¥28-6601-2

Program Logic

IBM System/360 Operating System
FORTRAN IV (E)

Program Logic Manual

Program Number 360S-F0-092

This publication describes the internal
design of the IBM System/360 Operating
System FORTRAN IV (E) compiler program.
Program Logic Manuals are intended for use
by 1IBM customer engineers involved in pro-
gram maintenance, and by system programmers
involved in altering the program design.
Program 1logic information is not necessary
for program operation and use; therefore,
distribution of this manual is limited to
persons with program maintenance or modi-
fication responsibilities.

Restricted Distribution

PREFACE

This manual is organized into three
sections. Section 1 is an introduction and
describes the overall structure of the
compiler and its relationship to the oper-
ating system. Section 2 discusses the
functions and logic of each phase of the
compiler. Section 3 includes a series of

flowcharts that show the relationship among
the routines of each phase. Also provided
in this section are phase routine director-
ies.

Appendixes at the end of this publica-
tion provide information pertaining to:
(1) source statement scan, (2) intermediate
text formats, (3) table formats, (4) main
storage allocation, etc.

Prerequisite to the use of this publica-
tion are:

IBM System/360 Operating System: Princi-
ples of Operation, Form A22-6821

IBM System/360 Operating System: FORTRAN

IV _(E) lanquagqge, Form C28-6513

Intro-
Pro-

IBM System/360 Operating System:
duction to Control Program lLogic,
gram Logic Manual, Form Y28-6605

IBM System/360 Operating System: FORTRAN
IV _(E) Programmer's Guide, Form C28-6603
(sections "Job Processing"” and
"Cataloged Procedures")

Third Edition (September 1966)

This is a major revision of, and obsoletes,
cant changes have been made throughout the text.
reviewed in its entirety.

incorporates information

This revision

Form Y28-6601-1.
This edition should be

pertaining

Although not prerequisite, the following
documents are related to this publication:

FORTRAN
Form

IBM System/360 Operating System:
Iv (E) Library Subprograms,
C28-6596

IBM System/360 Operating System: Sequen-
tial Access Methods, Program Logic Manu-
al, Form Y28-6604

IBM System/360 Operating System: Con-

cepts and Facilities, Form C28-6535

IBM Systen/360 Operating System: Control
Program Services, Form C28-6541

IBM System/360 Operating System: Linkage
Editor, Program Logic Manual, Form
Y28-6610

IBM System/360 Operating System: Data
Management, Form C28-6537

IBM System/360 Operating System: Systemn

Generation, Form C28-6554

This compiler is similar in design to
the IBM System/360 Basic Programming Sup-
port FORTRAN IV Compiler.

Signifi-

to:

(1) compile-time and object-time processing of direct access statements,

(2) dynamic text buffer chaining,
modules, and (4) 'larger storage arrays.

(3) removal of restrictions on source

This publication was prepared for production using an IBM computer to

update the text and to control the
impressions for photo-offset printing
Printer using a special print chain.

page

Requests for copies of IBM publications

and line
were cbtained from an IBM 1403

format. Page

should be made to your IBM

representative or to the IBM branch office serving your locality.

A form is provided at the back of this
comments. If the form has been removed,
IBM Corporation, Programming Systems Publications,

PO Box 390, Poughkeepsie, N. Y. 12602

publication
comments may be addressed to
Department D58,

for reader's

SECTION 1: INTRODUCTION . . « « « o« o
The Compiler and Operating System/360.
The Interface Module.
System Macro-Instructions

Compiler Organization. . « « « . « « .

Communication Among Compiler Phases. .
The Communication Area. . « . « .« «
Intermediate Text « « « « o « o« « &
Resident Tables . « « « « ¢ « « « &

Compiler Inputs/Output Flow

Overall Compiler Operation
Initialization (Phases 1, 5, and 7)
Source Statement Adjustment if

Required (Phase 8) . « o« ¢« « « « &
Source Statement Scanning (Phases
10D and 10E) « ¢« o o « o o o« .«
Translation of the Source Module
(Phases 10D, 10E, 14, 15, and 20).
Intermediate Text Generation
(Phases 10D and 10E).« .
Intermediate Text Modification
(Phases 14, 15, and 20)
Object Module Generation (Phases
12, 14, 20, 25, and 30).
Storage Map Generation (Phases 12,
20, and 25). . . ¢ e 4 0 e e e o .
Diagnostic Message Generation
(Phase 30) « & 2 « o« ¢ o o o « o =

SECTION 2: DISCUSSION OF COMPILER
PHASES. ¢ « o« o o ¢ o o o o o o o «

Phase 1 (IEJFAAAO/IEJFAABO). . . . « «
Initial Entry . . . o« o
Loading the Interface Module « .
Processing Compiler Optlons and
New DDNAMES
Loading the Source Symbol Module
Loading the Performance Module .
Opening Required Data Control
BlOoCKSe ¢ o« o « ¢ ¢« o ¢ o o o
Loading Phase 5.
Subsequent Entries.
Initiating a New Compilation . .
Terminating the Compilation. . .

Phase 5 (IEJFCAAO0)
Obtaining Main Storage. . .
Allocating Main Storage

For SPACE Compilations .
For PRFRM Compilations . .« .
Constructing Text Buffer Chalns for
PRFRM Compilations
Constructing Resident Tables. . .
SEGMAL « ¢ o ¢ o o o o o o o =
Patch Table. -
Blocking Table and BLDL Table.

.« e

L S)
.

¢ o+ &

Yol

CONTENTS

Phase 7 (IEJFEAAOD) . . « ¢ ¢ o « o « &
Initializing the Cverflow Table and
the Dictionary
Overflow Table Index
Dictionary Index and Reserved
Word Portion. . « . « ¢« ¢ o . .
Initializing the Communication Area
Deleting Phase 5 if Loaded.

Phase 8 (IEJFFARO) e o o
Eliminating Embedded Blanks « e e .
Adding Special Characters
Inserting Meaningful Blanks

Phase 10D (IEJFGAAO) « o e
Creating Intermediate Text for
Dec¢larative Statements
Constructing Dictionary and
Overflow Table Entries

Phase 10E (IEJFJAAOQ) . « « « « « . .
Creating Intermediate Text for
Statement Functions, Executable
Statements, and Format Statements.
Constructing Dictionary and
Overflow Table Entries

Phase 12 (IEJFLAAO). « ¢ . « & « o o &
Address Assignment.
Equivalence Statement Processing. .
Branch List Table Preparation . . .
Card Image Preparation.

Phase 14 (IEJFNAAO). . « & o o « o « o
Format Statement Processing
READ/WRITE/FIND Statement

Processing . « « « « « ¢ o « « o &
Replacing Dictionary Pointers . . .
Miscellaneous Statement Processing.

Phase 15 (IEJFPAAO).
Reordering Intermediate Text.
For Arithmetic Expressions

For DEFINE FILE Statements
Modifying Intermediate Text .
Assigning Registers
Creating Argument Lists
Checking for Statement Errors . . .

e o o o o
s s s o

Phase 20 (IEJFRAAO). « ¢ & o o o« « o &
Processing of Statements That
Require Subscript Optimization . .
Processing of Statements That
Affect, But Do Not Require,
Subscript Optimization
DO and READ Statements
Referenced Statement Numbers .
Subprogram Argument.
Creating the Argument List Toble. .

s s 8 s

Phase 25 (IEJFVAAOD). . .« ¢ & o o o & &

34

34

34

35
36

36
38
38

39

Generation of Object Module
Instructions . . .
Completion of Object Module Tables.
Branch List Table for Statement
Numbers . . B - e o o o

Branch List Table for SF
Expansions and DO Statements. .
Base Value Table

Phase 30 (IEJFXAAO). o ¢ « « « o « « &
Producing Error and Warning

Messages . . . « e 2 s e s e o o

Processing the END Statement. . . .

SECTION 3: CHARTS AND ROUTINE
DIRECTORIES o« o o« « o o o o o o« o« s @

APPENDIX A: MAIN STORAGE ALLOCATICN .
For Space Compilations. . « « « . .
For PRFRM Compilations.

APPENDIX B: COMMUNICATION AREA
(FCOMM) ¢ ¢ v @ ¢ ¢ e a « o o o « « =«

APPENDIX C: LINKAGES TO THE INTERFACE
MODULE AND THE PERFORMANCE MODULE . .
Linkage to the Interface Module . .
Input/Output Request Linkage . .
End-Of-Phase/Interlude Request
Linkage « o « ¢ o o o ¢ o o o«
Patch Requests « . . .
Print Control Operations
Linkage to the Performance Module .
Input/Output Request Linkage . .
End-Of-Phase Request Linkage . .

APPENDIX D: DATA CONTROL BLOCK

MANIPULATION. o o o « o o o s« o o o «
For SPACE Compilations. « « . « . .
For PRFRM Compilations.

APPENDIX E: SOURCE STATEMENT SCAN . .
Preliminary Scan. « « « « « « « o« «
Classification Scan . « .« « « « « .
Reserved Word or Arithmetic Scan. .

APPENDIX F: INTERMEDIATE TEXT
An Entry in Intermediate Text . .
Adjective Code Field
Mode/Type Field. . « .« « « . .
Pointer Field.

An Example of Intermediate Text « .
Unique Forms of Intermediate Text
FORMAT Statements. . « « « « . &
Subscripted Variable
COMMON Statements. . . . « & .
EQUIVALENCE Intermediate Text.
READ/WRITE and FIND Statements
Modifying Intermediate Text . . .
Phase 14 ¢« ¢ « &« « o« .
Phase 15 . . & « ¢ ¢ o o o o o =«
Phase 20 .« ¢ ¢ ¢ o ¢ o o o o o« &

.

APPENDIX G: ARRAY DISPLACEMENT
COMPUTATION
One Dimension . « « « « ¢ « « « «
TWO Dimensions. . « « « « « « « &
Three Dimensions. « « « « « ¢ « « &

. 50

. 51

. 91

R R S S S
-}
~

.101
.101
.101
.102

.105
.105
.105

.107

.107
.107
.108
.108
.108
.109
.110
.111
.115
.115
.117
.121

.123
.123
.123
<124

General Subscript Form
Array Displacement

.

APPENDIX H: KESIDENT TABLES
The DictiONarye « « « o o o o « o @
Phase 7 Processing . « « « « « .
Phases 10D and 10E Processing. .

Phase 12 Processing.
Phase 14 Processing.
Dictionary Entry Format.
The Overflow Table.

Organization of the Overflow
Table c e e e

Construction cf the Overflow
Table e o e =
Use of the Overflow Table. « . .
Overflow Table Entry
SEGMAL. ¢ o« v o o o s o« = o a o o «
Phase 1 Us€. « v v« 2 « o @« o« « @
Phase S Use. « ¢« &« ¢ & o o o « «
Phase 7 US€: v ¢ o« o o o « o u
Phases 10D, 10E,
Format of SEGMAL . . « « « « o
Patch Table ¢« ¢« ¢« ¢« ¢« « « .
Blocking Table. « « o « & & o o o .
BLDL Table. « e e e e e o
Reset Table (RESETABL). e e e s e e

APPENDIX I: TABLES USED BY PHASE LOAD
MODULES « e e e e e o o
Allocation Table. « e e e e e e .
Routine Displacement Tables . . .
Equivalence Table
Forcing vValue Table
Operations Table.
Subscript Table « « « «
Index Mapping Table
Epilog Table. ¢« + « « . . .
Message Length Table.
Message Address Table
Message Text Table.

s s .

APPENDIX J: TABLES USED BY THE OBJECT
MODULE.« . . . e e e e e e
Branch List Table for Referenced

Statement Numbers.
Branch List Table for SF Expansions
and DO Statements. . . « e e e
Argument List Table for Subprogram
and SF Calls « ¢ ¢« ¢ « o« ¢ o o « @
Base Value Table.
APPENDIX K: DIAGNOSTIC MESSAGES
STATEMENT/EXPRESSION PROCESSING . . .
Diagnostic MeSsSages « « « « « « o
Infornative Messages . « « « . .
Error/Warning Messages . . . < .
Statement/Expression Processing . .

APPENDIX L: ORJECT-TIME LIBRARY
SUBPROGRAMS . .+ « ¢ + ¢ & ¢ o « « .« .

JHCFCOME . « . e o o o s o o o o
Operation of IHCFCOME Routines. .
Read/Write Routines.
Examples of IHCFCOME READ/WRITE
Statement Processing.

I/0 Device Manipulation Routines

.125
.125

.126
.126
.126
.126
.128
.128
.129
.131

.131

.131
.132
.132
.134
.134
.134
.134
.134
.134
.135
.136
.136
.136

.138
.138
.138
.140
.140
.141
141
142
.142
.142
<142
.143

.144
144
144
.145

.145

.146
.146
.146
<146
.148

Write-to-Operator Routines . . .
Utility Routines . . . « « <« .« &

IHCFIOSH o e e e« e o o @
Blocks and Table Used « e s e e o
Unit BlockS. « « ¢ ¢« o« o o o « «
Unit Assignment Table.
Buffering . . . - - .« .
Communication Wlth the Control
Program. « « « « o o o o o o « o @
Operation . . « « -« « « & « « « « &
Initialization « <« . .
Read . o « o ¢« ¢ o o o o o o o =
Writ€e o« o ¢ o o o o o o o o o =
Device Manipulation.
ClOSiNge o o o o o o o o o o o

THCDIOSE ¢ « o « o« o o s o o o o o o =

Chart 00. Overall Compiler Control
FlOW. ¢« ¢ o o o o o o o o o o« o o« o =
Chart 10. Phase 1 (IEJFAAAOQO/IEJFAABO)
Overall Logic « -
Chart 11. Interface Module (IEJFAGAO)
Routines. « « « « « « « « « e e e .
Chart 12. Performance Module
(IEJFAPAQO) I/O Routine.
Chart 13. Performance Module
(IEJFAPAO) End-of-Phase Routine . . .
Chart 20. Phase 5 (IEJFCAAQ) Overall
LOGIiC ¢ o ¢ o o o o o o o o o o o o o
Chart 30. Phase 7 (IEJFEAAQ) Overall
LOGIC « o o o o o o o o« o o o = o « o
Chart 40. Phase 8 (IEJFFAAQ) Overall
LOGLiC o o o o o o o o o o o o o o o«
Chart 50. Phase 10D (IEJFGAAQ)
Overall LOGIiC « « « o o ¢ o o« o « o« &

Chart 60. Phase 10E (IEJFJAAO)
Overall LOgic « o« ¢ ¢ ¢ o o« o o o o« &
Chart 70. Phase 12 (IEJFLAAQ) Overall

LOGIiC o 4 ¢ o ¢ e« o o o o o o o o o o
Chart 80. Phase 14 (IEJFNAAO) Overall
LOGIiC v 4 4 4 @ o o « o o o o o o « =

159

159

160
160
160

.161

162

162
163

.163

le4
1e6u
165
165

165

15
54
56
57
se
59
61
62
64
67
70

72

.165
.166
.167
.168

Blocks and Table Used . . «
Unit BlOCKS. +« « ¢ « o o o o o &
Unit Assignment Table.

Buffering . . . « e o s s s e o @

Communication W1th the Control

Programe. « « « « o o o o o o s o

Operation .
File Definition Section.
File Initialization Section. . .
Read Section « « « o« o o o « o« «
Write Section. . « « .+ « « .« . .
Termination Section.

.168
.168
.168
.168
.169
.170
.170

e @ @ ® e @ e o e @ o o

IHCIBERR171

GLOSSARY &« @ ¢ « o o o o o o o« o « « « 2183

INDEX: « « o o o o o o o« o o o« o« « o « 186

CHARTS

Chart 90. Phase 15 (IEJFPAAO) Overall
LOGIC o ¢ 4 ¢ 4« 4« ¢« 4 o o o o o o o« o« o 16
Chart AO. Phase 20 (IEJFRAAO) Overall
LOGIC o ¢ ¢« v o o o o o o o s o o« « « « 81
Chart BO. Phase 25 (IEJFVAAOQO) Overali
LOGIC o« « o« o o o o o o « o o o« « « « o 84
Chart C0. Phase 30 (IEJFXAAO0) Overall
LOGiC &« o o « o o o o « o o o o « « « o« 87
Chart DO. READ Statement Scan Logic . .104
Chart EO. IHCFCOME Overall Logic and
Utility Routines. . . B Iy
Chart E1. Innlementatloh of
READ/WRITE/FIND Source Statements . . .173
Chart E2. Device Manipulation ana
Write-to-Operator Routines.174
Chart E3. IHCFIOSH Overall Logic. . . .176
Chart E4. Execution-Time I/0 Recovery
Procedure . . . B . . e o . 177
Chart E5. IHCDIOSE Overall Loglc -
File Definition Section178
Chart E6. IHCDIOSE Overall Logic -
File Initialization, Read, Write and
Termination Sectioms. . . . < o 179
Chart E7. IHCIBERR Overall Loglc. < . .181

FIGURES

Figure 1. Compiler Input/Output
Structure « o e . o

Figure 2. Comp1ler Input/Output Flow.
Figure 3. Text Buffer Chain Format. .
Figure 4. Text Buffer Chain Use . . .
Figure 5. Relative Main Storage

Locations Occupied by Dictionary and
Overflow Table Elements, and SEGMAL .

Figure 6. Phase 8 Data Flow
Figure 7. Phase 10D Data Flow
Figure 8. Phase 10E Data Flow
Figure 9. Phase 12 Data Flow.
Figure 10. Phase 14 Data Flow
Figure 11. Phase 15 Data Flow
Figure 12. Phase 20 Data Flow
Figure 13. Phase 25 Data Flow . o« .
Figure 14. Sample Base Value Table

Values. . o s e e e
Figure 15. Phase 30 Data Flow « o .
Figure 16. Main Storage at the End of

Phase 1 (initial entry)
Figure 17. Main Storage at the End of

Phase 1 (subsequent entries). . .
Figure 18. Main Storage at the End of

Phase 5 « ¢ ¢ ¢ « o o« « o . .
Figure 19. Main Storage at the End of

Phases 7, 8, 10D, and 10E; and

Interlude 10E - . .
Figure 20. Main Storage at the End of

Phases 12 and 14, and Interlude 14, .
Figure 21. Main Storage at the End of

Phases 15 and Interlude 15.
Figure 22. Main Storage at the End of

Phases 20, 25, and 30 (on entry to

Phase 1). v « ¢ o o o o o o o o« « o @
Figure 23. Main Storage Allocation

for a PRFRM Compilation « « « . « .
Figure 24. Data Control Block

Manipulation for SPACE Compilations .
Figure 25. Data Control Block

Manipulation for PRFRM Compilations .
Figure 26. Intermediate Text Word

Format. « « « ¢ o o « o« o o o« ¢ o o o
Figure 27. Intermediate Text

Adjective Codes « e e e e e
Figure 28. Example of Intermedlate

Text for an IF Statement. . . . « . .
Figure 29. FORMAT Statement

Intermediate Text « s
Figure 30. Subscripted Varlable

Intermediate Text - (First Word). . .
Figure 31. Subscripted Variable

Intermediate Text - (Second Word) . .
Figure 32. Example of Subscripted

Variable Intermediate Text.
Figure 33. COMMON Intermediate Text .
Figure 34. Example of COMMON

Intermediate Text - .
Figure 35. EQUIVALENCE Intermedlate

Text. . « e« 6 o e o e o & e o o
Figure 36. Example of EQUIVALENCE

Intermediate Text « « « o « w o « « &

s s e
N
~

.
w
w

s e s o s
E~
N

.100
.105
.106
.107
.108
.108
.108

.109
.109

.109
.110
.111

Figure 37. Intermediate Text Created
for General I/O Statement . «
Figure 38. Intermediate Text Created
for READ (I,10) (A(N),N=1,10),B . . .
Figure 39. Intermediate Text Created
for WRITE (5'I(J), 10) (A(N),N=1,10),
B o o o ¢ ¢ o o o e o o s o s o o o o
Figure 40. Intermediate Text Created
for FIND (3'S). « v e e e s
Figure 41. Replacement of Dictionary
Pointers by Phase 14. +« .« .

Figure 42. Example of Input to Phase
14, . “ o o o e o 8 e o o & o o a
Figure u3. Example of Output from
Phase 1U. « ¢ o o o ¢« ¢ ¢« o o o« o o «

Figure 44. Intermediate Text Input to
Phase 14 for a Computed GO TO

Statement . . ¢ ¢ ¢ ¢ 0 e 0 e e e .
Figure 45. Intermediate Text Output
From Phase 14 for a Computed GO TO
Statement ¢ 0 0 e o e 0 . .
Figure 46. Intermediate Text Input to
Phase 15 for an Arithmetic Statement.
Figure 47. Intermediate Text Output
From Phase 15 for an Arithmetic
Statement ¢ o ¢ e ¢ e o o
Figure 48. Assignment of Registers by
Phase 15. & ¢ o o ¢ ¢ o ¢ o = o o« « =
Figure 49. Unordered Intermediate
Text for an Arithmetic Statement. . .
Figure 50. Reordered Intermediate
Text for an Arithmetic Statement. . .
Figure 51. Intermediate Text Input to
Phase 15 for a DEFINE FILE Statement.
Figure 52. Intermediate Text Output
From Phase 15 for a DEFINE FILE
Statement « .« ¢ o+ < ¢ ¢ e o e 4 o
Figure 53. Subscript Intermediate
Text Input Format . « « « « ¢ o o o &
Figure 54. Subscript Intermediate
Text Output From Phase 20 -- SAOP
Adjective Code. v v ¢ 4 v o o o o o
Figure 55. Subscript Interrmediate
Text Output from Phase 20 -- XOP
Adjective Code. . . . e e o o e o o
Figure 56. Subscript Intermedlate
Text Output from Phase 20 -- AOP
Adjective Code. . <« « ¢ v ¢ o o ¢ o o
Figure 57. Referencing a Specified
Element in an AYray « « « « « « « « &
Figure 58. The Dictionary as
Constructed by Phase 7. . « « « « « «

Figure 59. Removing an Entry From the
End of a Dictionary Chain
Figure 60. Removing an Entry From the
Middle of a Dictionary Chain.

Figure 61. General Format of a
Dictionary Entry. . . e e e & e o
Figure 62. Function of Each Subfield

in the Dictionary Usage Field
Figure 63. The Various Mode/Type
Combinations. .« « « « ¢ o« & o o « o o

.112

.113

.114
<114
.115
.116

.116

.117

.117

.118

.118
.119
.120
.120

.120

.121

<121

.122

.122

.122
124
.127
.128
.128
.129
.129

130

Figure 64. Phases That Enter
Information Into Specific Fields of
Dictionary Entry. . « « « « « « o .

Figure 65. The Overflow Table Index
as Constructed by Phase 7 . « « . .

Figure 66. Format of Dimension
Information in the Overflow Table .

Figure 67. Format of Subscript
Information in the Overflow Table .

Figure 68.
Information in the Overflow Table .

Figure 69. Statement Number Entry
Usage Field Bit Functions

a

Format of Statement Number

Figure 70. Format of SEGMAL
Figure 71. Format of the Patch Table.
Figure 72. Blocking Table Entry

Format. ¢ ¢ ¢ ¢ o ¢ ¢ ¢ o ¢ o o o
Figure 73. BLDL Table Format. . . .
Figure 74. Phase 10D Routine

Displacement Table Format
Figure 75. Phase 10E Routine

Displacement Table Format
Figure 76. Locating the DO Reserved

Word Routine. . « ¢ ¢ o« ¢ « o o « &
Figure 77. Forcing Value Table. . .
Figure 78. Operations Table Entry

FOIMAte v« « o« o o o o o o o o o o o
Figure 79. Subscript Table Entry

Format. « « « ¢ o « o o o o o o o @

.130
<131
.132
.133
.133
.133
.134
.135

.136
.137

.139
.139

140
.141

.141

.141

Figure 80. Index Mapping Table Entry
Format. « « ¢ o ¢ ¢ ¢ ¢ ¢ o o ¢ o o &

Figure 81. Epilog Table Entry Format.
Figure 82. Message Length Table
FOXrmate o« o o o o o « o o o o o o o
Figure 83. Message Address Table
FOXmMate o« v o o o« o o « « o o o o = =«
Figure 84. Message Text Table Format.
Figure 85. Format of Branch List

Table for Referenced Statement
NUmbers . . o v ¢ ¢ o o o o o o o o =
Figure 86. Format of Branch List
Table for SF Expansions and DO Loops.

Figure 87. Format of Argument List
Table for Subprogram and SF Calls . .
Figure 88. Format of Base Value Table
Figure 89. Relationship Between

IHCFCOME and I/0 Data Management
Interfaces. « . « ¢« ¢« ¢« 4 ¢« o« « o o .
Figure 90. Format of a Unit Block for
a Sequential Access Data Set.
Figure 91. Unit Assignment Table
FOrMate o ¢« o« o o o o = o o o o « o« =
Figure 92. CTLBLK Format. . . . « . .
Figure 93. Format of a Unit Block for
a Direct Access Data Set. . . « . . .
Figure 94. Unit Assignment Table
Entry for a Direct Access Data Set. .

.142
142

142
.143
.143
.14y
.1la4
. 145
.145
.152
.160

.162
.163

.166

.167

TABLES

Table 1. Compiler Components and
Their Major Functions . « « » « « .
Table 2. Phase 1 Main
Routines/Subroutine Directory. . . .
Table 3. Phase 5 Main
Routines/Subroutine Directory. . . .

Table 4. Phase 8 Routine/Subroutine
Directory e o o o o
Table 5. Phase 10D Statement
Processing. . . . « o e & o
Table 6. Phase 10D Maln
Routine/Subroutine Directory. . . .
Table 7. Phase 10E Statement
Processing. . . . e o e o o o
Table 8. Phase 10E Maln

Routine/Subroutine Directory. . . .
Table 9. Phase 12 Main
Routine/Subroutine Directory. . . .
Table 10. Phase 14 Statement
Processing (FORMAT Statements
Excluded) . « ¢ o« ¢ o o o ¢ o o o
Table 11. Phase 14 FORMAT Statement
Processing. e o e e o o
Table 12. Phase 14 Maln
Routines/Subroutine Directory. . . .
Table 13. Phase 15 Nonarithmetic
Statement Processing. . « « « o« o .
Table 14. Phase 15 Arithmetic
Operator Processing « « « « « « « o
Table 15. Phase 15 Main
Routines/Subroutine Directory. . . .
Table 16. Phase 20 Nonsubscript
Optimization Processing
Table 17. Phase 20 Subscript
Optimization Processing

18
55
60
63
65
66
68
69

71

73
74
T4
77
78
79
82

82

Table 18. Phase 20 Main
Routine/Subroutine Directory.
Table 19. Phase 25 Statement and
Adjective Code Processing
Table 20. Phase 25 Main
Routine/Subroutine Directory.
Table 21. Phase 30 Main
Routine/Subroutine Directory.
Table 22. Communication Area.
Table 23. Operation Field Bit
Meanings. « « « « o« o o s o o o o o o
Table 24. Data Set Disposition Field
Bit Meanings. « .« ¢ ¢ 4 ¢ ¢« o ¢ ¢ e
Table 25. Symbolic and Actual Names
of Compiler Components. . « . « « « .
Table 26. Array Size Maximums
Table 27. Allocation Table.
Table 28. Informative Messages. . . .
Table 29. Error/Wwarning Messages. . .
Table 30. Statement/Expression
Processing. « « . « « e e .
Table 31. IHCFCOME FORMAT Code
Processing. . . . e e e o e e .
Table 32. IHCFCOME Pr006851ng for

a
READ Requiring a Format
Table 33. IHCFCOME Processing for a
WRITE Requiring a Format. . . « . .
Table 34. IHCFCOME Processing for a
READ Not Requiring a Format
Table 35. IHCFCOME Processing for a
WRITE Not Requiring a Format. . .
Table 36. IHCFCOME Routlne/Subroutlne
Directory . . . - - e e e 4 e .
Table 37. IHCFIOSH Routlne Lirectory.
Table 38. IHCDIOSE Routine Directory.

. 88
. 92

.125
.138
.1u6
.146
.149
. 154
.157
.157
.158
.158
.175

.180
.180

This publication describes the internal
logic of the FORTRAN IV (E) compiler, which

translates source modules written in the
FORTRAN IV (E) language into machine-
language object modules. The object

modules are used as an input to the linkage
editor program, which produces load modules
for execution on the IBM Systemn/360. If

the compiler detects errors in the source
modules, appropriate error messages are
produced.

THE COMPILER AND OPERATING SYSTEM/360

The FORTRAN IV (E) compiler is a pro-
cessing program of the operating system

and, as such, communicates with the follow-
ing parts of the operating system control
program:

¢ Job management routines that
job control language statements.

analyze

¢ Task management routines that allocate
main storage for use by the compiler.

e Data management routines that read data
from and write data onto input/output
devices.

The execution of the compiler (i.e., a
single compilation, or a batch of
compilations) is introduced as a Jjob step
under the control of the operating system
via the job statement (JOB), the execute
statement (EXEC), and data definition
statements (DD) for the input/output data
sets. To keep these statements at a mini-
mum in the job stream, cataloged procedures
are provided. A discussion of the execu-
tion of the compiler as a job step and of
the available cataloged procedures is given
in the publication IBM System/360 Operating

SECTION 1: INTRODUCTION

THE INTERFACE MODULE

The interface module, a component of the
FORTRAN IV (E) compiler, resides on the
operating system library (SYS1.LINKLIB).
This module is loaded, via the LOAD macro-
instruction, into main storage and remains
in main storage until control is returned
to the calling program. The interface
module processes all read/write requests of
the compiler using the BSAM (basic
sequential access method) read/write rou-
tines. A description of BSAM and the
corresponding read/write routines is given
in the publication IBM System/360 Operating
System: Sequential Access Methods, Program

Logic Manual.

SYSTEM MACRO-INSTRUCTIONS

Whenever the XCTL, LOAD, ODELETE, OPEN,
OPEN (type=J), CLOSE, CLOSE (type=T), READ,
WRITE, CHECK, RDJFCB, GETMAIN, FREEMAIN,
BLDL, SPIE, or TIME macro-instruction is
issued, control is given directly to the
operating system to execute the requested
service.

When the execution
terminated, control is
calling prograrm via the
instruction.

of the compiler is
returned to the
RETURN macro-

For a description of these macro-
instructions, refer to the publication IBM
Systen/360 Operating System: control

Program Services.

COMPILER ORGANIZATION

System: FORTRAN IV (E) Programmer's Guide.

In addition, any job step may invoke the
compiler via +the LINK or ATTACH macro-
instruction.

The compiler initially receives control
from the calling program via a supervisor-
assisted linkage. Once the compiler
receives control, it maintains communi-
cation with the operating system through:

e The interface module.
¢ System macro-instructions.

The FORTRAN IV (E) compiler consists of
several components, each of which exists as
a separate load module on the operating
system library (SYS1.LINKLIB). The compo-
nents are:

e Phases (1, 5, 7, 8,
15, 20, 25, and 30).
Interludes (10E, 14, and 15).
Interface module.

Performance module.

Source symbol module.

Object listing module,

10D, 10E, 12, 14,

Section 1: Introduction 9

The compiler components, their symbolic
names, and their major functions are sum-
marized in the discussion of overall com-
piler operation (refer to Table 1).

COMMUNICATION AMONG COMPILER PHASES

Communication among the phases of the
FORTRAN IV (E) compiler is implemented via:

¢ The communication area.
e Intermediate text.
e Resident tables.

THE COMMUNICATION AREA

The communication area is a central
gathering area (a portion of the interface
module) for information common to the phas-
es. It is used to communicate this infor-
mation, when necessary, among the phases.

INTERMEDIATE TEXT

Source module statements (both executa-
ble and nonexecutable) are converted into
intermediate text. This intermediate text,
once it is created, is used as input to the
subsequent phases of the compiler. The
intermediate text for the executable state-
ments is eventually transformed into
machine-language instructions.

RESIDENT TABLES

The resident tables contain information
that remains in main storage throughout the
compilation process. The resident tables
are the dictionary, the overflow table, the
segment address 1list (SEGMAL), the patch
table, the blocking table, the BIDL table,
and the reset table. The dictionary is a
reference area containing information about
variables, arrays, constants, and data set

10

used in the source
module. (For SPACE compilations, the dic-
tionary resides in main storage only
through the execution of Phase 14.) The
overflow table contains all dimension, sub-
script, and statement number information
within the source module. SEGMAL is used
for main storage allocation within the
compiler. The patch table contains infor-
mation to be used to modify compiler compo-
nents. The blocking table contains infor-
mation necessary for deblocking compiler
input and blocking compiler output for
PRFRM compilations. The BLDL table pro-
vides the information necessary for trans-
ferring control from one component to the
next for PRFRM compilations. The reset
table is used to determine which, if any,
of the record counts for the SYSUT1 and
SYSUT2 data sets must be reset. (The
blocking table, the BLDL table, and the
reset table reside in main storage only for
PRFRM compilations.)

reference numbers

COMPILER INPUT/OUTPUT FLOW

The initial input (source modules) to
the compiler 1is provided in the form of
cards or card images on intermediate stor-
age, and is read into main storage from the
SYSIN data set. The compiler uses SYSUT1
and SYSUT2 as intermediate text work data
sets. If the buffers to be used for
reading from and writing onto these work
data sets are large enough to contain the
intermediate text representation of the
source module, then this text is retained
in main storage.

The output of the comrpiler is placed
onto the SYSPRINT, SYSLIN, and SYSPUNCH
data sets as specified by the wuser. SYs-
PRINT is always used. SYSLIN is used only
if the LOAD option is in effect. SYSPUNCH
is wused only if the DECK option is in
effect.

Figure 1 shows the various compiler
options that are available for obtaining
compiler output.

r 1
| Source Module]

| (SYSIN) |
L T (]
|
| SYSUT1
| and
i SYSUT2
r===== i -----] [4 1
| Intermediatel
| COMPILER | |work data |
| pe———sets |
[- 3 L 1
|
|
3 T T T 1 T T 1
SOURCE SOURCE and MAP| DECK LOAD Object For all
and ADJUST NOADJUST option option option listing corpilations
options options | | | option (%) |
i 3 r & 1 r ‘ 1 r J 1 I i 1 r 1 1 T l 1
Source | |source | |storage| |Object | |Object | |object | |Heading, com-|
module | jmodule | |map | |module | |module | |module | Ipiler infor- |
listing | |listing (| | | (EsD, TXT,| |(ESD, TXT,| |listing | |mative mes- |
1 1 |1 | |RLD, and | |RLD, and | |(if the | |sages, list |
(Phase 8)| |(Phases I 1 | |END card | |END card | |object | |of patch rec-|
| 110D & 10E) | | | |images) | |images) | |listing | Jords if any, |
| | | | | | (] | |facility | |and error and|
[b | | | | |is en- | |warning mes- |
(| I | | || | |labled) | |sages if any |
L Jd L 4 L J L J L. J L] L J
SYSPRINT SYSPRINT SYSPRINT SYSPUNCH SYSLIN SYSPRINT SYSPRINT
Figure 1. Compiler Input/Output Structure
OVERALL COMPILER OPERATION The manner in which control is trans-
ferred among the compiler components
depends on whether the SPACE or PRFRM
The overall operation of the compiler option is specified by the user. The SPACE

involves the following general functions:

e Initialization (Phases 1, 5, and 7).

¢ Source statement adjustment if required

(Phase 8).
¢ Source statement scanning (Phases 10D
and 10E).
e Translation of the source module
(Phases 10D, 10E, 14, 15, and 20).
1. Intermediate text generation
(Phases 10D and 10E).
2. Intermediate text modification

(Phases 14, 15, and 20).

¢ Object module generation (Phases 12,

14, 20, 25, and 30).

¢ Storage map generation (Phases 12, 20,
and 25).

e Diagnostic message generation (Phase

30).

option is chosen if +the amount of main
storage that 1is available for compilation
is limited. The PRFRM option is chosen if
the user desires maximum compiler efficien-
cy and if the amount of available main
storage is not a limitation.

If the SPACE option is specified, con-
trol is transferred among the compiler
components via the interface module. After
each component has been executed,that com-
ponent branches to the interface mcdule
with the name of the component to be
executed next. The interface module then
transfers control to the next component via
the XCTL macro-instruction.

If the PRFRM option is specified, con-
trol 1is transferred among the compiler
components via the performance module.
After each component has been executed,

that component branches to the interface
module with the name of the component to be
executed next. The interface module, in
turn, branches to the perfcrmance module.

Section 1: Introduction 11

If the next component is an interlude, the
performance wmwodule bypasses the execution
of the interlude and transfers control, via
the XCTL macro-instruction, to the next
phase of the compiler. If the next compo-
nent is a phase, the performance module
immediately transfers control to the next
phase.

Figure 2 illustrates the overall compil-

er input/output flow and includes inter-
mediate input to and from the various
phases of the compiler.

Chart 00 shows the overall compiler
control flow. Table 1 summarizes the major
functions performed by each component of

the compiler.

INITIALIZATION (PHASES 1, 5, AND 7)

Certain initialization steps must be
performed prior to any source module pro-
cessing. The steps that are performed
depend on whether the first compilation or
a subsequent compilation in a batch is

being initialized.

For the first
initialization consists
functions:

compilation in a batch,
of the following

e Loading the interface module into main
storage (Phase 1).

e Processing compiler options (Phase 1).

e Loading the source symbol module into
main storage if the object 1listing
option is in effect and if the object
listing facility of the compiler has
been enabled (Phase 1).

e Loading the performance module into
main storage if the PRFRM option is in
effect and if the SIZE option is at
least 18,504 (Phase 1).

e Opening required data control blocks
for the data sets used by the compiler

(Phase 1).

¢ Loading Phase 5 into main storage
(Phase 1).

e Obtaining and allocating main storage

for use by the compiler (Phase 5).

e Constructing text buffer chains for the
SYSUT1 and SYSUT2 data sets if the
PRFRM option is in effect (Phase 5).

e Resident table initialization (Phases 5
and 7).

12

e Communication area initialization

(Phases 1, 5, and 7).

For a subsequent compilation in a batch,
the initialization steps depend on whether
the SPACE or the PRFRM option is in effect.

If the SPACE option is in effect, subse-
quent compilations in a batch are initial-
ized in the following manner:

e All the remaining main storage, origi-
nally obtained and alliocated to the
compiler by Phase 5 is freed (Phase 1).

¢ A1l the data control blocks for the
compiler data sets are closed (Phase
1).

s The remaining initialization steps per-
formed for a subsequent compilation in
a batch SPACE run are the same as those
described for the first compilation in
a batch starting with the opening of
the data control blocks.

If the PRFRM option is in effect, only
the dictionary and overflow table (in Phase
7), and the communication area (in Phases 1
and 7) are initialized.

SOURCE STATEMENT ADJUSTMENT IF REQUIRED
(PHASE 8)

Any source statements written with
embedded blanks and keywords used as varia-
bles, arrays, or external names are adjust-
ed by the compiler (if the ADJUST option is
in effect) into a format that is acceptable

as input to Phases 10D and 10E. Phase §
eliminates embedded blanks; adds a special
character to keywords that are used as

variables, arrays, or external names; and
inserts a meaningful blank between succes-

sive words in a FORTRAN statement. In
addition, if the SOURCE option is in
effect, Phase 8 produces a listing of the

unadjusted source module.

SOURCE STATEMENT SCANNING (PHASES 10D AND
10E)

The main purpose of source statement
scanning is to convert each source state-
ment into a form (intermediate text) that
is usable as input to subsequent phases of
the compiler. If the SOURCE and NOADJUST
options are in effect, Phases 10D and 10E
produce a listing of the source module. In
addition, as source statements are scanned,
they are checked for wvalidity and any
errors that are detected are indicated by

developing special intermediate text.
(Phase 30 produces diagnostic messages from
this intermediate text that explain the
errors that are detected.)

TRANSLATION OF THE SOURCE MODULE (PHASES
iop, 10E, 14, 15, AND 20)

Translation of the source module
involves: (1) generating intermediate text
for the statements in the source module,
and (2) modifying that intermediate text to
a form that facilitates the generation of
the object module.

Intermediate Text Generation (Phases 10D
and 10E)

Intermediate text is an internal rep-
resentation of the source statements from
which the machine-language instructions of
the object module are produced. In gener-
al, intermediate text is generated by scan-
ning the source statements from left-to-
right and by constructing one-word
intermediate text entries for the source
text contained in those statements.
(Special intermediate text 1is generated
for: (1) COMMON, EQUIVALENCE, FORMAT, READ,
WRITE, and FIND statements; and (2) sub-
scripted variables.)

As intermediate text is generated,
entries are made in the dictionary and/or
overflow table for the variables, con-
stants, arrays, statement numbers, sub-
scripts, etc., that appear in the source
statements. The information contained in
the dictionary and overflow table entries
supplements the intermediate text in the
generation of machine-language instruc-
tions. The intermediate text entries are
associated with the dictionary and overflow
table entries by pointers that reside in
the text entries.

Intermediate Text Modification (Phases 14,
15, and 20)

Phases 14, 15, and 20 modify the inter-
mediate text produced by Phases 10D and
10E. The main purpose of this modification
is to transform the intermediate text to a
format that facilitates the generation of
machine-language instructions by Phase 25.

Phase 14: (1) replaces the pointers to
the dictionary in the intermediate text
entries with information contained in the
dictionary entries (e.g., the relative
addresses that are assigned by Phase 12);

and (2) modifies the intermediate text
entries for I/0 statements, computed GO TO
statements, and RETURN statements.

Phase 15 primarily transforms the inter-
mediate text entries for arithmetic expres-
sions into approximate machine code. That
is, Phase 15 allows Phase 25 to easily
generate machine-language instructions for
arithmetic expressions.

Phase 20 optimizes the intermediate text
for subscript expressions. This optimiza-
tion process increases the efficiency of
the object module by decreasing the amount
of computation associated with subscript
expressions.

OBJECT MODULE GENERATION (PHASES 12, 14,
20, 25, AND 30)

consists of control
dictionaries (external symbol dictionary
and relocation dictionary), text, and an
END statement. The external symbol dic-
tionary (ESD) contains the external symbols
that are defined or referred to in the
module. The relocation dictionary (RLD)
contains information about address con-
stants 1in the object module. (An address
constant designates the relative storage
address into which the address of a rou-
tine, library subprogram, or symbol is to
be relocated.) The text (TXT) contains the
instructions and data of the object module.
The END statement indicates the end of the
object module.

An object module

The object module is not constructed in
its entirety by any one phase; it is
constructed throughout the compilation and
is placed onto the SYSLIN and/or SYSPUNCH
data sets. Figure 2, the overall compiler
input/output flow, indicates what each
phase contributes to the generation of the
object module.

Several tables are used by the object
module during the execution of the instruc-~
tions generated by Phase 25. They are:

e The branch 1list table for referenced
statement numbers (constructed by Phas-
es 12, 25, and 30).

e The branch 1list table for statement

function expansions and DO statements
(constructed by Phases 14, 20, 25, and
30).

¢ The base value table (constructed

throughout the compilation as new base
registers are required).

e The argument list table (constructed by
Phase 20).

Section 1: Introduction 13

Note: The 1linkage editor must combine
certain FORTRAN 1library subprograms with
the object module in order to form an
executable 1load module. Each library sub-
program that is externally referenced by
the object module is included in the load
module by the linkage editor. Among the
library subprograms that may be so ref-
erenced are:

e IHCFCOME
e IHCFIOSH
e IHCDIOSE

IHCFCOME performs object-time implemen-
tation of the following FORTRAN statements.

e READ, WRITE, and FIND
e BACKSPACE, REWIND, and ENDFILE
e STOP and PAUSE

In addition, IHCFCOME converts input and
output data into the formats indicated in
the FORMAT statements. IHCFCOME also proc-
esses object-time errors and arithmetic-
type program interruptions and terminates
the execution of the 1load module when
appropriate.

IHCFCOME does not actually perform the
reading from and writing onto data sets; it
submits requests for such operations to the
appropriate FORTRAN I/O data management
interface (IHCFIOSH for sequential access

14

I/0, or IHCDIOSE for direct access 1I/0).
The FORTRAN I/O interface interprets these
requests and, in turn, submits them to the
appropriate BSAM or BDAM routines for
execution.

STORAGE MAP GENERATION (PHASES 12, 20,
AND 25)

If the MAP option is in effect, the
compiler generates a storage map on the
SYSPRINT data set. The storage map is
generated by Phases 12, 20, and 25.

Phase 12 produces a map of all the
relative addresses that it assigns. Phase
20 produces a map of the 1literals it
generates and the external references made
by the source module. Phase 25 produces a
map of all referenced statement numbers
within the source module.

DIAGNOSTIC MESSAGE GENERATION (PHASE 30)

The various phases of the compiler may
detect errors in the source module. These
errors are indicated in the form of special
intermediate text entries. These text
entries are examined by Phase 30 and the
corresponding error messages are generated.

Chart 00.

RRRBALFRERBERER
CALLING -

: PROGRAM :
U
VIA SUPERVISOR
ASSISTED LINKAGE
RRERRPIRARBRARREE

PHASE
(!EJFAAAO)

LR 2]
LR R R 1]

RERERBRHERBRBRRRRS
REN

- *
* C1 #->
- -

Overall

wxew xc|TL
c1 c2
L 2 - - *
. PHASE S - # UNCONDITIONAL #
(IEJFCAAQ) %< * GETMAIN 1
- * - *
- * * -
A
SPACE
v
oty oo
D1 %, b2 Wl
.i "y ¥
ENOUGH #o NO o SPACE *.
#IMATR STOHAGE ce——— >%l OR PRFRM .
*q *q ot
., o . o
e oW o ot
* YES *PRFRM
Rl 2]
- *
* E] #—>
* *
waan xc|TL v
*
EAAZ A SR 22222223 2) Ez' .i.

PHASE 7
(IEJFEAAO)

Xk
EEE R]

AR R RN RN

NOADJUST F1’ '-.

OR NOADJUST o

!. .n
e o
*ADJUST
xc|TL
v

N !G]I.l.‘&*&"
*
- C
* (lEJFFAAO) »
* *
» *
RL22 22 222222223

>

xc|TL
EZ T 2 IVER TR TR
* *
PHASE 10 -
(1EJFGAAO *
* -
* *

FRBRRRRRARREERRES

xcive
l.ii.J]ix.Gihi‘ii
* i
PHASE |o§

: (1EJFJIAAD

-

iu&ii.iii{i'lllli

% g
YES +*BLOCKED 1/0%.

*o
*e
L

v
*RER

D4

*ER
EE R

A2 2 2]

TERMINATE
COMPILATION

iﬂ**
»

.————)l A3 &

{Qll

*

o

NO
ot
o* I
o
v
(22
Da

*k%
EE R

Run

RESTART
CDMP!LAT!O
PRFRM
CONPILATIDN
TO SPAC|
COMPILAT!ON)

Compiler Control Flow

*,
YES
>’.SQUQCE MODULE-*———

oty
AS *e
.u
*e

&. .*
ne of
* ND

HAWNES
CALL ING
PROGRAM

A2 22T TR RS

1A SUPERVISOR~

ASSISTED LINKAGE)

HERE #EEE
»* * * *
* A3 » * A4 ¥
* * * *
EREE LA ddd
v v
¥y ke
A3 %, A "o
. . o *o
«# SPACE #. PRFRM o* *. NOLOAD
#o OR PRFRM o#——m *, on NDLOAD @ ¥
*g o ¥ o ¥
*q o h. .l
o ot L
#SPACE *L0AD
xcfTL
xciTL
FERRRDINERBERRE N REERBBL AN FFERERES
* * * *
INTERLUDE 0E # # PHASE 25 *
* (IEJFJGAO : : (IEJFVAAD) *
*
* * * *
A2 22222 2222222223 RS R 222 2222222222
<
xc|TL xc|TL
RERRFCITRRERERERRS RRRBRCHLABERRR RN
- - * »*
#* PHASE - # PHASE 30 *
(IEJFLAAO) * # (1EJFXAAD) *
* * - *
- * * *
RERRSRBRBRRREREES R 22222 22222222223
L a2 a2l
*
* D4 %—>
* *
xc|T wwwn XC|TL
RHERRADIHRRRRBRE RS WRRRND G W W NN,
* * #* *
PHASE 14 * * PHASE 1 *
(IEJFNAAO) * # (IEJFAABO) *
* * * *
* » * *
A AR 2 2222 22222 A2 222222222222 2)
v
o¥e oty
E3 %, E4 *,
o *. . .
o% SPACE #. PRFRM «*% FINAL *. YES -
*. OR PRFRM o#— *e ENTRY o >%
g 'y * g o *
. o . o*
*y ¥ e o¥
*SPACE I NO (v
xc|TL v
ok
WM RE JRAERE R Fa *q
* * - * g L2 22l
* INTERLUDE 34 - +* SPACE ¥. PRERMX
* (1EJFNGAO * *o o #——>% E1
* * #*o PRFRM o%
* * - o I'l'i
RE 222 2222222222 2] * e oW
*SPACE
<
v
*E RN
xc|TL * *
* C1 *
HRRRRGTH RN RN » *
* * HERN
* PHASE *
* (IEJFPAAO) »
* *
* *
LE 2222 22222222223
oty
H3 %,
o *o
% SPACE #. PRFRM
*e OR PRFRM o¥%—
. o
*y ¥
e oM
*SPACE
xc|TL
’il&iJ3&X*i**i***
*
* INTERLUDE 15 #
* (IEJFPGAD) *
* »*
* *
RS a2 222222222223
<
xciTL
RAZ 22 &i 2222l
* * R 22 2]
- PHASE 20 * * *
* (1EJFRAAO) * S>* A4 *
* * * *
* * LA 22
Ra A 2222222223

Section 1:

*
*
*

*
*
*

Introduction

15

91T

Input to Compiler Components

Compiler Components

that Generate Intermediate

and/or Final Compiler
Output

Intermediate
Output from
Compiler
Components

©

Dictionary and Overflow Table

©

Adjusted Source Module

Main Storage

SYSUT2

©

©

SYSIN Patch Records if any Phase 5
Phase 7
Phase 8
FORTRAN (Executed
SYSIN Source only for
Module ADJUST
option)
Declarative Statements
Phase 10D
SYSIN or FORTRAN
SYSUT2 (If Source Dictionary and Overflow Table | Main Storage
ADJUST Option| Modyle
Is in Effect)

Figure 2.

Intermediate Text for

SYSUT1 or Main St
Declarative Statements or Main Storage

Dictionary and Overflow Table

Main Storage

Executable Statements

Phase 10E

Intermediate Text for

SYSUTT or Main St
Executable Statements or Main Storage

T

Compiler Input/Output Flow

~O

Final
Compiler
Output

SYSPRINT

| Compiler Output
for SOURCE
Option

!

|

: Compiter Output
| for MAP Option
|
|

L
| Compiler Output
for Object Listing

List of patch records if any, Compiler Informative
Messages

L Bheses
Heading

| _ (Phase 7) _
Source module listing if SOURCE option is in effect

N L
Source st listing of bl s
if SOURCE and NOADJUST options are in effect

| (Phase 10D) _
Source st listing of bl Jif

SOURCE and NOADJUST options are in effect
o (PheseloR)
12 if MAP option is in effect.

(Phase 12)

Storage map of generated literals and external
references if MAP option is in effect

| (hese2) ___
Storage map of refe d stat bers if MAP
option is in effect
(Phase 25)

| Object module listing if object listing opfion is in |
effect
(Phase 25)

—Li_sf—of;r;f—/\;;rrin; me_ssa_ges_if:r;; :mTSI—iE_O-F— 7
COMMON, SIZE OF PROGRAM message

(Phase 30)

:1 UOT3OaS

UOT3ONPOIFUT

LT

Main Storage

SYSUT1 or
Main Storage

SYSUT! or
Main Storage

Main Storage

SYSUT2 or
Main Storage

Main Storage

SYSUT1 or
Main Storage

Main Storage

Main Storage

SYSUT2 or
Main Storage

SYSUT! or
Main Storage

Figure 2.

Dictionary and Overflow Table

Dictionary and Overflow Table

~O

intermediate Text
for COMMON and
EQUIVALENCE Statements

Intermediate Text for
Executable, FORMAT,
DEFINE FILE
Statements, and
Subprogram Headers

Dictionary and Overflow Table

©

Intermediate Text for
N, !

Encountered in éOMMON and

| Errors

EQUIVALENCE Statements

Source Symbol Table
(If Object Listing
Option is in Effect)

Dictionary

Intermediate Text

{a

Modified Intermediate Text

Overflow Table

Modified Intermediate Text

Intermediate Text

Modified Intermediate Text
(Subscript Text Optimized)

Overflow Table

oJo)

Branch List Tables and
Base Value Table

Source Symbol Table
(If Object Listing
Option Is in Effect)

Intermediate Text

Branch List Tables and
Base Value Table

Compiler Input/Output Flow

Phase 12
Phase 14 l
L]
Phase 15
I—-"
Phase 20
Phase 25
L,
Phase 30
(Continued)

OO ©0

Main Storage

Object
Module

SYSLIN and/or
SYSPUNCH

— ——

SYSUT2 or Main Storage

Main Storage

|

|

I

|

1

| Compiler Output
| for LOAD and/or
Main Storage { DECK Options
|
|
|
|
|

SYSUT2 or Main Storage

SYSUT1 or Main Storage

SYSUT2 or Main Storage

SYSUT) or Main Storage

ESD card images for section definition, extemal
symbols, and entries in COMMON; TXT .card images
for dictionary constants; and RLD cord images for
address constants
| Phose1d)]

TXT card images for FORMAT Statements

{(Phase 14)

ESD and RLD card images for extermnally referenced
library subprograms; TXT and RLD card imoges for
generated literals and argument list table entries;
and TXT card images for DEFINE FILE statement
parameter lists

TXT cord images for object module instructions; and |
RLD card images for address constants
_______ Phoe2s) _ _ _ _ __
TXT and RLD card images for branch list tobles, base
value table, and end-of-object madule indicator if
Phase 30is entered from Phase 25

(Phase 30)

Table 1. Compiler Components and Their Major Functions

T 7
| Component and | |
| Symbolic Name | Ma jor Functions |
L 4 4
r T 1
| Phase 1 | Processes compiler options, and initiates first compilation. |
| initial entry | |
| (IEJFAAAQ)] |
; + - 1
Phase 1	Initiates next compilation in the case of a batch of compilations,
subsequent	restarts a compilation, or terminates execution of the compiler.
entries	
(IEJFAABO)	
t et o et 1	
Interface	Processes compiler I/O requests, patch requests, and print control
module	operations for all compilations, and end-of-phase/interlude re-
(IEJFAGAQ)	quests for SPACE compilations; and contains communication area,
	DCBs and DECBs for the compiler data sets, and two I/0 puffers that
	are used for the SYSIN and SYSPRINT data sets.
b $ -~ -- {	
Performance	Reduces compilation time; deklocks compiler input and blocks
module	compiler output if blocking is specified; manipulates text buffer
(IEJFAPAO)	chains for SYSUT1 and SYSUT2, processes end-of-phase requests for
	PRFRM compilations; and contains blocking table, BLDL table, and
	reset table.
b= $ommem- -4	
Phase 5	Obtains and allocates main storage for resident tables and internal
(IEJFCAAQ)	text buffers, allocates main storage to special 1I/0 buffers to be
	used by the block/deblock routine of the performance module,
	constructs text buffer chains for SYSUT1 and SYSUT2 if the PRFRM
	option is in effect, constructs SEGMAL and the patch table, and
	enters information into the blocking table and the BLDL table.
8 1	
T T 1	
Phase 7	Initializes the communication area and those portions of the dic-
(IEJFEAAOQ)	tionary and overflow table that are independent of the source
	module being compiled, prints heading, and, if necessary, deletes
	Phase 5 from main storage.
b + - 1	
Phase 8	Converts source modules written with embedded blanks and keywords
(IEJFFAAOQ)	used as variables, arrays, or external names into a format that is
	acceptable as input to Phases 10D and 10E.
% i e 1	
Phase 10D	Converts COMMON, EQUIVALENCE, FORMAT, DEFINE FILE, SUBROUTINE,
(IEJFGAAO)	FUNCTION, and specification statements into intermediate text; and
	creates dictionary and overflow table entries.
L 4 4	
T T a	
Phase 10E	Converts statement function definitions, executable statements, and
(IEJFJAAO0)	interspersed FORMAT statements into intermediate text; and creates
	dictionary and overflow table entries.
L + 1	
{ Interlude 10E	Closes all open data control blocks, and then opens only those for
(IEJFJGAOQ)	the data sets that are required by Phases 12 and 14.

oo o e 1

Phase 12 | Assigns relative address to variables and arrays in COMMON, varia- |
(IEJFLAAOQ) | bles and arrays not in COMMON, equated variables, variables in |

	subscript expressions, and constants; allocates storage for the
	branch 1list table for referenced statement numbers; and generates
	part of the object module.
- } i
| Phase 14 | Replaces pointers to dictionary entries with information obtained |
| (IEJFNAAO) | from the dictionary; processes intermediate text for FORMAT, READ, |
| | WRITE, and FIND statements, assigns a relative position in the |
| | branch 1list table for statement function expansions ana DO state- |
] | ments for each statement function encountered; generates part of |
| | the object module; and frees the main storage occupied by the |
| | dictionary if the SPACE option is in effect. |
L 4 J
(Continued)

18

Table 1. Compiler Components and Their Major Functions (Continued)

r T 1
| Component and | |
| Symbolic Name | Ma jor Functions

L 1 4
v T 1
Interlude 14	Closes all open data control blocks and then opens only those for
(IEJFNGAQ)	the data sets that are required by Phase 15, thereby providing
	additional main storage for Phase 15.
L i d	
L 4 T 1	
Phase 15	Transforms arithmetic expressions into approximate machine code,
(IEJFPAAO)	reorders intermediate text for DEFINE FILE statements, and assigns
	registers when required.
i + 4	
v T 1	
Interlude 15	Closes all open data control blocks and then opens only those re-
(IEJFPGAO)	quired by the compiler for the remainder of this compilation.
b 4 d	
L} T 1	
Phase 20	Optimizes subscript expressions, creates argument list table, and
(IEJFRAAOQ)	generates part of the object module. }
[N 1 i	
3 T 1	
Phase 25	Transforms intermediate text into machine-language instructions
(IEJFVAAOQ)	(part Jf the object module); and completes the assembly of the
	branch list table for referenced statement numbers, the branch list
	table for statement function expansions and DO statements, and the
	base value table.
b + -—= {	
Source symbol	Used by Phase 12 to contain the names of all variables and con-
module	stants used in the source module and their corresponding relative
(IEJFAXAOQ)	addresses.
p-=- ¥ 1	
Object listing	Used by Phase 25 in conjunction with the source symbol module to
module	generate the object listing module.
(IEJFVCAO)	
b } - i	
Phase 30	Generates error and warning messages if any from intermediate
(IEJFXAAO)	text, processes the END statement, and generates the final part of
	the object module.
L L d

Section 1: Introduction

SECTION 2: DISCUSSION OF COMPILER PHASES

Section 2 describes the logic and func-
tions of each phase of the compiler.

PHASE 1 (IEJFAAAQO/IEJFAABO)

Phase 1 is both the first and last phase
to be executed for each compilation. The
phase is initially entered from the calling
program via a supervisor-assisted 1linkage;
subsequent entries are made from either
Phase 5 if a PRFRM compilation is altered
to a SPACE compilation (restart condition),
or from Phase 30 -- the last processing
phase of the compiler. In addition, if a
permanent I/0 error occurs, Phase 1 is
entered from the phase that requested the
I/0 operation. If an 1I/O error has

occurred, Phase 1 returns control to the
calling program and the compilation is
terminated.

At the initial entry (IEJFAAAQ), Phase 1
initiates the first compilation and then
transfers control to Phase 5.

At subsequent entries (IEJFAABO), Phase
1 either initiates the next compilation if
other source modules are to be compiled, or
terminates the compilation (i.e., if no
more source modules are present, or if a
permanent I/0 error has occurred). If a
new compilation is initiated, Phase 1
transfers control to the next phase (Phase
5 for SPACE compilations, or Phase 7 for
PRFRM compilations). If the compilation is
terminated, Phase 1 returns control to the
calling program with the appropriate return
code.

Chart 10 illustrates the overall 1logic

and the relationship among the routines
used in Phase 1. Table 2, the routine
directory, 1lists the routines used in the

phase and their functions.

INITIAL ENTRY

At the initial entry, Phase 1 initiates
the first compilation. This entails:

Loading the interface module.
® Processing compiler options
DDNAMES .
s Loading the source symbol module if the
object listing option is in effect.

and new

20

e Loading the performance module if the
PRFRM option is in effect and if the
SIZE option is at least 18504.

e Opening required data control blocks.

¢ Loading Phase 5.

Loading the Interface Module

When Phase 1 receives control from the
calling program, it 1loads the interface
module (IEJFAGAO) into main storage via the
LOAD macro-instruction. The interface
module contains:

e The communication area (FCOMM).

e DCBs (data control blocks) and DECBs
(data event control blocks).

e Interface routines.

¢ Two I/0 buffers.

COMMUNICATION AREA: The communication area
contains the following type of information:

* User-specified options
(e.g., DECK).

and parameters

e Default values for compiler options.
The interface module is assembled, and
processed by the linkage editor during
system generation. This allows the
user to specify default values for
compiler options (refer to the publica-

tion IBM Systemv360 Operating System:
System Generation). These default
values will be assumed if the corres-

ponding values in the PARM field of the
EXEC statement are not included by the
user. (Refer to Appendix B for the
options for which default values may be
specified during the system generation
process.)

e Information required for communication
between the compiler and the operating
system, such as:

1. Branch instructions to
routines in the interface module.
(For PRFRM compilations, these
branch instructions are, in effect,
replaced by branch instructions to
routines in the performance
module.)

specific

2. A pointer to DCBs (data control

blocks) and the DECBs (data event
control blocks) needed for
input/output operations during the
compilation.

¢ Compilation informaticn, such as:
1. Type of progran/subprogram being
compiled (i.e., main program, FUNC-
TION subprogram, or SUBROUTINE
subprogram) .
2., Sizes of the internal text buffers.

3. Addresses of internal text buffers,

table indexes, and work areas. I1f
the PRFRM option is in effect, the
communication area contains the

address of the first text buffer in
each of the text buffer chains that
are constructed by Phase 5.

4. Indicators (e.g.,
errors encountered
compilation).

indicators of any
during the

¢ Object-time information, such as:
1. Size of COMMON to be used with the
object module, and of the tables
required for the object module exe-

cution.

2. The location counter used, through-

out the compilation, for the
assignment of object-time address-
es.

DCBS AND DECBS: The DCBs and DECBs for the
data sets used during the compilation are
assembled into the interface module in
skeletal form. (For a description of the
DCBs and DECBs refer to the publication IBM
System/360 Operating System: Introduction
to Control Program Logic, Program Logic
Manual.) Some fields of the DCBs are
filled in by the control program when the
data control blocks are opened (refer to
the publication IBM _System/360 Operating
System: Concepts and Facilities). However,
the DCB block size fields for data sets
SYSUT1 and SYSUT2 are overlayed with values
computed by the compiler. 1In addition, if
the DCB block sizes for the other data sets
are not specified in DD statements, stand-
ard default values are assumed. They are:

¢ 80 for SYSIN, SYSLIN, and SYSPUNCH.
e 121 for SYSPRINT.

INTERFACE ROUTINES: The interface module
contains four interface routines: an I1/0
routine, an end-of-phase routine, a print
control operations routine, and a patch

routine (refer to Chart 11).

The I/0 routine (SIORTN) processes I1I/0
requests of the compiler. For SPACE compi-
lations, the I/0 requests are initiated via
a linkage to this routine. (Refer to
Appendix C for a description of this 1lin-

Section 2:

kage to the interface module.) For PRFRM
compilations, the I/0 requests are initiat-

ed via a linkage to the PIORTN routine in
the performance module. The PIORTN, in
turn, 1links to the SIORTN routine in the

interface module. The SIORTN routine:

e Analyzes the linkage parameters passed
to it Dby either the component of the
compiler requesting I/0, or by other
interface routines. These parameters

indicate: (1) the type of request
(read, write, or check), (2) the
address of the I/0 buffer for the
operation, and (3) what data set is to

be used for the operation.

e Fulfills the request by
appropriate macro-instruction
WRITE, and/or CHECK).

issuing the
(READ,

The compile-time I/0 error recovery pro-
cedure is illustrated in Chart 11.

The end-of-phase routine (SNEXT) is used
to pass control from one component of the
compiler to the next for SPACE compila-
tions. The transferring of control between
compiler components is initiated wvia a
linkage to this routine. (Refer to Appen-
dix C for a description of this linkage to
the interface module.) The end-of-phase
routine:

¢ Analyzes the linkage parameters passed

to it by the component of the compiler
relinquishing control. These paramet-
ers indicate the name of the next

component to be executed and the dispo-
sition of various data sets.

e Logically repositions the data sets
indicated in the linkage parameters via
the CLOSE, type=T, macro-instruction.

¢ Transfers control to the next component
via the XCTL macro-instruction.

The print control operations (PRTCTRL)
routine allows the use of immediate-type
control operations for the SYSPRINT data
set. If the data set is being placed onto
an intermediate storage device before being
printed, the printer control codes remain
as part of the data set (thereby retaining
device independence).

The patch routine (PATCH) allows tem-
porary modification of the compiler
modules. (A module is modified for the
duration of a batch compilation.) Each

compiler module unconditionally branches to
the patch routine to check whether the
module being executed is to be modified.

(Refer to Appendix C for a description of
this linkage to the interface module.) If
it is, the patch routine overlays the

Discussion of Compiler Phases 21

instructions or data of the module to be
modified with patch information for that
module. This information is placed in the
patch table (a 100-byte portion of the
patch routine) by Phase 5. If there is no
patch information, control is immediately
returned to the module being executed.

I/0 BUFFERS: The two I/0 buffers are used

for the SYSIN and SYSPRINT data sets.
SYSIN uses the 1I/0 buffers during source

statement adjustment (if required), or
source statement scanning. The card images
of the source module to be compiled are
alternately read into one of the two buf-
fers. The double-buffer scheme allows for
overlapping the processing of a card image
in one buffer with the reading of the next
card image of the source module into the
other buffer.

SYSPRINT uses the I/0 buffers for: (1)
writing patch records and compiler informa-
tion messages, (2) 1listing the source
module, and (3) generating the storage map.

Processing Compiler Options and New DDNAMES

Options may be chosen by the user to
tailor the output of the compiler to his
specifications. This information is speci-
fied in the EXEC statement and 1is entered

into an area designated by the calling
program. The contents of this area are
obtained by Phase 1 via an address in
general register 1. They are then encoded

and entered in the communication area. For
a description of the options and their use,
refer to the publication IBM System/360
Operating System: FORTRAN Iv (E)
Programmer's Guide.

If the compiler is invoked via the LINK
or ATTACH macro-instruction, the user may
change the DDNAMES of the compiler data
sets. The substitute DDNAMES are obtained
by Phase 1 wvia an address in general
register 1.

Loading the Source Symbol Module

If the object listing facility of the
compiler has been enabled, Phase 1 checks
whether the object listing option (a §$ in
the PARM field of the EXEC statement) is
specified. (The object listing facility is
enabled by reassembling Phase 1 with the
branch instruction that disables the facil-
ity either removed or replaced with a no-op
instruction.) If the option is specified,
Phase 1: (1) sets the appropriate indicator
in the communication area, and (2) loads

22

the source symbol load module (SORSYM) into
main storage. SORSYM, a SYS1.LINKLIB load
module (IEJFAXAO), reserves an area in main
storage. The names of all variables and
constants used in the source module and
their corresponding relative addresses are
placed into this area by Phase 12. When
the area (3,200 bytes) is full, all subse-
quent variables and constants are omitted
from the object module listing.

If the object listing option is speci-
fied, but the object listing facility has
not been enabled, Phase 1 indicates an
invalid compiler option, by setting the
invalid option bit in the communication
area.

Loading the Performance Module

the PRFRM bit in the
communication area to determine if the
PRFRM option 1is in effect. If the PRFRM
option is specified, and if the SIZE option

Phase 1 examines

is at least 18504, Phase 1 1loads the
performance module (IEJFAPAQO) into main
storage. The performance module allows

more efficient I/0 operations (via fewer
OPENs, blocking, and chaining), and reduces
phase-to-phase transition processing there-
by decreasing compilation time. The per-
formance module is composed of two routines
and three tables.

PERFORMANCE MODULE_ _ROUTINES: The perfor-

mance module contains an I/C routine, and
an end-of-phase routine (refer to Charts 12
and 13).

The I/0 routine (PIORTN) is used to
deblock compiler input on SYSIN; and to
block compiler output on SYSLIN, SYSPRINT,
and SYSPUNCH, as required by the block
sizes specified for the above data sets.
In addition, if the ADJUST option is in
effect, the I/0 routine is used to block
the output of Phase 8 on the SYSUT2 data
set. The I/0 routine also manipulates the
text buffer chains for the SYSUT1 and
SYSUT2 data sets (refer to the Phase 5
section "Constructing Text Buffer Chains
for PRFRM Compilations").

I/0 requests for a PRFRM compilation are
initiated wvia a 1linkage to this routine.
(Refer to Appendix C for a description of
this 1linkage to the performance module.)
The I/O routine: .

e Analyzes the linkage parameters passed
to it by the «calling phase. These
parameters indicate: (1) the type of
request (read, write, check, or flush),

(2) the address of the area into which,
or from which the logical record is to
be moved, and (3) the data set to be
used for the operation. (a flush
request forces the contents of the
current output buffer to be written
out.)

e Deblocks compiler input from SYSIN if a
blocking factor greater than 1 is spec-
ified. The PIORTN routine reads (via a
linkage to the SIORTN routine in the
interface module) a block from the
SYSIN data set into an I/O buffer only
when an entire block has been deblocked
and moved into the area requested by
the calling phase. This reduces the
number of READ macro-instructions
issued for a compilation and thus
decreases compilation time.

s Blocks compiler output on the output
data sets if their corresponding block-
ing factors are greater than 1. (Each
blocking factor is determined from the
BLKSIZE (block size) field in the DCB
parameter of the associated DD state-
ment.) In general, the PIORTN writes
(via a linkage to the SIORTN routine in
the interface module) a block onto an
output data set only when the 1I/0
buffer containing that block has been
filled. (However, when a flush opera-
tion 1is requested, the PIORTN will
force a truncated buffer to be written
if the buffer is partially filled.)
This reduces the number of WRITE macro-
instructions issued for a compilation
and thus decreases compilation time.

The end-of-phase routine (PNEXT) is used
to pass control from one component of the
compiler to the next for PRFRM
compilations. The transferring of control
between compiler components is initiated
via a linkage to this routine. (Refer to
Appendix C for a description of this lin-
kage to the performance module.) The end-
of-phase routine:

¢ Analyzes the linkage parameters passed
to it by the component of the compiler
relinquishing control. These
parameters indicate the name of the
next component to be executed, and the
disposition of the various data sets.

¢ Logically repositions the data sets
indicated in the linkage parameters via
the CLOSE, type=T, macro-instruction.
Various pointers and indicators in the
communication area, the performance
module, and the blocking table are also
reset at this time for the repositioned
data sets (refer to the Phase 5 section
"Constructing Text Buffer Chains for
PRFRM Compilations").

Section 2:

e Transfers control to the next component
via the XCTL macro-instruction. (If
the next component is an interlude, the
performance module bypasses the execu-
tion of the interlude and transfers
control to the next phase of the com-
piler.)

PERFORMANCE MODULE TABLES: The performance
module contains three tables: the blocking
table, the BLDL table, and the reset table.

Phase 5 constructs a
entry for each of the data control blocks
that are opened by Phase 1. The blocking
table provides the PIORTN routine with the
information necessary to deblock compiler
input, and to block compiler output.
(Refer to Appendix H for the format of the
blocking table.)

blocking table

constructs the BILDL table via
the BLDL macro-instruction. The BLDL table
provides the PNEXT routine with the infor-
mation necessary to transfer control from
one component of the compiler to the next
with more efficiency than is possible on a
SPACE run. (Refer to Appendix H for the
format of the BLDL table.)

Phase 5

The reset table (RESETABL) is used by
the PNEXT routine to determine which, if
any, of the record counts for the chained-
buffer data sets (SYSUT1 and S¥SUT2) must
be reset. The record count of the data set
that 1is to be used for output by the next
phase is always reset. Resetting the
record count 1is necessary in order to
determine whether actual READs are required
for that data set when it is used as input
by a subsequent phase. (Refer to Appendix
H for a description of the format and use
of the reset table.)

Opening Required Data Control Blocks

The data control blocks that are opened
by Phase 1 depends upon the options speci-
fied by the user.

If the SPACE option is in effect, or if
the SIZE option is less than 18504, Phase 1
opens, via the OPEN macro-instruction, only
the data control blocks for the data sets
used by Phases 5, 7, 10D, and 10E (SYSIN,
SYSUT1l, and SYSPRINT). (In addition, if
the ADJUST option is in effect, Phase 1
opens the data control block for SYSUT2.
SYSUT2 is used to contain the output of
Phase 8.) The main storage that is saved

Discussion of Compiler Phases 23

at this time by not opening the data
control Dblocks for SYSLIN SYSPUNCH, and
SYSUT2 (if the ADJUST option is not in
effect) is necessary for the execution of
Phases 10D and 10E. (The SYSLIN and SYS-
PUNCH data sets are not needed by the
compiler until the execution of Phase 12.
Therefore, their corresponding data control
blocks are not opened until the execution
of Interlude 10E.)

If the PRFRM option is in effect, and if
the SIZE option is at least 18504, Phase 1
opens (via the OPEN macro-instruction) the
data control blocks for all the data sets
required by the compiler. Because all the
required data control blocks are opened
initially, the compiler can bypass the
execution of Interludes 10E, 14, and 15;
and can avoid repeated closing and re-
opening of data control blocks. Bypassing
the execution of the interludes reduces
phase-to-phase transition time and thus
decreases compilation time.

The manipulation of data control blocks
by subsequent components of the compiler
for SPACE compilations as well as for PRFRM
compilations is illustrated in Appendix D.

Loading Phase 5

Phase 5 (IEJFCAAQ) is loaded into main
storage by Phase 1, using the LOAD macro-
instruction. This is not the normal
condition; normally, the XCTL macro-
instruction in the end-of-phase routine is
used to call a phase into main storage.

Phase 1 1loads Phase 5 into the highest
area of available main storage, relative to
location zero. (The XCTL macro-instruction
would load Phase 5 into the lowest area of
available main storage.) This special
loading by Phase 1 permits Phase 5 to set

up the resident tables in the 1lowest area
of available main storage. The physical
locations occupied by the various compiler

components and resident tables are illus-
trated in Appendix A.

SUBSEQUENT ENTRIES
At subsequent entries, Phase 1 either:
e Initiates a new compilation, or

e Terminates the compilation.

24

Initiating a New Compilation

If a new compilation is to be initiated,
Phase 1 first determines if a PRFRM or a
SPACE compilation is to be performed. If a
PRFRM compilation is to be performed, Phase
1 immediately transfers control to Phase 7.

If a SPACE compilation is to be per-
formed, Phase 1 determines if a restart
condition exists. That is, 1if a PRFRM

compilation was requested and Phase 5 det-
ermined that the required main storage for
the PRFRM compilation was not available.
Phase 5 then alters the PRFRM compilation
to a SPACE compilation and returns control
to Phase 1.

If a restart condition exists, Phase 1:

(1) deletes (via the DELETE
macro-instruction) the performance module
and Phase 5 from main storage, (2) closes

(via the CLOSE macro-instruction) the data
control blocks for all required compiler
data sets (opened by Phase 1 for the PRFRM
option), and (3) reopens (via the OPEN
macro-instruction) only the data control
blocks for the data sets required for
Phases 7, 8 (if the ADJUST option is in
effect), 10D, and 10E. Phase 1 then loads
(via the LOAD macro-instruction) Phase 5
into main storage and transfers control to
Phase 5.

If a restart condition does not exist
and if the SPACE option is in effect, Phase
1 first frees (via the FREEMAIN
macro-instruction) the main storage that
was previously allocated to the compiler
during execution of Phase 5 for the inter-
nal text buffers and the overflow table.
Subsequent Phase 1 processing except for
the deletion of the performance module and
Phase 5 is the same as that described for
the restart condition.

Terminating the Compilation

If the last source module on the SYSIN
data set has been compiled, Phase 1 first
requests a flush operation for the SYSLIN,
SYSPUNCH, and SYSPRINT data sets. A flush
request forces the current output buffer
being used for a blocked data set to be
written. This insures that all compiler
output for blocked data sets 1is written.
In the case of an unblocked data set, the
flush request for that data set is ignored.
Phase 1 next closes (via the CLOSE
macro-instruction) the data control blocks
for all the data sets used by the compiler.
Phase 1 then: (1) frees (via the FREEMAIN
macro-instruction) all the main storage
that was allccated to the compiler during

execution of Phase 5, and (2) deletes (via
the DELETE macro-instruction) the interface
module, the performance module for a PRFRM
compilation, and the source symbol module
if the object listing option is in effect.
Control is then returned to the calling
program with the proper return code.

If internal errors (e.g., permanent I/0
errors) occur at any time, the current
compilation is immediately terminated by
calling Phase 1. Phase 1 then performs the
above processing and returns control to the
calling program with a return code of 16.

PHASE 5 (IEJFCAAQ)

Phase 5, the second phase of the compil-
er, is entered after the completion of
Phase 1. It 1is executed for each source
module in a batch SPACE compilation but
only for the first source module in a batch
PRFRM compilation. The functions of the
phase are:

e Obtaining main storage for the compil-
er.

e Allocating main storage to the compil-
er.

s Constructing SYSUT1 and SYSUT2 text
buffer chains if the PRFRM option is in
effect.

e Constructing some of the resident
tables that are used by the compiler.

Chart 20 illustrates the overall logic
and the relationship among the routines of
Phase 5. Table 3, the routine directory,
lists the routines used in the phase and
their functions.

At the conclusion of Phase 5 processing,
control is passed either to Phase 1 (to
restart or terminate the compilation), or
to Phase 7.

OBTAINING MAIN STORAGE

The amount of main storage required by
the compiler depends on whether a SPACE or
a PRFRM compilation is ©being performed.

For a SPACE compilation, a minimum of
15,360 bytes is required. For a PRFRM
compilation, a minimum of approximately
19,500 bytes is required. (The exact

amount depends on the device configuration
of the user. That is, different I/0 devi-
ces require different access method rou-
tines and different control blocks.)

The process of obtaining main storage is
actually started in Phase 1. Phase 1 has
already obtained main storage for:

e The interface module.

¢ The performance niodule if loaded.

e BSAM routines.

® Phase 5.

Phase 5, upon receiving controi from
Phase 1, calculates the total amount of
main storage obtained by Phase 1, and

subtracts this amount from the value of the
SIZE option. (If the SIZE option was not
specified by the user, the minimum amount
required for a SPACE compilation is assumed

as a default value for the SIZE option.)
The result of this calculation is the
amount of main storage that Phase 5
attempts to obtain via the GETMAIN macro-

instruction. If more than this amount is
obtained, Phase 5 frees the excess via the
FREEMAIN macro-instruction.

If less than the minimum amount required
for a SPACE compilation is obtained, a
GETMAIN (mode=U) macro~-instruction is
issued to obtain the minimum amount.

If less than the minimum amount required
for a PRFRM compilation is obtained, the
compilation 1is either terminated if block-
ing was requested, or restarted (altered to
a SPACE compilation) if Dblocking was not
requested.

ALLOCATING MAIN STORAGE

The procedure used by Phase 5 for allo-
cating main storage depends on whether a
SPACE or a PRFRM compilation has been
initiated. Appendix A illustrates the main
storage allocated to the compiler for both
SPACE and PRFRM compilations.

For SPACE Compilations

For a SPACE compilation, the main stor-
age obtained by Phase 5 is allocated, via
the storage allocation table, among a tran-
sient work area required by the control
program (952 bytes for SPACE runs; 1800
bytes for PRFRM rumns), the dictionary, the
overflow table, four internal text buffers,
and padding for Phase 10E. The storage
allocation table (refer to Appendix 1)
indicates the amount of main stcrage to be
allocated to the internal text buffers, and
the dictionary and overflow table.

The main storage allocated to the dic-
tionary and overflow table, except for the
reserved word portion of the dicticnary,
may be segmented. That is, the dictionary
and overflow table may occupy more than one
segment of main storage. The location of

the segments allocated to the dictionary
and overflow table are recorded
Section 2: Discussiocn of Compiler Phases 25

(sequentially by address) in a segment
address 1list (SEGMAL). SEGMAL resides at
the beginning of the first segment. The
FOVFLNDX field in the communication area is
initialized to point to the beginning loca-
tion of the overflow index, which is also
the location immediately following the last

entry in SEGMAL. (Phase 5 initializes
FOVFLNDX although the actual loading into
main storage of the overflow index occurs

in Phase 7.)

The dictionary portions reside in the
highest storage segment(s) relative to
location 0 and the overflow table portions
reside in the 1lowest storage segment(s).
This ensures that the dictionary resides
"above" the overflow table. The dictionary
must reside above the overflow table
because the storage allocated to the dic-
tionary is freed (via the FREEMAIN
macro-instruction) for SPACE compilations
at the conclusion of Phase 14 processing.
This additional main storage 1is required
for the execution of subsequent phases,
primarily for Phase 15 (refer to Appendix
A). (For PRFRM compilations, the main
storage allocated to the dictionary is not
freed until compilation is terminated by
Phase 1.)

The main storage allocated to the inter-
nal text buffers may be segmented. Howev-
er, the main storage for each buffer itself
must be contiguous. The location of the
segment assigned to each buffer is indicat-
ed in the communication area.

For PRFRM Compilations

For a PRFRM compilation, the main stor-
age allocation algorithm must determine if
blocked I/0 is specified by the user.

BLOCKED I/0: If any blocked I/0 is speci-
fied, portions of the obtained main storage
must be allocated to special I/0 buffers
required for blocking and deblocking.
Phase 5 allocates main storage for two I/0
buffers for each data set for which block-
ing is requested. The size of each buffer
is determined by the BLKSIZE field in the
DCB parameter of the associated DD state-
ment. If the BLKSIZE fields are not speci-
fied, the compiler assumes the following
default values for the compiler data sets:

SYSPRINT -- 121.

SYSIN, SYSLIN, and SYSPUNCH -- 80.

e The block sizes for SYSUT1 and SYSUT2
are determined dynamically by the com-
piler.

After allocating main storage for the
special 1I/0 buffers, Phase 5 determines if
sufficient storage remains for the tran-

26

sient work area, the dictionary and over-
flow table, the four internal text buffers,
and padding for Phase 15. If there is
sufficient storage, subsequent main storage
allocation for a PRFRM compilation with
blocked I/0 is the same as that described

for a SPACE compilation except for the
construction of internal text puffer
chains.

If the remaining main storage is not

sufficient, the compilation is terminated
and control is transferred to Phase 1.
Phase 1, 1in turn, passes control to the
calling program to terminate the compila-

tion.

UNBLOCKED I/0: If all I/0 is unblocked,
Phase 5 determines if the amount o©f main
storage obtained is sufficient for the
transient work area, the dictionary and
overflow table, and the four internal text
buffers. If there is sufficient storage,
subsequent main storage allocation for a
PRFRYM compilation with unblocked I/0 is the
same as that described for a SPACE compila-
tion except for the construction of inter-
nal text buffer chains.

If the amount of main storage obtained
is not sufficient, Phase 5 first frees (via
the FREEMAIN macro-instruction) all the
main storage it obtained. Phase 5 then
alters the PRFRM compilation to a SPACE
compilation (restart condition) and trans-
fers control to Phase 1. Phase 1 then
initializes the compiler for a SPACE compi-
lation.

CONSTRUCTING TEXT BUFFER CHAINS FOR PRFRM
COMPILATIONS

After main storage has been allocated to
the transient work area, the dictionary and
the overflow table, the four internal text
buffers, and any required I/O buffers for
blocking, Phase 5 uses as much of the
remaining main storage as possible (up to
the value of the SIZE option) by construct-
ing text buffer chains.

The text buffer chains are used when
reading from or writing onto the intermedi-
ate text work data sets. (SYSUT1 ana
SYSUT2). Two text buffer chains are con-
structed for both the SYSUT1 and SYSUT2
data sets. One of the four internal text
buffers, already allocated by Phase 5,
(referred to as the I/0 text buffers) is
then chained in as the last buffer in each
of the text buffer chains. Only the 1I/O
text buffers are ever read into or written
from. The intermediate text in the remain-
ing buffers (referred to as non-1I/0 text
buffers) is retained in main storage.

The maximum number of buffers in each
chain is a function of the number of
segments into which the remaining main
storage is divided. The minimum size of
each I/O buffer 1is 96 bytes; the maximum
size is 1,696 bytes. The minimum size of
each non-I/0 buffer is 16 bytes; the maxi-
mum size is 32,760 bytes.

Each buffer in a chain (including the
170 text buffer) is preceded by an eight-

byte control area. Each control area
contains: (1) a chain address field (four
bytes), and (2) a 1length field (four
bytes).

Figure 3 illustrates a text buffer chain
that contains N buffers.

Because only the last buffer in each of
the two chains associated with a particular
data set is used as an I/0 buffer, a
portion of the SYSUT1 or SYSUT2 data sets

resides in main storage. For example,
consider the case in which SYSUT1 is used
to contain the intermediate text input to a
phase and SYSUT2 is wused to contain the
intermediate text output of a phase. Since
part of the SYSUT1 data set resides in main
storage (i.e., buffers 1 through N-1 in the
two chains constructed for SYSUT1, where
each chain contains N buffers), the phase
being executed requires fewer read opera-
tions.

In addition, a portion of the output
data set (SYSUT2) will reside in main
storage (i.e., buffers 1 through N-1 in the
two chains construc¢cted for SYSUT2, where
each chain contains N buffers). Therefore,
the phase being executed requires fewer
write operations. As a result of retaining
portions of SYSUT1 and SYSUT2 in main
storage, overall compiler efficiency is
increased because of a decrease in I/0
activity.

FTXTBF XX

a(BFR 2) -8

L(BFR 1)

BFR 1

4 bytes

4 bytes

16-32,760 bytes

a(BFR 3) -8

L(BFR 2)

BFR 2

4 bytes 4 bytes

[

16-32,760 bytes

a(BFR N) -8

L(BFR N=1)

BFR N=1 >

4 bytes 4 bytes

16-32,760 bytes

a(BFR N) -8

—

L(BFR N)

BFR N >

4 bytes 4 bytes

96~1,696 bytes

———— ——— ——— ———— — —— — —— ——— —— — — —— —— v—— — —]

FTXTBFXX is one of the four
in each of the four chains.
buffer chain for SYSUT1;

Buffers
buffer, points to itself.

[e e e et e . e b e O Y . o o Ui ot o, S s G S— — T — — —— —— —— —— —— c—— — -y

1 through N-1 point to the next buffer in the chain.

L(BFR 1), L(BFR 2) ,..., and L(BFR N) contain the lengths of the buffers in the chain.

A

communication area fields that point to the initial buffer)
That is, FTXTBFAl points to the first buffer in the first|
FTXTBFA2 points to the first buffer in the second buffer|
chain for SYSUT1; FTXTBFBl1l points to the first buffer in the first Dbuffer
SYSUT2; and FTXTBFB2 points to the first buffer in the second buffer chain for SYSUT2.|

chain for|

Buffer N, the last

bt o e S s

Figure 3. Text Buffer Chain Format

Section 2:

Discussion of Compiler Phases 27

The buffers in each of the two chains
constructed for a particular data set are
used alternately. That is, buffer 1 in
chain 1, buffer 1 in chain 2, buffer 2 in
chain 1, buffer 2 in chain 2, etc. For

example, consider the case in which SYSUT1
is being used as the output data set.
Assume that each of the two chains con-

structed for SYSUT1 contain three buffers.
Figure 4 shows the order in which the
buffers are used. (The numbers to the
right of each buffer indicate the order.)

FTXTBFA1 is initialized to point to the
first buffer in chain 1; FTXTBFA2 is ini-
tialized to point to the first buffer in
chain 2.

The contents of the first two buffers in
each chain remain in main storage. That
is, when the phase in control 1links to the
PIORTN routine for an output operation
involving those buffers, the PIORTN routine
recognizes that neither of these buffers is
the last buffer in the respective chain.
The PIORTN routine does not initiate a
write from these buffers; it inserts the
address of the next buffer (in the current
chain) into the FTXTBFAl field and its size
into the FTXBFSZA field in the communi-

cation area, and then returns control to
the phase.
The phase then switches the contents of

the FTXTBFAl1 and FTXTBFA2 fields. This
enables the alternate filling of the buf-
fers in both chains because the phase

always requests a write from the address of
the buffer in the FTXTBFAl field.

the 1last buffer in chain 2, the PIORTN
routine actually initiates a write opera-
tion. Because the I/0 buffers are also
used alternately, all write operations from
this point on are overlapped. (Similarly,
all read operations are overlapped when the
first N-1 buffers in both chains have been
used.) After execution of the phase in
question is completed, control is passed to
the PNEXT routine in the performance
module. The PNEXT routine reinitializes:
(1) the contents of the FTXTBFAl, FTXTBFAZ2,
FTXTBFB1, and FTXTBFB2 fields in the coni-
munication area so that they point to the
first buffer in each <chain, and (2) the
PINITBFS field in the performance module.
(The FINITBFS field in the communication
area contains these pointers.) In addi-
tion, the last two l-byte fields are reini-
tialized in the blocking table entry for
each data set that is TCLOSEd by the PNEXT
routine.

Note 1: A count is kept of the number of
records actually written on the intermedi-
ate text output data set (SYSUT1 or SYSUT2)
during the execution of each phase. 1f
this count is not greater than two, the
next phase that uses the output data set as
input does not read any records because all

the intermediate text input 1is in main
storage.

Note 2: For a PRFRM and ADJUST compila-
tion, the output from Phase 8 is automat-
ically blocked on SYSUT2. The I/0 text
buffers (the last buffer in each of the

buffer chains constructed for SYSUT2) are
When the phase requests a write either used as the special blocking buffers for
from the last buffer in chain 1, or from SYSUT2. The blocking factor for SYSUT2
T 1
| |
| |
] |
| |
| CHAIN 1 CHAIN 2 [
| |
FTXTBFAl FTXTBFA2
| L . |
| - BFR 1 1 - BFR 1 2 |
L R |
: - BFR 2 3 - BFR 2 4 |
| [|
| I
I - BFR 3 (I/0 Buffer)| 5, 7, etc. ol BFR 3 (I/0 Buffer)| 6, 8, etc. ‘I
|
| |
|
I |
| |
| |
L J

Figure 4. Text Buffer Chain Use

28

(computed by Phase 5) is the largest inte-
gral multiple of 80 based on the size of
the I/0 text buffers. Phase 5 inserts the
blocking factor and the addresses of the

buffers into the performance module block-
ing table entry for SYSUT2.
CONSTRUCTING RESIDENT TABLES

The following resident tables of the

compiler (described in Appendix H) are
constructed by Phase 5:

e The segment address list (SEGMAL).
¢ The patch table.

¢ The blocking table and the BLDL table
(resident only for PRFRM compilations).

SEGMAL is constructed as
segments are allocated to the dictionary
and the overflow table. The patch table, a
portion of the interface module, is con-
structed only if the patch facility has
been enabled and if patch records precede
the source statements of the source
module(s) being compiled. The blocking
table and the BLDL table, portions of the
performance module, are constructed only
for PRFRM compilations.

main storage

SEGMAL

SEGMAL contains the starting and ending
addresses of each main storage segment
allocated to the dictionary and the over-
flow table. The starting address and the
length of each segment 1is obtained as a
result of the GETMAIN macro-instruction.
Phase 5 then computes the ending address of
each segment, and enters both the starting
and ending address for each segment into
SEGMAL. This sequence of addresses consti-
tutes SEGMAL.

Patch Table

If the patch facility of the compiler
has been enabled, Phase 5 determines if the
first record read from SYSIN is a patch
record. (The patch facility is enabled by
reassembling Phase 5 with the branch
instruction that disables the patch facili-
ty either removed or replaced with a no-op
instruction.) If the first record is a
patch record, it is first listed on
SYSPRINT and then posted in the patch table

Section 2:

(100 bytes) in the interface module. Post-
ing consists of: (1) converting the con-
tents of a patch record into a format that
is usable to the patch routine, and (2)
moving the converted patch record to the
patch table. When the patch table is full,
any further patches are ignored and are not
placed on the SYSPRINT data set.

Blocking Table and BLDL Table

Phase 5 constructs the blocking table
and the BLDL table only for PRFRM compila-
tions. The performance module contains the
main storage required for these tables.

Phase 5 constructs a blocking table
entry for each of the data control blocks
that were opened by Phase 1. Phase 5
places information into the blocking table
that is required for deblocking compiler
input and blocking compiler output. This
information includes such things as: logi-
cal record 1length, blocking factor, poin-
ters to the special buffers allocated by
Phase 5, etc.

Phase 5 constructs the BLDL table via
the BLDL macro-instruction. (For a des-
cription of the BLDL macro-instruction,
refer to the publication IBM Systen/360
Operating System: Data Management.) The
BLDL table contains the information neces-
sary to transfer control, more efficiently
than for a SPACE compilation, from one
component of the compiler to the next. The
construction of the BLDL table reduces
phase-to-phase transition time and thereby
decreases compilation time.

PHASE 7 (IEJFEAAQ)

Phase 7 1is entered either after the
completion of Phase 1 for PRFRM compila-
tions other than the first compilation in a
batch compilation, or after the completion
of Phase 5 for all other compilations. The
functions of Phase 7 are:

e Initializing the and the
overflow table.

dictionary

e Initializing the communication area.
* Deleting Phase 5 if loaded.
In addition, Phase 7 prints the heading for

each compilation on the SYSPRINT data set.

Discussion of Compiler Phases 29

At the conclusion of Phase 7 processing,
control is passed to Phase 8 if the ADJUST
option is specified, or to Phase 10D if the
NOADJUST option is specified.

Chart 30 illustrates the overall logic
of Phase 7.

INITIALIZING THE OVERFLOW TABLE AND THE
DICTIONARY

Phase 7 constructs only those portions
of the dictionary and the overflow table
that are independent of the source module
being compiled. In the dictionary, the
dictionary index and the reserved word
portion are constructed. In the overflow
table, the overflow table index 1is con-
structed. Refer to Appendix H for a dis-
cussion of the dictionary and the overflow
table.

The index for the dictionary and the
index for the overflow table are used by
the compiler to enter information into and
obtain information from the respective
table. The reserved word portion of the
dictionary contains all the reserved words
of the FORTRAN IV (E) 1language. Both
indexes and the reserved word portion of
the dictionary are assembled as a part of
the Phase 7 load module.

Overflow Table Index

Phase 7 obtains the starting location of

overflow table index from the FOVFLNDX
field in the communication area. The over-
flow table index is then moved from the
Phase 7 load module into the appropriate
location in main storage.

the

Dictionary Index and Reserved Word Portion

Phase 7 examines SEGMAL and determines
the main storage locations into which the
dictionary index and the reserved word
portion of the dictionary are to be placed.
The dictionary index 1is placed into the
highest portion of the last segment allo-
cated to the dictionary. The reserved word
portion is placed immediately below the
start of the dictionary index.

Figure 5 shows the relative main storage
locations occupied by the dictionary index,
the reserved word portion of the dictio-

nary, the dictionary itself, the overflow
table, the overflow table index, and
SEGMAL.

30

U 1
Upper | Dictionary index |
Storage | |
i N |
L} . T 1
| Reserved word portion | |
| of dictionary | |
L]
F]
| Dictionary |
| | I
| ' |
k ' 1
| !
l !
[} 1
| ¢ |
I | [
| ! |
| Overflow Table |
L 4
r) h
Lower | SEGMAL | Overflow table index |
Storage | | |
L R J
Figure 5. Relative Main Storage Locations
Occupied by Dictionary and Over-
flow Table Elements, and SEGMAL
Note: The dictionary is built from upper
storage to 1lower storage; the overflow
table 1is built from lower storage to upper
storage. If the dictionary and overflow
table overlap, a message is issued; no new
entries are made; and compilation contin-
ues.

INITIALIZING THE COMMUNICATION AREA

While Phase 7 is initializing the dic-
tionary and overflow table, various fields
in the communication area are filled in.
The fields are:

® FPOVFLNXT
e FOVFLBLK
¢ FDICTNDX
e FDICTNXT
e FDICTBLK

FOVFLNXT is initialized to contain the

starting address of the overflow table.

FOVFLBLK is initialized to contain a
pointer to the location within SEGMAL that
contains the ending address of the main
storage segment currently being used for
the overflow table. (This address is used
to determine the end of the current over-
flow table segment.)

FDICTNDX is initialized to contain the
starting address of the dictionary index.

FDICTNXT is used to contain the starting
address of the dictionary (that is, the
reserved word portion of the dictionary).

FDICTBLK is initialized to contain a
pointer to the location within SEGMAL that
contains the starting address of the main
storage segment currently being used for
the dictionary. (Since the dictionary is
built from upper storage to lower storage,
the starting address of each main storage
segment used for the dictionary is used to
determine the end of the current segment.)

DELETING PHASE 5 IF LOADED

Before Phase 7 transfers control to the
next phase to be executed, it first writes
the heading line on the SYSPRINT data set
and then determines whether Phase 5 was
loaded into main storage by Phase 1. Phase
1 loads Phase 5 into main storage if: (1) a
SPACE compilation is being performed, or
(2) the first source module in a batch
PRFRM compilation is being compiled. If
Phase 5 is in main storage, Phase 7 deletes
Phase 5 from storage (via the DELETE
macro-instruction), and then transfers con-
trol to the next phase (Phase 8 or Phase
i10D).

PHASE 8 (IEJFFAAQ)

Phase 8 is only loaded into main storage
and executed if the ADJUST option is in
effect. Phase 8 is entered after the
completion of Phase 7 processing. The
functions of the phase are:

¢ Eliminating embedded blanks in FORTRAN

statements.

e Adding a special character to all FOR-
TRAN keywords in a source module that
are used as variables, arrays, or
external names.

e Inserting meaningful blanks between
successive words in FORTRAN statements.

Phase 8 converts source statements writ-
ten in the FORTRAN IV (E) language into a
format that is acceptable to Phases 10D and
10E. Phases 10D and 10E require that: (1)
keywords be reserved for compiler use, (2)
none of the names used in the source module
contain embedded blanks, and (3) successive
names within any statement be separated by
blanks.

In addition Phase 8 prepares a source
module 1listing if the SOURCE option is
specified by the user.

Upon completion of Phase 8
control is passed to Phase 10D.

processing,

Figure 6 illustrates the data flow with-
in Phase 8.

Chart 40 illustrates the overall logic
and the relationship among the routines of
Phase 8. Table 4, the routine directory,
lists the routines used in the phase and
their functions.

Note: All input and output operations are
double buffered. This increases overall
Phase 8 efficiency by overlapping normal

processing with I/0 operations. In addi-
tion, for a PRFRM and ADJUST compilation,
the output from Phase 8 1is automatically
blocked on SYSUT2. The blocking factor is
determined internally by Phase 5 and is
inserted into the DCB skeleton for SYSUT2.

Adjusted
FORTRAN
Source
Module

Phase 8

------------- 1 r
| FORTRAN | |
SYSIN | Source | ol
| Module | |
| I |
L. . | L
Figure 6. Phase 8 Data Flow

Section 2:

1
Listing of |SYSPRINT
Nonadjusted |(if SOURCE
Source |option is
Module |in effect)
J

P._.___-l/ ____-1
|
I
|
|
i
i
|
I
I
i
|
|
L

Discussion of Compiler Phases 31

ELIMINATING EMBEDDED BLANKS

Each source statement consists of one or
more card images. To eliminate the embed-
ded blanks in those statements, each card
image is first read into one of the two I/0
buffers in the interface module. The card
image is then moved to a primary work area
where it is scanned for names and delimi-
ters via the translate and test (TRT)
instruction. (If the SOURCE option is
specified by the user, each card image is
written from the input buffer onto the
SYSPRINT data set after that card image has
been moved to the primary work area.)

If a statement number defines the state-
ment in question, it 1is packed and then
moved from the primary work area to the
current output buffer. The portion of the
card image up to and including the delimi-
ter that terminates the execution of the
TRT instruction is packed (i.e., blanks are
eliminated) and is then moved to an inter-
mediate work area. The process of packing
successive segments of each card image is
repeated for all the card images on the
SYSIN data set for the source module cur-
rently being compiled. When the END state-
ment is encountered, Phase 8 writes on the
SYSUT2 data set, either the first statement
of the next subprogram to be compiled, or

an end-of-file (EOF) if no more input is
present.
Note: A special switch is set if the

statement in question is a FORMAT statement
so that any blanks in the H and quote
fields are not eliminated.

following
Phase

For example, consider the
statement as it appears as input to
8.

1 FORMAT((1H,I 10)

The output from Phase 8 for this state-
ment is:

1 FORMAT(1H ,I10)

The process of adding a special charac-
ter to all keywords that are used as
variables occurs at the same time that
blanks are being eliminated.

ADDING SPECIAL CHARACTERS

After each packed segment of a card
image is moved to the intermediate work
area, Phase 8 checks to see if that segment
contains a keyword. A keyword may be a
word that begins any permissible FORTRAN
(IV) E source statement (e.g., READ) other

32

than an arithmetic statement or a statement
function. A keyword may also be contained
in an arithmetic statement or an arithmetic
expression. (For example, in the statement
A=FLOAT(1), FLOAT is a keyword.)

Phase 8 assumes that all FORTRAN state-
ments are arithmetic statements until det-
ermined otherwise. Therefore, whenever a
FORTRAN keyword is encountered, a special
unprintable character is added to it to
indicate to Phases 10D and 10E that the
keyword is possibly being used as a varia-
ble, array, or external name. This is done
by inserting the special character between
the 1last character of the keyword and the
next delimiter in the packed segment.

Further examination of the statement
indicates whether the keyword is being used
as a variable, array or external name, or
as a normal keyword. If the keywcrd is not
being used as a variable, array, or exter-
nal name, the special character is removea
so that Phase 10D or Phase 10E recognizes
the normal use as a keyword. The special
characters are removed prior to moving the
statement to the current output buffer.

INSERTING MEANINGFUL BLANKS

When an entire card image has been
packed and placed into the intermediate
work area, it is prepared for output.

Phases 10D and 10E do not allow blanks to
be omitted between successive words of a
statement. Phase 8, prior to writing out
the packed card image inserts a blank
between any such words in a source state-
ment.

For example, consider the following
statement after it has been packed by Phase
8:

DIMENSIONABC(10)

Prior to moving the statement to the
current output buffer, a blank is inserted
so that the statement is written out as:

DIMENSION ABC(10)

PHASE 10D (IEJFGAAQ)

Phase 10D is entered either after the
completion of Phase 7 if the NOADJUST
option is 1in effect, or after the comple-
tion of Phase 8 if the ADJUST option is in
effect. Phase 10D processes the declara-
tive statements of the source module, which
are COMMON, DIMENSION, EQUIVALENCE,

INTEGER, REAL, DOUBLE PRECISION, EXTERNAL,
FORMAT, DEFINE FILE, and SUBROUTINE or
FUNCTION (if a subprogram is being
compiled).

If the NOADJUST option is specified, the
input to Phase 10D resides on the SYSIN
data set. If the ADJUST option is speci-
fied, the input to Phase 10D resides on the
SYSUT2 data set.

Declarative statements, other than the
FORMAT statement, must precede the state-
ment function definitions and the execut-
able statements. The executable statements
are all FORTRAN IV (E) statements other
than those listed above and statement func-
tion definitions.

In processing the declarative state-
ments, Phase 10D performs the following
functions:

e Prepares intermediate text.

e Constructs dictionary and
table entries.

¢ Prepares the first part of the source
statement listing if the SOURCE and
NOADJUST options are in effect.

overflow

Phase 10D and Phase 10E (the next phase
to be executed) convert each FORTRAN source
statement into usable input to subsequent

phases of the compiler. Phase 10D converts
the declarative statements; Phase 10E con-
verts the statement function definitions
and the executable statements. The result
of this conversion is intermediate text (an
internal representation of the source
statements), and the dictionary and over-
flow table that contain detailed informa-
tion about specific portions of the state-
ments.

The information in the dictionary and
overflow table supplements the intermediate
text in the generation of code by subse-
quent phases. This information is asso-
ciated with the intermediate text entries
via pointers that reside in the text
entries.

When a statement function definition or
an executable statement is encountered in
the input stream, control is passed to
Phase 10E.

Figure 7 illustrates the data flow with-
in the phase.

Chart 50 indicates the overall logic and
the relationship among the routines of
Phase 10D. Table 6, the routine directory,
lists the routines used in the phase and
their functions.

r 1 r 1
SYSIN for | Declarative | | Intermediate | SYSUT1 or
NOADJUST | Statements | | Text for | Main Storage
option; | of the Source| | CCMMON, |
SYSUT2 for | Module | | EQUIVALENCE, |
ADJUST L 4 FORMAT, |
option | DEFINE FILE, |
| FUNCTION, and|
| SUBROUTINE |
| Statements |
t 4
| |
| Phase 10D
I r\\\\\\\\x
T 1
| Dictionary | Main Storage
| and Overflow |
| Table |
L J
T 1 ¥ p}
Main Storage | Dictionary | | Source | SYSPRINT (if
| and Overflow | | Statement | SOURCE and
| Table | | Listing | NOADJUST op-
L 4 L 4 tions are in

Figure 7. Phase 10D Data Flow

Section 2:

effect)

Discussion of Compiler Phases 33

CREATING INTERMEDIATE TEFXT FOR DECLARATIVE
STATEMENTS

Phase 10D produces intermediate text,
which is the form in which information is
transmitted from the source module to the
processing phases. (Refer to Appendix E
for a description of the source statement
scan required for intermediate text prepar-
ation.)

Intermediate text is prepared for FOR-
MAT, DEFINE FILE, FUNCTION, and SUBROUTINE
declarative statements. (Refer to Appendix
F for the intermediate text format.) This
text is used to transmit these statements
to Phases 14, 15, 20, and 25.

In addition to creating intermediate
text for DEFINE FILE statements, Phase 10D
makes the following validity checks for the
statements.

e To see that the unit numbers (i.e.,
data set reference numbers) defined in
the statements do not exceed 99, and
that the unit numbers are not multiply
defined.

e To see that the maximum number of
records prer defined unit does not
exceed 224,

e To see that the associated variable for
each unit is a nonsubscripted integer
variable.

Phase 10D also accumulates the number of
direct access data sets in DEFINE FILE
statements in the DEFILCT field of the
communication area. This field is examined

by Phase 25 to determine if a DEFINE FILE
statement was included in the source
module. (If a DEFINE FILE statement was

included in the source module, Phase 25
generates, as a part of the object module,
a calling sequence to the file definition
section of IHCDIOSE -- the direct access
I/0 data management interface.)

For COMMON and EQUIVALENCE statements, a
special form of intermediate text is creat-
ed. (Refer to Appendix F for the format.)
These special forms of text transmit the
corresponding statements to Phase 12.

Note: The input to Phase 12 is COMMON and
EQUIVALENCE text mixed with regular inter-
mediate text. If all COMMON and EQUIVA-
LENCE text precedes all other intermediate
text, Phase 12, at its conclusion, does not
reposition the SYSUT1 data set to its

beginning. (That is, Phase 14 can start
reading SYSUT1 from where it is
positioned.) In either case, Phase 14

deletes COMMON and EQUIVALENCE text when it
is encountered.

34

CONSTRUCTING DICTIONARY AND OVERFLOW TABLE
ENTRIES

Dictionary and overflow table entries
are made during Phase 10D for:

e Symbols appearing within declarative
statements.

e Statement numbers associated with de-
clarative statements.

Entries are made to the dictionary
(refer to Appendix H) for symbols appearing
in all declarative statements except the
FORMAT statements. If any symbol is
already entered in the dictionary, that
entry is modified, if necessary, to reflect
any new information about the symbol under
consideration. For example, if the symbol
is in COMMON, an indicator in the diction-
ary is set on.

Entries are made to the overflow table
(refer to Appendix H) for:

® Statement numbers.
e Dimension information.

PHASE 10E (IEJFJAAQ)

Phase 10E is entered after the
tion of Phase 10D.
phase are:

comple-
The functions of the

e Creation of intermediate text.

e Construction of dictionary and overflow
table entries.

e Completion of the preparation of the
source statement listing if the SOURCE
and NOADJUST options are in effect.

If the NOADJUST option is specified, the
input to Phase 10E resides on the SYSIN
data set. If the ADJUST option is speci-
fied, the input to Phase 10E resides on the
SYSUT2 data set.

Phase 10E
functions), the

processes SFs (statement
executable statements of
the source module, and any FORMAT state-
ments interspersed among them. As each SF,
executable, or FORMAT statement appears in
the input stream, intermediate text is
prepared and corresponding entries are made
to the dictionary and the overflow table.
The intermediate text prepared by Phase 10E

represents the executable source module
statements. The dictionary and overflow
table entries complement intermediate text.
(For the formats of the intermediate text
and the dictionary and overflow table,
refer to Appendixes F and H, respectively.)
If any syntactical errors are encountered
during the processing of an SF, executable,
or FORMAT statement, error intermediate
text entries are made immediately following
the intermediate text entries for the
statement in which the error was detected.

When the END statement or an end-of-file
(EOF) 1is encountered, Phase 10E passes
control either to Interlude 10E (IEJFJGAO)
for SPACE compilations, or to Phase 12 for
PRFRM compilations.

Note: When the END statement is encoun-
tered, Phase 10E determines, by reading the
next record of the input data set, if a new
compilation, after the current one, 1is to
be initiated. If an end-of-file is encoun-
tered, Phase 10E indicates to Phase 1, by
setting a bit in the communication area,
that the current compilation is the last
compilation. If another record exists,
Phase 1 initiates a new compilation at the
end of the current one.

Figure 8 illustrates the data fiow with-
in the phase. The input data set (SYSIN or
SYSUT2), and the output data sets (SYSUT1
and SYSPRINT) are not repositioned after
Phase 10D. Therefore, Phase 10E can con-
tinue to read from SYSIN or SYSUT2 and to
write onto SYSUT1 and SYSPRINT.

Chart 60 illustrates the overall logic
and the relationship among the routines of
Phase 10E. Table 8, the routine directory,
lists the routines used in the phase and
their functions.

CREATING INTERMEDIATE TEXT FOR STATEMENT
FUNCTIONS, EXECUTABLE STATEMENTS, AND
FORMAT STATEMENTS

Phase 10E produces intermediate text for
each SF and executable statement, and for
any FORMAT statements among them. (Refer
to Appendix E for a description of the
source statement scan required for inter-
mediate text preparation.)

For a subscripted expression appearing
within a statement, a unique intermediate

text entry of two words is made (refer to
Appendix F). The offset of the subscripted
expression (for which a field in this
unique text entry is reserved) is computed
by Phase 10E. For a discussion of this
aspect of subscripted expressions, refer to

Appendix G.

Note: Phase 10E performs a special check
for the READ, WRITE, and FIND direct access
I/0 statements. (The direct access FIND
statement is treated, at compile-time, as a
direct access READ statement without format
and 1list.) A check is performed to see if
the parameter indicating the relative posi-
tion, within the data set, of the record to
be read or written involves an arithmetic
expression other than a constant or single
nonsubscripted variable. If the parameter
involves such an expression, Phase 10E
generates the intermediate text, in the
form of an arithmetic expression, that is
required to evaluate the expression. Phase
10E then sets a switch (FDATEMP) in the
communication area. This switch indicates
to Phase 15 that main storage for a special
work area must be allocated. The special
work area 1is wused, at object-time, to
contain the value of the expression.

r 1 r 1
SYSIN for | SFs and Exe- | | Intermediate | SYSUT1 or
NOADJUST | cutable State-| | Text | Main Storage
option; | ments of the | | |
SYsSUT2 for | Source Module | | i
ADJUST optiont \ / 4
L L] r |
| | | Dictionary | Main Storage
| Phase 10E pe———————m and Overflow |
| | | Table |
ok 4 L J
' T////,//'* -~\\\\\\\&T 1
Main Storage | Dictionary | | Source | SYSPRINT (if
| and Overflow | | Statement | SOURCE and
| Table | | Listing | NOADJUST
L. 4 Le— J

Figure 8. Phase 10E Data Flow

Section 2:

options are
in effect)

Discussion of Compiler Phases 35

CONSTRUCTING DICTIONARY AND OVERFLOW TABLE
ENTRIES

Phase 10E makes entries to the diction-
ary for:

Variables.

Constants.

Subprograms.

Data set reference numbers.

(Refer to Appendix H for the format and
content of these entries.)

Phase 10E makes entries to the overflow
table for:

¢ Subscripted expressions
the executable statements.

appearing in

e Statement numbers associated with FOR-
MAT statements or executable state-
ments.

(Refer to Appendix H for the format and
content of these entries.)

PHASE 12 (IEJFLAAQ)

Phase 12 is entered either after the
completion of Interlude 10E for SPACE com-
pilations, or after the completion of Phase
10E for PRFRM compilations. The functions
of the phase are:

Address assignment.

EQUIVALENCE statement processing.
Branch list table preparation.

Card image preparation.

Preparation of a storage map if the MAP
option is specified (a minor function).

Address assignment is the allocation of
relative storage locations to:

Variables and arrays in COMMON.
Variables and arrays not in COMMON.
Equated variables.

Variables in subscripted expressions.
Double-precision constants.

Real and integer constants.

36

Addresses are assigned in the order in

which they are listed.

If the object listing facility of the
compiler has been enabled and if the object
listing option is specified, Phase 12 plac-
es the names of all variables and constants
used in the source module and their corres-
ponding relative addresses into the SORSYM
load module. (SOKRSYM was previously loaded
into main storage by Phase 1.)

When the SORSYM module is full, all
subsequent variables and constants are
ignored and do not appear on the object
module listing.

Processing of the EQUIVALENCE text
occurs after the assignment of addresses to
variables and arrays in COMMON but before
the assignment of addresses to other dic-
tionary entries.

EQUIVALENCE text processing
relative positions to the variables speci-
fied in the EQUIVALENCE statements. These
relative positions are indicated in a
table, which is created and used to assign
relative addresses to the variables accord-
ing to their position in the table.

assigns

After the assignment of addresses to
real and integer constants, Phase 12 pre-
pares a branch list table, which is used to
control branching within the object module.

During the assignment of addresses by
Phase 12, ESD, TXT, and RLD card images are
generated for section definitions, 1liter-
als, and external references.

In addition to the preceding functions,
Phase 12 prepares a storage map to indicate
all address assignments made during the
phase.

After the completion of Phase 12 pro-
cessing, control is passed to Phase 14.

Figure 9 illustrates the data flow with-
in the phase.

Chart 70 illustrates the overall 1logic
of Phase 12 and the relationship among its
routines. Table 9, the routine directory,
lists the routines wused in the phase and
their functions.

r 1
Main Storage | Dictionary |
| and Overflow |
| |

Table

Intermediate
Text for Non-
Syntactical
Exrrors

1
| SYSUT2 or
|
|
|

Encountered |
|
|
|
1

Main Storage

in COMMON and
EQUIVALENCE
Statements

P e — . . s S e oy

Dictionary Main Storage
and Overflow

Table

e e 4

T

Phase 12

SYSUT1 or
Main Storage

COMMON and
EQUIVALENCE
Text

[o s e oy

Figure 9. Phase 12 Data Flow

ADDRESS ASSIGNMENT

An effective address in IBM System/360
Operating System (a base-displacement
address) is the displacement in an instruc-
tion added to the value in a base register.
This yields a two-byte address wherein the
first six bits represent a general register
used as a base register and the last ten
bits represent the displacement. All sym-
bols in the object module generated by the
compiler are referenced by this two-byte
address.

The base-displacement address is
assigned through the use of a location
counter, which is initialized and then
incremented by the number of words needed
in main storage to contain the variable,
array, constant, address constant, or
equated variable assigned an address. If
more than 4096 bytes are needed, a new base
register is assigned.

There are only two instances in which
the 1location counter may be incremented
when no address is assigned:

Section 2:

1 1

| ESD, TXT,RLD | SYSLIN
p———*{ Card Images | and/or

| | SYSPUNCH
N | 1 . |

T 3

| storage | SYSPRINT

| Map !

| |

L J

1
Source Symbol| Main
Table if | Storage
Object List- |
ing Option is|
in Effect

o e e e e e e

b e

e The first occurs after the variables in
COMMON are assigned addresses. A new
base register is assigned to the loca-
tion counter so that variables not in
COMMON have different base registers
than variables in COMMON,

e The second may occur before the assign-
ment of addresses to double-precision
constants that are not in COMMON. The
location counter 1is adjusted to a
double-word boundary in order to accom-
modate double-precision constants.

When a variable is assigned an address,
that address is placed in the chain field
of the dictionary or overflow table entry
for the variable.

FORMAT statements are assigned addresses
during the execution of Phase 14. All

phases after Phase 12 assign addresses
whenever a constant or work area is
defined.

Discussion of Compiler Phases 37

EQUIVALENCE STATEMENT PROCESSING

The EQUIVALENCE text 1is processed by

Phase 12 so that equated variables are
assigned to the same address.
The following terms are used in the

description of EQUIVALENCE processing:

e EQUIVALENCE group -- the variable
and/or array names between a left and
right parenthesis in an EQUIVALENCE
statement.

e EQUIVALENCE class =-- two or more EQUIV-
ALENCE groups that have the following
characteristic. If any EQUIVALENCE

groups contain the same element, these
groups form an EQUIVALENCE class.
Further, if any other group contains an

element in this class, the other group
is part of this class, etc.

e Root == the
group or class

member of an EQUIVALENCE
from which all other

variables in that group or class are
referenced by means of a positive dis-
placement.

e Displacement -- the distance, in bytes,
between a variable and its root.

The root of an EQUIVALENCE group is
assigned an address, and all other varia-
bles in the group are assigned addresses
relative to that root.

To determine the root and the displace-
ment of the other elements in the group
from the root, the first element in the
EQUIVALENCE group is established initially
as the root. The displacement for the
other elements (in relation to the root) is
calculated by subtracting the offset of the
root from the offset of the variable whose
displacement is being calculated. (The
offset for subscripted variables is con-
tained in the EQUIVALENCE text created by
Phase 10D. The offset for nonsubscripted
variables is zero.)

If the resulting displacement 1is nega-
tive, the root is changed. The new root is
the variable whose displacement was being

calculated. Whenever a new root is
assigned to an EQUIVALENCE group, the pre-
viously calculated displacements must be
recalculated.

The root and the displacements in each

group are entered in an EQUIVALENCE table,
which is used by the storage assignment
routines of Phase 12 to assign addresses to
equated variables. (Refer to Appendix I
for the table format.)

38

Note: Phase 12 generates intermediate text
for nonsyntactical errors encountered in
COMMON and EQUIVALENCE statements during
relative address assignment. (The internal
statement number for the error messages
that are generated from this intermediate
text by Phase 30 is 0000.) The amount of
intermediate text for such errors depends
on whether the SPACE or the PRFRM option is
in effect.

If the SPACE option is in effect, the
amount of error text is limited by the size
of the first internal text buffer for the
SYSUT2 data set., Phase 12 does not write
any of the error text onto the SYSUT2 data
set; it places the text into the above
buffer. (The contents of the buffer are
written onto SYSUT2 by Phase 14.) If the
buffer is filled before COMMON and EQUIVA-
LENCE processing is completed, Phase 12
continues such processing, but does not
generate additional error text. If the
buffer 1is not filled before COMMON and

EQUIVALENCE processing is completed, Phase
12 places the displacement of the next
available location within the buffer into

the FTXTPTRB field in the communication
area. Phase 14 starts placing its inter-
mediate text output at the location indi-
cated by this field.

If the PRFRM option is in effect, there
is no 1limitation on the amount of inter-
mediate text generated by Phase 12 for
COMMON and EQUIVALENCE statement errors.
Phase 12 starts placing the error text into
the first text buffer in the first text
buffer chain for the SYSUT2 data set. When
that buffer is full, the next buffer in the
chain is used, etc. When all of the COMMON
and EQUIVALENCE text 1is processed, the
displacement of the next available location
within the current buffer is placed into
the FTXTPTRB field in +the communication
area. Phase 14 starts placing its inter-
mediate text output at the location indi-
cated by this field.

BRANCH LIST TABLE PREPARATION

The branch list table is initialized by
Phase 12 (and is completed by Phase 25).
This table is used by the object module to
control the branching process. {(Refer to
Appendix J for the table format.) Each
statement number referenced in a control
statement is assigned a position relative
to the start of the branch table. This
position is indicated to Phase 25 by a
relative number, which replaces the chain
field of the corresponding statement number
entry in the overflow table.

In the assignment process, the statement
number chains in the overflow table are
scanned sequentially. Each time an entry
for a statement number indicates a ref-
erenced statement other than the statement
number of a FORMAT or specification state-

ment, a counter associated with the branch
list table is incremented by 4. (Four
bytes are required for the referenced

statement number and the address that will
be assigned to the number by Phase 25.)
The current contents of that counter are
then placed in the chain field of the
corresponding overflow table entry.

This counter is initialized to 0.
Therefore, the first statement number in
the first chain is assigned the number 0,
the second statement number is assigned the
relative number 4, the third statement
number is assigned the relative number 8,
and so on. .After all statement numbers are
assigned, the location counter is incre-
mented by an amount equal to the size of
the branch list table (in bytes).

CARD IMAGE PREPARATION

Several card images are prepared during
the execution of Phase 12. This involves
setting up the proper formats for the card
images and inserting the pertinent informa-
tion into those formats. The card images
prepared are indicated below, along with
their functions. For a more complete dis-
cussion of the use and format of these
cards, refer to the publication IBM
System/360 Operating System: Linkage Edi-
tor, Program lLogic Manual.

The cards generated by Phase 12 are:

This is the section definition
card for the source module being
compiled.

¢ ESD-0

e ESD-2 This card is produced for exter-
nal subprogram names. There may

be several such cards.

e ESD-5 This is the section definition
card for COMMON (if a COMMON
statement exists in the source

module being compiled).

¢ TXT This card is produced for con-

stants that have been entered in

This card contains the address
of the location at which the
address of each external subpro-
gram will be 1loaded at object
time. There may be several such
cards.

¢ RLD

PHASE 14 (IEJFNAAQ)

Phase 14 is entered after the completion
of Phase 12. The functions of the phase
are:

¢ FORMAT statement processing.
e READ/WRITE/FIND statement processing.
e Replacing dictionary pointers.

* Miscellaneous statement processing.

The FORMAT statement processing converts
the intermediate text for FORMAT statements
into a form acceptable to IHCFCOME and
creates TXT card images. These card images
are used by IHCFCOME to set up the format
of the list items for the I/O operations of
the compiled source module. For a discus-
sion of IHCFCOME, refer to Appendix L.

The processing for READ/WRITE/FIND
statements consists of checking the compo-
nents of the statements for validity, pro-
cessing implied DOs within the statements,
and rearranging the intermediate text for
the statements.

Phase 14 replaces dictionary pointers in
the intermediate text with the appropriate
address assigned by Phase 12, a data set
reference number, or a statement function
number. (For SPACE compilations, the main
storage occupied by the dictionary is freed
by Phase 14.)

Upon completion of the Phase 14 process-
ing, control is passed either to Interlude
14 (IEJFNGAO) for SPACE compilations, or to
Phase 15 for PRFRM compilations.

Figure 10 illustrates the data flow

within the phase.

Chart 80 illustrates the overall 1logic
of Phase 14 and the relationship among its
routines. Table 12, the routine directory,

the dictionary. There may be lists the routines used in the phase and
several such cards. their functions.
Section 2: Discussion of Compiler Phases 39

r] v 1
[I | I
Main Storage | Dictionary | | Dictionary | Main Storage
| and Overflow | | |
| Table | | |
L L\\\\\\\‘_ 4,/”////# J
T T r . 3
| | | Intermediate | SYSUT2 or
| Phase 14 |}———»| Text | Main Storage
| | | Modified |
/ ! l !
. T \ ______________ ;
| | | TXT card | SYSLIN
SYSUT1 or | Intermediate | | Images for | and/or
Main Storage | Text | | FORMAT | SYSPUNCH
| | | Statements i
L J L J

Figure 10. Phase 14 Data Flow

FORMAT STATEMENT PROCESSING

A FORMAT statement is composed of one or
more format specifications that define an
I/0 format. For a discussion of the physi-
cal structure of a FORMAT statement refer
to the publication IBM System/360 Operating

System: FORTRAN IV (E) Language.

Each FORMAT statement is examined begin-
ning with the first FORMAT code. For each
FORMAT code obtained, a specific processing
routine is called (refer to Table 11). The
processing of each routine consists of
entering the required information for the

FORMAT code into TXT card images. These
images are composed of l-byte units con-
taining 2 hexadecimal digits. Each byte

contains one of the following:

¢ An adjective code, which indicates to
IHCFCOME the format conversion
(4,1,F,P,X, etc.), a group or field
count, or the end of a FORMAT state-
ment.

e A number that represents the actual
field count, field length, group count,
or decimal length.

One of the following is entered into a
TXT card image:
e Adjective Code and Number. (Entered

for FORMAT specifications P,I,T,A, and
X, and for entries made to indicate a
field or group count.)

slash,
ends a

e Adjective Code. (Entered for a
the right parenthesis that

40

group, or the right parenthesis that
ends a FORMAT statement.)

¢ Adjective Code, Field Length, and Deci-
mal Length. (Entered for FORMAT speci-
fications D, E, and F.)

e Adjective Code, Field Length, and
Literal. (Entered for FORMAT specifi-
cations H and apostrophe.)

As the specific information is entered
into TXT card images, addresses are
assigned by incrementing the location
counter (according to the amount of storage
required to contain the contents of a TXT

card image).

During the processing of a FORMAT state-
ment, various accumulators are used to
determine the record length. That 1length
is compared to the user-specified length
(indicated by the LINELNG option). If the
record length is greater than the specified
length, a warning indicator is placed in
intermediate text. If the user has not
specified a record 1length, the standard
length is used.

READ/WRITE/FIND STATEMENT PROCESSING

READ/WRITE/FIND statement processing
involves four operations. The first is a
check for the validity of the symbol used
as the data set reference number. An
indicator for the end of the
READ/WRITE/FIND statement is made by enter-
ing an end-of-statement indicator in the

intermediate text before any entries for
the I/0 list. This allows Phase 20 to
handle the I/0O list as a separate statement
in intermediate text.

The second operation is the replacement
of dictionary pointers in intermediate text
(for the symbols in the I/0 1list) with
addresses assigned by Phase 12. This
includes a check for the validity of the
symbols in the I/O list. When an invalid
symbol (a symbol other than a variable or
array name) is encountered, an error condi-
tion is noted in the intermediate text and
the remainder of the I/0 list is deleted.

The third operation is to check for and
process implied DOs, which are recognized
by a 1left parenthesis within a READ/WRITE
statement. For each encounter, an implied
DO adjective code is inserted in the inter-
mediate text for the READ/WRITE statement.
When the end of an implied DO is recognized
(right parenthesis), an end DO adjective
code 1is inserted in the intermediate text.

The fourth operation is to rearrange the
READ/WRITE statement entries so that later
phases can process the statement correctly.
The implied DO variable and parameters are
placed ahead of any subscripted variables

(whose intermediate text is also
rearranged) .
REPLACING DICTIONARY POINTERS

In the intermediate text entries, except

for the END and FORMAT statements, diction-
ary pointers are replaced by:

* The address assigned and placed in the
dictionary chain field by Phase 12 if
the pointer refers to an entry for a
variable, constant, array, or external
function. (The assigned addresses are
obtained from the chain address fields
of the affected entries in the diction-
ary.)

e A data set reference number if the
pointer refers to a data set reference
nunber.

¢ A statement function number if the
pointer refers to a statement function.

Section 2:

MISCELLANEOUS STATEMENT PROCESSING

Statement function (SF) definition
statements are assigned a unique SF number
by Phase 14. This number is used to
reference the SF within an associated
branch 1list table in the compiled source
module (refer to Phase 25). This wunique
number is assigned, in sequence beginning
with 01, to each SF in the program and is
moved to the dictionary entry for the name
of that SF. This number also replaces the
pointer field of the intermediate text
entry for the SF.

The text for RETURN, DO, GO TO, IF,
PAUSE, and STOP statements is examined to
determine if the statement in question ends
a DO loop. If it does, an error condition
is noted in the intermediate text. 1In
addition to this error check, if the adjec-
tive code for a RETURN statement appears
within a main program, that adjective code
is changed to the adjective code that
represents a STOP statement.

A statement number entry in the inter-
mediate text, other than a FORMAT statement
number, is moved unchanged from the input
buffer to the output buffer. A FORMAT
statement number is treated as follows:

e If the number is not
warning condition is
intermediate text.

referenced, a
noted in the

e If the number 1is associated with a
FORMAT statement that ends a DO 1loop,
an error condition is noted in the
intermediate text.

¢ The contents of the location counter
are entered in the chain address field
of the associated overflow table entry.

BACKSPACE, REWIND, and END FILE state-
ments are examined to verify that the data
set reference number is a valid symbol.

Intermediate text for computed GO TO
statements is rearranged, putting the vari-
able and the number of statement numbers
before the statement numbers themselves.

Any intermediate text for COMMON and
EQUIVALENCE statements is deleted by Phase
14 since that text is no longer used.

Discussion of Compiler Phases 41

PHASE 15 (IEJFPAAQ)

Phase 15 is entered either after the
completion of Interlude 14 for SPACE compi-
lations, or after the completion of Phase
14 for PRFRM compilations. The functions
of the phase are:

Reordering intermediate text.
Modifying intermediate text.
Assigning registers.

Creating argument lists.
Checking for statement errors.

All of the above functions are performed
for the processing of statements that can
contain arithmetic expressions; only the
error checking function is performed for
the remaining statements.

Phase 15 reorders the sequence of inter-
mediate text words within: (1) statements
that can contain arithmetic expressions
(arithmetic, arithmetic IF, CALL, and
statement functions), and (2) DEFINE FILE
statements. As intermediate text words are
being reordered, they are modified, depend-
ing on the operators and operands, to a
form closely resembling an instruction for-
mat. When the intermediate text words are
modified, registers are assigned, when nec-
essary, to the operands of all arithmetic
operators. Argument 1lists for subprogram
and statement function references are
created, and in-line function references
are processed by generating the appropriate
instruction format intermediate text or
intermediate text word for an in-line func-
tion call. During the input text process-
ing, errors pertaining to DO loops, arith-
metic IF statements, statement numbers,
function arguments, and operand usage and
form are recognized, and the appropriate
error messages are given.

Upon completion of Phase 15 processing,
control is passed either to Interlude 15

Chart 90 illustrates the overall logic
of Phase 15 and the relationship among its

routines. Table 15, the routine directory,
lists the routines of the phase and their
functions.

REORDERING INTERMEDIATE TEXT

For Arithmetic Expressions

Phase 15 reorders the sequence of inter-
mediate text words within arithmetic
expressions so that the resulting code
generated by Phase 25 will cause evaluation
of arithmetic expressions according to a
hierarchy of operators. The desired order
is defined by a hierarchy of the specific
operations as represented by adjective
codes and is determined by a comparison of
forcing values (a forcing value indicates
an operator's priority in the hierarchy of
operators). (Refer to Appendix I, Figure
77, for a list of the various operators and
their corresponding forcing values.)
Depending on the operator in an intermedi-
ate text word and its relative position in
the hierarchy of operators, that intermedi-
ate text word is either:

e Processed (this consists of modifying
the intermediate text word by replacing
the adjective code field and the
mode/type field, when necessary, with a
machine operation code and a register
number, respectively), cr

¢ Stored in an operations table or sub-
script table (refer to Appendix I,
Figures 78 and 79).

The operations and subscript tables
function as pushdown tables in which the
top entry in the table is the most recently
entered item. (This process is known as
LIFO: last in, first out.)

The actual
text words is

reordering of intermediate
controlled by a routine

Phase

(FOSCAN) that scans the input intermediate
1 1
| | Modified | SYSUT1 or

15 |}—————»{ Intermediate | Main Storage
| | Text |
J Lo J

(IEJFPGAO) for SPACE compilations, or to
Phase 20 for PRFRM compilations.
Figure 11 illustrates the data flow
within Phase 15.
r 1 r
SYSUT2 OR | Intermediate | |
Main Storage | Text —s
| | |
L i////’/,ik
r al
Main | Overflow |
Storage | Table |
L K]
Figure 11. Phase 15 Data Flow

42

text words. This routine compares the
forcing values of the various adjective
codes under consideration to determine
their disposition. Each adjective code has
a left and a right forcing value. The
right forcing value applies to the adjec-
tive code within the current input inter-
mediate text word. The left forcing value
applies to the adjective code within the
top entry in the operations table. The
adjective code of the first intermediate
text word of an arithmetic statement has
the highest 1left forcing value of any
adjective code except for the end-of-
statement indicator.

The first intermediate text word of any
arithmetic statement is first written on
the output data set and then entered in the

operations table. The next word of the
input intermediate text for this statement
is then obtained and examined. If it is

subscript intermediate text, it is entered
in the subscript table. The following word
is then obtained and examined. When the
word (in the operations table) containing
the subscripted variable is processed, the
related subscript intermediate text is
obtained from the subscript table. The
related subscript intermediate text is
always the top entry in the subscript
table.

If the word obtained from the input
intermediate text is not a subscript inter-
mediate text word, the right forcing value
of that word is compared to the left
forcing value of the top entry in the
operations table. If the right forcing
value is greater than or equal to the left
forcing value, the top entry of the opera-
tions table is forced out, processed, and
written on the output data set. If the
right forcing value is less than the left
forcing value, the current word of the
input intermediate text is entered into the

operations table. The next input inter-
mediate text word is then obtained. This
comparison process continues wuntil the
first entry (for the statement under

consideration) made in the operations table
is forced out (by the end mark) and proc-
essed. In this way, the input data set is
reordered when it 1leaves Phase 15 as the
output data set.

If an attempt is made to enter informa-
tion in the operations or subscript table
when they are full, an error condition is
recognized. An error intermediate text
word, which indicates that the statement is
too 1long and should be subdivided, is
generated and placed at the end of the

For DEFINE FILE Statements

Phase 15 reorders the intermediate text,
created by Phase 10D, for DEFINE FILE
statements to facilitate the generation of

TXT card images for the parameter lists
included in those statements (refer +to
Appendix F). (The parameter 1lists are
required at object-time by IHCDIOSE, the

direct access
face.)

I70 data management inter-

Each parameter list is reordered into a
three-argument format that contains the
parameters which define the corresponding
direct access data set. Phase 15 generates
an intermediate text word containing a
constant of three, and places this text
word pricr to each of the parameter lists.
The constant three indicates that a param-
eter 1list occupies the next three inter-
mediate text words.

In addition, Phase 15 generates an
intermediate text word containing an end
mark, and places this text word after each
parameter list. The end mark indicates the
end of a parameter 1list. The text word
containing the end mark that is generated
for the last parameter list also contains
the internal statement number (ISN) that
Phase 10D assigned to the DEFINE FILE
statement.

MODIFYING INTERMEDIATE TEXT

As intermediate text words for an arith-
metic expression are being reordered, they
are modified, depending on the operators
and operands, to a form closely resembling
an instruction format. The contents of the
adjective code field for arithmetic opera-
tors (unary minus (W, +, -, *, and /) are
replaced by the appropriate machine opera-
tion code. The contents of the mode field
are replaced by a register number when the
operator and operands require a register
assignment.

Note: Phase 15 allocates main storage for
a special work area if the FDATEMP field in
the communication area is nonzero. Phase
10E makes the FDATEMP field nonzero if it
encounters a direct access I/0 statement in
which the parameter that indicates the
relative position within the data set of
the record to be read or written involves a
subscripted ‘expression. Phase 10E also
generates the intermediate text, in the
form of an arithmetic expression, that is

intermediate text words for the statement required to evaluate the subscript expres-
containing the error. sion.
Section 2: Discussion of Compiler Phases 43

Phase 15 inserts the address of the work
area back into the FDATEMP field. Phase 25
obtains the address and inserts it into the
store instruction that places the value of
the expression into the work area. In
addition, Phase 25 includes the address of
the work area as a part of the calling
sequence to IHCFCOME that is generated for
the 170 statement. At object-time,
IHCFCOME passes the address to IHCDIOSE
(the direct access data management I/0
interface). IHCDIOSE needs the contents of
that address in order to determine which
record is to be read or written.

ASSIGNING REGISTERS

Registers are assigned by Phase 15
according to the adjective code encountered
and the mode of the operands. There are
eight registers (general registers 0, 1, 2,
and 3; floating-point registers 0, 2, 4,
and 6) that may be assigned by Phase 15.
When a register is required for a particu-
lar operation and one is not available, the
contents of the required register are
transferred to a work area. That register
acquires "available" status and is then
used for the operation.

Register assignments are made by Phase
15 according to the following rules:

e The instruction generated for the add
operator and the floating-point multi-
ply operator requires that one of its
operands be in a register. The
instruction generated for the multiply
operator for integer quantities
requires that the multiplicand (left
operand) be in an odd register. The
even register that precedes the multi-
plicand must be made available, unless
it already contains the multiplier.

e The instruction generated for the sub-
tract operator and the divide operator
for real quantities requires that its
left operand be in a register.

e For integer division, the dividend must
be in an even-odd register pair.

e A work register is assigned to each
subscript expression to aid in the
computation of subscript expressions by
Phase 20.

s Exponentiation requires library subpro-
grams; therefore, a specific register
is required to contain the result of
the subprogram execution.

e Registers are assigned to single and
double in-line functions, as follows:

4y

There are eight single-argument, in-
line functions: IFIX, FLOAT, DFLOAT,
SNGL, DBLE, ABS, IABS, and DABS.
Instructions are generated to perform
the functions of the SNGL and DBLE
in-line functions. For the remaining
single-argument, in-line functions, a

word in the following format is gener-
ated:

r . . T T T 1
in-1line			code number
function	IR2	R1	for the
adjective			in-1line function
code			I
I8] L 1 4			
T T T 1			
1 byte	1 byte	2 bytes	
L L I J
Depending wupon the specific in-line
function, up to three registers are
assigned by Phase 15. For ABS, IABS,

and DABS, only an argument register is
required. This register is indicated
in the R1 field; the R2 field 1is made
Zero. For IFIX, FLOAT, and DFLOAT,
three registers are required: an argu-
ment register, a result register, and a

work register. The argument register
is indicated in the Rl field, the
result register in R2. The work reg-

ister is the register preceding Rl.

For in-line functions with two argu-
ments, an in-line call word is generat-
ed with the same format as for single-
argument, in-line functions. Phase 15
assigns a register to each argument in
a double-argument, in-line function.
The first argument register is
indicated in the Rl field; the second
argument register is indicated in the
R2 field. Rl 1is used as the result
register.

CREATING ARGUMENT LISTS

To assist Phase 25 in the generation of
the object module instructions, a list cf
arguments is created when an adjective code
is encountered that represents a call to a
subprogram or to a statement function. The
argument list is preceded by an intermedi-
ate text word that defines the specific
function call. The first word of the
argument list contains the number of argu-
ments in the 1list, and is followed by an
intermediate text word for each argument.
The total number of arguments in all lists
created by Phase 15 is kept in the communi-
cation area to be used by Phase 20 process-
ing.

CHECKING FOR STATEMENT ERRORS

As each statement is processed, Phase 15
checks for specific error conditions. Gen-
eral format errors as well as specific
errors connected with DO statements, arith-
metic IF statements, statement numbers, and
argument lists are noted. Following are
the error checks performed by Phase 15:

e DO loops are examined to determine if
the DO variable is redefined, or if a
DO loop is nested to a depth greater
than 25.

e Arithmetic IF statements are examined
to determine if the arithmetic expres-
sions contain valid symbols. They are
also examined to determine if more or
fewer than three statement numbers have
been specified.

¢ Statement numbers are examined to
ensure that they are uniquely defined
and do not indicate transfers to nonex-
ecutable statements.

e If a FUNCTION subprogram is being com-
piled, a check is made to determine
whether the subprogram name is defined.

¢ The members of an argument list are
examined to determine whether they are
valid. If a particular 1list has a
required length, that list is examined
to determine if it is of the required
length.

If any of the designated error condi-
tions are encountered, an intermediate text
word, which contains an adjective code
indicating an error and a number represent-
ing the specific error, is generated and
placed at the end of the intermediate text
words for the statement in which the error
was detected.

PHASE 20 (IEJFRAAOQ)

Phase 20 is entered either after the
completion of Interlude 15 for SPACE compi-
lations, or after the completion of Phase
15 for PRFRM compilations. The major func-
tions of the phase are:

e Processing of statements that require
subscript optimization.

e Processing of statements that affect,
but do not require, subscript optimiza-
tion.

e Creating the argument list table.

Section 2:

Phase 20 increases the efficiency of the
object module by decreasing the amount of
computation associated with subscript
expressions. A subscript expression can
recur frequently in a FORTRAN program.
Recomputation at each occurrence is time-
consuming and results in an inefficient
object module. Therefore, Phase 20
performs the initial computation of any
given subscript expression and assigns a
register which, at object time, contains
the result of this computation. Phase 20
then modifies (that is, optimizes) the
intermediate text for subsequent occurren-
ces of this subscript expression. This
intermediate text optimization consists
essentially of replacing the computation of

the subscript expression, at each recur-
rence, with a reference to its initial
value (that is, to the register that con-

tains the result of the initial
computation). The subscript intermediate
text for each subsequent occurrence of the
subscript expression can be optimized in
this manner as long as the values of the
integer variables in the expression remain
unchanged.

In addition, the following functions are
performed by Phase 20:

1. Generation of ESD card images for:

a. Implied external references to any
required library exponentiation
subprograms. For example,
IHCFRXPI (ji.e., FRXPI#), IHCFRXPR
(i.e., FRXPR#), IHCFIXPI (i.e.,
FIXPI#), IHCFDXPI (i.e., FDXPI#),
and IHCFDXPD (i.e., FDXPD#).

b. Implied external references to
IHCFCOME (i.e., IBCOM#), IHCFIOSH
(i.e., FIOCS#), and IHCDIOSE
(i.e., DIOCS#).

c. Implied external references to
IHCCGOTO (i.e., CGOTO#). IHCCGOTO
is an implicitly called 1library
subprogram that aids in the execu-
tion of computed GO TO statements
by supplying the object-time
branch addresses.

2. Generation of TXT and RLD card images
for literals generated by Phase 20 and
argument list table entries.

3. Generation of TXT card images for each
three-word parameter 1list associated
with the unit numbers that are defined
in DEFINE FILE statements. (The first
TXT card image contains the relative
address at which the first parameter
list resides at object-time.)

4. Generation of calling sequences to

IHCIBERR (that is, IBERR#) when source
statement errors are encountered.

Discussion of Compiler Phases 45

(Refer to Appendix L for a description
of the IHCIBERR object-time library
subprogram.)

5. Printing of a storage map for all
literals generated by Phase 20, and
for all implied external references
made by the source module being com-
piled, if the MAP option is specified.

6. Allocation of storage for the branch
list table for SF expansions and DO
statements.

Upon completion of Phase 20 processing,
control is passed either to Phase 30 (if
the NOLOAD option was specified and source

module errors were detected), or to
Phase 25.
Figure 12 illustrates the data flow

within Phase 20.

Chart A0 illustrates the overall 1logic
and the relationship among the routines of
Phase 20. Table 18, the routine directory,
lists the routines used in the phase and
their functiomns.

Overflow

Ll
Main Storage |
| Table
L

as v s

PROCESSING OF STATEMENTS THAT REQUIRE
SUBSCRIPT OPTIMIZATION

Phase 20 scans the input text for state-
ments that may require subscript optimiza-
tion. Subscript expressions may occur in
the following statements:

Arithmetic.

CALL.

Arithmetic IF.

Input/output 1lists (input/output lists
are treated as statements by Phase 20).

When Phase 20 encounters one of these

statements containing a subscripted vari-
able, the subscript optimization process
begins.

An index mapping table (refer to Appen-
dix I, Figure 80), containing all informa-
tion pertinent to a subscript expression,
is used to aid subscript processing. When
the index mapping table indicates the first
occurrence of the current subscript expres-
sion, a register is assigned and a corres-
ponding entry is made in the index mapping
table. When a register is not available,
the register that is currently assigned to
the subscript expression of least dimension

SYSUT2 or
Main Storage

T

| Intermediate
| Text (sub-
|script text
|optimized)

J

b e e s e ol

SYSLIN
and/or
SYSPUNCH

I

|ESD Card

| Images for Im-
|plied External
|References;

e ———

Phase 20

| | TXT and RLD
p—————+{Card Images

| |for Generated
4 |ILiterals and

T
SYSUT1 or | Intermediate
Main Storage | Text
L

R e

Figure 12. Phase 20 Data Flow

46

| for Argument
|List Table
|Entries; and
| TXT Card

| Images for
|DEFINE FILE
| Statement

| Parameter
|Lists

L

b e S G — — T — — —— A——— S——— — V" w———]

r 1
|Map of Genera-| SYSPRINT
jted Literals |
{and External |
|References |
L J

is reassigned to the current

expression.

subscript

If the current subscript expression has
been encountered previously, the intermedi-
ate text for its computation can be
replaced effectively by a reference to the
register assigned at the first encounter.

However, redefinition of any integer vari-
able in the expression invalidates the
previous computation and prohibits the
assignment of the same register to the
current subscript expression. In this

case, recomputation is necessary and anoth-
er register must be assigned for the sub-
script expression.

During the subscript optimization pro-
cess, Phase 20 may be required to generate
literals connected with the array displace-
ment associated with any given subscript
expression. (Refer to Appendix G for a
discussion of the calculation of an array
displacement. This explanation includes a
description of the offset and CDL
(constant, dimension, and length) portions
of an array displacement.) Literals are
generated by Phase 20 under the following
conditions:

e When the optimization routine encoun-
ters a value outside the addressable
range of 0 through 4095 bytes as a
result of adding the offset (calculated
in Phase 10E) to the displacement of
the array variable (calculated in Phase
15), an offset 1literal 1is generated.
The generation of an offset literal
allows Phase 25 to produce instructions
involving these subscripted variables
without having to assign a new base
register.

e Phase 20 generates a literal for each
component of the CDL portion of the
array displacement associated with a
subscript expression except for the
first component if it is a power of 2.
In this case, that power, instead of
the address for the 1literal C1*L, is
placed in the subscript text.

The preceding discussion of subscript
optimization applies to subscript expres-
sions that are neither constant nor asso-
ciated with a dummy subscripted variable.
These two conditions are discussed in the
following paragraphs.

Phase 20 does not assign a register to a
constant subscript expression which, when
added to the offset portion of the array
displacement, lies within the addressable
range of 0 through 4095 bytes. However, if

this computation 1lies outside the above
range, a register is assigned for this
constant and an entry is made in the index

mapping table.

Section 2:

In addition to normal optimization, a
base register 1is assigned to any dummy
variable so that the variable may be
addressed during execution of the object
module. This assignment is entered in the
index mapping table.

PROCESSING OF STATEMENTS THAT AFFECT, BUT
DO NOT REQUIRE, SUBSCRIPT OPTIMIZATION

In addition to previously mentioned
statements that require subscript optimiza-
tion, various other statements that can
affect the subscript optimization process
are processed by Phase 20.

DO and READ Statements

The DO and READ statements sometimes
cause the redefinition of the integer
variable(s) in a subscript expression. Any
integer variable that is redefined becomes
a bound variable. Any encounter of a bound
variable causes Phase 20 to examine the
subscript expressions that are assigned
registers in the index mapping table. A
bound variable 1in a subscript expression
invalidates any previous computation for
that expression and causes a new register
to be assigned for that expression.

Referenced Statement Numbers

When a statement number is referred to
in other statements (for example, a GO TO
statement), Phase 20 does not know if the
values of previously encountered integer
variables can still be used by subscript
expressions containing these variables.
Because any given variable may now be a
bound variable, Phase 20 deletes all reg-
ister assignments (in the index mapping
table) for subscript expressions involving
that variable.

Subprogram Argument

Any subprogram argument that is an inte-
ger variable causes redefinition of that
variable and, therefore, invalidates any
previous computations of subscript expres-
sions containing that variable. All reg-
ister assignments (in the index mapping
table) for subscript expressions involving
that variable are deleted.

Discussion of Compiler Phases 47

CREATING THE ARGUMENT LIST TABLE

A count of the number of arguments
contained in the source module for subpro-
gram and SF (statement functiom) calls is
passed to Phase 20 via the communication
area. This number is used by Phase 20 to
allocate storage for the argument 1list
table. Phase 20 allocates a word (4 bytes)
for each argument, and inserts the relative
address of each argument in the argument
list table.

If an argument is a subscripted vari-
able, its address is not known at this
time. Instructions are generated to 1load
the address of this argument into the
argument list table at object-time.

The table is used at object-time to
provide the addresses of argument lists to
the subprograms and SFs being called.
Refer to Appendix J, Figure 87, for the
format of the argument list table.

For each subprogram name or SF name
encountered, Phase 20 generates the
appropriate calling sequence. A register
is used to supply the referenced subprogram
or SF with the address of its argument
list. Phase 20 also generates RID and TXT
card images for each entry in the argument
list table.

PHASE 25 (IEJFVAAOQ)

Phase 25 is entered after the completion
of Phase 20. The main functions of the
phase are:

¢ Generation of object module instruc-
tions.

e Completion of object module tables.

Phase 25 creates the object coding for
the FORTRAN source module from the inter-
mediate text entries and the overflow table
(refer to Appendix H). TXT card images for
instructions are generated and then written
on the SYSLIN data set (if the LOAD option
is specified) and/or the SYSPUNCH data set
(if the DECK option is specified).

Phase 25 also generates, as a part of
the object module, a calling sequence to
the file definition section of IHCDIOSE
(the direct access data management I/0
interface) if the FDEFILCT field in the
communication area is nonzero. That is, if
a DEFINE FILE statement is included in the
source module being compiled.

48

Several tables (branch 1list table for
statement numbers, branch list table for SF
expansions and DO statements, and base
value table) are used by the object module
during execution of the instructions gener-
ated by Phase 25. These tables are assem-
bled in their final form by Phase 25.

In addition to the above functions,
Phase 25 generates: (1) a listing of ref-
erenced statement numbers if the MAP option
is specified, and (2) an object module
listing if the object 1listing option is
specified and if the object listing facili-
ty of the compiler has been enabled. The
object module listing contains the machine
language instructions generated by Phase 25
and their equivalent assembly language
instructions. The equivalent assembly lan-
guage instructions are generated by an
object listing module (IEJFVCAO) that Phase

25 1loads (via the LOAD macro-instruction)
into main storage. The object 1listing
module is deleted (via the DELETE

macro-instruction) before control is passed
to the next phase.

Upon completion of Phase 25 processing,
control is passed to Phase 30 (to generate
error/warning messages and to process the
END statement).

Figure 13 jllustrates the data flow

within Phase 25.

Chart BO illustrates the overall logic
and the relationship among the routines of
Phase 25. Table 20, the routine directory,
lists the routines used in the phase and
their functions.

GENERATION OF OBJECT MODULE INSTRUCTIONS

Phase 25 creates the object module
instructions from the intermediate text
entries and the overflow table. These
instructions are in the RR, RX, and RS
formats of the System/360 instructions.

The control routine (PRESCN) for Phase
25 obtains each intermediate text entry and
examines its adjective code. The adjective
code determines which Phase 25 subroutine
is to process the current entry or the next
series of entries. The processing subrou-
tine generates the required object coding.

v 1 1
Main Storage |Overflow | | TXT Card | SYSLIN
| Table | | Images for | and/orx
L 4 |Instructions | SYSPUNCH
|and RLD Card |
| Images for |
|Address |
|Constants |
L 4
r 1 r 1 r 1
Main Storage |Source Symbol | | Map of Refer- | SYSPRINT
| Table if l———s] Phase 25 | |enced State- |
|Object Listing| | |ment Numbers |
|option is in | } 1 L 4
|Effect |
L i
v 1
|Branch List | SYSUT1 or
r « |Tables and | Main storage
SYSUT2 or | Intermediate | |Base Value |
Main Storage |Text | |Table |
L] L J
1}
|Object Module SYSPRINT

Figure 13. Phase 25 Data Flow

Intermediate text entries for operations
within arithmetic expressions are almost in
a final instruction format as a result of
Phase 15 processing. The intermediate text
words generated by Phase 15, for arithmetic
expressions, contain all the elements
required for the RX format instruction:
operation code, result register, base reg-
ister, and displacement. When Phase 25
encounters an adjective code indicating an
arithmetic expression, control is passed to
the routine (RXGEN) that generates RX for-
mat instructions.

Other intermediate text entries still
resemble the output generated by Phase 14,
An adjective code identifies the type of
entry and possibly several entries that
follow it. Various Phase 25 subroutines
analyze these entries and generate the
appropriate instructions.

If a subprogram is being compiled, Phase
25 generates an epilog table when the

FUNCTION or SUBROUTINE adjective code is
encountered. The epilog table provides
Phase 25 (when it encounters the RETURN

with the information necessary
instructions that

statement)
for the generation of

Section 2:

|Listing if
|Object Listing
|Option is in
|Effect

1

bt s S . c— e @

return the new values of variables, used as
parameters, to the calling program. This
information consists of the following:

¢ Length and address of the variable in
the subprogram.

¢ The relative position of the variable

in the parameter list of the calling
program.

Refer to Appendix I, Figure 81, for the

format of the epilog table.

COMPLETION OF OBJECT MODULE TABLES

Several tables are used by the object
module during the execution of the instruc-~
tions generated by Phase 25. These tables,
assembled in their final form by Phase 25,
are:

e The branch list table for
statement numbers.

referenced
e The branch list table for SF expansions
and DO statements.

¢ The base value table.

Discussion of Compiler Phases 49

Branch List Table for Statement Numbers

Phase 12 allocated storage for a branch
list table (refer to Appendix J, Figure 85)
for referenced statement numbers. Each
statement number referenced by a GO TO,
computed GO TO, IF, or DO statement was
assigned a number relative to the start of
the branch table. This relative number was
placed in the chain field of the statement
number entry in the overflow table (refer
to Appendix H).

When an intermediate text entry for a
statement number definition is recognized
by Phase 25, the corresponding overflow
table entry is obtained, and the relative
number, assigned by Phase 12, is wused to
determine the position of the statement
number in the branch table. The value of
the location counter is placed in this
position and is the actual relative address
of that statement.

Two instructions are generated for the
portion of a FORTRAN statement that ref-
erences a statement number. The first
instruction 1loads the address portion of
the proper entry in the branch table into a
general register; the second instruction
branches to the address placed in that
general register.

Branch List Table for SF Expansions and DO
Statements

A second branch list table is completed
by Phase 25 for statement function (SF)
expansions and DO statements. Phase 14

assigned a unique number to each SF and
placed this number in the pointer field
portion of the intermediate text entry for
each SF. Phase 25 uses this number to
assign a 1location in this second branch
list table when it encounters an SF adjec-
tive code. The address of the first
instruction in the SF expansion in question
is placed in this location. Any statement
referencing this SF uses the number of the
SF to obtain this location in the branch
list table, and branches to the address in
the location (that is, to the beginning of
the SF expansion).

Phase 25 also assigns each DO statement
a 1location in this branch list table. The
address of the second instruction of the DO
loop in question is entered in the proper
location. The object module instruction
that controls the iteration of the DO 1loop
obtains this location in the branch list,
and branches to the address in the location
(that is, to the beginning of the DO loop).

50

Refer to Appendix J, Figure 86, for the
format of the branch 1list table for SF
expansions and DO statements.

Base Value Table

The base value table (refer to Appendix
J, Figure 88) is continually generated by
the various phases of the compiler as base
registers are required for the object cod-
ing. An object module can only use general
registers 4, 5, 6, and 7 as base registers.
(When the object module is entered at
object-time, these registers are initial-
ized from entries in the base value table.)
If the base register requirements for the
object module extend beyond the four avai-
lable registers, the base value table is
used to take special action.

During compilation (prior to Phase 25),
the value for each base register to be used
by the object module is inserted in the
base value table, regardless of the general
register number used as the base register.
The first entry in the base value table is
the value placed in register U4; the second
refers to register 5; etc.

For a source module for which the com-
piler assigns registers 4 and 5 to ref-
erence data in COMMON and assigns registers
6, 7, and 8 to reference data and instruc-

tions in the object module, the base value
table contains the values indicated in
Figure 14.

v T T T 1 T 1
| Register | 4 | S| 6 | 7 | 8 |
L } 4 1 1 L J
r T T T T T 1
| Value | O | 4096 | O | 4096 | 8192 |
L L L L L 1 d
Figure 14. Sample Base Value Table Values

The value 8192 is initially assigned to
general register 8, and that register num-
ber 1is entered in the intermediate text
entry requiring the base register. Howev-
er, when Phase 25 encounters this inter-
mediate text entry with a base register
number of 8, an instruction is generated to
load the value 8192 into register 7, and
general register 7 is wused as the base
register in this instruction.

In general, when a base register other
than 4, 5, 6, or 7 is encountered by Phase
25, the base value table is used to obtain
the value of that base register, and an
instruction is generated to load that value
into register 7. Register 7 is used as the
base register in the instruction at object-
time

PHASE 30 (IEJFXAAQ)

Phase 30, the 1last phase of the
compiler, may be entered either after the
completion of Phase 20 processing if the
NOLOAD option was specified and errors were
detected in the source module, or after the
completion of Phase 25 processing. The
functions of the phase are:

e Producing error and warning messages.
e Processing the END statement.

When Phase 30 is entered from Phase 20,
only the first function (producing error
and warning messages) is performed. Howev-
er, when Phase 30 is entered from Phase 25,
both functions are performed.

Upon the completion of Phase 30 process-
ing, control is passed to Phase 1.

Figure 15 illustrates the data flow
within Phase 30.

Chart CO0 illustrates the overall logic
and relationship among the routines of
Phase 30. Table 21, the routine directory,
lists the routines used in the phase and
their functions.

PRODUCING ERROR AND WARNING MESSAGES

Phase 30 checks the adjective code of
each intermediate text word for an error or
warning condition. If one is encountered,
Phase 30 obtains the error or warning
number (set up by the phase that detected

the error or warning condition) from the
mode/type field of that intermediate text
word. This number is used as an indexing
value to obtain the length and address of
the actual message corresponding to the
specific error or warning detected.

The length of the message is obtained
from the message length table. The address
of the message is obtained from the message
address table. The actual message is
obtained from the message text table.
(Refer to Appendix I for a description of
the use and format of the message tables.)

When the message length and the message
address are obtained, Phase 30 then prints
the corresponding message on the SYSPRINT

data set. (For a description of the messa-
ges capable of being generated by the
compiler refer to the publication IBM

System/360 Operating System: FORTRAN IV (E)

Programmer's Guide.)

PROCESSING THE END STATEMENT

When the intermediate text entry for the
END statement is recognized by Phase 25,
control is passed to Phase 30. Phase 30
first produces any error or warning messa-
ges detected by earlier phases of the
compiler. Phase 30 then writes both branch
list tables and the base value table onto
the output data set(s). Because all three
of these tables must be relocatable, all
entries in the tables are entered in RLD
card images, as well as in TXT card images.
Phase 30 also creates the END card image
for the object module.

r 1 ~ 1
SYSUT1 or | Branch List | | SIZE OF COMMON, | SYSPRINT
Main Storage | Tables and | | SIZE OF PROGRAM |
(only if | Base Value | | Message |
entered from | Table | | |
Phase 25) L 4 o 4
\ /r 1
Y 1 | List of Error | SYSPRINT
| Phase 30 | | and Warning |
| ™ Messages |
- 4 | (if any) |
J//////" ﬂ\\\\\\\\‘f H
r 1 r 1
SYSUT2 or | Intermediate | | TXT and RLD Card| SYSLIN
Main Storage | Text | | Images for | and/or
L 1 | Branch List | SYSPUNCH
| Tables and Base |
| Value Table, and|
| END Card Image |
L J
Figure 15. Phase 30 Data Flow
Section 2: Discussion of Compiler Phases 51

SECTION 3:

CHARTS AND ROUTINE DIRECTORIES

The following charts describe the overall logic of the major components of the FORTRAN

IV (E) compiler.

Routine directories are included for

those

components

that

Section 3:

Charts and Routine

Directories

contain

. - < p . . gt
numerous routines and sukioutines. Multiple entries to subroutines are indicated by a
slash (/).
.
Flowchart Conventions
Flowchart tonventions
* FUNCTIONAL SYM3OLS * *
* ———————————————— »* *
* * *
» HEEERALERRRREEREN * SAMPLE FLOWCHART *
* * * ——————————— e e *
* * PROCESSING * - *
* * BLOCK * * *
M MM M
. P M
* HREAREERBRRRERERE * *
H H M
- * *
» * *
- * *
H , .
. : M
M .. : :
* B1 *, * *
* o ¥ *q * *
- «* DECISION *o * M
* * BLOCK o* * *
* - o * »
* *e ¥ * Rebofiadiabed BLOCK €3 IS ENTERED FROM THIS CHART AND FROM *
* e o ¥ * *ZA ¥ AT LEAST ONE OTHER CHART. *
* * * * C3% *
L 2 * R * * *
H M ST M
- * * C3 *-> *
M : Fe s .
M M . b
M H v H
* * EERERCTHNRA RN RRES THE TERMINAL BLOCK IS USED TO SHOW USER ENTRY #
* HRRNCIARARRRT RS * RERRCZERRRRANRS * * AND EXIT POINTS WHEN THE PROGRAM BEING *
* * TERMINAL * * * * * * FLOWCHARTED IS AVAILABLE TO AN IBM CUSTOMER. *
* * BLOCK * * * USER ENTRY * * * IT IS ALSO USED AS AN EXIT CONNECTOR WHEN *
* * * * * * * * THE TO LOCATION IS TO NO SPECIFIC CHART AS IN #*
* ERRERRERERRR NN * HERRRER RN R RN * * A MULTIPLE USE SUBROUTINE. *
* * R 2222222222222 23 *
M M .
: : :
M M H
. . .
. x i
* * *
: M .
* R EAND] RN NE * *
s x * H M
* # MODIFICATION # * *
* * BLOCK * * *
A . H H
M . M H
* E2 22222222222 3 * *
* * *
H : .
* * *
* * *
H : H
: . M
* * GOTO *
* ERE A2 ISRITIZ IS T 223 * HRBRRETHRERRE R SR *
- - *SUBNM CAL* THE INSTRUCTION AT SYMBOLIC LOCATION GOTD »*
* * INPUT/OUTPUT # * hiadait ok Sk S Sl Sl CALLS A SUBROUTINE NAMED SUBNM. THE LOGIC OF *
* B8LOCK * * * SUBNM IS SHOWN ON CHART ZC STARTING AT BLOCK *
* * * * * * Al. *
* * * * »
: ErvrraananEre H A 3
* * *
: : .
: H M
- * *
* * < 4 *
: M M
* = Ve *
* ERZ 22 ISR IS 22223 * F3 * g *
: x I RS SR - .. waan b
* LR T % SN I S BN 2) * » * * g * * *
* * SUBROUTINE * * * USER EXIT r—o —t o* >* €3 * *
M bt A - . i H M
- * * * I e YY) 1 *. * E2 23 *
* HEARRERRRRERTER R * N *
- * E * ON-PAGE EXIT CONNECTOR- *
: : S CONTROL TRANSFERS TO BLOCK C3 ON THIS CHART. *
M
: H c :
* » R *
* * a *
M :] b
* ERGLERRRRER * s *
* * * * X *
* * PREDEF INED * * N *
* * PROCESS * * G *
bd * BLOCK * *
H . . . M
* FRBERRERERR * *
H M
M H
H N :
. M .
* * >| LINE JUNCTION *
M : ;
H : v :
» * HRERRHTREEERR R RN *
- * ERERHOHERERR * * *
* * * * AES B P ZE SR 2 2 2 3 *
* * #VARIABLE RETURN¥*< * * *
* ON-PAGE * * - * * *
* CONNECTOR * EA 2222122222222 * * *
* ARERRERER * ER2 2222222222 22223 *
* I * *
: b .
*] * *
M v M M M
: winn M watne :
* * * * %78 * OFF~PAGE _CONNECTOR— *
* * C3 * * * A2% CONTROL TRANSFERS TO BLOCK A2 ON CHART ZB. *
: e M iy M
* W+ * * *
* * *
* * *
* OFF-PAGE L *
* CONNECTOR * *
H SONNESIe . M
M . M
* * *
. . M
* v * *
. . : .
- * * * *
* * * * *
M *x : :
- * * *
M H M
* * *
M . M
* * *
* * *
H M M
* * *
s . A rRAERAERERY .

53

Chart 10.

IEJFAAAQ
(INITIAL ENTRY)

HEREALEERRER RSN
* *

* CALL ING

*

* PROGRAM *
EAA AR ERAR ST L 2 2]

VIA
ASSISTED

v
’&’IB]}***!!Q*
#START1

e Y W e Y Bt e
#L.0OAD INTERFACE
* MODULE

* IEJFAGAO)
RAR S 222 S22 222 s s

SUPERVISOR
LINKAGE

*

h
*

*
*

SEE TABLE 2 FOR A
BRIEF DESCRIPTION OF
THE FUNCTION OF EACH
PHASE 1 ROUTINE/
SUBROUTINE

IEJFAABO
(SUCCESSIVE ENTRIES)

HRRUAT RN H
* *
* CALLING *
* *

PHASE
R e e e e

83 *eo
¥ *e

o *o NO
%o FINAL ENTRY o
* *

v RUNCMPLY Vv
(31 c2 c3
*0OPTNSCAN * * DDNMSCAN * *
e *— *— . FLUSH DUTPUT *
* SCAN * ># REPLACE * * BUFFERS FOR *
* PARM * - DDNAMES * * BLDCKED 1/0 *
* OPTIONS * * IN DCBS * * *
i W TN NN NN EE
r
v
ot v
D1 * g W NDID RN RRRRAD A NN ER NN
¥ $ * g * * * *
* OPTION _ *. YES * LOAD SORSYM * * CLOSE ALL *
IN EFFECT % ># MODULE * * DATA CONTROL *
*e . * (IEJFAXAQ) * * BLOCKS *
*q o * » * *
e o¥ A2 A2 22222222222l BEBRERRERRERRFRRRE
* NO
v
N o¥e FREEMAIN
El *q E2 *, FRRRRETEE RN RN N
o *o RTSIZEC 4, * FREE ALL MAIN *
«* SPACE OR *. PRFRM <% GREATER *. YES *#STORAGE ALLOC. *
#PRFRM OPTION IN¥——————>#.THAN OR EQUAL ¥ * TO COMPILER #
*, EFFECT _o% *.T0 18504 o% l * BY PHASE'S ¥
.*. .i. * g .I. v REZ 22222222222 2223
*SPACE * NO ran
LA 2 2] * *
- * X * G4 %
* Fl #¥=> * »
* * LA i 2 d
RN v |
N v
Fi *q Qili*in!G&‘lll!' HRRRRETENRREEE N
+¥ADJUST *o *OPNFILES * DELETE *
«*0R NOADJUST®*+ NOADJUST #—¥—#—%_% S * PERFORMANCE #
*q OPTION IN o ¥—————>% OPEN DCBS FOR * *MODULE IF PRFRM#¥
*o EFFECT _o% #SPACE AND NOAD-# * COMPILATION #
*o o *#JUST COMPILAT. * * *
e oF R2 22232222222 22227 2222222222 2222 23
*ADJUST

v v
bi&nn@;auuu*n**ib G2 *
GOPNFILES »

T —l—i—*-l—u * LOAD
“ OPEN DCBS FOR # ># PHASE 5

AND AD- # * (IEJFCAAO)

*JUST CDMPILAT. * *

v

G3nnw
* * »
b * DELETE SORSYM #
*< * MODULE IF s %
* * OPTION IS e
* * IN EFFECT *
FRBERERERERERER R

XC|TL

v
FEREH R RRRR RN
» »

. PHASE S
(1EJFCAAO)
HERERERERRRE RN

54

Gl&lﬁu3nu’ai'i¢&u

*OPNF!LES

Foutoae —l-l—'~i—'—'
»* ol DPEN DCBS FOR *<
- » *

* COMPILATIDN b
T e T 2 2

Phase 1 (IEJFAAAO/IEJFAABO) Overall Logic

LA LA L YYS 2222 22223
* *
* RESET *
>% COMMUNICATION *
* AREA *

*
R RN N

ok,
B4 *o
. *o
o* SPACE OR *. PRFRM
#*PRFRM OPTION IN®
%o EFFECT %
¥

.

e oF
*#SPACE

«*" RESTART *. NO
* c

*e .
*, ¥

o
* YES

RESTART
ERRERDGWERN T AN

DELETE
PERFORMANCE
MODULE AND

KEEER
EEE Y

PHASE S
2 R e e R e

<

HEAXBSEHE R R
* *
> XCTL TO *
* PHASE 7 *
LR 2222 S22 LS L)
(1IEJFEAAQ)

FREEMAIN
RN C G N N NE
* FREE ALL MAIN *
* STORAGE *
>%* ALLOCAYED TO *
% COMPILER dY ¥
* PHASE o
LA e e T

v
FABREELHEREBRRRER
* *

* CLOSE ALL * *
#* DATA CONTROL # >*
- BLOCKS * »
* *
P T T Y
‘*Q“FQ"'}’."'{
DELETE *RETURN
)“ INTERFACE
* MODULE ‘
* *
P I I Iy I T
*EEE
» *

* G4 »
* *

W

v

‘i"'GQIlI.IQi!G'
*LOAD
I—l—i-‘—i-*-l—!—*
LDAD PERFORM—
ANCE MODULE
* (TEJFAPAO) -
RHRBRRRBRBERERRRNE

EHRE
*
F1 *
*
EREW
VIA SUPERVISOR-
ASSISTED LINKAGE

v
FRERCSHERRERERN
*

CALLING *
PROGRAM *
HEEERERRE AR NN

En

Table 2.

Phase 1 Main Routine/Subroutine Directory

L) T
|Routine/Subroutine| Function
1

| DDNMSCAN
|

|
| FREEMAIN

|
| LOAD
OPNFILES

OPTNSCAN

RESTART

|
RUNCMPLT

START1

- c—

+
|Replaces DDNAMES in the data control blocks (in the interface
|module) when requested by the calling program.

|Frees all main storage allocated to compiler by Phase 5.

|Loads the performance module into main storage if the PRFRM option
|is in effect and if the SIZE option is at least 18504.

|Opens data control blocks for compiler data sets as indicated by
|switches (in the communication area) for options.

|Scans the compiler options and sets appropriate switches in the
| communication area.

—— —— —— — —— — — ——— — b o—]

|Closes all data control blocks for compiler data sets, deletes the|
| performance module and Phase 5, and initializes compiler for a SPACE|
|compilation. |
|

|Closes all data control blocks for compiler data sets, frees allj|
{main storage allocated to the compiler, and returns control to the|
|calling program.

|Performs housekeeping and loads the interface module, and Phase 5
|into main storage.
4

s o S e S

Section 3: Charts and Routine Directories 55

Chart 11.

SNEXT (SEE NOTE 1) oo
A2
EIZ SR Z I T2 2 ¥ IS AN.*.
* CALLING * «* INTERLUDE *. Y|
L 2

)’.EEING CALLED

* ROUTINE *
L e e

o ey

Interface Module (IEJFAGAO) Routines

PRTCTRL (SEE NOTE 1)

HRERATERRRE NN

QL NN
#SIORTN
L e
r—>* CHECK RESULTS #
OF WRITE *

ES
CALL ING

ROUTINE
LA e I s e e

* k%
* %k

e o l (SEE NOTE 3) #
e ¥ L2222 222222222222)
* NO
T
v v
oty v ote
B1 *gq 'ﬂliiealiﬁ*ﬁ**iil B4 * g
4 *e .
¥ AN *. NO H MOVE CARRXAGE * «% ERROR _ #. YES
%o DCBS TO BE 1+ CONTROL_CHAR *o OR-END-OF %
*. TCLOSED ot TO OUTPUT M *#oDATA SET o%
BUFFER * *, o*
i. .* {{{illl**{.l*"*l Hy o
* YES NO
v ’ v
RRERRC | HEERREEEEN v HERRRCITHRRERRERES v
* TCLOSE THE * RARERC2HRRARRERS #*SIORTN 11D2#% ERRRCH NN R RN
% DATA SETS * V. *NEXT PHASE/INT # Bt e e

* INDICATED IN l————————>*AS INDICATED IN%*
*

* NORMAL RETURN #
* TO »

#THE LINKAGE TO # R UTPUT BFR * #CALLING ROUTINE®
THIS ROUTINI * i&i&*i’ib*l'lk . SEE NOTE 3) # U
EA A AR 2 22 s 22 2] 222222 22122 22222]
Dz'*' SIORTN (SEE NOTE 1)
-
- *q HRRED TR RERE SRR
NO «% CHECK %, #CALLING PROGRAM¥
%o OPERATION . #< # (SEE NOTE 2) »
- o ¥ * *
*y ¥ 2222222222 d 2]
*e o
* YES
E2 X2 3
* *
* E1 >
* *
L2213 v
oo v ke
El *q HENRREDRRERERRERN E3 *g FRERRELERRRERRRER
o Y *e * * <#EITHER #. #SAVE GR14, AND *
«¥FURTHER 1/0%. NO * ISSUE CHECK # . ERROR _ *, YES #FOR ERRORs SET #
*. OPERATIONS . * MACRO— * >%#e OR—END—OF o% >%#GR1 TO POINT TO*
*e ok # INSTRUCTION * #.DATA SET o+ ¥GR 14, 15, 0. 1%
, o * *o o* SAVE AREA
*g * RA222 222222222 *y oF GO’!!GO!'&&*"!’}
* YES EL 2 2] * NO
* * L322
* G2 * l_ * *
»* * >¥* E1 #*
R 8224 * *
v e
oty
F1l *q HEERAF2RERRERRRRS Ea 222 ki 222222 222
o ¥ *g * » *
o* *o YES ISSUE READ + # SET ERROR #
*e DPERAT!DN o > % MACRO= * # OR END-OF- #
*o o® * INSTRUCTION * * DATA SET *
e o * * * INDICATOR *
Hy oW HREREERERRRERRR RS FRERBRERERERERE R
* NO
| iill
M G2 -—>
&&QQ
v
PR ERG] W R SRR NR v v
* * RRRRG2HEHRRRRER FRERGIEERRRRREN RARREGHAREEENRER
* ISSUE WRITE * * NORMAL RETURN * *ABNORMAL. RETURN® CALL ING *
* RO— > # * 70 * * ROUTINE <
INSTRUCTION # 'CALLING RouTxNE- #*CALLING ROUTINE® * *
* EI 22222222222 223 RERRRRREBEERERN E2 2222222222223

R e e e T

NOTE 1
AN INSTRUCTION TO BRANCH TO THESE ROUTINES IS A

NOTE 3

FOR A PRFRM COMPILATION,
THE PRTCTRL ROUJTINE

LINKS TO THE PIORTN
ROUTINE IN THE PER~

MANCE MODULE. THE PIURTN
ROUTINEs IN TURN
TO THE SIORTN RDUT!NE
WHEN 1/0 1S NECESSARY.

HEEESEERR RN NN
*ABNORMAL RETURN¥
>* TO *

*#CALLING ROUTINE®
WA RE RN

PATCH (SEE NOTE 1)

HRERESHNERR RS AR
CALLING

*
* ROUTINE

-

L2222 22222 2222

v
¥,
FS *e
¥
NO % PATC
* o REOUIRED
*, ok
o
¥
YES

*,
*,
*
|

v
REERECSERRRRRERES
* *
*PATCH INDICATED¥
AREA IN CALLING¥
: ROUTINE *

*

WREERRE RN RRER N

PART OF THE COMMUNICATION AREA. THESE INSTRUCTIONS
ARE UABELED FNEXTs FIORTN, FPRTCTRL AND COMPILE-TIME I/0 RECOVERY PROCEDURE
FPATCH FOR SNEXTs SIORTNs PRTCTRL
PATCHe RESPECTIVELYe WHEN THESE
ROUTINES ARE NEEDED. A BRANCH TO ERBRHIERRE RSN NOTE &
THE RROPER INSTRUCTION IN THE * INTERFACE MOD # THE 1/0 SUPERVISOR IS
COMMUNICATION AREA 1S EXECUTED. # AND BSAM RTN # ENTERED FROM THE SIORTN
(SEE NOTE 4) * OF THE INTERFACE MDDULE
NOTE 2 HERER BN RSN WHEN A READs WRIT hEn
THE CALLING ROUTINE MAY BE WITHIN A CHECK MACRO-INSYRUCT!ON » *
PHASEs WITHIN ANOTHER INTERFACE 1S 1SSUED. * g2 »
MODULE ROUTINE, OR WITHIN THE * *
PERFDRMANCE MODULE. ’X"
| YES
ote
R S D RN RN NR RERBEJL AR BERBERER JS *e
ER I NIRT TR TN A YA # RETURN TO * . - » o .
* - #BSAMe lNTERFACE. NO % /0 YES * RETRY * o HAS *o
* CALLING *< # MODULEs AND %< <———#, ERROR IN o #m—————>#% APPROPRIATE #——————>#, ERROR BEEN ¥
* HASE Ad #PHASE REQUEST~ # "o 10S * NUMBER OF * #3 CORRECTEDe ¥
40:{*},..*1;..{ * ING 1/0 L ot * TIMES *e ot
CONTINUES HRBFERRRRRERRE BB E2 2222222222322 223 *e o¥
NORMAL REEE * NO
PROCESSING d *
* J2 »
» »
wnas
v
’i’l'Kz**‘l”".. OQI..KJQQ.Q..'Q.Q .'b.!KQ.‘QQ"’Q'G WRERENE NN
RERRK L FRRRRRERN * * - #* RETURN ABORT #
-

* #PHASE 1 PAS$ES * CALL ING PHASE
#CALLING PROGRAM#L: #ABORT CODE l&)'(—-——————* PHASE XC'L'S *L #SETS ABORT BIT *<————————*
* * ' TO CALLIN 0 TO PHASE 1 * # IN COMM AREA *
LaZ 22T IS Y 2 * *

PROGRAM
l“”ii!'iii"l'&’

56

Qilﬁ!lll!ll'!i'il RERBRERBERRERR RN

* CODE TD BSAM, =
AND *

IN D+
*PHASE REQUEST- l
*
iivpu'i'-tlﬁﬁuirt

Chart 12.

Performance Module (IEJFAPAO) I/0 Routine

Section 3:

a¥e oo a¥o PIORTN,
* A3 *e A4 *,
iio»Aliiﬁluﬁilu o* IS *, o* 1S %, o* IS *e RREEAGHRERERR RN
- SIORTN NO o* BLOCKING #, NO «#% SYsuT2 *o NO «%* SYSUT1 *e * CALLING *
" (nsssn ACIIE .FACT. GREATER . #<: . REFERENCED o*< #, REFERENCED _o¥< * PHASE *
» 3 *e HAN o* - *o o * *
&uﬂa.uacn« iill ‘. 1 . o* *, o LY e 2T Y 2T
o o *o *
* YES " YES * YES
v
oty CHAINIO v
B2 *g f. R WL NN RN LA AL TR A 2 2L 2 g
o . * * * *
ND o% 'CHECK® #, D -'PHASE 12 OR'- VES e UPDATE * * UPDATE *
*o REQUEST o® LATER IN >®#BUFFER SIZE IN # >*BUFFER POINTERSH®
] .. o* "%, CONTROL o% - FCOMM * * IN FCOMM *
., ot *, oW » *
v e oW %y o HRABERRRRRERR NN]
ERE * YES *
* *
* G3 »
* *
L2223
v v
PTSTWR1 ote o¥,
HEEREC] SRR RN L2 *, FRRRRCT AR R RN R
MOVE LOG RCD * WAS #, *SIORTN 11D2% «%* DOES #,
INTO QUPT BFR # NO .. LAST REQ %, e ton o e o e e o¥ SPECIFIED ¥*e YES
#UPDATE BFR PTR #< #4FOR THIS DATA.#% >* INITIATE * *#oBUFFER POINT o g
* AND LOGICAL * #q SET A % # SCHECK—READ' # #.TD ITSELF.#*
RECORD COUNT # *#4READ o¥% * OPERATION * *e o*
R AT T eI E Ty 7 *e o ERERRRERRRER RN NN *e o
* YES * NO
R ER
L
>* G2 *
* *
v v 2223
o¥e oty e¥e
02 *o D3 *e DS *,
o® ANY ¥, - *q o¥* * g
e* RECORDS #. NO «¥% ABNORMAL #, YES #(OFF FOR FIRST * NO «% P'READ®* *e J
#o LEFT TO BE % #o RETURN FROM o * 1/0 FOR TA *#< *o REQUEST o %<
*oDEBLOCKED . # #*o SIORTN % * SETs ON A *o ¥
, o *e o # OTHERWISE . o
e oF He oW v **i!l*i&#i,**lili *o o
* YES NO *Er * YES
EREn * *
* » * G5 *
* » * £3 #=> * *
*ERN L3l 2]
*EE® v
PGETRCD v v oo
EREARE L RRRRE AR ninuiezuiu;bonocﬁ RRRRBETRERRE R ERE EREEREL HEE R RNER ES *,
RESET LOGICAL * # MOVE NEXT LOG #* * * * * o% WERE %,

RECORD COUNT, # # RCD INTO RE- # * SWITCH * * INCREMENT * YES «+*MORE THAN 2%,
* SET °*WRITE* * QUESTED AREA, *< #*BUFFER POINTERS#* # RECORD COUNT #* #eRCDS WRITTEN %
BITs, INDICATE * FUPDATE LOGICAL * * [3 * * *. ON D *

#POSSIBLE CLOSE + RECORD COUNT # * * * * *o SET o%
YT ey e 2 v '*lh‘!.!*lhll!*.& XS 2 Y T R T Y R R R R ®e o
22 1) * NO
TS - - 2223 *wHE
- - * Ja ® 0w * L‘ * *
* F1 * * % F2 #> >% G2 *
» * LT TY S - NOTE 1 —=- THE * *
Bl v Bedufiaied SI1I0RTN ROUTINE R
TSTPLUSH %, PNORMRET IN THE INTERFACE
F1 *, -:-*on-*~-00'i*' MODULE PERFORMS v
- o AVE * THE REQUESTED HRRUFQARRERRERN
o® WAS A *o NO ’LDGICAL RECORD * OPERATION AND * SIORTN *
*e *FLUSH® . COUNT AND * THEN RETURNS * {REFER TO *
#oREQUESTED.* ’ CURRENT I1/0 ' CONTROL TO THE * NOTE 1 *
, o * PARAMETERS PHASE THAT RE- FREEERARRERRERY
y o QQQI!G!&I.'*I'G# QUESTED 1/0.
* YES
wRER ERER
- * * *
* G2 #=> * GS
133 R v
RETURN v PTESTRD oty ok,
61 G2 G3 *, HEEREGHRERERERRNN GS *,
* - * * % IS5 g * SET LOGICAL * o *e
* CALCULATE * * RESTORE hd +*THIS FIRST #*¢ NO # RECORD COUNT * o *e YES
RECORD LENGTH * * REGISTERS bl * ACCORDING TO #—y #*o END-OF-FILE o%
- * * * * LENGTH OF * *e .
* * * * #* SHORT BLOCK #* *q O
R 2222222222222 g oF
* NO
-
» o
># E3 *
* *
T2 v
e,
v P e s T T HS *,
PR ERRR RN o* * I % WAS ¥,
*, YES * NORMAL * «* IREAD® #* SREAD' BIT, #* YES % A VALID %,
ECORD LENGTN-.‘————W * RETURN TO * *e REQUEST >% INDICATE NG * *e¢ SHORT BLOCK %
* * # CALLING PHASE # - d #POSSIBLE CLOSE * *e READ o
*e o PR YR ey *, ot * * * o
*o o y oW PRI T2 TR YR %o ok
* NO * NO * NO
ET T
* - < 4
* g4 2>
* *
RER
v PINITWR v v
BRARRJERHREBERERES e Nkt LRI I I NYS R S ey s v
* * * INITIALIZE * *SIORTN 1102% REERJGEEERER X RS
* SET 'WRITE*' + *LOGICAL RECORD # B e e e o * ABNORMAL *
#* BIT FOR SHORT # #COUNT TO VALUE # * PERF ORM * * RETURN TO *
- BLOCK * # OF BLOCKING # I el REQUESTED * # CALLING PHASE *
» FACTOR - OPERATION * ARREERRERR LR RS
ERERRFBER R R RN Ty v Eh)
T ¥s
L »
* Fl o»
» -
L2 22
M
v oty
" K2 HEERRC TSR RN RN Ka *,
#SI10RTN 11D2#% * * - - *,
D ot oo = V% SET YCHECK- * * INDICATE * YES o *. NO
* PERFORM #———e—————>#% ONLY* BIT FOR ¥ * NO POSSIBLE *< #*#o POSSIBLE -
* REQUESTED * * THIS DATA SET # - CLOSE * *#e CLOSE %
- OPERATION - * - » - *, ¥
* * * 23 HRBERRRRARRERRE RS *e o v
* LAl
* *
* F2 =
v * *
E2 2 2] - ne A A4 d
* * * »
* Ja # * F1 #
* - » -
REn R

Charts and Routine Directories

57

Chart 13. Performance Module (IEJFAPAO) End-of-Phase Routine

PNEXT
W EATIR RN
*

*
* CALLING -
* PHASE *
330 323N

v
WA IEE T
* TURN OFF *
SALL INT TEXT
* IN MAIN *
STORAGE®' SWITCH#
* IN FCOMM *
L2222 2R 222 L 22

oo
c3 o,

- *q P22
ot ANY *o NO * *
*, DCBS TO BE e W———"D% F4 *
#*o TCLOSED o% * *

*, ot

Hy ¥
* YES

L2 22

v
AR HD T NN RN
* BUILD TCLOSE #
* LIST AS *
* INDICATED IN ¥
* LINKAGE *
* PARAMETERS *
LIRS P e S T 2

v
¥
HRRRBRED2 HHBEREREER E3 * g RS2 XS 222 L 2222)
#RESET REQUIRED # J*EITHER ¥, » *
#FLDS IN FCOMM, * YES .* SYSUT1 OR *. NO # TCLOSE THE *
* PERFORMANCE *< #,SYSUT2 TO BE % >#INDICATED DATA *
* MODULE, AND * #. TCLOSED .% A~ #CONTROL BLOCKS *
#BLOCKING TABLE * *, o * *
RHREREEERRRRERREER He o¥ ER 222X S22 L X]
*
%N

* *

* F4 *—>

* *

E X2 2] v
v oo
REBERF2 XX RERR Fa *q WX R R SRR R RN NE
SIORTN 11D2# o IS *. #0BTAIN NAME OF *
B e e e «* NEXT *. YEs *NEXT PHASE FROM®
* ISSUE CHECK # *o COMPONENT <% >#% BLDL TABLE, *
. FOR * #.AN INTER-o* * AND MODIFY *
* SYSUT1/SYSUT2 # #.LUDE % # XCTL MACRO *
FA 22T 22222 22 2 12 L) Hg oM A3 I3 R NN
* NO

>

v
HRERNGS IR N RER
* EXAMINE RESET #
TABLE AND RESET#
* RECORD COUNT *
* FOR CHAINED *
#0UTPUT BUFFERS ¥
L3222 T a2 I e g

\
[T XTI Y 20
*

*
* NEXT PHASE *
* *

E2 222 S22 222222

58

Chart 20.

BERBALBRER SRR,
PHASE 1 et
IEJFAABO} :
IR e 7 ¥

e %

NOTE

SERRID HRERRB G EE
#START *
Remtmmbataataal
* PHASE *
:INITIALIZATIEN :
RERRBERERERRRRENR

v
ABRBRCI RN RSB HESBE

SGETSTRG
B e e o o e P W B
. OBTAIN »
* MAIN *
* STORAGE *
HRBERERRBRRRE RN DY
ErTRs
- »
#* D1 #=>
-
“nar 0y

o MAIN #o
LESS .STORAGE OBT.¥. GREATER
o Se—ee

VERSUS AMOUNT
#oREQUESTED. #
g o ¥

——t gy

He o¥
*EQUAL

SEE TABLE 3 FOR_A BR
DESCRIPTION

SUBROUTINE.

== PHASE S ENTERE
PHASE l FAAAO
THE F CONP! LA
N A T PHAS
s EXECU'ED FOR E
SOURCE MODULE IN
ATCH SPACE RUN.

—

v

o¥e
F1 *e
o n
% MAIN ST
*UBTA!NED VERS S

Pu—
#a MINIMUM % GREATER
REQUIRED* EQUAL

Re of
] LESS
v
o¥e

Gl %,

¥ #o
* SPACE #*o PRFRM
#o OR PRFRN .
- -

UNCONDITIONAL
GETMAIN FOR
HMINIMUM AMOUNT #
ABBBEERRBERRRER R v
*

1EF
OF THE FUNCTION
QF EACH PHASE S ROUTI

NE/

FRDH

$w
10N

ACH

A

1T

S EXECUTED ONLY FOR

HE FIRST SOURCE MODULE
N A BATCH PRFRM RUNe.
ARRRBD2RRBRRN BB
* -
* FREE *
>%* EXCESS MAIN #
: STORAGE :
RERRERRAREERERR RS
v
ote
B2 *.
.c
*o YES
'. l/o BLOCKED ot
“w. o’
e of
* NO
“nne
- *
* AS #
* *
*EER

OR

'il'lﬁa."l‘i*...

*FREEALL
'—I-.—Q—'—’-‘—G—’
>* FREE_ALL MAIN *
» STORAGE -
* - QBTAINED *
EA I 2 222221222 2]

L Y et 2
* ALTER

*
* PRFRM »
#COMPILATION TO #
* SPACH »
COMPILATION
ARRBRBRRRRABERR RS

XCiTL

ARRR YO HRRBRRRER
- PHASE 1 *
: (1EJFAABO) *

*

ARBRAERBEREBERS

RESTART
COMPILATION

Phase 5 (IEJFCAAQO) Overall Logic

’th’sa{'.it.ﬁiun

*DCBEXAM
a—n-l_n—i_u-n-n-n

Section 3:

*REN
* *
* AS *
* *
L2224
v
."‘.AS.‘GIOIQ'D.
#PATCH

SREBERAEREBRRRRRRN

La 2 - Tl bl]
* MESSGOUT b

#WRITE MESSAGES *
ON SYSPRINT

- -
RERRREREERRRRR R RN

.I'.lcsﬁ'.ﬂﬂ.i’.“
*GETIOBFS
o I—I—'—ﬁ—.-‘—._
* ALLOCATE MAIN #
#STORAGE FOR 1/0%

*

FRERRRRERRRRERNN R

A RDE NN
OGETDANDO *

‘ ALLDCATE MAIN #
#STORAGE FOR DCT#
#*AND OVFLOW TBL *
RHRERRERRERERR RN

v
*o

Es w,

o *o
SPACE % SPACE *e

>% ALLOCATE MAIN # r——%e OR PRFRM ot
STRG TO BLOCKED#* *o ¥
1/0 BUFFERS # *e .*
uunnnuncwiﬁﬁoaci- He o ¥
*PRFRM
v
oty CHAINALL v
F3 *, WRRRRESEERERREERR
o Rbiad # ALLOCATE RE- #
ENOUGH ‘- YES * #MAINDER OF MAIN'
oMAIN STORAGE .0-———>. AS ¥ # STORAGE TO
#*. LE ¥ * # CHAINED TEXT ‘
*, o l’li * B RS *
Ha oW LA r ry r e A
* NO
>
XCiTL
v ”QG&GSOQGO'Q'O{*
ARARGIFERRRNBRS *FREEALL
_I—l—*—l—l-{—'—'
- PHASE 1 - * FREE_ANY 3
SIEJFAABO) # UNUSED MAIN #
HRERRERE BB R SR * ST jod
HRBERRRERRRRRRRRS
TERMINATE
COMPILATION
XclvL
liileQ-ll!Qli*

*
iislill‘ililiii

Charts and Routine Directories

Table 3. Phase 5 Main Routine/Subroutine Directory

r T
|Routine/Subroutine| Function i

[N £
r T -
| ALLOCATE | Interpolates (using the allocation table) the amount of main storage|
| |to be allocated to the dictionary, overflow table, and text buffers.|
I] I
| ALLOC40 Completes the construction of SEGMAL (begun in GETSTRG). |
| |
| CHAINALL Allocates remainder of obtained main storage to text buffer chains|
| (for PRFRM compilations only). |
| |
| DCBEXAM Determines the DCBs that have been opened, and allocates main|
| |storage to special blocks/deblock I/0 buffers for those data sets for|
| |which blocking is specified. |
| |
| FREEALL Frees any unusable main storage. |
|
| GETDANDO |Allocates main storage to the dictionary and the overflow table. |
I I
GETIOBFS |Allocates main storage to the four I/0 text buffers. |
|
| GETSTRG |Obtains main storage for the compiler. |
| |
MESSGOUT |Writes messages on SYSPRINT. |
| |
| MINCORE |Obtains minimum amount of main storage required for a SPACE]
| compilation. |
|
| PATCH |Builds patch table by reading and then converting patch records.]
| | |
| START |Performs Phase 5 initialization. |
L L 3

60

* %%

Chart 30. Phase 7 (IEJFEAA(Q) Overall Logic

NOTE == PHASE 7 JS_ENTERED FROM

FEREATHUERE RN PHASE 1 (IEJFAABO) FOR

PHASE 1 OR # PRFRM COMPILATIONS OTHER

- PHASE & * THAN Ts F

(SEE NOTE) * EIEJFCAAOS FOR SPACE

R 2222222222224 {a] N
PRFRM COMPILATION IN A
BATCH.

v
EERREBIREAERBRER
*

* MOVE
#OVERFLOW INDEX
*# INTO PLACE

-

22 2 e 22 e s

LEEE S

HRRRRCT RSN RN
* *

* INITIALIZE *
* FOVFLNXT. AND %
* FDICTBLK *

(22 T T 2222 2]

v
WERREDIHE IR SRS
DMDVE DlCT!DNARY“

INDEX D RE— #
' SERVED WORD #
PORTION OF DICT#
INTO PLACE *
R T e 22

v
ERRRRETRRERR R RS
* *
#* INITIALIZE *
* FOICTNDX,

* FDICTNXTs AND '

* FOVFBLK
&l*{{l&.*ll.i*h*.

EEERRFIHERRRRRRRR
* »
EJECT SYSPRINT #
TO NEW PAGE AND
#* PRINT HEADING ¥
* »

a2 e T

v
o¥o ot
G3 *q 64 i.
o* SPACE #,
OR PRFRM %, PRFRM ;FIRST COMP!LE. NO
COMPILATION o#%——————>#%*, OF A TCH o ¥——
*, o® *CDMPILATIDN*
* o

o o¥ .n. ot
*SPACE * YES

v
HRERRHIEREERERERR
* *

* *
*DELETE PHASE 5 #
* *

* *
EI 2 e e T e

v
.l.

J3
DJUST *o
ADJUST -*0R NOADJUST#*, NOADJUST

. .
e o
xc{TL xcjTL
v v
RRREK 2R E TR R ERERKGHERRRNENR
* *
PHASE 8 * * PHASE 10D *
(1EJFFAAQ) * i (!EJ GAAO) *
L2 2223 222222222 SRR R 22 22 L 22

Section 3: Charts and Routine Directories 61

Chart 40. Phase 8 (IEJFFAAQ)

Overall Logic

SEE TABLE 4 FOR_A BR

1EF
DESCRIPTION OF THE FUNCTION

OF EACH PHASE 8 ROUTINE.

QllQlAzQi'l!'ﬂ!Qi
BERRALRARRERERE -
* »* »
. p u——-——-—->- INITIALIZE &
* (1EJ A 2 PHASE -
IQIOO""'Q }QQ . *
A2 22222 22222222 2d

NN

- *

* B2 *=>
* *
LAz 2

FRRBRD2HERRRNBRBR

-

' READ CARD
MAGE INTO

’ INPUT BUFFER

n...*i&.l».a...li

LR R

ARBRELINARRBFRHRRES
* -
* MOVE CARD »
> IMAGE TO *
* PRIMARY WORK %
* AREA *

PR TR Y e TR T

v
oty
<3 *a
oW *e
o#* SOURCE *e
%o OPTION IN %
#os EFFECT %
» o®

YES

.
*o o
* NO

ERRERCHRRRERRRRNY
- WRITE OUT *
* CONTENTS OF

>*INPUT BUFFER ON¥%
* SYSPRINY *
*

FREERBEERERRER .

HRRRRED RN HRRE RN R
* MOVE PACKED #
#SEGMENT OF CARD*
#IMAGE TO KNTER-’<
6 MEDIATE WOR

AREA
*l*l’hlil*lll’{li

oty

F2 *o
o ANY ¥,
+*KEYWORDS IN¥*. YES
. PACKE! o
*o SEGMENT ¥
- .

Ry o
* NO

> <

SCAN v
ERBREDIHEBEBHRREE NOTE -~
- *

#SCAN CARD IMAGE#®
* FOR NAMES AND #
DELIMITERS *
* *

HERERARRERER R RN

v
RARRRREIH AR R RRERR NOTE -
PACK NAME AND
ASSOCIATED *
+ DELIMITER #
(ELIMINATE -
* BLANKS) *
(22222222222 2220 2 3

HRRERETHERREE AR

* INSERT *
* SPEC!AL '
>%* CHAR

ACTERS
UHERE NECESSARV
&QQQQQ&*'}G'!!!O’

v
-’o
G2 *o
¥ *,
NO %
'—"-OF CARD !MAGE-

o* IS *o
«¥THIS FIRST %,
#4 CARD IMAGE ¥
#oFOR STMT o%

. .

e oW

* NO

YES

ote
H3 *o
¥ S *o
o* STATEMENT #, NO

>#*e ARITHMETIC %
g o*
o ¥
*
I YES
v

THE TRT lNSTRUCTION
1s SCAN EACH
CARD !MAGE OF
SOURCE MODULE.

THE

1F FDRMAT STATEMENT-
QUOTE FIELDS.

RS TS 2222222 22
*DELETE SPECIAL *

*DEFINES STATE- #
* MENT TYPE *
EREFRERRRR RS RERS

v
IR DR R RN
#MOVE CARD IMAGE#*
#T0 OUTPUT BFR, *
#INSERT REQUIRED#
* MEANINGFUL *

*
R LI TR I ERE 2222 2]

62

ERERRJITEERBRRER RS
* -
*WRITE CONTENTS %
>* OF OQUTPUT *.
* BUFFER ON *

- SYSUT2 *
AR RN

o* LAS *

o* STATEMENT *.
*oe OF SQURCE ¥
o. MODULE ..

*q

YES

e o
* NO

v
L2 L

RN

X
u

*

CTL
SED

REANKESHRR AN RN R

PHASE 100
(IEJFGAAD)

»
a2 e e R 2 2

*
*

Table 4.

Phase 8 Routine/Sukroutine Directory

I T 1
|Routine/Subroutine| Function |
L | }
T ¥ 1
| BROOT {Branch table for delimiters that may appear in a FORTRAN statement. |
|
DOOUT |Initializes move of DO statement to output area. |
| | I
| ENDCARD |Checks for the END statement. |
|
ENDCOMP |Performs final Phase 8 processing when an END statement is encoun-|
| |tered. |
|
FINDEND |Moves remaining characters of statement to output area. |
|]
| FMTEST |Tests for a possible FORMAT statement. |
|
GET |Obtains next card image to be processed. |
|] |
| BMOVE |Moves Hollerith fields in FORMAT statements from input area to work|
| |area.]
| |
LBLSCN	Scans and packs statement numbers, and moves packed statement
	numbers to output buffer.
jouT	Determines statement type and initializes for output.
ouTMOD1	Moves statement control words to output area.
PACKSCAN	Begins processing of each statement.
	I
PHASES	Performs Phase 8 initialization.
PRINT1	Prints source module listing on the SYSPRINT data set if the SOURCE
	option is in effect.
I	
PUT	Writes input for Phases 10D and 10E on SYSUT2.
RESUME	Performs initialization to resume statement processing after part of
	a statement has been processed.
sCaN	scans and packs segments of card images, and moves packed segments
	from primary work area to intermediate work area.
SCAN3	Identifies reserved words.
SEARCH3 [Checks for reserved words embedded within statement.	
]	
SSCAN	Identifies and determines 1length of Hollerith fields in FORMAT
	statements.]
L L d

Section 3: Charts and Routine Directories 63

Chart 50. Phase 10D (IEJFGAAQ) Overall Logic

NOTE -- PHASE IO?IIS ENTERED FROM

HASE 7 EJFEAAO) IF THE ERERATRER R RN SEE TABLE 6 FOR_A BRIEF
NOADJUST OPTION IS IN * PHASE 7 OR » DESCRIPTION OF THE

EFFECTy FROM PHASE 8 * PHASE 8 * FUNCTION OF EACH PHASE 10D
(IEJFFAAO) 1F THE ADJUST # (SEE NOTE) - ROUTINE/SUBROUTINE
OPTION IS IN EFFECT E2 22222222 2D

v
RN RET W IR EE

* START *
L N A N e
* A *

PHASE
*INITIALIZATION ¥
* *

RHRBRRRRERRRERER R

>

v
HRERRCIRBRRRERR RN
*
OBTAIN A *
SOURCE MODULE #
STATEMENT *
*

NN NN

LR E R T]

v
RRRERDIHERRERE RN
ENTER STATEMENT#
ON SYSPRINT IF #
#SOURCE AND NO- #
ADJUST OPTIONS #
* ARE IN EFFECT #
I I R L e T T Y)

v
HRRBRET RN AR ERE
* CLASS *
TR e R —
- DETERMINE »
* STATEMENT *
- TYPE *
FR 2222222222222 223

v
o*e
F3 =,
.* *q W R4 RN R R
SF OR _ #. YES * *
™ EXECUTABLE o#————>% PHASE 10E *
o + (IEJFJAAOQ) *
G. o ¥ R 22 22 222222t
*e ¥
* NO
v
WG TR PYTITTYS 2T T T TR
* * * EOSR *
* # PROCESS * [PPSR .
* SOURCE *<: >#% CHECK FOR *
STATEMENT * * END-OF - *
* * # STATEMENT *
LA 222222 222222t E2T 22222212222 2 24

SEE TABLE S5 FOR A LIST
OF THE STATEMENTS PROCESSED
B8Y PHASE 100 AND THE MAIN
ROUTINES AND SUBROUTINES
THAT PROCESS THESE
STATEMENTS.

64

Table 5. Phase 10D Statement Processing

L L]
Statement Type |Main Processing Routinej
&

Main Subroutines Used 3

N
|
: 1
REAL |REAL/ INTGER/DOUBLE 1 i
+ |
$
INTEGER | REAL/ INTGER/DOUBLE 1 Control is passed to DIM |
i d l
T L)
DOUBLE PRECISION|REAL/INTGER/DOUBLE 1 |
N i |
T T 1
DIMENSION |DIM A GETWD, RCOMA, CSORN, DIMSUB, WARN/ERRET |
L 1 4 4
r T 1) 1
| COMMON | COMMON * | DIM |
| | 2| I
b + + {
| EQUIVALENCE | EQUIV 3 GETWD, CSORN, WARN/ERRET, RCOMA |
2
| i |
| EXTERNAL | EXTERN 1 GETWD, RCOMA, CSORN
L H
r T
| FUNCTION | FUNCT 1 |
| I 2| |
b $ { GETWD, CSORN, PUTX |
| SUBROUTINE | SUBRUT | |
| | 21 I
; + ¢ {
| FORMAT | FORMAT 2 GETWD, WARN/ERRET, PUTX |
L 4 i 4
1 3 T T 1
|DEFINE FILE | DEFINE 1 GETWD, CSORN, PUTX |
| | 2 |
% 4 AL ——— {
j*Table entries may be prepared when processing this statement. |
|2Text is created when processing this statement. |
|3Al1l routines except FORMAT use ERROR as an error exit for errors that cause termina- |
| tion of the statement processing FORMAT has no error exit. |
L —— d
Section 3: Charts and Routine Directories 65

Table 6. Phase 10D Main Routine/Subroutine Directory

r T 1
|Routine/Subroutine Function [
o { y
| CLASS |Determines which routine will process the statement type. May wuself
| | LOADE and LABLU. |
| I]
| COMMON |Processes COMMON statements. |

|
| CSORN |Processes names, constants, data set reference numbers, and DO}
| |parameters. May use LITCON and SYMTLU. |
I |
| DEFINE |Processes DEFINE FILE statements. |
| | I
|DIM |Processes the variables of DIMENSION, COMMON, INTEGER, REAL, and|
| | DOUBLE PRECISION statements. |

I I

DIMSUB |Scans the subscript portion of a statement that is dimensioning an|
| |array. |
| | |
EOSR |Processes the end of statement. i

I |
| ERROR |Enters error intermediate text for errors that cause termination of]
| |the processing of that statement. |

|
EQUIV |Processes EQUIVALENCE statements.

I |
| EXTERN |Processes EXTERNAL statements. |
| |
| FORMAT |Processes FORMAT statements. |
| I |
| FUNCT | Processes the header card image for a FUNCTION subprogram. |
| I
| GETWD |Obtains a word or element in a statement and gets a new card image, |

| LABLU
|

I
| LABTLU
|

| LITCON
|

| LOADE

I
| PRMBLD

|
| PUTX

=RCOMA
=START
{SUBRUT
=SYMTLU

|
| WARN/ERRET

|
|
L

|
| INTGER/REAL/DOUBLE | Processes INTEGER, REAL, and DOUBLE PRECISION statements.

|if necessary. Prints the card if SOURCE option requested. May use|
| PRMBLD.

|Enters only statement number information into the overflow table.
|Uses LABTLU.

|Enters all information into the overflow table.
| Processes literals.
|Pexforms end-of-phase processing and passes control to Phase 10E.

|Performs all operations associated with I/O interfacing and buffer
| switching.

:Puts entries into the SYSUT1 text buffers.

|Enables skipping of redundant commas in a parameter list.

|Performs initial phase housekeeping.

|Processes the header card for a SUBROUTINE subprogram.

lEnters symbols and/or units into the dictionary.

|Enters warning and error intermediate text for error and warning

|conditions that permit the continuation of the processing of the

|statement.
L

66

Chart 60.

WA AT
*
* PHASE 10D *
*

(IEJFGAAQ)
RA AR T2 2222 2]

v
*&“QiBSilill*ilii

START *
}-i—«-;-'-ﬁ-a-*-l
A *

* PHASE
:INITIALIZAT!DN :

ERA 2L 222X 22 22 22212

>

v
EaA s ateki i 2 222 L 2 L]
* *
#0BTAIN A SOURCE¥
» MODULE *
* STATEMENT *
LE 222222222 2 22122

v
WD TR
#*ENTER STATEMENT#*
#ON SYSPRINT IF %
#SOURCE AND NO- #
*ADJUST OPTIONS *
* ARE IN EFFECT #*
(22222 a2l ret 2 e s

v
W IE TN
* CLASS *
W e W W R W W
* DETERMINE *
* STATEMENT *
* TYPE *
L2222 2 T e T Xt s

v
ERUREGT R R
*
* PROCESS *
SOURCE *#<:
STATEMENT :

LA S L el 22 sl saldsd

* %k kK

SEE TABLE 7 FOR A LIST OF
THE STATEMENTS PROCESSED
BY PHASE 10E AND THE
MAIN ROUTINES AND SuB-
ROUTINES THAT PROCESS
THESE STATEMENTS.

Phase 10E (IEJFJAAQ0) Overall Logic

SEE TABLE 8 FOR A BRIEF
DESCRIPTION OF THE FUNCTION
OF EACH PHASE 10E ROUTINE/
SUBROUTINE.

v

Yy .
F3" . *I&IlFAl&*liii*** I e Ry
¥ *q END * EXIT *
o *, YES &-*—*—*-a-&—&-*—* Fm e R R
*o STATEMENT o $—— % PROCESS *. >*PERFORMS FINAL *
*o ok * END * * PHASE 10E *
q - * STATEMENT * * PROCESSING *
*, o P2 e ey TR AN

NO

FHRNNG AW NN

* EOSR

LA B Tt B St S Tt B
> * CHECK FOR *
* END-OF - *

STATEMENT *
*****&il***lii**{

v
.*-
HS

I PR ST X AT E ¥ SPACE * o

* * SPACE «* OR PRFRM %,
¥ INTERLUDE 505 *< %o COMPILATION o%
(IEJFJGAO * . o

i‘!&*llil*&#*** *q o ¥

*e o¥
*PRFRM

v
EA T I NETE S 222t
*
PHASE 12 *
1EJFLAAQ) *
EaZ 2222222222213

* %k %

Section 3: Charts and Routine Directories

67

Table 7.

Phase 10E Statement Processing

P T T
|statement Type|Main Processing Routine|
1 4

Main Subroutines Used =3

——— s w— el

|*Table entries may be prepared when processing this statement.

|2Text is created when processing this statement.

| 2A11 routines except FORMAT and CONT/RETURN use ERROR as an error exit for errors
| that cause termination of the statement processing.

T T
| ARITHMETIC |ARITH 1 |CSORN, PUTX, GETWD, SUBS (ARITH may pass control
| | 2 |to ASF, DO, and GO) |
e 4 ¢ 4
|SF | ASF 1 |CSORN, GETWD |
| | 2 |
e t t 4
| CALL | CALL 1+ |PUTX, GETWD, CSORN (exits to ARITH) |
2
; | 4 !
{DO |DO 1 |ARITH, CSORN, GETWD, LABLU, PUTX [
| 21
; | ! !
|Go TO |Go 1| |
| | 2 |
¢ +-— {ARITH, GETWD, LABLU, PUTX, CSORN, WARN/ERRET |
jcoMp GO TO |Go 1 |
2
| ; ; j
IF | SUBIF 1 |GO, PUTX (exits to ARITH) |
l 2
; ; 4
READ | READ/WRITE/FIND 1 I
I I 2 I
t + {GETWD, CSORN, PUTX, LABLU (exits to ARITH) |
|WRITE | READ/WRITE/FIND 1| [
| | 2 |
L 4 4
t 1 1]
| FIND |READ/WRITE/FIND 1| |
| | 2 |
t t $ i
| FORMAT | FORMAT 2 |GETWD, WARN/ERRET, PUTX |
L 4 . [']
[} T T 1
| CONT | CONT/RETURN 2 |
b + {GETWD, WARN/ERRET, PUTX
|RETURN | CONT/RETURN 2 | |
% + + 1
| sTOoP | STOP/PAUSE 2] |
b + {GETWD, PUTX (exits to CLASS) |
| PAUSE | STOP/PAUSE 2 | i
4 1
- T T 1
| BACKSPACE | BKSP/ 1| |
| | 2 |
k i | |
| REWIND | REWIND/ 1 |CSORN, GETWD, PUTX |
2
i i | |
|ENDFILE | ENDFIL N i
| I 2 |
b L : 4
|
|
|
|
|

L

68

Table 8. Phase 10E Main Routine/Subroutine Directory

r T 1
|RoutinesSubroutine | Function]
L 4 4
T T == - 1
|ARITH | Processes arithmetic statements. May use SUBS. |
] | |
ASF	Processes the parameter list of a statement function.
BKSP/REWIND/ENDFIL	Processes the BACKSPACE, REWIND, and ENDFILE statements.
	!
]CALL	Processes the name of a CALL statement.
	I
CLASS	Determines which routine will process the statement type.
]	
CONT/RETURN	Processes CONTINUE and RETURN statements.
I	
CSORN	Processes names, constants, data set reference nurbers, and DO
	parameters. May use LITCON and SYMTLU.
DO	Processes the DO statement and implied DOs.
]
END	Processes the END statement.
	I
EOSR	Processes the end of the statement.
ERROR	Enters error text into the intermediate text and terminates the
	processing of current statement.]
EXIT Performs end-of-phase processing.	
	i F
FORMAT	Processes FORMAT statements.
GETWD	Obtains a word or element in a statement and gets a new card
	image, if necessary. Prints the card if SOURCE option is
	requested. May use PRMBLD.
GO	Processes the statement number branched to by an 1F, GC TO, or
	computed GO TO statement.
LABLU	Enters only statement number information into the overflow
	table. Uses LABTLU.
LABTLU	Enters all information into the overflow table.]
I	
LITCON	Processes literals.]
I	
PRMBLD	Performs all operations associated with I/0 interfacing and
i	buffer switching.
I	
POTX	Puts entries into the intermediate text buffers.
[I	
READ/WRITE/FIND	Processes the portion of the statement preceding the I/0 list.
START	Pexrforms Phase 10E initialization.
STOP/PAUSE	Processes the STOP and PAUSE statements.]
	I
SUBIF	Begins the IF statement processing.
suBs	Processes subscript variables.
I	
SYMTLU	Enters symbols and/or units into the dictionary.
] I	
WARN/ERRET	Processes warning and error conditions that do not prevent]
L

| completion of the processing of the current statement. |
L

- - |

Section 3: Charts and Routine Directories 69

Chart 70.

WA D RN N RN
* PHASE 10E OR *
* INTERLUDE 10E #
(SEE NOTE *

LA a LS 2222l s

v
***ﬁ*aaa&*&««*&bl

» PHASE *
FINITIALIZATION *
*

L R T R e e)

v

*INITIALIZES FOR¥<
* EQUIVALENCE #
*TXT PROCESSING #

c2
* COMALO *
W W o o o W W
ASSIGN ADDRe TO#

v
ARERRDFEERERRR AN

* PROCESSES *
* EQUIVALENCE ¥

* TEXT *
A2l 222222222222

&u&iugl*z*iaiiiil
* EXTCOM

Hm W hm K e N W B
* INCR<LOCATION *
#CNTR BY S1ZE OF¥%

* COMMON *
RN EREREER R RN

v
HRERRE] RN

HEREREEREARRRERES

v
FAHERG]HINREER XN
*

e e o W N N W
* ASGN ADDR TOQO *
* REAL AND INT #
*VAR AND ARRAYS *
R e e

l

4&¢i§ﬂ|~¥l»«&&i'o
* ALOC

et B B W o e B
*#ASGN ADDRESSES ¥
* TO EQUATED *
*

VAR *
R e e s

v
b A NS 2T T R TS 2

EQUIVP USES THE
£QUS02s EQUSO03,
AND EQUS14
SUBROUTINES

EXTCOM USES THE
ALOWRN/ALERET
SUBROUTINE

DPALOC USE THE
INTDCT, EQSRCH.
SORSYM#*#%,

DELETE SUBRDUT!NES

SALO USES THE
INTDCTs EQSRCH,
AND SORSYM¥*#
SUBROUTINES

ALOC USES THE
INTDCTs ALOWRN/
ALERET s EQSRCH»
AND DELETE suB-
ROUTIN

COMALO USES THE
ALOWRN/ALER
SORSYM#*#, GETC

Phase 12 (IEJFLAAO) Overall Logic

SEE TABLE 9 FOR_A BRIEF
DESCRIPTION OF THE FUNCTION
OF EACH PHASE 12 ROUTINE/
SUBROUTINE.

NOTE-~
PHASE 12 IS ENTERED FROM
PHASE 10E (IEJFJAAO) FOR
PRFRM COMPILATIONS, OR FROM
INTERLUDE 10E (IEJFJGAO)
FOR SPACE COMPILATIONS.

AND GETCOM SUBROUTINES

* LOCN * LDCN USES THE "**JB****"’**
Fm et e o e Hm e INTDCT, ESD*, *
* PROC DICT ENT # DELETEs RLD#*, * (lEJFNAAO) *
*FOR EXT AND IN # AND GOFILE SuB- * *
*LINE FUNCTIONS + ROUTINES HE NN NN
L e e e e 2
v
* K2

* ASGNBL * * SSCK * » SDRLIT *
D il e D e] et At S e
PREPARES BRANCH >#*REPL CHAIN FLD >#* ASSIGN ADDR #
*LIST TABLE #*FOR SUBSCRIPTED#® * TO CONSTANTS #
* REF STMT NDS. ' * VAR WITH ADDR * * IN DICTIONARY #

70

CARD IMAGE
PREPARATION

** STORAGE MAP
PREPARATION

SORLIT USES THE
TXT#*, ESD*

SORSYM*¥,

AND RLD% SUBRDUTINES

Table 9. Phase 12 Main Routine/Subroutine Directory

{Routine/SubroutineI Function j
|Z£5c) TAssigns addresses to all equated variables. }
ALOWRN/ALERET ‘Processes the error and warning conditiocns detected in Phase 12. =
ASGNBL %Allocates a branch list position for each referenced stmt. number. ,
COMALO ‘Assigns addresses for variables or arrays to be placed in COMMON and}
| |removes these variables from the appropriate dictionary chain. |
DELETE ‘Removes dictionary entries from chain. %
DPALOC |Assigns addresses to all double-precision variables or arrays}
|entered in the dictionary. |
|EQINIT :Performs initialization for equivalence text processing. :
EQSRCH |Checks for variables previously equated to a root. ‘
EQUIVP =Performs equivalence text processing. ‘
EQUS02 |Processes first name in an EQUIVALENCE group. %
EQUS03 IProcesses rest of EQUIVALENCE group and switches root if necessary.%
}EQUslu !Processes all equated variables and arrays in COMMON. }
ESD %Processes ESD card images. {
EXTCOM |Enters size of COMMON in comm. area, and adjusts location counter.:
GETCOM/GETEQUIV | Updates COMMON oxr EQUIVALENCE text pointer, reads in text records. }
iGETCOMI }Initializes pointers and 1I/0 parameters for COMMON-EQUIVALENCE text.:
{GOFILE =Generates card images for data sets SYSLIN and/or SYSPUNCH. }
INTDCT =Retrieves entries from the dictionary. |
LDCN =Processes dictionary entries for functions and external references.%
| |Also prepares ESD section definition card images for the object|
| |module and COMMON areas. |
IRENTER/ENTR %Enters variables in the EQUIVALENCE table either as a root or as an‘
|equated variable. |
RLD :Processes RLD card images. %
SALO {Assigns addresses to real and integer variables and arrays. 1
SORLIT {Assigns addresses and generates text card images for all literalsi
| | (constants); performs the final processing of the phase. |
’SORSYM ,Arranges and prints the storage map for all arrays, constants, and}
} |external references assigned addresses by Phase 12.
{SSCK lReplaces pointers to variables used in subscript expressions with}
| |addresses assigned by Phase 12.
}STARTA |{Initializes Phase 12. ?
‘SWROOT =Changes a root previously entered. T
iTXT iProcesses TXT card images. ,
4

Section 3: Charts and Routine Directories 71

Chart 80. Phase 14 (IEJFNAAO) Overall Logic

HRIAD NN
* * SEE TABLE 12 FOR A BRIEF

% PHASE 12 * DESCRIPTION OF THE FUNCTION
* (IEJFLAAO) * OF EACH PHASE 14 ROUTINE/
222222 2 222222 SUBROUTINE «

v
W WD 2 NN NN
* PHINIT *
Lt A S IR S 2 S
* PHASE *
:INITIALIZATION :
E2 2222 22 2222222

Ex 2 1)

* *

* Cc2 *—>
* *

* %%

v
WA C DWW RN
* PRESCN *
W e W W W U RN
* OBTAIN STATE- #*
#* MENT AND DE- ¥
* TERMINE TYPE #
LR T2 R T 2 2 T 2a L 2

ke kg
D2 *e IR D TN Da *q
o *, END o* SPACE #.
ot END *. YES Fm Wt e N o* OR PRFRM #, PRFRM
*#o STATEMENT .+ > PERFORMS * >#. COMPILATION .
, o #FINAL PHASE 14 * *o ot
*, o # PROCESSING * *e ok
e ¥ P It T) Ho o
NO *#SPACE
v
) v
E2 *, I E DN N E G I NN
¥ *q * FORMAT * * *
o«¥® FORMAT *e YES W W e W e e W S B * DELETE MAIN *
#o STATEMENT % ># %% PROCESS * * STORAGE *.
*o ¥ * FORMAT * *# OCCUPIED BY *
*e S * STATEMENT * * DICTIONARY *
%, oF I A T TN T e T A Y S
* NO
v
RN
* *
v * C2 *
(2222 PR R TR T E * *
* * L2 22 : FORMAT USES THE
* #* PROCESS * CKENDO, GETWDA,
* STATEMENT * INTCONs AND MSG/
* * MSGMEM SUBROUTINES
* *
LA 2122222222 22 2L]
v * SEE _TABLE 10 FOR A LIST
LAt OF THE STATEMENTS PROCESSED
* * BY PHASE 14 AND THE ROUTINES
* C2 * AND SUBROUTINES THAT PROCESS
* * THESE STATEMENTS.

**E

*#%# SEE TABLE 11 FOR A LIST
OF THE FORMAT CODES THAT
MAY APPEAR IN A FORMAT
STATEMENT AND THE SuB-
ROUTINES THAT PROCESS
THESE CODESe

72

*
>
*

*
> %
*

WD G W RN

PHASE 15
(IEJFPAAO)
R 22222 s d s sl

A2 XS 22 22222 2]

INTERLUDE 14
(IEJFNGAD)
E2 222222222222 23

*
*
*

*
*
*

Table 10. Phase 14 Statement Processing (FORMAT Statements Excluded)
[} L] T 1
| Statement Type | Main Processing Routine | Main Subroutines Used |
L 4 4 d
v L2 T h
| FORMAT | FORMAT | Refer to Table 11 |
p-- } = 1
| WRITE | READWR I [
b + { OUNITCK, ERROR, MSGMEM]
i READ i READ I |
L i d _,'
r N H
| SUBROUTINE | SUBFUN | l
3 + { RDPOTA 1, MSGMEM, RPTRB |
i FUNCTION | SUBFUN | i
L 4 1 J
T T T i
| CONTINUE | SKIP | MSGMEM |
4 R 4
T T 1
BACKSPACE | BSPREF |
1L
+ |
REWIND | BSPREF UNITCK, MSGMEM |
o + l
| ENDFILE | BSPREF | I
b 1 + 1
| DO | DO | CKENDO, ERROR, MSGMEM, RDPOTA 1 |
1 4 4 - J
r T + 4
| STATEMENT | LABEL | None i
| NUMBER | | I
b= ¢ + 1
| SF | ASF | PASSON, CEM, RPTRB |
L + 4 4
v T T a
| RETURN | RETURN | CKENDO, MSGMEM, SKIP |
L 4 1 4
L) T T 1
| STOP | STOP | CKENDO, SKIP |
[4 } !
| PAUSE | PAUSE | CKENDO, SKIP, RDPOTA 1]
I 4
T T .|
INVALID | INVOP | None
+ 1 i
ERROR | ERWNEM I]
+ { None |
WARNING | ERWNEM | |
L 1 J 5|
v T T 1
| END MARK | MSG | None |
b + + !
| IF | PASSON | |
L kR 4 I
L} T 1
| ARITH | PASSON | |
S + { !
| CALL | PASSON i CEM I
L 4 4
L 3 T 1 '
| GO TO | PASSON | I
b t + - 1
| COMP GO TO | CGOTO | CKENDO, RDPOTA, MSG, MSGMEM |
b + } -4
| COMMON 1 COMEQUIV | |
b } { None [
| EQUIVALENCE | COMEQUIV |
L 4 1 J
r T T 4
| DEFINE FILE | PASSON | CEM |
b==- L ' -- 1
!1Rep1aces dictionary pointers. .

Section 3:

Charts and Routine Directories 73

Table 11. Phase 14 FORMAT Statement Processing

T T 1
| FORMAT Code | Main Subroutine Used |
b ¢ {
| blank | BLANKZ |
L 1 4
v T 1
| D | FMDCON |
b 4 d
r v H
i E | FMECON |
| F | FMFCON I
L 4 4
T 1 |
| I | FMTINT |
L 4 4
vV T 1
| A | FMACON |
L] 4
v T 1
| X | FMXCON |
| P | FSCALE |
L 1 |
L) T 1
| + | FMPLUS |
L 4 4
r T 1
| - | FMINUS
4
r
(| LPAREN
1
T
/ | FSLASH |
L. 4 4
r T 1
| T | FSUBST I
t } 4
| H | FHOLER |
pmm t !
| ' | FQUOTE |
S 4 d
13 T T
| ' | FCOMMA |
L 4 1
L) T
|) | RPAREN]
L 1 J
Table 12. Phase 14 Main Routine/Subroutine Directory
r T 1
|Routine/Subroutine| Function
t 4 4
[} T L}
ASF	Processes the SF definition text.
BLANKZ	Processes any blanks encountered while scamning a FORMAT statement.
I	
BSPREF	Processes BACKSPACE, REWIND, and ENDFILE statement text.
I	
CEM/RDPOTA/RPTRB	Completes text processing for arithmetic, BACKSPACE, REWIND, END-
	FILE, GO TO, DO, CALL, IF, PAUSE, and SF definition statements.
I	
CGOTO	Processes text for computed GO TO statements.
CKENDO	Determines if a statement has invalidly ended a DO loop.
COMEQUIV	Deletes COMMON and EQUIVALENCE text from intermediate text.
[
DO	Performs diagnostic checks on the DO variable and the DO parameter.
]	
END	Processes END text.
I	
ERROR	Generates intermediate text for errors detected in Phase 14,
ERWNEM	Processes error and warning text.
L L _— 3
(Continued)

T4

Table 12. Phase 14 Main Routine/Subroutine Directory (Continued)
iRoutine/Subroutinel Function __}
{FCOMMA {Processes any commas found in a FORMAT statement. _1
%FHOLER {Processes the H specification in a FORMAT statement. |
{FMACON 1Processes the A specification in a FORMAT statement. ,
‘FMDCON ‘Processes the D specification in a FORMAT statement. :
%FMECON ‘Processes the E specification in a FORMAT statement. =
=FMFCON :Processes the F specification in a FORMAT statement. |
=FMINUS ;Processes the '-' specification in a FORMAT statement. |
}FMPLUS =Processes the '+' specification in a FORMAT statement. |
=FMTINT :Processes the T specification in a FCRMAT statement. |
!FMXCON :Processes the X specification in a FORMAT statement. '
:FORMAT ‘Performs and directs some FORMAT processing. May use INTCON., I
%FQUOTE :Processes the apostrophe specification in a FORMAT statement. %
|FSCALE lProcesses the P specification in a FORMAT statement. ?
FSLASH lProcesses the slash format specification in a FORMAT statement. l
EFSUBST ‘Processes the T specification in a FORMAT statement. |
GETWDA {Scans FORMAT statements. :
INTCON :Converts integer constants to binary and checks their validity. }
;INVOP tProcesses invalid adjective codes. }
ELABEL }Processes statement number definition text. :
=LPAREN }Processes left parentheses. %
:MSG/MSGMEM |Inserts error/warning messages into text and detects end of stmt. %
=PASSON {Processes CALL, IF, and arithmetic IF statement text. I
}PAUSE |Processes PAUSE statement text. =
‘PHINIT |Pperforms phase initialization. }
| PRESCN ‘Performs phase initialization and controls processing of int. text.:
=READ/READWR {Processes READ/WRITE text. :
IRETURN :Processes RETURN statement text. :
RPAREN :Processes any right parenthesis occurring in a FORMAT statement. :
=SKIP :Processes CONTINUE statement text. |
STOP :Processes STOP statement text. }
ISUBFUN }Processes SUBROUTINE and FUNCTION text entries. =
lUNITCK ichecks validity of symbols used to reference a DSRN. '
______________ 4

Section

3:

Charts and Routine Directories

Chart 90. Phase 15 (IEJFPAAO) Overall Logic
WA TR RN RN
* PHASE 14 OR * SEE TABLE 15 FOR A BRIEF
INTERLUDE 14 * DESCRIPTION OF THE FUNCTION
* (SEE NOTE * OF EACH PHASE 15 ROUTINE/
Ea 22212222222 2L} SUBROUTINE«
NOTE -—
E2 T 2] PHASE 15 1S ENTERED FROM
* * PHASE 14 (lEJFNAAO) FOR
* B3 ¥—> PRFRM COMPILATIONS, OR
* * FROM INTERLUDE 14((IEJFNGAO)
EX 2 X J FOR SPACE COMPILATIONS.
LA 22 Rk 22T L L)
* PRESCN *
P Y e e e Y P W
* OBTAIN STATE- #*
#*MENT AND DETER—#%*
#*MINE STMT TYPE #
E2 2T 22T 2I LTRSS LT]
v
¥,
c3 *, RN C G NN
o * * MOPUP * ET T Y I T TR TR
P EN *, YES R RN — NN * *
*q STATEMENT - F—d PERFORMS * #* INTERLUDE 15 #*
- . *FINAL PHASE 15 * * (IEJFPGAO) *
*q - ¥ * PROCESSING * I3 3 333 I X
Wy oW E2 22T TSI L L A
* NO |
SPACE
v
oW, oty
HRRAFEDD WM HHERFR RS D3 *gq E2 222 V222222 T 2] DS *q
* * o« ¥ *o * FOSCAN *% * o* SPACE #.
* * PROCESS * NO % CAN *, YES Fm N W — NN o% OR PRFRM *q
* STATEMENT *< *# o STMT CONTAIN o#* >#% CONTROLS THE ¥ ——>%, COMPILATION %
* * *q RIT ¥ * REORDER AND ¥ *q ¥
* * *oEXPR o% *#MOD OF INT TXT * *a ot
E2Z 222222222222 LY *g o E22 222222222 IS S ¥y o¥
* *PRF RM

76

[T RS E R A
MSGNEM/MSGMEM/MSG *
N e
>*% PROC REM OF #*<

v
L2 2 AL 2 2 8 8 8 2k 2
*

#STMT AND FORMS *
*E/W TXT IF NEC *
Ea 2222222232222 L)

v
FRER

* ok X
w
w

* % %

L2 2 2]

SEE TABLE 13 FOR A LIST
OF THE NONARITHMETIC
STATEMENTS PROCESSED BY
PHASE 15 AND THE MAIN

PHASE 20 *
(IEJFRAAO) *
P e T T Y

*
*

ROUTINES AND SUBROUTINES
THAT PROCESS THESE STATEMENTS.

FOSCAN PROCESSES ARITHMETIC,
ARITHMETIC IFs STATEMENT FUNCTION
AND CALL STATEMENTS. SEE TABLE 14
FOR A LIST OF THE OPERATORS THAT MAY
APPEAR IN THE ABOVE STATEMENTS AND
THE MAIN ROUTINES AND SUBROUTINES
THAT PROCESS THESE OPERATORS.

Table 13. Phase 15 Nonarithmetic Statement Processing

1 v 1 1
| Statement Type or Adjective Cd | Main Processing Routine! | Main Subroutines Used |
} 4 4 4
L] T T q
| COMPUTED GO TO | cecoTto | LaAB, CEM |
k. } 4 i |
] 1) 1
| DEFINE FILE | DEFNFL | None |
1 + i
DO | po | LAB1l, CEM |
4 1]
T T]
END MARK | MsG | None |
+ - + i
ERROR | ERWNEM | None |
(1 1 4
1} T |
GOTO | GoTO | LAB, CEM |
1 [4
T T 1
INVALID - | INVOP | ERROR |
t t 1-—- 1
| I/0 LIST | BEGIO { MSGMEM |
— 1 ¥ 1
| STATEMENT NUMBER | LABEL | ERROR |
8 4 4 4
v T T 1
| WARNING | ERWNEM | None |
6 _ i 1
3 T]
| READ/WRITE | Do2 | CEM
% 4 4
1) T T
| RETURN/CONTINUE | SKIP | None |
[N 4 4 J
1) 1
|*Routine MSGNEM/MSGMEM/MSG is entered from all these routines except ERWNEM and LABEL. |
| These two routines return control directly to PRESCN.
L -1

Section 3: Charts and Routine Directories 77

ispecific sections of the SAVER and CHCKGR routines operate upon specific registers

Table 14. Phase 15 Arithmetic Operator Processing

r T . . T k)
| | Main Processing | |
| Operator | Routine | Main Subroutines Used |
L 4 (] 4
v T T - 1
| ADD | app | FREER, SAVER 1, SYMBOL, MODE, MVSBXX, FINDR, |
| | | LoaDpR1 |
F : + 1
| ARGUMENT | COMMA |} CKARG, ERROR, WARN, SAVER 1, INLIN2, INARG, |
i I | MSGMEM |
L] 4 4
r T L 1
| CALL FORCING | caLL | MsG [
t $ + {
| DIVIDE | MULT | SYMBOL, MODE, LOALR1l, CHCKGR %, SAVER 1, |
| | { FREER, DIV, MVSBXR, MVSBXX |
- ¥ 1 1
| EQUAL | EQUALS | ERROR, TYPE, MODE, MVSBRX, WARN, MVSBXR, |
| | | ASFDEF |
o —1 T 1
| EXPONENTIATION | EXPON | SYMBOL, MODE, CKARG |
8 +___ 4 4
[8 T 1
{ FUNCTION(| FUNC | CKARG, INLIN1 |
o + } |
| ILLEGAL | INVOP | ERROR |
L 4 1 4
r T M H
| LEFT PAREN | LFTPRN | CKARG, ERROR, ARTHIF, WARN, LOADR1 |
L } 4 4
3 T T 1
| MULTIPLY | MULT | SYMBOL, MODE, MVSBXX, LOADR1, CHCKGR %, FREER|
- $ t 1
| RIGHT PAREN | RTPRN | ERROR 1
— + t 1
| SUBTRACT | ADD | SYMBOL, MODE, MVSBXX, FINDR, LOADR1l, FREER, |
| | | SAVER 1 |
- 4 $ 1
| UNARY MINUS | UMINUS | TYPE, FINDR, LOADR1, MVSBRX, INVOP |
L 1 4 3
v T T 1
| UNARY PLUS | UPLUS | INvOP |
L L 4L .l
}

| I
] |
L 3

(general registers 0, 1, 2,

3; floating point register 0, 2, 4,

6).

78

Table 15. Phase 15 Main Routine/Subroutine Directory

8 T
|Routine/Subroutine| Function
L iR

1

|
k t - - - i
| ADD |Determines register assignment for add, subtract, multiply, and
| |divide operators.

|ARTHIF |Processes the statement numbers of an arithmetic IF statement.

| ASFDEF |Processes statement function definitionmns.

=BEGIO =Processes the I/0 list of READ and WRITE statements.

|CALL ‘Processes CALL statements.

| CEM {Checks for an end mark.

| CHCKGR =0btains a specific general register for assignment.

| CKARG {Checks the argument in an external call for validity, and ensures

| jthat the argument has a storage location.

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

%

| COMMA |Processes the argument lists. |

{ |

| CGOTO |Processes the statement numbers in a computed GO TO statement. |

| | |

| DEFNFL | Processes DEFINE FILE statements. |

| |

|DIV | Processes integer operands of a divide operation. |

| | |

| DO | Processes DO statements. |

| |

| DO2 |Writes out a text word if not an end mark. |

| |

| END |Determines if the arithmetic IF, arithmetic, and SF statements were|

| |processed. |

| | |
| EQUALS | Processes equal adjective code text.

|

| ERROR | Processes error conditions detected in the phase. |

| |

| ERWNEM | Processes end mark, error, and warning text. |

| |

| EXPON | Processes exponentiation text. |

| |

| FINDR |Finds a register and indicates that it is a register. |

| | |

| FOSCAN |Checks the syntax of arithmetic, arithmetic 1IF, CALL, and SF|

| |statements, and orders the arithmetic expression text according to aj

| |hierarchy of operators. Uses END. |

| |

| FREER |Indicates a register is available. |

| |

| FUNC |Processes one-argument functions. |

| | |

| GoTO | Processes statement numbers referenced by a GO TO statement. |

| |

| INARG |Processes the argument of an in-line function. |

| |

| INLIN1 | Processes one-argument, in-line functions. |

| |

| INLIN2 | Processes two-argument, in-line functions. |

i |

| INVOP |Processes invalid adjective codes. |

| |

| LAB |Checks for illegal statement number references. |

L L - 4

(Continued)

Section 3: Charts and Routine Directories 79

Table 15. Phase 15 Main Routine/Subroutine Directory (Continued)

iRoutine/Subroutine? Function]
| LAB1 |Checks whether label is defined. 1
LABEL Checks statement numbers used to indicate the end of a DO loop. !
LFTPRN Process the text for a left parenthesis. ,
|LOADRl 'Enters an operand into a specific register. ,
MODE Checks the mode of operands and changes them if necessary. ;
MoPUP {Performs final phase processing for Phase 15. :
| MSGNEM/MSGMEM/MSG |Processes the remaining text words of a statement and puts out any:
| |necessary error, warning, and end do text.
MULT =Aids in processing the operands of multiply and divide instructions.{
I|MVSBXR/MVSBRX lFrocesses a left operand subscripted variable. =
MVSBXX %Processes a left operand subscripted variable if the right operand}
|might also be a subscripted variable. |
PRESCN |Determines what statement type is represented in the text and which’
|major routine will process it. |
| RTPRN {Processes illegal use of right parenthesis as a delimiter. :
| SAVER =Stores the contents of a specified register into the next available:
| |work area space. |
}SKIP gProcesses RETURN and CONTINUE statements. }
:SYMBOL :Checks the left and right operands of an operator. }
| TYPE :Checks each symbol used as an operand. }
| UMINUS :Processes unary minus operations. =
| UPLUS |Processes unary plus operations. %
lWARN lProcesses warning conditions detected in the phase. J

80

Chart A0. Phase 20

NOTE-—

PHASE 20 1S ENTERED
FROM PHASE 15 (IEJFPAAO)
FOR PRFRM COMPILATIONS,
OR FROM INTERLUDE 15
(1IEJFPGAO) FOR SPACE
COMPILATIONS.

W RE D R W E
* *

* PROCESS *
STATEMENT :(

*
A2 st 22t 2l dd

* %k ok

* %

(IEJFRAAO) Overall Logic

HRERAZHEENNNNNN
* PHASE 15 OR % SEE TABLE 18 FOR A BRIEF
* INTERLUDE 15 # DESCRIPTION OF THE FUNCTION
* (SEE NOTE) * OF EACH PHASE 20 ROUTINE/
FRREREREERR RS SUBROUTINE .
v
EEERABIHEERE AR RN RRWERDANNNHRNRENR
* INIT * * PHEND *
Lt L R L it ot 2 B
* PHASE * ——>*PERFORMS FINAL *
* INITILIZATION * #* PHASE 20 PRO- #
* * » CESSING * FT e 2
EERREEFRERRA RN I e e * *
I * C5 *
L2 23 * *
* * ERER
* C3 *¥—>
* *
W v
v oo
WRHERCIT RN RRN R ca *e v
* STATA * o¥* ANY %, HERRC SN NN R
L e e Rt it 2 «%* SOURCE #*, NO * *
#OBTAIN STMT AND¥ *q MODULE o Fm——— % PHASE 2S5 *
*DETERMINE STMT # #eo ERRORS <% * (IEJFVAAD) *
* TYPE * *, ot [T 2
IR X, ok
* YES
v \
oty ¥y
D3 . D4 *g
- *q ¥ IS *e R EDGRN R RE XK
¥ END *. YES o¥ 'LOAD?® *o NO * *
o STATEMENT ¥ %o OPTION IN o#% ># PHASE 30 *
*o ot *, EFFECT % * (1EJFXAAQ) *
*q o *q ot L e L]
e o Hg o
* NO * YES
XN
L_ * *
>* C5 *
* *
v 22 2]
ok,
€3 *, ERRRRELHRRRRARRRR
¥ *q * *
NO % CAN *o YES # #% PROCESS *
#oSTMT CONTAIN o #—————D># STATEMENT *
#e SUBSCRIPT <% * *
*4EXPR o% * *
e o HREREREERRREENRRR
*
v
222
* *
* C3 »
* *
222

SEE TABLE 16 FOR A LIST OF: 1)

THE STATEMENTS PROCESSED BY PHASE 20

THAT DO NOT CONTAIN SUBSCRIPT EXPRESSIONS,
AND 2) THE MAIN ROUTINES AND SUBROUTINES
THAT PROCESS THESE STATEMENTS.

SEE TABLE 17 FOR A LIST OF 1)

THE STATEMENTS PROCESSED BY PHASE

20 THAT MAY CONTAIN SUBSCRIPT EXPRESSIONS,
AND- 2) THE MAIN ROUTINES AND SUB-
ROUTINES THAT PROCESS THESE STATEMENTS.

Section 3: Charts and

Routine Directories

81

Table 16. Phase 20 Nonsubscript Optimization Processing

Statement Type I Main Processing Routine i Main Subroutines Used i
DO] DO E BVLSR, RMVBVL j
END DO i ENDDO i None]
IMPLIED DO i IOLIST 1 BVLSR, CALSEQ, RMVBVL,SUBVP 1
READ !r READ 11 None]
STATEMENT H LABEL | None i
NUMBER 1 J| J|

Table 17. Phase 20 Subscript Optimization Processing

iwhenever exponentiation is encountered subroutine ESDRLD processes the exponentiation
operands.

r T T R]
| Statement Type | Main Processing Routine | Main Subroutines Used |
(] l 4

) L) 1

ARITHMETIC 1 | ARITH | CALSEQ, CKCOD, RMVBVI, SUBVP |

d 1 4

T r H

CALL 2 | IFCALL | BVLSR, CALSEQ, RMVBVL, SUBVP |

+ + .|

| IF 2 | IFCALL | None |
L 1 4
v T 1
| I/70 * IOLIST | BVLSR, CALSEQ, RMVBVL, SUBVP |
1 1

i

|

J

82

Table 18.

Phase 20 Main Routines/Subroutine Directory

[Routine/Subroutinei Function]
iARITH {0ptimizes arithmetic statement text.]
=BVLSR }Enters bound variables on the bound variable list. }
{CALSEQ {Processes argument lists. }
:CKCOD iAssigns an area and a constant for use by the IFIX, FLOAT, and:
| |DFLOAT in-line functions. |
:DO =Processes DO statements. |
DUMPR | Processes dummy subscripted variables. :
ENDDO !Ensures that the end of a DO loop is recognized. :
ESDRLD :Generates ESD and RLD card images. }
’GENGEN | Begins the generation of literals. =
IFCALL |Optimizes the arithmetic expression of an arithmetic IF statement or{
a CALL statement. |
INIT Performs Phase 20 initialization. }
IOLIST }Processes DO variables of an implied DO and I/0 lists of READ/WRITE:
statements. |
LABEL |Modifies register assignments due to referenced statement numbers. =
PHEND |Performs final Phase 20 processing. :
READ Processes external references within a READ statement. !
RMVBVL Removes register assignments from the index mapping table for
| subscript expressions that involve bound variables. |
}STATA ‘Checks the statement type represented by the text and determines the
| correct Phase 20 processing routine.
SUBVP iOptimizes subscript expressions.

b e

Section 3: Charts and Routine Directories 83

Chart BO. Phase 25 (IEJFVAAO) Overall Logic

HRERATHR R TRR
* * SEE TABLE 20 FOR A BRIEF

* PHASE 20 * DESCRIPTION OF THE FUNCTION
* (IEJFRAAQ) * OF EACH PHASE 25 ROUTINE/
P I T e ane SUBROUTINE «

v
2 XT3k 2 X2 S X L2 L2 s

* PHASE
:INITIALIZATIUN :
LA 222 T T2 T 222]

v
¥
Cc3 *q 33 33 C 4 W W9 H XX
o* IS *, * *
+* OBJECT *. YES #* LOAD OBJECT *
#LISTING OPTN IN¥———————>#_ISTING MODULE *
*. EFFECT o * (1EJFVCAO) *
q ¥ # *
*e o¥ A2z 222222 2 2212 2L]
* NO
>| <
PRESCN
AR ND TN NN EE W RN D G RN R
OBTAIN TEXT » ND *

Ld S St Bt S St 2 et
—>*PERFORMS FINAL #*
* PHASE 25 *

#* PROCESSING *
3NN NN NN

*
* WORD AND *
* DETERMINE *
#ADJECTIVE CODE %
OR STMT. TYPE ¥
LA TR T S e e L 22

v
oo v
E3 *q N E 4RI NRNN
o *q * *
ok END *e YES * DELETE OBJECT #
*o STATEMENT o¥#——r *LISTING MODULE *
*o -® * IF IT WAS *
*o o ¥ * LOADED *
ey ¥ LR 222 TR e 22l 22
* NO

v
RN TR XN v
* * W36 G R
*

* * PROCESS *

* STATEMENT OR * # PHASE 30 *
#ADJECTIVE CODE * # (IEJFXAAO) *
* * EZ XTI 22222223

22222 I IS S L L LS

#* SEE TABLE 19 FOR A LIST
OF THE STATEMENTS AND
ADJECTIVE CODES PROCESSED
BY PHASE 25 AND THE MAIN
ROUTINES AND SUBROUTINES
THAT PROCESS THE STATEMENTS
OR ADJECTIVE CODESe.

84

Table 19. Phase 25 Statement and Adjective Code Processing

r v
| Statement or Operation |[Main Processing Routine %
L 4

Main Subroutines Used

1
!]
r + + i
|AOP | AOP { BASCHK |
b ¢ + 1
|Arith expressions in | RXGEN/LM/STM | BASCHK/RROUT, RXOUT |
|approximate instr. form| | |
t 1 Y e e e o e e e e 4 R e i e e i e e e e i e S e e i e ,'
r T +
| SF DEFINITION | ASFDEF % | LISTOUTB |
L 4 1 .'
LI T T
| SF USAGE | ASFUSE | BASCHK/RROUT, RXOUT |
L 1 L i |
r T T 1
| BACKSPACE | RDWRT | BASCHK, ARGOUT, GET, RXOUT |
[4 3 N |
v T + x|
| CALL | FUNGEN | BASCHK/RROUT J
L 4 L
v T T 1
| COMPUTED GOTO | CGOTO | BASCHK/RROUT, ARGOUT |
b 4 ¥ |
r - t q
|DO |po1 | BASCHK, RXOUT |
— 4 ¥ 1
lEND DO lENDDO !BASCHK, RXOUT !
r T t 4
|END FILE | RDWRT | BASCHK, ARGOUT, RXOUT, GET |
b 4 J d
v T 1
|END I/0 LIST | ENDIO { RXOUT
1 4
— 1 ¥ 1
| ERROR | IBERR | BASCHK, RROUT |
b 4 4 J
13 T + i
| FUNCTION | SUBRUT 2 | GENBR, GET, RROUT, RXOUT |
L - 1 1 - J
v T T 1
| FUNCTION CALL | FUNGEN | BASCHK/RROUT, RXOUT |
4 [l y |
_____ - T T 1
{GO TO | TRGEN | BASCHK/RROUT, RXOUT 1
8 3 1 d
r T + 4
!IF 1ARITHI !BASCHK/RROUT J
v T T - 1
| IMPLIED DO | DO1 | BASCHK, RXOUT, LISTOUTB j
b=—- - : 4 3
|I/0 LIST ITEM | IOLIST | ARGCUT, BASCHK/RROUT, RXOUT
- - 4 1
| LABEL lLABEL 3 lLISTOUTl J
L
1 3 T T 1
| LOAD MULTIPLE | LM | BASCHK/RROUT, RXOUT |
L 4 4
T - T 1
PAUSE iPAUSE iBASCHK/RROUT, RXOUT J
-4 + 1
| READ/WRITE/FIND | RDWRT | BASCHK/RROUT, ARGOUT, RXOUT
i 1 1 4
r T + 4
|RETURN | RETURN | BASCHK/RROUT, RXOUT, LISTOUT1 |
L ! + 1
r + +
| REWIND | RDWRT | BASCHK, ARGOUT, RXOUT |
}STOP %S oP H 1
T None
i i ; 1
| STORE MULTIPLE | STM | BASCHK/RROUT, RXOUT]
¢ 4 4 4
r t T 1
| SUBROUTINE | SUBRUT 2 | GENBR, BASCHK/RROUT, RXOUT |
——— 4 iR
T T
| SUBSCRIPT | SAOP | BASCHK/RROUT, RXOUT
______ 4

|tMakes an entry in the statement function and DO branch list table.
|2Makes an entry in the epilog table.
| 3Makes an entry in the statement number branch list table.

| 4A1ll of the above routines return control to the PRESCN routine to begin the
| processing of the next text word.

L

b s e e e

Section 3:

Charts and Routine Directories 8

5

Table 20. Phase 25 Main Routine/Subroutine Directory

r
| Routine/Subroutine
L

T
| Function
4
+

r
| aOP
I

|
| ARGOUT
|
| ARITHI
|
| ASFDEF

I
| ASFUSE

|
| BASCHK/RROUT, RXOUT

|
| cGoTO

|
|po1

|2

;ENDDO

lENDIO
:FUNGEN/IBERR
=GENBR

}GET

=IOLIST

|
| LABEL

|
| LISTOUTB/LISTOUT1

|
| PRESCN
RDWRT

RETURN

RXGEN/LM/STM
SAOP

START
STOP/PAUSE
UBRUT

S
TRGEN

o . — — T — — — ——— —— — — —— d— — —

|Processes subscript text when the entire subscript expression need
|not be calculated.

| Inserts addresses for arguments into the object module.

|Processes arithmetic IF statements.
|

|Processes the first text word of a statement function definition.

|Generates instructions to use a statement function at object time.

|Generates RX and RR format instructions.

|Processes computed GO TO statement text.

|Begins processing of the DO statement text.

|Performs the final Phase 25 processing.

|

|Generates instructions to end a DO loop.
I .

|Processes the end I/0 text.

|Processes in-line and library function calls.

|Makes entries to the branch list tables.

|Oobtains intermediate text words.

|

|Processes the I/0 list substatement text.

| Processes statement number definition text entries.

|Generates branch list text.

|

|Determines which routine will process a particular portion of
|intermediate text.

|

|Processes READ, WRITE, FIND, BACKSPACE, REWIND, and ENDFILE
| statements.

|Processes RETURN statement text.

|Processes intermediate text entries with adjective codes between
|25 and 8F (hexadecimal).
|

| Processes subscript text when the entire subscript ordering factor
|must be calculated.
|

|Performs phase initialization.

|Generates instructions for the STOP and PAUSE statement text.

— ——— — T — —— . — — — ——— T — T— o— V— — G————— — — — —T— — —— — — — —— —— {———— ——— S— e S, ot et s}

| Processes FUNCTION and SUBROUTINE header card text.
|

|Generates branching instructions for GO TO statements.
1

b e e e — — — — — —— — —

86

Chart CO.

NOTE——)
RES LYV S22 22224
PHASE 30 1S ENTEREQ FROM # PHASE 20 OR #
PHASE 20 (IEJFRAAO) IF THE * PHASE 25 0
NOLOAD OPTION IS IN EFFECT * (SEE NOTE)
F URCE ULE ERRORS i&&**i&l*i’iﬂ}l
WERE DETECTEDs OTHERWISE.
PHASE 30]S ENTERE FROM
PHASE 25 (IEJFVAAO
v
ok,
82 *.

¥ *e
NO «*ANY ERRORS #,.
%o DR WARNINGS o¥
l *, o

#o ¥
*o o

*EEw % YES

* *

* G2 #

»* *

e

v
.lii*czl'{'.li"{

*THIRTY

-l—&—*—i—i—h—&—i
* PRIME *
- TEXT *

* BUFFERS *
HEREEERRE AR R

>

:-;:;Dza~-«ii*a'¢
* ERR/WARN
«—*-«-*-«-&—&-n-q
* SET UP

* MESSAGE .
* *

L e e e e

o¥e
E2 *e

¥ *eo
NO % LAST *e
L%, MESSAGE ¥
*, o#
*e ot
*e

¥
* YES

o *o
o%* DETERMINE #,
*o. ENTRANCE .

Phase 30 (IEJFXAA0) Overall Logic

SEE TABLE 21 FOR A BRIEF
DESCRIPTION OF THE FUNCTION
OF EACH PHASE 30 ROUTINE/

SUBROUTINE.

<=—> INCTXT
TXTIN

<—> PRINT

PHASE 25

1

v
HRRERDE IR
* TWNF IV *
Rl Bt T B S Bt B Et
*PRIMES TEXT BFR¥

P I e s e A ey

EERRRCLEERE R RN RN
* *

GENTAB
L e e e ot o 3
* BUILDS AN IN-— ¥

LI e e e ey

v
i.ii!DA&'liil&‘li
* CHKLBL

#GEN TXT AND RLD®* ANYRLD
CARD IMAGES FOR¥
*BR LIST TABLES #
L R e

v

l*l&lE4lli6ii*l*{

*ZRTXT

q-{—ﬁ-«—i-*—i-*-ﬁ(——) TXTOUT
* GENERATE TXT %

#CARD IMAGES FOR¥*

*BASE VALUE TBL *
s e e A s

v
.i*&lFAllii&l.‘li

L e e e S e

v
HEANBCARERN R ANR N
* ENDCRD * *
W W R RN —R—R—NL——D> TXTOUT

-, o

*, ot

. o
*PHASE 20

#* GENERATE END % PRINT
#CARD IMAGE FOR *
* OBJECT MODULE #*
LR e e I g

v
AEBHH2HFEERR BN S
*

* PHASE 1 *
* (IEJFAABO) #
AR A s 222 222222)

MESSAGE «

Section 3:

e B s BB ——

>TXTOUT

* SUBROUTINE ENDCRD
ALSO SETS UP THE
*S1ZE OF COMMON
AND SIZE OF PROGRAM®

Charts and Routine Directories

87

Table 21. Phase 30 Main Routine/Subroutine Directory

[Routine/Subroutine! Function j
{ANYRLD iGenerates RID card images for branch list tables. }
=BASRLD EGenerates RLD card images for base value table. }
:CHKLBL :Controls generation of TXT and RLD card images for branch lists. =
:ENDCRD :Generates END card image for object module, and sets up 'SIZE OF=
| |COMMON and SIZE OF PROGRAM' message. |
=ENDTXT | Switches input/output buffers. '
=ERR/WARN :Sets up error and warning messages. |
=GENTAB :Builds an internal table for branch list tables.

,INCTXT | Increments intermediate text pointer. |
:NXTOUT | Generates TXT card images for branch list tables.

}PRINT =Interfaces with control program to print messages. }
| THIRTY ‘Primes input text buffers. }
{TWNFIV }Ptimes input text buffers. l
ITXTIN }Reads intermediate text. }
%TXTOUT ‘Outputs card images on SYSLIN and/or SYSPUNCH data sets. :
iZRTXT iGenerates TXT card images for base value table. i

88

The amount of main storage allocated to
the compiler depends on whether a SPACE or
a PRFRM compilation is being performed.

FOR SPACE COMPILATIONS

For SPACE compilations, the compiler

requires main storage for:
and

¢ Load modules (phases, interludes,

interface).

e Resident tables
table, SEGMAL).

{(dictionary, overflow

e Internal text buffers.
e BSAM I/0 routines and control blocks.

The main storage
phase/interlude of the

required by each
compiler need be

32K 32K

APPENDIX A: MAIN STORAGE ALLOCATION

contiguous only for each control section.
Figures 16 through 22 reflect the main
storage allocation associated with each
successive phase/interiude as it performs
its functions, when only a minimal amount
of storage (15K bytes, where K = 1024) is
available for compilation.

When the main storage allocated to the
compiler (specified in the SIZE option) is
greater than 15K bytes, the internal text
buffers may be interspersed within the area
occupied by the dictionary and the overflow
table. In this case, there need be no
relationship between the various areas
required by the compiler.

These figures are schematics showing the
main storage allocated; proportional sizes
within the diagrams do not necessarily
indicate proportional amounts of main stor-
age.

32K

1 r 1 r 1
INTERFACE MODULE | | INTERFACE MODULE | | INTERFACE MODULE |
3 1 3 'R d
1 r 1 r a
| BSAM ROUTINES | | BSAM ROUTINES | | BSAM ROUTINES |
| | | | | |
L Jd L { L 4
r a L} v 4
| PHASE 5 | | PHASE 5 | | PHASE 5 |
b L & i F !

| AVAILABLE MAIN | | AVAILABLE MAIN | | AVAILABLE MAIN
| STORAGE | | STORAGE | | STORAGE [
' . 1 ¥
| | | PHASE 1 | | TRANSIENT WORK AREA |
| | | | 3 i
¢] | | | DICTIONARY |
| | k .| t {
| PHASE 1 | | OVERFLOW TABLE, SEGNAL | | OVERFLOW TABLE, SEGMAL |
| | t i F i
| | | 4 INTERNAL TEXT BUFFERS| | 4 INTERNAL TEXT BUFFERS|
17K} { 17K} { 17K} 4
| | | | I I

| RESIDENT | | RESIDENT | | RESIDENT

| CONTROL | | CONTROL | | CONTROL
PROGRAM		PROGRAM		PROGRAM
OL J OL d OL i
Figure 16. Main Storage at Figure 17. Main Storage at Figure 18. Main Storage at

the End of Phase 1 the End of Phase 1 the End of
(initial entry) (subsequent Phase 5
entries)

Appendix A:

Main Storage Allocation 89

W
N
=

r 1 v 1
| INTERFACE MODULE | | INTERFACE MODULE |
b d L 4
¥ L}) 1
| BSAM ROUTINES | I |
| | | BSAM ROUTINES]
L b |
t i | |
| TRANSIENT WORK AREA | b i
} 9 | TRANSIENT WORK AREA |
| PHASE 7, PHASE 8, | b 1
| PHASE 10D, PHASE 10E, | | PHASE 12, PHASE 14, |
| INTERLUDE 10E | | INTERLUDE 14 |
4 8
1 3
DICTIONARY | | DICTIONARY
_ | L
3 v
| OVERFLOW TABLE, SEGMAL | | OVERFLOW TABLE, SEGMAL |
[N 4 [4
1} 1 [} 1
| 4 INTERNAL TEXT BUFFERS| | 4 INTERNAL TEXT BUFFERS|
17K } 4 17K } 1
| | | |
| | | |
| I I I
RESIDENT		RESIDENT
CONTROL		CONTROL
PROGRAM		PROGRAM
I I		
I		
0 L. 4 0 L ¥		
Figure 19. Main Storage at the End of Figure 20. Main Storage at the End		
Phases 7, 8, 10D, and 10E; of Phases 12 and 14, and		
and Interlude 10E Interlude 14		
32K ¢ 1 32K ¢ 1		
INTERFACE MODULE		INTERFACE MODULE
t 1 k 1		
BSAM ROUTINES		
b 1	BSAM ROUTINES	
TRANSIENT WORK AREA }	o	
'8 4 b 4		
r 1 v B 1		
		TRANSIENT WORK AREA
	k = i	
PHASE 15,		PHASE 20,
INTERLUDE 15		PHASE 25,
		PHASE 30
] I		
k b {		
OVERFLOW TABLE, SEGMAL	OVERFLOW TABLE, SEGMAL	
b I8 y		
r ¥ 1		
4 INTERNAL TEXT BUFFERS]	4 INTERNAL TEXT BUFFERS
17K } 9 17K ¢		
	I	
		I
RESIDENT		RESIDENT
CONTROL		CONTROL
PROGRAM		PROGRAM
	i	
0oL] 0t J
Figure 21. Main Storage at the End of Figure 22. Main Storage at the End
Phase 15 and Interlude 15 of Phases 20, 25, and 30

(on entry to Phase 1)

90

FOR PRFRM COMPILATIONS

For PRFRM compilations, the
requires main storage for:

compiler

¢ Load modules
performance).

e Resident tables (dictionary, overflow
table, and SEGMAL).

s Internal text buffer chains.

BSAM 1I/0 routines.

¢ Blocksdeblock buffers
specified.

(phases, interface, and

if blocking is

The main storage required by any given
phase of the compiler need be contiguous
only for each control section within that
phase. Figure 23 reflects the main storage
allocation for the duration of a PRFRM
compilation, when only a minimal amount of
main storage (19K bytes, where K=1024) is
available for compilation.

When the main storage allocated to the
compiler (specified in the SIZE option) is
greater than 19K bytes, the internal text
buffers may be interspersed within the area
occupied by the dictionary and the overflow
table. 1In this case, there need be no
relationship among the various areas
required by the compiler.

Figure 23 is a schematic showing the
main storage allocated; proportional sizes
within the diagram do not necessarily indi-
cate proportional amounts of main storage.

36K

INTERFACE MODULE

PERFORMANCE MODULE

BSAM ROUTINES

TRANSIENT WORK AREA

PHASE 1, PHASE 5,
PHASE 7, PHASE 8,
PHASE 10D, PHASE 10E,
PHASE 12, PHASE 14,
PHASE 15, PHASE 20,
PHASE 25, OR PHASE 30

DICTIONARY, OVERFLOW
TABLE, AND SEGMAL

——— o GO . S S — T o, S o — . o S— G w—

4 INTERNAL TEXT BUFFER CHAINS

BLOCK/DEBLOCK BUFFERS (IF
BLOCKING IS SPECIFIED)

[y
~
=

—— ———— —— T o— ——

RESIDENT
CONTROL
PROGRAM

(=]
-

1
[
4
1
|
4
a
l
|
|
4
1
|
J
1
|
|
|
|
|
|
4
1
I
|
I
|
4
1
|
4
1
I
|
J
1
|
|
!
|
|
|
|
J
a

Figure 23. Main Storage Allocation for

PRFRM Compilation

Appendix A: Main Storage Allocation 91

APPENDIX B: COMMUNICATION AREA (FCOMM)

The communication area is a central
gathering area used to communicate neces-
sary information between the various phases
of the compiler. The communication area,
as a portion of the interface module, is
resident throughout the compilation.

Various bits in the communication area
are examined by the phases of the compiler.
The status of these bits determines such
things as:

e Options specified by the source pro-
grammer.

e Specific action to be taken by a phase.

Several entries 1in the communication
area are equated to the addresses of other
entries in the communication area used
during earlier phases. Equating the
entries keeps the size of the communication
area to a minimum.

The communication area is assembled as a
DSECT (dummy section) within each phase.
This allows the phases to symbolically
address the entries in the communication
area without the communication area actual-
ly residing in each phase.

Table 22 indicates the format and organ-
ization of the communication area.

Table 22. Communication Area
r T T -
| | . | |
| Entry | Size | Meaning |
- + + i
{FCOMM |DS XL4 | BITO SOURCE 1 |
| i |BIT1 DECK 1 |
| | | BIT2 MAP 1 |
| | | BIT3 ADJUST 1 i
| | | BITY PRFRM 1]
| | |BITS 5-6 00 NOLOAD 1 |
| | i 11 LOAD 12 |
i | |BIT7 BCD 2 I
| | | BIT8 NAME PARAMETER EXISTED |
| | | BITS 9-10 00 MAIN PROGRAM |
| i | 10 SUBROUTINE SUBPROGRAM |
| | | 11 FUNCTION SUBPROGRAM [
| | |BIT11 FUNCTION NAME DEFINED |
| | | BIT12 OBJECT MODULE CALLS AN EXTERNAL S/P |
| (|BIT13 SPARE |
| | | BIT14 LAST COMPILE OF THIS JOB STEP-PH 10E/1 |
| | BIT1S ERROR ON ANY COMPILE OF A BATCH RUN |
| | BIT16 WARNING MESSAGES |
| | BIT17 ERROR MESSAGES [
| | |BIT18 MESSAGE IN CURRENT STATEMENT-PH 10D/10E [
| | | INPUT BUFFER TO BE PRIMED-PH 12/14
| | *DIOCS' ESD TO BE GENERATED-PH 14/20 |
| | BIT19 WARNING IN ANY COMPILE OF A BATCH RUN |
| | BIT20 ABORT COMPILATION |
| | BIT21 ALL INTERNAL TEXT IN STORAGE |
| | |BIT22 ONE INTERNAL TEXT RECORD-PH 10D/10E [
| | i OBJ. MOD. USES A SPILL BASE REG-PH 12/25 |
| | | BRANCH LIST TEXT NOT ALL IN STORAGE-PH 25/30 |
| | |BIT23 OBJECT LISTING I
| | | BIT24 OTHER THAN FIRST COMPILE |
| | |BIT25 COMPILATION RESTARTED |
| | | BIT26 INVALID OPTION(S) IN ‘PARM' FIELD |
| | |BIT27 *NAME' OPTION TOO LONG-TRUNCATED |
| | |BITS 28-31 SPARE |
1 A1 4L Jd
(Continued)

92

Table 22. Communication Area (Continued)
I ¥ LB
| | |
| Entry | Size | Meaning
—_— + + _—
| FSIZE |DS F | BYTES OF STORAGE REQUESTED FOR COMPILER 2
|FDATE |DS CL5S |YEAR (2 DIGITS), DAY (3 DIGITS)
| FLINELNG|DS X | OBJECT PROGRAM PRINT LINE LENGTH %
| FINDEX |IDS H | DISPLACEMENT FROM FCOMM TO FDECBIN
| FMAXLINE|DS H | MAXIMUM NUMBER OF LINES ON LISTING PAGE
|FCURLINE|DS H | CURRENT LINE ON LISTING PAGE
| FIEJF |DS CL4 | FORTRAN E INTERNAL COMPONENT CODE - IEJF
| FPHASE |DS CL4 | ENTRY POINT OF PHASE IN CONTROL
| FDMRRDCD|DS X | HI-ORDER BYTE OF REREAD ITEM IN CLOSE LIST
|FDMLSTCD|DS X | HI-ORDER BYTE OF LAST ITEM IN CLOSE LIST
|FPRTCTRL|DS 2H | BRANCH TO PRINT CONTROL ROUTINE
L 4. 1
]
{THE CONTENTS OF THE | FOR SPACE IFOR PRFRM
INEXT 4 FIELDS DEPENDS | COMPILATIONS | COMPILATIONS
ON WHETHER A SPACE OR A	
PRFRM COMPILATION IS	
BEING PERFORMED.	
t T + +	
FIORTN	DS 2H
FNEXT	IDS 2H
	Ds
FPRFRMDL	DS
L + + L ——	
FAGAOEND	DS

| FSAVADDR | DS
| FTXBFSZA|DS
| FTXBFSZB | DS
| FTXTPTRA| DS
| FTXTPTRB | DS
| FTXTBFAL | DS
| FTXTBFA2| DS
| FTXTBFBL1 | DS
| FTXTBFB2|DS
| FPRTBUF1 | DS
| FPRTBUF2| DS
| FINITBFS |DS
| FDICTNDX | DS
| FOVFLNDX | DS
| FDICTBLK| DS
| FOVFLBLK | DS
| FDICTNXT | DS
| FOVFLNXT | DS
|FISNEX1 |DS
| FOBJPROG | DS
| FOBJREGS | DS

| |
| FASFCNT |DS
| FDOCOUNT | DS
| |Ds
L L

?3’?3’»3’;3’53‘wa’wﬂzmnimu'? >

X O
I
o

oo

* | ADDRESS

| ADDRESS OF CONTROL PROGRAM SAVE AREA

| SIZE OF 'SYSUT1'
|SIZE OF 'SYSUT2' INT. TEXT BUFFER
|DISP. OF NEXT SYSUT1 TEXT RCD.-PH
|DISP. OF NEXT SYSUT2 TEXT RCD.-PH
| ADDRESS OF INTERNAL TEXT BUFFER 1
INTERNAL TEXT BUFFER 2
INTERNAL TEXT BUFFER 1
INTERNAL TEXT BUFFER 2

| ADDRESS OF
| ADDRESS OF

| ADDRESS OF

INT.

| ADDRESS OF FIRST PRINT BUFFER
| ADDRESS OF SECOND PRINT BUFFER
| INITIAL TEXT BUFFER POINTERS

|ADDRESS OF OVERFLOW INDEX
|DICT. BLOCK NOW BEING BUILT - PH. 10D/E

| OVFL. BLOCK NOW BEING BUILT - PH.

TEXT BUFFER

10D/10E,12/14
12/14

- SYsuT1
SYSUT1
sSYsuT2
SYSUT2

OF DICTIONARY INDEX - PHASE 7/12

10D/E

|DICT. ENTRY NEXT TO BE BUILT - PH. 10D/E
|OVFL. ENTRY NEXT TO BE BUILT - PH. 10D/14
| ISN OF FIRST EXECUTABLE-PHASE 10D/E

| NAME OF OBJECT PROGRAM

|BITS 0-2 SPARE
EXTERNAL FUNCTION HAS BEEN CALLED

|BIT 3

|BITS 4-7 LOWEST INDEX REGISTER IN OBJ. PROG.
| COUNT OF SF'S IN OBJECT PROGRAM
| NUMBER OF DO STATEMENTS

| SPARE
1

b o s s e e o ——— — — ———— —— ———— — ——t——a— —o— . — —— —) q——— o—— — o po—— p— T— o— ——o———— w— wrln crern s—]

Appendix B:

(Continued)

Communication Area (FCOMM) 93

Table 22. Communication Area (Continued)
L3 T R T N
| Entry | Size | Meaning
4 . 4
— $ $ _— —_—
| FCOMSIZE|EQU FDICTBLK | SIZE OF OBJECT PROGRAM COMMON - PH. 12/30

| FALSIZE |EQU
|FBLSIZE |EQU
| FBLSTRT |EQU
| FASFDOBL | EQU
| FBVSTRT |EQU
| FOBJSTRT | EQU
| FLOCCTR |EQU
| FFNCADDR | EQU
|FIBCOM |EQU
| FOBJERR |EQU
| FDECKSEQ| EQU
| FESDSEQ |EQU
| FENDSTOR | EQU
| FALSTRT |DS
|FDATEMP |DS
| FDEFILCT|DS
|FDIOCS |EQU
| FPATCH |DS
| FPTCHTBL | DS
| FPTCHPTR| DS
| FSORSYM1 | DS
| FSORSYM2 | DS
. L

FDICTBLK+2|SIZE OF OBJ. PROG. ARGUMENT LIST - PH. 15/20
FOVFLBLK |SIZE OF OBJ. PROG. BRANCH LIST - PH. 12/30
FOVFLBLK+2|ADDR. OF OBJ. PROG. BRANCH LIST - PH. 12/30
FOVFLNXT+2 | ADDRESS OF ASF/DO BRANCH LIST - PH. 20/30
FDICTNXT |ADDR. OF OBJ. PROG. BASE VAL. LIST - PH. 12730
FDICTNXT+2|STARTING ADDR. OF OBJECT PROGRAM - PH. 12/30
FISNEX1 | LOCATION COUNTER FOR OBJ. PROG. - PH. 12/30
FDICTBLK+2|ADDRESS OF RESULT (FUNCTION S/P) - PH. 14/15
FOVFLNXT |ADDRESS OF IBCOM - PHASE 20/25
FDICTBLK+2|{ADDR. OF OBJ. PROG. ERROR RTNE. - PH. 20/25
FDICTNDX |OBJECT PROGRAM DECK SEQUENCE NUMBER - PH. 12/30
FDICTNDX+2|OBJECT PROGRAM ESD SEQUENCE NUMBER - PH. 12/20
FDICTNDX+2| END-OF-DATA STORAGE ADDRESS - PH 25/30

F | DSRN ARGUMENT LIST ADDRESS

F | ADDRESS OF DIRECT ACCESS I/0O TEMPORARY AREA
F | "DEFINE FILE' DSRN COUNT - PH. 10D/20
FDEFILCT |ADDRESS OF DIOCS - PH. 20/25

2H | BRANCH TO PATCH ROUTINE IN INTERFACE MODULE
A | ADDRESS OF PATCH TABLE

A | PATCH TABLE ENTRY NEXT TO BE POSTED

A |ADDRESS OF SORSYM TABLE

A

| SORSYM TABLE ENTRY NEXT TO BE BUILT
i

: -
|*Default values for these compiler options may be specified by the user during the
| system generation process via the FORTRAN macro-instruction. The default values
| specified at system generation time are assumed if the corresponding parameters in
| the PARM field of the user's EXEC statement are not included.

L

b e e v e s . . s e . — . — i - T— —— — —— . S . et i s, S e s, e, e

94

APPENDIX C:

LINKAGES TO THE INTERFACE MODULE AND THE PERFORMANCE MODULE

LINKAGE TO THE INTERFACE MODULE

For SPACE compilations, the components
of the compiler 1link to the interface
module (IEJFAGAO) for input/output requests
and end-of-phase/interlude requests. In
addition, for both SPACE and PRFRM compila-
tions, the compiler components link to the
interface module for patch requests and for
print control operations.

Input/Qutput Request Linkage

The linkage to the interface module for
an I/0 request is:

L LNKREG, IOPARS
BAL 15,FIORTN

where:
e LNKREG is general register 0.
¢ IOPARS is the following 4-byte word:

13 v

|Operation|Address of the I1/0 buffer
|Field | For this operation

L 4

S P S

v T
|1 byte |3 bytes
L L

The operation field bits and their
meanings are illustrated in Table 23.

Table 23. Operation Field Bit Meanings

r i 1

|Bit O |Check operation |

L 1 4

r T 1

|Bit 1 |Read operation |

[N 4 4

3 T b

|Bit 2 |Write operation |

L 4 d

1) T b

|Bit 3 |Flush operation |

8 4

L} L]

|Bit 4 |Not used

[4

r 1

|Bits 5-7|000 - SYSIN is to be used

|]|001 - SYSPUNCH is to be used|

| |010 - SYSLIN is to be used |

| {011 - SYSUT1 is to be used

| |100 - SYSUT2 is to be used

| 1101 - SYSPRINT is to be used

| |110 - Not used |

| |111 - Indicates that the

| | address of the DECB to

| | be used is supplied inj|

| | general register 1. |

L L. ']
Appendix C:

® General register 15 contains the
address of the instruction following
the BAL instruction.

e FIORTN is the name of a branch instruc-
tion in the communication area that
branches to the I/0 routine (SIORTN) of
the interface module.

RETURNS: The SIORTN routine may return to
the caller either normally or abnormally.

Normal Return: The normal return is to the

instruction that is 4 bytes beyond the BAL
instruction.

Abnormal Return: The abnormal return is to

the instruction immediately following the
BAL instruction. Two conditions may result
in an abnormal return. They are:

1. End-of-data set in which case general
register 14 contains a zero.

2. Permanent I/0 error is which case
general register 14 contains a four,
and general register 1 contains the
address of a save area for general
registers 14, 15, 0, and 1. The save
area has the following format:

SYNADRET DS F
SAVERET DS F
IOPARS DS F
DECBADDR DS F

where:

SYNADRET corresponds to general reg-
ister 14 and contains the address to
which control is +to be passed if an
I/0 error is accepted and processing
is to continue.

SAVERET corresponds to general reg-
ister 15 and contains the address of
the instruction immediately following
the BAL instruction.

IOPARS corresponds to general register
0 and contains the U-byte word des-
cribed previously in this section.

DECBADDR corresponds to general reg-
ister 1 and contains the address of
the DECB associated with the data set
for which the I/0 operation was
requested.

Linkages to the Interface Module and the Performance Module 95

End-Of-Phase/Interlude Request Linkage

The linkage to the interface module for
an end-of-phase/interlude condition is:

L LNKREG, NXPARS
BC 15,FNEXT
where:

¢ LNKREG is general register O.
¢ NXPARS is the following 4-byte word:

) Ll 1
|Entry point identifier |Data set |
|of next phase/interlude |disposition]
| |field |
8 4 J
I T 1
|3 bytes |1 byte |
L i J

The data set disposition field bits and
their meanings are illustrated in Table
24,

Table 24. Data Set Disposition

Field Bit Meanings

P T
|Bits 0-1|Not used
8 4

v T
|Bit 2 |TCLOSE the DCB for SYSIN
L 1

T T

|Bit 3 |TCLOSE the DCB for SYSPUNCH
L 4

LB T

|Bit 4 |TCLOSE the DCB for SYSLIN
l,_ 1

+
|Bit 5 |TCLOSE the DCB for SYSUT1
L 4

r T
|Bit 6 | TCLOSE the DCB for SYSUT2
b !

WA SRR WU T S SIS Sp——

r T
|Bit 7 |TCLOSE the DCB for SYSPRINT
L

L

e FNEXT is the name of a branch instruc-
tion in the communication area that
branches to the end-of-phase routine

(SNEXT) of the interface module.

RETURN: Control is never returned to the
caller; it is transferred to the next phase
or interlude via the XCTL macro-instruction
(refer to Table 25).

Patch Requests

The 1linkage to the interface module for
a patch request is:

LR WRKREG, BASEA

BAL 15, FPATCH
DC C'XXx*

96

where:
¢ WRKREG is general register 14.

e BASEA contains the absolute address of
relative 1location 0002 in the control
section of the component to be tempo-~
rarily modified.

e FPATCH is the name of a branch instruc-
tion in the communication area that
branches to the patch routine (PATCH)
in the interface module.

e 'XX'" 1is the fifth and sixth characters
in the name of the component to be
temporarily modified (refer to Table
25). That 1is, 'XX' indicates the com-
ponent to be modified.

RETURN: Control is returned from the PATCH
routine to the instruction immediately foi-
lowing the DC C'XX ' instruction.

Print Control Operations

The 1linkage to the interface module for
a print control operation is:

BAL 15, FPRTCTRL
DC B' xxxxxxxx"'
DC AL3 (IOERR)
where:

¢ FPRTCTRL is the
instruction in the

name of a opranch
communication area
that branches to the print control
operations routine (PRTCTRL) of the
interface module.

o 'yxxxxxxx' is the carriage control char-
acter.

e AL3 (IOERR) is an "address constant
containing the address of the I/0 error
routine of the component requesting the
print control operation.

RETURNS: The PRTCTRL may return to the
caller either normally or abnormally.

Normal Return: The normal return is to the
instruction immediately following the
DC AL3(IOERR) instruction.

Abnormal Return: The abnormal return is to

the I/0 error routine within the caller.
The contents of general registers 14 and 0
are the same as that described for an
abnormal return for an I/O regquest.

LINKAGE TO THE PERFORMANCE MODULE

For PRFRM compilations, the components
of the compiler 1link to the performance
module (IEJFAPAO) for:

¢ Input/output requests.

¢ End-of-phase requests.

Input/OQutput Request Linkage

The linkage to the performance module
for an I/0 request is the same as that
described for the linkage to the interface
module for an I/0 request. However, the
FIORTN field in the communication area is
effectively replaced, by Phase 5, with a
branch to the PIORTN routine in the perfor-
mance module. All I/0 requests for PRFRM
compilations are automatically rerouted to
the PIORTN routine. The PIORTN routine, in
turn, links to the I/0 routine (SIORTN) of
the interface module when it 1is either
ready to read or write, or to check the
result of a previous read oxr write.

RETURNS: The returns from the PIORTN rou-

tine are the same as those described for
the SIORTN routine.

End-Of~-Phase Request Linkage

The 1linkage to the performance module
for an end-of-phase request is the same as
that described for the 1linkage to the
interface module for an
end-of -phase/interlude request. However,
the FNEXT field in the communication area
is effectively replaced by Phase 5, with a
branch to the PNEXT routine in the perfor-
mance module. All end-of-phase requests
for PRFRM compilations are automatically
rerouted to the PNEXT routine.

Appendix C:

RETURN:

Control is never returned to the
caller; it is transferred to the next phase
via the XCTL macro-instruction.

Note: Internally, the compiler components
use symbolic names when transferring con-
trol to a subsequent component. The sym-
bolic names and the actual names of the
components are illustrated in Table 25.

Table 25. Symbolic and Actual Names of

Compiler Components

i1Never receives control, via the XCTL
macro-instruction, from another compiler
component.
2Transferred to (via XCTL
instruction) by calling programn.
3Loaded (via LOAD macro-instruction) by]|
Phase 1. |
4Loaded (via LOAD macro-instruction) by|

Phase 25. |
-J

macro-

r- T 1
| Symbolic Name|Actual Name |
b]]
r ’ K
IEJFAAAO 1,2	Phase 1-Initial entry
IEJFAABO	Phase 1-Subsequent entries
IEJFAGAO 2,3	Interface module
IEJFAPAO 1,2	Performance module
IEJFAXAO 1,3	Source symbol module
IEJFCAAO 3	Phase 5 }
IEJFEAAQ	Phase 7
IEJFFAAQ	Phase 8
IEJFGAAO	Phase 10D
IEJFJAAQ	Phase 10E
IEJFJGAO	Interlude 10E
IEJFLAAO	Phase 12
IEJFNAAO	Phase 14
IEJFNGAO	Interiude 14
IEJFPARO	Phase 15
IEJFPGAO jInterlude 15	
IEJFRAAQ	Phase 20
IEJFVAAOQ	Phase 25
IEJFVCAO 1,%	Object listing module
IEJFXAAQ	Phase 30
X 4L 4

1

I

|

|

|

|

[s s e . s s, S e S

Linkages to the Interface Module and the Performance Module 97

APPENDIX D: DATA CONTROL BLOCK MANIPULATION

The manipulation of the data control
blocks for the data sets required by the
compiler depends on whether a SPACE or a
PRFRM compilation is being performed. For
SPACE compilations, there is more data
control block manipulation because of main
storage limitations. (The main storage
required to contain all the BSAM routines
and the control blocks for I/0 operations
may not be available or may be restricted
from the compiler by the value specified in
the SIZE option.) For PRFRM compilations,
the availability of main storage is not a
limitation. Therefore, less data control
block manipulation is required.

For both SPACE and PRFRM batch compila-
tions (i.e., more than one source module),
the SYSPRINT, SYSLIN, and SYSPUNCH data
sets are manipulated so that each data set
contains the output for the entire compila-
tion (i.e., for all the source modules).
However, for a batch SPACE compilation, if
the SYSOUT parameter is used on the DD
statements associated with SYSPRINT, SYS-
LIN, and/or SYSPUNCH; new data sets are
created for the output of each of the
compiled source modules.

FOR SPACE COMPILATIONS

For a SPACE compilation, Phase 1 ini-
tially opens only the data control blocks
for the data sets used by Phases 5, 7, 8
(if the ADJUST option is in effect), 10D,
and 10E (SYSIN, SYSUT1, SYSUT2, SYSPRINT).
For the remainder of the compilation, the
data control blocks are opened by the
interludes only when their corresponding
data sets are to be used by a specific
compiler component. Each interlude first
closes all the data control blocks and then
opens only those that are to be used. This
process decreases the size of the resident
BSAM routines and provides the compiler
with the additional main storage necessary
for compilation.

Figure 24 (refer to Note 1) illustrates
the manipulation of data control blocks for
SPACE compilations.

98

FOR PRFRM COMPILATIONS

For PRFRM compilations, Phase 1 initial-
ly opens the data control blocks for all
the data sets required by the compiler.
Because all the required data control
blocks are opened initially, the compiler
can bypass the execution of Interludes 10E,
14, and 15. Bypassing the execution of the
interludes reduces data control block
manipulation and phase-to-phase transition
time; therefore, compilation time is also
reduced.

Figure 25 (refer to Note 1) illustrates
the manipulation of data control blocks for
PRFRM compilations.

Note 1: In Figures 24 and 25, OPEN indi-
cates that the data control block is opened
during execution of a compiler component.
CLOSE indicates that the data control block
is closed during execution of a compiler
component. TCLOSE indicates that the cor-
responding data set 1is logically reposi-
tioned to the beginning of the data set for
subsequent reading or writing. IN, OuT,
INOUT, and OUTIN indicate that the corres-
ponding data set is wused for initial or
intermediate compiler input, for intermedi-
ate or final compiler output, for input
followed by output, and for output followed
by input. READ indicates that the corres-
ponding data set is read from during execu-
tion of a compiler component. WRITE indi-
cates that the corresponding data set is
written onto during execution of a compiler
component. FLUSH indicates that the con-
tents of the buffer currently being used
are written out (only for a PRFRM compila-
tion with blocking).

Note 2: For SPACE compilations, READ,
WRITE, and TCLOSE operations are controlled
by the interface module. For PRFRM compi-
lations, READ, WRITE, FLUSH, and TCLOSE
operations are controlled by the perfor-
mance module. (Figure 25 shows the logical
DCB manipulation, rather than the actual
DCB manipulation, since blocking on SYSIN,
SYSLIN, SYSPUNCH, SYSPRINT, and SYSUT2 (for
ADJUST runs), and chaining on SYSUT1 and
SYSUT2 determine when these operations are
actually performed.

|+SYSLIN is used only if the LOAD option is in effect.
| #SYSPUNCH is used only if the DECK option is in effect.

|3For ADJUST compilations only.
| “For NOADJUST compilations only.

|30nly for compilations other than the first in a batch.
L

I T T T T T T 3
| | DCB for | DCB for | DCB for | DCB for | DCB for | DCB for
| Compiler Component | SYSIN | SYSUT1 | SYSUT2 | SYSPRINT | SYSLIN 1 | SYSPUNCH 2 |
t 4 } 4 1 4 4 1
| Phase 1 (initial | OPEN | OPEN | OPEN | OPEN | | |
% entry) 1 IN ! ouT ! OUTIN 3 ! ouT 1 l J
T T h] T T T 1
| Phase 5 | READ | | | WRITE | | |
t—- + + + + + + 1
| Phase 7 | | TCLOSE ®| TCLOSE S| WRITE | |
t + + t + + + {
Phase 8 (executed			WRITE 3			
} only for ADJUST	READ 3		TCLOSE	WRITE 3		
compilations)						
F + + + + + + 1						
Phase 10D	READ “	WRITE	READ 3	WRITE “		
t + + + +- + -—t -—						
Phase 10E	READ %	WRITE	READ 3	WRITE *“		
t + + + + + --4 1						
	CLOSE	CLOSE	CLOSE	CLOSE		
Interlude 10E		OPEN	OPEN	OPEN	OPEN	OPEN
i		IN	ouT	ouT	ouT	ouT
T 1 i i i *.						
READ						
Phase 12		TCLOSE		WRITE	WRITE	WRITE
} $ + { $ + 1 i						
Phase 14 i	READ	WRITE		WRITE	WRITE	
t $ } ¢ ¢ == + 1						
		CLOSE	CLOSE	CLOSE	CLOSE	CLOSE
Interlude 14		OPEN	OPEN			
		our	1IN			[
t ——i t ¥ $ - 1= 1						
Phase 15		WRITE	READ]			
p--- } 4 } ¥ 1 1 1						
	CLOSE	CLOSE				
Interlude 15 {	OPEN	OPEN	OPEN	OPEN	OPEN	
	INouT	OUTIN	ouT	ouT	our	
} } 1 $ ¥ ¥ .						
	READ	WRITE				
Phase 20		TCLOSE	TCIOSE	WRITE	WRITE	WRITE
b 4 } ¢ ¢ $ 4 {						
		WRITE	READ	I		
Phase 25		TCLOSE	TCLOSE	WRITE	WRITE	WRITE
5 + t + + + + i						
Phase 30 i	READ	READ	WRITE	WRITE	WRITE	
t + + 1 + + + .						
Phase 1 (subsequent		CLOSE	CLOSE	CLOSE	CLOSE	CLOSE
entries other than	OPEN	OPEN	OPEN	OPEN		
final entry)	IN	outT	OUTIN 3	ouT		
b : + + + + } + 1						
Phase 1 (final						
entry) CLOSE CLOSE CLOSE CLOSE CLOSE CLOSE						
y						
L L 4 1 4 A L 1						
0 1						
J

Figure 24.

Appendix D:

Data Control Block Manipulation

Data Control Block Manipulation for SPACE Compilations

99

|*SYSLIN is used only if the LOAD option is in effect.

| 2SYSPUNCH is used only if the DECK option is in effect.

| ®For ADJUST compilations only.
| “For NOADJUST compilations only.

r T T T T T 1
| | DCB for | DCB for | DCB for | DCB for | DCB for | DCB for |
| Compiler Component | SYSIN | SYSUT1 | SYSUT2 | SYSPRINT | SYSLIN 1 | SYSPUNCH 2 |
L 4 4 H - 4 4 d
v T T T =T 1 T 1
| Phase 1 (initial | OPEN | OPEN | OPEN | OPEN | OPEN | OPEN |
| entry) | 1IN | OUTIN | OUTIN | OUT | our | our |
I ¢ 1 ¢ e 4 {
Phase 5 (executed]	
only for first	READ			WRITE		
source module in						
batch						
[N] 1 4 +						
r T T T T % +‘ {						
Phase 7		TCLOSE S	TCLOSE S	WRITE		
) $ S	t } } {					
Phase 8 (executed			WRITE 3			
only for ADJUST	READ 3		FLUSH	WRITE 3		1
compllatlons)			TCLOSE			
p-= ¥ + 1 $ 1 --1 -						
Phase 10D	READ %	WRITE	READ 2	WRITE “		
b $ 4 $ ¥ 1 $ 1						
		WRITE	READ 3	i I		
Phase 10E	READ %	TCLOSE	TCLOSE	WRITE 4		
b ¢ 4 + 4 1 + 1						
Interlude 10E]
(not executed)						
i N e e e						
EAD [. [
Phase 12		TCLOSE	WRITE	WRITE	WRITE	WRITE 1
b ¢ ¢ ¢ t $ $ 1						
		READ	WRITE			
Phase 14		TCLOSE	TCLOSE		WRITE	WRITE
b + + + + + + 1						
Interlude 14						
(not executed)		(
k + + + f + + i						
		WRITE	READ			
Phase 15		TCLOSE	TCLOSE			l
t + + $ + + + i						
Interlude 15						
(not executed)						
t + + } 1 + +						
		READ	WRITE			
Phase 20 i	TCLOSE	TCLOSE	WRITE	WRITE	WRITE	
b-- ¥ 4 + t } ¥ i						
		WRITE	READ			
Phase 25		TCLOSE	TCLOSE	WRITE	WRITE	WRITE
1 + + + + + 1						
Phase 30		READ	READ	WRITE	WRITE	WRITE
4 4 L i 1 L y						
T T T k) T T 1						
Phase 1 (restart	CLOSE	CLOSE	CLOSE	CLOSE	CLOSE	CLOSE
condition)	OPEN	OPEN	OPEN	OPEN		I
	IN	our	OUTIN 3	ouT		
$ $ ¢ ¢ $ $ {						
Phase 1 (subsequent						
entries other than						
the final entry)						
[1 4 4 1 1 4 4						
¥ Ll T Rl T T T L)						
Phase 1				FLUSH	FLUSH	FLUSH
¢f£inal entry)	CLOSE	CLOSE	CLOSE	CLOSE	CLOSE	CLOSE
'f i L L 4 1 {						
j

| %0nly for compilations other than the first in a batch.
L

Figure 25.

100

Data Control Block Manipulation for PRFRM Compilations

Phase 10D and Phase 10E convert each
FORTRAN source statement into a form
(intermediate text) wusable to subsequent
phases of the compiler. Intermediate text
is developed by scanning the source state-
ments from left-to-right and by construct-
ing four-byte intermediate text entries for
the source text contained in the state-
ments. (Six-byte entries are constructed
for EQUIVALENCE statements.)

Phase 10D scans the declarative state-
ments in the source module, and creates
intermediate text for those statements.
When Phase 10D encounters either the first
statement function or the first executable
statement, control is passed to Phase 10E
via the interface module. Phase 10E con-
tinues the scan of the source module and
creates intermediate text for statement
functions and executable statements.

As source statements are scanned,
entries are made to the dictionary and
overflow table. The information in the
dictionary and overflow table supplements
the intermediate text in the generation of
machine-language instructions by subsequent
phases of the compiler. This information
is associated with the intermediate text
entries by means of pointers that reside in
the text entries.

Each source statement of the source
module consists of one or more card images.
To scan source statements, each card image
of the source module is first read into one
of two I/0 buffers in the interface module
(IEJFAGAO). The double-buffer scheme
allows for overlapping the scanning of a
card image in one buffer with the reading
of the next card image of the source module
into the other buffer. If the SOURCE and
NOADJUST options are in effect, the 1I/0
buffers are used to print a listing of the
source module.

In general, the processing of a source
statement is divided into three operations:

e Preliminary scan of the card image(s)
for the statement.

e Classification scan of the first card
image for the statement.

o Reserved word or arithmetic scan of the
card image(s) for the statement, which
scans the source text of the statement.
(The reserved word or arithmetic scan
also creates intermediate text.)

APPENDIX E: SOURCE STATEMENT SCAN

PRELIMINARY SCAN

The preliminary scan first determines
the address of the end of the source text
in the card image to be processed. This
address is obtained by examining the card
image from right-to-left in groups of four
bytes. The address of the last blank group
encountered is used as the ending address
of the card image. This address is used in
the reserved word or arithmetic scan of the
card image and indicates the point at which
the scan of the card image and the creation
of intermediate text for the card image is
to terminate. In the case of the last card
image for a statement, the ending address
indicates the end of the statement.

The preliminary scan then determines the
type of the card image to be scanned. A
card image may correspond to the start of a
FORTRAN statement, the continuation of a
FORTRAN statement, or a user's comment.

If the card image corresponds to the
start of a FORTRAN statement, a unique
internal statement number is assigned to
the statement. This number is placed in
front of the card image in the buffer
containing that card image. Control is
then passed to the classification scan.

to a
new
statement number is not assigned.

If the card image corresponds
continuation of a FORTRAN statement, a
internal

Control is immediately passed to the clas-
sification scan.
If the card image corresponds to a

user's comment, no further processing is
required. The next card image of the
source module is read into the buffer that
contained the comments card image. The
address of the other buffer (previously
filled) is obtained from the communication
area, and scanning starts for the card
image in that buffer.

In each case, if the SOURCE and NOADJUST
options are in effect the buffer containing
the card image is first written onto the
SYSPRINT data set before any further proc-
essing.

CLASSIFICATION SCAN

The classification scan determines the
type (arithmetic or reserved word) of the

Appendix E: Source Statement Scan 101

FORTRAN statement to be processed. The
first action taken by the classification
scan is to determine if a statement number
defines the statement under consideration.
If a statement number is associated with
the statement, an overflow table entry for
that statement number is created.

The next item of the source statement is
then obtained. If the item is a symbol,
control is passed to a routine that scans
arithmetic statements. If the item is a
reserved word (e.g., READ), control is
passed to the appropriate reserved word
routine. The arithmetic or reserved word
routine controls the scanning of the
remainder of the statement, and creates
intermediate text for the statement.

If the item is neither a symbol nor a
reserved word, the source statement in
question is invaligd. Processing of that
statement is terminated, and processing of
the next statement of the source module
begins.

RESERVED WORD OR ARITHMETIC SCAN

The main function of the reserved word
or arithmetic scan is to scan the card
image(s) for each statement of the source
module. During this scan, dictionary and
overflow table entries are constructed, and
intermediate text entries are created. 1In
addition, each statement is examined for
correct use of the FORTRAN IV (E) language.

The reserved word or arithmetic scan is
performed by either a reserved word routine
or the arithmetic routine. A reserved word
routine exists for each of the reserved
word source statements. Certain reserved
word routines, namely those that process
statements that may contain arithmetic
expressions (e.g., IF and CALL statements)
and those that process statements that
contain I/O 1lists (e.g., READ and WRITE
statements) pass control to the arithmetic
routine to complete the scanning of the
associated reserved word statements.

When the appropriate reserved word rou-
tine or the arithmetic routine receives
control, a left-to-right scan of the cur-
rent card image is then initiated. The
first operand of the card image is
obtained, and a check is made to determine
if a dictionary or overflow table entry has
previously been created for the operand.
If an entry has not been created, a dic-
tionary or overflow table entry (depending
on the operand) is created and entered in
the appropriate resident table. Scanning
is resumed and the first operator of the
card image is obtained.

102

The intermediate text for each card
image is developed by constructing inter-
mediate text entries for operator-operand
pairs as they are scanned by a reserved
word routine or the arithmetic routine. 1In
this context, operator refers to commas,
parentheses, etc., as well as to arithmetic
operations (e.g., + and -). Operand refers
to variables, constants, statement numbers,
data set reference numbers, etc., that are
operated on.

The procedure of: (1) scanning operators
and operands, (2) constructing dictionary
or overflow table entries when necessary
for the operands, and (3) developing inter-
mediate text entries for the operator-
operand pairs is repeated until the end of
the card image 1is recognized by the
reserved word or arithmetic scan.

When the address indicating the end of
the card image is recognized by the res-
erved word or arithmetic scan, the next
card image of the source mcdule is read
into the buffer that contained the cara
image just processed. The address of the
other buffer (previously filled) is
obtained from the communication area, and
processing starts for the card image in
that buffer.

When an entire source ststement has been
scanned, a special intermediate text entry
indicating the end of the intermediate text
representation for a given statement is
generated and then written onto an inter-
mediate storage data set at the end of the

intermediate text representation for the
statement. This special text entry con-
tains the internal statement number

assigned to the statement by the prelimi-
nary scan section.

During the reserved word or arithmetic
scan, each card image is examined for
proper use of the FORTRAN IV (E) language.
The format of the card image is checked to
see if the statement associated with the
card 1image has been coded properly by the
source programmer.

If a serious error is encountered, scan-
ning of the statement associated with the
card image is terminated. An intermediate
text word indicating the end of the inter-
mediate text representation for the state-
ment is generated and then written onto an
intermediate storage data set. This text
word also indicates that an error was
encountered in the processing of the state-
ment. An intermediate text word, rep-
resenting the error, which contains a num-
ber corresponding to the specific error
detected, is generated and then written
onto the intermediate storage data set at

the end of the intermediate text represen-
tation for the statement in which the error
was detected.

If an error is encountered that is not
serious enough to terminate the scan of a
statement, an intermediate text word rep-
resenting a warning is generated. This
word 1is saved and scanning is resumed.
When the scan of the statement is terminat-
ed (either when the end of the statement is
recognized or when a serious error is
encountered), the warning text word is
written onto the intermediate storage data
set immediately following the text word
that indicates the end of the intermediate

text representation for the statement and
any intermediate text words generated for
serious errors. (A maximum of four warning
text words per statement may be saved and
then written onto the intermediate storage
data set. If more than four warning condi-
tions are encountered, an intermediate text
word representing an error is generated and
scanning of the statement is terminated.)

The source statement scan for the fol-
lowing READ statement is illustrated in
Chart DO.

READ (5,10) A,B(1),(Cc(I),I=1,10),D

Appendix E: Source Statement Scan 103

Chart DO. READ Statement Scan

Logic

ARRRW AR
*DO * - -
* AL® # A3 #
* * * *
* *hER
READ v v
(2222 YR I2 222 2T 1) l&*«quuul&&luuau HERERATEERER RN RN
* * GETWOD * CSORN -
* SET uP * i—'—!—‘—‘ — k- k= ROTHER Lt ot DL S T et 2 2
* READ BCOD »*. > * GET *. * ENTER *
* ADJ CODE * - OPERATOR * * VARIABLE IN #
* » * - * DICTIONARY
TN N R L T S] v HRARRBERERE AR R
L PAREN L d
* *
* FS %
* L4
R332 2]
v
v o*e
‘Qlllaz*&‘ili‘iil 53 *, 'l'!lﬁa"".!l’ll
GETWO * *o SUBS *
i—i— S L o VAR IABLE #. YES b—i—’-i—i-l-i—h—l
* GET DATA SET # *o DIMENSIONED o#——m——a>¥ PROCESS *
“ REFERENCE ’ *o . * SUBSCRIPTED #
NUMBER *e ¥ L *
na-.;qn&*&-.»qn&& L [e e e 212
* NO
v
v oo oo
RERRRCO2RRERERRRE RS c3 *g ca *o
* * ¥ ¥ -
L T e ot T 3 ¥) &3 « NO o *e
* ENTER * %o+ OPERATOR o >#. OPERATOR -
* DSRN IN * = #,END MARK +%
* DICTIONARY * *a o
PRI e e 2 2 *, oF
NO
v
P2
» -
v D04 v * K2 *
i'i*{D]l{*liﬁ#’ll n&;;noz&*a*&;«u*& t&ﬁo'osnwc¢&§¢¢¢¢ - »
+ GETWD * GETWD * RER
CNANGE ADJ CDDE& R PAREN i—}—i——’-l—l-{-& G—Q—l-l—i—i—&—’—&
* TO UNFORMATTED#<~————# GET OPERATOR ¥ * GET DO *<
* READ * * * PARAMETER *
* * * * *
EAZ 222 22222222223 IR EA 22 RS2 222222223
COMMA
v v v
HRERNE] REERRER R FERRREDHREEERRR RN HERRRETREREERRREN
* PUTX * * PUTX * * CSORN *
B bt Dttt Bt Y e W N N W B o S
* ENTER _ADJ * * ENTER ADJ » * ENTER »
* CODE INTO * * CODE INTO * * PARAMETER IN #
* EX * * TEX * DICTIONARY *
LR R e e s e e T I T R P e e
v
AR
* *
* K2 * v
»* * ilﬂ!le#»{*!’&ll’ ERRRECTHRERRARRRS
wnE GETWD * PUTX *
.—‘—.—'—‘—'—'—i—‘ LA B S B St 2t B Bt 4
* GET FORMAT * * ENTER »*
+ STATEMENT * * PARAMETER *
* NUMBER * * NTO TEXT *
s s T Y R st T
v v
EREEHG2REFERE LN ERBRRGIHERR RN
* LABLU * * GETWD *
it Ottt S et e R
* ENTE » * GET »
#* STMT NUMBER * * OPERATOR *
* IN OVERFL TBL #* * *
L XTI T E it tand
v
v o¥e
;nn**Hzn*Q.nipb*i H3 *,
RN GETW .
* loTHERG—C—*—*-l-*—*—ﬁ—i YES .* *,
* FS #<———% *o PARAMETERS
* * DPERAYOR ' - 4
»&*{ * *o ot
9 IIEAW N R N *e ¥
R PAREN * NO
v
v o¥e
AR A S N2 L st gt s 43 *q EAZ R NYE LSS 2222
* PUTX * ¥ *o * PUTX *
Fm e Y N N R N W . Is *. YES J e 2t ST W)
#* ENTER PTR TO # %o OPERATOR o >* ENTER *
‘ STMT NUMBER #* #*#a R PAREN % * OPERATOR *
*RER INTO TEXT * *o -k * INTD TEXT *
* * O!#{{I*ilil**!'** *o oW LT e LT
* K2 * * NO
* * EREE
HNRR * * ——]
A * K2 *=>
* *
e v
ARITH10 v aa
AR RN] R RN N R DWW ER K3 * . **‘*lk@-}lllii"l’i
* » * ETW »* o TX *
* sst * ZERO#~¥—¥— ¥ h— N N o ™ + YES A At Lo
* DJ DE e mm—— GET * #*, PARAMETERS o+%————>% ENTER IMMED *
* FDR DPERATOR * * NEXT * - PARAMETER *
* * * WORD * *, o* *
EA 2222 222222212 22 EE 22222222222 222 Hy ¥ ‘llli‘lil**’**’{**
NON--ZERO * NO l
]
v v v
2223 ERAR RN
* * * * * *
* A3 » * FS # * K2 *
* * * * * *
*EER ERRR HENE

104

YES

ERBRRGSERRERAR R
*

* PUTX

L T e O e
> * ENTER *

- INTO *

* TEXT
ARABRERRERBARERNE

.
* *
>* K2 #
* *

R
FEARRCSREARRREREE
* EOSR *
Lot Bt £ B3 Sk St S 28 3
>* OF *

ND
* STATEMENT *
* PROCESSING *
BABBRFRRERERRNN NN

CLASS I

v
RRRRDSEERE N RN
START *

* ON NEXT *
* STATEMENT *
FENRBREBERE NSNS
LA A 2]

* *

* F5 #

*

ERER

v

ﬁili!Fsliilllili!
ERROR »*
i—‘—.—i—‘-i—l—l—l
#* GENERA *
APPROPRIATE
* ERROR TEX *

HERERSBERERE R RS

Intermediate text is an internal rep-
resentation of the source statements from
which the machine-language instructions are
produced. The conversion from intermediate
text to machine-language instructions
requires information about variables, con-
stants, arrays, statement numbers, in-line
functions, and subscripts. This informa-
tion, derived from the source statements,
is contained in the dictionary and overflow
table, and is referenced by the intermedi-
ate text. The dictionary and overflow
table supplement the intermediate text in
the generation of machine instructions by
the various phases of the compiler.

Phases 10D and 10E create intermediate
text for use as input to subsequent phases
of the compiler. Intermediate text is
created by Phase 10D for the following
declarative statements:

COMMON and EQUIVALENCE
DEFINE FILE

FORMAT

SUBROUTINE or FUNCTION
Specification statements

Phase 10E creates intermediate text for
all statement functions and executable
statements in the source module and for
FORMAT statements interspersed within the
executable statements.

Phase 12 uses COMMON and EQUIVALENCE
text during relative address assignment.

Phase 14 converts the FORMAT intermedi-
ate text to a form acceptable to IHCFCOME.
It also inserts the addresses assigned by
Phase 12 to variables, constants, etc.,
into the intermediate text. In addition,
Phase 14 modifies the intermediate text for
READ/WRITE statements. Phase 14 also
deletes any COMMON and EQUIVALENCE text
from the intermediate text since that text
is no longer needed.

Phase 15 reorders the sequence of interxr-
mediate text entries in statements that can
contain arithmetic expressions, and modi-
fies these entries to a format that closely
resembles machine-language instructions.
The intermediate text for DEFINE FILE
statements is also reordered by Phase 15.
Machine operation codes and registers (when
required) are inserted in the intermediate
text. Argument lists for external and
function references are created by modify-
ing the intermediate text for those state-
ments.

APPENDIX F: INTERMEDIATE TEXT

Phase 20 modifies the intermediate text
entries that represent subscript expres-
sions. Registers are assigned to subscript
expressions (once they have been initially
computed) and are inserted in the text
entries for those expressicns.

Phase 25 uses the intermediate text in
conjunction with the overflow table to
generate the object module instructions.

Phase 30 uses the intermediate text to
generate any error and warning messages and
to process the END statement.

AN ENTRY IN INTERMEDIATE TEXT

The intermediate text is constructed by
Phases 10D and 10E for some declarative
statements, all statement functions, and
all executable statements. Each statement
is represented in the intermediate text by
one or more intermediate text words. (An
intermediate text word is four bytes long.)
This word normally contains three fields
(as illustrated in Figure 26).

T T T 1
| adjective code | mode/type | pointer |
| field | field | field |
L 1 1 .'
L) R T
| 1 byte | 1 byte | 2 bytes |
L L 1 J
Figure 26. Intermediate Text Word Format
Adjective Code Field

The adjective code field in the initial

intermediate text word indicates the type
of statement for which the intermediate
text entries are constructed, i.e.:

s Reserved word, e.g., DO, CALL, GO TO.
¢ Statement function (SF).
e Arithmetic.

The adjective codes in the subsequent
intermediate text words for a statement
indicate:

e Delimiters, i.e., + - * / ** () ,
¢ The end of a statement (end mark)
¢ An error

Each adjective code is composed of two
hexadecimal digits. The various adjective
codes possible (and their use) are indicat-
ed in Figure 27.

Appendix F: Intermediate Text 105

90T

13 T T T T T T T T T T T 1
I\L | | | | | | | | | |
mo i | | | | 1 |
i\w {0 1 2 3 N s 6 7 |18 19 A |B c I E |F |
a\ | | 1 | |
h\ |] | | |
1 [4 i
T T T T
0 - () = 20 . l 1] |]
| |ARGD~ |N1O ILLEGAL|+ - * / *% FUNC(
| | MENT ! !
T T
1 |AOP |UNARY SAOP | SIZE OF |END i 1 UNARY 10 * 10
MINUS1© |ARRAY | MARK i | PLUS10 | APOSTROPHE
+ } { +
2 IN-10{ARITH- | | | i |
ST |LINE |METIC |MVI $ 20 BLANK i I |
|FONC |IF | | |
+ + } } +
3 | | | |
1 4 1
T T T
4 |s | BC20 | |
d 1 L 3 4
T T T T 1
5 |T LCR 1 s M | | INTEGER
+ [U u + }
6 |o | [¢) B L) | | DOUBLE PRECISION
+ M T T I 4
7 |R | L P R I v REAL |
t t o A A A P I
8 |E | I ICER | 1 | A R D c L D
| | i D E D T Y E SRDA1©
1 [l
T T
9 | INTEGER |DOUBLE |REAL COMMON | EQUIVA~ | EXTER- DIMEN- | DEFINE SUBROU~
LENCE |NAL SION |FILE TINE
A |FUNC-|FORMAT |END |CON- |UNCONDI-|COMPUT-|{BACK- |REWIND [END WRITE |READ |WRITE|READ |DO STMNT.
TION DO |TINUE|TIONAL |ED SPACE FILE |BINARY |BINARY|BCD |BCD NO.
GO TO |GO TO DEF.
+ + +
B |END CALL|SF {ARITH | BEGIN END RETURN |STOP |PAUSE|ARITH |IMP ERROR |WARNING
| | 1/0 1/0 IF DO MESS- |MESS-
i LIST LIST AGE AGE i
|
c |
N
L)
D |
1
1
E |
L
T
F i
1

10subject to change in later phases.

Figure 27.

Intermediate Text Adjective Codes

Mode/Type Field

The modestype field indicates the mode

and the type of a symbol; e.g., a real
function for a function name, or dummy
variable for the variable name. These

mode/type codes are the same as those used
in the dictionary entries (refer to Appen-
dix H).

In the word with an end mark adjective
code, another indicator may appear in the
mode/type field. Normally, this field con-
tains zeros; however, if any errors or
warnings are detected in a statement, this
field contains a hexadecimal 01.

If errors or warnings are detected, the
error/warning message number appears in the
mode/type field of the word inserted in the

intermediate text to represent that
error/warning. Errors and warnings are
detected by Phases 10D, 10E, 12, 14, 15,
and 20.

Pointer Field

The pointer field consists of the last
two bytes of the intermediate text word.
It normally contains a relative pointer to
the dictionary or overflow table entry for
the symbol with which the adjective code is
associated, e.g., the term +A has a +
adjective code and an associated pointer
field that contains a relative pointer to
the dictionary entry for A. The pointer
field may also be used to contain either
the increment of a DO or implied DO vari-
able, or the internal statement number in
the word containing the end mark or the
error/warning adjective code.

The internal statement number is
assigned during Phases 10D and 10E to each
FORTRAN source statement. This number dif-~
fers from the user-assigned statement num-
ber. It is assigned whether or not inter-
mediate text is to be created for that
statement; therefore, there may be gaps in

the internal statement numbers appearing in
the intermediate text. Errors in the
source module may cause the same statement
number to be assigned more than once. If
the user has requested a source listing,
the internal statement number assigned to
each statement appears next to that state-
ment in the listing.

AN EXAMPLE OF INTERMEDIATE TEXT

Figure 28 illustrates the intermediate
text created by Phase 10E for the following
IF statement.

3 IF (+19 - MART) 11, 7, 61

[3 Bl L) 1
adjective code	modestype	pointer
field	field	field
(1 byte)	(1 byte)	(2 bytes)
’ 1 -4 1		
statement	statement	p(3)
number	number	
b ¢ 4		
arithmetic IF	o0	0000]
t 4 .

(| 00 | 0000 |

4 L 4

T T 1

unary + | integer | p(19) |

| | constant | |
8 4 4 4
[3 L . T a
l - | integer | p(MART) |
1 | variable | |
[4 4 3
v T T 1
|) | statement | p(11) |
| | number | |
L 4 4 4
L) Ll T 1
| . | statement | p(7) |
| | number | |
b 1 } 1
| . | statement | p(61) |
| | number | |
[4 4 4
1) T T 1
| end mark | 00 | internal |
| | | statement|
| | | number |
L L L 4
Figure 28. Example of Intermediate Text

for an IF Statement

Appendix F: Intermediate Text 107

UNIQUE FORMS OF INTERMEDIATE TEXT

When intermediate text is created, there
are four unique forms: the text for FORMAT
statements; subscripted variables; COMMON
statements; EQUIVALENCE statements; and
READ, FIND, and WRITE statements.

FORMAT Statements

For FORMAT statements, the adjective
code field of the first intermediate text
word of the statement indicates a FORMAT
statement; the remaining two fields contain
three bytes of +the FORMAT statement card
image. The remainder of the card image of
the FORMAT statement appears in the follow-
ing intermediate text words. Figure 29
illustrates the intermediate text created
for the following FORMAT statement.

12 FORMAT (F20.5,16)

Subscripted Variable

When a subscripted variable is
tered in a source statement, an entry for
the variable is made. That entry is fol-
lowed by two additional intermediate text
words to define the subscripted expression.

encoun-

Figure 30 illustrates the format of the
first word.

=== T T 1
| adjective code | modestype | pointer |
| field | field | field i
| (1 byte) | (1 byte) | (2 bytes)|
t ¥ } 1
| SAOP | 00 | offset |
b L L {

|SAOP represents the subscript arithmetic|
|operator, and the offset represents aj
|part of the array displacement. (Refer|
|to Appendix G for a discussion of array|

[disPlacement.) j

Figure 30. Subscripted Variable Intermedi-
ate Text - (First Word)
Figure 31 illustrates the format of the

second word.

blanks represent the remaining card
columns to column 72 .
(Each card column represents 1 byte. A

o e e . . St o, e S G o Sy At G o e o o S s S e ooy
bt e e . s s e, c— —— gy - ol e wdin S e o— r— . c———)

T T r T
adjective | modes/type | pointer | adjective codeT mode/type | pointer }
code field | field | field | field | field | field i
(1 byte) | (1 byte) | (2 bytes) | (1 byte) | (1 byte) | (2 bytes) |
- + 1 b L + '
statement | statement | | p(subscript |p(dimension }
number | number | p(12) | information) | information) |
4 N L L /]
T T T 3
FORMAT I« | F | 2 |The first field contains a relative poin-|
+ + 4 |ter to the subscript information in the|
0 | i 5 | |overflow table if the subscripted expres-|
+ + + |sion contains variables. If the sub-|
I | 6 |) |blank |scripted expression does not contain|
1 L L

|variables, this field contains zeros. |
| |
| _ [
|The second field

contains a relative]|

hexadecimal 'DF' follows the last card |pointer to the dimension informaticn inj|
column.) |the overflow table for the array that|

T T | contains the subscripted expression. For|

| | internal |example, if A (I,J) is an element inj

end mark | 00 | statement |array A, the field contains the pointer|

i | number |to the dimension information for array A.|

i i L ¥}

Figure 29. FORMAT Statement Intermediate Figure 31. Subscripted Variable Intermedi-

Text

108

ate Text - (Second Word)

Figure 32

text created for the
which involves two subscripted variables.

following

illustrates the intermediate
statement,

COMMON Statements

COMMON intermediate text is constructed
by Phase 10D as a series of four-byte
APPLE = A(POT,3) + B(2,1) entries (one for each variable or array
name that appears in a COMMON statement).
Phase 12 serially references these entries
and assigns addresses to them in the COMMON
r T T 1 area. (The assignment of addresses is
| adjective | mode/type | pointer | discussed in detail in the Phase 12 des-
| code field | field | field i cription.)
| (1 byte) | (1 byte) | (2 bytes) |
- + + 4 Figure 33 illustrates the intermediate
| arithmetic | mode/type | | text created for a COMMON statement.
| statement | of APPLE | p(APPLE) |
L R l 4
LB T T 1
| | modestype | | AN EXAMPLE OF COMMON INTERMEDIATE TEXT:
| = | of A | p(a) | Figure 34 illustrates the intermediate text
3 + + 1 created for the following COMMON statement.
| SAOP | 00 | offset |
b : L + 9 COMMON (A,R,ARNONN)
| p(subscript | p(dimension |
| information) | information) |
t T % { r— T T 1
| | mode/type | | {98 |not used | not used |
| + | of B | p(B) | b + + i
——- + +] Ip(B) | 1 | not used |
| saop | 00 | offset | } } + 4
} + + 9 |p(R) | 1 | not used |
} | | p(dimension | - + + 9
| 00 | 00 | information) | | p (ARNONN) | 6 | not used |
L 4 4 d [- L A d
L) 1 T A r 1
| [| internal | i 00000001 |
| | | statement | I Y T 1
| end mark | 00 | number | |2 bytes |1 byte | 1 byte]
L L 4 4 L L 1 3
Figure 32. Example of Subscripted Variable Figure 34. Example of COMMON Intermediate
Intermediate Text Text
T v) 1
| * 98 | not used | not used
b + + {
| pointer to the dictionary entry for the | 2 length of the | not used
| first variable or array name in statement | first variable | |
| | or array name | |
| | in statement | |
L L L ___‘l
}
I - |
| - |
| - |
t T T i
| pointer to the dictionary entry for the | length of the | not used |
| last variable or array name in statement | last variable | |
| { or array name | |
| | in statement | |
% i L Jl
| 3 00000001 |
b - T i
i 2 bytes | 1 byte | 1 byte i
-—- i 1 i
|*Indicates COMMON intermediate text. |
|2The length is used to determine the dictionary chain in which the variable or array|
| name is entered. |
| 2Indicates the end of the intermediate text for the COMMON statement. |
L J

Figure 33. COMMON Intermediate Text

Appendix F: Intermediate Text 109

EQUIVALENCE Intermediate Text

these entries
(The

them.

and
assignment of
discussed in detail in the Phase

addresses
addresses

assigns

to
is
12 des-

|+*Indicates EQUIVALENCE intermediate text.

|2Contains 0000 if the variable or array is not subscripted.

EQUIVALENCE intermediate text is con- cription.)
structed by Phase 10D series of
six-byte entries (one for each variable or
array name that appears in an EQUIVALENCE Figure 35 illustrates the intermediate
statement). Phase 12 serially references text created for an EQUIVALENCE statement.
r T h)
| * 99 | not used |
[N 1 -
1 . . . T T 1
pointer to dictionary		
entry for first vari-	size of first variable	2 offset of first vari-
able or array name in	or array in first	able or array in first
first EQUIVALENCE	EQUIVALENCE group in	EQUIVALENCE group in [
group in statement	statement	statement
t + - L 1		
-		
-		
- I		
t T T i		
pointer to dictionary	size of last variable	offset of last vari-
entry for last vari-	or array in first	able or array in first
able or array name in	EQUIVALENCE group in	EQUIVALENCE group in
first EQUIVALENCE	statement	statement
group in statement		
L ‘1L A J		
2 000F		
t + T 1		
pointer to dictionary	size of first variable	offset of first vari-
entry for first vari-	or array in last	able or array in last
] able or array name in	EQUIVALENCE group in	EQUIVALENCE group in
last EQUIVALENCE	statement] statement	
group in statement		
L L 4 .'		
v		
I - I		
I -		
-		
t T T i		
pointer to dictionary	size of last variable	offset of last vari-
entry for last vari-	or array in last	able or array in last
able or array name in	EQUIVALENCE group in	EQUIVALENCE group in
last EQUIVALENCE	statement	statement
J group in statement | | |
- + . i
| 000F | “ 00000001 |
X 4 4
r T T) 1
| 2 bytes | 2 bytes | 2 bytes |
b L L 1
|
|
|

|2Indicates the end of the intermediate text for an EQUIVALENCE group.

|*Indicates
| reside on a full-word boundary.

L

the

end of the intermediate text for the EQUIVALENCE statement.

If necessary, this entry is preceded by two bytes
| zeros in order to adjust it to a full-word boundary.

It must]
of|

J

Figure 35.

110

EQUIVALENCE Intermediate Text

Note: Phase 10D generates a special eight-
byte intermediate text entry following the
last EQUIVALENCE statement. This special
entry indicates to Phase 12 that it can
ignore the remaining intermediate text on

SYSUT1 because it has processed all of the
COMMON and EQUIVALENCE intermediate text.
The special entry has the following format:

99FF0000 00000001

2 bytes

o e e e oy

2 bytes |
4

AN EXAMPLE OF EQUIVALENCE INTERMEDIATE

TEXT: Consider the following EQUIVALENCE
statement:

EQUIVALENCE (GRW,KEL), (RBJ(1,9),AMV(2,4))

There are two EQUIVALENCE groups
statement:

in the

¢ GRW,KEL

e RBJ(1,9),AMV(2,4)

Assume that:
® GRW is a real variable.
¢ KEL is an integer variable.

e RBJ is a real array dimensioned as

9,9.
e AMV is a real array dimensioned as
9,w).

Figure 36 illustrates the intermediate
text created for the above EQUIVALENCE
statement.
¥ T 1

99 | not used |
4 4
T T 1
p{GRW) | 1 | 0 |
] 4 d
T T |
p(KEL) | 1 | 0 |
1 4. J
$
000F |
} Y 1
p(RBJ) | 81 . | 72 |
i 4
T ¥
| p(AMV) | 36 | 28
t t L
| Q00F i 00000001
t t T
| 2 bytes | 2 bytes | 2 bytes
L 4 L
Figure 36. Example of EQUIVALENCE

Intermediate Text

READ/WRITE and FIND Statements

Phase 10E generates intermediate text

for: (1) both sequential and direct access
READ/WRITE statements, and (2) direct
access FIND statements. (Phase 10E inter-

prets the FIND statement as a direct access
READ statement without format and without
I70 list.)

The intermediate text generated for both
sequential and direct access READ/WRITE
statements is essentially the same. The
main difference is that additional inter-
mediate text must be generated for direct
access statements for the integer expres-
sion (r) that represents the relative posi-
tion within the data set of the record to
be read or written.

If the integer expression contains any-
thing other than a constant, or a nonsub-
scripted integer variable, Phase 10E gener-
ates special intermediate text to evaluate
that expression. This special text is
treated as an arithmetic expression. Phase
10E also sets a switch (FDATEMP) in the
communication area that indicates to Phase
15 that an integer work area must be
allocated.

Figure 37 illustrates the intermediate
text generated for a general I/0 statement
(that is, a sequential access READ or WRITE
statement; or a direct access READ, WRITE,
or FIND statement).

EXAMPLES OF INTERMEDIATE TEXT CREATED FOR
SPECIFIC I/0 STATEMENTS: The following
figures illustrate the intermediate text
generated by Phase 10E for specific I/0
statements.

Figure 38 illustrates the intermediate
text generated for the following sequential
access READ statement.

READ (I,10) (A(N),N=1,10), B

Figure 39 illustrates the intermediate
text generated for the following direct
access WRITE statement.

WRITE (5'I(J3),10) (A(N),N=1,10),B

Figure 40 illustrates the intermediate
text generated for the following direct
access FIND statement.

FIND (3'5)

Appendix F: Intermediate Text 111

1This intermediate text is not created for: (1) sequential access I/0 statements, orj
(2) direct access 1I/0 statements if r (the integer expression indicating the relative|
position within a data set of the record to be read or written) is a constant or a}
nonsubscripted integer variable.

80, for direct access READ/WRITE

CcO, for direct access FIND

|#a is an integer constant or integer variable that represents a wunit number. For
| direct access statements, u must be followed by an apostrophe (').

| 3This intermediate text is not created for sequential access I/0 statements.

| f is optional and, if given, 1is the statement number of the FORMAT statement|
| describing the format of the data to be read or written. |
71/0 list is optional and, if given, is a series of variable or array names, separatedj|

|
| by commas. The names represent the storage locations to be read into or written from.|
L J

r T T 1
| adjective code | modes/type field | pointer field |
| field (1 byte) | (1 byte) | (2 bytes)

b $omm + i
| | integer | |
] arithmetic | work area | 0000 |
b 1 4 8|
| intermediate text for subscripted expression (r) 2 |
b T T {
| end mark | 00 | 0000 |
L d 4 4
r T T 1
| IOCODE 2 | DACODE 3 [0000 |
L i 4 4
) T . T 1
| | unit | u “ |
| (t + i
| | integer variable | p(u) |
L 1 1 4
[H . X T 1
| | integer variable | |
| | or constant | p(r) |
| s b + !
| | integer work area | 0000 |
L 1 1 4
r T T K
| | statement | |
| ' | number I p(f) © i
i 4 4 |
r + 4 1
|) i 00 | 0000 |
b . . -
| intermediate text for I/0 list if any 7 |
ll' T T ‘Jl
| { | internal |
| end mark | 00 | statement number |
I L S 4
r 1
|

I

|

|2IOCODE = A9, for non-formatted write

| = AA, for non-formatted read

| = AB, for formatted write

| = AC, for formatted read

| 2 DACODE = 00, for sequential access READ/WRITE

l =

I =

Figure 37. Intermediate Text Created for General I/O Statement

112

T T T 1
| adjective code field | modes/type field | pointer field |
| (1 byte) | (1 byte) | (2 bytes) |
b t $ 1
| | sequential | |
| formatted read | access 1/0 | 0000 |
t + + i
| (| integer variable | p(D |
b= + t : {
| . | statement number | p(10) |
F ¢ t 1
|) | 00 | 0000 |
L 1 4]
r 1+ + 5|
| (| real subscripted | p(A) |
i variable | |

+ + 1

SAOP | 00 | offset |

L t 1

p(subscript information) | p(dimension |

| | information) |
L 4 4
H H : . T 1
| . | integer variable | p(N) |
b + 4 - 1
{ = | immediate DO | 1 |
| | parameter | |
L 4 1 —_— 4
r T - T 1
| ‘ | immediate DO | 10 |
| | parameter | |
s 4 4 .
3 T . . T - "
| e T | immediate DO | 1 |
| | parameter | |
L l 4 —— 4
1] T T a
|) | 00 | 0000 i
% + ¢ {
| ‘ | real variable | p(B)]
b t + {
| end mark | 00 | internal statement |
| | | number |
b ' . i
|+If the third DO parameter is missing, Phase 10E assumes a value of 1. |
L J

Figure 38. Intermediate Text Created for READ (I,10) (A(N),N=1,10),B

Appendix F: Intermediate Text 113

r T T 1
| adjective code field | mode/type field | pointer field |
i (1 byte) | (1 byte) | (2 bytes) |
L 1 4 4
L} T T 1
| arithmetic | integer work area | 0000]
t 1 - + 1
| | subscripted | |
| = | integer variable | p(o) |
L 1 4 d
¥ T T]
| SAOP | 00 | offset |
b L +

| p(subscript information) | p(dimension information)

L 4

v T T

| end mark | 00 | 0000 |
k + + .
| formatted read | direct access I/0 | 0000 |
k + + 1
| (| unit [p(5) |
i 4 1 4
v T T 1
i ! | integer work area | 0000 |
t + + 1
| . | statement number | p(10) |
L 1 4 4
T 1 L} 1
|) | 00 | 0000 |
L 1 1 d
r H H 1
| | real subscripted | |
| (| variable | p(a) |
L 1 4 4
[} T T 1
| SACOP | 00 | offset |
b= ; 1 {
l p(subscript information) | p(dimension information) |
L] 4
¥ T T 1
| v | integer variable | p(N) |
[N 4 4

L} T T

| = | immediate DO parameter | 1

L 4 [l

¥ L) T

| p | immediate DO parameter | 10

L 1 4 d
v T T 1
| ’ | immediate DO parameter | 1 |
L 1 1 i |
v T T 1
|) | 00 | 0000 |
b= + + 1
| R | real variable | p(B) |
t + t i
| end mark | 00 | internal statement number|
L 4 L -}
Figure 39. Intermediate Text Created for WRITE (5'I(J),) (A(N),N=1,10), B

r . T T 1
| adjective code field | modes/type field | pointer field |
| (1 byte) | (1 byte) | (2 bytes) |
b t t 1
| non-formatted | direct access | |
| read | I/0 for FIND | 0000]
L 4 4 d
) T T 1
| (| unit | p(3) |
L. 4 [4
v T [} 1
| ' | constant | p(5) |
[4 4 __.'
v T T

|) i 00 | 0000 |
p--- 1 4 o i
| end mark | 00 | internal |
| | | statement number |
L 4 1 —_— J
Figure 40. Intermediate Text Created for FIND (3°'S)

114

MODIFYING INTERMEDIATE TEXT

The intermediate text
Phases 10D and 10E, and
Phases 14, 15, and 20.
prepares the intermediate text for wuse by
Phase 25 in the generation of machine-
language instructions. The modifications
made to the intermediate text are
discussed, phase by phase, in the following

pages.

is created by
is modified by
This modification

Phase 14

During Phase 14 processing, the inter-
mediate text is modified in the following
ways :

Replacement of dictionary pointers.

e Modification of 1I/0

mediate text.

statement inter-

¢ Modification of computed GO TO
mediate text.

inter-

¢ Modification
text.

of RETURN intermediate

REPLACEMENT OF DICTIONARY POINTERS: Dic-
tionary pointers in the intermediate text
are replaced by information essential for

the processing to be performed by subse-
quent phases of the compiler.

Figure 41 illustrates this modification
to intermediate text entries.

1) ¥ 1
| Input to Phase 14) Cutput from Phase 14 |
L [l 4
r 1 4

| For: | the dictionary pointer is replaced by:
L 4 J
r T .|
variables, constants, arrays, and external	the relative address assigned by
functions,	Phase 12.
l r . . T T 1 l r . . T T 1 I	
	adjective
	code
It + -t 1 0 + T - 1	
	1 byte
l L L i J	L 4 - 4 I
I	
—- ommmee 1	
data set reference numbers,	the data set reference number.
I F A o 1 I 3 T - T 1 I

| | (| modes/type | p(3) [(| modes/type | 3 |
L 1] 4 | [N 4 4 4 l

v T T 1 v T T 1
| 1 byte | 1 byte | 2 bytes | | | 1 byte | 1 byte | 2 bytes | |
L L 4 "] l L L 4 4 l
| | |
b t {
| statement functions, | the SF number assigned by Phase 14. |
! | |
| definition | |
l r L. T T 1 ' r X L. T T] |
| |SF defini- |real state-| | | |SF defini- jreal state-|the rela- | |
[|tion adjec-|ment func- | p(SF) | | |tion adjec-|ment func- [tive SF | |
| |tive code |tion [| | |tive code |tion | number | |
| b 4 1 . | l L 1] 3 l

) T T 1 U T T h)
| | 1 byte | 1 byte | 2 bytes | | | 1 byte | 1 byte | 2 bytes | |
I L L i J I L 1 L 3 l
| | |
| use | |
| r T T 1 l | ekttt T 1 l
	SF use	real state-				SF use	real state-	the rela-	
	adjective	ment func-	p(SF)		Jadjective	ment func-	tive SF		
	code	tion	R B code	tion	number				
l L 1 1 4 I L iR 1 4 I

Ll T T 1 T T T 1

| | 1 byte | 1 byte | 2 bytes | | | 1 byte | 1 byte | 2 bytes |
I L L 4 J I [R L L J l
L L 3

Figure 41. Replacement of Dictionary Pointers by Phase 14

Appendix F: Intermediate Text 115

MODIFICATION OF I/O STATEMENT INTERMEDIATE

T T
|adjective |mode/type

T 1
TEXT: An I/0 statement is modified in two |pointer field |
ways. A begin I/0 intermediate text word |code field|field | (2 bytes) |
is inserted 1in the intermediate text for | (1 byte) |(1 byte) | |
each element of an I/O list. Implied DOs b + + 9
are detected, and implied DO and end DO | non- | | |
intermediate text words are entered in the |formatted |sequential | |
text. An end I/0 is placed at the end of |write |access I/0 0000 |
the I/0 list. b + ¢ _— i
| | integer | |
These modifications are illustrated in | C |variable |address (N) |
Figures 42 and 43. The intermediate text t + + 4
in these figures is developed from the |end mark 2§00 0000 [
following sequential access non-formatted t + + |
WRITE statement: |implied DO| 00 |0000
b= 1 + 1
WRITE (N) ((A(I1,J),J=1,10),I=1,15) | | integer |
| | variable |address (I)
[N 1 4 4
r T T 1 r T T H
jadjective |mode/type |pointer field | | |immediate DO| |
|code field|field | (2 bytes) | |= | parameter 11 |
| (1 byte) | (1 byte) | | t + 4 q
t } + | | | immediate DO|
|nonformat-|sequential | | | | parameter |15 |
|ted write jaccess I/O |[0000 | b + + 4
- + + 4 | |immediate DO|
K |integer var.|p(N) | |« | parameter |1 i
[N } 4 i] },_ i 4 ¥
1) T ¥ 1 T T a
1) {00 10000 | |implied DO| 00 | 0000 |
b 4 4 it 1 4 1
| ¢ |00 {0000 | | | integer { |
F + + ol | |variable |address (J) |
| |real sub- | | b + + 4
| C |script var. |p(a) | | | immediate DO| |
t + + -— = |parameter |1 |
| SAROP |00 |offset | s + + 4
} i + 1 | | immediate DO| |
|p(subscript) |p(dimension) | |, | parameter |10
b T 1 1t $-- + :
| o | integer var.|p(J) | | | immediate DO| I
b + ¥ i 1. |parameter |1 [
| | immediate DO| | }- + + 4
|= | parameter |1 | | begin I/0 |00 | 0000
b t 4 — - ¢ } 1
| | immediate DOJ | | SAOP | 00 |offset |
| | parameter |10 | b 1 + 1
} + + 4 |p(subscript) |p(dimension) |
e |parameter |1 |t T } 1
f—- ! + i | | real [l
1) |00 10000 |] ¢ |subscripted |address(A) |
b + + - | |variable | I
s | integer var.|p(I) | F + $:
S + + q lend DO |00 | 0000
| | immediate DO} | b + + 1
= | parameter |1 | |end DO |00 0000 |
p--- ' 4 it ¥ ¥ 1
| | immediate DO| | |end 1I/0 | 00] 0000 |
ls |parameter |15 | t + + |
b + + | | |internal
| | immediate DO| |end mark |00 | statement |
| o | parameter |1 | | | number |
¢ ¢ ¢ t L 1 4
D |00 10000 | |*An end mark is inserted prior to the I/0|
} 4 + 'l | list. This allows Phase 20 to treat thej
|end mark |00 |internal stmt no.| | I/0 list as a separate statement. |
L L L J L —_— d
Figure 42. Example of Input to Phase 14 Figure 43. Example of Output from Phase 14

116

MODIFICATION OF COMPUTED GO TO STATEMENTS:
During Phase 14 processing, a count of the
number of statement numbers in the computed
GO TO statement is inserted into the inter-
mediate text for that statement. This
simplifies the processing of this inter-
mediate text for the following phases. The
intermediate text is rearranged so that the
word containing the integer variable pre-
cedes the count word.

Figure 44 illustrates the intermediate
text input to Phase 14 for the following
computed GO TO statement.

GO TO (11,11,42,23,99),I

r T T]
adjective code	mode/type	pointer
field	field	field
(1 byte)	(1 byte)	(2 bytes)
b= t 1 {		
computed GO TO	00	0000
8 4 4 Jd		
13 T T 1		
(statement	p(11)
	number	
b= $ { 1		
.	statement	p(11)
	number	
b 4 4 4		
3 L T h]		
v	statement	p(42)
I { number		
L 4]	
3 T T b		
’	statement	p(23)
	number	
b R 4 4		
L T T 1		
‘	statement	p(99)
	number	
i 4 1 4		
v L} T 1		
)	00	0000
[4 3 4		
r T T 1		
‘	integer	p(I)
	variable	
L i 1 4		
r T T 1		
end mark	00	internal
		statement
		number
L 4 4 ¥ |
Figure 44. Intermediate Text Input to
Phase 14 for a Computed GO TO
Statement

Figure 45 illustrates the output of
Phase 14 for the above computed GO TO

statement.

L) T v 1
adjective code	modestype	pointer
field	field	field
(1 byte)	(1 byte)	(2 bytes)
L 4 4 4		
U T T 1		
computed GO TO	00	0000
L R 1 d		
r L T 1		
.	integer	a(I)
	variable	
4 4 J

T T 1

count | 00 | 5 |

4 4 d

T T 1

| (| statement | p(11) |
| | number | |
8 1 1 d
v T T 1
| . | statement | p(11) |
| | number | |
L 4 4 4
v T T 1
| . | statement | p(42) |
| | number | |
b 4 1 d
v T T 1
| . | statement | p(23) |
| | number | |
L 4 4 4
r T T 1
| ¢ | statement | p(99) |
| | number | |
b : } 1
|) | 00 | 0000 |
k- + - {
end mark	00	internal
		statement
		number
L 4. L J
Figure 45. Intermediate Text Output From

Phase 14
Statement

for a Computed GO TO

MODIFICATION OF RETURN STATEMENT INTERMEDI-

ATE TEXT:

If a RETURN statement appears
within a main program, Phase 14 modifies
the adjective code field so that a STOP is
indicated. If the RETURN statement is not
within the main program, no modification is
made.

Phase 15

During Phase 15 processing, the follow-
ing intermediate text modifications are
made:
¢ Replacement of and
modes/type codes.

¢ Reordering of intermediate text for
arithmetic expressions.

e Reordering of intermediate
DEFINE FILE statements.

adjective codes

text for

Appendix F: Intermediate Text 117

REPLACEMENT OF ADJECTIVE CODES AND
MODE/TYPE CODES: During the processing of
arithmetic expressions, Phase 15 replaces
the adjective codes (within the intermedi-
ate text entries for arithmetic
expressions) by actual machine operation
codes. Phase 15 also assigns registers to
the operands in arithmetic expressions
(when required); the corresponding register
numbers are inserted in the mode/type
fields of the intermediate text that rep-
resents those expressions.

The result of the above modification is
a transformation of the intermediate text
entries for arithmetic expressions into a
form that closely resembles the RX instruc-
tion format.

The following figures indicate the
replacement of adjective codes by machine
operation codes, and the replacement of
mode/type codes by registers.

Figure 46 illustrates the intermediate
text input to Phase 15 for the following
arithmetic statement.

PRI = +VATE - VAR
r . R T L) . 1
adjective	mode/type	pointer
code field	field	field
(1 byte)	(1 byte)	(2 bytes)
£ 1 4 4		
r T t A		
larithmetic	real variable	a(PRI)
statement		
b {- $ {		
=	00 {0000	
[N 1 4+ d		
¥ T . T 1		
unary plus	real variable	a(VATE)
p--- 3 _ + 1		
-	real variable	a(VAR)
b ¥ ¢ {		
end	00	internal
mark		statement
		number
L ER L 4
Figure 46. Intermediate Text Input to
Phase 15 for an Arithmetic
Statement

118

Figure 47 illustrates the intermediate
text output from Phase 15 for this state-
ment.

r N TTTTTT T - L]
adjective	mode/type	pointer
code field	field	field
(1 byte)	(1 byte)	(2 bytes)
k- + + 1		
arithmetic	real variable	Ja(PRI)
statement		
[N 4 4 4		
3 T T N T h)		
L	reg.#3	variable
1 1 4 1 4		
v T T . T R		
s	reg.#3	variable

L 1 4 4 4
v T T . T 1
|sT | reg.#3|variable|a (PRI) 2 |
b ¥ o=t :
jend |00 | |internal |
| mark (| |statement |
| | | | number |
'L_ 4L L L {
{1The pointer field contains the address|
| of the resultant field of the arithmetic|
| statement. |
[J

Figure 47. Intermediate Text Output From
Phase 15 for an Arithmetic

Statement

Note: The first operand VATE, is loaded
into register #3. The second operand, VAR,
is subtracted from VATE. The result is

stored in the resultant field, PRI.

In addition, registers are assigned and
are inserted in the mode/type field of the
following:

¢ Intermediate text entries for exponen-
tiation.

¢ Intermediate text entries for in-line
functions, referenced subprograms, and
statement function calls.

¢ Intermediate text entries for subscript
expressions.

Figure 48 illustrates these modifica-

tions to the intermediate text.

) Al R}
Input To Phase 15	Output From Phase 15
t	
For: Phase 15 assigns:	
L.	
¥	
exponentiation,	a register to contain the result of the
	required library subprogram execution.
' r T LS 1 I r T T T b	
	**
t —+ } 1 1 -t + i	
	1 byte
l L L i R i} I L L]	
¢ + i	
in-line functions,	one or two registers (depending
i	on the specific in-line function)
	to be used as argument registers.
	The register specified in the R1
field is used as the result register.	
f' . T k3 R T T T T 1 l	
in-1line	
function	not used
jadj. code	
F + + 4 5 + + + 4	
F(not used
t + + i 4 + 4 -—	
	1 byte
I L L L J L L 1 4 I	
t + - i	
subscript expressions,	a work register (to be used by i
Phase 20) to aid in the computa-	
tion of the subscript expression.	
i	
1 3 L] T k) v R ¥ T T 1 l	
subscript [mode/type	
Jadj. code information	offset
L Xl 1 d i 1 d l	
L} T [T T)	
1 byte 1 byte	2 bytes
l L i | i L 4L J |
1 1 J
Figure 48. Assignment of Registers by Phase 15

REORDERING OF INTERMEDIATE TEXT FOR ARITH-
METIC EXPRESSIONS: Phase 15 reorders the
intermediate text entries within arithmetic
expressions so that the object module
instructions produced by subsequent phases

are generated according to a hierarchy of
operators.

The following figures indicate this
reordering process.

Appendix F: Intermediate Text 119

Figure 49 illustrates
input to Phase 15 for the following

text

the

arithmetic statement.

intermediate

REORDERING OF INTERMEDIATE TEXT FOR_DEFINE

FILE STATEMENTS: Phase 15 reorders the
intermediate text for DEFINE FILE state-
ments to facilitate the generation of TXT
card images for the parameter lists includ-

DGM = BCR#* (WRG+WAR) ed in those statements. Each parameter
list 1is reordered into a three-argument
format and is considered as a separate
DEFINE FILE statement. (The parameter
lists define the format of the direct

r T T 1 access data sets to be used at
|adjective | mode/type | pointer | object-time.)
|code field| field | field |
| (1 byte) | (1 byte) | (2 bytes) |
t + +-—- 4 The following figures illustrate the
|arithmetic| real variable | a(DGM) | reordering process.
L } 4 4
¥ T 1) 1
|= | real variable | a(BCR) |
¢ + + 4 Figure 51 illustrates the input to Phase
| * | 00 | 0000 1 15 for the following DEFINE FILE statement.
L 4] 4
LB T T 1
| (| real variable | a(WRG) |
'S (] 1 J
v T T 1
|+ | real variable | a(WAR) | DEFINE FILE 2(50,20,L,I2), 3(100,20,U0,J3)
% { ¢ {
) | 00 | 0000 |
L 4 1 4
r T T' 1 r . R T T . 1
{end | | internal | | adjective | mode/type | pointer |
|mark | 00 | statement | | code field | field | field |
| | nurrber | | (1 byte) | (1 byte) | (2 bytes) |
Lo t + ot t + 1
Figure 49. Unordered Intermediate Text for | DEFINE FILE | unit | 2 |
an Arithmetic Statement } + + 4
l | integer | |
|« | constant | a(50)]
b 4 $ 1
) | | integer | |
Figure 50 illustrates the intermediate | | constant | a(20) |
text output from Phase 15 for this state- k + + 9
ment . | | immediate | |
I« | constant | L |
[41 4 d
) k) . T]
| { integer | |
r T T 1 | | variable | a(I2) |
|adjective | mode/type | pointer | t 4 4 4
|code field| field | field | |) | unit | 3 |
| (1 byte) | (1 byte) | (2 bytes) | $ $ 4
k + + | integer | |
|arithmetic| real variable | a(DGM) ‘ | constant | a(100) |
L 4 1 4+] 4
L] ¥ T] Ll T |
|{LE | register|variable | a(WRG) | integer | |
| | 6 |information| | « | constant | a(20) |
L. iR 4 4 d L 4 4 4
3 v 1 R 1} 1 1 3 T . . T |
|AE | register|variable | a(WaR) | | | immediate | |
| | 6 | information| | | | constant | U |
L 4. 4 4 L 1 4 4
) . L] N T L) r T R L] b}
| ME register|variable | a(BCR) | | | integer | |
| 6 |information| | I | variable | af(J3) |
L L L 4 L d 4 d
r N T N T 1 r T T 1
| STE | register|variable | a(bcM) | |) | 00 | 0000 |
| | 6 |information| | b + + 9
8 } 4 4 { | | | internal |
|end | |internal | | end mark | 00 | statement |
|mark | 00 | statement| | | | number |
| | | number | L 1 4 4
L 1 1 4 Figure 51. Intermediate Text Input to
Figure 50. Reordered Intermediate Text for Phase 15 for a DEFINE FILE
an Arithmetic Statement Statement

120

Figure 52 illustrates
Phase 15 for the statement.

the output from

will be discussed by examining a general

subscript expression as it appears in the
input to Phase 20 and by examining the
subscript intermediate text output from

Phase 20 for this expression.

Phase 20 optimizes the intermediate text
entries for subscript expressions. This
optimization consists of modifying portions
of existing subscript intermediate text and
creating new subscript intermediate text
for 1literals that are generated during the
subscript optimization process. The chan-
ges made to subscript intermediate text

r T T 1
| adjective | modes/type | pointer |
| code field | field | field | SUBSCRIPT INTERMEDIATE TEXT INPUT: The
| (1 byte) | (1 byte) | (2 bytes) | intermediate text input to Phase 20 for a
+ + 4 general expression is shown in Figure 53.
DEFINE FILE | 00 | 0000 |
1 1 3
L) T 1
| 00 | 00 | 0003 2 I v T T 1
} + + 4 | adjective code |mode/type | pointer |
| | integer | | | field | field | field |
| 2 | constant | a(50) | | (1 byte) | (1 byte) | (2 bytes) |
L 4 L d L R 1 d
v T T 1 ¥ T T T 1
| | integer | | | adjective code | © (W |offset |
| L | constant | a(20) | t i 1 + i
} + 4 4 | p(subscript) |p(dimension) |
| | integer | | k T T + i
| 80 2 | variable | a(I2) | | op | R |typela(variable) |
b= + ¢ it R — {
| end mark | 00 | 0000 | |Adjective code contains the adjective|
} + + | |code for a subscripted variable portionj
| DEFINE FILE | 0O | 0000 | |of text. |
$ ¢ { |
00 | 00 | 0003 % | |0 contains a zero value.
¢ $ i !
| integer | | |W contains a work register assigned by|
| 3 | constant | a(100) | |Phase 15. |
k + t i |
| | integer | | |0offset contains the value of the offset]|
| U | constant | a(20) | |portion of the array displacement.
t + + {1 | |
{ | integer] | |p(subscript) contains the pointer to sub-|
| oo 2 | variable | a(J3) | |script information in the overflow tablej|
3 + + 9 | for this expression.
| | | internal |
| end mark | 00 | statement | |p (dimension) contains the pointer toj
| | | number | |dimension information in the overflow|
t 1 L 4 |table for this expression. |
|2The constant 0003 indicates that the]| |
| next three intermediate text words con-| |OP contains the operation code assigned|
| tain a parameter list. {by Phase 15. |
|2The constant 80 indicates to Phase 20} |
| that this is not the last parameter list| |R contains a register assigned by Phase|
| in the DEFINE FILE statement. |15.]
|2The constant 00 indicates to Phase 20|
| that this is the last parameter list inj| |Type contains the residual (since it is|
| the last DEFINE FILE statement. | |no longer necessary) type information for|
t 4 |the subscripted variable. |
Figure 52. Intermediate Text Output From |
Phase 15 for a DEFINE FILE |a(variable) contains the address of the|
Statement |subscripted variable. |
L 1
Figure 53. Subscript Intermediate Text
Input Format
Phase 20
SUBSCRIPT INTERMEDIATE TEXT OUTPUT: Sub-

script intermediate text output from Phase
20 depends on the previous optimization (if
any) of the subscript expression. Three
adjective codes are used to indicate the
different conditions that can be present in
subscript intermediate text output. These
conditions are explained in the following
paragraphs.

Appendix F: Intermediate Text 121

SAQOP (Subscript Arithmetic Operator) Adjec-

AOP_ (Arithmetic Operator Without Subscript)

tive Code: This code indicates that a
subscript expression has not been previous-
ly optimized, and that an offset 1literal
was not generated for the value resulting
from the addition of the offset portion of
the array displacement to the subscripted
variable address displacement. Subscript
text output associated with an SAOP adjec-
tive code is shown in Figure 54,

Adjective Code: This code indicates that
the subscript expression has previously
been assigned a register. The subscript

intermediate text output associated with an
AOP adjective code is shown in Figure 56.

| SAOP contains an adjective code designat-

{ing the form of the intermediate sub-

|script text.

|

I[N contains the number of dimensions of
|the subscripted variable.

Ia(Cl*L), a(Cc2*D1*L), and a(C3*D1*D2*L)|
|contain the addresses of the literalsj|
|that combine to form the CDL portion (see|
|Appendix G) of the array displacement. Nj
|determines which addresses must appear.|
|For example, if N is 1, only a(Cl*L)|
|appears. (If the first literal, Cl1*L, is|
|a power of 2, that power appears instead|
|of the address of that 1literal.) |

|X contains
| subscript expression for

the register assigned to the|
computation by|

|Phase 20. |

|

|Note: All other entries are as defined|

|in Figure 53. |

| I— i

Figure S4. Subscript Intermediate Text
Output From Phase 20 -- SAOP

Adjective Code

XoP_ (Ooffset Literal) Adjective Code: This
code indicates that the subscript expres-
sion has not been previously assigned a
register and that an offset 1literal was
generated for the value resulting from the
addition of the offset portion of the array
displacement to the displacement of the
subscripted variable address. The sub-
script intermediate text output associated
with an XOP adjective code is shown in
Figure 55.

122

r T T 1
| adjective code |mode/typej| pointer |
| field | field | field |
l (1 byte) 1(1 byte) ! (2 bytes) j
r T T 1 L) T T
| adjective code |mode/type] pointer | | xXoP | N} W Ia(generated i
| field | field | field | | | | | literal) |
| (1 byte) | (1 byte) | (2 bytes) | p——- 1 1 + 5
f-éiop T 5 { - T o t-—- i l p(subscript) Ja(Cl*L) J
ofrse r T 1
b L L + 4 | a(C2*D1#*L) |a(C3*D1+#D2*L) |
| p(subscript) |a(Cl*L) | b T T 4 {
t 4 4 | oP | R | X ja(variable) |
| a(C2#*D1%L) {2(C3*D1#D2*1L) | ¢ L L 1 4
s T T + i | XOP contains an adjective code designat-|
a(variable ing e form o e subscript intermedi-
| op | R | X Ja(iable) | i the £ f th bscri i di
t 4 4 4 4 |ate text. |
{ I
|
|
|
|
|

|a(generated literal) contains the address|
|of the offset literal generated by Phase|
|20. |

|
|[Note: All other entries are as defined in|
|Figures 53 and 54. |

L— 3

Figure 55. Subscript Intermediate Text
Output from Phase 20 -- XOP
Adjective Code

r T T

| adjective code |modes/typej| pointer

| field field | field

| (1 byte) | (1 byte) | (2 bytes)

t + T +

| AOP | O | B |offset

L 4 1 1

r T T T

| opP | R | X ja(variable)

% L s 1

|AOP contains an adjective code designat-
|]ing the form of subscript intermediate
|text.

I

|0 contains a zero value.
|
|B contains an indicator. A hexadecimal 0|
|indicates that the actual offset is inj|
|the offset field. A hexadecimal F indi-|
|cates that the address of the generated|
|offset 1literal appears in the offset|
| field. |
|
|Note: All other entries are as defined in|
|Figures 53 and 54. |
L Jd
Subscript Intermediate Text
Output from Phase 20 -- AOP
Adjective Code

—— . — . s St e ol s et st e .]

Figure 56.

Array displacement is the distance
between the first element in an array and a
specified element to be referenced from the
array. To increase compilation efficiency,
the array displacement is divided into
portions and computed during different
phases.

Before discussing the actual computa-
tion, it is desirable to understand how an
element 1is referenced in a 1-, 2-, and
3-dimensional array.

ONE DIMENSION

Assume a l-dimensional array of five
elements, expressed as A(5). To reference
any given element in this array, the only

factor to be considered is the length of
each element. The third element, for exam-
ple, is two element lengths from the begin-
ning of the array.

TWO DIMENSIONS

For a 2-dimensional
element can no longer be thought of as a
single array element. Instead, each ele-
ment in a 2-dimensional array consists of
the number of array elements designated by
the first number in the subscript expres-
sion used to dimension the array. For
reference, an element in a 2-dimensional
array will be called a dimension part. For
example, in the array of A(3,2):

array, A(3,2), an

A(1,1) A(2,1) A(3,1)-3 - Dimension Part

A(3,2) - Dimension Part

Appendix G:

APPENDIX G: ARRAY DISPLACEMENT COMPUTATION

the first dimension part consists of
a(i,1), a(2,1), and A(3,1). Note that the
number of elements in each dimension part
is the same as the first number (3) in the
subscript expression used to dimension
array A.

Dimension parts are consistent in
length. Length is determined by multiply-
ing the number of elements in a dimension
part by the array element 1length. The
resulting value is considered a dimension
factor feor the following discussion. (If
the element length in array A is 4, the
dimension factor is 3 times 4, or 12.) The
dimension factor plays a significant role
in referencing a specific element in a
2-dimensional array.

Before discussing how a specified ele-
ment is referenced, the hexadecimal number
scheme used to address an array element
must be considered. The first digit of the
hexadecimal number scheme (as used in the
compiler) 1is zero. The 16 hexadecimal
digits are:

0,1,2,3,4,5,6,7,8,9,A,8,C,D,E, and F.

Consider that the element A(1,2) is to
be referenced from the array dimensioned as
A(3,2). Observation shows one dimension
part must be bypassed in order to reference
the specified element. The computation to
reference this element requires the values
in the subscript expression (1,2). Each
number must be decremented by 1 to compen-
sate for the zero-addressing scheme used by
the compiler. This leaves an expression of
(0,1). The second number (1) dictates the
number of dimension parts to be bypassed in
order to arrive at the dimension part in
which the specified element is located.
Once this dimension part is found, the
first number (0) indicates the number of

elements in that dimension part that must
be bypassed to reference the specified
element.

Array Displacement Computation 123

THREE DIMENSIONS

The same reasoning can be projected into
a 3-dimensional array. For a 3-dimensional
array, A(3,2,3), an element can neither be
considered a single array element, nor
thought of as a dimension part. Each
element in a 3-dimensional array consists
of the number of dimension parts designated
by the second number in the subscript
expression used to dimension the array.
For reference, therefore, an element in a
3-dimensional array will be called a dimen-
sion section. For example, in the array
A(3,2,3):

Dimension Section
A(1,1,1) A(2,1,1) A(@3,1,1) - Dim.Part

4
A(3,2,1)4 - Dim.Part

T
L>A(1,2,1) A(2,2,1)

r

|Dimension Section
t>a(1,1,2) a(2,1,2) A@3,1,2)4 - Dim.Part

J
A(3,2,2), - Dim.Part
|

a4

r
L>A(1,2,2) A(2,2,2)

—
|
|Dimension Section
L>a(1,1,3) a(2,1,3) A(3,1,3),y - Dim.Part

|
J
A(3,2,3)

r
L>A(1,2,3) A(2,2,3) Dim.Part

the first dimension section consists of the
dimension part beginning with A (1,1,1) and

sections, as specified by the third number
in the subscript expression used to dimen-
sion the array.

Again, the length of the dimension sec-
tions is consistent. The length, in this
case, 1is determined by multiplying the
number of elements in a dimension part by
the number of dimension parts by the array
element length. The resulting value is
considered a dimension multiplier for the
following discussion. (If the element
length in array A is 4, the dimension
multiplier is 3 times 2 times 4 or 24.)

Consider that the element A (2,2,3) is
to be referenced from the array dimensioned
as A (3,2,3). Observation shows two dimen-
sion sections, one dimension part, and one
array element must be bypassed in order to
obtain the specified element. The computa-
tion to reference this element requires the
values in the subscript expression (2,2,3).
Each number must be decremented by 1 to

compensate for the zero-addressing scheme
used by the compiler. This leaves an
expression of (1,1,2). The third number

(2) indicates the number of dimension sec-
tions to bypass in order to arrive at the
dimension section in which the specified
element is located. The second number (1)
indicates the number of dimension parts,
within the referenced dimension section,
that must be bypassed to arrive at the
dimension part in which the specified ele-
ment 1is located. Once this dimension part
is found, the first number (1) indicates
the number of elements in that dimension
part that must be bypassed to reference the
specified element. The preceding example
is illustrated in Figure 57.

This concept of how a specified element

"the dimension part beginning with A(1,2,1). is referenced from an array is generalized
In this example, we have three dimension in the following text.

r 1
| A(2,2,3) |
| ! |
| | Zero-addressing adjustment |
| v |
| a(1,1,2) |
| [|
	1 L ,	
		L——-> 2 dimension sections
	1 Must be bypassed to	
	t——e— > 1 dimension part	
	obtain specified element	

| Leee—ee—--> 1 array element |
L. i
Figure 57. Referencing a Specified Element in an Array

124

General Subscript Form

The general subscript form
(C1*V1+4J1,C2%V2+J2,C3*%V3+J3) refers to some
array, A, with dimensions (D1, D2, D3).

The required number of elements is speci-
fied by (C1#*V1+J1); (C2#%V2+J2) *D1l; and
(C3*V3+J3) #*D1#D2, representing the first,

second, and third subscript parameters mul-
tiplied by the pertinent dimension informa-
tion for each parameter. Therefore, the
required number of elements for the general
subscript form is:

(C1#V1+J1)+(C2%V2+J2)*D1+(C3*V3+J3) *D1+%D2

Array Displacement

The array displacement for a subscript
expression, specifically stated, 1is the
required number of array elements multi-
plied by the array element 1length. There-
fore, the array displacement is:

[(C1*V1+J1) +(C2*V2+J2) *D1+

(C3*V3+J3) *D1%*D2) 1*L

Because of the zero-addressing scheme, the
displacement is:

(C1*V1+J1-1) *L+ (C2%V2+J2-1) *D1*L+
(C3#%V3+J3-1) *D1#D2#L

This expression can be rearranged as:

(C1*V1*L+C2%V2#D1*L+C3*V3*D1*D2*L) +
[(J1-1)*#L+(J2-1)*D1*L+(J3-1)*D1*D2*L)]

The first portion of the array displace-
ment is referred to as the CDL (constant,
dimension, 1length) portion and is derived
from:

Cl#V1*L+C2*V2+D1*L+C3*V3*D]1*D2*L

Vli, V2, and V3 are the variables of the

(J1-1)*L+(J2-1) *D1*L+ (J3-1) *D1#D2*1L

is known as the offset portion and is
calculated by Phase 10E. The offset is
calculated using the following formulas for
1-, 2-, and 3- dimensional arrays.

OFFSET=[J1-1]*Length
1-dimensional

OFFSET=[(J1-1) +(J2-1)*D1]
*Length 2-dimensional
OFFSET=[(J1-1)+(J2-1) *D1

+(J3-1) *D1#*D2] *Length 3-dimensional

This calculation is performed and the
result is entered in the offset field of
the intermediate text entry for that sub-

script. Refer to Appendix F for the inter-
mediate text format.

The CDL components are calculated during
Phase 20. If the CDL component is a power
of 2, that power replaces the offset field
in the intermediate text entry. If the CDL
component is not a power of 2, a literal is
formed and assigned an address (by Phase
20). The address of the 1literal is then
entered in the offset field of the inter-
mediate text entry. Refer to Appendix F
for the intermediate text form and content.

Phase 25 combines the CDL components,
the variables, and the offset to produce
the array displacement. The procedure is
as follows: the first component of the 'CDL
multiplied by the first variable of the
subscript expression (Cl*L)#*V1; plus the
second component of the CDL multiplied by
the second variable of the subscript
expression (C2*D1#*L)#*V2, plus the third
component of the CDL multiplied by the
third variable of the subscript expression
(C3*D1*D2*L)*V3; plus the offset:

(J1-1)*L+ (J2-1)*D1#L+ (J3-1) *D1*D2*L.

Note: Table 26 illustrates the maximum

sizes of the various arrays.

expression and cannot be computed until the Table 26. Array Size Maximums

execution of the object module. This r T - 1

leaves the following components, which con- | Array Type | Maximum Number
stitute the CDL portion of the displace- | | of Elements |
ment : s + i
| Integer | 32767 |
Cl#L is the first component, 3 $—— - -4
C2*D1*L is the second component, and | Real | 32767 |
C3*D1*D2*L is the third component. b -4 —_— 4
| Double- | |
The second portion of the array dis- | Precision | 16383]
placement: L- L 4
Appendix G: Array Displacement Computation 125

APPENDIX H: RESIDENT TABLES

The compiler uses the following resident
tables:

¢ The dictionary.

e The overflow table.

e The segment address list (SEGMAL).
e The patch table.

e The blocking table (resident only for
PRFRM compilations).

e The BLDL table (resident only for PRFRM
compilations).

e The reset table (resident only for
PRFRM compilations).

contains information
about variables, arrays, constants, data
set reference numbers, etc., used in the
source module. The overflow table contains
all dimension, subscript, and statement
number information within the source
module. SEGMAL is used for main storage
allocation within the compiler. The patch
table contains information for modifying
compiler components. The blocking table
contains the information necessary for
deblocking compiler input and blocking com-
piler output for PRFRM compilations. The
BLDL table contains the information neces-
sary for transferring control from one
component of the compiler to the next for
PRFRM compilations. The reset table
(RESETABL) is used to determine which, if
any, of the record counts for SYSUT1l and
SYSUT2 must be reset.

The dictionary

THE DICTIONARY

Phase 5 allocates main storage for the
dictionary. The dictionary (constructed by
Phases 7, 10D, and 10E) is used and modi-
fied by Phase 12 in address assignment, and
is further used by Phase 14 when addresses
from the dictionary replace pointers to the
dictionary in the intermediate text entries
(refer to Appendix F). For SPACE compila-
tions, Phase 14 frees the dictionary area
of storage for use by subsequent phases.

The dictionary is organized as a series
of chains related by the dictionary index,

126

which indicates the first entry in each
chain. There are 15 chains, used for
various entries, as follows:

¢ Eleven are organized on the basis of
length of the symbol being entered
(e.g., DO has a length of 2, END has a

length of 3, etc.). The first chain is
for entries of length 1, the second is
for entries of length 2, the third is
for entries of length 3, and so on.

These chains contain entries for res-
erved words (chains 2-11), in-line
functions, variables, and arrays.

e One chain for real constants.

¢ One chain for integer constants.

e One chain for
erence numbers.

integer data set ref-

e One chain for

stants.

double-precision con-

Phase 7 Processing

Phase 7 enters all reserved words (words
that indicate a specific FORTRAN statement)
and the dictionary index into the dictiona-

ry.

Figure 58 illustrates the dictionary
after it is constructed by Phase 7.

Phases 10D and 10E Processing

Additions to the dictionary occur as
entries are made to the various chains
during Phases 10D and 10E processing. To
enter an item in the dictionary, the perti-

nent chain is 1located via the dictionary
index. The chain is searched until the
last entry is found. The current end-of-

chain indicator is replaced with a pointer
to the new entry; the new entry is then
marked as the end of the chain.

For example, assume the variable ABC is
in the dictionary.

to be entered

ABC

belongs in the third chain of the diction-

(length 3).

Using the

dictionary

The entry for ABC appears as:

Appendix H:

Resident Tables

ary r- T 1
index, the first entry of the chain for |end of |entry for |
length 3 is obtained. Assume that Figure | chain |ABC |
58 indicates the condition of the diction- L i 1
ary at this time. The chain for 1length 3
is searched for the last entry (the entry
for DIM), which is modified to appear as:
) T 1
|pointer to the entrylentry for | When the dictionary and overflow table
|for ABC |DIM | overlap, a message is issued; no new
L i 4 entries are made; and compilation proceeds.
DICTIONARY INDEX
r 1
|end of the chain of length 1 |
r——|pointer to the first entry in the chain of length 2 |
rt--|pointer to the first entry in the chain of length 3 |
|| |pointer to the first entry in the chain of length & |
I{ |pointer to the first entry in the chain of length 5 |
(] pointer to the first entry in the chain of length 6 |
1 pointer to the first entry in the chain of length 7 |
] pointer to the first entry in the chain of length 8 |
11 pointer to the first entry in the chain of length 9 |
rt+——|pointer to the first entry in the chain of length 10
rt++-—|pointer to the first entry in the chain of length 11 |
111} |end of the chain for integer constants |
{ end of the chain for real constants |
end of the chain for data set reference numbers |
end of the chain for double-precision constants |
L J
'There are several chains that have no entries when the dictionary is constructed}
during Phase 7. That is, there are no reserved words of length 1, and no entries|
would be made in the data set reference number chain or constant chains. |
J
!
———— - r
4 L | 1[L 6l 1 il' T 1
pointer to|entry for | |pointer tolentry for | | end of |entry for |
| the entry | DO | |the entry | GO | | chain | IF |
| for GO | | | for IF | [[|
i L J L 1 J L L J
[
) ? { T { T 1 “ T 1
	pointer tojentry for pointer to	entry for		end of	entry for
the entry	END	the entry	ABS I	chain	DIM
for ABSs		for DIM	I		
I L L L 4 J L 1 ¥					
-					
-					
.					
C—					
L) h)					
end of	entry for				
chain	SUBROUTINE				
&					
p					
L) L] T h)					
end of	entry for		Note: See Figure 61 for		
chain	EQUIVA-	the general format of aj			
	LENCE	dictionary entry.			
L i J [8 Jd
Figure 58. The Dictionary as Constructed by Phase 7

127

Phase 12 Processing

During Phase 12 processing, addresses
are assigned to the symbols entered in the
first six chains of +the dictionary. In
assigning these addresses, Phase 12 uses
the contents of the dictionary entries.
The addresses replace: (1) the pointers to
following entries in the dictionary, and
(2) the end-of-chain indicators. To ensure
that the chain is not broken, the chain is
continued by modifying the pointer to the
entry just assigned an address. Figures 59
and 60 illustrate two cases of the "before"
and "after"™ in removing an entry from a
dictionary chain. Figure 59 indicates
removal of an entry from the end of the

chain. Figure 60 indicates removal of an
entry from the middle of the chain.

Phase 14 Processing

During Phase 14 processing, each inter-
mediate text pointer to a dictionary entry
is replaced by information contained in
that dictionary entry (e.g., a relative
address assigned by Phase 12). Refer to
Appendix F for examples of this intermedi-
ate text modification.

|

T

|

"before" an address |
is assigned to the | for ABC

i

L

variable ABC |
4

pointer to the entry|entry for DIM

|
end of chain|entry for ABC

¢ :
I
|
|
|

YPRERH H——
b s s s e

|
1

"after" an address |end of chain
is assigned to the |

variable ABC |
-

T —

entry for DIM

T

|
assigned ad-|entry for ABC
dress of ABC|

L

T ——
g o e o e
R

Figure 59.

Removing an Entry From the End of a Dictionary Chain

1l

S| p__]

r T 1 r T 1 2 T 1
"before" an address |pointer to|entry| |pointer to|entry| |pointer tojentry|
is assigned to |the entry |for | |the entry |for | |the entry |for |
the variable ABC |for ABC |AAA | |for ccC |ABC | |for DDD |ccC |
L L 3 L 1 4 L 4 4
v [Ll h) v . T 1 . T 1
"after" an address |pointer tolentry| |assigned |entry| |pointer to|entry|
is assigned to jthe entry |for | |address of|for | |the entry |for |
the variable ABC |for ¢cCC |AAA | |ABC |ABC | |for DDD |cCC |
L L] L 1 J L i 4

Figure 60.

128

Removing an Entry From the Middle of a Dictionary Chain

Dictionary Entry Format

The entries to the dictionary may vary;

however, they all have the same general
format. Figure 61 indicates this general
format.

r T T Rl L) T R 1
chain	usage	mode/	image	address	size
field	field	type	[field	field	field
		field			
L] L 4 4 1 J					
L) 1] T T T T 1					
2	1	1	1-11	2	12
bytes	byte	byte	bytes	bytes	bytes
L 1 L i 1 i —d

General Format of a Dictionary
Entry

Figure 61.

BEach field contains specific information as
indicated below: .

The chain field is wused to
maintain the 1linkage between the various
elements of the chain. It either contains
the relative pointer to the next entry or
indicates that its associated entry is the
last entry in the chain.

CHAIN FIELD:

USAGE _FIELD: The usage field is divided
into eight subfields. Each subfield is ome
bit long and is numbered from 0 through 7,
inclusive. Figure 62 indicates the func-
tion of each subfield in the usage field.

MODE/TYPE FIELD: This field is divided
into two parts (each four bits long). The
first four bits are used to indicate the
mode of an entry, while the last four bits

are used to indicate the type. For exam-
ple, a real quantity has the mode 7;
therefore, the mode field for’ a real is

0111 (the bit configuration for 7). Simi-
larly, a subscripted variable has the type
C; therefore, the type field for a sub-
scripted variable is 1100 (the bit configu-
ration for C). The mode/type field for a
real subscripted variable is 01111100. The
various mode/type combinations possible are
indicated in Figure 63.

IMAGE FIELD: The image field contains the
appropriate image of the symbol. The
length of the symbol determines the 1length
of the field.

ADDRESS FIELD: The address field is pre-
sent in dictionary entries for:

SIZE FIELD:

o Reserved words -- to indicate the posi-
tion of the displacement of the proc-
essing routine for that reserved word
in the Phase 10D or Phase 10E Routine
Displacement Table (see Appendix I).

e In-line functions -- to indicate the
code value used within the compilation
for that in-line function.

e Arrays -- to indicate the displacement
within the overflow table of the dimen-
sion information for that array.

The size field is present for
that represent
the size of the

the dictionary entries
arrays. It indicates
array.

All fields are present in each diction-
ary entry, except the address field and the
size field. The fields and the phases that
enter information into the fields are indi-
cated in Figure 64.

r T 1
|Usage field| Function of the subfield |
| subfield | |
k t i
| Bit O |Indicates if the mode of the|
| |entry has been defined |
8 4 3
v T 1
| Bit 1 |Indicates if the type of thej
| | entry has been defined]
i] d
¥ T 1
| Bit 2 |Indicates if the entry is inj
| | COMMON |
b t !
| Bit 3 |Indicates if the entry isj|
| |equated

b ¢ 4
| Bit &4 |Indicates if the entry isj|
{ |assigned an address |
t $ -~ ~
| Bit 5 |Indicates if this is the|
| |entry for the root of anj
| | EQUIVALENCE group (see Phase|
| [12) |
b + {
| Bit 6 |Indicates if the entry rep-|
| | resents double-precision |
L 4 i]
L8 T 4
Bit 7	Indicates if the entry is forj
]an in-line function or an
	external reference.
L L J
Figure 62. Function of Each Subfield in

the Dictionary Usage Field

Appendix H: Resident Tables i29

=
Tnlnnl:ﬁnli
Q|
Tl.l.lluﬂullj
M|
o e e e e —
<

o — — — =~ —

T U S —_—

e e o

o e e e e e

o e e e e e

o e

+
I
!
i

| tdummy
subprog.

| program |
4

| tsub-
S

+

|*immediate
| constants

+
1

}
|
!

1

|statement
| number

4

+

1

.

—— — ——— —— —— —— — — " ————— et i - et v oty Ut St

O EE>™N HPIEgORPAOH

OXRPIMNEMA W HNAQHONN DS OPAOR

VofcudPme P

6
|double|

{pre-
L
|*Subject to change after Phases 10D and 10E

|cision|
p-—=--—1
7

The Various Mode/Type Combinations

Figure 63.

Address
field

Image
field

{Mode/Type
|field

T
|
|
I

4

Usage field

|In-1line function

L

|Reserved word

r
|Variable

r

o~

+
4

+

|12 {12 [10D|10D |

|10E[10E |
1 1

|
1

$=——1
|10E|10E|
L

4

10E|10E|
iR

10D|10D|

10D
10E

|Array

|Constant

v

- —

10E

= o

|10E

-

po —

e e = e

b ————

b — - —

S

1

10E

e e e — o

| DSRN

Phases That Enter Information Into Specific Fields of a Dictionary Entry

Figure 64.
130

THE OVERFLOW TABLE

Phase 5 allocates main storage for the
overflow table. The overflow table is

constructed by Phases 7, 10D, and 10E. The
overflow table is used by:
¢ Phase 12 -- to modify subscript

entries, and to reserve storage for the
branch 1list table for referenced state-
ment numbers.

e Phases 14 and 15 -- for verifying that
labels are referenced correctly.

¢ Phase 20 -- for subscript optimization.

¢ Phase 25 -- for the construction of
object module coding.

Organization of the Overflow Table

The overflow table 1is organized as a
series of chains related by the overflow

index. The overflow index indicates the
displacement of the first entry in each
chain relative to the beginning of the
table. There are 11 chains, wused for

various entries, as follows:

e Three chains are organized for the
dimension information of an array; that
is, for 1-, 2-, and 3-dimensional

arrays.
e Three chains are organized for sub-
script information; that is, for 1-,

2-, and 3-dimensional subscripts.

¢ Five chains are organized for statement
number information. All statement num-
bers ending in 0 and 1 are entered in
the first chain. The remaining chains
handle statement numbers ending in 2
and 3, 4% and 5, 6 and 7, and 8 and 9,
respectively.

Construction of the Overflow Table

Phase 5 allocates storage for the over-
flow table. Because there are no reserved
words entered in the overflow table as in
the dictionary, only the overflow index is
actually constructed by Phase 7. The index
contains the end-of-chain indicator for
each chain, as no entries exist in any
chain at this time. Figure 65 indicates
the overflow table as it appears after it
is constructed by Phase 7.

Phases 10D and 10E construct all entries
to the overflow table. Each entry is
entered in an overflow table chain; e.q.,
assume the 1-dimensional array ARRY1l is the
first array entered in Phase 10D. The
first overflow index entry is modified to
contain:

- 1
|pointer to the dimension entry for ARRY1l |
L J

The overflow table entry (in the first
array chain) appears as:

T T 1
|end of chain |entry for ARRY1 |
L iy 3

When the next l-dimensional array, ARRY2,
is entered in the overflow table, the entry
for ARRY1 is modified as follows:

v T 1
|pointer to the entry|entry for ARRY1 |
|for ARRY2 | i
L 1 J
and the entry for ARRY2 appears as:

13 . T R
|end of chain |entry for ARRY2 |
L L J

The entries to other <chains are made in
like manner during Phase 10D and the Phase
10E processing.

r b}
|end of chain for information on|
|1-dimensional arrays |
N 4
v 1
|end of chain for information on|
|2-dimensional arrays |
L g 4
r 1
| end of chain for information on|
|3-dimensional arrays |
[4
v]
| end of chain for information on|
|1-dimensional subscripts |
b= 1
| end of chain for information on|
| 2-dimensional subscripts |
L 4
L) 1
|end of chain for information onj
| 3-dimensional subscripts |
t 4
L} 1
|end of chain for information on statement|
|numbers ending in 0 or 1 |
i 4
v 1
|end of chain for information on statement|
|numbers ending in 2 or 3 |
8 4
v 1
|end of chain for information on statement|
|numbers ending in 4 or 5 |
L 4
r 1
|end of chain for information on statement|
|numbers ending in 6 or 7 |
L 4

¥l

v

Jend of chain for information on statement|
|numbers ending in 8 or 9 |
L J

The Overflow Table
Constructed by Phase 7

Figure 65. Index as

Appendix H: Resident Tables 131

Use of the Overflow Table

Phase 12 modifies the statement number
chains when the branch 1list table for
statement numbers (refer to Appendix J) is
prepared initially by Phase 12. The chain
field is replaced by a number that
indicates the position the statement number
has in the branch 1list table. Phase 12
also replaces the chain field in each
overflow table entry for a subscripted
variable with the relative address assigned
to that variable.

Phases 14 and 15 use the overflow table
to verify that labels are referenced cor-
rectly.

Phase 20 wuses the information about
subscripted expressions in performing its
function of subscript optimization. This

information is
the intermediate text,

obtained via a pointer, in
to the pertinent

overflow table entry (in a subscript
chain).
Phase 25 wuses the branch 1list table

number, assigned by Phase 12, to determine
the position of a statement number in the
branch table. (Phase 25 can then insert
the object-time address, associated with
the statement number, in the table.) The
number is obtained via a pointer, in the
statement number intermediate text entry,
to the overflow table.

Ooverflow Table Entry

An entry in the overflow table has one
of three formats:

1. Dimension.
2. Subscript.
3. Statement number.

A dimension entry is
arraye. An array may be

DIMENSION ENTRY:
formed for each
defined as:

¢ 1-dimensional, e.g., ARRAY (D1).
e 2-dimensional, e.g., ARRAY (D1,D2).
e 3-dimensional, e.g., ARRAY (D1,D2,D3).

are entered in
overflow

One-dimensional arrays
the first dimension chain of the

table, 2-dimensional arrays in the second,
and 3-dimensional arrays in the third. The
formats for the entries of 1-, 2-, and

3-dimensional arrays are indicated in Fig-
ure 66.

132

r 1 1

|chain| 1 |length]

b-—-——1 1 ¥ 1

|chain| 2 |length|Dl*1lengthj

L 1 I I 1

r . T T T T 1
{chain| 3 |length|Dl*length|D1*D2*length|
R et S -- 1
[2 | 2 | 2 | 2 I 2 |
| bytes|bytes|bytes | bytes | bytes |
L L L 1 iy 4

Format of Dimension Information
in the Overflow Table

Figure 66.

The fields of a dimension entry contain

the following information:

¢ The first field contains the displace-
ment (relative toc the beginning of the
overflow table) of the next element in
the chain.

e The second field is a digit, either 1,
2, or 3, to indicate whether one, two,
or three fields will follow. This is
the same as the number of dimensions.

e The next field is of the form:

T T T 1
| & |D1*L |D1*D2+L |
L 4 1 —- d
1} T T 1
|2 bytes |2 bytes |2 bytes |
| ————dd 4 — J
where:

D1*L and D1#D2*L are optional fields

depending on the dimension.

L indicates the length of an element in
words (e.g., 1 for integer or real
guantities and 2 for double-precision
quantities).

first

D1 represents the value of the

dimension of the array.

D2 represents the value of the second
dimension of the array.

SUBSCRIPT ENTRY: A subscript entry is

formed for each subscripted variable. A
subscripted variable may be defined as:

e l1-dimensional, e.g., A(I)
e 2-dimensional, e.g., A(I,J)
¢ 3-dimensional, e.g., A(I,J,K)

One-dimensional subscripts are entered
in the first subscript chain of the over-
flow table, 2-dimensional subscripts in the
second, and 3-dimensional subscripts in the
third. The formats for the entries of 1-,
2-, and 3-dimensional subscripts are illus-
trated in Figure 67.

r T T 1
| chain | cC1 |pointer to V1 in |
| | |the dictionary |
1S 1 41 d
L} 1
L —_— _ 4
1) R T T . - . T T . R hl
| chain | C1 |pointer to V1 in | C2 |pointer to V2 in |
| | | the dictionary | |the dictionary |
L 4 4 1 L 4
r 1
t - 4
r - T T A - T T A - T T N N 1
| chain | C1 |pointer to V1 in | C2 |pointer to V2 in | C3 |pointer to V3 in |
| | |the dictionary | |the dictionary | | the dictionary |
b= } ¥ -——4-- 4 e S ——- —-
|2 bytes|2 bytes| 2 bytes |2 bytes]| 2 bytes |2 bytes| 2 bytes |
| I L 4 L d e ——————— e L _—d— - —_ 4
Figure 67. Format of Subscript Information in the Overflow Table

The fields of a subscript entry contain e The second field is a usage field. The

the following information:

e The first field contains the displace-
ment (relative to the beginning of the
overflow table) of the next element in
the chain.

¢ The second and third, fourth and fifth,
and sixth and seventh fields represent
the first, second, and third dimensions
of the subscript. The explanation and
use of €1, Vi, Cc2, V2, C3, and V3 are
given in Appendix G.

usage field bits and their meanings are
illustrated in Figure 69.

¢ The third field contains the actual
statement number (as it appeared in the
source statement) in packed form.

r T - i 1
| Usage| I
|Field| Function of the Field |
|Bit | |

STATEMENT NUMBER _ENTRY: A statement number b + —_— i

entry is constructed for each statement | 0 |Indicates if the statement number|

number encountered in the source state- | |is defined |

ments. The format of an entry in the b + — q

statement number chains is illustrated in | 1 |Indicates if the statement number|

Figure 68. | |is referenced |
e 1
| 2 |Indicates if the statement number|
| | represents the end of a DO loop |

r T T) } % - -"

Jchain |usage |packed statement number | | 3 |Indicates if the statement number|

} + + - 4 | |represents a specification state-|

|2 bytes|1 byte| 3 bytes | | |ment

L 4 L] IL_ + —_— J'

Figure 68. Format of Statement Number] 4 |Indicates if the statement number|

Information in the Overflow | | represents a FORMAT statement |

Table b + 4

| 5 |Indicates if the statement number|

| |indicates DO nesting errors |

p--—-—1 -

The fields of a statement number entry | 6 |[Not used |
contain the following information: | |]
— 1

| 7 |Not used |

e The first field contains the displace- | | |
ment (relative to the beginning of the L 1 4
overflow table) of the next element in Figure 69. Statement Number Entry Usage

the chain.

Field Bit Functions

Appendix H: Resident Tables 133

SEGMAL
SEGMAL, constructed by Phase 5, contains
the beginning and ending address of each

segment of main storage assigned to the
dictionary and overflow table by Phase 5.
This main storage is assigned to the com-
piler as a result of the GETMAIN macro-
instruction issued by the compiler during
Phase 5. SEGMAL resides at the beginning
of the 1lowest segment assigned to the
dictionary and overflow table.

Phase 1 Use

Phase 1, between compilations in a batch
SPACE run, frees the overflow table and
SEGMAL via SEGMAL. For all compilations,
before returning control to the calling
program, Phase 1 uses SEGMAL to free any
remaining segments in the dictionary and
overflow table.

Phase 5 Use

When SEGMAL is constructed by Phase 5,
the various segments are put into ascending
order; that is, the segment entries of main
storage are sorted. Contiguous segments
are then combined into a single segment.

The communication area contains fields
that are used to indicate which segment is

Phase 7 Use

Phase 7 wuses SEGMAL to load: (1) the
dictionary index and the reserved word
portion of the dictionary into the diction-
ary, and (2) the overflow index into the
overflow table. In addition, Phase 7 wuses
SEGMAL to reinitialize the above-mentioned
fields in the communication area.

Phases 10D, 10E, and 14 Use

Phases 10D and 10E use SEGMAL when new

segments of the dictionary and overflow
table are required. For SPACE
compilations, Phase 14 uses SEGMAL to free
the main storage areas allocated to the
dictionary.
Format of SEGMAL

Figure 70 illustrates the format of

SEGMAL for N segments, where each segment
is entered in ascending sequence by
address. The entry for each segment con-
sists of the beginning address of the
segment and the ending address of the
segment plus 1. (The storage location
containing the ending address of segment N
is adjacent to the storage location con-
taining the starting address of the over-
flow index. The starting address of the
overflow index is an entry in the communi-
cation area.)

currently being used for the overflow table Note: The ending address of segment N
and which is currently being used for the minus the beginning address of segment 1
dictionary. must be less than or equal to 65,536.

r T T T V4 /T T 1
{ beginning | ending ad- | beginning | ending, / | beginning | ending ad- |
| address of | dress of | address of | addr /s - -/ | address of | dress of |
| segment 1 | segment 1 | segment 2 | seg / / | segment N | segment N |
F } $ ¥ i et $ i
| 4 bytes | 4 bytes | 4 bytes | ry | 4 bytes | 4 bytes I
I,______ -4 + L 7/ - —_— —dm ___'
| entry for segment 1 | // Ll | entry for segment N |
L i L —— 4

Figure 70. Format of SEGMAL

134

PATCH TABLE

The patch table (100 bytes) is a part of
the interface module. It is used only if
the patch facility has been enabled and if
patch records precede the source statements
of the FORTRAN source module being com-
piled. The patch table (constructed by

Phase 5) contains a converted form (for
internal use) of the information contained
in the patch records. When the patch table
is full, any further patch records are
ignored and are not placed onto the SY¥S-
PRINT data set.

Figure 71 illustrates the format of the
patch table.

r T 1
{Identifier for first module to be modified | 2 bytes |
-+ 1
Relative address of first patch for this module | 2 bytes |
4 4
T 1
Length (in bytes) of first patch for this module | 2 bytes |
L 4 4
1 3 T R}
|First patch for this module | Variable |
t ¥ 4
I - [I
I - I |
| - [|
b + {
|Relative address of last patch for this module | 2 bytes]
L 4 I
v T a
|Length (in bytes) of last patch for this module | 2 bytes |
4 4
T 1
Last patch for this module | Variable |
4 4
T 1
100000001 (Indicates last patch for this module) | 4 bytes |
t 1 {
| - i |
. [|
. - |
¥ 1
Identifier for last module to be modified | 2 bytes |
L 4
r ¥ -1
|Relative address of first patch for this module | 2 bytes |
L 1 J
1 3 T 1
|Length (in bytes) of first patch for this module | 2 bytes |
- +- -
First patch for this module | Variable |
+ i
. - |
|- [|
| - | |
¢ $-- 1
|Relative address of last patch for this module | 2 bytes |
¥ {
Length (in bytes) of last patch for this module | 2 bytes]
- 1 1
|Last patch for this module | Variable |
L - 1 4
H T 1
|00000001 (Indicates last patch for this module) | 4 bytes |
L — - [l 4
H - T 1
|22 (Indicates last module to be patched) | 2 bytes
L L J

Figure 71. Format of the Patch Table

Appendix H: Resident Tables 135

BLOCKING TABLE

The blocking table 1is constructed by
Phase 5 only for PRFRM compilations. Phase
5 constructs a blocking table entry for
each of the data control blocks for the
compiler data sets. The blocking table
contains the information required for
deblocking compiler input and for blocking
compiler output.

Each blocking table entry is 24 bytes in
length. Figure 72 illustrates the format
of a blocking table entry.

r
Logical record length *
(2 bytes)
Blocking factor
(2 bytes)

Address of buffer 2 (next)
(4 bytes)
Address of buffer 1 (current)
(4 bytes)

Address of next logical record
within the current buffer
(4 bytes)

e . ———— e —— e —— — — — . S — —

|Address to or from which the next
|record is to be moved

(4 bytes)
| Number of logical records in current
|buffer that remain to be processed
(2 bytes)

Indicates if priming is required (input
data sets only)
(1 byte)

Indicates the I/0 activity for this
data set
(1 byte)

g et s e e . e . g

|+80 for SYSIN, SYSLIN, SYSUT2, and

| SYSPUNCH; 121 for SYSPRINT
L

Figure 72.

e e D e L - P SN p——

Blocking Table Entry Format

BLDL TABLE

The BLDL table is constructed by Phase 5
only for PRFRM compilations. It is built
using a BLDL macro-instruction. Phase 5
supplies, as a parameter of the BLDL macro-
instruction, the address of a skeleton BLDL
table. The skeleton BLDL table contains:
(1) the names (8 bytes per name) of the
compiler components to which control may be

136

transferred via an XCTL macro-instruction,
and (2) a 36-byte field for each of the
above names. The BLDL routine completes
the skeleton BLDL table by placing
information into these 36-byte fields.
This information is cbtained from the data
set directory of the partitioned data set
containing the FORTRAN IV (E) compiler.
This information (such as the physical
location of each compiler component in the
partitioned data set) is used for transfer-
ring control from one component of the
compiler tc the next for PRFRM compila-
tions.

The BLDL +table allows more efficient
phase-to-phase transition, through the use
of the DE parameter in the XCTL macro-
instruction, than is possible for a SPACE
compilation in which the EPLOC parameter
must be wused. For a description of the
XCTL macro-instruction and the DE and EPLOC
parameters, refer to the publication IBM
System/360 Operating System: Control
Program Services.

Each entry in the BLDL table is 44 bytes
in length. Figure 73 illustrates the for-
mat of the BLDL table.

NOTE: Although entries for the interludes
are included in the BLDL table, the inter-
ludes are never executed for a PRFRM compi-
lation. When an interlude is specified in
the linkage to the end-of-phase routine
(PNEXT) in the performance module, the
phase in the BIDL table that follows the
specified interlude is automatically trans-
ferred to by modifying the XCTL macro-
instruction to point to the directory entry
for that phase.

RESET TABLE (RESETABL)

The reset table is a 39-byte index table
that is used by the PNEXT routine in the
performance module to determine which, if
any, of the record counts for the chained
buffer data sets (SYSUT1 and SYSUT2) must
be reset. The record count of the data set
that is to be used for output by the next
phase is always reset.

The fifth character in the symbolic name
of the phase to be executed next is used to
reference the appropriate entry in the

table. If the value of that entry is zero,
no action is taken. If the value 1is two,
the record count in the blocking table

entry for SYSUT1 is reset. If the value is
eight, the record count in the blocking
table entry for SYSUT2 is reset. Resetting
the record count is necessary in order to
determine whether actual READs are required
for the data set when it is used as input
by a subsequent phase.

1) Rl 1
{Compiler |Directory information for|
| component | compiler component |
| (8 bytes) | (36 bytes) |
L iR 4
13 T 1
| IEJFAABO |Directory information for|
| (Phase 1) | Phase 1 (subsequent |
| subsequent | entries) |
|entries |]
} 1
IEJFCAAQ |Directory information for|
(Phase 5) | Phase 5 |
1 4
T 1
IEJFEAAQ |Directory information for|
| (Phase T) |Phase 7 |
4 1
T T
IEJFFAAQ |Directory information for|
(Phase 8) |Phase 8 |
i J
T 1
| IEJFGAAO |Directory information for|
| (Phase 10D) | Phase 10D
L Y
L 3 T
| IETFJAAQ |Directory information for
| (Phase 10E) | Phase 10E
% i
T T
| IETFJGAO |pirectory information for
| (Interlude 10E) | Intexrlude 10E |
L 34 4
v L) b
| IEJFLAAO |pirectory information for|
| (Phase 12) |Phase 12 |
b ¢ {
| IEJFNAAO |Directory information forj
| (Phase 14) |Phase 14 i
b + {
| IEJFNGAO |Directory information for|
| (Interlude 14) |Interlude 14 i
s i)
L} T 1
| IEJFPAAOQ |Directory information forj|
| (Phase 15) | Phase 15 |
i L J
[3 T 4
| IETFPGAO |Directory information forj
| (Interlude 15) |Interlude 15 |
L 4 d
r T 1
| IEJFRAAO |Directory information forj|
| (Phase 20) | Phase 20 |
1 4
T 1
IEJFVAAO |Directory information for|
(Phase 25) | Phase 25 |
4 d
T 1
IEJFXAAQ |Directory information for|
(Phase 30) |Phase 30 |
L L J
Figure 73. BLDL Table Format

Appendix H:

Resident Tables

137

APPENDIX I:

During a compilation, the compiler uses
the following tables:

¢ Allocation table.

e Routine displacement tables.
e EQUIVALENCE table.

e Forcing value table.

¢ Operations table.

¢ Subscript table.

e Index mapping table.

¢ Epilog table.

* Message length table.

¢ Message address table.

* Message text table.

of the
created
is used

Some tables are actual segments
phase 1load modules; others are
during the compilation. Each table
only by the phase that contains it (as a
part of the phase load module) or creates
it. The following discussions describe the
use and format of each table.

TABLES USED BY PHASE LOAD MODULES

ALLOCATION TABLE

The allocation table is a
Phase 5 1load module. It is wused to
allocate the amount of main storage
obtained among buffer areas and resident
tables. Table 27 illustrates the format of
the allocation table.

part of the

ROUTINE DISPLACEMENT TABLES

The routine displacement tables for re-
served word processing routines are parts
of the Phase 10D and Phase 10E 1load
modules. Reserved words are those that
indicate a specific FORTRAN statement. The
Phase 10D and Phase 10E routine displace-
ment tables are identical in structure and
in purpose (locating the processing routine
for a given reserved word). The Phase 10D
table aids in the location of reserved word
routines for declarative statements; the
Phase 10E table aids in the location of
reserved word routines for executable
statements.

Each reserved word causes an entry to be
made in the dictionary by Phase 7 (refer to
Appendix H). The address field of these
entries contains a displacement, used as an
indexing value, relative to the start of
the appropriate routine displacement table.

Table 27. Allocation Table
1 T T 1
{ 1 |Dictionary and| Internal Text Buffer |
| | Average number of |Overflow | Size (in bytes) |
] SIZE | source statements |Table Size 3 T]
| Jthat can be compiled| (in bytes) | SPACE | PRFRM |
4 4 4 1 J
L) i bl T 1) T T L a
SPACE|* PRFRM| SPACE | PRFRM | SPACE |PRFRM | I/0 Buffers | I/0 Buffers| Non-I/0 |
| | I | | | | | Buffers |
I8 L. 4 4 4 4 + 4 1 d
1] T T T T T T T T 1
| 15K | 19K | 170 | 170 | 2216 | 2216 | 4x(104) | 4x(96) | 0 |
| 44K | 48K | 2500 | 1980 {25512 20328 | bx(1704) | 4x(1696) | 5184 |
86K | 90K | 6500 | 6500 | 65536 |[65536 | 4x(1704) | 4x(1696) | 8104 |
200K | 204K | 6500 | 6500 | 65536 |65536 | bx(1704) | 4x(1696) | 119720 |
} L L L iy 1 1 L i {
|+If blocked I/0 is specified, the value of the expression 2*(BLKSIZE) must be addedq,|
| for each data set that contains blocked records, to the number shown under the PRFRM|
| option.]
L — ¥]

138

This index is used to obtain the actual
displacement, relative to a base register,
of a specific reserved word routine located
within the Phase 10D or Phase 10E 1load
module. The effective address of the
desired reserved word routine is obtained,
by Phase 10D or Phase 10E, by adding this

displacement to the wvalue in the base
register.
Figures 74 and 75 illustrate the format

of the routine displacement tables.

|FIND reserved word routine |
T 1
|Displacement from base register value of|
|DO reserved word routine

|Displacement from base register value of
|GO reserved word routine

8

P e e s

b
|Displacement from base register value of|
| FORMAT reserved word routine |
b= -
|Displacemert from base register value ofj
|IF reserved word routine |
I

v
|Displacement from base register value of|
|END reserved word routine |
8

Table Format

Appendix I:

3 1 L}

|Displacement from base register value of| |Displacement from base register value of]|
|DEFINE FILE reserved word routine | |CALL reserved word routine |
i 4 Lt ___{
r h) v

.|Displacement from base register value of] |Displacement from base register value of|
|REAL reserved word routine] |GOTO reserved word routine |
b 1 - -
v 1

|Displacement from base register value of| |Displacement from base register value of]
| COMMON reserved word routine | |READ reserved word routine |
L d [1
L3 - 1 v - 1
|Displacement from base register value of] |Displacement from base register value of|
| FORMAT reserved word routine | | STOP reserved word routine |
L ____1 L 4
r t q
|Displacement from base register value of} |Displacement from base register value of]|
| DOUBLE reserved word routine | | PAUSE reserved word routine |
L 4 [e e e e e e e e e e e e o e e e e e .|
¥ b r

|Displacement from base register value of} |Displacement from base register value of|
| INTGER reserved word routine | |WRITE reserved word routine

|8

F - 0 I 1
|Displacement from base register value of| |Displacement from base register value of}|
|EXTERN reserved word routine | |RETURN reserved word routine |
L 4

v 1 - _ 4
|Displacement from base register value of]| |Displacement from base register value of|
|FUNCT reserved word routine | |REWIND reserved word routine

L 4

b { b= - 1
|Displacement from base register value of| |Displacement from base register value of]
|DIM reserved word routine | |ENDFIL reserved word routine |
[4 L 1
L 4 1 ¥ 1
|{Displacement from base register value of] |Displacement from base register value of|
| SUBRUT reserved word routine | | CONT reserved word routine |
1 4 L 4
r 1 r 4
|Displacement from base register value of] |Displacement from base register value of|
|EQUIV reserved word routine i | BKSP reserved word routine |
b it -{
| 2 bytes | | 2 bytes i
L J [——— J
Figure 74. Phase 10D Routine Displacement Figure 75. Phase 10E Routine Displacement

Table Format

Tables Used by Phase Load Modules 139

how the DO re-
located in Phase

Figure 76 illustrates
served word routine is

10E.

r . 1
1 Dictionary entry for GO |
l L |
| Phase 10E Routine Displacement
| Table
I r : 1
| | Displacement for FIND |
i | reserved word routine]
|t !
S | Displacement for DO]
——1 reserved word routine |
I k i
| | . |
| | . |
| | . I
I k - i
| | Displacement for BKSP |
| | reserved word routine |
‘ L J
I
I r - 1
| | DO reserved word |
L processing routine |

L 3
Figure 76. Locating the DO Reserved Word

Routine

EQUIVALENCE TABLE

The EQUIVALENCE table is constructed by
Phase 12 for use by the Phase 12 storage
allocation routines, which assign addresses
to equated variables. This table 1is a
serial list in which each member follows
the preceding one.

The format of a typical entry in the
EQUIVALENCE table is as follows:

r T T 1 1
p(variable)	p(root)	displacement	size
or plarray)	lor address in		
		COMMON	
L 4 1 1 J
1) T T T 1
| 2 bytes |2 bytes| 2 bytes |2 bytes]|
L 4 4 4 3

140

Each field in an entry is two bytes in
length. The first field contains a pointer
to the entry for the variable or array in
the dictionary. The second field contains
a pointer to the dictionary entry for the
root to which the variable or array is
equated. (If the variable or array is the
root of the EQUIVALENCE group, the first
two fields contain the same pointer.) The
third field contains the displacement or
address assigned to the variable or array
in COMMON. (The addresses for variables
and arrays are assigned before this table
is constructed.) The fourth field is the
size, in bytes, of the EQUIVALENCE group or
class.

The maximum number of entries in the
EQUIVALENCE table is the larger of:
e 100, or

e The largest unused segment of the dic-

tionary and overflow table divided by
eight (if this segment exceeds 800
bytes).

For example, if the compiler allocates
5500 contiguous bytes to the dictiocnary ana
the overflow table, and 3100 bytes are
used, then the maximum number of entries in
the EQUIVALENCE table is:

(5500 - 3100)/8 = 2400/8 = 300

FORCING VALUE TABLE

The forcing value table is a part of the
Phase 15 1load module. The forcing value
table is used by Phase 15 as an aid in the
reordering of intermediate text entries in
arithmetic expressions. This table defines
the relative position of each operator in
the hierarchy of operators.

Each entry in the forcing value table is
five bytes 1in 1length. The forcing value
table is illustrated in Figure 77.

The operations table can contain no more

T L} 1
{Adjective}Left | Address of| Right | than 50 entries. Entries are four bytes in
| Code |Forcing|Associated{ Forcing | length and are obtained by a pointer to the
| [value |Routine { Vvalue | last entry in the table for the specific
8 + + + i statement under consideration. The format
| (| 64 |a (LFTPRN) | 01 | of a typical entry in the operations table
b ———i $ + i is shown in Figure 78.
|) | 0o |a(RTPRN) | 69 i
b ¥ 3 ¥ i
i = | 70 | a (EQUALS) | 70] r T T 1
L + + + 1 fadj code| mode/type | pointer
i . | 49 Ja(commMA) | 48] s + + i
2 + + + 1 |1 byte | 1 byte | 2 bytes |
| n | 80 | never | 01 | L L - 4
| | | forced out| | Figure 78. Operations Table Entry Format
b L o -4 !
| + | 09 | a (ADD) | 09 |
[N 1 d 4 4
v T T T 1
| - | 09 | a (ADD) | 09 |
b ¢ t $ {
| * | 05 |a(MULT) | 05 | SUBSCRIPT TABLE
b t 1 t {
| / | 05 la (MULT) | 05 |
t + + + -—4 The subscript table is a temporary stor-
| ** | ou |a(EXPON) | 03 | age area (part of the Phase 15 load module)
b——- + + 4 5 used for subscript text encountered during
| F(| 64 ja (FUNC) | 01 i the reordering of intermediate text words
[} + 4 1 by Phase 15. This table functions as a
|anary - | 05 |a (UMINUS) | 01 | "pushdown table" (that is, a table in which
3 + 4 + 9 the top entry is the most recently entered
|end mark | 00 | never | 80 | item) for storing subscript intermediate
| | | forced out]| | text words that refer to the operation in
3 + + - 4 ol question.
|unary + | 05 |a(UPLUS) | 01 |
b 4 + + 4 The subscript table can contain no more
| SF | | | | than 38 entries. Entries are eight bytes
| Forcing| 72 | a (END) | 70 | in 1length and are obtained by a pointer to
I + + + 4 the top entry in the table for the specific
| ARITH | | | | statement under consideration. The format
| Forcing| 72] a (END) | 70 | of a typical entry in the subscript table
b + + + —-—— is shown in Figure 79.
| cALL | | | [
| Forcing| 72 |a (CALL) | 70 |
L 1 4+ 1]
12 T T T 1 T T ¥ h)
| IF | | | | |subscript | not used | |
| Forcing| 72 | a (END) | 70 | ladjective | by | offset |
F } + + 9 | code | Phase 15 | |
|1 byte |1 byte |2 bytes | 1 byte | 3 1 + 9
L 1 L 1 J | p(subscript) | p(dimension)
Figure 77. Forcing Value Table 3 1 + q
| 1 byte | 1 byte | 2 bytes |
L 4 L J
Figure 79. Subscript Table Entry Format
OPERATIONS TABLE
The subscript adjective code indicates

The operations table 1is a temporary
storage area (part of the Phase 15 load
module) used during the reordering of oper-
ations within statements that can contain
arithmetic expressions. This table func-
tions as a "pushdown table"™ (that is, a
table in which the top entry is the most
recently entered item) for storing inter-
mediate text words that refer to the opera-
tion in question. An exception is made for

to other phases of the compiler that sub-
script calculation is necessary. The off-
set 1is an index used to find the correct
element in an array associated with a
particular subscript expression. The sec-
ond word of an entry in the subscript table
contains two pointers to information in the
overflow table. The first points to the
subscript information for the subscripted
variable; the second points to the dimen-

subscript text, which 1is stored in the sion information for the array indicated by
subscript table. the subscripted variable.
Appendix I: Tables Used by Phase Load Modules 141

INDEX MAPPING TABLE

The index mapping table (part of the
Phase 20 load module) is used to aid the
implementation of subscript optimization.
This table maintains a record of all infor-
mation pertinent to a subscript expression.
Because the computation of any unique sub-
script expression is placed in a register,
the number of entries in the table depends
on the number of registers available for
this purpose. The initial register
assigned to a subscript expression is det-
ermined during the initialization process
for Phase 20. Each entry in the index
mapping table is eight bytes in length.

The format of a typical entry in the index
mapping table is shown in Figure 80.
r T T T 1
number			
regis-	of	status	offset
ter	dimen-		
number	sions		
b L . + {			
p(subscript)	p(dimension)		
p-—- 1 4 1			
1 byte] 1 byte	2 bytes	
L XL L 1
Figure 80. Index Mapping Table Entry For-
mat
The register number field contains the
number of the register assigned to the

subscript expression. The dimension number
field contains the number 1, 2, or 3,
depending on the number of dimensions. The
status field indicates whether the register
referenced by this entry is: (1) unas-
signed, (2) assigned to a normal subscript
expression for indexing computation, or (3)
assigned to the address of a dQummy vari-
able. The offset field contains the offset
index used to obtain the correct element of
the array associated with -a particular
subscript expression. The last two fields
contain pointers to information in the
overflow table.

EPILOG TABLE

The epilog table is created by Phase 25
when the FUNCTION or SUBROUTINE adjective
code 1is encountered. An entry is made in
the epilog table for each variable used as
a parameter in the calling program. The
instructions generated during Phase 25 for
the RETURN entry in the intermediate text
reference the epilog table to return the
value of variables to the calling program.

142

Each entry in the epilog table is four

bytes in length. The format of a typical
entry in the epilog table is shown in
Figure 81.

- T T 1
|L Is | address |
L 1 i d
¥ T T)
|1 byte |1 byte | 2 bytes |
L 1 4 i
Figure 81. Epilog Table Entry Format

L is the field length of the variable in
the subprogram, S is the relative position
of the variable in the parameter 1list of
the calling program, and address is the
address of the variable in the subprogram.

MESSAGE LENGTH TABLE

The message length table is loaded into
main storage as a part of the Phase 30 load
module. It contains the lengths of all the
messages capable of being generated by the
compiler. The 1length of any message is
obtained by using the number corresponding
to that message as a displacement from the
start of the message length table.

Figure 82 illustrates the format of the
message length table.

r - 1
| Length of first message |
L]
] k)
| Length of second message |
b i
| . |
| . |
| . I
b q
| Length of last message |
¢ i
| 1 byte |
L J
Figure 82. Message Length Table Format

MESSAGE ADDRESS TABLE

The message address table is loaded into
main storage as a part of the Phase 30 load
module. It contains the displacements from
the start of the message text table of all
the messages capable of being generated by
the compiler. The displacement of any
message is obtained by wusing the number
corresponding to the message multiplied by
two as a displacement from the start of the
message address table.

Figure 83 illustrates the format of the
message address table.

]

|Displacement of text for first message
|from start of the message text table

[8

L]
|Displacement of text for second message
|from start of the message text table

isplacement of text for last message
rom start of the message text table

O

!
!
| SO S S S F——

= o e e e g e s .

2 bytes

Figure 83. Message Address Table Format

MESSAGE TEXT TABLE

The message text table is loaded into
main storage as a part of the Phase 30 load

Appendix I:

module. It contains all the messages capa-
ble of being generated by the compiler.
Each message is obtained by using the
displacements contained in the message
address table.

Figure 84 illustrates the format of the
message text table.

r
| Message text corresponding to first
|message number

Variable length

| IS —_—

1

|

|
b i
| Message text corresponding to second |
| message number |
b 1
|- |
: |
b i
| Message text corresponding to last |
| message number |
t i
| |

¥

Figure 84. Message Text Table Format

Tables Used by Phase Load Modules 143

APPENDIX J:

TABLES _USED BY THE OBJECT MODULE

The following tables are
object module to execute the
generated by the compiler:

used by the
instructions

e Branch list table for referenced state-
ment nunbers.

e Branch list table for SF expansions and
DO statements.

¢ Argument 1list table for subprogram and
SF calls.

¢ Base value table.
describe the

The following discussions
use and format of each table.

BRANCH LIST TABLE FOR REFERENCED STATEMENT
NUMBERS

Phase 12 allocates storage for the
branch 1list table for referenced statement
numbers and assigns a relative position
(relative to the start of the branch table)
to each executable statement that is ref-
erenced by other statements. Phase 25
inserts the relative addresses, for these

BRANCH LIST TABLE FOR SF EXPANSIONS AND DO
STATEMENTS

Phase 20 allocates storage for the
branch 1list table for SF (statement
function) expansions and DO statements.

During Phase 25 processing, the relative
addresses for the first executable instruc-
tions in the SF expansions and DO loops are
inserted into 1locations relative to the
start of the branch table. The 1locations
for the SF expansions were determined by
Phase 14; the locations for the DO 1loops
are determined by Phase 25. The table is
used, at abject time, either by the
instructions generated to reference SF
expansions or by the instructions generated
to control the iteration of DO loops.

Each entry in the table is either the

address of the first instruction in an SF
expansion or the address of the secona
instruction in a DO 1loop. (The first

instruction of the DO loop initializes the
DO counter.) The format and organization
of the branch list table for SF expansions
and DO statements is illustrated in Figure
86.

r 1
statements, into the positions dictated by Jaddress of first instruction ir SF expan-|
Phase 12. The table is used, at object- |sion 1 |
time, by the instructions generated to } 4
branch to executable statements. |address of first instruction in SF expan-|

|sion 2 |

Each entry in the table is the address t 1

of a referenced statement number. The | . |
format of the branch 1list table for | . |
referenced statement numbers is illustrated | . |
in Figure 85. F 5
|address of first instructicon in SF expan-|

|sion N i
r 1} i
|address of first referenced statement| |address of second instruction in DO 1loop|
| number | |1 |
b i i
|address of second referenced statement| |address of second instruction in DO loop|
| number | |2 |
[N] b J
r 1 r 1
| . I . |
| . o . I
I . | . I
b s i
|address of last referenced statement num-| |address of second instruction in DO 1loop|
| ber | M |
L d b 4
r 1 L) 1
| 4 bytes | | 4 bytes |
L J L d
Figure 85. Format of Branch List Table for Figure 86. Format of Branch List Table for

Referenced Statement Numbers

144

SF Expansions and DO Loops

All SF definitions must appear prior to
the executable statements (this includes DO

statements) in a source module. Therefore,
Phase 25 encounters all the SF adjective
codes prior to the first DO statement
adjective code. This accounts for the

placement of all SF expansion addresses
into the branch table before the first DO
loop address.

ARGUMENT LIST TABLE FOR SUBPROGRAM AND SF
CALLS

Phase 20 allocates storage for the argu-
ment 1list table for the arguments of sub-
program and SF calls. During Phase 20
processing, the relative addresses of the
above arguments are inserted into the argu-
ment 1list table. The starting address of
the first argument of each argument list is
passed as part of the intermediate text to
Phase 25 (the total number of SFs is passed
in the communication area).

Each entry in the argument list table is
either the address of an argument used in a
subprogram or the address of an argument
used in an SF. Entries are made in the
table as Phase 20 encounters each subpro-
gram or SF reference. The format and
organization of the argument list table is
illustrated in Figure 87.

BASE VALUE TABLE

The base value table is generated by the
various phases of the compiler as base
registers are required by the object cod-
ing. The table is assembled in its final
form by Phase 25. The compiler-generated
instructions that load base registers, at
object time, use the base value table in
order to obtain the proper base register
values.

Figure 88 1illustrates the format and
organization of the base value table.

Appendix J:

13
|first arqument of first subprogram or

1

SF|

| reference encountered |
b 1
| - |
| . |
| . |
b i
|last argument of first subprogram or SF|
| reference encountered |
I8 : d
v 1
|first argument of second subprogram or SF|
|reference encountered |
t 1
| . |
| . |
| . i
b i
|last argument of second subprogram or SF|
|reference encountered |
¢ 1
| . |
| . |
| . |
¢ i
|first argument of last subprogram or SF|
| reference encountered |
t i
| . |
| . |
| . N
3 1
| last argument of last subprogram or SFj
| reference encountered |
t 1
| 4 bytes |
L 4
Figure 87. Format of Argument List Table

for Subprogram and SF Calls

r
|value placed in the first base register
Jused to obtain data in COMMON

b~

e o

|value placed in the last base register
|used to obtain data in COMMON

-
| value placed in the first base register
jused to obtain data in the object module

. ——— e

|]value placed in the last base register
|used to obtain data in the object module

L
r
| 4 bytes
L~
Figure 88.

e L i SR S T T e

Format of Base Value Table

Tables Used by the Object Module 145

APPENDIX K:

DIAGNOSTIC MESSAGES AND STATEMENT/EXPRESSION PROCESSING

This appendix contains the names of the
phases and the routines within the phases
that: (1) generate diagnostic messages, and
(2) process the various FORTRAN statements
and expressions.

DIAGNOSTIC MESSAGES

Two types of diagnostic messages are
generated by the FORTRAN compiler - infor-
mative messages and error/warning messages.
The messages produced by the compiler are
explained in the IBM System/360 Operating
System: FORTRAN IV (E) Programmer's Guide.

Informative Messages

Four informative messages are generated
by the compiler to inform the programmer or
operator of the status of the compilation.
The messages and the phases and subroutines
in which they are generated are illustrated
in Table 28.

Table 29. Error/Warning Messages

L) L])
| Message| Phase Subroutine or Routine

|
| Number | |
L 4 1
T T T
|IEJ002I| S | MESSGOUT
t ¢ 1
{IEJO03I| 5 | MESSGOUT
b=t {
| IEJOO4T| S | MESSGOUT
e e e e e 4
T T
|IEJOOSI| S | MESSGOUT
S +
| IEJ006I]| 5 | MESSGOUT
| IEJOO07I| S | MESSGOUT
L 4 4
1) T T
JIEJOO8I| S | MESSGOUT
; ¥ +
|IEJ0291I|10D | DIMSUB
b ¥ ¥
| IEJO030I|10D | COMMON, EQUIVP
L 1 1
v T T
]IEJO31T |12 | EQUIVP
b $ $
IIEJ03ZI|10D 10E|LITCON
X
v
|IEJ033I|1OD 10E|GETWD
% + -
|

IEJo3uI|10D | FUNCT, SUBRUT

-+

-
|IEJO3SI|10D

L

| FUNCT, SUBRUT

!
Table 28. Informative Messages |IEJ036I|10E | ARITH
i 4

r 1 v
|Message/number |Phase|Subrtn. | |IEJ037I|10D 10E|CLASS, ARITH, ASF, IF
L 1 4 [N ——t e ————
H T 1 r
|IEJ001I | 5 IMESSGOUT | |IEJ0381|10D | INTGER/REAL/DOUBLE,
S— + 4 4 | | | EXTERN, COMMON, EQUIV,
| LEVEL: rmthyr | | | | | |DIM
| IBM 0S/360 BASIC FORTRAN | | | - P .
|IV (E) COMPILATION | | | |IEJ0391|10D 10E| SYMTLU
|DATE: yy.ddd | 7 |EJECTPRT | 8 — -
s B —— | |IEJOu11|10D 1OE|ASF, EXTERN, DIM
|SIZE OF COMMON XXXXXX | 30 |ENDCRD |
|PROGRAM YYYYYY | | | |IEJou31|10D 10L|INTG£R/REAL/DOUBLE, GO

[1 4 | R RN R

T T b 1
|END OF COMPILATION zzzzzz| 30 |EOJOB | |IEJOH3I|12 |ALOC

4 J -

Exror/Warning Messages

Each error/warning message produced by
the compiler is identified by an associated
number. Table 29 relates a message number
with the phase(s) and subroutine(s) in
which the corresponding message is generat-
ed.

146

|IEJouu1|10D 10E|LITCON

|1ana51|1oo 10E|LITCON

IEJ0461|10D,10E|LITCON
1 4

T T
IEJO47I|10D,10E|CLASS, LIM
1 1

T T
IEJO48I|10D | DIMSUB
4 1

e e v e e e e s et e e s e e s e s e — . —— — —— — —— — b c— i e ke e whrn e cnas ke e e c— arban a2 s cv— ok S e c— . w— . — k. a— c—

_—-P_qp_qp_-‘,_

T T
IEJO49I|10D |DIM, DIM90
1 4

(Continued)

-

L) T
|IEJO064I|10D,10E, | LABTLU, SYMTLU,
iy 1

b
|IEJoeuI|1u

+
|ERROR, WARN
1

-

Table 29. Error/Warning Messages (Continued)
r T Ll] r T T 1
Message| Phase | Subroutine or Routine | |Message| Phase | Subroutine or Routine |
Number | | | |Number | | |
b o=t + 1 ¥ ¥ - 1
IEJOS0I|10D | EQUIV | |IEJ07SI|1Q | CKENDO |
[1 L 4 4 N |
T T T 1 k) 1
[IEJ051I|10D |EQUIV, DIM i |IEJ079I|10E |Go i
4 4 __,‘ 4 4

T T b 1 b
IEJO511|14 | FCOMACHK |IEJO0791I | 14 | READ/READWR, DO |
Il 4 1 4 d

T T v T b
IEJ052I|10D |SUBS, EQUIV |IEJ08OI|10E |Go |
L 1 b 4 4

T T r T 1
IEJO053I|10D | suBs |IEJ0801|14 | READ/READWR I
4 4 L 4 J

T T v T)|
|IEJOSUTI j10E |ASF | EJ0811|10D,10E |ARITH, EQUIV |
L 4 } L 4 1 4
v T T v T T 1
|IEJ055I|10D | FUNC, SUBRUT | IEJO081I] 14 | READ/READWR, FMDCON, |
8 } + I | | FMECON, FMFCON, FMTINT, |
{IEJO56I|10E |Go | | IFMACON, FORMAT |
[1 [- L L 4
r T T r 4
|IEJOS7I|10E | READ/WRITE |IEJ0821|10D 10E |LITCON |
L 1 3 L K]
13 T T T]
| IEJ058I|10E | READ/WRITE gIEJ0821|1u |NOFDCT, INTCON [
|8 1 1 [4
r T T r 1
|IEJ060I|10D |EQUIV |IEJ0831|10D 10E |CSORN, INTCON [
L 4 4 |8 d
T T T 13 1
|IEJ061I|10D,10E |EOSR |1EJ083I|14 |INTCON |
F ¢ 1 b= $ ¢ :
|IEJ063I|10E | EQUIV |IEJ08HI[10D,10E | WARN/ERRET [
iR 4 L iy N |

9

|

. |

t

|

J

1

|

1

4

|

J

L}

I

d

4

|

|

4

a

|

|
4
1
|
1
1
|
1
4
|
]
1
|
4
1
|
1
1
|
1
1
i
1
1
|
1
1
|
1
T T 1 T
|IEJO64I|30 | TWNFIV i |IEJ08uI|15 |ERROR, WARN
1 1 4 L 4
- T T 1 r T
IEJO6SI|10D,10E |CLASS, LABLU, PAKNUM | |IEJ0851|12 | DPALOC, SALO
] 1 -4 b
T T
| IEJO066I|10E | DO | | IEJ085TI| 14 | PRESCN
L I Kl] L 1
r T T 1 r T -
|IEJ067I|10D | DEFINE | |IEJO86I |14 |BLANKZ
i 1 1 i L 1
r T T 1 r) Iy H
|IEJ0681|10D 10E |LITCON | | IEJO87I|14 IFMDCON, FMECON, FMFCON,
r + 1 | | | FMTINT, FMACON, FSUBST
IIEJ0691|10E |ASF] - + }
2 - i |IEJOS8I |14 | LPAREN
|IEJ07OI|10D | FUNCT, SUBRUT | |3 et T —— q
3 } i | IEJO89I |14 JUNITCK
|IEJO711|10E | CALL | + + 4
| +] IEJO90I {14 | FQUOTE |
IEJO072I|10E | ARITH | DE—Y + 4
| Gt + + { |IEJ0911|1H |FMINUS, FPLUS |
|IEJ0731|10D,10E |PUTX | t + -
4 + { |1EJ0921|1u | FCOMMA [
IEJ07QI|10D | COMMON | b + + |
+ + 4 | IEJO093I|14 | READ/READWR |
|TEJO75I|14 | FORMAT, CKLM | b + + 9
3 4 4 { |IEJO94TI| 14 |FMDCON, FMECON, FMFCON, |
|IEJ0761|1“ | READ/READWR, FORMAT | | | | FMTINT, FMACON |
1 1 1 + 1 1
- T T 1 } T 1
|IEJ077I|10D,10E | ASF, READ/WRITE, EOSR, | |IEJ09SI|14 | READ/READWR |
| | |DO, SUBS, EQUIV, FUNCT, | I + {
| | | SUBRUT, DIMSUB, DIM, | |IEJ0961|14 | READ/READWR |
| | | SKPBLK | b + + |
b + + { |IEJO97I|1“ | INSAV |
|IEJO77I|14 | READ/READWR, DO, FILLEG, | 3 + } q
| | ISKPBLK | |IEJ098I|14 | FQUOTE |
L L L] L s L Jd
(Continued)

Appendix K:

Diagnostic Messages and Statement/Expression Processing 147

Table 29. Error/Warning Messages

(Continued)

r R} T 1 r T T 1
| Message| Phase | Subroutine or Routine | |Message| Phase | Subrcutine or Routine |
| Number | | | | Number | | |
b + ¥ I et ¢ 1
|IEJ099I|14 | FQUOTE [|IEJ149T[12 | COMALO
—— 4 4 1 4
T - | I + T
| IEJ100I|14 |DO, READ/READWR | |IEJ150I |12 |ALOC i
e ¥ — I ~4 1 1
|IEJ123I|15 | MOPUP | |IEJ1591|15 | MOPUP
L 4 3 d L 1 4
13 T T 1 v T 1
{IEJ124I|15 | EQUALS I |IEJ16OI|1Q | INTCON
—— 1 - J 8 —_— 4 4
T h r T
|IEJ12SI|15 |DO, BEGIO | |IEJ16OI|15 | coMMA }
L 4 4 I 4 J
T T 1 LB T a
|IEJ1261|15 | CKARG I |IEJ1611|12 | EXTCOM I
[i 4 8 4 4
L g T 1 r T 1
| EJ127I|12 |COMALO, ALOC | |IEJ1621|10D 10E |CLASS |
L ! -— 4 4]
T T 1 b= -7 1
|IEJ127I|15 |PRESCN, UMINUS, UPLUS, | lIEJ163I|10D 10E |{LITCON |
| [| FOSCAN |t + i
t + + 4 |IEJ16&I|10E | CONT/RETURN |
{IEJ1281I|15 | LFTPRN | } + 4
t 4 4 4 |IEJ16uI|1u | FORMAT]
| EJ129I|15 | TYPE | b=—- -— + 4
} + 4 |IEJ166I|10D 10E |EOSR DC, FUNCT, SUBRUT |
|IEJ13OI|15 | COMMA | 4
b + 4 |IEJ1661|1u IREAD/READWR [
|IEJ1311|15 | INLIN1 | - - + 4
b - 4 |IEJ167I|1u | LINECK |
|IEJ132I|15 { LABEL i —————— - 9
F + 9 |ILJ1681|10D 10E IEOSR |
|IEJ133I|15 | EQUALS] - {
pmmm e { |IEJ169I|10D [DIMSUB |
|IEJ13SI|15 |jcoMMA, TYPE | t ——q- {
2 + .| |IEJ1691|15 |COMMA |
|IEJ136I|15 | LAB | bt + ————————— 9
_— } 4 |IEJ1711|10D 10E IEObR
|IEJ137I|15 {COMMA, TYPE, RTPRN, | } - i
| | | FOSCAN | |IEJ1711|1u |RPAREN
b + ¢ I o ¥ i
| IEJ139I|15 | coMMA | |IEJ1721|10E | ASF |
b ¥ ¥ { $ fmmmm e 1
|IEJ140I}15 | FOSCAN | |IEJ173I|10E | ARITH |
b t $ it 3 $:
|IEJ1411|15 | COMMA | {IEJ174I|15 |EQUALS, LFTPRN, INARG, |
L 4 4
b } { | | | TYPE |
|IEJ1u21|15 | DO, BEGIO | pmm————- + + {
— + i |1EJ1751|14 | LABEL
|1EJ1u3I|15 | EQUALS | L L ——d
b 4 ¢ 1
| IEJ1441|15 |ARTHIF |
b + + 4 STATEMENT/EXPRESSION PROCESSINC
|IEJ145I|20 | PHEND |
1 iR
- T T |
|IEJ147I|12 | EQUIVP | Table 30 indicates the routine/subrou-
o + i tine responsible for the processing of the
|IEJ1H81|12 |RENTER/ENTER, SWROOT | statement/expression under consideration,
b e 4 and the phase in which it appears.

148

Table 30.

Statement/Expression Processing

13 k] T T v T T T 1
|Statement/ | Phase | Phase |Phase |Phase |Phase |Phase | Phase |
|Expression | 10D/10E | 12 | 14 | 15 | 20 | 25 | 30 i
L 1 4 +_ 4 | 1 1 1
B T T T T T T a
|Arithmetic Expres- | | | | | | |
|sion or Statement |ARITH (E) | |PASSON |FOSCAN |ARITH |RXGEN ! I
L 4 1 4 1 4 4 _+__ d
r 1] T T T T T 1
| | | | | | | FUNGEN/ | |
| FUNCTION Call | ARITH (E) |[LDCN |PASSON |FOSCAN |CALSEQ |EREXIT | |
[1 4 il 1 L __+__ 4 J
[} T T T 1 T T 1
| | | | | FOSCAN, | | | I
| Subscripted | | | | MVSBXX/ | | |
|Variable | suBs (E) |[SSCK |PASSON |MVSBRX |SUBVP |SAOP, AOP |
i 4 4 4 3 1 —_4 1 _________'
r . A T T T T T T T
|SF Definition and | |] | | | ASFDEF, |
|Expansion |ASF (E) |[LDCN |ASF | FOSCAN |ARITH |ASFEXP |]
- } } + t 1 -1 -
|Statement Number | | | | | | | |
{Definitions |cLASS (E) | ASSNBL|LABEL |LABEL |LABEL |LABEL | |
L. 4 4 1 1 1 1 d e _'
T T T T T T T T
|SF call | ARITH (E) |[LDCN |PASSON |FOSCAN |CALSEQ |ASFUSE | |
1 1 4 4 4 I S, + __________ + ________ ,'
r T T T T T
| | BKSP/REWIND | | | | | | |
| BACKSPACE | END/ENDFIL (E) | |BSPREF |DO2 |ESDRLD |RDWRT | |
t $ + $ S - t =
| i | i | | CALSEQ, | FUNGEN/ | |
{CALL |caLL (E) |LDCN |PASSON |FOSCAN |IFCALL |EREXIT | |
L 4 — 4 ! 4 4 I _+ 4
T T T 1 R} T 1
{ COMMON | COMMON (D) | COMAL |COMEQUIV| | | | [
+ 1 + + + - - -4
|Computed GOTO |GO (B) | |CGOTO |CGOTO |COGOTO |CGOTO | |
- o — (R 1] 3 4 1 4 4
T T T T T I T 1
| | CONT | | | | | | |
| CONTINUE | RETURN (B) | | SKIP |sKIP | | | |
t + e ¥ 4 ¥ $-- 1
|DEFINE FILE | DEFINE (D) | | PASSON |DEFNFL | | | |
L 4 } 1 1 1 +]
L 3 T T L) T T 1
| DIMENSION |DIM (D) | | | | | | |
L 4 4 4 1 4 1 4 d
v 1 T T T T T T]
|po |DO (E)| {DO {DO |DO | DO1,ENDDO |
[4 1 L 4 4 4 1 d
T T T T T L] v T 1
} | INTGER/ (D) | | | | | | |
|DOUBLE PRECISION |READ/DOUBLE |DPALOC | i | | |
L 4 1 4 i 1 1 4 4
3 T T T T T T T h)
| | BKSP/REWIND/ | | i | | | 1
| END | END/ENDFIL (E) | | END |MOPUP |PHEND |END |ENDCRD |
— ¢ 3 } 1 4 ¥ 1 1
| | BRSP/REWIND/] | | | | | |
| ENDFILE | END/ENDFIL (E) | | BSPREF |DO2 |ESDRLD |RDWRT | |
[1 L 3 4 1 + 4 d
[3 T T T T T T T 1
| EQUIVALENCE |EQUIV (D) | EQUIVP | COMEQUIV| | | | |
L 1 1 i 1 -4 1 1 1
1 3 b L T T T T T 1
| EXTERNAL | EXTERN (D) |LDCN | | | | | I
L 4 4 1 4 4 4 iR 4
r T~ T T T T T T 1
(|READ/WRITE/ | | | | | | i
|FIND | FIND (E) | | READ |DO2 | | RDWRT i
L 41 4 4 _+ 4 4 d 4
v T T T T T T 1
| FORMAT | FORMAT (D,E) | | FORMAT | | | | |
1 4 IR 4 +_ 4 4 4
1 1 T B T T 1
| FUNCT/SUBRUT | | | | | | |
FUNCTION | (D) |LDCN |SUBFUN |FHDR | | SUBRUT | |
p-—- $ ¥ } } ¥ ¥ ¥ i
GO |Go (E) | |ENDOCK |GOTO | | TRGEN | |
p-—- ¥ ¥ ¥ ¥ ¥ fommmmmmme 4 y
| IF | IF (2) |ENDOCK |FOSCAN |1FCALL |ARITHI | |
L L 4 4 L 4 L L K}
(Continued)
Appendix K: Diagnostic Messages and Statement/Expression Processing 149

Table 30. Statement/Expression Processing (Continued)

F k) T T T . T - =="T 1
|Statement/ Phase |Phase |Phase | Phase | Phase | Phase | Phase |
| Expression | 10D/10E | 12 | 14 | 15 | 20 | 25 [30

i [l 4 ER i 1 ER 4 4
T T T T 1 T L] T 1
| , | [| | | | FUNGEN/ | |
|In~line Functions |ARITH (E) |LDCN |PASSON| FOSCAN| CKOD | EREXIT | |
b } } 1 1 ¥ } 1 1
| | INTGER/ | | | | I | |
| INTEGER |REAL/DOUBLE (D) |saLo | | i | | |
L | 4 L 4 ER 4 4
r 1 T T T T T T v
| PAUSE | STOP/PAUSE (E) | |PAUSE |DO2 | | STOP/PAUSE |

i 1 1 1 1 1 1 + 4
L2 T T T T T T |
{ | | | | | READ, | RDWRT/ | |
|READ | READ/WRITE (E) | {READ |DO2 |LIST |TOLIST |

1 4 4 4 4 [N 4 4 .l
8 T T T T T) T

| | INTGER/ | | | I | | |
| REAL IREAL/DOUBLE (D) |SALO | | | | | |
L. 4 4 4 1 —— 4 4
r T T T T T T 1
| ICONT | i | | | | |
| RETURN | RETURN (E) | |RETURN|SKIP | | RETURN | 1
L 4 -4 4 4 4 1 4
v T =T T T T T T 1
| | BKSP/REWIND/ | | | | | |
|REWIND |END/ENDFIL (E)| | BSPREF | DO2 | ESDRLD |RDWRT | |
b } $ ¢ } $ -~ ¥ 1
| sTOP | STOP/PRUSE (E) | |sTOP |DO2 | | STOP/PAUSE | |
L 4 4 1 4 1 1 1 {
T 1 L) T) T T T

| |FUNCT/SUBRUT | | | | | | |
| SUBROUTINE i (D) | LDCN |SUBFUN|D02 | | SUBRUT | [
L. 1 4 4 4 1 J
1)) T T] T T 1
| | | i | RDWRT/ | i
|WRITE |READ/WRITE (E)| READWR | DO2 |LIST |IOLIST | |
L L. g 4 L i L —_—

150

This appendix describes the 1logic of
some of the object-time library subprograms
that may be referenced by the FORTRAN load
module. Included at the end of this appen-
dix are flowcharts that describe the 1logic
of the subprograms. (E is the first char-
acter in the chart identification for each
flowchart associated with a library subpro-
gram.)

Each object module, compiled from a
FORTRAN source module, must be first proc-
essed by the linkage editor prior to execu-
tion on the 1IBM System/360. The linkage
editor must combine certain FORTRAN library
subprograms with the object module to form
an executable load module. The library
subprograms exist as separate locad modules
on the FORTRAN system library
(SYS1.FORTLIB). Each 1library subprogram
that is externally referenced by the object
module is included in the 1load module by
the linkage editor. Among the 1library
subprograms that may be so referenced are:

¢ IHCFCOME (Object-time I/O source state-
ment processor) - entry name IBCOM#.

¢ THCFIOSH (Object-time sequential access
I/0 data management interxface) - entry
name FIOCS#.

e THCDIOSE (Object-time direct access I/0
data management interface) - entry name

DIOCS#.
e THCIBERR (Object-time source statement
error processor) - entry name IBERR#.

IHCFCOME receives I/0 requests from the
FORTRAN load module via compiler-generated
calling sequences. IHCFCOME, in turn, sub-
mits these requests to the appropriate data
management interface (IHCFIOSH or
IHCDIOSE).

IHCFIOSH receives sequential
input/output requests from IHCFCOME
turn, submits those requests
appropriate BSAM (basic sequential
method) routines for execution.

access
and, in
to the
access

IHCDIOSE receives direct
input/output requests from IHCFCOME
turn, submits those requests
appropriate BDAM (basic direct
method) routines for execution.

access
and, in
to the

access

If the LOAD option is specified, and if
source statement errors are detected during
compilation, the compiler generates a call-

Appendix L:

APPENDIX L: OBJECT-TIME LIBRARY SUBPROGRAMS

ing sequence to the IHCIBERR subprogram.
IHCIBERR processes object-time errors
resulting from improperly coded source
statements.
IHCFCOME

IHCFCOME performs object-time implemen-
tation of the following FORTRAN source
statements.

e READ and WRITE (for sequential I/O).

¢ READ, FIND, and WRITE (for direct
access 1/0).
e BACKSPACE, REWIND, and ENDFILE

(sequential I/O device manipulation).
¢ STOP and PAUSE (write-to-operator).

In addition, IHCFCOME: (1) processes
object-time errors aetected by variocus FOR-
TRAN library subprograms, (2) processes
arithmetic-type program interruptions, and
(3) terminates load module execution.

All linkages from the locad module to
IHCFCOME are compiler generated. Each time
one of the above-mentioned source state-
ments is encountered during compilation,
the appropriate calling sequence to
IHCFCOME 1is generated and is included as
part of the object module. At object-time,
these calling sequences are executed, and
control is passed to IHCFCOME to perform
the specified operation.

Note: IHCFCOME itself does not perform the
actual reading from or writing onto data
sets. It submits requests for such opera-
tions to the appropriate I/0 data manage-
ment interface (IHCFIOSH or IHCDIOSE). The
I/0 interface, in turn, interprets and
submits the requests to the appropriate
access method (BSAM or BDAM) routines for
execution. Figure 89 illustrates the rela-
tionship between IHCFCOME and the I/O data
management interfaces.

Charts EO, El1, and E2 jillustrate the
overall logic and the relationship among
the routines of IHCFCOME. Table 36, the

IHCFCOME routine directory, lists the rou-
tines used in IHCFCOME and their functions.

Object-Time Library Subprograms 151

1/0 |
Request |
|

t

1
IHCFCOME |
(Determine |
}

= o o . oy

Request type)
| |
Submit | | Submit
Sequential | | Direct
Access 1/0 | | Access 1/0
Request to | | Request to
IHCFIOSH | | IHCDIOSE
| |
r 1 1 r i 1
IHCFIOSH		IHCDIOSE
(Sequential		(Direct
Access 1/0		Access I/0
Interface)		Interface)
L f K} L f J		
Interpret		Interpret
And submit		And submit
Request to		Request to
Appropriate		Appropriate
BSAM Routine]	BSAM/BDAM	
	Routine	
r 1 1 13 1 h]		
BsaM		BSAM/BDAM
Routines		Routines
S — d O — |
Figure 89. Relationship Between IKCFCOME

and I/0 Data Management Inter-
faces

OPERATION OF IHCFCOME ROUTINES

The routines of IHCFCOME are divided

into the following categories:
e Read/write routines.
¢ I/0 device manipulation routines.
¢ Write-to-operator routines.
¢ Utility routines.
The read/write routines implement both

the sequential I/0 statements (READ and
WRITE) and the direct access I/0 statements

152

(READ, FIND, and WRITE). (The
access FIND statement is treated as a
statement without format and list.)

direct
READ

The 1I/0 device manipulation routines
implement the BACKSPACE, REWIND, and END
FILE source statements for sequential data
sets. These statements are ignored for
direct access data sets.

The write-to-operator routines implement
the STOP and PAUSE source statements.

The utility routines: (1) process errors
detected by FORTRAN library subprograms,
(2) process arithmetic-type program inter-
rupts, and (3) terminate load module execu-
tion.

Read/Write Routines

For the
tial and direct
statements, the
IACFCOME cconsist
sections:

implementation of both sequen-
access READ and WRITE
read/write routines of
of the following three

e An opening section, which initializes
data sets for reading and writing.

e An I/O 1list section, which transfers
data from an input buffer to the 1I/0
list items or from the I/0 list items
to an output buffer.

¢ A closing section, which terminates the
I/0 operation.

Within the discussion of each section, a
read/write operation is treated in one of
two ways:

¢ As a read/write requiring a format.

e As a read/write not requiring a format.

Note: In the following discussion, the
term "read operation" implies Dboth the
sequential access READ statement and the
direct access READ and FIND statements.
The term "write operation" implies both the
sequential access WRITE statement and the

direct access WRITE statement.

OPENING SECTION: The compiler generates a

calling sequence to one cf four entry
points in the opening section of IHCFCOME
each time it encounters a READ or WRITE
statement in the FORTRAN source module.

These entry points correspond to the opera-
tions of read or write, requiring or not
requiring a format.

Read/Write Requiring a Format: If the
operation is a read requiring a format, the
opening section passes control to the
appropriate I/0 data management interface
to initialize the unit number specified in
the READ statement for reading. (The unit
number is passed, as an argument, to the

opening section via the calling sequence.)
The I/0 interface: (1) opens the data
control block (via the OPEN

macro-instruction) for the specified data
set if it was not previously opened, and
(2) reads a record (via the READ
macro-instruction) containing data for the
I/0 list items into an I/0 buffer that was
obtained when the data control block was
opened. The I/0 interface then returns
control to the opening section of IHCFCOME.
The address of the buffer and the length of
the record read are passed to IHCFCOME by
the I/O interface. These values are saved
for the I/0 list section of IHCFCOME. The
opening section then passes control to a
portion of TIHCFCOME that scans the FORMAT
statement specified in the READ statement.
(The address of the FORMAT statement is
passed, as an arqument, to the opening
section via the calling sequence.) The
first format code (either a control or
conversion type) is then obtained.

For control type codes (e.g., an H
format code or a group count), an I/O 1list
item is not required. Control passes to
the routine associated with the control
code under consideration to perform the
indicated operation. Control then returns
to the scan portion, and the next format
code is obtained. This process is repeated
until either the end of the FORMAT state-
ment or the first conversion code is
encountered.

For conversion type codes (e.g., an I
format code), an I/O list item is required.
Upon the first encounter of a conversion
code in the scan of the FORMAT statement,
the opening section completes its process-
ing of a read requiring a format and
returns control to the next sequential
instruction within the load module.

The action taken
various format codes are
illustrated in Table 31.

by IHCFCOME when the
encountered is

If the operation is a write requiring a
format, the opening section passes control
to the I/O interface to initialize the unit
number specified in the WRITE statement for
writing. (The unit number is passed, as an
argument, to the opening section via the
calling sequence.) The I/O interface opens
the data control block (via the OPEN
macro-instruction) for the specified data
set 1if it was not previously opened. The

Appendix L:

I/0 interface then returns control to the
opening section of IHCFCOME. The address
of an I/0 buffer that was obtained when the
data control block was opened is saved for
the I/0 1list section of IHCFCOME. Subse-
quent opening section processing, starting

with the scan of the FORMAT statement, is
the same as that described for a read
requiring a format.

Read/Write Not Requiring a Format: If the

operation is a read or write not requiring
a format, the opening section processing
except for the scan of the FORMAT statement
is the same as that described for a read or
write requiring a format. (For a read or
write not requiring a format, there is no
FORMAT statement.)

I/0_LIST SECTION: The compiler generates a

calling sequence to one of four entry
points 1in the I/0 list section of IHCFCOME
each time it encounters an I/0 1list item
associated with the READ or WRITE statement
under consideration. These entry points
correspond to a variable or an array 1list
item for a read and write, requiring or not
requiring a format. The I/O list section
performs the actual transfer of data from:
(1) an input buffer to the list items if a
READ statement is being implemented, or (2)
the list items to an output buffer if a
WRITE statement is being implemented. 1In
the case of a read or write requiring a
format, the data must be converted before
it is transferred.

Read/Write Requiring a Format: In process-

ing a list item for a read requiring a
format, the I/0 list section passes control
to the conversion routine associated with
the conversion code for the 1list item.
(The appropriate conversion routine is det-
ermined by the portion of IHCFCOME that
scans the FORMAT statement associated with

the READ statement. The selection of the
conversion routine depends on the conver-
sion code of the list item being

prccessed.) The conversion routine obtains
data from an input buffer and converts the
data to the form dictated by the conversion
code. The converted data is then moved
into the main storage address assigned to
the list item.

In general, after a conversion routine
has processed a 1list item, the I/0 list
section determines if that routine can be
applied to the next 1list item or array
element (if an array is being processed).
The I/0 list section examines a field count
that indicates the number of times a parti-
cular conversion code is to be applied to
successive list items or successive ele-
ments of an array.

Object-Time Library Subprograms 153

Table 31. IHCFCOME FORMAT Code Processing

r T

| |
FORMAT Code |Description

Type

T

Corresponding Action Upon Code by IHCFCOME

beginning of
statement

n(group count

n field count

nPk

T column reset

=]

>

n

‘text' or nH|literal data

conversions

PHOM
% £f2§ 2
2

) group end

/ record end

end of
statement

I
I
ll'
|
|
|
|
I
|
|
|
I
|
I
I
|
|
|
|
I
|
|
|
|
I
|
|
|
I
!
|
|
|
|
|
|
|
|
I
|
|
[
|
|
|
|
|
|
|
|
|
|
|
|
|
!
[
I
|
|
|
L

o e o e i e . i s e . s .t . . o e e . e i e . i i i A e . . o . S . . e S o S e i s, . S S . s S . e e e amn. s e . oo,

control

control

control

. . e e e e et . e e . e . e e

scaling factor|control

control

skip or blank |control

control

control

control

control

P e e e s e o e — —— — —— s - G ——— —— ——— ——— S f—" = S S (i f— S — — — — —

ave location for possible repetition of the
ormat codes; clear counters.

—— e e e
+h

|Save n and location of 1left parenthesis for
|possible repetition of the format codes in the
|group.

|

|

|Save n for repetition of format code which
|follows.

Save n for use by F, E, and D conversions.

| Reset current position within record to nth
| column or byte.

|Skip n characters of an input record or insert n
| blanks in an output record.

|Move n characters from an input record to the
| FORMAT statement, or n characters from the
| FORMAT statement to an output record.

— A ——— — — —— — — — ——— — —— — — — —T——— — — — — — —— — —— - my— Sttt popooan. 52

conversion|Exit to the load module to return control tol

| subroutine FIOLF or FIOAF. Using information|
|passed to the I/0 list section, the address and|
|length of the current 1list item are obtainedj
|and passed to the proper conversion routine]
| together with the current position in the I/O|
|buffer, the scale factor, and the values of w|
|and d. Upon return from the conversion routine |
|the current field count is tested. If it isj|
|greater than 1, another exit is made to the load|
|module to obtain the address of the next 1list]|
|item. |
| |
|Test group count. If greater than 1, repeat|
| format codes in group; otherwise continue tojf
| process FORMAT statement from current position. |

| Input or output one record via I/0 Interface
|and READ/WRITE macro-instruction.

|If no I/0 list items remain to be transmitted, |
|return control to the load module to link to the|
|closing section; if list items remain, input orj
joutput one record using I/0 interface and READ/|
|WRITE wmacro-instruction. Repeat format codes|

| from last parenthesis. |
4 y]

154

If the conversion code is to be repeated
and 1if the previous list item was a vari-
able, the I/0 list section returns control
to the load module. The load module again
branches to the I/0 list section and pass-
es, as an argument, the main storage
address assigned to the next list item.

The conversion routine that processed
the previous list item is then given con-
trol. This procedure 1is repeated until
either the field count is exhausted or the
input data for the READ statement is
exhausted.

If the conversion code is to be repeated
and if an array is being processed, the I/0
list section computes the main storage
address of the next element in the array.
The conversion routine that processed the
previous element is then given control.
This procedure is repeated until either all
the array elements associated with a speci-
fic conversion code are processed or the

. input data for the READ statement is
exhausted.

If the conversion code 1is not to be
repeated, control is passed to the scan
portion of IHCFCOME to continue the scan of
the FORMAT statement. If the scan portion
determines that a group of conversion codes
is to be repeated, the conversion routines
corresponding to those codes are applied to
the next portion of the input data. This
procedure is repeated until either the
group count is exhausted or the input data
for the READ statement is exhausted.

If a group of conversion codes is not to
be repeated and if the end of the FORMAT
statement is not encountered, the next
format code is obtained. For a control
type code, control is passed to the asso-
ciated control routine to perform the indi-
cated operation. For a conversion type
code, control is returned to the 1load
module if the previous 1list item was a
variable. The load module again branches
to the 1I/0 list section and passes, as an
argument, the main storage address assigned
to the next list item. Control is then
passed to the conversion routine associated
with the new conversion code. The conver-
sion routine then processes the data for
this 1list item. If the data that was just
converted was placed into an element of an
array and if the entire array has not been
filled, the I/0 list section computes the
main storage address of the next element in
the array and passes control to the conver-
sion routine associated with the new con-
version code. The conversion routine then

Appendix L:

processes the data for this array element.
Subsequent I/0 list processing for a READ
requiring a format proceeds at the point

where the field count is examined.

If the scan portion encounters the end
of the FORMAT statement and if all the list
items are satisfied, control returns to the
next sequential instruction within the load
module. This instruction (part of the
calling sequence to IHCFCOME) branches to
the closing section. If all the list items
are not satisfied, control is passed to the
I/0 interface to read (via the READ
macro-instruction) the next input record.
The conversion codes starting from the last
left parenthesis are then repeated for the
remaining list items.

If the operation is a write requiring a
format, the I/0 list section processing is
similar to that for a read requiring a
format. The main difference 1is that the
conversion routines obtain data from the
main storage addresses assigned to the list
items rather than from an input buffer.
The converted data is then transferred to
an output buffer. If all the 1list items
have not been converted and transferred
prior to the encounter of the end-of-the
FORMAT statement, control is passed to the
I/0 interface. The 1I/0 interface writes
(via the WRITE macro-instruction) the con-
tents of the current output buffer onto the
output data set. The conversion codes
starting from the last left parenthesis are
then repeated for the remaining list items.

Read/Write Not Requiring a Format: In
processing a list item for a read not
requiring a format, the I/0 list section

must know the main storage address assigned
to the list item and the size of the 1list
item. Their values are passed, as argu-
ments, via the calling sequence to the 1I/0
list section. The list item may be either
a variable or an array. In either case,
the number of bytes specified by the size
of the list item is moved from the input
buffer to the main storage address assigned
to the 1list item. The I/O list section
then returns control to the 1load module.
The 1load wmodule again branches to the 1/0
list section and passes, as arguments, the
main storage address assigned to the next
list item and the size of the 1list item.
The I/0 1list section moves the number of
bytes specified by the size of the 1list
item into the main storage address assigned
to this 1list item. This procedure is
repeated either until all the 1list items
are satisfied or wuntil the input data is
exhausted., Control is then returned to the
load module.

Object-Time Library Subprograms 155

If the operation is a write not requir-
ing a format, the I/O list section process-
ing is similar to that described for a read
not requiring a format. The main differ-
ence is that the data is obtained from the
main storage addresses assigned to the list
jtems and is then moved to an output
buffer.

CLOSING SECTION: The compiler generates a
calling sequence to one of two entry points
in the <closing section of IHCFCOME each
time it encounters the end of a READ or
WRITE statement in the FORTRAN source
module. The entry points correspond to the
operations of read and write, requiring or
not requiring a format.

Read/Write Requiring a Format: If the
operation is a read requiring a format, the
closing section simply returns control to
the load module to continue 1load module
execution. If the operation is a write
requiring a format, the closing section
branches to the 1I/0 interface. The I/0
interface writes (via the WRITE
macro-instruction) the contents of the cur-
rent I/0 buffer (the final record) onto the
output data set. The I/0 interface then
returns control to the closing section.
The closing section, in turn, returns con-
trol to the load module to continue 1load
module execution.

Read/Write Not Requiring a Format: If the
operation is a read not requiring a format,
the closing section branches to the 1I/0
interface. The I/0 interface reads (via
the READ macro-instruction) successive
records until the end of the logical record
being read is encountered. (A FORTRAN
logical record consists of all the records
necessary to contain the I/O list items for
a WRITE statement not requiring a format.)
When the I/0 interface recognizes the end-

156

of-logical- record indicator, control is
returned to the closing section. The
closing section, in turn, returns contrcl
to the load module to continue load module

execution.

If the operation is a write not requir-
ing a format, the closing section inserts:

(1) the record count (i.e., the number of
records in the 1logical record) into the
control word of the I/0 buffer to be

written, and (2) an end-cf-logical-record
indicator into the last record of the I/0
buffer being written. The closing section
then branches tc the I/0 interface. The
I/0 interface writes (via the WRITE
macro-instruction) the contents of this I/O
buffer onto the output data set. The I/0
interface then returns control to the clos-
ing section. The closing section, in turn,
returns control to +the load module to
continue load module execution.

Examples of IHCFCOME READ/WRITE Statement
Processing

The following examples illustrate the
opening section, I/O 1list section, and
closing section processing performed by
IHCFCOME for sequential access READ and
WRITE statements, requiring or not requir-
ing a format.

Note: IHCFCOME processing for the direct
access READ, FIND, and WRITE statements is
essentially the same as that described for
the sequential access READ and WRITE state-
ments. The main difference is that for
direct access statements, 1HCFCOME branches
to the direct access I/0 interface
(IHCDIOSE) instead of to the sequential
access 1/0 interface (IHCFIOSH).

READ REQUIRING A FORMAT: The processing
performed by IHCFCOME for the following

READ statement and FORMAT statement is
illustrated in Table 32.

READ (1,2) A,B,C
2 FORMAT (3F12.6)

Table 32. IHCFCOME Processing for a READ

Requiring a Format

WRITE REQUIRING A FORMAT: The processing

performed by IHCFCOME for the following
WRITE statement and FORMAT statement is
illustrated in Table 33.

WRITE (3,2) (D(I),I=1,3)
2 FORMAT (3F12.6)

r T 1 Table 33. IHCFCOME Processing for a WRITE
|Opening |1. Receives control from load | Requiring a Format
|Section | module and branches to| r T .
| | IHCFIOSH to initialize data] |Opening |1. Receives control from load |
| | set for reading. | | Section | module and branches toj
| | | | | IHCFIOSH to initialize data]
| |2. Passes control to scan por-| l | set for writing. |
| | tion of IHCFCOME. | | | i
| | | | |2. Passes control to scan por-|
| 13. Returns control to load| | | tion of IHCFCOME.
| | module. | | | |
b + —-— | |3. Returns control to loadj
|I70 List|1l. Receives control from load | | | module. |
Section | module, converts input data] } + |
for A, and moves converted		I/70 List	l. Receives control from load	
data to A.		Section	wmodule, converts D(1), and	
				moves D(1) to output buffer.
	2. Returns control to load			
module.			2. Returns control to load	
			module. i	
I3. Receives control from load				
	module, converts input datal		3. Receives control from loadj	
	for B, and moves converted]		module, converts D(2), and
	data to B.			moves D(2) to output buffer.
I I				
: =u. Returns control to 1oad= :	4. Returns control to load			
	module.			module.
				I
	5. Receives control from 1load			5. Receives control from load
	module, converts input data			module, converts D(3), and
	for ¢, and moves converted			moves D(3) to output buffer.
	data to C.			
				6. Returns control to load
l	6. Returns control to load			module.
	module.	3 + 4		
b + 4	Closing	1. Receives control from load		
Closing	{1. Receives control from load		Section	module and branches to
Section	module and closes out I/0			IHCFIOSH to write contents
	operation.			of output buffer.
I P I I				
	2. Returns control to loadj			2. Returns control to load]
	module to continue 1load			module to continue loadj}
	module execution.			module execution.
L 1 J L L J
Appendix L: Object-Time Library Subprograms 157

READ NOT REQUIRING A FORMAT: The process-
ing performed by IHCFCOME for the following
READ statement is illustrated in Table 34.

READ (5) X,Y,2

Table 34, IHCFCOME Processing for a

Not Requiring a Format

READ

1

r T
|Opening 1. Receives control from locad |

Section	module and branches to]
	IHCFIOSH to initialize data
	set for reading.
	2. Returns control to loadj
	module. {
t + i	
I/0 List	l. Receives control from load
Section	module and moves input data]
	to X.
]2. Returns control to load	
	module.
	3. Receives control from loadj
	module and moves input datal
	to Y.
l	4. Returns control to load
	module.
{	
	5. Receives control from load
	module and moves input data
	to Z.
	6. Returns control to load
	module.
¢ + i	
Closing	1. Receives control from load
Section	module and branches to
	IHCFIOSH to read successive
	records until the end-of-
	logical-record indicator isj
	encountered.
	2. Returns control to loadj
	module to continue 1load
	module execution.
I 1 4	

158

WRITE NOT REQUIRING A FORMAT: The process-
ing performed by IHCFCOME for the following
WRITE statement is illustrated in Table 35.

WRITE (6) (W(J),J=1,10)

Table 35. IHCFCOME Processing for a WRITE

Not Requiring a Format

-
|Opening
| Section

1
1. Receives control from load |

module and branches to|
IHCFIOSH to initialize data]
for writing. |

2. Returns control to
module. |

Receives control from load
module and moves W(l) to
output buffer.

e ——— . e cn

|I/0 List|1.
|Section

Z. Returns control to

rodule.

from load|
wW(2) to}

3. Receives control
nodule and mcves
output buffer.

control to load

module.

5. Receives control from load]
module and moves W(10) toj|
output buffer. |

L el p——

|
6. Returns control to load|

module.
____________ - d
1
|Closing |1. Receives control from locad |
| Section module and branches to|

IHCFIOSH to write contents|
of output buffer. |
|
2. Returns control to 1load}

module to continue load|

| module execution. |
J

T
|
|
|
|
|
|
|
+
|
|
I
|
|
|
|
I
|
|
|
j4. Returns
|
|
|
|
|
|
|
|
|
|
|
|
4
|
|
| |
|
|
|
|

|
|
|
|
I
L

—————— .

I/0 Device Manipulation Routines

The I/0 device manipulation routines of

IHCFCOME implement the BACKSPACE, REWIND,
and END FILE source statements. These
routines receive control from within the

load module via calling sequences that are
generated by the compiler when these state-
ments are encountered.

Note: The I/O device manipulation routines
apply only to sequential access I/0 devices
(e.g., tape units). BACKSPACE, REWIND, and
ENDFILE requests for direct access data
sets are ignored.

The implementation of REWIND and END
FILE statements is straightforward. The
I/0 device manipulation routines submit the
appropriate control request to IHCFIOSH,
the I/0 interface module. After the
request is executed, control is returned to
the calling routine within the load module.

The BACKSPACE statement is processed in
a similar fashion. However, before control
is returned to the calling routine, it is
determined whether the record backspaced
over is an element of a data set that does
not require a format. If the record is an
element of such a data set, that record is
read into an I/0 buffer and the record
count is obtained from its control word.
Backspace control requests, equal in number
to the record count, are then issued and
control is returned to the calling routine.
If the record is not an element of such a
data set, control is returned directly to
the calling routine.

Write-to-Operator Routines

The write-to-operator routines of
IHCFCOME implement the STOP and PAUSE
source statements. These routines receive

control from within the 1locad module via
calling sequences generated by the compiler

upon recognition of the STOP and PAUSE
statements.
STOP : A write-to-operator (WTO) macro-

instruction is issued to display the
message associated with the STOP statement
on the console. Load module execution is
then terminated by passing control to the
program termination routine of IHCFCOME.

PAUSE: A write-to-operator-with-reply
(WTOR) macro-instruction is issued to dis-
play the message associated with the PAUSE

statement on the console and to enable the
operator's reply to be transmitted. A WAIT
macro-instruction is then issued to deter-

mine when the operator's reply has been

Appendix L:

transmitted. After the reply has been
received, control is returned to the call-
ing routine within the load module.

Utility Routines

The utility routines of IHCFCOME perform
the following functions:

e Process object-time error messages.
Process arithmetic-type program inter-
ruptions.

e Terminate load module execution.

PROCESSING OF ERROR_MESSAGES: The error

(IBFERR)
FORTRAN
detect

message processing routine
receives control from various
library subprograms when they
object-time errors.

processing consists of
initializing the data set upon which the
message 1is to be written and also of
writing the message. If the type of error

Error message

requires load module termination, control
is passed to the termination routine of
IHCFCOME; if not, control is returned to

the calling routine.

PROCESSING OF ARITHMETIC INTERRUPTIONS:
The arithmetic-interrupt routine (IBFINT)
of IHCFCOME initially receives control from
within the load@ module via a compiler-

generated calling sequence. The call is
placed at the start of the executable
coding of the 1load module so that the
interrupt routine can set up the program
interrupt mask. Subsequent entries into
the interrupt routine are made through

arithmetic-type interruptions.

The interrupt routine sets up the
program interrupt mask by means of a SPIE
macro-instruction. This instruction speci-
fies the type of arithmetic interruptions
that are to cause control to bpe passed to
the interrupt routine, and the location
within the routine to which control is to
be passed if the specified interruptions
occur. After the mask has been set, con-
trol is returned to the calling routine
within the load module.

In processing an arithmetic interrup-
tion, the first step taken by the interrupt
routine is to determine its type. Iif
exponential overflow or underflow has
occurred, the appropriate indicators, which
are referenced by OVERFL (a 1library
subprogram), are set. If any type of
divide <check caused the interruption, the
indicator referenced by DVCHK (also a
library subprogram) is set.

Object-Time Library Subprograms 159

Regardless of the type of interruption
that caused control to be given to the
interrupt routine, the old program PSW is
written out for diagnostic purposes.

After the interruption has been proc-
essed, control is returned to the inter-
rupted routine at the point of interrup-
tion.

PROGRAM TERMINATION: The load module ter-
mination routine (IBEXIT) of IHCFCOME
receives control from various library sub-
programs (e.g., DUMP and EXIT) and from
other IHCFCOME routines (e.g., the routine
that processes the STOP statement).

This routine terminates execution cof the
load module by the following means:

e Calling the appropriate 1/0
interface(s) to check (via the CHECK
macro-instruction) outstanding write

requests.

e Issuing a SPIE macro-instruction with
no parameters indicating that the FOR-
TRAN object module no longer desires to
give special treatment to program
interruptions and does not want maska-
ble interruptions to occur.

¢ Returning to the operating system
supervisor.
IHCFIOSH
IHCFIOSH, the object-time FORTRAN

sequential access input/output data manage-
ment interface, receives I/0 requests from
IHCFCOME and submits them to the appropri-
ate BSAM (basic sequential access method)
routines and/or open and close routines for
execution.

Chart E3 illustrates the overall 1logic
and the relationship among the routines of
IHCFIOSH. Table 37, the IHCFIOSH routine
directory, 1lists the routines used in
IHCFIOSH and their functionms.

BLOCKS AND TABLE USED

IHCFIOSH uses the following blocks and
table during its processing of sequential
access input/output requests: (1) unit
blocks, and (2) unit assignment table. The
unit blocks are used to indicate I/O activ-
ity for each unit number (i.e., data set
reference number) and to indicate the type
of operation requested. In addition, the

160

unit blocks contain skeletons of the data
event control blocks (DECB) and the data
control blocks (DCB) that are required for
I/0 operations. The unit assignment table
is used as an index to the unit blocks.

Unit Blocks

The first reference to each unit number
(data set reference number) by an
input/output operation within the FORTRAN
load module causes IHCFIOSH to construct a
unit block for each unit number. The main
storage for the unit blocks is obtained by
IHCFIOSH via the GETMAIN macro-instruction.
The addresses of the unit blocks are placed
in the wunit assignment table as the unit
blocks are constructed. All subsequent
references to the wunit numbers are then
made through the wunit assignment table.
Figure 90 illustrates the format of a unit
block for a unit that is defined as a
sequential access data set.

T T T
| ABYTE | BBYTE | CBYTE | LIVECNT
[N L 1 4

]
|Address of Buffer 1
L

_—

Housekeeping

t
|Address of Buffer 2 Section
b

v
|Current buffer pointer
k-

|Record offset
i

b
|DECB skeleton section
8

b e o e s e e s e s i e e e

v
|DCB skeleton secticn
L

Format of a Unit Block for a
Sequential Access Data Set

Figure 90.

divided into three
section, a DECB
skeleton sec-

Each unit block is
sections: a housekeeping
skeleton section, and a DCB
tion.

HOUSEKEEPING SECTION: The housekeeping
section 1is maintained by IHCFIOSH. The
information contained in it is wused to
indicate data set type, to keep track of
I/0 buffer locations, and to keep track of
addresses internal to the I/0 buffers to
enable the processing of blocked records.
The fields of this section are:

e ABYTE. This field, containing the data
set type passed to THCFIOSH by
IHCFCOME, can be set to one of the
following:

FO0 - Input data set requiring a format.

FF - Output data set requiring a for-
mat.
00 - Input data set not requiring a
format.
OF - Ooutput data set not requiring a
format.
e BBYTE. This field contains bits that

are set and examined by IHCFIOSH during
its processing. The bits and their
meanings are as follows:

Bit on

- exit to IHCFCOME on 1/0 error

- I/0 error occurred

- current buffer indicator

- not used

end-of-current buffer indicator
- blocked data set indicator

-~ variable record format switch

- not used

NSNoomEFEwNoERro
[

e CBYTE. This field also contains bits
that are set and examined by IHCFIOSH.

The bits and their meanings are as
follows:

Bit on

0 - data control block opened

1 - data control block not TCLOSEd

2 - data control block not previously

opened

3 - buffer pool attached
4 - data set not previously rewound
5 - data set not previously backspaced
6 - concatenation occurring -- reissue
READ

7 - not used

e LIVECNT. This field indicates whether
any I/0 operation performed for this

data set is unchecked. (A value of 1
indicates that a previous read or write
has not been checked; a value of 0
indicates that all previous read and
write operations for this data set have
been checked.)

e Address of Buffer 1 and Address of

block. It is of the same form as the DECB
constructed by the control program for an L
form of an S-type READ or WRITE macro-
instruction (refer to the publication IBM
System/360 Operating System;: Control

Program Services). The various fields of
the DECB skeleton are filled in by
IHCFIOSH; the completed block is referred
to when IHCFIOSH issues a read/write
request to BSAM. The read/write field is
filled in at open time. For each 1/0
operation, IHCFIOSH supplies IHCFCOME with:
(1) an indication of the type of operation
(read or write), and (2) the length of and
a pointer to the I/O buffer to be used for
the operation.

DCB SKELETON SECTION: The DCB (data con-
trol block) skeleton section is a block of
main storage within the unit block. It is
of the same form as the DCB constructed by
the control program for a DCB macro-
instruction under BSAM (refer to the
publication IBM Systemv 360 Operating Sys-
tem: Control Program Services). The var-

ious fields of the DCB skeleton are filled
in by the control program when the DCB for
the data set 1is opened (refer to the
publication IBM System/360 Operating Sys-
tem: Concepts and Facilities). (standard

default values may also be inserted in the
DCB skeleton by IHCFIOSH. Refer to "Unit
Assignment Table" for a discussion of when
default values are inserted into the DCB
skeleton.)

Unit Assignment Table

Buffer 2. These fields contain poin-
ters to the two I/0 buffers obtained
during the opening of the data control
block for this data set.

This field
170 buffer

e current Buffer Pointer.
contains a pointer to the
currently being used.

e Record Offset. This field contains a

pointer to the current 1logical record
within the current buffer.
DECB___SKELETON SECTION: The DECB (data

event control block) skeleton section is a
block of main storage within the unit

Appendix L:

The wunit assignment table (IHCUATBL)
resides on the FORTRAN system library
(SYS1.FORTLIB). Its size depends on the
maximum number of units that can be

referred to during execution of any FORTRAN
load module. This number (< 99) is speci-
fied by the user during the system genera-
tion process via the FORTLIB macro-
instruction.

The unit assignment table is designed to
be used by both IHCFIOSH and IHCDIOSE. It
is included once, by the linkage editor, in
the FORTRAN 1load module as a result of an
external reference to it within IHCFIOSH
and/or IHCDIOSE.

The unit assignment table contains a 16
byte entry for each of the unit numbers
that can be referred to by the user. These
entries differ in format depending on
whether the unit has been defined as a

sequential access or a direct access data
set.
Figure 91 illustrates the format of the

unit assignment table.

Object-Time Library Subprograms 161

L) T L) 1
Unit number (DSRN)		
being used for current		
operation	* nx 16	4 bytes
; ¥ + {		
Unit number (DSRN) of		
error output device	not used	4 bytes
L L 4 4		
v T 1		
UBLOCKO1 field	4 bytesj	
t 1 4		
[} T 1		
DSRNO1 default values	8 bytes	
L i J		
v T 1		
LISTO1 field	4 bytes	
} :

I |

. I |
. |- I
. - |
| |

$ {

UBLOCKn field 2 |4 bytes|
1 4

- T L}
DSRNn default values 2 |8 bytes|
1 d

T]

LISTn field # |4 bytes}|
4 J

i

in is the maximum number of wunits thatj

can be referred to by the FORTRAN load|
module. The size of the unit table is|
equal to (8 + n x 16) bytes. |
2The UBLOCKn field contains either aj
pointer to the unit block constructed|
for unit number n if the unit is being|
used at object-time, or a value of 1 if}]
the unit is not being used. {
3The default values for the various unit|
numbers are specified by the user and|
are assembled into the unit assignment|
table entries during the system genera-|
tion process. The default values are|

used only by IHCFIOSH; they are ignored|
by IHCDIOSE.
4If the unit is defined as a direct]

access data set, the LISTn field con-|
tains a pointer to the parameter list]
that defines the direct access data set.|

oo o e e e e e S e, S i, A G . . St S o . i, S S O o, SO S . . S S . . S S

Otherwise, this field contains a value|
of 1. |
4

Figure 91. Unit Assignment Table Format
Because IHCFIOSH deals only with

sequential access data sets, the remainder
of the discussion on the unit assignment
table is devoted to unit assignment table
entries for sequential access data sets.
If IHCFIOSH encounters a reference to a
direct access data set, it is considered
as an error, and control is passed to the
load module termination routine of
IHCFCOME.

The pointers to the unit blocks created
for sequential data sets are inserted into
the unit assignment table entries by
IHCFIOSH when the unit blocks are con-
structed.

162

Note: Default values are standard values
that IHCFIOSH inserts into the appropriate

fields (e.g., BUFNO) of the DCB skeleton
section of the unit blocks if the user
either:

e Causes the load module to be executed

via a cataloged procedure, or

¢ Fails, in stating his own procedure
for execution, to include in the DCB
parameter of his DD statements those
subparaneters (e.g., BUFNO) he is per-
mitted to include (refer to the publi-
cation IBM System/360 Operating Sys-
tem: FORTRAN IV _(E) Programmer's
Guide).

Control is returned to IHCFIOSH during

data control block opening so that it can
determine if the wuser has included the
subparameters in the DCB parameter of his
DD statements. IHCFIOSH examines the DCB
skeleton fields corresponding to user-
permitted subparameters, and upon
encountering a null field (indicating that
the user has not specified the

subparameter), inserts the standard value
(i.e., the default value) for the subpar-
ameter into the DCB skeleton. (If the
user has included these subparameters in

his DD statement, the control program
routine performing data control block
opening inserts the subparameter values,

before giving control to IHCFIOSH, into
the DCB skeleton fields reserved for those
values.)

BUFFERING

All input/output operations are double
buffered. (The double buffering scheme
can be overriden by the user if he speci-

fies in a DD statement: BUFNO=1.) This
implies that during data control block
opening, two buffers will be obtained.

The addresses of these buffers are given

alternately to IHCFCOME as pointers to:
e Buffers to be filled (in the case of
output).

e Information that has been read in and
is to be processed (in the case of
input).

COMMUNICATION WITH THE CONTROL PROGRAM

In requesting services of the control
program, IHCFIOSH uses L and E forms of
S-type macro-instructions (refer to the
publication IBM System/360 Operating Sys-

tem: Control Program Services).

OPERATION

The processing of IHCFIOSH is divided
into five sections: initialization, read,
write, device manipulation, and closing.
When called by IHCFCOME, a section of
IHCFIOSH performs its function and then
returns control to IHCFCOME.

Initialization

The initialization action taken by
IHCFIOSH depends upon the nature of the
previous I/0 operation requested for the
data set. The previous operation possi-
bilities are:

No previous operation.

Previous operation read or write.
Previous operation backspace.

Previous operation write end-of-data
set.

e Previous operation rewind.

NO PREVIOUS OPERATION: If no previous
operation has been performed on the unit
specified in the I/0 request, the initial-
ization section generates a unit block for
the unit number. The data set to be
created is then opened (if the current
operation is not rewind or backspace) via
the OPEN macro-instruction. The addresses
of the I/0 buffers, which are obtained
during the opening process and placed into

the DCB skeleton, are placed into the
appropriate fields of the housekeeping
section of the unit block. The DECB

skeleton is then set to reflect the nature
of the operation (read or write), the
format of the records to be read or
written, and the address of the I/0 buffer
to be used in the operation.

If the requested operation is a write,
a pointer to the buffer position, at which
IHCFCOME is to place the record to be
written, and the Dblock size or logical
record length (to accommodate blocked log-
ical records) are placed into registers,
and control is returned to IHCFCOME.

If the requested operation is a read, a
record is read, via a READ macro-
instruction, into the I/0 buffer, and the
operation is checked for completion via
the CHECK macro-instruction. A pointer to
the 1location of the record within the
buffer, along with the number of bytes
read or the 1logical record length, are
placed into registers, and control is
returned to IHCFCOME.

Appendix L:

Note: During the opening process, control
is returned to the IHCDCBXE routine in

IHCFIOSH. This routine determines if the
data set being opened is a 1403 printer.
If it is, the RECFM field in the DCB for
the data set 1is altered to machine

carriage control (FM). The value 144 is
inserted into both the block size and
record 1length fields in the DCB. In
addition, a pointer to the unit block
generated for the printer, and the physi-
cal address of the printer are placed into
a control block area (CTLBLK) for the
printer within IHCFIOSH. CTLBLK also con-
tains a third print buffer. This buffer
is used in conjunction with the two buf-
fers already obtained for the printer.

the format of

Figure 92 illustrates

CTLBLK.

r T

CTLBLK|a (BUF 3) | 4 bytes|
pommm o oo 1
v
la(unit block) | 4 bytes]
L
k T -
|a(printer) |record length| 4 bytes]|
t i- + 1
|t FTOO | U bytes|
[4 4
T T 1
|+ FOG1 | 4 bytes]|
b -t {

BUF3 |third print buffer |144 bytes|
! - L 1
r 1
| 1Used in the task input/output]|
| table (TIOT) search. |
L 4

Figure 92. CTLBLK Format

PREVIOUS OPERATION READ OR WRITE: If the

previous operation performed on the unit
specified in the present 1I/0 request was
either a read or write, the initialization
section determines the nature of the pre-
sent I/0 request. If it is a write, a
pointer to the buffer position, at which
IHCFCOME is to place the record to be
written, and the block size or 1logical
record 1length are placed into registers,
and control is returned to IHCFCOME.

If the operation to be performed is a
read, a pointer to the buffer location of
the record to be processed, along with the
number of bytes read or 1logical record
length, are placed into registers, and
control is returned to IHCFCOME.

PREVIOUS OPERATION BACKSPACE: If the pre-
vious operation performed on the unit spec-
ified in the present I/0 request was a
backspace, the initialization section det-
ermines the type of the present operation
(read or write) and modifies the DECB
skeleton, 1if necessary, to reflect the
operation type. (If the operation type is

Object-Time Liorary Subprograms 163

the same as that of the operation that
preceded the backspace request, the DECB
skeleton need not be modified.) Subsequent
processing steps are the same as those
described for "No Previous Operation, "
starting at the point after the DECB skele-
ton is set to reflect operation type.

PREVIOUS OPERATION WRITE END-OF-DATA SET:
If the previous operation performed on the
unit specified in the present I/0 request
was a write end-of-data set, a new data set
using the same unit number is to be creat-
ed. In this case, the initialization sec-
tion closes the data set. Then, in order
to establish a correspondence between the
new data set and the DD statement describ-
ing that data set, IHCFIOSH increments the
unit sequence number of the ddname. (The
ddname is placed into the appropriate field
of the DCB skeleton prior to the opening of
the initial data set associated with the
unit number.) During the opening of the
data set, the ddname will be used to merge
with the appropriate DD statement. The
data set is then opened. Subsequent proc-
essing steps are the same as those des-
cribed for "No Previous Operation," start-
ing at the point after the data set is
opened.

PREVIOQUS OPERATION REWIND: If the previous
operation performed on the unit specified
in the present I/O request was a rewind,
the ddname is initialized (set to FTxxF001)
in order to establish a correspondence
between the initial data set associated
with the unit number and the DD statement
describing that data set. The data set is
then opened. Subsequent processing steps
are the same as those described for "No
Previous Operation," starting at the point
after the data set is opened.

Read

The read section of IHCFIOSH performs
two functions: (1) reads physical records
into the buffers obtained during data set

opening, and (2) makes the contents of
these buffers available to IHCFCOME for
processing.

If the records being processed are
blocked, the read section does not read a

physical record each time it is given
control. IHCFIOSH only reads a physical
record when all of the logical records of
the blocked record under consideration have
been processed by IHCFCOME. However, if
the records being processed are either
unblocked or of U-format, the read section
of IHCFIOSH issues a READ macro-instruction
each time it receives control.

164

The reading of records by this section
is overlapped. That is, while the contents
of one buffer are being processed, a physi-
cal record 1is being read into the other

buffer. When the contents of one buffer
have been processed, the read into the
other buffer is checked for completion.

Upon completion of the read operation,
processing of that buffer's contents is
initiated. In addition, @& read into the
second buffer is initiated.

Each time the read section is given
control it makes the next record available
to IHCFCOME for processing. (In the case
of blocked records, the record presented to

IHCFCOME is logical.) The read section of
IHCFIOSH places: (1) a pointer to the
record's location in the current I/0 buf-

fer, and (2) the number of bytes read or
logical record 1length into registers, and
then returns control to IHCFCOME.

Write

The write section of IHCFIOSH performs
two functions: (1) writes physical records,
and (2) provides IHCFCOME with buffer space
in which to place the records to be writ-
ten.

1f the records being written are
blocked, the write section does not write a
physical record each time it 1is given
control. IHCFIOSH only writes a physical
record when all of the lcgical records that
comprise the blocked record under consider-
ation have been placed into the I/O buffer
by IHCFCOME. However, if the records being
written are either unblocked or of U-
format, the write section of IHCFIOSH
issues a WRITE macro-instruction each timwe
it receives control.

The writing of records by this section
is overlapped. That is, while IHCFCOME is
filling one buffer, the contents of the
other buffer are being written. When an
entire buffer has been filled, the write
from the other buffer is checked for com-
pletion. Upon conipletion of the write
operation, IHCFCOME starts placing records
into that buffer. In addition, a write
from the second buffer is initiated.

Each time the write section 1is given
control, it provides IHCFCOME with buffer
space in which to place the record to be
written. IHCFIOSH places: (1) a pointer to
the 1location within the current buffer at
which IHCFCOME is to place the record, and
(2) the block size or logical record length
into registers, and then returns control to
IHCFCOME.

Note: The write section checks to see if
the data set being written on is a 1403
printer. If it 1is, the carriage control
character is changed to machine code, and
three buffers, instead of the normal two,
are used when writing on the printer.

ERROR PROCESSING: If an end-of-data set or
an I/0 error is encountered during reading
or writing, the control program returns
control to the 1location within IHCFIOSH
that was specified during data set initial-
ization. In the case of an I/0 error,
IHCFIOSH sets a switch to indicate that the
error has occurred. Control is then
returned to the control program. The con-
trol program completes its processing and
returns control to IHCFIOSH, which interro-
gates the switch, finds it to be set, and
passes control to the I/0 error routine of
IHCFCOME.

In the case of an end-of-data set,
IHCFIOSH simply passes control to the end-~
of-data set routine of IHCFCOME.

Chart E4 illustrates the execution-time

I/0 recovery procedure for any I/0 errors
detected by the I/O supervisor.

Device Manipulation

The device manipulation section of
IHCFIOSH processes backspace, rewind, and
write end-of-data set requests.

BACKSPACE: IHCFIOSH processes the back-
space request by issuing a BSP (physical
backspace) macro-instruction. it then
places the data set type, which indicates

the format requirement, into a register and
returns control to IHCFCOME. (IHCFCOME
needs the data set type to determine its
subsequent processing.)

REWIND: IHCFIOSH processes the rewind
request by issuing a CLOSE macro-

instruction, using the REREAD option. This
option has the same effect as a rewind.
Control is then returned to IHCFCOME.

WRITE END-OF-DATA SET:
this request by iscsuing a

IHCFIOSH processes
CLOSE macro-

instruction, type = T. It then frees the
I/0 buffers by issuing a FREEPOOL macro-
instruction, and returns control to
IHCFCOME.

Closing

The closing section of IHCFIOSH examines
the entries in the unit assignment table to
determine which data control blocks are

Appendix L:

open. In addition, this section ensures
that all write operations for a data set
are completed before the data control block
for that data set is closed. This is done
by issuing a CHECK macro-instruction for
all double-buffered output data sets. Con-
trol is then returned to IHCFCOME.

Note: If a 1403 printer is being used, a
write from the last print buffer is issued
to insure that the last line of output is
written.

IHCDIOSE

IHCDIOSE, the object-time FORTRAN direct
access input/output data management inter-

face, receives I/0 requests from IHCFCOME
and submits them to the appropriate BDAM
(basic direct access method) routines

and/or open and close routines for execu-
tion. (For the first I/0 request involving
a nonexistent data set, the appropriate
BSAM routines must be executed prior to
linking to the BDAM routines. The BSAM
routines format and create a new data set
consisting of blank records.)

IHCDIOSE receives control from: (1) the
initialization section of the FORTRAN load
module if a DEFINE FILE statement is
included in the source module, and (2)
IHCFCOME whenever a READ, WRITE, or FIND
direct access statement is encountered in
the load module.

Charts E5 and E6 illustrate the overall
logic and the relationship among the rou-
tines of IHCDIOSE. Table 38, the IHCDIOSE
routine directory, lists the routines used
in IHCDIOSE and their functions.

BLOCKS AND TABLE USED

IHCDIOSE uses the following blocks and
table during its processing of direct
access input/output reguests: (1) unit
blocks, and (2) unit assignment table. The
unit blocks are used to indicate I/0 activ-
ity for each unit numover (i.e., data set
reference number) and to indicate the type
of operation requested. In addition, each
unit block contains skeletons of the data
event control blocks (DECB) and the data
control block (DCB) that are required for
I/0 operations. The unit assignment table
is used as an index to the unit blocks.

Object-Time Library Subprograms 165

Unit Blocks

The first reference to each unit number
(i.e., data set reference number) by a
direct access input/output operation within
the FORTRAN load module causes IHCDIOSE to
construct a unit ¥®lock for each of the
referenced unit numbers. The main storage
for the unit blocks is obtained by IHCDIOSE
via the GETMAIN macro-instruction. The
addresses of the unit blocks are inserted
into the corresponding unit assignment
table entries as the unit blocks are con-
structed. Subsequent references to the
unit numbers are then made through the unit
assignment table.

Figure 93 illustrates the format of a
unit block for a unit that has been defined
as a direct access data set.

T T T T T a1
| IOTYPE |STATUSU| not | not | 4 bytes |
| | | used | used | |
}___ AL L. 1 Jr ‘1|
| RECNUM | 4 bytes |

4 4
e e T T 1
| STATUSA | CURBUF | 4 bytes |
p——t $ 4
| BLKREFA | 4 bytes |
L 1 4
L] 1] T 1
| STATUSB| NXTBUF | 4 bytes |
prmm et + i
| BLKREFB | 4 bytes |
[N 4 J
r T)
| DECBA | 28 bytes |
L 4 4
L 4 T 1
| DECBB | 28 bytes |
t $ 4
| DCB | 104 bytes |
L 4 J
Figure 93. Format of a Unit Block for a

Direct Access Data Set

The meanings of the variocus unit block

fields are outlined below.

JOTYPE: This field, containing the data
set type passed to IHCDIOSE by IHCFCOME,
can be set to one of the following:
FO - input data set requiring a format
FF - output data set requiring a format

00 - input data
format

set not requiring a

OF - output data
format

set not requiring a

STATUSU: This
of the associated unit number.
and their meanings are as follows:

field specifies the status
The bits

166

CURBUF:

BLKREFA:

Bit on
0 - not used
1 - error occurred
2 - two buffers are being used
3 - data control block for data set is
open
4-5 10 - U form specified in DEFINE
FILE statement
01 - E form specified in DEFINE
FILE statement
11 - L. form specified in DEFINE

FILE statement
6-7 not used

Note: IHCDIOSE references only bits 1, 2,
and 3.
RECNUM: This field contains the number of

records in the data set as specified in the
parameter list for the data set in a DEFINE
FILE statement. It is filled in by the
file initialization section after the data
control block for the data set is opened.

STATUSA: This field specifies the status
of the buffer currently being used. The
bits and their meanings are as follows:
Bit on
0 - READ macro-instruction has been
issued
1 -~ WRITE macro-instruction has been
issued
2 - CHECK macro-instruction has been
issued

3-7 Not used

This field contains the address of
the DECB skeleton currently being used. It
is 1initialized to contain the address of
the DECBA skeleton by the file initializa-
tion section of IHCDIOSE after the data
control block for the data set is opened.

This field contains an integer
that indicates either the relative position
within the data set of the record to be
read, or the relative position within the
data set at which the record is to be
written. It is filled in by either the
read or write section of IHCDIOSE prior to
any reading or writing. In addition, the
address of this field is inserted into the
DECBA skeleton by the file initialization
section of IHCDIOSE after the data control
block for the data set is opened.

STATUSB: This field specifies the status
of the next buffer to be used if two
buffers are obtained for this data set

during data control block opening. The
bits and their meanings are the same as
described for the STATUSA field. However,

if only one buffer is obtained during data
control block opening, this field is not
used.

NXTBUF: This field contains the address of
the DECB skeleton to be used next if two
buffers are obtained during data control
block opening. It is initialized to con-
tain the address of the DECEB skeleton by
the file initialjization section of IHCDIOSE
after the data control block for the data
set is opened. However, if only one buffer
is obtained during data control block open-
ing, this field is not used.

BLKREFB: The contents of this field are
the same as described for the BLKREFA
field. It is filled in either by the read

or the write section of IHCDIOSE prior to
any reading or writing. In additiom, the
address of this field is inserted into the
DECBB skeleton by the file initialization
section of IHCDIOSE after the data control
block for the data set is opened. However,
if only one buffer is obtained during data
control block opening, this field is not
used.

DECBA SKELETON: This field contains the
DECB (data event control block) skeleton to
be used when reading into or writing from
the current buffer. It is of the same form
as the DECB constructed by the control
program for an L form of an S-type READ or
WRITE macro-instruction under BDAM (refer
to the publication IBM System/360 Operating
System: Control Program Services).

The various fields of the DECBA skeleton
are filled in by the file initialization
section of IHCDIOSE after the data control
block for the data set is opened. The
completed DECB is referred to when IHCDIOSE

_issues a read or a write request to BDAM.
For each I/0 operation, IHCDIOSE supplies
IHCFCOME with the address of and the size
of the buffer to be used for the operation.

DECBB SKELETON: The DECBB skeleton is used
when| reading into or writing from the next

buffer. Its contents are the same as
described for the DECBA skeleton. The
DECBB skeleton 1is completed in the same

manner as described for the DECBA skeleton.
However, if only one buffer is obtained
during data control block opening, this
field is not used.

DCB SKELETON: This field contains the DCB
(data control block) skeleton for the asso-
ciated data set. It is of the same form as
the DCB constructed by the control program
for a DCB macro-instruction under BDAM
(refer to the publication IBM System/360

Operating System: Control Program
Services).
The various fields of the DCB skeleton

are filled in by the control program when
the DCB for the data set is opened (refer
to the publication IBM System/360 Operating
System: Concepts and Facilities).

Appendix L:

Unit Assignment Table

The unit assignment table (IHCUATBL)
resides on the FORTRAN system library
(SYS1.FORTLIB). Its size depends on the

maximum number of wunits that can be
referred to during execution of any FORTRAN
load module. This number (<99) is speci-
fied by the user during the system genera-
tion process via the FORTLIB macro-
instruction.

The unit assignment table is designed to
be used by both IHCFIOSH and IHCDIOSE. It
is included once, by the linkage editor, in
the FORTRAN load module as a result of an
external reference to it within IHCFIOSH
and/or IHCDIOSE.

The unit assignment table contains a
16-byte entry for each of the unit numbers
that can be referred to by either IHCDIOSE
or IHCFIOSH. These entries differ in
format depending on whether the unit has
been defined as a direct access or as a
sequential access data set. Because IHCDI-
OSE deals only with direct access data
sets, only the entry for a direct access
unit is shown here. (Refer to the IHCFIOSH
section "Table and Blocks Used", for the
format of the unit assignment table as a

whole.) If IHCDIOSE encounters a reference
to a sequential access data set, it is
considered as an error, and control is

passed to the load module termination rou-
tine of IHCFCOME.

Figure 94 illustrates the unit assign-
ment table entry format for a direct access
data set.

r T 1
| Pointer to unit block XX |4 bytes|
| (UBLOCKxx) | |
b $ 1
Default values for DSRNxx (only	8 bytes
applies to sequential access	
data sets -- not wused by	
IHCDIOSE)	
S --—-=-4 4	
Pointer to parameter 1listxx	4 bytes]
(LISTxx)	
b L {	
UBLOCKxx is the wunit block generated	
for unit number xx.	
DSRNxx is the unit number for the	
direct access data set (xx<99).	
I I	
LISTxx is the parameter 1list that	
defines the direct access data set	
associated with unit number xx.	
L K]

Figure 94. Unit Assignment Table Entrxy for

a Direct Access Data Set

Object-Time Library Subprograms 167

The pointers to the unit blocks are
inserted into the wunit assignment table
entries by IHCDIOSE when the unit blocks
are constructed.

The pointers to the parameter lists are
inserted into the unit assignment table
entries by IHCDIOSE when IHCDIOSE receives
control from the initialization section of
the FORTRAN load module being executed.

BUFFERING
All direct access input/output opera-
tions are double-buffered. (The double

buffering scheme may be overridden by the
user if he specifies in his DD statements:
BUFNO=1.) This implies that during data
control block opening, two buffers will be
obtained for each data set. The addresses
of these buffers are given alternately to
THCFCOME as pointers to:

case of

e Buffers to be filled in the

output.

e Data that has been read in and is to be
processed in the case of input.

Each buffer has its own DECB. This
increases 1I/0 efficiency by overlapping of
I/0 operations.

COMMUNICATION WITH THE CONTROL PROGRAM

In requesting services of the control
program BSAM and BDAM routines, IHCDIOSE
uses L and E forms of S-type macro-
instructions (refer to the publication IBM

System/360 Operating System: Control
Program Services).
OPERATION

The processing of IHCDIOSE is divided

into five sections: file definition, file
initialization, read, write, and termina-
tion. When a section receives control, it
performs its functions and then returns
control to the caller (either the FORTRAN
load module or IHCFCOME).

File Definition Section

The file definition section 1is entered
from the FORTRAN load module, via a

168

compiler-generated calling sequence, if a
DEFINE FILE statement is included in the
FORTRAN source module. The file definition
section performs the following functions:

¢ Checks for the redefinition of each
direct access unit number.

s Enters the address of each direct
access unit number's parameter 1list
into the appropriate unit assignment
table entry.

e Establishes addressability for IHCDIOSE
within IHCFCOME.

Each direct access unit number appearing
in a DEFINE FILE statement is checked to
see if it has been defined previously. If
it has been defined previously, the current
definition is ignored. If it has not been
defined previously, the address of its
parameter list (i.e., the definition of the
unit number) is inserted into the proper
entry in the wunit assignment table. The
next unit number if any is then obtained.

When the 1last wunit number has been
processed in the above manner, the file
definition section stores the address of
IHCDIOSE into the FDIOCS field within
IHCFCOME. This enables IHCFCOME to link to
IHCDIOSE when IHCFCOME encounters a direct
access I/0 statement. Control is then
returned to the FORTRAN 1load module to
continue normal processing.

File Initialization Section

The file initialization section receives
control from IHCFCOME whenever input or
output is requested for a direct access
data set. The processing performed by the
initialization section depends on whether
an I/0 operation was previously requested
for the data set.

NO PREVIOUS OPERATION: If no operation was

previously requested for the data set spec-
ified in the current I/O request, the file
initialization section first constructs a
unit block for the data set. (The GETMAIN
macro-instruction is used to obtain the
main storage for the unit block.) The
address of the unit block is inserted into
the appropriate entry in the unit assign-
ment table.

The file initialization secticn then
reads the JFCB (job file control block) via
the RDJFCB macro-instructicn. The value in
the BUFNO field of the JFCB is inserted
into the DCB skeleton in the unit block.
This value indicates the number of buffers
that are obtained for this daata set when

its data control block is opened.
BUFNO field is null (i.e., if the user did
not include the BUFNO subparameter in the
DD statement for this data set), or other
than 1 or 2, the file initialization sec-
tion inserts a value of two into the DCB
skeleton.

The file initialization section next
examines the JFCBIND2 field in the JFCB to
determine if the data set specified in the
current I/0 request exists. If the
JFCBIND2 field indicates that the specified
data set does not exist, and if the current
request is a write, a new data set is
created. (If the current request is a
read, an error is indicated and control is
returned to IHCFCOME to terminate 1load
module execution. If the current request
.is a find, the request is ignored, and
control is returned to IHCFCOME.) If the
JFCBIND2 field indicates that the specified
data set already exists, a new data set is
not created. The file initialization sec-
tion processing for a data set to be
created, and for a data set that already
exists 1is discussed in the following para-
graphs.

Data Set to be Created: The data control
block for the new data set is first opened
for the BSAM, 1load mode, WRITE macro-
instruction. The BSAM WRITE macro-
instruction is used to create a new data
set according to the format specified in
the parameter 1list for the data set in a

DEFINE FILE statement. The data control
block is then closed. Subsequent file
initialization section processing after
creating the new data set is the same as

that described for a data set that already
exists (refer to the section "Data Set
Already Exists").

Data Set Already Exists: The data control
block for the data set is opened for direct
access processing by the BDAM routines.
After the data control block is opened, the
file initialization section fills in var-
ious fields in the unit block:

¢ The number of records in the data set
is inserted into the RECNUM field.

e The address of the DECB skeletons
(DECBA and DECBB) are inserted into the
CURBUF and the NXTBUF fields, respec-

tively.
* The addresses of the I/0 buffers
obtained during data control block

opening are inserted into the appropri-
ate DECB skeletons.

e The address of the BLKREFA and the
BLKREFB fields in the unit block are
inserted into the appropriate DECB
skeletons.

Appendix L:

If the

Note: If the user specifies BUFNO=1 in the
DD statement for this data set, only one
I/0 buffer is obtained during data control
block opening. In this case, the NXTBUF
field, the BLKREFB field, and the DECBB
skeleton are not used.

Subsequent file initialization section
processing for the case of no previous
operation depends upon the nature of the
I/C request (find, read, or write). This
processing is the same as that described
for the case of a previous operation (refer
to the section "Previous Operation”).

PREVIOUS OPERATION: If an operation was
previously requested for the data set spec-
ified in the current I/0 request, the file
initialization section processing depends
upon the nature of the current I/0 request.

If the current request is either a find

or a read, control is passed to the read
section.
If the current request is a write,

control is passed to the secondary entry in
the write section.

Read Section

The read section of IHCDIOSE processes
read and find requests. The read section
may be entered either from the file ini-
tialization section of IHCDIOSE, or from
IHCFCOME. In either case, the processing
performed is the same. In processing read
and find requests, the read section per-
forms the following functions:

® Reads physical records into the
buffer(s) obtained during data control
block opening.

e Makes the contents of these buffers
available to IHCFCOME for processing.

¢ Updates the associated variable that is
defined in the DEFINE FILE statement
for the data set.

The read
trol,

section, upon receiving con-
first checks to see if the record to
be found or read is already in an I/O
buffer. Subsequent read section processing
depends upon whether the record is in the
buffer.

RECORD IN BUFFER: If a record is in the
buffer, the read section determines whether
the current request is a find or a read.

If the current request is a find, the
associated variable for the data set is
updated so that it points to the relative

Object-Time Library Subprograms 169

position within the direct access data set
of the record that is in the buffer.
Control is then returned to IHCFCOME.

If the current request is a read, the
read operation that read the record into
the buffer is checked for completion. The
read section then places the address of the
buffer and the size of +the buffer into
registers for wuse by IHCFCOME. The asso-
ciated variable for the data set is updated
so that it points to the relative position
within the direct access data set of the
record following the record just read.
Control is then returned to IHCFCOME.
RECORD NOT 1IN BUFFER: If a record is not
in the buffer, the read section first
obtains the address of the buffer to be
used for the current request. The relative
record number of the record to be read is
then inserted into the appropriate BLKREF
field in the unit block (i.e., BLKREFA or
BLKREFB). The proper record is then read
from the specified data set into the buf-
fer. Subsequent read section processing
for the case of a record not in the buffer
is the same as that described for a record
in the buffer (refer to the section "Record
In Buffer").

Note 1: Record retrieval can proceed con-
currently with CPU processing only if the
user alternates FIND statements with READ
statements in his program.

Note 2: If an I/O0 error occurs during
reading, the control program returns con-
trol to the synchronous exit routine

(SYNADR) within IHCDIOSE. The SYNADR rou-
tine sets a switch to indicate that an 1I/0
error has occurred, and then returns con-
trol to the control program. The control

program completes its processing and
returns control to IHCDIOSE. IHCDIOSE
interrogates the switch, finds it to be

set, and passes control to the I/0 error

routine of IHCFCOME.

Write Section

The write section of IHCDIOSE processes
write requests. The write section may be
entered either from the file initialization
section of IHCDIOSE, or from IHCFCOME. The
processing performed by the write section
depends upon where it is entered from.

PROCESSING IF ENTERED FROM FILE INITIALIZA-
TION SECTION: If the write section is
entered from the file initialization sec-
tion of IHCDIOSE, no writing is performed.
The write section only provides IHCFCOME
with buffer space in which to place the
record to be written. The relative record

170

Note 1:

number of the record to be written is
inserted into the appropriate BLKREF field
(i.e., BLKREFA or BLKREFB). (The record is
written the next time the write section is
entered.) For a formatted write, the buf-
fer is filled with blanks. For a nonfor-
matted write, the Dbuffer is filled with
zeros. The write section then places the
address of the buffer and the size of the
buffer into registers for use by IHCFCOME.
Control is then returned to IHCFCOME.

PROCESSING IF ENTERED FROM IHCFCOME: Each
time the write section 1is entered from
IHCFCOME, it writes the contents of the

buffer onto the specified data set. Subse-
quent write section processing for entran-
ces from IHCFCOME is the same as that
described for entrances from the file ini-
tialization section of IHCDIOSE (refer to
"Processing If Entered From File Initiali-
zation Section"). 1In addition, the asso-
ciated variable 1is modified prior to
returning to IHCFCOME. The associated
variable for the data set is updated so
that it points to the relative position
within the direct access data set of the
record following the record just written.

The writing of physical records by
this section is overlapped. That is, while
IHCFCOME is filling buffer A, buffer B is
being written onto the output data set.
When buffer A has been filled, the write
from buffer B is checked for completion.
Upon completion of the write operation,
IHCFCOME starts placing data into buffer B.

In addition, a write from buffer A is
initiated.

Note 2: If an I/0 error occurs during
writing, the control program returns con-
trol to the synchronous exit routine
(SYNADR) within IHCDIOSE. The SYNADR rou-

sets a switch to indicate that an I/0
returns con-
The control

tine
error has occurred, and then
trol to the control program.

program completes its processing and
returns control to IHCDIOSE. IHCDIOSE
interrogates the switch, finds it to be

set, and passes control to the I/0 error
routine of IHCFCOME.

Termination Section

‘direct access data

The termination section of IHCDIOSE
receives control from the load module ter-
mination routine of IHCFCOME. The function
of this section is to terminate any pending
I/0 operations involving direct access data
sets. The unit blocks associated with the
sets are examined by
IHCDIOSE to determine if any I/0 is pend-
ing. CHECK macro-instructions are issued
for all pending I/0 operations to insure
their completion.

The data control blocks for the direct
access data sets are closed, and the main
storage occupied by the unit blocks is
freed via the FREEMAIN macro-instruction.
Control is then returned to the load module
termination routine of IHCFCOME to complete
the termination process.

IHCIBERR

IHCIBERR, a member of the FORTRAN system
library (SYS1.FORTLIB), processes object~-
time source statement errors if the LOAD
option is specified. IHCIBERR is entered
(via a compiler-generated calling sequence)

The ISN of the invalid source statement
is obtained (from information in the
calling sequence) and is then converted to
decimal form. IHCIBERR then 1links to
IHCFCOME to implement the writing of the
following error message:

IHC230I - SOURCE ERROR AT ISN
XXXX - EXECUTION FAILED

After the error message is written on
the user-designated error output data set,
IHCIBERR passes control to the IBEXIT rou-
tine of IHCFCOME to terminate execution.

when an internal sequence number (ISN)
cannot be executed because of a source Chart E7 illustrates the overall logic
statement error. of IHCIBERR.

Appendix L: Object-Time Library Subprograms 171

v
(22223 I 222222 22
* IBEXIT *
W e W W Y W e e
*CLOSE ALL DCBS *
* AND TERMINATE *
EXECUTION
2222222222222 2 2 2 3

v
2R NIRRT 2R

*
* JoB *
SCHEDULER *

E2 22222222222 L2]

172

4
3 X H 2 # 8 HE XXX

* IBFERR *
Fm e e e hm R
* PROCESS *
* OBJECT-TIME ¥
* ERRORS *

3 96 T I I K I I E XN

v
I DR RN RN
* *
* IBEXIT *
* *

3 36 3 36 I I I XX

\'
3 W H G NN

* IBFINT *
X — NN
* PROCESS *

* ARITHMETIC *
#* INTERRUPTIONS *

E2 222222222 2T 22 2 2

v
EXZ T NTE T T RS
FORTRAN *
LOAD *

MODULE *
W3 3 I I X ®H

* %k

Chart EO. IHCFCOME Overall Logic and Utility Routines
NOTE ~~ IHCFCOME IS ENTERED HHRRATHIIRE RN SEE TABLE 36 FOR A BRIEF
VIA CALLING SEQUENCES #* FORTRAN * DESCRIPTION OF THE FUNCTION
GENERATED AT * LOAD MODULE * OF EACH IHCFCOME ROUTINE/
COMPILE TIME. * (SEE NOTE) * SUBROUTINE.
RN NN A ERER
v
RN DI R NR R R RN
* *
* DETERMINE *
% REQUEST TYPE #*
* *
* *
RAA LRI L 22222
v
33 I I I I I I W I W NI I I I I NI NI WA WKW NN
* * * * *
REQUEST TYPE #CHART * MAJOR PROCESSING * SUBROUTINES CALLED *
* *IDa * ROUTINES * *
* * * *
#=== * *= * *
* * * * *
SEQUENTIAL ACCESS * * * *
AND DIRECT ACCESS * E1A2 * FRDWF, FIOLF, * FCVII, FCVEl, FCVDI, *
READ REQUIRING A * * FIOAFs FENDF * FCVF1, FCVAI *
* FORMAT * * *
* * *
I I I I I I I I NI I I I I I I I I I I I I I NI IR NN N RN
* * * * *
SEQUENTIAL ACCESS #* * *
* AND DIRECT ACCESS * E1A2 * FWRWF, FIOLF, * FCvV1O, FCVEQ, FCVDO, *
* WRITE REQUIRING A * * FIOAFs FENDF * FCVFOs FCVAO *
* FORMAT * * * *
* * * * *
E3 22222222222 R 22222 AR s R 222 R s st A 2222 22222222222 2222222 2]
* * * * *
SEQUENTIAL ACCESS * * * *
AND DIRECT ACCESS * EIF2 * FRDNFo FIOLNs * NONE *
*# READ NOT REQUIRING # * FIOANs FENDN * *
A FORMAT * * * *
* * * * *
F I I I I NI I I W I IR I NI W I NI T I NI W W RN
* * * * *
SEQUENTIAL ACCESS # * *
AND DIRECT ACCESS * E1F2 * FWRNF, FIOLN * NONE *
* WRITE NOT REQUIRING* * FIOANs FENDN * *
* A FORMAT * * *
* *
* ****{****i*****{******i***&**{i{*********{***i*****i*{**il**i**i****i*****l*******I**
* * *
DIRECT ACCESS * E1F2 * FRDNF, FENDN . NONE *
* FIND *
*
*****l**{{******&*****{&********{*ii**i%**i**l**iii***i*l*ii*i*****i**liii***i*i*ii****
* *
* DEVICE * E283 M FBKSPs FRWND, FEDFM* NONE *
MANIPULATION * * * *
* * * * *
46363 3 3 3 336N I I I IR I W T N I W WTWRE
* * * * *
* WRITE TO ¥ E2G3 * FSTOP. FPAUS * NONE *
* OPERATOR * *
* *
*i********i**l*l*l*********!i*l*li*****&i{ll&*****‘*****i**l*i***{il*l{*i***i*}*i***{*{
UTILITY ROUTINES
IBEXIT 1BFERR 1BFINT
ER 22 3R 2 22 2 2 1 1 2 3 G2 W RN E2 T2 IR I 22 2L
* FSTOP, * * FORTRAN * * FORTRAN *
o IHCIBERR. OR % * LIBe * * LOAD *
1BFERR * * UBPRS o * * MODULE *
*********I*l}** EX 2222 222 2222 2] A6 RN RN

Chart El. Implementation of READ/WRITE/FIND Source Statements

EERER ITHCFCOME

#EL *

* AW FRDWF /FWRWF

* * HERRHAD HEREEERERS
* RFORM OPENING#¥*

*PE|

I #OPERATIONS FOR *
>* READ/WRITE *
REQUIRING *
» FORMAT *

R 2222222 22222222

FORTRAN
LOAD MODULE

FIOAF/FIOLF
ERRERB2 R RRHN
*

*
* PERFORM 1/0

v
LR e s

* *
GET LIST ITEM. #

*
*L1ST OPERATIONS#<:
: ON LIST ITEM #

*
FERERNRRRERRREEER

CALL 1/0 LIST #*<
* SECTION OF *
*

* IHCFCOM
R T2 2 2 s 2)

FENDF
FRRERD2FHRER R EE
* *

CLOSE ouT *

M
RHEREDLEHETHAHERE
* *

k%

CALL CLOSING

T

*
OPERATION :

HERERRRRERREERE RS

SECTION OF
* IHCFCOME

*
EEBREEEEREEREERRR

* ok ok ok

R IHCFCOME
#EL *
* F2% FRONF/FWRNF
* » FRERRF 2R ENR RN R
* #PERFORM OPENING#*
*OPERATIONS FOR *
>*READ/WRITE/F IND#*

* NOT REQUIRING %
* A FORMAT *
L2 a2 22 T S E s 2222 2

v
LA A RIS L2 222 28 22
*
CONTINUE WITH #*
LOAD MODULE *
EXECUTION *
*

ERERIH LI RN EREERR

ok ko ok

FORTRAN
LOAD MODULE

FIOLN/FIOAN
REERRG2ER KRR RRNEE
* *

PERFORM 1I/0 *

v
Lad ARl TS AR 222 2L 2
*

*
GET LIST ITEM. #

LIST OPERATIONS#<
#* ON LIST ITEM *
*

*
R

CALL I/O0 LIST #*<
* SECTION OF *

* ITHCFCOME *
R 22 S T e

FENDN
Laaad NET TR TS L L2 20
*

CLOSE OuT

v
RN SO RN RN

*
CALL CLOSING
SEC

OPERATION

ERREENRRE TR RRRR

* k% ko
*okok &

TION OF
: THCFCOME

REEEREREE TR RN N

LEXT XS]

v
L aaaad SE L2 22 S22 2
* *
#* CONTINUE WITH ¥
#* LOAD MODULE *
* EXECUTION :
*

LR a2 i 2 e 22222t

Appendix L:

THIS CALL IS
GENERATED BY
COMPILER WwHEN
I/0 LIST ITEM
IS ENCOUNTERED

THIS CALL IS
GENERATED BY
COMPILER WHEN
ALL I/0 LIST
ITEMS PRUCESSED

THIS CALL IS
GENERATED BY
COMPILER WHEN
I/0 LIST ITEM
IS ENCOUNTERED

THIS CALL IS
GENERATED BY

ITEMS PROCESSLD

Object-Time Library

Subprograms

173

Chart E2. Device Manipulation and Write-to-Operator Routines

RR R
*E2 *
* B3#

*

*

v
R 22 ki S 222222 std
* % *

*DETERMINE TYPE
* DEVICE
#* MANIPULATION
(SEE NOTE)

OF

ok kK

PN RERN

NOTE--

THE DEVICE MANIPULATION
ROUTINES ONLY APPLY TO
SEQUENTIAL ACCESS DATA SETSe
DEVICE MANIPULATION RE-
QUESTS FOR DIRECT ACCESS
DATA SETS ARE IGNORED.

BACKSPACE
FBKSP
v
ERRRUD2RHRRRERRR
*

IMPLEMENT
BACKSPACE
SOURCE
STATEMENT
L2222 22 AR X Sl 2

* %k k%

*
*

* ok k%

*

>

REW

ND

FRWND

LA g okE 2 222 22 sl s d
»* *

* ok k%

IMPLEMENT
REWIND
SOURCE

STATEMENT

LE R 2

L3R 22 222222222

v
W E TN W N

* FORTRAN *
* LOAD

*<

ENDFILE
FEOFM
v
ERRURDE R AR XRR
* *

IMPLEMENT
ENDF ILE
SOURCE

STATEMENT

(22 2T 2 S X R L 2T

* %k Kk %k
LERE X

* MODULE *
LA 22 R L 2 2 2]

T2
*ED *
* G3*

v
ARG TR AR

*

#*DETERMINE TYPE
* OF WRITE-TO-
* OPERATOR

* % k%

* *
E S AT L S S R YL g

sSTOP
FszDP
LA AL NPT 2L 12 122
*
IMPLEMENT
sTOP
SOURCE

STATEMENT
L2 RS T T 2 2 L

LEE R]

v
FRRRCOHE R RN
*
* IBEXIT
*

A2 22 2 212 2L sd

174

*
*
*
*
*
*

*

*
*
*

PAUSE

FPCUS

[A NS SRR T2 2]

* *

IMPLEMENT
PAUSE
SOURCE

STATEMENT
R 2222222222 L)

LE R R
LE R X

v
FRERKLGRERRRRRRS
FORTRAN *
LOAD *

MODULE *
AU

* %k

Table 36. IHCFCOME Routine/Subroutine Directory

T T h]
|Routine/Subroutine| Function |
L 4 4
v T |
| FBKSP | Implements the BACKSPACE source statement. |
| . |
FCVAL	Reads alphameric data.
FCVAO	Writes alphameric data.
FCVDI	Reads double-precision data with an external exponent.
FCVDO	Writes double-precision data with an external exponent.
FCVEI	Reads real data with an external exponent.
I	
FCVEO	Writes real data with an external exponent.
I	
FCVFI	Reads real data without an external exponent. i
I	
FCVFO	Writes real data without an external exponent.
FCVII	Reads integer data.
FCVIO	Writes integer data.
FENDF	Closing section for a READ or WRITE requiring a format.
FENDN	Closing section for a READ or WRITE not requiring a format.
FEOFM	Implements the ENDFILE source statement.
FIOAF	I70 list section for list array of a READ or WRITE requiring aj
	format.
	i
FIOAN	I70 list section for list array of a READ or WRITE not requiring aj
	format.
FIOLF	I70 list section for list variable of a READ or WRITE requiring a
	format.
I	
FIOLN	I70 1list section for list variable of a READ or WRITE not requiringj
	a format.
FPAUS	Implements the PAUSE source statement.
FRDNF	Opening section of a READ not requiring a format.
FRDWF	Opening section of a READ requiring a format.
I	
FRWND	Implements the REWIND source statement.
	I
FSTOP	Implements the STOP source statement.

FWRNF Opening section for a WRITE not requiring a format.

g q

| |
| FWRWF |Opening section for a WRITE requiring a format. |
| |
| IBEXIT |Closes the data control blocks for all FORTRAN data sets that arej
| |still open and terminates the execution. |
| |
IBFERR	Processes object-time errors.
IBFINT	Processes arithmetic-type program interruptions.
L L J

Appendix L: Object-Time Library Subprograms 175

Chart E3. IHCFIOSH Overall Logic
SEE TABLE 37 FOR A BRIEF
HEREATERERE RN X DESCRIPTION OF THE FUNCTION
* * OF EACH IHCFIOSH ROUTINE.
* IHCFCOME *
* *
e T T s
v
et
B3 L
¥ *e
«* DETERMINE #*,
OPERATION o%
e TY .
*, o
*q
*REA i DEVICE
* #* INITIALIZATION READ WRITE MANIPULATION CLOSE
* C1l e 3
- * .
EHER [v
FINIT v FREAD Ve FRITE et NTL v FCLOS v
&iu*§c1»*;*«§{**t 2 *e 3 *o RERRHCHAREERERRER HRERRCSHIRNEENHEN
«%® ANY ¥, o . * * * *
ECODE DSRN ’ YES «MORE RCDS IN#¥, NO «% QUTPUT *o * CHECK * * CHECK ANY *
’AND BUILD UNIT * *#o THIS BLOCK TO.% BUFFER 4 * STATUS OF * >% QUTSTANDING #*
#BLOCK IF NECES—#* BE PROCESSED¥ #. FULL o ¥ * UNIT * * INPUT OR *
* SARY - | *. o* | *e o * * * OUTPUT *
FRERERIENEEERRRRE v He o¥ *, ¥ e e T P
*REE * NO ERHe * YES
* * * * L i 22
* K1 * * K1 * *
* * * * >% C1 *
ERER EERE * *
R
v v v
W R RD] NN NN FRRRRDD X R E NN RN R Q*ﬁ{*Da{*l'*l**’l
* OPEN DATA * * READ * WRI
* CONTROL BLOCK # *NEXT BLOCK INTO* * CONTENTS OF * I NO o%
*FOR DATA SET IF# # THIS BUFFER, # # THIS BUFFER, # .
*#NOT PREVIODUSLY # * SWITCH BUFFER * * SWITCH BUFFER * *q
* OPENED * * POINTERS b POINTERS ARRE
AR RR A2l I RS 222 R 22t) **{‘l**l****‘&*** * *
* E4 *
* *
RN
v v
ok, v v oo
El *g Y e I I T WWWNFE TR RN NN 54 *. FRUNRES NN RN RN
o *e * * * * * *
) *o NO * CHECK RESULT * * CHECK RESULT * EOF o% DETERMINE *. RWNO * ISSUE CLOSE *
OPENED - # OF READ INTO * OF WRITE * ——%. OPERATION o*———————>#% WITH REREAD ¥
*,PROPERLY o# * DTHER BUFFER * # FROM OTHER * *o YPE * OPTION *
. . * * * BUFFER * . o * *
. oF P T R v P I TR T 2 * P e T
* YES EaEEn * BKSP
*E4 * *RER
* B2%* *EQ *
* " v —>% B2 *
* RN * *
*E4 # R
v * B2% v
HERRRE] FRRRRERN BRI 2 MWW x * REBEREARERER RN R
* * * * * * ISSUE *
* DETERMINE * * ISSUE * * BACKSPACE,
* RECORD FORMAT % >* MESSAGE *- * INDICATE DATA
AND BLOCKING # * IHC219C * ‘ SET TYPE '
* * * *
By e R e 2 2 e Y v &&**iu{**ll&*&i** v
HRRAR EENER
*E4G * *E4 *
* F2w * B2
- * * *
* *
G1 . FREARGAREEERAEERN
o *, - *
«*CURRENT OP—%. YES # ISSUE CLOSE, *
*ERATION DEVICE. L—>% TYPE=T, WITH *
%o MANIPe <% # LEAVE OPTION #
* o ¥ * *
*, o¥ v BN NN R
* NO ERER
* *
* E4 *
* *
R
v
o¥e v
H1 *a A2 A 2 22 2 2 22
ot ., » *
o READ *. WRITE » FREE 1/0 *
*o 0O o Wy * BUFFERS FOR
#*o WRITE % * THIS DATA SET *
*o o * *
. o EETT T A T v
READ LA 2 2]
*E4 *
* Ba®
* ®
*
v
HERRRE Y] RN RN
* READ *
A
* BLOCK *
ERREREERERERE
ERER
» *
* K1 ¥=>
* *
TS
v
S ot bbutettatatd
* PASS CURRENT #
#RECORD POINTER *
* AND LUOGICAL
RECORD LENGTH * v
TO IHCFCOME * Ddabdialed
P e e e T *E4 *
* B2#%
* *

176

Chart EU4. Execution-Time I/0O Recovery Procedure

THE I/0 SUPERVISOR IS ENTERED
VIA DATA MANAGEMENT ROUTINE
WHEN IHCFIOSH OR IHCDIOSE
ISSUES A MACRO-INSTRUCTION.

LA 2 X 23
*E4 *
* B2
* *
*
v
o¥a
B2 *q D TN R
o ¥ * g * *
«* HAS AN #*. YES * 1SSUE *
*, EOF BEEN o% > MESSAGE »
#. READ ok * 1HC2171 *
*, ¥ * *
e o R 22122222 2222122 L3 v
* NO XN
* *
* F2 #
* *
% XX
v
o*e ¥
LIl I 122222222 c2 * g E2 22 R JecE 2 222 22 22 1] Cc4 *
* * ok *q *DATA MANAGEMENT# ot *o RAR
RETURN TO * NO o% 1/0 *, YES * RETRY * o* 170 *, YES * *
* THCFCOME #—— < +. ERROR IN o¥— 5% APPROPRIATE #* :>#¢ ERROR BEEN o#* >#% C1 *
* * . 10S o * NUMBER OF * * CORRECTED.* * *
* * *, o * TIMES * *q o ¥ Ty
L2222 222222221222 He o Ea 2222222222 2222 L) e ¥
* RN * * NO
* *
* C1 *
* *
E2 2 2]
v
v ba 2 2 iz i il s] L2222 S22 22 222 1L
R 22 o R L 22 2 22 2 X * IHCFCOME * * *
* FORTRAN * * DETERMINES % * RETURN *
* LOAD * * IF AN INVALID #*< # ABORT CODE *
* MODULE * * BUFFER HAS * # TO IHCFCOME *
L I T I I Y Y * BEEN READ * * *
R 2222222222222 23 EZ 22 RS RIETET L L L XY
CONT INUES
NORMAL
PROCESSING
<
v
e
HRERRCD2HERRRR RS E3 *,
» * oW *q
* 1SSUE * YES o% HAS *o
* MESSAGE #<——— %, BUFFER BEEN o%
* 1HC2181 * #.READ YET %
* * *, ¥
RAZ 2221222222 2222 *q o
* NO
R 2 22
*E4 *
* F2 #—>
*
E2 2 2] v
v ¥,
I Y T Y T F3 *,
* * o *o
* PAS «% REWIND %o NO
* ABORT CODE

*#,0R BACKSPACE <%
EEN

* K kK

* TO SCHEDULER *e ¥
* *ISSUED.#*
A 6N He o

* YES

v
v WG 3 A ERR
WG 2NN * *
*

vOoI1D
ABORT CODE

*
* SCHEDULER *
* * IN IHCFCOME

E2 a2 12222222222

* %k ok
ok k ok

[T TR I R I T R
ISSUES ABEND
MESSAGE AND
THEN CONTINUES
NORMAL PRO-
CESSING

v
HRERHI RN RSN
* FORTRAN *
* LOAD *
*

MODULE *
BN
CONTINUES

NORMAL
PROCESSING

Appendix L: Object-Time Library Sukprograms 177

Chart E5.

NOTE=--

THE FILE DEFINITION
SECTION IS ENTERED
FROM THE FORTRAN
LOAD MODULE VIA A
COMP ILER-GENERATED
CALLING SEQUENCE.

178

A TR RN RN N
* FORTRAN LOAD
* MODULE

* (SEE NOTE)
L S

* % Kk

v
b2 22 KEZ ST RS L2 S
* GET FIRST

* UNIT NUMBER
* (DSRN) FROM
*PARAMETER L1IST
*

ok ok ok ok K

EAZ 2 22212 2l

<

IHCDIOSE Overall Logic - File Definition Section

SEE TABLE 38 FOR A

BRIEF DESCRIPTION OF THE
FUNCTION OF EACH IHCDIOSE
ROUTINE,.

v
E S 2 s e 2 22 2 22 122
INSERT UNIT %
* NUMBER'S *
*PARAMETER LIST #
#ADDRESS IN UNIT#*
*ASSIGNMENT TBL *

RS2 22 s ezt s s s sty

v
o,
D3 *q

o *e
o* LAST UNIT *, NO

#. NUMBER IN .
*dPARAMETER . ¥

i
W TR
* *

* ESTABLISH *
*LINKAGE BETWEEN¥
* IHCDIOSE AND %
* IHCFCOME hod
HREREREERERRRERERR

v
HRERE JHR RN
* FORTRAN *
* LOAD *
* MODULE *
LA Z e TEE T L 22 1

CONTINUE NORMAL
PROCESSING

WD LKA RN E AR
* GET NEXT
* UNIT NUMBER

># (DSRN) FRGM

*
*
*
#PARAMETER LIST #*
* *
*

A3 I NI W XN

Chart E6.
Sections

FRERAZ RN REE

»
: IHCFCOME

IHCDIOSE Overall Logic -

File

DASTRA oy
A3 *e

34 *e
* DETERMINE #,

* .
W > %4 OPERATION ¥
-

*. TYPE 4

Initialization,

Read,

Write and Termination

o¥ *e REATE
FIND % READ *o 'AND FDRNAT NEW '
%o 'DATA SET-USING -
#®e REQUEST o% WRITE -
*e ot 0 -
#e oW ARRERRERRRRRBE RSN
#* READ

v
P LA NIRRTy 2 RREBEJ2HBHRREBRES
&*

#INSERT ADDR OF #
i'DECBA SKELETON *

CURBUF *
' FIE -

LD
UNIT BLDCK *
ERRRRRBERRRRBRBNE

RERBEJIRESRRBED B

* * * #INSERT ADDR OF #
. * * CLOSE * #DECBB SKELETON %
#INDICATE ERROR #& # DCB FOR DATA # NXTBUF #
* * - SET - # FIELD OF UNIT #
- - - - # BLK IF 2 BFRS #
* FRRFRBRABERRBRRERE
ane
> » *
* K2 #—>
» -
“nae
v v
v RRBHRK2XARRLERERE HRRRELIRRERRBRREE
AnREK L HERREREN e EN DCB FOR # 'INSERT ADDR OF '
DATA SET FOR &
- IHCFCOME - # DIRECTY ACCESS #——mwad
- - #* PROCESSING - 'SKELET S IN '
SAERRBSRERTIRRNE -

* *
L2222 T2 Y Y T

0'!0&00'0.0.'.000

Appendix L:

*-BLKREFA INTO
F—)'DECBA SKE%$TON *

BLOC
Ol.l"l&--‘ﬂ..l.il

Lttt L lehdetdatatrbubuied
'INSERT ADDR OF *

IN UNIT BLOCK *
® IF TWO BFRS &
PEI T T2 e 2 2

o
o WRITE
o REQUEST

[X
o
[

LR

242 d

*,
#, YES #
a¥——>% C4 #
- L] -

EARBRRRERREE R *, ot
"o o¥ WRITE SECTION
FILE INITIALIZATION READ ;PR!MARY ENTRY TERMINATION
SECTION SECTION ROM THCFCOME) SECTION
v
| ! |
DASINIT Ve DASREAD Ve DASWRITE DASTERM Ve
a] *e B2 *, FRN DI R &&i!llsg.&inﬁt«ﬂ&ﬁu BS *e
*, o *, » - * *,
YES .* PREV!OUS *e o* 1S5 *o NO * OBTAIN * * WRITE * *o NO
QOPERATION .+ >%s RECORD IN o# >#* ADDRESS OF * A PENDING 1/0 o¥%—
*. 4 *o BUFFER % #* INPUT BUFFER # * RECORD * #OPERATIONS « #
- ot - » * * *, ok
v *e oF e o PIZE 2T 2T IS 22 RERERRRRERRRE *e o ®
A * NO L2 22 * YES * YES
* - » - e SECONDARY
* K4 * B2 * * #* JENTRY
* * - * * C4 #=)>
AR *nE e * »
v LTS
v oty v v v
AR BRI cz e R RRECTE SRR W C G R CEH RN RR
#CONSTRUCT UNIT # g *o *INSERT RELATIVE' # OBTAIN NEXT * * *
#* BLOCK. INSERT * YES «% IS THIS %, #RCD NOe OF RC *OUTPUT BUFFER» * * WAIT *
ADDR OF UNIT # ——%e A _FIND o ¥ #TO BE READ INTO’ * BLANK OR ZERO # * FOR 1/0 *
#BLOCK INTO UNITH* #o REQUEST ¥ *# BLKREFA OR * #* DEPENDING ON # * COMPLETION *
#ASSIGNMENT TBL * *e o ¥ * BLKREFB8 FIELD # #DATA SET FORMAT#* * *
FREEBRBURRRFERRRS e EETTE T Y s ERBERBRRRERRRERRE Py e T T
* NO
P —
v v M v v
D1%% D2 D3 D4 WERREDS RN
#*# READ JOB FILE # bt * #INSERT RELATIVE® * *
CONTRQL BLOCK # * * * READ * #RCD NO. OF RCD # #CLOSE DCBS FOR
% (JFCB)s INSERT # * FOR_1/0 * A RECORD * TO BE WRITTEN #* #* DIRECT ACCESS #
- N * # COMPLETION * #INTO BLKREFA OR¥ * DATA SETS *
- INTO DCB * * * #* BLKREFB FIELD % * *
R E 22222 2222222 2d) A
v
v ate v
SRBRREL E2# ERERRETHRR SRR R Ea &. -:n-»gsu;u;n;au&a
* * * PLACE * * o FREE MAIN *
* EXAMINE * #BUFFER POINTER # # PLACE BUFFER # IHCFCOME .* DEYERM!NE *e ' STORAGE *
#JFCBIND2 FIELD # #AND BUFFER SIZE®* # POINTER _AND #{—— %, ENTRANCE ¥ % OCCUPIED BY #
* IN JFCB * # IN REGISTERS # *BUFFER SIZE IN # - o # UNIT BLOCKS #
* * * * REGISTERS * *o o * *
PRIyt e a2y T *, oF P IRE T R Y
FILE INITIALIZATION
> SECTION OF IHCDIOSE
>
v
oty v LY
Fg *, FRRREE2HE RS REBRR S F3 *e WRRHEF QLR AR
q #GEY ASSOCIATED ‘ . - # UPDAT * UHRRRFSHERERERES
o NE' DATA #. NO * VARIABLE'S «®* IS THIS #. YES #ASSOCIATED VAR #* - »
#s SET TO BE * ADDRESS AND '————————)'o A _FIND o #——————>% SO THAT IT —D * IHCFCOME *
#o CREATED % * CURRENT * #, REQUEST % * POINTS TO RCD # * *
*, o # RECORD NUMBER # *o oW » JUST READ * REARRRRERRRERER
o oF v RTI e 2y 2 2 ®e ¥ P AT A ery T Y
* YES 2223 * NO
* »
* K2 #
* *
L2124
Y }
-
61" s, WA ARG R AR RS HRRERGIHERER RN R uiiuisQoon&auqau:
o* *, * * # INSERT RECORD # POATE
o *o YES el OPEN * # NUMBER INTO & ’ASSOC!ATED VAR *
#,WRITE REQUEST o#——————>% DCB FOR NEW # ——>% RECNUM FIELD # # SO THAT IT
e 34 - DATA SE * * OF UNIT * *POINTS TO NEXT #
o o * * BLOCK * #RCD IN DATA SET*
e oW HEREHRR BB BRREBRRE sus
} NO
M
atty
H1 *, Q.ll'“z’..'.iﬂiii FEBRRHTHRERBERE RN P e s

RERR

*

#HES

Object-Time Library Subprograms

179

Table 37.

IHCFIOSH Routine Directory

r . T 1
| Routine | Function |
1 + H
r T 1
FCLOS	CHECKS double-buffered output data sets.
FCNTL	Services device manipulation requests.
I	
FINIT	Initializes unit and data set.
FREAD	Services read requests.
FRITE	Services write requests.
L L1 J	
Table 38. IHCDIOSE Routine Directory	
r . T 1	
Routine	Function
______ 4 _l
+
| DASDEF | Processes DEFINE FILE statements: enters address of parameter 1lists into]
| Junit assignment table, checks for redefinition of direct access unitj
| |numbers, and establishes addressability for IHCDIOSE within IHCFCOME. |
| | I
DASINIT	Constructs unit blocks for nonopened direct access data sets, creates and
	formats new direct access data sets, and opens data control blocks for
	direct access data sets.
]	
DASREAD	Reads physical records, passes buffer pointers and buffer size to IHCFCOME,
	and updates the associated variable. i
I I	
DASTERM	Checks pending 1I/0 operations, closes direct access data sets, and frees
	main storage occupied by unit blocks.
I	
DASTRA	Determines operation type and transfers control to appropriate routine.
DASWRITE	Writes physical records, provides IHCFCOME with buffer space, and updates
L J

|the associated variable.
L

180

Chart E7. IHCIBERR Overall Logic

XA TR RN RN R RN
* FORTRAN *
* LOAD *
*

ODULE
LE A e e I

v
I R R Y R
* *
OBTAIN INTERNAL®#
#SEQUENCE NUMBER#*
* (1sSN) *
*

*
LAA S A2 2222222222 d

v
RRERRCTHERHERANNR
*

*
CONVERT ISN ¥
TO DECIMAL *
FORMAT *

*

*

* % kX

A 2222 R L 2SS

v
D) T
* BRANCH TO *
IHCFCOME TO
* HANDLE THE *
* WRITING OF *
* ERROR MESSAGE *
HRRRIEREN R ERRRR

v
R RET NN NN
* IBEXIT RTN *
* *
* THCFCOME *
EX e e R I)

QUENCES GEN-

COMPILE-TIME.

Appendix L:

Object-Time Library Subprograms

181

alxxxx): Indicates the address of the sym-
bol within parentheses.

adjective code field: A field of an inter-
mediate text entry that contains either an
adjective code assigned by the compiler or
an actual machine operation code.

allocation table: Used in Phase 5 to deter-
mine the amount of main storage to be
allocated to the dictionary and the over-
flow table, and the internal text buffers.

argqument list: A list containing the
addresses of arguments constructed when an
adjective code indicating a call to a
subprogram or statement function is detect-
ed.

arqument list table: Used at object-time to
provide the starting address of the arqgu-
ment 1list for each subprogram or statement
function called.

base value table: Used at
obtain base register values.

object-time to

BLDL table: Provides information necessary
for transferring control from one phase to
the next for PRFRM compilations.

blocking table: Provides information neces-
sary to deblock compiler input and to block
compiler output for PRFRM compilations.

bound variable: An integer variable in a
subscript expression that is redefined.

branch list table for SFs and DOs: Used at
object-time either by the instructions gen-
erated to reference SF expansions or by the
instructions generated to control the iter-
ation of DO loops.

branch list table for referenced statement
numbers: Used at object-time by the
instructions generated to branch to execu-
table statements.

CDL: A portion of the array displacement
for subscripted variables.

COMMON text: An internal format used to
transmit the information in a COMMON source
statement to Phase 12.

communication area: A central gathering
area used to communicate information
between the various phases of the compiler.

declarative statement: Any one of the fol-
lowing statements: COMMON, DEFINE FILE,

GLOSSARY

DIMENSION, EQUIVALENCE, INTEGER, REAL, DOU-
BLE PRECISION, EXTERNAL, FORMAT, and SUB-
ROUTINE or FUNCTION.

dictionary: A resident table of the compil-
er used to store information about symbols
used in the source statements. For PRFRM
compilations, the dictionary resides in
main storage throughout the compilation;
for SPACE compilations, the dictiorary
resides in main storage only through Phase
14,

dictionary index: Consists of pointers to
the first entries in the various chains
that constitute the dictionary.

end-of-statement indicator: An adjective
code that signals the end of a particular
statement to a processing phase.

epilog table: Used during Phase 25 when
generating the instructions that return the
value of variables used as parameters to
the calling program.

EQUIVALENCE table: Used by the routines
that assign addresses for EQUIVALENCE
entries.

EQUIVALENCE text: An internal format used
to transmit the information in an EQUIVAL-
ENCE source statement +to Phase 12. that
may force the end of compilation.

ESD _card image: A card image containing an
external symbol that is defined or referred
to in the source module.

executable statement: A statement that
causes the compiler to generate machine
instructions.

flush: A compile-time I/O request that

forces the current output buffer being used
for a blocked output data set to be writ-
ten.

forcing value: A value that indicates an
operator's relative position in the hierar-
chy of operators.

forcing value table:
processing to aid
intermediate text
expressions.

Used during Phase 15
in the reordering of
entries for arithmetic

hierarchy of operators: Defines the order
in which operations must be performed in an
arithmetic expression.

Glossary 183

interface module: The communications link
between the compiler and the operating
system.

index mapping table: Used during Phase 20
processing of subscript expressions to
maintain a record of all information perti-
nent to the subscript expression.

interlude: A compiler component that closes
and then reopens the various data sets used
by the compiler for SPACE compilations.
(Interludes do not perform source statement
processing.)

intermediate text: An internal representa-
tion of the source statements that may
eventually be converted to machine-language
instructions.

internal statement number: A number
assigned to each FORTRAN statement by the
compiler.

internal text buffer chain: A series of
buffers that are chained together by means
of pointers. Constructed for the SYSUT1
and SYSUT2 data sets if the PRFRM option is
specified.

list ditem: A variable wused in a READ or
WRITE statement.

load module: The output of the lipkage
editor; a program in a format suitable for
loading into main storage for execution.

location counter: A counter used to
addresses.

assign

message address table: Used during Phase 30
to aid in the generation of error and
warning messages.

message length table: Used during Phase 30
to aid in the generation of error and
warning messages.

message text table: Used during Phase 30 to
aid in the generation of error and warning
messages.

mode/type field: A field used in the dic-
tionary and intermediate text denoting the

mode (real, integer, or double precision)
and type (variable, array, function or
constant) of a symbol.

object module: The output of a single
execution of an assembler or compiler,
which constitutes input to the 1linkage
editor.

offset: A calculated indexing factor used
to find the correct element in an array for
a particular subscript expression.

operations
used during Phase

table: A temporary storage area
15 processing in the

184

reordering of intermediate text entries for
arithmetic expressions.

overflow table: A resident table that con-
tains all dimension, subscript, and state-
ment number information within the source
module being compiled.

overflow table index: Consists of pointers
to the first entries in the various chains
that constitute the overflow table.

p(xxxx): Indicates a pointer to the infor-
mation (within the parentheses) as rep-
resented in the dictionary or the overflow

table.

patch table: Used to contain patch records
if the patch facility has been enabled and
if patch records precede the FORTRAN source
module to be compiled.

pexrformance module: Processes compiler I/0
requests and end-of-phase requests for
PRFRM compilations. The performance module
also contains the blocking table, the BLDL
table, and the reset table.

phase: Performs compiler initialization or
actual source statement processing.

pointer field: The last two bytes of an
intermediate text word. It normally con-
tains a relative pointer to a dictionary or
overflow table entry.

reset table: Used by the performance module
to determine which, if any, of the record
counts for the SYSUT1 and SYSUT2 data sets
must be reset.

resident table: A table that remains in
main storage throughout an entire compila-
tion or throughout a part of a compilation.
(The dictionary is resident only up to the
end of Phase 14 for SPACE compilations.)

RLD card image: Contains information about
an address constant used 1in the object
module.

in the
rou-

routine displacement tables: Aid
location of reserved word processing
tines in Phases 10D and 10E.

SEGMAL: A resident table that contains the
beginning and ending address of each seg-
ment of main storage assigned to the dic-
tionary and overflow table by Phase 5.

SF number: Assigned to each SF definition
encountered by Phase 14.

source module: A series of statements in
the symbolic language of an assembler or
compiler, which constitutes the entire
input to a single execution of an assembler
or compiler.

subscript table: Temporary storage area
used for subscript text encountered during
the reordering of intermediate text words
by Phase 15.

subscript optimization: The process of
replacing the computation of a subscript

expression at each recurrence with a ref-
erence to its initial computation (that is,
to the register assigned to contain the
result of its initial computation).

SYSIN data set: The source module, which is
used as input to the compiler.

SYSLIN data set: The object module in card
image form (if the IOAD option is
specified).

SYSUT1 data set: Used as a work data set by
the compiler to contain intermediate text.

SYSUT2 data set: Used as a work data set by
the compiler to contain intermediate text,
and the output of Phase 8 if the ADJUST
option is specified.

SYSPRINT data set: Contains list of patch
records if any, compiler informative messa-
ges, the source module 1listing if the
SOURCE option is in effect, the storage map

if the MAP option is in effect, the object
module listing if the object listing option
is in effect, and error and warning messa-
ges if any.

SYSPUNCH data set: The object module in

card image form (if the DECK option was
specified).

SYS1.FORTLIB: A partitioned data set that
contains FORTRAN subprograms (including
IHCFCOME, IHCFIOSH, IHCDIOSE, and IHCIBERR
in the form of load modules.

SYS1.LINKLIB: A partitioned data set that
contains executable load modules, which can
be reached via the XCTL, ATTACH, LINK, and
LOAD macro-instructions. The FORTRAN IV
(E) compiler resides on the SYS1.LINKLIB.

TXT card image: A card image containing

either an instruction of the object module
or data used in the object module.

unit assiqgnment table: Used by IHCFIOSH and

IHCDIOSE during processing of execution-
time I/O requests.

unit blocks: Used by IHCFIOSH and IHCDIOSE

during processing of execution time 1I/O

requests.

Glossary 185

INDEX

ABS in-line function

compile-time processing of 44
Address assignment 36-37
Adjective code

definition of 105

forcing values 42,43,141

replacement of 42-43,118
Adjective code field

in intermediate text 105
ADJUST option

compiler processing for 31-32
Adjusting source statements 31-32
Allocation of storage

for argument list table 48

for branch list tables 38-39,46

for compiler 25-26,89-90
Allocation table 138
AOP adjective code

in intermediate text 122
Argument list count 44,48
Argument list table

format of 145

generation of 48

use of 145
Argument list table entry

generation of RLD and TXT card images

for 48

Argument lists

creation of 44
Arithmetic expressions

generation of instructions for 49

processing of 42-44,149

reordering of 42-44,119-120
Arithmetic scan

of source statements 102-103
Arithmetic-type interruptions

object-time processing of 159
Array displacement

computation of 123-125

definition of 123
Array element 123-125
Array I/0 list items

object-time processing of 153-156
Arrays

compile-time processing of

36-37,123-125

maximum sizes of 125
Assignment

of registers 44,118-119

of relative addresses 36-37

of storage to the compiler 25-26,89-90

ATTACH macro-instruction
specifying substitute DDNAMES for
compiler data sets via 22

BACKSPACE statement
compile-time processing of 41,149

object-time implementation of 159,165

Base value table
format of 145
generation of 50

186

generation of RLD and TXT card images
for 51

cbject-time use of 50,145
Base-displacement address

definition of 37
Basic direct access method

object-time use of 151,152
Basic sequential access method

compile-time use of 9

object-time use of 151,152
BDAM

(see basic direct access method)
BLDL macro-instruction

compile-time use of 29,136
BLDL table

construction of 29,136

format of 137

in performance module 23

use of 136
Blocks/deblock 1/0 buffers 26
Blocking table

construction of 29,136

format of 136

in performance module 23

use of 136
Bound variable

definition of 47

subscript optimization processing for

47

Branch list table for referenced statement

numbers
allocation of storage for 38-39
format of 144
generation of 38-39
object-time use of 144
Branch list table for statement function
expansions and DO statements
allocation of storage for U6
format of 144
generation of 50
object-time use of 144
BSAM
(see basic sequential access method)
BSP macro-instruction
object-time use of 165
Buffers
chained text 26-28
for blocked I/0 26
in interface module 22
object-time use of 162-165,168-170
Build table
(see BLDL table)

CALL statement

compile-time processing of 42,149
Card image generation 17,39-40,45,48,51
Card images

END 17,51

ESD 17,39,45

RLD 17,39,45,48,51

TXT 17,39-40,45,48,51

CDL
calculation of 125
definition of 125
generation of literals for 47
Chain field
in dictionary 129
in overflow table 132-133
Chaining
in dictionary 126-128
in overflow table 131-133
text buffers 26-28
CHECK macro-instruction
compile-time use of 56
object-time use of 160,163,165,170
Classification scan
of source statements 101-102
CLOSE macro-instruction
compile-time use of 24,98-100
object-time use of 165,171
CLOSE macro-instruction, type=T
compile-time use of 21,23,56,58
Comments card image
scanning of 101
COMMON intermediate text
creation of 34
deletion of 41
format of 109
COMMON statement
compile-time processing of
33-34,36-38,149
generation of intermediate text for
nonsyntactical errors encountered in
38
Communication area
definition of 92
format of 92-94
in interface module 20-21
initialization of 30-31
Compilation
data sets used for 10-11
Compilation input
deblocking of 23
Compilation output
blocking of 23
Compiler
components of 9,18-19
control flow in 11-12,15
data sets used by 10-11
input to 10
input/output requests of 9,21,95,97

main storage allocation to 25,26,89-91

organization of 9
output from 11,16-17
overall operation 11-14
relation to operating system 9
system macro-instructions used by 9
tables used by 126-143
Compile-time I/O errors
processing of 20,56
Computation
array displacement 123-125
subscript 45-47
Computed GO TO statement
compile-time processing of
41,45,50,117,149
Constants
assignment of relative addresses to
36-37

dictionary chains for 126-127
Construction of resident tables
BLDL table 29,136
blocking table 29,136
dictionary 30,34,36,126
overflow table 30,34,36,131
patch table 29,135
SEGMAL 29,134
Continuation card image
scanning of 101
CONTINUE statement
compile-time processing of 149
Control codes
(see format codes)
Control flow
for PRFRM compilations 11-12,15
for SPACE compilations 11,15
Control operations routine
definition of 21
in intcrface module 21,56
Conversion codes
(see format codes)
Conversion routines
in IHCFCOME 153,155
Counter, location
relative address assignment use of 37

DABS in-line function
compile-time processing of 44
Data control block skeleton section
in unit blocks 160-161,166~-167
Data control blocks
compile-time manipulation of
23-24,96,98-100
object-time use of
161,163,165,167,169,171
Data definition (DD) statement 9,98,162
Data event control block
compile-time use of 21
object-time use of 161,167
Data event control block skeleton secticn
in unit pblocks 160-161,166-170
Data flow
compiler overall 16-17
Phase 8 31
Phase 10D 33
Phase 10E 35
Phase 12 37
Phase 14 40
Phase 15 42
Phase 20 Uu46
Phase 25 49
Phase 30 51
Data set reference numbers
compile-time processing of
34,36,39-40,115,126
object-time creation of unit blocks for
160,166
Data sets
for compiler input 10-11
for compiler output 10-11
manipulation of data control blocks for
98-100
object-time initialization of
163-164,168-169
DBLE in-line function
compile-time processing of 44

Index 187

DCB DO statement

(see data control block) compile-time processing of
DCB skeleton section 41,45,47,50,149
(see data control block skeleton Double argument in-line functions
section) compile-time processing of 44
DDNAMES, new DOUBLE PRECISION statement
substituting for compiler data set compile-time processing of 33-34,149
DDNAMES 22 Double-precision constants
DECB assignment of relative addresses for
(see data event control block) 36-37
DECB skeleton section dictionary chain for 126
(see data event control block skeleton DSRN
section) (see data set reference number)
DECK option Dummy subscripted variables
compiler output for 17 subscript optimization processing of 47
Declarative statements Dynamic text buffer chains
definition of 32-33 (see text buffer chains)
intermediate text for 34
Default values Editor
for compiler options 20 (see linkage editor)
object-time insertion of intc DCB Element
skeletons 162 in arrays 123-125
system generation specification of 20 Embedded blanks
DEFINE FILE statement elimination of in source statements 32
compile-time processing of END card image
34,43,45,48,120-121,149 generation of 51
object-time processing of 168,178 in object module 17
DELETE macro-instruction End DO adjective code
compile-time use of 24-25,31,48 insertion of into intermediate text
Deleting load modules 41,116
interface module 25 End mark
object listing module 48 in intermediate text 43,105
performance module 25 END statement
Phase 5 31 compile-time processing cf 51,149
source symbol module 25 EFnd-of-FORMAT statement indicator
Device manipulation object-time encounter of 153,155
object-time routines for 159,165 End-of-logical record indicator
DFLOAT in-line function object-time encounter of 156
compile-time processing of 44 End-of-object module indicator
Diagnostic messages generation of 51
compiler informative 146 in object module 17
error/warning 146-148 End-of-phase requests
generation of 51 compile-time processing of 21,23,56,58
Dictionary End-of-phase rcoutine
chaining in 126-127 in interface module 21,56
entry format 129 in performance module 23,58
freeing of main storage for 39 End-of-statement indicator
index 127 (see end mark)
initialization of 30 ENDFILE statement
organization of 126 compile-time processing of 41,149
use of 126 Object-time implementation of 159
Dictionary pointers Epilog table
replacement of 41,115 format of 142
Dimension entry generation of 49
in overflow table 132 use of 142
Dimension information EQUIVALENCE class 38
array displacement use of 123-125 EQUIVALENCE group 38
Dimension part 123-125 FQUIVALENCE intermediate text
Dimension section 123-125 creation of 34
DIMENSION statement deletion of 41
compile-time processing of 33,149 format of 110-111
Direct access I/0 data management interface EQUIVALENCE root 38
(see IHCDIOSE library subprogram) EQUIVALENCE statement
Displacement compile-time processing of 34,38,149
base 37 generation of intermediate text for
in arrays 123-125 nonsyntactical errors encountered in
Displacement tables 38
(see routine displacement tables) EQUIVALENCE table 140

188

Error intermediate text entry
generation of 35,45,102-103
Error messages
compile-time generation of 51,146-148§
object-time generation of 159
Error recovery procedure, I/0
compile-time 56
object-time 177
Errors, source statement
intermediate text for 35,45,102-103
messages for 51,146-148
ESD
(see external symbol dictionary)
ESD card images
generation of 17,39,45
in object module 17
Executable statements
generation of intermediate text for
34-35,105
Execute (EXEC) statement
External functions
(see library subprograms)
External references
generation of ESD and RLD card images
for 39,45
EXTERNAL statement
compile-time processing of
External symbol dictionary 13

9,20,22

33,149

Files
(see data sets)
FIND statement
compile-time processing of
35,40,114,149
object-time processing of
151-152,169-170
FLOAT in-line function
compile-time processing of 44
Flush requests
definition of 23
performance module processing of
Forcing value
definition of 42
use of 42-43
Forcing value table 141
Format codes
compile-time processing of
object-time processing of
FORMAT intermediate text
format of 108
generation of
FORMAT statement
compile-time processing of
object-time processing of
FREEMAIN macro-instruction
compile-time use of 24-26
object-time use of 171
FREEPOOL macro-instruction
object-time use of 165
Function calls
compile-time processing of
FUNCTION statement
compile-time processing of

23,57

40,74
153-155
34,105

34,40,74,149
153-155

42-44,149
34,49,149
GETMAIN macro-instruction

compile-time use of 25,29
object-time use of 160,166

GO TO statement

compile-time processing of 41,47,50,149
Heading

printing of 29

Hierarchy of operators 42,119-120,140

IABS in-line function
compile-time processing of 44
IF statement
compile-time processing of
42,45-46,50,149
IFIX in-line function
compile-time processing of u4i4
IHCCGOTO library subprogram 45
IHCDIOSE library subprogram
buffering scheme of 168
communication with control program 168
file definition section of 168
file initialization section of
functions of 165
I/0 error processing of 170,177
overall logic of 178-179
read section of 169-170
table and blocks used in 165-168
termination section 170-171
write section 170
IHCFCOME library subprogram
closing section of 156
format scan of 153-155
functions of 151
generation of calling sequences to 151
I/0 device manipulation routines of 159
I/0 list section of 153,155-156
opening section of 152-153
overall logic of 172
read/write routines of 152-156
utility routines of 159-160
write-to-operator routines cf 159
IHCFIOSH library subprogram
buffering scheme of 162
closing section of 165
communication with control program 162
device manipulation section of 165
functions cf 160
initialization section of
I/0 error processing of
overall logic of 176

168-169

163-1e64
165,177

processing for 1403 printer 163,165
read section of 164
table and blocks used in 160-162

write section of 164-165
IHCIBERR library subprogram
functions of 171
generation of calling sequences to U5
overall logic of 181
Images
(see card images)
Immediate DO parameter
insertion of into intermediate text
104,116
Implied DOs
checking of READ/WRITE statements for
41,116
Index
in dictionary
in overflow table

30,127
30,131

Index 189

Index mapping table 142
In-line functions
compile-time processing of 44,119,150
Input/output buffers
(see buffers)
Input/output data sets
(see data sets)
Instruction generation 48-49
Integer constants
assignment of relative addresses to
36-37
dictionary chain for 126
INTEGER statement
compile-time processing of 33,150
Interface module
components of 20-22
functions of 9
I/0 buffers in 22
linkages to 95-96
loaded into main storage 20
returns from 95-96
Interface module routines 21-22,56
Interlude 10E
functions of 18
Interlude 14
functions of 19
Interlude 15
functions of 19
Intermediate text
adjective code field 105
COMMON intermediate text 109
definition of 105
EQUIVALENCE intermediate text 110-111
FORMAT intermediate text 108
generation of 13,34-35
mode/type field 107
modification of 13,115-122
pointer field 107
READ/WRITE/FIND intermediate text
111-114
reordering of 41-43,119-121
subscript intermediate text
108-109,121-122
Internal statement number
compiler assigning of 101,107
Internal text
(see intermediate text)
Internal text buffer chains
(see text buffer chains)
Interruptions, arithmetic
object-time processing of 159-160
I/0 error recovery procedure
compile-time 56
" object-time 177
I/0 list items
object-time processing of 153-155
I/0 requests
compile-time processing of
9,21-23,56,57
I/0 routine
in interface module 21,56
in performance module 22-23,57
I/0 statements
object-time implementation of 151-171
ISN
(see internal statement number)

Job (JOB) statement 9

190

Keywords
processing for if used as variables,
arrays, or external names in source
statements 32

Library exponentiation subprograms
assignment of registers for 44
generation of ESD card images for 45

Library subprograms
exponentiation 45
generation of ESD card images for 39,45
IHCCGOTO 45
IHCDIOSE 165-171,178-180
IHCFCOME 151-160,172-175
IHCFIOSH 160-165,176,180
IHCIBERR 171,181

LINK macro-instruction
specifying substitute DDNAMES for

compiler data sets via 22

Linkage editor
processing of the object module 13-14

Linkages to interface module 95-96

Linkages to performance module 97

List items
(see I/0 list items)

Literals
assignment of relative addresses for 37
generation cf 47
generation of TXT and RLD card images

for 45

LOAD macro-instruction
compile-time use of 20,22,24,48

LOAD option
compiler output for 17

Loading modules
interface module 20
object listing module 48
performance module 22
Phase 5 24
source symbol module 22

Location counter
used in assigning relative addresses 37

Machine-language instructions
generation of 48-49
Macro-instructions
(see system macro-instructions)
Main storage allocation
for branch list tables 38-39,46
for compiler 25-26,89-91
Manipulation
of compile-time data sets 21,23,98-100
of object-time I/0 devices 159,165
of text buffer chains 22,28,57
MAP option
compiler output for 16
Mask, program interrupt
object-time setting of 159
Meaningful blanks
insertion into source statements 32
Message address table 142-143
Messagé length table 142
Message text table 143
Messages
compile-time generation of 51,146-148
object-time generation of 159

Mode/type field

in dictionary 129

in intermediate text 107
Modification of compiler modules 21-22
Modification of intermediate text

for arithmetic expressions

42-43,118-120

for computed GO TO statements 117

for DEFINE FILE statements 120-121

for I/0 statements 116

for RETURN statements 117

NOADJUST option 12,31-34
NOLOAD option 46,51
Nonexecutable statements

(see declarative statements)

Object listing facility
enabling of 22
Object listing module 19,48
Object listing option
compiler output for 16
compiler processing for 22,36,48
Object module
components of 13,17
generation of 13
Object module instructions
genexration of 48-49
Object module tables 144-145
Object program
(see object module)
Object-time error messages
generation of 159
Object-time I/0 errors
processing of 165,170,177
Offset
computation of 123-125
generation of literal for 47
1-dimensional array
array displacement computation of
123-125
overflow table entry for 132
Opening
of data control blocks at compile-time
23-24,98-100
of data control blocks at object-time
163-164,168-169
OPEN macro-instruction
compile-time use of 23-24,98-100
object-time use of 153,163,169
Operands
source statement scan of 102-103
Operations table 141
Operators
source statement scan of 102-103
Optimization, subscript u45-47
Overflow table
chaining in 131
entry formats in 132-133
index for 131
initialization of 30
organization of 131
use of 132

Parameter lists
in DEFINE FILE statements 43
generation of TXT card images for 45

Patch facility
enabling of 29
Patch requests
compile-time processing of 21-22,56
Patch routine
functions of 21-22
in interface module 21-22,56
Patch table 135
PAUSE statement
compile~time processing of 41,150
object-time implementation of 159
Performance module
components of 22-23
functions of 22
linkages to 97
loaded into main storage 22
manipulating of text buffer chains
22,28,57
returns from 97
Performance module routines 22-23,57-58
Performance module tables 23,136-137
Pointer field
in intermediate text 107
Preliminary scan
of source statements 101
PRFRM compilations
blocking compiler output for 22-23,57
constructing text buffer chains for
26-28
control flow for 11-12
data control block manipulation for
98,100
deblocking compiler input for 22-23,57
linkages to performance module for 97
main storage allocation for 26,91
obtaining main storage for 25
opening data control blocks for 24
restart condition for 24,26
Print control operation requests
compile-time processing of 21,56

READ macro-instruction
compile~-time use of 9,56,98-100
object-time use of 153-156,163-164,169
READ statement, direct access
compile~-time processing of
35,40-41,43-44,47,111-114,150
object-time implementation of
151-156,168-170,179
READ. statement, sequential access
compile-time processing of
40-41,43-44,47,111-114,150
object-time implementation of
151-156,163-164,176
Real constants
assignment of relative addresses for
36-37
dictionary chain for 126
REAL statement
compile-time processing of 33,150
Recovery procedure, I/0 error
compile-time 56
object-time 177
Redefinition of integer variables
in subscript expressions 47
Referenced statement numbers
branch list table for 144

Index 191

References, external
generation of ESD card images for
Registers
assignment of
base 37,50
Relative addresses
assignment of 36-37
Relocation dictiomary 13
Removing entries from chains
in dictionary 128
Reordering of intermediate text
for arithmetic expressions
42-43,119-120
for computed GO TO statements 41,117
for DEFINE FILE statements 43,120,121
for READ/WRITE statements 41
Replacement of dictionary pointers
Reserved word
dictionary section
Reserved word scan
of source statements
Reset table
format of 136
in performance module 23
use of 136
RESETABL
(see reset table)
Resident tables
BLDL table 23,29,136-137
blocking table 23,29,136
dictionary 126-130
overflow table 130-133
patch table 135
reset table 23,136
SEGMAL 134
Resident table construction
BLDL table 29,136
blocking table 29,136
dictionary 30,34,36,126
overflow table 30,34,36,131
patch table 29,135
SEGMAL 29,134
Restart condition
definition of 24
processing for 24,26
RETURN macro-instruction
compile-time use of 9
RETURN statement
compile-time processing of
41,49,117,150
REWIND statement
compile-time processing of 41,150
object-time implementation 159,165
RLD
(see relocation dictionary)
RLD card images
generation of 17,39,45,48,51
Routine displacement tables
format of 139
use of 138

39,45

44,118-119

41,115
30,126-127
102-103

SAOP adjective code

in intermediate text 122
Scan

of source statements
SEGMAL

construction of 29

101-104

192

format of 134
use of 134
Sequential access I/0 data management
interface
(see IHCFIOSH library subprogram)
SF
(see statement functions)
Single-argument in-line functions
compile-time processing of 44
SIZE option 23-26
SNGL in-line function
compile-time processing of U4
Source module
input to compiler 10-11
Source module listing 16,31,33-34
SOURCE option
compiler output for 16
Source program
(see source module)
Source statement adjustment 12,31-32
Source statement scan 101-104
Source symbol module 19,22,36
Source symbol table
creation of 17,36
SPACE compilations
control flow for 11
data control block manipulation for
98-99
linkages to interface module for 95-96
main storage allocation for 25,89-90
obtaining main storage for 25-26
opening data control blocks for
SPIE macro-instruction
object~-time use of 159
Statement function numbers
assignment of 41
Statement functions
compile-time processing of
35,41,42,50,145,149
Statement number definitions
compile-time processing cof
Statement numbers
overflow table entries for 34,36,133
Statement processing, compile-time
BACKSPACE 41,149
CALL 42,149
COMMON 33-34,36-38,149
CONTINUE 149
DEFINE FILE 34,43,45,48,120~-121,149
DIMENSION 33,149
direct access READ
35,40-41,43-44,47,111-114,150
direct access WRITE
35,40-41,43-44,111-114,150
DO 41,45,47,50,149
DOUBLE PRECISION 33-34,149
END 51,149
ENDFILE 41,149
EQUIVALENCE 34,38,110-111,149
EXTERNAL 33,149
FIND 35,40,114,149
FORMAT 34,40,74,149
FUNCTION 34,49,149
GO TO 41,47,50,149
IF 42,45-46,50,149
INTEGER 33,150
PAUSE 41,150
REAL 33,150

23-24

50,144,149

RETURN 41,49,117,150

REWIND 41,150

sequential access READ
40-41,43-44,47,111-114,150

sequential access WRITE
40-41,43-44,111-114,150

STOP 41,150

SUBROUTINE 34,49,150

Statement processing, object-time
BACKSPACE 159,165
DEFINE FILE 168,178

direct access READ 151-156,168-170,179
direct access WRITE 151-156,168-170,179

ENDFILE 159
FIND 151-152,169-170
FORMAT 153-155
PAUSE 159
REWIND 159,165
sequential access READ
151-156,163-164,176
sequential access WRITE
151-156,163-165,176
STOP 159
STOP statement
compile-time processing of 41,150
object-time implementation of 159
Storage allocation
(see main storage allocation)
Storage allocation schematics
for PRFRM compilations 91
for SPACE compilations 89-90
Storage map
for assigned relative addresses 36
for generated literals 46
for implied external references U6
for referenced statement numbers 48
generation of 14
Subprograms
argument lists for U8
epilog table for 49,142
ESD card images for 39,45
SUBROUTINE statement
compile-time processing of 34,49,150
Subscript expressions
computation of 123-125
optimization of 47-u48
overflow table entries for 132-133
Subscript intermediate text
108-109,121-122
Subscript optimization
statements subject to
statements that affect
Subscript table 141
SYSIN
input data set for compiler
manipulation of 98-100
opening of data control block for
23,98-100
SYSLIN
manipulation of 98-100
output data set for compiler 10-11,17
SYSPRINT
manipulation of 98-100
opening of data control block for

46,82
47,82

10-11

23,98-100
output data set for compiler 10-11,17
SYSPUNCH

manipulation of 98-100

output data set for compiler 10-11,1
System macro-instructions
used by compiler 9
SYSUT1
constructing text buffer chains for
26-28
manipulation of 98-100
opening of data control block for
23,98-100
overlaying of DCB block size for 21

work data set for compiler 10-11,16-
SYSUT2
constructing text buffer chains for
26-28

manipulation cf 98-100

opening of data control block for
23,98-100

overlaying of DCB block size for 21

work data set for compiler 10-11,16-

Tables
allocation 139
argument list 145
base value 145
BLDL 136-137
blocking 136
branch list 144
dictionary 126-130
epilog 142
equivalence 140
forcing value 140-141
index mapping 142
message address 142-143
message length 142
message text 143

operations 141
overflow 131-133
patch 135

reset 136

resident 126-137
routine displacement 138-139
SEGMAL 134
subscript 141
unit assignment 161-162,167-168
used by compiler 138-143
used by object module 144-145
Termination of compilation
abnormal 25,56
normal 24-25,56
Termination of load module execution
160,171,177
Text
(see intermediate text)
Text buffer chains
construction of for SYSUT1 and SYSUT2
data sets 26-28
format of 27
manipulation of by performance module
22,28,57
use of 28
3-dimensional array
array displacement compuation of
123-125
overflow table entry for 132
Transient work area
required for control program 25

Index

7

17

17

193

Y28-6601-2

2-dimensional array
array displacement computation of
123-125
overflow table entry for 132
TXT card image
generation of 17,39-40,45,48,51
in object module 17
Unit assignment table 161-162,167-168
Unit blocks

for direct access data sets 165-167

for sequential access data sets 160-161
Unit number

(see data set reference number)
Unit tables

(see unit blocks)
Variables

assignment of relative addresses for

36-37

dictionary entries for 34-36

Warning
definition of 103
Warning messages
generation of 51,103

BN

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corparation
821 United Nations Plaza, New York, New York 10017
[International]

Work data sets
for compiler 10-11,16-17
WRITE macro-instruction
compile-time use of 9,56,98-100
object-time use of 154-156,170
WRITE statement, direct access
compile-time processing of
35,40-41,43-44,111-114,150
object-time implementaion of
151-156,168-170,179
WRITE statement, sequential access
compile-time processing of
40-41,43-44,111-114,150
object-time implementation of
151-156,163-165,176
Write-to-operator routines 159
WTO macro-instruction
object-time use of 159

XCTL macro-instruction
compile-time use of
11-12,15,21,23-24,56,58
XOP adjective code
in intermediate text 122

Zero-addressing scheme
used in array displacement computation
123-125

*¥°S°N Ut psjutag

¢-1099-82X

CUT ALONG LINE

READER'S COMMENTS

Title: IBM System/360 Operating System Form: Y28-6601-2

FORTRAN IV (E)
Program Logic Manual

fol

Is the material: Yes No
Easy to Read? N R
Well organized? — —
Complete? —_ —_
Well illustrated? —_ J—
Accurate? — -
Suitable for its intended audience? —_ —_—
How did you use this publication?
—As an introduction to the subject ___ For additional knowledge
Other
Please check the items that describe your position:
—— Customer personnel - Operator _ _Sales Representative
—— IBM personnel — Programmer —_Systems Engineer
— Manager —-Customer Engineer — Trainee
—— Systems Analyst - Instructor Other

Please check specific criticism(s), give page number(s),and explain below:
—-Clarification on page(s)
—— Addition on page(s)
—— Deletion on page(s)
—— Error on page(s)

Explanation:

FOLD ON TWO LINES,STAPLE AND MAIL
No Postage Necessary if Mailed in U.S.A.

fold

Y¥28-6601-2

staple staple
fold fold

r 1

| FIRST CLASS |

| PERMIT NO. 81 |

I |

| POUGHKEEPSIE, N.Y. |

L -

P e

1
BUSINESS REPLY MAIL |
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. |

i

NRRRN
P

RRRRN
IBM CORPORATION

P.O. BOX 390 [T
POUGHKEEPSIE, N. Y. 12602
FEHin

POSTAGE WILL BE PAID BY

ATTN: PROGRAMMING SYSTEMS PUBLICATIONS RERRN! R
DEPT. D58 5
I s
o}
. i
fold =] fold
&
g
?‘
<
N
o]
1
[+)}
[
o
T
8]
IBM
International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601
[USA Only]
IBM World Trade Corporation _ .
821 United Nations Plaza, New York, New York 10017 staple

[International]

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	replyA
	replyB

