File No. S360-29 DS
Order No. GC28-6594-7

Systems Reference Library

IBM System/360 Operating System
PL/1 (F) |

Programmer's Guide

Program Number 3605-NL-511

This publication is a companion volume to IBM System/360
Operating System: PL/I (F) Language Reference Manual, Form
C28-8201. Together, the two books form a guide to the
writing and execution of PL/I programs under the control of
an IBM System/360 Operating System that includes the PL/I
(F) Compiler. The Programmer's Guide is concerned with the
relationship between a PL/I program and the operating
system. It explains how to compile, link edit, and execute
a PL/I program, and introduces job control language, the
linkage editor, and other essential features of the operating
system.

Eighth Edition (January, 1971)

This is a major revision of, and obsoletes, C28~6594-6 and
Technical Newsletter GN33-6016. In addition to incorporating
information from the Technical Newsletter this new edition
contains changes to the description of the PL/I sorting
facilities and a number of minor changes throughout. Changes
to the text, and small changes to illustrations, are
indicated by a vertical line to the left of the change;
changed or added illustrations are denoted by the symbol e
to the left of the caption.

This edition applies to Release 20 of the IBM System/360
Operating System, and to all subsequent releases until other-
wise indicated in new editions or Technical Newsletters.
Changes are continually made to the specifications herein;
before using this publication in connection with the
operation of IBM systems, consult the latest IBM System/360
Bibliography SRL Newsletter, Form N20-0360, for the editions
that are applicable and current.

The information contained in this publication concerning
Model 195 support is for planning purposes only.

Requests for copies of IBM publications should be made to
your IBM representative or the IBM branch office serving
your locality.

A form for reader's comments is provided at the back of

this publication. If the form has been removed, comments may
be addressed to IBM United Kingdom Laboratories Ltd.,
Programming Publications, Hursley Park, Winchester,
Hampshire, England.

® Copyright International Business Machines Corporation
1966,1967,1968,1969,1970,1971

This publication and IBM System/360
Operating System: PL/I (F) Language
Reference Manual form a complementary pair
Programmer's Guide is concerned with the
relationship between a PL/I program and IBM
Systems/360 Operating System; it explains
how to compile, link edit, and execute a
PL/I program. The Programmer's Guide is
concerned with the relationship between a
PL/I program and IBM System/360 Operating
System; it explains how to compile, link
edit, and execute a PL/I program.

Part 1 is intended primarily for the
casual (non-specialist) programmer or for
the newcomer to IBM System/360; the reader
is assumed to have only an elementary grasp
of PL/I and an awareness of the basic
concepts of electronic data processing®. 2
and 3 are designed for use either as
reference material or for reading as an
introduction to the features they describe.

PREREQUISITE PUBLICATION

The reader is assumed to have a working
knowledge of PL/I; he should therefore be
familiar with the material contained in the
following publication:

IBM System/360 Operating System: PL/I (F)
Lanquage Reference Manual, Order No.
GC28-8201

RECOMMENDED PUBLICATIONS

The text of the Programmer's Guide refers
to the following publications for
information outside its scope:

IBM System/360 Operating System:

PL/I (F) Compiler, Program Logic Manual,
Order No. GY28-6800

PL/I Subroutine Library Program Logic
Manual, Order No. GY28-6801

Advanced Checkpoint/Restart Planning
Guide, Order No. GC28-6708

ifor example, as described in Introduction
to IBM Data Processing Systems, Order No.
GC20-1684.

Preface

Concepts .and Facilities, Order No.
GC28-~6535

Linkage Editor and .Loader, Order No.
GC28-6538

Job.Control Language User's Guide, Order
No. GC28-6703

Job .control Language Reference, Order No.

GC28-6704
System.Generation, Order No. GC28-6554
Utilities, Order No. GC28-6586

System Control Blocks, Order No.
GC28-6628

Messages .and Codes, Order No. GC28-6631

Job.Control Language Charts, Order No.
GC28-6632

Supervisor and Data Management Services,
Order No. GC28-66u46

Supervisor and Data Management Macro
Instructions, Order No. GC28-6547

Programmer's Guide to Debugging, Order
No. GC28-6670 '

Queued Telecommunications Access Method
Message Processing Program Services,
Order No. GC30-2003

Queued Telecommunications Access Method
Message Control Program, Order No.
GC30-2005

Sort/Merge, Order No. GC28-6543

In addition to the publications listed
above, the following contain information
that may be helpful to the user:

IBM System/360 Operating System:

Operator's Reference, Order No.
GC28-6691

Operator's Procedures, Order No.
GC28-6692

System Programmer's Guide, Order No.
GC28-6550

Storage Estimates, Order No. GC28-6551

PL/I Subroutine Library, Computational
Subroutines, Order No. GC28-6590

IBM System/360:

Principles of .Operation, Order No.
‘A22-6821

PART 1:
THE PL/I

BASIC PROGRAMMING WITH
(F) COMPILER « « « « « »

CHAPTER 1: INTRODUCTION TO THE
OPERATING SYSTEM«. « » + o o o o o o

IBM System/360 Operating
Job Scheduler « « « ¢« « « «
PL/I (F) Compiler . .
Linkage Editor. . . .
Linkage Loader. . . .

Job Control Language « « « « « « « «
Format of Job Control Statements.
JOB Statement « o« o ¢ o ¢ o o« o o
EXEC Statement.
DD Statement. . « « « &
Delimiter Statement . .

Executing a PL/I Program . . .

CHAPTER 2: HOW TO RUN A SIMPLE
PROGRAM ¢ o « o« o o o o = o o o o o @

Job Control Statements . « =« « o o o «
Further Information « « « « « o «

CHAPTER 3: HOW TO CREATE AND ACCESS A
SIMPLE DATA SET « « « « v o o o o « =

Using a Data Set .« « o o« o o o o « o o

How to Create a Simple Data Set. . . .
Type of Output Device (UNIT=) . . .
Volume Serial Number (VOLUME=SER=).,
Name of Data Set (DSNAME=).
Format of the Records (DCB=). . . .
Auxiliary Storage Required (SPACE=)
Disposition of Data Set (DISP=) . .

How to Access an Existing Data Set

Type of Input Device. .

Volume Serial Number. . . .

Name of Data Set. . . .

Format of the Records
Auxiliary Storage Required. .
Disposition of Data Set . . .
Special-Purpose Parameters. .
System Output (SYSOUT=) . . .
Data in the Input Stream. . .

Standard Files ¢« v« &« ¢ o « = o o = «
EXampleS ¢« ¢ ¢ ¢ o o o o o o @« o o o @

PART 2: USING ALL THE FACILITIES
OF THE PL/I (F) COMPILER

CHAPTER 4: JOB INITIALIZATION. . « «

INEroAUCEION « .o o o o o o « o « o o @

s & & 3 s & s 3 s @

11

13

13
13
14
14
14

14
14
16
16
16
17

17

20

20
21

22
22

22
23
23
24
24

24

25
25
25
25
25
25
26
26
26
26

26

26

29
31
31

Contents

JOB Statement. « « « o« o« ¢ o ¢ o o o &

Job Scheduling« o =

Job scheduling and the COntrol
Programe. « « « o« o o « o o =
Primary Control Program (PCP)
MFT Control Program « . « o «
MVT Control Program « « « «

e & 9
e 8 o s
a 8 o @

CHAPTER 5: COMPIIATION « « 2 « « « o &
INtroduction « « o o o o o @ o o o © .
Compilation . ¢« o ¢ ¢ ¢ o o o « « &

Job Control Language Compilation
EXEC Statement. « ¢« « « ¢ o « o =«
DD Statements . « « « ¢ « ¢« o o
EXamPle ¢« « o o o o o o o o o o @

Optional Facilities. . .
Control Options . . .
Preprocessor Options.
Input Options . « « =«
Output Options. . « .
Listing Options . . .

s & & & & 3
s ¢ o a &
s o & & v @

« & s 0 s
s o & & 0 8
s 3 & & 0 &
s 8 o 8 s &

Listing. « « . . - @ o o « = o =
Options used for the Compilation.
Preprocessor Input. - . o « . . «
Source Programe « « o « o o « o @
Attribute and Cross-Reference Tabl
Storage Requirements. « « « « « .
Table of Offsets.
External Symbol Dictionary.
Statistics. ¢« « ¢ ¢ « ¢ . .
Object Module
Diagnostic Messages .
Return Code

o 8 s s & o s (D e s s

¢« 3 ¢ a2 o
a s & s e @
e & & s 2 0

Batched Compilation. « « « « « « « o«
The PROCESS Statement . -

Job Control Language for Batched
Processing -« « « « o « s o o o o @

Compile-Time Processing. . « « « « « «
Invoking the Preprocessor
The %INCLUDE Statement.

Dynamic Invocation of the Compiler . .

CHAPTER 6: LINKAGE EDITOR AND LOADER .
Introduction . . « ¢ ¢ o« ¢ ¢ ¢ o o o &
Choice of Linkage Program . . . « .

Linkage EAitOr « « = o v = o o « o o &«
Module Structur€. « « « « o o « « =
Linkage Editor Processing . . « « .«

Job Control Language for Link-Editing.
EXEC Statemente ¢« « ¢« o« « ¢ o o o o
DD Statements . ¢« o« « ¢« o ¢ ¢ ¢ &

e & ¢ o 5 o s & ¢ & s

EXample « « ¢« 4« « o « o o« o« « s« « o o 68 CHAPTER 8: CATALOGED PROCEDURES. 93

Optional Facilities. 69 INtrodUCtion « « v o e o o « o o oo « « 93

LISTe « = o« ¢« o o« s o« o« o « o »w o « o 69

MAP ¢ o« o 2 o 2 a o« a s o @ o« o« s« » « 69 PL/1I Cataloged Procedures Supplied by

XREF: o« o @ « o« « @« a« « o a « o « « « 69 IBM . -« « . e o s e o o 2 e o s = o 93

LET « ¢ o o o« o o « o « o o o« o o« « « 69 Compile and Punch Object Deck

XCAL: ¢ « « « 2« « a o o o« o o« a o« « o« 69 (PL1DFC) . e @ e o « o o v e w o o 93

NCAL. v ¢ o o o o o = o o o« =« « « « « 69 Compile and Write Object Module

SIZE. « o e « « = o o a s s s« a s« « o« 10 (PLILFC) v« « o « e o o« o o © o« o« « « 93

Compile and Link-Edit (PLILFCL) . . . 94

Listing. « ¢ o « o 2 o o o « a « o &« « « 10 Compile, Link-Edit, and Execute

Control Statements and Errors 70 (PL1LFCLG) . . . « - . 95

Diagnostic Message Directory. 71 Link-Edit and Execute (PLlLFLG) e« - - 95

MoAUle Ma3P. o o « o s o o o o« o« « o« » 11 Compile, Load and Execute (PLILFCG) . 95

Cross-Reference Table . « « « 72 Load and Execute (PLI1LFG) . . « « . . 96

Return Code « « o« o v o ¢ ¢ « o « « o 12 Dedicated Workfiles . .« ¢« « « « « o« « 96
Additional Processing. . « « « « « o « o 72 Using Cataloged Procedures . « « « « - « 97

Format of Control Statements. 72

Module Name€ -« « o« « ¢« « « « « « « o « 13 Altering Cataloged Procedures. 97

Additional Input Sources. « « « « « o 73 Temporary Modification. 97

Overlay ProgramS. « « « o o « « « « o« U Permanent Modification.100
Linkage Loader . . « o « « 2 o « o« =« o« « 17 CHAPTER 9: DATA SETS AND PL/I FILES. . .101

Module Structure. . . « « « « « « « o 17
Linkage Loader Processing 78 Introduction « « « « ¢ o« ¢« o o @ o o « 101

Job Control Language for Link-Loading. . 80 Data SEtSe o ¢« « o = o s o o o o « o« o 2101
EXEC Statement. « « ¢« « « « « « « « « 80 Data Set NameS. ¢ « @« « « = « « « « 2101
DD Statements « « « « « « « « = « « - 80 Record FormatsS. « « o o« o o « o «» « 2102
Data Set Organlzatlon e e e o o o o <104
Optional Facilities. . . . « + . +« . . . 83 Labels. « o « o o 4105
Control Statements. . . . « « « « - . 83 Data Definition (DD) Statement. « - 2105
Options in the PARM Parameter 83 Files and Data Sets .« . . « « « « « 107
CALL|NOCALL|NCAL. = « « =« o « « « « o 88
EPu ¢ o o o o o « @« s o« o o « o o « o« 84 Operating System Data Management107
LET|NOLET « « « « ¢ o o o« o « « « o« o 84 Buffers « ¢« o « « o 2 « o« o « o « « 2109
MAP|NOMAP o « o o « o o o o « « « « o« 8U Access Methods. « v« ¢ ¢ o « o « o« « 109
PRINT|NOPRINT . . « =« =« « « » « « « . 84 Data Control Block. « « '« » « « « « 110
SIZE: o« o « o o o s o o « « « « « o « 80 Opening a File. . . . <« ¢« « - « « - .111
RESINORES « ¢ « « v« « « = « =« « « « « 85 Closing a File. v & ¢ ¢ ¢ & o o o o 2112
Default Options . « ¢« ¢« « « « « « « « 85
Auxiliary Storage Devices. . . « « « . 112
Listing. =« « o« o « ¢ o o o « o« « &« « « « 85 Card Reader and Punch « .112
Module Map. . « « « o o =« « ¢« « « o« -« 85 Paper Tape Reader . « « « « « « « o 112
Explanatory Error or Warning Printer . + o ¢ o o o o o « o o » « 2112
MESSSAgESa « « « 2 « « s o« « o« « « « 85 Magnetic Tape « « « « o o » « o « « o113
Diagnostic Messages . « « « « « « - o 86 Direct-Access Devices « . .113

CHAPTER 7: EXECUTING THE LOAD MODULE . . 87 CHAPTER 10: STREAM-ORIENTED
TRANSMISSION. v ¢ o« ¢ « « o =« « « « o <118
Introduction « « « « o 2 ¢ o « « « « « « 87

Record FOrmate. « o« o o« o o o » o o « o <110
Load Module ProcessSing . « « « « « « « « 87 Fixed-Length Records. . . . « « . . .114
Identifying the Module. . . . « . . . 87 Variable-lLength Records . . -114
Undefined-Length Records. -114
Job Control Language for Execution . . . 88 Choice of Record Format . . « « . . 114
EXEC Statement.: « « « « ¢« o « ¢« « « « 89
Standard DD Statements. « - . « « . . 90 Buffers. « « ¢ o ¢ o o o o o o o o « o 2115
User DD Statements. . « « « « « « « « 91
DCB SubparameterS. « « « « o « o « « « o115
Listing. « « « « « & - e e s e o s o 91
Contents of SYSPRINT Llsting. « « o o 91 Creating a Data Set. .« « . « &« « =« « « 115
Return COA€Se « o o v o o o « o « = o 92 Essential Information116

EXampPle « ¢ o o« o o o ¢ o = = = = « <117
Communication with Program during
EXecution « o 4« o ¢« o o o o o « o o o« « 92 Accessing a Data Set . .« ¢ « & o o - o 117

Essential Information
Magnetic Tape Without Standard

LabelsS ¢« v ¢ o o o o ¢ o « s o
Record FOrmat « « o o « o « o o o
EXample « « ¢« o o o o o ¢ o o

PRINT Files.«
Record Format . .
Example . . « .
Tab Control Table

s 8 & 2
o s e
¢ & &
¢« o o
s 8 e
o e e s
¢ & o 3
¢ e« s 6

Standard Files . o« o o ¢ ¢ o o o o «

CHAPTER 11: RECORD-ORIENTED
TRANSMISSION. o o ¢ « o o ¢ o o o «

Record FOXMAts « o o o « s o o o o =
Choice of Record Format

BUffers. o « o ¢« o o o o o o o o o o
Creating and Accessing Data

CONSECUTIVE Data Sets. . .« . o
Creating a CONSECUTIVE Data Set .
Accessing a CONSECUTIVE Data Set.
Example of CONSECUTIVE Data Sets.
Printing and Punching Cards . . .

INDEXED Data SetSe. « o« o « = o o «
Indexes + « . .- . . .
Creating an INDEXED Data Set. .
Accessing an INDEXED Data Set .
Reorganizing an INDEXED Data Set.
Examples of INDEXED Data Sets . .

REGIONAL Data Sets . « -« . o e
Creating a REGIONAL Data Set. .
Accessing a REGIONAL Data Set .
Examples of REGIONAL Data Sets.

TeleprocesSSiNng o« « o« o o o = o o o o
Introduction. . « « « « . .
Message Processing Program (MPP).
How tO Run an MPP « « ¢ ¢ ¢ & o &

CHAPTER 12: LIBRARIES OF DATA SETS .

INtroduction « « « « « « o o o o o o

Structure of a Partitioned Data Set.
DireCtOry o o« o« o o o o o o o o @

Creating a Partitioned Data Set. . .
Space Parameter « « « o« s o o o o

Processing a Member. . « « « « « « «
Processing with PL/I. . . « . . .
Operating System Utility Programs. .
System Libraries . . « . «
Link Library. . « « . «

Procedure Library . . .
PL/I Subroutine Library

s s s 0
s ¢ 80
“ 08
s s e
L] | [] L] []

s 0 3 0

s &« s 8 T s 2 e s

117

.118
.118
.119

.119
.120
.120
.120

122

124

124
.124

.125
.125

.125
.125
.126
.128
.129

.130
.130
.131
.137
.138
.138

.139
141
-143
144

.152
.152
.153
.153

155
.155

<155
.155

156
157

.15t
.159

.160

.161
.161
.161
.161

Private Libraries. . « « « ¢« ¢« « « .
JOb LibXary « « o o o o o o o o @
Step Librarye « o« « « o ¢ o o o «

CHAPTER 13: MULTITASKING

INntroduction « « « o o« o o o o o o =

Multitasking Requirements. . . .
System/360 Requirements . -
Operating System Requirements
Programming Requirements. . .

Multitasking Management. . . «
Transfer of control
Use of Priorities in PL/I .
Programming Considerations.
Input/Output Handling . . .
Task Termination. . « « « .

& & 0 s s &
¢« & 8 o s

Multiprocessing. « + « o o o ¢ o o
Synchronization « « ¢« ¢« « ¢ « o =«

CHAPTER 1l4: OTHER FACILITIES OF THE
OPERATING SYSTEM. « « ¢ o o o o o o

Introduction . « « o ¢ « o o o o o o
Dump of Main Storagé . « « « ¢ o < .

Checkpoint/Restart Interface
Types of Restart. - .
Checkpoint/Restart Requlrements

Diagnostic AidsS. « « « ¢« « « « .
Job Control Languagé Details. . .
PL/I CALL Statement Details . . .
Restriction on Use of

Checkpoint/Restart « « . . « .
Effect of Checkpoint/Restart on

Data SetS. v ¢« ¢ « o ¢ o o o o o

Sort Interface. . « « « o « o s o o o
PL/I Sort Enviromment
User Control of SORT ddnames. . .
Defining the Sorting Application.
Entry Point IHESRTA « « « « « = «
Entry Point IHESRTB « « « « « « &
Entry Point THESRTC « « - o « « &
Entry Point IHESRTD . . .« . .
Sorting Varlable—Lenqth Records -

Use of PL/I Sort in a Multitasking

Environment. « « « « o o « « = o
CHAPTER 15: PL/I AND OTHER LANGUAGES
Introduction . ¢ ¢« ¢« ¢ ¢ ¢ ¢ « ¢ o &
Data Set Interchange . « « « « o &«

PL/I-FORTRAN Data Set Interchange
PL/I-COBOL Data Set Interchange .
Linkage with Other Languages

PL/I (F) Environment and
Communications . « « « « « o

Communication with Other Languages.

.161
.161
.162

.163
.163

.163
.163
.163
.163

.164
.164
.166
L 167
.169
172

173
.174
175
.175
.175

176
-177

.178
.178
.180

.183
.183

.184
.184
.186
.187
.189
.191
.193
.195
.197

.198
-201
.201
.201
.201
.203
.20

.2048
.212

PART 3: APPENDIXES . ¢ v« o« o o « ¢ o « <217 Using Standard IBM Cataloged
Procedures « « o « o o o« « o
APPENDIX A: PROGRAMMING EXAMPLES219 Providing Your Own Cataloged
ProcedUres « o « « o« o « o o = = o 2283

e o o 2282

Example 1: Simple PL/I Program219
Listing ¢ o ¢ & ¢ ¢ o o 2 o o « o« « 2219 APPENDIX G:i IBM SYSTEM/360 MODEL 91
AND MODEL 195 . . & ¢ o ¢ o « o « « « 287
Example 2: Compiler and Linkage-Editor
ListingS. o « o« o « o s o o o = o & o« 226 APPENDIX H: COMPILER DATA SETS « . . - .289
Listing « v ¢ 4 ¢ o 4 o o 0 o & o . 4227 ‘
APPENDIX I: ON, RETURN, AND USER
APPENDIX B: PARAMETERS OF DD STATEMENT .249 COMPLETION CODESe « « o o o o « « « « 2291

APPENDIX C: VERSIONS OF THE PL/I (F) ON-COAES o « o « « o v o s » s « o « « 2291
COMPILER. « « o « o = « o s s = = o« « 261
Return Codes and User Completion Codes .294
APPENDIX D: SYSTEM REQUIREMENTS.267 Step Abend Facility . « « « o - o .235
Return Co3€S. o « ¢ o o « » o o« « « 295
Control Program OptionsS. « « « « o « » <267
APPENDIX J: IMPLEMENTATION CONVENTIONS
Machine Requirements . . « . o« « « « « 267 AND RESTRICTIONS: 4 « 2 o o « o o o « 2297

APPENDIX E: PL/I LIBRARY SUBROUTINES . .270 APPENDIX K: DIAGNOSTIC MESSAGES. . . « 313
APPENDIX F: SHARED LIBRARY. « « o « « 4279 Source Program Diagnostic Messages . . .313

INEXoduction « o o ¢ o o « « o o = « « 279 Compile-Time Processing Diagnostic

MESSAgES. « « o o ¢« o o o v o « « « o JUUS
How to Create a Shared Library279

Object-Time Diagnostic Messages.U467
How to Use a Shared Library. « « « » . .281

INDEXe « « o =« « =« o« = o .2 « s o« o o « 2506

A JOB Statement
Figure 1-2. An EXEC Statement
Figure 1-3. A DD Statement (Using a
Continuation Card). « « o o o « =« o
Figure 1-4. Typical Sequence of Job
Control Statements for Compile,
Link-Edit, and Execute Steps. . - « .
Figure 1-5. Typical Sequence of Job
control sStatements for Compile and
Load-and-Execute StepS. « « « « o »
Figure 2-1. Job Control Cards for the
Execution of a Simple PL/I Program. .
Figure 3~1. Creating a CONSECUTIVE
Data Set: Essential Parameters of DD
Statement « « ¢ ¢ « ¢ ¢ ¢ ¢ @ o o o
Figure 3-2. Accessing a CONSECUTIVE
Data Set: Essential Parameters of DD
Statement « « « « ¢ « ¢ 4 « o « o o
Figure 3-3. Creating a Simple
CONSECUTIVE Data S€ete « « o o ¢ o = «
Figure 3-4. Accessing a Simple
CONSECUTIVE Data Set. . . . ¢« o o e
Figure 5-1. PL/I (F) Compller-
Simplified Flow Diagram . . . « . .
Figure 5-~2. sStandard Data Sets for
Compilation « « « o ¢ o « o o o o o @
Figure 5-3. Characteristics of
Compiler Data SetS. « o o o o = o « «
Figure 5-4 Compiler Optionmns,
Abbreviations, and Standard Defaults.
Figure 5-5. Optional Components of

Figure 1-1.

Compiler Listing.
Figure 5-6. Typical Standard ESD
Entries . ¢« o ¢« o« ¢ o o o = o .« e
Figure 5-7. An Example of Batched
Processing. « « « o « o & « o o e @

Figure 5-8. Execution of the Programs
Compiled in Figure 5-7. « . .
Figure 5-9. Using the Preprocessor to
Create a Source DeCKe ¢ « « « o o o o
Figure 5-10. Placing Source
Statements in a New Library . « « « «
Figure 5-11. Including Source
Statements from a Library . . . « « .
Figure 6-1. Basic Linkage Editor
Processinge. v« « o « o « o o « « « « =
Figure 6-2. Linkage—-Editor Data Sets.
Figure 6-3. Processing of Additional
Data Sources. e o e o @
Figure 6-4. Program Sultable for
Overlay Structure . . ¢« « ¢ o« o o « =«
Figure 6~5. Overlay Tree Structure
for Program of Figure 6-4
Figure 6-6. Compiling, Llnk—Edltlng,
and Executing an Overlay Program. . .
Figure 6-7. Loader Processing (SYSLIB
Resolution) . « « v o ¢ ¢ o o o o « &
Figure 6-8. Loader Processing
(Link-Pack Area and SYSLIB
Resolution) « « v ¢ o o o o o ¢ o o &
Figure 6-9. Automatic Editing

15
16

18

19

19
20

23

25
27
27
38
40
41
4y
49
53
59
60
60
61
62

66

74

75

76

76

78

79
79

Figures

Figure 6-10. Linkage-Loader Data Sets
Figure 8-1. Cataloged Procedure
PL1DFC (Compile and Punch Object
Deck) - - - - - - - . . - L] . - - L] .
Figure 8-2. Cataloged Procedure
PLILFC (Compile and Write Object
Module) o o & o o o o e e o o o o =
Figure 8-3. Cataloged Procedure
PL1LFCL (Compile and Link-Edit) . . .
Figure 8-4. cCataloged Procedure
PL1LFCLG (Compile, Llnk-Edlt, and
Execute). . . - e« e s s e o «
Figure 8-5. Cataloged Procedure
PL1LFLG (Link-Edit and Execute) . . .
Figure 8-6. Cataloged Procedure
PL1LFCG (Compile, Load-and-Execute) .
Figure 8-7. Cataloged Procedure
PL1LFG (Load—-and-Execute) . . « « «
Figure 8-8. 1Invoking Cataloged
Procedure PLILFLG « « o« « < o« o o o
Figure 8-9 Executing PL1DFC as an
In-Stream Procedure « o
Figure 9-1. A Hierarchy of Indexes. -
Figure 9-2. Fixed-Length Records. . .
Figure 9-3. Variable-Length Records. .
Figure 9-4. Associating a File with a
Data Sete o o ¢ ¢ o o o « o o o o = @
Figure 9-5. Data Management Access
Methods for Record-Oriented
Transmission. « « o ¢ o o o o o o o o
Figure 9-6. How the Operating System
completes the Data Control Block. . .
Figure 9-7. Card Read Punch 2540:
Stacker Numbers . . . o« o v u ®
Figure 10-1. Creating a Data Set:
Essential Parameters of DD Statement.
Figure 10-2. Using Stream-Oriented
Transmission to Create a Data Set . .
Figure 10-3. Accessing a Data Set:
Essential Parameters of DD Statement.
Figure 10-4. Using Stream-Oriented
Transmission to Access a Data Set . .
Figure 10-5. Using a PRINT File . . .
Figure 10-6 Tabular Control Table
(Module IHETAB) ¢ ¢ ¢ © o o o o = o o
Figure 10-7. Making a Temporary
Change in Tab Settings. -
Figure 11-1. Creating a CONSECUTIVE
Data Set: Essential Parameters of DD
Statement . <« ¢ . v ¢ < ¢ o e e o o &
Figure 11-2. DCB Subparameters for
CONSECUTIVE Data Sets « « « « o« .
Figure 11-3. Accessing a CONSECUTIVE
Data Set: Essential Parameters of DD
Statement « « ¢« ¢ ¢ ¢ o o o e o o @
Figure 11-4. Creating and Accessing
CONSECUTIVE Data Set. . . . « « . =
Figure 11-5. ANS Printer and Card
Punch Control Characters.
Figure 11-6. 1403 Printer Control
COAES ¢ o « o o o o s o o o o o o o o

[\

.100
.102
.103
.103

.108

.110
.111
112
.116
117
.118

.119
.121

.122
123

.126
126

127
.128
.129

. 129

Figure 11-7. 2540 card Read Punch
COonNtrol COAeS « v o« o o« o « o o s o «
Figure 11-8. Printing with
Record-Oriented Transmission.
Figure 11-9. Index Structure of
INDEXED Data Set. « o
Figure 11-10. Adding Records to an
INDEXED Data Set. . « . « « o« . « e
Figure 11-11. Creating an INDEXED
Data Set: Essential Parameters of DD
Statement . .« .« ¢ ¢ d e o 2 o & o
Figure 11-12. DCB Subparameters for
INDEXED Data Sete « « o e o o = o o «
Figure 11-13. Record Formats in an
INDEXED Data Sete « o ¢ ¢ ¢ =« ¢ o o «
Figure 11-14. Record Format
Information for an INDEXED Data Set .
Figure 11-15. Accessing an INDEXED
Data Set: Essential Parameters of DD
Statement e 4 o e o o .
Figure 11-16. Creating an INDEXED
Data Sete « o o o o @ ¢« o o o v o o
Figure 11-17. Updating an INDEXED
Data Set. ¢ v ¢« o ¢ o o «a o o o o o «
Figure 11-18. Creating a REGIONAL
Data Set: Essential Parameters of DD
Statement « « ¢ « ¢« ¢ ¢ ¢ e o o o o .
Figure 11-19. DCB Subparameters for
REGIONAL Data Set « « o ¢ o o « «
Figure 11-20. Accessing a REGIONAL
Data Set: Essential Parameters of DD
Statement . . « ¢ o « o e 4 o e o e .
Figure 11-21. Creating a REGIONAL(1)
Data Sete ¢ o ¢ ¢ o o o« @ @ o« o o a &«
Figure 11-22. Accessing a REGIONAL(1)
Data Sete « o o o o o« o o o o o o o «
Figure 11-23. Creating a REGIONAL (2)
Data Set. ¢« o ¢« o o « ¢« o o o o o o @
Figure 11-24. REGIONAL(2) Data Sets:
Direct Update . . « « .+ « . - . .
Figure 11-25. REGIONAL(2) Data Sets.
Sequential Update and Direct Input. .
Figure 11-26. Creating a REGIONAL(3)
Data Sete « « ¢ ¢ ¢ o o o o o o« a o @
Figure 11-27. REGIONAL(3) Data Sets:
Direct Update . « o o ¢ o o o o o o »
Figure 11-28. REGIONAL(3) Data Sets:
Sequential Update and Direct Input. .
Figure 11-29. PL/I Message Processing
Program « o« o« « o « o o o o = o o o o
Figure 12-1. A Partitioned Data Set .

10

130

.130
.131
.132

.133
.134
.136
.136

.138
139
140

142
L1422

.143
145
146
.147
.148
.149
.150
.151
.152

.153
.156

Figure 12-2. A Partitloned Data Set
Directory Block . « « « + « '« . .
Figure 12-3. Contents of Directory
Entry . « <« « “ e e e
Figure 12-4, P1a01ng an Object Module
in a New Library. . .
Figure 12-5. Placing a Load Module 1n
an Existing Library « « ¢ ¢ o o ¢ o o
Figure 12-6. Using a PL/I Program to
Create a Member of a Partitioned Data
Set e« o o o @ @
Figure 12-7. Updating a Member of a
Partitioned Data Set. « = ¢« « o « o &
Figure 12-8. Use of JOBLIB Statement.
Figure 13-1. Transfer of Control
within a Multitasking Program
Figure 13-2. Flow of Control through
A Program « « o« « o o « o o o o « o
Figure 14-1. Return Codes from
Checkpoint Module IHECKP. « « « « «
Figure 14-2. Auxiliary Storage

required for Sort.. . . . e o e e
Figure 14.3. DD Statements for
Sort/Merge. . s e e s e e o o o a o

Figure 14-4. PL/I Program Invoking
THESRTA o o « o » o o« s a © o e o o o
Figure 14-5. PL/I Program Invoking
IHESRTB « o « « o o o« « o = s o o« o o
Figure 14-6. PL/I Program Invoking
IJHESRTC ¢ o « « = a « o o o = « = o o
Figure 14-7. PL/I Program Invoking
THESRTD o ¢ « o o o o o o o o o o o
Figure 14-8. Using IHESRTA to Sort
Variable-length Records . « « o« ¢ o
Figure 15-1. FORTRAN-PL/I Data
Equivalents « « o o« ¢ o ¢ o o o o « o
Figure 15-2. COBOL-PL/I Data
Equivalents « « o o ¢ o ¢ o o o o o o
Figure 15-3. 1Initial Entry to
Procedures with the MAIN Option.. . .
Figure 15-4. PL/I-FORTRAN: Example of
Named Common StOrage€. « « « o o « o o
Figure D-1. Control Program Options .
Figure D~2. Minimum System
RequirementS. « o « « o o o o o o o«
Figure D-3. Possible Minimum
Configurations of Main Storage. . . .
Figure F~1. Shared-Library Module
GYOUPS. o « o o % s o s s o o o a =« o
Figure I-1. Main ON-Code Groupings. .
Figure I-2. Detailed ON-Code
GXroupings o« « ¢ o o « o « o o o o o o

<157
«157
.158
.159

.160

.160
.162

«165
.167

.182

.185
.186
191
.193
.195
197
«200
.202
.204
.206

.214
.267

.268
«269

.280
«292

.292

PART 1: Basic Programming with the PL/I (F) Compiler

Part 1: Basic Programming with the PL/I (F) Compiler 11

12

Chapter 1:

In IBM Systemn/360, programs are usually
executed as part of a group of programs
collectively termed an operating system.
This chapter introduces IBM System/360
Operating System® (the operating system
that includes the PL/I (F) compiler), and
describes the job control language that
enables programmers to define the
requirements of their programs for the
operating system. Chapter 2 illustrates
the use of job control language for running
a simple PL/I program. The two chapters
are complementary; the first briefly
describes the operating system and job
control language, and the second
demonstrates how to use them to execute a
PL/I program. Chapter 3 introduces the
concept of storage of data and shows how to
use a simple data set.

IBM System/360 Operating System

IBM System/360 Operating System consists of
a control program and a number of
processing programs that together assist
both the operator and the programmer in the
use of IBM System/360. The operating
system relieves the programmer of routine
and time-consuming tasks by controlling the
allocation of storage space and
input/output devices. Through the language
translators that may be included, it makes
programming easier by permitting the use of
high-level languages such as PL/I. And it
increases the throughput of the machine
because it can process a stream of jobs
without interruption by the operator; it

provides automatic transition from one job

to another.

The control program supervises the
execution of all processing programs and
provides services that are required in
common by the processing programs during
their execution. It has four main
elements:

1. Supervisor: The supervisor program is
the control center of the operating
system, and controls and coordinates
all activity within it.

2. Master scheduler: The master scheduler
forms a two-way communication link

1IBM System/360 Operating System is
frequently referred to as 'the operating
system,' or simply 'the system.'

Introduction to the Operating System

between the operator and the operating
system.

3. Job scheduler: The job scheduler reads
and analyzes the input job stream (the
sequence of control statements and
data entering the system), allocates
input/output devices as necessary,
initiates the execution of processing
programs, and provides a record of the
work processed.

4, - Data management routines: The data
managément routines control
input/output operations, regulate the
use of input/output devices, and
provide access to the data held in
them.

The processing programs of the operating
system include service programs (for
example, the linkage editor) and language
translators (for example, the PL/I (F)
compiler) provided by IBM, as well as
programs that are written by the user and
incorporated as part of the system.

All the programs of the operating system
are stored in system.libraries, which are
held in auxiliary storage on a
direct-access storage device.

The most important components of the
operating system that directly concern the
PL/I programmexr are the job schedulex, the
PL/I (F) compiler, the linkage editor, and
the linkage loader, all of which are
discussed below. The operating system is
described in IBM System/360 Operating
System: Concepts and Facilities.

JOB SCHEDULER

The job scheduler is the component of the
operating system that handles
communications between the programmer and
the services provided by the operating
system. A simple programming language
called -job _control language (JCL) enables
the programmer to specify his requirements
to the operating system. The statements of
this language indicate to the job scheduler
the start and name of the job, specify the
programs that are to be executed, and
define the auxiliary storage requirements
of the programs. 1In response to the job
control statements, the job scheduler
allocates the input/output units required,
notifying the operator of any tapes or disk

Chapter 1: Introduction to the Operating System 13

packs that must be mounted, and then
requests the supervisor program to initiate
the execution of the specified programs.
After the execution of each program the job
scheduler prints a record of the work done.

PL/I (F) COMPILER

The PL/I (F) compiler is a program that
translates PL/I source programs into IEM
Systems/360 machine instructions. The set
of instructions produced by a compilation
is termed an object module. An object
module is not in a form suitable for
loading into main storage and subsequent
execution; first it must be processed by
the linkage editor or the linkage loader.
(Chapter 5 discusses the compiler and
describes the object module it produces.)

LINKAGE EDITOR

The linkage editor is a program that
converts object modules into a form
suitable for loading into main storage for
execution; a program in this form is termed
a load module. The output (load module)
from the linkage editor is always placed in
a library, from which the job scheduler can
load it for execution.

The linkage editor can combine
separately produced object modules and
previously processed load modules into a
single load module. It can make changes to
sections of a load module: only sections
that are affected by the changes need be
re-compiled. It also permits a program
that is too large for the space available
in main storage to be divided so that it
can be loaded and executed segment by
segment.

Chapter 6 discusses the linkage editor
and the differences between object modules
and load modules.

LINKAGE LOADER

The linkage loader is a program that
converts object modules into load modules,
loads them into main storage and executes
them, all in one job step. It can combine
object or load modules into a single load
module for execution; this load module is
always placed in main storage, never in a
library.

14

The use of the linkage loader and the
options available are discussed in Chapter
6.

Job Control Language Examples

The following discussion of the job control
language is an overview. Job control
languageée is fully described in IBM
System/360 Operating.System: Job Control
Langauge .User's Guide, and Job Control
Lanquage .Reference; however the most
significant parameters of the DD statement
are also described in Appendix B.

Job control languageée is the means by
which a programmer communicates with the
job scheduler; it allows the programmer to
describe the work he wants the operating
system to do, and to specify the
input/output facilities he requires. Only
seven types of statement are involved, of
which four are relevant to this discussion:
the JOB statement, the execute (EXEC)
statement, the data definition (DD)
statement, and a delimiter statement.

The JOB statement identifies a job to
the job scheduler. In IBM System/360
Operating System, a job is an independent
request for the facilities of the operating
system; it comprises one or more job steps.
A job starts with a JOB statement and
continues until the next JOB statement is
encountered.

The EXEC statement identifies a job step
to the job scheduler. A job step involves
a request for the execution of a program.

- Job steps can be interrelated: data can be

passed from one job step to the next, and
the execution of one job step can depend on
the successful execution of a preceding
step. (No such relationship exists between
jobs; they are independent of one another.)
A job step starts with an EXEC statement
and continues until the next EXEC or JOB
statement is encountered.

DD (data definition) statements describe
the input/output facilities required in a
job step.

The delimiter (/*) separates data in the
input stream from the succeeding job
control statements.

FORMAT OF JOB CONTROL STATEMENTS

A job control statement consists of one or
more 80-byte records. Since 80-column
punched cards are the most common input

Name of Accounting
job information

Programmer's
name

7rERMPLE JUB (2245 allllys J. Bodoas
co 0 0O 0 0 m
oon o 00 0o

99999999999989999999989989895999

IBM UNITED KINGDOM LIMITED.

S
1R R RN Rl da v o R R AR R AR AR AR R A RN AR R AR AR R AR ARRRRRRRRARARRARRARER
222222222222[J22[Q2222222222222[]2222()222
3333333[]03333333[J33[]333333[03(03[0332333333332333323333333333333333333333333333313333
Aa444]a0444444844[0044444444440444444488844404440080404084444408444344448844444444
55[055555[]55555[]555[]555555(]555555555555555555555555556555555555555555555555556655
66666666666[)6666666666666666666{J6668
Qe @110 001701107911 09909107771777177171717171
so886888688808(Jsces[Jsocose[)Js[Jsces888888008888880888860806688880880888888088888888888

999999999999999999993999999999999999999599999999

123458 78 8101112114 1518 17181620 212223242526 27 2829 30 31 32 33 34 3536 37 38 39 40 41 42 43 44 4 46 47 48 49 50 51 5253 54 5556 57 56 99 6G ¢ 62 L3 54 65 65 67 6868 70.71 72 73 74 1576 77 78 79 80
. A081

Figure 1-1., A JOB Statement

medium for the job stream, the following
discussion refers to card columns rather
than to bytes.

JOB, ‘EXEC, and DD statements have the
same format, examples of which appear in
Figures 1-1, 1-2, and 1-3. These
statements are identified by // in card
columns 1 and 2. Each statement can
contain four fields (name, operation,
operand, comments), which are separated by
one or more blanks; the name field starts
in column 3. A job control statement must
not extend beyond column 71; if necessary
it can be continued on another card, as
shown in Figure 1-3.

The name field, which begins in column
3, can range from one to eight characters
in length, and can contain any alphameric
(alphabetic or numeric) or national (a § #)
characters. The first character must be
alphabetic or national. This field is
somtimes omitted. The name identifies the
statement. and enables other job control
statemenis (or PL/I statements) to refer to
it.

The operation field specifies the type
of job control statement (JOB, EXEC, DD).
Whether the name field is used or not, the
operation field must be preceded by at
least one blank.

The ogperand field can contain one or
more parameters separated by commas; these

parameters pass information to the job
scheduler, and, for the JOB, EXEC and DD
statements, are of two types, positional
and keyword. Positional parameters must be
placed at the beginning of the operand
field, and are identified by their position
relative to other parameters. If a
positional parameter is omitted, its
absence is indicated by a comma, unless it
is the last positional parameter, when the
comma is omitted. A keyword parameter
consists of a keyword followed by an equals
sign, which is followed by a single value
or a list of subparameters; keyword
parameters may appear in any order, and
their omission need not be indicated.

The comments field is intended for
programmer's notes. It has no fixed
format, and can contain any information.
The comments field is the only field that
can include blanks.

The following paragraphs contain a
general description of the functions of the
JOB, EXEC, DD, and delimiter statements;
these, and other job control statements,
are discussed further under appropriate
headings in later chapters. IBM System/360
Operating System: .Job Control Language,

User's Guide, and Job Control Lanquage
Réference, gives a full description of all
the job control statements, their formats
and parameters.

Chapter 1: Introduction to the Operating System 15

JOB STATEMENT

The JOB statement (Figure 1-1) indicates
the start of a job and the end of the
preceding job. It assigns a name to the
new job, which is used by the job scheduler
in the messages it passes to the operator
and prints on the program listing. The
parameters (none of which need appear
unless your installation has made some of
them mandatory) include the programmer's
name and accounting information.

EXEC STATEMENT

The EXEC statement (Figure 1-2) marks the
start of a new job step and the end of the
preceding job step. It requests the job
scheduler to fetch a load module from the
system library (or from another library)
and cause it to be executed; other load
modules can be loaded dynamically during
the execution of the first, but only one
can be named in the EXEC statement. The
first parameter (PGM=) names the program to
be executed. Sometimes the EXEC statement
passes information to the program that it
calls (PARM parameter), and it may include
accounting information and specify
conditions for bypassing the job step.

Name of

Program to
job step

be executed

DD STATEMENT

In IBM Systems/360, a collection of data
held in an auxiliary storage device (a reel
of magnetic tape, a disk pack, etc.,) is
termed a data set. A DD statement (Figure
1-3) identifies a data set and describes
its attributes. There must be a DD
statement for each data set that is used or
created in a job step. The DD statements
are placed immediately after the EXEC
statement for the step.

The parameters of the DD statement
contain such information as the name of the
data set, the name of the volume on which
it resides, the type of device that holds
the data set, the format of the records in
the data set, and the method that will be
used to create or access the data set. The
name of the DD statement provides a
symbolic 1link between the file named in a
PL/I program and the actual name and
location of the corresponding data set.

The DD statement allows the programmer to
leave the specification of his data set
requirements until he is ready to execute
his program, and enables him to relate the
file in his program to different data sets
on different occasions. Some data set
information can be given in the PL/I
ENVIRONMENT attribute rather that in a DD
statement.

Information being passed
to program IEMAA

77P.IL EXEC PGM=IErAAs PaRi=" LOADs NODECK®
000 D 0D O 0 oo
oo 00 D OO0 O O O

3456878 F1010123MIBIEITIBIBNA

WUUUUU0000000000000090000000000 0069000

2324252627 282930 31 32 3334 35 36 17 38 39 40 4142 4344 4546 47 48 43 50 51 52 51 54 55 56 57 58 5960 61 62 63 64 65.66 67 68 €9 70 71 72 73 74 7576 77 18 79 80

\

e Rl o IR RN R R R R R AR o R IR R R RN RN RN RN RN R RN R R R R RS RERRRRRRRRRT!
22222222222222222222222222222222222222{)222
333[J3(03333[)3333333333[]333333(J333(03333[]33
a4448440a40434JssaeasaaaosaaaafQeaa[e4044000400044044440444444444044440444488444
5555555{)5[)5555555[)555555555[]55555[)55[)55[055
666666666666666[)6666666666[J66[J6666[J666666666666666666666666666666666.666666666666
oo rrr111111119110711711710001977070101019101 1117071711777
xssaasaasaéaaaaﬂsassaﬂssss[ﬂaaasUssaaaaﬂasasssassassssssaaasaaaasssssasssaasssus
9999999999999909[19999999[]9994999999999999999999893499999999999999999939999999999

L} 0 10 12 13 14 15 18 17 18 1920 21 2223 24 2526 27 2829 30 31 32 33 34 35,36 37 38 39 +0 41 42 43 44 42 48 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 £3 64 65 6567 €8.6970 71 7273 74 75 76 77 78 19 80
5081

9
L]
1BM UNITED KINGDOM LIMITED

Figure 1-2.

16

An EXEC Statement

Chapter 3 discusses the creation and
access of simple data sets; Chapter 9 is a
complete discussion of data management for
a PL/I program.

DELIMITER STATEMENT

The delimiter statement consists of the
characters /% in card columns 1 and 2. It
separates data in the input stream from the
job control statements that follow the
data. Data in the input stream is usually
preceded by a DD statement with the operand
*, for example:

//SYSIN DD *

If the data includes cards that have // in
the first two columns, it is preceded by a
DD statement with the operand DATA, for
example:

//SYSIN DD DATA

Executing a PL/I Program

A job consists of one or more job steps,
and each job step normally uses one or more
data sets. Thus the sequence of job
control statements for a single Jjob
comprises a JOB statement followed by the
EXEC and DD statements for each job step.
Figqure 1-4 illustrates such a sequence; it
has been simplified by omitting all the
parameters in the various statements.

The execution of a PL/I program requires
two or three job steps:

1. Compilation: The compiler converts the
PL/I statements into machine
instructions, which form an object
module.

2. Link-editing or link-loading: The
linkage editor processes the object
module produced in step 1, and forms
it into a load . module that can be
executed. The linkage loader converts
the object module into a load module
and executes it.

3. Execution: The load module formed by
the linkage editor is loaded into main
storage and executed.

The sequence of job control statements
in Figure 1-4 might be used for compiling,
link-editing, and executing a PL/I program.

The JOB statement would probably have to
include certain parameters required by the

installation. The parameters needed and
the values used with them vary from
installation to installation; it is your
responsibility to supply the correct
information in this statement.

The EXEC statement for the first job
step (named PL1L) requests the execution of
the program IEMAA, the PL/I (F) compiler;
the DD statements defining the data sets
required for this step follow the EXEC
statement. SYSPRINT and SYSIN refer to the
printer and the card reader, respectively,
as they do in the other job steps. The
object module produced by the compiler is
placed in the data set identified by
SYSLIN. SYSUT1 and SYSUT3 define data sets
used as workfiles.

The second EXEC statement (LKED) causes
program IEWL, the linkageée editor, to be
executed. The linkage editor finds its
primary input (the object module) in the
data set referred to by the DD statement
named SYSLIN; it may seek further input
from the private library identified by
SYSLIB. The load module produced by the
linkage editor is placed in the data set
identified by SYSLMOD. SYSUT1 defines a
data set used as a workfile.

The last EXEC statement (GO) requests
the execution of the load module created by
the linkagée editor in the previous step; a
special form of the PGM parameter is used
for this.

‘The sequence of job control statements

using the linkage loader is shown in Figure
1-5.

Cataloged Procedures

Often the same set of job control
statements is used over and over again (for
example, to specify the compilation,
link-editing, and execution of many
different PL/I programs). To save
programming time and to reduce the
possibility of error, sets of standard
series of EXEC and DD statements can be
prepared once and 'cataloged' in a system
library; such a set of statements is termed
a cataloged procedure.

To retrieve a cataloged procedure, an
EXEC statement is used in which the first
parameter (PROC=) names the procedure. The
effect is the same as if the job control
statements of the cataloged procedure
appeared in the job stream in the place of
the EXEC statement that calls the
procedure. In such an EXEC statement, the
keyword PROC can be omitted; the name of
the procedure stands alone as if it were a

Chapter 1: Introduction to the Operating System 17

Name of DD Name of Type of device
statement data set (2400 series Record format

magnetic tape
t drive) / \\

7/#TedTl DD DSNaMe=Tr ILEs U"IIT=1:’4|30, DCE=(RLKSIZE=250, LR:.M.=28, QL\.,P M=r E)y
0 0000 MO O oo 00

00 0 0 ao 00 [] D 0 []
oo Dot teQussonpreQcqELe 0o teQug o opPes s heseQesstnooqeotneiots
IO RRRIs IR AR s AR R RN R RN R R R RN R R RN R R RN R RN R RN R R RN RN RRRERRERRRNRRENE!
2222(J2222222(J22222222222222220Q222222[J22 Qe Qe 222 Q222222222 J222222222(J222222222222
330J33[333333333333(33 (03033333333 [s3330333332333[33[Ds33033[0333333032323333333
44a484844[)o0s240s00000aa0ascaaeaa[e4044448444486444044442444444[J444444444444444
555[)555655555[J55[)55555[)55(0555555555555(]555555[]5555555(]5555555(J555555[J55555555555
s6666666666666666(JcJeccccces[Jececccec(dscccaccc[Josccesecc[jssccec[)s[)Joo6666666666¢6
T11777717100107771977797077010917770771000000079171970072727179171771117117711171171711771777
saaassasssaasasasﬂsssesﬂasaanssssﬂsusDDsasssseDsUsDesaaaﬂaﬂﬂiasesﬂsnﬂnsssssssssa
9999949 999999&9999999999@9999959999999999 ssassssgsssssssﬂssesessssssssssssss

999
8 910 11 12 13 14 15 16 17 18 13 20 21 22 2324 25 26 27 28 29 30 3! 32 33 34 35 36 37 38 39 40 41 42 43 44 4345 47 4B 49 50 51 52 33 54 55 56 57 58 59 60 61 62 €I 64 6566 67686870 71 72 73 74 1576 77 78 79 80
1BM UNITED KINGDOM LIMITED. K081

Disposition (new data set,
to be filed at end of job)

s/ DISP=(MEU, P} \\\
ﬂDOﬂﬂ 00000f)Jo00000000000600000C00DNGR00000C900000000000000000000000600000000000080
345 7 8 910 TITT 141516 17181920 21222324 25 26 21 22930 3132 32 34 35 36 37 34 39 40 4142 4344 4546 47 4449 50 51 52'53 94 55 56 57 56 59 60 61 62 6364 63 68.67 6659 20 11 7213 74 15 76 17 1873 40

s RRRRRRRE RN AR RN R R R R RN RN R RN AR R R RN R RN R AR RERRRRRRRRRI
22222(J2222222[)22
333333333333[]333
G44[J4444448094044444484440444404044444404044440440444440040444444344444444444444
5555555 5()JJ555())5J55555555555555555555555555555555555555565555555555555555555555
6666666(J666{J66566666666666
Q11011 1111119711111107171777117771717911111721011171179171711717171 17
988888 a(JJess[])sss8(Jsssccs0s8888888888886888886888668688008088686606688088888888888
?2,?QE?9959999999999999999999959

8 910 1112 13 14 1516 17 18 19 20 21 2223 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 10 41 42 4344 42 46 47 4B 49 50 51 5253 54 5556 57 $0 5960 61 62 €3 84 636667686970 11 2270 747576 77 76 19 80
iBM UNITED KINGDOM LIMITED 5081

Figure 1-3. A DD Statement (Using a Continuation Card)

positional parameter. For example, the // EXEC PROC=PL1LFCLG
following EXEC statements have the same
effect: // EXEC PL1LFCLG

18

The job control statements in Figure '1-4
(apart from the JOB statement and the DD
statements named SYSIN) are the same as
those in the cataloged procedure PL1LFCLG.
You can use this cataloged procedure, which
is supplied by IBM, for compiling,
link-editing, and executing a PL/I program.
Chapter 2 illustrates the use of PLILFCLG.
Chapter 8 is a complete discussion of
cataloged procedures; it describes the IBM
cataloged procedures for PL/I and tells you
how to modify them and how to catalog your
own procedures.

//EXAMPLE JOB

//PL1L EXEC PGM=IEMAA
//SYSPRINT DD
//SYSLIN DD

//5YSUTL DD

//SY¥YSUT3 DD

//SYSIN DD * > First job
step

Start of Jjob

— e e . el

Cards containing PL/I source
statements come here

Ve

//LKED EXEC PGM=IEWL
//SYSLIB DD
//SYSLMOD DD > Second job
//SY¥SUT1 DD step
//SYSPRINT DD

//SYSLIN DD

//GO EXEC PGM=*.LKED.SYSLMOD
//SYSPRINT DD

//SYSIN DD *

—d e e o s s

s . e e ot s

Cards containing data to > Third job

be processed by the PL/I | step

program come here |

Vi J

//NEXT JOB start of next
. job

Typical Sequence of Job
Control Statements for
Compile, Link-Edit, and
Execute Steps

Figure 1-4.

//EXAMPLE JOB

//PL1L EXEC PGM=IEMAA
//SYSPRINT DD
//SYSLIN DD

//8YSUT1 DD

//SYSUT3 DD

//SYSIN DD *

Start of job

——— c— —d

> First job
step

Cards containing PL/I source

statements come here

|
|
|
|
/* 1
//GO EXEC PGM=LOADER 1
//SYSLIB DD . |
//SYSLIN DD |
//SYSLOUT DD |
//SYSPRINT DD |
//SYSIN DD * |
> Second job

Cards containing data to | step
be processed by the PL/I |
program come here |
|

1

Vi
//NEXTJOB JOB Start of next

. job
Figure 1-5. Typical Sequence of Job
Control sStatements for Compile
and Load-and-Execute Steps

If a procedure is programmer-written, it
can be tested as an in-stream procedure
before it is placed in the procedure
library. An in-stream procedure is a
series of job control statements enclosed
between a .PROC and a PEND statement
appearing in the job stream. An in-stream
procedure can be executed any number of
times during a job and has the same content
restrictions as a cataloged procedure. For
further information about in-stream
procedures, refer to the publication IBM
System/360 Operating System: Job Control

Lanquage .Reference.

Chapter 1: Introduction to the Operating System 19

Chapter 2: How to Run a Simple PL/I Progam

For a PL/I program that uses only
punched-card input and printed output, the
job control statements shown in Figure 2-1
are sufficient®. Appendix A includes an
example of a simple PL/I program that uses
these statements.

//EXAMPLE JOB
// EXEC PL1LFCLG
//PL1L.SYSIN DD *

Insert here the cards
containing your PL/I
source statements.

/%

//GO.SYSIN DD *

If your program
requires no
external data,
omit these
statements.

Insert here the cards
containing the data to
be processed by your
program.

7%
Job Control Cards for the

Execution of a Simple PL/I
Program

Figure 2-1.

Job Control Statements

//EXAMPLE JOB
EXAMPLE is the name of the job. Your
job.name must not have more than eight
alphameric or national characters; the
first character must be alphabetic or
national. No parameters are given for
this statement. If any are needed they
will depend on your installation; the
minimum requirement is probably an
account number and your name. Before
writing the JOB statement, ensure that
you are familiar with the conventions
established by your installation for
the JOB statement and its parameters.

// EXEC PLILFCLG
PL1LFCLG is the name of a cataloged
procedure supplied by IBM. When the
job scheduler encounters the name of
such a procedure in an EXEC statement,
it substitutes for the EXEC statement a
series of job control statements that
have been written previously and
cataloged in a system library. The

ichapter 9 contains a complete discussion
of data management.

20

cataloged procedure PL1LFCLG contains
three job steps:

PL1L: The PL/I (F) compiler processes
your source statements and
translates them into a set of
machine instructions (an object

module) .

LKED: The linkage editor creates a
load module from the object
module produced by the compiler.
A load module is a series of
machine instructions that are in
a form suitable for loading into
main storagé and subsequent
execution; only load modules can
be loaded and executed.

GO: The load module created in step
LKED is loaded into main storage
and executed.

//PL1L.SYSIN DD #*
This statement indicates that the data
to be processed in step PL1L follows
immediately in the card deck. SYSIN is
the name that the compiler uses to
refer to the device on which it expects
to find this data. (In this instance,
the device is the card reader, and the
data is your PL/I program.)

/%
This signifies the end of the data.

//GO.SYSIN DD *
This statement indicates that the data
to be processed by your program (in
step GO) follows immediately in the
card deck.

/*
This statement marks the end of the
. data to be processed by your program.

Note: You could have used the IBM cataloged
procedure PLILFCG in place of PLILFCLG.
This procedure consists of two job steps:

PL1L: The PL/I (F) compiler processes the
source statements and produces an
object module.

GO: The object module is converted to a

load module, loaded into main
storage and executed.

FURTHER INFORMATION

Chapter 8 describes the cataloged procedure
PLILFCLG and other PL/I cataloged
procedures supplied by IBM. Chapters 5, 6,
and 7 deal with the job steps (compile,
linkage, and execute) that are included in
PL1LFCG and PL1LFCLG.

Chapter 2: How to Run a Simple PL/I Program 21

Chapter 3: How to Create and Access a Simple Data Set

A data set is any collection of data in
auxiliary storage that can be created or
accessed by a program. It can be punched
onto cards or a reel of paper tape; or it
dan be recorded on magnetic tape or on a
direct-access device such as a magnetic
disk or drum. A printed listing can also
be a data set, but it cannot be read by a
program.

Data sets that are created or accessed
by PL/I programs must have one of three
types of organization: CONSECUTIVE,
INDEXED, or REGIONAL or must be a
teleprocessing data set. The items of data
in INDEXED and REGIONAL data sets are
arranged according to 'keys' that you
supply when you create the data sets.
CONSECUTIVE data sets do not use keys; when
you create such a data set, data items are
recorded consecutively in the order in
which you present them. You can read the
data items from a CONSECUTIVE data set only
in the order in which they were presented
or, in the case of a data set on magnetic
tape, in the order in which they were
presented or in the reverse order.
Teleprocessing data sets are organized as
consecutive groups of data items.

This chapter explains how to create and
access simple CONSECUTIVE data sets stored
on magnetic tape or on a direct-access
device. It is intended to provide an
introduction to the subject of data
management, and to meet the needs of those
programmers who do not require the full
input/output facilities of PL/I and IBM
System/360 Operating System. Chapters 9,
10, and 11 contain a full explanation of
the relationship between the data
management facilities provided by PL/I and
those provided by the operating system.

Using a Data Set

To create or access a data set, you must
not only include the appropriate input and
output statements in your PL/I program, but
you must also supply certain information to
the operating system in a DD statement. A
DD statement describes a data set and
indicates how it will be handled; the
information it supplies enables the job
scheduler to allocate the necessary
auxiliary storage devices, and permits the

22

compiler to use the data management
routines of the operating system to
transmit data.

IBM System/360 .Operating System: PL/I
(F) Langquage Reference Manual describes the

input and output statements that you will
need to use in your PL/I program.
Essentially, you must declare a file
(explicitly or contextually) and open it
(explicitly or implicitly) before you can
begin to transmit data. A file is the
means provided in PL/I for accessing a data
set, and is related to a particular data
set only while the file is open; when you
close the file, the data set is no longer
available to your program. This
arrangement allows you to use the same file
to access different data sets at different
times, and to use different files to access
the same data set.

i

Contextual declaration and implicit
opening are performed, where required, in
any of the input/cutput statements GET,
PUT, READ, WRITE, LOCATE, and REWRITE.

You must provide a DD statement for each
data set that you will use in each job
step. If you use the same data set in more
than one job step, each step which refers
to that data set must have a DD statement
for the data set.

If you are using a cataloged procedure,
such as PLI1LFCG or PLLLFCLG (described in
Chapter 2), the DD statement for any data
set processed by your program must appear
in job step GO, in which your program will
be executed. To signify its inclusion in
this job step, you must prefix the name of
the DD statement with the name of the job
step. (For example, //GO.LIST DD... would
indicate a DD statement named LIST in step
GO.) The DD statement for the data set in
the input stream (e.g., GO.SYSIN), if it is
used in a PCP system, must be the last DD
statement in your card deck.

How to Create a Simple Data Set

When you create a new data set, you should
supply the following information to the
operating system:

Parameter of
DD Statement
Type of output device that UNIT=
will write or punch your
data set.
Serial number of the volume VOLUME=SER=
(tape reel, disk pack,
etc.) that will contain
your data set.
Name of your data set. DSNAME=
Format of the records in
your data set.
Amount of auxiliary storage SPACE=
required for your data set
(direct—-access devices
only).
Disposition of your data set DISP=
at the end of the job step.

Note: You can use the abbreviations VOL for
VOLUME and DSN for DSNAME.

To give this information in the DD
statement, use the parameters listed above.
Appendix B contains a description of these
parameters; the following paragraphs
discuss their use in creating a CONSECUTIVE

TYPE OF OUTPUT DEVICE (UNIT=)

You must always indicate the type of output
device (magnetic tape or disk drive, card
punch, printer, etc.) that you want to use
to create your data set. Usually the
simplest way to do this is to use the UNIT
parameter, although for a printer or a card
punch it is often more convenient to use
one of the special forms of DD statement
discussed at the end of this chapter.

In the UNIT parameter, you can specify
either the type number of the unit (for
example, 2311 for a disk drive) or the name
of a group of devices (for example, SYSDA
for any direct-access device). Appendix B
includes a list of the valid type numbers;
the group names are established for a
system during system generation.

VOLUME SERIAL NUMBER (VOLUME=SER=)

A unit of auxiliary storage such as a reel
of magnetic tape or a magnetic disk pack is
termed a volume; a volume can contain one
or more data sets, and a data set can
extend to more than one volume. Each
volume is identified by a serial number
that is recorded within it (and usually
printed on the label attached to it).
Although a deck of cards, a printed
listing, and a reel of paper tape can be

| *Alternatively, you can specify the block size in your PL/I program by using the

data set. Figure 3-1 summarizes this considered to be volumes, they do not have
discussion. serial numbers.
r T d
| | Parameters of. DD Statement |
| Storage Device b T T
| - | When required | What you must state | Parameters
b ¥ ¥ +
| | Output device UNIT= or SYSOUT= |
| All | Always . 4
| | Block size? DCB=BLKSIZE= |
L 1 {]
1) T]
| Direct access only | Always | Auxiliary storage | SPACE= |
i] | space required | |
L (] 1 L 1
8 v . L) 1
| | Data set to be used | |
| | by another job step | Disposition DISP= |
| | but only required | |
| | by this job | | i
| Direct access and [{
| standard labeled | Data set to be kept Disposition DISP= |
| magnetic tape | after end of job i
| | | Name of data set | DSN= |
| b + + H
| | Data set to be on | Volume serial number| VOL=SER= [
| | particular volume 1 | |
1 | 3 AL (] []
v 1
|
|
(]

| ENVIRONMENT attribute.
L

Figure 3-1.

Chapter 3:

How to Create and Access a Simple Data Set

Creating a CONSECUTIVE Data Set: Essential Parameters of DD Statement

23

You need specify a volume serial number
only if you want to place the data set on a
particular volume. If you omit the VOLUME
parameter, the job scheduler will print in
your program listing the serial number of
the volume on which it placed the data set.

The VOLUME parameter has several
subparameters. To specify a volume serial
number, you need only the SER (serial
number) subparameter (for example
VOLUME=SER=12354) .

NAME OF DATA SET (DSNAME=)

You must name a new data set if you want to
keep it for use in future jobs. If the
data set is temporary (required only for
the job in which it is created), you can
still name it, but you need not; if you
omit the DSNAME parameter, the operating
system will assume that the data set is
temporary, and will give it a temporary
name. (Any name you give to a temporary
data set must be prefixed with the
characters §§&; for example, DSNAME=£§TEMP.)

FORMAT OF THE RECORDS (DCB=)

You can give record-format information
either in your PL/I program (ENVIRONMENT
attribute or LINESIZE option) or in a DD
statement. This discussion refers only to
the DD statement, and does not apply if you
decide to give the information in your
program; refer to IEM System/360 Operating
System: PL/I (F) Lanquage Reference .Manual
for a description of the ENVIRONMENT
attribute and the LINESIZE option.

The records in a data set must have one
of three formats: F (fixed length), V
(variable length), U (undefined length).
F-format and v-format records can be
blocked or unblocked; V-format records can
be spanned.

In most cases, you must specify a block
size. If you do not give a record size,
unblocked records of the same size as the
block size are assumed. Note that, if you
are using a PRINT file to produce printed
output, you do not need to specify a block
size in your DD statement or in your PL/I
program; in the absence of other
information, the compiler supplies a
default line size of 120 characters. If
you do not state the record format,
U-format is assumed (except for data sets
associated with PRINT files, for which
v-format is the default).

24

To give record-format information in a
DD statement, use the subparameters RECFM
(record format), BLKSIZE (block size), and
LRECL (logical record length) of the DCB
parameter. The DCB parameter passes
information to the operating system for
inclusion in the data control block, which
is a table maintained by the data
management routines of the operating system
for each data set in a job step; it
contains a 'description of the data set and
how it will be used. If your DCB parameter
includes more than one subparameter, you
must enclose the list in parentheses. For
example:

DCB=(RECFM=FB, BLKSIZE=1000, LRECL=50)

AUXILIARY STORAGE REQUIRED (SPACE=)

When you create a data set on a
direct-access device, you must always
indicate the amount of space that the data
set will occupy. Use the SPACE parameter
to specify the size and number of the
blocks that the data set will contain. If
you may want to extend the data set in a
later job or job step, ensure that your
original space allocation is sufficient for
future needs; you cannot make a further
allocation later. If the SPACE parameter
appears in a DD statement for a
non-direct-access device, it is ignored.

DISPOSITION OF DATA SET (DISP=)

If you want to keep a data set for use in a
later job step or job, you must use the
DISP parameter to indicate how you want it
to be handled. You can pass it to another
job step, keep it for use in a later job,
or enter its name in the system catalog.

If you want to keep the data set, but do
not want to include its name in the system
catalog, the operating system will request
the operator to demount the volume in which
it resides and retain it for you. If you
do not include the DISP parameter, the
operating system will assume that the data
set is temporary and will delete it at the
end of the job step.

The DISP parameter can contain three
positional subparameters. The first
indicates whether the data set is new or
already exists, the second specifies what
is to be done with it at the end of the job
step, and the third indicates how it should
be treated if the job step is terminated
abnormally by the operating system. If you
omit either of the first two, you must
indicate its absence by a comma.

For example,
DISP=(,CATLG,DELETE)

indicates that the data set is to be
cataloged if the job step terminates
normally, and deleted if it is terminated -
abnormally; the omission of the first
subparameter indicates that the data set is
assumed by default to be new.

How to Access an Existing Data Set

When you want to read or update an existing
data set, your DD statement should include
information similar to that given when the
data set was created. However, for data
sets on labeled magnetic tape or on
direct—-access devices, you can omit several
parameteérs because the information they
contain was recorded with the data set by
the operating system when the data set was
created. Figure 3-2 summarizes the
essential information.

Except in the special case of data in
the input stream (described below), you
must always include the name of the data
set (DSNAME) and its disposition (DISP).

TYPE OF INPUT DEVICE

You can omit the UNIT parameter if the data
set is cataloged or if it was created with
DISP=(,PASS) in a previous step of the same

VOLUME SERIAL NUMBER

You can omit the VOLUME parameter if the

data set is cataloged or if it was created
with DISP=(,PASS) in a previous step of the
same job. Otherwise it must always appear.

NAME OF DATA SET

The DSNAME parameter can either refer back
to the DD statement that defined the data
set in a previous job step, or it can give
the actual name of the data set. (You
would have to use the former method to
refer to an unnamed temporary data set.)

FORMAT OF THE RECORDS

You must always state a block size for
punched cards or paper tape; otherwise,
record-format information is not required.
Block size can also be specified in your
PL/I program, using the ENVIRONMENT
attribute.

AUXILIARY STORAGE REQUIRED

You cannot add to, or otherwise modify, the
space allocation made for a data set when
it was created. Accordingly, the SPACE
parameter is never required in a DD

| For punched cards or paper tape

Block size?l

DCB=BLKSIZE=

|1Alternatively; you can specify the block size in your PL/I program by using the

job. Otherwise, it must always appear. statement for an existing data set.
))
| Parameters of DD Statement |
i }
r 1
| When required What you must state Parameters |
1 (]
13 1
I Name of data set DSN= |
|Always + i
| Disposition of data set | DISP= |
[L]
r L T 1}
| |A11l devices | Input device | UNIT=]
|If data set not } + + i
| cataloged |Magnetic tape and| Volume serial number | VOL=SER= |
| |direct access | | |
¢ ' ¢ {
| |
] i
1
|
|
[]

| ENVIRONMENT attribute.
L

Figure 3-2.

Accessing a CONSECUTIVE Data Set: Essential Parameters of DD Statement

Chapter 3: How to Create and Access a Simple Data Set 25

DISPOSITION OF DATA SET

You must always include the DISP parameter
to indicate to the operating system that
the data set already exists. Code DISP=SHR
if you want to read the data set, DISP=O0OLD
if you want to read and/or overwrite it, or
DISP=MOD if you want to add records to the
end of it.

You need not code the second term of the
DISP parameter if you want the data set to
resume the status it had before the job
step; existing data sets will continue to
exist, and newly created data sets will be
deleted.

SPECIAL-PURPOSE PARAMETERS

Three parameters of the DD statement have
special significance in that they permit
you to use a very simple form of DD
statement; they are SYSOUT, which is
particularly useful for printed or
punched-card output, and *, and DATA, which
allow you to include data in the input
stream.

SYSTEM OUTPUT (SYSOUT=)

A system output device is any unit (but
usually a printer or a card punch) that is
used in common by all jobs. The computer
operator allocates all the system output
devices to specific classes according to
device type and function. The usual
convention is for class A to refer to a
printer and class B to a card punch; the
IBM-supplied cataloged procedures assume
that this convention is followed.

To route your output via a system output
device, use the SYSOUT parameter in your DD
statement. The only essential additional
parameter is the block size (if not already
specified in your PL/I program by using the
ENVIRONMENT attribute). Thus, if you want
to punch cards, you can use the DD
statement

//GO.PUNCH DD SYSOUT=B,DCB=BLKSIZE=80

DATA IN THE INPUT STREAM

A convenient way to introduce data to your
program is to include it in the input job
stream with your control statements. Data

26

in the input stream must, like job control
statements, be in the form of 80-byte
records (usually punched cards), and must
be immediately preceded by a DD statement
with the single parameter * in its operand
field, for example:

//GO.SYSIN DD #*

To indicate the end of the data, include a
delimiter job control statement (/*). A DD
statement that introduces data in the input
stream must be the last DD statement in the
job step.

If your data includes records that
commence // in the first two columns use
the parameter DATA, for example:

//GO.SYSIN DD DATA

Standard Files

PL/I includes two standard files, SYSIN for
input and SYSPRINT for output. If your
program includes a GET statement without
the FILE option, the compiler inserts the
file name SYSIN; if it includes a PUT
statement without the FILE option, the
compiler inserts the name SYSPRINT.

If you use one of the IBM-supplied
cataloged procedures to execute your
program, you will not need to include a DD
statement for SYSPRINT; step GO of the
catalogeéd procedures includes the
statement:

//SYSPRINT DD SYSOUT=A

Note that no block size is specified in
this DD statement; the block size for the
data set associated with SYSPRINT is
supplied by the (F) compiler. However, if
your program uses SYSIN, either explicitly
or implicitly, you must always include a
corresponding DD statement.

Examples

The examples of simple applications for
CONSECUTIVE data sets shown in Figures 3-3
and 3-4 should need no further explanation.
The first program evaluates the familiar
expression for the roots of a quadratic
equation and records the results in a data
set on magnetic disk and on punched cards.
The second program reads the disk data set
created in the first and prints the
results.

//J001PGEX JOB
// EXEC PLILFCLG
//PL1L.SYSIN DD #*
CREATE: PROC OPTIONS(MAIN);
DCL PUNCH FILE STREAM OUTPUT,
DISK FILE RECORD OUTPUT SEQUENTIAL,
1 RECORD, 2(A,B,C,X1,X2) FLOAT DEC(6) COMPLEX;
ON ENDFILE (SYSIN) GO TO FINISH;
OPEN FILE(PUNCH), FILE(DISK);
NEXT: GET FILE(SYSIN) LIST(A,B,C);
X1=(-B+SQRT (B**2-U4*A*C))/ (2*A) ;
X2=(-B-SQRT (B*#*2-4*A*C))/ (2%A) ;
PUT FILE(PUNCH) EDIT(RECORD) (C(E(16,9)));
WRITE FILE(DISK) FROM(RECORD) ;
GO TO NEXT; i
FINISH: CLOSE FILE(PUNCH), FILE(DISK);
END CREATE;
V4
//GQ.PUNCH DD SYSOUT=B,DCB=BLKSIZE=80
//GO.DISK DD UNIT=2311, VOLUME=SER=D186,DSNAME=ROOTS,
/7 DCB=(RECFM=FB, BLKSIZE=400,LRECL=40),
// SPACE= (TRK, (1,1)) ,DISP=(NEW,KEEP)
//7GO.SYSIN DD *
512 4
4 ~30 4
5 16 2
4 -12 10
512.9
29 -20 4
/%

Figure 3-3. Creating a Simple CONSECUTIVE Data Set

/7/J027PGEX JOB
//COLEEX EXEC PL1LFCLG
//PL1L.SYSIN DD *
ACCESS: PROC OPTIONS(MAIN);
DCL RESULTS FILE RECORD INPUT SEQUENTIAL,
1 RECORD, 2(A,B,C,X1,X2) FLOAT DEC(6) COMPLEX;
ON ENDFILE (RESULTS) GO TO FINISH;
PUT FILE (SYSPRINT) EDIT('A','B','C',*X1°',"'X2")
x,3(a,x023)),3,X(22) ,A);
OPEN FILE(RESULTS);
NEXT: READ FILE(RESULTS) INTO(RECORD);
PUT FILE(SYSPRINT) SKIP EDIT(RECORD) (C(F(12,2)));
GO TO NEXT;
FINISH: CLOSE FILE(RESULTS) ;
END ACCESS;
/¥
//GO.RESULTS DD UNIT=2311,VOLUME=SER=D186, DSNAME=ROOTS,DISP=(0OLD,KEEP)

Figure 3-4. Accessing a Simple CONSECUTIVE Data Set

Chapter 3: How to Create and Access a Simple Data Set 27

28

PART 2: Using all the Facilities of the PL/I (F) Compiler

Part 2: Using all the Facilities of the PL/I (F) Compiler 29

30

Introduction

The operating system requires certain
preliminary information about a job in
order to be able to process it. For
example, it must be able to recognize the
beginning and end of a job, and it requires
details of the job environment (for
exanple, which control program is used).
Most of this information is provided in the
job comntrol language; the remainder is
either information already known to the
operator because it is established for your
installation, or information you will have
to give the operator for your particular
job. TFor example, if you have a choice of
control programs, you must tell the
operator which one you want.

The information given in the job control
language is provided in the JOB statement
and its parameters. The JOB statement
indicates the beginning of a job and (in
batch processing) the end of a previous
job; the parameters provide information
about the job environment. Full details of
the purpose and syntax of this statement
are given in IBM System/360 Operating
System; Job Control Language User's Guide,
and Job control Language Reference. The
use of the JOB statement and its parameters
is described briefly here, togeéther with
job scheduling and the types of control
program available.

JOB Statement

The JOB statement is always the first
statement in your job. It identifies the
job to the operating system; in particular,
it identifies the job to the job scheduler
so that the latter can begin job
processing. The job scheduler has three
main components:

1. Reader/interpreter: This checks the
job control language and (if required)
‘stores the data from the input stream
on a direct-access device and places
control information about the job in
an input queue.

2. Initiator/terminator: This selects the
next job step for execution, and
allocates devices and resources.

After processing, it terminates the
job step. After processing of the
last job step, it terminates the job.

Chapter 4: Job Initialization

3. Output writer (MFT or MVT): This
handles the transmission of data from
output data sets to a system output
device (such as a printer or a
card-punch).

The JOB statement also provides
information on:

1. Work control; for example, accounting
information and the programmer's name.

2. Job environment; for example,
information relating to the control
program under which the job will be
executed.

“
Note that the JOB statement does not select
the control program for you; it merely
allows you to specify information required
by the control program yoéu are using. The
information to be given in the job
statement fields is described below.

Name Field

A valid job name must appear in this field.
Certain words must not be used as job names
as they are command statements used by the
operator to communicate with the operating
system. Examples of these are SPACE and
JOBNAMES; .you must find out whether these
or other names are used as command
statements at your installation.

Jobs being executed concurrently should
have different job names.

Operation Field

The word JOB must appear in this field.

Operand Field

The full set of positional and keyword
parameters used with the JOB statement is:

Positional
Accounting information

Programmer's name

Chapter 4: Job Initialization 31

Keyword

CLASS

COND

MSGCLASS
MSGLEVEL
PRTY

REGION

ROLL

TYPRUN

The use of these is discussed in the IBM

System/360 Operating System: Job Control
Language .Reference.

Although all these parameters are
optional as far as the operating system is
concerned, some or all of them will be
mandatory at your installation, and some
will not be available to you. Therefore,
before using any of them, you need to know:

1. Which parameters are mandatory at your
installation. '

2. Which parameters are optional at your
installation.

3. What happens if you omit an optional
parameter that is required for a
particular job. If there is no
default for this parameter, the jcb
could terminate at this point.

4. What happens if you include an
optional parameter that is not
required for a particular job. The
parameter might be ignored or the job
could terminate.

Note: The examples given in this manual
omit the parameters of the JOB statement
because of this installation dependence.

Job Scheduling

JOB SCHEDULING AND THE CONTROL PROGRAM

The operating system uses one of two forms
of scheduling to process your Fob:
sequential scheduling or prioxity
scheduling. The type of scheduling
employed for your job depends on the
control program used.

32

Sequential Scheduling

Each job is processed in the order in which
it exists in the input stream. Only one
job at a time can be processed; all other
jobs in the input stream must wait until
this job is finished. Each job is executed
as a single task.

Sequential scheduling is used by the
primary control program (PCP).

Priority Scheduling

The jobs in the input stream are placed in
input queues and selected for processing
according to previously determined
priorities. Jobs are processed in a
multiprogramming environment, that is,
several jobs can be processed concurrently.
Each job step can be executed as a single
task or as several tasks:

1. One_ job step, one task: Each job step
is executed as a task. The number of
tasks that can exist concurrently is
fixed, and is restricted to the number
selected for execution (that is, tasks
cannot be created during execution of
the job step).

Jobs are processed in this way with
the MFT (multiprogramming with a fixed
number of tasks) control program.

2. One_.job step, several tasks: Each job
step is executed as a task.
Additional tasks (subtasks) can be
created dynamically during execution
of the job step. Therefore the number
of tasks that can exist concurrently
is variable, and depends on the number
of subtasks created.

Jobs are processed in this way with
the MVT (multiprogramming with a
variable number of tasks) control
program.

Control Program

The three control programs currently
available in the operating system are:

PCP
MFT

MvT

Your installation may have only one of
these control programs, or it may have two
or all of them. You must find out which
control program or programs are available
to you and design your source program
accordingly. To assist you in the choice
(if you have one), a brief description of
each control program is given below,
together with the set of JOB statement
parameters applicable to that program.
Further details of the control programs are
contained in the following publications:

IBM System/360 Operating System:

concepts and Facilities

Operator's Reference

Operator's Procedures

Storage Estimates

PRIMARY CONTROL PROGRAM (PCP)

JOB Statement Parameters

Accounting information
Programmer's name
COND

MSGLEVEL

Input

The job stream is read in from a card or
tape device, and is loaded into main
storage. Only one input reader is
available at one time.

Job Selection

Only one job can be processed at a time.
The whole of main storage and all resources
are allocated to that job; no other job can
gain control until this job has completed
execution.

Task Execution

The job scheduler programs are executed as
tasks; each job step of the job to be
processed is executed as part of a job

scheduler task. These job steps are
executed sequentially.

Qutput

System output is put out through the SYSOUT
stream; problem program output can be put
out through the SYSOUT stream or a user
data set. Up to eight output writers are
available; each one writes one class of
output onto one device (such as a printer).
Each output class is designated by one of
the letters A through Z. Class A is the
standard system output class; there must
always be a device available for this
class.

MFT CONTROL PROGRAM

JOB Statement Parameters

Accounting information
Programmer's name
CLASS

COND

MSGCLASS

MNSGLEVEL

PRTY

TYPRUN

Input

The job stream is read from a card or a
tape device, or from a direct-access
device, and is stored on a direct-access
device. If there is any error in the job
control statements for a job, that job is
terminated. Up to three input readers are
available.

Job Selection

Jobs are placed in an input queue; up to
fifteen input queues are available. The
queue selected depends on the job class, as
specified in the CLASS parameter of the JOB
statement. A job is placed in an input
queue according to its priority, as

Chapter 4: Job Initialization 33

specified in the PRTY parameter of the JOB
statement.

A job with the highest priority is
placed at the head of the queue; that with
the lowest at the end. A job with a
priority the same as a job already in the
queue, is placed immediately behind that
job.

If a job is not given a priority, a
default priority is given to it by the
system, and it is placed in an input gqueue
at the appropriate place.

In MFT, main storagé is divided into
partitions. One partition is allocated to
one job at a time. Partitions are
independent units of main storage. The
work being done in one partition cannot
affect work being done in another
partition; data cannot be left in a
partition for use by the next job step to
be loaded.

Up to fifteen partitions are available
for user jobs (there are other partitions
but they are not available to you);
therefore up to fifteen jobs can be
processed concurrently. The number of
partitions at a given time, and the size of
each one, may be fixed for a particular
installation, but usually both the number
and size can be selected by the operator.
The minimum size of a user partition is 8K
bytes. You must find out the conventions
on partitions at your installation.

Partitions are arranged in order of
priority. The partition with the highest
main-storage address has the highest
priority; partitions with successively
lower addresses have successively lower
priorities. A task is the work executed in
a particular partition. Partitions, not
job steps, compete for control; if a job
step enters a wait state or completes
execution, control passes to the partition
waiting with the highest priority. Neither
job class nor job priority have any affect
on competition between tasks for control.

The selection’” (by the initiator) of jobs
for execution depends on the relationship
between the partitions and the input queues
(that is, the job classes). A partition
can service up to three job classes; a job
class can be allocated to more than one
partition. If a partition services more
than one job class, it searches those
classes for jobs in a predetermined order.
For example:

Partitions: Highest priority PO
Pl

P2

Lowest priority P3

34

Class Job Class Job Class Job
A 1 B 1 c 1
2 2 2
3 3 3
Allocations:
Class A: PO, P1
Class B: PO, P1, P2
Class C: P2, P3
Partition PO0: A, B

Partition P1l: A, B
Partition P2: B, C
Partition P3: C

In this configuration, when the job step
in PO completes execution, class A is
searched to see if there are any jobs
waiting for selection. If there are not,
class B is searched. Similarly Pl searches
A and then B, P2 searches B and then C, and
P3 searches C only.. A job in class A can
be selected for PO or Pl, whichever is the
first ‘available; a job in B can be selected
for PO, P1 or P2, and a job in C for P2 or
P3.

Task Execution

Once a job has been selected for
processing, its job steps are executed
sequentially. When a job step enters a
wait state, control passes to the job step
waiting in the next highest priority
partition, irrespective of the job class of
the waiting job step.

Other .Considerations

Your installation may have the time-slicing
facility. Execution time is divided
('sliced') into a number of discrete
periods. One period is allocated to one
job, the next period to another job, and so
on, among all the jobs to be processed.

The total execution time for one job is
interleaved with that for other jobs, and
thus all jobs are kept moving. Usually one
particular class is reserved for
time-sliced jobs; if your job is to be
time-sliced you must £ind out the ;
time-slicing class at your installation.
Similarly, if you use the TYPRUN parameter,
one class may be reserved for jobs whose
processing is to be delayed.

If your installation has a shared PL/I
library, this could affect the amount of
space available in a partition or even the
partition size.

Output

The output stream from the job is stored
temporarily on a direct-access device. The
output data is stored in an output queue;
each member of the queue is associated with
an output class, as designated in the
SYSOUT parameter. If system and problem
program data are in the same class, they
are placed in the queue member in the
order:

System messages at job initiation

Problem program data
System messages at job termination

Up to 36 output queues are available. The
contents of each output class are written
out by a system output writer onto the
device (printer, punch, or tape) associated
with that class. Up to 36 system output
writers are available; each output writer
can service up to eight output classes.

MVT CONTROL PROGRAM

JOB Statement Parameters

Accounting information
Programmer's name
CLASS

COND

MSGCLASS

MSGLEVEL

PRTY

REGION

ROLL -~

TYPRUN

Input

’

The job stream is read from a card or a
tape device, or from a direct-access
device, and is stored on a direct-access
device. If there are any errors in the job
control statements for a job, that job is
terminated. As many input readers as are
required can read input streams.

Job _Selection

Jobs are placed in a single input queue,
and are arranged within the queue according
to their priorities, as specified in the
PRTY parameter of the JOB statement.

A job with the highest priority is
placed at the head of the gqueue; that with
the lowest at the end. A job with a
priority the same as a job already in the
queue, is placed immediately behind that
job.

If a job is not given a priority, a
default priority is given to it by the
system, and it is placed in the input queue
at the appropriate place.

In MVT, main storage is divided into
reqgions. The amount of storage required
for a region is specified in the REGION
parameter. The number of regions that can
exist concurrently depends on the total
size of main storage and on the region
sizes specified. Each job is executed in
one region. Regions are independent units
of main storage; work being done in one
region cannot affect work being done in any
other region. Data cannot be left in a
region for use by the next job step to be
loaded.

A region is not a permanent division of
main storage. It exists only for the
duration of the job step for which it was
created. When a job is selected for
execution, a region is created for it. A
region does not have a priority and does
not compete for control with other regions;
such competition is between the tasks in
the regions.

The selection of jobs for execution from
the input queue depends on the job class
and priority. Jobs are queued in order of
priority or, if they have equal or no
priority, in order of arrival in the queue.
Job class has no affect on job position in
the input queue. Jobs are selected by one
of several initiators. When an initiator
is allocated to a job class, it selects

Chapter 4: Job Initialization 35

‘initiators:

iqueue and selects the first A8 job.

‘next time Init(A) receives control it
'selects the second A8 job (assuming the
icontents of the queue have remained the

. jobs: A3, A0, AO.

.order: B10, B9, B7.

;only the jobs in that class; the order of
itaking them is determined by the job
‘priority.
/more than one job class, and will search
‘the classes in predetermined order.
fifteen job classes are available; the
‘numbexr of initiators depends on the number
.0f job classes allocated to each one.

An initiator can be allocated to

Up to

For example, if there are three

Init(A) for jobs in class A
Init(B) B
Init(C) c

and there are eleven jobs in the input
queue as follows:

Job Class "Priority
B 10
B 9
A 8
A 8
B 7
C u
A 3
c 2
c 1
A 0
A 0

then, when the job scheduler requires the

‘next job for processing, if Init(a) is the
first initiator to be given control, it

ignores the two B jobs at the head of the
The

same) and so on through all the class A
When Init(A) cannot find
any jobs to select, Init(B) is given
control and selects the class B jobs in the
Similarly, when
Init(C) receives control, it selects the
class C jobs in the order: Cc4, C2, C1l.

More than two initiators can run
together and one initiator can interrogate
more than one class depending on the
installation standards.

‘Task Execution

Once a job has been selected for
i processing, its job steps are executed

sequentially; each job step is a task.

36

Each task competes for control with all the
other tasks being executed. Each task has
a limit priority that depends on:

1. The value in the PRTY parameter in the
JOB statement.

2. The value in the DPRTY parameter in
the EXEC statement for that job step.

3. If neither of these is specified, a
default value is supplied by the job
scheduler.

Each task also has a despatching
priority; this can be changed during
execution but cannot be greater than the
limit priority. The tasks compete for
control on the basis of the current values
of their despatching priorities. Note that
in MVT a priority can be specified on the
EXEC statement; this does not affect the
sequential execution of the job steps in a
job but can affect considerably the chances
of an existing task gaining control.

Once a task is being executed, it can
create subtasks dynamically.A subtask has a
limit and despatching priority in the same
way as the originating task, and competes
for control with all the tasks and subtasks
being executed.

Other Considerations

If your installation has the time-slicing
facility described above in "MFT Control
Program, ' note that usually one particular
priority is reserved for time-sliced jobs.
Similarly, priorities are reserved for jobs
whose processing is delayed by use of the
TYPRUN parameter; and for the message
control or message processing programs in
teleprocessing. You must find out the
conventions at your installation. If your
installation has a shared PL/I library,
this could affect the region size. Region
sizes can be affected during execution by
rollout/rollin.

Ooutput

MVT output follows the same conventions as
those for MFT output. If your installation
has a universal character set (UCS) printer
that will be used as an output writer, you
must assign a separate output class to each
character set image in the system library.

Introduction

The PL/I (F) compiler translates PL/I
source statements into machine
instructions. A set of machine
instructions such as is produced by the
compiler is termed an object module. (If
appropriate control statements are inserted
among the PL/I source statements, the
compiler can create two or more object
modules in a single run by means of batch
compilation.)

However, the compiler does not generate
all the machine instructions required to
represent the source program; instead, for
frequently used standard routines such as
those that handle the allocation of main -
storage space and the transmission of data
between main and auxiliary storage, it
inserts references to standard subroutines
that are stored in the PL/I subroutine
library. An object module produced by the
compiler is not ready for execution until
the appropriate library subroutines have
been included; this is the task of an
operating system service program, the
linkage editor or the linkagé loader, which
is described in Chapter 6. A module that
has been processed by the linkage editor or
linkage loader is termed a load module.

While it is processing a PL/I source
program, the compiler produces a listing
that contains information about the source
program and the object module derived from
it, together with diagnostic messages
relating to errors or other conditions
detected during compilation. Much of this
information is optional, and is supplied
only in response to a request made by
including appropriate 'options' in the PARM
parameter of the EXEC statement that
requests execution of the compiler.

The compiler also includes a facility,
the preprocessor or compile-time processor,
which can modify the source statements or
insert additional source statements before
compilation commences.

COMPILATION

The compiler comprises a control module
that remains in main storage throughout
compilation, and a series of subroutines
(termed phases) that are loaded and
executed in turn under the supervision of

Chapter 5: Compilation

the control module. Each phase performs a
single function or a set of functions, and
is loaded only if the services it provides
are required for a particular compilation.
The control module selects the appropriate
phases in accordance with the content of
the source program and the optional
compiler facilities that you select.
Figure 5-1 is a simplified flow diagram of
the compiler.

The data that is processed by the
compiler is known throughout all stages of
the translation process as text.
Initially, the text comprises the PL/I
source statements submitted by the
programmer; at the end of compilation, it
comprises the machine instructions that the
compiler has substituted for the source
statements, to which is added some
reference information for use by the
linkage editor.

The source program must be in the form
of a data set identified by a DD statement
with the name SYSIN; frequently, the data
set is a deck of punched cards. The source
text is passed to the read-in phase either
directly or via one of two preprocessor
phases:

1. If the source text is in the PL/I
48-character set, the 48-character-set
processor translates it into the
60-character set. You must indicate
the need for translation by specifying
the CHAR48 option.?

2. If the source text contains
preprocessor statements, the
compile-time-processor phase executes
these statements in order to modify
the source program or introduce
additional statements. The
compile~time processor includes a
facility for translating statements
written in the U48-character set into
the 60-character set. To request the
services of the compile-time
processor, specify the MACRO option.

Both preprocessors place the translated
source text in the data set defined by a DD
statement with the name SYSUT3. The
read-in phase takes its input either from
this data set or from the data set defined
by the DD statement SYSIN. This phase

iThe compiler options are discussed under
'Optional Facilities,' later in this
chapter.

Chapter 5: Compilation 37

CHAR 48

SOURCE TEXT
(FROM SYSIN)

COMPILE~-
TIME

MACRO

PROCESSING
?

NOMACRO

CHARACTER

48-CHARACTER~
SET
PROCESSOR

6O -CHARACTER-SET
TEXT VIA SYSUT3

igure 5-1. PIL/I (F) Compiler: Simplified Flow Diagram

38

\\\\\jfT

CHARbO

READ-IN
PHASE

DICTIONARY
PHASE

TRANSLATION
PHASES

FINAL-
ASSEMBLY
PHASE

|

OBJECT MODULE
(TO SYSLIN OR SYSPUNCH)

COMPILE -
TIME
PROCESSOR

PROCESSED SOURCE
TEXT VIA SYSUT 3

checks the syntax of the source statements
and removes any comments and nonsignificant
blank characters.

After read-in, the dictionary phase of
the compiler creates a dictionary that
contains entries for all the identifiers in
the source text. The compiler uses the
dictionary to communicate descriptions of
the elements of the source program and the
object program between phases. The
dictionary phase of the compiler replaces
all identifiers and attribute declarations
in the source text with references to
dictionary entries.

Translation of the source text into
machine instructions involves several
compiler phases. The sequence of events
is:

1. Rearrangement of the source text to
facilitate translation (for example,
by replacing array or structure
assignments with DO loops that contain
element assignments).

2. Conversion of the text from the PL/I
syntactic form to an internal
syntactic form.

3. Mapping of arrays and structures to
ensure correct boundary alignment.

4. Translation of text into a form
similar to machine instructions; this
text form is termed pseudo-code.

5. Storage allocation: the compiler makes
provision for storage for STATIC
variables and generates code to allow
AUTOMATIC storage to be allocated
during execution of the object
program. (The PL/I library
subroutines handle the allocation of
storage during execution of the object
program.)

The final-assembly phase translates the
pseudo~code into machine instructions, and
then creates the external symbol dictionary
(ESD) and relocation dictionary (RLD)
required by the linkage programs. The
external symbol dictionary is a list that
includes the names of all subroutines that
are referred to in the object module but
are ‘not. part of the module; these names,
which are termed external references,
include the names of all the PL/I 1library
subroutines that will be required when the
object program is executed. The relocation
dictionary contains information that
enables absolute storage addresses to be
assigned to locations within the object
module when it is loaded for execution.
Chapter 6 contains a fuller discussion of
the external symbol dictionary and the

relocation dictionary, and explains how the
linkage programs use them.

Job Control Language for Compilation

Although you will probably use cataloged
procedures rather than supply all the job
control statements required for a job step
that invokes the compiler, it is necessary
to be familiar with these statements so
that you can make the best use of the
compiler, and if necessary modify the
statements of the cataloged procedures.

The IBM-supplied PL/I cataloged
procedures for compilation are:

PL1DFC compile only (object module on
punched cards).

PL1LFC Compile only (object module
stored on magnetic-tape or
direct-access device).

PL1LFCL Compile and link edit.

PLILFCLG Compile, link edit, and
execute.

PL1LFCG Compile, load, and execute.

Chapter 8 describes these cataloged
procedures and how to modify or override
the statements they contain.

The following paragraphs describe the
essential job control statements for
compilation; they use statements from the
PL/I cataloged procedures as examples.
Appendix B contains a description of the
parameters of the DD statement that are
referred to.

EXEC STATEMENT

The basic EXEC statement is:
// EXEC PGM=IEMAA

By using the PARM parameter of the EXEC
statement you can select one or more of the
optional facilities offered by the
compiler; these facilities are described
later in this chapter. The use of the
other parameters of the EXEC statement is
as described in Chapter 7, 'Executing the
Load Module'. S~

Chapter 5: Compilation = 39

L} v T 1
| Purpose | ddname | Associated |
| | {Compiler Option|
t- { t 1
|Primary input (PL/I source statements) | SYSIN | - |
| | I I
Punched card output	SYSPUNCH	DECK, MACDCK
Load module output SYSLIN	LOAD	
To contain overflow from main storage	SYsSUT1	-
storage for:	SYsUT3	
1. cConverted source module when 48-character set	CHAR4S	
used		
2. sSource statements generated by preprocessor		MACRO, COMP
Listing	SYSPRINT	-
Library containing source statements for insertion by	SYSLIB	MACRO
preprocessor		
L L Lk (]

Figure 5-2.

DD STATEMENTS

The compiler requires several standard data
sets, the number depending on the optional
facilities that you request. You must
define these data sets in DD statements
with the standard names listed in Figure
5-2. The DD statements SYSIN and SYSPRINT
are always required, and you should take
the precaution of including SYSUT1 in case
insufficient main storage is available to
the compiler. In addition, if you specify
any of the options listed in Figure 5-2,
you must include the associated DD
statement.

Figure 5-3 summarizes the
characteristics of the compiler data sets.
You can place any of them on a
direct-access device; if it is likely that
you will do so, include the SPACE parameter
in the DD statements that define the data
sets. The amount of storage space
allocated in the standard cataloged
procedures (Chapter 8) should suffice for
most applications; however, Appendix H
explains how to calculate the requirements
for auxiliary storage.

Primary Input (SYSIN)

The primary input to the compiler must be a
CONSECUTIVE data set containing PL/I source
statements. These source statements must
comprise one or more external procedures;
if you want to compile more than one
external procedure in a single run, you

40

Standard Data Sets for Compilation

must separate the procedures in the input
data set with *PROCESS statements
(described under 'Batched Compilation®
later in this chapter).

Eighty-column punched cards are commonly
used as the input medium for PL/I source
programs. However, the input data set may
be on a direct-access device, magnetic
tape, or paper tape. The data set may
contain either fixed-length records,
blocked or unblocked, or undefined-length
records; the maximum record size is 100
bytes. The compiler always reserves 1000
bytes for two buffers for this data set;
however, you may specify a block size of
more than 500 bytes providing sufficient
space is available to the compiler. (Use
the SIZE option to allocate the additional
space: refer to 'Optional Facilities,'
later in this chapter.)

The standard PL/I cataloged procedures
do not include a DD statement for the input
data set; consequently, you must always
provide one. The following example
illustrates the statements you might use to
compile, link-edit, and execute a PL/I
program placed in the input stream:

//COLEGO JOB
/7 EXEC PL1LFCLG
//PL1L.SYSIN DD *

Insert here the source statements of
your PL/I program

/*

Chapter 8 describes how to add DD

statements to a cataloged procedure. Note

SYSCP Card punch
SYSDA Direct-access device

15Y¥SSQ Magnetic-tape or direct-access device

r L} v T) LB [}
ddname	Possible Device	Record	Record Size Default	Reserved	No. of
	Classes?	Format	(bytes) Block Size	Buffer Area	Buffers
			(bytes)	(bytes)	
b 1 , + + } 4 :					
SYSIN	S¥ssQ or input job	F, FB, U	100 (max) -	1000	2

| |stream(specified | | | ! |
T o | L
| SYSPUNCH | SYSSQ, SYSCP | ¥,FB | 80 | 80 400 | 1

| | |]] | |
| SYSLIN |SYSSQ | F,FB | 80 [80 400 | 1

I | [| I I |
| SYSUT1 |SYSDA | F 11024 - - | |
] I | I l] |
| SYSUT3 |sS¥YSsQ | ¥ FB, U | 80 - | 160 | |
I | | | | I | I
| SYSPRINT | SYSSQ or. SYSOUT | v, VB | 125 | 129 | 258 | 2

| |device | | | | |
! | | | | |]
| SYSLIB " {SYSDA | ¥, FB, U | 100 (max) - | - | |
'L, i i 1 | L L 1I
| |
|]
| |
i]

Figure 5-3.

that you must qualify the name of the added
DD statement with the name of the job step
within the cataloged procedure to which it
refers (in this example, PL1L).

output (SYSPUNCH, SYSLIN)

The compiler places the object module in
the data set defined by the DD statement
SYSLIN if you specify the option LOAD, and
in the data set defined by SYSPUNCH if you
include the option DECK; you may specify
both options in one program. The object
module is in the form of 80-byte
fixed-length records, blocked or unblocked.
The compiler always reserves 400 bytes for
buffers for each of the output data sets;
however, you may specify a block size of
more than 400 bytes providing sufficient
space is available to the compiler® (Use
the SIZE option to allocate the additional
space: refer to 'Optional Facilities’',
later in this chapter.)

The cataloged procedure PL1DFC includes
the DD statement

//SYSPUNCH DD SYSOUT=B

This statement specifies that the data set

ithe E-level linkage editor does not accept
blocked records; specify blocked records
for SYSLIN only if you are using the
F-level linkage editor.

Characteristics of Compiler Data Sets

is to be routed via the system output
device of class B, which is usually a card
punch. (However, the DD statement SYSPUNCH
need not refer to a card punch.)

The other cataloged procedures that
include a compilation job step contain the
following DD statement:

//SYSLIN DD DSNAME=§SLOADSET,

Vo4 DISP=(MOD,PASS),
V4 UNIT=SYSSQ,
V4 SPACE=(80, (250,100))

This statement defines a temporary data set
named §§LOADSET on a magnetic-tape or
direct-access volume; if you want to retain
the object module after the end of your
job, you must substitute a permanent name
for EELOADSET (i.e., a name that does not
commence &&) and specify KEEP in the
appropriate DISP parameter for the last
step in which the data set is used. The
term MOD in the DISP parameter allows the
compiler to place more than one object
module in the data set, and PASS ensures
that the data set will be available to the
next job step (link-edit) providing a
corresponding DD statement is included
there. The SPACE parameter allows an
initial allocation of 250 eighty-byte
records and, if necessary, 15 further
allocations of 100 records (a total of 1750
records, which should suffice for most
applications).

Chapter 5: Compilation 41

Workspace {(SYSUT1, .SYSUT3)

The compiler may require two data sets for
use as temporary workspace. They are
defined by DD statements with the names
SYSUT1 and SYSUT3.

SYSUT1 defines a data set, known as the
spill file, which the compiler uses for
overflow text and dictionary blocks when
compiling large source programs or when
less than 57,344 bytes (56K bytes) of main
storage are available for compilation.
This data set must be on a direct-access
device. It is good practice to include
this DD statement even when you use the
SIZE option to allocate more than 56K bytes
to the compiler. The cataloged procedures
include the following (or a similar)
statement:

//SYSUT1 DD UNIT=SYSDA,
/77 SPACE=(1024, (60,60) ,,CONTIG),
Va4 SEP= (SYSUT3, SYSLIN)

Although the SEP parameter is not
essential, its employment increases the
efficiency of access to the compiler data
sets. You should never need to modify this
DD statement.

The compiler requires the data set
defined by SYSUT3 only when you use the
48-character set or when you employ the
preprocessor. In each case, the compiler
places the processed text on this data set
before commencing compilation proper. All
the cataloged procedures use the following
DD statement:

//SYSUT3 DD UNIT=SYSSQ,
/7 SPACE=(80, (250,250) 3,
/7 SEP=SYSPRINT

Note that if a job being run under MVT
has a number of job steps, and each job
step requires a data set for use as
temporary workspace, the result is a
considerable overhead in time and space.
To reduce this as far as possible, you can
use dedicated workfiles. These are
workspace data sets which are created by
the initiator when the job is selected for
execution. They can be used by each job
step (in the job selected) that requires
temporary workspace; they are deleted when
the job is terminated.

To use dedicated workfiles in your job,
you must first make sure that your
installation has an initiator that can
generate them. If it has, you can use
these workfiles by specifying the ddname of
the initiator workfile as the dsname of the
workspace data set in your job stream; this
data set must be specified as a temporary

42

data set. For example, if an initiator has
three dedicated workfiles as follows:

//8Y¥YSUT1 DD
//5YSUT2 DD
//sYsSUT3 DD

(parameters)
(parameters)
(parameters)

then, if you want the workspace for the
SYSUT1 and SYSUT3 data sets in a job step
to be provided by the initiator workfiles,
code:

//8YsUT1L DD
//8YSUT3 DD

DSNAME=§§SYSUT1, ...
DSNAME=§ §SYSUT3, ...

The result is that this job step uses
dedicated workfiles as workspace; the
SYSUT1 and SYSUT3 DD statements in your job
stream are ignored. The IBM-supplied
cataloged procedures for PL/I include
SYSUT1 and SYSUT3 DD statements with a
dsname specified in this way.

There are several restrictions on the
substitution of dedicated workfiles for
workspace data sets in the job stream; for
example, only direct—-access devices are
supported. You should consult your system
programmer on the conventions and
restraints that apply at your installation
to each type of workspace data set.

Listing (SYSPRINT)

The compiler génerates a listing that
includes all the source statements that it
processed, information relating to the
object module, and, when necessary,
diagnostic messages. Most of the
information included in the listing is
optional, and you can specify those parts
that you require by including the
appropriate compiler options. The
information that may appear, and the
associated options, are described under
'Listings', later in this chapter.

You must define the data set on which
you wish the compiler to place its listing
in a DD statement named SYSPRINT. The data
set must have CONSECUTIVE organization.
Although the listing is usually printed, it
can be written on any magnetic-tape or
direct-access device. For printed output,
the following statement will suffice:

//SYSPRINT DD SYSOUT=A

The compiler always reserves 258 bytes
for buffers for the data set defined by the
DD statement SYSPRINT; however, you may
specify a block size of more than 129 bytes
provided sufficient main storage is
available to the compiler. (Use the SIZE
option to allocate the additional main

storage: refer to ‘'Optional Facilities',
later in this chapter.)

Source Statement Library (SYSLIB)

N

If you use the preprocessor %INCLUDE
statement to introduce source statements to
your program from a library, you can either
define the library in a DD statement with
the name SYSLIB, or you can choose your own
ddname (or ddnames) and specify a ddname in
each ¥INCLUDE statement. (Refer to
*Compile-Time Processing', later in this
chapter.}) The DD statement SYSLIB is not
included in the compilation job step of the
standard cataloged procedures (and it has a
different function in the link-edit step).

Note that for SYSLIB, the maximum record
size permitted is 100 bytes and the maximum
block size is 500 bytes.

EXAMPLE

The following example is a typical sequence
of job control statements for compiling a
PL/I program. The compiler options DECK
and NOLOAD, which are described below, have
been specified in order to obtain an object
module as a card deck only. Chapter 6
includes a sequence of job control
statements for link-editing such a card
deck.

//COMP JOB
// EXEC PGM=IEMAA,PARM="'DECK, NOLOAD'
//SYSPUNCH DD SYSOUT=B

//SYSUT1 DD UNIT=SYSDA,

VY . SPACE=(1024, (60,60), ,CONTIG)
//SYSPRINT DD SYSOUT=A

//SYSIN DD #

Insert here the source statements to be
compiled

VA

Optional Facilities

The (F) compiler offers a number of
optional facilities that you can select by
including the appropriate keywords in the
PARM parameter of the EXEC statement that
invokes it. The PARM parameter is a
keyword parameter: code PARM= followed by
the list of options, separating the options
with commas and enclosing the list within

single quotation marks?; for example:
// EXEC PGM=IEMAA,PARM='SIZE=72K,LIST'

The length of the option list must not
exceed 100 characters, including the
separating commas; however, many of the
option keywords have an abbreviated form
that you can use to save space. You may
specify the options in any order.

If you are using a cataloged procedure,
you must include the PARM parameter in the
EXEC statement that invokes the procedure
and qualify the keyword with the name of
the procedure step that invokes the
compiler; for example:

// EXEC PL1LFCLG,PARM.PL1L=('SIZE=100K",
77 L,E,RD)

The compiler options are of two types:

1. sSimple pairs of keywords: a positive
form (e.g., LOAD) that requests a
facility, and an alternative negative
form (e.g., NOLOAD) that rejects that
facility.

2. Keywords that permit you to assign a
value to a function (e.g., SIZE=56K).

During system generation, your
installation can specify for each option
except OBJNM a default value that will
apply if the option is not otherwise
specified. For those options for which
your installation does not allocate a
default value, standard default values
apply. Figure 5-4 lists all the compiler
options with their abbreviated forms and
the standard default values. The following
paragraphs describe the options in five
groups:

1. control options, which establish the
conditions for compilation (e.g.,
amount of main storage available,
degree of optimization).

2. Preprocessor options, which request
the services of the preprocessor and
specify how its output is to be
handled.

3. Input options, which specify the
format of the input to the compiler.

4. oOutput options, which specify the type
of data set that will contain the
object module.

11f only one option appears, the quotation
marks can be omitted.

Chapter 5: Compilation 43

r) k]
| Compiler Options Abbreviated | Standard |
| Names | Defaults |
[L 3
k T ! H
| | SIZE=yyyyyy|yyvyK|999999 | SIZE | 999999 |
| | OPT=n o | 1 |
| Control | STMT|NOSTMT ST|NST | NOS TMT i
options	OBINM=aaaaaaaa N	-				
	OBJIN	OBJOUT OBJIN	OBJOUT	OBJOUT		
	EXTDIC	NOEXTDIC ED	NED	NOEXTDIC		
	SYNCHKT	SYNCHKS	SYNCHKE SKT	SKS	SKE	SYNCHKT
i 1 1 1 :]						
v] 1 1] 1						
Preprocessor	MACRO	NOMACRO M	NM	NOMACRO		
options	coMP	NOCOMP Cc	NC { comp			
i	MACDCK	NOMACDCK MD	NMD	NOMACDCK		
L L kN i]						
vV k3 v 1						
Input	CHAR60	CHARY4S c60	cus	CHAR60		
options	BCD	EBCDIC B	EB	EBCDIC		
	SORMGIN=(mmm,nnnf{,cccl) SM	(2,72)				
[1 1. [
v T 1 1						
output	LOAD	NOLOAD i LD{NLD i LOAD				
options	DECK	NODECK i D	ND	NODECK		
[1l i t i						
L 1])] \						
	LINECNT=xxx	Lc] 50				
	OPLIST	NOOPLIST	OL	NOL	OPLIST	
	SOURCE2	NOSOURCE2] S2	Ns2	SOURCE2		
	SOURCE	NOSOURCE	siNs	SOURCE		
Listing	NEST	NONEST	NT	NNT	NONEST i	
options	ATR	NOATR	A	NA	NOATR	
	XREF	NOXREF	xINx	NOXREF		
	EXTREF	NOEXTREF i E	NE { NOEXTREF			
	LIST	NOLIST	LiNL	NOLIST		
	FLAGW	FLAGE	FLAGS	FW	FE	Fs i FLAGW
	DuMPI (argument-list)] I DP[(arg-					
1 | | list)] | - |
L IR L 1 J

Figure 5-4. Compiler Options, Abbreviations, and Standard Defaults

5.

Listing options, which specify the

information to be included in the
compiler listing.

CONTROL OPTIONS

SIZE

The SIZE option specifies the amount of

1.

can. If it finds less than 45,056
bytes (44K bytes), it prints a
message and attempts to continue
compilation; this attempt may not,
however, be successful. If you
know that less than 48K bytes of
main storage are available, do not
specify SIZE=999999, 'but give the
precise amount.

The following notes may help you select
the optimum size for a compilation:

main storage available for the compilation.

Code this option in one of the following

ways:

SIZE=yyyyyy specifies that yyyyyy bytes

of main storage are available for
You need not

the compilation.
supply leading zeros.

SIZE=yyyK specifies that yyyK bytes of
* main storage are available for the

compilation (1K=1024 bytes).

need not supply leading zeros.

2.

3.
You

SIZE =999999 instructs the compiler to
obtain as much main storage as it

4y

For compilation in an MFT partition or
an MVT region, specify at least 8K
bytes less than the partition or
region size.

If you specify less than 57,344 bytes
(56K bytes), the spill file (defined
by the DD statement SYSUT1) will be
opened.

Compilation speed is improved if the
SIZE value is increased to the point
where the spill file will not be
opened. The SIZE value also
determines the size of the dictionary
and text blocks:

Main Storage .Available Block .Size
(bytes) (bytes)
45,056 - 57,343 (56K) 1,024
57,344 - 73,727 (72K) 2,048
73,728 - 135,167 (132K) 4,096
135,168 - 172,031 (168K) 8,192
172,032 or more 16,384

The available storage is that
specified in the SIZE option less any
space required for data set buffers
(see note 4, below).

If the spill file has to be used
either for text or dictionary blocks,
diagnostic message IEM3898I will be
printed. Note that spilled text
blocks can be processed more
efficiently than spilled dictionary
blocks. The spill file will therefore
be used for text blocks before it is
used for dictionary blocks.

For each compilation, the message
"AUXILIARY STORAGE WILL NOT BE USED
FOR DICTIONARY WHEN SIZE=nnnk"‘is
printed. Use of this size for a
recompilation will provide a more
efficient use of main storage but
might result in the spilling of text
blocks (and the production of message
IEM3898I)

The compiler reserves part of the main
storage available to it for use as
data set buffers (intermediate storage
areas for data transmitted between
main and auxiliary storage). The
compiler uses one buffer each for the
data sets defined by SYSLIN and
SYSPUNCH, and two buffers each for
SYSPRINT and SYSIN; in each case, the
size of the buffer is equal to the
block size of the corresponding data
set. If you specify a block size for
any of the data sets that requires
more buffer space than the compiler
normally reserves, you should allow
for the extra space in your SIZE
option by adding the following
quantities to the 44K bytes minimum
required by the compiler:

(2 * SYSIN block size) - 1000 bytes
(2 * SYSPRINT block size) - 258 bytes
SYSPUNCH block size - 400 bytes
SYSLIN block size - 400 bytes

The text block size determines the
total number of pairs of parentheses

used for factoring attributes in a
DECLARE statement:

Text Block.Size Pairs of Factor

(bytes) Parentheses
1,024 (1K) 146
2,048(2K) 292
4,096 (4K) 585
8,192(8K) 1171
16,384 (16K) 2340

OoPT

The OPT option specifies the type of
optimization required:

OPT=0 instructs the compiler to keep
object-program storage requirements
to a minimum at the expense of
object-program execution time.

OPT=1 causes object-program execution
time to be reduced at the expense
of storage.

OPT=2 has the same effect as OPT=1l, and
in addition requests the compiler
to optimize the machine
instructions génerated for certain
types of DO-loops and expressions
in subscript lists. IBM System/360
Operating .System: PL/I (F) Language
Reference Manual includes a
discussion of DO-loop and
subscript-expression optimization.

There is little difference in
compilation time for optimization levels 0
and 1, but specifying OPT=2 could result in
a substantial increase in compile time.

STMT .or NOSTMT

The STMT option requests the compiler to
produce additional instructions that will
allow statement numbers from the source
program to be included in diagnostic
messages produced during execution of the
compiled program.

The use of this option causes
degradation of execution time. However
you can get information about statement
numbers and their associated offsets by
referring to the TABLE OF OFFSETS. (See
*Options Used for the Compilation,' below.)

Chapter 5: Compilation 45

OBJNM

The OBJNM option allows you to name the
load module that will be created by the
linkage editor from the compiled object
module. (If you do not specify a name, the
linkage editor will use the member name
from the DSNAME parameter of the DD
statement SYSLMOD in the link-edit job
step; see Chapter 6.) The option causes
the compiler to place a linkage editor NAME
statement at the end of the object module.
The NAME statement has the effect of
assigning the specified name to the
preceding module when the module is
link-edited. The format of the option is

OBJNM=aaaaaaaa

where 'aaaaaaaa' represents a name
comprising not more than eight characters,
the first of which must be an alphabetic
character. The format of the resultant
NAME statement, which is described fully in
Chapter 6, is

bNAMEbaaaaaaaa (R)
where b represents a blank character.

The principal purpose of the CBJNM
option is to facilitate the use of the
linkage editor to create a series of load
modules from the output of a batched
compilation. (Refer to 'Batched
Compilation', later in this chapter.) You
can also use it to cause the linkage editor
to substitute the new load module for an
existing module of the same name in a
library.

OBJIN or OBJOUT

You must specify the option OBJIN if you
intend to execute the compiled program on
an IBM System/360 Model 91 or 195. The
special considerations for PL/I programs
executed on Models 91 and 195 are discussed
in Appendix G.

EXTDIC or NOEXTDIC

The EXTDIC option causes the compiler to
use a dictionary with a capacity of 1.5
times that of the normal dictionary if the
dictionary block size is 1K bytes, and 3.5
times that of the normal dictionary if the
block size is greater than 1K bytes. This
permits successful compilation of large
programs that would otherwise overflow the
dictionary capacity. As the use of EXTDIC

L)

reduces compilation speed, specify this
option only when the source module cannot
be compiled with the standard dictionary.

Programs that are large enough to
require the EXTDIC option will be compiled
very muach more quickly if a large storage
area is available. Ideally, enough storage
should be available to hold the dictionary
throughout compilation. As a rough
guideline, the SIZE option should specify
about 100,000 bytes plus 75 bytes for each
identifier in the source module. Do not
use the EXTDIC option when SIZE specifies
less than 47,104 bytes.

SYNCHKT, SYNCHKS or SYNCHKE

This option specifies the conditions for
termination after syntax checking if errors
are detected. The option has three values
specifying termination according to the
severity of errors.

SYNCHKE terminates compilation if erxrrors
of severity ERROR or above are found during
the syntax checking stages of compilation.

SYNCHKS terminates compilation if erxrors
of severity SEVERE or above are found
during the syntax checking stages of
compilation.

With the SYNCHKS or SYNCHKE in effect, a
message is written to SYSPRINT stating:-

*SYNTAX CHECK COMPLETED. COMPILATION
CONTINUES' or 'SYNTAX CHECK COMPLETED.
COMPILATION TERMINATED'

whichever is appropriate.

When using the value SYNCHKT compilation
is terminated immediately an error of
severity TERMINATION is encountered during
the syntax check. In this case the syntax
check is not completed, and therefore no
special message is printed.

With SYNCHKT in effect the option is
effectively turned off, and no special
messages will be generated.

PREPROCESSOR OPTIONS

MACRO .oxr NOMACRO

Specify MACRO when you want to employ the
compiler preprocessor. The use of the
preprocessor is described under
‘Compile-Time Processing,' later in this
chapter.

COMP or .NOCOMP

Specify this option if you want the PL/I
source module produced by the preprocessor
to be compiled immediately. The source
module is then read by the compiler from
the data set identified by the DD statement
SYsSUT3.

MACDCK or NOMACDCK

Specify the option MACDCK if you want the
output from the preprocessor in the form of
a card deck. This output is written
(punched) in the data set specified by the
DD statement SYSPUNCH.

INPUT OPTIONS

CHAR60 ox' CHARA4S

If the PL/I source statements are written
in the PL/I 60-character set, specify
CHAR60; if they are written in the
48-character set, specify CHAR48. IBM
System/36 0 Operating .System: PL/I (F)
Lanquage Reference Manual lists both
character sets. (Note that the compiler
will accept source programs written in
either character set if you specify
CHARUSB.)

BCD ox EBCDIC

The compiler will accept source statements
in which the characters are represented by
either of two codes; binary coded decimal
(BCD) and extended binary-coded-decimal
interchange code (EBCDIC). For binary
coded decimal, specify the option BCD; for
extended binary coded decimal interchange
code, specify the option EBCDIC. Whenever
possible, use EBCDIC since BCD requires
translation and is therefore less
efficient. 1IBM System/360 Operating
System: PL/I (F) Language Reference Manual
lists the EBCDIC representation of both the
48-character set and the 60-character set.
The 029 Keypunch punches characters in
EBCDIC. form without multipunching; to
obtain EBCDIC using the 026 you must
multipunch some characters.

SORMGIN

The SORMGIN (source margin) option
specifies the extent of the part of each
input record that contains the PL/I source
statements. The compiler will not process
data that is outside these limits. The
option can also specify the position of an
ANS carriage control character to format
the listing of source statements produced
by the compiler if you include the SOURCE
option. The format of the SORMGIN option
is:

SORMGIN= (mmm,nnnl, cccl)

where mmm represents the number of the
first byte of the field that
contains the source statements,

nnn represents the number of the last
byte of the source statement
field, and

ccc represents the number of the byte
that will contain the control
character.

The value mmm nmust be less than oxr equal
to nnn, and neither must exceed 100. The
value ccc must be outside the limits set by
mmm and nnn. The valid control characters
are:

Skip one line before printing
Skip two lines before printing
Skip three lines before printing
Suppress space before printing
Start new page

=+ | olg

Chapter 11 contains a full description of
the use of printer control characters. If
you do not specify a position for a control
character, a default position defined by
your installation may apply. You can
nullify this default position by specifying
the carriage control character to be zero
(for example, SORMGIN=(1,72,0)).

If the value ccc is greater than the
value set by the LRECL subparameter of the
DCB parameter, the compiler may not be able
to recognize it; consequently the listing
may not have the required format. If the
character specified is not a valid control
character, a blank is assumed by default.

Source statements génerated by the
preprocessor always have a source margin
(2,72). Columns 73-80 contain information
inserted by the preprocessor; this
information is described under 'Listing,’
below.

Chapter 5: Compilation 47

OUTPUT OPTIONS

LOAD or NOLOAD

The LOAD option specifies that the compiler
is to place the object module in the data
set defined by the DD statement with the
name SYSLIN.

DECK or NODECK

The DECK option specifies that the compiler
is to place the object module, in the form
of 80-column card images, in the data set
defined by the DD statement with the name
SYSPUNCH. Columns 73-76 of each card
contain a code to identify the object
module; this code comprises the first four
characters of the first label in the
external procedure represented by the
module. cColumns 77-80 contain a 4-digit
decimal serial number: the first card is
numbered 0001, the second 0002, etc.

LISTING OPTIONS

The listings produced by the compiler when
you specify the following options are
described under ‘Listing' below.

LINECNT

The LINECNT option specifies the number of
lines to be included in each page of a
printed listing, including heading lines
and blank lines. Its format is:

LINECNT=xXX

OPLIST or NOOPLIST

The OPLIST option requests a list showing
the status of all the compiler options at
the start of compilation.

SOURCE2 or NOSOURCE2

The SOURCE2 option requests a listing of
the PL/I source statements input to the
pPreprocessor.

Lg

SOQURCE or NOSOURCE

The SOURCE option requests a listing of the
PL/I source statements processed by the
compiler. The source statements listed are
either those of the original source program
or the output from the preprocessor.

NEST or NONEST

The NEST option specifies that the source
program listing should indicate for each
statement, the block level and the level of
nesting of a DO-group.

ATR oxr NOATR

The ATR option requests the inclusion in
the listing of a table of source program
identifiers and their attributes.
Attributes with a precision of fixed binary
(15,0) or less are flagged "***kk*%x%kx*'_ An
Aggregate Length Table, giving the length
in bytes of all major structures and
non-structured arrays in the source
program, will also be produced when the ATR
option is specified.

XREF or NOXREF

The XREF option requests the inclusion in
the listing of a cross-reference table that
lists all the identifiers in the source
program with the numbers of the source
statements in which they appear. If you
specify both ATR and XREF, the two tables
are combined. An Agdgregate Lengh Table
will also be produced when the XREF option
is specified.

EXTREF or NOEXTREF

The EXTREF option requests the inclusion of
a listing of the external symbol dictionary
(ESD).

LIST or NOLIST

The LIST option requests a listing of the
machine instructions generated by the
compiler (in a form similar to System/360
assembler language instructions).

FLAGW or FLAGE or FLAGS

The diagnostic messages produced by the
PL/I (F) compiler are graded in order of
severity. The FLAG option specifies the
minimum level of severity that requires a
message to be printed:

FLAGW List all diagnostic messages

FLAGE IList all diagnostic messages
except 'warning' messages

FLAGS IList only 'severe' errors and

‘termination' errors

The severity levels are discussed under
'Listing, ' below.

Dump

The DUMP option requests a formatted
listing on SYSPRINT of the compiler
modules, compiler storage, and compiler
control blocks if an unrecoverable error is
encountered. The DUMP option can also be
used with optional arguments; the nature
and purpose of these arguments are
discussed in the publication IBM System/360
Operating System; PL/I (F) Compiler,
Program Logic, Order No. GY28-6800.

This facility should only be used in the
event of a compiler failure.

Listing

During compilation, the compiler generates
a listing that contains information about
the compilation and about the source and
load modules. It places this listing in
the data set defined by the DD statement
SYSPRINT (usually output to a printer).
The following description of the listing
refers to its appearance on a printed page.

The listing comprises a small amount of
standard information that always appears,
together with those items of optional
information requested in the PARM parameter
of the DD statement that invoked the
compiler or that were applied by default.
Figure 5-5 lists the optional components of
the listing and the corresponding compiler
options.

The first page of the compiler listing
is identified by the compiler version
number and the operating system release
number in the top left-hand corner, and by
the heading 0S/360 PL/I COMPILER (F) in the

center. Starting with this page, all the
pages of the listing are numbered
sequentially in the top right-hand corner.
On Page 1, immediately under the page
number, the date of compilation is recorded
in the form yy.ddd (yy=year, ddd=day).

Page 1 also includes a statement of the
options specified for the compilation,
exactly as they are written in the PARM
parameter of the EXEC statement.

The listing always ends with a statement
that no errors or warning conditions were
detected during the compilation or with one
or more diagnostic messages. The format of
the messages is described under 'Diagnostic
Messages,' below. If your machine includes
the timer feature, the listing concludes
with a statement of the CPU time taken for
the compilation and the elapsed time during
the compilation; these times will differ
only in a multiprogramming environment.

The following paragraphs describe the
optional parts of the listing in the order
in which they appear. Appendix A includes
a fully annotated example of a compiler
listing.

Listings Option Required
Options for the OPLIST
compilation
Preprocessor input SOURCE2
Source program SOURCE
Statement nesting level NEST
Attribute table ATR
Cross—-reference table XREF

Aggregate-length table ATR or XREF

External symbol dictionary EXTREF

Object module LIST
Diagnostic messages for
severe errors, €errors,
and warnings

FLAGS, FLAGE,
FLAGW

Optional Components of
Compiler Listing

Figure 5-5.

OPTIONS USED FOR THE COMPILATION

If the option OPLIST applies, a complete
list of the options for the compilation,
including the default options, follows the
statement of the options specified in the
EXEC statement. This information appears
twice, the second list being in a standard

Chapter 5: Compilation 49

format to facilitate the automatic
collection of operating-system usage
statistics.

PREPROCESSOR INPUT

If both the options MACRO and SOURCE2
apply, the compiler lists the input
statements to the preprocessor, one record
per line. The lines are numbered
sequentially at the left.

If the compiler detects an error or the
possibility of an error, during the
preprocessor phase, it prints a message on
the page or pages following the input
listing. The format and classification of
the error messages are exactly as described
for the compilation error messages
described under 'Diagnostic Messages,'
below.

SOURCE PROGRAM

If the option SOURCE applies, the compiler
lists the source program input, one record
per line; if the input statements include
carriage control characters, the lines will
be spaced accordingly. The statements in
the source program are numbered
sequentially by the compiler, and the
number of the first statement in the line
appears to the left of each line in which a
statement begins. The statements contained
within a compound (IF or ON) statement are
numbered as well as the compound statement
itself; and, when an END statement closes
more than one group or block, all the
implied END statements are included in the
count:

1 ©P: PROC;

2 X: BEGIN;

3 IF A=B

4 THEN A=1;

5 ELSE DO;

6 A=0;
7 C=B;
8 END X;

10 D=E;

11 END;

If the source statements were generated
by the preprocessor, columns 73-80 contain
the following information:

50

Ccolumn
73-77 Input line number from which the
source statement was generated.
This number corresponds to the
line number in the preprocessor
input listing.

78,79 Two-digit number giving the
maximum depth of replacement for
this line. If no replacement
occurred, the columns are blank.

80 *E' signifies that an error
occurred while replacement was
being attempted. If no error
occurred, the column is blank.

Statement Nesting .Level

If the options SOURCE and NEST apply, the
block level and the DO level are printed to
the right of the statement number under
appropriate headings:

STMT LEVEL NEST

1 A: PROC OPTIONS(MAIN);
2 1 B: PROC(L):;

3 2 DO I=1 TO 10;

y 2 1 DO J=1 TO 10;
5 2 2 END;

6 2 1 BEGIN;

7 3 1 END;

8 2 1 END B;

9 1

END A;

ATTRIBUTE AND CROSS~-REFERENCE TABLE

If the option ATR applies, the compiler
prints an attribute table containing an
alphameric list of the identifiers in the
program together with their declared and
default attributes. If the option XREF
applies, the compiler prints a
cross-reference table containing an
alphameric list of the identifiers in the
program together with the numbers of the
statements in which they appear. If both
ATR and XREF apply, the two tables are
combined.

Except for file attributes, the
attributes printed will be those that
obtain after conflicts have been resolved
and defaults applied. Since the file
attribute analysis does not take place
until after the attribute list has been
prepared, the attributes that appear in the
list for a file are those supplied by you,
regardless of conflicts.

If either of the options ATR and XREF
applies, the compiler also prints an
aggregate-length table, which gives, where
possible, the lengths in bytes of all major
structures and all non-structured arrays in
the program.

Attribute Table

If an identifier was declared explicitly,
the number of the DECLARE statement is
listed under the heading DCL NO. The
statement numbers of statement labels and
entry labels are also given under this
heading. '

The attributes INTERNAL and REAL are
never included; they can be assumed unless
the respective conflicting attributes
EXTERNAL and COMPLEX appear.

For a file identifier, the attribute
EXTERNAL appears if it applies; otherwise,
only explicitly declared attributes are
listed.

For an array, the dimension attribute is
printed first; the bounds are printed as in
the array declaration, but expressions are
replaced by asterisks.

For a character string or a bit string,
the length preceded by the word 'STRING,'
is printed as in the declaration, but an
expression is replaced by an asterisk.

Cross~-Reference Table

If the cross-reference table is combined
with the attribute table, the numbers of
the statements in which an identifier
appears follow the list of attributes for
~that identifier. The number of a statement
in which a based variable identifier
appears will be included, not only in the
list of statement numbers for that
variable, but also in the list of statement
numbers for the pointer associated with it.

Aggregate Length Table

Fach entry in the aggregate-length table
consists of an aggregate identifier
preceded by a statement number and followed
by the length of the aggregate in bytes.

The statement number is the number
either of the DECLARE statement for the
aggregate or, for a CONTROLLED aggregate,

of an ALLOCATE statement for the aggregate.
An entry appears for every ALLOCATE
statement involving a CONTROLLED aggregate,
since such statements have the effect of
changing the length of the aggregate during
execution. Allocation of a BASED aggregate
does not have this effect, and only one
entry, which is that corresponding to the
DECLARE statement, appears.

The length of an aggregate may not be
known at compilation, either because the
aggregate contains elements having
adjustable lengths or dimensions, or
because the aggregate is dynamically
defined. In these cases, the word
'ADJUSTABLE' or ‘'DEFINED' appears in the
LENGTH IN BYTES column.

An entry for a COBOL mapped structure,
that is, for a structure into which a COBOL
record is read or from which a COBOL record
is written, has the word '(COBOL)‘
appended, but such an entry will appear
only if the structure does not consist
entirely of:

1. doubleword data, or

2. fullword data, or

3. halfword binary data, or

4. character string data, or
5. aligned bit string data, or

6. a mixture of character string and
aligned bit string data.

If a COBOL entry does appear it is
additional to the entry for the PL/I mapped
version of the structure.

STORAGE REQUIREMENTS

If the option SOURCE applies, the compiler
lists the following information under the
heading STORAGE REQUIREMENTS on the page
following the end of the aggregate-length
tables

1. The storage area in bytes for each
procedure.

2. The storage area in bytes for each
BEGIN block.

3. The storage area in bytes for each ON
unit.

4. The length of the program control
section (CSECT). The program control
section is the part of the object
module that contains the executable
part of the program.

Chapter 5: Compilation 51

5. The length of the static internal
control section. This control section
contains all storage for variables
declared STATIC INTERNAL.

TABLE OF OFFSETS

If the options SOURCE, NOSTMT, and NOLIST
apply, the compiler lists, for each primary
entry point, the offsets at which the '
various statements occur. This information
is found, under the heading TABLE OF
OFFSETS AND STATEMENT NUMBERS WITHIN
PROCEDURE, following the end of the storage
requirements table.

EXTERNAL SYMBOL DICTIONARY

If the option EXTREF applies, the compiler
lists the contents of the extermal symbol
dictionary (EsSD) for the object module.

The ESD is a table containing all the
external symbols that appear in the module.
(The machine instructions in the object
module are grouped in blocks called control
sections; an external symbol is a name that
can be referred to in a control section
other than the one in which it is defined.)
The information appears under the following
headings:

SYMBOL - An 8-character field that
identifies the external symbol.

TYPE - Two characters from the following
list to identify the type of ESD
entry:

SD - Section definition: the name
of a control section within
this module.

CM - Common area: a type of
control section that contains
no executable instructions.
The compiler creates a common
area for each non-string
element variable declared
STATIC EXTERNAL without the
INITIAL attribhute.

ER - External reference: an
external symbol that is not
defined in this module.

PR - Pseudo-register: a field in a
communications area, the
pseudo-register vector (PRV),
used by the compiler and the
library subroutines.

52

LD - Label definition: the name of
an entry point to the
external procedure other than
that used as the name of the
program control section.

ID - Four-digit hexadecimal number: the
entries in the ESD are numbered
sequentially, commencing from
0o001.

ADDR - Hexadecimal representation of the
address of the symbol: this field
is not used by the compiler, since
the address is not known at
compile time.

LENGTH - The hexadecimal length in bytes of

the control section (sSD, CM, and
PR entries only).

Standard ESD Entries.

The external symbol dictionary always
starts with seven standard entries (Figure
5-6)1

1. Name of the program control section
(the control section that contains the
executable instructions of the object
module). This name is the first label
of the external procedure statement.

2. Name of the static internal control
section (which contains storage for
all variables declared STATIC
INTERNAL). This name is the first
label of the external procedure
statement, padded on the left with
asterisks to seven characters if
necessary, and extended on the right
with the character A.

3. IHEQINV: pseudo-register for the
invocation count (a count of the
number of times a block is invoked
recursively).

4. IHESADA: entry point of the library
routine that obtains automatic storage
for a block.

5. IHESADB: entry point of the library
routine that obtains automatic storage
for variables whose extents are not
known at compile time.

6. IHEQERR: pseudo-register used by the
library error-handling routines.

7. IHEQTIC: pseudo-register used by the
library multitasking routines.

[SYMBOL TYPE ID ADDR LENGTH|
{FIGS SD 0001 000000 00033A=
!***FIGSA sD 0002 000000 00005F=
{IHEQINV PR 0003 000000 ooooou=
:IHESADA ER 0004 000000

l
| IHESADB ER 0005 000000

|

| IHEQERR PR 0006 000000 000004]|
|

| THEQTIC PR 0007 000000 000004
L

Figure 5-6. Typical standard ESD
Entries

Other ESD Entries

The remaining entries in the external
symbol dictionary vary, but generally
include the following:

1. Section definition for the 4-byte
control section IHEMAIN, which
contains the address of the principal
entry point to the external procedure.
This control section is present only
if the procedure statement includes
the option MAIN.

2. Section definition for the control
section IHENTRY (always present).
Execution of a PL/I program always
starts with this control section,
which passes control to the
appropriate initialization subroutine
of the PL/I library; when
initialization is complete, control
passes to the address stored in the
control section IHEMAIN.
(Initialization is required only once
during the execution of a PL/I
program, even if it calls another
external procedure; in such a case,
control passes directly to the entry
point named in the CALL statement, and
not to IHENTRY.)

3. LD-type entries for all names of entry
points to the external procedure
except the first.

4. A PR-type entry for each block in the
compilation. The name of each of the
pseudo-registers comprises the first
label of the external procedure
statement, padded on the left with
asterisks to seven characters if
necessary, and extended on the right
with an eighth character selected from
one of two tables used by the

5.

compiler. If the number of blocks
exceeds the number of characters in
the first table, the first character
of the pseudo-register name is
replaced by a character taken from the
second table, and the last character
recycles. If the first character thus
overwritten is the start of the
external procedure name rather than an
asterisk, the compiler issues a
warning message (since identical
pseudo-register names could be
generated from different procedure
names) .

These pseudo-registers are termed
display pseudo-registers.

Example:

X: PROC;
Y: PROC;
Z: BEGIN;
END X;

The display pseudo-registers for X, Y,
and Z would have the names:

hokdokkk XD -
sk ek ok ok XC
* o skok ok ok XD

ER-type entries for all the library
routines and external routines called
by the program. The list includes the
names of. library routines called
directly by compiled code (first-level
routines), and the names of routines
that are called by the first-level
routines.

CM-type entries for non-string element
variables declared STATIC EXTERNAL
without the INITIAL attribute.

SD-type entries for all other STATIC
EXTERNAL variables and for EXTERNAL
file names.

PR-type entries for all file names.
For EXTERNAL file names, the name of
the pseudo-register is the same as the
file name; for INTERNAL file names,
the compiler generates names as for
the display pseudo-registers.

PR-type entries for all controlled
variables. For external variables,
the name of the variable is used for
the pseudo-register name; for internal
variables, the compiler generates
names as for the display
pseudo-registers.

Chapter 5: Compilation 53

STATISTICS

If the option SOURCE applies, the compiler
lists the following information after the
ESD (or, if the option NOEXTREF applies,
after 'Storage Reguirements'):

1. Number of records processed by the
preprocessor (MACRO records).

2. Number of records processed by the
compiler.

3. Number of statements processed by the
compilerx.

4, sSize of object module (in bytes).

OBJECT MODULE

If the option LIST applies, the compiler
generates a map of the static internal
control section and lists the machine
instructions of the object program in a
form similar to System/360 assembler
language. The machine instructions are
described in IBM System/360: Principles .of
Operation. The following descriptions of
the object module listings include many
terms that can be properly defined only in
the context of an explanation of the
mechanism of compilation and the structure
of the object program; such an explanation
is beyond the scope of this manual.

Both the static internal storage map and
the object program listings start on a new
page. If the LINECNT option specifies 72
or fewer lines per page and the number of
lines to be printed (including skips)
exceeds the specified line count,
double~column format is used. If the
LINECNT option specifies more than 72 lines
per page or the number of lines to be
printed (including skips) is less than the
specified line count, single-column format
is used.

Static Internal Storage Map

The first 52 bytes of the static internal
control section are of a standard form and
are not listed. They contain the following
information: .

DC F'4096"

DC AL4(SI.+X'1000")
DC AL4(SI.+X'2000")
DC AL4(SI.+X'3000")
DC AL4(SI.+X'4000")
DC ALH4(SI.+X'5000")

54

DC AL4(SI.+X'6000")
DC ALY (SI.+X'7000")
DC VL4 (THESADA)

DC VL4 (IHESADB)

DC A (DSASUB)

DC A(EPISUB)

DC A(IHESAFA)

SI. is the address of the static
internal control section, and IHESADA,
IHESADB, and IHESAFA are library
subroutines. DSASUB and EPISUB are
compiler routines for getting and freeing
dynamic storage areas (DSAs).

The remainder of the static control
section is listed, each line comprising the
following elements:

1. Six~digit hexadecimal offset.
2. Up to eight bytes of hexadecimal text.

3. comment indicating the type of item to
which the text refers; a comment
appears against the first line only of
the text for an item.

The following abbreviations are used for
the comments (xxx indicates the presence of
an identifier):

DED FOR TEMP Data element descriptor

or DED for a temporary or for a
programmer's variable.

FED Format element descriptor.

DV..xxx Dope vector for a static
variable.

DVD.. Dope vector descriptor.

D.V. SKELETON Dope vector skeleton for

an automatic or controlled

variable.

RDV.. Record dope vector.

A..XXX Address of external
control section or entry
point, or of an internal
label.

ARGUMENT Argument list skeleton.

LIST

CONSTANTS Constants.

SYMTAB Symbol table entry.

SYM..xxx Symbolic name of label
constant or label
variable.

FILE. .xxX File namne.

ON. « XXX Programmer—-declared
ON-condition.

ATTRIB File attributes.

XXX Static variable. If the
variable is not
initialized, no text
appears against the
comment, and there is also
no static offset if the
variable is an array.
(This can be calculated
from the dope vector if
required.)

Obiject Program Listing

The object program listing includes
comments of the following form as an aid to
identification of the functions of the
components of the program:

* STATEMENT NUMBER n - identifies the
start of the code generated for
source listing statement number n.

* PROCEDURE xxx - identifies the start of
the procedure labeled xxx.

* REAL ENTRY xxx - heads the
initialization code for an entry
point to a procedure labeled xxx.

* PROLOGUE BASE ~ identifies the start of
the initialization code common to
all entry points to that procedure.

* PROCEDURE BASE - identifies the address
loaded into the base register for
the procedure.

* APPARENT ENTRY xxx - identifies the
point of entry into the procedure
for the entry point labeled xxx.

* END PROCEDURE xxx - identifies the end
of the procedure labeled xxx.

* BEGIN BLOCK xxx - indicates the start
of the begin block with label xxx.

* END BLOCK xxx - indicates the end of
the begin block with label xxx.

¥ INITIALIZATION CODE FOR xxX - indicates
that the code following performs
initial value assignment or dope
vector initialization for the
variable xxx.

Wherever possible, a mnemonic prefix is
used to identify the type of operand in an
instruction, and where applicable this is
followed by a source program identifier.
The following prefixes are used:

AE..

BLOCK.

CL.

DED..
DV..
DVD..

FVDED. .

FVR..

IC.

ON. .
PR..
RDV..

RSW..

SI.

SKDV..

SKPL. .

ST..

SYM..

TCA..

TMP..

TMPDV. .

Address constant

Apparent entry point (point in

‘the procedure to which control

passed from the prologue).
Label created for an otherwise
unlabeled block (followed by the
number of the block).

constant (followed by a
hexadecimal dictionary
reference).

A label generated by the
compiler (followed by a decimal
number identifying the label).
Data element descriptor

Dope vector

Dope vector descriptor

Data element descriptor of
function value.

Function value

Invocation count
pseudo-register.

ON-condition name
Pseudo-register
Record dopé vector
Return switch

Address of static internal
control section.

Skeleton dope vector, followed
by hexadecimal dictionary
reference.

Skeleton parameter list,
followed by hexadecimal
dictionary reference.

Symbol table entry

symbolic representation of a
label.

Temporary control area: a word
containing the address of the
dope vector of the specified
temporary.

Temporary, followed by
hexadecimal dictionary
reference.

Temporary dope vector, followed

by hexadecimal dictionary
reference

Chapter 5: Compilation 55

VO.. Virtual origin

WP1.

WP2. Workspace, followed by decimal
Wsl. number of block which allocates
Ws2. workspace

Ws3.

A listing of the various storage areas
is not produced, but the addresses of
variables can be deduced from the object
program listing.

Example:

A=B+10E1l; in the source program
produces:

0002cA 78 00 B 058 LE 0,B

0002CE 7A 00 B 064 AE 0,C..08F4

0002D2 70 00 B 060 STE 0,A

A and B are STATIC INTERNAL variables at an
offset of X'60' and X'58', respectively,
from the start of the control section.

DIAGNOSTIC MESSAGES

The compiler generates messages that
describe any errors or conditions that may
lead to erxrror that it detects during
compilation. Messages generated by the
preprocessor appear in the compiler listing
immediately after the listing of the
statements processed by the preprocessor;
all other messages are grouped together at
the end of the listing. The messages are
graded according to their severity:

A'warning message calls attention to a
possible error, although the statement
to which it refers is syntactically
valid.

An error messadge describes an attempt
made by the compiler to correct an
erroneous statement (although it may
not specify the corrective action).

A’ severe error messagde specifies an
error that cannot be corrected by the
compiler. The incorrect statement or
part of a statement is deleted, but
compilation continues. However, if a
severe error is detected during the
preprocessor stage, compilation is
terminated after the compiler has
listed the source program.

A termination error message describes

an error that forces the termination of
the compilation.

56

The compiler lists only those messages
with a severity equal to or greater than
that specified by the FLAG option:

Type of Message Option
warning FLAGW
errxor FLAGE
severe error FLAGS

termination error Always listed
Each error message is identified by an
8-character code:

1. The first three characters are IEM,
which identify the message as
emanating from the F compiler.

2. The next four characters are a 4-digit
message number. Appendix K lists all
the compiler messages in numeric
sequence.

3. The last character is the letter I,
which is the operating system code for
an informative message.

At the end of a compilation, a message
is printed giving the value for the SIZE
option that will prevent the spill file
being used for dictionary blocks if the
program is recompiled.

RETURN CODE

The compiler returns a completion code to
the operating system to indicate the degree
of success it achieved. This code appears
in the job scheduler END OF STEP message as
'RETURN CODE. "'

Code Meaning

0000 No diagnostic messages issued;
compilation completed without
error; successful execution
anticipated.

0004 Warning messages only issued;
compilation completed; successful
execution probable.

0008 Error messages issued;
compilation completed, but with
errors; execution may fail.
0012 Severe error messages issued;
compilation may have been
completed, but with errors;
successful execution improbable.
0016 Termination error messages
issued; compilation terminated
abnormally; successful execution
impossible.

Note: This return code is
returned for all levels of
termination when the syntax check
option is used.

Batched Compilation

The batched compilation facility of the
compiler allows you to compile more than
one external procedure in a single
execution of the compiler. The compiler
creates an object module for each external
procedure and places them sequentially in
the data set identified by the DD statement
SYSPUNCH or SYSLIN. Batched compilation
can increase compiler throughput by
reducing operating system overheads, but
has the disadvantage that a termination
error detected during the compilation of
one external procedure will prevent the
compilation of those that follow it.

To specify batched compilation, you must
include a compiler PROCESS statement in
front of each external procedure except the
first. This statement indicates to the
compiler that it must process another
procedure, and it allows you to specify new
options for each compilation. The first
procedure in the batch does not require a
PROCESS statement since the EXEC statement
that invokes the compiler contains all the
information that it requires.

Note that the return code given for a
batched compilation is the highest code
that would be returned if the procedures
were compiled independently.

THE PROCESS STATEMENT

The format of the PROCESS statement is
* PROCESS ('options');

where 'options' indicates a list of
compiler options exactly as specified in
the PARM parameter of an EXEC statement;
the list of options must be enclosed within
single quotation marks. The asterisk must
be in the first byte of the record (card
column 1), and the keyword PROCESS may
follow in the next byte (column) or after
any number of blanks. Blanks are also
prermitted between:

1. The keyword PROCESS and the
option-list -delimiter (left
parenthesis) .

2. The option-list delimiters and the
start or finish of the option list.

3. The option-list delimiter and the
semicolon.

The options in the option list may
include any of those described under
*Optional Facilities,' earlier in this
chapter. The options must be separated by
commas, and there must be no embedded
blanks. The options apply to the
compilation of the source statements
between the PROCESS statement and the next
PROCESS statement. If you omit any of the
options, the default values apply; there is
no carry over from the preceding EXEC ,
statement or PROCESS statement. The number
of characters is limited only by the
length of the record. If you do not wish
to specify any options, code

* PROCESS;

The input record that contains the
PROCESS statement must be in EBCDIC code.

The. OBJNM Option

The OBJNM option determines how the object
modules in a batch will be link-edited
together. The appearance of this option in
the PARM parameter of the EXEC statement or
in a PROCESS statement causes the compiler
to place a linkage-editor NAME statement at
the end of the object module resulting from
the compilation of the external procedure
to which the option refers. When the batch
of object modules is link-edited, the
linkage editor places all the modules
between one NAME statement and the
preceding NAME statement into the same load
module; it takes the name of a load module
from the NAME statement that follows the
last object module that is to be included.
For example, consider the -following source
statements (assuming the option OBJINM=A in
the EXEC statement):

ALPHA: PROC OPTIONS (MAIN);

END ALPHA;
* PROCESS;
BETA: PROC OPTIONS(MAIN);

END BETA;
* PROCESS ('OBJNM=B');
GAMMA: PROC;

END GAMMA;

Chapter 5: Compilation 57

Compilation of these source statements
would result in the following object
modules and NAME statements:

Object module for ALPHA
NAME A (R)

Object module for BETA

Object module for GAMMA
NAME B (R)

From this sequence of object modules and
control statements, the linkage editor
would produce two load modules, one named A
containing the object program for procedure
ALPHA, and the other named B containing the
object programs for the procedures BETA and
GAMMA .

You should not specify the OBIJNM option
if you intend to process the object modules
with the linkage loader. The loader
processes all object modules with the same
name into a single load module; if there is
more than one name, the loader recognizes
the first one only and ignores the others.

JOB CONTROL LANGUAGE FOR BATCHED PROCESSING

The only special consideration relating to
job control statements for batched
processing refers to the data set defined
by the DD statement SYSLIN., If you include
the option LOAD, ensure that this DD
statement contains the parameter
DISP=(MOD,KEEP) or DISP=(MOD,PASS); the
standard cataloged procedures specify
DISP=(MOD,PASS). If you do not specify
DISP=MOD, successive object modules will
overwrite the preceding modules.

Under PCP or MVT, if you do not specify
sufficient primary extents for the data
sets defined by SYSLIN or SYSPRINT, you may
get an abnormal termination with a system
completion code of 80A, in which case you
should increase the primary extents and run
the job again.

Example

Figure 5-7 is an example of a simple
batched processing program. It illustrates
the use of a single invocation of the
cataloged procedure PL1LFCL to compile four
procedures and link-edit them into three
load modules. Figure 5-8 illustrates how
these load modules could later be executed.

The EXEC statement COLE in Figure 5-7
specifies the options for the compilation

58

of the procedure FIRST; of the options
specified, only SIZE applies to the
compilations of the other procedures. The
OBJNM option (abbreviated to 'N') ensures
that FIRST will be link-edited into a load
module named PGM1, which will contain no
other procedures.

The first PROCESS statement requests a
listing of the external symbol dictionary
for the object module compiled from
procedure SECOND. The second PROCESS
statement includes the option N=PGM2, which
causes the compiler to insert a linkage
editor NAME statement at the end of the
object module compiled from the procedure
PRINT; since this option does not appear in
the preceding PROCESS statement, the object
modules for procedures SECOND and PRINT
will be combined in a single load module
(named PGM2) by the linkage editor.

The third PROCESS statement names the
load module that will contain the procedure
THIRD, and also requests that only error,
severe error, and termination error
messages be listed by the compiler.

The DD statement LKED.SYSLMOD overrides
the corresponding statement in the
cataloged procedure, and has the effect of
requesting the linkage editor to place the
load modules in the private library PUBPGM,
from which they can later be called for
execution. In Figure 5-8, this library is
named again in the DD statement JOBLIB; a
library specified by a DD statement of this
name serves as an extension of the system
program library for the duration of the job
in which the statement appears. (Chapters
6 and 12 discuss the linkage editor and
program libraries, respectively.)

Compile-time Processing

The compile-time facilites of the (F)
compiler are described in IBM Systemv/360
Operating System: PL/I (F) Lanquage
Reference Manual. These facilities allow
you to include in a PL/I program statements
that, when they are executed by the
preprocessor stage of the compiler, modify
your source statements or cause source
statements to be included in your program
from a library. The following discussion
supplements the information contained in
the Language manual by providing some
illustrations of the use of the
preprocessor and explaining how to
establish and use source statement
libraries.

//J067PGEX JOB

//COLE EXEC PLI1LFCL,PARM.PL1L='SIZE=999999,N=PGM1,A',PARM. LKED="LIST"

//PL1L.SYSIN DD #*
FIRST: PROC OPTIONS(MAIN) ;
. DO 1=1250 TO 1500 BY 50;
Do J=10, 15, 20;
K=SQRT(I/J);
PUT SKIP(2) DATA;
END FIRST;
* PROCESS ('EXTREF'):;
SECOND: PROC OPTIONS(MAIN);
DCL PRINT ENTRY EXT,
A(5) INIT(1,2,4,8,16),
B(5) INIT(3,5,7,9,11),
c(5,5);
DO I=1 TO 5;
DO J=1 TO 5;
Cc(1,3)=12*A(I)/B(J);
END;
END;
CALL PRINT (A,B,C);
END SECOND;
* PROCESS ('N=PGM2');
PRINT: PROC (THOR,TVERT,ARRAY) ;
DCL THOR (*) ,TVERT (*) ,ARRAY (*, *);
I=DIM(THOR,1);
PUT EDIT (THOR) (X(7),
DO J=1 TO DIM(TVERT,1);
PUT SKIP EDIT(TVERT(J),
END PRINT;
* PROCESS ('N=PGM3,FE'); :
PROC OPTIONS (MAIN);

THIRD:
ON ENDFILE(SYSIN) GO TO FINISH;
NEXT: GET DATA(A,B);

C=RA+8%B**2/3;
PUT SKIP DATA;
GO TO NEXT;
FINISH: END THIRD;
/¥

(I) F(7,2));

(ARRAY (.7, K)

DO K=1 TO I)) (F(7,2));

//LKED.SYSLMOD DD UNIT=2311,VOLUME=SER=D186, DSNAME=PUBPGM, DISP=0LD

Figure 5-7.

INVOKING THE PREPROCESSOR

The preprocessor stage of the compiler is
executed only if you specify the option
MACRO and include a DD statement with the
name SYSUT3 in the compilation job step.
The compiler uses the data set to hold the
preprocessed source statements until
compilation begins. The information that
you must include in the DD statement is
described under 'DD Statements,' earlier in
this chapter. The standard cataloged
procedures for compilation all include an
appropriate DD statement.

the term MACRO owes its origin to the
similarity of some applications of the
compile-time facilities to the macro
language available with such processors as

An Example of Batched Processing

the System/360 assembler. Such a macro
languageée allows you to write a single
instruction in your program to represent a
sequence of instructions that have
previously been defined.

Three other compiler options, MACDCK,
SOURCE2, and COMP, are meaningful only when
you also specify the MACRO option. All are
described earlier in this chapter.

Figure 5-9 is a simple example of the
use of the preprocessor to produce a source
deck for a procedure SUBFUN; according to
the value assigned to the preprocessor
variable USE, the source statements will
represent either a subroutine or a
function.

Chapter 5: Compilation 59

//3067PGE1 JOB

//JOBLIB DD UNIT=2311,VOLUME=SER=D186, DSNAME=PUBPGM,DISP=0LD

/731 EXEC PGM=PGM1
//SYSPRINT DD SYSOUT=A
//32 EXEC PGM=PGM2
//SYSPRINT DD SYSOUT=A
//33 EXEC PGM=PGM3
.//SYSPRINT DD SYSOUT=A
//SYSIN DD *

A=27, B=42; A=39, B=17; A=15; B=19; A=12, B=7;

/*

Figure 5-8,

//3068PGEX JOB

Execution of the Programs Compiled in Figure 5-7

//CO EXEC PL1DFC,PARM.PL1D=*NOLOAD,NODECK, MACRO,MACDCK,NOCOMP"

//PL1D.SYSIN DD *
SUBFUN: PROC (CITY);
DCL IN FILE RECORD,
1 DATA,
2 NAME CHAR(10),
2 POP FIXED(7),
CITY CHAR(10);
%DCL, USE CHAR;

%USE='SUB"'; /#* FOR FUNCTION, SUBSTITUTE XUSE='FUN"' */

OPEN FILE(IN);

READ FILE(IN) INTO(DATA);

IF NAME=CITY THEN DO;

CLOSE FILE(IN);:

%IF USE='FUN' %THEN %GO TO L1;

NEXT:

PUT FILE(SYSPRINT) SKIP LIST(DATA);

%GO TO L2;
RETURN(POP) ; END;
ELSE GO TO NEXT;
END SUBFUN;

%L1
%L2.

s as
~ w

/%

Figure 5-9.

THE %INCLUDE STATEMENT

IBM System/360 Operating System: PL/I (F)
Lanquage Reference Manual describes how to
use the %INCLUDE statement to incorporate
source statements from a library into a
PL/I source program. (A library is a type
of data set that can be used for the
storage of other data sets, termed members.
Thus, a set of source statements that you
may wish to insert into a source program by
means of a %INCLUDE statement must exist as
a data set (member) within a library.
Chapter 12 describes how to create a
library and how to place members in it.)

The %INCLUDE statement includes one or
more pairs of identifiers. Each pair of
identifiers specifies the name of a DD
statement that defines a library and, in
parentheses, the name of a member of the
library. For example, the statement:

%INCLUDE DDl (INVERT) ,DD2 (LOOPX)

60

END;

Using the Preprocessor to Create a Source Deck

specifies that the source statements in
member INVERT of the library defined by the
DD statement DD1, and those in member LOOPX
of the library defined by DD2, should be
inserted into the source program. The
compilation job step must include
appropriate DD statements.

If you omit the ddname from any pair of
identifiers in a %INCLUDE statement, the
preprocessor assumes the ddname SYSLIB. In
such a case, you must include a DD
statement with the name SYSLIB. (Note that
the IBM-supplied cataloged procedures do
not include a DD statement with this name
in the compilation job step.)

Source statements in a library must be
in the form of fixed-length records of not
more than 100 bytes. The records can be
blocked; the maximum blocking factor is 5.
The source margin for input records
specified by the SORMGIN option applies
equally to included statements.

/7/3069PGEX JOB
//STEP1 EXEC PGM=IEBUPDTE, PARM=NEW
//SYSPRINT DD SYSOUT=A

//8YsUT2 DD DSNAME=NEWLIB,DISP={(NEW,KEEP),UNIT=2311,

Vs VOLUME=SER=D186 , SPACE= (CYL, (4,,1))
//SYSIN DD #
./ ADD NAME=FUN,LEVEL=00, SOURCE=0

SUBFUN:; PROC(CITY);
DCL IN FILE RECORD,
1 DATA,
2 NAME CHAR(10),
2 POP FIXED DEC(7),
CITY CHAR(10);
OPEN FILE(IN);
READ FILE(IN) INTO(DATA);
IF NAME=CITY THEN DO;
CLOSE FILE(IN);
RETURN (POP) ;
END;
ELSE GO TO NEXT;
END SUBFUN;
o/ ENDUP
/*

NEXT:

Figure 5-10.

You can use the operating system utility
program IEBUPDTE to place source statements
in a library. This facility is described
in the publication IBM Systems/360 Operating
System, Ultilities.

Exanples

Figures 5-10 and 5-11 are simple
illustrations of how to place source
statements in a library and how to include
these statements in a source program.

The program in Figure 5-10 places the
source statements of the procedure SUBFUN
in a new library. In this example, the
source statements will represent a function
procedure.

Figure 5-11 illustrates the use of a
%INCLUDE statement to include the source
statements for SUBFUN in the procedure
TEST. The library NEWLIB is defined in the
DD statement PL1L.SYSLIB, which is added to
the statements of the cataloged procedure
PL1LFCLG for this job. Since the source
statement library is defined by a statement
~with the name SYSLIB, the %INCLUDE
statement need not include a ddname.

Dynamic Invocation of the Compiler

Note: The following discussion assumes that
you are familiar with IBM System/360
assembler language.

Placing Source Statements in a New Library

You can invoke the (F) compiler from an
assembler language program by using one of
the macro instructions CALL, LINK, XCTL, or
ATTACH. If you use the XCTL macro
instruction, you cannot specify any options
for the compilation; the default options
will apply. However, if you use CALL,
LINK, or ATTACH, you can specify:

1. Options for the compilation.

2. Alternative ddnames for the data sets
to be used by the compiler.

3. The number of the first page of the
compiler listing.

Code the macro instructions as follows:

Name {Operationi Operand i
[L 1
) T L}
[symboll | CALL |IEMAA, ([optionlist] |
] |, [ddnamelist]} |
| | [,pagenbrll), VL |
| | |
symbol |- LINK | EP=IEMAA, |
| ATTACH |PARAM=([optionlist] |
| | {, [ddnamelist]]
| |[,pagenbrll),vLi=1
i [l]

For a full explanation of these macro
instructions, refer to IBM System/360
Operating System: Supervisor and LCata
Management Macro Instructions.

Chapter 5: Compilation 61

//J069PGE1 JOB
//COLEEX EXEC PL1LFCLG,PARM.PL1L='MACRO,LOAD, NODECK', PARM.LKED=""
//PL1L.SYSLIB DD UNIT=2311,VOLUME=SER=D186,DSNAME=NEWLIB,DISP=0LD
//PL1L.SYSIN DD #*

TEST: PROC OPTIONS(MAIN);
DCL NAME CHAR(10),
NO FIXED(7);
ON ENDFILE(SYSIN) GO TO FINISH;
AGAIN: GET FILE(SYSIN) LIST(NAME);

NO=SUBFUN(NAME) ;
PUT DATA (NAME,NO) ;
GO TO AGAIN;
%INCLUDE FUN;

FINISH: END TEST;

VA

//GO.IN DD UNIT=2311,VOLUME=SER=D186,DSNAME=POPLIST,DISP=0LD
//GO.SYSIN DD *
' ABERDEEN"
'DONCASTER"'

7%

Figure 5-11.

The entry-point name IEMAA is the

symbolic name of the (F) compiler.

62

The address parameters are:

'‘optionlist': the address of a
variable-length list of compiler
options. The list must begin on a
halfword boundary. The first two bytes
contain a binary count of the number of
bytes in the 1list (excluding the count
field). oOptions in the list must be
separated by commas; the list must not
include blanks or zeros.

'ddnamelist': the address of a
variable-length list of alternative
names for the data sets used by the
compiler. The list must begin on a
halfword boundary. The first two bytes
contain a binary count of the number of
bytes in the list (excluding the count
field). Each entry in the list must
occupy an 8-byte field; the sequence of
entries is as follows:

Entry Alternative Name

SYSLIN

not applicable
not applicable
SYSLIB

SYSIN

SYSPRINT
SYSPUNCH
SYSUT1

not applicable
SYSUT3

SVYWRNONVMEFEFWNR

[y

Including Source Statements from a Library

If a ddname is shorter than eight
bytes, fill the field on the right with
blanks. If you omit an entry, fill its
field with binary zeros; however, you
may entirely omit entries at the end of
the list.

*pagenbr': the address of a 6-byte
field containing the number is to be
used as the first page number of the
compiler listing. The page number must
begin on a halfword boundary, and the
first halfword must contain the binary
value 4 (the length of the remainder of
the field). The other four bytes
contain the page number in binary form.

VL or VL=1: specifies that the sign bit
in the last word of the parameter list
is to be set to 1.

Chapter 6: Linkage Editor and Loader

Introduction

An object module produced by the compiler
requires further processing before it is
suitable for execution. It must be
converted into a load module which can be
loaded into main storage and executed.
Conversion and execution is performed, in
either one or two job steps, by one of two
operating system programs, the linkage
editor and the linkage loader. This
chapter describes these programs and the
circumstances in which each can be used to
the best advantage. Both programs are
fully described in IBM System/360 Operating

System: Linkage . Editor and Loader.

The two linkage programs require the
same kind of input, perform the same basic
process (the resolution of external
references within the object module), and
produce the same result, that is, a load
module for execution. They differ in the
way they are used and in what they do with
the load modules they create.

Linkage loader: Execution by the linkage
loader requires one job step, in which a
load module is created, loaded into main
storage, and executed.

Linkage editor: The linkage editor does not
cause the load modules it creates to be
loaded and executed. Instead, each load
module is placed in a program library; a
further job step is required for the
loading and execution of such a load
module.

CHOICE OF LINKAGE PROGRAM

The two programs are compatible in the
following respects:

1. All object modules acceptable as input
to a linkage editor are acceptable as
input to a linkage loader.

2. All load modules produced by a linkage
editor, except those produced with the
NE (not editable) attribute are
acceptable as input to a linkage
loader. (When the NE attribute is
produced, the resulting load module
has no external symbol dictionary and
cannot be reprocessed; the external
symbol dictionary is discussed below
in the linkage-editor section.)

If you want to keep the load module, or
use facilities that are not available to
the linkage loadexr, such as providing an
overlay structure, you must use the linkage
editor. The linkage loader is essentially
a one-shot program checkout facility with
limited application.

The differences between the two programs
can be summarized as:

Linkage .editor:

1. Does not cause the load module to be
executed.

2. Can produce more than one load module
from a batched compilation.

3. Always places load modules in a
library, from which they can be loaded
for execution in a later job or job
step.

4. cCcan accept input from other sources as
well as the primary input source.

5. Can provide an overlay structure for a
program.

6. Can be used to modify existing load
modules.

Linkage .loader:

1. Requires only one job step for
processing, loading, and execution.

2. Can only produce one load module from
a batched compilation.

3. Always loads this module into main
storage and executes it.

4. The load module exists only for the
duration of the job step.

5. Can accept input only from the primary
source.

6. Cannot provide an overlay structure

for a program, or modify existing load
modules.

Performance Considerations

The execution time of a load module is the
same whether it is created by the linkage
editor or the linkage loader. However, the

Chapter 6: Linkage Editor and Loader 63

editing and loading time for a module is
greatly reduced when the linkage loader is
used. This is achieved by reductions in:

1. Scheduling time: The object program is
processed, loaded, and executed in one
job step.

2. Processing time: The linkage loader
can process a module in approximately
half the time required by the linkage
editor, because:

a. Linkage editor intermediate and
I/0 operations are eliminated.

b. The I/0 time for reading modules
can be reduced by the use of
improved buffering techniques and
chained scheduling.

3. Amount of auxiliary storage: If the
linkage loader input is the object
module in a compile-load-and-go job,
the auxiliary storage that would be
required by the linkage editor
intermediate and output data sets is
not needed. If the linkage loader
input is taken from modules
link-edited into a library, the
auxiliary storage requirements for the
library can be reduced by storing the
modules with unresolved library
references; these references can be
resolved at load time.

Linkage Editor

The linkage editor is an operating system
service program that creates load modules.
It always places the load modules in a
library, from which the job scheduler can
call them for execution.

The input to the linkage editor can
include object modules, load modules, and
control statements that specify how the
input should be processed. The output from
the linkage editor comprises one or more
load modules.

In addition to its primary function of
converting object modules into load
nmodules, the linkage editor can also be
used to:

e Combine previously link-edited load
modules

e Modify existing load modules
e Construct an overlay program
A module constructed as an overlay

program can be executed in an area of main

64

storage that is not large enough to contain
the entire module at one time. The linkage
editor subdivides the module so that it can
be loaded and executed segment by segment.

MODULE STRUCTURE

Object and load modules have identical
structures. They differ only in that a
load module has been processed by the
linkage editor and stored in a library with
certain descriptive information required by
the job scheduler; in particular, the
module is marked as ‘executable' or 'not
executable.' A module comprises three