXT:

PROC OPTIONS(MAIN);
DCL 1 RECORD,2(ISSUE,REMINDER) CHAR(6),

SYSIN FILE RECORD INPUT SEQUENTIAL,
LOANS FILE RECORD UPDATE DIRECT KEYED ENV(REGIONAL(3»,
CARD CHAR(80),
BOOK CHAR (4) DEF CARD,
READER CHAR(3) DEF CARD POS(10),
CODE CHAR(l) DEF CARD POS(20),
REGION CHAR (8) ;

ON ENDFILE(SYSIN) GO TO FINISH;
OPEN FILE(SYSIN),FILE(LOANS)i
ISSUE,REMINDER=DATE;
READ FILE(SYSIN) INTO(CARD)i
IF READER<'034' THEN REGION='OOOOOOOO'i
ELSE IF READER<'067' THEN REGION=100000001';

ELSE REGION='00000002';
IF CODE='I' THEN WRITE FILE(LOANS) FROM (RECORD)

KEYFROM(READERI I BOOK I IREGION);
ELSE IF CODE='R' THEN DELETE FILE(LOANS)

KEY(READERIIBOOKIIREGION)i
ELSE IF CODE='A' THEN REWRITE FILE(LOANS) FROM (RECORD)

KEY (READER I I BOOK I IREGION);
ELSE PUT FILE(SYSPRINT) SKIP LIST

('INVALID CODE:',BooK,READER);
GO TO NEXT;

FINISH: CLOSE FILE(SYSIN),FILE(LOANS);
END DUR3;

/*
//GO.LOANS DO DSNAME=LOANS3,DISP=(OLD,KEEP),UNIT=2311,VOLUME=SER=D186
//GO.SXSIN DD *
3517 095 X
5999 003 A
3083 091 R
1214 049 I
/*

Figure 11-27. REGIONAL(3) Data Sets: Direct Update

Chapter 11: Record-Oriented Transmission 151

//J044PGE3 JOB
//COLEEX EXEC PL1LFCLG,PARM.PL1L='SIZE=999999',PARM.LKED='LIST w

'//PL1L.SYSIN DD *
SUR3: PROC OPTIONSCMAIN);

DCL LOANS FILE RECORD SEQUENTI.lU. UPDATE KEYED ENV(REGIONAL(3»,
STOCK FILE RECORDS DIRECT INPUT KEYED ENV(REGIONAL(3»,
(TODAY,LASMTH) CHAR(6),
YEAR PIC '99' DEF LASMTH,
MONTH PIC '99' DEF LASMTH POS(3),
1 RECORD,2(ISSUE,REMINDER) CHAR(6),
LOANKEY CHAR(7),
READER CHAR(3) DEF LOANKEY,
BKNO CHAR(4) DEF LOAN KEY POS(4),
INTER FIXED DEC(5),
REGION CHAR(8),
INREC CHAR (81) VAR,
1 BOOK BASED(P)II

2 (L1,L2) FIXED DEC(3),
2 QTY FIXED DEC(3),
2 DESCN CHAR(7S),

AUTHOR CHAR(25) VAR,
TITLE CHAR(50) VAR;

TODAY,LASMTH=DATE;
IF MONTH='Ol' THEN DO;

MONTH = , 12' ;
YEAR=YEAR-1;
END;

ELSE MONTH=MONTH-1;
OPEN FILE(LOANS),FILE(STOC~);
ON ENDFILE(LOANS) GO TO FINISH;

NEXT: READ FILE(LOANS) INTO (RECORD) KEYTO(LOANKEY);
IF REMINDER<LASMTH THEN DO;

REMINDER=TODAY;
REWRITE FILE(LOANS) FROM(RECORD)i

INTER=(BKNO-1000)/225i
REGION=INTER;

READ FILE(STOCK) IN.rO(INREC) KEY(BKNOIIREGION);
DCL STR BIT(648);
STR=UNSPEC(INREC);
PUT FILE(SYSPRINT) PAGE DATA(STR)i

P=ADDR (INREC) ;
AUTHOR=SUBSTR(DESCN,l,L1)u
TITLE=SUBSTR(DESCN,L1+1,L2):

PUT FILE(SYSPRINT) SKIP(4) EDIT(READER,AUTHOR,TITLE)
CA,SKIP (2» ;
END;

GO TO NEXT;
FINISH: CLOSE FILECLOANS),FILE(STOCK);

END SUR3;
/*
//GO.LOANS DD DSNAME=LOANS3,DISP=(OLD,KEEP),UNIT=2311,VOLUME=SER=D186
//GO.STOCK DD DSNAME=STOCK3,DISP=(OLD,KEEP),UNIT=2311,VOLUME=SER=D186

Figure 11-28. REGIONAL (3) Data Sets: Sequential Update and Direct Input

Teleprocessing

INTRODUCTION

The teleprocessing facilities of PL/I are
provided by an extension of the basic
record-oriented transmission facilities
with the addition of the TRANSIENT file
attribute 9nd of the PENDING condition.
The (F) compiler provides a communication

152

link between PL/I message processing
programs (MPPs) using these features and
the Queued Telecommunications Access Method
(QTAM) of the operating system.

A QTAM message control program (MCP)
handles messages originating from and
destined for a number of remote terminals,
each of which is identified by a terminal
name carried with the message. These
messages are transmitted to and from your
PL/I message processing program via queues

in main storage. (These queues are
supported by corresponding intermediate
queues in auxiliary storage on a disk data
set. Your PL/I program has access only to
the main-storage queues by means of a
single intermediate buffer for each file.)

The exact message format (specified to
the compiler by means of the ENVIRONMENT
attribute) depends on the MCP, but each
message will carry the terminal name with
it. A message may be a complete unit, or
may consist of a number of records so that
it can be split up for processing. You
must have this message format information
to enable you to write the message
processing program. Full information on
how to write an MPP is given in IBM
system/?60 operating system: PL/I (F)
Language Reference Manual. A full account
of QTAM procedure is given in: IBM
system/360 operating.system: QTAM Message
process~ng Program Services and IBM
system/?60 Operating system: QTAM Message
Control Program.

MESSAGE PROCESSING PROGRAM (MPP)

This program receives the terminal message
as input and produces output according to
the data in the message. You can code this
program in PL/I.

// JOB
// EXEC PL1LFCL
//PL1L.SYSIN DD *

MPPROC: PROC OPTIONS(MAIN)i

An MPP is not mandatory at a
teleprocessing installation, as for
example, an MCP is. If the messages you
transmit do not require processing, because
they are only switched between terminals,
an MPP is not required. However, you can
pass data to a problem program and you can
receive the output with a minimum of delay,
and most installations are likely to have a
set of processing programs available for
these purposes. These programs are stored
as load modules, either in main storage or
in a library in auxiliary storage.

HOW TO RUN AN MPP

Figure 11-29 shows an example of an MPP and
the job control language required to run
it. The EXEC statement invokes the
cataloged procedure PL1LFCL to compile and
link-edit the PL/I message processing
program. The load module produced is
stored in the partitioned data set
SYS1.MSGLIB under the member name MPPROC.
The telecommunications library,
SYS1.TELCMLIB, is concatenated with the
PL/I library, SYS1.PL1LIB.

In the PL/I message processing program,
MPP is declared as a teleprocessing file
that can process messages up to 100 bytes

DCL MPP FILE RECORD KEYED TRANSIENT ENV(G(100»,
OUTMSG FILE RECORD KEYED TRANSIENT ENV(G(500»,
INDATA CHAR(100),
OUTDATA CHAR(500),
TKEY CHAR(6)i

OPEN FILE(MPP) INPUT,FILE(OUTMSG) OUTPUT:

READ FILE(MPP) KEYTO(TKEY) INTO(INDATA):

WRITE FILE(OUTMSG) KEYFROM(TKEY) FROM(OUTDATA)i

ENDTP~ CLOSE FILE(MPP),FILE(OUTMSG)i
END MPPROCi

/*
//LKED.SYSLIB DD DSNAME=SYS1.PL1LIB,DISP=SHR
// DD DSNAME=SYS1.TELCMLIB,DISP=SHR
//LKED.SYSLMOD DD DSNAME=SYS1.MSGLIB(MPPROC), •••

Figure 11-29. PL/I Message Processing Program

Chapter 11: Record-Oriented Trans~ission 153

long. Similarly OUTMSG is declared as a
teleprocessing file that can receive
messages up to 500 bytes long.

The READ statement gets a record
(message or message segment) from the
queue. The terminal identifier is inse,ned
into the KEYTO character string. The
record is placed in the INDATA variable for
processing. The appropriate READ SET
statement could also have been used here.

The WRITE statement puts the data in
,OUTDATA into the destination queue; the
terminal identifier is taken from the
character string in TKEY. An appropriate
LOCATE statement could also have been used,.

Once the load module has been stored in ,
auxiliary storage on a direct-access device

154

it can be restored for execution at any
time. The job control statements to
perform this might be:

//
//JOBLIB
//
//MPP
//OUTMSG
//SYSPRINT

JOB
DD
EXEC
DD
DD
DD

DSNAME=SYS1.MSGLIB,DISP=SElR
PGM=MPPROC
DUMMY
DUMMY
SYSOUT=A

The JOBLIB DD statement is required to
make SYS1.MSGLIB available for resolution
of external references. The DD statements
for MPPROC associate the PL/I files MPP and
O~MSG with their respective main-storage
process queues. As no input/output
operations are required these are DD DUMMY
statements.

Introduction

Within IBM System/360 Operating System, the
terms 'library' and 'partitioned data set'
are used synonymously to signify a type of
data set that can be used for the storage
of other (sequential) data sets (usually
programs in the form of source, object, or
load modules). 'Partitioned data set' is
the more precise term, but its use is
generally confined to contexts where the
physical structure of the data set is more
significant than its conceptual nature;
otherwise, 'library' is the term in general
use.

'I'her,e are three types of library:

1. A J?ystem library is a partitioned data
set that houses frequently used
programs; system libraries form an
integral part of the operating system.
The most important system libraries
for the PL/I progrannner are the link
library (named SYS1.LINKLIB), the
cataloged-procedure library
(SYS1.PROCLIB), and the PL/I
subroutine library (SYS1.PL1LIB).

2. A ~~emporary library is a partitioned
data set that exists only for the
duration of a job. This type of
library is particularly useful for
containing the output from a linkage
editor run until it is executed by a
later job step.

3. A private library is any permanent
partitioned data set that is not part
of the operating system. Private
libraries are often used to house
groups of programs not used frequently
enough to warrant their inclusion in a
system library. They are usually made
available to a job by a special DD
statement with the ddname JOBLIB; they
can also be accessed by being
concatenated with a system library and
retrieved by use of the system library
ddname.

Structure of a Partitioned Data Set

A partitioned data set, which must be on a
direct-access device and wholly contained
on one volume, contains independent
sequentially organized (CONSECUTIVE) data
sets, each termed a member. Each member

Chapter 12: Libraries of Data Sets

has a unique name not more than eight
characters long stored in a directory that
is part of the data set. The directory
permits direct access to any member; the
members themselves are always processed
sequentially.

Individual members can be added to or
deleted from a partitioned data set as
required. When a member is deleted, the
member name is removed from the directory,
but the space occupied by the member cannot
be reused. If there is not sufficient
space available in the directory for an
additional entry, or not enough space
available within the data set for an
additional member, no new members can be
stored.

DIRECTORY

The directory of a partitioned data set is
a series of records at the beginning of the
data set; there is at least one record
(directory entry) for each member of the
data set. Each directory entry contains a
member name, the relative address of the
member within the data set, and a variable
amount of user data. The entries are
arranged in ascending alphameric order of
member names (Figure 12-1).

Although directory entries do not have a
fixed length, they are blocked into
fixed-length blocks of 256 bytes. Each
block contains a 2-byte count field and as
many complete entries as will fit into the
remaining 254 bytes. The count field
specifies the number of active bytes in the
block. Figure 12-2 illustrates the format
of a directory block. The directory is in
effect a sequential data set that contains
fixed-length unblocked records, and can be
read as such.

Figure 12-5 demonstrates a method of
extracting information from directory
entries,. (The program lists the names of
all the members of any library; the library
must be named at execution time in a DD
statement with the ddname LINK.)

The member name, which may be an alias,
occupies the first eight bytes of a
directory entry, and the relative address
of the member within the data set the next
three bytes (Figure 12-3). The twelfth
byte contains the following information:

Chapter 12: Libraries of Data sets 155

Bit Description

o If this bit is set to 1, the name in
the member-name field is an alias.

1,2 Binary value that indicates the number
of pointers in the user data field.
These pointers contain the relative
addresses of locations within the
member. You cannot use a PL/I program
to write such pointers; they can be
inserted only by means of the
assembler language STOW macro
instruction.

3-7 Binary value that indicates the number
of halfwords in the user data field
(including pointers).

A directory entry can contain up to 62
bytes of user data (information inserted by
the program that created the member). An
entry that refers to a member (load module)
written by the linkage editor includes user
data in a standard format, which is
described in IBM system/3600perat:ing
System: system Control :Blocks. If you use
a PL/I program to create a member, the
operating system creates the directory
entry for you and you cannot write any user
data. However, you can use assembler
language macro instructions to create a
member and write your own user data; the

Directory
Records

Figure 12-1. A Partitioned Data Set

156

Entry for
Member C

method is described in IBM System/360
Operating system: supervisor and Data
Management Services.

../

Creating a Partitioned Data Set

The simplest way to create a partitioned
data set is to include in any job step of
any job a DD statement that contains the
following information:

Type of device that will
process the data set

serial number of the volume
that will contain the
data set

Name of the data set

Amount of space required
for the data se·t

Disposition of the data set

Parameter of
DD Statement1.

UNIT=

VOLUME=SER=

DSNAME=

SPACE=

DISP=

l.Appendix B describes all the parameters of
the DD statement referred to in this
chapter.

Entry for
Member K

Space from
Deleted
Member

Avanlable
....--+- Areci

Data

Number of
Member Bytes Used

(Mo>: 256) Entry A
Member
Entry B

-----,.------
Member
Entry N

'-- .~~~------------------------~ r---------------------V- V
~~ 2 2~

Figure 12-2. A Partitioned Data set Directory Block

8 3 1 62(max} Bytes
r-------·-T---T~---,

I Membel: I TTR I C I Optional user data I
I name I I I I L _______ ._i ___ i_i __ J

A A
I I I L-_______________________________________ ,

I I
I I

Pointer to start of
member:

Bit
TT - track number relative

to start of data set
---0 If set to 1, name is an alias

1,2 Number of pointers in user data field
R - relative block number

on track 3-7 Binary value indicating number of halfwords
of user data (including pointers)

Figure 12-3. Contents of Directory Entry

For E!xample, the DD statement:

//PDS DD UNIT=2311,VOLUME=SER=3412,
// DSNAME=ALIB,
// SPACE=(CYL,(50,,10}},
// DISP=(,CATLG}

requests the job scheduler to allocate 50
cylindel:s of the 2311 disk pack with serial
number 3412 for a new partitioned data set
named ALIB, and to enter this ·name in the
system catalog. The last term of the SPACE
parametE~r requests that part of the space
allocated to the data set be reserved for
ten dirE~ctory blocks; it is the presence of
this term that indicates to the job
scheduler that the request is for a
partitioned data set:l...

If you want to insert the first member
in the data set at the time you create it,
you must. include the DD statement in the
job step that writes the member, and the
DSNAME parameter must include the member

1The SP1\CE parameter in a DD statement that
defines an INDEXED data set can include a
term in this position to indicate the size
of the index, but the DD statement must
also include ·the DCB subparameter DSORG=IS.

name in parentheses. For example,
DSNAME=ALIBCMEM1} names the member MEMl in
the data set ALIB. If the member is placed
in the data set by the linkage editor, you
can use the linkage-editor NAME statement
or the compiler OBJNM option instead of
including the member name in the DSNAME
parameter.

SPACE PARAMETER

The SPACE parameter in a DD statement that
defines a new partitioned data set must
always be of the form SPACE=(units,
(quantity,increment,directory}). Although
you can omit the third term (increment),
indicating its absence by a comma, the last
term, which specifies the number of
directory blocks to be allocated, must
always be present.

The amount of space required for a
partitioned data set depends on the number
and sizes of the members to be stored in it
and on how often members will be added or
replaced. (Space occupied by deleted
members is not released.) The number of
directory blocks required depends on the

Chapter 12: Libraries of Data S~S 157

number of members and the number of
aliases. Although you can specify an
incremental quantity in the SPACE parameter
that will allow the operating SystE:mt to
obtain more space for the data set if
necessary, both at the time of creation and
when new members are added, the number of
directory blocks is fixed at the time of
creation and cannot be increased.

If the data set is likely to be large or
you expect to do a lot of updating, it
might be best to allocate a full volume.
Otherwise, make your estimate as accurate
as possible to avoid wasting space or time
recreating the data set.

The number of entries that a 2S6-byte
directory block can contain depends on ·the
amount of user data included in the
entries. The maximum length of an entry is
74 bytes, but the entries produced by the
linkage editor vary in length between 34
bytes and 52 bytes, which is equivalent to
between four and seven entries per block.

Processing a Member

When proqramming in PL/I, you will
ordinarily use partitioned data sets only
for storing source, object, or load
modules, and the modules themselves will be
created by the compiler or the linkage
editor. You need only include an
appropriately named DD statement to
indicate the names of the partitioned data
set and the new member. (Note that: you
should restrict the use of a particular
library to the storage of one type of
module, since all members of a partitioned
data set must have identical
characteristics.)

//JOS7PGEX JOB
//CO EXEC PL1LFC,PARM.PL1L='SIZE=999999'

Figure 12-4 illustrates the use of the
cataloged procedure PL1LFC to compile a
simple PL/I program and place the object
module in a new library named EXLIB. The
DD statement that defines the new library
and names the object module overrides the
DO statement SYSLIN in the cataloged
procedure. (The PL/I program is a function
procedure that, given two values in the
form of the character string produced by
the TIME built-in function, returns the
difference in milliseconds.)

Figure 12-5 illustrates ·the use of the
cataloged procedure PL1LFCL to compile and
link-edit a PL/I program and place the load
module in the existing library 'FLM'. (The
PL/I program lists the names of the membel~s
of a library.)

You can delete a member of a parti tionE~d
data set by means of the SCRATCH statement:
of the operating system utility program
IEHPROGM, which is described in IBM
System/360 Operatinq.Sytem: UtilItItes.
The SCRATCH statement deletes only the
directory entry that refers to the member;
you cannot free the space occupied by the
member unless you reorganize the entire
data set. Do not attempt to delete a
member by including the parameter
DISP= (OLD, DELETE) in the DD statement that~
defines it; this would result in the
deletion of the entire data set.

TO reorganize a partitioned data set,
you must copy the members into a temporarlr
partitioned data set, delete and recreate
the original data set, and copy the members
back into it. The system utility programs
include facilities for copying members of
partitioned data sets.

//PL1L.SYSLIN DO UNIT=2311,VOLUME=SER=D186,DSNAME=EXLIB(ELAPSE),
// SPACE=(CYL,(10,,2»,OISP=(NEW,KEEP)
//PL1L.SYSIN DO *

ELAPSE: PROC(TIME1,TIME2);

/*

DCL (TIME1,TIME2) CHAR(9),
Hi PIC '99' OEF TIME1,
Ml PIC '99' DEF TIMEl POS(3),
MSl PIC '99999' DEF TIME1 PoseS),
H2 PIC '99' DEF TIME2,
M2 PIC '99' DEF TIME2 POS(3),
MS2 PIC '99999' DEF TIME2 POses),
ETIME FIXED DEC(7);

IF H2<Hl THEN H2=H2+24i
ETIME=«H2*60+M2)*60000+MS2)-«Hl*60+Ml)*60000+MS1)i
RETURN(ETIME)i
END ELAPSE;

Figure 12-4. Placing an Object Module in a New Library

158

//J062PGE2 JOB
/ /COLE EXEC PL1LFCL, PARM. PL1L=' SIZE=999,999', PARM. LKED="
//PL1L.SYSIN DD *

MNAME: PROC OPTIONS(MAIN);
DCL LINK FILE RECORD SEQUENTIAL INPUT,

1 DIRBLK,
2 COUNT BIT(16),
2 ENTRIES(254) CHAR(l),

1 ENTRY BASEDCA),
2 NAME CHAR(8),
2 TTR CH)\R(3),
2 INDIC,

3 ALIAS BIT(l),
3 TTRS BIT(2),
3 USERCT BIT(5),

(LEN,PTR) FIXED BIN(31);
ON ENDFILE(LINK) GO TO FINISH;
OPEN FILE(LINK);

NEXTBLK: READ FILECLINK) INTO(DIRBLK);
LEN=COUNT;
PTR=l;

NEXTENT: A=ADDR(ENTRIES(PTR»;
PUT FILE(SYSPRINT) SKIP LIST(NAME);
PTR=PTR+12+2*USERCT;
IF PTR+2>LEN THEN GO TO NEXTBLK;
GO TO NEXTENT;

FINISH: CLOSE FILE(LINK);
END MNAME;

/*
//LKED.SYSLMOD DD UNIT=2311,VOLUME=SER=D186,DSNAME=FLM(DIRLIST),
// DISP=OLD

Figure 12-5. Placing a Load Module in an Existing Library

PROCESSING WITH PL/I

You can use a PL/I program to write a
member into a partitioned data set, or to
read or update a member. In each case, you
must identify the member in an appropriate
DD statement and process it as a
CONSECUTIVE data set.

Creating a Member

The members of a partitioned data set must
have identical characteristics. This is
necessary because the volume table of
contents (VTOC) will contain only one data
set control block (DSCB) for the data set,
and not one for each member. Although it
is possible to place members 'with different
characteristics into a partitioned data
set, you may subsequently have difficulty
in retrieving them. Note that, when you
use a PL/I program to create a member, the
operating system creates the directory
entry; you cannot place information in the
user data field.

When. you create a member in a new
partitioned data set, the DD statement that
defines the data set must include all the

parameters listed under the heading
'Creating a Partitioned Data set,' above
(although you can omit the DISP parameter
if the data set is temporary). You must
also describe the characteristics of the
member (record format, etc.) either in the
DCB parameter or in your PL/I program;
these characteristics will also apply to
other members added to the data set.

However, if the partitioned data set
already exists, you will not need the SPACE
parameter; the original space allocation
applies to the data set and not to an
individual member. Furthermore, you will
not need to describe the characteristics of
the member, since these are already
recorded in the DSCB for the data set.

If you want to add two or more me~bers
to a partitioned data set in one job step,
you must include a DD statement for each
member, and you must close one file that
refers to the data set before you open
another.

Figure 12-6 illustrates the use of a
PL/I program to create a CONSECUTIVE data
set and place it in a new library.

Chapter 12: Libraries of Data sets 159

//J059PGEX JOB
//COLEEX EXEC PL1LFCLG,PARM.PL1L='SIZE=999999',PARM.LKEO=·'
//PL1L.SYSIN DD *

NMEM: PROC OPTIONS(MAIN);
DCL IN FILE RECORD SEQUENTIAL INPUT,

OUT FILE RECORD SEQUENTIAL OUTPUT,
IOFIELD CHAR(80) BASED(A);

OPEN FILE(IN),FILE(OUT);
ON ENDFILE(IN) GO TO FINISH;

I

NEXT: READ FILE(IN) SET(A)i
WRITE FILE(OUT) FROM(IOFIELD);
GO TO NEXT;

FINISH: CLOSE FILE(IN),FILE(OUT)i
END NMEM;

/*
//GO.OUT
//

DD UNIT=2311,VOLUME=SER=0186,DSNAME=ALIB(NMEM),
OISP=(,KEEP),SPACE=(CYL, (10,1,1»,

//
//GO.IN

DCB= (RECFM=FB,BLKSIZE=3600, LRECL=80)
DD *

Insert here data to be placed in member

/*

• Figure 12-6. Using a PL/I Program to Create a Member of a Partitioned Data Set

//J060PGEX JOB
//COLEEX EXEC PL1LFCLG,PARM.PL1L=1 SIZE=999999' , PARM.LKED=,1 ,
//PL1L.SYSIN DD *

UPDTM: PROC OPTIONS(MAIN)i
DCL (OLD, NEW) FILE RECORD SEQUENTIAL,

DATA CHAR(80):
ON ENDFILE(OLD) GO TO FINISH:
OPEN FILE(OLO) INPUT,FILE(NEW) OUTPUT TITLE('OLO')i

NEXi': READ FILE(OLD) INTO(OATA)i
IF DATA=' , THEN GO TO NEXT:
WRITE FILE (NEW) FROM (DATA) ;
GO TO NEXT:

FINISH: CLOSE FILE(OLD),FILE(NEW)i
END UPOTMi

/*
//GO.OLD DD UNIT=2311,VOLUME=SER=D186,DSNAME=ALIB(NMEM),DISP=OLD

Figure 12-7. Updating a Member of a Partitioned Data Set

Updating a Member

To use a PL/I program to update one or more
records within a member of a partitioned
data set, you must rewrite the entire
member in another part of the data set;
this is rarely an economic proposition,
since the space originally occupied by the
member cannot be used again. You must use
two files in your PL/I program, but, both
can be associated with the same DD
statement. Figure 12-7 is a program that
updates the member created in Figure 12-6;
it copies all the records of the original
member except those that contain only
blanks.

160

Operating System Utility Programs

The operating system includes several
utility programs that are useful for
processing partitioned data sets. ~
System/360 Operating system: Utilities
describes all these utility programs and
explains how to use them,. The facilities
offered by the utility programs include
moving, copying, and merging the contents
of partitioned data sets, updating members
in place, and listing the contents of
directories.

System. Libraries

LINK LIBRARY

The link library (SYS1.LINKLIB) is a system
library that houses frequently used
programs. Any program that you name in the
PGM paJ:ameter of an EXEC statement must be
in the link library unless you specify a
private library (see below). The link
library' is always available to all job
steps o.f all jobs. The control program
provide~s the necessary data control block
and establishes the logical relationship
between your program and the library,
making the members of the library available
to youJ:' program.

An assembler language program can use
the macro instructions LINK, XCTL, ATTACH,
and LOAD to request the control program to
load a program from the link library (or a
private library) into main storage and (for
LINK, A,'fTACH, and XCTL only) pass control
to. it. Although there is no equivalent
facility in PL/I (F), some of the PL/I
library subroutines use these macro
instructions to call other library
subroutines.

PROCEDURE LIBRARY

The procedure library (SYS1.PROCLIB) is a
system library that houses cataloged
procedures. It is normally accessed only
by the control program or by the utility
program IEBUPDTE, which may be used for
adding or changing cataloged procedures.
Chapter 8 discusses cataloged procedures
and the procedure library.

PL/I SUBROUTINE LIBRARY

The PL/I subroutine library (SYS1.PL1LIB)
is a system library that houses a set of
load mo.dules that, during execution of a
PL/I program, supplement the machine
instructi.ons generated by the compiler.
These modules can be divided into two
groups:

1. Modules that serve as an interface
between compiled code and the
facilities of the operating system.
These modules are concerned primarily
wi"th input and output, storage
ma.nagement, and error and interrupb:
ha.ndling.

2. Modules that perform data processing
operations during program execution .•
These modules handle, for example,
input/output editing, data conversion,
and many of the PL/I built-in
functions.

Certain modules are loaded dynamically
during the execution of a program. These
modules reside in the link library
(SYS1.LINKLIB): they are transient modules
and are loaded, when required, by the macro
instructions LINK, LOAD and XCTL. The link
library modules comprise:

1. The print and message modules of the
error and interrupt-handling
subroutines.

2. The modules for opening and closing
files.

3. The record-oriented transmission
modules.

Appendix E lists all the modules with
their locations (PL/I library or link
library), lengths in bytes, and brief
descriptions.

Private Libraries

JOB LIBRARY

If you want to execute programs that are
not used frequently enough to justify their
inclusion in the link library, you can
identify the private library that contains
them as a job library by naming it in a
special form of DD statement with the name
JOBLIB. You must place the JOBLIB
statement between your JOB statement and
the first EXEC statement of your program.
The control program will then respond to a
request for the execution of a program by
first searching the job library (unless the
program already exists in main storage); if
the program is not in the job library, the
control program will then refer to the link
library in the normal way.

The JOBLIB statement must contain at.
least two parameters, DSNAME and DISP •. You
must code the DISP parameter as
DISP="(NEW, PASS), DISP= (OLD,PASS), or
DISP=(SHR,PASS) to ensure that the job
library remains available throughout the
job; however, if you code DISP=OLD or
DISP=SHR, the job scheduler assumes
DISP=(OLD,PASS) or DISP=(SHR,PASS). If you
code DISP=(NEW,PASS), you must also specify
the amount of space required by including
the SPACE parameter. If the private
library is not cataloged, you must identify

Chapter 12: Libraries of Data Sets 161

the volume that contains the libra~y, and
the unit that will process it (UNIT and
VOLUME parameters).

You can concatenate two or more private
libraries in a single job library by
pefining them in separate DD statements and
leaving the name field of all but the first
statement blank. The control program will
search these libraries in the order of
appearance of the DD statements that define
them.

Figure 12-8 illustrates the execution of
the load module created in Figure 12-5 from
the private library FLMi in this example,

//J062PGE3 JOB

the program lists the names of the members
of the link library~

STEP LIBRARY

You can identify a private library as a
step library in a similar manner to that
described above for a job library. A
STEPLIB DO statement applies to a job step
only and overrides any JOBLIB OD statement
for the duration of the job step. You can
also specify a step library (but not a job
library) in a cataloged procedure.

//JOBLIB DD UNIT=2311,VOLUME=SER=D186,DSNAME=FLM,DISP=OLO
// EXEC PGM=OIRLIST
//LINK DD DSNAME=SYS1.LINKLIB,OISP=SHR
//SYSPRINT DO SYSOUT=A

Figure 12-8. Use of JOBLIB statement

162

Introduction

Mul ti ta~sking is the term used in PL/I to
describe the concurrent existence of
several tasks within the execution job
step. Multitasking should not be confused
with multiprogramming, which is the control
of indE!pendent' jobs running concurrently.
PL/I m'tLl ti tasking can be used only under an
MVT sys·tem whilst multiprogramming can be
run under MFT or MVT controlled systems.

A multitasking program will usually
contain one or more procedures within a
main pI:ocedure, each of which can have a
di.fferE!nt priority, each identified by
differe!nt task names and each capable of
callingr or being called by each other. For
eXamplE!:

A: PROC OPTIONS(MAIN,TASK);
CALL B TASK(T1);

B: PROC;
CALL C TASK(T2);

C: PROC;

END C;
END B;
.END A;

A multitasking program, using the
multitalsking facilities provided by PL/I,
may enaLble you to make fuller and more
efficiE~nt use of machine time by reducing
the time during which the CPU is waiting or
the input/output devices are not used. It
is esse!ntial, however, to understand the
concept~s involved and to arrange your
program-accordingly. This chapter sets out
to aid your understanding of this feature;
mult.itasking is also discussed in detail in
IBM System/360 Operating System: PUI (F)
LanguaC[e Reference.Manual.

Chapter 13: Multitasking

Multitasking Requirements

SYSTEM/360 REQUIREMENTS

For a full discussion of these
requirements, see Appendix D, 'System
Requirements. •

OPERATING SYSTEM REQUIREMENTS

PL/I multitasking uses the MVT system. A
PL/I program compiled with the TASK option
and executed under the MFT or PCP systems
will terminate abnormally. All the tasks
exist within the same job step; the
priorities for these tasks exist only
within the job step and can be varied over
a range determined by the job step
priority.

The minimum PL/I multitasking overhead
in main storage and execution time, over
and above that resulting from a single-task
PL/I program, is:

Main storage: about 3.5K bytes plus 2K
bytes for each subtask
attached.

Execution time: about 70 milliseconds per
task attached (model 40).

PROGRAMMING REQUIREMENTS

Compiler.Level

Multitasking requires a PL/I (F) compiler
and a PL/I subroutine library of version 4
level or later. Programs based on earlier
verions can only be executed in a
multitasking environment if recompiled with
the TASK option (see below); even then
subprograms in these programs may need
rearranging to execute successfully.

Procedure Option~

All programs and external compilations that
are to be executed in a multitasking
environment must have been compiled with

Chapter 13: Multitasking 163

the TASK option in the external PROCEDURE
statement. For example:

X: PROC OPTIONS(MAIN,TASK);

A CALL statement with the EVENT,
PRIORITY, or TASK options also requires a
multitasking environment; you should,
therefore, specify the TASK option for the
external procedure. If you do not, it is
assumed by default.

If you use the TASK option, the PL/I
library multitasking modules, instead of
the single-task modules, will be
link-edited into the load module. The load
module thus contains mul·ti tasking modules
only when multitasking is required.

Combination with Other Languages

When a routine in IBM System/360 assembler
language is to be used in mul·ti tasking, the
DSA obtained in it must be at least 108
bytes long. (The minimum length for a DSA
in a non-multitasking environment is 100
bytes.) PL/I library routines used in
multitasking must be those designed for
multitasking, for example, IHEITH, IHETSA.

Multitasking Management

There are a number of topics that must be
fully understood for successful ~
multitasking management. These are::

1. Transfer of control

2. Use of priorities in PL/I

3. programming considerations

4. Input/output handling

5. Task termination

TRANSFER OF CONTROL

One of the major differences between
multitasking and non-multitasking programs
is that of control over the CPU and
input/output devices. In a
non-multitasking environment the invoking
procedure relinquishes control to the
invoked procedure; in multitasking, an
additional flow' of control is established,
$0 that procedures can be executed {in
effect) concurrently. This means constant
competition for control of the CPU, with

164

control passing to procedures in order of
priority or position in the system queue.
A task is always ·the execution of a PL/I
procedure. A task is always associated
with one particular procedure; on the othe:r
hand, a procedure can be associated with
several tasks. Because control can pass
from task to task, with several tasks
active at the same time, a procedure can be
executed by several tasks concurrently.
Figure 13-1 shows the transfer of control
within one job, and how the CPU and the
input/output devices are used.

Two points have been assumed to simplify
the figure. One, that the various tasks
within the program relinquish and request
CPU and input/output devices at exactly the
right moment; two, that no other job is
trying to assume contro~ at the same time.
Obviously, in normal use, these two factor:s
will play a part in the efficient execution
of your program, and a discussion on the
methods used to lessen their effect will he
found under 'Use of Priorities' and
'Input/Output Handling' in this chapter.

A brief description of the changes in
control., at the points indicated at the
left of the figure, follows:

1. T2 obtains control of CPU due to its
priority (3). Tl and T3 go into a
WAIT state.

2. T2 relinquishes control of CPU and
accesses input/output devices. Tl
obtains control of CPU over T3 becaus4e
it has a higher position in the system
queue than T3 (still in WAIT state).

3. Tl relinquishes CPU and, wishing to
access input/output devices, goes into
a wait state (T2 still controls
input/output). T3 gains control of
CPU.

4. Whilst in control of the CPU, T3
attaches T4 and passes control to it,

5. T2 relinquishes input/output which is
accessed immediately by Tl (waiting on
input/output) and regains control of
the CPU, having higher priority than
T4. T4 goes into a wait state on CPU ..

6. Tl relinquishes input/output control
by way of a program instruction (e.g. "
WAIT (T3» and T2 immediately accesses
input/output, relinquishing control of
CPU. T4 retains control of CPU.

7. T4 completes, returns to '1'3 which
relinquishes control of CPU.

8. T3 releases input/output control to
access CPU which has been relinquished
by T2 on a program instructuon (e.g.,

TASK TI TASK T2 TASK TJ
(PRTY 2) (PRTY 3) (PRTY 2) CPU

WAIT CPU WAIT
NOT { T2 IN
USE

2
CPU I/O

TI

3 ATTACH T4 T2
WAIT CPU (PRTY I) TJ

4
WAIT CPU

5
I/O CPU WAIT

T2 TI

b
WAIT I/O CPU

T2 T4

7 TIME CPU I/O RETURN
T2 TJ

S
1/0 WAIT CPU

TJ TI

q
CPU I/O END

TI T2

10 CPU
T2

II
CPU END TI

12

Figure 13-1. Transfer of Control within a Multitasking Program

Wl~IT (T3». Tl accesses input/output
aqain.

9.. Tl obtains control of CPU when
rE~leased by T3 (at end of task T3) and
T2 once again accesses input/output.

10.. T2 demands control of CPU by virtue of
i 1:.s higher priority and Tl goes into a
wait state.

11. T~~ relinquishes control of CPU and
ends; T1 gains control of CPU.

12. Tl reaches end of task.

The columns to the right of the chart
show the use of the CPU and the
input/output devices. You can see that,
with careful planning, the CPU is in use
continuously. In this simple case, only
one input/output channel has been
indicated, thereby creating some WAIT
situations which would not occur if more
than one channel was used.

You should note the correlation between
CPU control and the use of input/output
devices.. If a task gains control of the
CPU and immediately goes into an
input/output operation, control of the CPU

Chapter 13: Multitasking 165

reverts to the task with the next highest
priority, ou to the task next in the system
queue, including tasks in other jobs in
different regions. It is the.refore
possible, by lack of planning, to gain
control several times during the course of
your program only to lose it inunediately
each time, and, finally, have to wait for
another job to finish execution before you
can continue.

control of the CPU is also relinquished
if control is requested by a task which has
a higher priority than that of the task
already using the CPU. The task thus
~isplaced must once again compete with
other tasks on the basis of priority or
queue status.

The control of input/output devices,
however, whilst conforming to the rules of
priority and queue status for access, does
not interrupt an operation to transfer
control. If a task requests control of
input/output devices whilst those devices
~re in use, the second request is initiated
but control is not passed until the first
operation has been completed.

USE OF PRIORITIES IN PL/I

Each task existing within a main procedure
in the same execution job step can have a
different priority. By evaluating the
priority of a task, the system decides
which task shall obtain control of the CPU.
Tasks with equal priorities are evaluated
on their relative positions in the system
queue.

You can specify the priority associated
with a particular job using the PRTY
~arameter of the JpB statement. The job
step priority can have any value from 0 to
14 inclusive, the higher the value the
higher the priority.

You can specify the job step priority of '
a job by using the PRTY parameter of the
JOB statement, or the DPRTY parametf~r of
the EXEC statement~

'l'his priority determines the initial
priority of the major task in the PL/I
program, using the formula:

p=(16*(job priority» + 10

The absolute range of values provided by
this formula is 10 through 234; the range
for a particular program is from 10 through
~ value that depends on the job priority.
This value is not only the initial priority
of the major task, it is also the maximum
priority that any other task in the job can

166

have. If an attempt i~ made to create a
task priority greater than the maximum
priority, the task will be executed at the
maximum priority.

The priority of any task can be reduced
to zero; an attempt to create a priority of
less than zero will result in the task
concerned being excuted at zero priority.
An attached task can have a priority
greater or smaller than its attaching task.,
provided that this priority is within the
limits given above. A priority can be
changed within a program by any other task"

The value 'of the priority for a task
when the task is created is known as the
despatching priority. The despatching
priority of the attaching task can be equaJL
to or less than the maximum priority but
never greater than it, and can be changed
during execution; this will affect the
despatching priority of a subtask created
after the change. The despatching priority
of a subtask can also be changed during
execution.

A priority can be assigned to a task
variable before the variable is associated
with an active task. If the task is
attached without the PRIORITY option, the
priority has the value that was assigned to
the task variable~

These conventions must be interpreted
carefully when the PRIORITY
pseudo-variable, built-in function, or
option is being used to manipulate the
priority of a task. In particular, the
effect of the maximum priority in
restricting the manipulation should be
noted.

In the example shown in Figure 13-2, thE~
priority is established by:

//jobname JOB123,J.SMITH,MSGLEVEL=1,PRTY=2

Hence maximum priority=42. It is assumed
that none of the omitted statements can
cause transfer of control or create a wait
situation. Control passes through the
program to statement 12. Here task T1 is
attached with a priority of 45; this is
greater than the maximum priority, so T1 is
given the maximum priority, 42. As this is
higher than that of TCZ), the major task,
control at once passes to Ti, that is, to
statement 26.

At statement 31, task T2 is attached
with a priority of 38. Control remains in
T1; statement 32 is executed. The priority
of T2 is now the highest priority (T (Z)=35.,
T1=32, T2=38), so control passes at once tC)
statement 41. After the execution of
statement 47, the tasks have the priorities

Statem~nt No. statement Priority or Value

1 Z: PROC OPTIONS(MAIN,TASK); T(Z)=42

6 PRIORITY=-7;

12
13

CALL Y TASK(T1) PRIORITY(10); T(Z)=35
T1=42

16
1'1
1B

25
26

PRIORITY=2;
A=PRIORITY(T1) i
PRIORITY(T1)=-9;

END Z:
Y: PROC;

T(Z)=37
A=-5
T1=28

T(Z)=37
T1=42

31 CALL X TASK(T2) PRIORITY(-4): T1=42
T2=38
T1=32
NE

32
33

40
41

4'1

55

PRIORITY=-10;
B=PRIORITY(T2)i

END Y;
X: PROC:

PRIORITY=-8:

END X;

NE
NE
NE
NE
T2=38

T2=30
NE
NE
NE
NE

Note: 'T(Z) is the priority of the major task, NE=not executed.

Figure 13-2. Flow of Control through a Program

TCZ)=35, T1=32, T2=30. Control now returns
to 'r (Z), at st.atement 13.

In ,this example, the main procedure Z
terminates normally, while the procedures Y
and X terminate abnormally. This is
because:

1. The value of the PRlORITY
pseudo-variable specified in
procedures Y and X is such that it
causes control 'to be transferred out
of these procedures, leaving several
statements in the procedure
unexecut~d.

2. There is no statement that causes
either procedure to be reentered
before the main procedure is
terminated. ,

Only the priorities of the current task
and of an immediate subtask of the current
task can be determined directly. The
calculation of priorities in PL/I is
relative, not absolute: absolute values,
including that of the major task, are not
easily available.

PROGRAMMING CONSIDERATIONS

A task may lose control under any of the
following circumstances:

1. Termination.

2. Input/output operations.

Chapter 13: Multitasking 167

3. A task is attached with a higher
priority than the current task.

4. Use of the PRIORITY pseudo-variable~

5. A higher-priority task may come out of
a wait state or may complete
input/output.

6. Use of the DELAY or WAIT statements '.

Event Option

Only one task at a time can wait on a
particular event. If a situation occurs
where two or more tasks wait on the same
event, a diagnostic message is provided.
This kind of situation can easily occur;
for example:

CALL X TASK(A);

CALL X TASK (B) ;

If no event is explicitly declared in X,
then, if X contains a WAIT statement, both
tasks may be waiting for the same event.

Variables

The scope of variables must be watched
carefully in a multitasking program. A
variable that has not been explicitly
declared may be altered unpredictably when
c,ontrol passes from one task to another.
For example:

COMPLETION(ASSIGNMENT)='O'B;
A=l;
CALL A TEST(A) TASK(ONE);
WAIT(ASSIGNMENT);
A=2;
CALL A TEST(A) TASK(TWO);

A_TEST: PROC(PARM);
DeL VARIABLE FIXED BINARY;
VARIABLE=PARM;
COMPLETION(ASSIGNMENT)='l'B;
IF VARIABLE=l THEN DO;

The WAIT statement ensures that the
program must wait for the task to assign a
value to a variable known only to ~TEST,
and then set the even 'ASSIGNMENT"
complete. If you did not use the WAIT
s~atement, TASK(ONE) PARM would be
overwritten by TASK(TWO) PARM; in which

168

case, A possibly may have the value 2
before the assignment to VARIABLE. If this
was so, the statements following THEN DO
would never be executed ..

ON-Units

If there is an ERROR ON-unit in a task, and
the condition to which the ON-unit applies
is raised in a subtask of that task, a GO
TO out of the ON-unit will also raise the
ERROR condition, causing the ERROR ON-unit
to be reentered repeatedly in a loop,
because the GO TO label will not be known
to the attached subtask. You can avoid
this problem by using a separate ERROR
ON-unit in the subtask with a GO TO label
that is known to the subtask. For example:

MAJOR: PROC OPl'IONS (MAIN, TASK) ;
ON ERROR GO TO FINISH;
CALL A TASK;

A: PROC;
ON ERROR GO TO FINISH;

END Ai

FINISH: END MAJOR;

CHECK Condition

If, in a multitasking program, the use of
the CHECK condition is not carefully
synchronized, the results obtained may be
unpredictable. A program executed with the
CHECK condition may produce different
results to the same program not using
CHECK, since the presence of CHECK in a
program may cause the task in which it
occurs to wait for input/output and hence
to lose control. When this task eventually
regains control, some of the variables may
have new values

SNAP Option in ON-Unit

If an entry point has been called with the
TASK option specifying a task name, the
entry point in the SNAP print-out is
followed by the task name in brackets.

INPU'l'/OUTPUT HANDLING

The handling of input/output in
multitasking must be approached with some
care. ~~ith the changes in control
mention~~d earlier and with several tasks
active at the same time, the same data set
may be accessed by different tasks: the
same val:iable may be processed or the same
ON-unit invoked. This could mean a record
is ove~~ritten, a variable may be changed
inadve~:ently or, if a task terminates
abnormally, either the record or the value
of the variable may be lost. You may also
lose control of the CPU at unexpected
places in your program. To over come such
difficulties, you should make use of the
EVENT option, the WAIT statement, the DELAY
statement, the EXCLUSIVE attribute, the
COMPLETION and STATUS built-in functions
(also usable as pseudo-variables for
testing), in addition to the PRIORITY
pseudo-variable already mentioned. There
follows a brief description of each, with
an example of when to use it and a note on
any precautions to be taken.

EVENT Optio~

An inpuit/output event must be waited for in
the task that initiated it, for example:

CALL A TASK(Ti);

A: PROC;
CALL B TASK(T2) EVENT(EV2);

Procedure A will not complete until
procedure B has completed. You should
remembe.r, however, that an enforced wait of
this nature wastes CPU time. You must,
therefore, whenever possible, ensure CPU
overlap with another task if the task
waiting on an EVENT has to perform much
input/output. (This applies also to the
WAIT statement.)

Another instance of the difficulties met
when using an input/output event occurs in
the use of WRITE statements in REGIONAL(3)
files. If a REGIONAL(3) file with U- or
V-format records is opened for DIRECT
UPDATE or OUTPUT, and records are being
added to the file, then under certain
conditions, the program may not execute
properly. For example, if two or more
tasks are simultaneously attempting to add
records to the same track of the data set ..
and at least one of the WRITE statements
concerned has the EVENT option, then if the
WRITE statements are not correctly
synchronized, the results are
unpredi.ctable.

You can avoid this difficulty in several
ways:

1. Avoid using the EVENT option on such
WRITE statements.

2. Confine such WRITE statements to one
task.

3. Use non-input/output EVENT variables
and WAIT statements to synchronize the
WRITE statements in the various tasks.

WAIT Statement

This statement will cause a WAIT in the
sequential processing of the task in which
it appears. By using the WAIT statement
you can ensure the completion of subtasks
and the order of control of the CPU. For
example:

Pi: PROC;
CALL A EVENT(EV1)i
CALL B EVENT(EV2);
WAIT(EV1,EV2,) (2);

END Pl;

Using the WAIT statement as shown above
also prevents the main procedure from
completing whilst its subtasks are still
act~ve, a possiblity if A or B above had
gone into an input/output operation
immediately (assuming you omitted the WAIT
statement). Control would have passed from
Pi to A, from A to B, and from B to P1,
where your program may have entered the
routine to end Pl. P1 would then have
completed, leaving A and B still active.

The expression (2) in the WAIT statement
is optional and in this case means Pi must
wait on both A and B. If the expression
had been (1), then P1 will only wait on A
or B to complete before proceeding. A WAIT
statement could have been placed between A
and B in, the above ensuring a step-by-step
passage of control, with A not completing
until B completed.

Note that the WAIT statement must
specify event names not task names.

Use the WAIT statement with caution; it
is relatively easy to cause errors in your
program by its use. For example, having
two tasks waiting on the same event, or by
waiting on the wrong task. Refer to IBM
System/360 Operating system: PL/I (F)
Language Reference Manual for full details
of the WAIT statement.

Chapter 13: Multitasking 169

DELAY Statement

This statement allows a task to wait fol.· a
specified period without reference to an
event variable. It causes suspension of
execution by 'n' milliseconds, with 'n'
expressed within the statement. The
obvious precautionary note here is "that you
ll1ust know how long you wish to delay
executuon.

EXCLUSIVE Attribute

This attribute, which you may specify only
for DIRECT UPDATE files, prevents one task
from interfering with an operation by
another task, (see note below for further
information) especially from one task
overwriting a record on a data set used by
another. (The EXCLUSIVE attribute only
applies within one job. It is possible for
two jobs (not tasks within one job) to
access the same record at the same time
through the use of two files, even though
those files may be EXCLUSIVE.)

COMPLETION Built-in Function

This built-in function returns the current
completion value of the event variable
named in the argument. This "value is 'O'B
if the event is incomplete, or 'l'B if the
event is complete.

STATUS Built-In Function

This built-in function returns the current
~ompletion value of the event variable
named in the argument. This value is
Don-zero if the event variable has been set
abnormal, or zero if it is normal. The
non-zero value is set to 1 as a result of
the completion of the task or input/output
operation with which the EVENT variable has
been associated by the EVENT optionQ If
the non zero value is user-defined, it can
be set to any value the user selects.

The following example, using a part of
the example in the WAIT statement section,
shows the use of these built-in functions.

170

Pl: PROC;

CALL A TASK(Tl) EVENT(EV1)i
CALL B TASK(T2) EVENT(EV2):
WAIT (EV1,EV2) (2):

A: PROC:

END Ai
B: PROC;

END B:
IF COMPLETION(EV1)=0

THEN PUT LIST('TASK Tl NOT COMPLETE'):
IF STATUS(EV2),=0

THEN PUT LIST('TASK T2 ABNORMAL')

END Pl:

Note: You should acquaint yourself
thoroughly with all aspects of all the
input/output handling aids listed above
before using them. Full details of their
use can be found in IBM System/360
Operating System: PL/I (F) Language
Reference Manual.

Synchronization

Input/output synchronization means avoidin9
operations on a given data set by two or
more tasks at the same time. If
synchronization is inadequate, then either
a system completion code of 001 is returned
or the results are unpredictable.

If a task is terminated abnormally while:!
an input/output operation on a file is in
progress in an attached task, and later the
same file is accessed in another task, the
results may be unpredictable.

system Completion Code 001: This code is
returned if unrecoverable input/output
error is caused by unsynchronized access to
a data set from more than one task, or from
more than one file.

system Completion Code 301: This code is
returned under one of two circumstances:

1. Synchronization error in PL/I program ..
This occurs if an attaching task
attempts an input/output operation on
a file on which an attached task is

al:ready performing an input/output
operation,. Use of EVENT and WAIT can J

eliminate this problem.

2. Attaching task is terminated
abnormally while an attached task is
still active. This occurs when an
attached task is performing an
input/output operation by means of
QS~M and the attaching~ask is
terminated abnormally (due to, for
example, a source program error). The
attaching task issues a WAIT to the
ECB (event control block) associated
with the file, in order to allow the
input/output operation to complete
before the file is closed. But the
attached task has already issued a
WAIT for the same ECB; as only one
WAIT can be issued for an ECB, the
operating system terminates the
program abnormally and a completion
code is returned.

Variabl~s

You should ensure that two references to
the same variable ca,nnot be made at the
same time. Again, this problem can be
overco:me by judicious use of WAIT
stateme:nts. Subject to this qualification,
and the~ normal rules of scope, the
followin~ rules apply:

1. YCIU may refer to static variables in
an.y task in which they are.known.

2. You may refer to an automatic variable
iIll any block in which it is known" to
which it is pa,ssed as an argument, or
in which it is referred to using a
valid locator variable.

3. You may refer to a controlled variable
in any task, in which it is known.
Allocation and the freeing of
allocated storage are strictly bound
b:y task boundaries. When a task is
tE!rminated, all allocations made
within that task are freed.

4. Based variables again are closely
bc;und by the task in which they are
allocated. The allocations may not be
known in the task referencing them.

strings!

You ma~r obtain unpredictable results when
two .tasks are performing simultaneous
operations on the same bit string or
charact,er string. Unpredictable results

may also occur when an operation involving
an unaligned bit string is taking place in
one task at the same tine as an operation
involving data" which is not necessarily
bit data and whose storage is contiguous
with that of the bit string, is taking
place in another task. The occurrence of
this problem is likely to be extremely
infrequent. However, if it does occur, the
WAIT statement and COMPLETION
pseudo-variable should be used when
multitasking to avoid such results. The
following examples indicate cases which may
produce unpredictable results because the
attaching task and subtask are executing
simultaneously.

Example 1:

MAIN: PROC OPTIONS(MAIN,TASK):
DCL C CHAR(3) VAR INIT('l')i
CALL A EVENT(E);
C=C II ,f 2' ;
WAIT (E):

A: PROC;
C=CII '3':
END:
PUT DATA(C)
END MAIN:

In this example the execution of the PUT
DATA (C) statement will give unpredictable
results: the value of C may be '12' or '13'
or '123' or"132'.

Example 2:

MAIN: PROC OPTIONS(MAIN,TASK):
DCL 1 A,

2 B CHAR(1) INIT('X'),
2 C BIT(3) UNALIGNED INIT('111').
2 0 FIXED DEC(2,O) INIT(O):

CALL SUB EVENT(E):
C='101'B: .
WAIT (E);

SUB: PROC:
B="Y' ;
0=6:
END:
PUT DATA (A) :
END MAIN:

In this example the execution of the PUT
DATA (A) statement will give unpredictable
results because the values of B,C, and 0
may be incorrect.

SEQUENTIAL Files

Use of a SEQUENTIAL file other than
SYSPRINT in more than one task can present
difficulties. For example, a task may be
interrupted in the middle of a PUT
statement. If, in the task that gets
control, another PUT statement is executed

Chapter 13: Multitasking 171

on the same file, the result, at best, will
be disordered fields in the output buffer
and, at worst, will be changes to the
internal control blocks so that the
original task may not continue to (~xecute
properly and will probably terminate
abnormally. Again, in the updating of a
SEQUENTIAL RECORD file, a REWRITE will
replace the last record read (or waited
for) irrespective of which task read it.
Suitable use of event variables and WAIT
statements will avoid these situations, but
the best solution is to keep all references
to a SEQUENTIAL file to within a single
task.

Only one file should sequentially create
a data set on a direct-access device or a
tape volume. If two or more files are
writing on the same sequential data set on
a direct-access device, each file will
write on the data set independently of the
others, and records written by one file
will be overwritten bY' records from ano·ther
file. Similarly, if two or more files
attempt to write on a sequential data set
on the same tape volume, the program will
terminate abnormally. To avoid this, you
should open a file in a common ancestor
task of those using the file name.

In sequential-access operations, a
particular data set should be referred to
by only one file at a time in a program ..
Thus, in the MVT system, the records will
be written separately, and will not be
mixed or overwritten. If two or more files
opened for sequential access refer to two
data sets related by, for example, having
the same magnetic-tape device or the same
data set name, then the records will be
overwritten.

since error messages are written on the
SYSPRINT file, it should be opened in the
major task. Otherwise SYSPRINT will be
opened in each task, and the error messages
may be overwritten or lost.

The use of SYSPRINT for large STREAM
files in multitasking is not recommended.
The implementation uses system facilities
to synchronize operations (PUT statements
and error messages) on the file; the effect
of this is to make PUT statements on the
SYSPRINT file longer to execute than PUT
statenlents on other PRINT file's.

It is possible to fill the SYSPRINT
file, with subsequent loss of data, due to
continuous and severe use by one task.
Similarly, if the SYSIN file is accessed by
two tasks at the same time, data will be
lost or disordered.

172

TASK TERMINATION

Normal Termination

If a task terminates normally with active
subtasks, then:

1. An indefinite wait situation might bE~
created. For example, a task K (with
subtasks I and M) might itself be a
subtask of a task A. If I and M
contain events that are waited for in
A then, if K is terminated normally
while I and M are still active, the
result is an indefinite wait in A.

2. A warning message (IHE577I) will be
put out on SYSPRINT for each immediat:e
active subtask of the task which is
terminated normally.

You must be aware that this situation
(normal task termination with active
subtasks) can happen unexpectedly. For
instance, a task that was not expected to
lose control may do so by some implicit
input/output, as in the following example:

A: PROC;

Y=o;

CALL B PRIORITY(10);

B: PROC:

X=5/Y;

END B;
END A;

When ZERODIVIDE occurs in B (by
execution of the statement X=5/Y;), a
considerable amount of input/output may be
necessary to load dynamically the
error-handling module to deal with the
interrupt. This can allow A to gain
control of the CPU; if A is terminated
normally before B can regain control, B is
terminated abnormally.

If a subtask is terminated when it has
active subtasks, the completion value of
these subtasks will be unchanged i .. e., 0,
and their status values will be set
abnormally.

Abnorma,~ Termination

In addi,tion to the information on abnormal
termination provided in 'Input/output
Handlinq' in this chapter, the following is
relevant to multitasking:

1. If a STOP statement is executed in a
subtask, the FINISH condition is
raised in the subtask, not in the
major task.

2. If the EXIT statement is executed in a
subtask, the subtask is terminated,
and the status of the event variable
in the subtask is set abnormal (if it
is not already so).

3. If the ERROR condition is raised in a
major task, and there is no ERROR
ON-·unit or normal return from an ERROR
ON-unit, then the FINISH condition is
raised and the program is terminated.

4. If the ERROR condition is raised in a
subtask, and there is no ERROR ON-unit
or normal return fron an ERROR
ON--unit, an error message is printed,
but the FINISH condition is not
raised. The subtask is terminated and
the status of its event variable is
set to abnormal.

If the operating system detects an
error, such as 'No main storage available,'
in a subtask, then the subtask is
terminated, the status of its event
variable is set abnormal, and a message
describing the error is printed on SYSPRINT
(if it is open, otherwise on the console).
If the subtask has subtasks of its own, the
status of these subtasks will be unchanged.
The ERROR condition is not raised (because
the task is already terminated before the
PL/I library receives control), but, if a
SYSABEND or SYSUDUMP card exists, a dump
wi 11 be! produced.

If a. subtask is expected to terminate
abnormally, either with a STOP statement or
a CALL IHEDUMP statement, any task or event
variables associated with the CALL
stateme!nt that attaches the subtask must be
either declared STATIC or EXTERNAL in the
invoking task or must be declared in the
main procedure. If this restriction is not
compliE!d with, the main procedure may
terminate abnormally with a system
complet~ion code of 201 when the subtask, is
detachE!d.

Multiprocessing

Multiprocessing permits two or more jobs to
be executed simultaneously. On a machine
with a single CPU, the highest priority
task which is not in the wait state or not
performing any input/output operations is
executed by the CPU. No other tasks can be
executed at the same time. on a
multiprocessing machine (i.e., a machine
with more than one CPU), the CPUs can
execute tasks simultaneously.

The following example is assumed to be
executed on a two-CPU machine with no other
jobs executing at the same time, i.e., both
CPUs are available for execution. In the
example, the major task attaches task Tl,
which has a higher priority than the major
task, at the first CALL statement. After
the CALL statement has been executed, the
major task executes simultaneously with Tl
even though one major task has a lower
priority. At the second CALL statement,
task T2 is attached, again with a higher
priority than the major task. In this
case, after the CALL statement has been
executed, Tl and T2, being the two highest
priority tasks, execute simultaneously and
the major task does not proceed unless Tl
or T2 perform some input/output operations
or goes into the wait state. Assuming this
does not happen, when Tl completes, a CPU
is available for continuing the execution
of the major task. The major task then
executes simultaneously with T2 until the
WAIT statement when (assuming that T2 has
not completed by this time) it waits for
the completion of T2 and terminates itself.
If ,the major task did not wait for T2 to
complete, then T2 would be itself
terminated abnormally when the major task
terminated.

Example:

Z: PROC OPTIONS(MAIN,TASK)i

PRIORITY=5i

CALL X TASK(Tl) EVENT (El) PRIORITY(2)i

CALL Y TASK(T2) EVENT(E2) PRIORITY(2);

Chapter 13: Multitasking 173

X: PROCi

END Xi
Y: PROCi

END Y;

WAIT(E2)i
END Z;

SYNCHRONIZATION

Synchronization of input/output is most
important, since the likelihood of

174

simultaneous operations on a given data se·t
by two or more tasks is increased in
multiprocessing. (see 'Input/Output
Handling' in this chapter.)

Also, it is possible that an attaching
task may complete execution before its
subtask. Attaching a subtask with a higher
priority than the attaching task does not
ensure that the subtask conpletes first,
since the attaching task may execute at the
same time as the subtask although it has a
lower priority. Hence, it is always
advisable to wait for the termination of a
subtask before terminating the attaching
task.

Chapter 14: Other Facilities of the Operating System

Introduction are concerned. are the system and user
completion codes. as they supply
information about the job environment.

There aJce a number of IBM System/360
operating System optional programs.
supplied by IBM. that may be available at
your iruitallation. The optional facilities
describc~d in this chapter are those that
can be called from a PL/I source program
using interface routines provided by the
PL/I library. They are:

Libr(~ry Module

IHEDUM
IHECKP. IHERES
IHESRT

Facility Provided

Dump of main storage
Checkpoint/restart
Sort

You can invoke these library modules in
your PLII source program in exactly the
same way as you can invoke one of your own
subroutines. i .. e •• by a CALL statement
specifying the relevant entry point and
supplying any necessary arguments.

In addition to the optional facilities
discussced in this chapter. many others are
available that are not called from the PL/I
program and are beyond the scope of this
manual. The operating system utility
program; are a set of programs suppplied by
IBM, that perform a variety of housekeeping
and support functions. such as listing the
directo:r.y of a partitioned data set.
copying and comparing data sets. and
dumping and restoring the data contents of
a diredt-access volume. The utilities are
invoked by EXEC statements. and are fully
describc~d in the publication IBM System/360
Operatil),q System: Utilities.

'rhe remainder of this chapter is devoted
to a discussion of each of the facilities
available by PL/I CALL. namely main storage
dump, checkpoint/restart and sort.

Dump o:E Main Storage

The diaq-nostic ability of the PL/I (F)
compile:!: is such that the majority of
source program errors can be identified
from the diagnostic messages generated at
compile time or at execution time.
Generally. therefore, there is little need
for you to obtain a dump of main storage at
execution time, as it will not add much to
the-information already provided by the
diagnos-tic messages. The most useful
informa-tion it will contain, as far as you

However. you should know how to obtain a
dump. not only because the completion codes
are useful diagnostic aids but because if
your program terminates with a serious
error that you cannot correct yourself. IBM
programming support personnel may require a
dump to help discover whether the error
lies in the source program or in the
compiler.

Three types of dump are obtainable;
their characteristics are:

SYSABEND.Dump: This contains the data in
main storage and information about the data
areas in use. The contents are:

1.. Edited control information about
system blocks. This information
includes the completion codes.

2. Trace tables through supervisor calls
(optional).

3. Contents of fixed-nucleus area.

4. Contents of dynamic area.

SYSUDUMP Dump: The contents are the same as
a SYSABEND dump except that the trace
tables and the contents of the
fixed-nucleus'area are omitted.

PL1DUMP: The contents of a PL1DUMP are:

1. Detailed information about the files
and data areas used in each task.

2. Contents of the dynamic area.

The SYSABEND and the SYSUDUMP are
produced when a job step terminates
abnormally and the DD statements SYSABEND
DD and SYSUDUMP DD respectively are present
for the step. You can obtain a PL1DUMP
dump by coding:

CALL IHEDUMx [(argument)];

in your source program, where 'x' is a
suffix denoting the part of main storage to
be written on a specified data set; the
suffix also indicates whether or not
processing is to continue after the dump ..
The four suffixes and their meanings are:

Chapter 14: other Facilities of the operating System 175

suffix Meaning

C

J

P

T

Dump the contents of that pa.rt
of the main storage associated
with the current task, then
continue processing.

Dump the contents of that pa:rt
of main storage associated with
all active tasks, then continue
processing.

Dump the contents of that part
of main storage associated with
all active tasks, then terminate
the major task.

Dump the contents of that part
of main storage associat.ed with
the current task then terminate
this task.

'I'he argument is optional and, if used,
must be declared as ENTRY(FIXED BIN(31,O».
The argument is an expresssion that. is
evaluated at execution time: the result is
a fixed binary integer that appears in the
heading of the dump. This integer must be
in the range 0 through 127. A number
outside this range is replaced by 127.

:r-'or a PL1DUMP dump, a PL1DUMP DO
statement must be supplied with the job
step.

Dump Data Sets

If you want the dump to be written on a
temporary or permanent data set for
printing out later, code:

/ /SYS.ABEND DD parameters

where 'parameters' are the appropriate
parameters for a temporary or permanent
data set with CONSECUTIVE organization.
This applies equally to PL1DUMP and
SYSUDUMP DD statements.

Indicative Dumps

If you do not include a dump DD
statement in your job input, then, :if your
program terminates abnormally, the :result
is:

176

control Proqram

PCP or MFT
MVT

Indicative
None

An indicative dump provides a limited
amount of control information, including
the completion codes, but does not includE~
the contents of either the fixed-nucleus or
the dynamic areas.

The IBM-supplied cataloged procedures
PL1LFCG, PL1LFCLG, PLlLFG, and PL1LFLG do
not include dump DD statements for any job
step. If you want to specify one, you must
qualify the ddname with the step name, that
is, code //GO.SYSABEND, etc.

Checkpoint/Restart Interface

This section briefly describes
checkpoint/restart for the PL/I user,
particularly the syntax and meaning of the
associated PL/I CALL statements. If you
intend to use this facility you should
refer to IBM System/360 Operating System:
Advanced Checkpoint/Restart Planning Guide;,
in which the facility is fully described.

The purpose of the checkpoint/restart
facility is to allow you to save machine
time in the event of a job-step failure.
You can restart execution at the beginning
of the job step or at a previously selected
point within the step; in the latter case,
the essential data for the restart is
stored on a specified data set ready for
use should a restart be necessary. The
restart can be either automatic, in which
case the job will continue after the
failure (restarting at the designated
point), or it can be deferred until the job
is resubmitted; the resubmitted job will
start at the designated point instead of
from the beginning. The advantage of using
this facility is that the machine time used
for steps prior to the one that fails need
not be written-off as wasted; further, if
the progress of the step can be checked at
various logical points, execution can be
restarted at the last checkpoint before the
failure, thus minimizing machine-time
wastage.

Job-step failure may occur for a number
of reasons. There could be a program
interrupt or the program output could be
erroneous. A program interrupt might be
the result of, for example, a machine
interrupt, a program error, an operator
error or an error caused by a concurrently
executing program. Erroneous output could
be the result of a program error or an
error in the input data to the program.
Whatever the cause, the effect is either:

1. The job step terminates abnormally,
with or without system failure, or

2. The job step terminated normally, but
the output is partly or wholly
useless. .

To recover from this, you can use
checkpolint/restart to start the job step
again or to start execution at a selected
point \od thin the job step. To perform the
latter, you must have included, at one or
more points in your PL/I program, code that
will cause job information to be recorded
on a specified data set. The job
information consists of the contents of the
area of main storage used by your program
and of certain system control data. The
point in your program at which this
information is recorded is a checkpoint;
the data set on which it is written is a
checkpo~nt data.set.

The checkpoint taken can be either a
single checkpoint or it can be one of a
number of multiple checkpoints. The
difference.is:

Single checkpoints: The information
written at a checkpoint overwrites the
information written at any previous
checkpoint. Only the latest checkpoint
information is currently available.

Multiple checkpoints: The information
written at a checkpoint is placed on
the data set after the information
written at previous checkpoints. The
information taken at all the
checkpoints is currently available.

~hus, with a single checkpoint, restart
within the job step can be made only from
the last checkpoint taken. With multiple
checkpoints, restart within the job step
can be made from any checkpoint.

The JOB, EXEC, and DD statements of JCL
and the CALL statement of the PL/I (but not
necessarily all of these items) may be used
to specify the checkpoint/restart facility,
depending on your requirements. The use of
these statements for checkpoint/restart is
described later in this section.

TYPES OF RESTART

A restart can occur automatically as soon
as the job step has terminated, or it can
be deferred and then attempted in a later
job. Restart can be at the beginning of a
step or at a checkpoint within the step.
As a result, four types of restart are
available:

Automatic step restart
Automatic checkpoint restart
Deferred step restart
Deferred checkpoint restart

Automatic Restarts

The current job is not terminated;
immediately the step is terminated it is
restarted in one of the following ways:

Automatic step restart: At the
beginning of the step

Automatic checkpoint restart: At the
last checkpoint taken

Automatic restarts can be initiated by
the checkpoint/restart facility only when
the step has been terminated abnormally
with a completion code specified at system
generation as eligible for automatic
restart (this includes system FF3 abnormal
termination after system failure).Automatic
step and checkpoint restarts can be
requested for the same step; the step
restart remains in force until the
checkpoint restart is invoked. An
automatic restart requires action by the
operator before it can occur; therefore, if
you want an automatic restart you must
inform the operator when submitting the
job. Under the MFT or MVT control
programs, the operator can defer an
automatic restart if such a restart is not
immediately convenient.

Note: Automatic checkpoint restarts are
always taken from the last checkpoint
written, regardless of whether single or
multiple checkpoints are taken.

Deferred Restarts

The current job is terminated: it may be
resubmitted later and restarted at the
failing step in one of two ways:

Deferred step restart: At the beginning
of the step

Deferred checkpoint restart: At a
specified checkpoint (single
or multiple checkpoints can be
taken)

Deferred restarts can occur irrespective of
whether the step has been terminated
normally or abnormally. The action taken
by the operator is that normally required
for initiation of step execution.

Chapter 14: Other Facilities of the Operating System 177

CHECKPOINT/RESTART REQUIREMENTS AND
DIAGNOSTIC AIDS

Checkpoint/restart can be used with any of
the control programs PCP, MFT, or MVT. It
requires some or all of the following items
to be coded in the job stream:

Job control language:

JOB statement: RD parameter
RESTART parameter

EXEC statement: RD parameter (if not in
JOB statement)

DD statement: For checkpoint restarts,
a checkpoint data set
is required.

PL/I

CALL IHECKPx

where 'x' is a suffix denoting an entry
point. The PL/I library module IHECKP
invokes the standard operating system CHKPT
macro, which takes the checkpoint.

CALL IHERESx

where 'x' is a suffix denoting an entry
point. The subroutines in this PL/I
library module can invoke restart, or
suppress checkpoint restart.

The use of these features and the syntax
required for each of them, are described in
this section. .

The checkpoint/restart facility also
includes various diagnostic aids. ThesE~
are:

1. CHKPT return codes. When the CHKPT
macro has been executed, a return code
to indicate the result of the
execution is provided and is returned
by the IHECKP module to a user-defined
field declared as a variable in the
PL/I source program.

2. Completion codes. When a job step is
abnormally terminated, system or user
completion codes may appear on the
operator's console.

3. Diagnostic messages. When a
checkpoint is taken or a restart is
requested, diagnostic messages
specifying required operator or
prograrmner actions may appear on the
operator's console. These messages
usually include a code that indicates
the kind of action required.

178

The format of these messages and
codes, and the interpretation of the value!s
that appear in the various codes, are fully
described in IBM System/360 Operating
System: Advanced Checkpoint/Restart
Planning Guide.

JOB CONTROL LANGUAGE DETAILS

The RD Parameter

The RD (Restart Definition) parameter is
used to request an automatic step restart
and (optionally) to suppress execution of
the CALL IHECKPx statement. When coded in.
EXEC statement, it applies to the
corresponding job step. When coded in the!
JOB statement, it applies to all job steps
in that job and overrides an RD parameter
coded in any EXEC statement in that job.
The parameter syntax is:

RD[.procstep]={RINCINRIRNC}

where:

R(restart)

NC(no checkpoint)

NR(no restart)

RNC(restart but
no checkpoint)

Notes:

Requests automatic
step restart.

Suppresses the
execution of the
CALL IHECKPx
statement and the
implicit automatic
checkpoint restart.

Checkpoints may be
written but
automatic restart is
prohibited.

Requests automatic
restart but
suppresses the
execution of the
CALL IHECKPx
statement.

1. If RD=value is coded in an EXEC
statement for a cataloged procedure,
it applies to all the steps within the
procedure, and overrides any existing
RD parameter in the procedure. If
RD.procstep=value is coded, it applies
only to the specified procedure step;
this format can be used for each step
in the procedure, in procedure-step
order.

2. The CALL IHECKPx statement causes a
request for automatic checkpoint
restart and overrides an RD=R
parameter.

3. RD=NC is provided to prevent· (for a
particular job) checkpoints being
taken when a program that includes a
CALL IHECKPx statement is being
executed. If there is no CALL IHECKPx
s"tatement, RD=NC has no effect.

4. RlD=NR is provided to prevent automatic
checkpoint restart, in anticipation of
a deferred checkpoint restart. If
there is no CALL IHECKPx statement,
RD=NR has no effect.

5. RD=RNC is provided to prevent (for a
particular job) checkpoints being
taken when a program that includes a
Cl\LL IHECKPx statement is being
eJ!!:ecuted. If there is no CALL IHECKPx
s1t:atement, RD=RNC is treated as if it
were RD=R.

6. If no RD parameter is specified,
automatic step restart is prohibited,
but automatic checkpoint restart is
allowed if the program includes a CALL
IBECKPx statement.

The RESTART Parameter

The RESTART parameter is coded in the JOB
statemEmt of a job that is to be submitted
for deferred step or checkpoint restart.
For stE:P restart, it specifies the step at
which E~xecution will be restarted. For
checkpoint restart, it specifies the
checkpoint at which execution is to begin,
and thE~ step in which this checkpoint
exists., The parameter syntax is:

RESTAR,]~= ({stepname } [I checkid])
stepname.procstepname

*
where:

stepname

stepnGlme,.
pr()cstepname

*

checkid

Is the name of the step
at which execution is to
begin.

Is the qualified name of
the restart step when
this step is a step of a
cataloged procedure.

Indicates that restart
is to begin at the first
step. This could be the
first step of a
cataloged procedure.

Is a character string
identifying the
checkpoint at which
execution is to begin.
It consists of up to

sixteen characters from
the character set
available. special
characters must be
enclosed in single
quotes; single quotes in
the string must be
represented as double
quotes. The checkid is
omitted for step
restarts.

The DO statement for.a Checkpoint Data Set

This is always required for a checkpoint
restart. It must be included in the job
stream when the checkpoint data set is
created, and also when a checkpoint restart
is to be executed. The checkpoint data set
must be either a sequential or a
partitioned data set; see Chapters 3 and 12
respectively for information on the
creation of these types of data sets.

Creation of Checkpoint Data Set: The DO
statement for this data set is included
with the other DO statements for the job
step. The essential parameters are:

1. DSNAME: Any name can be used. A
dsname need not be specified for
automatic checkpoint restart, as the
data set used here need only be a
temporary one. A dsname is always
required for a deferred checkpoint
restart. If you want to create a
partitioned data set, the dsname
should be specified, but the member
name should be omitted.

2. UNIT: A magnetic-tape device or any
direct-access storage device can be
specified.

3. VOLUME: Nonspecific volume requests
can be used for automatic checkpoint
restart; for deferred checkpoint
restart, the preferred reference is
VOLUME=SER=volnumber. If the
checkpoint data is to be written on a
multivolume data set, the serial
number of the volume on which the data
for a particular checkpoint is written
is put out on the operator's console.
You must obtain this number, as it
must appear in the VOLUME parameter
when execution is restarted at the
required checkpoint.

4. SPACE: For direct-access devices, the
space allocation must be that for a
sequential or a partitioned data set.
You may request secondary space (by
the increment subparameter), but it
will not be used.. If' end-of-volume'

Chapter 14: Other Facilities of the Operating System 179

(no more primary space) is encount.ered
while writing a checkpoint on a
direct-access volume, two actions are
possible:

a. If you requested secondary
allocation, the allocation is
performed, and the checkpoint
routine issues a return code of 8.
This is returned to the PL/I
program by IHECKP. The allocated
space is not used.

b. If you did not request secondary
allocation, the system executes an
ABEND macro instruction applying
to the step. The ABEND causes a
system completion code D37 to be
issued. This means that the step
cannot be restarted. Thus, even
though secondary space will not be
used, you should specify secondary
allocation to avoid abnormal
termination. The amount of space
required could be as much as one
and a half times your partition or
region size. It can be calculated
from formulas given in IBM
System/360 Operating system:
Storage Estimates.

s. LABEL: If the checkpoint data set is
on tape, the tape can have standard or
nonstandard labels, or no labels.

6. DISP: The first subparameter should be
NEW for single checkpoints, and must
be MOD for multiple checkpoints
(otherwise the checkpoint entries will.
always be overwritten). For automatic
checkpoint restart, the second
subparameter should be DELETE; for
deferred checkpoint restart, it should
be KEEP or CATLG.

7. DCB: If the checkpoint data set is to
be written on a 7-track tape, you must
code TRTCH=C.

The CALL IHECKPx statement causes the
checkpoint data set to be opened and closed
at the appropriate times. You must not
include OPEN and CLOSE statements for this
data set in your program. If you do, any
lttempt at restarting from a checkpoint
Jill fail, and a system message will be
jiven indicating that the checkpoint could
'lot be found. The facility for opening a
~heckpoint data set in a problem program
;)eforetaking checkpoints, as described in
IBM system/360 Operating system: Advanced
_'her.kpoint/Restart Planning Guide, is not
.~vailable to PL/I (F) programs. Also, you
need not declare the checkpoint data set as
i. file in your PL/I program.

For automatic checkpoints, you can
;pecify a ddname for the checkpoint data

tao

set by means of the CALL IHECKPx statement ..
If you do not want to specify a ddname, the
default ddname SYSCHK is ,applied.

Restarting at a Checkpoint: For automatic
checkpoints, the checkpoint data set is
both created and used for restart in the
same job step. Therefore the parameters of
the DD statement remain unchanged.

For deferred restarting at a checkpoint
you must code the RESTART parameter
RESTART=(stepname,checkid), on the JOB
statement of the restart deck. This
identifies both the step to be restarted
and the checkpoint entry to be used to
perform the restart. In addition, you must
place a SYSCHK DD statement immediately
before the first EXEC statement, and after
any JOBLIB DD statements, in the restart
deck. The SYSCHK DD statement must specify
the checkpoint data set from which the
checkpoint is to be read, and is additional
to any DD statements in the deck that
define data sets into which checkpoints
have been, or will be written. The DD
parameters specified must be the same as
those used when the data set was created,
except:

1. VOLUME: If the checkpoint data set is
written on a multivolume data set, th4~
volume on which the required
checkpoint is written must be
specified as the first volume to be
requested.

2. DISP: The first subparameter must be
OLD or SHR; the second either must be
KEEP or may be omitted.

For more information on specifying the
SYSCHK DD statement, and JCL requirements
and restrictions for deferred checkpoint
restart, refer to IBM System/360 Operating
System: Advanced Checkpoint/Restart
Planning Guide. '

PL/I CALL STATEMENT DETAILS

The two library modules concerned with
checkpoint/restart interface are IHECKP and
IHERES. IHECKP establishes checkpoints for
use when checkpoint restart is required.
It is not used for' step restart, since this
facility does not require checkpoints and
is specified entirely within the JCL for
the job. IHERES can be used to cancel
automatic checkpoint restart or to request
a restart. Details of when and how these
modules should be used are given below.
Note that the effect of invocation of thes4;!
modules could be nullified for a given job
by means of JCL parameters (see 'Job
Control Language Details' earlier in this
section).

IHECKP' (Checkpoint Module)

You ca.n call this module from the PL/I
source~ program in either of the following
ways:

1. CALL IHECKPS (ddname, checkid, org,
code);

2. CALL IHECKPT;

The difference between these two statements
is that the first allows you to make a more
comprehensive specification in your source
proqram; the second is supported in the
fifth version of the compiler mainly for
compat:ibility with the previous version,
which used an interim checkpoint/restart
facility.

IHECKP~ Entry Point

Execution of the statement:

CALL IHECKPS (•••);

reques'ts checkpoint/restart and causes the
program information necessary for a restart
to be ,recorded on a checkpoint data set.
The module expects the arguments in the
order ddname, checkid, org, and code.
Thus, if you want to omit 'code', you can
leave :it out; but if you want to include
'check:id', 'ddname' must appear even if you
would be satisfied with the default ddname.
However, the first three arguments are all
characit:er strings, and defaults will be
applied for any that evaluate to a null
string. Details of the syntax, meaning,
and de:Eault for the arguments are as
follows:

ddname: This argument is any
characiter-string express ion (including
variables and constants) that, when
evalua1ted, yields a valid ddname, i.e., an
alphanumeric character string not longer
than eight characters, whose first
charact.er is alphabetic. (If the string is
longer than eight characters, it will be
truncated on the right.) This ddname is
the name of a checkpoint data set; if the
argument appears (and is not a null
string), a DD statement with this name must
appear in the job stream or the checkpoint
will not be taken. If the argument is
omitted, or is a null string, the default
(SYSCH10 will be applied, in which case a
SYSCHK DD statement must appear in the job
stream ..

checkid: This argument is any expression
that yields a character string consisting
of printable characters. Restrictions
depend on the type of data set (sequentia.l
or partitioned) used to hold the checkpoiP,'
information. If the data set is
partitioned, the ckeckid must be
alphanumeric and its first character must
be alphabetic; the length of the string
should not exceed eight characters. .For a
sequential data set, the length should not
exceed sixteen characters. In either case~
if the string is too long it will be
truncated on the right.

The argument identifies the checkpoint
so that, when multiple checkpoints are
used, a deferred restart can be requested
to commence at a particular checkpoint
instead of the last one taken (see 'The
RESTART Parameter' earlier in this
section). If this argument is omitted, or
is a null string, a system-generated
checkid will be used. To restart at a
particular checkpoint, you will then have
to refer to the console listing to find ib;
identification.

org: This argument is any expression that
yields a character-string value of length
two, containing either 'PS' or • PO' • It i~;
used to define the organization of the
checkpoint data set, 'PSI meaning
sequential, and 'PO' meaning partitioned.
If the argument is omitted, a default of
sequential will be applied.

code: This argument is fixed-point binary
integer variable of precision greater than
15. If the argument is specified, the
checkpoint module will return a value
indicating the result of the checkpoint
request. The PL/I programmer can obtain
the value by reference to the variable.
The codes are those issued by the CKPT
macro and are shown in Figure 14-1.

The facility provides a means of
recognizing whether the program is being
executed initially or as the result of a
restart. You can test the variable at any
point in the program and you may be able to
by-pass the error that caused the step
failure, by transferring control according
to the value of the variable.

Note: It is advisable to declare IHECKPS a~:
follows:

DECLARE IHECKPS ENTRY (CHAR(S)VAR,
CHAR(16)VAR, CHAR(2), FIXED BIN(31»;

to ensure that correct arguments are
pi:lssed.

Chapter 14: Other Facilities of the Operating System 181

r------T----------------------------------,
I Code I Meaning I
~------+--------------:-.---------------.---I

o Successful completion

4 Restart occurred

8 Unsuccessful completion (program
error)

12 Unsuccessful completion (input/
output error)

16 Successful completion, but. ENQs
are outstanding and will not be
restored on restart _____ ~ __________________________________ J

Figure 14-1. Return Codes from Checkpoint
Module IHECKP

IHECKPT Entry Point

Execution of the statement:

CALL IHECKPTi

requests checkpoint/restart and causes the
program information necessary for restart
to be recorded on the checkpoint data set.
There must be a SYSCHK DD statement for
this data set in the job stream. This
entry point is included in the fifth
version of the compiler for compatibility
with the previous version; it is not as
comprehensive as IHECKPS, and has the
following restrictions:

1. The checkpoint data set must always be
specified by the ddname SYSCHK.

2. You cannot identify the checkpoint in
your program. To restart at a
particular checkpoint, you would have
to refer to the console listing to
find its identification.

3. You cannot specify the checkpoint data
set organization in your PL/I program ..

4. Your program is unable to determine
whether the current execution is the
initial one or is the result of a
restart (unless you pass the
information to the main procedure,
using the PARM field of the EXEC
statement on deferred restart).

IHERBS (Restart Module)

This module has two entry points, IHEREST
(request for a restart) and IHERESN
(cancelation of automatic checkpoint
restart). Details of these entry points
follow:

182

IHERESTEntry Point

Execution of the statement:

CALL IHEREST;

requests an immediate automatic restart of
the job step. Its purpose is to
accommodate those circumstances in which
automatic restart does not occur even
though an error has occurred that requires:
a restart. This happens in the case of
program interrupts such as protection
violation, when ABEND may not occur. (In
any case, program check ABENDS are not
eligible for automatic restarts.) IHEREST,
in fact, forces an automatic restart by
issuing an ABEND macro. This causes the
program to terminate with a user completion
code of 4092, which in turn causes a
restart. This entry point can be used in,
for example, an ERROR ON-unit for program
interrupt errors (detected by an ONCODE
value within the range 8091-8199).

Notes:

1. In order for IHEREST to cause a
restart, your system programmer must
have specified a user completion cod€~
of 4092 to be eligible for automatic
restart when your operating system wa.s
generated. If this was not done, and
your program calls IHEREST, it will be
terminated with a 4092 completion code
and no restart will take place.

2. Even if 4092 is an eligible completion
code for automatic restart, calling
IHEREST can still cause your program
to be terminated with a 4092 ABEND and
no restart, in the following cases:

a. The RD parameter was not specifi€~d
on your JOB or EXEC statement, and
no checkpoints were taken.

b. RD=NR or RD=NC was specified on
your JOB or EXEC statement.

c. RD=R or RD= RNC was specified on
your JOB or EXEC statement, or
checkpoints were taken and the
operator replied 'NO' when the
operating system issued a message
asking whether your job should be~
restarted.

IHERESN Entry Point

Execution of the statement:

CALL IHERESN;

cancels a request for automatic checkpoint:
restart. If the RD parameter of the job
statement is used to request an automatic
step restart, that request will again be i.n

effect. The CALL IHERESN statement is
equivalent to the CANCEL option of the CKPT
macro, and is generally used to prevent
repeated attempts to restart from a
checkpoint (the CALL statement being
executed or bypassed, depending on the
return code held in 'code' argument to
IHECKPS). Automatic restart can be
reestablished by using a call to the
checkpoint module. If a call to IHERESN
occurs 1when automatic restart is already
canceled, the call is ignored.

RESTRIcrION ON USE OF CHECKPOINT/RESTART

The checkpoint facility operates in an
operating system MVT environment but must
be issutE~d in the originating task with all
other sub-tasks inactive. Specifying the
TASK opt:ion using the PL/I (F) compiler,
means that a checkpoint can only be issued
in the control task which is not accessible
to you. There is therefore the restriction
that a checkpoint cannot be taken at all in
a tasking program. A checkpoint may be
issued in either the main or sub-procedures
without the TASK option whether running
under PCP, MFT or MVT.

'lher4~ is also a further restriction that
a checkpoint may not be issued between a
DISPLAY(X) REPLY(Y) EVENT(Z) statement and
the accompanying WAIT(Z) statement.

EFFECT OF CHECKPOINT/RESTART ON DATA SETS

The checkpoint routine preserves all the
relevant:. fj.nformation about all the data
sets uSf~d' by the step ca lling the .
checkpoint module. The treatment of
various types of data set during restart is
discussf~d fully IBM. System/360 . Operating
system:.Advanced Checkpoint/Restart
Planninq Guide; the following notes cover
the most. important points.

User Da1t.a Sets

1. Dat:a sets that were open when the
chE:!ckpoint was taken are repositioned,
wi1:.h the exception of data sets on
unit-record devices such as card
rea.ders and printers.

2. Dat.a set contents are not saved and
restored.

3. If a file is opened with the UPDATE
attribute and records are replaced
after the checkpoint is taken but
before restart, the contents at
restart will not be the same as they
were when the checkpoint was taken.

4. If multiple checkpoints are used, and
restart occurs at a checkpoint other
than the last one taken, data sets
with MOD disposition or partitioned
organization may be repositioned to a
point other than that expected.

5. If a data set occupies multiple
direct-access volumes and the
checkpoint is taken before the end of
one volume but restart occurs after
the switch to the next volume, then
the data set on the second volume must
be deleted before restart; otherwise,
when the time comes to switch to the
second volume after restart, the
system will not be able to do so,
since a data set with a duplicate name
will still exist on the second volume.

SYSIN/SYSOUT Data Sets

The data sets are handled differently from
other data sets, depending on whether or
not a multiprogramming system is being
used. For further information, see IBM
System/360 Operating system: Advancea-­
Checkpoint/Restart Planning Guide.

Resident Access Methods and
Checkpoint/Restart

The checkpoint/restart facility processes
the checkpoint data set using BSAM or BPAM.
The access method modules required to
process the checkpoint data set must be
resident in main storage. If they are not,
and you attempt either an automatic or a
deferred restart from a checkpoint, the
restart program may fail with a program
check attempting to read the checkpoint
data set, and your job will be terminated.
Full details on the modules required to be
resident, and the procedure to make them
resident, are described in, IBM System/360
Operating system: Advanced
Checkpoint/Restart Planning Guide, and
system Programmer's Guide, respectively.

Chapter 14: Other Facilities of the Operating system 183

Sort Interface

'l'he PL/I (F) Compiler provides an interface
between a PL/I program and the IBM
system/360 operating System Sort/Merge
program. You invoke it by calling the PL/I
library module IHESRT at the appropriate
entry point; this in turn calls the
Sort/Merge program by means of a LINK
macro. When the sort is complete, control
is returned from the sort program to the
PL/I program through the IHESRT module;
execution of the PL/I program is resumed at
the point following the CALL IHESRT
statement. If the sort program uses data
sets directly for its input or output, all
opening and closing of files is handled
independently of PL/I.

Information defining how the data is to
be sorted and the format of the records in
which this data exists is passed as
arguments to the IHESRT module.

The entry point to the IHESRT module
that should be selected depends upon th,e
source of the records to be sorted and
their disposition afterwards.. Four entry
points are available:

IHESR'l'A

IHESRTB

IHESRTC

IHESRTD

Records in a data set are
retrieved, sorted, and placed
in another data set.

Records constructed or updated
in a PL/I procedure are sorted
and placed in a data set.

Records in a data set are
retrieved, sorted, and passed
to a PL/I procedure.

Records constructed or updated
in a PL/I procedure are sorted
and passed to a PL/I
procedure.

Retrieval of records from a data set,
passing them to the sort program, and
placing the sorted records in a data se-t
are all performed by the PL/I program.

Entry points IHESRTB, IHESRTC, and
IHESRTD involve the use of the sort program
user exits E15 and E35 to invoke a PL/I
procedure that either supplies records for
sorting or receives sorted recordso It
should be remembered that a PL/I procedure
invoked from a user exit is invoked for
each record passed to or received from the
sort program. Each invocation involves a
substantial time overhead necessary to
establish a PL/I environment, such as
restoring the PL/I error-handling
facilities and allocating storage for
automatic variables. However, a decision
to use the PL/I sorting facilities should

184

include consideration of such overheads in
comparison with those that accrue from thE!
use of SORTIN and SORTOUT data sets, their
creation and retrieval time overhead, and
the additional external storage
requirements they create.

The records passed to the sort program
are sorted until the required sequence is
obtained. The sort is performed on the
contents of selected fields within the
record; up to sixty-four of these fields
can be designated. This is adequate to
ensure that even long, complicated records
containing a small range of data types and
values can be correctly and successfully
sorted.

The sequence in which the records are
placed is the IBM System/360 collating
sequence ...

Full details of the sort/Merge program
are given in IBM System/360 operating
System: sort/Merge. Brief information on
some aspects, for example, record format,
storage requirements, and data set
description, is provided here as a guide t:o
the environment required, but this is not
intended to supplant use of the Sort/Merge
manual.

PL/I SORT ENVIRONMENT

Record Format

Blocked and unblocked fixed- and
variable-length records can be passed to
the sort programo Record size can vary
over a wide range:

Minimum: 18 bytes

Maximum: about 32,000 bytes. The sizE~
for a particular application
depends on the amount of main
storage available and on the
type of auxiliary storage
used.

If the sort program reads or writes its
records directly, its performance is
improved if the input or output records al~e
blocked. However, a PL/I procedure can
process only one record at a time through a
sort program user exit.

storage. Requirements

The minimum storage requirements for the
sort program are:

Main storage: 16,000 bytes (PCP,MFT)
26,000 bytes (MVT)

Auxiliary storage: Three magnetic-tape
units, or one
direct-access storage
device ..

'I'heste minimum requirements are for the
sort program when used without
direct-access devices. Additional storage
is required ;,if sorting involves physical
record lengths greater than 400 bytes, a
large number of intermediate data sets, and
the use of direct-access devices. The
publication IBM system/360 Operating
system:.storage stimates, Form GC28-6551,
is intended to assist in estimating main
storage requirements.

'The :sort program will work with the
above minimum storage requirements, but may
not provide the most efficient performance
for a ?~rticular application. In general,
the efficiency of the sort program improves
as the main storage space it can use
increasces. The sort program will, if
sufficilent storage is available, select the
most efficient sorting technique for a
given application. The minimum storage
requir~nents for the selection of the most
effici~~t technique are:

Main storage: 24,000 bytes (PCP,MFT)
26,000 bytes (MVT)

Auxiliary storage: See Figure 14-2.

'The devices used must not be mixed;
either all tape units or all direct-access
devices of the same type must be used.
Tape units can be 7- or 9-track, or a
mixture of both.

When direct-access devices are used,
then sort performance is improved if:

1. Each data set is kept on a separate
device.

2. The number of data sets used is a
minimum.

3. All data sets are the same length.

Data Sets

Some' or all of the following DD statements,
in addition to the DD statements for the
PL/I program, are required for a job step
that uses both PL/I and the sort program.
These DD statements are given in Figure
14.3. '

The parameters for all but two of these
data sets depend on the particular
application requiring the sort. The two
exceptions are:

//SORTLIB DD DSNAME=SYS1.S0RTLIB,DISP=OLD
//SYSOUT DD SYSOUT=A

In an MVT environment, DISP=SHR should be
specified in the SORTLIB DD statement.

PL/I sort checkpoints, if required, can
be written on a data set identified by the
DD statement / /SORTCKPT DD... etc. A
deferred restart of a PL/I sort should use
the DD statement //SYSCHR DD ••• etc., to
identify the checkpoint data set to the
restart program. Further information on
the use of checkpoint/restart is given in
the section 'Checkpoint/Restart' in this
chapter.

r-----------------------T----------------------------------,
I I Auxiliary-storage Device I
I ~---------T--------------------------~
I INumber ofl Number of Data Sets I
I IMagnetic ~--------T--------T--------~
I I Tapes I 2301 I 2311 I 2314 I

~------... ---------------+---------+--------+--------+--------~
I Minimum storage for I I I I I
I most efficient I 4 I 3 I 3 I 3 I
I performance I I I I I
~------.----------------+---------+--------+--------+--------~
I Maximum storage I I I I I
I permitted I 32 I 6 I 6 I 17 I l ______ ... _______________ .L _________ J.. ______ ~_.L ________ J.. ________ J

Figure 14-2. Auxiliary Storage required for Sort.

Chapter 14: Other Facilities of the Operating System 185

r----------T--------------------------·---,
I ddname I Use of DD statement I
~----------+------------------------------~

SORTIN Input to the sort program,

SORTOUT

SORTWK01
SORTWK02
SORTWK03

SORTWKnn

SORTLIB

SYSour

not required if IHESRTB or
IHESRTD is used.

output from the sort program,
not required if IHESRTC or
IHESRTD is used.

Data sets for sort program
work space.: at least three
(six for a 2314) are
required. 3i is the maximum
that the sort program can
use.

Program library used by the
sort program, always
required.

Data set used by the sort
program for its diagnostic
messages, always required.

SORTCKPT Optional data set for
checkpoints taken during
sorting. __________ .L ________________ . ______________ J

• Figure 14.3. DD Statements for Sort/Merge

If both the following occur:

//SYSOUT DD SYSOUT=A
//SYSPRINT DO SYSOUT=A

and the SYSOUT device is a magnetic-tape
unit, you must take care tha·t the two data
sets do not use the same output device.
This can be avoided by specifying a
different device class for each data set.

DD statements for the sort program files
SORTIN and SORTOUT are required only when
the sort program obtains records for
sorting directly from a data set, or when
it writes the sorted records directly onto
a data set. If they are required, there
must not be any PL/I files with the same
names or titles. The sort files are opened
or closed by the sort program. SORTCKPT,
SYSUDUMP, and PL1DUMP are optional, as is
the number of SORTWKxx statements.

If you use a cataloged procedure for the
job or job step in which sort is invoked,
the appropriate DD statements for the sort
program must be added to the appropriate
procedure step.

If the sort program is in a pri'V'ate
library, and not SYS1.LINKLIB, either a
//JOBLIB DD statement or a //STEPLIB DD
statement will be required for that private
library.

186

USER CONTROL OF SORT DDNAMES

For multiple invocations of the sort
program within a single job step, the
standard ddnames SORTIN, SORTOUT, SORTWK
and SORTCKPT can be changed by replacing
the first four characters of the ddnames.
This is achieved by adding an extra
argument to the end of the argument list in
the CALL statement. The argument is a
character string of any length.

If the string is null, the standard
ddnames remain unchanged. If the string is
more than four characters long, only the
first four characters are used. If the
string is from one to four characters long,
the first one to four characters in the
standard ddnames are replaced.

The first character in the string must
be alphabetic; otherwise, either a
file-opening error may occur in the sort
program or an error will occur during
scheduling of the job step if an invalid
ddname is found.

The PL/I (F) compiler does not permit a
variable number of arguments to the same
entry name in separate CALL statements.
Therefore, a compilation which invokes
multiple sorting operations must contain
the CALL statements with the argument to
specify the ddnames set to null ('I) when
using standard ddnames, and set to the
required character string for the modified
ddname.

Example:

TEST: PROC OPTIONS(MAIN);

/*USING STANDARD DDNAME*/
DCL STRING CHAR(2) INIT('PA');
CALL IHESRTA(ARG1,ARG2,ARG3,

ARG4, , .) ;

/*IN USING MODIFIED DDNAMES*/
CALL IHESRTA(ARG1,ARG2,ARG3,ARG4,

STRING);

END TEST;

In this example, the first invocation of
IHESRTA requires the standard DD
statements:

//SORTIN
//SORTOUT
//SORTWKOl
//SORTWK02

DD
DD

DD
DD

In the second invocation of IHESRTA, the
following modified DO statements are
required:

/ /PlffiTIN DD
/ /PlffiTOUT DD
/ /PlffiTWKOl DD
/ /PlffiTWK02 DD

DEFINING THE SORTING APPLICATION

'rhe information defining the data to be
sorted and the records in which it exists
is described in two sort program
statements, the SORT statement and the
RECORD statement.

The SOR'.l~ Statement

The SOR']? statement describes the control
fields \117i thin a record on which the sort is
to be made. A SORT statement must be
passed t:o the sort program as an argument
of the CALL statement. Up to sixty-four
control fields are permitted. The format
of the SORT statement is:

SORT FIELDS= (b, 1, f, s [, b, 1, f, s] •••)
[,SIZE=m] [,SKIPREC=2] [,CKPT]

or alternatively

SORT FI.E:LDS= (b,l, s [,b, 1, s] •••) FORMAT=X
[,SIZE=m] [,SKIPREC=x] [,CKPT]

where:

b = first byte of the field to be sorted.

1

Binary data can start on any bit within
a byte and is specified, for example:

7.2
10.3

Bit 2 in byte 7
Bit 3 in byte 10

All other data starts on a byte
boundary, which is specified as an
int€!ger.

leng'th (in bytes) of the control field.
Since binary data can start and end on
any bit, its length is specified in the

byte-bit notation given above. For
example:

2.1 the length of the binary data
field is 17 bits

All other lengths are specified as
integers.

f = data type. The code for the various
data types is:

BI Binary
CH Character
FI Fixed-point
FL Floating-point
PO Packed decimal
ZD Zoned decimal

If all the control fields have the same
data type, f can be omitted from the
specification of individual control
fields and FORMAT=x (where x is the
data type) inserted after the right
parenthesis and before the SIZE option,
if used.

These sort data-type codes correspond
to the following PL/I data types:

sort PUI

BI BINARY
BIT

CH CHARACTER

FI FIXED BINARY

FL FLOAT BINARY
FLOAT DECIMAL

PO FIXED DECIMAL

ZD PICTURE

s = the order in which' the contents of the
field are to be sorted. The codes are:

A
D

ascending order
descending order

SIZE = m is the number of records to be
sorted. If this number is not known
precisely, an estimated total can be
specified thus:

SIZE=Em

If a precise number of records is given,
and more than this number is contained in
the input to the sort, the sort will be
terminated. If an estimated number is
given or if the SIZE option is not
specified and the intermediate storage is
sufficient to contain all the records to be
sorted, the sort will be completed;
otherwise, the sort will be terminated.

Chapter 14: Other Facilities of the Operating System 187

SKIPREC = z is the number of records to be
skipped before the sort begins. This
allows a sortt0 begin at any point in
a data set, omitting any records for
which a sort is not required.

CKPT specifies that a checkpoint should be
taken at several points in the sort.
program.

The specification of these sort control
fields is subject to the following
restrictions and conventions:

1. The tota~ lengths specified for all
the control fields in a SORT statement
must not be greater than 256 bytes.
If binary data specifies part of a
byte, the whole of that byte must be
included in the length count. For
example, a binary field starting at
11.3 and ending at 27.2 is 17 bytes
long.

2. All the control fields specified by
the SORT statement must be in the
first 4092 bytes of the record.

3. The maximum length of a decimal
control field is 16 bytes; all other
fields can be up to 256 bytes long.

The RECORD statement

The RECORD statement describes the format
and length of the records to be sortede
The fonnat is:

where:

r

188

record fonnat. The code is:

F fixed-length
V variable-length

length of each record in the input
data set, as follows:

F-format:
V-format:

record length
maximum record length

The length must be the same as the
LRECL value in the DCB parameter for
the SORTIN data set; if it is not~ the
LRECL value is taken.

length of each record to be handled by
the sort program, as follows:

F-format: record length
V-format: maximum record length

If this value is not given in the
RECORn statement, it is assumed to be
equal to 11 "

13 = length of each record in the output
data set, as follows:

F-format:
V-format:

record length
maximum record length

If this value is not given in the
RECORD statement, it is assumed to be
equal to 1 2 ,. The value must be the
same as the LRECL value in the DCB
parameter in the SORT OUT data set; if
it is not, the LRECL value is taken.

l~ = minimum length of V~format records in
the input data set. If this value is
not given, it is assumed to be the
greater of:

1. The minimum necessary to contain
the control fields specified in
the SORT statement, or

2. The minimum physical-record
length required by the operating
system.

15 = the most frequently occurring record
length in a data set containing
V-format records. It is called the
modal length. If this value is not
given, it is assumed to be the average
of the minimum and maximum lengths of
the records in the input data set.

The specifications of these RECORD
fields is subject 'to the following
restrictions and conventions:

1. The lengths specified for V-format
records must include the 4-byte count
field at the beginning of each record.

2. When a direct-access device is used
for auxiliary storage, the record
length must not exceed one track.

3. The record format must be the same a.s
that specified in the RECFM
subparameter in the DCB parameter for
the SORTIN and SORTOUT data sets. If
it is not, the SORTIN RECFM
specification is used.

4. Values in the LENGTH parameter that
are equal to 'those assumed by the
program can be dropped from the
operand,. Values dropped from the
right-hand end of the operands are
simply omitted; values dropped at the
beginning or middle of the operand
must be indicated by commas:

LENGTH = (11 , 1 2 >
LENGTH=(11",1~)

ENTRY POINT IHESRTA

Entry point IHESRTA is used for sorting
records from one data set to another. The
format of the CALL statement is:

CALL, IHESRTA (argument3., ,argument2 ,

argumenta,argument~):

where:

argument3.,

argument2

argumenta

argument~

a character-string expression
representing the SORT
statement.

a character-string expression
representing the RECORD
statement.

an arithmetic expression that
on evaluation g1ves a
fixed-point binary integer of
precision (31,0) specifying
the amount of main storage
available to the sort
program.

a fixed-point binary integer
variable of precision greater
than 15, that will contain
the value of the return code
returned by the sort program:
o sort successful, 16 sort
unsuccessful.

IHESR'rA must be declared as an entry
name with the appro~riate parameters.

The value of the character-string
expression for the SORT and RECORD
statemen't has the form:

'bstatementb'

The blanks at the beginning and the end of
the expression are always required. An
embedded blank must occur between SORT and
FIELDS, and between RECORD and TYPE: no
other embedded blanks are permitted.

When character-string constants are used
that are too long for one record of the.
PL/I source program, they are continued in
the following record. You must take care
that embedded blanks are not inadvertently
inserted at the beginning and end of such
records: the ·value of the SORMGIN parameter
must be taken into conF-ideration.

A PLVI program that uses IHESRTA
requires both the SORTIN and SORTOUT DO
statement, as well as any others that are
necessary.

An example of such a program is given in
Figure 14-4. This program sorts 80-byte
records into an ascending sequence
according to the alphanumeric data
contained in two control fields. The major
control field is in bytes 75 to 80: the
minor control field is in bytes 16 to 21.
The input records are obtained from the
input stream. The sorted records are
written onto a new temporary data set from
which they are retrieved and printed by the
PL/I program in job steps STEP3 and STEP4.
Included in the output for this job are
sort program diagnostic messages. These
messages include the number of records that
are in the input data set, and the number
of records transmitted to the output data
set. These numbers should be identical.

Chapter 14: Other Facilities of the Operating System 189

//R20A JOB
//STEPl EXEC PL1LFCL
//PL1L.SYSIN DD *

/*

/* PL/I PROGRAMMING EXAMPLE USING IHESRTA */

SORTA: PROC OPTIONS(MAIN):

/* ESTABLISH ENTRY POINTS TO THE SORT PROGRAM */

DCL IHESRTA ENTRY(CHAR(3S),CHAR(27),FIXED BIN(31,0),
FIXED BIN(31,0»,

RETURN_CODE FIXED BIN(31,0):

/* INVOKE THE SORT PROGRAM */

CALL IHESRTA (' SORT FIELDS=(75,6,CH,A,16,6,CH,A) .,
, RECORD TYPE=F, I .. ENGTH= (80) ",
25000, /*MAIN STORAGE FOR SORT PROGRAM */
RETURN_CODE) ;

/* TEST RETURN CODE */

IF RETURN_CODE = 16 THEN PUT SKIP EDIT ('SORT FAILED') (A);
ELSE IF RETURN_CODE = 0 THEN PUT SKIP EDIT ('SORT COMPLETE')

(A) ;

ELSE PUT SKIP EDIT ('INVALID SORT RETURN CODE. CODE=',
RETURN_CODE) (A);

END SORTA;

//STEP2 EXEC PGM=*.STEP1.LKED.SYSLMOD
//SYSOUT DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//SORTLIB DD DISP=SHR,DSN=SYS1.S0RTLIB
//SORTWK01 DD UNIT=2314,SPACE=(TRK,(60 w20)"CONTIG)
/ /SORTWKO 2 DD UNIT=2314, SPACE= (TRK. (60 1,20) "CONTIG)
//SORTWK03 DD UNIT=2314,SPACE=(TRK, (60 1,20) "CONTIG)
//SORTWK04 DD UNIT=2314,SPACE=(TRK,(60,20)"CONTIG)
//SORTWK05 DD UNIT=2314,SPACE=(TRK,(60,20)"CONTIG)
//SORTWK06 DD UNIT=2314,SPACE=(TRK,{60,20)"CONTIG)
//SORTOUT DD DSNAME=&&TEM,DISP=(NEW,PASS),
// SPACE=(TRK,(1,1»,UNIT=2314,DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
//SORTIN DD *

/*

AAAAAA
ZZZZZZ
444444
CCCCCC
XXXXXX
CCCCCC
CCCCCC
CCCCCC
CCCCCC
333333
VVVVVV
EEEEEE
333333

//STEP3 EXEC PL1LFCL
/ /PL1L.DUMP DD DSNAME=&&GOSET(GO) ,DISp:= (OLD, DELETE)
//PL1L.SYSIN DD *

/* PL/I ROUTINE TO PRINT OUTPUT FROM SORT PROGRAM EXAMPLES */
P: PROC OPTIONS(MAIN);

190

DCL SORTOUT FILE INPUr RECORD,
CHARS CHAR (80) VAR;
ON ENDFILE(SORTOUT) GOTO ENDP;
L: READ FILE (SORTOUT) INTO (CHARS);

PUT SKIP EDIT (CHARS) (A)i
GOTO L;

AAAAAA
ZZZZZZ
444444
ZZZZZZ
999999
888888
AAAAAA
ZZZZZZ
ZZZZZZ
ZZZZZZ
AAAAAA
AAAAAA
ZZZZZZ

ENDP: END P;
/*
//STEP4 EXEC PGM=*.STEP3.LKED.SYSLMOD
//SYSPRINT DO SYSOUT=A
//SORTOU'J~ DO DSNAME=&&TEM, DISP= (OLD, DELETE) If UNIT=2314

Figure 1l1~-4.. PL/I Program Invoking IHESRTA

ENTRY POINT IHESRTB

Entry point IHESRTB is used for sorting
records constructed or updated in a PL/I
procedure! and placing the sorted records in
a data se!t. The format of the CALL
statement is:

CALL IHESRTB(argument:l., argument 2 ,argument3 "

argument~,arguments);

where:

argumen"ts:l. - ~

arguments

as for IHESRTA

entry name of the PL/I
procedure supplying the
records to the sort
program.

The PL.lI records are passed to an entry
point in the sort program called a user
exit E15. (A user exit is a point in the
executable code of the sort program at
which control can be received from or
passed to a user program.)

A PL/I procedure invoked from user exit
E15 uses .a RETURN statement to pass to the
sort program a character-string
representation of the record to be sorted.
If the record is not in character-string
form, it lMust be defined on a character
string and then passed. This may lead to
difficulties in the PL/I program. The
language :rules specify that the attributes
of the defined and the base items must
match exacctly except for their lengths, and
that string overlay defining on an
aggregate parameter is not permitted. The
implementation of the PL/I (F) compiler
permits the use of differing attributes and
of this type of overlay defining, and
produces E:!rror (E) diagnostics when these
situations occur. successful link-editing
and execu1:ion are possible, provided the
condition codes in the appropriate EXEC
statements allow the step conce'rned to be
executed.

Return Codes fromPL/I to sort

In addition to the return code supplied by
the sort program to the PL/I program, the
PL/I program must pass a return code to the
sort program to indicate whether there are
any more records to be passed for sorting.
This return code is set by one of the
following statements:

CALL IHESARC(n); (single-task programs)
CALL IHETSAC(n); (multitasking programs)

where n has the values:

8 No more records will be passed
12 Sort the next record to be passed

If the CALL IHETSAC(n) statement is to
be used, the TASK option must be specified
in the· main PROCEDURE statement.

IHESARC or IHETSAC must be declared as
an entry of precision (31,0), for example:

DCL IHESARC ENTRY(FIXED BINARY(31,0»;

Example

An example of a PL/I program that uses
IHESRTB is given in Figure 14-5. This
program sorts records similar to those in
the example in Figure 14-4. The PL/I
procedure E15A is invoked from the sort
program user exit E15. This procedure
returns a character string that is inserted
by the sort program into the sort. The
sorted records are transmitted by the sort
program to a temporary data set defined by
the DO statement SORTOUT, from which they
are retrieved and printed by the PL/I
program in job steps STEP3 and STEP4.

Chapter 14: Other Facilities of the Operating System 191

//R20B JOB
//STEP1 EXEC PL1LFCL
//PL1L.SYSIN DD *

/*

/* PL/I PROGRAMMING EXAMPLE USING IHESRTB */

SORTB: PROC OPTIONS (MAIN);

/* DECLARE SORT PROGRAM ENTRY AND EXIT POINTS */

DeL IHESRTB ENTRY(CHAR(35),CHAR(27),FIXED(31,0),
FIXED BIN(31,0),ENTRY),

IHESARC ENTRY(FIXED BIN(31,0»,
E15A ENTRY RETURNS(CHAR(80»,
RETURN_CODE FIXED BIN(31,O);

/* INVOKE THE SORT PROGRAM */

CALL IHESRTB (. SORT FIELDS:= (75,6 ,CH,A, 16, 6,CH,A) .,
, RECORD TYPE=F,LENGTH=(SO) " \
25000, /* MAIN STORAGE FOR SORT PROGRAM */
RETURN_CODE,E15A):

/* TEST RETURN CODE */

IF RETURN CODE = 16 THEN PUT SKIP EDIT (' SORT FAILED") (A) :
ELSE IF RETURN CODE = 0 THEN PUT SKIP EDIT ('SORT COMPLETE') (A):

E15A:

ELSE PUT SKIP EDIT ('INVALID SORT RETURN CODE. CODE=',
RETURN_CODE) (A);

/* THIS PROCEDURE OBTAINS RECORDS FROM THE INPUT STREAM */
/* AND CHECKS FOR NUMERIC OR ALPHABETIC CODES BEFORE */
/* PASSING ONLY THOSE WITH ALPHABETIC CODES TO THE SORT */
/* PROGRAM. RECORDS WITH NUMERIC CODES ARE LISTED. */

PROC RETURNS(CHAR(SO»;
DCL SYSIN FILE RECORD INPUT;

ON ENDFILE(SYSIN) BEGIN;
PUT SKIP(3) EDIT ('END OF SORT PROGRAM INPUT') (A);
CALL lHESARC(S); /* SIGNAL END OF SORT INPUT */
GOTO ENDE15:
END:

DCL INFIELD CHAR(SO), FIELDl CHAR(6) DEF INFIELD
POS(75):

NEXT: READ FILE (SYSIN) INTO (INFIELD);
IF FIELDl > 'ZZZZZZ' THEN DO;

PUT SKIP EDIT (INFIELD) (A);
GOTO NEXT:
END;

CALL IHESARC(12); /* INPUT TO SORT CONTINUES */
RETURN (INFIELD);

ENDE15: END E15A:

END SORTB;

//STEP2 EXEC PGM=*.STEP1.LKED.SYSLMOD
//SYSOUT DD SYSOUT=A
//SORTOUT DD DSNAME=&&TEM,DISP=(NEW,PASS),
// SPACE=(TRK,(1,1»,UNIT=2314,DCB=(RECFM=F,LRECL=SO,BLKSIZE=SO)
//SYSPRINT DO SYSOUT=A
//SORTLIB DD DISP=SHR,DSN=SYS1.S0RTLIB
//SORTWKOl DD UNIT=2314, SPACE= (TRK, (60,20)"CONTIG)
//SORTWK02 DO UNIT=2314,SPACE=(TRK,(60,20)"CONTIG)
//SORTWK03 DO UNIT=2314,SPACE=(TRK, (60,20) "CONTIG)
//SORTWK04 DD UNIT=2314,SPACE=(TRK,(60,20)"CONTIG)
//SORTWK05 DO UNIT=2314,SPACE=(TRK, (60,20) "CONTIG)
//SORTWK06 DD UNIT=2314,SPACE=(TRK,(60,20)"CONTIG)
//SYSIN DO *

192

/*

AAAAAA
ZZZZZZ
444444
CCCCCC
XXXXXX
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
333333
VVVVVV
EEEEEE
333333

//STEP3 EXEC PL1LFCL

AAAAAA
ZZZZZZ
444444
ZZZZZZ
999999
ZZZZZP
888888
AAAAAA
ZZZZZZ
ZZZZZA
ZZZZZZ
AAAAAA
AAAAAA
ZZZZZZ

//PL1L.,DUMB DD DSNAME=ggGOSET(GO) ,DISP= (OLD, DELETE)
/ /PL1L., SYSIN DD *

/* PI~I ROUTINE TO PRINT OUTPUT FROM SORT PROGRAM EXAMPLES */
P: PROC OPI'IONS(MAIN) 1

/*

DCL SORTOUT FILE INPUT RECORD,
CHARS CHAR (80) VAR,
ON ENDFILE(SORTOUT) GOTO ENDP;
L: READ FILE(SORTOUT) INTO (CHARS);

PUT SKIP EDIT (CHARS) (A);
GOTO L;

ENDP: END P,

/ /STEPL!~ EXEC PGM= *. STEP3 • LKED. SYSLMOD
//SYSPJITNT DD SYSOUT=A
//SORTOUT DD DSNAME=ggTEM,DISP=(OLD,DELETE),UNIT=2314

Figure 14-5. PL/I Pregram Inveking IHESRTB

ENTRY l'OI NT IHESRTC

Entry point IHESRTC is used fer serting
records frem a data set and then passing
them ene-by-one te a PL/I precedure. The
fermat .of the CALL statement is:

CALL IIIESRTC(argument:l,.,argument2 ,argument3 ,

argument~,argument6);

where:

argullllents:l,. - ...

argull(\ent 6

as for IHESRTA

= entry name .of the PL/I
procedure te which the
sorted records are to be
passed.

when IHESRTC is used, each record that
appearfJ in the sorted .output is passed te
user elcit E35. The PL/I procedure
associated with this user exit is invoked
fer each record that it receives as a
paramet:er ..

The records passed by the sert pregram
must bE~ in a character-string form. If
this form is net the .one required by the
PL/I pl:ogram, then the PL/I record must be
defined en a character string. The same

difficulties can be expected here as for
IHESRTB.

Return Codes frem PL/I te Sert

A return cede may be passed by the PL/I
precedure te the sort pregram, using the
CALL IHESARC(n) or CALL IHETSAC(n)
statement. The return cede'values are:

4 the record passed has been accepted,
pass the next record

8 stop passing recerds, even if there
are still mere te ceme.

IHESARC and IHETSAC must be declared as an
entry of precision (31,0).

If ne return code is passed the sert
pre gram continues te pass records until all
have been passed.

An example .of a PL/I pregram that uses
IHESRTC is given in Figure 14-6. This
program sorts recerds similar te these in
the previous examples. The PL/I procedure
E35A is inveked from the sert program user

Chapter 14: Other Facilities .of the Operating System 193

//R20C JOB
//STEP1 EXEC PL1LFCL
//PL1L.SYSIN DD *

/*

/* PL/I PROGRAMMING EXAMPLE USING IH:ESRTC */

SORTC: PROC OPTIONS (MAIN);

/* DECLARE SORT PROGRAM ENTRY AND EXIT POINTS */

DeL lHESRTC ENTRY(CHAR(35),CHAR(27),FIXED BIN(31,0),
FIXED BIN(31,0),ENTRY),

IHESARC ENTRY(FIXED BIN(31..,0»,
E35A ENTRY,
RETURN_CODE FIXED BIN(31,O);

/* INVOKE THE SORT PROGRAM */

CALL IHESRTC (' SORT FIELDS=(75,6,CH,A,16,6,CH,A) "
, RECORD TYPE=F,LENGTH=(SO) "
25000, /* MAIN STORAGE FOR SORT PROGRAM */
RETURN_CODE, E35A)i

/* TEST RETURN CODE */

IF RETURN CODE = 16 THEN PUT SKIP EDIT ('SORT FAILED')(A);
ELSE IF RETURN_CODE = 0 THEN PUT SKIP EDIT ('SORT COMPLETE') (A)i

ESLE PUT SKIP EDIT ('INVALID SORT RETURN CODE.CODE=',
RETURN_CODE) (A) ;

E35A: /* THIS PROCEDURE OBTAINS SORTED RECORDS FROM THE */
/* SORT PROGRAM AND LISTS THEM. DUPLICATE RECORDS */
/* ARE IGNORED.

PROC (INREC)i

/* PRINT HEADING FOR SORTED OUTPUT ON SYSPRINT */

DCL I STATIC INIT(O)i
IF I = 0 THEN DO;

PUT SKIP EDIT (' OUTPUT FROM E35 SUBROUTINE') (A) ;
1=1;
END~

/* PROCESS SORTED RECORDS */
DCL INREC CHAR(SO),

PREVREC CHAR(SO) STATIC INIT(' I);
IF INREC=PREVREC THEN GOTO NEXT; /* IGNORE THIS RECORD */
ELSE DO;
PREVREC=INRECi /* STORE CURRENT RECORD */

PUT SKIP EDIT (INREC) (A);
END;

NEXT: CALL IHESARC(4); /* REQUEST NEXT RECORD FROM SORT */
END E35A;

END SORTCi

//STEP2 EXEC PGM=*.STEP1.LKED.SYSLMOD
//SYSOUT DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//SORTLIB DD DISP=SHR,DSN=SYS1.S0RTLIB
//SORTWK01 DD UNIT=2314 f SPACE=(TRK,(60,20)"CONTIG)
//SORTWK02 DD UNIT=2314,SPACE=(TRK,(60,20)"CONTIG)
//SORTWK03 DD UNIT=2314 f SPACE=(TRK,(60,20)"CONTIG)
//SORTWK04 DD UNIT=2314,SPACE=(TRK,(60,20)"CONTIG)

194

//SORT1WKOS DD UNIT=2314,SPACE=(TRIS, (60,20) "CONTIG)
//SORT1NK06 DD UNIT=2314, SPACE= (TRK, (60,20) "CONTIG)
//SORTIN DD =Ie

AAAAAA
ZZZZZZ
444444
CCCCCC
XXXXXX
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
333333
VVVVVV
EEEEEE
333333

Figure 14-6. PL/I Program Invoking IHESRTC

exit E3S. This procedure receives a
charact,er-string representing -a sorted
record from the sort program. The input to
the sort program is in the input stream.

ENTRY POINT IHESRTD

Entry point IHESRTD is used for sorting
records constructed or updated by a PL/I
function and then passing them one-by-one
to anot~her procedure. The format 'of the
CALL st~atement is:

CALL IHESRTD(argument1 ,argument2 ,argument3 ,

argument~,arguments,argument6);

where:

arguments1-~ = as for IHESRTA

AAAAAA
ZZZZZZ
444444
ZZZZZZ
999999
ZZZZZZ
AAAAAA
AAAAAA
ZZZZZP
ZZZZZZ
ZZZZZZ
AAAAAA
AAAAAA
ZZZZZZ

arguments = entry name of the PL/I
procedure supplying the
:r:,~cords to the sort program

arguments = entry name of the PLII
procedure to which the
sorted records are to be
passed

An example of a PL/I program that uses
IHESRTD is given in Figure 14-7. This
program sorts records similar to those in
the previous examples. The PL/I procedure
ElSA is invoked from the sort program user
exit E1S. This procedure return a
character string that is inserted by the
sort program into the sort. At the end of
the sort, the sorted' records are associated
with a character string parameter in the
PL/I procedure E3SA, which is invoked from
the sort user exit E3S for each record
emerging from the sort.

Chapter 14: other Facilities of the operating System 195

//R20D JOB
//STEPl EXEC PL1LFCL
//PL1L.SYSIN DD *

/* PL/I PROGRAMMING EXAMPLE USING IHESRTD */

SORTD: PROC OPTIONS (MAIN);

/* DECLARE SORT PROGRAM ENTRY AND EXIT POINTS */

DCL IHESRTD ENTRY(CHAR(35),CHAR(27),FIXED BIN(31,0),
FIXED BIN(3l,0),ENTRY,ENTRY),

IHESARC ENTRY(FIXED BIN(3l,0»,
E15 ENTRY RETURNS(CHAR(SO»,
E35 ENTRY,
RETURN_CODE FIXED BIN(3l,0);

/* INVOKE THE SORT PROGRAM */

CALL IHESRTD C' SORT FIELD=(75,6,CH,A,16,6,CH,A) 0'
, RECORD TYPE=F,LENGTH=(SO) "
25000, /* MAIN STORAGE FOR SORT PROGRAM */
RETURN_CODE, E15A,E35A);

/* TEST RETURN CODE */

IF RETURN CODE = 16 THEN PUT SKIP EDIT ('SORT FAILED') (A);
ELSE IF RETURN CODE = 0 THEN PUT SKIP EDIT ('SORT COMPLETE') (A);

ELSE PUT SKIP EDIT C' INVA:LID SORT RETURN CODE. CODE=' ,
RETURN_CODE)CA);

E15A: /* THIS PROCEDURE OBTAINS RECORDS FROM THE INPUT STREAM */
/* AND CHECKS FOR NUMERIC OR AI,PHABETIC CODES BEFORE */
/* PASSING ONLY THOSE WITH ALPHABETIC CODES TO THE SORT */
/* PROGRAM. RECORDS WITH NUMERIC CODES ARE LISTED. */

PROC RETURNSCCHARCSO»;
DCL SYSIN FILE RECORD INPUT;
ON ENDFILE(SYSIN) BEGIN;

PUT SKIP(3) EDIT (':END OF SORT PROGRAM INPUT.',
'SORTED OUTPUT SHOULD FOLLOW')CA);

CALL IHESARC(S); /* SIGNAL END OF SORT INPUT */
GOTO ENDE15;
END;

DCL INFIELD CHAR(SO), FIELDl CHAR(6) DEF INFIELD
POS(75);

NEXT: READ FILE (SYSIN) INTO (INE'IELD);
IF FIELDl > 'ZZZZZZ' THEN DO;

PUT SKIP EDIT (INFIELD) (A);
GOTO NEXT;
END;

CALL IHESARC(12); /* INPUT TO SORT CONTINUES */
RETURN (INFIELD); .

ENDE15: END E15A;
E35A: /* THIS PROCEDURE OBTAINS SORTED RECORDS FROM THE */

/* SORT PROGRAM AND LISTS THEM. DUPLICATE RECORDS */

196

/* ARE IGNORED. */

PROC (INREC) ;

/* PRINT HEADING FOR SORTED OUTPUT ON SYSPRINT */

DCL I STATIC INI'!' (0) ;
IF I = 0 THEN DO;

PUT SKIP EDIT ('OUTPUT FROM E35 SUBROUTINE') (A);
1=1;

END;

/* PROCESS SORTED RECORDS */

DCL INREC CHAR(80),
PREVREC CHAR(80) STATIC INIT(~ .);
IF INREC=PREVREC THEN GOTO NEXT; /* IGNORE THIS RECORD */

ELSE DO~
PREVREC=INRECi /* STORE CURRENT RECORD */
PUT SKIP EDIT (INREC) (A);
END;

NEXT: CALL IHESARC(4); /* REQUEST NEXT RECORD FROM SORT */
RETURN;
END E35A;

END SORTD;
/*
//STEP2 EXEC PGM=*.STEP1.LKED.SYSLMOD
//SYSot~ DD SYSOUT=A
//SYSPHINT DD SYSOUT=A
/ /SORT][JIB DO DISP=SHR, DSN=SYS1. SORTLIB
/ /SORTWK01 DO UNIT=2314, SPACE= (TRK, (60,20) "CONTIG)
/ /SORTl~02 DO UNIT=2314, SPACE= (TRK, (60,20) , ,CONTIG)
//SORTlil1K03 DD UNIT=2314,SPACE=(TRK, (60,20) "CONTIG)
//SORTl~04 DD UNIT=2314,SPACE=(TRK,(60,20)"CONTIG)
//SORTl~05 DD UNIT=2314,SPACE=(TRK,(60,20)"CONTIG)
//SORTl~06 DO UNIT=2314,SPACE=(TRK,(60,20)"CONTIG)
//SYSIN DD *

/*

zzzzzz
ZZZZZZ
444444
CCCCCC
XXXXXX
CCCCCC
CCCCCC
CCCCCC
CCCCCC
333333
VVVVVV
EEEEEE
333333

Figure 14-7. PL/I Program Invoking IHESRTD

SORTING VARIABLE-LENGTH RECORDS

When you wish to use the PL/I sorting
facili 1:ies to sort variable-length records,
you should note the following points:

1. The portion of a variable-length
rE~cord that contains the control field
01: fields on which the sort is to be
pE~rf ormed must be present and of the
SClme length for every record to be
sorted. A sort cannot be performed on
control fields whose length or
position within a record is liable to
alter. Thus the control fields would
bE~ expected wi thin the minimum length
given for the records in the RECORD
control statement.

2. The length of each record is recorded
in the first four bytes of the record.
P1:ovision for this length field should
bE~ made when you specify the sort
control fields in the SORT control
s1:atement.

AAAAAA
ZZZZZZ
444444
ZZZZZZ
999999
ZZZZZZ
888888
AAAAAA
ZZZZZP
ZZZZZZ
AAAAAA
AAAAAA
ZZZZZZ

3. Varying-length strings passed from a
PL/I user exit E15 procedure will have
the length field added to the record
automatically; the length will be the
current length of the character string
plus four bytes for the field itself.
The same applies if 'fixed-length
strings of different lengths are
returned from the E15 procedure.

4. The four-byte length field is removed
from variable-length records passed to
a PL/I user exit E35 routine.

An example of a PL/I program that uses
IHESRTA to sqrt variable-length records is
given in Figure 14-8. This example
includes a PL/I program to create a data
set of variable-length records from data
items obtained from the input stream. The
sort is performed on alphanumeric data in
the first six bytes following the length
field in each record. A third PL/I program
retrieves the sorted variable-length
records from a temporary data set and lists
them. Note that the maximum record length
includes four bytes for the length field,

Chapter 14: Other Facilities of the Operating System 197

and corresponds to the maximum length given
in the LRECL subparameter.

OSE OF PL/I SORT IN A MULTITASKING
ENVIRONMENT

When the sort program is invoked from
different PL/I tasks, so that two Ol~ more
sorting operations are to be performed
asynchronously by separate subtasks, the
following should be noted if -the sort
program diagnostic messages are to be
printed on the line printer:

198

If the DD statement for the SYSOUT data
set contains SYSOUT=A in the operand field,
some sort program messages may be
overwritten in the data management buffers
and therefore not printed. FUrther, the
program in some cases will terminate
abnormally or go into a wait state. These
problems are caused by the inability to
modify the ddname for the SYSOUT data set
in the additional tasks that use the sort
program: they give rise to synchronization
conflicts within data management.

This problem does not apply if, when thE!
system is generated, the sort program
messages are specified to be printed on the
console.

/ /R20V ,JOB
//STEPl EXEC PL1LFCLG
//PL1L.SYSIN DO *

/*

VAR2:: PROC OPTIONS (MAIN) ;
ON ENDFILE(SYSIN) GOTO END;
DCL OUT FILE RECORD OUTPUT,

OUTREC CHAR (80) VAR;
NEXT: GET LIST (OUTREC);

PUT SKIP EDIT (OUTREC) (A);
WRITE FILE (OUT) FROM (OUTREC);
GOTO NEXT;

END: END VAR2;

//GO.otn~ DD DSNAME=&&TEMP,DISP=(NEW,PASS),SPACE=(TRK,(l,l»,
//DCB=(,RECFM=V,LRECL=84),UNIT=2314
//GO.DIDIlB DO DSNAME=&&GOSET(GO) ,DISP=(OLD,DELETE)
//GO.SYSIN DO *
'003329HOOKER S.W. RIVERDALE, SATCHWELL LANE, BACONSFIELD'
'002886ElOOKER R.R. ROTORUA, MILKEDGE LANE, TOBLEY'
'003077HOKKER & SON, LITTLETON NURSERIES, SHOLTSPAR'
'059334HOOK E.H. 109 ELMTREE ROAD, GANNET PARK, NORTHAMPTON'
'73872HOME TAVERN, WESTLEIGH'
'000931:E'OREST, IVER, BUCKS'
/*
//STEP2 EXEC PL1LFCL
//PL1L.SYSIN DD *

/*

VARY1.: PROC OPTIONS(MAIN);
DCL IHESRTA ENTRY (CHAR(24),CHAR(3S),

FIXED BIN(31,0),FIXED BIN(31,0»,
RETURN CODE FIXED BIN(31,O);

CALL lHESRTA(' SORT FIELDS=(5,6,CH,A) ,
, RECORD TYPE=V,LENGTH=(84",20,40) "
25000, /* MAIN STORAGE FOR THE SORT PROGRAM */
RETURN CODE);

IF RETURN CODE=O THEN PUT SKIP EDIT
('SORT-COMPLETE') (A);

END VARY1;

ELSE IF RETURN CODE=16 THEN PUT SKIP EDIT
('SORT FAILED') (A);

ELSE PUT SKIP EDIT
('INVALID SORT RETURN CODE') (A);

//STEP3 EXEC PGM=*.STEP2.LKED.SYSLMOD
/ /SYSOU'I' DD SYSOUT=A
//SYSPRINT DO SYSOUT=A
//SORTLIB DO DISP=SHR,DSN=SYS1.S0RTLIB
//SORTWl<:Ol DO UNIT=2314, SPACE= (TRK, (60,20) "CONTIG)
//SORTWK02 DO UNIT=2314, SPACE= (TRK, (60,20) "CONTIG)
//SORTWl<:03 DD UNIT=2314,SPACE=(TRK, (60,20) "CONTIG)
/ /SORTWK04 DO UNIT=2314, SPACE= (TRK, (60,20) "CONTIG)
//SORTWR05 DD UNIT=2314,SPACE=(TRK, (60,20) "CONTIG)
/ /SORTWK06 DD UNIT=2314, SPACE= (TRK, (60,20) "CONTIG)
//SORTINI DO DSNAME=&&TEMP,DISP=(OLD,DELETE),
/ / DCB=: (BLKSI ZE= 8 8, LRECL= 84, RECFM=V)
//SORTOUT DO DSNAME=&&TEM,DISP=(NEW,PASS),
/ / SPACE:= (TRK, (1,1)) , UNIT=2314, DCB= (RECFM=V, LRECL=84, BLKSI ZE=88)
//STEP4 EXEC PL1LFCL
//PL1L.DUMB DO DSNAME=&&GOSET(GO),DISP=(OLD,DELETE)
//PL1L.SYSIN DO *

/* PL/t ROUTINE TO PRINT OUTPUT FROM SORT PROGRAM EXAMPLES */
P: PR:OC OPTIONS (MAIN) ;

DeL SORTOUT FILE INPUT RECORD,
CHARS CHAR (80) VAR;
ON ENDFILE(SORTOUT) GOTO ENDP;
L: READ FILE(SORTOUT) INTO (CHARS);

PUT SKIP EDIT (CHARS) (A);
GOTO L;

Chapter 14: Other Facilities of the operating System 199

ENDP: END Pi
/*
//STEP5 EXEC PGM=*.STEP4.LKED.SYSLMOD
//SYSPRINT DD SYSOUT=A
//SORTOUT DD DSNAME=&&TEM,DISP=(OLD,DELETE),UNIT=2314

Figure 14-8. Using IHESRTA to Sort Variable~length Records

200

Chapter 15: PL/I and Other Languages

Introdu(~tion

This chapter is presented as two main
sections. The first is concerned with the
subject of data set interchange (i.e.,
sharing data sets between programs written
in diffE~rent languages); the second is
concernE~d with the more complex subject of
linkage (i.e., direct communication)
between modules written in different
languagE~s but forming one program.

Data Se1: Interchange

In general, a PL/I program can use data
sets produced by programs written in other
languagE~s, and can produce data sets that
can be used by these other programs. There
are somE~ limitations, caused mainly by
differences in the way in which PL/I data
is handled, in particular the way in which
it is mapped and stored, and by the large
number of different data types available in
PL/I that are not available in the other
languagE~s. However, there are many data
types and modes of storage in PL/I that
have equivalents in other high-level
languagE~s. There are also ways in which
most of the incompatibilities can be
overcome. A previous incompatibility has
been removed in the fifth version of the
PL/I (F) compiler by the use of halfword
storage for data that is FIXED BINARY and
has a pI:ecision of less than 16.

PL/I-FOHTRAN DATA SET INTERCHANGE

The major areas of incompatibility between
PL/I and FORTRAN are as follows:

1. PL.lI has more data types; therefore
some PL/I data types have no
equivalent in FORTRAN, notably
character-string data.

2. PLlI records can be organized as
stl:uctures in main storage (with the
elE~ments aligned or unaligned).
FOHTRAN records are built up on

output, and the elements will not be
aligned unless written in a particular
order.

3. PL/I arrays are stored in row major
order, while FORTRAN arrays are stored
in column major order.

Equivalent Data Types

Figure 15-1 shows FORTRAN-PL/I data
equivalents. Note that PL/I numeric
character data has no direct equivalent in
FORTRAN. However, it is possible to treat
a FORTRAN array as a PL/I character string.

Structures and Alignment

The safest course when PL/I structures are
to be associated with FORTRAN records is to
declare the structures UNALIGNED. However,
if the elements of the FORTRAN record have
been forced into correct alignment (using
techniques such as writing out the
variables that form the record in
descending order of data type length), the
PL/I structure can be declared ALIGNED.
Note that unaligned data is less efficient
than aligned data, often requiring extra
execution time when acc~ssed.

Example:

FORTRAN

Main storage: INTEGER*2A
LOGICAL*lB
REAL*SC

Output: WRITE(6) C,A,B

Main storage: DCL 1 R UNALIGNED,
2 U FLOAT(16),
2 S FIXED BIN,
2 T BIT(S);

Input: READ FILE(FILE6) INTO(R);

Chapter 15: PL/I and Other Languages 201

r-------------------------------T--, I FORTRAN (Unformatted Record) I PL/I I
~-----------T--------T------·----+----------------------T--------T-----------------------~
I I I I I I Alignment ,
, Data Type I Length I Alignment1I Data Type I Length ~-----------------------1
I I (bytes) I I I (bytes), Aligned Unaligned I
~-----------+--------+----------+----------------------+--------+-----------------------~
I INTEGER*2 I 2 I Byte I FIXED BINARY(15) I 2 'Halfword Byte I
I INTEGER*4 I .4 I Byte I FIXED BINARY(31) I 4 I Fullword Byte I
I REAL*4 I 4 I Byte I REAL FLOAT(short) I 4 I Fullword Byte I
I REAL*S I S I Byte I REAL FLOAT (long), I S I Doubleword Byte I
I COMPLEX*S I S I Byte I COMPLEX FLOAT(short) I S I Fullword Byte I
I COMPLEX*16 I 16 I Byte I COMPLEX FLOAT(long) I 16 I Doubleword Byte I
I LOGICAL*l I 1 I Byte I BITCS) ,1 ,Byte Bit2 I
I LOGICAL*4 I 4 I Byte I BIT(32) I 4 I Byte Byte I
, I , I CHARACTER I any I Byte Byte I

~-----------~--------~-.---------~----------------------~--------~-----------------------~
,Notes: 1When allocated, the data types generally have the same alignment as listed I
, under the PL/I equivalents, but after more than 'one data item has been written I
, out in one record (equivalent to writing a PL/I structure), this alignment may I
I be lost, and therefore all items should be considered to be byte-aligned for I
I input/output. I
I 2The fact that the alignment requirement of unaligned bit strings is bit rather I
I than byte does not affect PL/I-FORTRAN data interchange, since the FORTRAN I
I string will always ·take up an integral number of bytes. I L __ -----------------------------J
Figure 15-1. FORTRAN-PL/I Data Equivalents

In the above example, S, T, and U are
equivalent data types to A, B, and C
respectively. As alignment of the elements
has been forced in the FORTRAN WRITE
statement, R could have been declared
ALIGNED in this case.

The record format will be either VS or
VBS, since the FORTRAN object-time library
automatically uses a spanning technique.

. The record format specified in the PL/I
ENVIRONMENT attribute (or in the DD
statement associated with the PL/I file)
must match that specified in the DD
statement associated with the FORTRAN data
set reference number.

Arrays

Arrays of one dimension are stored in the
same way in both PL/I and FORTRAN, but
arrays of two or more dimensions are stored
differently (row major order for PL/I,
column major order for FORTRAN). The
solution to this problem is to declare the
array in one language with subscripts in
reverse order to the declara·tion in the
other language. The record will then be
correctly associated with the array in
either program on transmission.

202

Example:

FORTRAN

REAL A(2,5,7)

PL/I

DCL A(7,5,2)

The disadvantage of this method as it
stands is that a reference to the array
using the same subscripts in the two
different programs will access different
elements. A(1,3.6) in FORTRAN would be
A(6,3,1) in PL/Ii the likelihood of program
error may be increased. This problem can
be avoided by using iSUB defining in the
PL/I program.

Example:

FORTRAN

REAL A(2,5,7)

DeL Al(7,5,2),
A(2,5,7) DEF Al(3SUB,2SUB,lSUB);

Now, if the record is transmitted to or
from A1 in the PL/I program, a reference to
a particular element in the FORTRAN program
will be identical to the PL/I reference to
that element •..

Extern.al Representation of Floating-point
Numbers

The prlE~ceding discussions are concerned
with the internal representation of
equivalent data types in FORTRAN and PL/I,
and thlE~ interchange of record-oriented data
sets. The following notes describe an
incompatibili ty between PL/I and FORTRAN in
the ex'ternal representation of
floating-point numbers in stream-oriented
data slats.

1 • Fc:)r PL/I, the exponent of any
floating-point number is indicated by
the character "E". For FORTRAN, the
exponent of a short-precision
floating-point number is indicated by
the character "E" and the exponent of
a long-precision floating-point number
is indicated by the character "0".

2. For PL/I, if the exponent of a
floating-point number is positive, it
may optionally have a "+" sign. If a
sign is not present, the exponent
immediately follows the character "E".
For example:

0.018737E22

or

0.018737E+22

For FORTRAN, if the exponent of a
floating-point number is positive, a blank
charact.er rather than a • +' sign may
sometimes be present between the "E" or "0"
and the exponent. For example:

0.0187370 22

These differences prevent the direct use of
PL/I sitream-oriented transmission
facili·ties to read or write floating-point
numbers that can be interchanged with a
FORTRAN program.

PL/I-COBOL DATA SET INTERCHANGE

PL/I has data types and organizations that
correspond to most COBOL iteins, but there
are some differences. For example, PL/I
data may be either aligned or unaligned,
but records produced by a program compiled
by a non-ANS COBOL compiler are always
aligned (for ANS COBOL, see below). Also,
PL/I s·tructure mapping differs from COBOL
record mapping in that the PL/I (F)
cqmpil1er minimizes the amount of unused
storag,e within the structure. This means
that corresponding elements may occupy
differ,ent storage locations .relative to the

start of the structure, and that the record
length may differ from that of the COBOL
record.

ANS COBOL data can be SYNCHRONIZED
(i.e •. ., aligned) or unsynchronized (i.e.,
unaligned). COBOL records prior to USASI
COBOL were always SYNCHRONIZED, and the
fifth version of the PL/I (F) compiler
assumes that structures in a file with the
COBOL option are SYNCHRONIZED. Note that
for ANS COBOL the default is
unsynchronized, while for PL/I the default
is aligned for all data types except
bit-string, character-string, and numeric
character.

You can use the COBOL option in the
ENVIRONMENT attribute for a PL/I file that
is to be associated with a COBOL data set.
This indicates that any structure in the
data set associated with this file is
mapped according to the COBOL algorithm
(i.e., starting at a doubleword boundary
and, proceeding left to right, aligning
elements on the first available correct
boundary). If a structure name appears in
a READ INTO or WRITE FROM statement for a
fil~ with the COBOL option, a temporary
COBOL-type structure for transmission to or
from the data set is created. Before
output (or after input), the elements of
the PL/I-mapped structure are assigned to
(or from) the temporary. If the PL/I
structure and the COBOL record have
identical mapping, the data sets will be
directly compatible and there will .be no
need to use the COBOL option. Note that
the following restrictions apply to files
with the ENVIRONMENTCCOBOL) attribute.

1. The file can be used only for READ
INTO, WRITE FROM, and REWRITE FROM
statements. The file name cannot be
passed as an argument.

2. The variable named in the INTO option
cannot be used in the on-unit for an
ON-condition raised during execution
of a READ statement.

3. The EVENT option can be used only if
the compiler can determine that the
PL/I structure and the COBOL record
have identical mapping. (For further
details see the PL/I CF) Language
Reference Manual.)

Figure 15-2 shows COBOL-PL/I data
equivalents.

Chapter 15: PL/I and other Languages 203

Linkage with Other Languages

The information so far presented in this
chapter has dealt with data set interchange
between PL/I and non-PL/I modules run as
separate jobs or job steps <i.e., run as
separate programs sharing a data set). The
rest of the chapter is devoted to direct
communication between PL/I modules and
non-PL/I modules that are run in t.he same
job step (i.e., forming one program).
Because of the different conventions and
methods adopted by the different
processors, you are advised not to attempt
the type of operation discussed below
without some knowledge of the
execution-time environment; you will
require access to the publication IBM
System/360 OperatinqSystem: PL/I --­
Subroutine Library Program 1010g1c ~[anual,
Form Y28- 6801.

This section is in two parts and
consists of a brief discussion of the PL/I
(F) environment, pointing out the
particular areas that you should be

familiar with in order to carry out
interlanguage communications, followed by a
discussion of the communication problems
and suggested solutions.

Note: This section devotes itself mainly to
a single tasking system. Therefore, where
there is no mention of multitasking ,
single tasking should be assumed.

PL/I (F) ENVIRONMENT AND COMMUNICATIONS

The following paragraphs deal with the way
in which the PL/I (F) environment is set up
and briefly describe the more important
control blocks used for communications.
Note that this section provides only a
summary of the relevant information, which
is given in detail in the PL/I Subroutine
Library Program Logic Manual. The purpose
of the section is to provide an overall
picture of the areas that you may need to
consider.

r---~-----------------.-------------------------.-,
I COBOL I PL/I I
~---------------T-------T-------------------+-----------------T-------T-----------------·-1
I I I Alignment', 1.1 Alignment ,
I I ~----------T---·-----~ I ~----------T------~
, Data Type ,Length, Synch. I Unsynch. I Data Type I Length I Aligned I Un- I
I , (bytes) I (aligned) ., (un- I I (bytes) I ,alignE!dl
, " ,aligned) , I I , I
~---------------+-------+----------.+---.-----+-----------------+------+----------+------.-~
COMPUTATIONAL~ ,

dec. length: I
1-4 2 Halfword Byte FIXED BINARY I

5-9

10-18

COMPUTATIONAL-l

ICOMPUTATIONAL-2
I
,COMPUTATIONAL-3 ,

4 Fullword

8 Fullword

4 Fullword

8 Doubleword

Byte

Byte

Byte

Byte

Byte

Byte

(halfword I
integer) I
FIXED BINARY I
(fullword I
integer) I
No equivalent ~

~
REAL FLOAT (short) I

I
REAL FLOAT(long) I

FIXED DEC
I ,
I

2

4

4

8

Halfword

Fullword

Fullword

Doubleword

I Byte ,

Byte

Byte

Byte

Byte

Byte

'DISPLAY any Byte Byte CHARACTER 'any IByte Byte
~---------------~-------~---------.-~-------~-----------------~-------~----------~-------~
INotes: ~Decimal length is equal to the number of 9s in the picture. I
I ,
I 2The length of 1 byte applies to the smallest fixed decimal value ,
, (i.e., 1 digit). For other values, the length is given by ,
, CEIL((number of digits + :U/2) bytes. I L _____________________ . ___________ • ___ J

Figure 15-2. COBOL-PL/I Data Equivalents

204

The PL/]~ (F) Environment

The (F) compiler is designed so that
resulting object programs, whether
multitasking in MVT or single tasking in
PCP or ZVIFT, can use storage efficiently by
obtaining storage for each block when
required and releasing it when no longer
needed. This is achieved by the use of
library modules, called by housekeeping
routines: for each block. These
housekeeping routines (prologues and
epilogues) perform various other functions
(such as saving the environment of the
invokin<.;r block), described in more detail
later.

Because of the need to be able to
operate in a multiprogramming system, all
PL/I library modules are reentrant. (Your
output :I:rom the compiler will also be
reentrant if you use the static storage
class only for read-only data and specify
the REENTRANT option in the PROCEDURE
statement.)

As wE~11 as the block housekeeping
routines, the procedure with the
OPTIONS j(MAIN) option needs routines to set
up the PL/I environment. These functions
are performed by the library module IHESAP
(or IHE'J?SA in a multitasking program) only
once fOl: any given execution of a program.
They consist of the following:

1. Obtaining the length of the
pSE?!udo-register vector (PRV) from the
linkage editor. (The.PRV is an area
of task-oriented storage that contains
a number of pseudo-registers; these
hold information such as the
in~Tocation count).

2. Allocating the PRV variable data area
(PRV VDA). This area contains the PRV
plus primary library workspace (LWS).
General register 12 is set to point to
the PRV.

3. Initializing the standard
ps.:!Udo-registers and the LWS.

4. Issuing a SPIE macro instruction to
allow the library module IHEERR to
ob1t:.ain control in case of a program
in1:errupt.

5. Issuing a STAE macro instruction to
intercept abnormal termination by the
system.

6. Chaining the PRV VDA back to the
eID:ernal save area.

These functions are the result of the
initial control from the operating system
being passed to the library module IHENTRY.

IHENTRY then selects the proper IHESAP
entry point to utilize the specific
environment required. (IHESAP ultimately
passes control to the main procedure via
the control section IHEMAIN.) since this
environment is established only once, all
procedures without the OPTIONS(MAIN) option
assume that the environment has been
previously established and has not been
disturbed. Note that the technique of
using IHENTRY enables the generated code
for the main procedure to be similar to
that for any other external procedure.

Invoking a PL/I Main Procedure

Initial Entry to Procedures with the MAIN
Option: In order to achieve the proper
initialization of PL/I programs, the
primary entry is always to a compiler
generated control section, IHENTRY. This
calls the appropriate PL/I library
initialization routine (IHESAP or IHETSA);
the choice of module depends on the OPT
parameter and whether the main procedure
has the TASK option or not. The routine
selected provides the PRV and library
workspace, issues SPIE and STAE macros and
then transfers control to the address
contained in a control section named
IHEMAIN. This address constant is produced
by the compiler for each external procedure
with the .MAIN option. The situation is
illustrated in Figure 15-3.

If more than one module has the MAIN
option, the linkage editor will accept the
first appearance of the control section
IHEMAIN in its input stream and ignore the
rest. Thus, if more than one main
procedure is to be called, IHEMAIN must be
dynamically altered to hold the address of
the required PL/I main proc~dure before
calling IHENTRY.

If an argument is to be passed to the
PL/I program, IHESAP or IHETSA must be
entered at the appropriate entry point.
This entry point can be called directly, or
can be placed in IHENTRY and thus entered
by the call to IHENTRY.

For non-tasking the entry points in·
IHESAP have the following functions:

IHESAPA
parameter from EXEC statement OPT=O

IHESAPB
normal parameter conventions OPT=O

IHESAPC
parameter from EXEC statement OPT=l or

2

Chapter 15: PL/I and Other Languages 205

IHESAPD
normal parameter conventions OPT=l or 2

For tasking the entry points in IHETSA
have the following functions:

IHETSAP
parameter from EXEC statement.

IHETSAA
normal parameter conventions.

IHENTRY
r---------------,
IL 15,VCIHESAPx)I
IBR 15 I L _______________ J

I
I

V
IHESAPA (IHETSAP for
tasking environment)

r---------------,
IENTRY IHESAPA
IENTRY IHESAPB
IENTRY IHESAPC
IENTRY IHESAPD
1
I
I
IL 15,VCIHEMAIN)
I'L 15,0 (15)
IBR 15
1
I
I L _______________ J

IHEMAIN

I
I
V

r---------------,
I DC VCENTRY A) I L _______________ J

I
I
V

PL/I program
r---------------,
IENTRY ENTRY A 1 L _______________ J

Figure 15-3. Initial Entry to Procedures
with the MAIN Option.

Passing Arguments to a Main Procedure: If
the entry points IHESAPA, IHESAPC or
IHETSAP are called the procedure will
expect a single character string argument
from the PARM field of the EXEC statement.
Register 1 should be pointing at the
address of the parameter, as shown below.

206

Fullword
boundary
1
I
V

r--------------------,
Register l-->laddress of parameter I L ____________________ J

I
I

V

r---T----------------,
1 1 11 byte parameter I L_~ ________________ J

" " I I
I I

Halfword Fullword
boundary boundary

The maximum length of the argument is 100
bytes and should be declared as CHAR(100)
VARYING in the main procedure. The
housekeeping module IHESAP/IHETSA builds a
string dope vector to describe the argument
as a varying character string so that on
entry to the main procedure the set up will
be:

r--------------------,
Register 1-->1 address of SDV I

Example:

PL/I PROGRAM

l---------T----------J

1
I
I

SDV V
r--------------------,

r-~address of parameter 1
I ~---------T----------~
I I X' 64' I 1 I 1 l _________ ~ __________ J

I
I
I
I
I r--~----------------,
l>1 1 11 byte parameter I L ___ ~ ________________ J

length data

MYFROC: PROC C:PARAM) OPTIONS (MAIN) i
DCL PARAM CHAR (100)VARYINGi

END MYPROCi

ASSEMBLER LANGUAGE CALLING PROGRAM

L
L
BALR

1,PARM
15,SAPA
14,15

SAPA DC V (IHESAPA)
PARM DC A (ADDR)

DS H
ADDR DC AL2(L'LIST)
LIST DC C 'THIS IS PARAMETER'

END

If entry points IHESAPB, IHESAPD or
IHETSAA are called the procedure mayor may
not be ,expecting an argument list,
dependant on whether one was specified in
the procedure statement. Register 1 is not
examined by the housekeeping module
IHESAP/IHETSA, but simply passed on to the
main procedure. If no parameters have been
declared in the main procedure Register 1
will be ignored, but if parameters are
declared Register 1 will be expected to
point to a parameter list. The parameters
must be in a form acceptable to PL/I.

Note: I·t is dangerous to assign to the
parameter of the EXEC statement. (If
length is greater than the current length
job may fail).

As an e:2~ample, consider passing three fixed
length character-string arguments to the
main procedure .•

Example:

PYI PROGRAM

MYPROC: PROC (A,B,C) OPTIONS(MAIN)i
DCL A CHAR (10);
DCL B CHAR (20);
DCL C CHAR (30);

END MYPROC;

Register 1 will now be set up as follows:

ASSEMBLER LANGUAGE·CALLING PROGRAM

L
L
BALR

SAPB
PARM

SDVA

1,PARM
15,SAPB
14,15

DC V (IHESAPB)
DC A(SDVA)
DC A(SDVB)
DC X, 80'
DC AL3(SDVC)
DC A (PARMA)
DC 2AL2(L'PARMA)

PARMA DC CL10 • PARAMETERA '
SDVB DC A (PARMB)

DC 2AL2 (L" PARMB)
PARMB DC CL20'PARAMETERB'
SDVC DC A (PARMC)

DC 2AL2(L'PARMC)
PARMC DC CL3 O' PARAMETERC'

END

The procedure prologue for each
procedure:

PARAMETER LIST SDV of A ,------------------, r-------------, r-----'
Registe:l: 1--> I address of SDV of A~------>I address of A ~----> I A I

~-------------------i ~----~-T------; L _____ J
laddress of SDV of B~----, I 10 I 10 I
~-------------------~ I L _____________ J

laddress of SDV of C~-, I L ___________________ J I I SDV of B

I I r-------~-----, r-----'
I L->Iaddress of B ~---->I B I
I . ~-----T------~ L _____ J

I I 20 I 20 I I L ______ ~_~ ____ J

I
I SDV of C
I r-------------, r-----'
L---->Iaddress of C ~---->I C I

f------T------~ L _____ J

I 30 I 30 I L ______ ~ ______ J

Chapter 15: PL/I and other Languages 207

1. Sets general register 11 to point to
the static internal control section.

2. Allocates a dynamic storage area (DSA)
for the procedure. The length is 100
bytes plus the lengths of the
automatic variables, parameter lists,
and dope vectors for that procedure.
The 100 bytes contains a register save
area plus interrupt and environment
information and the field used to
provide statement numbers in
object-time error messages.

3. Chains the DSA back to the original
DSA or VDA. Sets flags indicating DSA
characteristics. Stores the address
of the DSA in the PR for that block.
The pseudo-register name is one of
those generated by extending the
procedure name to the left with
asterisks if necessary to make seven
characters and then appending, in
order, a single character from B
through Z and the special characters,
corresponding to the order of the
blocks in the compilation.

4. Initializes any automatic variables
having the INITIAL attribute.
Initialize all dope vectors for
automatic strings, structures, and
arrays.

5. Obtains secondary dynamic storage for
variables that depend on the results
of step 4.. These areas are called
variable data areas (VOA). VDAs may
also be required for temporary work
space.

The procedure epilogue is initiated by a
call to the library routine IHESAF (an
entry point in IHESAP). This routine frees
the current DSA and any associated VDAs. A
request to free the DSA of a MAIN procedure
results in the raising of the FINISH
condition, closing all files still open,
and freeing all automatic storage for the
program. Control is passed from IHESAF via
general register 14, which, for MAIN
procedures is a transfer to the calling
program (usually the operating-sys'tem
supervisor). For other procedures, return
is to the statement following the call to
the procedure being terminated, except in a
shared library system, when there is
another level of control between the PL/I
environment and the operating system.

storage Organization.and Control Blocks

Detail formats and field descriptions of
the PL/I control blocks are contained in
the PL/I Subroutine Library Program Logic

208

Manual. This section briefly discusses how
the blocks are used and how they are
related to the system and each other. No
attempt is made to cover all control
blocks, but only those that a programmer
might need to refer to. None of these
control blocks can be accessed usefully in
FORTRAN or COBOL, but an assembler language
subroutine, or an assembler language
routine that was acting as an interface
between PL/I and FORTRAN or COBOL, could
make use of their contents. The control
blocks discussed are:

1. Library and data generated control
blocks

• string dope vector (SDV)

• Array dope vector (ADV)

• String array dope vector (SADV)

• Structure dope vector

2. Input/output control blocks

• Declare control block (DCLCB)

• Open control block ~OCB)

• File control block (FCB)

• Input/output control block (IOCB)

• Record dope vector (RDV)

• Dope vector descriptor (DVD)

3. Storage management control block

• Dynamic storage area (DSA)

string Dope Vector' (SDV): The string dope
vector is primarily necessary to support
such features as varying-length strings,
adjustable strings, and string arguments.
For example, the use of a dope vector
allows the SUBSTR function to operate
without duplicating the actual data that
makes up the substring. The result of this
function is simply an additional dope
vector that describes part of the original
string. Since this additional dope vector
exists only during the life of the
statement in which it occurs, it is creabed
in library workspace.

Array Dope Vector (ADV): The array dope
vector allows the bounds of the array to be
dynamically defined by the values of
expressions evaluated by the program, and
allows arrays to be passed as arguments; it
also provides the reference for the
SUBSCRIPTRANGE condition.

The main contents of the array dope
vector are the virtual origin, the

multipliers, and the bounds of the array.
The virtual origin (i.e., the location that
the element with all zero subscripts has or
would ha.ve if it existed) and the
multipliers are used, together with the
appropriate subscripts, in the address
calculation for a given element, thus:

n
addrel3s = virtual origin + E S i * Mi

i=l

where n = number of dimensions
Si = value of ith subscript
Mi = value of ith multiplier

From the viewpoint of dope vector
construction, in contrast to dope vector
usage, it is best to think of the virtual
origin a.s a location relative to the start
of the actual array. You can calculate the
necessa:r-y virtual origin as follows:

n
VO = (first element address) - ~

i=l

where ~Bi= LBOUND(array,i)

M· *LB.
1 1

The mul-tipliers are calculated as follows:

n
M = 1 * ,-r (HB - LB + 1)

r=i+l r r

where I = distance between the starts of
two consecutive single elements
(i.e., generally, the length of
a single element)

HBr= HBOUND(array,r)

LB = LBOUND(array,r) r
For ex~mple, take an array of three
dimensions (10,5,6), with elements 5 bytes
long, the first of which is located at
12288.

and

M~ 5 * 5 * 6 = 150
M2 5 * 6 30
M3 5

virtual origin 12288 - (150 + 30 + 5)
= 12103

The dope vector for based arrays is
slightly different from that for nonbased
arrays. The virtual origin, instead of
containing an actual address, contains the
offset of the virtual origin from the first
element declared. It can be calculated
from the above formula, but setting the
address of the first element to zero since
it is not known. Because the virtual
origin is not necessarily part of the array
itself, this offset could be either

positive or negative. It is a 3-byte
field, and this must be considered when the
virtual origin is loaded into a register
for address arithmetic. For all except
bit-string arrays, the first eight bits in
the register will be zero after the virtual
origin has been loaded, and will thus
represent a positive number even though the
offset might be negative.

String Array Dope-Vector (SADV): The
string array dope vector takes one of two
forms, depending on whether the strings are
varying or fixed-length. If the L'Strings
are fixed, the SADV is an ADV with two
halfwords appended, each of which contains
the length of the strings in the array. If
the strings are varying, the format of the
SADV is the same, but certain meanings are
different.. To determine which format SADV
is being used, test the 'current length'
field in the SADV. If it is nonzero, the
strings are fixed-length, and normal ADV
processing can be used to access the
string. If the 'current length' field is
zero, normal ADV processing will point to
secondary dope vectors for each of the
varying strings and each element would then
be processed as an element variable. This
is necessary because each element in the
array could have a different current
length.

Structure Dope Vector: The structure dope
vector is a concatenation of the dope
vectors or addresses of all the elements in
the structure. If an element has no dope
vector (i.e,., it is an element variable of
arithmetic type), a single fullword address
constant points to the element.

Declare Control Block (DCLCB): The DCLCB
is the primary compiler-generated control
block for input/output operations. It is a
read-only block and contains only the
information declared for the file (or
implied b¥ the declared 'attributes). Its
address is constant throughout the
execution of the program and it can be used
as the source of all information about the
file by any module requiring the
information.

A pseudo-register is used for
communication with other related control
blocks; the DCLCB contains the offset of
the file pseudo-register in the PRV.
Another pseudo-register, IHEQFOP is used to
identify all files open for the program.

open Control Block (OCB): When a file is
opened, the parameter list passed to the
PL/I open interface is called the open
control block. This block combined with
the DCLCB provides the PL/I attributes for
opening the file. The result of the
opening p~ocess is the file control block

Chapter 15: PL/I and other Languages 209

(FCB) and the input/output control blocks
(IOCBs).

File Control Block (FCB): The FCB contains
the PL/I information about the current
opening of the file, plus the DCB
associated with the file.

Input/Output Control Block (IOCB): The
main purpose of the IOCB is to fill the
operating system requirement for data event
control blocks (DECBs) used by the BSAM and
BDAM/BISAM interfaces. The number of IOCBs
created varies with the data set
organization and access technique.

For BSAM, the number of IOCBs generated
is equal to the NCP value specified in the
DD statement for the data set or the
ENVIRONMENT file attribute. Unless the
EVENT option is used, only one IOCB is
required. If the EVENT option is used, one
IOCB should be created for each
input/output operation that could be
outstanding at a given point in time. An
attempt to use more IOCBs than requested at
open time will raise the ERROR condition.

For BDAM and BISAM, only one loeB is
created at open time, and others are
created when needed. The IOCB also
contains the hidden buffer area if one is
required for BSAM or BDAM.

Record Dope Vector (RDV): Whenever a
record-oriented input/output operat.ion is
requested, one of two control blocks will
be passed to the PL/I library. If the
variable involved is a varying character
string, the parameter is an SDV; for all
other variables, an RDV is passed to the
PL/I library. Its contents depend on the
type of operation, but, basically, it
contains the address of the input/output
area for READ or WRITE operations, or t~he
buffer address after a LOCATE statement.
It also contains the aggregate length of
the specified variable.

Dope Vector Descriptor (DVD): The compiler
generates a DVD for use when an aggregate
has to be mapped at execution time rather
than compile time~ This occurs primarily
for aggregates specified with adjustable
bounds.

Dynamic storage Area (DSA): If you wish to
incorporate a non-PL/I routine into a PL/I
program, the main item of consideration in
the area of storage management will be the
DSA. If the routine is to be used in a
multitasking environment, the code should
be reentrant and should look like any other
PL/I routine. You should ensure that PL/I
conventions are followed, in particular
setting the proper flags in the DSA and
providing a pseudo-register for the
routine. The DSA of the routine must be

210

stored in the pseudo-register by the
routine. The routine name (the CSECT namle)
should be seven characters long, in
accordance with the naming convention for
pseudo-registers. You can request the DS;A.
by the following code:

L
LA
BALR
MVI

15,=V(IHESADA)
0,100
14,15
o (13) , X' 80'

The second load instruction loads the
length of the DSA (note that 72 bytes is
not enough; the minimum length of the DSA
is 100 bytes).

On return from IHESADA, general regisber
13 will contain the address of the DSA.
The reason for using IHESADA is that the
DSA is now chained to the other DSA's and
the PRV in the standard PL/I way. The flag
byte will be used by IHESAFA in returning
control. The coding for returning control
is shown belOW':

L 15,=V(IHESAFA)
BR 15

When the above instructions are executed,
the DSA is freed and control is returned 1to
the caller.

To request a pseudo-register for the
routine, append a 'B' to the CSECT name as
an eighth character and use the result as
the label of a DXD instruction. For
example:

SUBRUTN CSECT
SUBRUTNB DXD A

Code the SAVE register macro-instruction
thus:

SAVE (14,12),,*

The asterisk causes the CSECT name to be
coded into the program for easy
identification in a main storage dump or
snapshot. For intermodule trace routines,
you should use the chain-back and
chain-forward of the OSAs.

Arguments and Parameters

The (F) compiler generally conforms to th4e
IBM System/360 Operating System standard
calling sequence, as follows:

1. Arguments are passed by name, not by
value.

2. General register 1 contains the
address of the first address constant

i.n the parameter list, except when the
main procedure is called.

3. 'jlhe caller provides a register save
area addressed via general register
1.3. The invoked program stores the
contents of the general registers of
t:he invoking program in this area.

4. 'I'he invoked program loads into general
Z:'egister 13 the address of a save area
t:hat can be used by any program that
it invokes.

5. On return to the invoking program,
g'eneral registers 2 through 13, the
p.rogram mask, and the PICA will appear
unchanged. General register 14 will
point to the return address in the
invoking program (set by a BALR
instruction). General registers 0, 1,
a.nd 15, the floating-point registers,
and the condition code may be changed.

The main difference between PL/I argument
passing and that of other languages is that
the addresses in the list addressed by
general register 1 do not necessarily point
to the! data items that each represents.
The list passed by thePL/I module is the
same a.s t'hat of other languages only for
arithmetic element data items. In all
other cases, the address in the list points
to a dope vector. (The various dope
vectors are discussed briefly above.)

In ·the following example, these
abbrev'iations are used:

SDV
ADV
S'I'DV
SA.DV

Exainpl.e:

String Dope Vector
Array Dope Vector
Structure Dope Vector
String Array Dope Vector

DCL A FIXED DECIMAL,
B FIXED BINARY,
C FLOAT DECIMAL,
D FLOAT BINARY,
E PICTURE '999V99',
F PICTURE 'XXXAAA',
G CHARACTER(10),
H BIT(16);

DCL 1 1(10),
2 J FIXED DECIMAL,
2 K CHAR(12);

DCL 1 L,
2 M CHAR(4),
2 N CHAR (5);

DCL :P (5) FI XED,
Q(S) CHAR(2),
R(S,4) FIXED;

CALL, SUB(A,B,C,D,E,F,G,H,I,I.J,I.J(l) ,L,
L.M,P,P(l),Q,Q(l),R,R(l,l»;

The fi.rst DECLARE statement above refers to
element variables. A through E are

arithmetic; the rest are strings. The
second DECLARE statement defines an array
of structures; the third a structure, and
the fourth a number of arrays. The CALL
statement generates the following parameter
list; general register 1 will contain the
address of the first address constant in
the list:

PARM DC A(A)
DC A(B)
DC A(C)
DC A(D)
DC A(E)
DC A(SDV of F)
DC A(SDV of G)
DC A(SDV of H)
DC A(STDV of I)
DC A(ADV of I. J)
DC A(I.J(l»
DC A(STDV of L)
DC A(SDV of L.M)
DC A(ADV of P)
DC A (P (1»
DC A(ADV of Q)
DC A(SDV of Q(l»
DC A(ADV of R)
DC A (R (1,1»

There are several points to note about this
param~ter list. For variables A, B, C, D,
and E, the parameter list is identical to
those of object programs for other
languages compiled under the IBM System/360
Operating System: this is because each is
an arithmetic element variable. Similarly,
even though they belong to arrays, I •. J(l),
P(l), and R(l,l) are passed by their actual
addresses; their subscripts are included in
the argument list of the CALL statement and
they each identify a single element of an
arithmetic array, so they are treated as
elements. (This would be so even if the
subscripts were expressions instead of
constants; at execution time, a specific
element would be referred to.) None of the
other arguments represents an arithmetic
element, and so they are represented by
their respective dope vectors.

Note particularly the array of
structures, I. The dope vector for I
consists of two dope vectors: the ADV for
I.J and the SADV for I.K.. I itself,
therefore, is not really treated as an
array, but more as a structure with its
dimensionality carried down to the elements
of the structure. In this case, the
multipliers used in the dope vectors will
be the same for both I.J and I.K, and will
be the length of a single J (3 bytes) plus
the length of a single K (12 bytes), i.e.,
lS. The virtual origin of K is 3 bytes
from the virtual origin of J. Had the item
I been declared:

Chapter lS: PL/I and other Languages 211

DCL 1 I,
2 J(10} FIXED DECIMAL,
2 K(10} CHAR(12};

then I would be a structure of arrays
:rather than an array of structures.. The
!format of the dope vector for I would bE~
~he same, but the multipliers and virtual
origins would be different. The multiplier
for J would be 3, that for K would be 12,
and the virtual origin of K would be 30
bytes from that of J.

If you are writing assembler language
modules that will be called from PL/I
~rograms, note the following points:

1. When a dope vector is passed for a
string element, only another load
register instruction is required to
get the address of the actual data.

2. As shown in the examples of I.J(l},
P(l}, and R(l,l} above, passing the
first element of an array or s·tructure
rather than the array or structure
itself will avoid calculations and
additional manipulation that would
otherwise be necessary to obtain the
actual data. This is possible only if
the data characteristics are known in
the called program.

3. An ADV contains the virtual or1g1n of
the array, not the actual origin;
also, arrays are stored in row major
order, not column major order.

COMMUNICATION WITH OTHER LANGUAGES

This·section deals with ·the problems of
palling non-PL/I modules from PL/I programs
and vice versa. The main topics are
passing data items between modules written
in different languages and establishing the
~ppropriate environment; also discussed are
the use of function references between
languages, and the invocation of
~ser-defined PL/I ON-units from assembler
language subroutines and func·tions.

Passing Data Items

When data items are to be passed from PL/I
~odules to non-PL/I modules and vice versa,
the main considerations are:

1. The use of PL/I dope vectors

2. Data format differences

3. Data mapping differences

212

Only the first item is discussed in this
section, since the other two have been
discussed earlier in the chapter, under the
heading 'Data Set Interchange.'

One way to solve the problem of dope
vectors is to overlay arithmetic based
variables in the PL/I program onto the
beginning of items that require dope
vectors (i.e., all items except arithmetic
elements); thus the parameter can be made
to look like an arithmetic element in the
parameter list.. Note that a based variabl1e
used in this way should not normally be
referred to anywhere except in a call to a
non-PL/I module. For example, if a
character string is to be passed from a
PL/I module:

DCL STRINGA CHAR(20),
PARMA FIXED DEC(l,O} BASED(P};

P=ADDR(STRINGA);
CALL SUB (PARMA) ;

In this case, the parameter list will
consist of an address constant that
directly addresses PARMA, an arithmetic
element variable. But since the pointer P
points to the first character position of
STRINGA, the routine SUB will have access
to STRINGA wi thou·t concern for the STRINGA
dope vector.

Similarly, if ·the string is to be passed
to a PL/I module from a non-PL/I module,
the PL/I coding could be as follows:

PL1SUB: PROC(PARMA);
DCL PARMA FIXED DEC(l,O),

STRINGA CHAR(20) BASED(P);
P=ADDR (PARMA) ;

Now the dope vector for STRINGA will point
to PARMA.. since PARMA is an arithmetic
element, the PL/I program will expect the
parameter list to contain the address of
PARMA.

Another way of communicating data items
between FORTRAN and PL/I modules is to use
named common storage for the item. You can
do this by declaring the identifier STATIC
EXTERNAL in the PL/I module and COMMON in
the FORTRAN module. This results in an
external control section. For example:

FORTRAN

COMMON/COMAR/DVAR,I,A,CHR,IRAY
DIMENSION DVAR(7),CHR(3),IRAY(100)

PL/I

DCL 1 COMAR STATIC EXTERNAL,
2 I FIXED BIN(31,0),
2 A FLOAT DEC,
2 CHR CHAR(12),
2 IRAY(100) FIXED BIN(31,0);

The act:ual storage layout would be as shown
in Figure 15-4.

Note the following. points in connection
with this method of communication:

1. There may be padding between the PL/I
dope vector and the start of the
st:ructure. The dope vector is always
at the start of the control section
and is therefore always located on a
dcmbleword boundary; it will consist
of a number of fullwords. Therefore
there could be up to seven unused
bytes between the dope vector and the
st:ructure if the member having the
highest alignment requirement is not
the first member of the structure. In
the above example, there is no
padding, since the structure is
word-aligned and starts with a
full word. If I had been halfword
binary, there would be two bytes of
pcldding between the dope vector and
the structure. This could be
accommodated by a dummy variable of
IE!ngth two in the FORTRAN COMMON
st:atement immediately after DVARi
alternatively, DVAR could be declared
as INTEGER*2 and its dimension
increased to 15.

2. When there are two or more identical
eJl:ternal references, the linkage
editor acts on the first one
encountered. Since the PL/I dope
VE!ctor must be completed, the PL/I
mc)dule must precede the FORTRAN module
on input to the linkage editor. (It
nE~ed not necessarily be executed
first; you can use the ENTRY statement
a1: the end of the JCL for the
link-edit to ensure that the correct
module gets initial control.)

Establishing the Environment

If one procedure only is to be called from
a non-PL/I routine, and if releasing the
PL/I environment on exit from the procedure
does n(~ adversely affect the execution of
the pr(~ram, the PL/I procedure should be
gi ven 1:he MAIN option. The PL/I procedure
will bE~ entered by the statement CALL
IHESAPD. (Since the name IHESAPD has more
than six characters, FORTRAN programs must
have a dummy name for IHESAPD that is six
or less characters long. You can change
this nc~e to IHESAPD at link-edit time

using the linkage editor CHANGE statement
immediately before the FORTRAN module or
its INCLUDE statement.)

If more than one PL/I procedure is to be
called from non-PL/I routines or if FORTRAN
or COBOL subroutines or FORTRAN functions
are to be invoked from PL/I, an assembler
language interface routine must be used.
The main purpose of this interface routine
is to save the environment of the language
that called it and to establish the
environment of the language to which it is
to give control.

If you are calling multiple PL/I
procedures from COBOL or FORTRAN, your
interface routine should perform certain
functions:

1. Assuming that calls to PL/I modules
from other languages will not be
nested, a 'first-time-through' routine
can be executed to call the library
module IHESAP, which establishes the
PL/I environment, at entry-point
IHESAPD. This would require that the
interface routine contain a control
section called IHEMAIN that contains
the address to which IHESAP is to
transfer control after initializing
the environment.

2. The pointer to the PRV, returned by
IHESAP in general register 12, should
be saved for future executions of the
interface routine. Note that the
address returned in register 1 by the
SPIE macro instruction issued by
IHESAP has been saved by the PL/I
library. If it is required, in order
to reissue the SPIE macro instruction
of the calling program, it may be
obtained by the following code:

L Rx,O(12)
ORG *-2
DC QL2(IHEQLSA)
L Rx,12(Rx)

3. For all executions after the first,
the parameter list pointer in general
register 1 should be saved and the
SPIE macro instruction for PL/I should
be issued, specifying IHEERRA as the
routine for handling interrupts. The
address returned by the SPIE macro
instruction in register 1 should be
saved as it will be required to reset
the COBOL or FORTRAN SPIE macro
instruction on return from the PL/I
procedure.

Chapter 15: PL/I and other Languages 213

COMAR---> r-------;------------------·--------~-------,
I A(I) 1 word I
r-------------------·---------------------~
I A(A) 1 word I
.---~ I SDV of CHR 2 words I
I I
r--~
I I
I ADV of IRAY 3 words I
I I
.---~ I I 1 word I
.--------------------.--------------------~
I A 1 word I
.---~
I I
I CHR 12 bytes (3 words) I
I I
.--------------------.-----.----------------~
I IRAY(l) I
r-------------------·--------------------~
I IRAY(2) I
.---~ I lRAY(3) I
r-------------------·-------------------~
I I
I I

1 word each
I I
I I
.---~ I IRAY(100) j I L ____________________ . ____________________ J

PL/I Structure Dope
Vector (storage
reserved in FORTRAN
by DVAR)

Figure 15-4. PL/I-FORTRAN: Example of Named Common storage

4. Provided that general register 12
points to the PRV, the PL/I entry
point can be called. If the,a.rgument
list from COBOL or FORTRAN was of the
form:

2. In calling a FORTRAN module,
initialization of the environment is
carried out by invoking the FORTRAN
library as follows:

(PL/I-entry-point, parm-l, parm-2, •••)

then general register 1 (whose
contents were saved in step 3) will
point to the PL/I entry address
constant. If the value 4 is now added
to general register 1, the result will
be the address of the parameter list
that the PL/~ module expects.

5. On return from the PL/I module, the
COBOL or FORTRAN SPIE is reset and
control is passed back to the original
calling module.

If a FORTRAN or COBOL modul e is ·to be
called from a PL/I program, basically the
same procedure as outlined above can be
used as an interface, the difference being:

1. In calling a COBOL module no
initialization of an environment is
required except that the SPIE macro
instruction must be re-issued.

214

L 15,=V(IBCOM#)

BAL 14,64(15)

Conununication between assembler languag1e
and PL/I modules is subject to the same
interface problems, and the above concepts
apply. However, additional conventions
should be observed by an assembler routine
that invokes a PL/I routine and is itself
invoked by another.PL/I routine. The
conventions are given in the preceding
section "Storage organization and Control
Blocks" under the sub-heading "Diagnostic
Storage Area (DSA)"e

Function References

The basic difference between a subroutine
and a function is that a subroutine is
invoked by a CALL statement and does not
actually return a value (although it may

\.)

change the value of a variable known to the
calling program), whereas a function is
invoked by a function reference which can
be used in the same way as an expression;
the function always returns a value, and
this value is represented by the function
reference. COBOL does not have function
references, and so the following discussion
does not apply to COBOL-PL/I communication.

A function written in another language
can be declared with the ENTRY and RETURNS
attributes in a PL/I program. Then,
whenever the function name occurs in the
program. control will be passed to the
user-written function of that name. On
entry to the function, normal linkage
should be performed.

At execution time, the difference
between a PL/I function reference and a
subroutine call is that th~ function
parameter list will have an extra item
representing a temporary into which the
function is to place its result. The
address~ depending on the data
characteristics declared in the RETURNS
attribute in the invoking program, will
either be direct or will be that of a dope
vector (according to the same rules as for
normal parameters). Just as with entry
declarations for PL/I-written procedures,
you could use the GENERIC attribute to
specify alternative entry points to an
assembler language function, based on the
declared attributes of the arguments. The
assembler language function need only
specify each name as an entry point.

The method employed to return the value
from a function to the invoking procedure
differs between FORTRAN and PL/I. A
FORTRAN function returns its value in
general register 0 (if integer or logical),
floating-point register 0 (if real), or
floating-point registers 0 and 1 (if
complex). In PL/I, as already mentioned,
an additional argument is automatically
provided for the returned value. To
resolve this difference in function
communication, an assembler language
interface routine must be used. When a
FORTRAN program invokes a PL/I function,
this routine would create a new argument
list consisting of the original list and an
additional argument. The routine would
pick up the value returned in this
additional argument when the function is
complete, and place the value in the
appropriate register(s) before passing
control back to the FORTRAN program. When
a PL/I program invokes a FORTRAN function,
the assembler language routine would obtain
the result from the register and place it
in the additional argument. Separate entry

points to the assembler language interface
routine would be necessary for different
data types since the location of the result
depends on its characteristics.

User-Defined Conditions in Assembler
Language Subroutines and Functions

When you write a PL/I program, you can
provide an ON-unit for any circumstance you
wish to test for. The ON-unit is defined
by any ON CONDITION(condition-name)
statement, the condition name being one of
your own choosing. (Note that since a
user-defined condition is given the
EXTERNAL attribute, the name must be no
more than seven characters long.) The
ON-unit can be invoked by a SIGNAL
statement naming the condition.

If a PL/I program invokes an assembler
language module, and such a user-defined
condition occurs during the execution of
the module, the equivalent of the
appropriate SIGNAL statement will be needed
in the module in order to invoke the
ON-unit.. To provide this. the assembler
language routine must generate a parameter
list of one word; byte one of the word
contains X'50' and the second through
fourth bytes are an identifying field
containing the address of an external
control section that has the same name as
the user-defined condition. General
register 1 is then set to point to this
parameter list, and the routine calls the
PLiI library entry IHEERRD. After
execution of the ON-unit, control will be
returned to the instruction following the
IHEERRD call. An example of a 'SIGNAL' to
a use~-defined condition named COND would
be as follows:

L
ST
MVI
LA
L
BALR

PARM DS

15,=V(COND)
15,PARM
PARM,X'50'
1,PARM
15,=V(IHEERRD)
14,15

F

The register save area for the routine
should look like a PL/I DSA. That is, the
first byte of the first word should contain
X'80', and bytes two through four should
contain the save area length. The second
and third words should be used for the
chain-back and chain-forward addresses
respectively.

Chapter 15: PL/I and Other Languages 215

216

PART 3: Appendixes

Part 3: Appendixes 217

218

Appendix A: Programming Examples

Each of the following examples reproduces
the cOl1nplete printed listing. Each listing
is preceded by a description of the example
and thE~ listing, including references to
parts of the manual that deal with the
featurE~S being illustrated. All the source
statemEmts, job' control statements, and
data ccrrds are listed as they would appear
in the job stream.

For easy reference to the listing, the
description uses the circled numbers that
haye bE~en added to the top right-hand
corner of ,each page of the listing.

Example 1: Simple PL/I Program

This e)~ample illustrates the use of the
catal0ged procedure PL1LFCLG to compile,
link-edit, and execute a simple PL/I
program that uses only punched-card input
and printed output. The job control
statemEmts it includes are described in
Chapter 2.

//J013PGEA JOB
// EXEC PL1LFCLG
//PL1L.SYSIN DD *

EX001: PROCEDURE OPTIONS(MAIN);
DECLARECA,B,C) FIXED DECIMAL(3);

NEXT: GET FILE(SYSIN) DATA(A,B):

/*

IF A ,= 999 THEN DO;
C=A+B;
PUT FILE(SYSPRINT) SKIP

DATA(A,B,C);
GO TO NEXT;
END;

END EX001;

//GO.SYSIN DO *
A=131 B=75;
A=2 B=907;
A=-14 B=14;
A=341 B=429;
A=-245 B=102;
A=999 B=100;
/*

LISTING

Page 1: The JOB statement, and a list of
the addresses of the units to
which the data sets for the first
job step (PL1L) were assigned.

Pages 2-4: The listing produced by the
PL/I (F) compiler, which is
described fully in Chapter S.
The PL/I source statements appear
on page 3 of the full listing
(page 2 of the compiler listing).

Page 5: The disposition of the data sets
used by the compiler in the first
job step, and a list of the
addresses of the units to which
the data sets for the second job
step (LKED) were assigned.

Pages 6-8: The listing produced by th~
linkage editor; this is described
fully in Chapter 6.

Page 9: The disposition of the data sets
used by the linkage editor in the
second job step, and a list of
the addresses of the units to
which the data sets for the third
job step (GO) were assigned.

Page 10: The printed output p~oduced by
the example program.

Page 11: The disposition of the data sets
used by the example program in
the third job step.

~ppendix A: Programming Examples 219

IIJ013PGEA Joe
JOB LOGGED ON AT IBM'S HURSLEY LABS

IEF236I ALLOC. FOR J013PGEA PL1L
IEF237I SYSPRINT ON 293

OS/360 MVT 1& CLOCK=13.38.18 DATE=69.273 MACHINE=Jl

IEF237I SYSLIN ON 342
IEF237I SYSUT3 ON 343
IEF,37I SYSUTl ON 344
IEF237I SYSIN ON 290

VERSION 5.0 OS/360 PL/I COMPILER IFl

PL/I F COMPILER OPTIONS SPECIFIED ARE AS FOLLOWS--

LCAD.NOCECK.SIZE-100K

THE COMPLETE LIST OF OPTIONS USED DURING THIS COMPILATION IS-- EBCDIC
CHAR60

NOMACRO
SOURCE2

NOMACDCK
COMP
SOURCE

NOATR
NOXREF
NOEXTREF
NOLlST

LOAD
NODECK

FLAGW
STMT
SIZE=0102400
LINECNT=055
OPT-02
SORMGIN=1002.072.00ll

NOEXTDIC
NEST
OPU ST

PAGE l{";;'\
DATE 69.2730

OPTIONS IN EFFECT
OPTIONS IN EFFECT
OPTIONS IN EFFECT

EBCDI C ,CHAR60. NOMAC RO, SOURCE2. NOMACDCK. COMP, SOURCE. NOATR. NOXREF, NOEXTREF, NOll ST, LOAD.
NODECK,FLAGW,STMT,SIZE-0102400,LINECNT-055,OPT=02,SORMGIN=1002,072,OOll,NOEXTDIC,
NEST,OPLIST

. STMT
1
2
3
It
6
7
8
9

10

220

EX001: PROCEDURE OPTIONSIMAINl;

LEVEL NEST

1
1
1
1 1
1 1
1 1
1 1
1

EX001:

NEXT:

PROCEDURE OPTIONS(MAIN);
DECLARE IA,B,C) FIXED DECIMALI3Ji
GET FILEISYSINl DATAIA,B)i
IF A 999 THEN DO i

C-A+Bi
PUT FILE(SYSPRINT) SKIP DATA(A,B,C);
GO TO NEXT;
ENDi

END EX001;

PAGE

Exa01: PROCEDURE OPTIONSCMAIN); PAGE

STORAGE REQUIREMENTS.

THE STORAGE AREA FOR THE PROCEDURE LABELLED EX001 IS 192 BYTES LONG.

THE PROGRAM CSECT IS NAMED EX001 AND IS 200 BYTES LONG.

THE STATIC CSECT IS NAMED **EXC01A AND IS 219 BYTES LONG.

STATISTIC.S SOURCE RECORDS = 9,PROG TEXT STMNTS = 10, OBJECT BYTES 200

NO ERRORS OR WARNINGS DETECTED.

AUXILIARY STORAGE WILL NOT BE USED FOR DICTIONARY WHEN SIZE 65K

COMPILE TIME .02 MINS

ELAPSED TJ:~ME~ ______ ~.3~8~M~I~N~S __ ~

IEF285I SYS69213.T132652.SVOCO.J013PGEA.R0000027
IEF2851 VOL SER NOS= M65293.
IEF2851 SYS69273.T132652.RVOCO.J013PGEA.LOADSET
IEF2851 VOL SER NOS= 231422.
I EF2851 SYS69273 .Tl32652 .RVOOO .J013PGEA .R0000028
IEF2851 VOL SER NOS= 231423.
IEF2851 SYS69273.T132652.RVOOO.J013PGEA.R0000029
IEF2851 VOL SER NOS= 231424.
IEF2851 SYS69273.T132652.RVOOO.J013PGEA.S0000030
I EF285 I VOL SER NOS= M65295.
IEF2851 SYS69273.T132652.RVOOO.J013PGEA.S0000030
IEF2851 VOL SER NOS= M65295.

SYSOUT

® PASSED

DELETED

DELETED

SYSIN

DELETED

END OF STEP 'PL1L ' JOB 'J013PGEA' STEPTIME=00.00.02 CLOCK~13.38.55 DATE=69.273 RETURN CODE=OO~O
tEfl.3el AI.I,.OC. FOR J013PGEA LKED
IU2"37I S'YSUB ON 295
IEF2371 ON 295
IEF237I ON 1CO
IEF2371 SYSLMOD ON 342
IEF2371 SYSUT1 ON 343
I EF237 I S'fSPRINT ON 294
IEF2371 SYSLIN ON 342'

~ppendix ~: programming Examples 221

F88-LEVEL LINKAGE EDITOR OPTIONS SPECIFIED MAP,LIST

IEW0461
I EW0461
IEW046l
IEW046l
I EW046l
IEW046l
IEW046l
I EW046l
IEW046l
I EW046l
IEW0461
I EW0461
IEW0461
IEW046l
I EW0461
I EW0461
I EW046l
I EW0461
IEW0461
I EW0461

. I EW046l
IEW0461
IEW0461
I EW0461
IEW046l
IEW0461

VARIABLE OPTIONS USED - SIZE=ll04448,59392)
IHEDDJA
IHEDDPA
IHEDDPB
IHEDCPC
IHEDDPD
IHEUPBA
IHEUPBB
IHEVPAA
IHEVPCA
IHEVFBA
I HE VFDA
IHEVFEA
IHEVKBA
IHEVKCA
IHEVKFA
IHEVKGA
IHEVSBA
IHEVSFA
IHE VSEB
IHEM91A
IHEM91B
IHEM91C
IHETERA
I HE VCSA
IHEKCDB
IHEDNBA

MODULE MAP

CONTROL SECTION

NAME ORIGIN

EXOOl 00
**EXOOlA C8
IHEMAIN 1A8
IHENTRY 1BO
IHE SPRT 1CO
SYSIN 1F 8
IHEDDI * 230

IHEDDO * 770

IHEIOA * 9F8

IHEIOB * B68

IHESAP * 050

222

LENGTH

C8
DB

4
C

38
38

53C

288

16A

1E4

AB8

ENTRY

NA.ME

IHEDDIA

I HEODOA
I HEDDOE

I HE IOAA
IHEIOAT

I HE IOBA
IHEIOBE

LOCATION NAME

230 IHEODIB

770 IHEDDOB
778

9F8 IHEIOAB
AE8

B68 IHEIOBB
!:l88 IHEIOBT

DEFAULT OPTIONIS) USED ®

LOCAT ION NAME LOCATION NAME LOCATION

232

772 I HEDDOC 774 IHEDDOD 776

9FA IHEIOAC 9FC I HE ICAD 9FE

B70 IHEIOBC B78 IHE I CBO B80
C74

NAME ORIGIN LENGTH NAME LOCATI ON NAME LOCATION NAME LOCATION NAME LOCA'T ION

CD I HE:SADA D50 IHESAPC D6A IHESAPO 072 IHES~PA D7A
I HESAPB D82 IHESADF D8A IHES~DB D92 IHESADE D9A
IHESAFC DA2 IHESAFA DAA IHESAF& DB2 IHESAFD DBA
I HESARA OC2 IHESAFQ DCA I HE:SARC 1566 I HE SADD 1674
I HESAFF 16AE

IHEDCN >0: 1808 lEF
IHEDCNA 1808 IHEDCNB 180A

IHEDMA * 19F8 F8
I HE OMAA 19F8

IHEDNC >{< lAFO 284
I HEDNCA lAFO

IHEUPA >0: 1078 E8
I HE UPAA 1D78 IHEUPAB 10E2

IHEVFA * lE60 16C
I HEVFAA lE60

IHEVPB >0: 1FOO lA2
IHEVPBA lFOO

I HEVPO * 2178 105
I HEVPDA 2178

IHEVPE * 2280 26C
I HEVPEA 2280

IHEVPF >0: 24FO 50
IHEVPFA 24FO

IHEVSC * 2540 AC
I HEVSCA 2540

IHEERR 25FO 729
I HEERRO 25FO IHEERRC 25FA I HEERRB 2604 IHEERRA 260E
IHEERRE 2C86

IHElOF >0: 2020 20C
I HE IOFB 2020 IHE IOFA 2022 IHE ITAZ 2FBE IHE ITAX 2FCA
IHEITAA 2FOE

IHELOI >0: 3000 858
I HE~O IA 3000 IHELOI B 3002 IHELOIC 3004 IhELOIO 3006

IHEVFC .4< 3858 26
I HEVFCA 3858

I HEVPG 3880 229
I HEVPGA 3880

IHEVPH '" 3A60 64
I HEVPHA 3ABO

IHEVQB 3B68 494
I HEVQBA 3B68

IHE VQC '4< 4000 268
IHEVQCA 4000

I HEBEG :+: 4268 80
I HEBEGN 4268 IHEBEGA 42A8

IHEIOP 42E8 1EB
I HE IOPA 42E8 IHEIOPB 42EA IHEIOPC 42EE

IHELOO * 4408 418
I HELDOA 4408 IHELDOB 440A IHELOOC 440E

IHEOCL * 48FO 554
I HEOCLA 48FO IHEOCLB 48F2 IHEGCLC 48F4 IHEOCLO 48F6

I HE PRT 4E48 2C8

Appendix A: Programming Examples 223

NAME ORIGIN L ENGT H NAME l.OCATION NAME LOCATION NAME LOCATION NA"E LOCAT ION @ IHEPRTA 4E48 IHEPRTB 4E4A
IHESIZ * 5110 C

I HESIZE 5110
IHETAB * 5120 C

I HETABS 5120
IHEVCA * 5130 lOA

I HEVCAA 5130
IHEVQA * 5240 Ec

I HEVQAA 5240
IHEVSD * 532E lAO

I HEVSDA 5328 IHE: VSDB 532A

PSEUCO REGISTERS

NAME ORIGIN L ENGT H 'NAME ORIGIN LENGTH NAME ORIGIN LENGTH NAME OR IGIN ·LE:NGTH

IHEQINV 00 4 IHEQERR 4 4 IHEQTIC 8 4 **EX001B C 4
IHEQSPR 10 4 SYSIN 14 4 IHEQLSA 18 4 IHEQLWO 1C 4
IHEQLW1 20 4 IHEQLW2 24 4 IHEQLW3 28 4 IHEQLW4 2C 4
IHEQLWE 30 4 IHEQLCA 34 4 IHEQVDA 38 4 IHEQFVD 3C 4
IHEQFOP 40 4 IHEQCFL 44 8 IHEQADC 4C 4 IHHLPR 50 4
IHEQSLA 54 4 IHEQS AR 58 4 I HEQLWF 5C 4 I HEQRTC 60 4
IHEQSFC 64 4 IHEQXLV 68 8 IHEQEVT 70 8

TOTAL LENGTH OF PS EUDO REGISTERS 78
ENTRY ADORE SS 180
TOTAL LENGTH 54C8

****GO DOES NOT EX 1ST BUT HAS BEEN ADDED TO DATA SET

DIAGNOSTIC MESSAGE DIRECTORY

IEW0461 WARNING - SYMBOL PRINTED IS AN UNRESOLVEO EXTERNAL REFERENCE, NCAL WAS SPECIFIED.

tEF2851 SYS1.PL1LIB KEPT
IEF285I VOL SER NCS.IC 2301CO.
IEF2851 SYS69273.T132652.RVOCO.J013PGEA.GOSET PASSED ®
IEF285I VOL SER NOS= 231422.
IEF2851 SYS69273.T132652.RVOOO.J013PGEA.R0000031 DELETED
IEF285I VOL SER NOS= 231423.
IEF285I SYS69273.T132652.SVCOO.J013PGEA.R0000032 SYSOUT
IEF285I VOL SER NOS- M65294.
IEF285I SYS69273.T132652.RVOOO.J013PGEA.LOADSET DELETED
IEFZ851 VOL SER NOS= 23142Z.

END OF STEP 'LKED ' JOe 'J013PGEA' STEPTIME-00.00.02 CLOCK-13.39.33 DATE=69.273 RETURN COOE~OOOIt
IEFZ361 ALLOC. FOR J013PGEA GO
IEF237I PGM=*.DD ON 342
IEF237I SYSPRINT ON 294
IEF237I SYSIN ON 290

A= 131 e- 75 C- 206 @I A- 2 B= 907 C= 909
A- -14 B= 14 C .. 0
A= 341 B= 1t29 C- 770
A= -245 s= 102 C= -143

224

IEF2851 SYS69273.T132652.RVOCO.J013PGEA.GOSET PASSED ® IEF2851 VOL SER NOS- 231422.
lEF2851 SYS69273.T132652.SVOCO.J013PGEA.ROOOO033 S YSOUT
IEF2851 VOL SER NOS= M65294.
IEH85! SYS69273.T132652.RVOOO.J013PGEA.SOOOO034 SYSIN
IEF2851: VOL SE R NOS= M65295.
IEF285JI SYS69273.T132652.RVOCO.J013PGEA.SOOOO034 DELETED
I EF285J: VOL SER NOS= M65295.

END OF STEP 'GO JOB 'J013PGEA' STEPTIME=OO.OO.Ol CLOCK=13.40.47 DATE=69.273 RETURN C roE -0000
IEF285l1 SYS69273.T132652.RVOOO.J013PGEA.GOSET DELETED
I EF285J: VOL SER NOS= 231422.

END OF JOB 'J013PGEA' 110 TIME=00.00.08 CPUTIME=00.00.06 CLOCK=13.40.48 DATE=69.273 SYSTEM P"CKS 300 AND 311

Appendix A: Programming Examples 225

Example 2: . Compiler and Linkage Editor Listings

//J063PGEX JOB
//COLEEX EXEC PL1LFCLG,PARM.PL1L='L,E,A,X,M,S2,NT',
// PARM.LKED='LIST,XREF,OVLY~,
// COND.GO=((9,LT,LKED), (15,I .. T,PL1L»
//PL1L.SYSIN DO *
Pi: PROC OPTIONS(MAIN);

%DCL AA CHAR, (Vl,V2,V3,V4) FIXED;
%AA='IF ANS>COMP THEN WORDS="GREArER THAN";

ELSE IF ANS<COMP THEN WORDS="LESS THAN":
ELSE WORDS='PEQUAL TO";

PU"T SKIP DATA(ANS,COMP);
PUT SKIP EDIT("ANSWER",WORDS,"COMPARATOR")(A);':

%Vl=l; %V3=2: %V4=4;
DCL (ARG(2,2) STATIC INIT(Vl,V2,V3,V4),(COMP,ANS)EXT)

FIXED DEC(2,1) 11

WORDS CHAR(12) VAR,
(P2., P3) ENTRY EXT:

DO 1=1,2:
DO J=1,2;

COMP=ARG(I,J)/2;
CALL P2;
AA
CALL P3;
AA

END Pl:
*PROCESS('E,NT') :

P2: PROC;
DCL (COMP,ANS) FIXED DEC(2~1) EXr;
ON ZDIV BEGIN;

ANS=O:
PUT SKIP LIST('NEXT COMMENT INVALID');
GO TO OUT;
END;

ANS=l/COMP;
OUT: END P2;

* PROCESS (IE') ;
P3: PROC;

/*

DCL (COMP,ANS) FIXED DEC(2,1) EXT;
ANS=COMP*COMP;
END P3:

//LKED.SYSIN DO *
OVERLAY X
INSERT P2
INSERT IHELDO
OVERLAY X
INSERT P3

/*

This example illustrates all the
components of the listings produced by the
compiler and the linkage editor. The
listings themselves are described in
Chapters 5 and 6.

The program used for this example is not
intended to be a realistic illustration of
an application of PL/I, but is designed
merely to employ all those compiler and
linkage-editor facilities that contribute
to the listings. The program comprises
three external procedures (Pl, P2, and P3),
which are compiled in a single execution of

226

the compiler (using the batched-processing
facility), link-edited into an overlay load
module, and then executed.

The input statements include only one
EXEC statement, which invokes the cataloged
procedure PL1LFCLG. This statement changes
the COND parameter in the EXEC statement
for the procedure step 30 to permit
execution of the load module despite the
severe error that is detected by the
compiler preprocessor.

LISTING

Page 1" 1. The JOB and EXEC statements,
exactly as they appear in the
input stream.

2. The job control statements of
the cataloged procedure step
PL1L (compilation). Each of
these statements is prefixed
XX.

3. The DD statement PL1L.SYSIN,
which is added to the job
control statements for the
cataloged procedure step
PL1L. The data that follow3
this DD statement in the
input stream is not listed by
the job scheduler.

4. A list of the addresses of
the units to which the
compiler data sets are
assigned.

Page 2:' Start of the compiler listing:
list of options applicable to the
compilation of procedure Pl.
Note that the SIZE option
specifies the actual amount of
storage allocated to the
compiler.

Page 3: Source statements for procedure
Pl, exactly as they appear in the
input stream. These statements
form the input data for the
compiler preprocessor.

Page 4: Error message from the
preprocessor. The zero value
assigned to V2 does not prevent
execution of the program.

Page 5: Output from the preprocessor
(modified source statements for
procedure Pl).

Page 6: Attribute and cross-reference
table for procedure Pl.

Page 7: Aggregate-length table for
procedure Pl.

Page 8: Storage requirements for
procedure Pl. Note that these
quantities do not include the
storage that will be occupied by
the subroutine library modules
that will be included by the
linkage editor or loaded
dynamically during execution of
the object program.

Page 9: External symbol dictionary for
procedure Pl.

Page 10: static internal storage map for
procedure Pl.

Page 11-13: Object program listing for
procedure Pl.

Page 14: 1. warning message from the
compiler.

2. Statement of the time taken
for compilation of procedure
Pl, including the
preprocessor stage, and the
elapsed time since the start
of compilation. Note that,
since the program was
executed under the MVT option
of the~perating system, the
compile time is only a
fraction of the elapsed time.

Page 15: List of options applicable to the
compilation of procedure P2.

Page 16: Source statements for procedure
P2, exactly as they appear in the
input stream.

Page 17: Storage requirements for
procedure P2.

Page 18: External symbol dictionary for
procedure P2.

Page 19: 1. Warning messages from the
compiler. The omission of
the option MAIN from the
PROCEDURE statement does not
affect execution of the
program because control will
pass initially to procedure
Pl.

2. statement of the time taken
for the compilation of
procedure P2 and the elapsed
time since the start of the
compilation of this
procedure.

Page 20: List of options applicable to the
compilation of procedure P3.

Page 21: Source statements for procedure
P3, exactly as they appear in the
input stream.

Page 22: Storage requirements for
procedure P3.

Page 23: External symbol dictionary for
procedure P3.

Page 24: 1. Warning message from the
compiler.

2. Statement of the time taken
for the compilation of

Appendix A: programming Examples 227

procedure P3 and the elapsed
time since the start of the
compi lation of -this
procedure.

This is the last page of the
compiler listing.

Page 25: 1. The dispositon of the data
sets used by the compiler.
Only the data set that
contains the object module is
passed to -the next job step;
it is iden-tified by a
system-generated name that
ends with -the temporary name
LOADSET assigned to it in the
DD statement SYSLIN.

2. The job scheduler END OF STEP
message, including the return
code supplied by the
compiler. The code 0012
indicates that the compiler
detected a severe error (the
non-initialization of the
preprocessor variable V2 in
procedure P1).

3. The job control statements of
the cataloged procedure step
LKED (link-editing). Each of
these statements is p:refixed
xx.

4. The DO statement LKED.SYSIN,
which is added to the job
control statements for the
cataloged procedure s-tep
LKED. The data that follows
this DO statement in -the
input stream (linkage-editor
control statements) is not~
listed by the job scheduler.

5. A list of the addresses of
the units to which the
linkage-editor data sets are
assigned.

Page 26: Start of the linkage-editor
listing. This page contains the
following:

228

1. Statements of the options
specified, and of the default
values supplied for the SIZE
option.

2. The control statements
processed by the linkage
editor. These statements
appear exactly as in the
input stream; they specify
the structure of the overlay
module. The load module
comprises three segments: the
program control section for

procedure P2 and library
module IHELDO are in one
overlay segment, and the
program control section for
P3 is in another; the rest of
the load module is in the
root segment. (Inspection of
the external symbol
dictionaries for procedures
P1, P2, and P3 will reveal
thait, of the library modules
to be link-edited into the
load module, only IHELDO,
which is called by P2, is
required in an overlay
segment and not in the root
segment; accordingly, this is
the only library module that
can be moved out of the root
segment.)

3. A list of the external
references that were not to
be resolved by the linkage
editor. (See 'Diagnostic
Message Directory' in Chapter
6.)

4. Start of the module map for
the root segment. (The maps
and cross-reference tables
for all segments follow the
heading • Cross, Reference
Table'.) Note that the first
control section in the root
segment has the name $SEGTAB.
This control section contains
the segment table always
created by the linkage editor
for an overlay module; it
includes control information
for use by the operating
system during execution of
the module.

Page 27: Remainder of the module map, and
the start of the cross-reference
table, for the root segment.
Note that the last control
section in this segment has the
name $ENTAB. . This is another
control section created by the
linkage editor; it contains the
entry table, which includes
information used by the operating
system to determine which segment
is to be loaded next. The
cross-reference table for the
root segment continues through
page 28 to the top of page 29.

Page 29: 1. Completion of the
cross-reference table for the
root segment.

2. Maps and cross-reference
tables for the two overlay
segments.

3. Start of the list of
pseudo-registers.

Page 30: 1. Remainder of the list of
pseudo~registers.

2. Statement of the disposition
of the load module GO.
(Refer to 'Control statements
and Errors' in Chapter 6.>

3. Diagnostic Message Directory.
The only message refers to
the list of modules external
references that were not to
be resolved. (See above.>

This is the end of the
linkage-editor listing.

Page 3:1L: 1. The disposition of the data
sets used by the linkage
editor. Only the data set
that contains the load module
is passed to the last· job
step; it is identified by a
system generated name that
ends with the temporary name
GOSET assigned to it in the
DO statement SYSLMOD. (The
load module is the member GO
of the temporary library
GOSET. >

2. Job scheduler END OF STEP
message, including the return
code supplied by the linkage
editor. The code 0004
indicates that the linkage

editor has issued a warning
message (referring to the
references that were not
resolved> •

3. The job control statements of
the cataloged procedure step
GO (execution of the load
module>. Each of these
statements is prefixed xx.

4. A list of the addresses of
the units to which the data
sets required during
execution of the load module
are assigned.

Page 32: The printed output from the PL/I
program.

Page 33: 1. The disposition of the data
sets used during execution of
the load module. Note that
the data set GOSET is not
deleted until after the end
of the job because step GO
does not contain a DD
statement that specifies its
disposition.

2. The job scheduler END OF STEP
message for the step GO.

3. statement of the disposition
of the data set GOSET.

4. Job scheduler END OF JOB
statement.

Appendix A: programming Examples 229

IIJ063PGEX JOB (4056,NI09),R.SMALL.MSGLEVEL-l,MSGCLASS-0.CLASS-0
IICOLEEX EXEC PLILFCLG,PARM.PLILm'L,E,A,X,M,S2,NT',
II PARM.LKEO-'LIST,XREF,O\lLY',
II CONo.Gb-«9,LT,LKED),(~5,LT,PL1L)1
XXPL1L EXEC PGM-IEMAA,PARMc'LOAD,NODECK,SIZE-100K',REGIONc 10SK 0002.0000

XXSYSPRINT DD SYSOUT-~,DCBc(RECFM-VBA,LRECL-125,eLKSIZEu629)
XXSYSLIN DO DSNAME=&&LOAOSET,DISP=(MOD,PASS),UNIT-SYSDA,
XX SPACEm(~OO,(50,50J),DCB.BtKSIZE.~OO
XXSYSUT3 DO UNIT-SYSDA,SPACE=(SO,(250,250)),DCe-BLKSIZE-SO
XXSYSUTI DD UNIT.SYSOA,SPACE=(102~,(60,601"CONTIG),
XX DCB-BLKSIZEc102~
IIPL1L.SYSIN DO *

JOB LOGGED ON AT IBM'S HURSLEY LABS OS/360 MVT 18
IEF236I ALLOC. FOR J063PGEX PL1L COLEEX
IEF2371 SYSPRINT UN ~91t
IEFZ371 SYSLIN ON 3~2
IEF2371 SYSUT3 ON 343
lEFZ37I SYSUT1 ON 3~~
l-EFZ37I SYSIN ON 290

OOO~OOOO

*00060000
OOOSOOOO
00100000

*00120000
001~0000

CLOCK=11.55.04

VERSION 5.0 OS/360 PL/I COMPILER (F)

PL/I F COMPILER OPTIONS SPECIFIED ARE AS FOLLO~S--

L,E,A,X,M,S2,NT

THE COMPLETE LIST OF OPTIONS USED DURING THIS COMPILATION IS-- EBCDIC
CHAR60
MACRO
SOURCE2

NOMACDCK
COMP
SOURCE
ATR
XREF
EXT REF
LIST
LOAD

NODECK
FLAGW
STMT
SI ZE=0090112
LINECNT=055

Note: The cataloged procedure
shown in this example is that
in use at the Hursley Laboratories,
and varies slightly from the
standard cataloged procedure
shown in Chapter 8.

DATE"69.273 MACHINE=-J1

PAGE 10
DATE 69.273

OPT=02
SORMGIN=(002,072,001)

NOEXTDIC
NEST
qPLI ST

OPTIONS IN EFFECT
OPTIONS IN EFFECT
OPTIONS IN EFFECT

EBCDIC,CHAR60,MACRC~SOURCE2,NOMACDCK,COMF,SOURCE,ATR,XREF,EXTREF,LIST,LOAD,
NODECK,FLAGW,STMT,SIZE=0090112,LINECNT=055,OPT=02,SORMGIN=(002,072.001),NOEXTDIC,
NEST ,OPLIST

P1 z PROC OPT IONS (MAIN) ;

COMPILE-TIME MACRO PROCESSOR
MACRO SOURCE2 LISTING

1
2
3
~
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

230

P1: PR'OC OPT! ONS (MAl N) ;
IDCL AA CHAR, (Vl,V2,V3,V4) FIXED;
IAA-'IF ANS)COMP THEN WCRCS·"GREATER THAN";

ELSE IF ANS<COMP THEN WORDS-"LESS THAN";
ELSE WORDSc"EQUAL TO";

PUT SKIP DATA(ANS,COMP);
PUT SKIP EDIT("ANS\jER II ,WORDS," COMPARATOR")(A);';

IV1=1; .IV3=2; IV4=4;
OCL (ARGI2.2) STATIC INITIV1,V2,V3,V4), (COMP,ANS) EXT)

FIXED DEC(2,11,
WORDS CHAR(12) VAR,
(P2,P3) ENTRY EXT;

00 1-1,2;
DO J"'1,2;

COMP-ARG(I,J)/2;
CALL P2;
AA
CALL P3;
AA

END P1;

PAGE 2

Pll PROC OPTI ONS I MAl N I ; PAGE

MACRO DIAGNOSTIC MESSAGES

SEVERE I:RRORS.

I EMit50ltI VARIABLE V2 IS USED IN LINE NUMBER 9 BEFORE IT IS INITIALIZED. IT HAS BEEN GIVEN A NULL STRING DR

ZERO VALU·E.

END OF MACRO DIAGNOSTIC MESSAGES.

1P'1: PROC OPTIONSIMAINI; PAGE It 0
SOURCE LIST ING.

STMT LEVIEL NEST
1 Pll PROC OPTIGNSIMAINI; 1
2 DCL IARG 12,2 I STATIC INITI 1 , o , 2 , 9 1

It I, (COMP,ANS) EXT) 9 1
FIXED CECI2,11, 10

WORDS CHAR(12) VAR, 11
IP2,P3) ENTRY EXT; 12

3 :l 00 1-1,2; 13
It :t 1 DO J=1,2; 14
5 Il 2 COMP-ARGII,JI/2; 15
6 :l 2 CALL P2; 16
7 :L 2 IF ANS>COMP THEN WORDS·'GREATER THAN'; 17 1
9 Il 2 ELSE IF ANS<COMP THEN WORDS·'LESS THAN'; 17 1

11 :L 2 ELSE wORDS='EQUAL TO'; 17 1
12 IL 2 PUT SKIP DATAIANS,COMP); 17 1
13 :L 2 PUT SKIP EDITI 'ANSwER' ,WORDS,' COMPARATOR') IA); 17 1
14 IL Z CALL P3; 18
15 IL 2 IF ANS>COMP THEN WORDS='GREATER THAN'; 19 1
17 iL 2 ELSE IF ANS<COMP THEN WORCS='LESS THAN'; 19 1
19 IL 2 ELSE WORDS·'EQUAL TO'; 19 1
20 Il 2 PUT SKIP DATAIANS,COMPI; 19 1
21 Il 2 PUT SKIP EDITl'ANSwER ',WORDS,' CCMPAI<ATOR')IA) ; 19 1
22 Il 2 END Pl; 20

~ppendix ~: Programming Examples 231

PI:

: DeL NO.

:2

2

2

******)1'**

·1

2

2

PROC OPTIONSIMAINI;

IDENTIFIER

ANS

ARG

COMP

J

PI

P2

P3

SYSPRINT

ATTRIBUTE AND CROSS-REFERENCE TABLE

ATTRIBUTES AND REFERENCES

STATIC,EXTERNAL,ALIGNED,DECIMAL,FIXEDI2,11
7,9,12,15,17,20

12,2ISTATIC,ALIGNED,INITIAL,DECIMAL,FIXEDI2,11
5

STATIC,EX~ERNAL,ALIGNED,DECIMAL,FIXEDI2,11
5,7,9,12,15,17,20

AUTOMATIC,ALIGNED,BINARY,FIXEDI15,01
3,5

AUTOMATIC,ALIGNED,BINARY,FIXEDI15,0)
~,5

ENTRy,DECIMAL,FLOATISINGLE)

EXTERNAL,ENTRy,DECI~AL,FLCAT(SINGLEI
6

EXTERNAL,ENTRy,DECI~AL,FLOAT(SINGLEI
14

FILE, EXTERNAL
12,13,20,21

2 WORDS AUTOMATIC,UNALIGNED,STRINGI121,CHARACTER,VARYING
B,10,11,13,16,18,19,21

PROC OPTIONSIMAINI;

AGGREGATE LENGTH TABLE

STATEMENT NO. IDENTIFIER LENGTH IN BYTES

ARG

PI: PROC OPTIONSIMAIN); PAGE

STORAGE REQUIREMENTS.

THE STORAGE AREA FOR THE PROCEDURE LABELLED Pl IS 228 BYTES LONG.

THE PROGRAM CSECT IS NAMED PI AND IS 776 BYTES LONG.

THE STATIC CSECT IS NAMED *****P1A AND IS 344 BYTES LONG.

232

PAGE

PAGE

7 o

Pl : PROC OPTIONSIMAIN); PAGE
8®

EXTERNAL SYMBOL DICTIONARY
SYMBOL TYPE 10 ADOR LENGTH

Pl SO 0001 000000 000308
*****PIA SO 0002 000000 000158
IHEQINV PR 0003 000000 000004
IHESAOA ER 0004 000000
IHESACB ER 0005 000000
IHEQERR PR 0006 000000 000004
IHEQTIC PR 0007 000000 000004
IHEMAIN SO 0008 000000 000004
IHENTRY SO 0009 000000 OOOOOC
IHESAPC ER OOOA 000000
*****Pl B PR OOOB 000000 000004
IHEOOOC ER OOOC 000000
IHEOOOA ER 0000 000000
IHEOOBB ER OOOE 000000
IHEOOBB ER OOOF 000000
IHEIOBT ER 0010 000000
IHEIOBC ER 0011 000000
IHESAFA ER 0012 000000
COMP CM 0013 000000 000002
ANS CM 0014 000000 000002
P2 ER 0015 000000
P3 ER 0016 000000
IHESPRT SD 0017 000000 000038
IHEQSPR PR 0018 000000 000004
IHEONC ER 00.19 000000
IHEVPF ER OOlA 000000
IHEOMA ER 001B 000000
IHEVPB ER 001C 000000
IHEVSC ER 0010 000000
IHEVQC ER 001E 000000

STATISTItS MAC·RO RECORDS ... 20,SOURCE RECORDS .. 22~PROG TEXT STMNTS • 22,OBJECT BYTES· 776

~ppendix A: Programming Examples 233

P1: PROC

00004e 00000000
000050 00000000
000054 00000000
000058 00000000
00005C 00000000
000060 00000000
000064 00000000
000030 00000000
000068 00000000
00006C 00000000
000070 00000000
000074 00000000
000078 00000000
000080 0000000200000001
000088 00000090000eOOOB
000090 40C3D6D4D7CID9Cl
000098 E3D6D9E7000000A4
OOOOAO 00070007C1D5E2E6
0000A6 C5D940C5D8E4C1D3
000080 40E3D6D3C5E2E240
0000B8 E3C8C1D5C7D9C5Cl
OOOOCO E3C5D940E3e8C105
0000e8 2C
ooooce OOOOOOAeoooeoooo
000004 0000013C
000008 80
0000D9 000120
OOOODe 0000013C
OOOOEO 80
POOOEl 000120
0000E4 00000000
0000E8 0000020e
OOOOEe 80
OOOOEO 000084
OOOOFO 00000000
0000F4 0000028E
0000 F8 80
0000F9 000084
OOOOFC 00000000
000100 000001DE
000104 80
000105 000084
000108 00000000
00010e 00000190
000110 80
000111 000084
000120 0000013C
000124 04C3060407404040
00012e 0000013800000000

234

OFT IONS (M/IIN I;

STATIC INTERNAL STORAGE

A •• P1
A •• IHEDDCC
A •• IHEDD GA
A •• IHEDO BB
A •• IHEDOBB
A •• IHEIOBT
A •• IHEIoec
A •• IHESAFA
A •• COMP
A •• ANS
A •• P2
A •• P3
A •• IHESPRT
CONSTANTS

o.v. SKELETCN
ARGUMENT LI ST

ARGUMENT LI ST

ARGUMENT Ll ST

ARGUMENT LIST

ARGUMENT LIST

ARGUMENT LI ST

S·YM TAB

MAP 000134
000138
00013C
000140
000144
00014C
000150
000153
000154
000155
000038
00003C
000044
000048
000118
00011A
00011e
00011 E

00000000
880281
ocoooooo
o 3C1D5E2
0000015000000000
ocoooooo
880281
2C
3C
8A0600
00000112
0000000400000002
00020001
00020001
aloe
oooc
020e
040e

SYM TAB

OED
OED
OED
ev.. ARG

ARG

PAGE

P1 : PROC OPTIONS(MAIN); PAGE 10®

OBJECT USTING
* STATEMENT NUMBER 4 * STATEMENT NUMBER 000078 92 04 0 063 MVI 99 (13) ,X' 04'
00007C 48 80 0 OA8 LH 8, J

* PROCEDURE P1 000080 1A 88 AR 8,e
000082 1A 88 AR 8,8

* REAL ENTRY P1 000084 50 80 9 024 ST ,8,36(0,'9)
000000 47 FO F 010 B 16(0,15) 000088 't1 70 A OItE LA 7,CL.5
000004 DC All (2) 00008C 02 01 0 OAA B 086. MVC J(21,C •• 0848+2
000005 DC C'P1' 000092 50 70 9 028 ST 7,40 (0,91
000008 OOOOOOE4 DC F'228' 000096 47 FO A 060 B CL.4
OOOOOC 00000000 DC A (SI.I 00009A CL.5 EQU * 000010 90 EB 0 OOC STM 14,U,12(13) 00009A 92 04 0 063 MVI 99 (13) ,X'04"
000014 5f! BO F OOC L 11,12(0,15) 00009E 41 70 A 2A4 LA 7, CL. 6
000018 5f! 00 F 008 ,L 0,810,151 0000A2 02 01 0 OAA B 082 MVC J(2I,C •• 0858+2
00001C 5 f! FO B 020 L 15,3210,11) 0000A8 50 70 9 028 ,ST 7,4010,91
000020 '0:, EF BALR 14,15 OOOOAC CL.4 EQU * 000022 0:, AO BALR 10,0 OOOOAC 92 04 0 063 MVI 99(13I,X'04'

* PROLOGUE BASE * STATEMENT NUMBER
000024 41 90 0 OB8 LA 9,18410,131 OOOOBO 92 05 0 063 MVI 99 (13),X'05'
000028 CL.22 EQU * 0000B4 18 78 LR 7,8
000028 50 DC 0 000 ST 13,PR •• Pl,I12) 0000B6 48 60 D OAA LH 6,J
00002C 92 00 0 062 MVI 98113I,X'00' 00008A 1A 66 AR 6,E:
000030 92 01 D 063 MVI 99113),X'01' OOOOBC 1A 76 AR 7,6
000034 92 CO D 000 MVI 0(13I,X'CO' 00008E 41 67 B 112 LA 6,VO •• ARGI71
000038 02 07 D OAO B OCC MVC DV •• WORDS(8I,SKDV. 0000C2 F1 21 D 090 6 000 'MVO WS1.1(3) ,012,6)

.08BC 0000C8 07 06 D 092 D 092 XC WS1.1+2171,WS1~1+2
00003E 41 FO C OAC LA 15,WOROS OOOOCE 01 00 D 098 6 001 MVN W 5 1.1 +8 11) , 1 I 6 I
000042 50 FO 0 OAO ST 15, OV •• WORDS 000004 FO 80 0 090 B OC8 OP WS1.1(9I,C •• 0688~1
000046 41 AO A 028 LA 10,CL.20 I
00004A 07 00 NOPR 0 OOOOOA 58 70 B 068 L 7,A •• COMP

OOOODE P1 10 7 000 0 090 MVO 012,71,WS1.1(1)
* PROCEDURE BASE 0000E4 01 00 7 001 0 097 MVN 1(l,71,WS1.1+7
00004C CL.20 EQU * ~STATEMENT NUMBER 6
* APPARENT ENTRY P1 OOOOEA 92 06 0 063 MVI 99(13)'X'06'

OOOOEE 41 10 0 090 LA 1, WS1.1 * STATEMENT NUMBER 0000F2 58 FO B 070 L 15,A •• P2
00004C 92 03 0 063 MVI 99(13I,X'03' 0000F6 05 EF BUR 14,15
000050 41 80 A 016 LA" 8,CL.2
000054 02 01 0 OA8 B 086 MVC 1121,C .. 0848+2 * STATEMENT NUMBER
00005A 50 80 9.020 ST 8,32(0,9) OOOOF 8 92 07 0 063 MVJ 99 (13)'X'07'
00005E 47 F 0 A 028 B CL.1 OOOOFC 58 80 B 06C L 8,A .. ANS
000062 CL.2 EQU * 000100 58 70 B 068 L 7, A •• COMP
000062 92 03 D 063 MVI 99113hX'03' 000104 F 9 U 8 000 7 000 CP 0(2,8),012,7)
000066 41 80 A 2B2 LA 8,CL.3 00010A 5~ 80 9 0~4 L 8,3610,9)
00006A 02 01 0 OA8 B 082 MVC 1(2) ,C .. 0858+2 00010E 4 CO A OEO Be 12,eL.7
00007C 50 8,C 9 020 ST 8,32(0,9)
000074 CL.1 E QU * * STATEMENT NUMBER 8
000074 92 03 o 063 MVI 9 9 1131 , X' 03 ' 000112 92 08 0 063 MVI 99(13),X'08'

~ppendix A: programming Examples 235

PI: PROC OPTIONSIMAIN) ; PAGE
11@

000116 41 60 0 ooe LA 6,1210,01 0001A8 41 80 A 182 LA 8, CL.16
OOOllA 40 60 0 OA6 STH 6 , CV •• WORDS +6 0001AC 41 10 B 0ge LA 1 ,ov •• e •• 059C
00011 E 58 60 0 OAO L 6,oV •• WORDS 0001BO 41 20 B 153 LA 2,OEo •• e •• 059C
000122 02 OB 6 000 B OBe Mve 0<12,6),e •• 0534 0001B4 05 78 BALR 7,8
000128 47 FO A 126 B eL.8 0001B6 41 10 0 OAO LA 1,OV •• WORoS
00012e eL.7 EQU * 0001 BA 41 20 B 154 LA 2, OED •• WORoS

0001BE 05 78 BALR 7,8
* STATEMENT NUMBER 9 0001CO 41 10 B 088 LA 1,oV •• C •• 05BIt
00012e 92 09 0 063 MVI 99<131,X'09' 0001e4 41 20 B 153 LA 2, DEo •• e •• 05B4
000130 58 70 B 06e L 7,A •• ANS 0001e8 05 78 BALR 7,8
000134 58 6C B 068 L 6 ,A •• eCMP 0001eA 47 FO A 18E B CL·.17
000138 F9 11 7 000 6 000 CP 012,7),012,6) 0001CE CL.16 EQU * 00013E 47 AO A 110 BC 10,CL.9 0001CE 58 FO B 05C L 15,A •• IHEoOBB

000102 18 E7 LR 14,7
* STATEMENT NUMBER 10 000104 05 8F BALR 8,15
000142 92 OA 0 063 MVI 99(3),X'OA' 000106 47 FO A 182 B CL·.16
000146 41 50 0 009 LA 5,910,0) 00010A eL.17 EQU * 00014A 40 50 0 OA6 STH 5,oV •• WORoS+6 00010A 58 80 9 024 L 8,36(0,9)
OOOHE 58 50 0 OAO I.. 5,oV •• WCRoS eL.24 EQU * 000152 02 08 5 000 B OB3 MVC 0(9,5I,C •• 0550 00010E 92 00 0 063 MVI 99113l,X'OO'
000158 47 FO A 126 B CL.8 0001E2 58 FO B 060 L 1 5 ,A •• I HE I DB T
00015C CL.9 EQlJ * 0001 E6 05 EF BALR 14,15

* STATEMENT NUMBER 11 * STATEMENT NUMBER 14
00015C 92 OB 0 063 MVI 99113I,X'OB' 0001E8 92 OE 0 063 MV I 99(13), X' OE '
000160 41 70 0 008 LA 7,8(0,0) 0001EC 41 10 0 090 LA 1.kS1.1
000164 40 70 0 OA6 STH 7,OV •• WORoS+6 0001FO 5 e FO B 074 L 15,A •• P3
000168 58 70 0 OAO L 7,OV •• WORDS 0001 F4 05 EF BALR 14·,15
00016C 02 07 7 000 B OAB MVC 0(8,7I,C •• 0568
000172 CL.8 EQU * * STATEMENT NUMBER 15

0001F6 92 OF 0 063 MVI 99·(131,X'OF'
* STATEMENT NUMBER 12 0001FA 5 e 80 B 06C L 8,~ •• ANS
000172 92 oe 0 063 MVI 9 e; (13) ,X' OC' 0001FE 58 70 B 068 L 7,~ •• COMP
000176 41 10 B 108 LA 1 ,SKPL •• 06FC 000202 Fe; 11 8 000 7 000 CP 0(2,8),0(2,71
00017A 58 FO B 064 L 15,A •• IHEIOBC 000208 5f 80 9 024 L 8, 36(0,9)
00017E 05 EF BALR 14,15 00020e 47 CO A 1 DE BC 12,eb10
000180 41 10 B oDe LA 1 ,SKPL •• 0800
000184 58 F 0 B 054 L 15,A •• IHEOOOA * ST~TEMENT NUMBER 16
000188 05 EF BALR 14,15 000210 92 10 0 063 MVI 99H31rX'10'
00018A 58 FO B 050 L 15,A •• IHEoOOC 000214 41 60 0 OOC LA 6,1210,01
00018E 05 EF BALR 14,15 000218 40 60 0 OA6 STH 6,OV •• WOROS+6

CL.23 EQU * 00021C 58 60 0 OAO L 6, OV •• WORCS
COO190 92 oe 0 063 MVI~ 991l31,X'OC' 000220 02 OB 6 000 B OBC MVC 0112,6),C •• 0534
000194 58 FO B 060 L 1 5, A •• I HE I DB T 000226 47 FO A 224 B CL .11
000198 05 EF BALR 14t 15 00022A CL •• 10 EQU *
* STATEMENT NUMBER 13 * STATEMENT NUMBER 17
00019A 92 00 0 063 MVI 99(13), X'OO' 00022A 92 11 0 063 MVI 99 (131,X'U'
00019E 41 lOB OFC LA 1 ,SKPL •• 0748 00022E 58 70 B 06C L 7, A •• ANS
0001A2 58 FO B 064 L 15,A •• IHEIOBC 000232 58 60 B 068 L 6,A •• COMP
0001A6 05 EF BALR 14,15 000236 F 9 11 7 000 6 000 CP 0(2,71,012,61

236

PI: PROC OPTIONS(MAIN) ; PAGE 12@

00023C ~~ 7 AO /I 20E BC 10,CL.12 0002CC 56 FO OSC L 15,/1 •• IHEOOBB
000200 18 E7 LR 14,7

* STATEMENT NUMBER 18 000202 05 8F BALR 8,15
000240 92 12 0 063 MVI 99(13) ,X'12' 000204 47 FO A 280 B C L.l8
000244 41 50 0 009 LA 5,9(0,0) 0002D8 CL.19 EQU * 000248 4·0 50 0 OA6 STH 5,OV •• WOROS+6 000208 56 80 9 024 L 8,36 (0,9)
00024C ~;8 50 0 OAO L 5,OV •• WOROS CL.26 EQU * 000250 D2 08 5 000 B OB3 MVC 0(<<;,5) ,C •• 0550 0002DC 92 15 0 063 MV I 99 (13),X'15'
000256 41 FO A 224 B CL.ll 0002EO 56 FO B 060 L 15,A •• IHEIOBT
00025A CL.12 EQU * 0002E4 05 EF BALR H,15

* STATEMENT NUMBER 19 * STATEMENT NUMBER 22
00025A 92 13 0 063 MVI 99(13) ,X'13' 0002E6 92 16 0 063 MVI 99(13),X'16'
c..0025E 41 70 0 008 LA 7,8(0,0) 0002EA 5 e 70 9 028 L 7,40 (0,9)
000262 40 70 0 OA6 STH 7,OV •• WCROS+6 0002EE 07 F7 BR 7
000266 58 70 0 OAO L T,OV •• WOROS 0002FO CL.6 EQU * ; 00026A 02 07 7 000 B OAB MVC 0(8,7),C •• 0568 0002FO 92 16 0 063 MVI 99 (13),X'16'
000270 CL.ll EQU * * STATEME~T NUMBER 23
* STATEMENT NUMBER 20 0002F4 92 17 D 063 MVI 99 (13) , X' 1 7 '
000270 92 14 0 063 MVI 99(13) ,X'14' 0002F8 56 80 9 020 L 8, 32(0,9)
000274 41 10 B OFO LA 1, SKPL •• 0774 0002FC 07 F8 BR 8
000278 5 a Fe B 064 L 15,A •• IHEIOBC 0002FE CL.3 EQU * 00027C 05 EF BALR 14,15
00027E 41 10 B OC4 LA I,SKPL •• 0834 * STATEMENT NUMBER 24
000282 56 F 0 B 054 L 15, A •• IHEDDOA 0002FE 92 18 D 063 MVI 99(13) ,X'18'
000286 05 EF BALR 14,15 000302 58 FO B 030 L 15,A •• IHESAFA
000288 58 FO 050 L 15,A •• IHEDOOC 000306 05 EF BALR 14,15
00028C 05 EF BALR 14,15

CL.25 EQU * * END PROCEDURE PI
00028E 92 14 0 063 MVI 99(l3),X'14' END
000292 58 FO B 060 L 15 ,.A .. I HE 10BT
000296 05 EF BALR 14,15

* STATEMENT NUMBER 21
000298 9;2 15 0 063 MVI 9«;(3),X'15'
00029C 4:L 10 B OE4 LA 1 ,SKPL •• 07AO
0002AO 5,8 Fe B 064 L 15 ,A •• IHEIOBC
0002A4 O!) EF BALR 14,15
0002At 4ll 80 A 280 LA 8,CL.18
0002AA 4ll 10 B 09C LA 1 ,OV •• C .. 059C
0002AE 4ll 20 B 153 LA 2,OEO •• C •• 059C
0002B2 O!; 78 BALR 7,8
0002B4 4ll 10 0 OAO LA 1.,ev •• WOROS
0002B8 41. 20 B 154 LA 2 ,OED.'. WORDS
0002BC O!i 78 BALR 7,8
0002BE 41. 10 B 088 LA l,OV •• C •• 05B4
0002C2 4l. 20 B 153 LA 2,DEO .. C •• 05BIt
0002Ct O!i 78 BALR 7,8
0002C8 4i' FO A 2eC B C L.19
0902CC CL.18 EQU *

~ppendix A: programming Examples 237

PROC OPTIONS(MAIN); PAGE

COMPILER DIAGNGSTICS.

WARN INGS •

IEM02271 NO FILE/STRING OPTION SPECIFIED IN ONE OR MORE GET/PUT STATEMENTS. SYSIN/SYSPRINT hAS BEEN

ASSUMED IN EACH CASE.

IEM07641 ONE OR MORE FIXED BINARY ITEMS OF PRECISICN 15 OR LESS HAVE BEEN GIVEN HALFWCRD STCRAGE. THEY

ARE FLAGGED '*********' IN THE XREF/ATR LIST.

END OF DIAGNOSTICS.

AUXILIARY STORAGE ~ILL NOT BE USED FOR DICTICNARY WHEN SIZE. 65K

COMPILE TIME .05 MINS

ELA.PSED TIME .68 ~INS

VERSION 5.0 OS/360 PL/I COMPILER (F)

PL/I F COMPILER OPTIONS SPECIFIED ARE AS FOLLOWS--

E,NT

THE COMPLETE LIST OF OPTIONS USED DURING THIS COMPILATION IS-- EBCDIC
CHAR60

NOMACRO
SGURCE2

NOMACDCK
COMP
SOURCE

NOATR
NOXREF

EXTREF

OPTIONS IN EFFECT
OPT IONS IN EFFECT
OPTICNS IN EFFECT

238

NOLlST
LOAD

NODECK
FLAGW
STMT
SI ZE=0090112
L INECNT"055
OPT=02
SORMGIN=(002,072,001)

NOEXTDIC
NEST
OPLlST

EBCDIC,CHAR60,~CMACRO,SOURCE2,NOMACDCK,CCMP,SOURCE,NOATR,NOXREF,EXTREF,NOLIST,LOAD,
NODECK,FLAGW,STMT,SIZE=0090112,LINECNT=055,OPT=02,SORMGIN=(002,072,0011,NOEXTDIC,
NEST ,OPLlST

PAGE 141.i'i:\
DATE 6S.273®

1'2: PROC;

STMT LEVI:'L NEST
1 P2: PROC;
2 II DCi.. (COMP,ANS) FIXED DEC(2,1) EXT;
3 lL ON ZDI V BEGI toI;
5 t~ ANS=O;
6 4~ PUT SKIP LIST('NEXT COMMENT INVALID') ,
7 ;~ GO TO OUT;
8 4~ END;
C; lL ANS=l/COMP;

10 II oun END P2;

PROC;

STpRAGE REQUIREMENTS.

THE STORIlGE AREA (IN STATIC) FOR THE PROCEDURE LABELLED P2 IS 200 BYT'ES LONG.

THE STORAGE AREA FOR THE ON,UNIT AT STATEMENT NO.4 IS 176 BYTES LONG.

THE PROGRAM CSECT IS NAMED P2 AND IS 442 BYTES LONG.

THE STATIC CSECT IS NAMED *****P2A AND IS 368 BYTES LONG.

P21 PROC;

EXTERNAL SYMBOL DICTIONARY
SYMBOL TYPE 10 ACDR

P2 SO 0001 000000
*****P2A SO 0002 000000
IHEQINV PR 0003 000000
IHESADA ER 0004 000000
II1ESAI:B ER 0005 000000
IHEQERR PR 000,6 000000
IHEQTIC PR 0007 000000
IHENTRY SO 0008 000000
IHESAPC ER 0009 000000
IHEQLWF PR OOOA 000000
IHEQSLA PR OOOB 000000
IHEQLWO PR OOOC 000000
*****P2B PR 0000 000000
*****P2C PR OOOE 000000
IHELDOB ER OOOF 0.00000
IHEIOBT ER 0010 OOOOCO
IHEIOBC ER 0011 000000
IHESAFA ER 0012 000000
IHESAFC ER 0013 000000
ANS CM 0014 000000
COMP CM 0015 000000
IHESPRT SO 0016 000000
IHEQSPR PR 0017 000000
IHEVSC ER OOle 000000

STATISTI C S SOURCE RECORDS 9,PROG TEXT STMNTS =

LENGTH
0001BA
000170
000004

000004
000004
OOOOOC

000004
000004
000004
000004
000004

000002
000002
000038
000004

10,OBJECT BYTES· 442

PAGE 15 @

PAGE 16

PAGE

Appendix As programming Examples 239

P2: PROC; PAGE

COMPILER DIAGNOSTICS.

wARNINGS .•

IEM0227I NO FILE/STRING OPTIGN SPECIfIED IN GNE OR MORE GET/PUT STATEMENTS. SYSIN/SYSPRINT MAS BEEN

ASSUMED IN EACH CASE.

IEM0526I OPTION MAIN HAS NOT BEEN SPECIFIED FOR THE EXTERNAL PROCEDURE, STATEMENT ~UMBER 1

END CF DIAGNOSTICS.

AUXILIARY STORAGE WILL NOT BE USED FOR DICTIONARY WHEN SIZE - 65K

COMPILE TIME

ELAPSED TIME

VERSION 5.0

.02 MINS

.49 MINS

OS/360 PL/I COMPILER IF)

PL/I COMPILER GPTIONS SPECIFIED ARE AS FOLLOWS-­

E

THE COMPLETE LIST OF OPTIONS USEe DURING THIS COMPILATIGN· IS-- EBCDIC
CHAR60

NOMACRO
SOURCE2

NOMACOCK
COMP
SOURCE

NOATR
NOXREF

EXTREF

.OPTIONS IN EFFECT •
• OPTIONS IN EFFECT.
.OPTIGNS IN EFFECT.

240

NOLlST
LOAD

NODECK
FLAGW
STMT
S I ZE-0090112
LINECNT-055
OPT-02
SORMGIN-(002,072,OOll

NOEXTOIC
NEST
OPLIST

EBCOIC,CHAR60,NOMACRO,SOURCE2,NOMACDCK,COMP,SOURCE,NOATR,NOXREF,EXTREf,NOLIST,LOAO,
NOD£CK,FLAGW,STMT,SIZE-0090112,LINECNT-055,OPT-02,SORMGIN-(002,072,0011,NOEXTDIC,
NEST,OPLISr

P31

STMT LEVEL NEST
1
2
3
4

P3: PROC;

PROC;

P3:

STGRAGE REQUIREMENTS.

PROC;
DCL (COMP,ANS) FIXED DEC(2,1) EXT;
ANS-COMP*CGM P;
END P3;

PAGE

PAGE 20

21

THE STOIlAGE AREA (IN STATIC) FOR THE PROCEDURE LABELLED P3 IS 184 BYTES LONG.

THE PROGRAM CSECT IS NAMED P3 AND IS 246 BYTES LONG.'

THE STATIC CSECT IS NAMED *****P3A AND IS 264 BYTES LONG.

P3:

STATISTICS

PROC;

EXTERNAL SYMBOL DICTIONARY
SYMBOL

P3
*****P3A
IHEQINV
IHESADA
IHESACB
IHEQERR
IHEQTIC
IHENTRY
IHESAPC
IHEQLWF
IHEQSLA
IHEQLWO
*****P3B
IHESAFA
ANS
COMP

SGURCE RECORDS

TYPE 10 ADDR
SO 0001 000000
SO 0002 000000
PR 0003 000000
ER 0004 000000
ER 0005 000000
PR 0006 000000
PR 0007 000000
SC 0008 000000
ER 0009 000000
PR OOOA 000000
PR 0006 000000
PR OOOC 000000
PR 0000 000000
ER OOOE 000000
CM OOOF 000000
CM 0010 000000

4,PROG TEXT STMNTS

LENGTH
0000F6
000108
000004

000004
000004
OOOOOC

000004
000004
000004
000004

000002
000002

22~
@;

PAGE

4'9BJECT BYTES 246

~ppendix ~: Programming Examples 241

P3 : PROC; PAGE

COMPILER DIAGNOSTICS.

WARNINGS.

IEM0526I OPTION MAIN HAS NOT BEEN SPECIFIED FOR THE EXTERN~L PROCECURE, STATEMENT NUMBER 1

END CF DIAGNOSTICS.

AUXILIARY STORAGE WILL NOT BE USED FOR DICTIONARY WHEN SIZE 65K

COMPILE TIME

ELAPSED TIME

.02 MINS

.33 MINS

IEF2851 SYS69273.Tl15427.SVOOO.J063PGEX.ROOOOC09 SYSOUT
lEF2851 VOL SER NCS· M65294.
lEF2851 SYS69273.T115427.RVOOO.J063PGEX.LCADSET PASSEC
lEFa51 VOL SER NOS- 231422.
lEF2851 SYS69273.Tl15427.RVOOO.J063PGEX.R0000010 DELETED
1 EF2851 VOL SER NOS'" 231423.
lEF2851 SYS69273.T115427.RVOOO.J063PGEX.R0000011 DELETED
IEF2851 VOL SER NOS- 231424.
JEF~851 SYS69273.Tl15427.RVOOO.J063PGEX.S0000012 SYSIN
I EF2 85 I VOL SE R NOS" M6 5295.
IEF2851 SYS69273.Tl15427.RVOOO.J063PGEX.S0000012 DELETED
lEF2851 VOL SER NOS" M65295.

END OF STEP 'PL1L JOB 'J063PGEX' STEPTIME=00.OO.07
XXLKED EXEC PGM=IEWL,PARM='MAP,LlSTl~COND=(16,EQ,PL1LI,
XX REGICN-108K
XXSYSLIB DC DSNAME=SYS1.PL1LIB,DISP=SHR
XXSYSLMOD DC u~~PME.&&GO~~r(GOI,DISP=(MODtPASSI,
XX UNI T=SYSDA, SPACE= (1024, (50,2 G, 1»
XXSYSUTl \ DO UNIT-SYSDA, SPACE= (1024, (200.20) I

XXSYSPRINT DD SYSOUT-A,DCB=BLKSIZE=605
XXSYSLIN DD DSNAME=&&LOADSET,DISP=(OLD,DELETEI
XX DD DDNAME=SYSIN
IILKEC~SYSIN DO •
IEF2361 ~LLOC. FOR J063PGEX LKED COLEEK

,rEF2371 SYSLIB ON 295
IEF2371 ON 295
IEF2371 ON 1CO
IEF2371 SYSLMOD ON 342
IEF2371 SYSUT1 ON 343
IEF2371 SYSPRINT ON 293
IEF2371 SYSLIN ON 342
IEF237I ON 290

242

CLOCK-11.56.49 DATE=69.273
*00160000

00180000
00200000

*00220000
00240000
00260000

OC280000
00300000
00320000

RETURN COOE=0012

F8e-LEVEL LINKAGE EDITCR OPTIONS SPECIFIED LIST,XREF,OVLV

I EwOOOO
I EWOOOO
IEWOOOO
IEWOOOO
IEWOOOO
IEW0461
IEW0461
I EW0461
IEW0461
IEW0461
IE W0461
I EW0461
IEW0461
IEW0461
IEW0461
IEW0461
IEW0461
IEW0461
IE W0461
IEW0461
I EW0461
IEW0461
I EW0461
I EW0461
I EW0461
IEW0461
i:EW0461
IEW0461
I EW0461
IEW0461
IEW0461
I EW0461
I EW0461

V_RIABLE OPTIONS USED - SIZE-(104448,59392)
OVERLAV X
INSERT P2
INSERT IHELOO
OVERL_V X
INSERT P3

I HEDDPA
IHEVPAA
IHEOOPB
IHEDDPC
IHECDPD
IHEUPAB
IHEVSBA
I FrEVS FA
IHEVSEB
IHEVSE.A
IHEVPCA
IHEVPDA
IHEVPE.A
IHE VPGA
IHEVPHA
IHEVFAA
IHE,wFBA
IHEVFCA
IHEVFDA
IHE VFEA
IHEVKe_
IHE VKCA
IHEVKFA
IHEVKGA
IHEM91A
IHEM91B
IHEM91C
IHETERA

CROSS REFERENCE TABLE

CONTROL SECTION E NTRV

NAME CRIGIN LENGTH SEG. NO. NAME LOCATION NAME

SSEGTAB 00 24 1
PI 28 308 1
*****P1A 330 158 1
IHEMAIN 486 4 1
IHENTRV 490 C 1
IHESPRT 4AO 38 1
*****P2A 408 170 1
*****P3A 648 108 1
IHEODO * 750 268 1

I HEODOA 750 IHEDDOB
I HEDDOE 758

DEFAULT OPTION(S) USED

LOCATION NAME LOCATl CN NHE LOCATION

752 IHEDDOC 754 IHEDCOD 756

~ppendix A: programming Examples 243

NAME ORIGIN L ENGTIi SEG. NO. NAME LOCATION NAME LOCATION NAME LOCATION N/>,.E LOCAT ION @
IHEONC * 908 284

1 HECNCA 908
IHEDOB * C60 144

I HEOOB/> C60 IHEOOBB C62 IHEDOBC C64
I HEIDB * DA8 1E4

I HE IOBA DA8 IHEIOBB DBO IHE IOBC DB8 IHEICBO DCO
I HEIOBE DC8 IHEIOBT EB4

IHESAP * F90 AB8
I HESAOA F90 IHE SAPC FAA IHESAPO FB2 IHESI>PA FBA
I HESAPB FC2 IHESADF FCA lliESADB F02 IHESI>OE FDA
I HESAFC FE2 IHESAFA FEA IHESAFB FF2 IHES/>Fo FFA
I HESARA 1002 IHESAFQ 100A I HE SARC 17C6 IHESADo 1864
IHESAFF lLBEE

IHEDMA * lA48 F8
I HEOMAA :LA48

IHEIOF • lB40 2DC
IHEIOFB :LB40 IHE IDFA 1B42 IHEITAZ lODE IHEITAX IDEA
I HE IT AA 10FE

IHEPRT • 1E20 2C8
IHEPRTA lE20 IHEPRTB 1E22

IHE VPB • 20EB lA2
IHEVPBA .lOE8

IHEVPF • 2290 50
IHEVPFA 2290

IHEVQC • 22EO 268
I HEVQCA 22EO

IHEVSC • 2548 AC
IHEVSCA 2548

IHEERR * 25F8 729
IHEERRD 25F8 IHEERRC 2602 IHEERRB 260C IHEERRA 2616
IHEERRE .2C8E

IHEIOO • 2028 29A
I HE IODG 2028 IHE l'OoP 2DZA IHEIODT 2E22

IHEIOP * 2FC8 lEB
IHEIOPA .lFC8 I HE IOPB 2FCA I HE IOPC 2FCE

IHECCL • 31B8 554
IHECCLA 31 B8 IHEOCLB 31BA IHEOCLC 31BC IHEOCLD 31 BE

IHEBEG • 3710 80
IHEBEGN 3710 I HE BEGA 3750

IHESIZ * 3790 C
I HESIZE :3790

I HET AB • 37AO C
IHETABS 37AO

COMP 37BO 2 1
ANS 37B8 2 1

SEN TAB 37CO 3C 1

244

LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO. LOCAT ION REFERS TC SYMBOL IN CCNTRGL SECT ION SEG. NO. @
34 *****PIA *****PlA I 350 IHE SAOA IHESAP I

354 IHESAOB I HES ~P I 358 PI PI 1
35C PI PI 1 37C PI PI 1
380 IHEOOOC IHEOCO 1 384 IHEOOOA IHEOOO 1
388 IHEOOBB IHEOOB 1 38C IHEDOBB IHEDCB 1
390 IHEIGBT IHElCB 1 394 IHEIOBC IHEICB 1
360 IHESAFA lHESAP 1 398 COMP COMP 1
39C ANS ANS 1 3AO P2 P2 2
3A4 P3 P3 3 3A8 IHE SPRT IHESPR r 1
414 IHESPRT I HES PRT 1 418 PI PI 1
420 IHESPRT IHESPRl 1 424 PI PI 1
42C IHESPRT IHES PRT 1 430 PI PI 1
438 IHESPRT IHESPRT 1 43C PI PI 1
461 COMP COMP 1 479 ANS ANS I
488 PI PI I 498 IHESAPC IHESAP I
4F8 IHESADA IHESAP I 4FC IHESAOB IHESAP 1
500 P2 P2 2 504 P2 P2 2
51D P2 P2 2 520 P2 P2 2
524 P2 P2 2 528 IHELDOB IHELDO 2
52C IHEIOBT IHEIGB I 530 I HE 10BC IHEIOB I
508 IHESAFA IHESAP I 534 IHESAFC IHESAP 1
538 ANS ANS 1 53C COMP COMP 1
540 IHESPRT IHESPRT 1 56C IHESPRT IHESPRT I
570 P2 P2 2 668 IHESADA IHES~P 1
66C IHESADB IHESAP I 670 P3 P3 3
674 P3 P3 3 688 P3 P3 3
678 I HESAFA IHESAP 1 68C ANS ANS 1
690 COMP CGMP 1 9B8 IHEIOF,A IHEIOF 1
9BC IHELDOC IHELlJO 2 9CO lHEPRTB IHEPRT 1
9C4 IHEDDPA $NEVER-CALL 9C8 IHEDDPB $NEVER-CALL
9CC lHEOOPC $NEVER-CALL 900 IHEDDPO $NEVER-CALL
C40 IHEDMAA IHEOMA 1 C44 lHEUPAB $NEVER-C ALL
C48 IHEVSCA IHEVSC 1 C4C IHE VSEB $NEVER-CALL
C50 IHEVQCA IHEVQC 1 D84 IHEERRC IHEERR 1
D88 IHEIODP IHEIGD 1 08C IHEIODT IHEIOO 1
090 IHEONCIl IHEONC 1 094 IHEVSCA IHEVSC 1
D98 IHEVSEA $NEVER-CALL D9C IHEVSBA $NEVER-C~LL
OAO IHEVSFA $NEVER-CALL F60 IHEIOPA IHEIOP 1
F6C IHEIOPA IHEIGP I F64 IHE IOPB IHEIOP 1
F68 IHEIOPC IHEIOP 1 F70 IHEOCLC IHEOCL I
F84 IHEERRB IhEERR 1 F88 IHEERRC IHEERR I

UFO IHEERRA IHEERR 1 194C IHEMAIN IHEMAIN I
196C IHEOCLO lHEOCL 1 1970 IHESIZE IHESIZ 1
1974 I HEBEGA IHEBEG 1 19F4 .IHEITAX IHEIGF 1
19F8 IHEERRB IHEERR 1 19FC IHEERRC IHEERR 1
lAOO IHETABS I HET AB 1 1A04 IHEITAZ IHEIOF 1
lA38 IHEPRTA IHEPRT 1 1A3C IHEPRTB IHEPRT 1
lA40 IHEDOOD IHEDDO 1 1A44 IHEOCLC IHEOCL I
1AB4 IHEVFBA $NEVER-CALL 1AB8 lHEVFCA $ NE VE R-C IlLL
1ACO IHEVFAA $NEVE R-CALL lAC4 IHEVPAA $NEVER-C~LL
lAC8 IHEVKGA $NEVE R-CALL lACC lHEVPDA $NEVER-CIlLL
lA~O lHEVKFA $NEVER-CALL 1AD4 IHE VPBA IHEVPB 1

Appendix A: Programming Exampl~s 245

LOCATION REFERS TO SYMBOL IN CONTROL SECT ION SEG. NC. LOCATI CN REFERS TO SYMBOL IN CONTROL SECTION SEG. NO. @
lA08 IHEVPCA Sf';E:VE R-CALL lB04 IHE \/FuA SNEVER-CALL
lB08 IHEVFEA SNE VE R-CAL L 1 B10 lliEVPIiA SNEVER-CALL
1B14 IHEVPGA SNEVE R-CALL 1B1B IHE VKCA SNEVER-CALL
lB1C IHEVPF~ IHEVPF 1820 IHEVKBA SNE VER-C AL L
1B24 IHEVPEA SNEVER-CALL 1EOC IHEERRB IHEERR 1
lElO IHEERRC lliEE RR 20B4 IHEOCLA IHEOCL 1
20B8 IHEIOFA IHEIOF 20BC IHESPRT IHESPRT 1
2268 IHEERRC lliEERR 2278 IHEERRB IHEERR 1
2430 IHEVSEB $NEVER-CA'LL 2484 IHEERRC IHEERR 1
24DO IHEERRB IHEE RR 2524 IHEVSCA lliEVSC 1
2C04 IHEM9lA $NEVER-CALL 2CD8 IHEM91B $NEVER-CALL
2COC IHEM91C $NEVER-CALL 2000 IHETERA $NE VER-C ALL
2FBO IHEIOFA IHEICF 1 2FB4 IHEERRB IHEERR 1
2FB8 IHEERRC IIiEE RR 1 3198 IHEIOFA IHEICF 1
319C IHEERRB IHEERR 1 31AO IHEERRC IIiEERR 1
36EC IHEIOFA IHEIOF 1 3l:F4 IHEERRB IHEERR 1
36F8 IHEERRC IHEERR 1

LOCH ION 8 REQUESTS CUMULATIVE PSEUDO REGISTER LEt-.GTH

CONTROL SECTION ENTRY

NAME ORIGIN LENGTH SEG. NO. NAME LOCATION NAME LOCAT ION NAME LOCATION NA,...E LOCAT ION

P2 3800 1BA 2
IHE LOO * 39CO 418 2

I HELOOA 39CO IHELDOB 39C2 IHELCOC 39C6

LOCATI ON RE FE RS TO SYMBOL IN CONTROL SECTION SEG. NO. LCCAT ION REFERS TO SYMBOL IN CONTROL SECTION SEG. NC.

380C *****P2A *****P2A 38B8 *****P2A *****P2 A 1
30C4 IHEERRC IHEERR '30C8 IHE I OFA IHEICF 1
30CC IHEVSBA $NEVER-CALL 3000 IHEVSCA IHEVSC 1
30D4 IHEONCA IHEONC

CONTROL SECTION E I\T RY

NAME ORIGIN L ENGT Ii SEG. NO. NAME LOCATION NAME LOCA TI ON NAME LOCATION NAME LOCAT ION

P3 3800 F6

LOCATI ON REFERS TO SYMBOL IN CONTROL SECT ION SEG. NO. LOCATION REFERS TO SYMBOL IN CONTRCL SECTION SEG. NO.

380C *****P3A *****P3A
PSEUCO REGISTERS

246

NAME ORIGIN LENGTH NAME ORIGIN LENGTH NAME ORIGIN LENGTH NAME OR IGIN LENGTH @
IHEQINV 00 4 IHEQERR 4 4 IHEQTIC 8 4 *****Pl B C 4
IHEQSPR 10 4 IHEQLWF 14 4 IHEQSLA 18 4 IHEQLWO lC 4
*****P2B 20 4 *****P2C 24 4 *****P3B 28 4 IHEQFOP 2C 4
IHEQCFL 30 8 IHEQADC 38 4 IHEQLSA 3C 4 IHEQLWl 40 4
IHEQLW2 ~4 4 IHEQLW3 48 4 IHEQLW4 4C 4 IHEQLWE 50 4
IHEQLCA 54 It IHEQVDA 58 4 IHEQ.FVD 5C It IHE'LPR 60 It
IHEQSAR 64 4 IHEQRTC 68 4 IHEQSFC 6e It IHEQXLV 70 8
IHEQEVT 78 8

TOTAL LENGTH OF PSEUDO REGISTERS . 80
ENTRY ADDRESS 490
TOTAL LENGT H 3008

****GO DOES NOT EXIST BUT HAS BEEN ACDEC TO DATA SET

DIAGNOSTIC MESSAGE 01 RECTORY

IEW046:l WARNINr. - SYMBOL PRINTED IS AN U~RESCLVED EXTERNAL REFERENCE, NCAL WAS SPECIFIED.

lEF21l5I SYS1.PLl LIB KEPT
IEF285I VOL SER NOS= 2301CO.
IEf285I SYS69273.T115427.RVOOO.J063PGEX.GOSET PASSED
IEF285I VOL SER NOS= 231422.
IEF285I SYS692i3.T115427.RVOOO.J063PGEX.ROOOC013 DELETED
IEF285I VOL SER NOS= 231423.
IEF285I SYS69273.T115427.SVOOO.J063PGEX.R0000014 SYSOUT
IEF2851 VOL SER NOS= M65293.
IEF2851 SYS69273.T115427.RVOOO.J063PGEX.LOACSET DELETED
IEF2851 VOL SER NOS= 231422.
IEF2851 SYS69273.Tl15427.RVOOO.J063PGEX.SC000015 SYSIN
IEF2851 VOL SER NOS= 'M65295.
IEF285I SYS69273.Tl15427.RVOOO.J063PGEX.SC000015 DELETED
IEF285I VOL SER NCS= M65295.

END OF STEP 'LKEC JOB 'J063PGEX' STEPTIME=00.00.02 CLOCK=11.57.14 DATE=69.273 RETUR~ CODE=0004
XX GO EXEC PGM=*.LKED.SYSLMOD,COND=((9,LT,LKEDI ,(16,EQ~PL1LI), *00340000
XX REGICN=108K 00360000
XXSYSPRINT DC SYSOUT=A 00380000
I EF2361 ALLOC. FOR J063PGEX GO CCLEEX
IEF2371 PGM=*.DD eN 342
IEF2371 SYSPRINT ON 294

Appendix A: Programming Examples 247

ANS- 2.0 COMP- 0.5; @ ANSWER GREATER THAN CCMPARATOR
ANS= 0.2 COMP= 0.5;
ANSWER LESS THAN CCMPARATOR
NEXT COMMENT INvALID
ANS= 0.0 COMP= 0.0;
ANSWER EQUAL TC CCMFARATOR
ANS: 0.0 COMP= O.Oi
ANSWER EQUAL TG CCMPARATOR
ANS= 1.0 COMP= 1.0 i
ANSwER EQUAL TO C CMPARATOR
ANS= 1.0 COMP= 1.0i
ANSWER EQUAL TC CCf<FARATOR
ANS: 0.5 COMP= 2.0i
ANSWER LESS THAN CCMFARATGR
ANS= 4.0 COMP= 2.0i
ANSW ER GREATER THAN COMPARATOR

IEF2851 ~Y~b~Z73.Tl1~427.RVOOO.J063PGEX.GGSET PASSED ® IEF2851 VOL SER NOSa 231422.
IEFZ851 SYS69273.TI15427.SVOOO.J063PGEX.ROOOOO16 SYSOUT
IEF2851 VOL SER NOS- 1'465294.

ENe OF STEP • GO . JOB 'J063PGEX' STEPTIME-OO.OO.Ol CLOCK"U.57.24 DATE-69.273 RETURN CODE-OOOO
1 Et-28S1 SYS69273.TI15427.RVOOO.J063PGEX.GGSET DELETED
I Ej!:2851 VOL SER NOSa 231422.

END OF JOB 'J063PGEX' 1/0 TIME-00.Ol.03 CPUTIME-OO.OO.ll CLOCK-U.57.24 DATE-69.273 SYSTEM P "KS 300 AND 311

248

Appendix B: Parameters of DD Statement

This appendix contains short descriptions
of the parameters of the DD statement,
arranged in alphabetical order of parameter
names~. It descriQes the most frequently
used facilities of each parameter, and
summari:i~es their other features.

The format of the DD statement is
described in Chapter 1, and the use of the
ddname (the name of the DD statement) in
Chapter 9. For a full description of the
DD statE~ment, refer to IBM ~§.tem/360
Operating System: Job Control Languasrg
User's quide, and Job Co!!tro! La!!.9..!!§lS!.g
Referen<:.~

charactE~ristics of the DataSet CDCB)

You can use the DCB parameter to add
informat:ion about the characteristics of a
data set: to the data control block (OCB)
that is constructed by one of the PL/I
library subroutines when the associated
file is opened. Code the keyword parameter

r------·--------------------------------,
I DCB=Clist of characteristics) I L ______ • ________________________________ J

Code the characteristics as keyword
subparameters separated by commas, for
example, DCB=CRECFM=FB,LRECL=80, •••).

'To save time in coding the DCB
paramet.er, you may be able to copy DCB
informat:ion that already exists, either in
the data set label of a similar data set or
in an earlier DO statement in the job. ro
copy DCB information from the label of a
catalogE~d direct-access data set, code the
keyword parameter

r---------------------------------------,
I DCB=dsname I L ______ • _________________________________ J

Replace 'dsname' with the cataloged name of
the data set. The volume that contains
this dat:a set must be mounted before
execution of the job step containing the
copy request.

If such a data set does not exist, you
might st:i 11 be able to copy the DCB
parameter of an earlier DD statement in the

1 For AF:E;', see SEP. For SPLIT and SUBALLOC"
see SPACE.

job. ro refer to this DD statement, code
the keyword parameter

r---------------------------------------, I DCB=*.stepname.ddname I L _______________________________________ J

Replace 'stepname' and 'ddname' with the
job step name and the DD statement name,
respectively.

If the earlier DD statement is contained
in a cataloged procedure step, you must
include the procedure step name (i.e.,
DCB=*.stepname.procstepname.ddname).

If you want to modify the information
that is copied from another data set label
or DCB parameter, code

r---------------------------------------,
IDCB=(reference,list of characteristics) I L _______________________________________ J

Replace 'reference' with 'dsname', or
'*.stepname.ddname' or
' •• stepname.p.rocstepname.ddname'. The
characteristics in the list override the
corresponding copied attributes.

2~~parameters of the DCB Parameter

The subparameters included in the DCB
parameter correspond to the operands of the
data management DCB macro instruction and
are coded with the same keywords and
values. ~ full description of the macro
instruction appears in IBM System/360
Opera~iBsr_System:supervisor and Data
~~!!~ement Macro lnstructions: the
following is a summary of those
subparameters that can apply to a PL/I
program. The notation used in the format
descriptions is as follows:

'n' represents an unsigned decimal
integer.

'I' indicates a choice of option.

Braces { } indicate that you must
select one line from the items
enclosed.

Items within brackets [] are optional;
you may omit them at your discretion.

Co1e capital letters and numbers
exactly as shown.

Appendix B: Parameters of DD Statement 249

· BLKSIZE=n

specifies the length in bytes of a
block. The maximum length is :32760
bytes.

For fixed-length records, the block
size must be an integra! multiple of
the record length (LRECL)~ the minimum
size is 1 byte.

For variable-length (V-format and
VB-format) records, the block size must
be at least eight bytes larger than the
largest item of data that you expect to
read or write (i.e., four bytes larger
than the record length specified in
LRECL). Ho~ever, if the records are
spanned (VS-format and VBS-format), you
can specify block size independently of
record length. The minimum block size
for variable-length records is 18
bytes.

BUFNO=n

specifies the number of buffers to be
used in accessing the data set. The
maximum number is 255 (unless another
maximum was determined for your
installation during system generation).
For a STREAM file or a BUFFERED RECORD
file, if you do not specify the number
of buffers or you specify zero buffers,
the number is assumed to be two.

CODE=AIBIC\FIIITIN

specifies the code in which paper tape
was punched. (Data is read into main
storage and then converted from that
code to EBCDIC.)

A: ASCII (8-track)

B: Burroughs (7-track)

C: NCR (8-track)

F: Friden (8-track)

I: IBM ~CD perforated-tape
transmission code (8-track)

T: Teletype (5-track)

N: No conversion required (F-format
records only)

If no code is specified, I is assumed.

CYLOFL=n

250

specifies, for an INDEXED data set, the
number of tracks on each cylinder to be
reserved for the records that overflow
from other tracks in that cylinder~
The theoretical maximum is 99, but the

practical limit varies with the
particular device.

There must be at least one track in
each cylinder to hold the track index I'
and one to hold the prime data.

DE~=OI11213

specifies the recording density for
magnetic tape as follows:

r-----T---------------------,
I IBytes per inch (bpi) I
I DEN ~----------T----------~
I \ 7-track I 9-track I
~-----+----------+----------i
I 0 I 200 I I
I I I I
I 1 I 556 I I
I I I I
I 2 I 800 I 800 I
I I I I
I 3 I I 1600 \ L _____ ~ __________ ~ __________ J

The density assumed if you omit this
subparameter is:

7-track:
9-track (single density):
9-track (dual density):

800 bpi
800 bpi

1600 bpi

(The subparameter TRTCH is required for
7-track tape.)

DSORG=ISIDA

specifies the organization of the data
set you are creating:

IS (indexed sequential): INDEXED data
set

DA (direct access): REGIONAL data set

This subparameter is not required for
CO~SECUTIVE data sets.

KEYLEN=n

specifies the length in bytes of the
recorded key of records in INDEXED,
REGIONAL(2), and REGIONAL(3) data sets.
The maximum key length is 255 bytes.

LIMCT=n

limits the extent of the search for a
record or space to add a record in a
RE3IONAL(2) or REGIONAL(3) data set
beyond the region number specified in
the source key.

If you do not specify a limit, the
search starts at the specified region
and continues through the whole of the
data set.

For REGIONAL(2), LIMCT specifies the
number of records to be searched. The
search starts at the beginning of the
track on which the record is situated
and continues to the end of the track
that contains the last record to be
searched.

For REGIONAL(3), LIMCT specifies the
number of tracks to be searched.

LRECL=n

specifies the length of a record in
bytes; the maximum length is 32760
bytes for F-format records. and 32756
bytes for V-format records. You must
specify a record length for blocked
records.

For F-format and FB-format records. the
record length must not exceed the block
size (BLKSIZE) value; the minimum
length is 1 byte.

For V-format records, give the maximum
record length including the four
control bytes required by the operating
system; the minimum record length for
V-format records is 14 bytes (ten bytes
of data and four control bytes). The
record length for V-format and
VB-format records must be at least four
bytes less than the block size
(BLKSIZE) value; however, for VS-format
and VBS-format records. it can be
specified independently of block size.
If the logical record length of any
spanned variable-length record in a
data set exceeds 32756. specify
LRECL=X.

MODE=CIE

specifies the mode of operation for a
card reader or punch: E indicates
EBCDIC, and C specifies column binary.
If you do not specify the mode. E is
assumed.

NCP=n

specifies the number of channel
programs allocated to a file when it is
opened: the number of simultaneous
input/output operations on the file
(i.e~, the number of incomplete event
variables) cannot exceed the number of
channel programs. The NCP subparameter
applies only to DIRECT access to
INDEXED data sets or UNBUFFERED
SEQUENTIAL access to CONSECUTIVE or
REGIONAL data sets. The maximum number
of channel programs is 99 (unless
another maximum was established for
your installation at system
generation); the default value assume1
if you omit the subparameter is 1.

For DIRECT access to an INDEXED data
set. simultaneous input/output
operations in excess of the number of
channel programs are queued until a
channel program becomes available.

For UNBUFFERED SEQUENTIAL access to
CONSECUTIVE or REGIONAL data sets, the
ERROR condition is raised if there are
too many simultaneous operations.

The NCP subparameter overrides the
BUFNO subparameter or the BUFFERS
option of the ENVIRONMENT attribute.
One buffer is allocated for each
channel program.

NTM=n

specifies, for an INDEXED data set, the
number of tracks in the cylinder index
referred to by each master index entry,
and the number of tracks ~ithin each
level of the master index referred to
by each entry in the next higher level.
The maximum value for n is 99.

OPTCD=option list

lists optional data management
services. To indicate the services you
require. code the appropriate letters
(see below). without separating blanks,
in. place of 'option list' (e.g.,
OPTCD=LY) •

OPTCD=C requests chained scheduling.
which improves input/output
performance by reducing the time
required to transmit blocks to and
from auxiliary storage devices. In
chained scheduling, the data
management routines bypass the normal
input/output scheduling routines and
chain several input/output operations
together; a series of read
operations. for example. is issued as
a single chain of commands instead of
several separate command~.

Chained scheduling is most useful in
programs whose performance is
input/output limited. If you use
this feature. you should request at
least three data management buffers
or at least three channel programs.
Chained scheduling can be used with
CONSECUTIVE or REGIONAL SEQUENTIAL
data sets; it should not be used for
INPUT or UPDATE with U-format
records.

OPTCD=I requests an independent
overflow area for an INDEXED data
set; you must define this overflow
area in a separate DO statement.

OPTCD=L requests that a record in an

Appendix B: Parameters of DD Statement 251

INDEXED data set be recognized as
deleted if its first byte contains
(8) 'l'B.

OPTCD=M requests the creation of a
master index in accordance with the
information given in the NTM
subparameter.

OPTCD=U suppresses the raising of the
TRANSMIT condition when an invalid
character is passed to a printer with
the universal character set feature.
A blank is printed in place of the
invalid character.

OPTCD=W requests a write validity check
for a direct-access device.

OPTCD=Y requests that the data
management routines use the cylinder
overflow area for overflow records in
an INDEXED data set. The size of the
overflow area is established by
CYLOFL=n.

PRTSP=0111 213

specifies the spacing required after
each printed line: the default value is
1. (For example, PRTSP=3 causes two
blank lines to appear between each
printed line.) This subparameter is
ignored if the record format includes
ANS or IBM Systeml360 control
characters.

F [B] [S]
RECFM= V[B] [S] [T] [AI M]

252

.U

indicates the record format as follows:

F: Fixed-length records

V: Variable-length records

U: Undefined-length records

If you do not specify a record format,
U-format is assumed, except for PRINT
files, for which V-format is the
defaUlt assumption.

The optional subfields are:

B: Blocked records.

S: Standard (fixed-length records
only). No blocks, except
possibly the last, will be
shorter than the specified block
size.

S: Spanned (variable-length records
only). If variable-length
records are spanned, the record
length specified by LRECL can

RKP=n

exceed the block size specified
by BLKSIZE: if necessary, the
records are segmented and the
segments are placed in
consecutive blocks. If the
records are unblocked, each block
contains only one record or
segment: if the records are
blocked, each block contains as
many records or segments as it
can accommodate.

T: Track overflow. Track overflow
is an operating system feature
that can be incorporated during
system generation. It allows a
block to overflow from one track
of a direct-access device to
another. Track overflow is
useful in achieving greater
data~packing efficiency, and also
allows the size of a record to
exceed the capacity of a track.

Note: You cannot use track
overflow for REGIONAL(3) data
sets with U-format or V-format
records or for INDEXED data sets.

A: The first byte of each record
contains an ANS printer/punch
control character.

M: The first byte of each record
contains an IBM System/360
printer/punch control character.

specifies, for an INDEXED data set, the
position (n) of the first byte of an
embedded key relative to the beginning
of the record (byte 0). RKP=O implies
that the key is not embedded. (For
example, if 'XYZ' is the key embedded,
in the record 'ABCXYZDEF',RKP=3.)

STACK=112

refers to a card reader or punch:

1. All cards read or punched are tOI
be fed into stacker 1.

2. All cards read or punched are to
be fed into stacker 2.

stacker 1 is assumed if you omit this
subparameter. If you want stacker 3,
specify the ANS machine-code characte~r
in the RECFM parameter of the DD
statement, and insert the appropriate~
character as the first data byte.

TRTCH=CITIEIET

is required when a data set is recordej
or is to be recorded on a 7-track tape.

It specifies the recording technique to
be used:

C: Data conversion, odd parity, no
translation.

T: Translation, odd parity, no data
conversion.

E: Even parity, no data conversion,
no translation.

ET: T:ranslation, even parity" no data
conversion.

If you omit this subparameter, odd
parity, no data conversion and no
translation are assumed.

1. Data conversion and translation:
Data on 9-track magnetic tape,
like that in main storage, is held
in 8-bit bytes, a ninth bit being
used for parity checking: data on
7-track tape is held in the form
of 6-bit characters with a parity
bit. The conversion feature of
the 2400 series magnetic-tape
drives treats all data as if it
were in the form of a bit string,
breaking the string into groups of
six bits for writing on 7-track
tape, or into groups of eight bits
for reading into main storage.
The translation feature changes
the form in which character data
is held from 8-bit EBCDIC to 6-bit
BCD or vice versa. If you specify
neither conversion nor
translation, only the last six
bits of each 8-bit byte are
transmitted; the first two are
lost on output and are set to zero
on input.

2. Parity: Odd parity checking is
normally employed in IBM
Systeml360, but you should specify
even parity if you want to read a
tape that was written by a system
using even parity, or to write a
tape for a system that demands
even parity.

3. Choice of technique: The use of a
technique other than C restricts
the character set in which data
can be written if itiis
subsequently to be reread and
result in the same bit
configuration in main storage.
(An 8-bit code offers 256 possible
configurations, but a 6-bit code
only 6~.) For stream-oriented or
record-oriented transmission of
character strings or pictured

data, you can use technique C or
T; you can also specify ET if your
program is written in the
48-character set. (Seven-track
tape recording systems indicate a
zero bit by the absence of
magnetization of the tape. Even
parity checking does not allow the
code 000000 to be used to
represent the character zero,
since an unmagnetized band is not
acceptable on the tape. Therefore
the code that would otherwise
represent a colon (:) is used for
the character zero, precluding the
use of the full PL/I 60-character
set.) For record-oriented
transmission of arithmetic data,
you must specify technique C.

fQ~~Q!!ing.Definition of Data Set (DDNAME)

A DO statement in a cataloged procedure
need not contain descriptive parameters.
Instead, it can point to a subsequent DD
statement that contains a complete
description of the data set. To postpone
the definition of a data set, code:

r---------------------------------------,
I DDNAME=ddname I L __________________ - ____________________ J

Replace 'ddname' with the name of the DO
statement that will contain the complete
information.

Data Set Status and Disposition (DISP)

The oISP parameter (which can have three
subparameters) describes the status of a
data set and indicates what is to be done
with it after termination of the job step
that processes it. You can omit this
parameter if a data set is created and
deleted during a single job step.

The first subparameter shows the status
of the data set with respect to the job
step. If the data set is created in the
job step, code

r---------------------------------------, I DISP=NEW I L _______________________________________ J

(or code DISP=MOD and include parameters
usually required by new data sets (see
below) or omit the status specification
altogether).

AppendiKB: Parameters of DD State~ent 253

rfo specify an existing data set to be
used as input to a program, code:

r---------------------------------------,
I DISP=OLD I L _______________________________________ J

If the data set resides on a-direct-access
volume and is part of a job whose
operations do not preclude simultaneous use
of the data set by another job, code

r---------------------------------------,
I DISP=SHR I L _______________________________________ J

which has meaning only in a
multiprogramming environment. Once a data
set has been given the status SHR, every
reference to the data set within the job
must specify the same status or the data
set will be considered unusable by
concurrent jobs. If SHR is coded in other
than a multiprogramming environment, the
system assumes the status of the data set
to be OLD.

If you want to extend a CONSECUTIVE data
set by adding records at the end, code:

r---------------------------------------, I DISP=MOD I L _______________________________________ J

When the data set is opened, the read/write
mechanism is automatically positioned after
the last record in the data set. If the
operating system is unable to find the data
set, it assumes that it does not yet exist:
the first time you open the data set, t:he
operating system assumes DISP=NEW, and
thereafter DISP=MOD.

The second subparameter indicates how
you want the data set handled by the job
scheduler after normal termination of the
job step. (If you omit the first, indicate
its absence by placing a comma in front of
the second.) If you want the data set to
assume the status that it had before the
job step, you need not code the second:
data sets that existed before the job step
began will continue to exist, and data sets
created in the job step, or earlier in the
job, with DISP=(,PASS) will be deleted. If
there is any uncertainty, code both
subparameters in full.

To catalog a data set, code:

r---------------------------------------, I DISP={status,CATLG) I L _______________________________________ J

'Status' shows the status of the data set
as discussed above. When y.ou request
cataloging, an index entry pointing t~ the
data set is placed in the system catalog.

254

DO statements in subsequent jobs can then
refer to this data set simply by giving its
fully qualified name and the disposition.

To uncatalog an input data set, code:

r---------------------------------------, I DISP=(OLD,UNCATLG) I L _______________________________________ J

The catalog entry that points to the data
set is removed from the index. If the data
set resides on a direct-access volume, it
remains tabulated in the volume table of
contents (VTOC).

If you have no further need for a data
set after its use, code:

r---------------------------------------, I DISP=(status,DELETE) I L _______________________________________ J

The data set is automatically uncataloged
if you have used the catalog to locate it.
In addition" the system removes the VTOC
entry associated with the data set, if it
resides on a direct-access device. If you
code DISP=(SHR,DELETE), the system assumes
OLD instead of SHR~

For data sets that are used in a later
job but are not of sufficient importance to
warrant their being cataloged, code:

r---------------------------------------, I DISP= {status, KEEP) I L _______________________________________ J

rhe data set is kept intact until the
system encounters DISP=(status,DELETE). If
the volume containing the data set is
demounted, the system advises the operator
of the KEEP disposition. If the data set
resides on a direct-access volume, it
remains tabulated in the volume table of
contents.

When a data set is used by two or more
job steps in the same job, you can
eliminate retrieval and disposal operations
by passing' it from step to step. You do
not indicate the final disposition of the
data set until its last use in the job. To
pass a data set to a succeeding step, code:

r---------------------------------------, I DISP=(status,PASS) I L _____ ".;. _________________________________ ,J

Subsequent DD statements referring to the
passed data set must identify it with the
DSNAME parameter, must provide either no
unit information, or unit information
consistent with that in the original data
set, and must issue another disposition.
Between steps, the volume that contains the
passed data set remains mounted. However,

if the l3ystem or an intervening st,ep
requirel3 that device, the volume may be
dismounted and saved by the operator; it is
remounbed when required in a succeeding· job
step. ~ro ensure that the volume remains
mounted during steps in which it is not
required, use dummy DO statements referring
to the d.ata set in these steps.

The t.hird subparameter indicates how you
want thte data set handled by the job
schedulter at the end of the job step if the
job step terminates abnormally". If you
omit th:is subparameter, the disposition
requesbed in the second subparameter will
be perfc:>rmed if the job step terminates
abnprmally.

If in the event of abnormal termination
you wish to have a data set cataloged,
code:

r---------------------------------------, I DISP=(status,disposition,CATLG) I L _____ . __________________________________ J

'status' and 'disposition' show the status
and disposition of the data set at normal
end of job, as discussed above.

If in the event of abnormal termination
you wish to uncatalog a data set, code:

r----·----------------------------------,
I DISP=(OLD,disposition,UNCATLG) I L ____________________________ ~ __________ J

'Disposition' refers to the disposition you
want made of the data set upon normal
termina·tion of the job step.

If in the event of abnormal termination
you wish a data set to be deleted, code:

r-----'---------------------------------,
I DI:8P= (status, disposition, DELETE) I L _____ , ______________ ------______________ J

If in the event of abnormal termination
you wish a data set to be kept, code:

r---------------------------------------, I DISP=(status, disposition, KEEP) I L _______________________________________ J

The second subparameter can be omitted.
If you code

r---------------------------------------, I OISP=(OLD"DELETE) I L _____ • __________________________________ J

the default for the second subparameter
follows the rule established above.

~ The third (conditional disposition)
subparameter applies only if the job step
is terminated abnormally. It does n2~

apply if a 'STEP WAS NOT EXECUTED' message
is given, either due to a JCL error or a
condition code setting.

Id~ntifying the Data Set (DSNAME)

The DSNAME parameter identifies the data
set to which the DO statement refers. You
need not code this parameter if the data
set is te~porary or resides on a
unit.-record device or on an unlabeled
magnetic tape; the system automatically
assigns a temporary name. You can specify
the DSNAME parameter in one of three ways:

1. To name or retrieve a data set that
will be identified in later jobs by
name, or that was assigned a name in
an earlier job or job step, code:

r----------------------------------, I OSNAME= ds name I L __________________________________ J

The word DSNAME can be abbreviated to
OSN. Replace 'dsname' with the
cataloged or tabulated name of the
data set. If the catalog has more
than one level of index, you must give
a fully qualified name (e.g.,
1\..B.LINKFILE).

If the DO statement refers to a
particular generation of a generation
data group, you must code the
generation number in parentheses,
i.e., DSNAME=dsname(number).

If the DD statement refers to a member
of a partitioned data set, you must
code the member name in parentheses
after dsname, i.e.,
DSNAME=dsname(membername).

If the DO statement is one of a group
of DO statements that detine an
INDEXED data set, you must code one of
the terms INDEX, PRIME, or OVFLOW in
parentheses after dsname (e.g.,
DSNAME=dsname(PRIME».

2. To obtain the data set name from an
earlier DO statement~ code:

r----------------------------------, I DSNAME=*.stepname.ddname I L __________________________________ J

Replace 'stepname' and 'ddname' with
the job step name and DD statement
name, respectively, where the data set
was first defined.

If the earlier 00 statement is
contained in a cataloged procedure

AppendiK B: Parameters of 00 Statement 255

step, you must include the procedure
step name, i.e.,
DSNAME=*.stepname4procstepname.ddname.

3. A data set that exists only within the
boundaries of a job can be assigned
any temporary name. To assign a
temporary name, code:

r----------------------------------, I DSNAME=&&name I L _______________________ . ____ • _______ J

Replace 'name' with any name of not
more than eight characters not used by
another temporary data set in the job
(e.g., DSNAME=&&TEMPDSET). The system
replaces the &&nam'e wit.h a name of the
form 'jobname.dsname'.

If the DD statement refers to a member
of a temporary partitioned data set,
you must code the member name in
parentheses, i.e.,
DSNAME='&name(membername).

If the DD statement is one of a group
of DD statements that define a
temporary INDEXED data set, you must
code one of the terms INDEX, PRIME, or
OVFLOW in parentheses after the &&name
(e.g., DSNAME=&&nameCPRIME».

Data Set Label C LABEL)

Magnetic-tape volumes can contain standard
or nonstandard volume labels and data set
header and trailer labels, or they may have
no labels at all. Direct-access devices
have standard labels. The LABEL parameter
indicates the position of a data set

· relative to the other data sets on a tape
· reel, and the type of labels; it can also
specify the retention period for a data set

· on magnetic tape or direct-access device,
and whether a password is required before
it can be accessed. Only the sequence
number and label type are described here.

For a magnetic-tape volume, if a data
set !s not first in sequence on the reel,
the LABEL parameter must include a data set
sequence number to position the tape
properly. The sequence number describes
the position of the data set relative to
other data sets on the volume or group of
volumes. Code:

r--,
I LABEL=seq# I L __ J

Replace 'seq#1 with the sequence n,~er
(1-4 decimal digits) of the data set on the
reel.

256

To create or retrieve a data set that
does not have standard labels, you must
include the LABEL parameter. To specify
the type of labels, code:

r---------------------------------------,
I I.ABEL= (, type). I L _______________________________________ J

Replace 'type' with:

SL - if the data set has standard
labels

NL - if the data set has no labels

NSL - if the data set has nonstandard
labels

SUL - if the data set has both standard
and user labels

BLP - to bypass label processing

If you specify SUL, SL, or omit the
label type (in which case standard labels
are assumed), the operating system will
ensure that the correct volumes are
mounted. If you specify NSL, your
installation must have incorporated label
processing routines into the operating
system. If you specify NL, the data set
must have no labels. (Specifying NL for an
output data set on a labeled volume can
cause the volume label to be erased.)

The feature that allows you to bypass
label processing is a system generation
option (OPTIONS=BYLABEL). If this option
was not requested at system generation and
you have coded BLP, the system assumed NL.

Note that the two L~BEL subparameters
are positional. (If you omit the first,
indicate its absence by placing a comma in
front of the second.)

Optimizing Channel Usage (SEP and AFF)

A job step that requires several input and
output operations might be performed more
efficiently by balancing the channel
requirements of its data sets. To obtain
optimum channel usage, you can request that
a data set be assigned a separate channel
from the ones assigned to earlier data
sets. ~ later DO statement can express the
same separation requirements by requesting
affinity.

TO request channel separation from as
many as eight other data sets in the job
step, code:

r-----·----------------------------------,
I SEP=(ddname, ••• ,ddname) I L _____ . _________________________________ J

Replace 'ddname' with the names of up to
eight earlier DO statements in the job
step.

To obviate writing identical SEP
paramet'E~rs for different data sets, you can
request affinity with an earlier data set
that re~uested channel separation by coding

r-----'"---------------------------------,
I AFF=ddname I L _____ ," __________________________________ J

in a later DO statement. Replace 'ddname'
with the name of the earlier DD statement.
The data set that requests affinity is also
allocated a separate channel from those
identified in the SEP parameter of the
earlier statement (but not necessarily the
same channel as the data set to which the
SEP parameter referred).

The operating system will comply with
your requests for separation and affinity
only if enough channels are available.

Note: Do not confuse the SEP and AFF
parameters with the subparameters SEP and
AFF of the UNIT parameter.

Allocating Direct-Access Space (SPACE,
SPLIT, and SUBALLOC)

When creating a new data set on a
direct-access volume, you must indicate in
your DO statement how much space the data
set will need. You can allocate space:

1. By requesting the amount of space and
letting the system assign specific
tracks.

2. By requesting specific tracks.

3. By splitting cylinders with other data
se,·ts.

4. By suballocating space from an earlier
da:ta set.

The most frequently used technique of
space a,llocation allows you to specify the
amount of space you need and let the system
assign specific tracks. Options permit you
to specify the manner in which the space is
to be arranged, to release unused space,
and to request that the space begin and end
on cylinder boundaries.

You can specify the amount of space in
units of tracks, cylinders, or blocks,

whichever is most convenient. In the last
case the system will compute the number of
tracks or cylinders required. To allocate
space using this technique, code:

r---------------------------------------, I SPACE=(units,quantity) I L _______________________________________ J

Replace 'units' with:

TRK - if you want space in tracks

CYL - if you want space in cylinders

Average block length in bytes - if you
want space in terms of blocks

Replace 'quantity' with the. amount of space
you need in the units you have chosen
(e.g., SPACE=(TRK,200) for 200 tracks,
SPACE=(CYL,10) for ten cylinders, and
SPACE=(400,100) for 100 blocks with an
average length of 400 bytes).

Notes:

1. For most efficient performance,
request space in units of cylinders
(CYL), or in units of blocks with the
ROUND subparameter.

2. The average block length cannot exceed
65,535 bytes.

3. If you request space in units of
blocks, and the blocks have keys, you
should specify an average block
requirement which includes the key.

4. Space allocation by blocks allows
device independence.

If the possibility exists that the data set
might at some time exceed the amount of
space you requested, you can ensure that
extra space will be made available by
denoting an incremental 'quantity. Code:

r---------------------------------------, I SPACE=(units,(quantity,increment» I L _______________________________________ J

Replace 'increment' with a decimal number.
Each time the data set exhausts its space,
additional space will be allocated on the
same volume in the amount of the increment.
For example, if you code
SPACE=(TRK,(200,10», the data set would be
initially allocated 200 tracks. If it
later exceeded 200 tracks, ten additional
tracks would be made available. This
incrementing by ten tracks would take place
each time the data set exhausted its total
space (up to a maximum of 15 times).

If the data set for which you are
allocating space has partitioned

Appendix B: Parameters of DD Statement 257

: organization, you must indicate the size of
:its directory in the SPACE parameter.
Code:

r-------------------------------------·--,
I SPACE=(units, (quantity"directory» I L _______________________________________ J

Replace 'directory' with the numbeI~ of
256-byte blocks in the directory. If you
wish to give an incremental quantity, code
SPACE=(units, (quantity, increment,
directory».

If the data set has INDEXED
organization, you can indicate the size of
its index in the SPACE parameter. Code::

r---------------------------------------,
I SPACE=(units,(quantity"index» I L _______________________________________ J

;Replace 'index' with the size of the index,
'in cylinders. If you do not allocate space
:for the index , the operating system will
'use part of the independent overflow area
'or prime data area for the cylinder and
:master indexes.

You cannot give an incremental quantity
for an INDEXED data set, but you can do so
for a REGIONAL data set only for SEQUENTIAL
'creation.

you can release unused space when you
,have finished writing a data set by
'including the positional subparameter RLSE
'in the SPACE parameter. Code

r---------------------------------------, I SPACE=(units,(quantities),RLSE) I L _______________________________________ J

,where 'quantities' represents 'quantity,
iincrement,directory' or 'quantity,
iincrement,index' as used above. RLSE
cannot be used with ISAM data sets.

The SPACE parameter also allows you to
request that the data set be placed on
contiguous tracks or cylinders, and to
place a data set in a specific position on
the volume.

When a job step involves one or more
data sets that have corresponding records,
,you can minimize access-arm movement by
using the SPLIT parameter instead of the
SPACE parameter. The SPLIT parameter
:requests that each data set be given a
:proportion of the tracks on every cylinder
'allocated, allowing access to corresponding
:records in the data sets without movement
of the access arm.

l>.nother method of obtaining
direct-access space is through the
technique of suballocation, using the

258

SUBALLOC parameter. Suballocation allows
you to place a number of data sets in
contiguous order on a direct-access device.

Routing Data sets through an output Stream
(SYSOUT)

The operating system provides output
streams through which you can route data
sets destined for unit record devices. To
route a data set through any output stream,
code:

r---------------------------------------,
I SYSOUT=x I L _______________________________________ J

Replace 'x' with an alphabetic (A-Z) or
numeric (0-9) character. The character you
select specifies an output class and a
corresponding output stream. (The computer
operator allocates ,the output classes; a
usual convention is that class A refers to
a printer and class B to a card punch.)

When using an operating system with PCP,
to route a data set through the output
stream that carries system messages, code:

r---------------------------------------,
I SYSOUT=A I L _______________________________________ J

You can also route both data sets and
system messages through the same output
stream when using a system with MFT or MVT.
To do this, you mus't specify in the SYSOUT
parameter the output class that you
selected for the MSGCLASS parameter in your
JOB statement.

Operating systems with MFT and MVT have
two additonal options for the SYSOUT
parameter. They allow you to name your own
special program to handle ouput operations,
and to select a specific type of output
form for a printed or punched data set.

g~cify!~g a Character Set (Ucs)

The Universal Character Set (UCS) parameter
allows you to have your output printed with
a specified character set on a printer with
the UCS feature. This character set is
selected from a library of the character
sets available at your installation; such a
library would only exist if your
installation had a UCS printer. Each
character set is held in the library as an
image of the appropriate subset of the
universal character set of 240 graphic
symbols. The selected image is loaded into

the UCS buffer of the control unit for the
printe'r, which must be equipped with the
appropriate print chain or train.

TO specify a required character set
code:

r----·-----------------------------------,
I UCS=character set code I L ____ . __________________________________ J

Replace 'character set code' with one of
the twelve identification codes for the IBM
standa.rd character sets or with a code for
your own character set. These codes must
be one, to four bytes long; those for the
PL/I character sets are:

PN Alphameric (PL/I)

QNe Alphameric (PL/I commercial)

QN Alphameric (PL/I scientific)

If you. omit the UCS parameter when using a
printe~r with the UCS feature. there may be
a defa.ult character set for your
installation. If not. a message will be
put on. the console asking the operator to
specify a character set.

other UCS features available allow you
to tra.nspose certain EBOle characters with
others, and to request the operator to
verify that the character set chosen is the
right one.

Regues~ting a Unit (UNIT)

The UNIT parameter of the DO statement
allows you to specify information about the
input or output unites) used by a data set.
You ca.n identify a specific unit or group
of uni.ts by its address, its type number,
or its group name.

To identify a unit by its address. code:

r----'-----------------------------------,
I UNIT=address I L ____ ,. ___________________________________ J

Replace 'address' with the 3-byte address
of thE! unit (e.g., UNIT=lBO for channell,
control unit B., unit 0).

To identify a unit by its type number,
code:

r----·-----------------------------------,
I UNIT=type I
L __ --.-----------------------------------J

Replace 'type' with a valid unit type

number (e.g., UNIT 2400-2). The following
are valid unit type numbers:

Tape Units

2400

2400-1

2400-2

2400-3

2400-4

2400 series 9-track magnetic­
tape drive that can be allocated
to a data set written or to be
written with a density of BOO
bpi.

2400 series magnetic-tape drive
with 7-track compatibility and
without data conversion.

2400 series magnetic-tape drive
with 7-track compatibility and
data conversion.

2400 series 9-track magnetic­
tape drive that can be allocated
to a data set written or to be
written with a density of 1600
bpi.

2400 series 9-track magnetic­
tape drive having an BOO and 1600
bpi (density) capability.

Direct-Access Units

2301 2301 drum storage unit

2302 2302 disk storage drive

2303 2303 drum storage unit

2311 2311 disk storage drive

2314 2314 direct-access storage
facility

2321 Bin mounted on 2321 data cell
drive

Unit Record Equipment

1052 1052 printer keyboard

1403 1403 printer or 1404 printer
(continuous form only)

1442 1442 card read punch

1443 1443 printer

2501 2501 card reader

2520 2520 card read punch

2540 2540 card read punch (read feed)

2540-2 2540 card read punch (punch feed)

2671 2671 paper-tape reader

Appendix B: Parameters of DO statement 259

Graphic Units

1053

2250-1

2250-3

2260-1

2260-2

2280

2282

1053 model 4 printer

2250 display unit, model 1

2250 display unit, model 3

2260 model 1 display station
(local attachment)

2260 model 2 display station
(local attachment)

2280 film recorder

2282 film recorder/scanner

At system generation, your installation
can designate names for individual units or
collections of units (for example, to
classify collections of magnetic-tape and
direct-access units under the same name).
To identify such a group of units in a DO
statement. code:

r---------------------------------·-----,
I UNIT=group I L ______________________________________ J

Replace 'group' with a valid unit group
name (e.g., UNIT=TAPE). If your
installation uses IBM-supplied cataloged
procedures, the following group names must
have been established at system generation:

SYSSQ
SYSDA
SYSCP

±Y,pes of Devices

Magnetic tape. direct access
Direct access
Card punch

other subparameters of the UNIT
parameter allow you to specify the number
o·f units you need, defer mounting of
volumes until the da.ta set is opened. and
request that the data set not be retrieved
or stored by access mechanisms used by
certain other data sets.

Specifying Volume Information (VOLUME)

To request specific volumes. you can either
identify the volumes by their serial
numbers or use the volumes used by an
earlier data set in the job.

260

To identify volumes by their serial
numbers. code:

r----------------·-----------------------,
I VOLUME=SER=(sern ••••• ser#) I L ______________________________________ J

VOLUME can be abbreviated to VOL. Replace
'sern' with the serial numbers associated
with the volumes; a serial number may
consist of up to six characters. You must
use this form of the VOLUME parameter when
retrieving noncataloged data sets. If only
one volume is involved. you can omit the
parentheses. i.e., code VOLUME=SER=ser#.

There are two ways of requesting the
volumes used by an earlier data set. If
the data set is cataloged or passed. and
you wish to refer to it. code:

r---------------------------------------, I VOLUME=REF=dsname I L _____________________________________ -_.J

Replace 'dsname' with the name of the data
set. If the data set is not cataloged or
passed. and you wish to refer to the DO
statement that defines it, code:

r---------------------------------------, I VOLUME=REF=*.stepname.ddname I L _______________________________________ J

Replace 'stepname' and 'ddname' with the
name of the job step and DD statement where
the earlier data set is defined~ If the
earlier data set is part of a cataloged
procedure. you must include the procedure
step name, i.e.,
VOLUME=REF=*.stepname.procstepname.ddname.

Other subparameters of the VOLUME
parameter allow you to request private
volumes. request that private volumes
remain mounted until the end of the job.
select volumes when the data set resides on
more than one, and request more than one
nonspecific volume.

Appendix C:

This edition, Form C28-6594-6 of the PL/I
(F) Programmer's Guide, documents the fifth
version of the compiler with the
improvements incorporated for Release 19 of
the operating system.

Earlier versions are:

1st version: Form C28-6594-0
2nd version: Form C28-6594-1
3rd version: Form C28-6594-2
4th version: Form C28-6594-3
4th version, release 17: Form C28-6594-4
5th version: Form C28-6594-5

The more important differences between
these versions of the compiler are listed
below. There then follows a statement
concerning the compatibility between
compiled code and library modules of
various versions.

Chanqe~ at Second Version

The most significant changes for the second
version of th.e compiler are:

RECORD I/O: The statements: READ, WRITE,
REWRITE, and DELETE.

The attributes: RECORD, UPDATE,
SEQUENTIAL, DIRECT, BACKWARDS,
BUFFERED, UNBUFFERED, and KEYED.

The ON-conditions: RECORD and KEY.

The built-in functions: ONFILE and
ONKEY.

Note: The usage UPDATE SEQUENTIAL
was not supported except for
INDEXED data set organization.

COMPILE-TIME PROCESSING: The compile-time
processing feature of PL/I.

COMPILER OPTIONS: Abbreviated names as
alternatives to the full names for
compi.ler options.

ARRA.Y INITIALIZATION: Initialization of
arrays of STATIC variables by means
of the INITIAL attribute.

STRE:AM I/O: The options PAGESIZE and
LINESIZE.

The ON-condition NAME.

Versions of the PL/I (F) Compiler

LIST/DATA-DIRECTED OUTPUT: ~lignment of
data on preset tab positions.

RECORD FORMAT: The use of
undefined-format source records.

, PAPER T~PE: Paper tape as input to the
compiler and object program.

OPERATORS: The operators ,> and ,<, and
their 48-character set equivalents
NG and NL.

QUALIFIED NAMES: The resolution of
apparently ambiguous name
qualification.

OBJECT PROGRAM LISTING: Double-column
format for the object program
listing.

OBJECT-TIME ERROR H~NDLING: Optional
inclusion of the statement number
in object-time diagnostic messages.

Combination of SNAP output with
SYSTEM action for ON statements.

RECURSION ENVIRONMENTS: A change in the
interpretation of ENTRY parameters
and ON units in recursive contexts.

CATALOGED PROCEDURES: A new cataloged
procedure (PL1LFLG) for
link-editing and execution.

Changes at Third Version

The most significant changes for the third
version of the compiler are:

OBJECT PERFORMANCE: Changes in the object
code generated by the compiler will
result in considerable imprOVements
in the object-time performance.
The most significant improvements
are in the following areas: data
conversions, the SUBSTR function
and pseudo-variable, the INDEX
function, the UNSPEC function,
object-time error handling and
procedural housekeeping, and the
us e of GO TO label va'riabl es •

~RRAY INITIALIZATION: Initialization of
arrays of AUTOMATIC or CONTROLLED

~ppendix C: Versions of the PL/I (F) Compiler 261

variables by means of the INITIAL
attribute.

UPDATE SEQUENTIAL: The use of UPDATE
SEQUENTIAL for CONSECUTIVE and
REGIONAL data set organizations.

ASYNCHRONOUS OPERATION: The EVENT option
on IIO statements, the COMPLETION
built-in function and
pseudo-variable, and the WAIT
statement.

BATCHED COMPILATION: The facility for
batched compilation of programs and
a new compiler option, OBJNM.

LINK-EDITING: A changed method of
link-editing library routines into
an object program, facilitating
both the link-editing of PLII
object modules from a library and
the use of overlay technique with
PLII object modules.

MIXED DEFINING: The severity of
diagnostic messages for defined
data of type different from the
type of the base is reduced from
terminal to error, permitting the
compilation of programs using mixed
defining.

Changes at Fourth Version

The most significent changes for the fourth
version of the compiler are:

LOCATE I/O AND LIST PROCESSING: The
following language is now
supported:

262

Statements and options:

READ FILECfilename)
SETCpointer-variable)
[KEYCexpression)IKEYTO
(character-string-variable)];

LOCATE based-variable
FILECfilename)
[SET(pointer-variable)]
[KEYFROMCexpression)];

REWRITE FILECfilename);

ALLOCATE based-variable
[inCarea-variable)]
(SETCpointer-variable)];

FREE based-variable
(INCarea-variable)]J

Assignment:

AREA to AREA

POINTER/OFFSET to POINTER/OFFSET

Attributes:

AREA[(expression)]
BASEDCpointer)
OFFSETCbased-variable)
POINTER
REFERCidentifier)

Built-in functions:

AD DR
EMPTY
NULL
NULLO

Condition:

AREA

Operation:

-> in 60-character set
PT in 48-character set

ASYNCHRONOUS OPERATIONS AND MULTITASKING:
The following language is now
supported:

Statements and options:

CALL statement with TASK, EVENT,
and PRIORITY options in any
combination

WAIT statement extended to allow
array names in the event list

DISPLAY statement with REPLY and
EVENT opt.ions

UNLOCK statement

NOLOCK option in READ statement

Assignment:

EVENT to EVENT

Attributes:

EVENT
EXCLUSIVE
TASK

Built-in functions/pseudo-variables:

COMPLETION
PRIORITY
STATUS

Mul titasking is supported by the r1VT
system

Multiprocessing

DATi~ INTERCHANGE: The COBOL option in the
ENVIRONMENT attribute: the
ALIGNED/UNALIGNED attributes (for
FORTRAN data interchange).

ASSJ~MBLER SUBROUTINES: A variable-length
argument list can be passed to
assembler subroutines invoked by a
PUI program.

STRING HANDLING: The STRINGRANGE
condition for use with SUBSTR: the
STRI~G function.

STR~~AM I/O: LINESIZE, SKIP, and COLUMN in
non-PRINT files: PUT DATA with no
data list.

RECORD I/O: Some types of VARYING string
may be used with the INTO or FROM
options: the KEY option in the
DELETE statement is now optional.
The DELETE statement is now
supp0rted for INDEXED data sets
using SEQUENTIAL access. The new
ENVIRONMENT options (INDEXAREA,
NOWRITE, and REWIND) provide
improved performance.

COMPILER OPTIONS: SIZE and SORMGIN have
been changed, and four new options
(OPLIST, EXTDIC, MACDCR, and NEST)
have been 'added.

COMl)ILE-TIME OPTIMIZATION:
Macro-processor concatenations are
improved.

OBJ:~CT PROGRAM OPTIMIZATION: Constant
subscript and constant expression
evaluation; some instances of .
VARYING strings in assignment:
in-line code for some VARYING
string operations: prologue
optimization: in-line handling of
certain data conversions and some
bit-string assignments:
rounding-off (instead of
truncation) for E- and F-format
outptlt:dope vector initialization
impr9ved: optimization of some IF
statements

LIs/rING IMPROVEMENTS: More details in
attribute listings: aggregate
listing in alphabetical order:
sizes of the STATIC and program
control sections are given; the
size of each DSA is given;
statement number provided in
diagnost;i.c m~ssage for invalid
pictures; improvements in aggregate
length table for BASED items.

PROGRAM RESTARt,,: The operating system
checkpoint/restart facility is
available under PCP.

EVALUATION OF EXPRESSIONS: The order of
priority is changed: concatenation
now comes before the comparison and
logical operators in the sequence
of priority.

PL/I SORT: The operating system sort
program is available for use with
PL/I programs.

Note: In multitasking the action taken by
the conditions ERROR and FINISH, and the
statements .EXIT and STOP vary significantly
between the third and fourth versions. The
following descriptions refer to the fourth
version.

ERROR condition: if raised in a major
task, FINISH is raised: if in any
other task, that task is
terminated.

FINISH condition: execution of the
interrupted statement is resumed.

EXIT statement: causes immediate
termination of the task containing
this statement, and all tasks
attached by this task. If in a
major task, it has the same effect
as STOP.

STOP statement: raises FINISH and causes
immediate termination of the major
task and all subtasks.

Changes at Fourth Version, Release 17

The most significant changes for the fourth
version at Release 17 are:

RECORD I/O: Spanned records (VS- or
VBS-format) can be specified to
span blocks.

Generic keys (GENKEY option) can be
specified to access groups of
records on an INDEXED data set.

PL/I SORT: User control or SORT ddnames
for multiple use of PL/I SORT
within a single job step is
provided.

MULTIPROCESSING: More than one PUI task
may be executed simultaneously by a
multiprocessing system.

PROGRAM RESTART: Improved
checkpoint/restart facilities are
supported by PCP and MVT systems.

CATALOGED PROCEDURES: Changes to some
condition codes and to the dsnames
for temporary data sets have been \

Appendix C: Versions of the PL/I (F) Compiler 263

incorporated into the PL/I
cataloged procedures.

Changes at Fourth Version, Release 18

The.most significant changes for the fourth
version at Release 18 are:

COMPILER STATISTICS: Additional
information is given in the listing
to facilitate the automatic
collection of statistics about the
use of the operating system.

DEDICATED WORKFILES: With the MVT control
program, a dedicated workfile can
be substituted for workspace data
sets.

LINKAGE LOADER: A new operating system
service program, the linkage
loader, can be used as an
alternative to the linkage editor.

CATALOGED PROCEDURES: Two new cataloged
procedures are introduced: P:L1LFCG
and PL1LFG; both for use with the
linkage loader.

MULTIPLE CONSOLE SUPPORT (MCS): Fo:r an
installation that has MCS, system
messages can be displayed on one or
more consoles.

MESSAGE LEVEL PARAMETER: The MSGLEVEL
parameter in the JOB stateme:nt can
have additional values.

Changes at Fifth Version

The most significant changes for the fift.h
version are:

TELEPROCESSING: The following language is
now supported:

File attributes:

ENVIRONMENT Options: G(max.
length) R(max. length)

TRANSIENT

ON-conditions:

PENDING

ASYNCHRONOUS OPERATIONS AND MULTITASKING:
The following is now supported:

Task management:

264

Protection between tasks when
executing 'soft' code in a
multiprocessing environment

PRTY parameter in the EXEC
statement

PRIORITY pseudo-variable enables
priority of any task to be changed

OBJECT PROGRAM OPTIMIZATION: Optimization
of DO-loops for faster operations;
implementation of halfword binary;
some in-line conversions; improved
assignment code for fixed decimal
data; improved edit I/O for F- and
E-formats; improved register
allocation.

OBJECT PROGRAM TERMINATION: The specified
task asynchronous exit (STAE)
feature for abnormal terminations
in single and multitasking.

DATA SET DESCRIPTION: TRKOFL (track
overflow) and NCP (number of
channel programs) have been added
to the list of options in the
ENVIRONMENT attribute.

PROGRAM RESTART: The operati:ng system
checkpoint/restart facility is now
available under PCP, MFT, and MVT.

IMPROVED FLOATING-POINT ENGINEERING
CHANGE (IFPEC): Implementation of
this feature has produced increased
precision and faster execution for
computational subroutines.

DATA EDITING:

Built-in functions:

TRANSLATE
VERIFY

PL/I LIBRARY: Selected library modules
may now,be stored permanently in
main storage for MFT and MVT.

STRING HANDLING: STRING pseudo-variable.

FUNCTION REFERENCES: Mandatory RETURNS
attribute on PROCEDURE and ENTRY
statements.

BASED STRUCTURES: Improved precision for
FIXED BINARY data used with the
REFER option.

CATALOGED PROCEDURES: New cataloged
procedures (PL1LFG and PL1LFCG):
dedicated ·workfiles.

ABBREVIATIONS: The following
abbreviations for file attribute
keywords are accepted:

Keyword

BUFFERED
EXCLUSIVE
SEQUENTIAL
UNBU~"FERED

Abbreviations

BUF
EXCL
SEQL
UNBUF

Changes at Fifth Version, Release 19

The mos·t significant changes for the fifth
version at Release 19 are:

In-stream procedure: Provision to test
programmer-written procedures as
in-stream procedures before being
placed in the procedure library.

Model 195 support: New compiler options
to support Model 195.

Step Ilbend facility: Enables system to
issue a STEP ABEND after an
abnormal termination from any task
when the termination is caused by
the ERROR condition, and no ERROR
on-unit is established.

Synta}c Check option: Provision made to
terminate compilation after the
syntax checking is completed.
conditional on the error severity
specified.

7 tra<::k tape default: Default changed
from 200 b.p.i •• to 800 b.p.i.

Changes at Fifth Version, Release 20

All chrulges at the fifth version for
Release 20 are minor changes resulting
from maintenance of the compiler and this
publicat.ion.

Compatil?ility between Different Versions of
the PL/j~ Library and compiled Code

Certain changes and improvements have been
made to PL/I. the compiler. and the library
between the five versions of the compiler.
As a result. certain incompatibilities have
unavoida.bly arisen between library modules
of the different versions." The purpose of
this compatibility statement is to make
clear to the user what incompatibilities
exist. and how the problems raised by them
can be overcome.

Sevelral changes in the fifth version
prevent this version from being completely
compatible with earlier versions:

1. Fixed binary variables with a
precision less than 16 are now aligned
on half word boundaries and are two
bytes long. Fixed binary variables
with a precision of 16 or more are
aligned. as before. on fullword
boundaries and are four bytes long.
Therefore. the boundary alignments
obtained in this version of the
compiler for fixed binary data with a
precis'ion of less than 16 may differ
from those obtained in a previous
version. Programs based on previous
versions may have to be recompiled if
they contain fixed binary data. or
make calls to modules IHESRT. IHEDUM.
IHESAR. and IHETSA. These modules
should have their fixed binary
arguments re-declared with a precision
greater than 15.

2. A change to the multitasking support
in this version will provide faster
execution for the PL/I user in a
multiprocessing environment.
Re-compilation is not necessary:
re-link-edit is.

3. If a function reference returns a
value. the entry-point name for the
function reference must be declared
with the RETURNS attribute. Programs
compiled by earlier versions of the
compiler without such a declaration
will generate a warning message.

4. The restrictions on fixed binary
variables in the REFER option have now
been lifted. and such variables may be
fixed binary integer variables of any
precision. Both variables must be of
the same precision.

Two definite compatibility statements
can be made about the compilers in general:

1. compiled code from any version of the
compiler must always be executed using
a library of the same version or a
later version.

2. Library modules of different versions
can be mixed only in the following
circumstances:

a. All link-edited modules must be of
the same version as each other.
and

b. All dynamically linked or loaded
modules must be of the same
version as each other and must be
of at least as late a version as
the link-edited modules.

Unless a user has link-edited PL/I
external procedures with modules from a
PL/I library and placed them in a private

Appendix C: Versions of the PL/I (F) Comp~ler 265

library for future use with main programs
compiled by a later version of the
compiler, these incompatibilities should
cause no problems. Provided the user has
installed the latest compiler and library
components, all future link-editing
operations will result in the incorporation
of the correct library modules. If,
however, he has link-edited some of his
external procedures, then, if he intends to
use them in conjunction with a main program
containing later- version library modules,
he must remove the earlier-version library
modules from them.

Two methods may be employed to carry
this out, one temporary and the other
permanent:

1. The linkage editor map for the
external procedure is examined to see
whether any library modules have been
incorporated in the load module; t.hese
can be identified by the initial
letters IHE. If there are no library
modules present in the load module, no
further action is required. If

266

library modules are present, then
every time a main program needs to use
the external procedure, it should be
link-edited with it. using INCLUDE
cards naming the library modules which
are to be replaced (i.e., all of them)
and an INCLUDE card naming the
external procedure itself. (The
latter must be a separate card and it
must follow the INCLUDE card for the
library modules.) This will result in
the incorporation of the correct
later-version library modules and then
the external procedure itself. This
method is temporary.

2. The permanent method is to link-edit
the external procedure using the
replace facility on the NAME card. In
other words, the linkage editor is
executed using the INCLUDE cards
naming the library modules which are
to be replaced, followed by an INCLUDE
card naming the external procedure,
followed by a NAME card naming the
external procedure with the replace
option.

Control Progra,m Options

Figure 1)-1 shows the control program
options which may be added in order to
provide greater performance and/or
programning flexibility for the various
features of PL/I. These exclude
input/output features.

r------------T'----------------------------,
I PL/I Ffeature I Control Program Option2. I
~------.------+,----------------------------~
I WAIT I Multiple WAIT I
I I I
I Taskin«;r I M\TT I
I I I
ITIME, DATE I Timing: A. Time I
I I I
ITlME, DATE, I Timing: B. Interval timing I
I DELAY I I
~--_--._-----.L----------------------------"
I2.See tllle publication IBM Systeml360 I
I Opera·tinq System: .StoraqeEstimates I
I for further details of these options. I L ______ . ___________________________________ J

Figure :0-1. Control Program Options

Appendix D: System Requirements

Machine Requirements

The PL/I (F) compiler requires an IBM
System/360 Model 30 or higher with at least
64K bytes of main storage, of which at
least 44K bytes should be allocated to the
compiler by means of the SIZE compiler
option. The PL/I (F) compiler also
requires at least one direct-access device,
and an operator console.

The use of certain operating system
features requires additional main storage
and resources. A table listing the minimum
requirements of such features is given
below (Figure 0-2).

Appendix D: System Requirements 267

r------------------T-------------T-------------T-------------T'--------------------------,
, Facilities , Control IMain storage ,Systeml360, Resources required 1
1 , program 1 required 1 model , I
~------------------+-------------+-------------+-------------+-------------------------.-~
r , I , ,i. central processing uni1t.1
I , , , I Operator's console ,
I I PCP I 64K , 30F I Card reader punch I
I I 1 I I Direct-access storage I
I I I I I device I
IBatched processing 1 I I I printer I
1 .-------------+-------------+-------------+--------------------------~
, 'MFT I 128K , 40G 1.2. As for 1 I
1 - ~---,-----,-----+-------------+-------------+-------------------------.-~
I I MVT I 256K I 40H 13. As for 1, with interval,
, , I I I timer I
~------------------+-------------+-------------~-------------~--------------------------~

1 PCP I Not available: QTAM requires MFT or MVT I
~----·---------+·-------------T-------------T--------------------------~ , , , 14. As for 2, with ,
I I I , Direct-access storage I
I I 1 , device for message I

Teleprocessing , MFT I 128K 1 40G I queues I
I I (see Fig.O-3)I I Communication terminals I
, , , I with adapter or control I
, I I I units I
~--------,-----+-------------+-------------+---------------------------~
I MVT I 256K I 40H 15. As for 4, with interval I
I I (see Fig.D-3)I SOl I timer I

.------------------+-------------+-------------~-------------~--------------------------i
I I PCP I Not available: ,MCS requires MFT or MVT I
I ~-------------+------------T-------------T---------------------------~
IBatched processing, MFl' , 128K I 40G 16. AS for 2, with up to 3:JLI
Iwith multiple I I I I extra operator's I
Iconsole support , I I I consoles I
, (MCS) .-------------+--------------+------------+----------------------------i
I I MVT . I 256K , 40H 1"l.AS for 6 I
.----------------+-------------+--------------+-------------+---------------------------i
I Multiprocessing I MVT I 2x256K I 2x40H 18. As for 3 except that I
I I I I , two CPUs and two I
I , , I , operator's consoles I
, , , I , are required I
~------------------~-------------~-------------~-------------~--------------------------·i ,Notes on resources:
I
11. Direct-access storage devices for PCP, MFT, and MVT. ,
12. Printer: 1403 and 1443, with chain (HN, PN, or QN) or bar (S2H or 63-character).
I
13. Character set: EBCDIC or USACII-8.
I
14. Operator's console: 1052 print:er keyboard model 7 (with dual case printing element)
I with 2150 console or with 1052 adapter; composite consoles currently supported;
I 2250 console; model 85 integrated operator's console 220C. L _______________________________________ . __ .

Figure 0-2. Minimum System Requirements

268

PCP (64K)

DYNAMIC AREA

'--.---"'----' \.'--------...... r----------',
T y

12 K 52 K

MFT (128K)

/
DYNAMIC AREA

32 K 50K

MVT ,(256K +)

J I
I

AREA)
I

l I

"L--. ___ y,--____ ...J, \.\....-------..
Y

qOK I04K
lAPPROX)

PARTITION V POSSIBLY USED
WRITER I 0"'- FOR

TELEPROCESSING

16K 30K

/ POSSIBLY USED FOR TELEPROCESSING ,
REGION 0 WRITER I

(52 K)

16K

WRITER 2

16K

MASTER
SCHEDULER

32K
(APPROX)

Note: the MFTand MVT diagram show the possible configurations with the teleprocessing
facili~f. As teleprocessing requires a minimum of two partitions or regions, the space
available in the dynamic area may not be sufficient w-ith the minimum configurati9n.

Figure]0-3. possible Minimum Configura"tions of Main storage

Appendix D: System Requirements 269

Appendix E: PL/I Library Subroutines

The following list comprises all the library modules provided for Version 5 of the PL/I
(F) compiler. It gives the length in bytes of each module; and a brief description of
its function. All the modules are resident in system libraries in auxiliary storage,
either in the PL/I subroutine library (SYS1.PL1LIB), or in the link library
(SYS1.LINKLIB). Those modules marked * reside in the link library.

Module

IHEABN

IHEABU

IHEABV

IHEABW

IHEABZ

IHEADD

IHEADV

IHEAPD

IHEATL

I HEATS

IHEATW

IHEATZ

IHEBEG

IHEBSA

IHEBSC

IHEBSD

IHEBSF

IHEBSI

IHEBSK

IHEBSM

IHEBSN

IHEBSO

IHEBSS

IHEBST

IHEBSV

IHECFA

270

Length

12

184

544

128

128

216

96

360

536

408

304

296

136

296

272

192

480

296

472

384

192

312

240

512

408

160

ABEND option

ABS (complex fixed-point binary)

ABS (complex fixed-point decimal)

ABS (complex short floating-point)

ABS (complex long floating-point)

ADD (real fixed-point decimal)

ADD (complex fixed-point decimal)

Conversion (real fixed-point decimal)

ATAN and AT AND (real long floating~point)

ATAN and ATA,ND (real short floating-point)

ATAN and ATANH (complex short floating-point)

ATAN and ATANH (complex long floating-point)

Messages to operator

AND (byte-alignej bit strings)

Comparison (byte-aligned bit strings)

CompariBon (bit strings, any alignment)

Boot

INDEX (bit strings)

Bit-string (assignment, concatenation, REPEAT)

Bit-string (assignment, padding)

NOT (byte-aligned bit string)

OR (byte-aligned bit strings)

SUBSTR (bit string)

TRANSLATE (bit string)

VERIFY (bit string)

ONLOC

IHECFB

IHECFC

IHECKP

* IHECLS

* IHECLT

IHECNT

IHECSC

IHECSI

IHECSK

IHECSM

IHECSS

IHECST

IHECSV

* IHEC'rT

IHEDBN

IHEDCN

IHEDDI

IHEDDJ

IHEDDO

IHEDDP

IHEDDT

IHEDIA

IHEDIB

IHEDID

IHEDIE

IHEDIL

IHEDIM

IHEDIMA

IHEDNB

IHEDNC

IHEDOA

IH~D()B

IHEDOD

Length

576

88

184

922

1298

72

200

168

320

280

224

304

198

1718

344

495

1248

448

648

640

760

584

280

448

456

48

528

248

248

632

224

328

296

Description

ONCODE

ONCOUNT

Checkpoint (CALL IHECKPT)

Closing files (Versions 1, 2, and 3 only)

Closing files

COUNT/LINENO

Comparison (two character strings)

INDEX (character string)

Character string (concatenation, REPEAT)

Character string (assignment, HIGH, LOW)

SUBSTR (character string)

TRANSLATE (character string)

VERIFY (character string)

Closing files

Conversion (bit string to arithmetic)

Conversion (character string to arithmetic)

Stream-oriented transmission

Array handling

Data-directed output

Array handling

Data-directed output

Edit-directed input

Edit-directed input

Edit-directed input

Edit-directed input

Edit-directed input

Edit-directed input

Conversion (arithmetic data)

Conversion (arithmetic to bit string)

Conversion (arithmetic to character string)

Edit-directed output

Edit-directed output

Edit-directed output

Appendix E: PL/I Library Subroutines 271

Module

IHEDOE

IHEDOM

IHEDSP

IHEDUM

IHEDVU

IHEDW

IHEDZW

IHEDZZ

IHEEFL

IHEEFS

* IHEERD

* IHEERE

* IHEERI

* IHEERN

* IHEERO

* IHEERP

IHEERR

* IHEERS

* IHEERT

* IHEESM

* IHEESS

IHEEXL

IHEEXS

IHEEXW

IHEEXZ

IHEHTL

IHEHTS

IHEIBT

IHEIGT

IHEINT

IHEIOA

IHEIOB

IHEIOC

272

224

584

612

280

408

576

104

104

736

384

720

1704

896

4096

856

1208

1816

848

712

1768

1960

456

256

136

136

272

192

576

1340

436

360

480

288

Edit-directed output

Edit-directed output

Messages to operator

Main storage dump (CALL IHEDUMC, IHEDUMJ, IHEDUMP, IHEDUMT)

DIVIDE (complex fixed-point binary)

DIV'IDE (comp1ed fixed-point decimal)

Division (complex short floating-point)

Division (complex long floating-point)

ERF, ERFC (real long floating-point)

ERF, ERFC (real short floating-point)

Execution-time error messages

Execution-time error messages

Execution-time error messages

Execution-time error messages (Versions 1 and 2 only)

Execution-time error messages

Execution-time error messages

Error and interrupt handling

Execution-time messages (SNAP)

Execution-time error messages

Execution-time messages (SNAP, CHECK)

Execution-time messages (SNAP, CHECK: Version 2 only)

EXP (real long floating-point)

EXP (real short floating-point)

EXP (complex short floating-point)

EXP (complex long floating-point)

ATANH (real long floating-point)

ATANH (real short f10atifig-point)

stream-oriented output (PUT)

Record-oriented transmission (multitasking)

Record-o:rient.ed transmission (multitasking)

Stream-oriented input (GET)

Stream-oriented output (PUT)

stream-oriented transmission (STRING)

IHEIOD

IHEIOE

IHEIOF

IHEIOG

IHEIOH

* IHEIOJ

IHEION

IHEIOP

IHEIOX

* IHEI'rB

* IHEI'l~
* IHEI'I'D

* IHEI'rE

* IHErrF

* IHEI'I'G

* IHEI~I'H

* IHEI'I'J

* IHEI~rK
* IHEI'l"'L

* IHErrp

IHEJXI

IHEJXS

IHEKCA

IHEKCB

IHEKCD

IHELlDI

IHELOO

IHEL1~

IHELlNS

IHEVNW

IHELlNZ

IHEL:SP

IHEM'91

Length

640

176

736

1104

200

1992

248

488

328

3772

2604

2270

1760

1845

1122

2610

2650

622

492

874

320

104

1560

1464

256

2072

1048

360

256

268

288

1064

344

Description

Edit-directed transmission

Implicit OPEN (Versions 1,2,3 only)

Stream-oriented input

Record-oriented transmission

BDAM/BISAM housekeeping (Version 2 only)

BSAM housekeeping (Versions 2,3 only)

Record I/O transmitter

PAGE option/format

SKIP option

BSAM/CONSECUTIVE or REGIONAL UNBUFFERED interface

BSAM/REGIONAL SEQUENTIAL (output) interface

QISAM/INDEXED SEQUENTIAL interface

BISAM/INDEXED DIRECT interface

BDAM/REGIONAL DIRECT interface

QSAM/CONSECUTIVE RECORD BUFFERED interface

BISAM/I~DEXED DIRECT (multitasking) interface

BDAM/REGIONAL DIRECT (multitasking) interface

QSAM/READ spanned records

QSAM/WRITE spanned records

QTAM/teleprocessing interface

Initialize and address arrays

Finds first and last elements of array

Checks decimal picture specifications

Checks sterling picture specifications

Checks character picture specifications

List-directed input director

List-directed output director

LOG (x) (real long floating-point)

LOG (x) (real short floating-point)

LOG(z) (complex short floating-point)

LOG(z) (complex long floating-point)

List processing storage management

Model 91 execution-time error routines

Appendix E: PL/I Library subroutines 273

Module Length

I HEMAl 8

lHEMPU 240

IHEMPV 288

IHEMSI 32

IHEMST 32

IHEMSW 136

IHEMXB 96

IHEMXD 120

IHEMXL 96

IHEMXS 96

IHEMZU 240

IHEMZV 672

IHEMZW 64

lHEMZZ 64

IHENL1 280

IHENL2 192

IHEOCL 1338

IHEOCT 2190

* IHEOPN 920

* IHEOPO 1828

* IHEOPP 1874

* IHEOPQ 1296

* IHEOPZ 992

lHEOSD 216

IHEOSE 80

lHEOSI 72

IHEOSS 56

IHEOST 88

lHEOSW 1060

IHEPDF 144

IHEPDL 88

IHEPDS 88

IHEPDW 120

274

Addresses IHEBEG if no main procedure

MULTIPLY (complex fixed binary)

MU:LTIPLY (complex fixed decimal)

'STIMER unavailable' message

'TIMER wlavailable' message

I/O event counter (multitasking)

MAX (real fixed-point binary)

MAX (real fixed-point decimal)

MAX (real long floating-point)

MAX (real short floating-point)

Z1. *z:,a (c<:>mplex fixed-point binary

z1.*z:,a (complex fixed-point decimal)

z1.*z:,a (complex short floating~point)

Z1.*z:,a (complex long floating-point)

ALL or ANY for simple array

ALL or ANY for interleaved array

Explicit/implicit open/close (non-multitasking)

Explicit/implicit open/close (multitasking)

Implicit/explicit open routine

Implicit/explicit open routine

Implicit/explicit open routine

Implicit/explicit open routine

Format director: REGIONAL DIRECT output

Obtain current date

Terminate current task abnormally

Invoke STIMER (with WAIT if required)

Terminate job step abnormally

Obtain time of day

EVENT counter (non-multitasking)

PROD (real fixed-point binary/decimal) interleaved array

PROD (real long floating-point) interleaved array

PROD (real short floating-point) interleaved array

PROD (complex short floating-point) interleaved array

IHEPDX

IHEPDZ

IHEPRT

IHEPSF

IHEPSL

IHEPSS

IHEPSW

IHEPSX

lHEPSZ

IHEPTT

IHEFtES

IHESAP

IHESHL

IHESHS

IHESIZ

IHESMF

IHESMG

IHESMH

IHESMX

IHESNL

IHESNS

IHESNW

IHESNZ

IHESQL

IHE8QS

IHESQW

IHES:QZ

IHESRC

IHESRD

IHESRT

IHESSF

IHESSG

IHESSH

Length

272

120

656

160

72

72

96

256

96

768

100

2488

248

192

16

136

128

128

224

416

320

320

368

160

168

152

144

344

128

1348

168

104

104

Description

PROD (complex binary or decimal) interleaved array

PROD (complex long floating-point) interleaved array

COPY/error message via SYSPRINT

PROD (real fixed-point binary/decimal) simple array

PROD (real long floating-point) simple array

PROD (real short floating-point) simple array

PROD (complex short floating-point) simple array

PROD (complex binary or decimal) simple array

PROD (complex long floating-point) simple array

COPY/error message via SYSPRINT (multitasking)

Checkpoint/restart interface

storage management (non-multitasking)
\

SINH (real long floating~point)

SINH (real short floating-point)

Length of PRV in Register 1

SUM (real binary or decimal) interleaved array

SUM (real short floating-point) interleaved array

SUM (real long floating-point) interleaved array

SUM (complex binary or decimal) interleaved array

SIN (real long floating-~oint)

SIN (real short floating-point)

SIN (complex short floating-point)

SIN (complex long floating-point)

SQRT (real long floating-point)

SQRT (real short floating-point)

SQRT (complex short floating-point)

SQRT (complex long floating-point)

Passes data to condition functions

Passes data to ONKEY function

Sort/merge interface

SUM (real fixed-point binary/decimal) simple array

SUM (real short floating-point) simple array

SUM (real long floating-point) simple array

Appendix'E: PL/I Library Subroutines 275

Module

IHESSX

IHESTA

IHESTG

IHESTP

IHESTR

• IHESUB

I HE TAB

IHETCV

IHETEA

IHETER

IHETEV

* IHETEX

IHETHL

IHETHS

IHETNL

IHETNS

IHETNW

IHETNZ

• IHETOM

IHETPB

IHETPR

IHETSA

IHETSE

IHETSS

IHETSW

IHEUPA

IHEUPB

IHEVCA

IHEV'CS

IHEVFA

IHEVFB

IHEVFC

IHEVFD

276

Length

216

1124

1108

1432

1592

16

16

208

248

272

240

1464

280

200

344

272

184

184

493

56

268

5720

88

72

1520

192

232

272

480

232

224

40

88

Description

SUM (complex fixed-point binary/decimal) simple array

Abnormal termination error message

Length of structure string

Assigns bit/character string to string pseudo-variable

structure address and length

Subtask initialization interface

Default table for tabulation

Controlled variable storage (multitasking)

Event variable assignment

ON-field search (multitasking)

COMPLETION pseudo-variable

Active task terminated message

TANH (real long floating-point)

TANH (real short floating-point)

TAN (real. long floating-point)

TAN (real. short floating-point)

TAN (complex short floating-point)

TAN (complex long floating-point)

Operator messages

PRIORITY built-in function

PRIORITY pseudo-variable

object program management (multitasking)

Abnormally terminates current task

Terminates PL/I program abnormally (multitasking)

EVENT counter (multitasking)

Complex data item

Complex numeric field

Defines attributes of arithmetic data in character form

Conversion director (complex data-string)

Radix conversion: binary to decimal

Conversion (long-float to fixed-point binary)

Conversion (long-float to floating-point variable)

Conversion (fixed-point binary to long floating-point)

IHEVFE

IHEVKB

IHEVKC

IHEVKF

IHEV.KG

lHEV~PA

IHEVPB

IHEVPC

IHEVPE

IHEVPF

IHEVPG

IHEVPH

IHEVQA

IHEVQB

IHEVQC

IHEVSA

IHEVSB

IHEVSC

IHEVSD

IHEVSE

IHEVBF

IHEVTB

IHEXIB

IHEXID

IHEXIL

IHF.XIS

IHEXIU

lHEXIV

IHEXIW

IHEXIZ

lHEXXL

IHEXXS

Length

32

736

720

1504

1248

352

408

492

264

616

72

560

184

208

1004

600

320

208

176

416

352

240

136

88

136

152

152

120

192

256

256

152

144

Description

Conversion (float-point to long floating-point)

Conversion (float-point decimal to packed decimal)

Conversion (sterling to packed decimal)

Conversion (packed decimal to fixed/floating~point)

Conversion (packed decimal to sterling)

Conversion (packed decimal to long floating-point)

Conversion (packed decimal to F-format)

Conversion (packed decimal to E-format)

Conversion (packed decimal to decimal)

Conversion (F-, E-format to packed decimal)

Conversion (decimal to packed decimal)

Conversion (binary fixed/floating-point to 10n9
floating-point)

Conversion (bit string to long floating-point)

Conversion (floating-point to binary)

Conversion (decimal constant to coded arithmetic)

Conversion (coded arithmetic to F-. E-format/character string)

Assignment (bit string to bit string)

Conversion (bit string to character string)

Assignment (character string to character string)

Conversion (character string to bit string)

Assignment (character string to picture string)

conversion (bit string to picture string)

Float-point table for conversions

X**n (binary to integer)

X**n (decimal to integer)

X**n (long floating-point to integer)

X**n (short floating-point to integer)

Z**n (complex binary to integer)

Z**n (complex decimal to integer)

Z**n (complex short floating-point to integer)

Z**n (complex long floating-point to integer)

x**y (long floating-point)

x**y (short floating-point)

Appendix E: PL/I Library subroutines 277

Module Length Qescr!.Etion

IHEXXW 280 Z~**Z2 (complex short floating-point)

IHEXXZ 280 Z~**Z2 (complex long floating-point)

IHEYGF 432 POLY (binary or decimal)

lHEYGL 240 POLY (long floating-point)

IHEYGS 240 POLY (short floating-point)

IHEYGW 280 POLY (complex short floating-point)

IHEYGX 688 POLY (complex binary or decimal)

IHEYGZ 280 POLY (complex long floating-point)

* IHEZZA 1296 SNAP dump index (I) (Version 3 only)

* IHEZZB 1704 SNAP dump index (II) (Version 3 only)

* IHEZZC 2960 SNAP dump cont.rol routine

* IHEZZF 1596 Save-area trace for SNAP

278

Introduction

The sheared library feature enables certain
presel1ected PL/I subroutine library modules
to be ishared between two or more PL/I
progralrklS being executed under the control
of an l~T or MVT control program of the
operat:ing system.

The presel~cted group of modules is made
resident in main storage (in the resident
access method area for MFT" and in the
link-pi:tck area for MVT).

To create a shared library you must
specify the modules that you require when
you generate your operating 'system. You do
this by means of a system generation macro
instruction. The system generation process
will link-edit these modules together with
a tranl3fer vector module, into a load
module which is given the entry-point name
IHELTV1\, and stored in auxiliary storage in
the link library, SYS1.LINKLIB.

The load module can be subsequently
loaded permanently into main storage during
initial program load. This load module is
a reent.rant load module and your
installation must be able to make this type
of module resident during initial program
load1..

To .:!xecute a PL/I program using the
shared library, you must ensure that a
dummy t.ransfer vector module is link-edited
to YOUJc program in order to resolve all
references to the shared library modules.
You do this by specifying the entry-point
name IHELTTA for your PL/I program. This
dummy 1:.ransfer vector module is also
created during system generation and is
also stored in auxiliary storage in the
PL/I subroutine library, SYS1.PL1LIB.

You can use the shared library by either of
two me1:.hods:

1.For mc)re information on making reentrant
load modules resident during initial
program load refer to IBM System/360
Operating System: System Generation, and
IBM "SYBtem/360 Operating system: system
Programmer's ,Guide.

Appendix F: Shared Library

1. By using standard IBM-supplied
cataloged procedures and overriding
the link-edit and loader job steps.

2. By providing your own cataloged
procedures.

These methods and their required coding are
described below.

How to Create a Shared Library

The PL1LIB System Generation Macro
Instruction

To create a shared library, you must
specify the modules that you require
you generate your operating system.
this by means of a system generation
instruction, PL1LIB2.

when
You do
macro

To facilitate selection of modules
required for your shared library, the PL/I
subroutine library modules have been
divided into 36 groups. Each group
comprises modules that have associated
functions, as shown in Figure F-1.

You cannot specify modules in Group 1
because these are housekeeping, string
function, or stream input/output modules
that cannot be used in a shared library;
they are termed 'non-shareable' modules.

Group 2 modules will be included
automatically during system generation if
you have specified a multitasking shared
library, or group 3 modules if you have
specified a non-multitasking shared
library.

You can specify any of the remaining
groups (Groups 4 through 36) in any
combination to form a shared library to fit
your needs. You should specify only
frequently used groups of modules to make
best use of the shared library feature.

2 For more information on the PL1LIB macro
instruction refer to IBM System/360
Operating system: system Generation

Appendix F: Shared Library Cataloged Procedures 279

r-------T--, I GROUP I MAIN FUNCTIONS OF GROUP I
~-------+--~

1 Non-shareable modules
2 Multitasking storage management
3 Non-multitasking storage mangement
4 Error handling (ON-units)
5 List processing and struc·ture mapping
6 Basic conversion package
7 Edit conversions
8 Complex conversions
9 Bit-string conversions

10 Character-string conversions
11 Picture conversions
12 Sterling conversions
13 optimization=l special conversions
14 Bit-string built-in functions
15 Character-string built-in functions
16 STRING built-in function and pseudo-variable
17 Real non-interleaved arrays
18 Real interleaved arrays
19 Complex non-interleaved arrays
20 Complex interleaved arrays
21 Real arithmetic operators
22 Complex arithmetic operators
23 Real short arithmetic built-in functions
24 Real long arithmetic built-in functions
25 Complex short artihmetic built-in functions
26 Complex long arithmetic built-in functions
27 Non-multitasking data-directed I/O
28 Non-multitasking list-directed I/O
29 Non-multitasking edit-directed I/O
30 Multitasking data-directed I/O
31 Multitasking list-directed I/O
32 Multitasking edit-directed I/O
33 Non-multitasking record I/O
34 Multitasking record I/O
35 Non-multitasking record I/O wait
36 Multitasking record I/O wait _______ i ___ _

Figure F-l. Shared-Library Module Groups IEBUPDTE~ utility program; the method of
specifying its use by the system is given
in the following paragraph. For
illustration purposes, the ~xample has been
given the user list name IEAIGG01.

Initial Program Load (IPL)

Once created, your shared library load
module is given the entry-point name
IHELTVA and is stored in auxiliary storage
in the link library, SYS1.LINKLIB. To
store this load module permanently in main
storage you must first build a new
reentrant load module user list for it in
the parameter library, SYS1.PARMLIB; and
second, you must ensure that the use of
this list by the system is specified during
initial program load. You can give this
user list a name of the form IEAIGGxx,
where xx are any two digits other than 00.
The following example of coding suggests
how you create such a list by means of the

280

//BLDLIST
//SYSPRINT
//SYSUT2
//
//
//
//SYSIN
./
./

EXEC
DD
DD

DD
ADD
NUMBER

./
/*

SYS1.LINKLIB
ENDUP

PGM=IEBUPDTE,PARM=NEW
SYSOUT=A
DSN=SYS1.PARMLIB,
UNIT=2314,
VOL=(,RETAIN,SER=MVTll1),
DISP=OLD

* NAME=IEAIGG01,LIST=ALL
NEW=01,INCR=02

IHELTVA

~For more information about the IBM utility
program IEBUPDTE refer to IBM System/360
Operating system: U·tilities

The AD)) statement identifies your shared
librar~{ load module, IHELTVA, in the new
reentrclnt load module list (IEAIGG01).:I.
When the nucleus initialization program
(NIP) J::equests the system parameters, the
operator reponds by specifying 'RAM=Ol'
(the digits 01 correspond to the last two
digits of the user list name IEAIGG01).
This rE:lSpOnSe causes your load module to be
loaded into the relevant area of main
storagE:l.

If you require both the standard and
shared library load module lists, you must
instru(~ the operator to respond to the NIP
request: for system parameters by specifying
'RAM=OO,Ol'. You should note the following
points::

• If your installation standard reentrant
load module list (IEAIGGOO) refers to
SYS1.LINKLIB and not SYS1.SVCLIB, you
can add your module entry-point name
(IlIELTVA) to this list. In this case
you do not need to create a new
procedure library list; your
shelred-library load module will be
aut:omatically stored in main storage at
initial program load.

• If your installation standard reentrant
load module list (IEAIGGOO) does not
re1:er to SYS1. LINKLIB, your system must
have been generated with the ability to
conwunicate with the operator during
initial program load. This is because
thE! operator must specify the use of
thE~ alternative list as described
above.

How tOI Use a Shared Library

When e:ll:ecuting programs using the shar ed
library you must ensure that the first
module ,to be processed by the linkage
editor or loader is the dummy transfer
vector module IHELTTA. Also ensure that
the entry-point name of the resulting load
module is specified as IHELTTA. You should
note the following points:

:l.For mClre information about reentrant load
module lists refer to IBM/360 Operating
System: system Programmer's Guide.

• You can have a shared library for
either non-multitasking or multitasking
programs. You cannot, however, use a
multitasking program with a
non-multitasking shared library and
conversely, you cannot use a
non-multitasking program with a
multitasking shared library. You
should find out whether your
installation has a multitasking or
non-multitasking shared library.

• A load module created for use with one
shared library will not execute with a
different shared library. You will
have to link-edit the object module
again, including the dummy transfer
vector module IHELTTA for the different
shared library.

• You must remember that the linkage
editor or loader require a large amount
of main storage for external symbol
dictionary tables while processing the
dummy transfer vector module IHELTTA.
If you specify SIZE=200K in the PARM
field of your EXE~ statement for the
linkage editor or loader (and use a
region or partition of equivalent
size), you will get sufficient main
storage for processing with the largest
possible shared library.

• Your PL/I program may take slightly
longer to execute when using a shared
library, because all library calls have
to pass through the transfer vectors.
However, your main storage requirements
for a region will be greatly reduced if
you have carefully selected your shared
library modules to suit the operating
environment.

• The address of your shared library
module in the link-pack area of main
storage is found by IHELTTA issuing a
LO~D macro instruction. If the
shared-library load module IHELTVA was
not made resident in main storage at
initial program load, and you try to
run your program with shared-library
job control statements, the
shared-library module will be loaded
into the region or partition. Your job
will still execute, but you will need
to specify a larger region size(MVT),
or use a larger partition (MFT).

AppendiK F: Shared Library Cataloged Procedures 281

USING STANDARD IBM CATALOGED PROCEDURES

In this method you make use of standard IBM-supplied cataloged procedures that contain a
link-edit job step or that use the linkage loader. If you use this method you must
override certain statements in ·the link-edit or loader job step of the cataloged
procedure to ensure that the shared.-library transfer module (IHELTTAJ is the first module
to be included by the linkage editor or loader. and that its entry point in the resulting
load module has the name IHELTTA.

The methods for doing this for each individual cataloged procedure differ slightly and
are described below.

Cataloged Procedures using the Lin~~gg_~ditQ~

Compile and Link-Edit (PL1LFCL)

You may use this cataloged procedure by reversing the order of concatenation of the
data sets defined in the DO statement with the name SYSLIN. This ensures that the first
module specified is IHELTTA. The suggested method of doing this is as follows:

//S
//LKED.SYSLIN
//LKED.OBJ
//LKED.LIN

/*

INCLUDE
INCLUDE
ENTRY

EXEC PL1LFCL
DD DDNAME=LIN
DO DSN=&&LOADSET,DISP=(OLD,DELETE)
DD *
SYSLIB (IHELTTA)
OBJ
lHELTTA

(add further input here)

You can add other linkage-editor control statements by placing them as indicated. If,
for example, you wish to give the resulting load module the name MINE, you should add the
statement:

NAME MINECIU

between the ENTRY and /* statements.

Note: You must not use DDNAME=SYSIN in the LKED.SYSLIN DD statement as this would be
concatenated with an identical DD statement provided by the cataloged procedure and cause
the input stream to be processed twice.

Compile, Link-Edit and Execu·te (PL1LFCLG)

This cataloged procedure can be modified for use with a shared library in exactly thE~
same way as described for PL1LFCL above.

Link-Edit and Execute (PL1LFLG)

You may use this cataloged procedure by specifying the compiled object module as the
member DECK of the partitioned data set PL1. OBJECT, as follows,:

282

//S
//LKED.OBJ
//LKED.SYSIN

EXEC PL1LFLG
DO DSN=PL1.OBJECTCDECK),DISP=SHR
DO *

/*

INCLUDE
INCLUDE
ENTRY

SYSLIB(IHELTTA)
OBJ
IHELTTA

(add further input here)

Note: Since PL1LFLG does not specify a concatenated data set for the SYSLIN DO statement
of the l~KED step, but only specifies DDNAME=SYSIN, you can specify all the link-edit
control statements by the LKED.SYSIN DO * statement.

CatalogE~d Procedures using the Linkage Loader

Compile, Load-and-Execute CPL1LFCG)

You may use this cataloged procedure by overriding the PARM parameter of the GO step
to add t;he specified entry-point IHELTTA. You must also override the SYSLIN DO statement
to pernrl.t the transfer vector module IHELTTA to be processed by the compiler object
module. The suggested method for doing this is as follows:

//S
//GO.SYSLIN
//

Load-and.·-Execute (PL1LFG)

EXEC
DO
DO

PL1LFCG,PARM.GO='MAP,PRINT,EP=IHELTTA'
DSN=SYS1.PL1LIBCIHELTTA),DISP=SHR
DSN=&&LOADSET,DISP=(OLD,DELETE)

You may use this cataloged procedure by specifying the compiled object module as the
member DECK of the partitioned data set PL1.OBJECT, as follows:

//S
//GO.SYSLIN
//

EXEC
DD
DD

PL1LFG,PARM. GO=' MAP, PRINT, EP=IHELTTA'
DSN=SYS1.PL1LIBCIHELTTA),DISP=SHR
DSN=PL1.OBJECT(DECK),DISP=SHR

PROVIDING YOUR OWN CATALOGED PROCEDURES

You can provide your own cataloged procedures for use with a shared library. The
followinq examples suggest how you might write these, basing them on the standard
IBM-supplied cataloged procedures.

For illustration purposes, the names PL1LSCL, PL1LSCLG, etc., have been chosen, but
you. could use any names you choose. Once you have written your cataloged procedures you
add them to the procedure library (SYS1.PRO~LIB) at your installation by using the IBM
utility program IEBUPDTE.

Appendix F: Shared Library cataloged Procedures 283

Cataloged Procedures using ·the Li9kage Editor

compile and Link-Edit (PL1hSCL)

when you write this cataloged procedure, you should remember that it needs a special
member in the procedure library to hold the input control data to the linkage editor. In
the example, this member is called PL1LSLD and includes the following linkage editor
statements:

INCLUDE
ENTRY

SYSLIBCIHELTTA)
IHELTTA

Your cataloged procedure might look like this:

//PL1L
//SYSPRINT
//SYSLIN
//
//SYSUT3
//
//SYSUT1
//
//LKED
//
//SYSLIB
//SYSLMOD
//
//SYSUT1
//
//SYSPRINT
//SYSLIN
//
//

EXEC
DD
DD

DD

DD

EXEC

DO
DD

DD

DD
DO
DD
DD

PGM=IEMAA,PARM='LOAD,NODECK',REGION= 52K
SYSOUT=A
DSN=&&LOADSET,DISP=,MOD,PASS.,UNIT=SYSDA,
SPACE=CSO,<250,100»
DSN=&&SYSUT3,UNIT=SYSDA,SPACE=CSO,C250,250»,
DCB=BLKSIZE=SO
DSN=&&SYSOT1,SPACE=C1024,C60,60)"CONTIG),
ONIT=SYSDA,SEP=CSYSnr3,SYSLIN),DCB=BLKSIZE=1024
PGM=IEWL,PARM='XREF,LIST',COND=C9,LT,PLIL),
REGION=96K
DSN=SYS1.PLILIB,DISP=SHR
DSN=&&GOSETCGO),UNIT=SYSDA,DISP=CMOD,PASS),
SPACE=C10214, (50, 20,1) ,RLSE)
DSN=&&SYSUT1,UNIT=SYSDA,SPACE=C1024,C200,20»,
SEP=CSYSLMOD,SYSLIB),DCB=BLKSIZE=1024
SYSOOT=A
DSN=SYS1.PROCLIBCPL1LSLD),DISP=SHR
DSN=&&LOADSET,DISP=COLD,DELETE)
DDNAME=SYSIN

Compile, Link-Edit and. Execute (PL1LSCLG)

You can write this cataloged procedure in a similar way to that described above for
PL1LSCL, remembering that again you require the special member PL1LSLD.

//PL1L
//SYSPRINT
//SYSLIN
//
//SYSUT3
//
//SYSUTl
//
//LKED
//
//SYSLIB
//SYSLMOD
//
//SYSUTl
//
//SYSPRINT
//SYSLIN
//
//
//GO
//SYSPRINT

2S4

EXEC
DO
DO

DO

DD

EXEC

DD
DO

DO

DD
DO
DO
DD
EXEC
DO

PGM=IEMAA,PARM='LOAD,NODECK',REGION=52K
SYSOOT=A
DSN=&&LOADSET,DISP=CMOD,PASS),UNIT=SYSSQ,
SPACE=CSO,(250,100»
DSN=&&SYSUT3,UNIT=SYSDA.SPACE=CSO,250,250».
DCB=BLKSIZE=SO
DSN=&&SYSUT1,SPACE=C1024,C60,60)"CONTIG),
UNIT=SYSDA,SEP=CSYSUr3,SYSLIN).DCB=BLKSIZE=1024
PGM=IEWL,PARM='XREF,LIST',COND=C9,LT,PL1L),
REGION=96K
DSN=SYS1. P:L1LIB, DISP=SHR
DSN=&&GOSET(GO),UNIT=SYSDA,DISP=CMOD,PASS),
SPACE=C1024.C50.20,1),RLSE)
DSN=&&SYSUrl,UNIT=SYSDA,SPACE=C1024,C200,20»,
SEP=CSYSLMOD,SYSLIB),DCB=BLKSIZE=1024
SYSOUT=A
DSN=SYS1.PROCLIBCPL1LSLD),DISP=SHR
DSN=&&LOADSET,DISP=,OLD,DELETE.
DDNAME=SYSIN
PGM=* • LKED. SYSI,MOD, COND= C C 9 , LT , LKED) , C 9 , LT, PL1L))
SYSOUT=A

Link-Edi"t and Execute (PL1LSLG)

Again you need the special member PL1LSLO in SYS1.PROCLIB.

//LKED
//SYSLIB
//SYSLMOD
//
//SYSUTl
//
//SYSPRINT
//SYSLIN
//
//GO
//SYSPRINT

EXEC
DD
DD

DD

DO
DD
DD
EXEC
DO

PGM=IEWL,PARM='XREF,LIST',REGION=96K
OSN=SYS1.PL1LIB,DISP=SHR
DSN=&&GOSET(GO),UNIT=SYSOA,DISP=(MOD,PASS),
SPACE=(1024,(50,20,1),RLSE)
OSN=&&SYSUT1,SP~CE=(1024,(200,20»,
UNIT=SYSDA,SEP=(SYSLMOD,SYSLIB),DCB=BLKSIZE=1024
SYSOUT=A
DSN=SYS1.PROCLIB(PL1LSLD),DISP=SHR
DDNAME=SYSIN
PGM=*.LKED.SYSLMOD,=(9,LT,LKEO)
SYSOUT=A

Cata10qel~ Proceduresusinq the -Linkage Loader

In cataloged procedures that use the linkage loader, SYSLOUT is the ddname of the
diagnostic message output data set. This name should have been specified at system
generation; if it has not, you should specify PARM = 'NOPRINT' in your EXEC statement.
If you do not specify this, and the loader was generated without the ddname SYSLOUT, the
system gives the loader diagnostic message output data set the default name SYSPRINT,
which is also the standard diagnostic message output data set name for PL/I programs. If
both the loader and a PL/I program attempt to execute DO statements with this ddname
under an MFT or MVT control program, you may lose your output or input/output errors may
occur whcen an output writer attempts to print it.

You do not need the special member PL1LSLO in the procedure library because you must
name the entry point of the resulting load module in the PARM parameter of your EXEC
statement:. •

Compile, Load-and-Execute (PL1LSCG)

In this cataloged procedure, your compiled object module is stored in the temporary data
set & &L01\DSET which is concatenated with the transfer vector module IHELTTA.

//P][,lL
//SYSPRINT
//SYSLIN
//
//SYSUT3
//
//SYSUTl
//
//GO
//
//SYSLIB
//
//SYSLOUT
//SYSPRINT

EXEC
DD
DD

DD

DD

EXEC

DD
DD
DD
DD

PGM=IEMAA,PARM='LO~OrNODECK',REGION=52K
SYSOUT=A
DSN=&&LOADSET,DISP=(MOD,P~SS),UNIT=SYSSQr
SPACE=(SO,(250,100»
DSN=&&SYSUT3,UNIT=SYSDA,SPACE=(SO,(250,250»,
DCB=BLKSIZE=SO
DSN=&&SYSUT1,SPACE=(1024,(60,60)"CONTIG),
UNIT=SYSD~,SEP=(SYSUr3,SYSLIN),OCB=BLKSIZE=1024
PGM=LOADER,PARM='MAP,PRINT,EP=IHELTTA',
REGION=96K,COND=(9,Lr,PL1L)
DSN=SYS1.PL1LIB,DISP=SHR
DSN=&&LOADSET,DISP=(OLD,DELETE)
SYSOUT=A
SYSOUT=A

Load-and--Execute (PL1LSG)

In this cataloged procedure, your compiled object module is the member DECK in the
partitioned data set PL1.0BJECT, and you may define this in the GO step as follows:

//GO.L01\'DIN DD OSN=PL1.0BJECT(OECK) ,DISP=SHR

Note: You might use the ddname LOADIN instead of SYSIN to define input to the loader,
because BYSIN may be required to define the PL/I (F) default input data set for the
program being loaded.

Appendix F: Shared Library Cataloged Procedures 2S5

Your cataloged procedure may look like this:

286

//GO
//
//SYSLIB
//SYSLIN
//
//SYSOUT
//SYSPRINT

EXEC PGM=LOADER,PARM='MAP,PRINT,EP=IBELTTA',
REGION=96K

DO DSN=SYS1.PL1LIB"DISP=SHR
DO DSN=SYS1.PL1LIB(IHELTTA),DISP=SHR
DD DDNAME=LOADIN
DO SYSOUT=A
DO SYSOUT=A

Appendix G: IBM System/360 Model 91

Note: In the following discussion, the
terms exception and interrupt are used. An
exceptio]} is a hardware occurrence (such as
an overflow error) which can cause a
program interrupt. An interrupt is a
suspension of normal program activities.
There are many possible causes of
interrupt:s, but the following discussion is
concerned only with interrupts resulting
from hardware exceptions.

IBM System/360 Models 91 and 195 are
high-speE~d processing systems in which more
than one instruction is executed
concurrently. As a result, an exception
may be dE~tected and an interrupt occur when
the addrE?!ss of the instruction which caused
the exception is no longer held in the
central processing unit. Consequently, the
instruction causing the interrupt cannot be
precisely identified. Interrupts of this
type are termed imprecise. When an
exception occurs, the machine stops
decoding further instructions and ensures
that all instruct10ns which were decoded
prior to the exception are executed before
honoring the exception. Execution of the
remainin<J decoded instructions may result
in furthe!r exceptions occurring. An
imprecisE~ interrupt in which more than one
exception has occurred is known as a
multiple-:exception imprecise interrupt.

The (F') compiler permits processing of
imprecisE! interrupts only when the compiler
option OElJIN is in effect. The option must
always apply when the compiler is used to
produce object programs for execution on a
Model 91 or 195. The effect of the option
is:

1. To cause the compiler to insert
'no-operation' instructions at certain
pOints in the program to localize
imprecise interrupts to a particular
segment of the program, thus ensuring
that interrupt processing results in
the action specified in the source
prog:ram. (A 'no-operation'
inst:ruction is an assembler language
inst.:ruction of the form BCR x, 0
(where x is not equal to' zero). This
inst:ruction is implemented in Models
91 and 195 in such a way that its
execution is delayed until all
prev'iously decoded instructions have
been executed.) 'No-operation'
instructions are generated:

a. Before an ON-statement.

b. Before a REVERT statement.

c. Before compiled code to set the
SIZE condition.

d. Before compiled code to change
prefix options.

e. For a null statement. (This
feature provides the programmer
with source language control over
the timing of program interrupts.)

f. Before every statement if the STMT
compiler option applies. (This is
an important debugging tool.)

Note: The average PLiI program can be
executed on a Model 91 or 195 without
significant degradation in execution time
or storage requirements. However, the use
of the STMT compiler option will cause both
the execution time and the object-code
storage requirements to increase in direct
proportion to the number of statements in
the program. The benefits obtained as a
result of the debugging aid that this
option gives should offset and justify
these increases.

2. To create an external symbol
dictionary (ESD) entry for the PL/I
library module IHEM91 (required only
when an object program is to be
executed on a Model 91 or 195). The
module is included when the object
module is link-edited, and it is
called when an imprecise interrupt is
detected. Module IHEM91 provides the
facilities for:

a. Detecting multiple-exception
imprecise interrupts-.

b. Setting the value that is returned
by the ONCOUNT built-in function.

c. Raising the appropriate PLiI
conditions.

The order of processing the exceptions
is as follows:

1. PL/I conditions in the order:

UNDERFLOW

FIXEDOVERFLOW or SIZE

ERROR if system action is required for
either FIXEDOVERFLOW or SIZE

Appendix G: IBM System/360 Model 91 and Model 195 287

OVERFLOW

ERROR if system action is required for
OVERFLOW

ZERODIVIDE

ERROR if system action is required for
ZERODIVIDE.

Note: The conditions FIXEDOVERFLOW and
SIZE cannot occur together, since the
same hardware condition raises both of
them.

2. Hardware exceptions in the order:

data

specification

addressing

protection

conditions and exceptions are raised in
the above order until one of the following
situations occurs:

1. A GO TO statement in an ON-unit is
executed. All other exceptions will
then be lost.

288

2. The ERROR condition is raised. If t.he
program is terminated as a result of
this action <i.e., system action
causing the ERROR condition to be
raised, followed by the FINISH
condition)rr messages will be printed
to indicate the nature of the
unprocessed exceptions. The
exceptions themselves will not be
processed.

When an interrupt results from multiple
exceptions, only one of the PL/I conditions
is raised for each type of exception that
has occurred.

When a mUltiple-exception imprecise
interrupt occurs, the ONCOUNT built-in
function provides a binary integer count of
the number of exception types, including
the current one, remaining to be processed.
(The count does not include PL/I
ON-conditions.) If the ONCOUNT built-in
function is used when only a single
exception has occurred, or if it is used
outside an ON-unit, a count value of zero
is indicated.

Programs compiled with the OBJIN
compiler option can be executed on other
IBM System/360 models supported by the IBM
System/360 Operating System.

Appendix H: Compiler Data Sets

r------·--T--, IDATA SETIAUXILIARY STORAGE REQUIREO(Approximate in that considerable variation may 1
I I result from the nature of individual source programs) 1
~------.--+--~
I SYSPUNCH I 80 * S bytes 1
~------.--+-------,--~
1 SYSLIN I 80 * S bytes 1
~--------+-----T-----------T---i I 1 1 NUMBER OF TRACKS REQUIRED 1
SYSUT1. 1 S 1 PL/I (F) ~--------------T-----------------T--------------T------------~

I 1 Operating I 2301 I 2311 I 2314 1 2321 I
I 1 in 1 Drum storage 1 Disk storage 1 Disk Drive 1 Data cell I
~-----+-----------+-------------+--...:--------------+--------------+-----------~
1 1 44K 1 4 I 8 I 4 1 22 (24) I
I 150 1 lOOK 1 0 I 0 1 0 I 0 I
I 1 20 OK 1 0 1 0 I 0 1 0 1
~-----+-----------+--------------+-----------------+--------------+------------~ I 1 44K I 14 I 31 I 16 1 92 (99) I
I 500 I lOOK 1 9 (11) 1 18 (22) 1 9 1 27 (33) 1
I 1 20 OK 1 0 I 0 1 0 1 0 1
r----+-----------+--------------+----------'-------+--------------+------------i I 1 44K I 28 I 64 1 32 I 192 (202) I
11000 1 lOOK I 34 (37) I 68 (74) 1 34 I 102 (111) 1
1 I 200K I 9 (12) I 15 (20) I 6 I 27 (28) I
~-----~----~------~--------------~-----------------~--____________ L _____ ~ _____ ~

1 Numbers in parentheses are for the EXTDIC option. since it is not I
I advisable to use this option if SIZE=44K, the figures for this value must be I
I taken as applying to a 48K main storage size. Source programs which are 1
1 large enough to cause the SYSUTl data set to be used will compile more I
I effic.iently if this data set is on a drum or in a contiguous area on a disk.. 1

~--------+--~ ISYSUT3 I 2 * R * P bytes 48-character processing I
1 I T bytes Compile-time processing I
1 I 2 * T bytes compile-time and 48-character processing 1
~--------+--i SYSPRINT 120 * (Q + R + 10*S + U + U + 30) bytes

I 1 1 1 I I
1 I I I I L------if EXTREF option specified
I I I I I '
I I 1 1 L-----------if XREF option specified
I I I I
1 I I L---------------if ATR option specified
I I I
I 1 L-------------------if LIST option specified
I I
I L--------------------------if SOURCE option specified
I
L------------------------------if SOURCE2 option specified

~------.--~--~ Key: P = Average length of record (in bytes).

Q = Number of input records (records containing source text + records
included through the compile-time INCLUDE statement).

R = Number of records containing source statements after compile-time
processing completed.

S = Number of source statements after compile-time processing completed.

T = size (in bytes) of p~p~ram after compile-time processing.

U = Number of variables in the program. ----------------__ J

Appendix H: Compiler Data sets 289

290

Appendix I: ON, Return, and User Completion Codes

ON-Codes

The ONCODE built-in function may be used by
the programmer in any ON-unit to determine
the nat:ure of the error or condition which
caused entry into that ON-unit.

An ON-unit, which has been established
by the execution of an ON-statement, is
entered when the associated ON-condition is
raised during execution of PL/I compiled
code 01: of a PL/I library module. Thus,
for eXCiLmple, a FIXEDOVERFLOW ON-unit would
be entE~red whenever any of the conditions
occur for which the language demands. the
raisin<J of the FIXEDOVERFLOW condition ..
Two ON-'conditions, ERROR and FINISH,
requi rE! special explanation.

The ERFtOR condition is raised:

1. Upon execution of a SIGNAL ERROR
st:atement.

2.. As a result of system action for those
ON-conditions for which the language
specifies system action to be 'comment
and raise the ERROR condition.'

3. As: a result of an error (for which
there is no ON-condition) occurring
during program execution.

'l'he FINISH condition is raised:

1. U~~n execution of a SIGNAL
FI:NISH,STOP, or EXIT statement.

2. Upon normal completion of the MAIN
pz.'ocedure of a PL/I program.

3. U~~n completion of the action
associated with the raising of the
EB~OR condition, except when a GO TO
st:atement in the ON ERROR unit has
re!sulted in transfer of control out of
that unit.

As a. general rule, the value of the code
return€!d by the ONCODE built-in function is
that of: the specific condition which caused
entry i.nto the ON-unit. ThUS, in an ON
CONVERSION unit, the programmer can expect
an ON-c:ode corresponding to one of the
conversion conditions which cause the
CONVERSION condition to be raised in PL/I.
However, this is not necessarily true when
executi.ng an ON-error or an ON FINISH unit;
the values are as follows:

1. When entered as a result of a SIGNAL
ERROR or a SIGNAL FINISH, STOP, or
EXIT statement, or as a result of
normal termination, the ON-codes will
be those of ERROR or FINISH
respectively.

2. When entered for any other reason, the
ON-code will be that associated with
the error or condition which
originally caused the ERROR condition
to be raised.

Several separate but related occurrences
may cause a particular PL/I ON-condition to
be raised. For example, the TRANSMIT
condition may be raised:

1. By execution of a SIGNAL TRANSMI'l'
statement.

2. By occurrence of an input TRANSMIT
error.

3. By occurrence of an output TRANSMIT
error

Although it is often useful to know
precisely what caused an ON-condition to be
raised, at times it will be sufficient
simply to know which ON-condition was
raise~ This will apply particularly if
the ONCODE built-in function is used in an
ERROR ON-unit after system action has
occurred for an QN-condition. The ON-codes
have therefore been grouped, each group
containing the codes associated with a
particular ON-condition ..

From time to time it may become
necessary or desirable to add new ON-codes
into a group. Perhaps a group containing
one ON-code only may be expanded. This
fact must be remembered when the ONCODE
built-in function is used to determine if a
particular PL/I ON-condition has been
raised. It is important to test to see
whether the ON-code is within the range
specified, even if there is only one
ON-code in the range; otherwise, when a new
set of library modules is used, it may
become necessary to recompile the program.

The ON-codes and their associated
conditions and errors are shown below. The
groups and their oN-code ranges are shown
in Figures 1-1 and 1-2. (Language
ON-conditions are shown in capitals, others
in lower case letters.)

Appendix I: ON, Return, and User Completion Codes 291

r-----------T ----------------------.-------,
I Range I Group I
~-----------+----------------------.-------~
I 3-5 I As for 1000- 9999 I
I 10-199 I I/O ON-conditions I
I 300-399 I computational ON-conditions I
I 500-549 I program check-out conditions I
I 600-899 I Conversion conditions I
I 1000-9999 I Error conditions (also 3-5) I L __________ -i _____________________________ J

Figure 1-1. Main ON-Code Groupings

r-----------T-----------------------------,
I Range I Group I
~-----------+-----------------------------~ o ONCODE

3 Source program error
4 FINISH
9 ERROR
10-19 NAME
20-39 RECORD
40-49 TRANSMIT
50-69 KEY
70-79 ENDFILE
80-89 UNDEFINEDFlLE
90-99 ENDPAGE
100-299 (Unallocated)
300-309 OVERFLOW
310-319 FIXEDOVERFLOW
320-329 ZERODIVIDE
330-339 UNDERFLOW
340-349 SIZE
350-359 STRINGRANGE
360-369 AREA
370-499 (Unallocated)
500-509 CONDITION
510-519 CHECK
520-529 SUBSCRIPTRANGE
530-599 (Unallocated)
600-899 CONVERSION
900-999 (Unallocated)
1000-1199 I/O errors
1200-1499 (Unallocated)
1500-1699 Data processing errors
1700-1999 (Unallocated)
2000-2099 Unacceptable statement errors
2100-2999 (Unallocated)
3000-3499 Conversion errors
3500-3799 (Unallocated)
3800-3899 Structure and array errors
3900-3999 Tasking errors
4000-8090 (Unallocated)
8091-8199 program interrupt errors
8200-8999 (Unallocated)
9000-999 System errors - __________ ~ _____________________________ J

Figure 1-2. Detailed ON-Code Groupings

o
3
4
9

10
20
21

292

Condition/Error

ONCODE function used out of context
Source program error
FINISH
ERROR
NAME
RECORD (signaled)
RECORD (record variable smaller
than record size)

22

23

24
40
41
42
50
51
52
53
54
55
56

57

70
80
81
82

83

84

85

90
300
310
320
330
340
341
350
360
361
362
500
510
511
520
600
601
602
603

604

605

606

607

608

609

610

611

Condition/Error

RECORD (record variable larger than
record size)
RECORD (attempt to write zero
length record)
RECORD (zero lengt h record read)
TRANSMIT (signaled)
TRANSMIT (output)
TRANSMIT (input)
KEY (signaled)
KEY (keyed record not found)
KEY (attempt to add duplicate key)
KEY (key sequence error)
KEY (key conversion error)
KEY (key specification error)
KEY (keyed relative record/track
outside data set limit)
KEY (no space available to add
keyed record)
ENFILE
UNDEFINEDFILE (signaled)
UNDEFINEFILE (attribute conflict)
UNDEFINEDFILE (access method not
supported)
UNDEFINEDFILE (block size not
specified)
UNDEFINEDFILE (file cannot be
opened, no DD card)
UNDEFINEDFILE (error initializing
REGIONAL data set)
ENDPAGE
OVERFLOW
FIXEDOVERFLOW
ZERODIVIDE
UNDERFLOW
SIZE (normal)
SIZE (I/O)
STRINGRANGE
AREA raised in ALLOCATE statement
AREA raised in assignment statement
AREA (signaled)
CONDITION
CRECK (label)
CHECK (variable)
SUBSCRIPTRANGE
CONVERSION (internal) (signaled)
CONVERSION (I/O)
CONVERSION (transmit)
CONVERSION (error in F-format
input)
CONVERSION (error in F-format
input) (I/O)
CONVERSION (error in F-format
input) (transmit)
CONVERSION (error in E-format
input)
CONVERSION (error in E-format
input) (I/O)
CONVERSION (error in E-format
input) (transmit)
CONVERSION (error in B-format
input)
CONVERSION (error in B-format
input) (I/O)
CONVERSION (error in B-format
input) (transmit)

612

613

614

615

616

617

618
619

620

621

622

623

624

625

626

627

628

629

1000
1001
1002
1003

1004
1005

1006

1007

1008

1009
1010
1011
1012
1013

1014
1015
1016

1017
1018

Condition/Error

CONVERSioN (character string to
arithmetic)
CONVERSION (character string to
arithmetic) (I/O)
CONVERSION (character string to
arithmetic) (transmit)
CONVERSION (character string to bit
string)
CONVERSION (character string to bit
string) (I/O)
CONVERSION (character string to bit
string) (transmit)
CONVERSION (character to picture)
CONVERSION (character to picture)
(I/O)
CONVERSION (character to picture)
(transmit)
CONVERSION (P-format input -
decimal)
CONVERSION (P-format input -
decimal) (I/O)
CONVERSION (P-format input -
decimal) (transmit)
CONVERSION (P-format input -
character)
CONVERSION (P-format input -
character) (1/0)
CONVERSION (P-format input -
character) (transmit)
CONVERSION. (p-format input -
sterling)
CONVERSION (P-format input -
sterling) (I/O)
CONVERSION (P-format input -
sterling) (transmit)
Attempt to read output file
Attempt to write input file
GET/PUT string length error
Unacceptable output transmission
error
Print option on non-print file
Message length for DISPLAY
statements zero
Illegal array datum data-directed
input
REWRITE. not immediately preceded by
READ
GET STRING: unrecognizable data
name
Unsupported file operation
File type not supported
Inexplicable I/O error
Outstanding READ for update exists
No completed READ exists -
incorrect NCP value
Too many incomplete I/O operations
EVENT variable already in use
Implicit-OPEN failure - cannot
proceed
Attempt to REWRITE out of sequence
ERROR condition raised if
end-of-file is encountered before
the delimiter while scanning
list-directed or data-directed
input, or if the field width in the
format list of edit-directed input

1019

1500
1501
1504
150:5
1506
1507
1508
1509
1510
1511
1514
1515
1550

1551

1552

1553

1554

1555'

1556

1557

1558

1559·

2000
2001

3000
3001
3002
3003
3004
3005
3006
3798
3799

3800
3801

3900

3901
3902
3903

3904

3905

3906

3907

Condi tion/ Irro!:,

would take the scan beyond the
end-of-file.
Attempt to close file not opened in
current task
Short SQRT error
Long SQRT error
Short LOG error
Long LOG error
Short SIN error
Long SIN error
Short TAN error
Long TAN error
Short ARCTAN error
Long ARCTAN error
Short ARCTANH error
Long ARCTANH error
Invalid exponent in short float
integer exponentiation
Invalid exponent in long float
integer exponentiation
Invalid exponent in short float
general exponentiation
Invalid exponent in long float
general exponentiation
Invalid exponent in complex short
float integer exponetiation
Invalid exponent in complex long
float integer exponentiation
Invalid exponent in complex short
float general exponentiation
Invalid exponent in complex long
float general exponentiation
Invalid argument in short float
complex ARCTAN or ARCTANH
Invalid argument in long float
complex ARCTAN or ARCTANH
Unacceptable DELAY statement
Unacceptable use of the TIME
built-in function
E-format conversion error
F-format conversion error
A-format conversion error
B-format conversion error
A-format input error
B-format input error
Picture character string error
ONSOURCE or ONCHAR out of context
Improper return from CONVERSION
ON-unit
structure length z 16**6 bytes
Virtual origin of array z 16**6 or
S -16**6
Attempt to wait on inactive and
incomplete event
Task variable already active
Event already being waited on
Wait on more than 255 incomplete
events
Active event variable as argument
to COMPLETION pseudo-variable
Invalid task variable as argument
to PRIORITY pseudo-variable
Event variable active in assignment
statement
Event variable already active

Appendix I: ON,' Return, and User Completion Codes 293

3908

8091
8092
8093
8094
8095
8096
8097
9000

9002

Condition/Error

Attempt to wait on an I/O e"ent in
wrong task
Invalid operation
Privileged operation
EXECUTE statement executed
Protection violation
Addressing interruption
Specification interruption
Data interruption
Too many active ON-units and entry
parameter procedures
Invalid free storage (main
procedure)

Return Codes and User Completion Codes

PL/I programs can terminate abnormally in
six different ways:

1. EXIT (abnormal termination of a task)

2. STOP (abnormal termination of the
program)

3. If the ERROR condition is raised and
there is neither an ERROR on-unit nor
a FINISH on-unit with a GO TO
statement.

4. CALL IHEDUMP or CALL IHEDUMT.

5. If an interrupt occurs during
execution of the error-handling
routine. This results in execution of
the ABEND macro.

6. An operating system abnormal
termination in the major task.

In cases (1) to (4) above. a special
ret urn code is generated by the PL/I
library and passed to the return code
register of the operating system. The code
generated is the sum of:

a. a basic code associated with the
cause of termination. and

b. the ordinary return code. (The
ordinary return code is either
that set by the programmer or the
default value. zero.)

The basic codes associated with the
cause of termination are:

294

EXIT and STOP

ERROR

CALL IHEDUMP or IHEDUMT and
when an error occurs in
IHEDUMC or IHEDUMJ

Error-handling routine interrupt

1000

2000

3000

4000

There are two instances in which
execution of the PL/I program does not
commence but a return code is generated:

pseudo-register vector too long
No main procedure

4004
4008

In cases (5) and (6) above. a full
storage dump will be printed. provided that:
a SYSABEND or SYSUDUMP DD statement has
been used. If not, and MFT or PCP is beinq
used. an indicative dump will be printed.
Case (5) results in a completion code of
4000. When a program terminates abnormally
with a completion code of 4000. this means
that a disastrous error has occured, such
as a control block being overwritten.

When a program terminates abnormally
with a completion code of 3333. this means
that a disastrous error has occurred in the
dump output modules. It can also, mean that
a program interrupt has occurred during the
execution of a non-PL/I routine which does
not have its own error handler and which
has modified the value of register 12.
(Non-PL/I routines include data management I'
sort. and any user-written routines invoked
from a PL/I routine.)

When the operating system terminates a
program. the user completion code is zero.
and the system completion code is the
operating system completion code.

All the 4000-series codes mentioned
above are accompanied by a message at the
operator's console. (For further
explanation of the underlying causes of
these messages. refer to the explanations
given for each message in nObject-Time
Error Messages n in Appendix K.

A user completion code of 4092 may
result if:

1. A call to IHEREs'r is made to ~orce a
restart.

2. A user completion code of 4092 was not:.
specified at system generation time aB
eligible for automatic restart. or no
RD parameter or RD=NR was specified in
the JOB statement. or if the operator
replies nNOn when the system asks
whether the job should restart.

See Chapter 14 and IBM System/360
Operating System: Checkpoint/Restart for
further information.

Prior to Release 16 of the operating
system, in the case of EXIT, STOP, and
ERROR, instead of a return code an ABEND
macro was issued, with a completion code
equal to the return code which is now
returned. The effect of the change is that
now only the PLII program is terminated
when EXIT,STOP, or ERROR occur, and not the
whole job step: this gives the programmer
the ability to select the subsequent course
of action according to the cause of
terminat.ion of his PL/I program. He does
so ei thE:!r in a program which calls the PL/I
program" or in the next job step by using
the CONI> parameter of the EXEC statement.

STEP ABEND FACILITY

Using the standard default module IHEABND
in the PL/I library (data set SYS1.PLILIB),
error handling will be as stated above.
The STEP ABEND facility is available
however by using a user-written module
IHEABND.; Replacing the standard module
results in a STEP ABEND being issued when­
ever the ERROR condition is raised or
signallE;!d in the absence of an ERROR
ON-unit.,

Module form:

IHEABN CSECT
ENTRY
USING

IHEABND EQU

IHEABND
*,15

*

Define entry
Addressability
Entry point

Changing Standard Module IHEABNn

To change the standard module IHEABND to
obtain the STEP ABEND facility the return
code in register 15 must be set to
non-zero. TO become an installation
standard this module must be link-edited
into the PL/I library (data set
SYS1.PLILIB) to replace the standard module
IHEABND. For use in one program only, the
object deck is link-edited with that
program.

The purpose of this module is to set a
non-zero return code in register 15. The
error handling module IHEERR calls IHEABND
and examines the return code held in
register 15 to decide whether STEP ABEND or
normal action is required. (The standard
default module IHEABND in SYS1.PLILIB sets
a zero return code in register 15). If the
return code is non-zero then a STEP ABEND
is issued.

RETURN CODES

Return codes are set by use of the
statement CALL IHESARC, or CALL IHETSAC
(multitasking).

L
BR

NONZERO DC

15, NONZERO
14
F'l'

Set return code in register 15
Return on register 14
Non-zero return code

END

Appendix I: ON, Return, and User completion Codes 295

296

Appendix J: Implementation Conventions and Restrictions

AREA At"tribute The BASED attribute must be followed by

The size of an area is limited to 32,767
bytes. In this implementation, the AREA
size is provided by the value associated
with thle AREA attribute or by the default
value o:f. 1000 bytes.

Aggregat:es

The lenqth of an aggregate is limited to
8 , 388 , 607 byt es •

Array Bounds

Arrays a.re limited, for each dimension, to
a lower bound of -32,768 and to an upper
bound of 32,767.

BASED A1~tribute

The implementation of offsets and pointers
does nOi: support bit address ing. This
restric1:ion has no practical effect on
ALIGNED bit strings. With UNALIGNED bit
strings belonging to arrays or structures,
however., only offset or pointers to major
structw:es or minor structures with byte
(or higher) alignment should be used.

Based Vc~riable Declaration

A pointE~r variable must be included in a
based variable declaration. (This is the
pointer that will be set in the absence of
a SET option from a LOCATE or an ALLOCATE
statemeIit referring to the based variable.)

Based Variables

The pointer variable explicitly or
implici"t:ly qualifying a based variable must
be a non-based unsubscripted scalar pointer
:i.dentifier.

a pointer identifier in parentheses.

The OFFSET attribute must be followed by
an identifier in parentheses.

The variable named in the OFFSET
attribute must be an unsubscripted level 1
based area.

Offset variables 'may not be used in any
SET option or in any explicit or implicit
based variable qualifier.

A based variable may not have the
INITIAL attribute.

A based label array cannot be
initialized by means of subscripted label
prefixes.

A based structure can have either:

1. One adjustable array bound, or

2. One adjustable-length bit or character
string.

Based Structure with-One Adjustable Array
Bound: This is permitted only when there
are no adjustable strings in the structure.
The bound must conform to the following
rules:

1. It must be of the form:

X REFER (Y)

where X is an unsubscripted fixed
binary integer variable,

Y is an unsubscripted fixed
binary integer variable, of the
same precision as X, which is:

a. part of the structure, and

b. not associated with an
explicit pointer qualifier.

2. It must be the upper bound of the
leading dimension (including inherited
dimensions) of the element with which
it is declared.

3. The structure member with which the
bound-is declared must be, or must
contain, the last base element in the
structure.

Appendix J: Implementation Conventions and Restrictions 297

Example:

DCL 1 PARTS LIST BASED(P),
2 FIRM_NAME CHAR(40),
2 REF_NO FIXED BINARY,
2 FIRM ADDRESS,

3 STREET TOWN CHAR (50),
3 COUNTRY CHAR(30),

2 STOCK(20:N REFER(REF NO), 100:200),
3 NUMBER, -

4 HERE FIXED(10,0),
4 ORDERED,

5 PROVISIONAL FIXED(10,O),
5 CONFIRMED FIXED(10,0),

3 COST FIXED(5,0);

Based Structure with.One Adjustable-Len~h
Bit or Character String: This is permitted
only when there are no adjustable array
bounds in the structure.. The string must
conform to the following rules:

1. It must be an element.

2. It must be the last element in the
structure.

3. The length must be declared in the
form:

X REFER (Y)

where X and Yare as described above.

Example:

DCL 1 TYPE OF HOUSE BASED(P),
2 NUMBER_OF_FLOORS FIXED(2,0),
2 AREA FIXED BINARY,
2 RATES_CODE CHAR(N REFER(AREA»i

Note: Pointer and area data types must be
aligned.

Block Size

The maximum size of a block must not exceed
32,760 bytes.

See IBM System/360 Operating System:
PL/I (F) Language Reference Manual for
details of data aggrega·te size requirements
necessary in calculating the block size for
data sets using RECORD I/O.

Blocks in a Compilation

The number of PROCEDURE, BEGIN, and
iterative DO-groups, plus the number of
ON-statements, must not exceed 255.

298

Buffers

The number of buffers must not exceed 255"

Built-In Functions

The default value for the second argument
of the FIXED built-in function is 15 for
binary data, and 5 for decimal data.

The default value for the second
argument of the FLOAT built-in function iB
21 for binary data, and 6 for decimal data.

The length of the bit string which is
the value returned by the UNSPEC built-in
function is defined by the type of the
argument.

Argument Type

FIXED BINARY (p,q)

FIXED DECIMAL (p,g)
FLOAT BINARY (p)

FLOAT DECIMAL (p)

CHARACTER (n)
BIT (n)
POINTER
OFFSET
AREA

Length of Bit String

16 if p
32 if P
8*FLOOR
32 if p
64 if P
32 if P
64
8*n
n
32
32

if p

< 16
> 15
((p+2)/2)

:$ 21
~ 22
:$ 6
~ 7

(Number of bytes
allocated + 16)*8

The length of the string returned by the
ONSOURCE and DATAFIELD built-in functions
is subject to an implementation maximum of
255 characters.

Character Code

Input to the object program is assumed to
be in EBCDIC mode.

CHECK Condition

If an identifier that is read in by a GET
DATA statement is 'included in a CHECK lis1t
anywhere in the program, then the CHECK
condition is raised, and will be treated as
enabled unless the block containing the GET
DATA statement has an explicit NOCHECK
prefix. If the CHECK condition is raised,
system action will be taken unless the GE'r
DATA statement lies within the dynamic
scope of an ON CHECK statement for the
identifier in question .•

If Cil READ statement with the EVENT
option has a KEYTO or an INTO variable for
which t~he CHECK condition is enabl,ed, the
value of the variable will be printed
immedialtely after execution of the READ
statemEmt, not after the WAIT statement.
consequently, the printed values of the
variable will be the old, not the new
values.

The CHECK condition is not raised for
the name of a procedure when:

1. The procedure that enables the CHECK
condition also invokes the named
procedure, and

2. The invoking procedure and the named
procedure hav'e been placed in
di.fferent program segments (overlays)
by the linkage editor.

The maJ!:imum number of entries in a CHECK
conditi.on, whether in a prefix list or in
an ON-s:tatement, is 510.

The maximum number of data items being
ch~cked at any point in the compilation
varies between 2078-2n and 3968-2n, where n
is the number of currently checked items
which have the attribute EXTERNAL.

If at structure or part of a structure is
in a CHECK condition, the number of items
in this: restriction must include all
element~s of the structure.

COBOL Option

If an ON-condition arises during a READ
INTO, t~hen:

1. The INI'O variable may not be used in
the ON-unit.

2. If: the completed INTO variable is
r€~quired, there must be a normal
r€~turn from the ON-unit.

In the execution of PL/I programs,
compari.sons of character data will observe
the collating sequence resulting from the
represe~ntations of characters in bytes of
IBM&System/360 storage in extended binary
coded decimal interchange code (EBCDIC).

COLUMN Format Item in Non-Print Files

For input files, if the value of the
expression is greater than the current
record length, a value of 1 is assumed.

For both input and output files, if the
value is less than the current position on
the line, the file is positioned at
COLUMN (value) on the next line.

For output files, all characters from
the current position in the line to the
next position are blanked out. For U- or
V-format records, if another record is
required, a short record is put out subject
to the rules described under the SKIP ,
format item.

Concatenated Data Sets

Concatenation of data sets with 'unlike
attributes' (device type, record format,
etc.,) is not supported at object time.

Constants

The precision or length of constants may
not be greater than the precision or length
of the corresponding type of variable.

Constants, Floating-Point

The exponents of floating-point numbers are
restricted to a maximum of 2 digits for
decimal or 3 digits for binary.

Constants Returned by Procedures

If a procedure has more than one entry
point, and each entry point returns a
value, code is generated to convert each
value returned to each of the data types
for the entry points. If any of these
values is a constant., it is possible that
this constant cannot be converted to all
the data types specified. A severe error
message will be put out, and execution will
be unsuccessful.

This situation can be avoided by
assigning the constant to a variable of the
same data type, and then returning this
variable. For example:

Appendix J: Implementation Conventions and Restrictions 299

DCL A ENTRY RETURNS(CHAR(S»,
B ENTRY RETURNS(FIXED DECIMAL(lS»,
C ENTRY RETURNS(BIT(64»,
ATEMP CHAR(S);

A: ENTRY CHAR(S);
ATEMP= , AOS ' ;
RETURN (ATEMP) ;

B: ENTRY FIXED DEClMAL(lS);
RETURN(10S);

C: ENTRY BIT(64);
RETURN ('10101' B) ;

The use of ATEMP aVioids the interrupt
caused by the CHARACTER->FIXED DECIMAL and
the CHARACTER->BIT conversions. However,
execution may still be unsuccessful, and a
warning message is put out to remind the
user.

Constants, Sterling

The maximum number of digits allowed in the
pounds field of a sterling constant is 13.

The number of digits following the
decimal point in the pence field must not
exceed 13 minus the number of digits in the
pounds field.

Constants, String

The number of characters in a string
constant, after expansion of iteration
'factors, may not exceed the size of a
dictionary block minus 14. The size of a
dictionary block will vary with the storage
available to the compiler in the same way
as does text block size, but will not be
less than 1,024 bytes.

Data-Directed Input/Output

';Jt'
The maximum lengtH'o~ a qualified name,
including the separating periods, is 255
characters.

Data~Directed List

The maximum number of elements permitted in
a list for data-directed input is 320.
Each base element of a structure counts as
a separate list~element.

300

DE CLARE statement, (compile-time)

No more than three levels of factoring are!
permitted in a compile-time DECLARE
statement.

DEFINED Attribut~

The DEFINED attribute is always evaluated
on entry to the declaring block.
Overlay defining is not permitted if the
base is either subscripted or is declared
CONTROLLED. Correspondence defining is nClt
permitted if the base is declared
CONTROLLED.

Example:

DCL B CONTROLLED" C(10) AUTOMATIC;

DCL A DEFINED B,
E DEFINED C(I),
F(10) DEFINED C;

/*INVALID*/
/*INVALID*/
/*VALID*/

No correspondence defining may be used
with arrays of structures.

Example:

DCL 1 A(10), 2 B~ 2 C;

DCL 1 0(5) DEFINED A, 2 E, 2 F; /*INVALID*/
DCL D(S) DEFINED B; /*VALID*/

Dimensions

The maxiumum number of dimensions
permitted, including dimensions inherited
from containing structures, is 32.

DISPLAY Statement

The maximum lengths of character string
acceptable are 72 characters for the
message and 126 characters for the reply.
The reply string's current length is set
equal to its maximum length and padded with
blanks if necessary.

Dummy Arguments

The maximum number of dummy arguments
permitted at each invocation of a procedure
is 64.

Edi t- Dj:rected Input/Output

In the output format item E(w,d,s), s must
be less than 17 digits. In the output
format item E(w,d), d must be less than 16
digits.

If t~he number of significant digits in
E- formcLt is greater than 16, then:

E-format input: CONVERSION condition
raised

E-format output: ERROR Condition raised

when either a repetitive specification
appears in an edit-directed format list or
an iteI~ation factor is used in a format
list, t:he data items are associated with
their format items during execution rather
than compilation. The compiler will
therefore include library modules that can
handle all the possible pairings of data
and fOI~mat items. Some of these modules,
however, will never be invoked should the
circumstances that demand their use never
arise.

ENTRY Names as Arguments and ON-Statements
in Rect~sive Contexts

In the first version of the (F) 'compiler,
ENTRY parameters were invoked with the
enviror~ent existing at the time of
invoca"t:ion. In subsequent versions, they
will bE~ invoked with the environment
existing at the time when the ENTRY name
was passed as an argument.

ExamplE~:

Pi:: PROC RECURSIVE:
B=l-;
CALL P4(P3);
RETURN;

P4:: ENTRY (PP) ;
B=2;
CALL PP:

P3:: PROC:
PUT DATA(B);
END:
END:

Note: Ii"or the first version, the above
procedltte gave B=2;, for subsequent
versions it gives B=l;.

In t.he first version of the (F)
compilE:lr, ON-units in recursive contexts
were entered with the environment existing
when the condition occured. In subsequent
versions, the ON-unit will be entered with
the en"ironment which was in existence when
the ON··statement was executed.

Example:

P: PROC RECURSIVE;
DCL I STATIC INIT(O),M AUTOMATIC;
I=I+l:
M=I:
IF I=l THEN DO:
ON OVERFLOW PUT DATA(M):
END:
IF I=3 THEN SIGNAL OVERFLOW:
ELSE CALL P:
END:

Note: In the first version, the procedure
gave M=3:. subsequent versions give M=l:.

These modifications of semantics can
affect only those programs which contain
both recursive procedures and either entry
parameters or ON-statements.

EVENT Option

The EVENT option is implemented for RECORD
input/output statements used as follows:

Access

SEQUENTIAL
UNBUFFERED

DIRECT

Data~Set Organization

CONSECUTIVE, REGIONAL

CONSECUTIVE, INDEXED
or REGIONAL

Note: The EVENT option should not be used
on a WRITE statement if V- or U- format
records are being added to a REGIONAL(3)
data set which is being accessed in a
direct update mode. If the EVENT option is
specified in the DISPLAY statement, it must
follow the REPLY option.

Exponentiation

The expression X**(-N) for N>O is evaluated
by taking the reciprocal of X**N. This may
cause the OVERFLOW condition to occur as
the intermediate result is computed, which
corresponds to UNDERFLOW in the original
expression.

Expression Evaluation

The maximum number of temporary results
which may exist during the evaluation of an
expression or during an assignment
statement is 200.

Appendix J: Implementation Conventions and Restrictions 301

An estimate of the number of temporary
results which may exist during the
evaluation of an expression can be obtained
from the following:

At each level of parenthesis, count one
for each operator which is forced to be
evaluated before an inner level of
parentheses. For each such operator,
count one for each operand which
requires conversion before use, count
one for each nested function, count one
for each subscripted variable used as a
target in a assignment statement, and
finally, count one for each
pseudo-variable and each argument of a
pseudo-variable.

Factoring of Attributes

The total number of pairs of parentheses
used for factoring attributes in DECL~RE
statements within a compilation is
dependent upon the SIZE option, as follows:

Text Block Size Factor Bracket Limit

1K 146
2K 292
4K 585
8K 1171

16K 2340

For relationship between SIZE option and
block size, see "Control Options" in
Chapter 5: Compilation.

FLOAT Attribute

Floating-point precision specified as
FLOAT (*) in a parameter description within
the GENERIC attribute, is not permitted~

Floating-point Magnitude

The magnitude of a normalized
floating-point variable or intermediate
result must lie in the range from
2.4 * 10-78 to 7.2 * 1075 •

Function Values

The maximum number of different dat.a types
or precisions returned by one function may
not exceed 256.

302

GENERIC Attribute

There is a limitation on the number of
family members and argumants which may he
associated with a GENERIC entry name. the!
value given by evaluating the following
formula must not exceed 700:

n
3n + 8I:a. + 8MAX(a1 ,a2, ••• an) + 3d

1 I

where n = the number of family members.
aj = the number of arguments relating

to the ith family member.
d the greatest function nesting

depth at which an invocation of
the GENERIC entry name appears.

Halfword Binary Facilities

With previous versions of the compiler,
fixed binary variables of any precision
were always mapped as fullwords (requiring
four bytes of storage). The fifth version.
of the compiler will map fixed binary
variables of precision less than 16 as
halfwords (requiring only two bytes of
storage), and will use IBM System/360
halfword instructions to process them.
Note that variables of default precision
will be mapped as half words.

The change does not apply to fixed
binary constants or fixed binary
intermediate targets (i.e., compiler
created temporaries for holding
intermediate results of operations). These
will continue to occupy fullwords.

Identifiers, Length

The following types of identifiers should
contain not more than seven characters:

EXTERNAL data identifiers
EXTERNAL PROCEDURE and ENTRY labels
ExrERNAL Files
CONDITION identifiers

If this restriction is exceeded, the
first four characters are concatenated with
the last three to form an abridged
identifier.

In, addition, such identifiers must not
start with the letters IHE, in case they
conflict with the names of library modules.

Identifiers, Subscripted

For subscripted identifiers, the maximum
number of characters in the subscript is
limited to 255 characters. This figure
includes the first left parenthesis, the
commas, and the final right parenthesis: it
excludes redundant characters such as
blanks and plus signs.

INCLUDE statement (compile-time)

Included text must be from a member of a
partitioned data set. If a single
identifier is specified, either as
(identifier) or identifier then it is
assumed to be the name of a member of the
partitioned data set with the ddname
SYSLIB. If identifier~ (identifier2) is
written, then identifier~ is the ddname and
identifier2 is the member name. DD
statements must be provided for partitioned
data sets used. Records in these data sets
must have a fixed length of not more than
100 characters. The maximum blocking
factor is 5. The source margin and
character set options on the EXEC statement
also apply to included text.

INDEXAREA option

The index-area-size parameter to this
option is a decimal constant and must not
exceed 32,767.

INITIAL Attribute

An INITIAL attribute given for CHARACTER or
BIT data of STATIC storage class may not
specify 'complex expressions' as initial
values.

Example:

DCL C CHAR(10)
STATIC INITC3+4I), /+INVALID+/

DCL C CHAR(10)
STATIC INITC'3+4I'): /+VALID+/

on~y the INITIAL CALL form of the
INITIAL, attribute is allowed in pointer
declarations.

INTO Option of READ Statement

When the record variable of a READ
statement is a variable length bit-string,
the byte count, not the bit count, is
stored as the current length. This is
because all variable length bit-strings are
not both byt'e aligned and multiples of
eight.

LABEL Attribute

The number of statement-label constants
specified by the LABEL attribute is limited
to 125 in any particular label list.

Qualified names may not be used as label
prefixes. Reference to arrays of label
variables initialized by means of
subscripted labels must not require
explicit structure qualification.

Example:

DCL Z(3) LABEL,
1 5'1

2 Y(3) LABEL,
1 51.

2 Y(3) LABEL,
1 52,

2 X(3) LABEL:

Z Cl): :
S.Y(1):
X(1): :

/*VALID*/
/*INVALID*/
/*VALID*/

LABEL Variables in Structures with the LIKE
Attribute

Initialization of LABEL variables in these
structures requires careful handling
particularly as the implementation does not
provide the result specified by the
language. A structur.e A is declared, using
the LIKE attribute, to ~e identical to a
structure B. Structure B' contains a LABEL
variable that is initialized, using the
INITIAL attribute, to the value of a LABEL
constant~ The initial value of the
corresponding LABEL variable in A is the
initial value of the LABEL constant known
in the block containing the declaration of
B, not A.

Appendix J: Implementation Conventions and Restrictions 303

. ExamEle:

DCL 1 B,
2 L LABEL INITCL1);

Ll: . ; /*B.L=Ll*/

BEGIN;
DeL A LIKE B:

Ll: . ,

END;

/*A.L IS GIVEN THE VALUE OF
Ll IN STRUCTURE B*/

Label constants in Recursive Procedures

When a label constant in a recursive
:procedure is the object of a GOTO
statement, the branch will be taken to the
label in the most recent invocation of -the
.procedure. The most recent invocation is
used irrespective of the environment that
invoked the recursive procedure and of -the
environment that invoked the procedure
containing the GOTO statement.
Consequently, if the GOTO statement: is in a
procedure which was passed as an entry name
parameter, the branch will be to the most
recent invocation rather than to the
invocation that, was active when the entry
name parameter was passed.

In the following example, the first
invocation of A invokes A recursively: the
second invocation of A invokes procedure B.
The GOTO statement in procedure B causes a
branch to the label L in the most recen-t
:invocation of procedure A rather than to
'the previous invocation.

X: PROC OPTIONS(MAIN):
CALL A(A):

A: PROC(E) RECURSIVE;
DCL E ENTRY,

SW BIT(l) STATIC INIT('O'B)i

B: PROC

GOTO L;

END B:

IF SW THEN CALL E
SW='l'Bi

304

CALL ACB);

L: .
END A;

END X:

Label Variables in Recursive Procedures

If a label variable is assigned a label
constant in a particular invocation of a
recursive procedure, a GOTO statement
associated with the invocation will
transfer control to the label constant
within that invocation. Consequently, if
the GOTO statement is in a procedure which
was passed as an entry name parameter, thE~
branch will be to the label constant
assigned to the label variable in the
environment that was active when 'the entrl!'
name was passed.

In the following example, the first
invocation of procedure A invokes A
recursively; the second invocation of A
invokes procedure B. The GOTO statement in
procedure B causes a transfer to the label
L in the invocation of A that was active
when the entry name parameter B was passecl,
i.e., the first invocation of A.

X: PROC OPTIONSC'MAIN):
CALL A (A) :

A: PROC (E) RECURSIVE:
DCL E ENTRY:
DCL SW BIT(1) STATIC INIT('O'B):
DCL LAB LABEL INIT(L):

B: PROC:
GOTO LAB
END B:

IF SW THEN CALL E;
SW='l'B:
CALL A(B):

L: •
END A;

END X;

Level Numbers

The maximum declared level number permitted
in a structure is 255. The maximum true
level number permitted in a structure is
63.

Line Nmnberinq (Compile-Time)

Where constants or comments span more than
one linc=, the output line numbering refers
to the :Eirst input line number of the
string or comment.

LINESI Z]~ Format Item

The maximum amd minimum line size depend on
the record format.

r------·~-T--------------------------------,

I I LINESI ZE I
I Record ~------------------T-------------~
I Format: I Minimum I Maximum I
~------... -+-----------------+-------------~
I V INon-PRINT file: 101 32,751 I
I I PRINT file: 9 I I
~------... -+------------------+-------------~
I I I I
I U,F 11 I 32,759 I L ______ ... _J.. __________________ J.. _____________ J

If a line size is not specified, the
default values are:

PRINT file: 120 characters

Non-PRINT output file: no default value

The I,INESIZE value determines the
logical·mrecord length in the data set
(i.e., ithe value of LRECL):

F- and U-format records: LRECL = LINESIZE
V-format records: LRECL = LINESIZE + 4

For PRINT files, an extra byte (for the
ANS conitrol character) is added to each of
the above LRECL values.

If BLKSIZE is specified, its value and
the LRECL value must be compatible.. If
BLKSIZE is not specified, its value is
calcula1:ed from the LINESIZE value ..

Evaluation of the expression gives an
inteqer that must be within the limits
described above. For V- and U-format
records" LINESIZE is the maximum size of a
line. If a variable LINESIZE is required,
the maximum value must be specified as the
BLKSIZE in the DD statement or in the

ENVIRONMENT attribute. Short lines are
padded with blanks for F-format records
only.

MACRO Compiler Option (compile-time)

The MACRO option should be included among
the complete set of options for the
compiler invocation if the program contains
compile-time statements ..

MAIN Option

A single parameter may be passed by the
EXEC statement for the execution job step
to the MAIN procedure. If this facility is
used, the first parameter to the MAIN
procedure should be declared as a VARYING
character string; the maximum length is
100, and the current length is set equal to
the parameter length at object time. The
parameter can also be a fixed-length
character string.

MA~MIN,MOD, Built-In Functions

When the arguments to these functions have
different attributes" all the arguments are
converted, before the function is invoked,
to the highest characteristics. Contrary
to the language specification, both the
precision and the scale factor of an
argument will be adjusted. If all the
arguments are FIXED, application of the
highest-characteristics rule may, in
conjunction with the maximum precision
defined by the implementation, cause
truncation and hence an inaccurate result.
For example:

DCL X FIXED DECIMAt(12,l),
Y FIXED DECIMAL(12,9);

Z=MOD(X,Y);

Here Z (whateVer its attributes) will be
wrong. X and Yare stored in a temporary
field which would have, according to the
precisions of the operands, a precision
larger than the implem.entation permits.
Therefore the implementation-defined
maximum is applied, resulting in a
precision of (15,9). Y can be stored
satisfactorily inside such a field but X is
truncated, with the loss of its five
high-order digits.

When the MOD built-in function is used
with FIXED arguments of different scale
factors, the results may be truncated. If

Appendix J: Implementation Conventions and Restrictions 305

SIZE is enabled, an error message will be
printed; if SIZE is disabled, no error
message will be printed and ,the result is
undefined.

Multiple Assignments and Pseudo-Variables

Multiple assignments are limited by the
following rule:

count 11 for each target of a multiple
assignment, add 3 for each
pseudo-variable, and then add 11 for
each argument of a pseudo-variable.
The total must not exceed 4,085.

Names Generated by the Compiler

The number of names generated by the
compiler must not exceed 11,264 in a
compilation. One name is generated for
each PROCEDURE, BEGIN, or ON-block u for

,each variable declared as CONTROLLED
INTERNAL, and for each INTERNAL file.

'Names, Qualified

The number of characters in a qualified
name, which is to be used either for

,data-directed input/output or in CHECK
lists, must not exceed 256.

Note that if the DATA option without a
list is used for data-directed input, this
will include all structure elements in the
compilation.

Nesting Limitations

There must not be more than 50 levels of
nesting at any point in the compilation.
The degree of nest~ng at any pOint is the
number of PROCEDURE, BEGIN or DO
statements, without a corresponding END
statement, plus the number of currently
active IF compound statements, plus the
number of currently unmatched left
parentheses, plus the number of dimensions
in each active array expression, plus the

,maximum number of dimensions in each active
,structure expression.

The number of nested iteration factors
in a format list must not exceed 20. The
maximum nesting of ENTRY attributes within
an ENTRY or GENERIC attribute'is 3~

306

Nesting and Depth of Replacement

At any point in the program the combined
level of nesting and depth of replacement
is restricted to 50. However, since not
all nested or replacement items require the
same amount of space, a program may run
with a greater actual nesting or
replacement depth than 50 levels. Depth of
replacement is self-defining, but nesting
level requires some clarification. A
nesting level is required for:

1. Each pair of parentheses, either
explicit or implied by hierarchy of
operation.

2. ~ach IF, DO or PROCEDURE statement.

3. Each member of a parenthesized list,
such as factor lists in DECLARE
statements or argument lists of
procedures.

OFFSET and POINTER Built-In Functions

The OFFSET and POINTER built-in functions
cannot be specified expl~citly. However,
if the value of an offset variable is
assigned to a pOinter variable, or a
pointer value to an offset variable, the
necessary conversion is implicit in the
assignment.

ON-Units and Entry Parameter Procedures

There is an implementation limit to the
number of ON-units and/or entry parameter
procedures which can be active at any timE~.
An entry parameter procedure is one that
passes an entry name as parameter to a
procedure it calls. rhe total permissible
number of these ON-units and/or entry
parameter procedures is 127.

ONCOUNT Built-In Function

This built-in function is supported only
for Model 91 requirements.

PAGESIZE Option

The maximum size of a page is 32,767 lineB;
the minimum is 1 line. If the page size is
not specified a value of 60 lines is
assumed.

Parame"ters

The ma:lcimum number of parameters permitted
at any entry point is 64.

PICTUR:~ Attribute

The ma:lcimum length of a PICTURE describing
a numeric field, after expansion of
iteration factors, is 255.

, The maximum length of a PICTURE
describing a character string, after
expansion of iteration factors, is the size
of a dictionary block, less 14. The size
of a dictionary block will vary with the
storag1e available to the compiler in the
same way as does, text block size, but will
not be less than 1,024 bytes (or 768 bytes
if the EXTDIC option is in use).

POSITION 1\ttribute

The ma:tdmum value of the integer constant
in the POSITION attribute is 32,767.

Precision

The pr1ecision, N, for a compile-time
variable declared FIXED is restricted to' 5.

The maximum precision of a variable or
of an intermediate result is:

53
16
31
15

for
for
for
for

FLOAT BINARY
FLOAT DECIMAL
FIXED BINARY
FIXED DECIMAL

Proced~res (compile-time)

There may be no more than 254 compile-time
procedures per compilation. Further, each
procedure is limited to a maximum of 15
parame"ters.

Record Size

The ma:,dmum size of a record must not
exceed 32,760 bytes. See IEMSystem/360
Operating System: PL/I (F) Language
Refere:!lce Manual, for details of data

aggregate size requirements necessary in
calculating the record size for data sets
using RECORD I/O.

REFER Option

The restriction on the two variables in the
REFER option of the BASED attribute~ has
been eased to permit fixed binary integer
variables of the same precision as each
other. This will allow the user the choice
of either continuing to use fullword binary
or using halfword binary for the
controlling fields in self-defining
structures.

Scale Factor

The scale factor of a variable, or of an
intermediate result of type FIXED, must be
in the range -128 arid +127.

Size of Compile-Time Processor Input

The use~'s program is maintained internally
as blocks of text. Block size is assigned
at the start of processing and is a
function of machine size as specified by
the SIZE option on the EXEC card. The total
size of internal text is restricted to 90
times the size of a text block. The
minimum system configuration results in a
block size of lK, so a total of 90K is
allowed for internal text. This minimum
figure is roughly equivalent to 1000 source
input statements.

Size of Individual Statement

All statements, other than a DECLARE
statement, are limited to 3,500 source
characters, i.e." equivalent to 50 cards.
The 'content' of any statement, other than
a DECLARE statement, is limited by the size
of a text block; this varies, as described
in the preceding paragraphs, with the
storage available, but will not be less
than 1,024 bytes.

The contect of a statement can be
calculated by ignoring nonsignificant
blanks and comments, expanding iteration
factors in string constants and pictures,
and then adding one byte for each
occurrence of an identifier, and three
bytes for each occurrence of a constant.

Appendix J: Implementation Conventions and Restrictions 307

To this, for binary constants add the
iterations of any CHARACTER or BIT strings
(note that at this point BIT strings are
treated as characters, not bits), since the
(F) compiler expands the strings as if the
programmer had ~ritten then in full, and
two decimal digits for decimal constants.
At most, these restrictions will limit a
statement to six cards, but the limit will
normally he between 20 and 30 cards. even
for a text block of 1,024 bytes.

These restrictions also apply to a
DECLARE statement for the text between any
two commas which are not contained within
parentheses.

SKIP Format Item in Non-Print Files

For output files, SKIP action depends on
the record format:

F-format: On a short line. SKIP fills
out the remainder of the line with
blanks.

V-format: SKIP puts out the current
line as a short record. If the byte
count of the line is less than 14 (18
with control bytes), the line will be
blanked up to that size. Successive
lines will be of the same minimum
length, padded with blanks.

U-format: SKIP will put out the current
line as a short record.

Statements

The total size of the internal text, at any
point in the compilation, is restricted ·to
90 times the size of a text block. The
size of a text block is itself dependent on
the amount of main storage available to ·the
compiler, as specified by the SIZE option.
The minimum block size is 1,024 bytes (lK),
giving a maximum size for the internal text
of 92 r 260 C90K). This is equivalent to
roughly 280 executable statements.

The maximum block size is 16,382 bytes,
giving a maximum of 1,474,560 bytes for ·the
size of internal text. This is equivale:nt
to roughly 14,000 executable statements.

The figures given for numbers of
statements are necessarily approximate,
since the number of bytes per statement
will vary between different types of source
programs.

308

STRING Built-In Function

The argument may be an element array, or
structure variable that consists of one of
the following:

1. Bit strings

2. Character strings

3. Decimal numeric pictures

4. ~ mixture of (2) and (3)

It cannot be an operational expression.

The argument can be ALIGNED or
UNALIGNED; if it is ALIGNED, padding is not:
included in the result.

The concatenated string in the result
has a maximum length of 32,767 bytes.

String Lengths

The length, in characters or bits, of a
string variable or intermediate string
result is limited to 32,767.

String Lengths in Intermediate Result
Fields

When non-adjustable V~RYING strings, or
functions which return non-adjustable
VARYING strings, are used in an expression,
the lengths of the intermediate result
fields are calculated from the maximum
lengths of the operands. If these lengths
are at or near the maximum permi tt ed by thE~
implementation (32767 bytes or bits), the
length of the intermediate fields may be
greater than the implementation maximum; if
so, they will be truncated on the left.
This situation can occur with
concatenation, the UNSPEC function with a
character-string argument, the REPEAT
function., and the STRING function.

The use of adjustable VARYING strings
can create a similar problem. When an
operand of the concatenate operator or the
argument of the UNSPEC function is an
adjustable VARYING string, the length of
the intermediate result field is not
tested, and execution will fail. This
situation can also occur with SUBSTR if thE~
third argument is not a constant, because
in this case the result is an adjustable
VARYING string.

Sim:i.larly, when a VARYING string is
passed as an argument to a fixed-length
string parameter, the length of the
temporary argument created is the maximum
length.. If the user wishes to pass the
currenit;. length of the VARYING string (in,
for ex(~ple, Y=X(A», a possible method is:

DC]C, ATEMP CHAR(*) CTL;
ALLOCATE ATEMP CHAR(LENGTH(A»;
AT1!;MP=A;
Y=X(ATEMP) ;
FRlm ATEMP;

structure and Ar'ray Expressions

The le"el of nesting in structure and array
expressions is limited' by the following
rule:

FOl:- each level of nesting of structure
or array expressions, add 2 for the
maximum number of dimensions in the
stJcucture or array, add 2 for the
ma~dmum level in a structure
expression, add 3 for each subscript or
arqument list in the expression or
assignment., and finally, add 15.

The tot.al for the whole nest should not
exceed 900 ..

structures

NO refE:!rences can be made to cross sections
of arrays of structures; the whole of an
array of structures may be referenced, or a
single element of the array may be
referenced, but not a cross section ..

ExamplE~:

DCL 1 A(10,10), 2 B, 2 C(10,10);
DCL 1 X (1 0), 2 Y, 2 Z (10" 1 0) ;

A (* ,J) ==X;
A=A+l;
A (I, J) ==X (I) ;

/*INVALID*/
/*VALID*/
/*VALID*/

A cross-section of an EVENT array is not
permitt.ed to appear in a WAIT statement ..

ExamplE~:

DCL EV~['(10,10,2) EVENT;
WAIT (EVIl') 200;
WAIT(EVT(I,J,2» 100:
WAIT(EVI'(l,*,l» 10:

/*VALID*/
/*VALID*/
/*INVALID*/

No structure or array of structures may
be passed as an argument to either a
built-in function (except STRING, ADDR, and

ALLOCATION), or to a procedure declared
with the attribute GENERIC.

Example:

DCL 1 A(10), 2 B:

A=SIN(A) ;
B=SIN(B):

/* INVALID */
/*VALID*/

No reference may be made to both a
structure and an array of structures in the
same expression or assignment.

Example:

DCL 1 A(10), 2 B, 2 C,
1 F(10), 2 B~ 2 C,
1 p" 2 Q, 2 R;

A=P;
A=F;
A(I)=P;
A=F. BY NAME:
A=F(I), BY NAME:

TITLE Option

/*INVALID*/
/*VALID*/
/*VALID*/
/*VALID*/
/*INVALID*/

If the TITLE option specified exceeds eight
characters, then the first eight are used.
If there is no TITLE option. the file name
(padded or truncated to eight characters)
is used as the ddname.

TRANSIENT Attribute

The following rules apply specifically to
the use of TRANSIENT with the (F) compiler:

1. The TRANSIENT attribute can be
specified only for RECORD KEYED
BUFFERED files with either the INPUT
or the OUTPUT attribute.

2. The ENVIRONMENT attribute with one of
the two teleprocessing format options
(G and R) must be declared for
TRANSIENT files.

3. Input can be specified only by a READ
statement with the KEYTO option and
either the INTO option or the SET
option.

4. output can be specified only by a
WRITE statement or a LOCATE statement,
either of which must have the KEYFROM
option.

5. The EVENT option is not permitted
since TRANSIENT files are always
BUFFERED.

Appendix J: Implementation Conventions and Restrictions 309

6. The 'data set' associated with a
TRANSIENT file is in fact a queue of
messages maintained automatically in
main storage by a separate message
control program using the QTAM (Queued
Telecommunications Access Method)
facilities of the operating system.
The queue is always accessed
s equentiall y •

7. The name 01: title of a TRANSIENT INPUT
file must be the name of a recognized
queue set up by the message control
program. For TRANSIENT OUTPUT files,
any name can be declared, since the
file is reassociated for each output
operation with a queue determined by
the terminal name.

8. The element expression specified in
the KEYFROM option must have as its
value a recognized terminal or process
queue identification.

Variables

The maximum number of variables in -the
source program depends on the total size of
the dictionary, which (for NOEXTDIC) is
restricted to approximately 65,000 bytes.
This is equivalent t~ a restriction of
roughly 1,200 variables for a scientific
user and to 1,000 for a commercial user.
In computing these figureas a reasonable
allowance has been made for constants,
statement labels, and other items which may
require dictionary entries.

If the EXTDIC option is specified, the
maximum size of the dictionary is
approximately 1.5 times 65,000 bytes for a
block size of 1K, and approximately 3.5
times 65,000 bytes for other block sizes.

The figures for variables are
necessarily approximate, since the size of
a dictionary entry varies with the type of
variable, length of identifier, whether it
is a structure element, and so on.

Variables at Compile-Time

The maximum number of compile-time
variables which can be used in a program
depends on the total size of the
dictionary, which (for NOEXTDIC) is
restricted to 65,000 bytes. Assuming an
?l,verage dictionary entry size of 28 bytes,
this restricts the processor to
approximately 2,300 items. An entry is
~ade in the dictionary for each macro
variable, macro procedure name, INCLUDE

310

identifier, macro label, and unique
compile-time constant. In addition, two
dictionary entries are created for each
iterative DO, one for each THEN or ELSE
clause, and one for each compile-time
procedure. Error message references are
also entered into the dictionary. The
dictionary is cleared at the end of
compile-time processing; it is therefore
unnecessary to keep the above
considerations in mind if estimating
available dictionary space during actual
program compilation. Under EXTDIC the
number of variables can be increased by a
factor of 1.5 for 1K blocks, or 3.5 for
larger block sizes.

VARYING Attribute

The only form of 'varying strings permitted
in the INTO or FROM options in RECORD I/O
are unsubscripted level 1 varying strings
that are not members of arrays or
structures.

Varying Strings passed as Arguments

If a structure passed as an argument
includes a varying string, the length of
the string cannot be changed within the
invoked procedure unless a dummy argument
is created.

Example:

DCL 1 P(lO),
2 Q(10),

3 R FIXED(5,0),
3 S CHAR(S) VAR,

2 T FlXEO(5,0);

CALL PROC1(P.Q(4,4»;
CALL PROC1(P.Q,4,4);

WAIT Statement

/*INVALID*/
I*VALID; ARRAY OF

STRUCTURES PASSED
WITH REQUIRED
SUBSCRIPTS*/

If the user wishes to specify more than onte
event name in a WAIT statement, the
multiple-wait option must have been
specified at SYSGEN time.

If a WAIT statement is executed and the
events requited to satisfy the WAIT contain
a mixture of 1/0 and non-I/O events all
non-I/O events will be set complete before
any of the 1/0 events.

4 8-Chal~acter Set

48-character set 'reserved' words (e.g.,
GET, Ll~, CAT, etc.,) must be preceded and
followed by a blank or a comment. If they
are not:, the interpretation by the compiler

is undefined and may not, therefore, be
what the user intended.

A record containing part or all of a
48-character-set reserved word must be 3
characters or more in length.

Appendix J: Implementation Conventions and Restrictions 311

312

Source! Program Diagnostic Messages

All so,~ce program diagnostic messages
producE~d are written in a group following
the sOlttce program listing and any other
listin9s specified as a par.ameter on the
EXEC s1:.atement card.

Each message number is of the form
IEMnnnnI, where the code IEM indicates the
PL/I (]!') compiler, and nnnn the number of
the message. The letter I is a system
standal:d action code indicating an
informative message for the programmer.

TheJce are four types of diagnostic
messag~:!: warning, error, severe error, and
termination error.

A W(~rninq is a message that calls
attention to a possible error, although the
statemE;!nt to which it refers is
syntac1:.ically valid. In addition to
alerting the programmer, it may assist him
in writ'.ing more efficient programs in the
future ..

An]!:rror message describes an attempt to
correc1:. an erroneous statement; the
programmer is informed of the correction.
Errors do not normally terminate processing
of the text.

A S4:!vere error message indicates an
error lliThich cannot be corrected by the
compiI4~. The incorrect section of the
program is deleted, but compilation is
continued. Where reasonable, the ERROR
condition will be raised at object time, if
execution of an incorrect source statement
is att4~mpted.

A T4:!rmination error message describes an
error 1M'hich, when discovered, forces the
termination of the compilation.

The choice of the severity level at and
above 1M'hich diagnostic messages appear on
the out,put is an option which may be
select4~d by the programmer. FLACW is
assumed if no level is specified.

In t:he list of diagnostic messages
below, the abbreviations W, E, 5, and T,
respectively, are used to indicate the
severit.y of the message, and appear
immediately before the number of the
messag~e. They do not appear in this way in
the compiler output listings; instead, the
messag~es are printed in separate groups
according to severity.

Appendix K: Diagnostic Messages

In the following·text, messages are
followed where necessary by an explanation,
a description of the action taken by the
system, and the response required from the
user. "Explanation" and "System Action"
are given only when this information is not
contained in the text of the message. When
no "Programmer Response" is stated
explicitly, the p~ogrammer should assume
that he must correct the error in his
source program unless the action taken by
the system makes it unnecessary for him to
do so. Rowever, even when system action
successfully corrects an error, the
programmer should remember that if he
subsequently recompiles the same program,
he will get the same diagnostic message
again unless he has ~orrected the source
error.

If a problem arises in using the PL/I
(F) Compiler, do the following before
calling IBM for programming support:

• If the compiler preprocessor has been
used and the problem occurs in the
processor stage, use the 'MACDK' option
to obtain the macro deck output; this
ensures that source code from INCLUDE
libraries is available. Otherwise,
retain the source input to the
compiler. (Note: if the problem occurs
in the preprocessor stage, ensure that
all source data in libraries as well as
the primary input is available.)

• Obtain listings of SYS1.LINKLIB and of
SYS1.PL1LIB, and listings of program
temporary fixes (PTF's) using lMAPTFLS
against these libraries.

• Specify MSGLEVEL=(l,l) on the job
statement.

• Include a SYSUDUMP DO statement for the
failing job step.

• If the problem is associated with a
compiler termination message, recompile
with compiler options 'S,DP=(PIE,ZZ)'
to obtain a formatted dump of the
compiler.

Not~ It may be necessary to override the
default queue space for SYSOUT for the
SYSPRINT data set in order to prevent a
'B37' ,abend.

e.g. //PL1L.SYSPRINT DO SYSOUT=A,

SPACE=(629,(2000,20»

Appendix K: Diagnostic Messages 313

E IEM00021 INVALID PREFIX OPERATOR IN
STATEMENT NUMBER xxx. REPLACED
BY PLUS.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM00031 RIGHT PARENTHESIS INSERTED IN
STATEMENT NUMBER xxx

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs" do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM00041 OPERATOR. NOT. IN STAT]~MENT
NUMBER xxx USED AS AN INFIX
OPERATOR. IT HAS BEEN REPLACED
BY .NE.

programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM00051 RIGHT PARENTHESIS INSERTED
AFTER SINGLE PARENTHESIZED
EXPRESSION IN STATEMENT NUMBER
xxx

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM00061 RIGHT PARENTHESIS INSERTED AT
END OF SUBSCRIPT, ARGU~NT OR
CHECK LIST IN STATEMENT NUMBER
xxx

314

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM00011 IDENTIFIER MISSING IN STATEMEN~L
NUMBER xxx. A DUMMY
IDENTIFIER HAS BEEN INSERTED.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following beforE~
calling IBM for programming
support:

• Have the source program
listing available.

E IEM00081 RIGHT PARENTHESIS INSERTED AT
END OF CALL ARGUMENT LIST OR
OTHER EXPRESSION LIST IN
STATEMENT NUMBER xxx

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

W IEM00091 A LETTER IMMEDIATELY FOLLOWS
CONSTANT IN STATEMENT NUMBER
xxx. AN INTERVENING BLANK IS
ASSUMED~

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM00101 IMPLEMENTATION RESTRICTION.
IDENTIFIER yyyy IN OR NEAR
STATEMENT NUMBER xxx IS TOO
LONG AND HAS BEEN SHORTENED.

Explanation: Implementation
restriction. Identifiers may
not exceed 31 characters in
length.

§ystem Action: Identifier has
been shortened by concatenating
first 16 characters with last
15.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source p~ogram
listing available.

W IEM00111 CONSTANT IMMEDIATELY FOLLOWS
IDENTIFIER IN STATEMENT NUMBER
xxx. AN INTERVENING BLANK IS
ASSUMED.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM00121 EXPONENT MISSING IN
FLOATING-POINT CONSTANT
BEGINNING yyyy IN STATEMENT
NUMBER xxx. ZERO HAS BEEN
INSERTED.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM00131 INTEGER yyyy TOO LONG IN
STATEMENT NUMBER xxx. IT HAS
BEEN TRUNCATED ON THE RIGHT.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM00141 EXPONENT TOO LONG IN
FLOATING-POINT CONSTANT
BEGINNING yyyy IN STATEMENT
NUMBER xxx. IT HAS BEEN
TRUNCATED.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following·before
calling IBM for programming
support:

• Have the source program
listing·available.

E IEM00151 SOLITARY DECIMAL POINT FOUND IN
OPERAND POSITION IN STATEMENT
NUMBER xxx. A FIXED-POINT
ZERO HAS BEEN INSERTED.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have ,the source program
listing available.

E IEM00161 FLOATING-POINT CONSTANT
BEGINNING yyyy IN STATEMENT
NUMBER xxx IS TOO LONG AND HAS
BEEN TRUNCATED ON THE RIGHT.

Programmer Response: Probable
user errore correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM00171 ZERO INSERTED IN FLOATING-POINT
CONSTANT BEGINNING .E IN
STATEMENT NUMBER xxx

Programmer Response: Probable
user error. correct program
and recompile. If the problem
recurs r do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM00181 ZERO INSERTED IN PENCE FIELD OF
STERLING CONSTANT BEGINNING
yyyy IN STATEMENT NUMBER xxx

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

EIEM00191 POUNDS FIELD IN STERLING
CONSTANT BEGINNING yyyy IN
STATEMENT NUMBER xxx IS TOO
LONG AND HAS BEEN TRUNCATED.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

Appendix K: Diagnostic Messages 315

E IEM00201 ZERO INSERTED IN POUNDS FIE:LD
OF STERLING CONSTANT BEGINNING
yyyy IN ST~TEMENT NUMBlffi xxx

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs" do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM00211 DECIMAL POINT IN EXPONENT FIELD
OF CONSTANT BEGINNING yyyy IN
STATEMENT NUMBER xxx. FIE:LD
TRUNCATED AT DECIMAL POINT.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM00221 DECIMAL PENCE TRUNCATED IN
STERLING CONSTANT BEGINNING
yyyy STATEMENT NUMBER xxx

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs" do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM00231 LETTER L MISSING FROM STERLING
CONSTANT BEGINNING yyyy IN
STATEMENT NUMBER xxx

system Action: None

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM00241 SHILLINGS FIELD TRUNCATED IN
STERLING CONSTANT BEGINNING
yyyy IN STATEMENT NUMBER xxx

316

Programmer Response: Probable
user error. Correct program
and recompile. If -the problem
recurs, do the following before

calling IBM for programming
support:

• Have the source program
listing available.

E IEM00251 ZERO INSERTED IN SHILLINGS
FIELD OF STERLING CONSTANT
BEGINNING yyyy IN STATEMENT
NUMBER xxx

Programmer Response: ProbablE!
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM00261 ILLEGAL CHARACTER IN APPARENT
BIT STRING yyyy IN STATEMENT
NUMBER xxx. STRING TREATED J~
A CHARACTER STRING.

Eroqrammer Response: ProbablE!
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM00271 FIXED-POINT CONSTANT BEGINNING
yyyy IN STATEMENT NUMBER xxx
HAS BEEN TRUNCATED ON THE
RIGHT.

Programmer Response: ProbablE~
use~ error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM00281 LABEL REFERENCED ON END
STATEMENT NUMBER xxx CANNOT BE
FOUND. END TREATED AS HAVING
NO OPERAND.

Programmer Response: ProbablE!
user error. Correct program
and recompile. If the problem
recurs-~ do the following befol~e
calling IBM for programming
support:

• Have the source program
listing available.

S IEM00291 INVALID CHARACTER IN BINARY
CONSTANT IN STATEMENT NUMBER

xxx. CONSTANT TREATED AS
DECIMAL CONSTANT.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support: .

• Have the source program
listing available.

S IEM0030I POINTER QUALIFIER FOLLOWS
EITHER A SUBSCRIPT OR ANOTHER
POINTER QUALIFIER IN STATEMENT
NUMBER xxx.

System Action: As stated in a
further message referring to
the same statement.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs" do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM0031I OPERAND MISSING IN OR FOLLOWING
STATEMENT NUMBER xxx. DUMMY
OPERAND INSERTED.

~anation: something invalid
has been found in an
expression, or where an
expression was expected but no·t
found. In order that further
diagnosis can be made, the
compiler has inserted a dummy
operand. This may cause
further error messages to
appear for this statement.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM0033I AN INVALID PICTURE CHARACTER
IMMEDIATELY FOLLOWS TEXT yyyy
IN STATEMENT NUMBER xxx. THE
PICTURE HAS BEEN TRUNCATED AT
THIS POINT.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before

calling IBM for programming
support:

• Have the source program
listing available.

W IEM003L~I A LETTER IMMEDIATELY FOLLOWS A
CONSTANT AT nnnn SEPARATE
POSITION(S> IN STATEMENT NUMBER
xxx. AN INTERVENING BLANK HAS
BEEN ASSUMED IN EACH CASEa

Proqrammer Response: Probable
user error. Check that the
system action will have the
required effect. If the
problem recurs, do the
following before calling IBM
for programming support:

• Have the source program
listing available.

E IEM0035I LETTER F IS NOT FOLLOWED BY
LEFT PARENTHESIS IN PICTURE IN
STATEMENT NUMBER xxx. ONE HAS
BEEN INSERTED.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM0037I ZERO INSERTED IN SCALING FACTOR
IN PICTURE yyyy IN STATEMENT
NUMBER xxx

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM0038I RIGHT PARENTHESIS INSERTED
AFTER SCALING OR REPLICATION
FACTOR IN PICTURE yyyy IN
STATEMENT NUMBER xxx

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

Appendix K: Diagnostic Messages 317

E IEM00391 NO CHARACTER FOLLOWS
REPLICATION FACTOR IN PICTURE
yyyy IN STATEMENT NUMBER xxx.
THE PICTURE HAS BEEN TRUNCATED
AT THE LEFT PARENTHESIS OF THE
REPLICATION FACTOR.

Programmer Respo~ Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programmdng
support:

• Have the source program
listing available.

E IEM00401 A REPLICATION FACTOR OF 1 HAS
BEEN INSERTED IN PICTURE yyyy
IN STATEMENT NUMBER xxx

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM00431 RIGHT PARENTHESIS INSERTED IN
STATEMENT NUMBER xxx

Explanation: Right parenthesis
missing from length attached to
character or bit string.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM00441 IN STATEMENT NUMBER XX:K
PRECISION NOT AN INTEGER

318

Explanation: Precision should
be an un~igned integer

system Action: The ac·tion
taken depends on whether the
precision is found in a DECLARE
statement or a PROCEDURE
statement. A further message
will be produced.

Programmer Response: Probable
user error. Correct program
and recompile. I.f the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM00451 ZERO INSERTED IN FIXED
PRECISION SPECIFICATION IN
STATEMENT NUMBER xxx

Programmer Response: Probablfe
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM00461 RIGHT PARENTHESIS INSERTED
AFTER PRECISION SPECIFICATION
IN STATEMENT NUMBER xxx

Prog:rammer Response: Probablfe
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM00481 RIGHT PARENTHESIS INSERTED IN
FILE NAME LIST IN STATEMENT
NUMBER xxx

Programmer Response: Probablfe
user error. Correct program
and :recompile. If the problem
recurs, do the following befo:re
calling IBM for programming
support:

• Have the source program
listing available.

E IEM00491 THE COMMENT FOLLOWING THE
LOGICAL END OF PROGRAM HAS NOT
BEEN TERMINATED.

Explanation: A /* was found
following the logical end of
the program and was interpret fed
as the start of a comment, but
end-of-file was reached beforle
the comment was terminated.

system Action: All text
following the/* is read as a
comment.

Programmer Response: Probabl1e
user error. Check if this is a
delimiter in the wrong column
of the record. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM00501 INVALID STATEMENT LABEL
CONSTANT IN LABEL ATTRIBUTE IN
STATEMENT NUMBER xxx. THE
STATEMENT LABEL CONSTANT LIST
HAS BEEN DELETED.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

W IEM00511 MISSING RIGHT PARENTHESIS
INSERTED FOLLOWING STATEMENT
LABEL CONSTANT IN LABEL
ATTRIBUTE IN STATEMENT NUMBER
xxx

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM00521 INVALID ATTRIBUTE IN RETURNS
ATTRIBUTE LIST IN STATEMENT
NUMBER xxx. THE INVALID
ATTRIBUTE HAS BEEN DELETED FROM
THE LIST.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

W IEMO Cl531 SURPLUS COMMA HAS BEEN FOUND IN
DECLARE OR ALLOCATE STATEMENT
NUMBER xxx. THIS COMMA HAS
BEEN DELETED.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM00541 ILLEGAL FORM OF CALL STATEMENT.
STATEMENT NUMBER xxx DELETED.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

W IEM00551 LABEL OR LABELS ON DECLARE
STATEMENT NUMBER xxx HAVE BEEN
IGNORED.

Programmer Response:' Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM00561 NULL PICTURE FORMAT ITEM IN
STATEMENT NUMBER xxx. THE
CHARACTER 9 HAS BEEN INSERTED
IN THE PICTURE.

Explanation: The null picture
may be the result of the
compiler truncating an invalid
picture.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM00571 INVALID CHARACTER FOLLOWING
ITERATION FACTOR IN PICTURE
BEGINNING yyyy IN STATEMENT
NUMBER xxx. THE PICTURE HAS
BEEN TRUNCATED AT THE LEFT
PARENTHESIS OF THE ITERATION
FACTOR.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM00581 ITERATION FACTOR IN PICTURE
BEGINNING yyyy NOT AN UNSIGNED
INTEGER IN STATEMENT NUMBER
xxx. THE PICTURE HAS BEEN
TRUNCATED AT THE LEFT

Appendix K: Diagnostic Messages 319

PARENTHESIS OFTSE ITERATION
FACTOR.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM00591 MISSING RIGHT PARENTHESIS
INSERTED IN POSITION ATTRIBUTE
IN STATEMENT NUMBER xxx.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs. do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM0060I POSITION MISSING IN POSITION
ATTRIBUTE IN STATEMENT NUMBER
xxx. POSITION OF 1 INSERTED.

Programmer Respop~ Probable
user error. Correct program
and recompile. If the problem
recurs, do the,fo110wing before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM00611 MISSING LEFT PARENTHESIS
INSERTED IN POSITION AT'TRIBUTE
IN STATEMENT NUMBER xxx.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support: '

• Have the source program
listing avai.lab1e.

W IEM00621 THE ATTRIBUTE • PACKED' IN
DECLARATION STATEMENT NUMBER
xxx IS NOW OBSOLETE, AND HAS
BEEN IGNORED.

320

Explanation: PACKED has been
removed from the language: the
complementary attribute to
ALIG~ED is now UNALIGNED.

system Action:. ,since PACKED
applied only td~rrays and
major structures, the new

alignment defaults will be
compa'tible with those of
earlier versions of the
compiler., except for bit string
arrays that are not members of
structures.

Programmer Response: Probable
user error. Correct source,
and recompile if necessary. If
the problem recurs, do the
following before calling IBM
for programming support:

• Have the source program
listing available.

E IEM00631 MISSING LEFT PARENTHESIS
INSERTED IN RETURNS STATEMENT
NUMBER xxx.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM00641 ILLEG.AL STATEMENT FOLLOWS THE
THEN IN STATEMENT NUMBER xxx.
SEMICOLON HAS BEEN INSERTED
AFTER THE THEN.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following befor,e
calling IBM for programming
support:

• Have the source program
listing available.

E IEM00671 EQUAL SYMBOL HAS BEEN INSERTED
IN DO STATEMENT NUMBER xxx

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following befor,e
calling IBM for programming
support:

• Have the source program
listing available.

T IEM00691 IMPLEMENTATION RESTRICTION.
SOURCE PROGRAM CONTAINS TOO
MANY BLOCKS.

System Action: Compilation is
terminated

Programmer Response: Probable
user error. Rewrite program

with fewer blocks, or divide
into more than one separate
compilation. If the problem
recurs, do the following before
calling IBM for programming
support:

• Recompile the program with
compiler options
'S,DP=(PIE,ZZ), to obtain a
formatted dump of the
compiler. (Refer to the
comments which precede all
the IEMnnnnI messages.)

• Have the associated job
stream and source program
listing available.

T IEM00701 BEGIN STATEMENT NUMBER xxx IS
NESTED BEYOND THE PERMITTED
LEVEL. COMPILATION TERMINATED.

Programmer Response: Probable
user error. Reduce level of
nesting of blocks to 50 or
less. If the problem recurs,
do the following before calling
IBM for programming support:

• Recompile the program with
compiler options
'S,DP=(PIE,ZZ)' to obtain a
formatted dump of the
compiler. (Refer to the
comments which precede all
the IE~nnnnI messages.)

• Have the associated job
stream and source program
listing available.

T IEM00711 TOO MANY PROCEDURE, BEGIN,
ITERATIVE 00, ON. STATEMENTS IN
THIS PROGRAM. COMPILATION
TERMINATED.

Explanation: There is an
implementation restriction on
the number of blocks in a
compilation. Refer to Appendix
J of this publication for
details.

Programmer Response: Probable
user error. subdivide program
into two or more compilations.
If the problem recurs, do the
following before calling IBM
for programming support:

• Recompile the program with
compiler options
'S,DP=(PIE~ZZ)' to obtain a
formatted dump of the
compiler. (Refer to the
comments which precede all
the IEMnnnnI messages.)

• Have the associated job
stream and source program
listing available.

S IEM00721 DO STATEMENT NUMBER xxx
REPLACED BY BEGIN STATEMENT.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the .following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM00741 THEN INSERTED IN IF STATEMENT
NUMBER xxx

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM00751 NO STATEMENT FOLLOWS THEN IN IF
STATEMENT NUMBER xxx

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM00761 NO STATEMENT FOLLOWS ELSE IN OR
FOLLOWING STATEMENT NUMBER xxx

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM00771 ELSE DELETED IN OR FOLLOWING
STATEMENT NUMBER xxx

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

Appendix K: Diagnostic Mess~ges 321

E IEM007BI IMPLEMENTATION RESTRICTION.
TOO MANY CHARACTERS IN INITIAL
LABEL ON STATEMENT NUMBER xxx.
LABEL IGNORED.

Explanation: There is an
implementation restriction on
the number of character:s in the
subscript of a subscripted
identifier. The maximum
permissible number is 225.

Programmer Response: P:robable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEMOOBOI EQUAL SYMBOL HAS BEEN INSERTED
IN ASSIGNMENT STATEMENT NUMBER
xxx

Programmer Respo~~ Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEMOOB11 LABELS OR PREFIX OPTIONS BEFORE
ELSE TRANSFERRED TO STATEMENT
NUMBER xxx

Explanation: Labels or prefix
options illegal before ELSE and
therefore transferred to
following statement.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEMOOB21 OPERAND MISSING IN CHECK LIST
IN OR FOLLOWING STATEMENT
NUMBER xxx. DUMMY INSERTED.

322

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEMOOB31 ON-CONDITION INVALID OR MISSING
IN STATEMENT NUMBER xxx. ON
ERROR HAS BEEN ASSUMED.

System Action: ON ERROR
inserted in place of invalid
condition

Pr.ogrammer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following befor1e
calling IBM for programming
support:

• Have the source program
listing available.

E IEMOOB41 THE 1/0 ON-CONDITION IN
STATEMENT NUMBER xxx HAS NO
FILENAME FOLLOWING IT. SYSIN
IS ASSUMED.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEMOOB51 COLON MISSING AFTER PREFIX
OPTION IN OR FOLLOWING
STATEMENT NUMBER xxx. ONE HAS
BEEN ASSUMED.

Programmer Response: Probable
user errore Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

T IEM00901 THERE ARE NO COMPLETE
STATEMENTS IN THIS PROGRAM.
COMPILATION TERMINATED.

Programmer Response: Probable
user error. If the problem
recurs, do the following before
calling IBM for programming
support:

• Recompile the program with
compiler options
'S,DP=(PIE,ZZ), to obtain a
formatted dump of the
compiler. (Refer to the
comments which precede all
the IEMnnnnI messages.)

• Have the associated job
stream and source program
listing available.

W IEM0094I RECORD IN OR FOLLOWING
STATEMENT NUMBER xxx IS SHORTER
THAN THE SPECIFIED SOURCE
START. THE OUTPUT RECORD HAS
BEEN MARKED WITH AN ASTERISK
AND IGNORED.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEMO()95I LABEL ON STATEMENT NUMBER xxx
HAS NO COLON. ONE IS ASSUMED '"

Explanation: The compiler has
encountered an identifier which
appears to be a statement
label, but without a colon.

system Action: A colon is
inserted

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs" do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM0096I SEMI-COLON NOT FOUND WHEN
EXPECTED IN STATEMENT NUMBER
xxx. ONE HAS BEEN INSERTED.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM0097I INVALID ,CHARACTER HAS BEEN
REPLACED BY BLANK IN OR
FOLLOWING STATEMENT NUMBER xxx.
THE CONTAINING OUTPUT RECORD IS
MARKED BY AN ASTERISK.

Programmer Response: probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM0099I LOGICAL END OF PROGRAM OCCURS
AT STATEMENT NUMBER xxx. THIS
STATEMENT HAS BEEN IGNORED SO
THAT SUBSEQUENT STATEMENTS MAY
BE PROCESSED.

Explanation: Although the
compiler has detected the end
of the program, there is more
text following it. The
programmer appears to have made
an error in matching END
statements with PROCEDURE,
BEGIN, DO or ON statements.

~stem Action: The END
statement is ignored

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM0100I END OF FILE FOUND IN OR AFTER
STATEMENT NUMBER xxx, BEFORE
THE LOGICAL END OF PROGRAM.

system Action: If the
statement is incomplete, it is
deleted. Whether or not the
statement is incomplete, the
required number of END
statements are added to the
program so that compilation can
continue.

Programmer Response: Probable
user error. Correct the source
code. possible causes of this
error include:

1. Unmatched quote marks

2. Insufficient END
statements

3. Omission of final
semicolon.

If the problem recurs, do the
following before calling IBM
for programming support:

• Have the source program
listing available.

S IEM0101I PARAMETER MISSING IN STATEMENT
NUMBER xxx. A DUMMY HAS BEEN
INSERTED.

~ppendix K: Diagnostic Messages 323

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM01021 LABEL MISSING FROM PROCEDURE
STATEMENT NUMBER xxx. A DUMMY
LABEL HAS BEEN INSERTED.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM01031 LABEL MISSING FROM ENTRY
STATEMENT NUMBER xxx

programmer Response: Probable
user error. correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM01041 ILLEGAL STATEMENT FOLLOWS ELSE
IN STATEMENT NUMBER xxx

System Action: Null statement
inserted

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM01051 ILLEGAL STATEMENT FOLLOWS ON IN
STATEMENT NUMBER xxx

324

system Action: Null statement
inserted

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs,. do ,the following before
calling IBM for programming
suppo+t:

• Have the source program
listing available.

T IEM01061 IMPLEMENTATION RESTRICTION.

T IEM01071

SOURCE PROGRAM CONTAINS TOO
MANY BLOCKS.

system Action: compilation is
terminated

Programmer Response: Probable
user error. Rewrite program
with fewer blocks, or divide
into more than one separate
compilation. If the problem
recurs" do the following before
calling IBM for programming
support:

• Recompile the program with
compiler options
·S,DP=(PIE.ZZ), to obtain a
formatted dump of the
compiler. (Refer to the
comments which precede all
the IEMnnnnI messages.)

• Have the associated job
stream and source program
listing available.

IMPLEMENTATION RESTRICT~N.
STATEMENT NUMBER XXX f I5 ~OO
LONG,. THIS STATEMEN(I' MAY
CONTAIN UNMATCHED QUOTE MARKS ..

Programmer Response: ProbablE~
user error. subdivide
statement and recompile. If
tHe problem recurs, do the
following before calling IBM
for programming support:

• Recompile the program with
compiler options
'S,DP=(PIE.ZZ), to obtain a
formatted dump of the
compiler. (Refer to the
comments which precede all
the IEMnnnnI messages.)

• Have the associated job
stream and source program
listing available.

S IEM01081 ENTRY STATEMENT NUMBER xxx IN
AN ITERATIVE DO GROUP HAS BEEN
DELETED.

Programmer Response: Probabl.e
user error. Correct program
and :recompile. If the problem
recurs, do the following before
calling IBM for programming
support: "

• Have the source program
listing available.

S IEMOl.091 TEXT BEGINNING yyyy IN OR
FOLLOWING STATEMENT NUMBER xxx
HAS BEEN DELETED.

Explanation: The source error
is detailed in another message
referring to the same
statement.

Programmer Response: Probable
user error. Correct program
,{;lnd recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM01111 FIRST STATEMENT NOT A PROCEDURE
STATEMENT. A DUMMY PROCEDU~E
STATEMENT HAS BEEN INSERTEp'.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• H~ve.tpe ~o~rce program
l1st1~g ava1lable.

t
S IEM01:l21 ENTRY STATEMENT NUMBER xxx IN

BEGIN BLOCK HAS BEEN DELETED.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM01:ll31 RIGHT PARENTHESIS INSERTED IN
STATEMENT NUMBER xxx

Explanation: Parenthesized
list in ON statement is either
not closed or contains an error
and has been truncated.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEMOl1.41 RIGHT PARENTHESIS INSERTED IN
PREFIX OPTION IN OR FOLLOWING
STATEMENT NUMBER xxx

Programmer Response: P~obable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEMOl151 LEFT PARENTHESIS INSERTED AFTER
WHILE IN STATEMENT NUMBER xxx

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM01161 PREFIX OprION FOLLOWS LABEL IN
STATEMENT NUMBER xxx. PREFIX
OPTION IS IGNORED.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEMOl171 DATA ATTRIBUTE LIST IN
PROCEDURE OR ENTRY STATEMENT
NUMBER xxx IS NOT PRECEDED BY
RETURNS ATTRIBUTE AND IS NOT
PARENTHESIZED. RETURNS AND
PARENTHESES HAVE BEEN ASSUMED.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEMOl181 OFFSET ATTRIBUTE NOT FOLLOWED
BY PARENTHESIZED BASED VARIABLE
IN STATEMENT NUMBER xxx. THE
ATTRIBUTE IS IGNORED.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

Appendix K: Diagnostic Messages 325

E IEMOl191 THE RETURNS ATTRIBUTE IN
PROCEDURE OR ENTRY STATEMENT
NUMBER xxx IS NOT FOLLOWED BY A
PARENTHESIZED DATA ATTRIBUTE
LIST. RETURNS HAS BEEN
IGNORED.

Programmer R~nse: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM01201 DATA ATTRIBUTE LIST FOLLOWING
RETURNS IN PROCEDURE OR ENTRY
STATEMENT NUMBER xxx IS NOT
PARENTHESIZED. PARENTHESES
HAVE BEEN ASSUMED.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM01211 THE ATTRIBUTE USES OR SETS IN
STATEMENT NUMBER xxx IS
OBSOLETE AND HAS BEEN IGNORED
TOGETHER WITH ITS PARENTHESIZED
ITEM LIST.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support: .,

• Have the source program
listing available.

E IEM01221 THE ATTRIBUTE NORMAL OR
ABNORMAL IN STATEMENT NUMBER
xxx IS OBSOLETE AND HAS BEEN
IGNORED.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs. do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM0123I THE DATA ATTRIBUTE LIST IN
PROCEDURE OR ENTRY STATEMENT
NUMBER xxx HAS NO CLOSING

326

PARENTHESIS. ONE HAS BEEN
ASSUMED.

Programmer Respons e: ProbablE!
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM01241 INVALID ATTRIBUTE IN DECLARE OR
ALLOCATE STATEMENT NUMBER xxx.,
ATTRIBUTE TEXT DELETED.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM01251 INVALID USE OF LABEL yyy ON
ON-UNIT BEGINNING AT S TATE MEm?
xxx. LABEL HAS BEEN DELETED.

Explanation: An on-unit cannot
be referenced by a label.

System Action: The label is
ignored.

Programmer Response: ProbablE~
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM01261 IMPLEMENTATION RESTRICTION.
STATEMENT NUMBER xxx HAS TOO
MANY ERRORS TO BE INTERPRETED.,
THE STATEMENT HAS BEEN DELETED.

Programmer Response: ProbablE~
user errors. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM0127I INVALID TEXT IN PREFIX OPTIONS
LIST~ THE TEXT BEGINNING yyy
TO THE END OF THE OPTIONS LIs~r

HAS BEEN IGNORED.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM01.281 LENGTH OF BIT OR CHARACTER
STRING MISSING IN STATEMENT
NUMBER xxx. LENGTH 1 INSERTED.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
re!curs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM01291 INVALID WAIT STATEMENT NUMBER
xxx DELETED.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM01301 OPERAND MISSING. COMMA DELETED
IN WAIT STATEMENT NUMBER xxx

Programmer.Response: probable
user error. Correct program
and recompile'. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM0131I RIGHT PARENTHESIS INSERTED IN
STATEMENT NUMBER xxx

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM01321 DUMMY OPERAND INSERTED IN
STATEMENT NUMBER xxx

Programmer Response: Probable
user error. Correct program

and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM01341 IMPLEMENTATION RESTRICTION.
TOO MANY LEVELS OF REPLICATION
IN INITIAL ATTRIBUTE IN
STATEMENT NUMBER xxx. THE
ATTRIBUTE HAS BEEN DELETED.

Explanation: The
implementation restriction on
levels of nesting has been
contravened. For details,
refer to Appendix J of this
publication.

Programmer Response: Probable
user error. Rewrite INITIAL
attribute with lower level of
replication. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM01351 AN EXPRESSION APPEARS ILLEGALLY
ON THE LEFT HAND SIDE OF AN
ASSIGNMENT STATEMENT.
STATEMENT DELETED.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM0136I 'IN' CLAUSE IN STATEMENT NUMBER
xxx HAS NO ASSOCIATED 'SET'
CLAUSE.

Explanation: An IN clause must
be accompanied by a SET clause
in the same statement.

system Action: The IN clause
is ignored

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

Appendix K: Diagnostic Messages 327

E IEM01381 SOLITARY I FOUND WHERE A
CONSTANT IS EXPECTED IN INITI~L
ATTRIBUTE IN STATEMENT NUMBER
xxx. FIXED DECIMAL IMAGINARY
11 HAS BEEN ASSUMED.

Explanation: The programmer
has initialized an element
using the variable I where the
constant 11 was expected.

System Action: 11 is assumed

Programmer.Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM01391 TEXT IMMEDIATELY FOLLOWING yyyy
IN INITIAL ATTRIBUTE IS
ILLEGAL. INITIAL ATTRIBUTE
DELETED IN STATEMENT NUMBER xxx

Explanation: A language
feature has been used that is
not supported by this version
of the compiler. For details,
refer to Appendix J of this
publication. Although the
message states that the error
follows the quoted text, the
quoted text may itself be
invalid, and the compiler may
have attempted to correct the
source error. In this case,
there will usually be another
diagnostic message associated
with the statement.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following be:fore
calling IBM for programming
support:

• Have the source program
listing available.

W IEM01401 NO IDENTIFIER FOUND IN DECLARE
STATEMENT NUMBER xxx.
STATEMENT REPLACED BY NULL
STATEMENT.

328

Explanation: Either no
identifiers appear in t.he
DECLARE statement or. as a
result of previous compiler
action, all identifiers have
been deleted from the
statemept.

.§ystem Action: Null statement
assumed ..

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM01441 RETURNS ATTRIBUTE IS NOT
FOLLOWED BY A DATA DESCRIPTION
IN STATEMENT NUMBER xxx. THE
RETURNS ATTRIBUTE HAS BEEN
DELETED.

Programmer Response: Probable!
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM01451 DUMMY IDENTIFIER INSERTED IN
GENERIC ATTRIBUTE LIST IN
STATEMENT NUMBER xxx

Programmer Response: ProbablE!
user error. correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM01411 THE USE OF REFER IN STATEMENT
NUMBER xxx IS EITHER INVALID OR
IS NOT IMPLEMENTED IN THIS
RELEASE

Explanation: The
implementation of the REFER
option is restricted; see
Appendix J, 'Implementation
Conventions and Restrictions'.

system Action: Ignore the
REFER clause. A further
message identifying the invalid
text will usually accompany
this message.

Programmer Response: Probabl~~
user error. Correct program
and recompile. If the problem
recurs, do the following befOl:e
calling IBM for programming
support:

• Have the source program
listing available.

E IEM01481 LEFT PARENTHESIS MISSING IN
STATEMENT NUMBER xxx

system Action: See further
messages relating to this
statement

Programmer Response: Probable
user ercor. Correct program
and recompile. If the problem
recurs, do the follqwing before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM01.491 COMMA HAS BEEN DELETED FROM
LIST IN STATEMENT NUMBER xxx

Programmer Response: probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM01.501 STATEMENT NUMBER xxx IS AN
INVALID FREE STATEMENT. THE
STATEMENT HAS BEEN DELETED.

Explanation: The format of the
statement is invalid

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM01511 SEMI-COLON INSERTED IN
STATEMENT NUMBER xxx

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM01521 TEXT BEGINNING yyyy IN
STATEMENT NUMBER xxx HAS BEEN
DELETED.

Explanation: The source error
may be detailed in another
message referring to the same
statement.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recUJ;s, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM01531 THE ATTRIBUTED BASED HAS BEEN
ASSUMED IN STATEMENT NUMBER xxx
WHERE CONTROLLED WAS SPECIFIED.

Explanation: The PL/I feature
CONtROLLED (pointer) has been
changed to BASED (pointer).

programmer Response: Probable
user' error. Correct program
and recompile. If the problem
requrs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM01541 IMPLEMENTATION RESTRICTION IN
STATEMENT NUMBER xxx. BASED
~UST BE FOLLOWED BY AN
IDENTIFIER IN PARENTHESIS.

System Action: Text is
deleted. See further error
message for this statement.

Programmer Response: Probable
user error. Correct source
statement. If the problem
re·<::urs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM01581 ZERO STRUCTURE LEVEL NUMBER
DELETED IN DECLARE STATEMENT
NUMBER xxx

Explanation: Zero level number
not allowed

Programmer Response: Probable
uSer error. Correct program
and' recompile. If the problem
recwrs, do the following before
ca~ling IBM for programming
support:

.'Have the source program
listing available.

Appendix ·K:. Diagnostic Messages 329

E IEM01591 SIGN DELETED PRECEDING
STRUCTURE LEVEL NUMBER IN
DECLARE STATEMENT NUMBER xxx

Explanation: The level number
must be an unsigned integer

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM01631 FqRMAT LIST MISSING, (A)
INSERTED IN STATEMENT NUMBER
xxx

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM01661 OPERAND MISSING IN GO TO
STATEMENT NUMBER xxx. DUMMY IS
INSERTED.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM01721 LEFT PARENTHESIS INSERTED IN
DELAY STATEMENT NUMBER xxx

Explanation: The exprE~ssion in
a DELAY statement should be
contained in parentheses

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM01801 EQUAL SYMBOL HAS BEEN INSERTED
IN DO SPECIFICATIONS IN
STATEMENT NUMBER xxx

330

Programmer Response: Probable
user error. Correct program

and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM01811 SEMICOLON INSERTED IN STATEMENT
NUMBER xxx

Explanation: An error has been
discovered. A semi-colon is
therefore inserted and the rest
of the statement is skipped.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM01821 TEXT BEGINNING yyyy SKIPPED IN
OR FOLLOWING STATEMENT NUMBER
xxx

Explanation:· The source error
is detailed in another message~
referring to the same
statement.

Programmer Response: Probable~
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM018S1 OPTION IN GET/PUT STATEMENT
NUMBER xxx IS INVALID AND HAS
BEEN DELETED.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEMOla7! DATA LIST MISSING IN STATEMEN,]~
NUMBER xxx. OPTION DELETED.

Programmer Response: ProbablE~
user error. Correct program
and recompile. If the problem
recurs, do the following befol::-e
calling ISM for programming
support:

• Have the source program
listing available.

S IEM01911 DUMMY OPERAND INSERTED IN DATA
LIST IN STATEMENT NUMBER xxx

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM019131 RIGHT PARENTHESIS INSERTED IN
DATA LIST IN STATEMENT NUMBER
xxx

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM01941 MISSING RIGHT PARENTHESIS
INSERTED IN FORMAT LIST IN
STATEMENT NUMBER xxx

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM01951 INVALID FORMAT LIST DELETED IN
STATEMENT NUMBER xxx. (A),
INSERTED.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programmdng
support:

• Have the source program
listing available.

S IEM01981 COMPLEX FORMAT ITEM yyyy IN
STATEMENT NUMBER xxx IS INVALID
AND HAS BEEN DELETED.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programmdng
support:

• Have the source program
listing available.

S IEM02021 DEFERRED FEATURE. STATEMENT
NUMBER xxx NOT IMPLEMENTED IN
THIS VERSION.

Explanation: The statement
referred to is of a type not
supported by this version of
the compiler. For details,
refer to Appendix J of this
publication.

system Action: Compilation
continues

Programmer Response: Probable
user error. Rewrite source
program avoiding use of
unsupported feature. If the
problem recurs, do the
following before calling IBM
for programming support:

• Have the source program
listing available.

E IEM02071 COMMA REPLACED BY EQUAL SYMBOL
IN ASSIGNMENT STATEMENT NUMBER
xxx

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

.• Have the source program
listing available.

E IEM02081 LEFT PARENTHESIS INSERTED IN
CHECK'LIST IN STATEMENT NUMBER
xxx

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

T IEM02091 IMPLEMENTATION RESTRICTION.
STATEMENT NUMBER xxx IS TOO
COMPLEX

Explanation: The level of
nesting exceeds the
implementation restriction.
Refer to Appendix J of this
publication for details.

system Action: Terminates
compilation

Appendix K: Diagnostic Messages 331

Programmer Response: Probable
user error. Divide statement
into two or more statements.
If the problem recurs, do the
following before calling IBM
for programming support:

• Recompile the program with
compiler options
'S,DP=(PIE,ZZ), to obtain a
formatted dump of the
compiler. (Refer to the
comments which precede all
the IEMnnnnI messages.)

• Have the associated job
stream and source program
listing available.

E IEM02111 LEFT PARENTHESIS INSERTED IN
STATEMENT NUMBER xxx

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available~

E IEM02121 MULTIPLE TASK OPTIONS SPECIFIED
IN STATEMENT NUMBER XJCX. THE
FIRST ONE IS USED.

system Action: Ignorf~s options
other than the first

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM02131 MULTIPLE EVENT OPTIONS
SPECIFIED IN STATEMENT NUMBER
xxx. THE FIRST ONE IS USED.

332

System Action: Ignores options
other than the first

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
list\ng available.

E IEM02141 MULTIPLE PRIORITY OPTIONS
SPECIFIED IN STATEMENT NUMBER
xxx. THE FIRST ONE IS USED.

system Action: Ignores options
other than the first

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM02161 INVALID EVENT OPTION IGNORED IN
STATEMENT NUMBER xxx

Programmer Response: Probable
user error. Correct program
and recompile. If the problE~m
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM02171 INVALID PRIORITY OPTION IGNORED
IN STATEMENT NUMBER xxx

Programmer Response: Probable
user error. Correct program
and recompile. If the problE~m
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

W IEM02181 REPETITION FACTOR MISSING AF.rER
ITERATION FACTOR IN STATEMEN~r
NUMBER xxx. REPETITION FACTOR
OF 1 INSERTED.

Programmer Response: Probable
user error. Correct program
and recompile. If the probl,em
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM02191 KEYWORD 'CONDITION' NOT
SPECIFIED IN SIGNAL STATEMENT
NUMBER xxx

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following bef'ore
calling IBM for programming
support:

• Have the source program
listing available.

S IEM02201 IDENTIFIER MISSING OR INCORRECT
AFTER OPTION IN STATEMENT
NUMBER xxx. OPTION DELETED.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM02211 NUMBER OF LINES NOT GIVEN AFTER
LINE OPTION IN STATEMENT NUMBER
xxx. (1) INSERTED.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM02221 DEFERRED FEATURE. THE IDENT
OPTION ON OPEN/CLOSE STATEMENT
NUMBER xxx IS NOT IMPLEMENTED
BY THIS VERSION.

Explanation: A language
feature has been used that is
not supported by this version
of the compiler. Refer to
Appendix J of this publication
for details.

system Action: Option ignored

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM02231 EXPRESSION MISSING AFTER
IDENT/TITLE/LlNESIZE/PAGESIZE
OPTION IN STATEMENT NUMBER xxx.
OPTION DELETED.

Explanation: No left
parenthesis found following
keyword

Erogrammer Res~~~ Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before

calling IBM for programming
support:

• Have the source program
listing available.

S IEM02241 INVALID OPTION DELETED IN I/O
STATEMENT NUMBER xxx

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM02251 OPTION AFTER OPEN/CLOSE IN
STATEMENT NUMBER xxx IS INVALID
OR MISSING.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM02261 EXPRESSION MISSING AFTER FORMAT
ITEM IN STATEMENT NUMBER xxx.
ITEM DELETED.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

W IEM02271 NO FILE/SrRING OPTION SPECIFIED
IN ONE OR MORE GET/PUT
STATEMENTS. SYSIN/SYSPRINT HAS
BEEN ASSUMED IN EACH CASE

Explanation: One or more GET
or PUT statements have appeared
in the program with no
specified FILE option or STRING
option.

system Action: The compiler
has assumed the appropriate
default file (SYSIN for GET,
SYSPRINT for PUT).

S IEM02281 EXPRESSION MISSING AFTER' OPTION
IN STATEMENT NUMBER xxx.
OPTION DELETED.

Appendix K: Diagnostic Messages 333

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM02291 FORMAT ITEM IN STATEMENT NUMBER
xxx IS INVALID AND HAS BEEN
DELETED.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source p:r-ogram
listing available.

S IEM02301 INVALID DATA LIST IN STATEMENT
NUMBER xxx.. STATEMENT DELETED.

Programmer Response: Probable
user error.. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM02311 MISSING COMMA INSERTED IN DATA
LIST IN STATEMENT NUMBER xxx

Explanation: Comma missing
between elements of a data list

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available,.

E IEM02321 KEYWORD DO MISSING IN DATA LIST
IN STATEMENT NUMBER xxx. DO IS
INSERTED.

334

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM02331 RETURN STATEMENT NUMBER xxx IS
WITHIN AN ON-UNIT. IT IS
REPLACED BY A NULL STATEMENT.

programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following befo're
calling IBM for programming
support:

• Have the source program
listing available.

S IEM02351 ARGUMENT OMITTED FOLLOWING yyyy
OPTION IN STATEMENT NUMBER xxx.
OPTION DELETED.

Programmer Response: Probable
user error. Correct program
and recompile. If the problE!m
recurs, do the following before
c~lling IBM for programming
support:

• Have the source program
listing available.

S IEM02361 THE OPTION yyyy IN STATEMENT
NUMBER xxx IS UNSUPPORTED OR
INVALID.

Programmer Response: Probable
user error. Correct program
and recompile. If the problE~m
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM02371 INSUFFICIENT OPTIONS SPECIFIED
IN STATEMENT NUMBER xxx. TH]!:
STATEMENT HAS BEEN REPLACED BY
A NULL STATEMENT.

Programmer Response: Probable
user error. Correct program
and recompile. If the problc~m
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM023BI THE LOCATE-VARIABLE IN LOCATE
STATEMENT NUMBER xxx IS OMITTED
OR SUBSCRIPTED. THE STATEMENT
HAS BEEN DELETED.

Explanation: The omission o:f
the locate variable renders ·the
sta'tement meaningless.
subscripted locate variables
are invalid.

system Action: Replaces
invalid statement with a null
statement.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

T IEM02~~OI COMPILER ERROR IN PHASE CV.
SCAN CANNOT IDENTIFY DICTIONARY
ENTRY.

Explanation: The main scan of
fifth pass of read-in has found
something in the dictionary
which it cannot recognize

system Action: Compilation is
terminated

Programmer Response: Do the
following before calling IBM
for programming support:

• Recompile the program with
compiler options
'S,DP=(PIE,ZZ)' to obtain a
formatted dump of the
compiler. (Refer to the
comments which precede all
the IEMnnnnI messages.)

• Have the associated job
stream and source program
listing availablen

E IEM02411 MULTIPLE USE OF A PREFIX OPTION
HAS OCCURRED IN STATEMENT
NUMBER xxx. THE LAST NAMED
OPTION IS USED.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM02421 PREFIX OPTION INVALID OR
MISSING IN STATEMENT NUMBER
xxx. INVALID OPTION DELETED.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

T IEM02431

• Have the source program
listing available.

COMPILER ERROR. PHASE CS HAS
FOUND AN UNMATCHED END.

System Action: Compilation is
terminated

Programmer Response: . Do the
following before calling IBM
for programming support:

• Recompile the program with
compiler options
'S,DP=(PIE,ZZ), to obtain a
formatted dump of the
compiler. (Refer to the
comments Which precede all
the IEMnnnnI messages.)

• Have the associated job
stream and source program
listing available.

E IEM02441 CHECK PREFIX OPTION IN
STATEMENT NUMBER xxx IS NOT
FOLLOWED BY A PARENTHESIZED
LIST. THE OPTION HAS BEEN
IGNORED.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E I,EM02451 A CHECK PREFIX OPTION IS GIVEN
FOR STATEMENT NUMBER xxx WHICH
IS NOT A PROCEDURE OR BEGIN.
THE OPTION HAS BEEN IGNORED.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM02471 ALL SUBSCRIPTED LABELS
PREFIXING PROCEDURE OR ENTRY
STATEMENT NUMBER xxx HAVE BEEN
IGNORl.~D.

Explanation: subscripted
labels may not be used as
prefixes on PROCEDURE or ENTRY
statements.

Programmer Response: Probable
user error. Correct program

Appendix K: Diagnostic Messages 335

and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the sou:['ce program
listing available.

T IEM02541 COMPILER UNABLE TO RECOVER FROM
I/O ERROR - PLEASE RETRY JOB.

System 1Ction: Terminates
compilation

Proq:r:arnmer Response: Re-attempt
compilation. If the
input/output error persists, do
the following before calling
IBM for programming support:

• Recompile the program ~dth
compiler options
'S,DP=(PIE,ZZ)' to obtain a
formatted dump of the
compiler. (Refer to the
comments which precede all
the IEMnnnnI messages.)

• Make sure that
MSGLEVEL=(l,l) was
specified in the job
statement, and that a
SYSUDUMP DO statement was
included for the failing
job step.

• Have the associated job
stream and source program
listing available.

T IEM02551 THERE ARE NO COMPLETE
STATEMENTS IN THIS PROGRAM

336

Explanation: Compiler cannot
reconcile END statements with
stack entries. Usually caused
by a progranl containing only
comments.

system Action: Compilation is
terminated

Programmer Response: Check
source for completed
statements. If these are
present then do the following
before calling IBM for
programming support:

• Recompile the program with
compiler options
'S,DP=(PIE,ZZ), to obtain a
formatted dump of the
compiler. (Refer to the
comments which precede all
the IEMnnnnI messages.)

• Have the associated job
stream and source program
listing available.

S IEM02571 DATA DIRECTED I/O LIST IN
STATEMENT NUMBER xxx CONTAINS
BASED ITEM zzzz

System Action: Statement will
be deleted by later phases.

Programmer Response: Probablle
user error. Correct program
and :['ecompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM02581 NUMBER OF SUBSCRIPTS SPECIFIED
FOR zzzz IN STATEMENT NUMBER
xxx CONFLICTS WITH
DIMENSIONALITY. DUMMY
REFERENCE INSERTED.

System Action: Statement will
be deleted by later phases.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

W IEM05101 THE TASK OPTION HAS BEEN
ASSUMED TO APPLY TO THE
EXTERNAL PROCEDURE STATEMENT
NUMBER xxx

Explanation: TASK, EVENT or
PRIORITY options have been
detected in a CALL statement"
but the TASK option has not
been speci fied in the externall
procedure.

System Action: The TASK option
is correctly applied

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following bef()re
calling IBM for programming
support:

• Have the source program
listing available.

W IEM05111 OPTIONS MAIN AND/OR TASK ARE
NOT ALLOWED ON THE INTERNAL
PROCEDURE STATEMENT NUMBER xxx

System Action: The invalid
options are ignored

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM05121 IDENTIFIER yyyy IN STATEMENT
NUMBER xxx IN INITIAL ATTRIBUTE
LIST IS NOT A KNOWN LABEL
CONSTANT AND HAS BEEN IGNORED.

system Action: Identifier
changed to * in the list.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM05131 REPEATED LABEL IN SAME BLOCK ON
STATEMENT NUMBER xxx. LABEL
DELETED.

Explanation: A label may not
be used more than once in the
same block.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM05141 PARAMETER yyyy IN STATEMENT
NUMBER xxx IS SAME AS LABEL.
PARAMETER REPLACED BY DUMMY.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM05151 IMPLEMENTATION RESTRICTION.
CHARACTER STRING LENGTH IN
STATEMENT NUMBER xxx REDUCED TO
32,767.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM05161 ILLEGAL OPTIONS LIST ON
STATEMENT NUMBER xxx. LIST
IGNORED.

System Action: Compiler scans
for next right bracket. If
this is not the bracket closing
the illegal options list, a
compiler error will probably
follow.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
re'curs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM05171 CONFLICTING ATTRIBUTE DELETED
IN STATEMENT NUMBER xxx

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM05181 IMPLEMENTATION RESTRICTION.
PRECISION TOO LARGE IN
STATEMENT NUMBER xxx. DEFAULT
PRECISION GIVEN.

Explanation: If later a valid
preC1S10n is given, this will
be accepted in place of the
default.

System Action: Attribute
ignored. Attribute test mask
restored so that later
attribute will not be found to
conflict with deleted one.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

Appendix K: Diagnostic Messages 337

• Have the source program
listing available.

S IEM05191 ILLEGAL ATTRIBUTE ON STATEMENr
NUMBER xxx IGNORED.

Explanation: Only data
attributes allowed on procedure
or entry statements. (No
dimensions allowed).

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

T IEM05201 COMPILER ERROR CODE nnnn

Explanation: A compiler error
has occurred.

system Action: Terminates
immediately

Programmer Response: Do the
following before calling IBM
for programming support:

• Recompile the progz'am with
compiler options
'S,DP=(PIE,ZZ)' to obtain a
formatted dump of the
compiler. (Refer to the
comments which precede all
the IEMnnnnI messages.)

• Have the associated job
stream and source program
listing available.

S IEM05211 INVALID STRING LENGTH IN
STATEMENT NUMBER xxx. LENGTH
OF 1 ASSUMED.

338

Explanation: Either no length
has b~en given or s·tring length
* has been used in source code.

system Action: Assumes length
of 1 and skips to next
attribute

Programmer ResP.Qns~.!. Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM05221 IMPLEMENTATION RESTRICTION.
NUMBER OF PARAMETERS IN
PROCEDURE OR ENTRY STATEMENT
NUMBER .xxx TRUNCATED TO 64.

Programmer Response: Probable!
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM05231 PARAMETER zzzz IN STATEMENT
NUMBER :XXK APPEARS TWICE.
SECOND ONE REPLACED BY DUMMY.

Programmer Response: Probable!
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM05241 IDENTIFIER yyyy IN LABEL LIST
IN STATEMENT NUMBER xxx IS NO'l'
A LABEL OR IS NOT KNOWN.

system Action: Ignores
identifier

Programmer Response: Probable!
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

T IEM05251 IMPLEMENTATION RESTRICTION.
TOO MANY PAIRS OF FACTORED
ATTRIBUTE BRACKETS FOR THIS
SIZE OPTION.

ExplanatioQ: Factor bracket
table has overflowed.

~stem Action: Compilation
terminated

PrQ.gFammer Response: ProbablE~
user error. Recompile using Sl

SIZE sufficient to provide a
larger block size or reduce
factoring by expanding
declarations. If the problem
recurs, do the following before
calling IBM for programming
support:

• Recompile the program with
compiler opti!ons
'S,DP=(PIE,ZZ), to obtain a
formatted dump of the
compiler. (Refer to the
comments which precede all
the IEMnnnnI messages.)

• Have the associated job
stream and source program
listing available.

W IEM05261 OPTION MAIN HAS NOT BEEN
SPECIFIED FOR THE EXTERNAL
PROCEDURE STATEMENT NUMBER xxx

S IEM05271 IMPLEMENTATION RESTRICTION.
ARRAY BOUND IN STATEMENT NUMBER
xxx IS TOO LARGE AND HAS BEEN
REPLACED BY THE MAXIMUM
PERMITTED VALUE (32767 OR
-32768) •

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

T IEM05.281 COMPILER ERROR CODE nnnn IN
STATEMENT NUMBER xxx

Explanation: Compiler error
found in processing a DECLARE
statement

system-Action: Terminates
compilation

Programmer Response: Do the
following before calling IBM
for programming support:

• Recompile the program with
compiler options
'S,DP=(PIE,ZZ), to obtain a
formatted dump of the
compiler. (Refer to the
comments which precede all
the IEMnnnnI messages.)

• Have the associated job
stream and source program
listing available.

S IEM05291 IMPLEMENTATION RESTRIGTION.
STRUCTURE LEVEL NUMBER IN
STATEMENT NUMBER xxx REDUCED ro
255.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before

calling IBM for programming
support:

• Have the source program
listing available.

S IEM05301 IMPLEMENTATION RESTRICTION.
-.·i TOO MANY LABELS IN LABEL LIST

IN STATEMENT NUMBER xxx. THE
LABEL zzzz AND ANY FOLLOWING IT
HAVE BEEN IGNORED.

Explanation: There is an
implementation restriction
limiting the number of label
constants following the LABEL
attribu'\:e to 125.

Progra~ner Response: Probable
user error. Correct program
and rec()mpile. If the problem
recurs, do the following before
calling IBM for programming
support::

• Have the source program
listing available.

S IEM05321 ILLEGAL ASTERISK AS SUBSCRIPT
IN DEFINING LIST IN STATEMENT
NUMBER :ICXX. LIST TRUNCATED.

System l\ction: Compilation
continUt:~s with truncated iSUB
list, p()ssibly causing cascade
errors.

Progra~ner Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM05331 IMPLEMENTATION RESTRICTION.
I-SUB VALUE IN STATEMENT NUMBER
xxx TOO LARGE. REDUCED TO 32.

EXplanation: There is an
implementation restriction
limiting the number of
dimensicms to "a maximum of 32.

-·Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM05341 IMPLEMENTATION RESTRICTION.

Appendix K: Diagnostic Messages 339

STRING LENGTH IN STATEMENT
NUMBER xxx REDUCED TO 32,767.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following be:Eore
calling IBM for programming
support:

• Have the source program
listing available.

S IEM05361 IDENTIFIER yyyy IN STATEMENT
NUMBER xxx IS NOT A LABEL
CONSTANT OR IS NOT KNOWN. IT
IS IGNORED.

Explanation: Identifiers
following the LABEL attribute
must be LABEL constants and
must be known.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM05371 IMPLEMENTATION RESTRICTION.
POSITION CONSTANT IN ST~TEMENT
NUMBER xxx REDUCED TO 32,767.

Programmer Respon?e: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM05381 IMPLEMENTATION RESTRICTION.
PRECISION SPECIFICATION IN
STATEMENT NUMBER xxx TOO L~RGE.
DEFAULT PRECISION GIVEN.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM05391 ILLEGAL NEGATIVE PRECISION IN
STAT.EMENT NUMBER xxx. DEFAULT
PRECISION GIVEN.

340

Programmer Response: Probable
user error. Correct program

and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM05401 * BOUNDS ARE MIXED WITH NON-*
BOUNDS IN DECLARE STATEMENT
NUMBER XXK. ALL THE BOUNDS
ARE MADE *. .

Programmer Response: ProbablE~
user error. Correct program
and recompile. If the problem
recurs, do the following befo)~e
calling IBM for programming
support:

• Have the source program
listing available.

E IEM05411 LOWER BOU~D GREATER THAN UPPER
BOUND IN DECLARE OR ALLOCATE
STATEMENT NUMBER xxx. THE
BOUNDS ARE INTERCHANGED.

Programmer Response: ProbablE~
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM05421 IMPLEMENTATION RESTRICTION.
NUMBER OF DIMENSIONS DECLARED
TRUNCATED TO 32 IN STATEMENT
NUMBER xxx

Programmer Response: Probabl~~
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

T IEM05431 COMPILER ERROR. ILLEGAL
STATEMENT FOUND IN THE DECLARE
CHAIN.

Explanation: Compiler error
found in scanning chain of
DECLARE statements

System Action: Compilation
terminated

Prog:E:'ammer Response: Do the
following before calling IBM
for programming support:

• Recompile the program with
compiler options
'S,DP=(PIE,ZZ), to obtain a
formatted dump of the
compiler. (Refer to the
comment~ which precede all
the IEMnnnnI messages.)

• Have the associated job
stream and source program
listing available.

T IEMOS44I COMPILER ERROR. INITIAL CODE
BYTE QF DECLARE STATEMENT IS
NEITHER STATEMENT NUMBER NOR
STATEMENT LABEL.

Explanation: Compiler error
found in first byte of DECLARE
statements

system Action: Compilation
terminated

Programmer Response: Do the
following before calling IBM
for programming support:

• Recompile the program with
compiler options
'S,DP=(PIE,ZZ)' to obtain a
formatted dump of the
compiler. (Refer to the
comments which precede all
the IEMnnnnI messages.)

• Have the associated job
stream and source program
listing available.

T IEMOS45I COMPILER ERROR. ILLEGAL
INITIAL CHARACTER TO DECLARED
ITEM IN STATEMENT NUMBER xxx

Explanation: Compiler error
found in scanning start of
declared item

system Action: Compilation
terminated

Programmer Responsg;.. Do the
following before calling IBM
for programming support:

• Recompile the program with
compiler options
'S,DP=(PIE,ZZ)' to obtain a
formatted dump of the
compiler. (Refer to the
comments which precede all
the IEMnnnnI messages.)

• Have the associated job
stream and source program
listing available.

T IEll.10S46I COMPILER ERROR. ILLEGAL

CHARACTER FOUND AFTER LEVEL
NUMBER IN DECLARE STATEMENT
NUMBER xxx

Explanation: Compiler error
found after structure level
number in DECLARE statement

system Action: Compilation
terminated

programmer Response: Do the
following before calling IBM
for programming support:

• Recompile the program with
compiler options
'S,DP=(PIE,ZZ)' to obtain a
formatted dump of the
compiler. (Refer to the
comments which precede all
the IEMnnnnI messages.)

• Have the associated job
stream and source program
listing available.

W IEM0547I THE IDENTIFIER yyyy DECLARED IN
STATEMENT NUMBER xxx IS A
NON-MAJOR STRUCTURE MEMBER AND
HAS THE SAME NAME AS A FORMAL
PARAMETER OR INTERNAL ENTRY
POINT. ALL REFERENCES TO THE
STRUCTURE MEMBER SHOULD BE
QUALIFIED.

system Action: Same BCD
treated as different
identifiers

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

T IEM054BI COMPILER ERROR. ILLEGAL
CHARACTER FOUND IN DECLARATION
LIST.

Explanation: Compiler error
found in list of declarations
in DECLARE statement

system Action: Compilation
terminated

Programmer Response: Do the
following before calling IBM
for programming support:

• Recompile the program with
compiler option's
'S,DP=(PIE,ZZ), to obtain a

Appendix K: Diagnostic Messages 341

formatted dump of t:he
compiler. (Refer to the
comments which precede all
the IEMnnnnI messages.)

• Have the associated job
stream and source program
listing available •.

E IEM05491 THE DECLARED LEVEL OF
IDENTIFIER yyyy IN STATEMENT
NUMBER xxx SHOULD BE ONE. THIS
HAS BEEN FORCED.

system Action: Illegal level
number treated as 1

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM05501 THE IDENTIFIER yyyy HAS BEEN
DECLARED IN STATEMENT NUMBER
xxx WITH A TRUE LEVEL NUMBER
GREATER THAN THE IMPLEMENTATION
RESTRICTION OF 63. THE
DECLARATION OF THE IDENTIFIER
IS IGNORED.

Programmer R~ns~~ Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM05511 THE IDENTIFIER yyyy HAS BEEN
DECLARED IN STATEMENT NUMBER
xxx WITH ZERO PRECISION. THE
DEFAULT VALUE HAS BEEN ASSUMED.

Programmer Response: Probable
user error. Cor:rect program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

T IEM05521 COMPILER ERROR. ILLEGAL
CHARACTER FOUND IN FAC'rORED
ATTRIBUTE LIST IN DECLARE
STATEMENT NUMBER xxx

342

Explanation: Compiler error
found in factored attribute
list

system Action: Compilation
terminated

Programmer Response: Do the
following before calling IBM
for programming support:

• Recompile the program with
compiler options
'S,DP=(PIE,ZZ), to obtain a
formatted dump of the
compiler. (Refer to the
comments which precede all
the IEMnnnnI messages.)

• Have the associated job
stream and source program
listing available.

E IEM05531 THE IDENTIFIER yyyy HAS HAD A
CONFLICTING ATTRIBUTE IGNORED
IN DECLARE STATEMENT NUMBER Xlt:X

Explanation: The two
attributes may conflict as a
result of a feature not
supported by this version of
the compiler. For details of
these features, refer to
Appendix J of this publication.

Programmer Response: ProbablE:!
user error. Correct program
and recompile. If the problem
recurs, do the following befOJ::e
calling IBM for programming
support:

• Have the source program
listing available.

T IEM05541 COMPILER ERROR. ILLEGAL
CHARACTER FOUND IN PARAMETER
LIST FOLLOWING 'GENERIC'
ATTRIBUTE.

system Action: Compilation
terminated

Programmer Response: Do the
following before calling IBM
for programming support:

• Recompile the program with
compiler options
'S,DP=(PIE,ZZ)' to obtain a
:formatted dump of the
compiler. (Refer to the
comments which precede all
the IEMnnnnI messages.)

• Have the associated job
stream and source program
listing available.

E IEM05551 STORAGE CLASS ATTRIBUTES ~~y
NOT BE SPECIFIED FOR STRUCTURE

MEMBER yyyy. ATTRIBUTE
IGNORED.

Programmer Response~ Probable
user error. Delete illegal
storage class attribute for the
structure member. If the
problem recurs, do the
following before calling IBM
for programming support:

• Have the source program
listing available.

T IEM05S61 COMPILER ERROR. ILLEGAL
CHARACTER FOUND IN PARAMETER
LIST FOLLOWING AN 'ENTRY'
ATTRIBUTE IN DECLARE STATEMENT
NUMBER xxx

System Action: Compilation
terminated

Programmer Response: Do the
following before calling IBM
for programming support:

• Recompile the program with
compiler options
'S,DP=(PIE,ZZ)' to obtain a
formatted dump of the
compiler. (Refer to the
comments which precede all
the IEMnnnnI messages.)

• Have the associated job
stream and source program
listing available.

E IEM05571 THE MULTIPLE DECLARATION OF
IDENTIFIER yyyy IN STATEMENT
NUMBER xxx HAS BEEN IGNORED.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM05581 IMPLEMENTATION RESTRICTION.
NUMBER OF PARAMETER
DESCRIPTIONS DECLARED FOR
PROCEDURE OR ENTRY NAME yyyy IN
STATEMENT NUMBER xxx TRUNCATED
TO 64.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM05591 THE IDENTIFIER yyyy HAS BEEN
DECLARED IN STATEMENT NUMBER
xxx WITH CONFLICTING FACTORED
LEVEL NUMBERS. THE ONE AT
DEEPEST FACTORING LEVEL HAS
BEEN CHOSEN.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM05601 IN STATEMENT NUMBER xxx A
CONFLICTING ATTRIBUTE HAS BEEN
IGNORED IN THE DECLARATION OF
THE RETURNED VALUE OF ENTRY
POINT yyyy

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM05611 IN STATEMENT NUMBER xxx THE
IDENTIFIER yyyy IS A MULTIPLE
DECLARATION OF AN INTERNAL
ENTRY LABEL. THIS DECLARATION
IS IGNORED.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM05621 THE IDENTIFIER yyyy IS DECLARED
IN STATEMENT NUMBER xxx AS AN
INTERNAL ENTRY POINT. THE
NUMBER OF PARAMETERS DECLARED
IS DIFFERENT FROM THE NUMBER
GIVEN AT THE ENTRY POINT.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

Appendix K: Diagnostic Messages 343

S IEM05631 THE IDENTIFIER yyyy DECLARED
'BUILTIN' IN STATEMENT NUMBER
xxx IS NOT A BUILT-IN FUNCTION.
DECLARATION IGNORED.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the sou:rce program
listing available.

E IEM05641 THE IDENTIFIER yyyy HAS BEEN
DECLARED IN STATEMENT NUMBER
xxx WITH PRECISION GREATER THAN
THE IMPLEMENTATION LIMITS. THE
MAXIMUM VALUE HAS BEEN TAKEN.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM05651 THE IDENTIFIER yyyy IS DECLARED
IN STATEMENT NUMBER xxx AS A
MEMBER OF A GENERIC LIST, BUT
ITS ATTRIBUTES DO NOT MAKE IT
AN ENTRY POINT. THE
DECLARATION OF THE IDENTIFIER
HAS BEEN IGNORED.

Programmer Respo~~~ Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

, E IEM05661 ONE OF THE PARAMETERS DECLARED
FOR ENTRY POINT yyyy IN
STATEMENT NUMBER xxx SHOULD BE
AT LEVEL ONE. THIS HAS BEEN
FORCED.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

W IEM05671 IF FUNCTION yyyy IN ST.ATEMENT
NUMBER xxx IS INVOKED, THE
DEFAULT ATTRIBUTES ASSUMED FOR

344

THE VALUE RETURNED WILL
CONFLICT WITH THE ATTRIBUTES IN
THE PROCEDURE OR ENTRY
STATEMENT FOR THAT VALUE.

Explanation: The data type to
which a result will be
converted at a RETURN
(expression) will not be the
same as that expected at an
invocation of the entry label
as a function.

system Action: None

Programmer Respons e: Probablle
user error. Write an
entry-point declaration Cusin,:}
the ENTRY or RETURNS attributte>
in the containing block, giving
the same data attributes as
those on the PROCEDURE or ENTRY
statement. If the problem
recurs, do the following before
calling IBM for prograrmnin.g
support:

• Have the source program
listing available.

S IEM05681 THE IDENTIFIER zzzz IS CALLED
BUT IS ElrHER A BUILTIN
FUNCTION OR IS NOT AN ENTRY
POINT.

system Action: The erroneous
statement is deleted.

Programmer Response: Probabl,e
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the sdurce program
listing available.

T IEM05691 COMPILER ERROR NUMBER nnnn IN
MODULE EP.

Explanation: Compiler error
found in s can of chain of CALI ..
statements

System Action: Compilation
terminated

Programmer Response: Do the
following before calling IBM
for programming support:

• Recompile the program with
compiler options
'S,DP=(PIE,ZZ)' to obtain a
formatted dump of the
compiler. (Refer to the

comments which precede all
the IEMnnnnI messages.)

• Have the associated job
stream and source program
listing available.

W IEM051'OI THE ENTRY POINT yyyy HAS BEEN
DECLARED IN STATEMENT NUMBER
xxx TO HAVE A RETURNED VALUE
DIFFERENT FROM THAT GIVEN ON
THE PROCEDURE OR ENTRY
STATEMENT.

system Action: None

Programmer Response: Probable
user error. Change the
declaration, or the PROCEDURE
or ENTRY statement. If the
problem recurs, do the
following before calling IBM
for programming support:

• Have the source program
listing available.

S IEM05i'11 IMPLEMENTATION RESTRICTION.
IDENl'IFIER yyyy IN STATEMENT
NUMBER xxx HAS MORE THAN 32
DIMENSIONS. DIMENSION
ATTRIBUTE IGNORED.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM05721 THE IDENTIFIER yyyy HAS BEEN
DECLARED IN STATEMENT NUMBER
xxx WITH THE ATTRIBUTE "NORMAL"
OR "ABNORMAL". THE APPLICATION
OF THIS ATTRIBUTE IS AN
UNSUPPORTED FEATURE OF THE
FOURTH VERSION, AND IT HAS BEEN
IGNORED.

Explanation: A language feature
has been used which is not
supported by this version of
the compiler. Refer to
Appendix J of this publication
for details.

Programmer Response;. Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM05731 THE SELECTION OF GENERIC FAMILY
MEMBERS WHOSE PARAMETERS HAVE A
STRUCTURE DESCRIPTION IS
DEFERRED. ENTRY NAME yyyy,
DECLARED IN STATEMENT NUMBER
xxx, IS SUCH A MEMBER AND HAS
BEEN DELETED.

Explanation: The usage
referred to is not supported by
this version of the compiler.
For details, refer to Appendix
J.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

T IEM05741 THE MULTIPLE DECLARATION OF
IDENTIFIER yyyy IN STATEMENT
NUMBER xxx HAS BEEN IGNORED.

Programmer Response: Probable
user error. If the problem
recurs, do the following before
calling IBM for programming
support:

• Recompile the program with
compiler options
'S,DP={PIE,ZZ), to obtain a
formatted dump of the
compiler. (Refer to the
comments which precede all
the IEMnnnnI messages.)

• Have the associated job
stream and source program
listing available.

W IEM05751 TH~ REPEATED ATTRIBUTE IN THE
DECLARATION OF FILE yyyy IN
STATEMENT NUMBER xxx HAS BEEN
IGNORED.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM05761 THE EXTERNAL FILE yyy DECLARED
IN STATEMENT NUMBER xxx HAS THE
SAME NAME AS THE EXTERNAL
PROCEDURE, DECLARATION IGNORED.

Programmer Response: Probable
user error. Correct program

Appendix K: Diagnostic Messages 345

and recompile. If the problem
recurs, do the following before
calling IBM for programming

, .. support:

• Have the source program
listing available.

E IEM05771 INCORRECT SPECIFICATION OF THE
ARRAY BOUNDS, STRING LENGTH OR
AREA SIZE OF THE NON-CONTROLLED
PARAMETER yyyy IN DECLARE
STATEMENT NUMBER xxx; THOSE OF
THE CORRESPONDING ARGUMENT WILL
BE ASSUMED.

Explanation: In the
declaration of a non-controlled
array, string or area
parameter, the bounds, length
or size must be given by a
constant or by an asterisk.

system Action: The bounds,
length or size of the array,
string or area passed as an
argument will be takenu

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

E IEM05781 UNDIMENSIONED VARIABLE yyy
DECLARED IN STATEMENT NUMBER
xxx HAS INITIAL ATTRIBUTE WITH
CONFLICTING SPECIFICATION FOR A
DIMENSIONED VARIABLE. INITIAL
ATTRIBUTE IGNORED.

Programmer Response: Probable
user error. Cor:rect source
program and recompile. If the
problem recurs, do the
following before calling IBM
for programming support:

.,Have the source program
listing available.

W IEM05791 THE PARAMETER OF THE MAIN
PROCEDURE SHOULD BE A FIXED
LENGTH CHARACTER STRING OR HAVE
THE ATTRIBUTES CHARACTER(lOO)
VARYING.

346

Programmer Response: Probable
user error. Correct source
program and recompile. If the
problem recurs, do the
following before calling IBM
for programming support:

• Have the source program
listing available.

S IEM05801 INVALID USE OF FILE yyy IN
STATEMENT NUMBER xxx. IT HAS
BEEN REPLACED BY A DUMMY
REFERENCE.

Programmer Response: ProbablE~
user error. Correct program
and recompile. If the problem
recurs, do the following befol~e
calling IBM for programming
support:

• Have the source program
listing available.

S IEM05891 COMPILER ERROR. ITEM zzzz IN
LIKE CHAIN IS NOT A STRUCTURE.,
ITEM IS IGNORED.

Programmer Response: Do the
following before calling IBM
for programming support:

• Recompile the program with
compiler options
wS,DP=(PIE,EV)' to obtain a
formatted dump of the
compiler. (Refer to the
comments which precede all
the IEMnnnnI messages.)

• Have the associated job
stream and source program
listing available.

S IEM05901 STRUCTURE ELEMENT zzzz WHICH
HAS LIKE ATTRIBUTE ATTACHED TO
IT, IS FOLLOWED BY AN ELEMENT
WITH A NUMERICALLY GREATER
STRUCTURE LEVEL NUMBER. LIKE
ATTRIBUTE IS IGNORED.

System Action: Self
explanatory: may result in
cascade errors.

Programmer Response: ProbablE~
user error. Correct program
and recompile~ If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM05911 STRUCTURE ELEMENT zzzz IS
LIKENED TO AN ITEM WHICH IS NOT
A STRUCTURE VARIABLE. LIKE
ATTRIBUTE IS IGNORED.

system Action: Self
explanatory: may result in
cascade errors.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM05921 STRUCTURE ELEMENT zzzz IS
LIKENED TO A STRUCTURE WHICH
CONTAINS ELEMENTS walCH HAVE
ALSO BEEN DECLARED WITH THE
LIKE ATTRIBUTE. LIKE ATTRIBUTE
ON ORIGINAL STRUCTURE IS
IGNORED.

system Action: Self
explanatory: may result in
cascade errors.

Programmer Response: Probable
user error. Correct program
and recompile. If the problem
recurs, do the followipg before
calling IBM for programming
support:

• Have the source program
listing available.

S IEM05931 STRUCTURE NAME TO walCH zzzz IS
LIKENED IS NOT KNOWN. LIKE
ATTRIBUTE IGNORED.

System Action: Self
explanatory: may result in
cascade errors.

~~~rammer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM05.941 AMBIGUOUS QUALIFIED NAME yyyy 
USED AS A BASE IDENTIFIER. 
MOST RECENT DECLARATION USED. 

Pro~rammer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEMOS951 QUALIFIED NAME yyyy USED AS A 
BASE IDENTIFIER CONTAINS MORE 
THAN ONE IDENTIFIER AT THE SAME 
STRUCTURE LEVEL. 

system Action: The erroneous 
statement is deleted. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM05961 MAJOR STRUCTURE yyyy HAS BEEN 
LIKENED TO AN ITEM walCH IS NOT 
A VALID STRUCTURE. DECLARATION 
OF STRUCTURE IGNORED. 

System Action: Self 
explanatory: may result in 
cascade errors. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM05971 IDENTIFIER zzzz WHICH IS NOT A 
FORMAL PARAMETER OR OF STORAGE 
CLASS CONTROLLED HAS BEEN 
LIKENED TO A STRUCTURE 
CONTAINING * DIMENSIONS OR 
LENGTH. * DIMENSIONS OR LENGTH 
HAVE BEEN IGNORED IN THE 
CONSTRUCTED STRUCTURE. 

System Action: Self 
explanatory: may result in 
cascade errors from later 
phases. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM05981 QUALIFIED NAME TO WHICH·zzzz 
HAS BEEN LIKENED IS AN 
AMBIGUOUS REFERENCE. LIKE 
ATTRIBUTE HAS BEEN IGNORED. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

Appendix K: Diagnostic Messages 347 



• Have the source program 
listing available. 

S IEM05991 zzzz WHICH IS A PARAMETER OR A 
BASED VARIABLE, HAS BEEN 
DECLARED (USING THE LIKE 
ATTRIBUTE) AS A STRUCTURE WITH 
THE INITIAL ATTRIBUTE. THE 
INITIAL ATTRIBUTE IS INVALID 
AND HAS BEEN IGNORED. 

Programmer Response: Probable 
user error. Declare the 
parameter or based variable 
with the LIKE attribute 
specifying a structure without 
the INITIAL attribu,te. If the 
problem recurs, do the 
following before calling IBM 
for programming support: 

• Have the source program 
listing available. 

S IEM06001 STATIC STRUCTURE zzzz HAS BEEN 
DECLARED BY MEANS OF Tlm LIKE 
ATTRIBUTE TO HAVE ADJUSTABLE 
EXTENTS. THE EXTENTS HAVE BEEN 
IGNORED. 

Explanation: A STATIC variable 
cannot have adjustable extents 

system Action: All bounds on 
the offending variable are set 
to zero 

Programmer Response: Probable 
user er:r:or. Correct pz."ogram 
and recompile. If the problem 
recurs, do the following before 
calling IBM for progranwing 
support: 

• Have the source program 
listing available. 

S IEM06011 OFFSET ATTRIBUTE ON PROCEDURE 
STATEMENT NUMBER xxx IS NOT 
BASED ON A BASED AREA. IT HAS 
BEEN CHANGED TO POINTER. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for progranwing 
support: 

• Have the source program 
listing available. 

T IEM06021 IDENTIFIER IN BASED ATTRIBUTE 
ON ZZZZ DECLARED IN STATEMENT 
NUMBER xxx IS NOT A NON-BASED 
POINTER 

348 

System Action: Compilation is. 
terminated 

Programmer Response: ProbablE~ 
user error. If the problem 
recurs, do the following befol:e 
calling IBM for programming' 
support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IeMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM06031 INVALID POINTER EXPRESSION IN 
BASED ATTRIBUTE ON zzzz IN 
STATEMENT NUMBER xxx 

Explanation: The pointer 
associated with the based 
variable does not obey the 
implementation rules (e. g., it~ 
may be subscripted). 

System Action: The compilation 
is terminated 

Programmer Response: ProbablE~ 
user error. If the problem 
recurs, do the following befol~e 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM06041 LENGTH OR SIZE DECLARED FOR 
BASED STRING OR BASED AREA ZZ2:Z 

IN STATEMENT NUMBER xxx IS 
INVALID 

Explanation: The declaration 
violates the compiler 
implementation rules. (See 
Appendix J, 'Implementation 
Conventions and Restrictions'). 

System Action: Terminates 
compilation 

Programmer. Response: ProbablE~ 
user error. If the problem 



recurs, do the following before 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
ptream and source program 
listing available. 

T IEM06051 BOUNDS DECLARED FOR BASED ARRAY 
zzzz IN STATEMENT NUMBER xxx 
ARE INVALID 

Explanation: The adjustable 
bounds declared are outside 
those permitted by this 
implementation. 

System Action: Terminates 
compilation 

Prog~er Respo~~e: Probable 
user error. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

S IEM06061 OFFSET VARIABLE zzzz HAS BEEN 
DECLARED IN STATEMENT NUMBER 
xxx RELATIVE TO AN IDENTIFIER 
WHICH IS NOT A LEVEL 1 BASED 
AREA. IT HAS BEEN CHANGED TO A 
POINTER VARIABLE. 

system Action: The offset is 
changed to a pointer to prevent 
the compiler from producing 
further error messages. 

Programmer Response: Probable 
user error. Consider assigning 
the ADDR of the required area 
to the pointer named in the 
declaration of a level 1 based 
area; this area can be validly 
named in the OFFSET attribute, 
and offset values for it will 
be correct for the other area. 
If the problem recurs, do the 

following before calling IBM 
for programming support: 

• Have the source program 
listing available. 

W IEM06071 IF THE BASE OF zzzz 
CORRESPONDENCE DEFINED IN 
STA'l'EMENT NUMBER xxx IS 
ALLOCATED WITH THE DECLARED 
BOUNDS ·THE DEFINING WILL BE IN 
ERROR. 

Explanation: For 
correspondence defining not 
involving iSUB's, the bounds of 
the defined array must be a 
subset of the bounds of the 
base. In this case the bounds 
declared for the base do not 
satisfy this requirement. 
However, the base is of 
CONTROLLED storage class and if 
it is allocated with different 
bounds the defining may be 
legal. 

System Action: Nothing further 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

T IEM06081 ILLEGAL DEFINING IN STATEMENT 
NUMBER XXK. BASE IDENTIFIER 
zzzz IS A MEMBER OF A 
DIMENSIONED STRUCTURE. 

Explanation: In the case of 
string class overlay defining 
where the base is an array, it 
is an error if it is a member 
of an array of structures. 

system Action: The compilation 
is terminated. 

Programmer Response: Probable 
user error. Refer to the PL/I 
(F) Language Reference Manual -
"The DEFINED Attribute" - and 
correct error. If the problem 
recurs, do the following before 
calling IBM for programming 
support: ' 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 

AppendiK K: Diagnostic Messages 349 



comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM0609I DEFERRED FEATURE. DEFINING OF 
zzzz DECLARED IN STATEMENT 
NUMBER xxx WITH A SUBSCRIPTED 
BASE. 

Explanation: Overlay defining 
on a subscripted base is not 
supported by this version of 
the compiler. 

System Action: The compilation 
is terminated. 

Programmer Response: Probable 
user error. Replace all 
references to the defined item 
by appropriate subscripted 
references to the base. If the 
problem recurs, do the 
following before calling IBM 
for programming support: 

• Recompile the progl~am with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messaqes.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM0610I DEFERRED FEATURE~ DEFINING OF 
zzzz DECLARED IN STATEMENT 
NUMBER xxx ON A BASE OF 
CONTROLLED STORAGE CLASS. 

350 

Explanation: If the base is 
declared CONTROLLED, neither 
overlay defining nor 
correspondence defininq is 
supported by this release of 
the compiler. 

system Action: The compilation 
is terminated. 

Programmer R~nse: Probable 
user error. Replace all 
references to the defined item 
by appropriate references to 
the base. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 

formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM0611I SCALAR zzzz DECLARED IN 
STATEMENT NUMBER xxx IS 
ILLEGALLY DEFINED WITH ISUBS. 

Explanatio~: Only arrays may 
be correspondence defined using 
iSUB notation. 

System Action: The compilaticm 
is terminated. 

Programmer Response: ProbablE~ 
user error. Refer to the PL/J 
(F) Language Reference Manual -
nThe DEFINED Attributen - and 
correct error. If the problem 
recurs, do the following befol~e 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

E IEM0612I INITIAL ATTRIBUTE DECLARED FOR 
DEFINED ITEM zzzz IN STATEMEN,]~ 
NUMBER xxx WILL BE IGNORED. 

EXplanation: DEFINED items may 
not have the INITIAL attributE~. 

system Action: INITIAL 
attribute ignored 

Programmer Response: ProbablE~ 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM0613I ELEMENT VARIABLE SPECIFIED IN 
REFER OPTION IN STATEMENT 
NUMBER xxx IS NOT AN INTEGER. 

Explanation: Both I and N in 
(I REFER(N» must be fixed 



binary integers; they must also 
be of the same precision. 

system Action: Compilation 
continues. Any reference to 
the element variable may result 
in an execution error. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming. 
support: 

• Have the source program 
listing available. 

S IEM06141 ELEMENT VARIABLES SPECIFIED IN 
REFER OPTION IN STATEMENT 
NUMBER xxx DO NOT HAVE THE SAME 
PRECISION. 

Explanation: Both I and N in 
(I REFER(N» must be fixed 
binary integers of the same 
precision. 

System Action: Compilation 
continues. Any reference to 
either element variable may 
result in an execution error. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

T IEM06231 THE BASE SUBSCRIPT LIST USED 
WITH THE DEFINED VARIABLE zzzz 
IN STATEMENT NUMBER xxx 
ILLEGALLY REFERS TO OR IS 
DEPENDENT ON THE DEFINED 
VARIABLE. 

Explanation: It is illegal for 
a base subscript list in the 
DEFINED attribute to refer 
directly, or via any further 
level of defining, to the 
defined item. 

System Action: The compilation 
is terminated. 

Programmer Response: Probable 
user error. Refer to the PL/I 
(F) Language Reference Manual -
nThe DEFINED Attribute n - and 
correct error. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
'S,DP::;:(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM06241 THE BASE IDENTIFIER FOR zzzz 
DECLARED IN STATEMENT NUMBER 
xxx IS DEFINED OR BASED. 

Explanation: The base of 
DEFINED data may not itself be 
DEFINED. 

System Action: Compilation 
terminated 

Programmer Response: Probable 
user error. Replace the 
specified base by an 
appropriate reference to its 
base. If the problem recurs, 
do the following before calling 
IBM for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
cOmments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM06251 THE DEFINING BASE FOR zzzz 
DECLARED I N STATEMENT NUMBER 
xxx HAS THE WRONG NUMBER OF 
SUBSCRIPTS. 

Explanation: If the base 
reference in a DEFINED 
attribute is subscripted, it 
must have the same number of 
subscr~pt expressions as the 
dimensionali.ty of the base 
array. 

System Action: The compilation 
is terminated. 

Programmer Response: Probable 
user error. Correct the 
subscript list, or declaration 
of the base, whichever is 
appropriate. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

Appendix K: Diagnostic Messages 351 



• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associate<] job 
stream and source program 
listing available. 

T IEM0626I THE DEFINING BASE FOR zzzz 
DECLARED IN STATEMENT NUMBER 
xxx IS NOT DATA. 

Explanation: The only legal 
data types that may be used for 
defining bases are String, 
Arithmetic, Task, Event:, and 
Label. 

system Action: The compilation 
is terminated. 

Programmer Response: Probable 
user error. Check that: the 
defining base is correctly 
written and declared. If the 
problem recurs, do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messa~res .. ) 

• Have the associated job 
stream and source program 
listing available. 

T IEM0628I IMPLEMENTATION RESTRICTION. 

352 

THE NESTING OF REFERENCES TO 
DATA DEFINED WITH A SUBSCRIPTED 
BASE IS TOO DEEP~ 

Explanation: The complexity of 
defining has resulted in a 
level of nesting which is too 
great for the compiler. 

system Action: The compilation 
is terminated. 

Programmer Response: Probable 
user error. Reduce complexity 
of defining. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Recompile the progl~am with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 

formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM06291 ARRAY zzzz DECLARED IN 
STATEMENT NUMBER xxx ILLEGALLY 
HAS THE pas ATTRIBUTE WITH ISUB 
DEFINING. 

Explanation: The POS attribut:e 
may not be specified for 
correspondence defining. 

System Action: The compilation 
is terminated. 

Programmer Response: ProbablE~ 
user error. Delete POS 
attribute If the problem 
recurs, do the following befol:e 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
1:.he IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM06301 THE DESCRIPTION OF zzzz 
CORRESPONDENCE DEFINED IN 
STATEMENT NUMBER xxx DOES NOT 
MATCH THAT OF THE DEFINING 
BASE .. 

Explanation: For 
correspondence defining, if 
either the base or the defined 
item are arrays of structures., 
then both must be arrays of 
structures. 

System Action: The compilaticm 
is terminated. 

Programmer Response: ProbablE~ 
user error. Correct the 
program. Note that POS (1) may 
be used to force overlay 
defining. If the problem 
recurs, do the following befol:e 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 



formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM06311 IMPLEMENTATION RESTRICTION. 
THE CORRESPONDENCE DEFINING OF 
yyyy AN ARRAY OF STRUCTURES 
DECL~RED IN STATEMENT NUMBER 
xxx. 

Explanation: correspondence 
defining with arrays of 
structures is not supported by 
the compiler. 

System Action: The compilation 
is terminated. 

Programmer Response: Probable 
user error. Declare the base 
arrays of the defined structure 
as correspondence defined on 
the matching base arrays of the 
base structure. Note that for 
this to be valid, the base 
arrays of the defined structure 
must have unique names and be 
declared at level 1. This 
alternative method precludes 
structure operations with the 
defined item, but achieves the 
desired mapping. If the 
problem recurs, do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM06321 THE BOUNDS OF zzzz 
CORRESPONDENCE DEFINED IN 
STATEMENT NUMBER xxx ARE NOT A 
SUBSET OF THE BASE. 

Explanatiq!!: For 
correspondence defining not 
involving iSUB's, the bounds of 
the defined array must be a 
subset of the corresponding 
bounds of the base array. 

system Action: The compilation 
is terminated. 

Programmer Response: Probable 
user error. Refer to the PL/I 
(F) Language Reference Manual -
"The DEFINED Attribute" - and 
correct program. Note that POS 
(1) may be used to force 
overlay defining. If the 
problem recurs, do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

S IEM06331 ITEM TO BE ALLOCATED IN 
STATEMENT NUMBER xxx IS NOT AT 
LEVEL 1. THE STATEMENT HAS 
BEEN IGNORED. 

Explanation: An identifier 
specified in an ALLOCATE 
statement must refer to a major 
structure or data not contained 
in a structure. A major 
structure identifier may 
optionally be followed by a 
full structure description. 

system Action: The ALLOCATE 
statement is deleted 

Programmer Response: Probable 
user error. Replace erroneous 
identifier by that of the 
containing major structure. If 
the problem recurs, do the 
following before calling IBM 
for programming support: 

• Have the source program 
listing available. 

S IEM06341 ITEM TO BE ALLOCATED IN 
STATEMENT NUMBER xxx HAS NOT 
BEEN DECL~RED. THE STATEMENT 
HAS BEEN IGNORED. 

Explanation: Only CONTROLLED 
data may be allocated. Data 
may only obtain the attribute 
CONTROLLED from an explicit 
declaration. 

System Action: The ALLOCATE 
statement is deleted 

Programmer Response: Probable 
user error. Construct a 
DECLARE statement for the 

~ppendix K: Diagnostic Messages 353 



identifier. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM06361 ITEM TO BE ALLOCATED IN 
STATEMENT NUMBER xxx WAS NOT 
DECLARED CONTROLLED. THE 
STATEMENT HAS BEEN IGNORED. 

Explanation: Only CONTROLLED 
data may be specified in 
ALLOCATE statements. 

system Action: The ALLOCATE 
statement is deleted 

Programmer Response: Probable 
user error. Declare the 
identifier CONTROLLED. If the 
problem recurs, do the 
following before calling IBM 
for programming support: 

• Have the source program 
listing available. 

E IEM06371 A CONFLICTING ATTRIBUTE WAS 
GIVEN FOR zzzz IN STATEMENT 
NUMBER xxx. THE ATTRIBUTE HAS 
BEEN IGNORED. 

~~!anatio~: Attributes given 
for an identifier in an 
ALLOCATE statement may not 
conflict with those given 
explicitly or assumed by 
default from the declaration. 

system Acti2~: Ignores the 
attribute from the ALLOCATE 

Programmer ResE2ns~l Probable 
user error. correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM06381 THE STRUCTURE DESCRIPTION GIVEN 
ON STATEMENT NUMBER xxx DIFFERS 
FROM THAT DECLARED. THE 
STATEMENT HAS BEEN IGNORED. 

354 

~~lanation: If a description 
of a major structure is given 
on an ALLOCATE statement, the 
description must match that 
declared. 

System Action: The ALLOCATE 
statement is deleted 

Programmer Response: ProbablE! 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM06401 AN INVALID ATTRIBUTE WAS GIVEN 
IN S'I'ATEMENr NUMBER xxx. THE 
STATEMENT HAS BEEN IGNORED. 

Explanatio~: Only CHAR, BIT, 
INITIAL, and Dimension 
attributes are permitted in 
ALLOCATE statements. 

§ystem Action: The ALLOCATE 
statement is deleted 

Proqramme~ Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM06411 CONFLICTING ATTRIBUTES HAVE 
BEEN GIVEN FOR zzzz IN 
STATEMENT NUMBER xxx. THE 
FIRST LEGAL ONE HAS BEEN USED. 

Explanation: At most, one 
attribute in the following 
classes may be given for an 
identifier in an ALLOCATE 
statement: Dimension, 
String(CHAR or BIT), INITIAL. 

System .Action: All attributes 
after the first in a particular 
class are ignored. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
lis·ting available. 

S IEM06421 DIMENSIONALITY GIVEN IN 
STATEMENT NUMBER xxx DIFFERS 
FROM THAT DECLARED. THE 
STATEMENT HAS BEEN IGNORED. 

Explanation: If a dimension 
attribute is given for an 
identifier in an ALLOCATE 
statement, the identifier must 



have been declared with the 
same dimensionality. 

system Action: The ALLOCATE 
statement is deleted 

Programmer Respon~~~ Probable 
user error. Correct 
declaration or ALLOCATE 
statement w whichever 
applicable. If the problem 
recurs w do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

W IEM06431 THE LEVEL NUMBER DECLARED FOR 
zzzz IS NOT 'l'HE SAME AS THAT 
GIVEN IN STATEMENT NUMBER xxx. 
THE FORMER HAS BEEN USED. 

Explanation: If a structure 
description is 'given in an 
ALLOCATE Statement w it must 
match the declaration. The 
indicated level number 
discrepancy may be an error. 

system Action: Nothing further 

Programmer Response: Probable 
user error. Check that 
ALLOCATE statement is as 
intended. If the problem 
recurs w do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM061~41 STAl'EMENT NUMBER xxx CONTAINS 
AN ILLEGAL PARENTHESIZED LIST. 
THE STATEMENT HAS BEEN IGNORED. 

Explanation: Factored 
attribures are not allowed on 
ALLOCATE statements. 

system Action: Statement 
ignored 

Programmer Response: Probable 
user error. Remove parentheses 
and any factored attributes. 
If the problem recurs w do the 
following before calling IBM 
for programming support: 

• Have the source program 
listing available. 

S IEM06451 ATTRIBUTE GIVEN WITH BASED 
VARIABLE zzzz IN ALLOCATE 
STATEMENT NUMBER xxx HAS BEEN 
IGNORED. 

Explanations: Based variable 
may not be specified with 
attributes 

Programmer Response: Probable 
user error. Correct ALLOCATE 
statement. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM06461 IDENTIFIER yyyy PRECEDING 
POINTER QUALIFIER IN STATEMENT 
NUMBER xxx IS NOT A NON-BASED 
POINTER VARIABLE 

System Action: The identifier 
is replaced by a dummy 
dictionary reference; a later 
phase will delete the 
statement. 

~Eoqrammer Response: Probable 
user error. Correct the 
invalid statement. If the 
problem recurs w do the 
following before calling IBM 
for programming support: 

• Have the source program 
listing available. 

S IEM06471 POINTER-QUALIFIED IDENTIFIER 
zzzz IN STATEMENT NUMBER xxx IS 
NOT A BASED VARIABLE 

system Action: Identifier is 
replaced by a dummy dictionary 
reference; a later phase will 
delete the statement. 

Programmer Response: Probable 
user error. Correct the 
invalid statement. If the 
problem recurs, do the 
following before calling IBM 
for programming support: 

• Have the source program 
listing available. 

T IEM06531 COMPILER ERROR. ILLEGAL ENTRY 
IN STATEMENT NUMBER xxx 

Explanation: compiler error 
found in scan of statement 

§ystem Action: Compilation 
terminated 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

Appendix K: Diagnostic Messages 355 



• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

S IEM06551 QUALIFIED NAME BEGINNING yyyy 
USED IN STATEMENT NUMBER xxx 
BUT NO PREVIOUS STRUCTURE 
DECLARATION GIVEN.. DUMMY 
REFERENCE INSERTED. 

System.Action: Reference to 
the illegal variable or the 
whole statement will be deleted 
by later phases. 

Programmer Response: Probable 
user error. Correct program by 
inserting DECLARE statement. 
If the problem recurs, do the 
following before calling IBM 
for programming support: 

• Have the source program 
listing available. 

E IEM06561 MOST RECENT DECLARATION USED OF 
AMBIGUOUS QUALIFIED NAME OR 
STRUCTURE MEMBER BEGINNING yyyy 
IN STATEMENT NUMBER xxx 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM06571 QUALIFIED NAME BEGINNING yyyy 
I N STATEMENT NUMBER xxx 
CONTAINS MORE THAN ONE 
IDENTIFIER AT THE SAME 
STRUCTURE LEVEL. 

356 

system Action: The sta'tement 
is deleted 

Programmer Response: P:robable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM06581 QUALIFIED NAME BEGINNING yyyy 
IN STATEMENT NUMBER xxx IS AN 
AMBIGUOUS REFERENCE. DUMMY 
REFERENCE INSERTED. 

system Action: Statement will 
be deleted by later phase 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM06591 UNSUPPORTED FEATURE. STRING 
PSEUDO-VARIABLE APPEARS IN 
REPLY, KEYTO OR STRING OPTION 
IN STATEMENT NUMBER xxx. 
STATEMENT WILL BE DELETED BY A 
LATER PHASE. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following befor1e 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM06601 PSEUDO-VARIABLE yyyy IN 
STATEMENT NUMBER xxx IS INVALID 
BECAUSE Ir IS NESTED IN ANOTHER 
PSEUDO-VARIABLE. 

Explanation: Language 
restriction. Pseudo-variables 
cannot be nested. 

system Action: The statement 
will be deleted by a later 
phase. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM06611 INVALID USE OF THE 
PSEUDO-VARIABLE 'PRIORITY' IN 
STATEMENT NUMBER xxx~ THE TASK 
OPTION HAS NOT BEEN SPECIFIED 
IN THE EXTERNAL PROCEDURE. 

Explanation: The PRIORITY 
pseudo-variable can be used 
only in a multitasking 
environment. 



system Action: The statement 
is deleted. 

Pro~rammer Response: Probable 
user error. Recompile Vlith the 
TASK option in the external 
procedure options list. If the 
problem recurs, do the 
following before calling IBM 
for programming support: 

• Have the source program 
listing available. 

E IEM06621 IN STATEMENT NUMBER xxx CHECK 
LIST CONTAINS DEFINED ITEM yyy. 
IT HAS BEEN REPLACED BY ITS 
BASE IDENTIFIER. 

Explanation: Defined items are 
not permitted in CHECK lists. 

system Action: The base item 
is assumed to replace the 
reference to the defined item 
in the CHECK list. References 
in the text to the defined item 
will not be checked. 

Pro~rammer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM06731 INVALID USE OF FUNCTION NAME ON 
LEFT HAND SIDE OF EQUAL SYMBOL, 
OR IN REPLY KEYTO OR STRING 
OPTION, IN STATEMENT NUMBER xxx 

system Action: Statement will 
be deleted by later phases 

Programmer Respon~g~ Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

SIEM06'141 STATEMENT NUMBER xxx CONTAINS 
ILLEGAL USE OF FUNCTION yyyy 

system Action: Reference to 
function or whole statement 
Vlill be deleted by later phases 

Rrog~ammer_E~~PQnsel Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 

calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM06751 IN STATEMENT NUMBER xxx 
IDENTIFIER yyyy AFTER GO TO IS 
NOT A LABEL OR LABEL VARIABLE 
KNOWN IN THE BLOCK CONTAINING 
THE GO TO. 

§ystem Action: Statement 
deleted by later phases. 

Programmer Response: Probable 
user error. correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM06761 DEFERRED FEATURE. IDENTIFIER 
yyyy NOT ALLOWED AS A BUILT-IN 
FUNCTION OR PSEUDO-VARIABLE • 
DUMMY REFERENCE INSERTED IN 
STATEMENT NUMBER xxx 

Explanation: A language 
feature has been used that is 
not supported by this version 
of the compiler. For details, 
refer to Appendix J of this 
publication. 

System Action: Statement 
deleted by later phases 

Programmer Response: Probable 
user error. Correct statement 
by removing reference to 
function in error. If the 
problem recurs, do the 
following before calling IBM 
for programming support: 

• Have the source program 
listing available. 

S IEM06771 ILLEGAL PARENTHESIZED LIST IN 
STATEMENT NUMBER xxx FOLLOWS AN 
IDENTIFIER WHICH IS NOT A 
FUNCTION OR ARRAY. LIST 
DELETED. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

Appendix K: Diagnostic Messages 357 



S IEM06821 IN STATEMENT NUMBER xxx GO TO 
TRANSFERS CONTROL ILLEGALLY ro 
A FORMAT STl~TEMENT. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If -the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM06831 zzzz WAS FOUND WHERE A FILENAME 
IS REQUIRED IN STATEMENT NUMBER 
xxx. DUMMY DICTIONARY 
REFERENCE REPLACES ILLEGAL 
ITEM. 

System Action: statement will 
be deleted by later phases 

Proqrammer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

W IEM06841 USE OF LABEL VARIABLE zzzz MAY 
RESULT IN AN ILLEGAL BRP1NCH IN 
STATEMENT NUMBER xxx 

Explanation: It is possible 
that the label variable may 
contain a value which would 
cause control to branch 
illegally into a block. 

Proqrammer Response! Probable 
user error. Check validity of 
possible branches. If the 
problem recurs, do the 
following before calling IBM 
for progra~ning support: 

• Have the source program 
listing available. 

S IEM06851 zzzz IS NOT A STATEMENT LP1BEL 
ON AN EXECU1'ABLE STATEMENT. 
DUMMY REFERENCE INSERTED ~FTER 
GO TO IN STATEMENT NUMBER xxx 

358 

system Action: statement will 
be deleted by later phases 

ProqrammerResponse: Probable 
user error. Correct pl:ogram 
and recompile. If the problem 
recurs, do the following before 

calling IBM for programming 
support: 

• Have the, source program 
listing available. 

S IEM06861 zzzz APPEP1RS IN A FREE OR 
ALLOCATE STP1TEMENT BUT HAS NO'l' 
BEEN DECLARED CONTROLLED. 
DUMMY REFERENCE INSERTED IN 
STP1TEMENT NUMBER xxx. 

i 

System Action~ A dummy 
reference is inserted. The 
sta tement will be deleted by SL 

later phase 

Programmer Response: ProbablE! 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing'available. 

E IEM06871 IN STATEMENT NUMBER xxx 
DICTIONARY REFERENCE zzzz 
TRANSFERS CONTROL ILLEGALLY TO 
ANOTHER BLOCK OR GROUP. 
EXECUTUION ERRORS MAY OCCUR. 

B IEM06881 COMPILER ERROR. TOO FEW LEFT 
PARENTHESES IN STATEMENT NUMBE~R 
xxx 

Explanation: This is a 
compiler error 

system Action: None taken. 
Cascade errors may result. 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,FI), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

S IEM06891 zzzz WAS FOUND WHERE A TASK 
IDENTIFIER IS REQUIRED IN 
STATEMENT NUMBER xxx. DUMMY 
REFERENCE INSERTED. 

§.ystem Action: Statement will 
be deleted by later phases 



Programmer Respons·e: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM06901 zzzz WAS FOUND WHERE EVENT 
VARIABLE IS REQUIRED IN 
STATEMENT NUMBER xxx. DUMMY 
REFERENCE INSERTED. 

System Action: Statement will 
be deleted by later phases 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM06911 INVALID ITEM zzzz IN DATA LIST, 
OR 'FROM' OR 'INTO' OPTION, IN 
STATEMENT NUMBER xxx 

system Action: Statement will 
be deleted by later phases 

~rogrammer ResPQ~~~~ Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM06921 DATA DIRECTED I/O LIST OR FROM 
OR INTO OPTION IN STATEMENT 
NUMBER xxx CONTAINS A 
PARAMETER, DEFINED OR BASED 
ITEM zzzz. 

System Actio~: Statement will 
be deleted by later phases 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S -IEM06931 ILLEGAL USE OF FUNCTION zzzz IN 
INPUT LIST IN STATEMENT NUMBER 
xxx. DUMMY REFERENCE INSERTED. 

System Action: Statement will 
be deleted by later phases 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM06941 IN THE FORMAT LIST IN STATEMENT 
NUMBER xxx A REMOTE FORMAT ITEM 
REFERENCES zzzz, WHICH IS NOT A 
STATEMENT LABEL IN THE CURRENT 
BLOCK. DUMMY REFERENCE 
INSERTED. 

System Action: Format item 
deleted by later phase 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM06951 LABEL ARRAY zzzz IS NOT 
FOLLOWED BY A SUBSCRIPT LIST 
AFTER GO TO IN STATEMENT NUMBER 
xxx. DUMMY REFERENCE REPLACES 
REFERENCE TO ARRAY. 

~stem Action: Statement will 
be deleted by later phases 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

W IEM06961 IN STATEMENT NUMBER xxx IT IS 
AN ERROR IF THE PARAMETER zzzz 
IN A REMOrE FORMAT ITEM REFERS 
TO A FORMAT STATEMENT WHICH IS 
NOT INTERNAL TO THE SAME BLOCK 
AS THE REMOTE FORMAT ITEM. 

Explanation: Remote formats 
become executable code, but not 
internal procedures. Therefore 
they must appear in the same 
block in which they are used. 

system Action: Object-time 
error message is compiled 

Appendix K: Diagnostic Messages 359 



Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM06971 STATEMENT LABEL zzzz ATTACHED 
TO STATEMENT NUMBER xxx IS USED 
AS A REMOTE FORMAT ITEM IN TH~T 
STATEMENT. A DUMMY REPLACES 
THE REMOTE FORMAT ITEM. 

System Action: statement will 
be deleted by a later phase 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM06981 THE BASED VARIABLE zzzz IN 
LOCATE STATEMENT NUMBER xxx IS 
NOT AT LEVEL 1. DUMMY 
REFERENCE INSERTED. 

System Action: The statement 
will be deleted by a later 
phase. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM06991 STRUCTURE ARGUMENT zzzz OF FROM 
OR INTO OPTION IN STATEMENT 
NUMBER xxx IS NOT A MAJOR 
STRUCTURE. DUMMY REFEREN:E 
INSERTED 

System Action: statement 
deleted by later phase 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM07001 ILLEGAL USE OF FUNCTION, LABEL 

360 

OR VARYING STRING zzzz AS 
ARGUMENT OF FROM OR INTO OPTION 
IN STATEMENT NUMBER xxx. DUMMY 
REFERENCE INSERTED. 

system Action: statement 
deleted by later phase 

Programmer Response: ProbablE~ 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM07011 ARGUMENT zzzz OF SET OPTION IS: 
NOT A POINTER VARIABLE. DUMMY 
REFERENCE INSERTED. 

system Action: statement 
deleted by later phase. 

Programmer Response: ProbablE! 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

W IEM07021 L~BEL, TASK OR EVENT VARIABLE 
zzzz USED IN FROM OR INTO 
OPTION IN STATEMENT NUMBER xxx 
MAY LOSE ITS VALIDITY IN 
TRANSMISSION 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM07031 INVALID IDENTIFIER zzzz FREED 
IN STATEMENT NUMBER xxx 

Explanation: The identifier in 
the FREE statement is not: 

1. A BASED or a CONTROLLED 
variable, or 

2. A major structure with the 
BASED or CONTROLLED 
attribute. 

System Action: Invalid 
identifier replaced by dummy. 

Programmer Response: Probable 



user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEtvl07041 STArEMENT NUMBER xxx CONTAINS 
INVALID USE OF FUNCTION zzzz 

system-Actio~: statement 
del~ted by later phase 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

W IEM07051 IF THE LABEL VARIABLE IN GO T::> 
STATEMENT NUMBER xxx ASSUMES 
THE VALUE OF ITS VALUE-LIST 
MEMBER zzzz, THE STATEMENT WILL 
CONSTITUTE AN INVALID BRANCH 
INTO AN ITERATIVE DO GROUP. 

system Action: None 

Programmer Response: Probable 
user error. Check that branch 
will be valid at execution 
time. If the problem recurs, 
do the following before calling 
IBM for programming support: 

• Have the source program 
listing available. 

S IEM07061 VARIABLE zzzz IN LOCATE 
STATEMENT IS NOT A BASED 
VARIABLE~ DUMMY REFERENCE 
INSERTED. 

System Action: The statement 
is deleted by a later phase. 

Programmer Response: Probable 
user error. Correct the 
invalid Btatement. If the 
problem recurs, do the 
following before calling IBM 
for programming support: 

• Have the source program 
listing available. 

S IEM07071 ARGUMENT zzzz OF IN OPTION IS 
NOT AN AREA VARIABLE. DUMMY 
REFERENCE INSERTED. 

§.Y2.!::gm A9tiog: The statement 
is deleted by a later phase. 

Programmer Response: Probable 
user error. Correct the 
invalid statement. If the 
problem recurs, do the 
following before calling IBM 
for programming support: 

• Have the source program 
listing available. 

S IEM07151 TEXT yyyy ASSOCIATED WITH THE 
INITIAL ATTRIBUTE IN STATEMENT 
NUMBER xxx IS ILLEGAL AND HAS 
BEEN IGNORED. 

Explan~io!!: The INITIAL 
attribute has been used 
incorrectly. 

system Action: The INITIAL 
attribute is deleted 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM07181 INVALID CHECK LIST IN STATEMENT 
NUMBER xxx. STATEMENT HAS BEEN 
CHANGED TO 'ON ERROR'. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM07191 ELEMENT OF LABEL ARRAY zzzz 
walCH IS DECLARED WITH INITIAL 
ATTRIBUTE USED AS STATEMENT 
LABEL ON STATEMENT NUMBER xxx 

System Action: Label is 
deleted 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM07201 SUBSCRIPTED IDENTIFIER zzzz 
USED AS LABEL ON STATEMENT 
NUMBER XXK IS NOT A LABEL ARRAY 

Appendix K: Diagnostic Messages 361 



system Action: Label iB 
deleted 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source proc]'ram 
listing available. 

S IEM07211 ELEMENT OF STATIC LABEL ARRAY 
zzzz USED AS LABEL ON S~rATEMENT 

NUMBER xxx 

system Action: Label is 
deleted 

Pro~~er Response:. Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM07221 ELEMENT OF LABEL ARRAY zzzz 
USED AS LABEL ON STATEMENT 
NUMBER xxx IN BLOCK OTHER TF~N 
THE ONE IN WHICH IT IS 
DECLARED. 

system Action: An error 
statement is inserted in the 
text in place of the offending 
label. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

T IEM07231 COMPILER ERROR IN STATEMENT 
NUMBER xxx 

362 

Explanation: Compiler error 
found in scan of text 

System Actio!!: Compila.tion 
terminated 

Prog~er Respon2!H. Do the 
following before calling IBM 
for programming support.: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of t.he 

compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

S IEM07241 FORMAL PARAMETER zzzz IN CHECK 
LIST. PARAMETER IS IGNORED. 

Explanation: The identifier 
list of a CHECK prefix must not. 
contain formal parameters 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following befor(~ 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM07251 STATEMENT NUMBER xxx HAS BEEN 
DELETED DUE TO A SEVERE ERROR 
NOTED ELSEWHERE. 

System Action: The whole 
statement is replaced by an 
error statement. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM07261 IDENTIFIER zzzz IN STATEMENT 
NUMBER xxx IS NOT A FILE NAME. 
THE STATEMENT IS DELETED. 

Explanation: The identifier 
has been used previously in a 
different context and is 
therefore not recognized as a 
file name. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM07271 IDENTIFIER zzzz IN STATEMENT 
NUMBER xxx IS NOT A CONDITION 
NAME. THE STATEMENT IS 
DELETED. 



Explanation: The identifier 
has been used previously in a 
different context and is 
therefore not recognized as a 
condition name 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

T IEM07281 COMPILATION TERMINATED DUE TO A 
PREVIOUSLY DETECTED SEVERE 
ERROR IN STATEMENT NUMBER xxx 

Explanatioh: A previous module 
has inserted a dummy dictionary 
reference into the second file. 
The compiler cannot recover. 

Programmer ReSpOnSe! Probable 
user error. If the problem 
recurs, do the following before 
calling IBM for progra~ng 
support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler~ (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

S IEM07291 COMPILER ERROR IN SCALE F~CTOR 
IN PICTURE BEGINNING yyyy. 
THIS PICTURE OCCURS IN 
STATEMENT NUMBER xxx, AND 
POSSIBLY IN OTHER ST~TEMENTS. 

System Action: Scan of picture 
halted. ~ll references to 
picture deleted. 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,FO), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

S IEM01301 MORE THAN ONE SIGN CHARACTER 
PRESENT IN A SUBFIELD OF 
PICTURE yyyy. THIS PICTURE 
OCCURS IN STATEMENT NUMBER xxx, 
AND POSSIBLY IN OTHER 
ST~TEMENTS. 

system Action: Scan of picture 
terminated; picture ignored by 
later phases. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM01311 PICTURE CHARACTER M APPEARS IN 
NON-STERLING PICTURE yyyy. 
THIS PICTURE OCCURS IN 
STATEMENT NUMBER xxx, AND 
POSSIBLY.IN OTHER STATEMENTS. 

system Action: Scan of picture 
terminated; picture ignored by 
later phases. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM01321 FIELD MISSING IN STERLING 
PICTURE yyyy. THIS PICTURE 

.l OCCURS IN STATEMENT NUMBER xxx, 
AND POSSIBLY IN OTHER 
STATEMENTS. 

system ~ction: Scan of picture 
terminated; picture ignored by 
later phases. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for progra~ng 
support: 

• Have the source program 
listing available. 

S IEM01331 ILLEG~L EDIT CHARACTERS AT 
START OF STERLING PICTURE yyyy. 
THIS PICTURE OCCURS IN 
STATEMENT NUMBER xxx, AND 
POSSIBLY IN OTHER STATEMENTS. 

~ppendix K: Diagnostic Messages 363 



System Action: Scan of picture 
terminated; picture ignored by 
later phas es • 

Programmer Response: Probable 
user error. correct program 
and recompile. If the problem 
recurs, do the followinq before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM07341 ILLEGAL CHARACTER OR ILLEGAL 
NUMBER OF CH.ARACTERS IN POUNDS 
FIELD OF S~~ERLING PICTURE yyyy. 
THIS PICTURE OCCURS IN 
STATEMENT NUMBER xxx, AND 
POSSIBLY IN OTHER STATEMENTS. 

system Action: Scan of picture 
terminated; picture ignored by 
later phases. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
callin9 IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM0735I ILLEGAL CHARACTER OR ILLEGAl. 
NUMBER OF CHARACTERS IN 
SHILLINGS FIELD OF STERLING 
PICTURE yyyy. THIS PICTURE 
OCCURS IN STATEMENT NUMBER xxx, 
AND POSSIBLY IN OTHER 
STATEMENTS. 

system Action: Scan of picture 
terminated; picture ignored by 
later phases .. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM07361 WRONG NUMBER OF DELIMITER 
CHARACTERS M IN STERLI NG 
PICTURE yyyy. THIS PICTURE 
OCCURS IN STATEMENT NUMBER xxx, 
AND POSSIBLY IN OTHER 
STATEMENTS. 

364 

system Action: Scan of picture 
terminated; picture ignored by 
later phases. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM07371 ILLEGAL CHARACTER OR ILLEGAL 
NUMBER OF CHARACTERS IN PENCE 
FIELD OF STERLING PICTURE yyyy. 
THIS PICTURE OCCURS IN 
STATEMENT NUMBER xxx, AND 
POSSIBLY IN OTHER STATEMENTS. 

system Action: Scan of pictur1e 
terminated; picture ignored by 
later phases. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following beforle 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM07391 STATIC PICTURE CHARACTER $ S + 
- NOT AT EXTREMITY OF SUBFIELD. 
PICTURE IN ERROR IS yyyy. THIS 
PICTURE OCCURS IN STATEMENT 
NUMBER xxx, AND POSSIBLY IN 
OTHER STArEMENTS. 

system Action: Scan of picture 
continued with item ignored, 
but picture will be ignored by 
later phases. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM0740I MULTIPLE OSE OF E K OR V IN 
PICTURE. PICTURE TRUNCATED AT 
ILLEGAL CHARACTER. PICTURE IN 
ERROR IS yyyy. THIS PICTURE 
OCCURS IN STATEMENT NUMBER xxx, 
AND POSSIBLY IN OTHER 
STATEMENTS. 

system Action: Picture 
truncated at pOint indicated 

Programmer Response: Probable 
user er.ror. Correct program 
and recompile. If the problem 
recurs, do the following before 



calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM07411 CR OR DB INCORRECTLY POSITIONED 
IN SUBFIELD. PICTURE TRUNCATED 
AT THIS POINT. PICTURE IN 
ERROR IS yyyy. THIS PICTURE 
OCCURS IN STATEMENT NUMBER xxx, 
AND POSSIBLY IN OTHER 
STATEMENTS. 

system Action: Picture 
truncated at point indicated 

Programmer Response: Probable 
user error,. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM071~21 CR OR DB GIVEN E'OR A NON-REAL, 
NON-NUMERIC OR FLOATING FIELD. 
PICTURE TRUNCATED BEFORE CR OR 
DB IN PICTURE yyyy. THIS 
PICTURE OCCURS IN STATEMENT 
NUMBER xxx, AND POSSIBLY IN 
OTHER STATEMENTS. 

System Action: Picture 
truncated at point indicated 

~rogfamm~_g~~~e: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM07lJ 51 ILLEGAL USE OF PICTURE 
CHARACTER Z OR * IN PICrURE 
yyyy. THIS PICTURE OCCURS IN 
STATEMENT NUMBER xxx, AND 
POSSIBLY IN OTHER STATEMENTS. 

System Action: Scan of picture 
continued with item ignored, 
but picture will be ignored by 
later phases. 

Programmer Respon~~~ Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM0746I STERLING MARKER FOUND IN OTHER 
THAN FIRST POSITION IN PICTURE 
yyyy. THIS PICTURE OCCURS IN 
STATEMENT NUMBER xxx, AND 
POSSIBLY IN OTHER STATEMENTS. 

§ystem Action: Scan of picture 
continued with item ignored, 
but picture will be ignored by 
later phases. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM07471 STERLING PICTURE CHARACTERS 
FOUND IN NON-STERLING PICTURE. 
SCANNING OF PICTURE STOPPED. 
PICTURE IN ERROR IS yyyy. THIS 
PICTURE OCCURS IN STATEMENT 
NUMBER xxx, AND POSSIBLY IN 
OTHER ST~TEMENTS. 

system Action: Scan of picture 
terminated; picture ignored by 
later phases. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM07481 ILLEGAL USE OF SC~LING FACTOR 
IN PICTURE. SCALING FACTOR 
ONWARDS DELETED. PICTURE IN 
ERROR IS yyyy. THIS PICTURE 
OCCURS IN STATEMENT NUMBER xxx, 
AND POSSIBLY IN OTHER 
ST~TEMENTS. 

System Action: Picture 
truncated at point indicated 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM07491 ILLEGAL USE OF SCALING FACTOR 
IN PICTURE. SCAN OF PICTURE 
TERMINATED. PICTURE IN ERROR 
IS yyyy. THIS PICTURE OCCURS 

Appendix K: Diagnostic Messages 365 



"'" 

IN STATEMENT NUMBER xxx, A.ND 
POSSIBLY IN OTHER STATEMENTS. 

system A.ction: Scan of picture 
terminated; picture ignored by 
later phases. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM07501 ILLEGAL CHARACTER PRESENT IN 
CHARACTER STRING PICTURE yyyy. 
THIS PICTURE OCCURS IN 
STATEMENT NUMBER xxx, AND 
POSSIBLY IN OTHER STA.TEMENTS. 

system Action: Scan of picture 
continued with item ignored q 

but picture will be ignored by 
later phases. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM07511 NO MEANINGFUL CHARACTERS IN 
PICTURE yyyy. THIS PICTURE 
OCCURS IN STATEMENT NUt-!lBER XXK, 

AND POSSIBLY IN OTHER 
STATEMENTS. 

system A.ction: Scan of picture 
continued with item ignored, 
but picture will be ignored by 
later phases. 

Programmer Response: Probable 
user error. Correct program 
and, recompile. If ,the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM07521 ILLEGAL USE OF,OR ILLEGAL 
CHARACTERS IN, STERLING PICTURE 
yyyy. THIS PICTURE OCCURS IN 
STATEMENT NUMBER xxx, AND 
POSSIBLY IN OTHER STATEMENTS. 

366 

system A.ction: Scan of picture 
continued with item ignored, 

but picture will be ignored by 
later phases. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM07541 ILLEGAL CHA.RACTER IN PICTURE 
yyyy. THIS PICTURE OCCURS IN 
STA.TEMENT NUMBER xxx, AND 
POSSIBLY IN OTHER STATEMENTS. 

§ystem Action: Scan of picture 
continued with item ignored, 
but picture will be ignored by 
later phases. 

Programme~ Response: Probable~ 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM07551 ILLEGAL USE OF DRIFTING EDITINIG 
SYMBOLS S $ + - IN PICTURE 
yyyy. THIS PICTURE OCCURS IN 
STATE:MENT NUMBER xxx, AND 
POSSIBLY IN OTHER STATEMENTS • 

.§¥stem Action: Scan of picture 
conti.nued with item ignored, 
but picture will be ignored by 
later phases. 

Programmer Response: ProbablE! 
user error. Correct program 
and recompile. If the problem 
recurs, do the following befo:I"e 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM07561 IMPLEMENTA.TION RESTRICTION. 
PRECISION roo LARGE OR PICTURE: 
TOO LONG IN PICTURE BEGINNING 
yyyy. THIS PICTURE OCCURS IN 
STATEMENT NUMBER xxx, AND 
POSSIBLY IN OTHER STATEMENTS. 

§yste!!!~ction: Scan of picture 
continued with item ignored, 
but picture will be ignored by 
later phases. 

Programmer Response: Probable 
user error. Correct program 



and recompile. If the probleM 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

T IEM07581 COMPILER ERROR IN PHASE FT. 

Explanation: Compiler error 
found in scan of dictionary 

System Action: Compilation 
terminated 

Programmer Response: Do the 
following befo~e calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE~ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

S IEr-107'591 IMPLEMENTATION RESTRICTION. 
STERLING CONSTANT EXCEEDS 
4166666666666.13.3L. HIGH 
ORDER DIGITS LOST DURING 
CONVERSION TO DECIMAL. 

system Action: High order 
digits lost somewhere in the 
following conversion process: 
shift pounds field left one 
digit,' double by addition.. ~dd 
shillings field. Add result, 
doubled by addition, to result 
shifted left one digit. Add 
pence field. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM07601 IMPLEMENTATION RESTRICTIoN. 
EXPONENT FIELD TOO LARGE IN 
PIC1'URE yyyy'. THIS PlcrURE 
OCCURS IN STATEMENT NUMBER xxx. 
AND POSSIBLY IN OTHER 
STATEMENTS. 

system Action: Reference to 
picture deleted 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM07611 PICTURE CHARACTER E OR K 
APPEARS WITHOUT AN EXPONENT 
FIELD FOLLOWING IT. PICTURE'IN 
ERROR IS yyyy. THIS PICTURE 
OCCURS IN STATEMENT NUMBER XXX, 
AND POSSIBLY IN OTHER 
STATEMENTS. 

system Action: Reference to, 
picture deleted from program 

Programmer Response: Probable 
user error. Correct picture:. 
If the problem recurs, do the 
following before calling IBM 
for programming support: 

• Have the source program 
listing available. 

S IEM07621 PICTURE CHARACTER E OR K IS NOT 
PRECEDED BY A DIGIT POSITION 
CHARACTER. PICTURE IN ERROR IS 
yyyy. THIS PICTURE OCCURS IN 
STATEMENT NUMBER xxx, AND 
POSSIBLY IN OTHER STATEMENTS., 

System Action: References to 
picture deleted 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM07631 INVALID CHARACTER nnnn IN 
EXPONENT FIELD OF PICTURE yyyy 
IN STATEMENT NUMBER xxx. 

§ystem Action: Scan of picture 
continued with item ignored, 
but picture will be ignored by 
later phase. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programmirig , 
support: 

• Have the source program 
listing available. 

Appendix K: Diagnostic Messages 367 



W IEM07641 ONE OR MORE FIXED BIN~RY ITEMS 
OF PRECISION 15 OR LESS HAVE 
BEEN GIVEN HALFWORD STORAGE. 
THEY ARE FLAGGED '*********' IN 
THE XREF/ATR LIST. 

S IEM07691 IMPLEMENTATION RESTRICTION. 
STArEMENT NUMBER xxx AS 
EXPANDED IS TOO LONG ~ND HAS 
BEEN DELETED .. 

Programmer Response: Probable 
user error. Simplify by 
splitting into two or more 
statements and recompile. If 
the problem recurs, do the 
following before calling IBM 
for programming support~ 

• Have the source program 
listing available. 

T IEM07701 COMPILER ERROR IN INPUT TO 
PHASE GA IN' STATEMENT NUMBER 
xxx 

Explanation: The compiler has 
encountered meaningless input 
to phase GA. 

System Action: Compilation 
terminated 

Programmer Response-: Do the 
following before calling IBM 
for programming support:: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)~ to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available,. 

S IEM07711 IMPLEMENTATION RESTRI:TION. 
NESTING OF FORMAT LISTS IN 
STATEMENT NUMBER xxx EXCEEDS 
20. STATEMENT DELETED. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM07781 AN INTERMEDIATE VARIABLE HAS 
BEEN CREATED IN READ INTO 
STATEMENT NUMBER xxx. THIS 
STATEMENT SPECIFIES FILE zzzz, 

368 

walCH HAS BEEN DECLARED WITH 
THE ENV(COBOL) ATTRIBUTE AND 
THE EVENT OPTION. THE EVENT 
OPTION HAS BEEN DELETED. 

Explanation: The intermediate 
variable has been created 
because there is a difference 
between the PL/I mapping and 
the COBOL mapping of the READ 
INTO variable. The READ INTO 
statement has been expanded 
into: 

READ INro (Intermediate 
variable); 

Variable = Intermediate 
variable; 

The READ statement must have 
been completed before the 
assignment takes place. The 
EVENT option has been deleted 
to ensure that the READ 
statement is complete before 
processing continues. 

System Action: Delete the 
EVENT option and continue 

Programmer Response: Probable 
user error. Check the use of 
the EVENT option or of the 
COBOL file. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM07791 AN INTERMEDIATE VARIABLE HAS 
BEEN CREATED IN WRITE/REWRITE 
FROM STATEMENT NUMBER xxx. 
THIS STATEMENT SPECIFIES FILE 
zzzz, WHICH HAS BEEN DECLARED 
WITH THE ENV(c'OBOL) ATTRIBUTE 
AND THE EVENT OPTION. THE 
EVENT OPTION HAS BEEN DELETED. 

Explanation: The intermediate 
variable has been created 
because there is a difference 
between the PL/I mapping and 
the COBOL mapping of the 
WRITE/REWRITE FROM variable. 
The WRITE/REWRITE FROM 
statement has been expanded to: 

Intermediate 
variable = variable; 

WRITE/REWRITE FROM 
(Intermediate variable); 

The WRITE/REWRITE statement 
must have been completed before 
the intermediate variable can 
be deleted. The EVENT option 



has been deleted to ensure that 
the WRITE/REWRITE statement is 
complete before processing 
continues. 

system Action: Delete the 
EVENT option and continue 

Programmer Response: Probable 
user error. Check the use of 
the EVENT option or of the 
COBOL file. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM07801 THE USE OF COBOL FILE zzzz IN 
LOCATE STATEMENT NUMBER xxx M~Y 
LEAD TO ERRORS WHEN THE RECORD 
IS PROCESSED. 

Explanation: The COBOL 
structure-mapping is not 
necessarily the same as the 
PL/I structure-mapping. 

System Action: The statement 
is deleted 

Prog~er R~~.!.. Probable 
user error. Either the LOCATE 
statement must be replaced by a 
WRITE FROM statement, or a 
non-COBOL file must be used. 
If the problem recurs, do the 
following before calling IBM 
for programming support: 

• Have the source program 
listing available. 

S IEM0781I THE USE OF COBOL FILE zzzz IN 
READ SET STATEMENT NUMBER xxx 
MAY LEAD TO ERRORS WHEN THE 
RECORD IS PROCESSED. 

Explanation: The COBOL 
structure-mapping is not 
necessarily the same as the 
PL/I structure-mapping. 

system Action: The statement 
is deleted 

Programmer Response: Probable 
user error. Either the READ 
SET statement must be replaced 
by a READ INTO statement, or a 
non-COBOL file must be used. 
If the problem recurs, do the 
following before calling IBM 
for programming support: 

• Have the source program 
listing available. 

S IEM07821 THE ATTRIBUTES OF zzzz USED IN 
RECORD I/O STATEMENT NUMBER XXX 
ARE NOT PERMITTED WHEN A COBOL 
FILE IS USED. 

Explanation: The attributes 
referred to do not exist in 
COBOL 

System Action: The statement 
is deleted 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM07841 INVALID ARGUMENT LIST FOR 
ALLOCATION FUNCTION IN 
STATEMENT NUMBER xxx HAS BEEN 
TRUNCATED OR DELETED. 

Explanation: Only a single 
argument can be given in the 
ALLOCATION function, and it 
must be one of the following: 

1. a major structure 

2. an unsubscripted array or 
scalar variable, not in a 
structure 

It must also be of nonbased 
CONTROLLED storage class. 

system Action: If the argument 
list begins with a valid 
operand, that operand is used 
as the argument; otherwise, the 
argument list is deleted. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

W IEM07861 NAME, NOT V~LUE, OF FUNCTION 
zzzz P~SS.ED AS ARGUMENT IN 
STATEMENT NUMBER xxx 

Programmer Response: Probable 
user error. Correct program 
and recompile. ·If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

~ppendix K: Diagnostic Messages 369 



• Have the source program 
listing available. 

E IEM07871 INCORRECT NUMBER OF ARGUMENTS 
FOR FUNCTION OR ROUTINE zzzz IN 
STATEMENTS yyyy. 

Explanation: Number of 
arguments differs from "the 
ENTRY declaration. 

system Action: Argumen"ts are 
matched as far as possible. 
zzzz is invoked using all the 
arguments. 

Programmer Response: Probable 
user error. Ignore this 
message if zzzz is a non-PL/I 
routine that can accept a 
variable number of arguments. 
Otherwise correct the program. 
If the problem recurs, do the 
following before calling IBM 
for programming support: 

• Have the source program 
listing available. 

W IEM0791I NUMBER OF ARGUMENTS FOR 
FUNCTION OR SUBROUTINE zzzz IN 
STATEMENTS yyyy IS INCONSISTENT 
WITH NUMBER USED ELSEWHERE. 

Explanation: The number of 
arguments for zzzz has not been 
explicitly declared. 
'ELSEWHERE' refers either to 
the PROCEDURE or ENTRY 
statement for zzzz, or to a 
previous invocation of the 
function. 

system Action: zzzz is invoked 
using all the arguments. 

Programmer Response: Probable 
user error. Ignore this 
message if zzzz is a non-PL/I 
routine that can accept a 
variable number of arguments. 
Otherwise correct the program. 
If the problem recurs, do the 
following before calling IBM 
for programming support.: 

• Have the source program 
listing available. 

E IEM07921 IN STATEMENT NUMBER xxx IT IS 
IMPOSSIBLE TO CONVERT FROM THE 
ATTRIBUTES OF ARGUMENT NUMBER 
nnnn TO THOSE OF THE 
CORRESPONDING PARAMETER IN 
ENTRY zzzz. THE PARAMETER 
DESCRIPTION IS IGNORED. 

Explanation: Self explanatory. 

370 

Examples of circumstances under 
which the error message is 
generated are label arguments 
to da"ta item parameters, array 
arguments to scalar parameters. 

system Action: The parameter 
description is ignored. If the 
parameter description is 
correct, this will give rise to 
totally incorrect execution. 

Programmer Response: Probable 
user error. Correct the 
parameter description or the 
argument so that at least 
conversion is possible. If the 
problem recurs, do the 
following before calling IBM 
for programming support: 

• Have the source program 
listing available. 

W IEM07931 IN STATEMENT NUMBER xxx 
ARGUMENT NUMBER nnnn OF ENTRY 
zzzz IS A SCALAR AND THE 
CORRESPONDING PARAMETER IS A 
STRUCTURE. 

sy~tem Action: A temporary 
structure of the same type as 
the parameter description is 
created and the argument is 
assigned to each base element, 
converting where necessary_ 

Programmer Response: Probable! 
user error. correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM07941 IN STATEMENT NUMBER xxx 
ARGUMENT NUMBER nnnn OF ENTRY 
zzzz CONTAINS A SUBSCRIPTED 
VARIABLE wITH THE WRONG NUMBER 
OF SUBSCRIPTS. THE STATEMENT 
HAS BEEN DELETED. 

Programmer Response: Probable~ 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM07951 DEFERRED FEATURE. IN STATEMENT 
NUMBER xxx ARGUMENT NUMBER nnnn 
OF ENTRY zzzz CONTAINS A 



CROSS-SECTION OF AN ~RAY OF 
STRUCTURES" STATEMENT DELETED. 

ExplanatioI!: The usage 
referred to is not supported by 
this version of the compiler. 
For details, refer to Appendix 
J of this publication. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM07961 IN STATEMENT NUMBER xxx 
ARGUMENT NUMBER nnnn OF ENTRY 
zzzz IS A GENERIC ENTRY NAME 
AND THERE IS NO CORRESPONDING 
ENTRY DESCRIPTION. STATEMENT 
DELETED. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM07971 IN STATEMENT NUMBER xxx 
ARGUMENT NUMBER nnnn OF ENTRY 
zzzz IS A BUILT-IN FUNCTION 
WHICH MAY NOT BE PASSED AS AN 
ARGUMENT. STATEMENT DELETED. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM07981 IN STATEMENT NUMBER xxx 
ARGUMENT NUMBER nnnn OF ENTRY 
zzzz IS NOT PERMISSIBLE. THE 
STATEMENT HAS BEEN DELETED. 

Expl~:!::io!!:' The message is 
generated, for example, when 
scalar arguments are given for 
array built-in functions. For 
the ADDR function the message 
could ,indicate that the 
function cannot return a valid 
result because the argument 
does not satisfy the 
requirements of contiguous 
storage. This could occur, for 

example, if the argument was a 
cross-section of an array. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM0799I IN STATEMENT NUMBER xxx A DUMMY 
ARGUMENT HAS BEEN CREATED FOR 
ARGUMENT NUMBER nnnn OF ENTRY 
zzzz. THIS ARGUMENT APPEARS 
IN A SETS LIST. 

System Action: The value 
assigned to the temporary 
argument during the execution 
of the procedure is lost on 
return from the procedure. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

W IEM0800I IN STATEMENT NUMBER xxx 
ARGUMENT NUMBER nnnn IN ENTRY 
zzzz IS A SCALAR AND THE 
CORRESPONDING PARAMETER IS AN 
ARRAY. 

System Action: A temporary 
array with the attributes of 
the entry description is 
created and the scalar is 
assigned to each element of the 
array, converting the type if 
necessary. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM08011 IN STATEMENT NUMBER xxx 
ARGUMENT NUMBER nnnn IN ENTRY 
zzzz IS SCALAR CORRESPONDING TO 
AN ARRAY PARAMETER WITH * 
BOUNDS. rHE STATEMENT HAS BEEN 
DELETED. 

Programmer Response: Probable 
user error. Correct program 

Appendix K: Diagnostic Messages 371 



and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

W IEM08021 IN STATEMENT NUMBER xxx 
ARGUMENT NUMBER nnnn O:F ENTRY 
zzzz DOES NOT MATCH THE 
PARAMETER. A DUMMY ARGUMENT 
HAS BEEN CREATED. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

T IEM08031 IMPLEMENTATION RESTRICTION. 
STATEMENT NUMBER xxx CONTAINS 
TOO MANY NESTED FUNCTION 
REFERENCES. LIMIT EXCEEDED AT 
ARGUMENT NUMBER nnnn OF ENTRY 
zzzz 

system Action: Compilation 
terminated 

Programmer Response: Probable 
user error. Reduce depth of 
function call nesting. If the 
problem recurs, do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
·S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messa.ges.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM08041 IMPLEMENTATION RESTRICTION. 

372 

STATEMENT NUMBER xxx IS TOO 
LONG M'D HAS BEEN DELl'~TED. 

system Action: Compilation 
t erminat ed. 

Programmer Response: Proba.ble 
user error. Reduce statement 
size. If the problem :recurs, 
do the following before calling 
IBM for programming support: 

• Recompile the pro9ram with 
compiler options 

'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

S IEM08051 DEFERRED FEATURE. IN STATEMENT 
NUMBER xxx ARGUMENT NUMBER nnnn 
OF ENTRY zzzz IS AN EVENT. 
STATEMENT DELETED. 

Explanation: A language 
feature has been used that is 
not supported by this version 
of the compiler. For details, 
refer to Appendix J of this 
publication. 

Programmer Response: ProbablE~ 
user error. Correct program 
and recompile. If the problem 
recurs, do the following'before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM08061 IN STATEMENT NUMBER xxx 
ARGUMENT NUMBER nnnn OF ENTRY 
zzzz IS NOT CONTROLLED BUT THE 
CORRESPONDING PARAMETER IS. 

system Action: An execution 
error will occur on entry to 
the called procedure 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM08071 IN STATEMENT NUMBER xxx 
ARGUMENT NUMBER nnnn OF 
BUILT-IN FUNCTION zzzz IS AN 
ENTRY NAME. THE STATEMENT BAS 
BEEN DELETED. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 



E IEM00081 IN STATEMENT NUMBER xxx 
ARGUMENT NUMBER yyy WILL CAUSE 
A DUMMY ARGUMENT TO BE PASSED 
TO ENTRY yyy IN ANOTHER TASK. 

Explanatio~: Dummy arguments 
passed to a subtask will cause 
temporary storage to be 
obtained which cannot be freed 
when the subtask is detached. 
This may result in the 
excessive use of storage. 

Programmer Response: Probable 
user error. Correct the source 
program so that no dummy 
arguments are created for 
arguments passed to a subtask. 
If the problem recurs, do the 
following before calling IBM 
for programming support: 

• Have the source program 
listing available. 

T IEM08161 COMPILER ERROR. INVALID END OF 
STATEMENT NUMBER xxx 

Explanation: Compiler error in 
scan of input text 

SystemActiQ~: Compilation is 
terminated 

grogrammer Response: Do the 
following before calling IBM 
for progra~ning support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM08171 COMPILER ERROR IN LABEL CHAIN 
FOR STATEMENT NUMBER xxx 

Explanation: Compiler error in 
scanning labels of a statement 

system Action: Compilation is 
terminated 

programmer Respons~~ Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 

comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

Note that this error can be 
avoided by using only one label 
on the statement. 

T IEM08181 COMPILER ERROR IN DICTIONARY 
ENTRY FOR STATEMENT NUMBER xxx 

Explanation: compiler error in 
scanning source text 

system Action: Compilation 
terminated 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM08191 COMPILER ERROR IN CHECK/NOCHECK 
LIST ENTRY FOR STATEMENT NUMBER 
xxx 

Explanation: Compiler error in 
CHECK or NOCHECK list 
dictionary entry 

system Action: Compilation is 
terminated 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM08201 IMPLEMENTATION RESTRICTION. 
STATEMENT NUMBER xxx TOO LONG. 

Explanation: Statement length 
exceeds text-block size. 

Appendix K: Diagnostic Messages 373 



System Action: compilation is 
terminated. 

Programmer Response: Probable 
user error. subdivide 
statement and recompile. If 
the problem recurs, do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)'to obtain a 
formatted dump of t.he 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

E IEM08211 INVALID ITEM zzzz IGNORED IN 
CHECK LIST IN STATEMENT NUMBER 
xxx 

EXplanation: Valid items in 
CHECK lists are: statement 
labels, entry labels, and 
scalar, array, structure, or 
label variables. Subscripted 
variable names, or data having 
the DEFINED attribute, are not 
allowed. 

~rogrammer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

W IEM08231 IMPLEMENTATION RESTRICTION. NO 
ROOM FOR zzzz IN CHECK TABLE 
STATEMENT NUMBER xxx 

Explana!:io!!: The CHECK list 
table has overflowed 

System Actio!!: The it:em 
ment~oned is ignored 

Programmer Response: Probable 
user error. Do not CHECK so 
many items. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

T IEM08241 IMPLEMENTATION RESTRICTION. 

374 

TOO MANY CHECKED ITEMB WITHIN 
STATEMENT NUMBER xxx 

Explanation: A stack used to 
trace nested IF statements has 
overflowed 

system Action: Compilation is 
terminated 

Programmer Response: Probable 
user error. Rephrase IF 
statements, or do not CHECK so 
many items. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM08251 COMPILER ERROR IN READ DATA 
STATEMENT NUMBER xxx 

Explanation: Compiler error in 
processing GET or READ DATA 
statement 

System Action: Compilation is 
terminated 

Programmer Response: Avoid the 
error by supplying an explicit 
DATA list. Do the following 
before calling IBM for 
programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
·the IEMnnnnI messages). 

• Have the associated job 
stream and source program 
listing available. 

W IEM08261 IMPLEMENTATION RESTRICTION. 
CHECK WILL NOT BE RAISED FOR 
zzzz IN STATEMENT NUMBER xxx 
BECAUSE OF EVENT OPTION 

Explanation:' The compiler does 
not raise the CHECK condition 
for variables when they are 
changed in statements 
containing an EVENT option. 

Programmer Response: Probable 
user error. Correct program 



and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEMOB32I IN THE EXPANSION OF BY NAME 
ASSIGNMENT STATEMENT NUMBER xxx 
A SET OF MATCHING ELEMENTS HAS 
BEEN FOUND BUT THEY ARE NOT ALL 
BASE ELEMENTS. THE STATEMENr 
HAS BEEN DELETED. 

Explanation: For a valid 
component scalar assignment to 
result from a BY NAME structure 
assignment, it is necessary 
that all the scalar names 
derived from original structure 
name operands have identical 
qualification relative to the 
structure name originally 
specified. e.g: DeL lS, 2T, 
2U, 3V; DCL lW, 2T, 2U; w=s; 
gives rise to the component 
assignments W.T=S.T; W.U=S.U; 
t~e second of which is invalid. 

system Action: The BY NAME 
assignment statement is deleted 

Programmer Response: Probable 
user error. Refer to the PL/I 
(F) Language Reference Manual -
rules for expansion of 
structure assignment BY NAME -
and correct the error. If the 
problem recurs, do the 
following before calling IBM 
for programming support: 

• Have the source program 
listing available. 

S IEM08331 THE EXPANSION OF BY NAME 
ASSIGNMENT STATEMENT NUMBER xxx 
HAS RESULTED IN NO COMPONENT 
ASSIGNMENTS. 

System Action: The statement 
is treated as a null statement 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM08341 THE ASSIGNED OPERAND IN BY NAME 
ASSIGNMENT STATEMENT NUMBER xxx 
IS NOT A STRUCTURE OR AN ARRAY 

OF STRUCTURES. STATEMENT 
DELETED. 

Explanation: In BY NAME 
assignment, the operand to the 
left of the equals sign must be 
a structure or an array of 
structures. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM08351 ALL OPERANDS LEFT OF EQUAL 
SYMBOL IN MULTIPLE STRUCTURE 
ASSIGNMENT STATEMENT NUMBER xxx 
ARE NOT STRUCTURES. STATEMENT 
DELETED 

Explanation: In multiple 
structure assignment, all the 
operands being assigned to must 
be structures. 

System Action: Replaces 
statement by a null statement 
and continues 

Programmer Response: Probable 
user error. Break statement up 
into a series of separate 
statements. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM08361 ILLEGAL ARRAY REFERENCE IN 
STRUCTURE ASSIGNMENT OR 
EXPRESSION. STATEMENT NUMBER 
xxx DELETED. 

Explanation: In PL/I, arrays 
of scalars are invalid operands 
in structure, or array of 
structure, expressions. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

T IEM08371 COMPILER ERROR IN INPUT TO 
PHASE IEMHF. 

Appendix K: Diagnostic Messages 375 



Explanation: Meaningless 
input. This message is also 
produced if an error is found 
in a DECLARE statement. In 
that case, a second message w of 
severity level severe, is 
issued giving details of the 
error. 

system Action: compilation is 
terminated 

Programmer Response: Do the 
following before calling IBM 
for programming support.: 

• Recompile the progI.*am with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

E IEM08381 EXPRESSION RIGHT OF EQUAL 
SYMBOL IN BY NAME ASSI GNMENT 
STATEMENT NUMBER xxx CONTAINS 
NO STRUCTURES. BY NAME OPTION 
DELETED. 

Explanation: In an assignment 
statement having the BY NAME 
option, the expression "to the 
right of the equal symbol 
should contain at least one 
structure or array of 
structures. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM08481 IMPLEMENTATION RESTRICTION. 

376 

THE EXPANSION OF STRUCTURE 
EXPRESSIONS IN STATEMENT NUMBER 
xxx HAS CAUSED A TABLE INTERNAL 
TO THE COMPILER TO OVI~RFLOW. 
STATEMENT DELETED. 

Explanation: The nesting of 
structure expressions in 
argument lists is too deep. 

Programmer Response: Probable 
user error. Decrease "the 
nesting. If the problem 
recurs, do the following before 

calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM08491 AN EXPRESSION OR ASSIGNMENT IN 
STATEMENT NUMBER xxx EITHER 
CONTAINS SEPARATE STRUCTURES 
WITH DIFFERENT STRUCTURING, OR 
CONTAINS BOTH A STRUCTURE AND 
AN ARRAY OF STRUCTURES. THE 
STATEMENT HAS BEEN DELETED. 

Explanation: PL/I does not 
allow separate structures with 
different structuring within 
the same expression or 
assignment. The (F) compiler 
does not support reference to 
both a structure and an array 
of structures within the same 
expression or assignment. 

Programmer Response: ProbablE~ 
user error. Correct the source 
code~ The two restrictions 
quoted above are detailed in 
the PL/I (F) Language Reference 
Manual and in Appendix J of 
this publication, respectively. 
If the problem recurs, do the 
following before calling IBM 
for programming support: 

• Have the source program 
listing available. 

S IEM08501 THE BOUNDS JF THE BASE ARRAYS 
OF THE STRUCTURE OPERANDS OF 
THE STRUCrURE EXPRESSION OR 
ASSIGNMENT IN STATEMENT NUMBER 
xxx ARE NOT THE SAME. THE 
STATEMENT HAS BEEN DELETED. 

Explanation: In a structure 
assignment or expression, all 
structure operands must have 
the same number of contained 
elements at the next level. 
Corresponding sets of contained 
elements must all be arrays of 
structures, structures, arrays, 
or scalars. The arrays must 
have the same dimensionality 
and bounds. 

Programmer Response: Probable 
user error. Refer to the PL/I 
(F) Language Reference Manual -
the expansion of array and 
structure expressions and 
assignments - and correct the 
prog:ram. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 



• Have the source program 
listing available. 

S IEMOB511 IMPLEMENTATION RESTRICTION. 
STATEMENT NUMBER xxx IS TOO 
LONG AND HAS BEEN DELETED. 

Explanation: The expansion of 
structure expressions or 
assignments has given rise to a 
statement which exceeds one 
text block in length 

Programmer Respo~ Probable 
user error. Decrease statement 
size. If the problem recurs, 
do the following before calling 
IBM for programming support: 

• Have the source program 
listing available. 

S IEMOB521 A SUBSCRIPTED REFERENCE TO AN 
ARRAY OF STRUCTURES IN 
STATEMENT NUMBER xxx HAS THE 
WRONG NUMBER OF SUBSCRIPTS. 
THE STATEMENT HAS BEEN DELETED. 

Explanation: subscripted 
references to arrays must have 
subscript expressions equal in 
number to the dimensionality of 
the array 

Programmer Response: probable 
user error. Correct 
subscripted reference. If the 
problem recurs, do the 
following before calling IBM 
for programming support: 

• Have the source program 
listing available. 

S IEM08531 DEFERRED FEATURE. A STRUCTURE 
ASSIGNMENT OR EXPRESSION IN 
STATEMENT NUMBER xxx INVOLVES 
CROSS SECTIONS OF ARRAYS. 
STATEMENT DELETED. 

Explanation: This version of 
the compiler does not support 
reference to cross sections of 
arrays of structures. 

Programmer Respon~e: Probable 
user error. Expand the 
statement in DO loops replacing 
'.'s in subscripts by the 
appropriate DO control 
variable. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM08641 IMPLEMENTATION RESTRICTION. 
NESTING OF ARRAY ASSIGNMENTS OR 
I/O LISTS TOO DEEP. STATEMENT 
NUMBER xxx DELETED. 

EXPlana~on: Nesting of 
function(, combined with size 
of arrays involved, is too 
great 

Programmer Response: Probable 
user error. Simplify by 
splitting into two or more 
sta~ements. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM08651 IMPLEMENTATION RESTRICTION. 
STATEMENT NUMBER xxx IS TOO 
LONG AND HAS BEEN DELETED. 

EXElanation: Nesting of 
functions with array arguments 
involves a large expansion of 
text 

Programmer Response: Probable 
user error. Simplify by 
splitting into two or more 
statements. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM08661 NEITHER MULTIPLE ASSIGNMENT 
COMMA NOR ASSIGNMENT MARKER 
FOUND IN CORRECT POSITION. 
ST~TEMENT NUMBER xxx DELETED. 

Explanation: An expression 
occurring on the left-hand side 
of an assignment. must be 
contained within parentheses. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
-support: 

• Have the source program 
listing available. 

S IEM08671 NUMBER OF • SUBSCRIPTS 
SPECIFIED FOR zzzz IS NOT THE 
DIMENSIONALITY OF THE LEFTMOST 
ARRAY. STATEMENT NUMBER xxx 
DEI,ETED 

Appendix K: Diagnostic Messages 377 



Explanation: Array references 
in expressions must have the 
same dimensionality 

Programmer Response: I'robable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM08681 BOUNDS OF ARRAY zzzz ARE NOT 
SAME AS FOR LEFTMOST ARRAY IN 
ASSIGNMENT OR EXPRESSION. 
STATEMENT NUMBER xxx Dl~LETED. 

Explanation: Array references 
in eKpressions must, have the 
same bounds 

Programmer Res2Qns~~ Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM08691 DIMENSIONS OF ARRAY zzzz ARE 
NOT THE SAME AS FOR LEFTMOST 
ARRAY IN ASSIGNMENT OR I/O 
EXPRESSION. STATEMEN']~ NUMBER 
xxx DELETED. 

~anation: Array references 
in eKpressions must hcl'\7e the 
same dimensionality 

~rogrammer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available,. 

S IEM08701 ARGUME~T OF PSEUDO-VARIABLE 
INVALID. STATEMENT NUMBER xxx: 

378 

IS DELETED. 

Ex..E!anation: Arguments of 
pseudo-variables must be 
variables which are not 
expressions 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM08711 SCALAR zzzz ON LEFT OF EQUAL 
SYMBOL IN ARRAY ASSIGNMENT. 
STATEMENT NUMBER xxx DELETED. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM08721 NUMBER OF SUBSCRIPTS SPECIFIED 
FOR LEFTMOST OPERAND zzzz IS 
NOT SAME AS DIMENSIONALITY. 
STATEMENT NUMBER xxx DELETED. 

Explanation: The number of 
subscripts specified must be 
the same as the number of 
dimensions of the array 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

,8 IEM08731 ARGUMENTS OF PSEUDO-VARIABLE 
COMPLEX INCORRECT. STATEMENT 
NUMBER xxx DELETED. 

Explanation: Only one argument 
given for COMPLEX, or 
expression illegally used as 
argument for pseudo-variable. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM08741 SECOND ARGUMENT OF 
PSEUDO-VARIABLE COMPLEX OR 
FIRST ARGUMENT OF REAL, lMAG, 
OR UNSPEC EITHER IS NOT 
FOLLOWED BY A RIGHT PARENTHESIS 
OR IS AN EXPRESSION. STATEMENT 
NUMBER xxx DELETED. 

Explanation: Too many 
arguments given for this 
pseudo-variable, or expression 
used as argument. 



Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM08751 ONSOURCE OR ONCHAR APPEARS IN A 
DIMENSIONED ARRAY ASSIGNMENT. 
STATEMENT NUMBER xxx DELETED. 

Explanation: ONSOURCE and 
ONCHAR may only appear in 
scalar assignments 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM08761 ARGUMENTS OF PSEUDO-VARIABLE 
SUBSTR INCORRECT. STATEMENT 
NUMBER xxx DELETED. 

Explanation: Only one argument 
given for SUBSTR, or express10n 
illegally used as argument for 
pseudo-variable. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM081'71 UNSUBSCRIPTED ARRAY zzzz IN 
SCALAR ASSIGNMENT. STATEMENT 
NUMBER xxx DELETED. 

Explanation: Only scalars can 
be assigned to scalars 

Programmer .. Response;; Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM08781 STRUCTURE zzzz FOUND IN ARRAY 
OR SCALAR EXPRESSION. 
STATEMENT NUMBER xxx DELETED. 

Explanation: Structures may 
only be assigned to structures 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
~ecurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM08791 PSEUDO-VARIABLE COMPLEX, REAL, 
IMAG, UNSPEC, COMPLETION, OR 
SUBSTR LACKS ARGUMENTS. 
STATEMENT NUMBER xxx DELETED. 

Explanation: Pseudo-variables 
COMPLEX, REAL, lMAG, UNSPEC, 
COMPLETIO~, and SUBSTR require 
arguments 

Programmer Response: Probable 
user error. Check whether the 
variable was intended as a 
pseudo-variable or whether it 
should have been declared 
otherwise. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM08801 NUMBER OF SUBSCRIPTS SPECIFIED 
FOR zzzz IS NOT SAME AS 
DIMENSIONALITY. STATEMENT 
NUMBER xxx DELETED. 

Explanation: The number of 
subscripts specified must be 
the same as the number of 
dimensions of the array. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM08811 NUMBER OF DIMENSIONS IN 
REFERENCE TO zzzz IS NOT SAME 
AS THAT OF EXPRESSION OR 
ASSIGNMENT. STATEMENT NUMBER 
xxx DELETED. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

Appendix K: Diagnostic Messages 379 



• Have the source program 
listing available., 

T IEM08821 COMPILER ERROR. INVALID INPUT 
TO PHASE HK AT STATEMENT NUMBER 
xxx 

Explanation: Illegal text has 
been encountered 

system Action: Compilation 
terminated 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

S IEM08831 DEFERRED FEATURE. STRUCTURE 
zzzz PASSED AS ARGUMENT TO THE 
TRANSLATE OR VERIFY FUNCTION. 
STATEMENT NUMBER xxx DELETED. 

Programmer Response: Probable 
user error~ Remove structure 
from statement. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing availableo 

T IEM08961 IMPLEMENTATION RESTRICTION. 

380 

TOO MANY LEVELS OF ISUB NESTING 
IN STATEMENT NUMBER xxx 

Explanation: stack has 
overflowed scratch core. The 
maximum number of levels of 
nesting possible depends on the 
dimensionality of the arrays 
involved. 

System A.ction: Compilation 
terminated 

Programmer Response: Probable 
user error. Reduce the number 
of levels of nesting in the 
statement. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 

'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

S IEM08971 ISUB DEFINED OPERAND zzzz HAS 
NOT BEEN DECLARED AS AN ARRAY. 
ISUBS IN STATEMENT NUMBER xxx 
DELETED. 

Programmer Response: Probable 
user error. Declare defined 
item with dimension attribute. 
If the problem recurs, do the 
following before calling IBM 
for programming support: 

• Have the source program 
listing available. 

T IEM08981 NO SUBSCRIPTS AFTER 
ISUB-DEFINED ITEM zzzz IN 
STATEMENT NUMBER xxx. 

Explanation: This is a 
compiler error 

system Action: Terminates 
compilation 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program wi 1:.h 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

E IEM08991 MULTIPLIER IN ISUB DEFINING 
LIST FOR zzzz IN STATEMENT 
NUMBER xxx I S NOT A SCALAR 
EXPRESSION. 

Explanation: A comma has been 
found within the iSUB 
multiplier expression 

system Action: Remainder of 
expression, after comma, 
ignored 

Programmer Response: Probable 
user error. Rewrite 
expression. If the problem 
recurs, do the following before 



calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM09001 * USED AS SUBSCRIPT FOR ISUB 
DEFINED ITEM zzzz IN STATEMENT 
NUMBER xxx. ZERO SUBSTITUTED. 

Programmer Response: Probable 
user error. Rewrite without *. 
If the problem recurs, do the 
fol~owing before calling IBM 
for programming support: 

• Have the source program 
listing available. 

E IEM09011 ISUB NUMBER IN DEFINING LIST 
FOR zzzz IN STATEMENT NUMBER 
xxx IS TOO GREAT. M~XIMUM 

NUMBER USED. 

system Action: The iSUB number 
is replaced by the number of 
dimensions of the defined 
array. 

Programmer Response: Probable 
user error. Rewrite defining 
DECLARE statement. If the 
problem recurs, do the 
following before calling IBM 
for programming support: 

• Have the source program 
listing available. 

E IEM0902I WRONG NUMBER OF SUBSCRIPTS FOR 
ISUB DEFINED ITEM zzzz IN 
STATEMENT NUMBER xxx. 
SUBSCRIPTS IGNORED OR ZERO 
SUPPLIED. 

Programmer ResPQ~~ Probable 
user error. Rewrite with 
correct number of subscripts. 
The error may be in the 
reference to the defined item 
or in the defining DECLARE 
statement. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

T IEM09031 COMPILER ERROR. ERROR DETECTED 
IN DEFINING ISUB LIST FOR zzzz 
IN STATEMENT NUMBER xxx 

Expl~io~: Compiler error. 
Either (a) SUB not found where 
expected, or (b) SUBO found 
without a multiplier 
expression. 

§ystem Action: Compilation 
terminated 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

S IEM0906I STATEMENT DELIMITER FOUND 
WITHIN SUBSCRIPT LIST FOR zzzz 
IN STATEMENT NUMBER xxx 

Explanation: The subscript 
scan routine has found a 
statement marker 

System Action: The present 
statement is dropped and the 
new one processed. Compilation 
will not be completed. 

Programmer Response: Check the 
source text. This is probably 
a compiler error; do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,HP), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

S IEM09071 IMPLEMENTATION RESTRICTION. 
STATEMENT NUMBER xxx IS TOO 
LONG AND HAS BEEN TRUNCATED. 

Explanation: Statement length 
exceeds text block size 

system Action: Statement is 
truncated. Compilation will 
not be completed. 

Programmer Response: Probable 
user error. Simplify 
statement. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

~ppendix K: Diagnostic Messages 381 



• Have the source program 
listing available. 

S IEM1024I ILLEGAL USE OF zzzz IN 
STATEMENT NUMBER xxx. A FIXED 
BINARY ZERO CONSTANT IS 
SUBSTITUTED. 

Explanation: A non-scalar 
identifier has been specified 
in a context that requires a 
scalar identifier. 

system Action: Replaces 
illegal identifier with 
arithmetic constant zero 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source pI:ogram 
listing available. 

S IEM10251 IDENTIFIER zzzz ILLEGALLY USED 
AS SUBSCRIPT IN STATEMENT 
NUMBER xxx 

Explanation: A subscl:ipt has 
been used which is not a 
scalar, a scalar expression, or 
a constant 

system Action: Replaces 
illegal subscript with 
arithmetic constant zero 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

W IEM10261 STATEMENT NUMBER xxx IS AN 
UNLABELED FORMAT STATEMENT 

lXplanation: A FORMAT 
statement should have a label 

Programmer Respon~e: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing availableo 

T IEM1027! THE SUBSCRIPTED STRUCTURE ITEM 

382 

zzzz IS ILLEGALLY USED IN 
STATEMENT NUMBER xxx 

Explanation: The indicated 
~' structure item is used in a 

statement other than an 
assignment statement or an I/O 
data list. 

system Action: Compilation is 
terminated 

Programmer Response: ProbablE! 
user error. If the problem 
recurs, do the following befol:e 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
QS,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM10281 COMPILER ERROR IN STATEMENT 
NUMB:ER xxx:. ILLEGAL INPUT TEXT 
FOR PHASE IA. 

system Action: Terminates 
compilation 

Programmer.Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM1029I THE APPEARANCE OF THE ARRAY 
CROSS-SECTION IN STATEMENT 
NUMBER xxx: IS NOT SUPPORTED BY 
THIS VERSION OF THE COMPILER. 

Explanation: A feature has 
been used that is not support:ed 
by this version of the 
compiler. For details, refel: 
to Appendix J or to IB~ 
system/360 Operating system: 
PL/I (F) Language Reference 
Manual. 



system Action: Termi.nates 
compilation 

Programmer Response: Probable 
user error. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which -precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM10301 IMPLEMENTATION RESTRICTION. 
TOO MANY DUMMY ARGUMENTS ARE 
BEING PASSED IN STATEMENT 
NUMBER xxx. A MAXIMUM OF 64 
DUMMY ARGUMENTS MAY BE PASSED 
IN EACH INVOCATION 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

T IEM10LWI DEFERRED FEATURE. STRUCTURE 
ARGUMENT IS BEING PASSED TO 
FUNCTION zzzz IN STATEMENT 
NUMBER xxx. 

Explanation: In this version 
of the compiler, structures may 
not be passed as arguments to 
built-in functions. 

system Action: Terminates 
compilation 

Programmer Response: Probable 
user error. Rewrite program, 
avoiding unsupported feature. 
If the problem recurs, do the 
following before calling IBM 
f or programming s'upport: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 

stream and source program 
listing available. 

T IEM10511 DEFERRED FEATURE. STRUCTURE 
ARGUMENT IS BEING PASSED TO 
PSEUDO-VARIABLE zzzz IN 
STATEMENT NUMBER xxx. 

Explanation: In this version 
of the compiler, structures may 
not be passed as arguments to 
pseudo-variables. 

system Action: Terminates 
compilation 

Programmer Response: Probable 
user error. Rewrite program, 
avoiding unsupported feature. 
If the problem recurs, do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM10561 INVALID ARGUMENT IS BEING 
PASSED TO ENTRY NAME zzzz IN 
STATEMENT NUMBER xxx. 

system Action: Terminates 
compilation 

Proqrammer Response: Probable 
user error. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM10571 DECIMAL INTEGER CONSTANT IS NOT 
BEING PASSED, AS REQUIRED, TO 
FUNCTION zzzz IN STATEMENT 
NUMBER xxx. 

Explanation: Argumentto 
built-in function is not a 
decimal integer as expected. 

Appendix K: Diagnostic Messages 383 



System Actio!!: Terminates 
compilation 

Programmer Respon~~ Probable 
user error. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)t to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
,stream and source program 
listing available .. 

T IEM10581 ARRAY OR STRUCTURE ARGUMENT IS 
NOT BEING PASSED, AS REQUIRED, 
TO FUNCTION zzzz IN STATEMENT 
NUMBER xxx. 

Explanation: Argumen-t to 
built-in function is not an 
array or a structure, as 
expected. 

system Action: Terminates 
compilation. 

Programmer Response: Probable 
user error. Correct statement. 
If the problem recurs, do the 
following before calling IBM 
for programming support: 

• Recompile the pro~rram with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available .. 

T IEM10591 FIRST ARGUMENT BEING PASSED TO 
FUNCTION zzzz IN STATEMENT 
NUMBER xxx SHOULD BE AN ARRAY. 

384 

Explanation: Argument to 
built-in function is not an 
array as expected 

system Action: Terminates 
compilation 

Programmer Response: Probable 
user error. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
-the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM10601 TOO MANY ARGUMENTS ARE BEING 
PASSED TO FUNCTION zzzz IN 
STATEMENT NUMBER xxx. 

Explanation: TOO many 
arguments are being passed to a 
built-in function 

system Action: Terminates 
compilation 

Programmer Response: Probable 
user error. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Recompile the program wit.h 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM10611 TOO FEW ARGUMENTS ARE BEING 
PASSED TO FUNCTION zzzz IN 
STATEMENT NUMBER xxx. 

Explanation: Too few arguments 
are being passed to a built-in 
function 

sys·tem Action: Terminates 
compilation 

Programmer Response: Probable 
user error. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 



stream and source program 
listing available. 

T IEM.l062I COMPILER ERROR.. CORRECT 
GENERIC SELECTION FOR FUNCTION 
zzzz IN STATEMENT NUMBER xxx 
HAS NOT BEEN ACHIEVED. 

Explanation: Compiler, 
although being given a legal 
argument to a generic built-in 
function, is unable to make the 
sel~ction. 

sys,£em Action: Function result 
is set to zero and compilation 
terminated. 

Programmer ResQQ~~! Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM1063I COMPILER ERROR. UNEXPECTED 
SITUATION HAS ARISEN IN THE 
SCANNING OF THE ARGUMENTS 
PASSED TO FUNCTION zzzz IN 
STATEMENT NUMBER xxx 

~anatioB: Compiler is 
unable to correctly scan an 
argument list 

system Action: Function result 
is set to zero 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM1064I COMPILER ERROR. THE GENERIC 
FAMILIES ASSOCIATED WITH ENTRY 
NAME zzzz HAVE BEEN INCORRECTLY 
FORMED IN THE DICTIONARY. 

Explanation: The dictionary 
entry for one or more of the 
generic families is not a 
recognizable entry type. 

System Action: Terminates 
compilation 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM1065I NO GENERIC. SELECTION POSSIBLE 
FOR THE ENTRY NAME zzzz IN 
STATEMENT NUMBER xxx. 

Explanation: Incorrect use of 
the GENERIC attribute resulting 
in no selection being possible 

system Action: Terminates 
compilation 

Programmer Response: Probable 
user error. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM1066I MORE THAN ONE GENERIC SELECTION 
IS POSSIBLE FOR THE ENTRY NAME 
zzzz IN STATEMENT NUMBER xxx. 

Explanation: Incorrect use of 
the GENERIC attribute resulting 
in more than one selection 
being possible 

system Action: Terminates 
compilation 

Programmer Response: Probable 
user error. If the problem 
recurs, do the following before 

Appendix K: Diagnostic Me~sages 385 



calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of ·the 
compiler. (Refer ·to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM10671 PSEUDO-VARIABLE zzzz APPEARS IN 
STATEMENT NUMBER xxx WITH AN 
I LLEGAL ARGUMENT. 

Explanation: Argument to 
pseudo-variable cannot be 
converted to a legal type; or, 
structure argument bei.ng used 
with pseudo-variable. 

System Action: Terminates 
compilation 

Programmer Response: Probable 
user error. If ,the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM10681 AN ARRAY IS BEING PASSED TO 
FUNCTION zzzz IN STATEMENT 
NUMBER xxx. THIS PRODUCES AN 
ARRAY EXPRESSION WHICH IS 
INVALID IN THIS CONTEXT. 

386 

System Action: Terminates 
compilation 

Programmer Response: Probable 
user error. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
~S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

S IEMl070I IMPLEMENTATION RESTRICTION. AN 
ARGUMENT OF A BUILT-IN FUNCTION 
USED IN STATEMENT NUMBER xxx 
HAS BEEN TRUNCATED TO 32,767. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

T IEM1071I PSEUDO-VARIABLE zzzz APPEARS IN 
STATEMENT NUMBER xxx WITH TOO 
MANY ARGUMENTS. 

§ystem Action: Terminates 
compilation 

Programmer Response: Probable 
user error. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

r IEM10721 PSEUDO-VARIABLE zzzz APPEARS IN 
STATEMENT NUMBER xxx WITH TOO 
FEW ARGUMENTS. 

system Action: Terminates 
compilation 

Programmer Response: ProbablE~ 
user error. If the problem 
recurs, do the following before 
calling I~M for programming 
support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 



T IEM1()731 COMPILER ERROR. CORRECT 
GENERIC SELECTION FOR 
PSEUDO-VARIABLE zzzz IN 
STATEMENT NUMBER xxx HAS NOT 
BEEN ACHIEVED. 

~anatioB: Compiler error. 
Although being given a legal 
argument to a generic 
pseudo-variable, is unable to 
make the selection. 

system Action: Compilation 
terminated 

programmer.Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM10741 COMPILER ERROR. UNEXPECTED 
SITUATION HAS ARISEN IN THE 
SCANNING OF THE ARGUMENTS 
PASSED TO PSEUDO-VARIABLE zzzz 
IN STATEMENT NUMBER xxx 

Explanation: Unable to 
correctly scan an argument list 
of a pseudo-variable 

System Action: Compilation 
terminated 

Programmer Response: Do the 
following before calling IBM 
for programmdng support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

W IEM10151 THE ARGUMENT zzzz OF THE STRING 
PSEUDO-VARIABLE IN STATEMENT 
NUMBER xxx CONTAINS A PICTURED 
ELEMENT. THIS IS NOT CHECKED 
FOR VALIDITY ON ASSIGNMENT. 

Explanation: Invalid data in 

pictured element may cause 
subsequent errors. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

T IEMi076I COMPILER ERROR IN PHASE JD 

§ystem Action: Compilation 
terminates 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T ~EM10781 IMPLEMENTATION RESTRICTION. 
THE NUMBER OF FAMILY MEMBERS 
AND ARGUMENTS ASSOCIATED WITH 
THE GENERIC ENTRY NAME yyyy 
EXCEEDS THE LIMITATION IMPOSED. 

Explanation: There is an 
implementation restriction on 
the number of family members 
and arguments associated with 
GENERIC entry names. For 
details, refer to Appendix J of 
this publication. 

System Action: Compilation 
terminated 

Programmer Response: Probable 
user error. Divide the generic 
family into two or more generic 
families. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

Appendix K: Diagnostic Messages 387 



• Have the associated job 
stream and source program 
listing available. 

S IEM1082I STATEMENT NUMBER xxx CONTAINS 
AN INVALID USE OF AREA OR 
POINTER DATA. PART OR ALL OF 
THE STATEMENT HAS BEEN DELETED. 

Explanation: The s·tatement 
contains an operation that: 

1. is not permitted for AREA 
or POINTER data, or 

2. can only be used with AREA 
or POINTER data but such 
data is not the data 
specified for the 
operation. 

System.ActioIl:: Deletes the 
statement or clause responsible 
for the error. 

Programmer Response: Probable 
user error. Correct program 
and recompile. lfthe problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

T IEM1088I THE SIZE OF AGGREGATE zzzz IS 
GREATER THAN 8,388,607 BYTES. 
STORAGE ALLOCATION WILl .. BE 
UNSUCCESSFUL. 

388 

Explanation: The message is 
generated when an array or 
structure size exceeds 223 -1 

system Action: Array or 
structure mapping for the i·tem 
is terminated, but the 
compilation continues. 
Execution of object decks 
containing references to the 
item will give incorrect 
results. 

Programmer Response: Probable 
user error. Check source code. 
If the problem recurs, do the 
following before calling IBM 
for programming suppor1:.: 

• Recompile the program with 
compiler options 
sS,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 

stream and source program 
listing available. 

T IEMl0891 THE RELATIVE VIRTUAL ORIGIN OEI 

AGGREGATE zzzz IS LESS THAN 
-8,388,608 BYTES. STORAGE HAS 
NOT BEEN ALLOCATED. 

Exp!?nation: The low bounds of 
the arrays in the aggregate are 
too high. 

system Action: Compilation is 
terminated. 

Programmer Respons e: ProbablE~ 
user error. Reduce the size of 
the aggregate, or reduce the 
value of the low bounds in thE~ 
aggregate. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

S IEMl0901 THE STRUCTURE zzzz DECLARED IN 
STATEMENT NUMBER xxx CONTAINS 
VARYING STRINGS AND MAY APPEAR 
IN A RECORD I/O STATEMENT 

Explanation: VARYING strings 
in structures are not permitted 
in RECORD I/O statements. 

System Action: The RECORD I/O 
statement is processed but the 
record will contain erroneous 
information. 

Programmer Response: Probable 
user error. Correct the source 
codeu If the problem recurs, 
do the following before calling 
IBM for programming support: 

• Have the source program 
listing available. 

W IEMl0921 THE TASKS, EVENTS OR LABELS 
CONTAINED IN STRUCTURE zzzz 
DECLARED IN STATEMENT NUMBER 
xxx MAY LOSE THEIR VALIDITY IF 
USED IN A RECORD I/O STATEMENT. 

Explanation: The TASK, EVENT g 

or LABEL variable may lose its 
validity in transmission. 



Programmer Response: Probable 
user error. Correct the source 
code if necessary. If the 
problem recurs, do the 
following before calling IBM 
for programming support: 

• Have the source program 
listing available. 

E IEMll041 THE DEFINING OF zzzz DECLARED 
IN STATEMENT NUMBER xxx 
INVOLVES DATA NOT ALLOWED FOR 
STRING CLASS OVERLAY DEFINING. 

Explanation: The programmer's 
use of the DEFINED attribute 
contravenes the language rules 
concerned with the permitted 
data types and dimensionality 
of base and defined item. 

system Action: Defined item 
mapped onto same storage as 
item defined on. Data and 
specification interrupts may 
occur at execution. 

Programmer Response: Probable 
user error. Refer to the PL/I 
(F) Language Reference Manual -
"The DEFINED Attribute" - and 
correct the error. If the 
problem recurs, do the 
following before calling IBM 
for programming support: 

• Have the source'program 
listing available. 

E IEMll05I THE DATA CHARACTERISTICS OF 
zzzz DECLARED IN STATEMENT 
NUMBER xxx DO NOT MATCH THOSE 
OF THE DEFINING BASE. 

Explanation: For valid use of 
the DEFINED attribute, both the 
defined item and the base must 
be of the same defining class. 

system Actio!!: Defined item 
mapped onto same storage as 
item defined on. Data and 
specification interrupts may 
occur at execution. 

Programmer Response: Probable 
user error. Refer to the PL/I 
(F) Language Reference Manual -
"The DEFINED Attribute" - and 
correct the error. If the 
problem recurs, do the 
following before calling IBM 
for programming support: 

• Have the source program 
listing available. 

T IEMll06I THE DIMENSIONALITY OF zzzz 
DECLARED IN STATEMENT NUMBER 
xxx IS NOT THE SAME AS THAT OF 
THE DEFINING BASE. 

Explanation: With the 
exception of the case of string 
class defining, if either the 
base or the defined item are 
arrays, then both the base and 
the defined item must be arrays 
with the same dimensionality. 

system Action: Compilation is 
aborted after examining other 
uses of the DEFINED attribute 

Programmer Response: Probable 
user error. Refer to the PL/I 
(F)' Language Reference Manual -
"The DEFINED Attribute" - and 
correct the error.? I f the 
problem recurs, do,the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM1107I THE DEFINING OF zzzz DECLARED 
IN STATEMENT NUMBER xxx 
ILLEGALLY INVOLVES VARYING 
STRINGS. 

Explanation: In use of the 
DEFINED attribute, neither the 
base nor the defined item may 
involve strings declared 
VARYING. 

system Action: Compilation is 
aborted after examining other 
uses of the DEFINED attribute. 

Programmer Response: Probable 
user error. Refer to the PL/I 
(F) Language Reference Manual -
"The DEFINED Attribute" - and 
correct the error. If the: 
problem recurs, do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 

Appendix K: Diagnostic Messqges 389 



comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

E IEMii081 THE DEFINING OF zzzz DECLARED 
IN STATEMENT NUMBER xxx 
I LLEGALLY INVOLVES DA'r A 
AGGREGATES THAT ARE NOT 
UNALIGNED. 

Explanation: In the case of 
string class overlay defining 
where either or both the base 
and the defined item are 
aggregates, then the aggregates 
must have the PACKED attribute. 

system Action: Defined item 
mapped onto same storage as 
item defined on. Data and 
specification interrupts may 
occur at executiond 

Programmer Response: Probable 
user error. Refer to the PL/I 
(F) Language Reference Manual -
"The DEFINED Attribute" - and 
correct the error. If the 
problem recurs, do the 
following before calLing IBM 
for programming support: 

• Have the source program 
listing available .. 

T IEMiii01 THE DEFINING BASE OF zzzz 
DECLARED IN STATEMENT NUMBER 
xxx IS SHORTER THAN THE DEFINED 
ITEM. 

390 

Explanation: In the case of 
string class overlay defining, 
the defined item must occupy a 
subset of the base storage. 

In the case of correspondence 
defining, the length of each 
defined element must not be 
greater than the length of each 
base element. 

system Action: Compilation is 
aborted after examining other 
uses of the DEFINED attribute 

Programmer Respo~2e: Probable 
user error. Refer to the PL/I 
(F) Language Reference Manual -
"The DEFINED Attribute" - and 
correct the error. If the 
problem recurs, do the 
following before calling IBM 
for programming support: 

• Recompile the proq'ram with 

compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

E IEMiiii1 THE DEFINING OF zzzz DECLARED 
IN STATEMENT NUMBER xxx 
INVOLVES A STRUCTURE HAVING 
ELEMENTS NOT ALL OF THE SAME 
DEFINING CLA.SS. 

Explanation: In the case of 
string class overlay defining 
where the defined item or the 
base is a structure, then all 
the elements of the structure 
must be data of the same string 
defining class. 

System Action: Defined item 
mapped onto same storage as 
item defined on. Data and 
specification interrupts may 
occur at execution. 

Programmer Response: Probable 
user error. Refer to the PL/I 
(F) Language Reference Manual -
"The DEFINED Attribute" - and 
correct the error. If the 
problem recurs, do the 
following before calling IBM 
for programming support: 

• Have the source program 
listing available. 

T IEMll121 THE DEFINING OF zzzz DECLARED 
IN STATEMENT NUMBER xxx 
ILLEGALLY INVOLVES THE POS 
ATTRIBUTE. 

Explanation: The POSITION 
attribute may only be declared. 
for data of the string class 
which is overlay defined 

System Action: Compilation is 
terminated 

Programmer Response: Probable 
user error. Refer to the PL/I 
(F) Language Reference Manual -
"The DEFINED Attribute" - and 
correct the error. If the 
problem recurs, do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 



formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

E IEM11.:131 THE STRUCTURE DESCRIPTION OF 
zzzz DECLARED IN STATEMENT 
NUMBER xxx DOES NOT MATCH THAT 
OF THE DEFINING BASE. 

Explanation: Where a structure 
or an array of structures is 
defined on a structure or an 
array of structures, and it is 
not string class overlay 
defining, then the two 
structure descriptions must be 
identical. 

system Action: Defined item 
mapped onto same storage as 
item defined on. Data and 
specification interrupts may 
occur at execution. 

Programmer Response: Probable 
user error. Refer to the PLII 
(F) Language Reference Manual -
"The DEFINED Attribute" - and 
correct the error. If the 
problem recurs, do the 
following before calling IBM 
for programming support: 

• Have the source program 
listing available. 

W IEM11.:141 IF THE BASE OF zzzz DECLARED IN 
STATEMENT NUMBER xxx IS 
ALLOCATED WITH THE DECLARED 
EXTENTS, THE DEFINING WILL BE 
IN ERROR. 

Explanation: In the case of 
string class overlay defining, 
the defined item must occupy a 
subset of the base storage. If 
the base is of CONTROLLED 
storage class, its extents are 
not finally resolved until 
execution time. 

system Action: No further 
action 

Programmer Response: Probable 
user error. Check that when 
the base is allocated it is of 
adequate size to accommodate 
the defined item. If the 
problem recurs, do the 
following before calling IBM 
for programming support: 

• Have the source program 
listing available. 

E IEMll151 THE DEFINING BASE OF zzzz 
DECLARED IN STATEMENT NUMBER 
xxx IS AN ARRAY FORMAL 
PARAMETER. IF THE MATCHING 
ARGUMENT IS AN ELEMENT OF AN 
ARRAY OF STRUCTURES OR A CROSS 
SECTION OF AN ARRAY, THE 
DEFINING WILL BE IN ERROR. 

Explanation: The base for 
'string class overlay defining 
must occupy contiguous storage 

System Action: Comments and 
continues 

Programmer Response: Probable 
user error. Check validity of 
arguments. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEMl1201 COMPILER ERROR. INVALID SIGN 
FOUND IN INITIAL VALUE LIST FOR 
zzzz IN STATEMENT NUMBER xxx. 
TREATED AS PLUS. 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,JP)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

S IEMl1211 COMPILER ERROR. INVALID MARKER 
FOUND IN INITIAL VALUE LIST FOR 
zzzz IN STATEMENT NUMBER xxx. 
INITIAL VALUE LIST TRUNCATED. 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,JP), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 

Appendix K: Diagnostic Messages 391 



stream and source program 
listing availableD 

S IEMl1221 UNSUPPORTED FEATURE. ,AN 
EXPRESSION HAS BEEN USED TO 
INITIALIZE STATIC STRING zzzz 
IN STATEMENT NUMBER xxx. 
STRING INITIALIZED TO NULL. 

Explanation: A complex 
expression has been used to 
initialize a STATIC string. 
This is a feature of PL/I not 
supported by this version of 
the compiler. See Appendix J 
of this publication for 
details. 

System Action: The string is 
initialized to null. 

Programmer Response: Probable 
user error. Amend sou:rce code. 
The restriction can be overcome 
by using an a.ssignment 
statement instead of the 
INITIAL attribute. If the 
problem recurs, do the 
following before calling IBM 
for programming support: 

• Have the source pl:ogram 
listing availablee 

S IEMl1231 INITIAL VALUE FOR STATIC DATA 
ITEM zzzz IN nnnn IS NOT A 
CONSTANT. INITIALIZATION 
TERMINATED. 

Programmer Response: Probable 
user error. Use a constant in 
the INITIAL string. I:f the 
problem recurs, do the 
following before calling IBM 
for progra~nming support: 

• Have the source program 
listing available. 

S IEM11251 ITERATION FACTOR USED IN 
INITIALIZATION OF STATIC ARRAY 
zzzz IN STATEMENT NUMBER xxx IS 
TOO LARGE. REPLACED BY ZERO. 

392 

Explanation: Iteration factors 
are converted by the compiler 
to REAL FIXED BINARY with a 
default precision of 15,0. The 
iteration factor referred to in 
the message has a value greater 
than 2~5, and therefore exceeds 
the default precision. 

System Action: The iteration 
factor is replaced by zero 

Programmer Response: Probable 
user error. Amend source code 

so that iteration factor does 
not exceed 2~5. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

T IEM12001 COMPILER ERROR. ILLEGAL TRIPLE 
IN TEXT. CURRENT STATEMENT 
NUMBER xxx 

Explanation: Phase KT is out 
of step in scanning text 

system Action: Recovery 
impossible. Compilation is 
terminated. 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dUmp of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM12101 COMPILER ERROR NUMBER nnnn IN 
PHASE KE. 

Explanation: Compiler error :i.n 
dictionary or text scan. 

system Action: Compilation 
terminated 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

• Recompilation should also 
be tried without the OPT=2 
option. 

T IEM12111 COMPILER ERROR IN PHASE KE. 



Explanation: Compiler error 
found in scan of dictionary. 

System A~tion: compilation 
terminated. 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM12201 COMPILER ERROR NUMBER nnnn IN 
PHASE KU IN STATEMENT NUMBER 
xxx. 

Explanation: A compiler error 
has occurred in the DO loop 
control optimization phase. 

system Action: Compilation is 
terminated. 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

• Recompilation should also 
be tried without the OPT=2 
option. 

T IEM12:231 COMPILER ERROR. INVALID INPUT 
TYPE nnnn TO OprIMIZING PHASE 
KO. 

system Action: Compilation 
terminated. 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 

compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

• Recompilation should also 
be tried without the OPT=2 
option. 

T IEM12241 COMPILER ERROR NUMBER nnnn IN 
PHASE KA. 

Explanation: An invalid 
request has been encountered by 
the table-handling routines in 
Phase KA. 

System Action: Compilation is 
terminated. 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM12261 COMPILER ERROR IN PHASE KG IN 
OR NEAR STATEMENT NUMBER xxx 

Explanatio~: An error has 
occurred while scanning text or 
tables. 

System Action: Compilation 
terminated 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

• Recompilation should also 
be tried without the OPT=2 
option. 

~ppendix K: Diagnostic Messages 393 



T IEM15691 IMPLEMENTATION RESTRICTION. 
SOURCE PROGRAM TOO LARGE. 

Explanation: The number of 
symbolic register names 
generated by the code 
generation section of ·the 
compi ler has exceeded ·the 
maximum number allowecL 

System Action: Compilation is 
terminated 

Programmer Response: Probable 
user error. Programmer should 
break down ,the compilation into 
smaller modules. If the 
problem recurs, do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of ·the 
compiler. (Refer ·to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM15701 COMPILER ERROR. INVAIJID TRIPLE 
FOLLOWING WHILE PRIME TRIPLE. 

Explanation: Input to phase LG 
of compiler is erroneous. A 
WHILE' triple is not followed 
by CV' or compiler label. 

system Jetion: Compilation is 
terminated 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
c~mpiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM15711 IMPLEMENTATION RESTRICTION. 

394 

SOURCE PROGRAM TOO LARGE. 

Explanation: No more core is 
available for the stack of 
nested DO statements (both in 
source language and those 

generated internally for array 
assignments etc.) 

System Action: Compilation is 
terminated 

Programmer Response: Probable 
user error. Simplify nesting 
so as to reduce number of 
levels. If the problem recurs, 
do the following before calling 
IBM for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
·the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

S IEM15721 ILLEGAL USE OF ARRAY OR 
STRUCTURE VARIABLE IN DO 
STATEMENT NUMBER xxx 

Explanation: A non-scalar 
variable has been used as (1) 
the control variable, or (2) a 
cont:rol variable subscript, or 
(3) a loop limit or increment 
value. 

system Action: Generates an 
error stop at execution time 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM1574I INVALID LOOP CONTROL EXPRESSION 
OR CONTROL VARIABLE SUBSCRIPT 
IN STATEMENT NUMBER xxx 
REPLACED BY FIXED BINARY 
TEMPORARY. 

Explanation: Either something 
other than an arithmetic or 
string datum has been used as a 
subscript in the control 
variable, or something other 
than an arit.hmetic or string 
datum, label variable, or label 
constant has been used in an 
init:ial value, TO or BY clause. 

System Action: Ignore the 
erroneous expression and use a 
fixed binary temporary 



Programmer Response: pr~bable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM1575I DO LOOP' CONTROL PSEUDO-VARIABLE 
IN STATEMENT NUMBER xxx HAS AN 
INVALID ARGUMENT. BINARY 
INTEGER TEMPORARY ASSUMED. 

Explanation: An invalid 
argument, such as an expression 
or function, has been used in a 
pseudo-variable. 

system Action: Assigns invalid 
argument to binary temporary, 
and uses the latter as 
argument. 

Programmer Res~se~ Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

W IEM158SI VARYING STRING HAS BEEN USED AS 
AN ARGUMENT TO ADDR FUNCTION IN 
STATEMENT NUMBER xxx 

r~planation: The result of the 
ADDR function can only be 
assigned to a pointer 
qualifying a based variable. 
If the argument to the ADDR 
function is a VARYING string, 
the length of the data in the 
based variable may not be the 
length required in the program. 

system Action: None 

Programmer Response: Probable 
user error. Check this use of 
the ADDR function. If the 
problem recurs, do the 
following before calling IBM 
for programming support: 

• Have the source program 
listing available. 

E IEM1599I A STATEMENT LABEL CONSTANT IS 
BEING PASSED AS AN ARGUMENT TO 
THE ADDR BUILT-IN FUNCTION IN 
STATEMENT NUMBER xxx 

Explanation: The argument to 

the ADDR built-in function must 
be a variable. 

Programmer Response: Probable 
user error. Correct source 
program. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

T IEM1600I COMPILER ERROR. ILLEGAL 
ABSOLUTE REGISTER NUMBER. 
STATEMENT NUMBER xxx 

Explanation: Compiler error. 
Fixed binary arithmetic uses an 
unassigned general register 
number greater than 15, or 
floating arithmetic uses a 
floating register greater than 
6. 

system Action: Compilation is 
terminated and error messages 
printed. 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP={PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM1601I IMPLEMENTATION RESTRICTION. 
STATEMENT NUMBER xxx REQUIRES 
MORE THAN 200 INTERMEDIATE 
RESULT DESCRIPTIONS. 

Explanation: Compiler 
limitation. The temporary 
result stack, which holds 200 
items, is full. 

System Action: Compilation is 
terminated and error messages 
printed 

Programmer Response: Probable 
user error. This error should 
only occur in very large 
statements. Divide the 
statement into two smaller 
statements. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

Appendix K: Diagnostic Messages 395 



• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM16021 COMPILER ERROR. INSUF'FICIENT 
NUMBER OF TEMPORARY RESULT 
DESCRIPTIONS. STATEMENT NUMBER 
xxx 

Explanation: Compiler error. 
A temporary result is required 
but the temporary result stack 
is empty'. This can happen if 
the triples are out of order or 
if extra triples have been 
inserted. 

system Action: Compilation is 
aborted and error messages 
printed 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of ,the 
compiler. (Refer 'to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM16031 COMPILER ERROR. COUNT OF FREE 
FLOATING REGISTERS IS WRONG. 
STATEMENT NUMBER xxx 

396 

Explanation: Compiler error in 
expression evaluation phase. 
Error in control blocks for 
floating registers. 

System Action: Compilation is 
terminated and error messages 
printed 

Programmer Response: Do the 
following before calling IBM 
for programming suppoz:t: 

• Recompile the program with 
compiler options 
·S.DP=(PIE~ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 

comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM16041 COMPILER ERROR. SECOND OPERAND 
FOR RS OR SS INSTRUCTION IS IN 
A REGISTER. STATEMENT NUMBER 
xxx 

Explanation: Compiler error in 
expression evaluation phase. 
Attempt to generate an RS or SS 
type pseudo-code instruction 
using a register as the 2nd 
operand. 

system Action: Compilation is 
terminated and error messages 
printed. 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

S IEM160S1 IN STATEMENT NUMBER xxx FIXED 
DECIMAL VARIABLE CANNOT BE 
CORRECTLY CONVERTED TO BINARY 
DUE TO SIZE OF SCALE FACTOR. 

Explanation: Error in source 
prog,ram. When a fixed decimal 
variable is corrected to fixed 
binary, the magnitude of its 
scale factor is multiplied by 
3.31. If the original scale 
factor is >38 or <-38, then the 
fixed binary scale factor would 
be outside the range +127 to 
-128. 

system Action: The fixed 
binary scale factor is set to 
+127 or -128. Processing 
continues. 

Programmer Response: Probable 
user error. The data in the 
expression must be re-declared 
with more suitable scale 
factors. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 



• Have the source program 
listing available. 

T IEM1606I COMPILER ERROR. FUNCTION NOT 
FOLLOWED BY RESULT DESCRIPTION. 
STATEMENT NUMBER xxx 

Explanation: Compiler error. 
A function is not followed by 
TMPD or LEFT triples giving the 
result type. 

System Action: Compilation is 
terminated and error messages 
printed 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

S IEM1607I LABEL, EVENT, FILE, OR TASK 
ITEM zzzz IN STATEMENT NUMBER 
xxx IS USED IN AN EXPRESSION 
WHICH IS ILLEGAL. 

Explanation: Error in source 
program. A label, event, file, 
or task datum cannot be used in 
an expression. Alternatively, 
this can be a compiler error 
when an unrecognizable 
dictionary entry is used in an 
expression. 

System Action: Substitute a 
fixed binary (31,0) data item 
(if the illegal item occurs in 
an arithmetic expression) or a 
null bit string (if it occurs 
in a string expression). 
processing is continued. 

~!Qgrammer Response: Probable 
user error. If error in source 
program, correct it. If the 
problem recurs, do the 
following before calling IBM 
for programming support: 

• Have the source program 
listing available. 

E IEM1608I LT, LE, GE, OR GT COMPARISON 
OPERATOR ILLEGALLY USED IN 
STATEMENT NUMBER xxx WITH 

COMPLEX OPERANDS. REPLACED 
WITH EQUALS OPERATOR. 

Explanation: Error in source 
program. The only legal 
comparison between complex 
operands iso' = , • 

system Action: The operator is 
replaced with "=' 'and 
processing continues 

Programmer Response: Probable 
user error. Correct source 
program using either the ABS 
function or possibly the REAL 
and IMAG functions. If the 
problem recurs, do the 
following before calling IBM 
for programming support: 

• Have the source program 
listing available. 

T IEM1609I COMPILER ERROR. ILLEGAL 
DICTIONARY REFERENCE X'OO •• ' 
STATEMENT NUMBER xxx 

Explanation: Compiler error. 
The symbolic dictionary 
reference is less than 256. 

System Action: Compilation 
terminated and error messages 
printed 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM1610I COMPILER ERROR IN PHASE LW AT 
STATEMENT NUMBER xxx. 
INSUFFICIENT NUMBER OF 
TEMPOR~RY RESULT DESCRIPTIONS. 

Explanation: Compiler error. 
A temporary result is required 
but the temporary result stack 
is empty. This can happen if 
the triples are out of order or 
if extra triples have been 
inserted. 

System Action: Compilation is 
terminated and error messages 
printed 

Appendix K: Diagnostic Messages 397 



Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer lto the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

E IEM16111 IMPLEMENTATION RESTRlcr.rION. A 
STRING RESULT LONGER 'I'HAN 32767 
IS PRODUCED BY CONCATE:NATE IN 
STATEMENT NUMBER xxx. STRING 
TRUNCATED TO LENGTH 32767. 

Explanation: Maximum Btring 
length for this implem,:mtation 
is 32767. This may be exceeded 
during concatenation, because 
the length of the intermediate 
resul tis the sum of t.he 
operand lengths. 

system Action: Compilation 
continues with string result 
length truncated to 32767 

Programmer Response: Probable 
user error. Shorter strings 
must be used. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

W IEM16121 IMPLEMENTATION RESTRICTION IN 
STATEMENT NUMBER xxx. 
INTERMEDIATE WORK SPACE IS 
OBTAINED MORE THAN 50 TIMES IN 
A STRING EXPRESSION. SOME WORK 
SPACE WILL NOT BE RELEASED 

398 

UNTI L THE END OF THE BI.OCK. 

Explanation: The intermediate 
work space is required each 
time a function returns a 
string result or each t~ime a 
library module is called 

System Action: The first 50 
areas of work space are 
released. The remainder may 
not be released until t.he end 
of the block. Compilation 
continues and execution is 
valid. 

Programmer ReSpO!!~~!. Probable 
user error. Divide the string 

expression into several 
sub-expressions. If the 
problem recurs, do the 
following before calling IBM 
for programming support: 

• Have the source program 
listing available. 

S IEM16131 ILLEGAL USE OF ARRAY OR 
STRUCTURE VARIABLE IN STATEMENT 
NUMBER xxx 

Ex~anation: Illegal source 
program 

system Action: Severe error 
message and object program 
branch. compilation continues, 
assuming scalar of same type if 
array, or fixed binary (31,0) 
type if structure. 

Programmer Response: Probable 
user error. Insert DO blocks 
for array, or break down 
structure into its componentsfi 
If the problem recurs, do the 
following before calling IBM 
for programming support: 

• Have the source program 
listing available. 

W IEM16141 IMPLEMENTATION RESTRICTION. A 
VARYING STRING RESULT LONGER 
THAN 32767 MAY BE PRODUCED BY 
CONCATENATE IN STATEMENT NUMBgR 
xxx. STRING TRUNCATED TO 
LENGTH 32767. 

Explanation: The sum of the 
maximum lengths of two strings 
in a concatenation operation 
exceeds the implementation 
restriction of 32767. Since 
one or both of the operands is 
a VARYING string, it is not 
known at compile-time whether 
the restriction will be 
exceeded at execution time. 

System Action: Compilation 
continues with string result 
maximum length truncated to 
32767. 

Programmer Response: Probable 
user error. Shorter strings 
must be used if the sum of the 
execution-time current lengths 
will ever exceed 32767. If the 
problem recurs, do the 
following before calling IBM 
for programming support: 

• Have the source program 
listing available. 



E IEM16151 SECOND ARGUMENT IN THE SUBSTR 
FUNCTION IN STATEMENT NUMBER 
xxx IS ZERO, WHICH IS INVALID. 
ZERO HAS BEEN REPLACED BY ONE. 

Programmer.Response: Probable 
us er error,. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM16161 SECOND ARGUMENT IN THE SUBSTR 
PSEUDO-VARIABLE IN STATEMENT 
NUMBER xxx IS ZERO, WHICH IS 
INVALID. ZERO HAS BEEN 
REPLACED BY ONE. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

T IEM16171 COMPILER ERROR. ILLEGAL RETURN 
FROM SCAN ROUTINE. STATEMENT 
NUMBER xxx 

Explanation: An illegal return 
of control has been made by the 
SCAN routine which supports the 
code generation phases. 

System Action: Compilation is 
terminated. 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and ,source program 
listing available. 

S IEM16:l81 PSEUDO-VARIABLE IN STATEMENT 
NUMBER xxx INCORRECTLY 
SPECIFIED. REPLACED BY FIXED 
BINARY TEMPORARY. 

Explanation: A pseudo-variable 
in the given source statement 
has been incorrectly specified, 

e.g. has an incorrect number 
of arguments. 

§ystem Action: Ignores the 
pseudo-variable and uses a 
fixed binary temporary instead. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM fOr programming 
support: 

• Have the source program 
listing available. 

S IEM16191 RIGHT HAND SIDE OF STATEMENT 
NUMBER xxx CANNOT BE ASSIGNED 
TO A PSEUDO-VARIABLE. 
ASSIGNMENT IGNORED. 

Explanation: The expressi1,n on 
the right-hand side of the, 
specified statement cannot'be 

,assigned to a pseudo-variaBle, 
i.e. it is not an arithmetic 
or string datum. 

System Action: The assignment 
is deleted from the text. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM16201 "IMAG' IN STATEMENT NUMBER xxx 
HAS REAL ARGUMENT. REPLACED BY 
ASSIGNMENT TO TEMPORARY FIXED 
BINARY INTEGER. 

Explanation: The 
pseudo-variable 'IMAG' is 
meaningful only if its argument 
is of type complex. 

System Action: A fixed binary 
temporary target is provided 
for the assignment or input 
data list item and the 
pseudo-variable is ignored 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

Appendix K: Diagnostic Messages 399 



3 IEM16211 ILLEGAL PSEUDO-VARIABLE 
ARGUMENT IN STATEMENT NUMBER 
xxx REPLACED BY BINARY 
TEMPORARY. 

~anation: A pseudo-variable 
in the specified statement has 
an illegal argument, i.e. one 
whose data type is not 
permissible in that context. 

System Action: A temporary 
whose type is legal in the 
context is used to replace the 
erroneous argument and the 
latter is removed from the text 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available., 

S IEM16221 FIRST ARGUMENT OF 
PSEUDO-VARIABLE SUBSTR IN 
STATEMENT NUMBER xxx IS NOT A 
STRING VARIABLE. ARGUMENT HAS 
BEEN CONVERTED TO STRING 
TEMPORARY AND THE ASSIGNMENT 
MADE THERETO. 

Explanation: SUBSTR 
pseudo-variable cannot have a 
first argument which is not a 
string variable. 

system Action: Code is 
compiled to assign to a string 
temporary. The original 
argument remains unchanged. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If thE! problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

W IEM16251 PSEUDO-VARIABLE REAL IN 
STATEMENT NUMBER xxx DOES NOT 
HAVE COMPLEX ARGUMENT. 
ARGUMENT HAS BEEN TREATED AS 
HAVING ZERO IMAGINARY PART. 

400 

system Action: Code is 
generated to perform assignment 
to the specified REAL argument 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 

recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM16261 ILLEGAL NEGATIVE SECOND 
ARGUMENT IS BEING PASSED TO THE 
FUNCTION SUBSTR IN STATEMENT 
NUMBER xxx. AN EXECUTION ERROR 
WILL RESULT. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM16271 ILLEGAL NEGATIVE THIRD ARGUMENT 
IS BEING PASSED TO THE FUNCTION 
SUBSTR IN STATEMENT NUMBER xxx. 
AN EXECUTION ERROR WILL RESULT. 

Prog:rammer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM16281 THE SUBSTRING SPECIFIED BY THE 
SECOND AND THIRD ARGUMENTS TO 
THE FUNCTION SUBSTR IN 
STATEMENT NUMBER xxx DOES NOT 
LIE WITHIN THE FIRST ARGUMENT. 
AN EXECUTION ERROR WILL RESUVr. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM16291 THE SECOND ARGUMENT TO THE 
FUNCTION SUBSTR IN STATEMENT 
NUMBER xxx IS GREATER THAN THE 
LENGTH OF THE FIRST ARGUMENT. 
AN EXECUTION ERROR WILL RESULT. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 



• Have the source program 
listing available. 

T IEM16301 COMPILER ERROR IN 
CEIL/FLOOR/TRUNC IN-LINE 
FUNCTION IN STATEMENT NUMBER 
xxx 

system Action: Compilation is 
terminated 

Programmer ReSponse: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM16311 COMPILER ERROR IN MOD IN-LINE 
FUNCTION IN STATEMENT NUMBER 
xxx 

System Action: Compilation is 
terminated 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

W IEM16321 THE INVOCATION OF THE ROUND 
FUNCTION IN STATEMENT NUMBER 
xxx WILL ALWAYS GIVE A ZERO 
RESULT. 

Explanation: (p - q + r) is 
zero or negative, where 
p = precision, q = scale 
factor, and r = rounding 
position. 

§.~tem Action: Result is set 
to zero 

Programmer Response: Probable 
user error. Check scale and 
precision of the first argument 
in ROUND function. If the 

problem recurs, do the 
fol~owing before calling IBM 
for -programming support: 

• Have the source program 
listing available. 

S IEM16331 ILLEGAL NEGATIVE SECOND 
ARGUMENT IS BEING PASSED TO THE 
PSEUDO-VARIABLE SUBSTR IN 
STATEMENT NUMBER xxx. AN 
EXECUTION ERROR WILL RESULT. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM1634I ILLEGAL NEGATIVE THIRD ARGUMENT 
IS BEING PASSED TO THE 
PSEUDO-VARIABLE SUBSTR IN 
STATEMENT NUMBER xxx. AN 
EXECUTION ERROR WILL RESULT. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM16351 THE SUBSTRING SPECIFIED BY THE 
SECOND AND THIRD ARGUMENTS TO 
THE PSEUDO-VARIABLE SUBSTR IN 
STATEMENT NUMBER xxx DOES NOT 
LIE WITHIN THE STRING zzzz. AN 
EXECUTION ERROR WILL RESULT. 

Programmer Response: Probable 
user error. correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM16361 THE SECOND ARGUMENT TO THE 
PSEUDO-VARIABLE SUBSTR IN 
STATEMENT NUMBER xxx IS GREATER 
THAN THE LENGTH OF THE STRING 
zzzz. AN EXECUTION ERROR WILL 
RESULT. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 

Appendix K: Diagnostic Meqsages 401 



calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM16371 THE THIRD ARGUMENT TO THE 
FUNCTION SUBSTR IN STATEMENT 
NUMBER xxx IS GREATER THAN THE 
LENGTH OF THE FIRST ARGUMENT. 
AN EXECUTION ERROR WILL RESULT. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM16381 THE THIRD ARGUMENT TO THE 
PSEUDO-VARIABLE SUBSTR IN 
STATEMENT NUMBER xxx IS GREATER 
THAN THE LENGTH OF THE STRING 
zzzz. AN EXECUTION ERROR WILL 
RESULT. 

Programmer Response~ Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

T IEM16391 COMPILER ERROR. INCORRECT 
INPUT TO SUBROUTINE 6 IN MODULE 
IEMMF IN STATEMENT NUMBER xxx. 

system Action: Compilation is 
terminated 

Programmer Response: Do the 
following before calling IBl>1 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer 'to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM1640I THE PARAMETER DESCRIPTION 
RELATING TO THE PASSING OF THE 
GENERIC ENTRY NAME zzzz DOES 
NOT MATCH ANY OF THE FAMILY 
MEMBERS. 

402 

system Action: Terminates 
compilation 

Programmer Response: Probable 
user error. Provide correct 
parameter description. If the 
problem recurs, do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

W IEM16411 THE PARAMETER DESCRIPTION 
RELATING TO THE PASSING OF THE 
GENERIC ENTRY NAME zzzz ' 
DESCRIBES THE ENTRY NAME'S 
RESULT TYPE RATHER THAN 
ARGUMENT TYPE. IF POSSIBLE, 
GENERIC SELECTION WILL BE MADE 
ON THE BASIS OF THIS RESULT 
TYPE. 

Programmer Response: Probable 
user error. Provide fuller 
parameter description. If the 
problem recurs, do the 
following before calling IBM 
for programming support: 

• Have the source program 
listing available. 

T IEM16421 THE PARAMETER DESCRIPTION 
RELATING ro THE PASSING OF THE 
GENERIC ENTRY NAME zzzz IS NOT 
SUFFICIENr FOR THE PURPOSES OF 
GENERIC SELECTION. 

system Action: Terminates 
compilation 

Programmer Response: Probable 
user error. Provide fuller 
parameter description. If the 
problem recurs, do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 



stream and source program 
listing available. 

T IEM16L~3I COMPILER ERROR. THE PARAMETER 
DESCRIPTION RELATING TO THE 
PASSING OF THE GENERIC ENTRY 
NAME zzzz IS INCORRECTLY FORMED 
IN THE DICTIONARY. 

system Action: Terminates 
compilation 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM16ll4I COMPILER ERROR. THE GENERIC 
FAMILIES ASSOCIATED WITH ENTRY 
NAME zzzz HAVE BEEN INCORRECTLY 
FORMED IN THE DICTIONARY. 

Explanation: The dictionary 
entry for one or more of the 
generic families is not a 
recognizable entry type. 

§ystem Actio~: Terminates 
compilation 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM16(~5I THE PARAMETER DESCRIPTION 
RELATING TO THE PASSING OF THE 
GENERIC ENTRY NAME zzzz RESULTS 
IN MORE THAN ONE POSSIBLE 
FAMILY MEMBER SELECTION. 

system Action: Terminates 
compilation 

Programmer Response: Probable 
user error. Provide fuller 

parameter description. If the 
problem recurs, do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM1648I COMPILER ERROR. FUNCTION 
REFERENCE MISSING FROM TEXT IN 
STATEMENT NUMBER xxx 

Explanation: Incorrect 
handling of text by previous 
phase. 

system Action: Terminates 
compilation 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM1649I COMPILER ERROR. INCORRECT 
FORMATION OF ARGUMENT LIST 
ASSOCIATED WITH ENTRY NAME zzzz 
IN STATEMENT NUMBER xxx 

Explanation: Incorrect 
handling of text by previous 
phase 

system Action: Terminates 
compilation 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

Appendix K: Diagnostic Messages 403 



• Have the associated job 
stream and source program 
listing available. 

T IEM16501 COMPILER ERROR. INCORRECT 
HANDLING OF ARGUMENT LIST 
ASSOCIATED WITH ENTRY NAME zzzz 
IN STATEMENT NUMBER xxx 

Explanation: Incorrec-t 
handling of text by pl:evious 
phase 

system Action: Terminates 
compilation 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM16511 COMPILER ERROR. ARGUMENT 
REFERENCE MISSING FROM ARGUMENT 
LIST ASSOCIATED WITH E:NTRY NAME 
zzzz IN STATEMENT NUMBER xxx 

Explanatio~: Incorrect 
handling of text by previous 
phase 

System Action: Terminates 
compilation 

Programmer.Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of t:.he 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM16521 IMPLEMENTATION RESTRICTION. 

404 

INVOCATIONS ARE NESTED BEYOND 
THE ~AXlMUM PERMITTED LEVEL IN 
STATEMENT NUMBER xxx 

Explanation: Nesting level 
exceeds implementation limi-t 

system Action: Terminals 
compilation 

Proqrammer Response: Probable 
user error. Reduce nesting 
level. If the problem recurs, 
do the following before calling 
IBM for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
-the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM16541 THE GENERIC PROCEDURE zzzz IS 
BEING INVOKED WITHOUT AN 
ARGUMENT LIST IN STATEMENT 
NUMBER xxx 

System Action: Terminates 
compilation 

Programmer Response: Probable 
user error. supply argument 
list. If the problem recurs, 
do the following before calling 
IBM for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing avai~able. 

T IEM16551 IMPLEMENTATION RESTRICTION. 
TOO MUCH WORKSPACE REQUIRED FOR 
TEMPORARY RESULTS IN STATEMENT 
NUMBER xxx 

System Action: Terminates 
compilation 

Programmer Res pons e: ProbabIE~. 
user error. subdivide the 
statement in question into two 
or more separate statements. 
If the problem recurs, do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 



comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM16561 COMPILER ERROR. INCORRECT 
INPUT TO PHASE MF FOR 
COMPLETION BUILT-IN FUNCTION IN 
STATEMENT NUMBER xxx. 

Explanation: The compiler has 
encountered incorrect input to 
phase MF. 

System Action: Compilation is 
terminated 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

E IEM16571 THE FILE zzzz, WHICH HAS BEEN 
DECLARED WITH THE COBOL OPTION, 
IS BEING PASSED AS AN ARGUMEN'r 
IN STATEMENT NUMBER xxx. 

Explanation: (F) compiler 
restriction: files with the 
COBOL option may not be passed 
as arguments. 

system Action: Comment and 
continue 

Programmer Response: Probable 
user error. Correct source 
program if necessary. If the 
problem recurs, do the 
following before calling IBM 
for programming support: 

• Have the source program 
listing available. 

S IEM16581 IN STATEMENT NUMBER xxx, zzzz 
IS NOT A PERMISSIBLE ARGUMENT. 
AN EXECUTION ERROR WILL RESULT 
IF THE CORRESPONDING PARAMETER 
IS REFERENCED 

~planatio~: A condition name 
appears as an argument in a 
CALL statement or function 
reference. This is illegal. 

System Action: Attempts to pass 
the argument. 

Programmer Response: Probable 
user error. C()rrect program 
and recompile. If the 'problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

T IEM16701 STATEMENT NUMBER xxx HAS CAUSED 
A TABLE INTERNAL TO THE 
COMPILER TO OVERFLOW. 

Explanation: Either the 
nesting of procedure arguments 
requiring dummies is too deep, 
or too many temporary results 
are required between the 
assignment of an argument 
expression to a dummy and the 
procedure call. 

System Action: Compilation is 
terminated 

Programmer Response: Probable 
user error. Reduce complexity 
of argument expressions. If 
the problem recurs, do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM16711 COMPILER ERROR NUMBER MP nnnn 
IN STATEMENT NUMBER xxx 

Explanation: This is a 
compiler error 

system Action: Compilation is 
terminated 

Programmer Response: Do the 
following before' calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

~ppendix K: Diagnostic Me~sages 405 



• Have the associated job 
stream and source program 
listing available. 

T IEM16801 COMPILER ERROR. TRIPLE 
OPERATOR NOT RECOGNIZED IN 
STATEMENT NUMBER xxx 

Explanation: Illegal input 
from a previous phase 

System Action: Compilation is 
terminated 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM16871 COMPILER ERROR. OPTIMIZED 
SUBSCRIPT INCORRECTLY FORMED IN 
STATEMENT NUMBER xxx 

Explanation: Illegal input 
from a previous phase 

system Action: compilation is 
terminated 

Programmer Response: Do the 
following before calling IBM 
for programming support.: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of ,the 
compiler. (Refert.o the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
'stream and source program 
listing available. 

T IEM16881 COMPILER ERROR. ARRAY NAME 
zzzz INCORRECTLY DESCRIBED AS 
DEFINED IN STATEMEWr NUMBER xxx 

406 

EXQlanation: Array incorrectly 
described by a previous phase 
as having the DEFINED attribute 

system Action: Compilation is 
terminated 

Programmer ResEQ~~t Do the 

following 'before calling IBM 
for programming support: 

• RecompileJthe program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of'the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM16891 COMPILER ERROR. ARRAY zzzz IS 
INCORRECTLY SUBSCRIPTED IN 
STATEMENT NUMBER xxx 

Explanation: Illegal input 
from a previous phase 

system Action: Compilation is 
terminated 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM1692I IMPLEMENTATION RESTRICTION. 
SUBSCRIPT NESTED TO DEPTH 
GREATER THAN 50 LEVELS IN 
STATEMENT NUMBER xxx 

Explanation: subscript nesting 
exceeds fifty levels 

§ystem Action: Compilation is 
terminated 

Programmer Response: Probable 
user errOr. Reduce amount of . 
nesting and recompile. If the 
problem recurs, do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 



stream and source program 
listing available. 

'I' IEM16931 NUMBER OF SUBSCRIPTS ASSOCIATED 
WITH ARRAY zzzz IN STATEMENT 
NUMBER xxx IS INCORRECT. 

Explanation: The number of 
subscripts given does not agree 
with the declared 
dimensionality of the array. 

System Action: Compilation is 
terminated 

Programmer Response: Probable 
user error. Add or delete 
subscripts as appropriate. If 
the problem recurs, do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

W IEM16951 TRANSLATE FUNCTION IN STATEMENT 
NUMBER xxx HAS A CHARACTER OR 
BIT DUPLICATED IN ITS THIRD 
ARGUMENT. 

Explanation: This may be a 
source program error. 

Programmer Response: Probable 
user error. Check that the 
character or bit was 
intentionally duplicated. If 
the problem recurs, do the 
following before calling IBM 
for programming support: 

• Have the source program 
listing available. 

W IEM16961 VERIFY FUNCTION IN STATEMENT 
NUMBER xxx HAS A CHARACTER OR 
BIT DUPLICATED IN ITS SECOND 
ARGUMENT. 

Explanation: This may be a 
source program error. 

Programmer Response: Probable 
user error. Check that the 
character or bit was 
intentionally duplicated. If 
the problem recurs, do the 
following before calling IBM 
for programming support: 

• Have the source program 
listing available. 

S IEM17501 zzzz IS A~ ILLEGAL OPERAND IN 
AN IF STATEMENT OR WHILE CLAUSE 
IN STATEMENT NUMBER xxx. IT 
HAS BEEN REPLACED BY A ZERO BI'l' 
STRING. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM17511 THE IDENTIFIER zzzz IS AN 
ILLEGAL ARGUMENT OF THE RETURN 
STATEMENT NUMBER x~x AND HAS 
BEEN DELErED. 

Explanation: Illegal arguments 
include arrays and structures. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

W IEM17521 THE ATTRIBUTES OF THE 
EXPRESSION USED IN THE RETURN 
STATEMENT IN STATEMENT NUMBER 
xxx CONFLICT WITH THE 
ATTRIBUTES OF SOME OR ALL OF 
THE ENTRY POINTS OF THE 
CONTAINING PROCEDURE. AN 
EXECUTION FAILURE MAY OCCUR AT 
THIS STATEMENT. 

Explanation: After a call to a 
procedure through an entry 
point with POINTER, AREA or 
data attributes, any RETURN 
statement encountered must 
return a value of type POINTER 
or AREA or of a data type 
compatible with the data 
attributes of the entry point. 

system Action: The ERROR 
con~ition is raiSed 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
caliing IBM for programming 
support: 

Appendix K: Diagnostic Messages 407 



• Have the source program 
listing available. 

E IEM1753I THE EXPRESSION USED IN THE 
RETURN STATEMENT IN STA.TEMENT 
NUMBER xxx AND THE ATTRIBUTES 
OF THE CONTAINING PROC:e:DURE ARE 
INCOMPATIBLE. EXECUTION OF 
THIS STATEMENT WILL RESULT IN A 
FAILURE. 

Explanation: After a call to a 
procedure through an entry 
point with POINTER, AREA or 
data attributes, any RETURN 
statement encountered must 
return a value of type POINTER 
or AREA or of a data type 
compatible with the data 
attributes of the entry point. 

System Action: The ERROR 
condition is raised 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM1754I THE EXPRESSION USED IN THE 
RETURN STATEMENT IN STATEMENT 
NUMBER xxx IS INVALID 

Explanation: The only 
permitted arguments are data 
types STRING, POINTER, and 
AREA. 

System Action: Raise ERROR 
condition on execution of the 
statement. 

Programmer Response~ Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM17551 OPTION SPECIFICATION CONTAINS 
INVALID ARGUMENT, DEFAULT USED 
FOR SORMGIN. 

408 

Explanation: This message is 
written directly on SYSPRINT. 
The compiler found that an 
argument to the SORMGIN option 
was either zero or grea·ter than 
100. 

System Action: The default 
interpretation for SORMGIN, as 
set at system generation, is 
used. 

Programmer Response: Probable 
user error. Correct the 
erroneous argument, and 
recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

W IEM1790 DATA CONVERSIONS WILL BE DONE 
BY SUBROUTINE CALL IN THE 
FOLLOWING STATEMENTS yyyy 

Programmer Response: Check to 
see if the conversion can be 
avoided or performed in line 

S IEM17931 ILLEGAL ASSIGNMENT OR 
CONVERSION IN .STATEMENT NUMBER 
xxx. EXECUTION WILL RAISE THE 
ERROR CONDITION. 

Explanation: Illegal 
assignment or conversion in 
source statement, e.g. label 
to arithmetic. 

system Action: An instruction 
is compiled which will cause 
execution to abort if the 
statement is executed 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

T IEM17941 COMPILER ERROR IN STATEMENT 
NUMBER xxx PHASE OE. 

Explanation: compiler error 
caused by input text in bad 
format 

system Action: Compilation is 
terminated 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dUmp of the 
compiler. (Refer to the 



comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

S IEM1795I INVALID ITEM IN FREE STATEMENT 
NUMBER xxx 

Explanation: Variable in FREE 
statement is either not 
CONTROLLED or not at level 1 

system Action: Error condition 
and message given at object 
time 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM1796I ASSIGNMENT OF AN ILLEGAL LABEL 
CONSTANT IN STATEMENT NUMBER 
xxx. 

Explanation: The label 
constant does not appear in the 
value list in the DECLARE 
statement for the label 
variable. 

system Action: Accepts label 
constant as if in value list 
and continues compilation. 

Programmer Respon§~~ Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

W IEM1797 I CONVERSION OE' NULL VALUES IN 
POINTER/OFFSET ASSIGNMENTS IS 
INVALID. NULLO HAS BEEN 
REPLACED BY NULL, OR NULL BY 
NULLO, IN STATEMENT NUMBER xxx 

Explanation: A NULLO offset 
type constant has been assigned 
to a pointer, or a NULL pointer 
type constant to an offset. 
Conversion of null values is 
not allowed. The constant type 
has been corrected. 

sys~em Actio~: The assignment 
is unaffected 

Programmer Responset Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM18001 AN ERROR HAS OCCURRED WHEN 
CONVERTING rHE CONSTANT yyyy TO 
FLOATING-POINT. THE ERROR WAS 
DETECTED IN STATEMENT NUMBER 
xxx BUT CHECK ALL SIMILAR USES 
OF THIS CONSTANT. 

system Action: Truncates 
result. 

Programmer Response: Probable 
user error. Change the 
constant and check its use in 
the given statement and 
elsewhere. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM18011 AN ERROR HAS OCCURRED IN THE 
CONVERSION TO FLOATING-POINT OF 
THE STERLING CONSTANT WHICH HAS 
DECIMAL PENCE FORM yyyy. THE 
ERROR WAS DETECTED IN STATEMENT 
NUMBER xxx BUT CHECK ALL 
SIMILAR USES OF THIS CONSTANT. 

Programmer Response: Probable 
user error. Change the 
constant and check its use in 
the given statement and 
elsewhere. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

~ Have the source program 
listing available. 

S IEM18021 AN ERROR HAS OCCURRED WHEN 
CONVERTING THE CONSTANT yyyy TO 
FIXED BINARY. THE ERROR WAS 
DETECTED IN STATEMENT NUMBER 
xxx BUT CHECK ALL SIMILAR USES 
OF THIS CONSTANT. 

Programmer Response: Probable 
user error. Change the 
constant and check its use in 
the given statement and 
elsewhere. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

Appendix K: Diagnostic Messages 409 



• Have the source program 
listing availabled 

S IEM18031 AN ERROR HAS OCCURRED IN THE 
CONVERSION TO FIXED BINARY OF 
THE STERLING CONSTANT walCH HAS 
DECIMAL PENCE FORM yyyy. THE 
ERROR WAS DETECTED IN STATEMENT 
NUMBER xxx BUT CHECK ALL 
SIMILAR USES OF THIS CONSTANT. 

Programmer Response: Probable 
user error. Change the 
constant and check its use in 
the given statement and 
elsewhere. If the problem 
recurs, do "the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM18041 AN ERROR HAS OCCURRED WHEN 
CONVERTING T HE CONSTANT yyyy TO 
FIXED DECIMAL. THE ERROR WAS 
DETECTED IN STATEMENT NUMBER 
xxx BUT CHECK ALL SIMILAR USES 
OF THIS CONSTANT. 

System Action: Trunca1:es 
result. 

Programmer Response: I)robable 
user error. Change the 
constant and check its use in 
the given statement and 
elsewhere. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM18051 AN ERROR HAS OCCURRED IN THE 
CONVERSION TO FIXED DECIMAL OF 
THE STERLING CONSTANT ~IICH HAS 
DECIMAL PENCE FORM yyyy. THE 
ERROR WAS DETECTED IN STATEMENT 
NUMBER xxx BUT CHECK ALL 
SIMILAR USE OF THIS CONSTANT. 

Programmer Response:: Probable 
user error. Change the 
constant and check its use in 
the given statement and 
elsewhere. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM18061 AN ERROR HAS OCCURRED WHEN 
CONVERTING THE CONSTAN~r yyyy TO 
DECIMAL NUMERIC FIELD. THE 

410 

ERROR WAS DETECTED IN STATEMENT 
NUMBER xxx BUT CHECK ALL 
SIMILAR USES OF THIS CONSTANT. 

Proqrammer Response: Probable 
user error. change the 
constant and check its use in 
the given statement and 
elsewhere. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM18071 AN ERROR HAS OCCURRED IN THE 
CONVERSION TO DECIMAL NUMERIC 
FIELD OF THE STERLING CONSTANr 
WHICH HAS DECIMAL PENCE FORM 
yyyy~ THE ERROR WAS DETECTED 
IN STATEMENT NUMBER xxx BUT 
CHECK ALL SIMILAR USES OF THIS 
CONSTANT. 

Programmer Response: Probable 
user error. change the 
constant and check its use in 
the given statement and 
elsewhere. If the problem 
recurs, do the following before 
calling IBM for programming 
supp()rt: 

• Have the source program 
listing available. 

S IEM1808I AN ERROR HAS OCCURRED WHEN 
CONVERTING THE CONSTANT yyyy TO 
STERLING NUMERIC FIELD. THE 
ERROR WAS DETECTED IN STATEMENT 
NUMBER xxx BUT CHECK ALL 
SIMILAR USES OF THIS CONSTANT. 

Programmer Response: Probable 
user error. Change the 
constant and check its use in 
the given statement and 
elsewhere. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM18091 AN ERROR HAS OCCURRED IN THE 
CONVERSION TO STERLING NUMERIC 
FIELD OF THE STERLING CONSTANT 
WHICH HAS DECIMAL PENCE FORM 
yyyy. THE ERROR WAS DETECTED 
IN STATEMENT NUMBER xxx BUT 
CHECK ALL SIMILAR USES OF THIS 
CONSTANT. 

Programmer Response: Probable 
user error. Change the 
constant and check its use in 



the given statement and 
elsewhere. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the sourpe program 
listing available. 

S IEM18101 AN ERROR HAS OCCURRED WHEN 
CONVERTING THE CONSTANT yyyy TO 
BIT STRING. THE ERROR WAS 
DETECTED IN STATEMENT NUMBER 
xxx BUT CHECK ALL SIMILAR USES 
OF THIS CONSTANT. 

Programmer Response: Probable 
user error. Change the 
constant and check its use in 
the given statement and 
elsewhere. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S .IEM1S1111 AN ERROR HAS OCCURRED IN THE 
CONVERSION TO BIT STRING OF THE 
STERLING CONSTANT WHICH HAS 
DECIMAL PENCE FORM yyyy. THE 
ERROR WAS DETECTED IN STATEMENT 
NUMBER xxx BUT CHECK ALL 
SIMILAR USES OF THIS CONSTANT. 

Programmer Response: Probable 
user error. Change the 
constant and check its use in 
the given statement and 
elsewhere. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM1B121 AN ERROR HAS OCCURRED WHEN 
CONVERTING THE CONSTANT yyyy TO 
CHARACTER STRING. THE ERROR 
WAS DETECTED IN STATEMENT 
NUMBER xxx BUT CHECK ALL 
SIMILAR USES OF THIS CONSTANT~ 

~grammer Responsel Probable 
user error. Cha~ge the 
constant and check its use in 
the given statement and 
elsewhere. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available •. 

S IEM10131 AN ERROR HAS OCCURRED IN THE 

CONVERSION TO CHARACTER STRING 
OF THE STERLING CONSTANT WHICH 
HAS DECIMAL PENCE FORM yyyy. 
THE ERROR WAS DETECTED IN 
STATEMENT NUMBER xxx BUT CHECK 
ALL SIMILAR USES OF THIS 
CONSTANT. 

Programmer Response: Probable 
user error. Change the 
constant and check its use in 
the given statement and 
elsewhere. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM18141 AN ERROR HAS OCCURRED IN THE 
CONVERSION OF THE CONSTANT yyyy 
TO PICTURED CHARACTER STRING. 
THE ERROR WAS DETECTED IN 
STATEMENT NUMBER xxx BUT CHECK 
ALL SIMILAR USES OF THIS 
CONSTANT. 

Programmer Response: Probable 
user error_ Change the 
constant and check its use in 
the given statement and 
elsewhere. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM18151 AN ERROR HAS OCCURRED IN THE 
CONVERSION TO PICTURED 
CHARACTER STRING OF THE 
STERLING CONSTANT WHICH HAS 
DECIMAL PENCE FORM yyyy. THE 
ERROR WAS DETECTED IN STATEMENT 
NUMBER xxx BUT CHECK ALL 
SIMILAR USES OF THIS CONSTANT. 

Programmer Response: Probable 
user error. Change the 
constant and check its use in 
the given statement and 
elsewhere. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM18161 zzzz USED IN FILE OPTION IN 
STATEMENT NUMBER xxx IS NOT A 
FILE. OPTION HAS BEEN IGNORED. 
EXECUTION ERROR WILL RESULT 

Explanation: Dictionary 
reference of file triple was 

Appendix K: Diagnostic Messages 411 



not file constant or file 
parameter code. 

System Action: Ignores option, 
but continues to scan 
statement. 

Programmer.Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing a~railable. 

E IEM18171 INVALID KEYTO OPTION zzzz 
IGNORED IN STATEMENT NUMBER xxx 

Explanation: KEYTO option must 
be scalar character string 
variable. 

Programmer Response: Probable 
user error. Correc·t program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM18181 zzzz USED IN KEY/KEYFROM OPTION 
IN STATEMENT NUMBER xxx IS NOT 
A SCALAR. OPTION IGNORED. 

System Action: Ignores option 
but continues scan of statement 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the followi.ng before 
calling IBM for progranmdng 
support: 

• Have the source program 
listing available. 

S IEM18191 zzzz USED IN THE IGNORE OPTION 
IN STATEMENT NUMBER xxx IS NOT 
A SCALAR. OPTION IGNORED. 

412 

system Action: Ignores option 
but continues scan of statement 

Programmer Response: Probable 
user error. Correct IGNORE 
variable. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available,. 

T IEM18231 COMPILER ERROR DETECTED IN 
PHA.SE NJ/NK. 

Explanation: NJ/NK found some 
unexpected input. Register 9 
in dmap will indicate cause of 
error. 

system Action: Terminates 
compilation 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

S IEM18241 OPTIONS IN OPEN STATEMENT 
NUMBER xxx ARE IN CONFLICT WITH 
PAGESIZE AND/OR LINESIZE. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM18251 INVALID REPLY OPTION IGNORED IN 
STATEMENT NUMBER xxx 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs" do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM18261 INVALID MESSAGE IN DISPLAY 
STATEMENT NUMBER xxx .• 
STATEMENT IGNORED. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 



S IEM18.271 INVALID ARGUMENT TO DELAY 
STATEMENT NUMBER xxx. 
STATEMENT IGNORED. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs" do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

T IEM18281 COMPILER ERROR. INCORRECT 
NUMBER OF TMPDS FOLLOWING ZERO 
OPERAND IN STATEMENT NUMBER xxx 

System Action: Compilation is 
terminated 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

S IEM18291 INVALID SCALAR EXPRESSION 
OPTION IN WAIT STATEMENT NUMBER 
xxx. MAXIMUM EVENT COUNT 
GIVEN. 

~anation: The optional 
scalar expression in the WAIT 
statement cannot be converted 
to an integer. 

System Action: The number of 
event names in the list is 
assumed as the event count. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

T IEM18301 COMPILER ERROR. INCORRECT 
INPUT TO PHASE NG IN WAIT 
STATEMENT NUMBER xxx. 

Explanation: The compiler has. 
encountered incorrect input to 
phase NG and cannot continue. 

System Action: Compilation is 
terminated 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

E IEM18311 INVALID KEYTO OPTION IN 
STATEMENT NUMBER xxx 

Explanation: KEYTO option must 
be scalar character-string 
variable 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM18321 INVALID PAGE OPTION IGNORED IN 
STATEMENT NUMBER xxx 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM18331 INVALID LINE OPTION IGNORED IN 
STATEMENT NUMBER xxx 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM18341 MULTIPLE COPY OPTIONS SPECIFIED 
IN STATEMENT NUMBER xxx. THE 
FIRST ONE IS USED. 

System Action: The first 
option only is used 

Appendix K: Diagnostic Messages 413 



Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM1835I INVALID FILE OPTION IGNORED IN 
STATEMENT NUMBER xxx 

Programmer Response~ Probable 
USf9r error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM1836I INVALID STRING OPTION IGNORED 
IN STATEMENT NUMBER xxx 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM1837I NO FILE OR STRING SPECIFIED IN 
STATEMENT NUMBER xxx. 
STATEMENT IGNORED. 

Explanation: No FILE or STRING 
given in GET/PUT statement 

Programmer Response :_ Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
'listing available. 

E IEM1838I INVALID TITLE OPTION IGNORED IN 
STATEMENT NUMBER xxx 

Programmer Respon~ Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM1839I INVALID IDENT OPTION IGNORED IN 
STATEMENT NUMBER xxx 

414 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM1840I INVALID LINESIZE OPTION IGNORED 
IN STATEMENT NUMBER xxx 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM1841I INVALID PAGESIZE OPTION IGNORED 
IN STATEMENT NUMBER xxx 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM1843I NO FILE SPECIFIED IN OPEN/CLOSE 
STATEMENT NUMBER xxx. ANY 
OPTIONS ARE IGNORED. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

T IEM1844I COMPILER ERROR. INCORRECT 
NUMBER OF TMPDS FOLLOWING ZERO 
OPERAND IN STATEMENT NUMBER xxx 

System Action: Compilation is 
aborted 

Programmer Response: Do the 
following·before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 



• Have the associated jpb 
stream and source program 
listing available. 

E IEM18/li51 MULTIPLE DATA SPECIFICATIONS 
IGNORED IN STATEMENT NUMBER xxx 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs. do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM18 l!i6I INVALID SKIP OPTION IGNORED IN 
STATEMENT NUMBER xxx 

ProqrammerResponse: Probable 
user error. Correct program 
and recompile. If the problem 
recurs. do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM18j~71 NO DATA SPECIFICATIONS GIVEN 
FOR GET STATEMENT NUMBER xxx. 
STATEMENT DELETED. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs. do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM18l~81 NO DATA SPECIFICATIONS OR PRINT 
OPTIONS GIVEN FOR PUT STATEMENT 
NUMBER xxx. STATEMENT DELETED. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs. do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

W IEM18l~91 THE USE OF THE BUILT-IN 
FUNCTION NULL IN STATEMENT 
NUMBER xxx IS INVALID; NULLO 
HAS BEEN SUBSTITUTED. CHECK 
ALL SIMILAR USES OF NULL. 

System Action: substitute 
NULLO 

Programmer Response: Probable 

user error. Correct program 
and recompile. If the problem 
recurs. do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

W IEM1850I THE USE OF THE BUILT-IN 
FUNCTION NULLO IN STATEMENT 
NUMBER xxx IS INVALID; NULL HAS 
BEEN SUBSTITUTED. CHECK ALL 
SIMILAR USES OF NULLO. 

System Action: substitute NULL 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs. do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing ava.ilable. 

S IEM18601 THE ILLEGAL ITEM zzzz HAS BEEN 
DELETED FROM THE I/O DATA LIST 
IN STATEMENT NUMBER xxx 

Programmer Response: Probable 
user error'. Correct program 
and recompile. If the problem 
recurs. do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM18611 AN ILLEGAL TEMPORARY RESULT OR 
SUBSCRIPTED ELEMENT HAS BEEN 
DELETED FROM THE I/O DATA LIST 
IN STATEMENT NUMBER xxx 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs. do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM18621 AN EXPRESSION OR FUNCTION 
INVOCATION IS AN ILLEGAL DATA 
ITEM AND HAS BEEN DELETED FROM 
THE DATA-DIRECTED I/O STATEMENT 
NUMBER xxx. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs. do the following before 
calling IBM for programming 
support: 

Appendix K: Diagnostic Messages 415 



• Have the source program 
listing available. 

E IEM18701 THE FORMAT LIST IN STATEMENT 
NUMBER xxx CONTAINS NO DATA 
FORMAT ITEMS AND WILL BE 
EXECUTED ONCE IF THE STATEMENT 
IS INVOKED. 

system Action: At execution 
time, on finding no data format 
items, control passes out of 
the statement at the end of the 
format list. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If thE~ problem 
recurs,.do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

\ 

S IEM18711 IN STATE~NT NUMBER xxx THE 
FORMAT LIST CONTAINS AN E OR F 
FORMAT ITEM WITH AN ILLEGAL 
SPECIFICATION. THE FORMAT ITEM 
HAS BEEN DELETED. 

ProgrammerR~~ Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listi.ng available .. 

W IEM18721 IN STATEMENT NUMBER xxx AN E 
FORMAT ITEM HAS A FIELD WIDTH 
WHICH WOULD NOT PERMIT PRINTING 
OF A MINUS SIGN. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available~ 

S IEM18731 IMPLEMENTATION RESTRICTION. IN 
STATEMENT NUMBER xxx AN A, B OR 
CONTROL FORMAT ITEM SPECIFIES 
AN EXCESSIVE LENGTH mIlCH HAS 
BEEN REPLACED BY THE ~~IMUM OF 
32,767. 

416 

Programmer Response: :Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 

calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM18741 IN STATEMENT NUMBER xxx AN 
INPUT STATEMENT CONTAINS A 
FORMAT ITEM WHICH MAY BE USED 
ONLY IN OUTPUT STATEMENTS. 

Explanation: PAGE, SKIP, LINE, 
COLUMN, and format items A and 
B with no width specification, 
may be used only for output. 

system Action: Invalid format. 
item deleted 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

W IEM18751 IN STATEMENT NUMBER xxx AN E 
FORMAT ITEM HAS AN ILLEGAL 
SPECIFICATION IF USED FOR AN 
OUTPUT DATA ITEM. 

Explanation: The specification 
violates the restriction that 
the field width w must be 
greater than s+n+2. 

System Action: There will be 
an error at execution time. 

Programmer Response: Probable 
user error. Correct 
specification. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

T IEM23041 COMPILER ERROR. DICTIONARY 
ENTRY zzzz UNRECOGNIZED IN 
STATIC CHAIN. 

Explanation: Due to a compiler 
error, a dictionary entry with 
an unrecognized code byte has 
been found in the static chain. 

system Action: Compilation is 
terminated 

Programmer Response: Do the 
following before calling IBM 
for programming support: 



• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM23051 COMPILER ERROR. DOPE VECTOR 
REQUESTED BY NON-STRING, 
NON-STRUCTURE MEMBER zzzz 

Explanation: Due to a compiler 
error, the allocation of a dope 
vector has been requested for 
an item which should never 
require one. 

System Action: Compilation is 
terminated 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM23521 THE AUTOMATIC VARIABLES IN THE 
BLOCK HEADED BY STATEMENT 
NUMBER xxx ARE MUTUALLY 
DEPENDENT. STORAGE CANNOT BE 
ALLOCATED. 

Explanation: This message is 
generated when a number of 
automatic variables are 
mutually dependent. It is not 
then possible to allocate 
storage in order of dependency. 

2ystem Action: Compilation is 
terminated 

Programmer Response: Probable 
user error. Rewrite statement, 
eliminating mutual dependency_ 
If the problem recurs, do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 

compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM26501 IMPLEMENTATION RESTRICTION. 
OPTIMIZATION TABLE OVERFLOWED 
WHILE PROCESSING STATEMENT 
NUMBER xxx. 

system Action: Compilation 
terminated. 

Programmer Response: Probable 
user error. Re-compile with 
one of the following changes: 

1. Use a larger partition or 
region 

2. specify OPT=O or 1 

3. Reduce the number of 
subscripts in the DO loop 
that contains the 
statement indicated. 

If the problem recurs, do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE, ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM26601 COMPILER ERROR IN INPUT TO 
PHASE RD. IN STATEMENT NUMBER 
xxx A PREVIOUS PHASE HAS 
GENERATED A LABEL NUMBER 
GREATER THAN THE MAXIMUM SHOWN. 

system Action: Compilation is 
terminated. 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 

~ppendix K: Diagnostic Messages 417 



stream and source program 
listing available. 

T IEM26611 COMPILER ERROR. INTERNAL TABLE 
ENTRY IN PHASE RD IS INCORRECT. 

Explanation: An entry in the 
internal table of 
compiler-generated labels does 
not point to a label in text. 

System Action: Compilation is 
terminated. 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

• Recompilation should also 
be tried without the OPT=2 
option. 

T IEM27001 COMPILER ERROR IN INPU~r TO 
PHASE IEMRF, STATEMENT NUMBER 
xxx. SPECIAL ASSIGNED REGISTER 
IN FORMAT/DATA LIST CODE CANNOT 
BE FOUND .. 

System Action: Compilation is 
terminated 

Programmer ~esponset Do the 
following before calling IBM 
for programming suppor't: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of ,the 
compiler. (Refer 'to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM27011 COMPILER ERROR. PHASE IEMRF, 
STATEMENT NUMBER xxx. PSTOR 
GREATER THAN 32K. 

418 

system Action: Compilation is 
terminated 

Programmer Response: Do the 

following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM27021 COMPILER ERROR IN INPUT TO 
PHASE IEMRF, STATEMENT NUMBER 
xxx. BCT WITHOUT DICTIONARY 
REFERENCE AS DESTINATION. 

2Ystem Action: Compilation is 
terminated 

PrQgrammer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM27031 COMPILER ERROR IN INPUT TO 
PHASE IEMRF, STATEMENT NUMBER 
xxx. LINK REGISTER IN BALR IS 
NOT ASSIGNED. 

§ystem Action: Compilation is 
terminated 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM27041 COMPILER ERROR IN INPUT TO 
PHASE IEMRF, STATEMENT NUMBER 
x.:ICX. 'USNG' ITEM DOES NOT HAVE 
ASSIGNED REGISTER. 



System Action: Compilat~on is 
terminated 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

S IEM27051 COMPILER ERROR IN INPUT TO 
PHASE IEMRF, STATEMENT NUMBER 
xxx. DROPPED REGISTER NOT 
ACTIVE. 

Explanation: Register number 
in field in DROP item is not in 
register table nor in storage. 

system Action: Continues 
compilation, ignoring DROP. 
Execut~on is inhibited. 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,RF), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

S IEM27061 COMPILER ERROR IN INPUT TO 
PHASE IEMRF, STATEMENT NUMBER 
xxx. NOT ALL REGISTERS IN 
'DRPL' ITEM CAN BE FOUND. 

system Action: Ignores DRPL 
item and continues 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,RF)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

S IEM27071 COMPILER ERROR IN INPUT TO 
PHASE IEMRF, STATEMENT NUMBER 
xxx. NOT ALL SYMBOLIC 
REGISTERS DROPPED AT END OF 
PROCEDURE OR BEGIN BLOCK. 

Explanation: One or more 
symbolic registers have been 
used in the PROCEDURE or BEGIN 
block, but no corresponding 
DROP has occurred. 

system Action: Inserts in 
listing at end of block: the 
register number, the offset 
from register 9 at which the 
register is stored, and the 
words 'ERROR STOP'. 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,RF), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

S IEM27081 COMPILER ERROR IN INPUT TO 
PHASE IEMRF, STATEMENT NUMBER 
xxx. ASSIGNED REGISTER USED IN 
SOURCE FIELD IS NOT 
INITIALIZED. 

Explanation: The assigned 
register should have a previous 
value (e.g. X in AR X,Y or L 
Y,10(X) etc.), but none can be 
found. 

system Action: Register 13 is 
used instead of the correct 
number, and compilation is 
continued. 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,RF), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

Appendix K: Diagnostic Messages 419 



• Have the associated job 
stream and source program 
listing available. 

S IEM27091 COMPILER ERROR IN INPUT TO 
PHASE IEMRF, STATEMENT NUMBER 
xxx. SYMBOLIC REGISTER SHOULD 
HAVE PREVIOUS VALUE, BUT HAS 
NOT. 

Explanation: Register X in an 
instruction such as AR X,Y, or 
L Y,10(X), has not been set up 
previously. 

system Action: Inserts 
register 12 and continues 
compilation. 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,RF)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM27101 COMPILER ERROR IN INPUT TO 
PHASE IEMRF, STATEMENT NUMBER 
xxx. MORE THAN ONE REGISTER 
PAIR REQUIRED IN AN 
INSTRUCTION. 

system Action: Compilation is 
terminated 

Programmer Response: Do the 
following before calling IBM 
for programming suppor-t,: 

• Recompile the prog:ram with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of ,the 
compiler. (Refer 'to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

S IEM27111 COMPILER ERROR IN INPUT TO 
PHASE IEMRF, STATEMENT NUMBER 
xxx.. ASSIGNED REGISTER IS 
STILL IN USE AT THE START OF A 
PROCEDURE. 

Explanation: Assigned register 

420 

status should be zero at the 
start of each procedure. 

§~stem Action: Drops the 
assigned register and continues 
compilation 

Programmer Response: Do the 
following before calling IBM 
for p:rogramming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,RF), to obtain ;a 

formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

S IEM27121 COMPILER ERROR IN INPUT TO 
PHASE IEMRF, STATEMENT NUM~ER 
xxx. IPRM/IPRM' OR EPRM/EPRM' 
PAIRS ARE NOT MATCHED IN 
PREVIOUS STATEMENT. 

system Action: Compilation is 
continued 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,RF), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

S IEM28161 ILLEGAL ENVIRONMENT OPTION IN 
STATEMENT NUMBER xxx 

system Action: Remainder of 
environment attributes ignored .• 

Programmer Response: Probable 
user error. correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM28171 COMPILER ERROR. INVALID 
ATTRIBUTE CODE IN STATEMENT 
NUMBER xxx 



Explanation: An invalid 
attribute marker has been found 
in the dictionary entry 
corresponding to the file 
attributes in the statement 
specified 

system Action: Ignores the 
rest of the entry 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,GA)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

S IEM28181 CONFLICTING ATTRIBUTE IN 
STATEMENT NUMBER xxx IGNORED. 

Explanation: An attribute 
other than 'ENVIRONMENT' 
clashes with previously 
declared attributes in the 
specified statement 

system Action: Ignores this 
attribute. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM28191 ERRONEOUS USE OF PARENTHESIS IN 
ENVIRONMENT OPTION IN STATEMENT 
NUMBER xxx 

Explanation: Misplaced 
parenthesis in ENVIRONMENT 
attribute 

System Action: Remainder of 
ENVIRONMENT attribute ignored 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM28201 ERRONEOUS USE OF COMMA IN 
ENVIRONMENT OPTION IN STATEMENT 
NUMBER xxx 

Explanation: Misplaced comma 
in ENVIRONMENT attribute 

system Action: Remainder of 
ENVIRONMENT attribute ignored 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM28211 I!.LEGAL CHARACTER IN KEYWORD IN 
ENVIRONMENT OPTION IN STATEMENT 
NUMBER xxx 

Explanation: Invalid keyword 
in ENVIRONMENT attribute 

system Action: Remainder of 
ENVIRONMENT attribute ignored 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM28221 FIELD TOO LARGE IN ENVIRONMENT 
OPTION IN STATEMENT NUMBER xxx 

Explanation: Field in item in 
ENVIRONMENT attribute too large 

system Action: Remainder of 
ENVIRONMENT attribute ignored 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM28231 ERROR IN FORMAT OF ENVIRONMENT 
ATTRIBUTE IN STATEMENT NUMBER 
xxx 

Explanation: Format of item in 
ENVIRONMENT attribute incorrect 

system Action: Remainder of 
ENVIRONMENT attribute ignored 

~ppendix K: Diagnostic Messages 421 



Programmer ~esponse: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM28241 CONFLICT BETWEEN ENVIRONMENT 
ATTRIBUTE AND OTHER ATTRIBUTES 
IN STATEMENT NUMBER xxx 

Explanation:: An option in the 
ENVIRONMENT attribute clashes 
with either another ENVIRONMENT 
option or with a declared 
attribute. 

System Action: Remainder of 
ENVIRONMENT attribute ignored 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for progra.mming 
support: 

• Have the source program 
listing available. 

S IEM28251 CONFLICTING OPTIONS IN 
ENVIRONMENT ATTRIBUTE IN 
STATEMENT NUMBER xxx. REST OF 
ENVIRONMENT IGNORED. 

system Action: DECLARE control 
block is constructed from 
attributes which have already 
been processed. The rest are 
ignored. 

Programmer Response: Probable 
user error. Correct 
ENVIRONMENT option. If the 
problem recurs, do the 
following before calling IBM 
for programming support: 

• Have the source program 
listing available. 

S IEM28261 IMPLEMENTATION RESTRICTION. 

422 

DIRECT FILE zzzz DECLARED IN 
STATEMENT NUMBER xxx MUST HAVE 
AN ORGANIZATION SUBFIE:LD IN THE 
ENVIRONMENT ATTRIBUTE. 

System Action: No compile-time 
action, but execution will 
fail. 

Programmer gespo!!2§:.!.. Probable 
user error. Provide 
ENVIRONMENT attribute. If the 
problem recurs, do the 

following before calling IBM 
for programming support: 

• Have the source program 
listing available. 

W IEM28271 A D COMPILER OPTION HAS BEEN 
DECLARED IN THE ENVIRONMENT 
LIST IN STATEMENT NUMBER xxx. 
IT HAS BEEN IGNORED. 

Programmer Response: ProbablE~ 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

W IEM28281 ENVIRONMENT OPTIONS CLTASA AND 
CLT360 HAVE BOTH BEEN DECLARED 
IN STATEMENT NUMBER xxx. THE 
SECOND ONE LISTED WILL BE 
IGNORED. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the sourc~ program 
listing available. 

W IEM28291 IN STATEMENT NUMBER xxx THE 
PARAMETER SPECIFIED IN THE 
INDEXAREA OPTION IS GREATER 
THAN 32767 AND HAS BEEN 
IGNORED. 

Explanation: If the parameter 
is not specified or is outside 
the permitted range, data 
management uses as much main 
storage as is required for the 
master index. 

Pr~rammer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

T IEM28301 FILE DECLARED TRANSIENT IN 
STATEMENT NUMBER xxx DOES NOT 
HAVE MANDATORY ENVIRONMENT 
OPTION G OR R. 

System Action: Compilation 
terminated. 



Programmer Response: Probable 
user error. Corre1ct file 
declaration. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

E IEM2831I THE NCP VALUE IN S'TATEMENT 
NUMBER xxx EITHER IS NOT AN 
INTEGER CONSTANT OR LIES 
OUTSIDE THE PERMITTED RANGE OF 
1 TO 99. A VALUE OF 1 HAS BEEN 
ASSUMED .. 

Programmer Response: Probable 
user error. Correct the NCP 
value and re-compile. If the 
problem recurs, do the 
following before calling IBM 
for programming support: 

• Have the source program 
listing available. 

S IEM2833I COMPILER ERROR. OPERAND OF CL 
OR SL NOT LABEL • 

.ID92!anation: The dictionary 
entry referenced after a 
compiler label or statement 
label marker in the text is not 
in fact a label 

System Action: The label 
definition is ignored. 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,TF)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM2834I COMPILER ERROR. INVALID 
PSEUDO-CODE OPERATION. 

Explanation: The input text 

contains a marker which is not 
valid 

System Ac~ion: Compilation is 
terminated 

Programmer Re~ponse: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler,. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

S IEM2835I COMPILER ERROR. SUBSCRIPTED 
LABEL CHAIN ERROR. 

Explanation: subscripted 
labels in the source program 
result in the creation of 
chains of dictionary entries. 
An error in the chaining causes 
this message to appear. 

§ystem Action: The label 
definition is ignored 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,TF), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM2836I IMPLEMENTATION RESTRICTION. 
SOURCE PROGRAM TOO LARGE. 

Explanation: Not enough 
scratch core is available for 
the generated label number 
table created by this phase. 
The condition arises when a 
large number of such labels 
have been used, and this in 
turn is related to the size of 
the program. 

2Ystem Action: The compilation 
is terminated 

Programmer Response: Probable 

Appendix K: Diagnostic Messages 423 



user error. Break down the 
program into smaller modules. 
If the problem recurs, do the 
following before calling IBM 
for programming support::: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of t:he 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM28371 COMPILER ERROR. MULTIPLY 
DEFINED LABEL OR INVALID LABEL 
NUMBER. 

system Action: Compilcltion is 
terminated 

Programmer Response: Do the 
following before calling IBM 
for programming support:: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer t:o the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

S IEM28381 THE TELEPROCESSING FORMAT 
OPTION IN STATEMENT NUMBER :xxx 
CONTAINS NO CONSTANT. A VALUE 
OF ZERO HAS BEEN ASSUM:8D. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM28401 NUMERIC FIELD IN ENVIRONMENT 
OPTION FOR FILE zzzz DECLARED 
IN STATEMENT NUMBER xxx IS NOT 
IN PARENTHESES AND HAS BEEN 
DELETED. 

424 

Explanation: If an environment 
option requires a numel:ic 
field, then that field must be 
enclosed in parentheses. 

Programmer Response: l?robable 

user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM28651 IMPLEMENTATION RESTRICTION. 
SOURCE PROGRAM CONTAINS TOO 
MANY BLOCKS AND/OR CONTROLLED 
VARIABLES. 

Explanation: The compiler 
allocates a pseudo-register 
entry for each block and 
CONTROLLED variable in the 
source program. The maximum 
number of such entries is 1,024 

System Action: No 
pseudo-registers are allocated 
for items after the limit has 
been reached. 

Proqrammer Response: ProbablE~ 
user error. Reduce number of 
blocks, or CONTROLLED 
variables, in program to less 
than 1,025. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

W IEM28661 THIS PL/I COMPILATION HAS 
GENERATED EXTERNAL NAMES IN 
WHICH THE FIRST LEADING 
CHARACTER OF THE EXTERNAL 
PROCEDURE NAME HAS BEEN 
REPLACED BY A SPECIAL 
CHARACTER. 

Explanation: The external 
procedure name with its first 
character changed is being used 
as a base for generating names 
for External symbol Dictionary 
entries. If the same thing 
happens in another compilation, 
and the two are then joined by 
the Linkage Editor, two 
External symbol Dictionary 
entries may have the same name. 

system Action: None 

E IEM28671 IMPLEMENTATION RESTRICTION. 
EXTERNAL NAME zzzz HAS BEEN 
TRUNCATED TO 7 CHARACTERS. 

Explanation: External 
identifiers are restricted to 7 
characters 



system Action: Name of ESD 
entry truncated by taking first 
4 and last 3 characters; 
phase then carries on normally~ 

Programmer Response: Probable 
user error. Shorten the name. 
If the problem recurs. do the 
following before calling IBM 
for programming support: 

• Have the source program 
listing available. 

W IEM28681 THIS PL/I COMPILATION HAS 
GENERATED EXTERNAL NAMES IN 
WHICH THE SECOND LEADING 
CHARACTER OF THE EXTERNAL 
PROCEDURE NAME HAS BEEN 
REPLACED BY A SPECIAL 
CHARACTER. 

Explanation: The external 
procedure with its second 
character changed is being used 
as a base for generating names 
for External Symbol Dictionary 
entries. If the same thing 
happens in another compilation, 
and the two are then joined by 
the Linkage Editor, two 
External Symbol Dictionary 
entries may have the same namea 

system Action: None 

T IEM288:11 COMPILER ERROR IN STATEMENT 
NUMBER xxx. INVALID 
PSEUDO-CODE OPERATION. 

Explanation: The input text 
contains a marker which is not 
valid. 

system Action: Compilation is 
terminated 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,TT)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

S IEM28821 COMPILER ERROR IN STATEMENT 
NUMBER xxx. OPERAND OF DC CODE 
INVALID. 

Explanation: The operand of a 

DCA4 pseudo-code item is not 
valid - the operand should 
always be relocatable. 

System Action: An offset of 
zero is assembled into the 
text. 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,TT), to obtain a 
formatted dump of the 
compiler.. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

S IEM28831 COMPILER ERROR IN STATEMENT 
NUMBER xxx. INVALID REQUEST 
FOR RELOCATABLE TEXT. 

EKplanation: The operand of a 
branch instruction has been 
found to require relocation. 

system Action: An offset of 
zero is assembled into the 
text. 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,TT), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM28881 COMPILER ERROR IN STATEMENT 
NUMBER xxx. UNDEFINED LABEL. 

Explanation: No offset has 
been assigned to a label 
generated by the compiler. 

System Action: Compilation is 
terminated 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 

Appendix K: Diagnostic Messages 425 



'S,DP=(PIE,TT), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

S IEM28971 IMPLEMENTATION RESTRICTION. 
QUALIFIED NAME zzzz LONGER THAN 
256 CHARACTERS,. 

Explanation: The fully 
qualified name of the variable 
indicated will not fit into its 
Symbol Table entry 

system Action: Leaves Symbol 
Table entry incomplet,e and 
carries on with the 
initialization of the Static 
Internal control section. 

Programmer ResE2n2~~ Probable 
user error. Shorten the 
qualified name. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM28981 DATA-DIRECTED 'GET/PUT' 
STATEMENT WITH NO LIST IN A 
PROCEDURE OR BEGIN BLOCK WHICH 
HAS NO DATA VARIABLES .. 

System Action: Zeros are 
inserted in the argument list 
for the call to the library 
routine to 'GET/PUT DATA', and 
compilation continuesD 

Proqrammer Response: Probable 
user error. Correct GET/PUT 
statement. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing availableo 

W IEM2899I INITIALIZATION SPECIF'IED FOR 
TOO FEW ELEMENTS IN STATIC 
ARRAY zzzz 

426 

system Actio~: Initialization 
terminated when end of initial 
string is :found. 

Programmer Response: Probable 
user error." Correct program 
and recompile. If the problem 
recurs, do the following before 

calling IBM for programming 
support: 

• Have the source program 
listing available. 

W IEM29001 INITIALIZATION SPECIFIED FOR 
TOO MANY ELEMENTS IN STATIC 
ARRAY zzzz 

system Action: Initialization 
is terminated when every 
element has been initialized. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

e Have the source program 
listing available. 

T IEM29131 COMPILER ERROR. INVALID 
PSEUDO-CODE OPERATION. 

Explanation: The input text 
contains a marker which is not 
valid 

system Action: compilation is 
terminated 

Programmer Response: Do the 
following before c~lling IBM 
for programming support: 

• Recompile the program wi t:h 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

E IEM30881 THE CONFLICTING ATTRIBUTE aaaa 
-32131 HAS BEEN IGNORED IN THE 

DECLARATION OF IDENTIFIER yyyy 
IN STATEMENT NUMBER xxx 

Explanation: The attribute 
gi ven in the message conflict:s 
with another attribute declared 
for the same identifier, or is 
invalid for that identifier. 

system Action: The attribute 
given in the message is 
ignored. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 



recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM35,84I AN UNBALANCED NUMBER OF 
PARENTHESES HAS BEEN DETECTED 
WITHIN A STATEMENT AT OR NEAR 
STATEMENT NUMBER xxx 

Explanation: An occurrence of 
a comma immediately followed by 
a period at or near the given 
statement has been taken as a 
statement delimiter. The 
statement contains an 
unbalanced number of 
parentheses •. 

Programmer Response: probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

T IEM3839I COMPILER ERROR. INVALID ERROR 
MESSAGE CHAINS. 

Explanation: Compiler is 
unable to print error 
diagnostics. 

System Action: Compilation is 
terminated. 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM38,l~lI I/O ERROR ON SEARCHING 
DIRECTORY. 

Explanation: This message is 
written directly on SYSPRINT. 
A permanent I/O error was 
detected when an attempt was 
made to search the directory of 
the library containing the 
compiler. 

system Action: Compilation is 
terminated 

Programmer Response: Check the 
directory and re-attempt 
compilation,. If the 
input/output error persists, do 
the following before calling 
IBM for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that a 
SYSUDUMP DO statement was 
included for the failing 
job step. 

• Have the associated job 
stream and source program 
listing available. 

T IEM3842I COMPILER ERROR AT STATEMENT 
NUMBER xxx. ALL TEXT BLOCKS IN 
CORE ARE BUSY. REFERENCED 
BLOCK CANNOT BE BROUGHT INTO 
CORE. 

Explanation: All blocks in 
core have become busy. 
Compiler cannot continue since 
an external block cannot be 
read in. 

system Action: Compilation is 
terminated 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dnmp of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
l.isting available .. 

T IEM3843I COMPILER ERROR aT STATEMENT 
NUMBER xxx. ATTEMPTED USE OF 
PHASE yyy OF ZDABRF WITH BLOCK 
NOT IN CORE. 

Explanation: Referenced block 
is not in core 

Appendix K: Diagnostic Messages 427 



System Action: Compilation is 
termina ted. 

Programmer Response: ])0 the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer lto the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associatE~d job 
stream and source program 
listing available. 

T IEM38441 IMPLEMENTATION RESTRICTION. 
DICTIONARY ENTRY FOR STRING 
CONSTANT, PICTURE, DOPE VECTOR, 
OR STATIC INITIAL STRING IS TOO 
LONG FOR THIS SIZE OPTION. 

Explanation: The dict . .ionary 
entry cannot be made because it 
is larger than the dic·tionary 
block size of this compilation. 

system Action: Te~~inates 
compilation 

Programmer Response: Probable 
user error. If the entry is 
smaller than 16K bytes, 
increase the size option to 
give dictionary blocks bigger 
than the required entry. The 
largest dictionary block size 
is 16K, and in cases where a 
larger entry was requ:ired, it 
is necessary to avoid the 
source program feature which 
caused the excessive dictionary 
entry request. In general, 
write the source program in 
such a way that the required 
function is performed at 
execution time rather than 
compile time. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source pr~gram 
listing available. 

T IEM38451 COMPILER ERROR AT STA'l~EMENT 

428 

NUMBER xxx:. TEXT BLOCK 
REFERENCED BY PHASE yyy IS NOT 
IN CORE. 

system Action: compilation is 
terminated 

Programmer Response: Do the 
following-before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
·the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM38461 IMPLEMENTATION RESTRICTION. 
SOURCE PROGRAM TOO LARGE BY 
STATEMENT NUMBER xxx. ALL TEXT 
BLOCKS FULL WHEN PHASE yyy IS 
BEING EXECUTED. 

Explanation: There is no more 
space for text in this 
environment 

System Action: Compilation is 
terminated 

Programmer Response: Probable 
user error. 

1. Subdivide the program and 
recompile. 

2. Increase the SIZE option 
for the compiler to obtain 
larger text blocks, and 
recompile. 

3. If OPT=2 has been 
specified for this 
compilation, recompile 
specifying OPT=l or OPT=O. 

All three possibilities may be 
tried together. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Recompile the program wit.h 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 



stream and source program 
listing available. 

T IEM38471 COMPILER ERROR AT STATEMENT 
NUMBER xxx. PHASE yyy HAS 
REQUESTED MORE THAN 4K OF 
SCRATCH CORE. 

Explanation: Request for 
scratch core exceeds 4096 bytes 

System Action: Compilation is 
terminated 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM38fJ81 COMPILER ERROR AT STATEMENT 
NUMBER xxx. PHASE yyy HAS 
REQUESTED A RELEASE OF 
UNALLOCATED CORE. 

Explanation: Attempt to 
release unallocated scratch 
core 

system Action: Compilation is 
terminated 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM38LJ91 COMPILER ERROR. PHASE yy IN 
RELEASE LIST IS NOT IN PHASE 
DIRECTORY. 

System Action: Compilation is 
terminated 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM38501 COMPILER ERROR. PHASE yy IN 
LOAD LIST IS NOT IN PHASE 
DIRECTORY. 

system Action: Compilation is 
terminated 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM38511 COMPILER ERROR. PHASE yy NOT 
MARKED. IT IS LOADED. 

Explanation: An unmarked phase 
is loaded 

system Action: compilation is 
terminated 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM38521 COMPILER ERROR AT STATEMENT 
NUMBER xxx. BLOCK REFERENCED 
BY PHASE yyy IS NOT IN USE. 
COMPILER CANNOT CONTINUE. 

2Ystem Action: Compilation is 
terminated 

Appendix K: Diagnostic Messages 429 



ProqrammerResponse: Do the 
following before calling IBM 
for programming suppor1:.: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which 'pre(~ede all 
the IEMnnnnI messages." 

• Have the associated job 
stream and source program 
listing available. 

T IEM38531 IMPLEMENTATION RESTRICTION. 
SOURCE PROGRAM TOO LARGE. 
DICTIONARY IS FULL. 

Explanation: This message is 
written directly on SYSPRINT. 

system Action: Compilation is 
terminated 

Programmer Response: ]?robable 
user error. subdivide into 
more than one program and 
recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing 'available .. 

T IEM38551 ERROR IN PHASE yy .. 

430 

Explanation: This message is 
written directly on SYSPRINT. 
A compiler error has been 
discovered during the printing 
of compile-time diagnostic 
messages (if phase quoted in 
message is BM) or of 
source-program diagnostic 
messages (if phase is XA). 

System Actio~: Compilation is 
terminated. Note that only the 
diagnostic message ou"tput is 
incomplete. All other output 
files have been generated 
satisfactorily. 

~rogrammer ResEQ!!2!.! Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler.' (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM38561 COMPILER ERROR. PROGRAM CHECK 
TYPE nnnn HAS OCCURRED IN PHASE 
yy AT OR NEAR STATEMENT NUMBER 
xxx 

Explanation: A program check 
has occurred during 
compilation. This is due to ii 
compiler failure which may have 
been exposed by an error in the 
source code. The check number 
is the code for a program 
interrupt as follows: 

1 
2 
3 
4 
5 
6 
7 

Cause of Program 
InterrUpt 

Operation 
privileged operation 
Execute 
Protection 
Addressing 
Specification 
Data 

System Action: Compilation is 
terminated 

Programmer Response: Check 
source code carefully. If an 
error is found, correcting it 
may enable compilation to be 
completed successfully. 
Whether or not an error is 
found do the following before 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
"S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associ,ated job 
stream and source program 
listing available. 

T IEM38571 COMPILER ERROR. ATTEMPT TO 
PASS CONTROL TO AN UNNAMED 
PHASE. AN UNMARKED PHASE HAS 
BEEN ENCOUNTERED. 

Explanation: An unmarked phase 



has been encountered. Compiler 
cannot continue 

System Action: Compilation is 
terminated 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ) '-to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM3858I COMPILER ERROR. REQUESTED OR 
UNWANTED PHASE NOT IN PHASE 
DIRECTORY. 

Explanation: Request to mark a 
phase which is not in phase 
directory. Compiler cannot 
continue. 

system Action: Compilation is 
terminated 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM3859I INSUFFICIENT CORE IS AVAILABLE 
TO CONTINUE THIS COMPILATION. 

~anation: An attempt is 
being made to expand the number 
of text blocks in core. The 
GETMAIN routine has failed to 
get the core. This will only 
occur where less than 45,056 
bytes are available to the 
compiler, or when the SIZE 
option has been given too large 
a value. This message is 
written directly onto SYSPRINT~ 

System Action: Compilation is 
terminated. Message IEM3865I 
may follow. 

Programmer Response: Probable 
user error. Check the SIZE 
option and check that the 
required core is available in 
the system on which the 
compilation is being run. If 
the problem recurs, do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that a 
SYSUOUMP DD statement, was 
included for the failing 
job step. 

• Obtain a listing of module 
IEMAF (in SYS1.LINKLIB) 
using IMASPZAP. 

• Have the associated job 
stream and source program 
listing available. 

E IEM3860I I/O ERROR ON SYSIN. RECORD 
ACCEPTED AS INPUT. 

Explanation: The error may be 
a machine error, or, if SYSIN 
is a card reader, there may be 
a hole pattern which does not 
represent a valid System/360 
character (validity check). 

system Action: The error 
message number is printed in 
the source listing before the 
record in error. The record is 
accepted as input. 

Programmer Response: If SYSIN 
is a card reader, check that 
every column of the indicated 
card contains a valid code. If 
the input/output error 
persists, do the following 
before calling IBM for 
programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Make sure that 

Appendix K: Diagnostic Messages 431 



MSGLEVEL=(l,l) was 
specified in the job 
statement, and that a 
SYSUDUMP DD statement was 
included for the failing 
job step. 

• Have the associated job 
stream and source program 
listing available~ 

T IEM38611 I/O ERROR ON SYSLIN. 
GENERATION OF LOAD FILE IS 
TERMINATED. 

ProgrammerRespons~: Check DO 
card and recompile,. If the 
input/output error pe:rsists. de. 
the following before calling 
IBM for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE.ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Make sure that 
MSGLEVEL=(l i 1) was 
specified in the :job 
statement, and that a 
SYSUDUMP DD statement was 
included for the failing 
job step. 

• Have the associated job 
stream and source program 
listing availableo 

T IEM38621 I/O ERR,jobname,stepname.unit 
address, device type,SYSPRINT, 
operation attempted. error 
desc r iptic·n 

IEM38621 CONT- •••• * ••••••••• *~access 
method (see Note 1) 
relative block number 
(decimal),access method 
(see Note 2) 

432 

actual track address and 
block number (BBCCHHR 
in hexadecimal format), 
access method 
(see Note 3) 

Note: IEM38621 should always be 
preceded by message IEAOOOI. 

Explanation: This is an online 
message written to the 
operator. There is an I/O 
error on SYSPRINT.. The 
compiler cannot continue. The 
information in the message is 
provided by the operating 
system. The device type field 
contains either: 

UR - unit record device, or 

TA - magnetic-tape device, or 

DA - direct-access device. 

Notes: 1. For a unit record 
device 

2. For a magnetic-tape 
device 

3. For a direct-access 
device 

System Action: Compilation is 
terminated. (No further 
printing takes place.) 

Programmer Response: Check DD 
statement and recompile. If 
the input/output error 
persists, do the following 
before calling IBM for 
programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that a 
SYSUDUMP DO statement was 
included for the failing 
job step. 

• Have the associated job 
stream and source program 
listing available. 

For users with MVT/MFT and with 
SYSPRINT assigned to a SYSOUT 
queue on a direct-access 
device. have the unit or pack 
containing the data set 
checked. 

T IEM38631 I/O ERROR ON SYSPUNCH. 
GENERATION OF OBJECT DECK IS 
TERMINATED. 

Programmer-Response: Check DO 
card and recompile. If the 
input/output error persists. do 
the following before calling 
IBM for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE.ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 



(.' 

comments Which precede all 
the IEMn~nI messages.) 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that a 
SYSUDUMP DO statement was 
included for the failing 
job step. 

• Have the associated job 
stream and source program 
listing available. 

T IEM3B64I I/O ERROR ON SYSUTl 

Explanation: This message is 
written directly on SYSPRINT. 
There is an I/O error on 
SYSUT1. The compiler cannot 
continue. 

system Action: Compilation is 
terminated 

Programmer Response: Check 00 
card and recompile. If the 
input/output error persists, do 
the following before calling 
IBM for programming support: 

• Recompile the program with 
compiler options 
'S,DP=.(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that a 
SYSUDUMP DO statement was 
included for the failing 
job step. 

• Have the associated job 
stream and source program 
listing available. 

T IEM3865I ERROR IN COMPILER ABORT 

Explanation: This message is 
written directly on SYSPRINT. 
The compiler has tried twice to 
abort and cannot do so. 
Compilation will therefore 
terminate without the 
production of any further 
diagnostic messages. 

system Action: Compilation is 
terminated 

Programmer Response: Do the 

T IEM3872I 

following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

I/O ERROR ON SYSUT3 

Explanation: This message is 
written directly on SYSPRINT. 
There is an I/O error on 
SYSUT3. The compiler cannot 
continue. 

System Action: Compilation is 
terminated 

Programmer Response Check DO 
card and recompile. If the 
input/output error persists, do 
the following before calling 
IBM for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that a 
SYSUDUMP DO statement was 
included for the failing 
job step. 

• Have the associated job 
stream and source program 
listing available. 

E IEM3873I I/O ERROR ON SYSUT3. RECORD 
ACCEPTED AS INPUT. 

system Action: The error 
message number is printed in 
the source listing before the 
record in error. The record is 
accepted as input. 

Programmer Response: Check DO 
card and recompile. If the 
input/output error persists, do 
the following before calling 
IBM for programming support: 

• Recompile the program with 

Appendix K: Diagnostic Messages 433 



compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of t.he 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that a 
SYSUDUMP DD statement was 
included for the failing 
job step. 

• Have the associated job 
stream and source program 
listing available. 

T IEM38741 UNABLE TO OPEN SYSIN 

Explanation: This message is 
written directly on SYSPRINT. 
Unable to open SYSIN. The 
compiler cannot continue. 

System Action: Compilation is 
terminated 

Programmer Response: Probable 
user error. Check SYSIN DD 
card and recompile. If the 
problem recurs, do the 
following before calling IBM 
for programming support:: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that a 
SYSUDUMP DD statement, was 
included for the failing 
job step. 

• Obtain a listing 0:1: module 
IEMAF (in SYS1.LINKLIB) 
using IMASPZAP. 

• Have the associated job 
stream and source program 
listing available. 

T IEM38751 UNABLE TO OPEN SYSLIN. THE 
LOAD OPTION HAS BEEN DELETED 

434 

Explanation:: The SYSLIN data 
set could not be opened. 

system ActiQ~: The NOLOAO 

option is forced and 
compilation continues. 

Programmer Response:~ Probable 
user error. Check DO statement 
for SYSLIN if LOAD is 
requested, else specify NOLOAD, 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that a 
SYSUDUMP DD statement, was 
included for the failing 
job step. 

• Obtain a listing of module 
IEMAF (in SYS1.LINKLIB) 
using IMASPZAP. 

• Have the associated job 
stream and source program 
listing available. 

T IEM38761 UNABLE TO OPEN SYSPRINT 

Explanation: This is an 
on-line message. It is written 
to operator. Unable to open 
SYSPRINT. The compiler cannot 
continue 

System Action: Compilation is 
terminated 

Programmer Response: Probable 
user error. Check SYSPRINT DD 
card and recompile. If the 
problem recurs, do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dUmp of the 
compiler.. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that a 
SYSUOUMP DD statement, was 



included for the failing 
job step. 

• Obtain a listing of module 
IEMAF (in SYS1.LINKLIB) 
using IMASPZAP. 

• Have the associated job 
stream and source program 
listing available. 

T IEM38771 UNABLE TO OPEN SYSPUNCH. THE 
DECK/MACDCK OPTION HAS BEEN 
DELETED 

Explanation: The SYSPUNCH data 
set could not be opened. 

System Action: The NODECK and 
NOMACDCK options are forced and 
compilation continues. 

Programmer Response: Probable 
user error. Check SYSPUNCH DD 
statement if LOAD is requested, 
else specify NODECK, NOMACOCK, 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Make sure that 
MSG~EVEL=(l,l) was 
specified in the job 
statement, and that a 
SYSUDUMP DD statement, was 
included for the failing 
job step. 

• Obtain a listing of module 
IEMAF (in SYS1.LINKLIB) 
using IMASPZAP. 

• Have the associated job 
stream and source program 
listing available. 

T IEM38781 UNABLE TO OPEN SYSUT1. 
COMPILATION CANNOT CONTINUE. 

System Action: Compilation i.s 
terminated 

Programmer Response: Probable 
user error. Check SYSUTl DD 
card and recompile. If the 
problem recurs, do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that a 
SYSUDUMP DD statement, was 
included for the failing 
job step. 

• Obtain a listing of module 
IEMAF (in SYS1.LINKLIB) 
using lMASPZAP. 

• Have the associated job 
stream and source program 
listing available. 

T IEM38801 UNABLE TO OPEN SYSUT3 

Explanation: This message is 
written directly on SYSPRINT. 
Unable to open SYSUT3. The 
compiler cannot continue. 

system Action: compilation is 
terminated 

Programmer Response: Probable 
user error. Check SYSUT3 DO 
card and recompile. If the 
problem recurs, do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that a 
SYSUOUMP DD statement, was 
included for the failing 
job step. 

• Obtain a listing of module 
IEMAF (in SYS1.LINKLIB) 
using IMASPZAP. 

• Have the associated job 
stream and source program 
listing available. 

S IEM38881 SYSPUNCH BLOCKSIZE NOT A 
MULTIPLE OF 80. THE DECK AND 

Appendix K: Diagnostic Messages 435 



MACDCK OPTIONS HAVE BEEN 
DELETED. 

Explanation: On opening 
SYSPUNCH, the blocksize 
definition, either on the DD 
card or in the data-set. label, 
was not a multiple of 80. 

system Action: The DECK and 
MACDCK options are deleted 

Programmer Response: Probable 
user error. Correct the 
blocksize definition and 
recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of ·the 
compiler.. (Refer ·to the 
comments which precede all 
the IEMnnnnI messages.) 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and tha·t a 
SYSUDUMP DO statement, was 
included for the failing 
job step. 

• Obtain a listing of module 
IEMAF (in SYS1.LINKLIB) 
using,IMASPZAP. 

• Have the associated job 
stream and source program 
listing available. 

S IEM3889I SYSLIN BLOCKSIZE NOT A MULTIPLE 
OF 80. THE LOAD OPTION HAS 
BEEN DELETED. 

436 

Explanation: On opening 
SYSLIN, the blocksize 
definition, either on the DD 
card or in the data·-se-t. label, 
was not a multiple of 80. 

System Action: The LOAD option 
is deleted 

Programmer Response~ Probable 
user error. Correct the 
blocksize definition and 
recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
supp(.)rt: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 

formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that a 
SYSUDUMP DD statement, was 
included for the failing 
job step. 

• Obtain a listing of module 
IEMAF (in SYS1.LINKLIB) 
using IMASPZAP. 

• Have associated job stream, 
source and program listing 
available. 

W IEM3890I NO RECFM GIVEN FOR SYSIN. U 
TYPE RECORDS ARE ASSUMED 

Explanation: No RECFM 
definition has been found in 
the DeB parameter of the SYSIN 
DD card or the data-set label. 

System Action: Compilation 
proceeds assuming U type 
records. U format will be 
specified in the data-set label 
when SYSIN is closed. 

Programmer Response: Probable 
user error. Check RECFM 
definition on SYSIN DD card and 
rerun if necessary. If the 
problem recurs, do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler.. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that a 
SYSUDUMP DD statement, was 
included for the failing 
job step. 

• Obtain a listing of module 
IEMAF (in SYS1.LINKLIB) 
using IMASPZAP. 

• Have the associated job 
stream and source program 
listing available. 

T IEM3891I SYSIN BLOCKSIZE IS TOO LARGE 



Explanation: On opening SYSIN 
for unblocked records, a 
blocksize of greater than 100 
has been specified either in 
the DCB parameter of the SYSIN 
DD card or in the data-set 
label. 

system Action: Compilation is 
terminated 

Programmer Response: Probable 
user error. change the invalid 
blocksize definition and 
recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that a 
SYSUDUMP DD statement, was 
included for the failing 
job step. 

• Obtain a listing of module 
IEMAF (in SYS1.LINK~B) 
using IMASPZAP. 

• Have the associated job 
stream and source program 
listing available. 

T IEM3B93I SYSIN BLOCKSIZE NOT A MULrIPLE 
OF RECORD LENGTH. 

Explanation: On opening SYSIN 
for FB format records, it has 
been noted that the blocksize 
definition, either on the DO 
card or in the data set label, 
is not an exact multiple of the 
record length. 

system Action: Compilation is 
terminated. 

Programmer Res22ns~~ Probable 
user error. Correct the 
blocksize definition and 
recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 

formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that a 
SYSUDUMP DD statement, was 
included for the failing 
job step. 

• Obtain a listing of module 
IEMAF (in SYS1.LINKLIB) 
using IMASPZAP. 

• Have the associated job 
stream and source program 
listing available. 

T IEM38941 SYSIN BLOCKSIZE NOT EQUAL TO 
RECORD LENGTH. 

Explanation: On opening SYSIN 
for F format records, the block 
size and record-length 
definitions, either on the DO 
.card or in the data-set label, 
were found to be unequal. 

System Action: Compilation is 
"terminated. 

Proqrammer Response: Probable 
user error. Change the 
incorrect definition and 
recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that a 
SYSUDUMP DD statement, was 
included for the failing 
job step. 

• Obtain a listing of module 
IEMAF (in SYS1.LINKLIB) 
using IMASPZAP. 

• Have the associated job 
stream and source program 
listing available. 

T IEM3895I SYSIN RECORD LENGTH TOO LARGE 

~ppendix K: Diagnostic Messages 437 



Explanation: On openi:ng SYSIN 
for F format records, a record 
length definition, either on 
the DO card or in the d.ata-set 
label, was found to be greater 
than 100. 

system Action: compilation is 
terminated. 

Programmer Response: Probable 
user error. Correct the 
record-length definition and 
recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump oft~he 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that a 
SYSUDUMP DO statement, was 
included for the failing 
job step. 

• Obtain a listing of module 
IEMAP (in SYS1.LINKLIB) 
using IMASPZAP. 

• Have the associated job 
stream and source program 
listing available. 

T IEM38961 SYSPRINT BLOCKSIZE IS NOT OF 
FORM 4+N*125 

438 

Explanation: On opening 
SYSPRINT, the blocksize 
definition, either on the DO 
card or in the data-set label, 
was not of the form 4+N*125. 

system Action: Compilation is 
terminated 

Programmer Response: Probable 
user error. Correct the 
blocksize definition and 
recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options . 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer t:o the 

comments which precede all 
the IEMnnnnI messages.) 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that a 
SYSUDUMP DD statement, was 
included for the failing 
job step. 

• Obtain a listing of module 
IEMAF (in SYS1.LINKLIB) 
using IMASPZAP. 

• Have the associated job 
stream and source program 
listing available. 

T IEM38971 SYSIN DEFINITION IS INVALID 

Explanation: On opening SYSIN, 
the record-format definition, 
either on the DD card or in the 
data-set label, was varying. 
This is invalid. 

system Action: Compilation is 
terminated 

Programmer Response: Probable 
user error. Correct the 
definition of SYSIN and 
recompile. If the problem 
recurs, do the following before 
calling IBM for p~ogramming 
support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dUmp of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that a 
SYSUDUMP DO statement, was 
included for the failing 
job step. 

• obtain a listing of modulE! 
IEMAF (in SYS1.LINKLIB) 
using IMASPZAP. 

• Have the associated job 
stream and source program 
listing available. 

W IEM38981 COMPILER CORE REQUIREMENT 
EXCEEDED SIZE GIVEN. AUXILIARY 
STORAGE USED. 

System Action: SPILL file 
opened 



W IEM38991 A BLOCK FOR OVERFLOW DICTIONARY 
ENTRY OFFSETS WAS CREATED 
DURING COMPILER PHASE YY 

Explanation: This message 
occurs only in compilations run 
with the extended dictionary 
option. An entry offset table 
in a dictionary block became 
full before the entries filled 
the block. 

System Action: The block is 
created to hold the entry 
offsets overflowing from any 
entry offset tables during this 
compilation. 

E IEM39001 ERROR IN PROCESS STATEMENT. 

Explanation: This message is 
written directly on SYSPRINT. 
The syntax of the PROCESS 
statement is incorrect. 

System Action: An attempt is 
made to interpret the statement 
correctly. Actual results will 
depend on the nature of the 
syntax error. 

Prog~ammer Response: Probable 
user error. Check that the 
options required have been 
correctly applied. If not, and 
recompilation is necessary, 
correct the syntax of the 
PROCESS statement. If the 
problem recurs, do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that a 
SYSUDUMP DO statement, was 
included for the failing 
job step. 

• Obtain a listing of module 
IEMAF (in SYS1.LINKLIB) 
using IMASPZAP. 

• Have the associated job 
stream and source program 
listing available. 

E IEM39011 ERROR IN PROCESS STATEMENT. 
DEFAULT OPTIONS ASSUMED. 

Explanation: This message is 
written directly on SYSPRINT. 
Invalid syntax in the PROCESS 
statement has rendered the 
options unrecognizable. 

system Action: The 
installation defaults are 
assumed for all options. 

Proqrammer Response: Probable 
user error. If the use of 
installation default options is 
unsatisfactory, correct the 
syntax of the PROCESS statement 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that a 
SYSUDUMP DD statement, was 
included for the failing 
job step. 

• Obtain a listing of module 
IEMAF (in SYS1.LINKLIB) 
using lMASPZAP. 

• Have the associated job 
stream and source program 
listing available. 

E IEM39021 OBJNM FIELD TOO LARGE. FIRST 
EIGHT CHARACTERS OF NAME HAVE 
BEEN USED. 

Explanation: The name 
specified in the OBJNM option 
may not have more than eight 
characters. 

System Action: First eight 
characters of name used. 

Programmer Response: Probable 
user error. Either amend 
object module name as required, 
or alter other references to 
object module to correspond 
with truncated name. If the 
problem recurs, do the 
following before calling IBM 
for programming support: 

• Recompile the program ~ith 
compiler options 

Appendix K: Diagnostic Messages 439 



'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Make sure that 
MSGLEVEL={l,l) was 
specified in the job 
statement, and that a 
SYSUDUMP DO statement, was 
included for the failing 
job step. 

• Obtain a listing of module 
IEMAF (in SYS1.LINKLIB) 
using lMASPZAP. 

• Have the associated job 
stream and source program 
listing available. 

W IEM39031 CARRIAGE CONTROL POSITION :LIES 
WITHIN THE SOURCE MARGIN. IT 
HAS BEEN IGNORED. 

Programmer Response: Probable 
user error. Recompile with 
carriage control position 
outside source margin. If the 
problem recurs, do the 
following before calling IBM 
for programming support: 

• Recompile the pro~rtam with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compil~r. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

j 

• Make sure tha-:f 
MSGLEVEL=(l¥l) was 
specified in the :job 
statement, and that a 
SYSUDUMP DO statement, was 
included for the failing 
job step. 

• Obtain a listing of module 
IEMAF (in SYS1.LINKLIB) 
using IMASPZAP. 

• Have the associat.ed job 
stream and source program 
listing availableo 

E IEM39041 THE FOLLOWING STRING NOT 
IDENTIFIED AS A KEYWORD - yyyy 

440 

Explanation: This message is 
written directly on SYSPRINT. 
The compiler was processing the 
option list passed to it as an 
invocatiQn parameter, when it 
found a character stz"ing that 

it could not identify as a 
keyword. 

System Action: The offending 
character string is ignored. 

Proqrammer Response: Probable 
user error. Correct the 
erroneous parameter, and 
recompile.. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that a 
SYSUDUMP DO statement, was 
included for the failing 
job step. 

• Obtain a listing of module 
IEMAF (in SYS1.LINKLIB) 
using lMASPZAP. 

• Have the associated job 
stream and source program 
listing available. 

E IEM39051 THE FOLLOWING KEYWORD DELETED, 
DEFAULT USED FOR - yyyy 

Explanation: This message is 
written directly on SYSPRINT. 
The compiler was processing the 
option list passed to it as an 
invocation param~ter, when it. 
found an option keyword that 
had been deleted at system 
generation. 

System Action: The keyword 
passed at invocation time is 
ignored. The default 
interpretation for the option, 
as set at system generation, is 
used. 

Programmer Response: Probable 
user error. None, unless it is 
required to reinstate the 
deleted keyword, in which case 
it is necessary to generate the 
required version of the 
compiler with a system 
generation run. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 



• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that a 
SYSUDUMP DD statement, was 
included for the failing 
job step. 

• Obtain a listing of module 
IEMAF (in SYS1.LINKLIB) 
using lMASPZAP. 

• Have the associated job 
stream and source program 
listing available. 

E IEM39061 OPTION SPECIFICATION CONTAINS 
INVALID SYNTAX, DEFAULT USED 
FOR - yyyy 

Explanation: This message is 
written directly on SYSPRINT. 
The compiler was processing the 
option list passed to it as an 
invocation parameter, when it 
found that a sub-parameter, 
associated with the keyword 
given in the diagnostic 
message, was incorrectly 
specified. 

system Action: The keyword 
passed at invocation time is 
ignored. The default 
interpretation for the option, 
as set at system generation, is 
used. 

Programmer Response: Probable 
user error. Correct the 
erroneous parameter, and 
recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that a 
SYSUDUMP DO statement, was 

included for the failing 
job step. 

• Obtain a listing of module 
IEMAF (in SYS1.LINKLIB) 
using lMASPZAP. 

• Have the associated job 
stream and source program 
listing available. 

E IEM39071 THE FOLLOWING NAME IGNORED AS 
IT DOES NOT APPEAR IN THE PHASE 
DIRECTORY - yy 

Explanation: This message is 
written directly on SYSPRINT. 
The two characters given in the 
message were used as parameters 
to the DUMP option. This usage 
is incorrect since the 
characters do not represent the 
name of a compiler phase. 

system Action: The processing 
of the DUMP option continues, 
unless the two characters were 
used to indicate the first 
phase of an inclusive phase 
dump, in which case the scan of 
the DUMP option is terminated. 

Programmer Response: Probable 
user error. Correct the 
erroneous parameter, and 
recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that a 
SYSUDUMP DO statement, was 
included for the failing 
job step. 

• Obtain a listing of module 
IEMAF (in SYS1.LINKLIB) 
using lMASPZAP. 

• Have the associated job 
stream and source program 
listing available. 

S IEM39081 SYNTAX ERROR IN DUMP OPTION 
SPECIFICATION 

Explanation: This message is 

Appendix K: Diagnostic Messages 441 



written directly on SYSPRINT. 
Incorrect use of delimiters in 
the specification of the DUMP 
option parameters. 

system Action: Processing of 
DUMP option is terminated 

programme~ Response: Probable 
user error. Correct the 
erroneous specification, and 
recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Recompile the pro~Jram with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer "to the 
comments which precede all 
the IEMnnnnI messclges.) 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the :job 
statement, and tha"t a 
SYSUDUMP DO statement, was 
included for the failing 
job step. 

• Obtain a listing o:E module 
IEMAF (in SYS1.LINKLIB) 
using IMASPZAP. 

• Have the associated job 
stream and source program 
listing available. 

T IEM3909I EXTENDED DICTIONARY CAPACITY 
EXCEEDED. COMPILATION 
TERMINATED. 

442 

Explanation: This message 
occurs only in compila"tions run 
with the extended dict:ionary 
option. The block created to 
hold overflow dictionclry entry 
offsets is full. 

system Action: Compilation. is 
terminated 

Programmer Response: Probable 
user error. Subdivide program 
and recompile. If the problem 
recu.rs, do the following before 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which prE!cede all 
the IEMnnnnI messages.) 

• Make sure that 
.MSGLEVEL= (1,1) was 
specified in the job 
statement, and that a 
SYSUDUMP DD statement, was 
included for the failing 
job step. 

• Obtain a listing of module 
IEMAF (in SYS1.LINKLIB) 
using IMASPZAP. 

• Have the associated job 
stream and source program 
listing available. 

T IEM3910I SYSPRINT BLOCKSIZE IS TOO LARGE 
WITH THIS SIZE OPTION 

W IEM3911I 

Explanation: The size 
specified allows a limited 
buffer area which is smaller 
than that required by the 
spec:ified blocksize. 

system Action: Compilation is 
terminated 

Programmer Response: Probable 
user error. Use smaller 
blocksize or larger SIZE 
option. If the problem recurs, 
do the following before calling 
IBM :Eor programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
:Eormatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that a 
SYSUDUMP DO statement, was 
:included for the failing 
job step. 

• Obtain a listing of module 
IEMAF (in SYS1.LINKLIB) 
using IMASPZAP. 

• Have the associated job 
stream and source program 
listing available. 

SIZE AVAILABLE FOUND TO BE 
yyyyyy BYTES. SIZE=44K 
ASSUMED. COMPILATION 
CONTINUES. 

Explanation: SIZE is found to 
be less than 44K. 

Programmer Response: ProbabJLe 



user error,. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that a 
SYSUDUMP DD statement, was 
included for the failing 
job step. 

• Obtain a listing of module 
IEMAF (in SYS1.LINKLIB) 
using IMASPZAP. 

• Have the associated job 
stream and source program 
listing available. 

T IEM391.21 SYSIN BLOCKSIZE IS TOO LARGE 
WITH THIS SIZE OPTION 

Explanation: The size 
specified allows a limited 
buffer area which is smaller 
than that required by the 
buffers for SYSIN, or for SYSIN 
and SYSPRINT together. 

System Action: Compilation is 
terminat'ed 

Programmer Response: Probable 
user error. Ensure that SIZE 
option allows room for both the 
SYSIN and the SYSPRINT buffersu 
If the problem recurs, do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that a 
SYSUDUMP DD statement, was 
included for the failing 
job step. 

• obtain a listing of module 

IEMAF (in SYS1.LINKLIB) 
using IMASPZAP. 

• Have the associated job 
stream and source program 
listing available. 

S IEM39131 SYSPUNCH BLOCKSIZE IS TOO LARGE 
WITH THIS SIZE OPTION. THE 
DECK AND MACDCK OPTIONS HAVE 
BEEN DELETED. 

Explanation: The SIZE 
specified allows a limited 
buffer area which is smaller 
than that required by the 
specified SYSPUNCH blocksize. 

System Action: The DECK and 
MACDCK options are deleted 

Programmer Response: Probable 
user error. Ensure that the 
SIZE option allows room for the 
SYSPUNCH buffers needed, and 
recompile,. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler,. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement. and that a 
SYSUDUMP DD statement, was 
included for the failing 
job step. 

• Obtain a listing of module 
IEMAF (in SYS1.LINKLIB) 
using IMASPZAP. 

• Have the associated job 
stream and source program 
listing available. 

S IEM39141 SYSLIN BLOCKSIZE IS TOO LARGE 
WITH THIS SIZE OPTION. THE 
LOAD OPTION HAS BEEN DELETED. 

Explanation: The SIZE 
specified allows a limited 
buffer area which is smaller 
than that required by the 
specified SYSLIN blocksize. 

system Action: The LOAD option 
is deleted. 

Programmer Response: Probable 

Appendix K: Diagnostic Messages 443 



user error. Ensure that the 
SIZE option allows room for the 
SYSLIN buffers needed and 
recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that a 
SYSUDUMP DD statement, was 
included for the failing 
job step. 

• obtain a listing of module 
IEMAF (in SYS1.LINRLIB) 
using lMASPZAP. 

• Have the associated job 
stream and source program 
listing available. 

E IEM3915I THE CONFLICTING COMPILER 
OPTIONS MACDCK AND NOMACRO HAVE 
BEEN SPECIFIED. THE MACDCK 
OPTION HAS BEEN DELET:ED. 

Programmer Response: Probable 
user error. If the p:r'oblem 
recurs, do the following before 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
'S~DP=(PIE,ZZ)f to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that a 
SYSUDUMP DD statement, was 
incl uded for the :f ailing 
job step. 

• Obtain a listing of module 
IEMAF (in SYS1..LINKLIB) 
using IMASPZAP .. 

• Have the associated job 
stream and source program 
listing available. 

E IEM39161 THE CONFLICTING COMPILER 

444 

OPTIONS DECK AND NOCOMP HAVE 
BEEN SPECIFIED. THE DECR 
OPTION HAS BEEN DELETED. 

Programmer Response: Probable 
user error. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Recompile the program wit.h 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that a 
SYSUDUMP DD statement, was 
included for the failing 
job step. 

• Obtain a listing of module 
IEMAF (in SYS1.LINRLIB) 
using IMASPZAP. 

• Have the associated job 
stream and source program 
listing available. 

E IEM39171 THE CONFLICTING COMPILER 
OPTIONS LOAD AND NOCOMP HAVE 
BEEN SPECIFIED. THE LOAD 
OPTION HAS BEEN DELETED. 

Programmer Response: Probable 
user error. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Recompile the program with 
compil er opt/ions 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that a 
SYSUDUMP DD statement, was 
included for the failing 
job step. 

• Obtain a listing of module 
IEMAF (in SYS1.LINRLIB) 
using IMASPZAP. 

• Have the associated job 
stream and source program 
listing available. 



Compile .. Thne Processing Diagnostic Messages 

The details given under the heading "Source 
Program Diagnostic Messages" apply equally 
to compile-time processing messages, with 
one exception: all compile-time processing 
messages are listed in a group following 
the SOURCE2 input listing and preceding the 
source program listing. 

The line number in the messages refers 
to the line in which the error was found. 
The incorrect statement may have commenced 
on an earlier line. 

S IEM41061 UNEXPECTED END-OF-FILE IN 
STRING AT OR BEYOND LINE NUMBER 
xxx. A STRING DELIMITER HAS 
BEEN INSERTED. 

Explanation: End-of-file 
encountered while scanning for 
closing quote of a string 
constant. 

system Action: Closing quote 
inserted before end-of-file. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

T IEM41091 REPLACEMENT VALUE IN LINE 
NUMBER xxx CONTAINS UNDELIMITED 
STRING. PROCESSING TERMINATED., 

Explanation: End-of-string 
delimiter cannot be found in a 
replacement value. 

Programmer Response: Probable 
user error. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

E IEM411.21 ILLEGAL CHARACTER IN APPARENT 
BIT STRING IN LINE NUMBER xxx. 

STRING TREATED AS A CHARACTER 
STRING. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM41151 UNEXPECTED END-OF-FILE IN 
COMMENT AT OR BEYOND LINE 
NUMBER xxx. A COMMENT 
DELIMITER HAS BEEN INSERTED. 

T ,IEM41181 

Explanation: End-of-file 
encountered while scanning for 
end-of-comment delimiter. 

programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

REPLACEMENT VALUE IN LINE 
NUMBER xxx CONTAINS UNDELIMITED 
COMMENT. PROCESSING 
TERMINATED. 

Explanation: End-of-comment 
delimiter cannot be found in a 
replacement value. 

programmer Response: Probable 
user error. If the problem 
recurs. do the following before 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available.' 

E IEM4121I INVALID CHARACTER HAS BEEN 
REPLACED BY BLANK IN OR 
FOLLOWING LINE NUMBER xxx 

Explanation: Invalid character 
found in source text 

Programmer Response: Probable 
user error. Correct program 

Appendix K: Diagnostic Messages 445 



and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available~ 

T IEM41241 COMPILER ERROR. PUSH DOWN 
STACK OUT OF PHASE 

system Action: Processing 
terminated 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)Q to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM41301 UNDECLARED IDENTIFIER zzzz 
REFERENCED AT LINE NUMBER xxx. 
PROCESSING TERMINATED .. 

Explanation: An attempt is 
made to execute a statement 
which references an identifier 
for which a DECLARE statement 
has not been executedy 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing availableo 

E IEM41331 % ENCOUNTERED IN LABELLIST OF 
STATEMENT IN LINE NUMBER xxx. 
IT HAS BEEN IGNORED. 

Programmer Response: Probable 
user error. Remove % from 
label list. If the problem 
recurs, do the following before 
calling IBM for progranuning 
support: 

• Have the source program 
listing available. 

E IEM41341 UNEXPECTED COLON WITHOUT 
PRECEDING LABEL IN LINE NUMBER 
xxx. COLON HAS BEEN IGNORED. 

446 

Programmer Response: Probable 
user error. correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM41361 STATEMENT TYPE NOT RECOGNIZABLE 
IN LINE NUMBER xxx. STATEMENT 
DELETED. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM41391 PREVIOUS USAGE OF IDENTIFIER 
zzzz CONFLICTS WITH USE AS 
LABEL IN LINE NUMBER xxx. ANY 
REFERENCE WILL TERMINATE 
PROCESSING. 

system Action: No action 
unless an attempt is made to 
execute a statement which 
references the ill-defined 
identifier. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM41421 LABEL zzzz IN LINE NUMBER xxx 
MULTIPLY DEFINED. ANY 
REFERENCE WILL TERMINATE 
PROCESSING. 

System Action: No action 
unless a statement which 
references the mUltiply defined 
label is executed. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

W IEM41431 LABELS BEFORE DECLARE STATEMENT 
IN LINE NUMBER xxx ARE IGNORED. 



Programmer Response: Probable 
user error. correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM41481 IDENTIFIER zzzz IN LINE NUMBER 
xxx USED WITH CONFLICTING 
ATTRIBUTES. ANY REFERENCE WILL 
TERMINATE PROCESSING. 

Explanation: Usage of 
identifier conflicts with a 
previous usage or declaration. 
If the line number refers toa 
procedure END statement, the 
error occurred within the 
procedure. 

System Action: No action 
unless a statement is executed 
which references the identifier 
in error. 

'\.' 

programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM41501 FORMAL PARAMETER zzzz WAS NOT 
DECLARED IN PROCEDURE ENDING IN 
LINE NUMBER xxx. TYPE 
CHARACTER HAS BEEN FORCED. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM41511 LABEL zzzz IS NOT DEFINED. ANY 
REFERENCE WILL TERMINATE 
PROCESSING. 

System Action: No action 
unless a statement is executed 
which references the undefined 
label. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM41521 END OF FILE OCCURS BEFORE END 
FOR CURRENT PROCEDURE OR DO. 
END HAS BEEN INSERTED AT LINE 
NUMBER xxx. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing "available. 

E IEM4153I LABEL zzzz IS UNDEFINED IN THE 
PROCEDURE ENDING IN LINE NUMBER 
xxx. ANY REFERENCE WILL 
TERMINATE PROCESSING. 

Explanation: Label may have 
been defined outside of 
procedure, but transfers out of 
procedures are not allowed. 

system Action: Any reference 
to the label in the procedure 
will terminate processing. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recdrs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM41541 SEMICOLON TERMINATES IF 
EXPRESSION IN LINE NUMBER xxx. 
SEMICOLON HAS BEEN IGNORED. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM41571 NEITHER % NOR THEN FOLLOWS IF 
EXPRESSION IN LINE NUMBER xxx. 
IF STATEMENT DELETED. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

Appendix K: Diagnostic Messages 447 



• Have the source program 
listing available~ 

E IEM41601 % MISSING BEFORE THEN OF IF 
STATEMENT IN LINE NUMBER xxx. 
% HAS BEEN INSERTED. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM41631 THEN MISSING FOLLOWING % IN IF 
STATEMENT IN LINE NUMBER xxx. 
A THEN HAS BEEN INSERTED. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM41661 COMPILE TIME STATEMENT MUST 
FOLLOW THEN OR ELSE IN LINE 
NUMBER xxx. A % HAS BEEN 
INSERTED IN FRONT OF STATEMENT. 

Explanation: % does not 
precede the first statement in 
the THEN or ELSE clause of an 
IF statement. 

Proqrammer Response: Probable 
user error. If the statement 
in question is meant to be a 
non-compile time statement, it 
should be put inside of a "% 
DO" group. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM41691 THEN MISSING FROM IF STATEMENT 
AT LINE NUMBER xxx IN A COMPILE 
TIME PROCEDURE. A THEN HAS 
BEEN INSERTED. 

448 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing availabled 

E IEM41721 THE % IN LINE NUMBER xxx IS NOT 
ALLOWED IN COMPILE TIME 
PROCEDURES. IT HAS BEEN 
IGNORED. 

Programmer Response: probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

W IEM41751 LABELS BEFORE ELSE IN LINE 
NUMBER xxx HAVE BEEN IGNORED. 

Explanation: Label(s) found 
preceding an ELSE statement. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM41761 NO STATEMENT FOLLOWS THEN OR 
ELSE IN LINE NUMBER xxx. A 
NULL STATEMENT HAS BEEN 
INSERTED. 

Programmer Response: probab~e 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM41781 ELSE WITHOUT PRECEDING IF IN 
LINE NUMBER xxx HAS BEEN 
IGNORED. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs. do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM41841 ASSIGNMENT STATEMENT IN LINE 
NUMBER xxx MUST END WITH 
SEMICOLON. TEXT DELETED TILL 
SEMICOLON IS FOUND. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 



recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM41871 LABEL MISSING FROM PROCEDURE 
STATEMENT IN LINE NUMBER xxx. 
A DUMMY LABEL HAS BEEN 
INSERTED. 

Programmer Respo~ Probable 
user error. Correct program 
and recompilea If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

T IEM41881 IMPLEMENTATION RESTRICTION. NO 
MORE THAN 254 COMPILE-TIME 
PROCEDURES MAY BE DEFINED IN A 
COMPILATION. PROCESSING 
TERMINATED. 

Programmer Response: Probable 
user error. Delete excess 
procedures. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

E IEM41901 LABEL zzzz ON PROCEDURE IN LINE 
NUMBEER xxx IS PREVIOUSLY 
DEFINED. ANY REFERENCE TO IT 
WILL TERMINATE PROCESSING. 

system Action: No action 
unless a statement is executed 
which references the multiply 
defined label. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM41931 ILLEGAL USE OF' FUNCTION NAME 

zzzz ON LEFT HAND SIDE OF 
EQUALS SYMBOL. ANY REFERENCE 
WILL TERMINATE PROCESSING. 

programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling laM for programming 
support: 

• Have the source program 
listing available. 

E IEM41961 PREVIOUS USE OF IDENTIFIER zzzz 
CONFLICTS WITH USE AS ENTRY 
NAME IN LINE NUMBER xxx. ANY 
REFERENCE WILL TERMINATE 
PROCESSING. 

System Action: No action 
unless a statement is executed 
which references the erroneous 
identifier. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM41991 FORMAL PARAMETER zzzz IS 
REPEATED IN PARAMETER LIST IN 
LINE NUMBER xxx. THE SECOND 
OCCURRENCE HAS BEEN REPLACED BY 
A DUMMY PARAMETER. 

programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

5 IEM42021 IMPLEMENTATION RESTRICTION: 
MORE THAN 15 PARAMETERS OCCUR 
IN LINE NUMBER xxx. ANY 
REFERENCE WILL TERMINATE 
PROCESSING. 

System Action: Processing is 
terminated if an attempt is 
made to execute a statement 
which references the procedure 
that has more than 15 
parameters. 

Programmer Response: Probable 
user error. correct program 
and recompile. If the problem 
recurs, do the following before 

~ppendix K: Diagnostic Messages 449 



calling IBM for programming 
support: 

• Have the source program 
listing available~ 

E IEM42051 FORMAL PARAMRl'ER MISSING IN 
LINE NUMBER xxx. A DUMMY H~S 
BEEN INSERTED. 

Programmer Response: Probable 
user error. Correct pro9ram 
and recompile. If thE~ problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing availableo 

E IEM42081 UNRECOGNIZABLE PARAMETER yyyy 
IN LINE NUMBER xxx. IT H~S 
BEEN REPLACED BY A DUMMY 
PARAMETER. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If thE~ problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing availableo 

S IEM42111 PARAMETER IN LINE NUMBER xxx 
NOT FOLLOWED BY COMMA OR 
PARENTHESIS. TEXT DELETED TO 
NEXT COMMA OR END OF STATEMENT. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing availableu 

S IEM42121 UNEXPECTED END OF PROCEDURE 
STATEMENT IN LINE NUMBER xxx. 
RIGHT P~RENTHESIS INSERTED. 

450 

Explanation: A semicolon was 
encountered during scan of an 
apparent parameter list. 

System A£tiQ!!: A right 
parenthesis is insertE~d before 
the semicolon and processing 
continues. 

Programmer R~n~e: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 

calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM42141 ILLEGAL FORM OF RETURNS OPTION 
IN LINE NUMBER xxx. RETURNS 
(CHAR) HAS BEEN ASSUMED. 

Explanation: RETURNS option 
should be of the form 
RETURNS(CHARIFIXED). 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM42151 DATA ATTRIBUTE IN PROCEDURE 
STATEMENT IN LINE NUMBER xxx IS 
NOT PARENTHESIZED AND IS NOT 
PRECEDED BY RETURNS. RETURNS 
AND PARENTHESES HAVE BEEN 
ASSUMED. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following befo:re 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM42161 THERE IS NO RIGHT PARENTHESIS 
FOLLOWING THE DATA ATTRIBUTE OF 
THE RETURNED VALUE IN LINE 
NUMBER xxx. ONE HAS BEEN 
ASSUMED. 

PrQgrammer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM42171 NO ATTRIBUTE FOR RETURNED VALUE 
IN LINE NUMBER xxx. CHARACTER 
ATTRIBUTE IS USED. 

§ystem Action: CHARACTER 
attribute is assigned 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 



calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM42201 SEMICOLON NOT FOUND WHERE 
EXPECTED IN PROCEDURE STATEMENT 
IN LINE NUMBER xxx. TEXT 
DELETED UP TO NEXT SEMICOLON. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM42231 ENTRY ATTRIBUTE AND PROCEDURE 
STATEMENT FOR ENTRY zzzz 
DISAGREE ON THE NUMBER OF 
PARAMETERS. THE LATTER IS 
USED. 

system Action: The number of 
parameters specified in the 
PROCEDURE statement is used. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM42261 RETURNS ATTRIBUTE AND PROCEDURE 
STATEMENT FOR ENTRY zzzz 
DISAGREE ON ATTRIBUTE OF 
RETURNED VALUE. 

system Action: The returned 
value will first be converted 
to the type on the procedure 
statement and will then be 
converted to the type given in 
the RETURNS attribute. A third 
conversion can occur if the 
type given in the returns 
attribute does not agree with 
the type required where the 
result is used. 

ProqrammerResponse: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM42291 PROCEDURE STATEMENT AT LINE 
NUMBER xxx MAY NOT BE USED 
WITHIN A PROCEDURE. PROCEDURE 
HAS BEEN DELETED. 

Explanation: Compile-time 
procedures may not be nested. 

System Action: Text is deleted 
up to and including the first % 
END following the erroneous 
PROCEDURE statement. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM42321 PROCEDURE STATEMENT AT LINE 
NUMBER xxx MAY NOT FOLLOW THEN 
OR ELSE. PROCEDURE HAS BEEN 
REPLACED BY A NULL STATEMENT. 

Explanation: A PROCEDURE 
statement may appear in a THEN 
or ELSE clause only if it is 
inside a compile-time DO group. 

Proqrammer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM42351 RETURN STATEMENT IN LINE NUMBER 
xxx IS NOT ALLOWED OUTSIDE OF 
COMPILE-TIME PROCEDURE. 
STATEMENT DELETED. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM42381 RETURNED VALUE MUST BE 
PARENTHESIZED IN LINE NUMBER 
xxx. PARENTHESIS INSERTED. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

Appendix K: Diagnostic Messages 451 



• Have the source program. 
listing available. 

E IEM42411 RETURNS EXPRESSION IN I~INE 
NUMBER xxx DOES NOT END RETURN 
STATEMENT. REMAINDER OF 
STATEMENT HAS BEEN IGNORED. 

Programmer Respon~ Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programning 
support: 

• Have the source program 
listing available. 

S IEM42441 GOTO IN LINE NUMBER xxx IS NOT 
FOLLOWED BY LABEL. STATEMENT 
DELETED. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for progra~ning 
support: 

• Have the source program 
listing available. 

E IEM4247I PREVIOUS USE OF IDENTIFIER zzzz 
CONFLICTS WITH USE AS OBJECT OF 
GOTO IN LINE NUMBER xxx.. ANY 
REFERENCE WILL TERMINATE 
PROCESSING. 

system Action: No action 
unless a statement is executed 
which references the er.roneous 
identifier. 

Programmer Response:. Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM4248I SEMICOLON NOT FOUND WHERE 
EXPECTED IN GOTO STATEMENT IN 
LINE NUMBER xxx. TEXT DELETED 
UP TO NEXT SEMICOLON. 

452 

Programmer Response: Probable 
user error. Correct pr.ogram 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

T IEM4250I GOTO zzzz IN LINE NUMBER xxx 
TRANSFERS CONTROL INTO 
ITERATIVE DO OR ENCLOSED 
INCLUDED TEXT. PROCESSING 
TERMINATED. 

Programmer Response: Probable 
user error. If the problem 
recurs, do the following before 
calling IBM for programming 
support:: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain i3. 

formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
s·tream and source program 
listing available. 

S IEM4253I ACTIVATE OR DEACTIVATE IN LINE 
NUMBER xxx NOT ALLOWED IN A 
COMPILE-TIME PROCEDURE. 
STATEMENT DELETED~ 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM4254I EMPTY ACTIV~TE OR DEACTIVATE 
STATEMENT IN LINE NUMBER xxx. 
STATEMENT DELETED. 

Programmer Response: Probable 
user error. Correct program 
and recompile. ,If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM42561 SURPLUS COMMA IN ACTIVATE OR 
DEACTIVATE IN LINE NUMBER xxx. 
THE COMMA HAS BEEN DELETED. 

Programmer. Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM42591 UNRECOGNIZABLE FIELD IN 



ACTIVATE OR DEACTIVATE 
STATEMENT IN LINE NUMBER xxx. 
THE FIELD HAS BEEN DELETED. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM42621 ONLY PROCEDURES OR VARIABLES 
MAY HAVE ACTIVITY CHANGED. 
IDENTIFIER zzzz IN LINE NUMBER 
xxx HAS BEEN DELETED FROM 
STATEMENT. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM42651 COMMA MUST SEPARATE FIELDS OF 
ACTIVATE AND DEACTIVATE 
STATEMENTS. IN LINE NUMBER xxx 
TEXT AFTER IDENTIFIER yyyy HAS 
BEEN DELETED UP TO NEXT COMMA. 

Programmer ResEQ~ Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM42711 INVALID SYNTAX IN DO STATEMENT 
IN LINE NUMBER xxx. IT HAS 
BEEN CONVERTED TO A GROUPING 
DO. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

W IEM42:771 NO MAXIMUM VALUE WAS SPECIFIED 
IN ITERATIVE DO IN LINE NUMBER 
xxx. PROGRAM WILL LOOP UNLESS 
ALTERNATE EXIT IS PROVIDED. 

Programmer Response: Probable 
user error. Correct program 

and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM42801 UNEXPECTED % IN LINE NUMBER xxx 
TREATED AS HAVING BEEN PRECEDED 
BY SEMICOLON. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM42831 MULTIPLE TO'S HAVE OCCURRED IN 
DO STATEMENT IN LINE NUMBER 
xxx. SECOND 'TO' HAS BEEN 
CHANGED TO • BY' • 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM42861 MULTIPLE BY'S HAVE OCCURRED IN 
DO STATEMENT IN LINE NUMBER 
xxx. SECOND 'BY' HAS BEEN 
CHANGED TO 'TO'. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM42891 DO STATEMENT IN LINE NUMBER xxx 
SHOULD END WITH SEMICOLON. 
TEXT TO SEMICOLON DELETED. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM42921 END STATEMENT AT LINE NUMBER 
xxx MAY NOT FOLLOW THEN OR 

Appendix K: DiagnostiC Messages 453 



ELSE. A NULL STATEMENT HAS 
BEEN INSERTED BEFORE THE END 
STATEMENT. 

~rammer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the followi.ng before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM42951 SEMICOLON NOT FOUND WHERE 
EXPECTED IN END STATEMENT IN 
LINE NUMBER xxx. TEX'I' DELETED 
UP TO SEMICOLON. 

Programmer gesponse: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM42961 END STATEMENT IN LINE NUMBER 
xxx NOT PRECEDED BY DO OR 
PROCEDURE STATEMENT. END HAS 
BEEN DELETED. 

Explanation: An END statement 
has been encountered which is 
not preceded by a DO or 
PROCEDURE statement that has 
not already been terminated. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM42981 LABEL REFERENCED ON END 
STATEMENT IN LINE NUMBER xxx 
CANNOT BE FOUND. END TREATED 
AS HAVING NO OPERAND. 

454 

Explanation: The label cannot 
be found on a DO or PROCEDURE 
statement that has not already 
been terminated. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM42991 END STATEMENT ENDING PROCEDURE 
IN LINE NUMBER xxx DID NOT HAVE 
A PRECEDING PERCENT. A PERCENT 
IS INSERTED. 

Explanation: The END statement 
referred to in this message is 
the logical end of the 
procedure. 

Programmer Response: ProbablE~ 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM43011 IDENTIFIER zzzz ON END 
STATEMENT IN LINE NUMBER xxx IS 
NOT A LABEL. END TREATED AS 
HAVING NO OPERAND. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM43041 PROCEDURE zzzz DID NOT INCLUDE 
A RETURN STATEMENT. 

Explanation: Language syntax 
requires use of RETURN 
statement in a procedure. 

system Action: A null value is 
returned if the procedure is 
invoked. 

Programmer Response: ProbablE~ 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM43071 INCLUDE STATEMENT AT LINE 
NUMBER xxx IS NOT ALLOWED IN 
COMPILE-TIME PROCEDURES. 
STATEMENT DELETED~ 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 



calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM43101 IMPLEMENTATION RESTRICTION. 
DDNAME IN LINE NUMBER xxx HAS 
BEEN TRUNCATED TO 8 CHARACTERS. 

Explanation: The first of a 
pair of data set identifiers in 
an INCLUDE statement is a 
ddname and as such is limited 
to a maximum of 8 characters. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM43131 UNRECOGNIZABLE FIELD IN INCLUDE 
STATEMENT AT LINE NUMBER xxx. 
FIELD HAS BEEN DELETED. 

System Action: Text is deleted 
up to next comma or semicolon. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM43191 EMPTY INCLUDE STATEMENT IN LINE 
NUMBER xxx. STATEMENT DELETED. 

Explanation: At least one 
identifier must appear in an 
INCLUDE statement i.e., the 
data set member name. 

~rammer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM43221 IMPLEMENTATION RESTRICTION. 
MEMBER NAME IN LINE NUMBER xxx 
HAS BEEN TRUNCATED TO 8 
CHARACTERS. 

system Action: First 8 

characters of member name have 
been used. 

Programmer Response: Probable 
user error. Correct data set 
member name in INCLUDE 
statement. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM43251 RIGHT PARENTHESIS INSERTED 
AFTER MEMBER NAME IN LINE 
NUMBER xxx. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM4326I LEFT PARENTHESIS INSERTED 
BEFORE MEMBER NAME IN LINE 
NUMBER xxx. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

T IEM43281 COMPILER ERROR. DICTIONARY 
INFORMATION INCORRECT. 

Explanation: A name containing 
an invalid character is found 
in the dictionary. 

system Action: Processing is 
terminated 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE.ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

Appendix K: Diagnostic Messages 455 



S IEM43311 DECLARE STATEMENT IN LINE 
NUMBER xxx IS ILLEGAL AFTER 
THEN OR ELSE. STATEMENT 
DELETED. 

R!:Qqrammer Response: Probable 
user error. Correct program. 
A DECLARE statement can appear 
in the THEN or ELSE clause of 
an IF statement if it is inside 
a DO group. If the problem 
recurs, do the following before 
calling IBM for progranming 
support: 

• Have the source prc~ram 
listing available. 

E IEM43321 EMPTY DECLARE STATEMENT IN LINE 
NUMBER xxx. STATEMENT DELETED. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM43341 IMPLEMENTATION RESTRICTION. 
FACTORING IN DECLARE STATEMENT 
IN LINE NUMBER xxx EXCE:EDS 3 
LEVELS. REMAINDER OF STATEMENT 
DELETED. 

Programmer Response: Probable 
user error. Reduce level of 
factoring in DECLARE statement. 
If the problem recurs, do the 
following before calling IBM 
for programming support~:: 

• Have the source program 
listing available. 

E IEM43371 SURPLUS COMMA HAS BEEN FOUND IN 
DECLARE STATEMENT IN LINE 
NUMBER xxx. THIS COMMA HAS 
BEEN DELETED. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for progranuning 
support: 

• Have the source pr~Jram 
listing available. 

E IEM43401 IDENTIFIER MISSING WHERE 
EXPECTED IN LINE NUMBER xxx. A 
DUMMY IDENTIFIER HAS BEEN 
INSERTED. 

Programmer Response:. Probable 

456 

user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM43431 IDENTIFIER zzzz IN LINE NUMBER 
xxx HAS MULTIPLE DECLARATIONS. 
ANY REFERENCE WILL TERMINATE 
PROCESSING. 

Explanation: An identifier may 
be declared only once. 

system Action: No action 
unless a statement is executed 
which references the multiply 
declared identifier. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM43461 UNRECOGNIZABLE SYNTAX IN 
DECLARE STATEMENT IN LINE 
NUMBER xxx. STATEMENT DELETEDu 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM43491 LABEL zzzz CANNOT BE DECLARED 
IN LINE NUMBER xxx. ANY 
REFERENCE WILL TERMINATE 
PROCESSING. 

Explanation: An attempt has 
been made to declare an 
identifier which has already 
been used as a label. 

system Action: No action ' 
unless a statement is executed 
which references the declared 
label .. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 



• Have the source program 
listing available. 

E IEM43!521 EXTRA PARENTHESIS DELETED IN 
LINE NUMBER xxx. 

Programmer Response: Probable 
user error. correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM43!551 ILLEGAL ATTRIBUTE yyyy IN LINE 
NUMBER xxx. ATTRIBUTE HAS BEEN 
DELETED. 

Explanation: Legal attributes 
are FIXED, CHARACTER, ENTRY and 
RETURNS. 

System Actio~: The illegal 
attribute is deleted. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM43!581 CLOSING RIGHT PARENTHESIS 
INSERTED IN LINE NUMBER xxx. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM431511 RETURNS ATTRIBUTE OCCURRED 
WITHOUT ENTRY ATTRIBUTE FOR 
PROCEDURE zzzz IN DECLARE 
STATEMENT AT OR BEFORE LINE 
NUMBER xxx. 

Explanation: Both ENTRY and 
RETURNS attributes must be 
declared for a compile-time 
procedure name. 

system Action: The identifier 
is treated as an ENTRY name. 
If it is referenced, the 
arguments will be converted to 
the types declared for the 
procedure parameters. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM43641 NO ATTRIBUTES WERE DECLARED FOR 
IDENTIFIER zzzz IN DECLARE 
STATEMENT AT OR BEFORE LINE 
NUMBER xxx. CHARACTER HAS BEEN 
ASSIGNED. 

Programmer Response: Probable 
user error.. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM43671 RETURNS ATTRIBUTE NOT GIVEN FOR 
ENTRY NAME zzzz IN DECLARE 
STATEMENT AT OR BEFORE LINE 
NUMBE~ xxx. 

Explanation: Both ENTRY and 
RETURNS attributes must be 
declared for a compile-time 
procedure name. 

system Action: The attribute 
of the returned value is 
determined by the relevant 
PROCEDURE statement. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM43701 ENTRY ATTRIBUTE DISAGREES WITH 
DECLARATION FOR FORMAL 
PARAMETER zzzz. THE LATTER HAS 
BEEN USED. 

Explanation: An ENTRY 
attribute in a DECLARE 
statement does not agree with 
the parameter attributes 
declared in the procedure. 

System Action: If the relevant 
procedure is referenced, the 
argument will be converted to 
the type declared for the 
formal parameter. 

Appendix K: Diagnostic Messages 457 



Programmer Response: Probable 
user error. Correct program 
and recompile. If thE~ problem 
recurs, do the followi:ng before 
calling IBM for progra:mrning 
support: 

• Have the source pl:-ogram 
listing available., 

E IEM43731 RETURNS ATTRIBUTE IN LINE 
NUMBER xxx MUST BE 
PARENTHESIZED. PAREN'rHESIS 
INSERTED. 

Programmer Respo~~ Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the followin.g before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM43761 ONLY FIXED OR CH~RACTER ARE 
ALLOWED IN RETURNS AT']~RIBUTE IN 
LINE NUMBER xxx. ATTRIBUTE 
IGNORED. 

Explanation: An illegal 
attribute was found A 

system Action: The attribute 
of the returned value is 
determined by the relevant 
PROCEDURE statement. 

Programmer Respo:nse: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM43791 ATTRIBUTE yyyy IS ILLEGAL IN 
ENTRY ATTRIBUTE IN LINE NUMBER 
xxx. NO CONVERSION WILL BE 
DONE. 

458 

Explanation: An invalid 
attribute was found. 

System Action: No conversion 
to an ENTRY attribute will be 
carried out. However, if the 
relevant procedure is 
referenced, arguments will be 
converted to the types declared 
for the procedure para.meters. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 

calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM43821 ATTRIBUTE CONFLICTS WITH 
PREVIOUS ATTRIBUTE FOR 
IDENTIFIER zzzz IN LINE NUMBER 
xxx. ATTRIBUTE IGNORED. 

Programmer Response: Probable 
user error. Correct program 
and :recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM43831 PREVIOUS USAGE OF IDENFIFIER 
zzzz CONFLICTS WITH ATTRIBUTE 
IN LINE NUMBER xxx. ANY 
REFERENCE WILL TERMINATE 
PROCESSING. 

Programmer Response: probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM43911 OPERAND MISSING IN LINE NUMBER 
xxx. A FIXED DECIMAL ZERO HAS 
BEEN INSERTED. 

programmer Respons e: Probabl(~ 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM43941 ILLEGAL OPERATOR yyyy IN LINE 
NUMBER xxx. IT H~S BEEN 
REPLACED BY A PLUS. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

., Have the source program 
listing available. 

W IEM43971 A LETTER IMMEDIATELY FOLLOWS 
CONSTANT yyyy IN LINE NUMBER 



xxx. AN INTERVENING BLANK HAS 
BEEN ASSUMED. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM4ljiOOI OPERATOR. NOT. IN LINE NUMBER 
xxx USED AS AN INFIX OPERATOR. 
IT HAS BEEN REPLACED BY .NE. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• ~ave the source program 
listing available. 

T IEM411,031 COMPILER ERROR. EXPRESSION 
SCAN OUT OF PHASE. 

System Action: Processing is 
terminated. 

Programmer Response: Do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
• S, DP= (PIE, ZZ) '. to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

E IEM44061 PREVIOUS USAGE OF IDENTIFIER 
zzzz CONFLICTS WITH USE IN 
EXPRESSION IN LINE NUMBER xxx. 

system Action: Processing is 
terminated if an attempt is 
made to execute a statement 
which references the identifier 
in question. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM44071 UNDECIPHERABLE KEYWORD. nnn 
IDENTIFIERS HAVE BEEN DELETED 
BEFORE yyyy IN LINE NUMBER xxx. 

Explanation: The processor has 
found a mis-match while 
scanning a keyword consisting 
of more than one identifier,. 

system Action: The identifiers 
preceding the non-matching 
identifier are deleted. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM44091 OPERATOR MISSING IN LINE NUMBER 
xxx. A PLUS HAS BEEN INSERTED. 

programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM44121 NO EXPRESSION WHERE ONE IS 
EXPECTED IN LINE NUMBER xxx. A 
FIXED DECIMAL ZERO HAS BEEN 
INSERTED. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM44151 ILLEGAL OPERAND yyyy IN LINE 
NUMBER xxx HAS BEEN REPLACED BY 
A FIXED DECIMAL ZERO. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listin~,,~ available. 

E IEM44211 MISSING LEFT PARENTHESIS 
INSERTED Ar BEGINNING OF 
EXPRESSION IN LINE NUMBER xxx. 

Appendix K: Diagnostic Messages 459 



Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available,. 

T IEM44331 REFERENCE IN LINE NUMBER xxx TO 
STATEMENT OR IDENTIFIER WHICH 
IS IN ERROR. PROCESSING 
TERMINATED. 

Proqrammer Response: Probable 
user error. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
• S, DP= (PIE, ZZ)" to obtain a 
formatted dump of -the 
compiler. (Refer -to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available., 

S IEM44361 EXCESS ARGUMENTS TO FUNCTION 
zzzz IN LINE NUMBER xxx. EXTRA 
ARGUMENTS HAVE BEEN DELETED. 

Explanation: Too many 
arguments appear in a procedure 
reference. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If thE~ problem 
recurs, do -the followlng before 
calling IBM for progrcLInming 
support: 

• Have the source program 
listing available. 

W IEM44391 TOO FEW ARGUMENTS TO FUNCTION 
zzzz IN LINE NUMBER xxx. 
MISSING ARGUMENTS HAVE: BEEN 
REPLACED BY NULL STRINGS OR 
FIXED DECIMAL ZEROS. 

460 

Explanation: Too few arguments 
appear in a procedure 
reference. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM44481 NO ENTRY DECLARATION FOR 
PROCEDURE zzzz REFERENCED IN 
LINE NUMBER xxx. ATTRIBUTES 
TAKEN FROM PROCEDURE. 

Explanation: All procedure 
names must be declared with 
ENTRY and RETURNS attributes 
before the procedure is 
referenced. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

T IEM44511 PROCEDURE zzzz REFERENCED IN 
LINE NUMBER xxx CANNOT BE 
FOUND. PROCESSING TERMINATED .. 

Programmer Response: Probable 
user error. If the problem 
recu:rs, do the following before 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM44521 RECURSIVE USE OF PROCEDURE zzzz 
IN LINE NUMBER xxx IS 
DISALLOWED. PROCESSING 
TERMINATED. 

Programmer Response: Probable 
user error. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 



E IEM44!)41 TOO FEW ARGUMENTS HAVE BEEN 
SPECIFIED FOR THE BUILTIN 
FUNCTION SUBSTR IN LINE NUMBER 
xxx. A NULL STRING HAS BEEN 
RETURNED. 

Programmer Response: Probable 
user error. correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM44!>71 TOO MANY ARGUMENTS HAVE BEEN 
SPECIFIED FOR THE BUILTIN 
FUNCTION SUBSTR IN LINE NUMBER 
xxx. EXTRA ARGUMENTS HAVE BEEN 
IGNORED. 

Programmer ResPQ~ Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM44601 FIXED OVERFLOW HAS OCCURRED IN 
LINE NUMBER xxx. RESULT 
TRUNCATED. 

system Action: Truncation 
occurs on left to 5 decimal 
digits. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM44631 ZERO DIVIDE HAS OCCURRED AT 
LINE NUMBER xxx. RESULT SET TO 
ONE. 

Programm~gespon§.!.t Probable 
user error. Correct program 
and recompileo If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM44691 END-OF-FILE FOUND IMBEDDED IN 
STATEMENT IN LINE NUMBER .xxx. 
EXECUTION OF STATEMENT WILL 
CAUSE TERMINATION. 

Programmer Response~ Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM44721 IDENTIFIER BEGINNING zzzz IN 
STATEMENT AT LINE NUMBER xxx IS 
TOO LONG AND HAS BEEN 
TRUNCATED. 

Explanation: Identifiers may 
not exceed 31 characters in 
length. 

System Action: The identifier 
is truncated to the first 31 
characters. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM44731 CONSTANT yyyy IN LINE NUMBER 
xxx HAS PRECISION GREATER THAN 
5. A FIXED DECIMAL ZERO HAS 
BEEN INSERTED. 

Explanation: Implementation 
restriction. Precision of 
fixed decimal numbers is 
limited to 5 digits. 

System Action: A value of zero 
is assigned. 

Proqrammer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM44751 QUESTION MARK IN LINE NUMBER 
xxx HAS NO SIGNIFICANCE. IT 
HAS BEEN IGNORED 

Explanation: Question mark, 
although a recognizable 
character in PL/I, has no 
syntactical meaning. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 

Appendix K: Diagnostic Messages 461 



recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

T IEM44781 STRING IN LINE NUMBER xxx 
CONVERTS TO A FIXED DECIMAL 
NUMBER WITH PRECISION GREATER 
THAN 5. PROCESSING TERMINATED. 

Explanat,ion: Implementation 
restriction. Precision of 
fixed decimal numbers is 
limited to 5 digits. 

System Action: Processing is 
terminated 

Programmer Response: Probable 
user error. If the problem 
recurs, do the following before 
calling IBM for prograrnming 
support: 

• Recompile the program with 
compiler options 
• S, DP= (PIE, ZZ)·· to obtain a 
formatted dump of ·the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM44811 CHARACTER STRING IN LINE NUMBER 
xxx CONTAINS CHARACTER OTHER 
THAN 1 OR 0 AND CANNOT BE 
CONVERTED TO A BIT STRING. 
PROCESSING TERMINATED. 

Programmer Response: Probable 
user error. If the problem 
recurs, do the following before 
calling IBM for progrannning 
support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' t() obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM44841 STRING IN LINE NUMBER xxx OR IN 
PROCEDURE REFERENCED IN SAID 
LINE NUMBER CANNOT BE CONVERTED 
TO A FIXED DECIMAL CONSTANT. 
PROCESSING TERMINATED. 

462 

Programmer Response: ProbablE~ 
user error. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
~S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM44991 A % STATEMENT IS FOUND IN A 
REPLACEMENT VALUE IN LINE 
NUMBER xxx. PROCESSING 
TERMINATED. 

Explanation: A replacement 
value may not contain a 
compile-time statement. 

Programmer Response: Probable 
user error. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
:formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM45021 AN IDENTIFIER zzzz WITH 
CONFLICTING USAGE OR MULTIPLE 
DEFINITIONS IS REFERENCED IN 
LINE NUMBER xxx. PROCESSING 
TERMINATED. 

Explanation: An attempt is 
made to execute a statement 
which references an identifier 
that was not properly defined. 

Programmer Response: Probable 
user error. Correct program. 
If the problem recurs, do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 



comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

S IEM45041 VARIABLE zzzz IS USED IN LINE 
NUMBER xxx BEFORE IT IS 
INITIALIZED. IT HAS BEEN GIVEN 
NULL STRING OR ZERO VALUE. 

Explanation: A value must be 
assigned to variables before 
they are ref erenced after being 
declared. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

T IEM4!>05I DD STATEMENT FOR INCLUDE zzzz . 
MISSING IN LINE NUMBER xxx. 
PROCESSING TERMIN~TED. 

Explanation: A DD statement 
must be present, in the Job 
Control cards for the 
compilation, with a name in the 
name field that corresponds to 
the ddname identifier in the 
INCLUDE statement. If no 
ddname is specified in the 
INCLUDE statement, a SYSLIB DO 
statement is required. 

Programmer Response: Probable 
user error. Insert appropriate 
DD statement and recompile. 
If the problem recurs, do the 

. following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP= (PIE, ZZ) ,f to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that a 
SYSUDUMP DO statement, was 
included for the failing 
job step. 

• Obtain a listing of module 
IEMAF (in SYS1.LINKLIB) 
using IMASPZAP. 

• Have the associated job 
stream and source program 
listing available. 

T IEM4508I UNRECOVER~BLE I/O ERROR WHILE 
SEARCHING FOR MEMBER OF INCLUDE 
zzzz IN LINE NUMBER xxx. 
PROCESSING TERMINATED. 

Programmer Response: Check DO 
statement and reattempt 
compilation. If the 
input/output error persits, do 
the following before calling 
IBM for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI ~essages.) 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that a 
SYSUDUMP OD statement was 
included for the failing 
job step. 

• Have the associated job 
stream and source program 
listing available. 

T IEM4511I ILLEGAL RECORD FORMAT SPECIFIED 
FOR INCLUDE zzzz IN LINE NUMBER 
xxx. PROCESSING TERMINATED. 

Explanation: Included records 
must be a fixed length of not 
more than 100 characters with a 
maximum blocking factor of 5. 
Blocksize must be a multiple of 
the record length. 

Programmer Response: Probable 
user error. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
'S,OP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that a 
SYSUDUMP DD statement, was 
included for the failing 
job step. 

Appendix K: Diagnostic Messages 463 



• Obtain a listing of module 
IEMAF (in SYS1.LINKLIB) 
using lMASPZAP. 

• Have the associated job 
stream and source progra.m 
listing available. 

T IEM45141 MEMBER OF INCLUDE zzzz IN LINE 
NUMBER :u:xx NOT FOUND ON DATA 
SET4 PROCESSING TERMINATED. 

Progra.mmer ResQonse: Probable 
user error. Check INCLUDE 
statement, DD statemen1:. and 
data file. 1:1: the problem 
recurs, do the following before 
calling IBM for programming 
support: 

o Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of 1:.he 
compiler. (Refer to the 
comments which prec,ede all 
the IEMnnnnI messages.) 

o Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that a 
SYSUDUMP DD statement, was 
incl~ded for the failing 
job step. 

• Obtain a listing of module 
IEMAF (in SYS1.LINKLIB) 
using IMASPZAP. 

• Have the associated job 
stream and source program 
listing available. 

W IEM45171 RECORD LENGTH NOT SPECIFIED FOR 
INCLUDE zzzz IN LINE NUMBER 
xxx. RECORD LENGTH EQUAL TO 
BLOCKSIZE HAS BEEN ASSUMED .. 

464 

Programmer Response: Probable 
user error. Correct record 
length specification in DD 
statement, if necessary. If 
the problem recurs, do the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer ·to the 
comments which precede all 
'the IEMnnnnI messag'es.) 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 

statement, and that a 
SYSUDUMP DD statement, was 
included for the failing 
job step. 

• Obtain a listing of module 
IEMAF (in SYS1.LINKLIB) 
using IMASPZAP .. 

• Have the associated job 
s·tream and source program 
listing available. 

W IEM45201 BLOCKSIZE NOT SPECIFIED FOR 
INCLUDE zzzz IN LINE NUMBER 
xxx.. BLOCKSIZE EQUAL TO RECORD 
LENGTH HAS BEEN ASSUMED .. 

Programmer Response: Probable 
user error. Correct blocksize 
specification in DD statement, 
if necessary.. If the problem 
recurs, do the following befor·e 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that a 
SYSUDUMP DD statement, was 
included for the failing 
job step. 

• Obtain a listing of module 
IEMAF (in SYS1.LINKLIB) 
using lMASPZAP. 

• Have the associated job 
stream and source program 
listing available. 

W IEM45231 RECORD LENGTH AND BLOCKSIZE NOT 
SPECIFIED FOR INCLUDE zzzz IN 
LINE NUMBER xxx. RECORD LENGTH 
OF 80 AND BLOCKSIZE OF 400 HAVE 
BEEN ASSUMED .. 

Programmer Response: Probable 
user error. Correct record 
length and block size 
specifications in DD statement, 
if necessary.. I f the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), t"o 6btain a 

<~ 



formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that a 
SYSUDUMP DD statement, was 
included for the failing 
job step. 

• Obtain a listing of module 
IEMAF (in SYS1.LINKLIB) 
using IMASPZAP. 

• Have the associated job 
stream and source program 
listing available. 

T IEM45261 I/O ERROR WHILE READING TEXT 
INCLUDED FROM zzzz AT LINE 
NUMBER xxx. PROCESSING 
TERMINATED. 

Programmer Response: Check DO 
statement and reattempt 
compilation. If the 
input/output error persists, do 
the following before calling 
IBM for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that a 
SYSUDUMP DD statement was 
included for the failing 
job step. 

• Have the associated job 
stream and source program 
listing available. 

T IEM45291 IMPLEMENTATION RESTRICTION. 
EXCESSIVE LEVEL OF NESTING OR 
REPLACEMENT AT LINE NUMBER xxx. 
PROCESSING TERMINATED. 

Explanation: Level of nesting 
in this case is calculated by 
summing the number of current 
unbalanced left parentheses, 
the number of current nested 
DO's, the number of current 
nested IF's, and the number of 
current nested replacements. A 
level of 50 is always 
acceptable. 

Programmer Response: Probable 
user error. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

T IEM45321 INPUT RECORD AT LINE NUMBER xxx 
IS TOO LONG. PROCESSING 
TERMINATED. 

Explanation: Input record 
contains more than 100 
characters. 

Programmer Response: If the 
input/output error persists, do 
the following before calling 
IBM for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messages.) 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that a 
SYSUDUMP DD statement was 
included for the failing 
job step. 

• Have the associated job 
stream and source program 
listing available. 

T IEM45351 INPUT RECORD CONTAINS FEWER 
CHARACTERS THAN SORMGIN 
REQUIRES. PROCESSING 
TERMINATED. 

Explanation: The length of the 
input record is less than the 
left margin of the SORMGIN 
specification. 

Programmer Response: Probable 
user error. Check SORMGIN 
option on EXEC control card. 
If the problem recurs, do the 
following before calling IBM 
for programming support: 

Appendix K: Diagnostic Messages 465 



• Recompile the program with 
compiler optIons 
'S,DP=(PIE,ZZ), to obtain a 
formatted dump of the 
compiler. (Refer to the 
comments which precede all 
the IEMnnnnI messaqes.) 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that a 
SYSUDUMP DO statement, was 
included for the failing 
job step. 

• obtain a listing of module 
IEMAF (in SYS1.LINKLIB) 
using IMASPZAP. 

• Have the associated job 
stream and source program 
listing available. 

T IEM45471 COMPILER ERROR. INSUFFICIENT 
SPACE FOR TABLES. 

system Action: Processing is 
terminated 

Programmer Response: ])0 the 
following before calling IBM 
for programming support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)'to obtain a 
formatted dump of the 
compiler.. (Refer to the 
comments Which precede all 
the IEMnnnnI messages.)" 

• Have the associated job 
stream and source program 
listing available. 

E IEM45501 RIGHT PARENTHESIS INSERTED IN 
LINE NUMBER xxx TO END ARGUMENT 
LIST FOR PROCEDURE zzzz. 

Explanation: The argument list 
referred to is in a source 
program reference to a 
compile-time procedure. 

Programmer Response: Probable 
user error. Correct p:rqgram 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing availableG 

T IEM45531 IN LINE NUMBER xxx ARGUMENT 
LIST FOR PROCEDURE zzzz 

466 

CONTAINS COMPILE TIME CODE. 
PROCESSING TERMINATED. 

Explanation: Compile-time code 
may not be embedded in argument 
list of compile-time procedure 
reference. . 

Programmer Response: Probable 
user error. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Recompile the program with 
compiler options 
'S,DP=(PIE,ZZ)' to obtain a 
formatted dump of the 
compiler.. (Refer t.o the 
comments which precede all 
the IEMnnnnI messages.) 

• Have the associated job 
stream and source program 
listing available. 

E IEM45591 LEFT PARENTHESIS BEGINNING 
ARGUMENT LIST OF PROCEDURE zzzz 
WAS NOT FOUND. PROCEDURE WAS 
INVOKED AT LINE NUMBER xxx 
WITHOUT ARGUMENTS. 

Explanation: The argument list 
referred to is in a source 
program reference to a 
compile-time procedure. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
callinq IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM45621 IDENTIFIER IN LINE NUMBER xxx 
EXCEEDS 31 CHARACTERS. 
REPLACEMENT WAS DONE ON 
TRUNCATED FORM zzzz. 

Exp!,anation: A 
non-compile-time source text 
identifier consists of more 
than 31 characters. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
callIng IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM45701 THE THIRD ARGUMENT OF BUILT-IN 



FUNCTION SUBSTR IS NEGATIVE, IN 
LINE NUMBER xxx. A NULL STRING 
HAS BEEN RETURNED. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM4572I THE THIRD ARGUMENT OF BUILT-IN 
FUNCTION SUBSTR EXCEEDS THE 
STRING LENGTH, IN LINE NUMBER 
xxx. THE SUBSTRING HAS BEEN 
TRUNCATED AT THE END OF THE 
ORIGINAL STRING. 

Programmer Response: Probable 
user error,. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM4574I THE COMBINED SECOND AND THIRD 
ARGUMENTS OF BUILT-IN FUNCTION 
SUBSTR EXCEED THE STRING 
LENGTH, IN LINE NUMBER xxx. 
THE SUBSTRING HAS BEEN 
TRUNCATED AT THE END OF THE 
ORIGINAL STRING. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM4576I THE SECOND ARGUMENT OF BUILT-IN 
FUNCTION SUBSTR, IS LESS THAN 
ONE, IN LINE NUMBER xxx. ITS 
VALUE HAS BEEN RESET TO ONE. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

E IEM4578I THE SECOND ARGUMENT OF BUILT-IN 
FUNCTION SUBSTR EXCEEDS THE 
STRING LENGTH, IN LINE NUMBER 

xxx. A NULL STRING HAS BEEN 
RETURNED. 

Programmer Response: Probable 
user error. Correct program 
and recompile. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Have the source program 
listing available. 

S IEM4580I AN UNINITIALISED VARIABLE HAS 
BEEN FOUND IN A BUILT-IN 
FUNCTION ARGUMENT LIST, IN 
STATEMENT NUMBER xxx. A NULL 
STRING HAS BEEN RETURNED. 

Programmer Response: Probable 
user error. Initialise the 
variable before invoking the 
built-in function. If the 
problem recurs, do the 
following before calling IBM 
for programming support: 

• Have the source program 
listing available. 

Object-Time Diagnostic Messages 

The messages in the following text may be 
printed on the output data set specified 
for SYSPRINT, as the result of an 
exceptional or error condition occurring 
during the execution of a PL/I program. If 
the SYSPRINT DD statement is absent, then 
theobj'ect-time messages appear on the 
operator'S console, except for the ON CHECK 
system action messages and the copy option 
output, which will not be produced at all 
in this case. 

Each message number is of the form 
IHEnnnI, where the code IHE indicates a 
PL/I library message, and nnn the number of 
the message. The final character I 
indicates the informative nature of the 
message, .. 

Diagnostic messages are printed at 
execution time for two main reasons: 

1. An error occurs for which no specific 
ON-condition exists in PL/I. A 
diagnostic message is printed, and the 
ERROR ON-condition is raised. 

2. An ON-condition is raised, by compiled 
code or by the library, and the action 
required is system action, for which 
the language specifies COMMENT as part 
of the necessary action. 

Appendix K: Diagnostic Messages 467 



Object time diagnostic messages will 
take one of the following forms: 

1. IHEnnnI FILE name - text AT location 
message 

2. IHEnnnI rtname - text AT location 
message 

3. lHEnnnI text AT location message 

where 'name' is the name of the file 
associated with the error (given 
only in 1/0 diagnostic messages) 

'rtname' is the name of the Library 
routine in which the error 
occurred (given only for 
computational subroutines). 

'location message' is either 

or 

OFFSET ± hhhhh FROM ENTRY POINT 
E1 

OFFSET ± hhhhh FROM ENTRY POINT 
OF ccce ON-UNIT 

Note: If it is a Model 91 or tJlodel 195 
message resulting from an imprecise 
interrupt, "AT OFFSET..... is replaced 
by "NEAR OFFSET..... since the 
instruction causing the interrupt 
cannot be precisely identified,. 

If the statement number compilel~ option 
has been specified, each message wl.Il also 
contain IN STATEMENT nnnnn pri or to AT 
location message. nnIlnn gives the number 
of the statement in which the condition 
occurred. 

The diagnostic messages for other than 
ON-type errors are mainly self-explanatory. 
Explanations in the following lists are 
given only when the message is not 
self-explanatory. 

To assist error determination, use 
diagnostic aids during debugging rlms: 

1. Enable SIZE, SUBSCRIPTRANGE" 
STRINGRANGE conditions. 

2. Do not disable any of the conditions: 
CONVERSION, FIXEDOVERFLOW, OVERFLOW, 
UNDERFLOW, ZERODIVIDE. 

3. Insert an on-unit for the ERROR 
condition in the Main Procedure, and 
incl ude a PL1DUMP DD statemenlt for the 
failing job step. For example: ON 
ERROR SNAP CALL IHEDUMP: 

4. Recompile prl)gram with compiler 
options 'ST,A,X,L'. 

468 

5. Use Linkage Editor options 'LIST,MAP', 
or Linkage Loader options 'PRINT,MAP'. 

6. Specify MSGLEVEL=(l,l) on job 
statement. 

7. Include a SYSABEND DD statement for 
the failing job step. 

Note: If the shared library feature is in 
use, do the following before calling IBM 
for programming support: 

• Obtain a list of the options specified 
in the PL1LIB macro used during system 
generation. 

• Obtain a Linkage Editor Map of the 
resident shared library module IHELTVA. 

IHE0031 

IHE0041 

SOURCE PROGRAM ERROR IN 
STATEMENT nnnnn 

This message will always 
contain a statement number 
whether or not the compiler 
option is specified. 

Proqrammer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
I'~RROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the faiiing job step. 

• ijave the associated job 
stream, Linkage 
Editor/Loader Map and 
program listing available. 

INTERRUPT IN ERROR HANDLER -
PROGRAM TERMINATED 

Explanation: When an 
unexpected program interrupt 
occurs during the handling of 
another program interrupt, it 
indicates that the program has 
a disastrous error in it, such 
as DSA chain out of order, 
instructions overwritten, or 
such. The program is 
abnormally terminated, and the 
above message is printed out at 
the console. A dump is 



lHEOOSI 

IHE0061 

produced with a User completion 
Code of 4000. 

Programmer Response: After 
making corrections, recompile 
the program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that a 
SYSABEND DD statement was 
included for the failing 
job step. 

• Have the associated job 
stream, Linkage 
Editor/Loader Map and 
program listing available. 

PSEUDO-REGISTER VECTOR TOO 
LONG - PROGRAM NOT EXECUTED 

Explanation: This error arises 
when the sum of the number of 
procedures, the number of 
files, and the number of 
controlled variables exceeds 
1000. It causes return to the 
supervisor from IHESAPi PL/I 
program is not entered. rhe 
message always appears at the 
console. A return code of 4004 
is generated. 

~rammerResponse: After 
making corrections, recompile 
the program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that a 
SYSABEND DD statement was 
included for the failing 
job step. 

• Have the associated job 
stream, Linkage 
Editor/Loader Map and 
program listing available. 

NO MAIN PROCEDURE. PROGRAM 
TERMINATED. 

Explanation: No external 
procedure in the program has 
been given the option MAIN. 
This message appears at the 

IHE0091 

IHE0101 

console. A return code of 4008 
is gener<;lted. 

Programmer Response: After 
making corrections, recompile 
the program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specifi.ed in the job 
statement, and that a 
SYSABEND DO statement was 
included for the failing 
job step. 

• Have the associated job 
stream, Linkage 
Editor/Loader Map and 
program listing available. 

IHEDUM*. NO PL1DUMP DD CARD. 
EXECUTION TERMINATED. 

Explanation: Execution has been 
abnormally terminated with a 
system dump and a system 
completion code of (3000 + 
Return code (if set» 

Programmer Response: After 
making corrections, recompile 
the program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that a 
SYSABEND DD statement was 
included for the failing 
job step. 

• Have the associated job 
stream, Linkage 
Editor/Loader Map and 
program listing available. 

PROGRAM ENDED BY OS360. RETURN 
CODE = hhh (a hexadecimal 
number) • 

Explanation: The major task has 
been terminated abnormally by 
the operating system. The 
above message appears on the 
console. 

Programmer Response: After 
making corrections, recompile 
the program and execute the job 
step again. If the problem 

Appendix K: Diagnostic Messages 469 



IHEOll1 

IHE0121 

470 

recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that a 
SYSABEND DD statement was 
included for the failing 
job step. 

• Have the associated job 
stream, Linkage 
Editor/Loader Map and 
program listing available. 

KEY ERROR WHEN CLOSING FILE AT 
END OF TASK 

Explanation: An unresolved key 
error exists for which no 
condition can now be raised~ 
The above message appears on 
the console. 

Programmer Response: After 
making corrections, recompile 
the program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that a 
SYSABEND DD statement was 
included for the failing 
job step. 

• Have the associated job 
stream, Linkage 
Editor/Loader Map and 
program listing available. 

jjj ABENDED[IN STMT nnnnn] [AT 
OFFSET xxxxxx] [FROM ENTRY 
POINT ppp] WITH CC xxx 
{(SYSTEM)ICUSER)} 

Explanation: Job jjj was 
terminated by the operating 
system with completion code 
xxx, if (SYSTEM) is printed. 
(USER) is printed if the 
termination was due to a user 
specified ABEND. STMT nnnnn is 
the statement number, which was 
the last to be executed before 
the ABEND took place. xxx xxx 
is the offset from the entry 
point specified. Message may 
appear on SYSPRINT if OPEN and 
not in ERROR, or on the 
console. 

IHE0131 

I/O Errors 

Programmer Response: After 
making corrections, recompile 
the program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=Cl,l) was 
specified in the job 
statement, and that a 
SYSABEND DD statement was 
included for the failing 
job step. 

• Have the associated job 
stream, Linkage 
Editor/Loader Map and 
program listing available. 

NO MAIN STORAGE AVAILABLE FOR 
PL/I STAE EXIT 

Explanation: Insufficient main 
storage available for the PL/I 
STAE exit routine to load the 
routine which analyzes the 
ABEND termination. Message 
appears on the console. 

Programmer Response: After 
making corrections, recompile 
the program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=Cl,l) was 
specified in the job 
statement, and that a 
SYSABEND DD statement was 
included for the failing 
job step. 

• Have the associated job 
stream, Linkage 
Editor/Loader Map and 
program listing available. 

IHE0181 FILE name - FILE TYPE NOT 
SUPPORTED 

IHE0201 FILE name - ATTEMPT TO READ 
OUTPUT FILE 

IHE0211 FILE name - ATTEMPT TO WRITE 
INPUT FILE 

IHE0221 GET/PUT STRING EXCEEDS STRING 
SIZE 

Explanation: 



IHE0231 

For input: programmer has 
requested more than exists on 
the input string. 

For output: programmer is 
trying to write more than his 
output string will hold. 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that th~re 
is an active on-unit i~ the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

FILE name - OUTPUT TR~NSMIT 
ERROR NOT ACCEPTABLE 

Explanation: The ERROR is 
raised, (i) upon return from a 
TRANSMIT ON-unit, if the device 
in error is other than a 
printer, or (ii) if access to a 
file by RECORD I/O has been 
attempted after the TRANSMIT 
condition has been raised for 
output. 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again.. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 

IHE0241 

IHE0251 

Editor/Loader Map and 
program listing available. 

FILE name - PRINT OPTION/FORMAT 
ITEM FOR NON-PRINT FILE 

Explanation: Attempt to use 
PAGE, LINE or SKIP S 0 for a 
non-print file. 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

DISPLAY - MESSAGE OR REPLY AREA 
LENGTH ZERO 

Explanation: This message 
appears only if the REPLY 
option is exercised. 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again.. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

~ppendix K: Diagnostic Messages 471 



IHE026I 

IHE0271 

472 

FILE name - DATA DIRECTED INPUT 
- INVALID ARRAY DATUM 

Explanation: Number of 
subscripts on external medium 
does not correspond to number 
of declared subscripts. 

Programmer Response! Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again.. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associatecl 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

GET STRING - UNRECOGNIZABLE 
DATA NAME 

Explanation: 

1. GET DATA - name of data 
item found in string is 
not known at the time of 
the GET statement, or 

2. GET DATA data list - name 
of data item found in 
string is not specified in 
the list. 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that the:re 
is an active on-unit in the 
Main procedure for the 'NAME 
condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

IHE0291 

IHE0301 

• Have the associated job 
stream, Linkage 
Editor/Loader Map and 
program listing available. 

FILE name - UNSUPPORTED FILE 
OPERATION 

Explanation: Programmer has 
executed an I/O statement with 
an option or verb not 
applicable to the specified 
file. 

For example: 

I/O Option 
or Verb 

READ SETI 
LOCA'J.1E 

REWRITE 
(without FROM) I 

EXCLUSIVE I 
UNLOCK I 
(READ NOLOCK) 

KEYTO 

LINESIZEI 
PAGESIZE 

File Attribute 

DIRECT I 
(SEQUENTIAL 
UNBUFFERED) 

(SEQUENTIAL 
INPUT! OUTPUT! 
UPDATE) I 
(DIRECT INPUT! 
OUTPUT) 

REGIONAL 
DIRECT 

STREAM (INPUT I 
UPDATE) 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again,. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

FILE name - REWRITE/DELETE NOT 
IMMEDIATELY PRECEDED BY READ 

Proqrammer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 



IHE0311 

recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available& 

FILE name- INEXPLICABLE I/O 
ERROR 

Explanation: Operating system 
data management has detected 
some error in the current 
input/output operation. The 
message could be caused by one 
of the following: 

1. INDEXED data set with 
F-format records: a 
previously created data 
set was reopened for 
sequential output and the 
key of the record to be 
added was not higher in 
the collating sequence 
than that of the last key 
on the data set. 

2. An input/output error 
occurred for which no 
information was supplied 
by data management. 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 

IHE0321 

IHE0331 

Editor/Loader Map and 
program listing available. 

FILE name - OUTSTANDING READ 
FOR UPDATE EXISTS 

Explanation: When a record is 
read from an INDEXED file which 
contains blocked records and 
which is open for DIRECT 
UPDATE, the record must be 
rewritten. Between the READ 
statement and the associated 
REWRITE statement, no other 
operation may be performed on 
the file. 

Proqrammer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again,. I f the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDOMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

FILE name - NO COMPLETED READ 
EXISTS (INCORRECT NCP VALUE) 

Explanation: This message may 
be issued because the correct 
NCP value has not been 
specified or it may be due to 
incorrect source code. 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDOMP and that a PL1DUMP 

Appendix K: Diagnostic M~ssages 473 



IHE034I 

IHE0351 

474 

DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

FILE name - TOO MANY INCOMPLETE 
I/O OPERATIONS 

Explanation: The number of 
incomplete I/O operations 
equals the NCP value. 

Programmer Response: Probable 
user error. After maki.ng 
correction, recompile the 
program and execute thE! job 
step again. If the problem 
recurs, do the fQllowing before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the jc)b 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associatecl 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

FILE name - EVENT VARIABLE 
ALREADY IN USE 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

IHE0361 

IHE0371 

IHE0381 

FILE name - IMPLICIT OPEN 
FAILURE, CANNOT PROCEED 

Explanation: There has been a 
failure in an implicit OPEN 
operation. 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
loIlSGLEVEL= (1,1) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DO statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

FILE name - ATTEMPT TO REWRITE 
OUT OF SEQUENCE 

Explanation: An intervening 
I/O statement occurs between a 
READ statement and a REWRITE 
statement referring to the same 
record. 

Programmer Response: Probable 
user error.. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DO statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

FILE name - ENDFILE FOUND 



IHE0391 

UNEXPECTEDLY IN MIDDLE OF DATA 
ITEM. 

Explanation: The ERROR 
condition is raised when 
end-of-file is encountered 
before the delimiter when 
scanning list-directed or 
data-directed input, or if the 
field width in the format list 
of edit-directed input would 
take the scan beyond the 
end-of-file,. 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

FILE name - ATTEMPT TO CLOSE 
FILE NOT OPENED IN CURRENT TASK 

Proqrammer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available~ 

I/O ON-conditions 

All these conditions may be raised by 
the SIGNAL statement,. 

IHE1001 

IHE1101 

FILE name - UNRECOGNIZABLE DATA 
NAME 

Explanation: 

Initiating ON-condition: NAME 

1. GET DATA - name of data 
item found on external 
medium is not known at the 
time of the GET statement, 
or 

2. GET DATA data list - name 
of data item found on 
external medium is not 
specified in the list. 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

FILE name - RECORD CONDITION 
SIGNALED 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 

Appendix K: Diagnostic Messages 415 



IHEll1I 

IHE112I 

476 

DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

FILE name - RECORD VARIABLE 
SMALLER THAN RECORD SIZE 

fxplanation: The variable 
specified in the READ statement 
INTO option allows fewer 
characters than exist in the 
record. 

F format records: 
a WRITE statement attempts to 
put a record smaller than the 
record size. 

All formats: 
a REWRITE attempts 1:0 replace 
a record with one of smaller 
size. (Note: This condition 
cannot be detected for 
U-format records read for 
UNBUFFERED or DIREC~ files.) 

Programmer Response: Probable 
user error. Af·ter making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition \V'hich calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

FILE name - RECORD VARIABLE 
LARGER THAN RECORD SIZE 

ExPlanation: The variable 
specified in the READ statement 
INTO option requires more 
characters than exist in the 
record; or a WRITE statement 
attempts to put out a record 
greater than the available 
record size: or a REWRITE 
statement attempts to replace a 

IHE113I 

IHEl141 

record with one of greater 
size. 

Programmer Response: Probable 
user error. After making 
correo-tion" recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DO statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

ATTEMPT TO WRITE/LOCATE ZERO 
LENGTH RECORD 

Explanation: A WRITE or 
REWRITE statement attempts to 
put out a record of zero 
length, or a LOCATE statement 
attempts to get buffer space 
for a record of zero length; 
such records are used for 
end·-of-file markers for direct 
access storage devices. 

Proqrammer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If ,the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

FILE name - ZERO LENGTH RECORD 
READ 



IHE1201 

Explanation: A record of zero 
length has been read from a 
REGIONAL data set accessed in 
the DIRECT mode. This should 
not occur, unless the data set 
was created by another 
processor. A zero length 
record, on a direct access 
device, is an end-of-file 
signal., 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again.. If the problem 
recurs, do the following before 
calling IBM for programming 
support: ' 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

FILE name - PERMANENT INPUT 
ERROR 

Explanation: 

Initiating ON-CONDITION: 
TRANSMIT 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

IHE1211 

IHE1221 

IHE1301 

FILE name - PERMANENT OUTPUT 
ERROR 

Explanation: 

Initiating ON-condition: 
TRANSMIT 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

FILE name - TRANSMIT CONDITION 
SIGNALED 

Programmer ResEonse: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

FILE name - KEY CONDITION 
SIGNALED 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 

Appendix K: Diagnostic Messages 477 



IHE1311 

IHE1321 

478 

step again. If the problem 
recurs, do ·the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

FILE name - KEYED RECORD NOT 
FOUND 

Explanation: READ, REWRITE, or 
DELETE statement specified 
record key which does not match 
with records of data set. If 
REGIONAL (2) or (3) data sets 
are employed, and the DO 
statement parameter LIMCT is 
used, then the record does not 
exist within the number of 
records or tracks searched, but 
may exist elsewhere. 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the followi.ng before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, :Linkage 
Editor/Loader Map and 
program listing available. 

FILE name - ATTEMPT TO ADD 
DUPLICATE KEY 

Expl~natio~: WRITE statement 
specified a key value which 
already exists within data set. 

IHE1331 

1. INDEXED data sets: 
detected for both 
SEQUENTIAL and DIRECT 
access. 

2. REGIONAL data sets: 
detected only for REGIONAL 
(1) and (2) SEQUENTIAL 
output. 

Programmer Response: Probablc~ 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
.MSGLEVEL= (1,1) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and ·that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

FILE name - KEY SEQUENCE ERROR 

Explanation: WRITE statement 
specified, during creation of 
data set (OUTPUT SEQUENTIAL), a 
key Which for: 

1. INDEXED data sets is lower 
in binary collating 
sequence than prior key 

2. REGIONAL data sets the 
relative record/track 
value is lower than that. 
of prior key. 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 



IHE13LH 

IHE13SJC 

DO statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

FILE name - KEY CONVERSION 
ERROR 

Explanation: WRITE, READ, 
REWRITE, or DELETE statement 
for REGIONAL data set specified 
character string key value 
whose relative record/track 
partition contains characters 
other than blank or the digits 
o through 9, or which contains 
only the character blank. 

Programmer Respgnse: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PLIDUMP 
DO statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

FILE name - KEY SPECIFICATION 
ERROR 

EJg?lanation: 

1. INDEXED: the KEYFROM or 
KEY expression may be the 
NULL string. 
Alternatively, RKP does 
not equal zero and the 
embedded key is not 
identical with that 
specified by the KEY FROM 
option (or the KEY option 
in the case of a rewrite 
statement). A third 
possibility is that an 
attempt has been made 
during SEQUENTIAL UPDATE 
to replace a record by one 
whose embedded key does 

IHE136I 

not match that of the 
original record. 

2. REGIONAL: as for INDEXED, 
or initial character of 
KEY or KEYFROM expression 
value is the value 
(B)'l'B. 

Proqrammer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(1,1) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PLIDUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

FILE name - KEYED RELATIVE 
RECORD/TRACK OUTSIDE DATA SET 
LIMIT 

Explanation: WRITE" READ, 
REWRITE, or DELETE statement 
for REGIONAL data set specified 
a key whose relative 
record/track value exceeds the 
number of records or tracks 
assigned to the data set. 

Proqrammer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PLIDUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 

Appendix K: Diagnostic Messages 479 



IHE1371 

IHE1401 

480 

Editor/Loader Map and 
program listing available. 

FILE name .- NO SPACE AVAILABLE 
TO ADD KEYED RECORD 

Explanation: WRITE s"tatement 
attempted to add reco:rd, but 
data set was full.. I:f REGIONAL 
(2) or (3) data set, condition 
is raised if space within 
optional limits (DD parameter 
LIMCT) is unavailable. 

Programmer R~se: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL={l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PLIDUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

FILE name - END OF FILE 
ENCOUNTERED 

Explanation: 

Initiating ON-condition: 
ENDFILE 

Programmer Response:. Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for pro9ramrning 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-·unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PLIDUMP 
DD statement was included 
for the failing job step. 

• Have the associated 

IHE1501 

IHE1511 

jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

FILE name - CANNOT BE OPENED, 
NO DD CARD 

Explanation: 

Initiating ON-condition: 
UNDEFINEDFILE 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-Unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PLIDUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

FILE name - CONFLICTING DECLARE 
AND OPEN ATTRIBUTES 

Initiating ON-condition: 
UNDEFINEDFILE 

There is a conflict between the 
declared PL/I file attributes. 
For example: 

Attribute Conflicting 
Attributes 

PRINT INPUT, UPDATE, 
RECORD, DIRECT, 
SEQUENTIAL, 
TRANSIENT, 
BACKWARDS, BUFFERED, 
UNBUFFERED, 
EXCLUSIVE, KEYED 

STREAM UPDATE, RECORD, 
DIRECTi TRANSIENT, 
SEQUENTIAL, 
BACKWARDS, BUFFERED, 
UNBUFFERED, 
EXCLUSIVE, KEYED 

EXCLUSIVE INPUT, OUTPUT, 
SEQUENTIAL, 
TRANSIENT, 



DIRECT 

UPDATE 

OUTPUT 

BUFFERED 

BACKWARDS, BUFFERED, 
UNBUFFERED 

SEQUENTIAL, 
TRANSIENT, 
BACKWARDS, BUFFERED, 
UNBUFFERED 

INPUT, OUTPUT, 
BACKWARDS, TRANSIENT 

INPUT, BACKWARDS 

UNBUFFERED 

Some attributes may have been 
supplied when a file is opened 
implicitly. Example of 
attributes implied by I/O 
statements are: 

I/O 
statement Implied-Attributes 

DELETE RECORD, DIRECT, 
UPDATE 

GET INPUT 

LOCATE RECORD, OUTPUT, 
SEQUENTIAL, BUFFERED 

PUT OUTPUT 

READ RECORD, INPUT 

REWRITE RECORD, UPDATE 

UNLOCK RECORD, DIRECT, 
UPDATE, EXCLUSIVE 

WRITE RECORD., OUTPUT 

In turn, certain attributes may 
imply other attributes: 

Attribut~ Implied Attributes 

BACKWARDS RECORD, SEQUENTIAL, 
INPUT 

BUFFERED RECORD, SEQUENTIAL 

DIRECT RECORD, KEYED 

EXCLUSIVE RECORD, KEYED, 
DIRECT, UPDATE 

KEYED RECORD 

PRINT OUTPUT, STREAM 

SEQUENTIAL RECORD 

UNBUFFERED RECORD, SEQUENTIAL 

UPDATE RECORD 

IHE1521 

Finally, a group of alternate 
attributes has one of the group 
as a default. The default is 
implied if none of the group is 
specified explicitly or is 
implied by other attributes or 
by the opening I/O statement. 
The groups of alternates are: 

Default 

STREAM! REC ORO STREAM 

INPUT! OUTPUT I UPDATE INPUT 

SEQUENTIAL I DIRECT! SEQUENTIAL 
TRANSIENT 
(RECORD files) 

BUFFEREDIUNBUFFERED BUFFERED 
(SEQUENTIAL files) 

Programmer Response: Probable 
U$er error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DO statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

FILE name - FILE TYPE NOT 
SUPPORTED 

Explanation: 

Initiating ON-condition: 
UNDEFINEDFILE 

The user has attempted to 
associate a paper-tape device 
with a file that does not have 
the INPUT attribute. 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

Appendix K: Diagnostic Messages 481 



lHE1531 

IHE1541 

482 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the :job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PLIDUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

FILE name - BLOCKSIZE NOT 
SPECIFIED 

Explanation: 

Initiating ON-condition: 
UNDEFlNEDFILE 

Block size not specified on DD 
card, nor on environm(~:nt. 
However, will never occur for 
PRINT file, because default 
block size is assumedo 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PLIDUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

FILE name - UNDEFINEDFILE 
CONDITION SIGNALED 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

IHE1551 

IHE1561 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PLIDUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

FILE name - ERROR INITIALIZING 
REGIONAL DATA SET 

Explanation: 

Initiating ON-condition: 
UNDEFINEDFILE 

A REGIONAL data set, opened for 
DIRECT OUTPUT, cannot be 
properly formatted during the 
open process. 

Proqrammer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PLIDUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

FILE name - CONFLICTING 
ATTRIBUTE AND ENVIRONMENT 
PARAMETERS 

Explanation: 

Initiating ON-condition: 
UNDEFINEDFILE 

Examples of conflicting 
parameters NAME block size is 
assumed. are: 



IHE15'7I 

ENVIRONMENT 
Parameter 

No file 
organization 
parameter 

File Attribute 

KEYED 

INDEXEDIREGIONAL STREAM 

CONSECUTIVE 

INDEXED 

DIRECTI 
EXCLUSIVE 

DIRECT OUTPUT 

INDEXEDIREGIONAL OUTPUT without 
KEYED 

Blocked records UNBUFFERED 

V-format records BACKWARDS 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DO statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

FILE name - CONFLICTING 
ENVIRONMENT AND/OR DO 
PARAMETERS 

Explanation: 

Initiating ON-condition: 
UNOEFINEOFILE 

One of the following conflicts 
exists: 

1. F-format records have not 
been specified for a 
REGIONAL(l) or REGIONAL(2) 
file. 

2. Blocked records have been 
specified with a REGIONAL 
file. 

IHE1581 

3. Track overflow was 
specified in the 00 
statement of a REGIONAL(3) 
file using U- or V-format 
records. 

4. Track overflow was 
specified in the ENV 
attribute of a REGIONAL(3) 
file using U- or V-format 
records. The compile-time 
message was ignored. 

programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

FILE name - KEYLENGTH NOT 
SPECIFIED 

Explanation: 

Initiating ON-condition: 
UNDEFINEDFILE 

A keylength has not been 
specified for an INDEXED, 
REGIONAL(2), or REGIONAL(3) 
file that is being opened for 
OUTPUT. 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 

Appendix K: Diagnostic Messages 483 



IHE159I 

484 

IHEDUMP and that a PL1DUMP 
DO statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

FILE name - INCORRECT BLOCKSIZE 
AND/OR LOGICAL RECORD SIZE IN 
STATElmNT NUMBER xxx 

ExPlanation: 

Initiating ON-condition: 
UNDEFlNEDFILE 

One of the following situations 
exists: 

1. F~format records 

a. The specified block 
size is less than the 
logical record length. 

b. The specified block 
size is not a multiple 
of the logical record 
length. 

2. V~format records 

a. The specified block 
size is less than the 
logical record length 
+ 4. 

b. The logical record 
length is less than 14 
for a RECORD file or 
15 for a STREAM file. 

Proqrammer Responsel Probable 
user error. After making 
correction, recompile t:he 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for progra~ng 
support: 

• ·Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that the:re 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DO statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Ed:l tor /Loader Map and 
program listing available. 

IHE160I 

IHE161I 

FILE name - LlNESIZE GREATER 
THAN IMPLEMENTATION DEFINED 
MAXIMUM LENGTH 

Explanation: 

Initiating ON-condition: 
UNDEFINEDFILE 

The implementation-defined 
maximum linesize is: 

F-format records 32759 

V-format records 32751 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DO statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

FILE name - CONFLICTING 
ATTRIBUTE AND DO PARAMETERS 

Explanation: 

Initiating ON-condition: 
UNDEFINEDFILE 

The user has attempted to 
associate a file with the 
BACKWARDS attribute with a 
device that is not a magnetic 
tape device • 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program. and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 



is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEOUMP and that a PL1DUMP 
DO statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

computational Errors 

lHE2001 

IHE2021 

rtname - X LE 0 IN SQRTeX) 

Programmer Respo~ Probable 
user error. After making 
correction, recompile the 
progr~m and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=el,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DO statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

rtname - X LE 0 IN LOGeX) OR 
LO~2eX) OR LOG10ex) 

Programmer Response: Probable 
user error. After making 
correct,ion, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=el,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DO statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 

IHE2031 

IHE2041 

IHE2061 

Editor/Loader Map and 
program listing available. 

rtname - ABSeX) GE e2**50)*K IN 
SINeX) OR COS(X) (K=PI) OR 
SINO(X) OR COSDeX) eK=180) 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs" do the following before 
calling IBM for programming 
support: 

• Mqke sure that 
MSGLEVEL=el,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

rtname - ABSeX) GE e2**50>*K IN 
TAN (X) eK=PI) OR TANDeX) 
eK=180) 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=el,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR qondition which calls 
IHEDUMP and that a PL1DUMP 
DO statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

rtname - X=Y=O IN ATANCY,X) AND 
ATANDCY,X) 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 

Appendix K: Diagnostic Messages 485 



lHE2081 

IHE2091 

486 

step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=e1,1) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

rtname :- ABS(X) GT 1 IN 
ATANHeX) 

Programmer Response: Probable 
user error. After making 
correction, recompile ·the 
program and execute th·e job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=e1,1) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

rtname - X=O, Y LE 0 IN X**Y 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=e1,1) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 

IHE2101 

IHE2111 

DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available .. 

rtname - X=O, Y NOT POSITIVE 
REAL IN X**Y 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=e1,1) was 
specified in the job 
:statement, and that -there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

rtname - Z=+I OR -I IN ATAN(Z) 
OR Z=+l OR -1 IN ATANH(Z) 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 



IHE2:L2I 

IHE213I 

rtname - ABS(X) GE (2**18)*K IN 
SIN(X) OR COS (X) (K=PI) OR 
SIND (X) OR COSO (X) (K=180) 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 

'step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DO statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

rtname - ABS(X) GEe2**18)*K IN 
TANeX) (K=PI) OR TAND(X) 
(K=180) 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=el,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DO statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

List of Routine Names 

IHESQS Short float square root 

IHELNS Short float logarithm 

IHETNS Short float tangent 

IHEATS Short float arctan 

IHESNS Short float sine and cosine 

IHEHTS Short float hyperbolic arctan 

IHESQL Long float square root 

IHELNL Long float logarithm 

IHETNL Long float tangent 

IHEATL Long float arctan 

IHESNL Long float sine and cosine 

IHEHTL Long float hyperbolic arctan 

IHEXIS Short float integer 
exponentiation 

IHEXIL Long float integer 
exponentiation 

IHEXXS Short float general 
exponentiation 

IHEXXL Long float general 
exponentiation 

IHEXIW Short float complex integer 
exponentiation 

IHEXIZ Long float complex integer 
exponentiation 

IHEXXW Short float complex general 
exponentiation 

IHEXXZ Long float complex general 
exponentiation 

IHEATW Short float complex arctan and 
hyperbolic arctan 

IHEATZ Long float complex arctan and 
hyperbolic arctan 

Computational ON-Conditions 

All these conditions may be raised by 
the SIGNAL statement. 

IHE300I OVERFLOW 

Explanation: This condition is 
raised, by Library routines or 
by compiled code, when the 

Appendix K: Diagnostic Messages 487 



IHE3101 

488 

exponent of a floating-point 
number exceeds the perndtted 
maximum, as defined by 
implementation. 

Proqrammer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• l.\.1ake sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEOUMP and that a PL1DUMP 
DO statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

SIZE 

Explanation: This condition is 
raised, by Library routines or 
by compiled code, when 
assignment is attempted where 
the number to be assigned will 
not fit into the target field. 
This condition can be raised by 
allowing the fixed overflow 
interrupt to occur on account 
of SIZE. If associated with 
I/O, then "FILE name" will be 
inserted between the mE:!ssage 
number and the text. 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEOUMP and ,that a PL1DUMP 
DO statement was included 
for the failing job step. 

• Ha'Te the associated 
jobstream, LinkagE~ 

IHE3201 

IHE3301 

Editor/Loader Map and 
program listing available. 

FIXEDOVERFLOW 

Explanation: This condition is 
raised, by Library routines or 
by compiled code, when the 
result of a fixed-point binary 
or decimal operation exceeds 
the maximum field width as 
defined by implementation. 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEOUMP and that a PL10UMP 
DO statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available., 

ZERODIVIOE 

Explanation: This condition is 
raised, by Library routines or 
by compiled code, when an 
attempt is made to divide by 
zero w or when the quotient 
exceeds the preqision allocated 
for the result of a division. 
The condition can be raised by 
hardware interrupt or by 
special coding. 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL10UMP 



IHE3LWI 

IHE35tOI 

DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

UNDERFLOW 

EXQlanation: This condition is 
raised, by Library routines or 
by compiled code, when the 
exponent of a floating-point 
number is smaller than the 
implementation-defined mimimum. 
The condition does not occur 
when equal floating-point 
numbers are subtracted. 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
UNDERFLOW condition which 
calls IHEDUMP and that a 
PL1DUMP DD statement was 
included for the failing 
job step. 

• Have the associated 
jobstream, Linkage 
Edi'tor/Loader Map and 
program listing available. 

STRINGRANGE 

Explanation: This condition is 
raised by library routines when 
an invalid reference by the 
SUBSTR built-in function or 
pseudo-variable has been 
detected. 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for pro<gramming 
support: 

• Make sure that 
MSGLEVLE=(l,l) was 
specified in the job 
statement, and that there 

IHE360I 

IHE361I 

is an active on-unit in the 
Main procedure for the 
STRINGRANGE condition which 
calls IHEDUMP and that a 
PL1DUMP DD statement was 
included' for the failing 
job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

AREA CONDITION RAISED IN 
ALLOCATE STATEMENT 

Explanation: There is not 
enough room in the area in 
which to allocate the based 
variable. 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again.. I f the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

AREA CONDITION RAISED IN 
ASSIGNMENT STATEMENT 

Explanation: There is not 
enough room in the area to 
which the based variable is 
being assigned. 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 

Appendix K: Diagnostic Messages 489 



IHE3621 

Main procedure for the 
ERROR condition which calls 
IHEOUMP and that a 1?L1DUMP 
DO statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

AREA SIGNALED 

Proqranuner Response: Probable 
user error. After making 
correction, recompile t~he 
program and execute thE! job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(1,1) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL10UMP 
DO statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing ava:ilable. 

Structure and Array Errors 

IHE380I 

490 

IHESTR - STRUCTURE OR ARRAY 
LENGTH GE 16**6 BYTES 

Explanation: During the 
mapping of a structure or 
array, the length of the 
structure or array has been 
found to be greater than or 
equal to 16**6 bytes. 

Programmer Respons~ Probable 
user ~rror. After making 
correction, recompile 1the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(1,1) was 
specified in the job 
statement, and tha't, there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEOUMP and that a PL1DUMP 

IHE381I 

IHE382I 

DO statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

IHESTR - VIRTUAL ORIGIN OF 
ARRAY GE 16**6 OR LE -16**6 

Explanation: During the 
mapping of a structure, the 
address of the element with 
zero subscripts in an array, 
whether it exists or not, has 
been computed to be outside the 
range (-16**6 to +16**6). 

Proqrammer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(1,1) was 
specified in the job 
s'tatement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

IHESTR - UPPER BOUND LESS THAN 
LOWER BOUND 

Explanation: During the mapping 
of an array or structure, an 
upper bound of a dimension has 
been found to be less than the 
corresponding lower bound. If 
only an upper bound was 
declared then it may currently 
be less than one, the implied 
lower bound. 

Progranuner Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support:: 

• Make sure that 
MSGLEVEL=(1,1) was 



specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

Control Program Restrictions 

lHE41001 

IHE4011 

DELAY STATEMENT EXECUTED - NO 
TIMER FUNCTION IN SYSTEM 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

TIME STATEMENT EXECUTED - NO 
TIMER FUNCTION IN SYSTEM 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

Condition Type ON~Conditions 

IHE5001 

IHE5011 

SUBSCRIPTRANGE 

Explanation: This condition is 
raised, by library routines or 
by compiled code, when a 
subscript is evaluated and 
found to lie outside its 
specified bounds, or by the 
SIGNAL statement. 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

CONDITION 

Explanation: This condition is 
raised by execution of a SIGNAL 
(identifier) statement, 
referencing a 
programmer-specified EXTERNAL 
identifier. 

Proqrammer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 

Appendix K: Diagnostic Messages 491 



IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

Errors Associated with Tasking 

The following errors are associa.ted with 
execution of the CALL, READ, or WRITE 
statement with TASK option: with the WAIT 
statement: with the use of TASK or EVENT 
variables; with the PRIORITY 
pseudo-variable or built-in function: or 
with the COMPLETION pseudo-variable. 

IHE5501 

IHE5511 

492 

ATTEMPT TO WAIT ON AN INACTIVE 
AND INCOMPLETE EVENT 

Proqrammer Response: Probable 
user error. After making 
correction, recompile the 
program and execute th,e job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-·un:it in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

TASK VARIABLE ALREADY ACTIVE 

Explanation: Task variable is 
already associated with an 
active task. 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(1,1) was 
specified in the job 
statement, and that there 
is an active on-unit in the 

IHE5521 

IHE5531 

Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

EVENT ALREADY BEING WAITED ON 

Explanation: During the 
execution of a WAIT statement, 
in order to complete the 
required number of events, an 
event must not be waited on 
which is already being waited 
on in another task. 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

WAIT ON MORE THAN 255 
INCOMPLETE EVENTS 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DO statement was included 
for the failing job step. 



IHE5541 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

ACTIVE EVENT VARIABLE AS 
ARGUMENT TO COMPLETION 
PSEUDO-VARIABLE 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
suppcrt: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

INVALID TASK VARIABLE AS 
ARGUMENT TO PRIORITY 
PSEUDO-VARIABLE 

Explanation: The task variable 
specified was active and not 
associated with the current 
task or one of its immediate 
subtasks. 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

IHE5561 ,EVENT VARIABLE ACTIVE IN 
ASSIGNMENT STATEMENT 

IHE5571 

IHE5581 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling-IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job. step. 

• Have the associated 
jobstr~am, Linkage 
Editor/Loader Map and 
program listing available. 

EVENT VARIABLE ALREADY ACTIVE 

Explanation: Event variable is 
already associated with an 
active task. 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

ATTEMPT TO WAI T ON AN I/O EVENT 
IN WRONG 'rASK 

Explanation: An I/O event can 
be waited on only in the same 
task as the statement which 
initiated the I/O operation 
with which the event is 
associated. 

~ppendix K: Diagnostic Messages 493 



IHE559I 

IHE560I 

494 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

UNABLE TO CAL.!. TASK DUE TO 
INSUFFICIENT MAIN STORAGE. 

Explanation: Insufficient main 
storage available for the 
additional task being called. 

Programmer Response: Probable 
user error. After making , 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-uni.t in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

UNABLE TO CALL TASK DUE TO MORE 
THAN 255 TASKS ACTIVE. 

Explanation: The program 
attempted to call a subtask 
which would have made the 
number of active tasks greater 
than 255. 

Proqrammer Response: Probable 
user error. After making 

correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

In the following group of messages, hhh 
is a hexadecimal number. 

IHE571I 

IHE572I 

TASK (name) TERMINATED. 
COMPLETION CODE= hhh. 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

TASK (name) TERMINATED. 
COMPLETION CODE = hhh. EVENT 
VARIABLE OVERWRITTEN OR 
DESTROYED. 

Programmer Response: Probable~ 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 



IHES731 

IHES7lJI 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

TASK (name) ~ERMINATED. 
COMPLETION CODE = hhh. TASK 
VARIABLE OVERWRITTEN OR 
DESTROYED. 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DO statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

TASK (NAME) TERMINATED. 
COMPLETION CODE = hhh. INVALID 
FREE STATEMENT. 

Explanation: The FREE statement 
freed, or tried to free, 
storage to which it is not 
applicable .• 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 

IHES7S1 

IHES761 

is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step.. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

TASK (name) TERMINATED. 
·COMPLETION CODE = hhh. DISPLAY 
STATEMENT. REPLY NOT WAITED 
FOR. 

Explanation: The task 
terminated normally without 
waiting for a reply from a 
DISPLAY statement with the 
REPLY option. 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

TASK (name) TERMINATED. 
COMPLETION CODE = hhh. TOO 
MUCH MAIN STORAGE REQUESTED. 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 

Appendix K: Diagnostic Messages 495 



IHE5771 

IBE5791 

496 

IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing a"ailable. 

TASK (name) TERMINATED WHII~ 
STILL ACTIVE -- END OF BLOCK 
REACHED IN ATTACHING TASK. 

Explanation: The attaching 
task reached: 

1... An EXIT statement, or 

2. The end of the block in 
which the subtask was 
attached 

while the subtask was still 
active. 

Programmer Response: Probable 
user error. After making 
correction, recompile -the 
program and execute the job 
step again. If the problem 
recurs, do ·the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and tha-t there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

TASK (name) TERMINATED,. 
COMPLETION CODE = hhh. 
ABNORMAL TERMINATION DURING PUT 
STATEMENT. 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do ·the following before 
calling IBM for programming 
support: 

• lViake sure that 
MSGLEVEL=(l,l) was; 
specified in the job 
statement, and that there 

is an acti ve on-unit in the 
Main procedure for the 
:ERROR condition which,calls 
IBEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

Conversion ON-Conditions 

Conversion errors occur most often on 
input, either owing to an error in the 
input data, or because of an error in a 
format list. For example, in edit-directed 
input, if the field width of one of ,the 
items in the data list is incorrectly 
specified in the format list, the input 
stream will get out of step with the format 
list and a conversion error is likely to 
occur. 

IHEGOOI 

IBEG01I 

CONVERSION CONDITION SIGNALED 

Programmer Response: Probabl'e 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recu:rs, do the following befo:re 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IBEDUMP and that a PL1DUMP 
DO statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available,. 

CONVERSION ERROR IN F-FORMAT 
INPUT 

Programmer Response: Probabl'e 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
call:ing IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 



IHE6iQ21 

IHE6031 

statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DO statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

CONVERSION ERROR IN E-FORMAT 
INPUT 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DO statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

CONVERSION ERROR IN B-FORMAT 
INPUT 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing avail~ble. 

IHE604I 

IHE6051 

IHE6061 

ERROR IN CONVERSION FROM 
CHARACTER STRING TO ARITHMETIC 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DO :statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

ERROR IN CONVERSION FROM 
CHARACTER STRING TO BIT STRING 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again,. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

ERROR IN CONVERSION FROM 
CHARACTER STRING TO PICTURED 
CHARACTER STRING 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

Appendix K: Diagnostic Messages 497 



IHE6071 

IHE6081 

498 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and tha't there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL10UMP 
DO statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

CONVERSION ERROR IN P-FORMAT 
INPUT (OEClMAL) 

Programmer Response,;. Probable 
user error. After making 
correction, recompile t.he 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DO statement was included 
for the failing job step. 

• Have the associatecl 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

CONVERSION ERROR IN P-FORMAT 
INPUT (CHARACTER) 

Prog~~-B~§EQB~! Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DO statement was included 
for the failing job step. 

IHE609I 

• Have the associated 
jobstreqm, Linkage 
Editor/Loader Map and 
program listing available. 

CONVERSION ERROR IN P-FORMAT 
INPUT (STERLING) 

~: When condition was due 
to an I/O conversion, then 
"FILE name" will be inserted 
between the message number and 
the text. Also" when the I/O 
conversion error was due to a 
TRANSMIT error, the word 
(TRANSMIT) is inserted between 
the file name and the text. 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DO statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

Conversion Errors, Non-ON-Type 

IHE7001 INCORRECT E(W,D,S) 
SPECIFICATION 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DO statement was included 
for the failing job step. 



IHE7011 

IHE70.21 

lHE7031 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

F FORMAT W SPECIFICATION TOO 
SMALL 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

A FORMAT W UNSPECIFIED AND LIST 
ITEM NOT TYPE STRING 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

B FORMAT W UNSPECIFIED AND LIST 
ITEM NOT TYPE STRING 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 

IHE7041 

IHE7051 

step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL~(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

A FORMAT w UNSPECIFIED ON INPUT 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

B FORMAT w UNSPECIFIED ON INPUT 

Explanations: Messages 700 to 
705 reveal that an EDIT 
operation was incorrectly 
specified,. 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 

Appendix K: Diagnostic Messages 499 



lHE7061 

lHE7981 

500 

is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was i.ncluded 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loade:r Map and 
program listing available. 

UNABLE TO ASSIGN TO PICTURED 
CHARACTER STRING 

Explanation: A SOUrCE! datum 
which is not a character string 
cannot be assigned to a 
pictured character string 
because of a mismatch with the 
PIC description of the target. 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the pI:oblem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the-job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

ONSOURCE OR ONCHAR 
PSEUDOVARIABLE USED OUT OF 
CONTEXT 

Explanation: This message is 
printed and the ERROR condition 
raised if an ONSOURCE or ONCHAR 
pseudo-variable is used outside 
an ON-unit, or in an ON-unit 
other than either a CONVERSION 
ON-unit or an ERROR or FINISH 
ON-unit following from system 
action for CONVERSION .. 

Programmer Response: Probable 
user error. After making 
corrElction, recompile the 
program and execute the job 
step again. If the problem 
recurs,. do the following before 

IHE7991 

calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
:Eor the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available~ 

RETURN ATTEMPTED FROM 
CONVERSION ON-UNIT BUT SOURCE 
FIELD NOr MODIFIED 

Explanation: A CONVERSION 
ON-unit has been entered as a 
result of an invalid 
conversion, and an attempt- has 
been made to return, and henc,e 
reat-tempt the conversion, 
without using one or other of 
the pseudo-variables ONSOURCE 
or ONCHAR to change the invalid 
character. 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs w do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, 9nd that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

Non-comgutational Program Interrupt Errors 

certain program interrupts may occur in 
a PL/I program because the source program 
has an error which is severe but which 
cannot be detected until execution time. 
An example is a call to an unknown 
procedu:re, which will result in an illegal 



operation program interrupt. Other program 
interrupts, such as addressing, 
specification, protection, and data 
interrupts, may arise if PL/I control 
blocks have been destroyed. This can occur 
if an assignment is made to an array 
element whose subscript is out of range, 
since, if SUBSCRIPTRANGE has not been 
enabled, the compiler does not check array 
subscripts; a program interrupt may occur 
at the time of the assignment or at a later 
stage i.n the program. Similarly, an 
attempt. to use the value of an array 
element. whose subscript is out of range may 
cause a.n interrupt. 

Care! must be taken when parameters are 
passed to a procedure. If the data 
attribt~es of the arguments of the calling 
statemE!nt do not agree with those of the 
invoked entry point, or if an argument is 
not pas;sed at all, a program interrupt may 
occur. 

The use of the value of a variable that 
has not~ been initialized, or has had no 
assignment made to it, or the use of 
CONTROI~ED variables that have not been 
alloca"ted, may also cause one of these 
interrupts. 

IHES()OI 

IHES01I 

INVALID OPERATION 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DO statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

PRIVILEGED OPERATION 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

IHES02I 

IHES03I 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DO statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

EXECUTE INSTRUCTION EXECUTED 

Proqrammer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL10UMP 
DO statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

PROTECTION VIOLATION 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the follOwing before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DO statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 

Appendix K: Diagnostic Messages 501 



lHE8041 

IHE80S1 

IHEI06I 

502 

Editor/Loader Map and 
program listing available. 

ADDRESSING INTERRUPT 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for progranmdng 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DO statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

SPECI FICATION INTERRUP'r 

Programmer Response~ Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the . 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

DATA INTERRUPT 

Explanation: This cond:ition 
can be caused by an attempt to 
use the value of a FIXED 
DECIMAL variable when no prior 
assignment to, or 
initialization of, the variable 
has been performed. 

Programmer Response: Probable 

user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

Model 91 and Model 195 Object-Time 
Diagnostic Messages 

After a multiple-exception imprecise 
interrupt on a Model 91 or Model 195 
certain exceptions will remain unprocessed 
if the ERROR condition is raised before all 
the exceptions have been handled. If the 
program subsequently is terminated as a 
direct result of the ERROR condition being 
raised in these circumstances, one or more 
of the following messages will be printed 
out. 

IHE8101 PROTECTION EXCEPTION 
UNPROCESSED AFTER 
MULTIPLE-EXCEPTION IMPRECISE 
INTERRUPT 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 



IHE81:LI 

IHE81:21 

lHE8131 

ADDRESSING EXCEPTION 
UNPROCESSED AFTER 
MULTIPLE-EXCEPTION IMPRECISE 
INTERRUPT 

Programmer Response: Probable 
user error. . After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement" and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PLiDUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

SPECIFICATION EXCEPTION 
UNPROCESSED AFTER 
MULTIPLE-EXCEPTION IMPRECISE 
INTERRUPT 

programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again.. If the problem 
recurs, do the following before 
calling IBM for programndng 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PLiDUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

DATA EXCEPTION UNPROCESSED 
AFTER MULTIPLE-EXCEPTION 
IMPRECISE INTERRUPT 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 

IHE8i41 

IHESiS1 

step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit. in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PLiDUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

ZERODIVIDE UNPROCESSED AFTER 
MULTIPLE-EXCEPTION IMPRECISE 
INTERRUPT 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PLiDUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

OVERFLOW UNPROCESSED AFTER 
MULTIPLE-EXCEPTION IMPRECISE 
INTERRUPT 

Programmer Response: Probable 
user error. After making 
correction, recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=(l,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 

Appendix K: Diagnostic Messages 503 



Main procedure fo:c the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

storage Management Errors 

The following errors are associated with 
the handling of storage and transfer of 
control out of blocks. In some cases, 
these errors are a result of program error, 
but it is possible that the messages may be 
printed because the save area chain, 
allocation chain, or pseudo-register vector 
have been overwritten. 

lHE9001 

504 

TOO MANY ACTIVE ON-UNITS AND 
ENTRY PARAMETER PROCEDURES 

Explanation: There il3 an 
implementation limit to the 
number of ON-units and/or entry 
parameter procedures which can 
be active at any time~ An 
entry parameter procedure is 
one that passes an entry name 
as parameter to a procedure it 
calls. The total permissible 
number of these ON-units/entry 
parameter procedures is 127. 

Programmer Response: Probable 
user error. After making 
correction. recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=C1,1) was 
specified in the job 

IHE9021 

statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the associated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 

GOTO STATEMENT REFERENCES A 
LABEL IN AN INACTIVE BLOCK 

Explanation: The label 
referred to cannot be found in 
any of the blocks currently 
active in the current task; 
blocks are not freed. The 
statement number and offset 
indicate the GO TO statement 
causing the error. 

Programmer Response: Probable 
user error. After making 
correction" recompile the 
program and execute the job 
step again. If the problem 
recurs, do the following befo:re 
calling IBM for programming 
support: 

• Make sure that 
MSGLEVEL=Cl,l) was 
specified in the job 
statement, and that there 
is an active on-unit in the 
Main procedure for the 
ERROR condition which calls 
IHEDUMP and that a PL1DUMP 
DD statement was included 
for the failing job step. 

• Have the as~ociated 
jobstream, Linkage 
Editor/Loader Map and 
program listing available. 



ii (prefix for temporary data set 
names) 24 

$NEVER-CALL entry in cross'-reference 
table 72 

$UNRESOLVED entry in cross-reference 
table 72 

'*' parameter of DD statement 107 
'/*' statement in stream input 17 

abbreviations for compiler option names 
abnormal termination of a task 173 
access methods 109,~10 
accessing a CONSECUTIVE data set 

using record I/O 127 
using stream I/O 117 

accessing a REGIONAL data set 143 
accessing an INDEXED data set 137 
ACCT parameter of EXEC statement 89 
addresses in main storage, resolution 
of 65 

ADV (array dope vector) 208 
AFF parameter 256 
aggregate-length table 51 
aggregates, limitation 297 
ALIAS linkage editor statement 73 
alignment in data set interchange 201 
allocating direct-access space 257 
alternative name for load module 73 
American National Standard (ANS) 

carriage control character in source 
pro<gram 47 

control character 119 
cont:rol characters for printer and 

punch 129 
ANS (Am,erican National Standard) 

carriage control character in source 
program 47 

control character 119 
cont.rol characters for printer and 

punch 129 
AREA at'tribute restriction 297 
argument passing 

betw,een PL/I and other 
lan<guages 210-215 

to a main PL/I procedure 206 
array bounds restriction 297 
array d,ope vector (ADV) 208 
arrays in data set interchange 

(PL/I-:rORTRAN) 202 
assembl,er language programming to invoke 

PL/I main procedure 204, 
asterisk in linkage editor map 71 
ATR and XREF compiler options 50 
ATR compiler option 48 
ATTACH macro instruction, to invoke 

compil,er 61 
attribute and cross-reference table 51 

44 

attribute listing 50 
automatic library call 

by the linkage editor 65,68 
by the linkage loader 78,81 

automatic restart 177 
cancellation of 182 

Index 

auxiliary storage devices, general 
information 112 

auxiliary storage requirements 289 

BASED attribute restriction 297 
based variable restriction 297 
basic access technique 109 
batched compilation 57 

for creating an overlay program 76 
job control language for 58 
OBJNM compiler option 55 
options in PROCESS statement 57 
return code 57 

BCD compiler option 47 
BDAM (basic direct access method) 110 
BISAM (basic indexed sequential access 

method) 110 
bit strings in record I/O, restriction 303 
BLKSIZE (block size) subparameter 250 
block sizes 

for a PRINT file 24 
restriction on 298 

blocked records 102 
blocks in a compilation (restriction on 

number) 298 
BSAM (basic sequential access method) 109 
buffering, purpose of 109 
buffers 

number of (BUFNC subparameter) 250 
restriction on use of 298 
use of in record I/O 125,127 
use of in stream I/O 115 

BUFNO subparameter 250 
built-in functions restriction 298 

CALL macro instruction to invoke the PL/I 
compiler 61 

card punching using record I/O 129 
card reader/punch 

general information 112 
mode (MODE subparameter) 251 
stacker (STACK subparameter) 252 

cataloged data sets 101 
cataloged procedures 93-100 

compile and punch object module 
(PL1LDFC) 95 

compile and write object module 
(PL1LFC) 93 

compile, and link-edit (PL1LFCL) 94 
compile, load, and execute (PL1LFCG) 95 
compile,link-edit, and execute 

(PL1LFCLG) 95 
for linkage loading 80 
for load module execution 88 

Index 505 



for the linkage editor 66 
introduction to 17 
link-edit and execute (PL1LFLG) 95 
load and execute (PL1LFG) 95 
modification of 97,100 
multiple invocation of 99 
PL1DFC -compile and punch object 

module 93 
PL1LFC -compile and write object: 

module 93 
PL1LFCG -compile, load, and execute 95 
PL1LFCL -compile and link-edit 94 
PL1LFCLG -compile, link, and ex.ecute 95 
PL1LFG -load and execute 95 
PL1LFLG -link-edit and execute 95 
region sizes 100 
summary of 93 
testing with in-stream procedures 100 
used with PL/I shared library 282-285 
using Linkage Editor 282 

CATLG subparameter of DISP parameter 254 
channel programs, number of (NCP 
subparameter) 251 

character code restriction 298 
character set specification (UCS) 258 
CHAR48 compiler option 37,47 
CHAR60 compiler option 47 
CHECK condition in multitasking 168 
CHECK condition restriction 298 
CHECK lists restriction 298 
checkpoint/restart 176-183 

data set 183 
DD statement for 179 
diagnostic aids 178 
interface 176 
job control language for 178 
PL/I CALL statements 180 
PL/I, requirements for 178 
resident access methods 183 
restriction on use of 183 
return codes from 182 
SYSCHK DD statement 180 

closing a file 112 
COBOL data in PL/I 

COBOL option restriction 299 
entry in aggregate-length table 50 
use of COBOL option in record I/O 203 

CODE subparameter 250 
collating sequence restriction 299 
column binary card reading/punching modes 

(MODE subparameter) 251 
COLUMN format item restriction 299 
common point (node) in overlay program 74 
communication with other languages 

establishing the environment 213 
function references 214 
passing data items 212 
user-defined conditions 215 

COMP compiler option 47 
compatibility of compiler versions 265 
compilation process 37,38 

DD (data definition) statements for 40 
flow diagram 38 
use of SIZE option 44 

compile-time processing 58,37 
COMP compiler option 59 
diagnostic messages 446-468 
example of 60 

506 

MACDCK compiler option 59 
MACRO compiler option 59 
SORMGIN compiler option 60 
SOURCE2 compiler option 59 

compile and link-edit (PL1LFCL) 94 
compile, and punch object module 

(PL1DFC) 93 
compile and write object module 

(PL1LFC) 93 
compile, link-edit, and execute 

(PL1LFCLG) 95 
compile, load, and execute (PL1LFCG) 95 
compiler 

buffer areas, storage required 45 
compatibility between versions 265 
data sets 40,289 
dynamic invocation of 61 
fifth version changes 264 
fourth version changes 262 
input, record format for 40 
listing 49 
listing (SYSPRINT) 42 
main storage (SIZE option) 44 
output, record formats for 41 
return codes from 56 
second version changes 261 
spill file, diagnostic message for 56 
symbolic name (IEMAA) 39 
third version changes 261 
versions 263 
workspace for 42 

compiler options 43-49 
abbreviated forms of 44 
defaults for 43,44 
specification of in PARM parameter 43 
summary of 44 

COMPLETION built-in function in 
multitasking 170 

completiori codes (system) 292-296 
multitasking 170 

completion value of event variable 170 
compound statement numbering 50 
concatenated data sets, restriction 299 
COND parameter of EXEC statement 89 

return code testing 92 
condition-handling in non-PL/I 

programs 215 
CONSECUTIVE data sets 

example of creation and accessing 27 
JCL for creation by record I/O 126 
JCL for retrieval by record I/O 127 
JCL for creation in stream I/O 116 
JCL for retrieval in stream I/O 118 
organization of 104 

constants, restrictions for 299 
control blocks in PL/I 208 

(see also dope vectors) 
declare control block <DCLCE) 209 
file control block (FCB) 210 
input/output control block (IOCB) 210 
open control block (OCB) 209 

control program (OS), elements of 13 
control program options 32,267 
control sections 64 

in external symbol dictionary 52 
conventions, implementation 297 
creating 

CONSECUTIVE data sets, record 



I/O 125-126 
CONSECUTIVE data sets, stream 
I/O 115-117 

data sets with stream I/O 115-1i7 
INDEXE:D data sets 132-136 
PDS mE!mbers 156 
regional data sets 141-142 
shared library 279 

cross-reference listing, linkage editor 
(XREF option) 69 

cross-reference table, compiler 51 
cross-re:i:erence table, linkage editor 72 
CSECTS (see control sections) 
cylinder-OVerflow area 137 

CYLOFl~ subparameter 250 
OPTCD=Y subparameter 252 

CYLOFL subparameter 250 

data con1:.rol block (see DCB) 
data definition (DD) statement (See DD 

(data definition) statement) 
data equivalents 

PL/I-COBOL 203 
PL/ I - ]~ORTRAN 201 

data in i:he input stream 26,107 
data management 
functions of 13 

access methods 109 
optional services (OPTCD 

subparameter) 251 
DATA parameter of DD statement 107 
data sets 101-112 

(see also DD (data definition) 
stat~ement ) 

acces:;dng in record I/O 
CONSECUTIVE organization 126 
INDEXED organization 137 
REGIONAL organization 143 

acces:sing in stream I/O 117 
checkpoint/restart, effect of 183 
COBOL 203 
CONSECUTIVE 125 
creation in record I/O 

CONSECUTIVE organization 125 
INDEXED organization 131 
REGIONAL organization 141 

creation in stream I/O 115 
data control block 110 
direct 104 

(see also REGIONAL data sets) 
disposition 106 
for checkpoints 177 
for compilation 40,289 
for dumps 175 
for printing 

in record I/O 129 
in stream I/O 119 

FORTRAN 201 
in input stream 107 
in ou.tput stream (SYSOUT) 106 
INDEXED 130-139 
indexed sequential 104 

(see also INDEXED data sets) 
interchange 201 

COBOL 203 
FORTRAN 201 

labels 105 

naming 101 
organization 

CONSECUTIVE 125 
INDEXED 130 
OS equivalents 104 
REGIONAL 139 

partitioned 155-162 
record formats 102 

in record I/O 124 
in stream I/O 114 
sort/merge 185 

regional 139-152 
relationship with files 107 
retrieval (see accessing) 
sequenti~l --ro4 
teleprocessing 152-154 
TRANSIENT (~ teleprocessing) 
volume 101 

data-directed I/O restrictions 300 
DCB (data control block) 110 
DCB (data control block) 
parameter 106,249-253 

BLKSIZE subparameter 250 
BUFNO subparameter 250 
CODE subparameter 250 
CYLOFL subparameter 250 
DEN subparameter 250 
DSORG subparameter 250 
for CONSECUTIVE data sets 126 
for INDEXED data sets 134 
for REGIONAL data sets 142 
introduction to 24 
KEYLEN subparameter 250 
LIMCT subparameter 250 
LRECL subparameter 251 
MODE subparameter 251 
NCP subparameter 251 
NTM subparameter 251 
OPTCD subparameter 251 
PRTSP subparameter 252 
RECFM subparameter 252 
RKP subparameter 252 
STACK subparameter 252 
TRTCH subparameter 252 

DD (data definition) 
statement 105,215,249-260 

AFF parameter 256 
DATA parameter 107 
DCB parameter 249~253 
DDNAME parameter 105,253 
DISP parameter 253 
DSNAME parameter 255 
for checkpoint data sets 179 
for compilation 40 
for CONSECUTIVE data sets 126 
for creating INDEXED data sets 132 
for creating regional data sets 142 
for dumps 176 
for load module execution 90 
for sort/merge program 186 
for the linkage loader 80 
introduction to 16 
LABEL parameter 256 
modification in cataloged procedures 98 
parameters of 249-260 
LIMCT parameter 142 
SEP parameter 256 
SPACE parameter 257 

Index 507 



SYSOUT parameter 258 
UCS parameter 258 
UNIT parameter 259 
VOLUME parameter 260 

ddname 105 
DDNAME parameter 253 
ddnames for sort/merge 186 

modification of 186 
DECK compiler option 48 
DECLARE statement (compile-time) 
restriction 300 

dedicated workfiles 
DD statements in cataloged procedure 96 
for the compiler 42 

defaults for compiler options 44 
deferred restart 177 
DEFINED attribute restriction 300 
DELAY statement in multitasking 170 
DELETE subparameter: of DISP parameter 25 
deletion of records in an INDEXED data 
set 137 

DEN subparameter 250 
descriptor code for REPLY option 

responses 92 
despatching priority for PL/I tasks 166 
device classes for linkage editor data 
sets 66 

diagnostic aids in checkpoint/res'tart 178 
diagnostic message directory for linkage 
editor messages 71 

diagnostic messages 314-504 
compile-time processing 446-468 
format of compiler diagnostics 56 
object-time 468-504 
source program 314-445 

dimensions restriction 300 
direct data sets 104 

(see also REGIONAL data sets) 
direct-access devices 

general information 113 
record formats in record I/O 124 
record formats in stream I/O 115 
type numbers 259 

direct-access storage space allocation 
(SPACE subparameter) 257 

directory of partitioned data set 155 
DISP parameter 253,106 
DISPLAY statement 

restriction on use of 300 
syntax of REPLY option message 92 

disposition of data set (DISP 
parameter) 253,106 

dope vectors 208 
array (ADV) 208 
dope vector descriptor (DVD) 210 
record (RDV) 209 
string (SDV) 208 
string array (SADV) 209 
structure (STDV) 209 

DPRTY parameter of EXEC statement 90 
DSA (dynamic storage area) 210 
DSCB (data ~et control block) 105 
DSNAME parameter 255 
DSORG subparameter 250 
dummy arguments, maximum 300 
dummy records 

508 

in an INDEXED data set 137 
in a REGIONAL data set 141 

dump data sets (SYSABEND,SYSUDUMP) 91 
dumps 175 
dynamic invocation of compiler 61 
dynamic storage area (DSA) 210 

EBCDIC compiler option 47 
edit-directed input/output restriction 301 
efficiency considerations for linkage 
editing vs linkage loading 64 

ENTRY names restriction 301 
environment (of PL/I procedures) creating 

when using non-PL/I programs 213 
EP loader option 84 
epilogue code to a PL/I procedure, 

functions of 208 
error codes in linkage editor listing 69 
error messages from the compiler, format 
of 56 

ERROR condition 291 
ESD (external symbol dictionary) 52 

use for link-editing 64 
event name in multitasking 169 
EVENT option 

in multitasking 169 
restriction 301 

event variable completion value 170 
exception processing (Model 91 and Model 
195) 288 

EXCLUSIVE attribute in multitasking 170 
exclusive calls for overlay segments 77 
EXEC statement 

introduction to 16 
modified in cataloged procedure 98 
options and parameters of 89 
parameters used in MVT for priority 166 
RD (restart definition) parameter 179 
to invoke the corrpiler 39 
to invoke the linkage editor 66 
to invoke the linkage loader 80 
use of FARM parameter for compiler 
options 43 

executable load modules 69 
executing the load module 87 
exponentiation restriction 301 
expression evaluation restriction 301 
EXTDIC compiler option 46 
external reference resolution 

by the linkage editor 64 
by the linkage loader 78 
suppression by NCAL option 69 

external references not resolved by linkage 
editor 72 

external symbol dictionary (ESD) 52 
use for link-editing 64 

EXTREF compiler option 48 

F compiler versions 261 
F-format records 102 
F-level linkage editor 

main storage requirement 66 
region size in cataloged procedures 99 

factoring-of-attributes restriction 302 
FB-format records 102 
FBS-format records 102 
fifth version of the compiler 264 
files 



(see also data sets) 
closing-112 
opening 111 
standard 26 

FINISH condition 291 
fixed-length records 102 
FLAG compiler option 49 
FLOAT at-tribute restriction 302 
floating-point magnitude restriction 302 
floating--point numbers in stream I/O (PL/I 

and FOR~rRAN differences) 203 
format of records 

(see also record formats) 
for-compiler input 40 
for compiler output 41 

FORTRAN data set record formats 202 
FORTRAN-l'L/I 201 
fourth version of the compiler 262 
FS-format records 102 
function references written in non-PL/I 

languag1e 214 
function value restriction 302 

GENERIC attribute restriction 302 
graphic unit type numbers 260 

halfword binary restriction 302 
hierarchy of indexes for cataloged data 
sets 102 

IBG (interblock gap) on magnetic tape 102 
IBM System/360 (Model 91 and Model 

195) 288 
IBM Sysbem/360 Operating System, 
introduction to 13 

IDENT op,tion restriction 302 
identifiers restriction 302 
identifying the data set (DSNAME) 255 
IEBUPDTE utility program for creating 
source statement libraries 61 

IEMAA (compiler name) 
EXEC statement for 39 
dynamic invocation of 61 

IEWL (linkage editor name) 66 
IEWLDRGO (linkage loader name) 80 
IF statement numbering in source 
listing 50 

IHEABND 295 
IHECKPT (checkpoint/restart) module 181 
IHEMAIN control section 205 
IHENTRY control section 205 
IHENTRY initialization routine 64 
IHERES (restart) module 182 
IHESAP initialization routine 205 
IHESARC routine for creating return 

codes 92 
IHESRT (sort interface) module 184 
IHESRTA (sort/merge) interface 189 

example of use 190 
IHESRTB (sort/merge) interface 191 

example of use 192 
IHESRTC (sort/merge) interface 193 

example of use 194 
IHESRTD (sort/merge) interface 195 

example of use 196 

IHETAB 120 
(see tab control table) 

IHETSA initialization routine 205 
IHETSAC routine for creating return 

codes 92 
implementation conventions and 
restrictions, alphabetic list 297-311 

imprecise interrupt (Model 91 and Model 
195) 287 

in-stream procedures 19 
use in testing cataloged procedures 100 

INCLUDE compile-time statement 60 
ddname argument for 43 
restriction on use of 303 

INCLUDE linkage editor statement 73 
independent overflow area (INDEXED data 
sets) 131 

OPTCD=I subparameter 251 
index area (INDEXED data sets) 131 
INDEXAREA option restriction 303 
INDEXED data sets 130-139 

accessing, direct or sequential 137 
essential information for 137 
example of 140 

creation of 131-137 
essential information for 133 
example of 138 

cylinder index 131 
cylinder overflow area 131,137 

CYLOFL sUbparameter 250 
OPTCD=Y option 252 

data set organization (DSORG) 
subparameter 250 

DCB subparameters for creating 134 
DD statement for creating 132,133 
deletion of records 137 

OPTCD=L option 251 
example program for updating 140 
independent overflow area 131 

OPTCD=I option 251 
indexes 130 

index areas 131 
index tracks (NTM subparameter) 251 

keys 
formats of 134 
length (KEYLEN subparameter) 250 
position (RKP subparametei) 252 

master index 131,137 
OPTCD=M option 252 

names for data set and indexes 134 
overflow area 131 
prime data area 131 
record formats for 134 
reorganization of 138 
retrieval of records 137 
track index 130 
updating 137 

example of 140 
indexed sequential data sets 104 

(see also INDEXED data sets) 
indexes for an INDEXED data set 130 

how to sp~cify a master index 137 
indicative dumps 176 
INIT~AL attribute restriction 303 
initial program load (IPL) for shared 
library 280 

initial volume label 105 

Index 509 



initialization routine IHENTRY 64 
initiators for MVT jobs 35 
input readers 33 
input sources for linkage editor (INCLUDE 
statement) 73 

input/output (see also data se·ts, record 
I/O, stream I/O) 

access methods used 109 
buffers, purpose of 109 
DCB (data control block) fo:r 110 
devices, general information 112 
in multitasking 169 
record I/O 124-154 
stream I/O 114-123 
volume (VOLUME) parameter 260 

INSERT linkage editor statement 15 
interblock gap (IBG) on magnetic tape 102 
invoking a PL/I main procedure 205 
IPL (initial program load) for shared 
library 280 

iSUB defining in data set interchange 202 

JCL (job control language) 
for batched compilation 58 
for checkpoint/restart 178 
for compilation 39 
for linkage editor 66 
for linkage loading 80 
for load module execution 88 
overview of 14 

job completion information on SYSPRINT 92 
job initiators for MVT 35 
job libraries (JOBLIB) 161 
job priorities in PL/I multitasking 166 
job scheduler 13 

components of 31 
messages on SYSPRINT 92 

job scheduling and the control program 32 
job selection under MFT 33 
job selection under MVT 35 
JOB statement 31,169 

for MFT 33 
for MVT 35 
for PCP 33 
introduction to 16 
mandatory parameters 32 
parameters used in MVT for priority 166 
RD (restart definition) paramet:er 1'78 
RESTART parameter 179 

JOBLIB (job library) statement 161 

key position, relative (RKP) 
subparameter 252 

KEYLEN subparameter 250 
keys 

for INDEXED data sets 134-137 
for REGIONAL data sets 139,141. 
length of (KEYLEN subparame·ter) 250 

LABEL attribute restriction 303 
label constants used in recursive 
procedures 304 

LABEL parameter 256 
label variables 

restriction on use of 303 

510 

used in recursive procedures 304 
labels for data sets 105 
length of load module 72 
length of modules in PL/I library 270 
length of overlay load module 72 
LET linkage editor option 69 
LET linkage loader option 84 
level .numbers restriction 305 
libraries 

(see also partitioned data set) 
job 160 
link 160 
of data sets 155 
PL/I subroutine 160 
private 160 
proce~ure 160 
step library (STEPLIB) 162 
system 160 

LIBRARY linkage editor statement 74 
use in PL/I library modules 71 

library subroutine inclusion 65 
LINE format item in stream PRINT file 119 
line numbering restriction 305 
LINECNT compiler option 49 
LINESIZE 

default for a PRINT file 120 
format item restriction 305 
option for PRINT files 120 

link edit and execute (PL1LFLG) 95 
link library (SYS1.LINKLIB) 160 
LINK macro instruction, to invoke 

compiler 61 
link-pack area search by linkage loader 79 
linkage editor 63-77 

ALIAS statemerit 73 
automatic call library 68 

purpose of 65 
S~SLIB data set for 68 

cataloged procedures for 66 
external symbol dictionary (ESD) 65 
INCLUDE statement 73 
input data set (SYSLIN) 67 
input sources (additional) 73 
INSERT statement 75 
EXEC statement for 66 
LET option 69 
LIBRARY statement 74 
LIST option 69 
listing on SYSPRINT 68,70 
load module naming 73 
load module data set (SYSLMOD) 65 
load module structure 64 
MAP option 69 
NAME statement 73 
NCAL option 69 
object module structure 64 
OBJNM option (for NAME statement) 57 
options 69 
output data set (SYSLMOD) 67 
overlay program design 74 
OVERLAY statement 75 
OVLY option 75 
relocation dictionary (RLD) 65 
SIZE option 69 
standard data sets for 67 
storage requirements 66,70 
SYSLIB data set 68 
SYSLIN data set 67 



SYSLMOD data set 67 
SYSPRINT data set 68 
SYSUT1 data set 68 
XCAL option 69 
XREF option 69 

linkage loader 77-86 
cataloged procedures 80 
concatenation of modules by 83 
control statement restrictions 83 
examples 82 
external symbol resolution by 78 
input to (SYSLIN) 80 
invocation of 80 
JCL for 80 
link-pack area processing 79 
listi:ng 81 
optio:nal facilities 82 

defaults for 85 
processing 78 
standard data sets 80 
stora.ge requirements 79 
SYSLIB data set 81 
SYSLIN data set 80 
SYSLOUT data set 81 
SYSPRINT data set 81 

load modules 
execution 87-92 
map 69 
namin.g 73 
struc·ture 64 

linking :PL/I with other languages 201-215 
establishing the PL/I environment 213 
passi:ng data items 212 
use of function references 214 
user-defined condition handling 215 

LIST compiler option 49 
LIST linkage editor option 69 
listings (~ program listings) 
load and execute (PL1LFG) 96 
LOAD compiler option 48 
load module 

conte:nts of (text) 64 
struc·ture of 64 

LOADER l.inkage loader alias name 80 
LRECL (ljDgical record length) 

subparameter 251 

MACDCK cjompiler option 40, 47 
machine :requirements 267 
MACRO cOloopiler option 37,46 

in cOlanpile-time processing 58 
requirement for use 305 

magnetic tape 
devicle type numbers 259 
7-tralck r,ecording modes (TRTCH 
subparameter) 252 

magnetic·-tape recording densities (DEN I 

subparameter) 250 
magnetic,-tape devices, general 

informa'tion 113 
magnetic-tape labels, non-standard 105 

in record I/O 127 
in st:ream I/O 11 7 

MAIN opt.ion restriction 305 
main procedure (PL/I) 

argum1ents/parameters to 206 
invocation from assembler 205 

main storage 
dump of 175 
for compilation 44 
for linkage editing 66 
for linkage loading 79 
for multitasking 163 
for PL/I sort interface 185 
under MVT 35 
under MFT 34 

main storage addresses, resolution of 65 
MAP linkage editor option 69 
MAP linkage loader option 84 
map of static internal control section 54 
master index option (OPTCD=M 

subparameter) 252 
master scheduler (OS) 13 
MAX built-in function restriction 305 
MCP (message control program) 153 
MCS (multiple console support) 90 
message control program (MCP) 153 
message on operator's console 92 
message processing in record I/O 152-154 
message processing program (MCP) 153 
messages (see also diagnostic messages) 

from the compiler, format of 56 
from job scheduler on SYSPRINT 92 

MFT control program 33 
indicative dump produced by 176 
output 35 
SIZE option for compilations 44 

MIN built-in function restriction 305 
MOD built-in function restriction 305 
MODE subparameter 251 
Models 91 and 195 288 

imprecise interrupt 288 
OBJIN option 46 
OBJOUT option 46 
ONCOUNT built-in function 288 
order of processing exceptions 288 

modification of cataloged procedure 97,100 
temporary 97 

module map 
in linkage editor listing 71 
in linkage loader listing 85 

module structure 64 
modules in PL/I library 270 
MPP (message processing program) 153 
MSGCLASS parameter 90 
MSGLEVEL parameter 97 
multiple assignment restriction 306 
mUltiple checkpoints 177 
multiple console support (MCS) 92 
multiple invocation 

of cataloged procedure 99 
multiple-exception imprecise interrupt 288 
multiprocessing 174 
multiprogramming 163 
multitasking 163-174 

CHECK condition used in 168 
combination with other languages 164 
compiler level required for 163 
COMPLETION built-in function 170 
completion codes (system) 170 
DELAY statement 170 
despatching priorities in PL/I 166 
EVENT option 169 
EXCLUSIVE attribute 170 
execution time overhead for 163 

Index 511 



files used in separate tasks 171 
input/output in 169 
job priorities in 171 
JOB statement parameters for 166 
main storage overheads for 163 
on-units in 168 
operating system require:ments for 163 
PL/I sort in 198 
priority management 166 
programming considerations 167 
programming requirements for 163 
SEQUENTIAL files used by separate 
tasks 171 

SNAP option used in 168 
STATUS built-in function 170 
strings used by separate tasks 171 
synchronization of tasks and I/O 170 
system completion codes 170 
System/360 requirements 267-269 
transfer of control between tasks 164 
variables used by separate tasks 171 
variables used in 168 
WAIT statement 169 

MVT control program (multiprogramming with 
a variable number of tasks) 32 

input to 35 
job selection for 35 
JOB statement for 35 
SIZE option for compilations 44 

name 
module 270 
restriction 306 

NAME linkage editor statement 73 
from OBJNM option 58 

NCAL linkage editor option 69 
NCAL linkage loader option 84 
NCP subparameter 251 
NE (not editable) linkage editor 
attribute 63 

NEST compiler option 49 
nesting restriction 306 
non-standard magnetic tape labels 105 

in record I/O 127 
in stream I/O 117 

normal termination of a task 172 
NTM subparameter 251 
number of channel programs 

NCP subparameter 251 
numbering of source IF and ON 

statements 50 

object module 64 
object module output retention L~l 
object program listing 55 
object-time diagnostic messages 468-504 
OBJIN compiler option 46,288 
OBJNM compiler option 58 
OBJOUT compiler ,option 46 
OFFSET built-in function restriction 306 
offsets table 52 
ON statement numbering in source 
listing 50 

ON-codes 291-294 
on-unit restriction 306 
on-units used in multitasking 168 

512 

ONCODE built-in function 291 
ONCOUNT built-in function 288,306 
OPEN statement, use of TITLE option 107 
opening a file 111 
operating system 

control programs 32 
data management 107 
functions of OS/360 13 
requirements for multitasking 163 

OPLIST compiler option 49 
OPT compiler option 45 
OPTCD subparameter 251 
optimization compiler option (OPT) 45 
optimizing channel usage (SEP and AFF) 256 
output data set(SYSPRINT) 91 
output devices, UNIT parameter of DD 
statement 23 

output stream parameter (SYSOUT) 258 
output writers 31 

MFT 35 
PCP 35 
MVT 36 

overflow area, INDEXED data sets 131,137 
OVERLAY linkage editor statement 75 
overlay module length 72 
overlay program creation 74 

batched compilation for 76 
INCLUDE statement 76 

OVLY linkage editor option 75 

PAGE format item in stream PRINT file 119 
PAGE option in stream PRINT file 119 
PAGESIZE option restriction 306 
paper tape codes (CODE subparameter) 250 
paper tape, general information 112 
parameters 

passed between PL/I and other 
languages 210-215 

restriction on use of 307 
to a main procedure 89,206 

PARM parameter of EXEC statement 89 
for compiler options 43 
for a PL/I program 89 
for linkage loader execution 83 

partitioned data sets (PDS) 104 
creation of 156 
deleting a member of 158 
processing a member of 158 
reorganization of 158 
structure of 155 
updating a member 160 

partitions in MFT, priority of 34 
PCP (primary control program) 32,33 

indicative dump produced by 176 
POS (see partitioned data set) 
permanent change to cataloged procedure 97 
PICTURE attribute restriction 307 
PL/I (F) environment in language 
linking 204 

arguments 210 
dope vector descriptor (OVO) 210 
dynamic storage area (DSA) 210 
file control block (FCB) 210 
input/output control block (IOCB) 210 
open control block (OCB) 210 
parameters 210 
record dope vector (RDV) 210 



SPIE m~cro 205 
STAE macro 205 

PL/I and other languages 201-215 
PL/I cataloged procedures 93-100 
PL/I dump data set (PL1DUMP) 91 
PL/I library (~ PL/I subroutine library) 
PL/I main procedure (invocation of) 205 
PL/I preprocessor (~ compile-time 

processing) 
PL/I subroutine library 

(SYS1.PL1LIB) 37,161,270-278 
PL/I-COBOL data set interchange 203 
PL/I-FORTRAN 201 
PL1DFC -compile and punch object module 93 
PL1DUMP dump 175 
PL1LFC -compile and write object module 93 
PL1LFCG -compile, load, and execute 95 

with PL/I shared library 284 
PL1LFCL -compile and link-edit 94 

with PL/I shared library 282 
PL1LFCLG -compile, link, and execute 95 

with PL/I shared library 282 
PL1LFG -load and execute 95 

with PL/I shared library 284 
PL1LFLG -link-edit and execute 95 

with PL/I shared library 282 
PL1LIB system generation macro 
instruction 279 

POINTER built-in function restriction 306 
POSITION attribute restriction 307 
postponing definition of data set 253 
precision restriction 307 
preprocessor (~ compile-time processing) 
primary control program (PCP) 32 
prime data area, INDEXED data sets 131 
PRINT files 119-120 
PRINT linkage loader option 84 
printer line spacing 112 
printer control characters for PRINT 
files 119 

printer spacing option (PRTSP 
subparameter) 252 

printing (using record I/O) 129 
priority (PRTY parameter) 32 
priority of jobs under MVT 35 
priority of MFT partitions 34 
priority scheduling under OS 32 
private libraries 160 
procedure library (SYS1.PROCLIB) 93,160 
procedure step (~ cataloged procedures) 
procedures restriction (compile-time) 307 
PROCESS statement 57 
program control section in object or load 

module text 64 
program listings 

compiler 49 
control program 91 

. linkage editor 70 
linkage loader 81 

programming requirements for 
multitasking 163 

prologue code to a PL/I procedure 208 
PRTSP subparameter 252 
PRTY parameter of JOB statement 32 
PRV (pseudo-register vector) 71 
pseudo-register vector (PRV) in linkage 
editor module map 71 

QISAM (queued indexed sequential access 
method) 109 

QSAM (queued sequential access method) 109 
QTAM (queued telecon~unications access 

method) 110 
qualified names of data sets 101 

qualified structure names (PL/I 
restriction) 306 

RD parameter in job control language 178 
reader/interpreter 31 
reading a data set 25 
RECFM subparameter 252 
record dope vector (RDV) 210 
record formats 102 

CONSECUTIVE data sets 128 
FORTRAN 202 
in record I/O 124 
in stream I/O 114 
INDEXED data sets 134 
RECFM subparameter 252 
REGIONAL data sets 141 
sort interface 184 
U-format records 104 
V-format records 103 
VBS-format records 104 
VS-format records 104 

record length (LRECL subparameter) 251 
RECORD statement (sort/merge) 188 
record-oriented I/C 124-154 

COBOL option 203 
CONSECUTIVE data sets 125-130 
INDEXED data sets 130-139 
message processing programs 153 
printing 129 
punching cards 129 
REGIONAL data sets 139-152 
restriction on use of bit strings 303 
telecommunications data sets 152-154 
teleprocessing data sets 152-154 

recursive procedures (use of label 
constants and variables) 304 

REFER option restriction 307 
REGION parameter of EXEC statement 90 
REGION parameter of JOB statement 32 
region sizes in cataloged procedures 100 
REGIONAL data sets 139-152 

access of 143 
creation of 141 
DD statement for 142-143 
organization of 139 
REGIONAL (1) examples 144-146 
REGIONAL (2) examples 147-149 
REGIONAL(3) examples 150-152 
search limit CLIMCT subparameter) 250 

regions in MVT 35 
relocation dictionary 65 
REPLY option (descriptor codes) 92 
reorganization of INDEXED data set 138 
RES linkage loader option 85 
resident access methods 

(checkpoint/restart) 183 
resolution of addresses in main storage 65 
restart 177 
restart interfaces in PL/I 

IHERESN 182 

Index 513 



IHEREST 182 
RESTART parameter of JOB statement: 179 
restart from a checkpoint 180 
restrictions, implementation 297 
return codes 294,295 

creation of in a PL/I program 92 
for REPLY option response 92 
from the compiler 56 
from the linkage editor 72 
passed from checkpoint module 182 
STEP ABEND facility 295 

RKP (relative key position) 
subparameter 136,252 

RLD (relocation dictionary), for 
link-editing 65 

ROLL parameter of EXEC statement 90 
ROLL parameter of JOB statement 32 
root segment of overlay program 14 
route code 92 

scale factor restriction 307 
scheduling jobs 32-36 
search limit (LIMCT subparameter) 250 
second version of the compiler 261 
segment of overlay program 74 
SEP parameter 256 
sequential data sets (~ CONSECUTIVE data 
sets) 

SEQUENTIAL files in multitasking 171 
serial number of volumes (VOLUME==SER 
parameter) 260 ' 

shared library 279-285 
cataloged procedures for 282 
creation of 279 
how to use 281 

shared library transfer vector in object or 
load modules 64 

single checkpoint 177 
SIZE compiler option 44 

value to stop spill file openi.ng 56 
SIZE linkage editor opti.on 70 
SIZE linkage loader option 85 
SKIP format item in PRINT file 1.19 
SKIP format item restriction 308 
SNAP option used in multitasking 168 
SORMGIN compiler option 47 
sort interface with PL/I 184-200 

data sets for 185 
DD (data definition) statement; for 186 
IHESRT (sort interface) module 184 
IHESRTA interface 189 

example of use 190 
IHESRTB interface 191 

example of use 192 
IHESRTC interface 193 

example of use 194 
IHESRTD interface 195 

example of use 196 
multitasking, used in 198 
record formats for 184 
RECORD statement 188 
SORT statement 187 
storage requirements for 185 
variable-length record sorting 197 

example 199 
SORT statement (sort/merge) 187 
SOURCE compiler option 49 

514 

source program 50-54 
aggregate length table 51 
attribute table 50,51 
cross reference table 51 
diagnostic messages 314-445 
ESD listing 52 
offsets table 52 
statement nesting 50 
stat.istics 54 
storage requirements table 51 

source statement libraries 
record formats for 42 
use of ~INCLUDE statement 60 
use of IEBUPDTE utility to create 61 

source statement numbering (STMT 
option) 45 

SOURCE2 compiler option 49 
space on direct-access storage (SPACE 
subparameter) 257 

spanned records (VS- and VBS-format) 104 
spill file for compiler 42 

diagnostic message for 57 
SPLIT parameter 257 
STACK subparameter 252 
stacker control (STACK subparameter) 252 
standard defaults for compiler options 44 
standard ESD entries, table of 53 
standard files in PL/I 26 
standard format data sets 102 
statement numbering for IF and ON 
statements 50 

static internal control section in object 
or load module 64 

static internal storage map 54 
statistics for compilations 54 
STATUS built-in function in 
multitasking 170 

STEP ABEND facility 295 
step completion information on SYSPRINT 92 
step libaries (STEPLIB) 162 
STEPLIB (step library) statement 162 
STMT statement numbering compiler 
option 45 

storage organization under MVT 35 
storage partitions in MFT 34 
storage requirements 

for compiler data sets 290 
for linkage editor 66,70 
for linkage loader 19 
for PL/I sort interface 185 
listing of 51 

stream-oriented I/C 114-123 
accessing a data set 117 
buffers for 115 
creating a data set 115 
example of PRINT file 121 
example of retrieving a data set 119 
FORTRAN and PL/I floating-point 

numbers 203 
PRINT files 119 
record formats for 114 
tab settings 120 

method of altering 121 
use of SYSPRINT and SYSIN in PL/I 122 

STRING built-in function restriction 308 
string dope vector (SDV) 208 
string lengths restriction 308 
strings in multitasking 171 



structUJre dope vector <STDV) 208 
structure of load and object modules (for 
linkage editing) 64 

structUJ:es in data set interchange 201 
SUBALLOC parameter 257 
subroutine library modules 

list of 270-278 
inclusion by linkage editor 68 
inclusion by linkage loader 78 
PL/I shared libary 279-286 

superviBor program, function of 13 
SYNCHKE compiler option 46 
SYNCHKS compiler option 46 
SYNCHKT compiler option 46 
synchronization of I/O in 

multipl:'ogramming 174 
syntax checking, compiler options for 46 
SYSABEND dump 175 
SYSCHK ddname 180 
SYSCP output device 
SYSDA output device 
SYSIN data set, use 

for ·the compiler 
SYSIN si:andard PL/I 
SYSLIB data set 

group name 
group name 
of 26 

40 
file 122 

for %INCLUDE statement 43 
for link-editing 68 
for link-loading 81 

SYSLIN data set 

260 
260 

auxiliary storage requirements 289 
for compilation 41 
for linkage editor 67 
for linkage loader 80 
storage requirements 289 

SYSLMOD linkage editor data set 67 
SYSLOUT linkage loader data set 81 
SYSOUT parameter 258 
SYSPRIN'J~ 

auxiliary storage requirements 289 
for compiler listings 42 
for linkage editor listings 68,70 
for linkage loader listings 81 
for load module execution 91 
PL/I standard file 122 

SYSPUNCH auxiliary storage requirement 289 
SYSPUNCII data set for compilation 40 
SYSSQ output device group name 260 
system catalog, use of 24 
system libraries 160 
system (mtput stream (SYSOUT) 

paramet:er 258 
system ()utput, classes of 

SYSOtJT classes 26 
system l~equirements 267 
SYSUDUMP dump 175 
SYSUTl auxiliary storage requirement 289 
SYSUTl data set for compiler workspace 42 
SYSUTl linkage editor data set 67 
SYSUT3 auxiliary storage requirement 289 
SYSUT3 data set for compiler workspace 42 
SYS1.LINKLIB(link library) 160 
SYS1.PL1.LI~(PL/I subroutine library) 160 
SYS1.PROCLIB(procedure library) 160 

tab cont:rol table (module IHETAB) 120,122 
table ot offsets, listing of 51 
tabs in stream-oriented I/O 120 

how to alter 122 
task execution 32,34,36 
task termination 172 

abnormal 173 
tasking in PL/I (~multitasking) 
telecommunications data sets 

(TRANSIENT) 104,152 
teleprocessing 

data sets for 152-154 
message control program (MCP) 152 
message processing program (MPP) 152 
QTAM 152 

temporary data set name prefix (&&) 24 
testing cataloged procedures as in-stream 
procedures 100 

testing programs as in-stream 
procedures 19 

text (TXT) in objector load modules 64 
third version of the compiler 261 
TIME parameter of EXEC statement 90 
time slicing in MFT 34 
time slicing in MVT 36 
timer feature, for timing compilations 49 
TITLE option of OPEN statement 

restriction 309 
use of 107 

track index, INDEXED data sets 130 
transfer of control in multitasking 164 
TRANSIENT (telecommunications) data 
sets 104,152 

TRANSIENT attribute, rules for 309 
TRANSMIT condition, suppression option 

(OPTCD=U subparameter) 252 
tree structure of overlay program 74 
TRTCH subparameter 252 
type numbers 

direct-access devices 259 
graphic units 260 
magnetic tape devices 259 

TYPRUN parameter of JOB statement 32 

U-format records 104 
UCS (uniyersal character set) used with 

MVT 36 
UCS parameter 258 

undefined-length records (U-fo1IDat) 104 
UNIT parameter 259 
unit record devices 

general information 112 
record formats in record-oriented 

I/O 124 
record formats in stream I/O 115 
type numbers 259 
unit requesting (UNIT) parameter 259 

universal character set (UCS) 
parameter 258 

printer under MVT 36 
user completion codes 294 

STEP ABEND facility 295 
utility programs 

for creating source libraries 59 
for processing partitioned data 
sets 160 

V-format records (~variable-length 
records) 

Index 515 



variable-length records 103 
block control data 104 
blocked (VB-format) 104 
sorting with PL/I 197 

example 199 
variables restriction 309 
variables used in multitasking 168,171 
varying strings restriction 310 
VB-format records 104 
versions of the (F) compiler 261 
volume label 105 
VOLUME parameter 260 
VTOC (volume table of contents) 105 

WAIT statement 310 
in multitasking 169 

warning messages (format of) 56 
workfiles, dedicated 

DD statements in cataloged 
procedures 96 

for the compiler 42 
workspace for the compiler 42 

X/ in cataloged procedure ·statement 97 
XCAL linkage editor option 69 
XCTL macro instruction, to invoke 

516 

compiler 61 
XREF compiler option 49 
XREF linkage editor option 69 
XX in cataloged procedure statement 97 

026 keypunch, BCD or EBCDIC compiler 
options for 47 

029 keypunch, BCD or EBCDIC compiler 
options for 47 

1403 printer control codes 130 

2540 card read/punch control codes 130 

48-character set 
compiler option 47 
processor option 37 
restriction 311 

60-character set compiler option 47 

7-track magnetic tape recording modes 
(TRTCH subparameter) 252 



READER'S COMMENT FORM 

IBM Systern/360 
PL/I (F) Programmer's Guide 

• How did you use this publication? 

As a reference source . 
As a classroom text 
As a self-study text 

o 
o 
o 

• Based on your own experience, rate this publication 

As a reference source: 

As a text: 

• 'What is -your occupation? 

Very 
Good 

Very 
Good 

Good 

Good 

Fair 

Fair 

Poor 

Poor 

Order No. GC28~i594-7 

Very 
Poor 

Very 
Poor 

• We would appreciate your other comments; please give specific page and line reterences 
where appropriate. If you wish a reply, be sure to include your name and address. 

• Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. 



GC28-6594-7 

YOUR COl\1MENTS PLEASE .... 

This SRL manual is part of a library that serves as a reference source for systems analysts, 
programmers and operators of I BM systems. Your answers to the questions on the back of this 
form, together with your comments, will help us produce better publications for your use. Each 
reply will be carefully reviewed by the persons responsible for writing and publishing this 
material. All comments and suggestions become the property of IBM. 

Please note: Requests for copies of publications and for assistance in utilizing your I BM system 
~ should be directed to your IBM representative or to the IBM sales office serving your locality. 

fold fold 
•••••••••••••••••••••••••••••••••••••••••••••• ' 0 ••••• ' •••••••••••••••••••••••••••••• It ••••••••••••••••••••••••••••••••••••• 

BUSINESS REPLY MAILI 

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED ~ 

Attention: Department 813 (HP) 

POSTAGE WILL BE PAID BY ... 

IBM Corporation 

112 East Post Road 

White Plains, N.Y. 10601 

FIRST CLASS 1 
PERMIT NO. 1359 

WHITE PLAINS, N.Y. 

•••••••••••••••••••••••••••••••••••••••• # ••••• " It •••• 0 ••••••••••••••••••••••••••••••••••••••••••• ~ ........................ : 

fold 

International Business Machines CorporatioIl 
Data Processing Division 
112 East Post Road, White Plains, N.Y.I060t 
[USA Only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[In ternational] 

fold 

G 
( 

" q 
c 

~ ... 



GC28·6694· 7 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N.Y.I06ot 
[USA Only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York '10017 
[International] 


	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450
	451
	452
	453
	454
	455
	456
	457
	458
	459
	460
	461
	462
	463
	464
	465
	466
	467
	468
	469
	470
	471
	472
	473
	474
	475
	476
	477
	478
	479
	480
	481
	482
	483
	484
	485
	486
	487
	488
	489
	490
	491
	492
	493
	494
	495
	496
	497
	498
	499
	500
	501
	502
	503
	504
	505
	506
	507
	508
	509
	510
	511
	512
	513
	514
	515
	516
	replyA
	replyB
	xBack

