
IBM System/360 Operating System

FORTRAN IV (E)

Program Logic Manual

Program Number 360S-FO-OS2

This publication describes the internal
design of the IBM system/360 Operating
System FORTRAN IV (E) compiler program.
Program Logic Manuals are intended for use
by IBM customer engineers involved in pro­
gram maintenance, and by system programmers
involved in altering the program design.
Program logic information is not necessary
for program operation and use: therefore,
distribution of this manual is limited to
persons with program maintenance or modi­
fication responsibilities.

Restricted Distribution

Y28-660l-2

Program Logic

PREFACE

This manual is organized into three
sections. Section 1 is an introduction and
describes the overall structure of the
compiler and its relationship to the oper­
ating system. Section 2 discusses the
functions and logic of each phase of the
compiler. section 3 includes a series of
flowcharts that show the relationship among
the routines of each phase. Also provided
in this section are phase routine director­
ies.

Appendixes at the end of this publica­
tion provide information pertaining to:
(1) source statement scan, (2) intermediate
text formats, (3) table formats, (4) main
storage allocation, etc.

Prerequisite to the use of this publica­
tion are:

IBM Systern/360 Operating System: Princi­
ples of Operation, Form A22-6821

IBM Systern/360 Operating System: FORTRAN
IV (E) Language, Form C28-6513

IBM System/360 Operating System: Intro­
duction to Control Program Logic, Pro­
gram Logic Manual, Form Y28-6605

IBM Systern/360 Operating System: FORTRAN
IV (E) Programmer's Guide, Form C28-6603
(sections "Job Processing" and
"Cataloged Procedures")

Third Edition (September 1966)

Although not prerequisite, the following
documents are related to this publication:

IBM Systern/360 Operating System: FORTRAN
IV (E) Library Subprograms, Form
C28-6596

IBM Systern/360 Operating System: Seguen­
tial Access Methods, Program Logic Manu­
al, Form Y28-6604

IBM System/360 Operating System: Con­
cepts and Facilities, Form C28-6535

IBM Systern/360 Operating System: Control
Program Services, Form C2S-6541

IBM Systern/360 Operating System: Linkage
Editor, Program Logic Manual, Form
Y28-6610

IBM Systern/360 Operating System: Data
Management, Form C28-6537

IBM Systern/360 Operating System: System
Generation, Form C28-6554

This compiler is similar in design to
the IBM System/360 Basic Programming Sup­
port FORTRAN IV Compiler.

This is a major revision of, and obsoletes, Form Y28-6601-1. Signifi­
cant changes have been made throughout the text. This edition should be
reviewed in its entirety.

This revision incorporates information pertaining to:
(1) compile-time and object-time processing of direct access statements,
(2) dynamic text buffer chaining, (3) removal of restrictions on source
modules, and (4) larger storage arrays.

This publication was prepared for production using an IBM computer to
update the text and to control the page and line format. Page
impressions for photo-offset printing were obtained from an IBM 1403
Printer using a special print chain.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form is provided at the back of this publication for reader's
comments. If the form has been removed, comme'nts may be addressed to
IBM Corporation, Programming Systems publications, Department 058,
PO Box 390, poughkeepsie, N. Y. 12602

SECTION 1: INTRODUCTION • 9

The Compiler and Operating System/360. •
The Interface Module. •

9
9
9 system Macro-Instructions

Compiler Organization. • • • •

Communication Among Compiler Phases.
The Communication Area.
Intermediate Text •
Resiaent Tables •

Compiler Input/Output Flow • •

9

10
10
10

• 10

10

Overall Con1piler Operation 11
Initialization (Phases 1, 5, and 7) • 12
Source Statement Adjustment if

Required (Phase 8) • • • • • •• 12
Source Statement Scanning (Phases

100 and 10E) • • • • • • • • • • • • 12
Translation of the Source Module

(Phases 100, 10E, 14, 15, and 20) •• 13
Intermediate Text Generation

(Phases 100 and 10E). • • • • • • 13
Intermediate Text Modification

(Phases 14, 15, and 20) • • • • • 13
Object Module Generation (Phases

12, 14, 20, 25, and 30). • • •• 13
storage Map Generation (Phases 12,

20, and 25). • • • • • • • • • 14
Diagnostic Message Generation

(Phase 30) • • • • • • • • • • • • • 14

SECTION 2: DISCUSSION OF COMPILER
PHASES ••

Phase 1 (IEJFAAAO/IEJFAABO) • •
Initial Entry • • • • • • •

Loading the Interface Module •
Processing Compiler Options and

20

• 20
20
20

New DDNAMES • • • • • • • • • • • 22
Loading the Source Symbol Module • 22
Loading the Performance Module • • 22
Opening Required Data Control

Blocks. • • • • • •••••• 23
Loading Phase 5. • • • • •• • 24

Subsequent Entries. • • • • • • 24
Initiating a New Compilation • • • 24
Terminating the Compilation. • 24

Phase 5 (IEJFCAAO) • • • •
Obtaining Main Storage.
Allocating Main Storage • •

For SPACE Compilations • • •
For PRFRM Compilations •

Constructing Text Buffer Chains for
PRFRM Compilations • • • • • •

Constructing Resident Tables. •
SEGMAL • • •• •• • • •
Patch Table.. •••••
Blocking Table and BLDL Table. •

25
25

• 25
• 25

26

26
• 29

29
29

• 29

CONTENTS

Phase 7 (IEJFEAAO) • • • • . • 29
Initializing the Cverflow Table and
the Dictionary . • • . • • 30

Overflow Table Index • • • • . • . 30
Dictionary Index and Reserved

Word Portion. • • • • • • • • • • 30
Initializing the communication Area . 30
Deleting Phase 5 if Loaded. ••• 31

Phase 8 (IEJFFAAO) •••••••
Eliminating Embedded Blanks
Adding Special Characters • •
Inserting Meaningful Blanks •

• 31
• • 32

• 32
• 32

Phase 100 (IEJFGAAO) • • • • • • 32
Creating Intermediate Text for
Declarative Statements • • • • • • • 34

Constructing Dictionary and
Overflow Table Entries . 34

Phase 10E (IEJFJAAO) • •• • •••• 34
Creating Intermediate Text for
Statement FUnctions, Executable
Statements, and Format Statements. • 35

Constructing Dictionary and
Overflow Table Entries • • • 36

Phase 12 (IEJFLAAO). • • • 36
Address Assignment. • • • • 37
Equivalence Statement Processing ••• 38
Branch List Table Preparation • • 38
Card Image Preparation. • • • • 39

Phase 14 (IEJFNAAO). • • • •• . •• 39
Format Statement Processing • 40
READ/WRITE/FIND Statement
Processing • • • • • • • • . • • 40

Replacing Dictionary Pointers • • 41
Miscellaneous Statement Processing •• 41

Phase 15 (IEJFPAAO) •.••
Reordering Intermediate Text.

· 42
• • 42

• 42
43

• • • 43

For Arithmetic Expressions •
For DEFINE FILE Statements •

Modifying Intermediate Text
Assigning Registers • • • • • •
Creating Argument Lists • • • • •
Checking for Statement Errors • •

· 44
• • 44
• • 45

Phase 20 (IEJFRAAO) ••••••••••• 45
Processing of Statements That
Require Subscript Optinlization • • • 46

Processing of Statements That
Affect, But Do Not Require,
Subscript Optimization • • • • • 47

DO and READ Statements • • . 47
Referenced Statement Numbers • 47
Subprogram Argument. • • • • • • . 47

Creating the Argument List Table. • • 48

Phase 25 (IEJFVAAO) •.. • • 48

Generation of Object Module
Instructions • • • • • • • • • • • . 48

Completion of Object Module Tables. . 49
Branch List Table for Statement

Numbers • • . • • • • • • • . • • 50
Branch List Table for SF
Expansions and DO Statements ••• 50

Base Value Table ••••••• 50

Phase 30 (IEJFXAAO) ••
Producing Error and Warning

Messages • • • • • • • • •
Processing the END Statement. •

SECTION 3: CHARTS AND ROUTINE
DIRECTORIES

• • • 51

• 51
• 51

• • 53

APPENDIX A: MAIN STORAGE ALLOCATION • • 89
For Spa.ce Compilations. . •• 89
For PRFRM Compilations. • • 91

APPENDIX B:
(FCOMM)

COMMUNICATION AREA
• 92

APPENDIX C: LINKAGES TO THE INTERFACE
MODULE AND THE PERFOR~ANCE MODULE . 95

Linkage to the Interface Module • • • 95
Input/Output Request Linkage • • • 95
End-Of-Phase/Interlude Request

Linkage • • • • • • • • • • • • • 96
Patch Requests • • • • • • • • • • 96
Print Control Operations • • • • • 96

Linkage to the Performance Module • • 97
Input/Output Request Linkage • 97
End-Of-Phase Request Linkage • • • 97

APPENDIX D: DATA CONTROL BLOCK
MANIPULATION. • • • • • •

For SPACE Compilations •••
For PRFRM Compilations •••

• 98
· • • 98
· • • 98

APPENDIX E: SOURCE STATEMENT SCAN ••• 101
Preliminary Scan. • • • • • • • .101
Classification Scan. • • • .101
Reserved Word or Arithmetic Scan ••• 102

APPENDIX F: INTERMEDIATE TEXT ••• 105
An Entry in Intermediate Text •••• 105

Adjective Code Field. • .105
Mode/Type Field. • • • • • • • • .107
Pointer Field. • • • • • • • .107

An Example of Intermediate Text ••• 107
Unique Forms of Intermediate Text •• 108

FORMAT Statements. • • .108
Subscripted Variable ••••••• 108
COMMON Statements ••••••••• 109
EQUIVALENCE Intermediate Text ••• 110
READ/WRITE and FIND Statements •• 111

Modifying Intermediate Text ••• 115
Phase 14 • • •• 115
Phase 15 • • •••••• 117
Phase 20 • • •• 121

APPENDIX G: ARRAY DISPLACEMENT
COMPUTATION

One Dimension •
Two Dimensions.
Three Dimensions. •

• •• 123
.123

• .123
• •• 124

General Subscript Form •
Array Displacement • • .

· .. 125
.125

APPENDIX H: RESIDENT TABLES. . .126
The Dictionary •••••.•.••.. 126

Phase 7 Processing • • . .126
Phases 100 and 10E Processing ... 126
Phase 12 Processing •.••..•• 128
Phase 14 ProcEssing. • • • • .128
Dictionary Entry Format. .. .129

The Overflow Table. . • . • .. .131
Organization of the Overflow
Table. • • • • • • • . • . .131

Construction cf the Overflow
Ta.ble . • • • • . . • • • • .131

Use of the Overflow Table.. .132
Overflow Table Entry .. 132

SEGl~L. • • . • • . . .134
Phase 1 Use. • • • . • • •• 134
Phase 5 Use. • . • .134
Phase 7 Use. ~ .• 134
Phases 10D, 10E, and 14 Use. .134
Format of SEGMAL •..•••••• 134

Patch Table. • . • .135
Blocking Table. •. . •••••• 136
BLDL Table. • • . • . ••.••. 136
Reset Table (RESETABL). • .136

APPENDIX I: TABLES USED BY PHASE LOAD
MODULES ••••.•

Allocation Table. . •
Routine Displacement Tables
Equivalence Table •
Forcing Value Table
Operations Table. .
Subscript Table • •
Index Mapping Table • .
Epilog Table. . • •
Message Length Table. . . • • •
Message Address Table • .
Message Text Table. • •

.138

.138

.138
· •• 140

.140

.141

.141
• .142

· •• 142
.142
.142

· .143

APPENDIX J: TABLES USED BY THE OBJECT
MODULE ••. • .144

Branch List Table for Referenced
Statement Numbers ••••••••.• 144

Branch List Table for SF Expansions
and DO Statements •••••••.•. 144

Argument List Table for SUbprogram
and SF Calls. • • • .145

Base Value Table. • .145

APPENDIX K: DIAGNOSTIC MESSAGES AND
STATEMENT/EXPRESSION PROCESSING .146

Diagnostic t-'lessages • • . • • • • • .146
Inforn-:ati ve 1'-lessages • . • • . • .146
Error/Warning Messages •• • .146

Statement/Expression Processing •.• 148

APPENDIX L: OBJECT-TIME LIBRARY
SUBPROGRAMS • • . • • • • •• 151

IHCFCOME • • • • • •••••• 151
Operation of IHCFCOME Routines •••• 152

Read/Write Routines ••.....• 152
Examples of IHCFCOME READ/WRITE
statement Processing •••.•.• 156

I/O Device Manipulation Routines .159

Write-to-Operator Routines •••• 159
Utility Routines. • • .159

IHCFIOSH • • • • • • • •
Blocks and Table Used •

Unit Blocks •••••
Unit Assignment Table.

• •• 160
• •• 160

•• 160
• •• 161

Buffering • • • • • • • • •
Communication With the Control

• •• 162

Program ••• • •• 162
Operation ••

Initialization •
• • • • • • .163
• •••••• 163

.164 Read • • • • • •
Write. • • • • • • • • • • • .164
Device Manipulation.
Closing ••

• ••. 165
.165

IHCOIOSE • • • • • •• 165

Chart 00. Overall Compiler Control
Flow. · · · · · · · · · · · · · · · 15

Chart 10. Phase 1 (IEJFAAAO/IEJFAABO)
Overall Logic · · · · · · · · · · · · · 54

Chart 11. Interface Module (IEJFAGAO)
Routines. · · · · · · · · · · 56

Chart 12. Performance Module
(IEJFAPAO) I/O Routine. · · · 57

Chart 13. Performance Module
(IEJFAPAO) End-of-Phase Routine · 58

Chart 20. Phase 5 (IEJFCAA.O) Overall
Logic · · · · · · · · · · · · · · · · · 59

Chart 30. Phase 7 (IEJFEAAO) Overall
Logic · · · · · · · · · · · · · · · · · 61

Chart 40. Phase 8 (IEJFFAAO) Overall
Logic · · · · · · · · · · · · · · 62

Chart 50. Phase 10D (IEJFGAAO)
Overall Logic · · · · · · · · 64

Chart 60. Phase 10E (IEJFJAAO)
Overall Logic · · · · · · · · · 67

Chart 70. Phase 12 (IEJFLAAO) Overall
Logic · · · · · · · · · · · · · · 70

Chart 80. Phase 14 (IEJFNAAO) Overall
Logic · · · · · · · · · · · · · · 72

Blocks and Table Used • •
Unit Blocks. • • • • • •
Unit Assignment Table. •

Buffering • • • • • • . • •
Communication With the Control

•••. 165
.166

Program. • • • • • • • • •
Operation • • • • • • • • • • •

File Definition section. • •
File Initialization section.
Read Section • • • •
Write Section. • • •
Termination Section.

IHCIBERR •

GLOSSARY •

INDEX. • •

• .167
• .168

.168
• •• 168
· .. 168

.168

.169
· •• 170

· .170

.171

• •• 183

.186

CHARTS

Chart 90. Phase 15 (IEJFPAAO) Overall
Logic · · · · · · · · · · · · · · 76

Chart AO. Phase 20 (IEJFRAAO) Overall
Logic · · · · · · · · · · · · · · 81

Chart BO. Phase 25 (IEJFVAAO) Overall
Logic · · · · · · · · · · · · · · 84

Chart co. Phase 30 (IEJFXAAO) Overall
Logic · · · · · · · · · · · · · · 87

Chart DO. READ Statement Scan Logic · .104
Chart EO. IHCF'COME Overall Logic and
Utility Routines. · · · · · · · · · · .172

Chart El. IRplernentation of
READ/WRITE/FINO Source Statements · · .173

Chart E2. Device Manipulation ana
Write-to-operator Routines. · · · · · .174

Chart E3. IHCFIOSH Overall Logic. · · .176
Chart E4. Execution-Time I/O Recovery

Procedure . . . · · · · · · · · · · · .177
Chart E5. IHCDIOSE Overall Logic -
File Definition Section · · · · · · · .178

Chart E6. IHCDIOSE Overall Logic -
File Initialization, Read, write and
Termination Sections. · · · · · · · · .179

Chart E7. IHCIBERR Overall Logic. · · .181

FIGURES

Figure 1. Compiler Input/Output
Structure • • • • • • • • • • • • 11

Figure 2. Compiler Input/Output Flow •• 17
Figure 3. Text Buffer Chain Format. • • 27
Figure 4. Text Buffer Chain Use •••• 28
Figure 5. Relative Main storage
Locations Occupied by Dictionary and
Overflow Table Elements, and SEGMAL •

Figure 6. Phase 8 Data Flow.
• 30
• 31

Figure 7. Phase 100 Data Flow ••
Figure 8. Phase 10E Data Flow ••
Figure 9. Phase 12 Data Flow.
Figure 10. Phase 14 Data Flow •
Figure 11. Phase 15 Data Flow
Figure 12. Phase 20 Data Flow
Figure 13. Phase 25 Data Flow
Figure 14. Sample Base Value Table

• • . 33
• • • 35

• 37
• • 40

• • • 42
• • • 46

• 49

Values ••••••••••••••••• 50
Figure 15. Phase 30 Data Flow • • • • • 51
Figure 16. Main Storage at the End of

Phase 1 (initial entry) • • • • • • • • 89
Figure 17. Main Storage at the End of

Phase 1 (subsequent entries) •••••• 89
Figure 18. Main storage at the End of

Phase 5 • • • • • • • • • • • • • • • • 89
Figure 19. Main Storage at the End of
Phases 7, 8, 100, and 10E; and
Interlude 10E • • • • • • • • • • • • • 90

Figure 20. Main Storage at the End of
Phases 12 and 14, and Interlude 14. • • 90

Figure 21. 1-1ain Storage at the End of
Phases 15 and Interlude 15 ••••••• 90

Figure 22. Main Storage at the End of
Phases 20, 25, and 30 (on entry to
Phase 1) •••••••••••••••• 90

Figure 23. Main Storage Allocation
for a PRFRM Compilation • • • • • • 91

Figure 24. Data Control Block
Manipulation for SPACE Compilations • • 99

Figure 25. Data Control Block
Manipulation for PRFRM Compilations •• 100

Figure 26. Intermediate Text Word
Format. • • • • • • • •

Figure 27. Intermediate Text
Adjective Codes • • • •

Figure 28. Example of Intermediate
Text for an IF Statement. • •

Figure 29. FORMAT Statement

.105

.106

.107

Intermediate Text ••••••••••• 108
Figure 30. Subscripted Variable
Intermediate Text - (First Word) •••• 108

Figure 31. Subscripted Variable
Intermediate Text - (Second Word) ••• 108

Figure 32. Example of Subscripted
Variable Intermediate Text ••••••• 109

Figure 33. COMMON Intermediate Text •• 109
.figure 34. Example of COMMON
Intermediate Text ••••••••••• 109

Figure 35. EQUIVALENCE Intermediate
Text. • • • • • • • • • •• 110

Figure 36. Example of EQUIVALENCE
Intermediate Text ••••• ~ ••••• 111

Figure 37. Intermediate Text Created
for General I/O Statement ••••••• 112

Figure 38. Intermediate Text Created
for READ (1,10) (A(N),N=1,10),B •••. 113

Figure 39. Intermediate Text Created
for WRITE (5'I(J), 10) (A(N),N=1,10),
B • • • • • • • • • • • • • • • • • • .114

Figure 40. Intermediate Text Created
for FIND (3'5) •••••••••••.• 114

Figure 41. Replacement of Dictionary
Pointers by Phase 14. • •••.• 115

Figure 42. Example of Input to Phase
14. • • • • • • • • • • • •. .116

Figure 43. Example of Output from
Phase 14. • • • • • • • . • • •• .116

Figure 44. Intermediate Text Input to
Phase 14 for a Computed GO TO
Statement ••••••••••••••• 117

Figure 45. Intermediate Text Output
From Phase 14 for a Computed GO TO
Statement •••••.••••••••• 117

Figure 46. Intermediate Text Input to
Phase 15 for an Arithmetic Statement •• 118

Figure 47. Intermediate Text output
From Phase 15 for an Arithmetic
Statement ••••••••••••••• 118

Figure 48. Assignment of Registers by
Phase 15 ••.•••.•.•.••••• 119

Figure 49. Unordered Internlediate
Text for an Arithmetic Statement ••.• 120

Figure 50. Reordered Intermediate
Text for an Arithmetic Statement. .120

Figure 51. Intermediate Text Input to
Phase 15 for a DEFINE FILE Statement •• 120

Figure 52. Intermediate Text Output
From Phase 15 for a DEFINE FILE
Statement • • • • • • • • • • •• .121

Figure 53. Subscript Intermediate
Text Input Format ••••••••••• 121

Figure 54. Subscript Intermediate
Text Output From Phase 20 -- SAOP
Adjective Code •••••.••••.•• 122

Figure 55. Subscript Interrr:ediate
Text Output from Phase 20 -- XOP
Adjective Code ••••••••••••• 122

Figure 56. Subscript Intermediate
Text Output from Phase 20 -- AOP
Adjective Code •••.•.••••••• 122

Figure 57. Referencing a Specified
Element in an Array. •• • •••• 124

Figure 58. The Dictionary as
Constructed by Phase 7. • •• • •• 127

Figure 59. Removing an Entry From the
End of a Dictionary Chain. • •• .128

Figure 60. Removing an Entry From the
Middle of a Dictionary Chain •••••• 128

Figure 61. General Format of a
Dictionary Entry •••••••••••• 129

Figure 62. Function of Each Subfield
in the Dictionary Usage Field ••••• 129

Figure 63. The Various Mode/Type
Combinations •••••••••••••• 130

Figure 64. Phases That Enter
Information Into Specific Fields of a
Dictionary Entry. • • • • .130

Figure 65. The Overflow Table Index
as Constructed by Phase 7 ••••••• 131

Figure 66. Format of Dimension
Information in the Overflow Table ••• 132

Figure 67. Format of Subscript
Information in the Overflow Table ••• 133

Figure 68. Format of Statement Number
Information in the Overflow Table ••• 133

Figure 69. statement Number Entry
Usage Field Bit Functions. • • • .133

Figure 70. Format of SEGMAL • •• .134
Figure 71. Format of the Patch Table •• 135
Figure 72. Blocking Table Entry

Format ••••••••••••••••• 136
Figure 73. BLDL Table Format. • •• 137
Figure 74. Phase 100 Routine
Displacement Table Format •••.••• 139

Figure 75. Phase 10E Routine
Displacement Table F'orfitat • • • • .139

Figure 76. Locating the DO Reserved
Word Routine •••.•••••••••• 140

Figure 77. Forcing Value Table. • .141
Figure 78. Operations Table Entry

Format ••••••••••••••••• 141
Figure 79. Subscript Table Entry
Format ••••••••••••••••• 141

Figure 80.
Format. •

Figure 81.
Figure 82.

Format. •
Figure 83.

Format ••
Figure 84.
Figure 85.
Table for

Index Mapping Table Entry
• • • • • • • • . • • • • • .142
Epilog Table Entry Format .• 142
Message Length Table

. .142
Message Address Table

• • • • • • • • . • . • .143
Message Text Table Format .• 143
Format of Branch List

Referenced Statement
Numbers • • • • • • • • • • .144

Figure 86. Format of Branch List
Table for SF Expansions and DO Loops .• 144

Figure 87. Format of Argument List
Taole for Subprogram and SF Calls ..• 145

Figure 88. Format of Base Value Table .145
Figure 89. Relationship Between

IHCFCOME and I/O Data Management
Interfaces. • • • • • • • . • •• .152

Figure 90. Format of a Unit Block for
a sequential Access Data Set. •. .160

Figure 91. Unit Assignment Table
Format. • • • • • • • • • • .162

Figure 92. CTLBLK Format ..•.•... 163
Figure 93. Format of a Unit Block for

a Direct Access Data Set. • .166
Figure 94. Unit Assignment Table
Entry for a Direct Access Data Set •.. 167

TABLES

Table 1. Compiler Components and
Their Major Functions • • • ~ • • • 18

Table 2. Phase 1 Main
Routine/Subroutine Directory. • • 55

Table 3. Phase 5 Main
Routine/Subroutine Directory. • • • 60

Table 4. Phase 8 Routine/Subroutine
Directory • • • • • • • • • • • • • 63

Table 5. Phase 10D Statement
Processing. • • • • • • • • • •• • 65

Table 6. Phase 10D Main
Routine/Subroutine Directory. • • • 66

Table 7. Phase 10E Statement
Processing. • • • • • • • • • • 68

Table 8. Phase 10E Main
Routine/Subroutine Directory. • 69

Table 9. Phase 12 Main
Routine/Subroutine Directory. • • • 71

Table 10. Phase 14 Statement
Processing (FORMAT Statements
Excluded) • • • • • • • • 73

Table 11. Phase 14 FORMAT Statement
Processing. • • • • • • • . • • 74

Table 12. Phase 14 Main
Routine/Subroutine Directory. • • • 74

Table 13. Phase 15 Nonarithmetic
Statement Processing. • • • • • • • 77

Table 14. Phase 15 Arithmetic
Operator Processing • • • • • • 78

Table 15. Phase 15 Main
Routine/Subroutine Directory. • • • • • 79

Table 16. Phase 20 Nonsubscript
Optimization Processing • • • 82

Table 17. Phase 20 subscript
Optimization Processing • • • 82

Table 18. Phase 20 Main
Routine/Subroutine Directory. • • • 83

Table 19. Phase 25 Statement and
Adjective Code Processing ••

Table 20. Phase 25 Main
Routine/Subroutine Directory ••

Table 21. Phase 30 Main
Routine/Subroutine Directory. • •

Table 22. Communication Area ••
Table 23. Operation Field Bit

• . • 85

• 86

88
• 92

Meanings. • • • • • • • . • • • . 95
Table 24. Data Set Disposition Field
Bit Meanings. • • • . • • • • • • • • • 96

Table 25. SymLolic and Actual Names
of Compiler Components. • • . . 97

Table 26. Array Size Maximums •• 125
Table 27. Allocation Table ••..•.• 138
Table 28 • Informative Messages. • . . .146
Table 29. Error/Warning Messages .•.• 146
Table 30. Statement/Expression

Processing •.•••.••••..•.• 149
Table 31. IHCFCOME FOR~~T Code
Processing. . • • • •154

Table 32. IHCFCOIvl.E Processing for a
READ Requiring a Format. • • .157

Table 33. IHCFCOME Processing for a
WRITE Requiring a Format. • • • •• 157

Table 34. IHCFCOME Processing for a
READ Not Requiring a Format. . .158

Table 35. IHCFCOME Processing for a
WRITE Not Requiring a Format. • .158

Table 36. IHCFCO~ili Routine/Subroutine
Directory

Table 37.
Table 38.

• . • • • . • . • • • • • • .175
IHCFIOSH ROlltine Lirectory. .180
IHCDIOSE Routine Directory .• 180

This publication describes the internal
logic of the FORTRAN IV (E) compiler, which
translates source modules written in the
FORTRAN IV (E) language into machine­
language object modules. The object
modules are used as an input to the linkage
editor program, which produces load modules
for execution on the IBM System/360. If
the compiler detects errors in the source
modules, appropriate error messages are
produced.

THE COMPILER AND OPERATING SYSTEMV360

The FORTRAN IV (E) compiler is a pro­
cessing program of the operating system
and, as such, communicates with the follow­
ing parts of the operating system control
program:

• Job management routines that analyze
job control language statements.

• Task management routines that allocate
main storage for use by the compiler.

• Data management routines that read data
from and write data onto input/output
devices.

The execution of the compiler (i.e., a
single compilation, or a batch of
compilations) is introduced as a job step
under the control of the operating system
via the job statement (JOB), the execute
statement (EXEC), and data definition
statements (DO) for the input/output data
sets. To keep these statements at a mini­
mum in the job stream, cataloged procedures
are provided. A discussion of the execu­
tion of the compiler as a job step and of
the available cataloged procedures is given
in the publication IBM System/360 Operating
System: FORTRAN IV (E) Programmer's Guide.

In addition, any job step may invoke the
compiler via the LINK or ATTACH macro­
instruction.

The compiler initially receives control
from the calling program via a supervisor­
assisted linkage. Once the compiler
receives control, it maintains commun~­
cation with the operating system through:

• The interface module.
• System macro-instructions.

SECTION 1: INTRODUCTION

THE INTERFACE MODULE

The interface module, a component of the
FORTRAN IV (E) compiler, resides on the
operating system library (SYS1.LINKLIB).
This module is loaded, via the LOAD macro­
instruction, into main storage and remains
in main storage until control is returned
to the calling program. The interface
module processes all read/write requests of
the compiler using the BSAM (basic
sequential access method) read/write rou­
tines. A description of BSAM and the
corresponding read/write routines is given
in the publication IBM System/360 Operating
System: seguential Access Methods, Program
Logic Manual.

SYSTEM MACRO-INSTRUCTIONS

Whenever the XCTL, LOAD, DELETE, OPEN,
OPEN (type=J), CLOSE, CLOSE (type=T), READ,
WRITE, CHECK, RDJFCB, GETMAIN, FREE~~IN,

BLDL, SPIE, or TIME macro-instruction is
issued, control is given directly to the
operating system to execute the requested
service.

When the execution of the compiler is
terminated, control is returned to the
calling program via the RETURN macro­
instruction.

For a description of these macro­
instructions, refer to the publication IBM
System/360 Operating System: control
Program Services.

COMPILER ORGANIZATION

The FORTRAN IV (E) compiler consists of
several components, each of which exists as
a separate load module on the operating
system library (SYS1.LINKLIB). The compo­
nents are:

• Phases (1, 5, 7, 8, 10D, 10E, 12, 14,
15, 20, 25, and 30).

• Interludes (10E, 14, and 15).
• Interface module.
• Performance module.
• Source symbol module.
• Object listing module.

Section 1: Introduction 9

The compiler components, their symbolic
names, and their major functions are sum­
marized in the discussion of overall com­
piler operation (refer to Table 1).

COMMUNICATION AMONG COMPILER PHASES

Communication among the phases of the
FORTRAN IV (E) compiler is implemented via:

• The communication area.
• Intermediate text.
• Resident tables.

THE COMMUNICATION AREA

The communication area is a central
gathering area (a portion of the interface
module) for information common to the phas­
es.. It is used to communicate this infor­
mation, when necessary, among the phases.

INTERMEDIATE TEXT

Source module statements (both executa­
ble and nonexecutable) are converted into
intermediate text. This intermediate text,
once it is created, is used as input to the
subsequent phases of the compiler. The
intermediate text for the executable state­
ments is eventually transformed into
machine-language instructions.

RESIDENT TABLES

The resident tables contain information
that remains in main storage throughout the
compilation process. The resident tables
are the dictionary, the overflow table, the
segment address list (SEGMAL), the patch
table, the blocking table, the BLDL table,
and the reset table. The dictionary is a
reference area containing information about
variables, arrays, constants, and data set

10

reference numbers used in the source
module. (For SPACE compilations, the dic­
tionary resides in main storage only
through the execution of Phase 14.) The
overflow table contains all dimension, sub­
script, and statement number information
within the source module. SEGMAL is used
for main storage allocation within the
compiler. The patch table contains infor­
mation to be used to modify compiler compo­
nents. The blocking table contains infor­
mation necessary for deblocking compiler
input and blocking compiler output for
PRFRM compilations. The BLDL table pro­
vides the information necessary for trans­
ferring control from one component to the
next for PRFRM compilations. The reset
table is used to determine which, if any,
of the record counts for the SYSUT1 and
SYSUT2 data sets must be reset. (The
blocking table, the BLDL table, and the
reset table reside in main storage only for
PRFRM compilations.)

COMPILER INPUT/OUTPUT FLOW

The initial input (source modules) to
the compiler is provided in the form of
cards or card images on intermediate stor­
age, and is read into main storage from the
SYSIN data set. The compiler uses SYSUT1
and SYSUT2 as intermediate text work data
sets. If the buffers to be used for
reading from and writing onto these work
data sets are large enough to contain the
intermediate text representation of the
source module, then this text is retained
in main storage.

The output of the cow.piler is placed
onto the SYSPRINT, SYSLIN, and SYSPUNCH
data sets as specified by the user. SYS­
PRINT is always used. SYSLIN is used only
if the LOAD option is in effect. SYSPUNCH
is used only if the DECK option is in
effect.

Figure 1 shows
options that are
compiler output.

the various compiler
available for obtaining

r-------------,
ISource Module I
I (SYSIN) I
L------T------J

I
I
I
I

SYSUT1
and

SYSUT2

r-----t-----, r------------,
I I--"""I.~I Intermediate I
1 COMPILER 1 Iwork data I
I 14 1 sets 1
L--~--T-----J L ____________ J

I
I

r------------T----------T-----------T-t---------T------------T--------------,
SOURCE SOURCE and MAP I DECK LOAD Object For all
and ADJUST NOADJUST option option option listing compilations
options options I 1 I option ($) I

r----t----, r-----t----, r---t---, r-----t----, r----t-----, r----t-----, r------t------,
I Source I ISource I I Storage 1 IObject I IObject I IObject I I Heading, com-I
I module I Imodule I Imap 1 Imodule I Imodule I Imodule 1 Ipiler infor- I
I listing I Ilisting I I 1 I (ESD, TXT, 1 I (ESD, TXT, I Ilisting I Imative mes- I
I I I I I I IRLD, and I IRLD, and 1 I (if the I Isages, list I
I (Phase 8) I I (Phases I I I I END card I lEND card I lobject I lof patch rec-I
I I 1100 & 10E) I I I I images) I I images) I Ilisting I lords if any, I
I I I I I I I I I I Ifacility I land error andl
I I I I I I I I I I I is en- I I warning mes- I
I I I I I I I I I I I abled) I I sages if any I L _________ J L __________ J L _______ J L __________ J L __________ J L __________ J L _____________ J

SYSPRINT SYSPRINT SYSPRINT SYSPUNCH SYSLIN SYSPRINT SYSPRINT

Figure 1. Compiler Input/Output Structure

OVERALL COMPILER OPERATION

The overall operation of the compiler
involves the following general functions:

• Initialization (Phases 1, 5, and 7).

• Source statement adjustment if required
(Phase 8).

• Source statement scanning (Phases 100
and 10E).

• Translation of the source module
(Phases 100, 10E, 14, 15, and 20).
1. Intermediate text generation

(Phases 100 and 10E).
2. Intermediate text modification

(Phases 14, 15, and 20).

• Object module generation (Phases 12,
14, 20, 25, and 30).

• Storage map generation (Phases 12, 20,
and 25).

• Diagnostic message generation (Phase
30).

The manner in which control is trans­
ferred among the compiler components
depends on whether the SPACE or PRFRM
option is specified by the user. The SPACE
option is chosen if the amount of main
storage that is available for compilation
is limited. The PRFRM option is chosen if
the user desires maximum compiler efficien­
cy and if the amount of available main
storage is not a limitation.

Lf the SPACE option is specified, con­
tfol is transferred among the compiler
components via the interface module. After
each component has been executed, that com­
ponent branches to the interface module
with the name of the component to be
executed next. The interface module then
transfers control to the next component via
the XCTL macro-instruction.

If the PRFRM option is specified, con­
trol is transferred among the compiler
components via the performance module.
After each component has been executed,
that component branches to the interface
module with the name of the component to be
executed next. The interface module, in
turn, branches to the performance module.

Section 1: Introduction 11

If the next component is an interlude, the
performance module bypasses the execution
of the interlude and transfe:r:s control, via
the XCTL macro-instruction, to the next
phase of the compiler. If the next compo­
nent is a phase, the performance module
immediately transfers control to the next
phase.

Figure 2 illustrates the overall compil­
er input/output flow and includes inter­
mediate input to and from the various
phases of the compiler.

Chart 00 shows the overall compiler
control flow. Table 1 summarizes the major
functions performed by each component of
the compiler.

INITIALIZATION (PHASES 1, 5, AND 7)

Certain initialization steps must be
performed prior to any source module pro­
cessing. The steps that are performed
depend on whether the first compilation or
a subsequent compilation in a batch is
being initialized.

For the first compilation in a batch,
initialization consists of the following
functions:

12

• Loading the interface module into main
storage (Phase 1).

• Processing compiler options (Phase 1).

• Loading the source symbol module into
main storage if the object listing
option is in effect and if the object
listing facility of the compiler has
been enabled (Phase 1).

• Loading the performance module into
main storage if the PRFRM option is in
effect and if the SIZE option is at
least 18,504 (Phase 1).

• Opening required data control blocks
for the data sets used by the compiler
(Phase 1).

• Loading Phase 5 into main storage
(Phase 1).

• Obtaining and allocating main storage
for use by the compiler (Phase 5).

• Constructing text buffer chains for the
SYSUT1 and SYSUT2 data sets if the
PRFRM option is in effect (Phase 5).

• Resident table initialization (Phases 5
and 7).

• Communication area initialization
(Phases 1, 5, and 7).

For a subsequent compilation in a batch,
the initialization steps depend on whether
the SPACE or the PRFRM option is in effect.

If the SPACE option is in effect, subse­
quent compilations in a batch are initial­
ized in the following manner:

• All the remaining main storage, origi­
nally obtained and allocated to the
compiler by Phase 5 is freed (Phase 1).

• All the data control
compiler data sets are
1),

blocks for the
closed (Phase

• The remaining initialization steps per­
formed for a subsequent compilation in
a batch SPACE run are th~ same as those
described for the first compilation in
a batch starting with the opening of
the data control blocks.

If the PRFRM option is in effect, only
the dictionary and overflow table (in Phase
7), and the communication area (in Phases 1
and 7) are initialized.

SOURCE STATEMENT ADJUSTMENT IF REQUIRED
(PHASE 8)

Any source statements written with
embedded blanks and keywords used as varia­
bles, arrays, or external names are adjust­
ed by the compiler (if the ADJUST option is
in effect) into a format that is acceptable
as input to Phases 100 and 10E. Phase 8
eliminates embedded blanks; adds a special
character to keywords that are used as
variables, arrays, or external names; and
inserts a meaningful blank between succes­
sive words in a FORTRAN statement. In
addition, if the SOURCE option is in
effect, Phase 8 produces a listing of the
unadjusted source module.

SOURCE STATEMENT SCANNING (PHASES 100 AND
10E)

The main purpose of source statement
scanning is to convert each source state­
ment into a form (intermediate text) that
is usable as input to subsequent phases of
the compiler. If the SOURCE and NOADJUST
options are in effect, Phases 100 and 10E
produce a listing of the source module. In
addition, as source statements are scanned,
they are checked for validity and any
errors that are detected are indicated by

developing special intermediate text.
(Phase 30 produces diagnostic messages from
this intermediate text that explain the
errors that are detected.)

TRANSLATION OF THE SOURCE MODULE (PHASES
100, 10E, 14, 15, AND 20)

Translation of the source module
involves: (1) generating intermediate text
for the statements in the source module,
and (2) modifying that intermediate text to
a form that facilitates the generation of
the object module.

Intermediate Text Generation (Phases 100
and 10E)

Intermediate text is an internal rep­
resentation of the source statements from
which the machine-language instructions of
the object module are produced. In gener­
al, intermediate text is generated by scan­
ning the source statements from left-to­
right and by constructing one-word
intermediate text entries for the source
text contained in those statements.
(Special intermediate text is generated
for: (1) COMMON, EQUIVALENCE, FORMAT, READ,
WRITE, and FIND statements; and (2) sub­
scripted variables.)

As intermediate text is generated,
entries are made in the dictionary and/or
overflow table for the variables, con­
stants, arrays, statement numbers, sub­
scripts, etc., that appear in the source
statements. The information contained in
the dictionary and overflow table entries
supplements the intermediate text in the
generation of machine-language instruc­
tions. The intermediate text entries are
associated with the dictionary and overflow
table entries by pointers that reside in
the text entries.

Intermediate Text Modification (Phases 14,
15., and 20)

Phases 14, 15, and 20 modify the inter­
mediate text produced by Phases 100 and
10E. The main purpose of this modification
is to transform the intermediate text to a
format that facilitates the generation of
machine-language instructions by Phase 25.

Phase 14: (1) replaces the pointers to
the dictionary in the intermediatE text
entries with information contained in the
dictionary entries (e.g., the relative
addresses that are assigned by Phase 12);

and (2) modifies the intermediate text
entries for I/O statements, computed GO TO
statements, and RETURN statements.

Phase 15 primarily transforms the inter­
mediate text entries for arithmetic expres­
sions into approximate machine code. That
is, Phase 15 allows Phase 25 to easily
generate machine-language instructions for
arithmetic expressions.

Phase 20 optimizes the intermediate text
for subscript expressions. This optimiza­
tion process increases the efficiency of
the object module by decreasing the amount
of computation associated with subscript
expressions.

OBJECT MODULE GENERATION (PHASES 12, 14,
20, 25, AND 30)

An Object module consists of control
dictionaries (external symbol dictionary
and relocation dictionary), text, and an
END statement. The external symbol dic­
tionary (ESD) contains the external symbols
that are defined or referred to in the
module. The relocation dictionary (RLD)
contains information about address con­
stants in the object module. (An address
constant designates the relative storage
address into which the address of a rou­
tine, library subprogram, or symbol is to
be relocated.) The text (TXT) contains the
instructions and data of the object module.
The END statement indicates the end of the
object module.

The object module is not constructed in
its entirety by anyone phase; it is
constructed throughout the compilation and
is placed onto the SYSLIN and/or SYSPUNCH
data sets. Figure 2, the overall compiler
input/output flow, indicates what each
phase contributes to the generation of the
object module.

Several tables are used by the object
module during the execution of the instruc­
tions generated by Phase 25. They are:

• The branch list table for referenced
statement numbers (constructed by Phas­
es 12, 25, and 30).

• The branch list table for statement
function expansions and DO statements
(constructed by Phases 14, 20, 25, and
30) •

• The base value table (constructed
throughout the compilation as new base
registers are required).

• The argument list table (constructed by
Phase 20).

Section 1: Introduction 13

Note: The linkage editor must combine
certain FORTRAN library subprograms with
the object module in order to form an
executable load module. Each library sub­
program that is externally referenced by
the object module is included in the load
module by the linkage editor. Among the
library subprograms that may be so ref­
erenced are:

• IHCFCOME
• IHCFIOSH
• IHCDIOSE

IHCFCOME performs object-time implemen­
tation of the following FORTRAN statements.

• READ, WRITE, and FIND
• BACKSPACE, REWIND, and ENDFILE
• STOP and PAUSE

In addition, IHCFCOME converts input and
output data into the formats indicated in
the FORMAT statements. IHCFCOME also proc­
esses object-time errors and arithmetic­
type program interruptions and terminates
the execution of the load module when
appropriate.

IHCFCOME does not actually perform the
reading from and writing onto data sets; it
submits requests for such operations to the
appropriate FORTRAN I/O data management
interface (IHCFIOSH for sequential access

14

I/O, or IHCDIOSE for direct access I/O).
The FORTRAN I/O interface interprets these
requests and, in turn, submits them to the
appropriate BSAM or BDAM routines for
execution.

STORAGE MAP GENERATION (PHASES 12, 20,
AND 25)

If the MAP option is in effect, the
compiler generates a storage map on the
SYSPRINT data set. The storage map is
generated by Phases 12, 20, and 25.

Phase 12 produces a map of all the
relative addresses that it assigns. Phase
20 produces a map of the literals it
generates and the external references made
by the source module. Phase 25 produces a
map of all referenced statement numbers
within the source module.

DIAGNOSTIC MESSAGE GENERATION (PHASE 30)

The various phases of the compiler may
detect errors in the source module. These
errors are indicated in the form of special
intermediate text entries. These text
entries are examined by Phase 30 and the
corresponding error messages are generated.

Chart 00. Overall Compiler Control Flow

****A1 *********
* CALLING *
* PROGRAM *
* * .. **************

V I A SUPERV I SOR
ASSISTED LINKAGE

V
*****B1 **********
* * * PHASE 1 *
* (IE~FAAAO) *
* * * *
;::::;::*1********

* * **** xc TL
V

*****C1********** *****C2********** *
* PHASE 5 * * UNCONDITIONAL *
* (IEJFCAAO) *<-------* GETMAIN * *
* * * *

··· .. ···i········ ,::::: .. .

.-. .-.
01 *. 02 * •

• * *. .* *.
.* ENOUGH *. NO .* SPACE *.

.MAIN STORAGE •• >. OR PRFRM .*
. . *. .*
.. *..*

* •• * *. .*
:*::* :-> *1 YES jPRFRM

**** XC TL V
V .-.

*****E1********** E2 *.
• • .* *.
* PHASE 7 * YES .*BLOCKED 1/0*. NO

*
* (IE~FEAAO) ,*. .*,

. . * • *..*•.... ***..... v *. .* v

1

**** * **** *
* 04 * * 04 **.. .*.* v .*.

NOADJUST F.1 *.
.* *.

• * AO~UST *.
. OR NOADJUST .

. .
. . * •••

xcj::''''
v

·****G1**********
* * * PHASE 8 *
* (IEJFFAAO) *
* * * *

······:~i::······
v ·"···Hl*····***·· * * * PHASE 100 *

* (IEJFGAAO) *
* * * *

······::i::······
v

.**~ 1 *******
• *

TERMINATE
COMPILATION

* PHASE 10E * * *
* (IEJFJAAO) ->* A3 *
...
... ... * •••
*.****************

RESTART
COMPILATION
(AI. TER PRFRM
COMPILATION
TO SPACE
COMPILATION)

* * * A3 *
* * ****

I v
• *.

A3 *.
• * *.

.* SPACE *. PRFRM
. OR PRFRM .

. .
. .

* •• *

xcj::«E
v

*****B3**********
* *
: I~I~~~~g~o ~OE :
* * * *

······:I······
v

:****C3*********:
* PHASE 12 *
* (IEJFLAAO) *
* * * *

······::c·····
v

·····03·····.***. * * * PHASE 14 *
* (IEJFNAAO) *
* * * * j

v .*.
E3 *.

.* *.
.* SPACE *. PRFRM

. OR PRFRM .
. .

. .
* •• *

xI.cE
V

*****F3**********
* *
: I~I~~~~g~0~4 :
* * * *

······:I······
v

*****G3**********
* * * PHASE 15 *
: (IEJFPAAO) *

* * ****** •••• ***.**.

1 v .*.
H3 *.

.* *.
.* SPACE *. PRFRM

. OR PRFRM .
. .

. .
. .

xI«E
v

*****J3**********
* * * INTERLUDE 15 *
: (IEJFPGAO) :

* * *********.**** •••

xl
v

:****K3*********:

.*.* * * * A4 *
* * ****

I v .-. .-.
A4 *. A5 *.

.* *. .* * •
.* LOAD *. NOLOAD .* ANY *. YES

. OR NOLOAD .---->*.SOURCE MODUL.E.*-
. . *. ERRORS .* ...* *..*

* •• * * •• -

xIAD j NO

V
*****B4**********
* * * PHASE 25 *
* (IE~FVAAO) *
* * * *

······::i::-~-*-*-**-*-*--------------------_J
v

:****C4*********:
* PHASE 30 *
* (IEJFXAAO) *
* * * * ••••••• *.* •••••••

:*::* :->1
* * **** xc TL

V

···**04········.· * * * PHASE 1 *
* (IEJFAA80) *
* * * * j

v
.* •

E4 *.
.* *. ···*ES***··****

.* FINAL *. YES * CALLING *
*. ENTRY • *------> * PROGRAM *

. *
*. • * *************** * •• * i NO

V .*.
F4 *.

.* * •

(VIA SUPERVISOR­
ASSISTED ~INKAGE)

.* SPACE *. PRFRM* *
. OR .-->* E1 *

. PRFRM. * *
.. **** * •• *

*SPACE

I
*~**

* * * C1 *
* * ****

* PHASE 20
* (IEJFRAAO) * * * *-->* A4 *
* * * * * * ****

section 1: Introduction 15

SYSIN

SYSIN

SYSIN or
SYSUT2 Of
ADJ UST Option
Is in Effect)

Input to Compiler Components

Patch Records if any

FORTRAN
Source
Module

FORTRAN
Source

Module

Declarative Statements

Dictionary and Overflow Table

Executable Statements

Compiler Components
that Generate Intermediate
and/or Final Compiler
Output

r-------,

Phase 5

Phase 8
(Executed
only for
ADJUST
optian)

Figure 2. Compiler Input/Output Flow

Intermediate
Output from
Compiler
Components

Dictionary and Overflow Table Main Storage

Adjusted Source Module SYSUT2

Intermediate Text for
Declarative Statements

SYSUTl or Main Storage

Dictionary and Overflow Table Main Storage

Intermediate Text for
Executable Statements

SYSUTl or Main Storage

Final
Compiler
Output

SYSPRINT

~
List of patch records if any, Compiler Informative
Messages

1- ___ ___ ..Q'~s,=-5~ ______ _
Heading

(Phase 7)
r - - - - - -I-S;;;;-rc;-modt,I;;! istlng if SOURCE ~t~n i; i;-;ff;"ct
I I-- ______ .fh~e~) ______ _

I Compiler Output Source statement listing of nonexecutable statements
I for SOURCE if SOURCE and NOADJUST options are in effect
I Option 1-_- ____ ~h~ ~Dl.. ______ _

Source statement listing of executable statements.if
I SOURCE and NOADJUST options are in effect
L _____________ ~P~s,=-l~) ______ _

I Storage map of relative addresses assigned by Pl,ase
I 12 if MAP option is in effect.

r- ______ .JP~s-:....!~ ______ _

: Compiler Output
for MAP Option

I
I
I

Storage map of generated literals and external
references if MAP option is in effect

(Phase 20)

r-Sto~g;;"a-; ofreF;re~edst;'e~nt n;;~~ifMAP­
option is in effect

L _ _ _ _ _ _ _ _____ (P~s=-2~ ______ _

I Compiler Output Object module listing if object listing option is in
I for Object Listing effect
L?~i~ ~ __ -1-- ______ (P~s.=. 2~ _______ _

List of error/warning messages if any; and SIZE OF
COMMON, SIZE OF PROGRAM message

(Phase 30)

H
~
rt
11 o
0.
~
(')
rt
o
~

Main Storage

SYSUTlor
Main Storage

SYSUTlor
Main Storage

Main Storage

SYSUT2 or
Main Storage

Main Storage

SYSUTlor
Main Storage

Main Storage

Main Storage

SYSUT2 or
Main Storage

SYSUTl or
Main Storage

Dictionary and Overflow Table

Intermediate Text
for COMMON and

EQUIVALENCE Statements

Intermediate Text for
Executable, FORMAT,

DEFINE FILE
Statements, and

Subprogram Headers

Dictionary and Overflow Table

Intermediate Text

Overflow Table

Intermediate Text

Overflow Table

Source Symbol Table
(If Object listing

Option Is in Effect)

Intermediate Text

Branch List Tables and
Base Value Table

Figure 2. Compiler Input/Output Flow

A

(Continued)

Inte!1l1ediate Text for
Nonsyntactical Errors

Encountered in COMMON and
EQUIVALENCE Statements

Source Symbol Table
Of Object Listing

Option is in Effect)

Dictionary

Modified Intermediate Text

Modified Intermediate Text

Modified Intermediate Text
(Subscript Text Optimized)

Branch list Tables and
Base Value Table

2

Main Storage

r---

SYSUT2 or Main Storage I

Main Storage

Campi ler Output
for LOAD and/or

Main Storage DECK Options

SYSUT2 or Main Storage I ,
L ___

sYSUn or Main Storage

SYSUT2 or Main Storage

SYSun or Main Storage

2

Object SYSLIN and/or
Module SYSPUNCH

ESD card images for section definition, exlemal
symbols, and entries in COMMON; TXT.c:ar1f Images
for dictionary constants; and RLD card for
add ress constants

(Phase 12)
~-----------------TXT card images for FORMAT Statements

(Phase 14) ------------------ESD and RLD card images for extemally referenced
library subprograms; TXT and RLD card images for
generated literals and argument list tabl. entries;
and TXT card images for DEFINE FILE statement
parameter lists

(Phase 20)
--- - -- - ----- -------

TXT card images for object module instructions; and
RLD card images for address constants

(Phase 25) -----------------TXT and RLD card images for bn:mch list tables, base
value table, and end-of-object module indicator if
Phase 30 is entered from Phase 25

--- (Phase 30)

Table 1. Compiler Components and Their Major Functions
r-----------------T---,
I Component and I I
I Symbolic Name I Major Functions I
~-----------------+---~
I Phase 1 I Processes compiler options, and initiates first compilation. I
I initial entry I I
I (IEJFAAAO) I I
~-----------------+---~ I Phase 1 I Initiates next compilation in the case of a batch of compilations, I
I subsequent I restarts a compilation, or terminates execution of the compiler. I
I entries I I
I (IEJFAABO) I I
~-----------------+---~
I Interface I Processes compiler I/O requests, patch requests, and print control I
I module I operations for all compilations, and end-of-phase/interlude re- I
I (IEJFAGAO) I quests for SPACE compilations; and contains communication area, I
I I DCBs and DECBs for the compiler data sets, and two I/O Duffers that I
I I are used for the SYSIN and SYSPRINT data sets. J

~-----------------+---~
I Performance I Reduces compilation time; deblocks compiler input and blocks I
I module I compiler output if blocking is specified; manipulates text buffer I
I (IEJFAPAO) I chains for SYSUTl and SYSUT2, processes end-of-phase requests for I
I I PRFRM compilations; and contains blocking table, BLDL table, and I
I I reset table. J

~-----------------+-------------------------------~-------------------------------------~ I Phase 5 I Obtains and allocates main storage for resident tables and internal I
I (IEJFCAAO) I text buffers, allocates main storage to special I/O buffers to be I
I I used by the block/deblock routine of the performance module, I
I I constructs text buffer chains for SYSUTl and SYSUT2 if the PRFRM I
I I option is in effect, constructs SEGMAL and the patch table, and I
I I enters information into the blocking table and the BLDL table. I
~-----------------+---~
I Phase 7 I Initializes the communication area and those portions of the dic- I
I (IEJFEAAO) I tionary and overflow table that are independent of the source I
I I module being compiled, prints heading, and, if necessary, deletes I
I I Phase 5 from main storage. I
~-----------------+---~
I Phase 8 I Converts source modules written with embedded blanks and keywords I
I (IEJFFAAO) I used as variables, arrays, or external names into a format that is I
I I acceptable as input to Phases 100 and 10E. I
~-----------------+---~
I Phase 100 I Converts COMMON, EQUIVALENCE, FORMAT, DEFlNE FILE, SUBROUTINE, I
I (IEJFGAAO) I FUNCTION, and specification statements into intermediate text; and I
I I creates dictionary and overflow table entries. I
~-----------------+---~
I Phase 10E I Converts statement function definitions, executable statements, and I
I (IEJFJAAO) I interspersed FORMAT statements into intermediate text: and creates I
I I dictionary and overflow table entries. I
~-----------------+---~
I Interlude 10E I Closes all open data control blocks, and then opens only those for I
I (IEJFJGAO) I the data sets that are required by Phases 12 and 14. I
~-----------------+---~
I Phase 12 I Assigns relative address to variables and arrays in C01'.lMON, varia- I
I (IEJFLAAO) I bles and arrays not in COMMON, equated variables, variables in I
I I subscript expressions, and constants; allocates storage for the I
I I branch list table for referenced statement numbers; and generates I
I I part of the object module. I

~-----------------+---~
I Phase 14 I Replaces pointers to dictionary entries with information obtained I
I (IEJFNAAO) I from the dictionary; processes intermediate text for FORMAT, READ, I
I I WRITE, and FIND statements, assigns a relative position in the I
I I branch list table for statement function expansions and DO state- I
I I ments for each statement function encountered; generates part of I
I I the object module; and frees the main storage occupied by the I
I I dictionary if the SPACE option is in effect. I L _________________ i ___ J

(Continued)

18

Table 1. Compiler Components and Their Major Functions (Continued)
r-----------------T---,
I Component and I I
I Symbolic Name I Major Functions I
~-----------------+---i I Interlude 14 I Closes all open data control blocks and then opens only those for I
I (IEJFNGAO) I the data sets that are required by Phase 15, thereby providing I
I I additional main storage for Phase 15. I
~-----------------+---~ I Phase 15 I Transforms arithmetic expressions into approximate machine code, I
I (IEJFPAAO) I reorders intermediate text for DEFINE FILE statements, and aSSigns I
I I registers when required. I
~-----------------+---~ I Interlude 15 I Closes all open data control blocks and then opens only those re- I
I (IEJFPGAO) I quired by the compiler for the remainder of this compilation. I
~-----------------+---~ I Phase 20 I Optimizes subscript expressions, creates argument list table, and I
I (IEJFRAAO) I generates part of the object module. I
~-----------------+---~
I Phase 25 I Transforms intermediate text into machine-language instructions I
I (IEJFVAAO) I (part df the object module)~ and completes the assembly of the I
I I branch list table for referenced statement numbers, the branch list I
I I table for statement function expansions and DO statements, and the I
I I base value table. I
~-----------------+---~
I Source symbol I Used by Phase 12 to contain the names of all variables and con- I
I module I stants used in the source module and their corresponding relative I
I (IEJFAXAO) I addresses. I
~-----------------+---~ I Object listing I Used by Phase 25 in conjunction with the source symbol module to I
I module I generate the object listing module. I
I (IEJFVCAO) I I
~-----------------+---i
I Phase 30 I Generates error and warning messages if any from intermediate I
I (IEJFXAAO) I text, processes the END statement, and generates the final part of I
I I the object module. I L _________________ L ___ J

Section 1: Introduction 19

SECTION 2: DISCUSSION OF COMPILER PHASES

Section 2 describes the logic and func­
tions of each phase of the compiler.

PHASE 1 (IEJFAAAO/IEJFAABO)

Phase 1 is both the first and last phase
to be executed for each compilation. The
phase is initially entered from the calling
program via a supervisor-assisted linkage;
subsequent entries are made from either
Phase 5 if a PRFRM compilation is altered
to a SPACE compilation (restart condition),
or from Phase 30 -- thE last processing
phase of the compiler. In addition, if a
permanent I/O error occurs, Phase 1 is
entered from the phase that requested the
I/O operation. If an I/O error has
occurred, Phase 1 returns control to the
calling program and the compilation is
terminated.

At the initial entry (IEJFAAAO), Phase 1
initiates the first compilation and then
transfers control to Phase 5.

At subsequent entries (IEJFAABO), Phase
1 either initiates the next compilation if
other source modules are to be compiled, or
terminates the compilation (i.e., if no
more source modules are present, or if a
permanent I/O error has occurred). If a
new compilation is initiated, Phase 1
transfers control to the next phase (Phase
5 for SPACE compilations, or Phase 7 for
PRFRM compilations). If the compilation is
terminated, Phase 1 returns control to the
calling program with the appropriate return
code.

Chart 10 illustrates the overall logic
and the relationship among the routines
used in Phase 1. Table 2, the routine
directory, lists the routines used in the
phase and their functions.

INITIAL ENTRY

At the initial entry, Phase 1 initiates
the first compilation. This entails:

20

• Loading the interface module.
• Processing compiler options and new

DDNAMES.
• Loading the source symbol module if the

object listing option is in effect.

• Loading the performance module if the
PRFRM option is in effect and if the
SIZE option is at least 18504.

• Opening required data control blocks.
• Loading Phase 5.

Loading the Interface Module

When Phase 1 receives control from the
calling program, it loads the interface
module (IEJFAGAO) into main storage via the
LOAD macro-instruction. The interface
module contains:

• The communication area (FCO~~).
• DCBs (data control blocks) and DECBs

(data event control blocks).
• Interface routines.
• Two I/O buffers.

COMMUNICATION AREA: The communication area
contains the following type of information:

• user-specified options and parameters
(e.g., DECK).

• Default values for compiler options.
The interface module is assembled, and
processed by the linkage editor during
system generation. This allows the
user to specify default values for
compiler options (refer to the publica­
tion IBM Systern/360 Operating System:
System Generation). These default
values will be assumed if the corres­
ponding values in the PARM field of the
EXEC statement are not included by the
user. (Refer to Appendix B for the
options for which default values may be
specified during the system generation
process.)

• Information required for communication
between the compiler and the operating
system, such as:

1. Branch instructions to specific
routines in the interface module.
(For PRFRM compilations, these
branch instructions are, in effect,
replaced by branch instructions to
routines in the performance
module.)

2. A pointer to DCBs (data control
blocks) and the DECBs (data event
control blocks) needed for
input/output operations during the
compilation.

• Compilation information, such as:

1. Type of program/subprogram being
compiled (i.e., main program, FUNC­
TION subprogram, or SUBROUTINE
subprogram).

2. Sizes of the internal text buffers.

3. Addresses of internal text buffers,
table indexes, and work areas. If
the PRFRM option is in effect, the
communication area contains the
address of the first text buffer in
each of the text buffer chains that
are constructed by Phase 5.

4. Indicators (e.g., indicators of any
errors encountered during the
compilation) •

• Object-time information, such as:

1. Size of COMMON to be used with the
object module, and of the tables
required for the object module exe­
cution.

2. The location counter used, through­
out the compilation, for the
assignment of object-time address­
es.

DCBS AND DECBS: The DCBs and DECBs for the
data sets used during the compilation are
assembled into the interface module in
skeletal form. (F'or a description of the
DCBs and DECBs refer to the publication IBM
System/360 Operating System: Introduction
to Control Program Logic, Program Logic
Manual.> Some fields of the DCBs are
filled in by the control program when the
data control blocks are opened (refer to
the publication IBM System/360 Operating
System: Concepts and Facilities>. However,
the DCB block size fields for data sets
SYSUTl and SYSUT2 are overlayed with values
computed by the compiler. In addition, if
the DCB block sizes for the other data sets
are not specified in DD statements, stand­
ard default values are assumed. They are:

• 80 for SYSIN, SYSLIN, and SYSPUNCH.
• 121 for SYSPRINT.

INTERFACE ROUTINES: The interface module
contains four interface routines: an I/O
routine, an end-of-phase routine, a print
control operations routine, and a patch
routine (refer to Chart 11).

The I/O routine (SIORTN) processes I/O
requests of the compiler. For SPACE compi­
lations, the I/O requests are initiated via
a linkage to this routine. {Refer to
Appendix C for a description of this lin-

kage to the interface module.> For PRFRM
compilations, the I/O requests are initiat­
ed via a linkage to the PIORTN routine in
the performance module. The PIORTN, in
turn, links to the SIORTN routine in the
interface module. The SIORTN routine:

• Analyzes the linkage parameters passed
to it by either the component of the
compiler requesting I/O, or by other
interface routines. These parameters
indicate: (1) the type of request
(read, write, or check), (2) the
address of the I/O buffer for the
operation, and (3) what data set is to
be used for the operation.

• Fulfills the request by issuing the
appropriate macro-instruction (READ,
WRITE, and/or CHECK).

The compile-time I/O error recovery pro­
cedure is illustrated in Chart 11.

The end-of-phase routine (SNEXT) is used
to pass control from one component of the
compiler to the next for SPACE compila­
tions. The transferring of control between
compiler components is initiated via a
linkage to this routine. (Refer to Appen­
dix C for a description of this linkage to
the interface module.) The end-of-phase
routine:

• Analyzes the linkage parameters passed
to it by the component of the compiler
relinquishing control. These paramet­
erS indicate the name of the next
component to be executed and the dispo­
sition of various data sets.

• Logically repositions the data sets
indicated in the linkage parameters via
the CLOSE, type=T, macro-instruction.

• Transfers control to the next component
via the XCTL macro-instruction.

The print control operations (PRTCTRL)
routine allows the use of immediate-type
control operations for the SYSPRINT data
set. If the data set is being placed onto
an intermediate storage device before being
printed, the printer control codes remain
as part of the data set (thereby retaining
device independence).

The patch routine (PATCH) allows tero­
porary modification of the compiler
modules. (A module is modified for the
duration of a batch compilation.) Each
compiler module unconditionally branches to
the patch routine to check whether the
module being executed is to be modified.
(Refer to Appendix C for a description of
this linkage to the interface module.) If
it is, the patch routine overlays the

Section 2: Discussion of Compiler Phases 21

instructions or data of the module to be
modified with patch information for that
module. This information is placed in the
patch table (a 100-byte portion of the
patch routine) by Phase 5. If there is no
patch information, control is immediately
returned to the module being executed.

I/O BUFFERS: The two I/O buffers are used
for the SYSIN and SYSPRINT data sets.
SYSIN uses the I/O buffers during source
statement adjustment (if required), or
source statement scanning. The card images
of the source module to be compiled are
alternately read into one of the two buf­
fers. The double-buffer scheme allows for
overlapping the processing of a card image
in one buffer with the reading of the next
card image of the source module into the
other buffer.

SYSPRINT uses the I/O buffers for: (1)
writing patch records and compiler informa­
tion messages, (2) listing the source
module, and (3) generating the storage map.

Processing Compiler Options and New DDNAMES

Options may be chosen by the user to
tailor the output of the compiler to his
specifications. This information is speci­
fied in the EXEC statement and is entered
into an area designated by the calling
program. The contents of this area are
obtained by Phase 1 via an address in
general register 1. They are then encoded
and entered in the communication area. For
a description of the options and their use,
refer to the publication IBM System/360
Operating System: FORTRAN IV (E)
Programmer's Guide.

If the compiler is invoked via the LINK
or ATTACH macro-instruction, the user may
change the DDNAMES of the compiler data
sets. The substitute DDNAMES are obtained
by Phase 1 via an address in general
register 1.

Loading the Source Symbol Module

If the object listing facility of the
compiler has been enabled, Phase 1 checks
whether the object listing option (a $ in
the PARM field of the EX~C statement) is
specified. (The object listing facility is
enabled by reassembling Phase 1 with the
branch instruction that disables the facil­
ity either removed or replaced with a no-op
instruction.) If the option is specified,
Phase 1: (1) sets the appropriate indicator
in the communication area, and (2) loads

22

the source symbol load module (SORSYM) into
main storage. SORSYM, a SYS1.LINKLIB load
module (IEJFAXAO), reserves an area in main
storage. The names of all variables and
constants used in the source module and
their corresponding relative addresses are
placed into this area by Phase 12. When
the area (3,200 bytes) is full, all subse­
quent variables and constants are omitted
from the object module listing.

If the object listing option is speci­
fied, but the object listing facility has
not been enabled, Phase 1 indicates an
invalid compiler option, by setting the
invalid option bit in the communication
area.

Loading the Performance Module

Phase 1 examines the PRFRM bit in the
communication area to determine if the
PRFRM option is in effect. If the PRFRM
option is specified, and if the SIZE option
is at least 18504, Phase 1 loads the
performance module (IEJFAPAO) into main
storage. The performance module allows
more efficient I/O operations (via fewer
OPENs, blocking, and chaining), and reduces
phase-to-phase transition processing there­
by decreasing compilation time. The per­
formance module is composed of two routines
and three tables.

PERFORMANCE MODULE ROUTINES: The perfor­
mance module contains an I/O routine, and
an end-of-phase routine (refer to Charts 12
and 13).

The I/O routine (PIORTN) is used to
deblock compiler input on SYSINi and to
block compiler output on SYSLIN, SYSPRINT,
and SYSPUNCH, as required by the block
sizes specified for the above data sets.
In addition, if the ADJUST option is in
effect, the I/O routine is used to block
the output of Phase 8 on the SYSUT2 data
set. The I/O routine also manipulates the
text buffer chains for the SYSUTl and
SYSUT2 data sets (refer to the Phase 5
section "Constructing Text Buffer Chains
for PRFRM Compilations").

I/O requests for a PRFRM compilation are
initiated via a linkage to this routine.
(Refer to Appendix C for a description of
this linkage to the performance module.)
The I/O routine:

• Analyzes the linkage parameters passed
to it by the calling phase. These
parameters indicate: (1) the type of
request (read, write, check, or flush),

(2) the address of the area into which,
or from which the logical record is to
be moved, and (3) the data set to be
used for the operation. (A flush
request forces the contents of the
current output buffer to be written
out.)

• Deblocks compiler input from SYSIN if a
blocking factor greater than 1 is spec­
ified. The PIORTN routine reads (via a
linkage to the SIORTN routine in the
interface module) a block from the
SYSIN data set into an I/O buffer only
when an entire block has been deblocked
and moved into the area requested by
the calling phase. This reduces the
number of READ macro-instructions
issued for a compilation and thus
decreases compilation time.

• Blocks compiler output on the output
data sets if their corresponding block­
ing factors are greater than 1. (Each
blocking factor is determined from the
BLKSIZE (block size) field in the DCB
parameter of the associated DD state­
ment.) In general, the PIORTN writes
(via a linkage to the SIORTN routine in
the interface module) a block onto an
output data set only when the I/O
buffer containing that block has been
filled. (However, when a flush opera­
tion is requested, the PIORTN will
force a truncated buffer to be written
if the buffer is partially filled.)
This reduces the number of WRITE macro­
instructions issued for a compilation
and thus decreases compilation time.

The end-of-phase routine (PNEXT) is used
to pass control from one component of the
compiler to the next for PRFRM
compilations. The transferring of control
between compiler components is initiated
via a linkage to this routine. (Refer to
Appendix C for a description of this lin­
kage to the performance module.) The end­
of-phase routine:

• Analyzes the linkage parameters passed
to it by the component of the compiler
relinquishing control. These
parameters indicate the name of the
next component to be executed, and the
disposition of the various data sets.

• Logically repositions the data sets
indicated in the linkage parameters via
the CLOSE, type=T, macro-instruction.
Various pOinters and indicators in the
communication area, the performance
module, and the blocking table are also
reset at this time for the repositioned
data sets (refer to the Phase 5 section
"Constructing Text Buffer Chains for
PRFRM Compilations").

• Transfers control to the next component
via the XCTL macro-instruction. (If
the next component is an interlude, the
performance module bypasses the execu­
tion of the interlude and transfers
control to the next phase of the com­
piler.)

PERFORMANCE MODULE TABLES: The performance
module contains three tables: the blocking
table, the BLDL table, and the reset table.

Phase 5 constructs a blocking table
entry for each of the data control blocks
that are opened by Phase 1. The blocking
table provides the PIORTN routine with the
information necessary to deblock compiler
input, and to block compiler output.
(Refer to Appendix H for the format of the
blocking table.>

Phase 5 constructs the BLDL table via
the BLDL macro-instruction. The BLDL table
provides the PNEXT routine with the infor­
mation necessary to transfer control from
one component of the compiler to the next
with more efficiency than is possible on a
SPACE run. (Refer to Appendix H for the
format of the BLDL table.>

The reset table (RESETABL) is used by
the PNEXT routine to determine which, if
any, of the record counts for the chained­
buffer data sets (SYSUTl and SYSUT2) must
be reset. The record count of the data set
that is to be used for output by the next
phase is always reset. Resetting the
record count is necessary in order to
determine whether actual READs are required
for that data set when it is used as input
by a subsequent phase. (Refer to Appendix
H for a description of the format and use
of the reset table.>

Opening Required Data Control Blocks

The data control blocks that are opened
by Phas~ 1 depends upon the options speci­
fied by the user.

If the SPACE option is in effect, or if
the SIZE option is less than 18504, Phase 1
opens, via the OPEN macro-instruction, only
the data control blocks for the data sets
used by Phases 5, 7, 100, and 10E (SYSIN,
SYSUT1, and SYSPRINT). (In addition, if
the ADJUST option is in effect, Phase 1
opens the data control block for SYSUT2.
SYSUT2 is used to contain the output of
Phase 8.> The main storage that is saved

Section 2: Discussion of Compiler Phases 23

at this time by not opening the data
control blocks for SYSLIN SYSPUNCH, and
SYSUT2 (if the ADJUST option 1S not in
effect) is necessary for the execution of
Phases 100 and 10E. (The SYSLIN and SYS­
PUNCH data sets are not needed by the
compiler until the execution of Phase 12.
Therefore, their corresponding data control
blocKs are not opened until the execution
of Interlude 10E.)

If the PRFRM option is in effect, and if
the SIZE option is at least 18504, Phase 1
opens (via the OPEN macro-instruction) the
data control blocks for all the data sets
required by the compiler. Because all the
required data control blocks are opened
initially, the compiler can bypass the
execution of Interludes 10E, 14, and 15;
and can avoid repeated closing and re­
opening of data control blocks. Bypassing
the execution of the interludes reduces
phase-to-phase transition time and thus
decreases compilation time.

The manipulation of data control blocks
by subsequent components of the compiler
for SPACE compilations as well as for PRFRM
compilations is illustrated in Appendix D.

Loading Phase 5

Phase 5 (IEJFCAAO) is loaded into main
storage by Phase 1, using the LOAD macro­
instruction. This is not the normal
condition; normally, the XCTL macro­
instruction in the end-of-phase routine is
used to call a phase into main storage.

Phase 1 loads Phase 5 into the highest
area of available main storage, relative to
location zero. (The XCTL macro-instruction
would load Phase 5 into the lowest area of
available main storage.) This special
loading by Phase 1 permits Phase 5 to set
up the resident tables in the lowest area
of available main storage. The physical
locations occupied by the various compiler
components and resident tables are illus­
trated in Appendix A.

SUBSEQUENT ENTRIES

At subsequent entries, Phase 1 either:

• Initiates a new compilation, or
• Terminates the compilation.

24

Initiating a New Compilation

If a new compilation is to be initiated,
Phase 1 first determines if a PRFRM or a
SPACE compilation is to be performed. If a
PRFRM compilation is to be performed, Phase
1 immediately transfers control to Phase 7.

If a SPACE compilation is to be per­
formed, Phase 1 determines if a restart
condition exists. That is, if a PRFRM
compilation was requested and Phase 5 det­
ermined that the required main storage for
the PRFRM compilation was not available.
Phase 5 then alters the PRFRM compilation
to a SPACE compilation and returns control
to Phase 1.

If a restart condition exists, Phase 1:
(1) deletes (via the DELETE
macro-instruction) the performance module
and Phase 5 from main storage, (2) closes
(via the CLOSE macro-instruction) the data
control blocks for all required compiler
da ta sets (opened b~l Phas e 1 for the PRFRM
option), and (3) reopens (via the OPEN
macro-instruction) only the data control
blocks for the data sets required for
Phases 7, 8 (if the ADJUST option is in
effect), lOD, and lOE. Phase 1 then loads
(via the LOAD macro-instruction) Phase 5
into main storage and transfers control to
Phase 5.

If a restart condition does not exist
and if the SPACE option is in effect, Phase
1 first frees (via the FREEMAIN
macro-instruction) the main storage that
was previously allocated to the compiler
during execution of Phase 5 for the inter­
nal text buffers and the overflow table.
Subsequent Phase 1 processing except for
the deletion of the performance module and
Phase 5 is the same as that described for
the restart condition.

Terminating the Compilation

If the last source module on the SYSIN
data set has been compiled, Phase 1 first
requests a flush operation for the SYSL!N,
SYSPUNCH, and SYSPRINT data sets. A flush
request forces the current output buffer
being used for a blocked data set to be
written. This insures that all compiler
output for blocked data sets is written.
In the case of an unblocked data set, the
flush request for that data set is ignored.
Phase 1 next closes (via the CLOSE
macro-instruction) the data control blocks
for all the data sets used by the compiler.
Phase 1 then: (1) frees (via the FREEMAIN
macro-instruction) all the main storage
that was allocated to the compiler during

execution of Phase 5, and (2) deletes (via
the DELETE macro-instruction) the interface
module, the performance module for a PRFRM
compilation, and the source symbol module
if the object listing option is in effect.
Control is then returned to the calling
program with the proper return code.

If internal errors (e.g., permanent I/O
errors) occur at any time, the current
compilation is immediately terminated by
calling Phase 1. Phase 1 then performs the
above processing and returns control to the
calling program with a return code of 16.

PHASE 5 (IEJFCAAO)

Phase 5, the second phase of the compil­
er, is entered after the completion of
Phase 1. It is executed for each source
module in a batch SPACE compilation but
only for the first source module in a batch
PRFRM compilation. The functions of the
phase are:

• Obtaining main storage for the compil­
er.

• Allocating main storage to the compil­
er.

• Constructing SYSUT1 and SYSUT2 text
buffer chains if the PRFRM option is in
effect.

• Constructing some of the resident
tables that are used by the compiler.

Chart 20 illustrates the overall logic
and the relationship among the routines of
Phase 5. Table 3, the routine directory,
lists the routines used in the phase and
their functions.

At the conclusion of Phase 5 processing,
control is passed either to Phase 1 (to
restart or terminate the compilation), or
to Phase 7.

OBTAINING MAIN STORAGE

The amount of main storage required by
the compiler depends on whether a SPACE or
a PRFRM compilation is being performed.
For a SPACE compilation, a minimum of
15,360 bytes is required. For a PRFRM
compilation, a minimum of approximately
19,500 bytes is required. (The exact
amount depends on the device configuration
of the user. That is, different I/O devi­
ces require different access method rou­
tines and different control blocks.)

The process of obtaining main storage is
actually started in Phase 1. Phase 1 has
already obtained main storage for:

• The interface module.
• The performance module if loaded.
• BSAM routines.
• Phase 5.

Phase 5, upon receiving control from
Phase 1, calculates the total amount of
main storage obtained by Phase 1, and
subtracts this amount from the value of th~
SIZE option. (If the SIZE option was not
specified by the user, the minimum amount
required for a SPACE corr.pilation is assumed
as a default value for the SIZ£ option.)
The result of this calculation is the
amount of main storage that Phase 5
attempts to obtain via the GETI'.lA.IN macro­
instruction. If more than this amount is
obtained, Phase 5 frees the excess via the
FREEMAIN macro-instruction.

If less than the minimum amount required
for a SPACE compilation is obtained, a
GETMAIN (mode=U) macro-instruction is
issued to obtain the minimum amount.

If less than the minimum amount required
for a PRFRH compilation is obtained, the
compilation is either terminated if block­
ing was requested, or restarted (altered to
a SPACE compilation) if blocking was not
requested.

ALLOCATING MAIN STORAGE

The procedure used by Phase 5 for allo­
cating main storage depends on whether a
SPACE or a PRFRM compilation has been
initiated. Appendix A illustrates the main
storage allocated to the compiler for both
SPACE and PRFRM compilations.

For SPACE Compilations

For a SPACE compilation, the main stor­
age obtained by Phase 5 is allocated, via
the storage allocation table, among a tran­
sient work area required by the control
program (952 bytes for SPACE runs; 1800
bytes for PRFRM runs), the dictionary, the
overflow table, four internal text buffers,
and padding for Phase 10E. The storage
allocation table (refer to Appendix I)
indicates the amount of main stcr2ge to be
allocated to the internal text buffers, and
the dictionary and overflow table.

The main storage allocated to the dic­
tionary and overflow table, except for the
reserved word portion of the dictionary,
may be segmented. That is, tne dictionary
and overflow table may occupy more than one
segment of main storage. The location of
the segments allocated to the aictionary
and overflow table are recorded

Section 2: Discussion of Compiler Phases 25

(sequentially by address) in a segment
address list (SEGMAL). SEGMAL resides at
the beginning of the first segment. The
FOVFLNOX field in the communication area is
initialized to point to the beginning loca­
tion of the overflow index. which is also
the location immediately following the last
entry in SEGMAL. (Phase 5 initializes
FOVFLNOX although the actual loading into
main storage of the overflow index occurs
in Phase 7.)

The dictionary portions reside in the
highest storage segment(s) relative to
location 0 and the overflow table portions
reside in the lowest storage segment(s).
This ensures that the dictionary resides
"above" the overflow table. The dictionary
must reside above the overflow table
because the storage allocated to the dic­
tionary is freed (via the FREE~~IN
macro-instruction) for SPACE compilations
at the conclusion of Phase 14 processing.
This additional main storage is required
for the execution of subsequent phases,
primarily for Phase 15 (refer to Appendix
A). (For PRFRM compilations, the main
storage allocated to the dictionary is not
freed until compilation is terminated by
Phase i.>

The main storage allocated to the inter­
nal text buffers may be segmented. Howev­
er. the main storage for each buffer itself
must be contiguous. The location of the
segment assigned to each buffer is indicat­
ed in the communication area.

For PRFRM compilations

For a PRFRM compilation, the main stor­
age allocation algorithm must determine if
blocked I/O is specified by the user.

BLOCKED I/O: If any blocked I/O is speci­
fied. portions of the obtained main storage
must be allocated to special I/O buffers
required for blocking and deblocking.
Phase 5 allocates main storage for two I/O
buffers for each data set for which block­
ing is requested. The size of each buffer
is determined by the BLKSIZE field in the
DCB parameter of the associated DO state­
ment. If the BLKSIZE fields are not speci­
fied. the compiler assumes the following
default values for the compiler data sets:

• SYSPRINT -- 121.
• SYSIN, SYSLIN. and SYSPUNCH
• The block sizes for SYSUTl

are determined dynamically
piler.

-- 80.
and SYSUT2
by the com-

After allocating main storage for the
special I/O buffers, Phase 5 determines if
sufficient storage remains for the tran-

26

sient work area, the dictionary and over­
flow table, the four internal text buffers,
and padding for Phase 15. If there is
sufficient storage, subsequent main storage
allocation for a PRFRM compilation with
blocked I/O is the same as that described
for a SPACE compilation except for the
construction of internal text Duffer
chains.

If the remaining main storage is not
sufficient, the compilation is terminated
and control is transferred to Phase 1.
Phase 1, in turn, passes control to the
calling prograrr: to terminate the compila­
tion.

UNBLOCKED I/O: If all I/O is unblocked,
Phase 5 determines if the amount of main
storage obtained is sufficient for the
transient work area, the dictionary ana
overflow table, and the four internal text
buffers. If there is sufficient storage,
subsequent main storage allocation for a
PRFRM compilation with unblocked I/O is the
same as that described for a SPACE compila­
tion except for the construction of inter­
nal text buffer chains.

If the amount of main storage obtained
is not sufficient, Phase 5 first frees (via
the FREEMAIN macro-instruction) all the
main storage it obtained. Phase 5 then
alters the PRFRM compilation to a SPACE
compilation (restart condition) and trans­
fers control to Phase 1. Phase 1 then
initializes the compiler for a SPACE compi­
lation.

CONSTRUCTING TEXT BUFFER CHAINS FOR PRF'RM
COMPILATIONS

After main storage has been allocated to
the transient work area, the dictionary and
the overflow table. the four internal text
buffers, and any required I/O buffers for
blocking, Phase 5 uses as much of the
remaining main storage as possible (up to
the value of the SIZE option) by construct­
ing text buffer chains.

The text buffer chains are used when
reading from or writing onto the intermedi­
ate text work data sets. (SYSUTl anO
SYSUT2). Two text buffer chains are con­
structed for both the SYSUTl and SYSUT2
data sets. One of the four internal text
buffers, already allocated by Phase 5,
(referred to as the I/O text buffers) is
then chained in as the last buffer in each
of the text buffer chains. Only the I/O
text buffers are ever read into or written
from. The intermediate text in the remain­
ing buffers (referred to as non-I/O text
buffers) is retained in main storage.

The maximum number of buffers in each
chain is a function of the number of
segments into which the remaining main
storage is divided. The minimum size of
each I/O buffer is 96 bytes; the maximum
~ize is 1,696 bytes. The minimum size of
each non-I/O buffer is 16 bytes; the maxi­
mum size is 32,760 bytes.

Each buffer in a chain (including the
I/O text buffer) is preceded by an eight­
byte control area. Each control area
contains: (1) a chain address field (four
bytes), and (2) a length field (four
bytes) •

Figure 3 illustrates a text buffer chain
that contains N buffers.

Because only the last buffer in each of
the two chains associated with a particular
data set is used as an I/O buffer, a
portion of the SYSUTl or SYSUT2 data sets

resides in main storage. For example,
consider the case in which SYSUTl is used
to contain the intermediate text input to a
phase and SYSUT2 is used to contain the
intermediate text output of a phase. Since
part of the SYSUTl data set resides in main
storage (i.e., buffers 1 through N-l in the
two chains constructed for SYSUT1, where
each chain contains N buffers), the phase
being executed requires fewer read opera­
tions.

In addition, a portion of the output
data set (SYSUT2) will reside in maln
storage (i.e., buffers 1 through N-l in the
two chains constructed for SYSUT2, where
each chain contains N buffers). Therefore,
the phase being executed requires fewer
write operations. As a result of retaining
portions of SYSUTl and SYSUT2 in main
storage, overall compiler efficiency is
increased because of a decrease in I/O
activity.

r---,
FTXTBFXX

a(BFR 2) -8 L (BFR 1) ~-------------BFR l--------------~

4 bytes 4 bytes 16-32,760 bytes

a (BFR 3) -8 L(BFR 2) ------------ BFR 2 --------.....

• 4 bytes
•

4 bytes 16-32,760 bytes

•

a(BFR N) -8 L(BFR N-1) ~-----------BFR N-l---------~~

4 bytes 4 bytes 16-32,760 bytes

a(BFR N) -8 L(BFR N) ..------------- BFR N ----------~

4 bytes 4 bytes 96-1,696 bytes

~---i
I FTXTBFXX is one of the four communication area fields that point to the initial buffer~
I in each of the four chains. That is, FTXTBFAl points to the first buffer in the firstl
I buffer chain for SYSUTli FTXTBFA2 pOints to the first buffer in the second buffer I
I chain for SYSUTli FTXTBFBl points to the first buffer in the first buffer chain fori
I SYSUT2i and FTXTBFB2 points to the first buffer in the second buffer chain for SYSUT2. ,
I ,
I Buffers 1 through N-l point to the next buffer in the chain. Buffer N, the lastl
I buffer, points to itself. I
, I
I L(BFR 1), L(BFR 2) , ••• , and L(BFR N) contain the lengths of the buffers in the chain., L ___ J

Figure 3. Text Buffer Chain Forroat

Section 2: Discussion of Compiler Phases 27

The buffers in each of the two chains
constructed for a particular data set are
used alternately. That is, buffer 1 in
chain 1, buffer 1 in chain 2, buffer 2 in
chain 1, buffer 2 in chain 2, etc. For
example, consider the case in which SYSUTl
is being used as the output data set.
Assume that each of the two chains con­
structed for SYSUTl contain three buffers.
Figure 4 shows the order in which the
buffers are used. (The numbers to the
right of each buffer indicate the order.>

FTXTBFAl is initialized to pOint to the
first buffer in chain 1; FTXTBFA2 is ini­
tialized to point to the first buffer in
chain 2.

The contents of the first two buffers in
each chain remain in main storage. That
is, when the phase in control links to the
PIORTN routine for an output operation
involving those buffers, the PIORTN routine
recognizes that neither of these buffers is
the last buffer in the respective chain.
The PIORTN routine does not initiate a
write from these buffers; it inserts the
address of the next buffer (in the current
chain) into the FTXTBFAl field and its size
into the FTXBFSZA field in the communi­
cation area, and then returns control to
the phase.

The phase then switches the contents of
the FTXTBFAl and FTXTBFA2 fields. This
enables the alternate filling of the buf­
fers in both chains because the phase
always requests a write from the address of
the buffer in the FTXTBFAl field.

When the phase requests a write either
from the last buffer in chain 1, or from

the last buffer in chain 2, the PIORTN
routine actually initiates a write opera­
tion. Because the I/O buffers are also
used alternately, all write operations from
this point on are overlapped. (Similarly,
all read operations are overlapped when the
first N-l buffers in both chains have been
used.) After execution of the phase in
question is completed, control is passed to
the PNEXT routine in the performance
module. The PNEXT routine reinitializes:
(1) the contents of the FTXTBFA1, FTXTBFA2,
FTXTBFB1, and FTXTBFB2 fields in the com­
munication area so that they point to the
first buffer in each chain, and (2) the
PINITBFS field in the performance module.
(The FINITBFS field in the communication
area contains these pointers.) In addi­
tion, the last two i-byte fields are reini­
tialized in the blocking table entry for
each data set that is TCLOSEd by the PNEXT
routine.

Note 1: A count is kept of the number of
records actually written on the intermedi­
ate text output data set (SYSUTl or SYSUT2)
during the execution of each phase. If
this count is not greater than two, the
next phase that uses the output data set as
input does not read any records because all
the intermediate text input is in main
storage.

Note 2: For a PRFRM and ADJUST compila­
tion, the output from Phase 8 is automat­
ically blocked on SYSUT2. The I/O text
buffers (the last buffer in each of the
buffer chains constructed for SYSUT2) are
used as the special blocking buffers for
SYSUT2. The blocking factor for SYSUT2

r---,

CHAIN 1 CHAIN 2
FTXTBFAl FTXTBFA2

BFR 1 1 BFR 1 2

BFR 2 3 BFR 2 4

BFR 3 (I/O Buffer) 5, 7, etc. BFR 3 (I/O Buffer) 6, 8, etc.

Figure 4. Text Buffer Chain Use

28

(computed by Phase 5) is the largest inte­
gral multiple of 80 based on the size of
the I/O text buffers. Phase 5 inserts the
blocking factor and the addresses of the
buffers into the performance module block­
ing table entry for SYSUT2.

CONSTRUCTING RESIDENT TABLES

The following resident tables
compiler (described in Appendix
constructed by Phase 5:

of the
H) are

• The segment address list (SEGMAL).

• The patch table.

• The blocking table and the BLDL table
(resident only for PRFRM compilations).

SEGMAL is constructed as main storage
segments are allocated to the dictionary
and the overflow table. The patch table, a
portion of the interface module, is con­
structed only if the patch facility has
been enabled and if patch records precede
the source statements of the source
module(s) being compiled. The blocking
table and the BLDL table, portions of the
performance module, are constructed only
for PRFRM compilations.

SEGMAL

SEGMAL contains the starting and ending
addresses of each main storage segment
allocated to the dictionary and the over­
flow table. The starting address and the
length of each segment is obtained as a
result of the GETMAIN macro-instruction.
Phase 5 then computes the ending address of
each segment, and enters both the starting
and ending address for each segment into
SEGMAL. This sequence of addresses consti­
tutes SEGMAL.

Patch Table

If the patch facility of the compiler
has been enabled, Phase 5 determines if the
first record read from SYSIN is a patch
record. (The patch facility is enabled by
reassembling Phase 5 with the branch
instruction that disables the patch facili­
ty either removed or replaced with a no-op
instruction.) If the first record is a
patch record, it is first listed on
SYSPRINT and then posted in the patch table

(100 bytes) in the interface module. Post­
ing consists of: (1) converting the con­
tents of a. patch record into a format that
is usable to the patch routine, and (2)
moving the converted patch record to the
patch table. When the patch table is full,
any further patches are ignored and are not
placed on the SYSPRINT data set.

Blocking Table and BLDL Table

Phase 5 constructs the blocking table
and the BLDL table only for PRFRM compila­
tions. The performance module contains the
main storage required for these tables.

Phase 5 constructs a blocking table
entry for each of the data control blocks
that were opened by Phase 1. Phase 5
places information into the blocking table
that is required for deblocking compiler
input and blocking compiler output. This
information includes such things as: logi­
cal record length, blocking factor, poin­
ters to the special buffers allocated by
Phase 5, etc.

Phase 5 constructs the BLDL table via
the BLDL macro-instruction. (For a des­
cription of the BLDL macro-instruction,
refer to the publication IBM System/360
Operating System: Data Management.) The
BLDL table contains the information neces­
sary to transfer control, more efficiently
than for a SPACE compilation, from one
component of the compiler to the next. The
construction of the BLDL table reduces
phase-to-phase transition time and thereby
decreases compilation time.

PHASE 7 (IEJFEAAO)

Phase 7 is entered either after the
completion of Phase 1 for PRFRM compila­
tions other than the first compilation in a
batch compilation, or after the completion
of Phase 5 for all other compilations. The
functions of Phase 7 are:

• Initializing the dictionary and the
overflow table.

• Initializing the communication area.

• Deleting Phase 5 if loaded.

In addition, Phase 7 prints the heading for
each compilation on the SYSPRINT data set.

Section 2: Discussion of Compiler Phases 29

At the conclusion of Phase 7 processing,
control is passed to Phase 8 if the ADJUST
option is specified, or to Phase 100 if the
NOADJUST option is specified.

Chart 30 illustrates the overall logic
of Phase 7.

INITIALIZING THE OVERFLOW TABLE AND THE
DICTIONARY

Phase 7 constructs only those portions
of the dictionary and the overflow table
that are independent of the source module
being compiled. In the dictionary, the
dictionary index and the reserved word
portion are constructed. In the overflow
table, the overflow table index is con­
structed. Refer to Appendix H for a dis­
cussion of the dictionary and the overflow
table.

The index for the dictionary and the
index for the overflow table are used by
the compiler to enter information into and
obtain information from the respective
table. The reserved word portion of the
dictionary contains all the reserved words
of the FORTRAN IV (E) language. Both
indexes and the reserved word portion of
the dictionary are assembled as a part of
the Phase 7 load module.

OVerflow Table Index

Phase 7 obtains the starting location of
the overflow table index from the FOVFLNDX
field in the communication area. The over­
flow table index is then moved from the
Phase 7 load module into the appropriate
location in main storage.

Dictionary Index and Reserved Word Portion

Phase 7 examines SEGMAL and determines
the main storage locations into which the
dictionary index and the reserved word
portion of the dictionary are to be placed.
The dictionary index is placed into the
highest portion of the last segment allo­
cated to the dictionary. The reserved word
portion is placed immediately below the
start of the dictionary index.

Figure 5 shows the relative main storage
locations occupied by the dictionary index,
the reserved word portion of the dictio­
nary, the dictionary itself, the overflow
table, the overflow table index, and
SEGMAL.

30

r--------------------------------,
Upper I Dictionary index I
Storage I I

~----------------------------T---~
I Reserved word portion I I
I of dictionary I I
~----------------------------J I
I Dictionary I
I I I
I I I

~----------------!---------------~
I I
I I
~--------------------------------~
I t I
I I I
I I I
I Overflow Table I
~---------T----------------------~

Lower I SEGMAL I Overflow table index I
Storage I I I

L--------_~ ______________________ J

Figure 5. Relative Main Storage Locations
Occupied by Dictionary and Over­
flow Table Elements, and SEGMAL

Note: The dictionary is built from upper
storage to lower storage; the overflow
table is built from lower storage to upper
storage. If the dictionary and overflow
table overlap, a message is issued; no new
entries are made; and compilation contin­
ues.

INITIALIZING THE COMMUNICATION AREA

While Phase 7 is initializing the dic­
tionary and overflow table, various fields
in the communication area are filled in.
The fields are:

• FOVFLNXT
• FOVFLBLK
• FDICTNDX
• FDICTNXT
• FDICTBLK

FOVFLNXT is initialized to contain the
starting address of the overflow table.

FOVFLBLK is initialized to contain a
pointer to the location within SEGMAL that
contains the ending address of the main
storage segment currently being used for
the overflow table. (This address is used
to determine the end of the current over­
flow table segment.)

FDICTNDX is initialized to contain the
starting address of the dictionary index.

FDICTNXT is used to contain the starting
address of the dictionary (that is, the
reserved word portion of the dictionary).

FDICTBLK is initialized to contain a
pointer to the location within SEGMAL that
contains the starting address of the main
storage segment currently being used for
the dictionary. (Since the dictionary is
built from upper storage to lower storage,
the starting address of each main storage
segment used for the dictionary is used to
determine the end of the current segment.)

DELETING PHASE 5 IF LOADED

Before Phase 7 transfers control to the
next phase to be executed, it first writes
the heading line on the SYSPRINT data set
and then determines whether . Phase 5 was
loaded into main storage by Phase 1. Phase
1 loads Phase 5 into main storage if: (1) a
SPACE compilation is being performed, or
(2) the first source module in a batch
PRFRM compilation is being compiled. If
Phase 5 is in main storage, Phase 7 deletes
Phase 5 from storage (via the DELETE
macro-instruction), and then transfers con­
trol to the next phase (Phase B or Phase
100).

PHASE 8 (IEJFFAAO)

Phase B is only loaded into main storage
and executed if the ADJUST option is in
effect. Phase 8 is entered after the
completion of Phase 7 processing. The
functions of the phase are:

• Eliminating embedded blanks in FORTRAN
statements.

• Adding a special character to all FOR­
TRAN keywords in a source illodule that
are used as variables, arrays, or
external names.

• Inserting meaningful blanks between
successive words in FORTRAN statements.

Phase 8 converts source statements writ­
ten in the FORTRAN IV (E) language into a
format that is acceptable to Phases 10D and
10E. Phases 100 and 10E require that: (1)
keywords be reserved for compiler use, (2)
none of the names used in the source module
contain embedded blanks, and (3) successive
names within any statement be separated by
blanks.

In addition Phase 8 prepares
module listing if the SOURCE
specified by the user.

a source
option is

Upon completion of Phase B processing,
control is passed to Phase 100.

Figure 6 illustrates the data flow with­
in Phase 8.

Chart 40 illustrates the overall logic
and the relationship among the routines of
Phase 8. Table 4, the routine directory,
lists the routines used in the phase and
their functions.

Note: All input and output operations are
double buffered. This increases overall
Phase B efficiency by overlapping normal
processing with I/O operations. In addi­
tion, for a PRFRM and ADJUST compilation,
the output from Phase 8 is automatically
blocked on SYSUT2. The blocking factor is
determined internally by Phase 5 and is
inserted into the DCB skeleton for SYSUT2.

r-------------,
I Adjusted I
I FORTRAN ISYSUT2
I Source I
I Module I

~
-------------J

r-------------, r
l
-------------'

I FORTRAN 1
SYSIN I Source! '-_______ -...1 Phase 8 I

I Module 1 1 1 l _____________ J l _____________ J~
- ~-------------,

I Listing of ISYSPRINT
I Nonadjusted I (if SOURCE
I Source loption is
I Module lin effect) L _____________ J

Figure 6. Phase 8 Data Flow

Section 2: Discussion of Compiler Phases 31

ELIMINATING EMBEDDED BLANKS

Each source statement consists of one or
more card images. To eliminate the embed­
ded blanks in those statements, each card
image is first read into one of the two I/O
buffers in the interface module. The card
image is then moved to a primary work area
where it is scanned for names and delimi­
ters via the translate and test (TRT)
instruction. (If the SOURCE option is
specified by the user, each card image is
written from the input buffer onto the
SYSPRINT data set after that card image has
been moved to the primary work area.)

If a statement number defines the state­
ment in question, it is packed and then
moved from the primary work area to the
current output buffer. The portion of the
card image up to and including the delimi­
ter that terminates the execution of the
TRT instruction is packed (i.e., blanks are
eliminated) and is then moved to an inter­
mediate work area. The process of packing
successive segments of each card image is
repeated for all the card images on the
SYSIN data set for the source module cur­
rently being compiled. When the END state­
ment is encountered, Phase 8 writes on the
SYSUT2 data set, either the first statement
of the next subprogram to be compiled, or
an end-of-file (EOF) if no more input is
present.

Note: A special switch is set if the
statement in question is a FORMAT statement
so that any blanks in the H and quote
fields are not eliminated.

For example, consider the
statement as it appears as input
8.

1 FOR MAT (1 H ,I 10)

following
to Phase

The output from Phase 8 for this state­
ment is:

1 FORMAT(lH ,110)

The process of adding a special charac­
ter to all keywords that are used as
variables occurs at the same time that
blanks are being eliminated.

ADDING SPECIAL CHARACTERS

After each packed segment of a ca~d
image is moved to the intermediate work
area, Phase 8 checks to see if that segment
contains a keyword. A keyword may be a
word that begins any permissible FORTRAN
(IV) E source statement (e.g., READ) other

32

than an arithmetic statement or a statement
function. A keyword may also be contained
in an arithmetic statement or an arithmetic
expression. (For example, in the statement
A=FLOAT(l), FLOAT is a keyword.)

Phase 8 assumes that all FORTRAN state­
ments are arithmetic statements until det­
ermined otherwise. Therefore, whenever a
FORTRAN keyword is encountered, a special
unprintable character is added to it to
indicate to Phases 100 and 10E that the
keyword is possibly being used as a varia­
ble, array, or external name. This is done
by inserting the special character between
the last character of the keyword and the
next delimiter in the packed segment.

Further examination of the statement
indicates whether the keyword is being used
as a variable, array or external name, or
as a normal keyword. If the keyword is not
being used as a variable, array, or exter­
nal name, the special character is removea
so that Phase 100 or Phase 10E recognizes
the normal use as a keyword. The special
characters are removed prior to moving the
statement to the current output buffer.

INSERTING MEANINGFUL BLANKS

When an entire card image has been
packed and placed into the intermediate
work area, it 1S prepared for output.
Phases 100 and 10E do not allow blanks to
be omitted between successive words of a
statement. Phase 8, prior to writing out
the packed card image inserts a blank
between any such words in a source state­
ment.

For example, consider the following
statement after it has been packed by Phase
8 :

DlMENSIONABC(10)

Prior to moving the statement to the
current output buffer, a blank is inserted
so that the statement is written out as:

DIMENSION ABC(10)

PHASE 100 (IEJFGAAO)

Phase 100 is entered either after the
completion of Phase 7 if the NOADJUST
option 1S in effect, or after the comple­
tion of Phase 8 if the ADJUST option is in
effect. Phase 100 processes the declara­
tive statements of the source module, which
are COMMON, DIMENSION, EQUIVALENCE,

INTEGER, REAL, DOUBLE PRECISION, EXTERNAL,
FORMAT, DEFINE FILE, and SUBROUTINE or
FUNCTION (if a subprogram is being
compiled) •

If the NOADJUST option is specified, the
input to Phase 100 resides on the SYSIN
data set. If the ADJUST option is speci­
fied, the input to Phase 100 resides on the
SYSUT2 data set.

Declarative statements, other than the
FORMAT statement, must precede the state­
ment function definitions and the execut­
able statements. The executable statements
are all FORTRAN IV (E) statements other
than those listed above and statement func­
tion definitions.

In processing
ments, Phase 100
functions:

the declarative state­
performs the following

• Prepares intermediate text.
• Constructs dictionary and overflow

table entries.
• Prepares the first part of the source

statement listing if the SOURCE and
NOADJUST options are in effect.

Phase 100 and Phase 10E (the next phase
to be executed) convert each FORTRAN source
statement into usable input to subsequent

SYSIN for
NOADJUST
option;
SYSUT2 for
ADJUST
option

r-------------,
I Declarative I
I Statements I
I of the Sourcel
I Module I L _____________ _

r--------------
Main Storage I Dictionary I

I and Overflow I
I Table I L ______________ J

Figure 7~ Phase 100 Data Flow

phases of the compiler. Phase 100 converts
the declarative statements; Phase 10E con­
verts the statement function definitions
and the executable statements. The result
of this conversion is intermediate text (an
internal representation of the source
statements), and the dictionary and over­
flow table that contain detailed informa­
tion about specific portions of the state­
ments.

The information in the dictionary and
overflow table supplements the intermediate
text in the generation of code by subse­
quent phases. This information is asso­
ciated with the intermediate text entries
via pointers that reside in the text
entries.

When a statement function definition or
an executable statement is encountered in
the input stream, control is passed to
Phase 10E.

Figure 7 illustrates the data flow with­
in the phase.

Chart 50 indicates the overall logic and
the relationship among the routines of
Phase 100. Table 6, the routine directory,
lists the routines used in the phase and
their functions.

r--------------,
I Intermediate I SYSUTl or
I Text for I Main storage
I COMMON, I
I EQUIVALENCE, I

FORMAT, I
DEFINE FILE, I
FUNCTION, andl
SUBROUTINE I

I Statements I L ______________ J

--------------,

Main Storage

I Source I SYSPRINT (if
I Statement I SOURCE and
I Listing I NOADJUST op-
L ______________ J tions are in

effect)

Section 2: Discussion of Compiler Phases 33

CREATING INTERMEDIATE TFXT FOR DECLARATIVE
STATEMENTS

Phase 100 produces intermediate text,
which is the form in which information is
transmitted from the source module to the
processing phases. (Refer to Appendix E
for a description of the source statement
scan required for intermediate text prepar­
ation.)

Intermediate text is prepared for FOR­
MAT, DEFINE FILE, FUNCTION, and SUBROUTINE
declarative statements. (Refer to Appendix
F for the intermediate text format.) This
text is used to transmit these statements
to Phases 14, 15, 20, and 25.

In addition to creating intermediate
text for DEFINE FILE statements, Phase 100
makes the following validity checks for the
statements.

• To see that the unit numbers (i.e.,
data set reference numbers) defined in
the statements do not exceed 99, and
that the unit numbers are not multiply
defined.

• To see that
records per
exceed 224.

the maximum number of
defined unit does not

• To see that the associated variable for
each unit is a nonsubscripted integer
variable.

Phase 100 also accumulates the number of
direct access data sets in DEFINE FILE
statements in the DEFILCT field of the
communication area. This field is examined
by Phase 25 to determine if a DEFINE FILE
statement was included in the source
module. (If a DEFINE FILE statement was
included in the source module, Phase 25
generates, as a part of the object module,
a calling sequence to the file definition
section of IHCDIOSE the direct access
I/O data management interface.)

For COMMON and EQUIVALENCE statements, a
special form of intermediate text is creat­
ed. (Refer to Appendix F for the format.)
These special forms of text transmit the
corresponding statements to Phase 12.

Note: The input to Phase 12 is COMMON and
EQUIVALENCE text mixed with regular inter­
mediate text. If all COMMON and EQUIVA­
LENCE text precedes all other intermediate
text, Phase 12, at its conclusion, does not
reposition the SYSUTl data set to its
beginning. (That is, Phase 14 can start
reading SYSUTl from where it is
positioned.) In either case, Phase 14
deletes COMMON and EQUIVALENCE text when it
is encountered.

34

CONSTRUCTING DICTIONARY AND OVERFLOW TABLE
ENTRIES

Dictionary and overflow table entries
are made during Phase 100 for:

• Symbols appearing within declarative
statements.

• Statement numbers associated with de­
clarative statements.

Entries are made to the dictionary
(refer to Appendix H) for symbols appearing
in all declarative statements except the
FORMAT statements. If any symbol is
already entered in the dictionary, that
entry is modified, if necessary, to reflect
any new information about the symbol under
consideration. For example, if the symbol
is in COMMON, an indicator in the diction­
ary is set on.

Entries ar~ made to the overflow table
(refer to Appendix H) for:

• Statement numbers.
• Dimension information.

PHASE 10E (IEJFJAAO)

Phase 10E is entered after the comple­
tion of Phase 100. The functions of the
phase are:

• Creation of intermediate text.

• Construction of dictionary and overflow
table entries.

• Completion of the preparation of the
source statement listing if the SOURCE
and NOADJUST options are in effect.

If the NOADJUST option is specified, the
input to Phase 10E resides on the SYSIN
data set. If the ADJUST option is speci­
fied, the input to Phase 10E resides on the
SYSUT2 data set.

Phase 10E processes SFs (statement
functions), the executable statements of
the source module, and any FORMAT state­
ments interspersed among them. As each SF,
executable, or FORMAT statement appears in
the input stream, intermediate text is
prepared and corresponding entries are made
to the dictionary and the overflow table.
The intermediate text prepared by Phase 10E

represents the executable source module
statements. The dictionary and overflow
table entries complement intermediate text.
(For the formats of the intermediate text
and the dictionary and overflow table,
refer to Appendixes F and H, respectively.)
If any syntactical errors are encountered
during the processing of an SF, executable,
or FORMAT statement, error intermediate
text entries are made immediately following
the intermediate text entries for the
statement in which the error was detected.

When the END statement or an end-of-file
(EOF) is encountered, Phase 10E passes
control either to Interlude 10E (IEJFJGAO)
for SPACE compilations, or to Phase 12 for
PRFRM compilations.

Note: When the END statement is encoun­
tered, Phase 10E determines, by reading the
next record of the input data set, if a new
compilation, after the current one, is to
be initiated. If an end-of-file is encoun­
tered, Phase 10E indicates to Phase 1, by
setting a bit in the communication area,
that the current compilation is the last
compilation. If another record exists,
Phase 1 initiates a new compilation at the
end of the current one.

Figure 8 illustrates the data flow with­
in the phase. The input data set (SYSIN or
SYSUT2), and the output data sets (SYSUTl
and SYSPRINT) are not repositioned after
Phase 10D. Therefore, Phase 10E can con­
tinue to read from SYSIN or SYSUT2 and to
write onto SYSUTl and SYSPRINT.

Chart 60 illustrates the overall logic
and the relationship among the routines of
Phase 10E. Table 8, the routine directory,
lists the routines used in the phase and
their functions.

CREATING INTERMEDIATE TEXT FOR STATEMENT
FUNCTIONS, EXECUTABLE STATEMENTS, AND
FORMAT STATEMENTS

Phase 10E produces intermediate text for
each SF and executable statement, and for
any FORMAT statements among them. (Refer
to Appendix E for a description of the
source statement scan required for inter­
mediate text preparation.)

For a subscripted expression appearing
within a statement, a un1que intermediate
text entry of two words is made (refer to
Appendix F). The offset of the subscripted
expression (for which a field in this
unique text entry is reserved) is computed
by Phase 10E. For a discussion of this
aspect of subscripted expressions, refer to
Appendix G.

Note: Phase 10E performs a special check
for the READ, WRITE, and FIND direct access
I/O statements. (The direct access FIND
statement is treated, at compile-time, as a
direct access READ statement without format
and list.) A check is performed to see if
the parameter indicating the relative posi­
tion, within the data set, of the record to
be read or written involves an arithmetic
expression other than a constant or single
nonsubscripted variable. If the parameter
involves such an expression, Phase 10E
generates the intermediate text, in the
form of an arithmetic expression, that is
required to evaluate the expression. Phase
10E then sets a switch (FDATEMP) in the
cOlnmunication area. This switch indicates
to Phase 15 that main storage for a special
work area must be allocated. The special
work area is used, at object-time, to
contain the value of the expression.

r---------------, r--------------,
SYSIN for I SFs and Exe- I I Intermediate I SYSUTl or
NOADJUST I cutable state-I I Text I Main Storage
option; I ments of the I I I
SYSUT2 for I Source Module I I I
ADJUST oPtionL---------------~ ~--------------J

~------------~ r--------------,
I I I Dictionary I Main Storage
I Phase 10E I ~I and Overflow I
I I I Table I

~------------~ L ______________ J

r---------------~ ~--------------,
Main Storage I Dictionary I I Source I SYSPRINT (if

I and Overflow I I Statement I SOURCE and
I Table I I Listing I NOADJUST L _______________ J L ______________ J options are

in effect)
Figure 8. Phase 10E Data Flow

Section 2: Discussion of Compiler Phases 35

CONSTRUCTING DICTIONARY AND OVERFLOW TABLE
ENTRIES

Phase 10E makes entries to the diction­
ary for:

• Variables.
• Constants.
• Subprograms.
• Data set reference numbers.

(Refer to Appendix H for the format and
content of these entries.)

Phase 10E makes entries to the overflow
table for:

• Subscripted expressions appearing in
the executable statements.

• Statement numbers associated with FOR­
MAT statements or executable state­
ments.

(Refer to Appendix H for
content of these entries.)

the format and

PHASE 12 (IEJFLAAO)

Phase 12 is entered either after the
completion of Interlude 10E for SPACE com­
pilations, or after the completion of Phase
10E for PRFRM compilations. The functions
of the phase are:

• Address assignment.
• EQUIVALENCE statement processing.
• Branch list table preparation.
• Card image preparation.
• Preparation of a storage map if the MAP

option is specified (a minor function).

Address assignment is the allocation of
relative storage locations to:

• Variables and arrays in COMMON.
• Variables and arrays not in COMMON.
• Equated variables.
• Variables in subscripted expressions.
• Double-precision constants.
• Real and integer constants.

36

Addresses are assigned in the order in
which they are listed.

If the object listing facility of the
compiler has been enabled and if the object
listing option is specified, Phase 12 plac­
es the names of all variables and constants
used in the source module and their corres­
ponding relative addresses into the SORSYM
load module. (SORSYM was previously loaded
into main storage by Phase 1.)

When the SORSYM module is full, all
subsequent variables and constants are
ignored and do not appear on the object
module listing.

Processing of the EQUIVALENCE text
occurs after the assignment of addresses to
variables and arrays in COMMON but before
the assignment of addresses to other dic­
tionary entries.

EQUIVALENCE text processing
relative positions to the variables
fied in the EQUIVALENCE statements.
relative positions are indicated
table, which is created and used to
relative addresses to the variables
ing to their position in the table.

assigns
speci­

These
in a

assign
accord-

After the assignment of addresses to
real and integer constants, Phase 12 pre­
pares a branch list table, which is used to
control branching within the object module.

During the assignment of addresses by
Phase 12, ESD, TXT, and RLD card images are
generated for section definitions, liter­
als, and external references.

In addition to the preceding functions,
Phase 12 prepares a storage map to indicate
all address assignments made during the
phase.

After the completion of Phase 12 pro­
cessing, control is passed to Phase 14.

Figure 9 illustrates the data flow with­
in the phase.

Chart 70 illustrates the overall logic
of Phase 12 and the relationship among its
routines. Table 9, the routine directory,
lists the routines used in the phase and
their functions.

r--------------,
Main storage I Dictionary I

I and Overflow I

r--------------,
I Intermediate I
I Text for Non-I
1 Syntactical I
I Errors I
I Encountered I
I in COMMON andl
I EQUIVALENCE I
I Statements I ______________ J

r-------------,
I Dictionary I
I and Overflow I

SYSUT2 or
Main Storage

Main Storage

t_:~~~~ ________ ~ Vrl-::~::--------J
~------------ r--------------,

I 1 ESD, TXT,RLD I SYSLIN
and/or
SYSPUNCH

I Phase 12 1 -I Card Images I

I ~ I

r--------------~------------ L==:===========:
SYSUT1 or
Main Storage

I COMMON and I I storage I SYSPRINT
I EQUIVALENCE I 1 Map I
I Text I I I L _____________ J L _____________ J

Figure 9. Phase 12 Data Flow

ADDRESS ASSIGNMENT

An effective address in IBM System/360
Operating System (a base-displacement
address) is the displacement in an instruc­
tion added to the value in a base register.
This yields a two-byte address wherein the
first six bits represent a general register
used as a base register and the last ten
bits represent the displacement. All sym­
bols in the object module generated by the
compiler are referenced by this two-byte
address.

The base-displacement address is
assigned through the use of a location
counter, which is initialized and then
incremented by the number of words needed
in main storage to contain the variable,
array, constant, address constant, or
equated variable assigned an address. If
more than 4096 bytes are needed, a new base
register is assigned.

There are only two instances in which
the location counter may be incremented
when no address is assigned:

--------~-----,
I Source Symbol I
1 Table if 1
I Object List- I
I ing Option isl
I in Effect 1

Main
Storage

L ______________ J

• The first occurs after the variables in
COMMON are assigned addresses. A new
base register is assigned to the loca­
tion counter so that variables not in
COMMON have different base registers
than variables in COMMON.

• The second may occur before the assign­
ment of addresses to double-precision
constants that are not in COMMON. The
location counter is adjusted to a
double-word boundary in order to accom­
modate double-precision constants.

When a variable is assigned an address,
that address is placed in the chain field
of the dictionary or overflow table entry
for the variable.

FORMAT statements are assigned
during the execution of Phase
phases after Phase 12 assign
whenever a constant or work
defined.

addresses
14. All

addresses
area is

Section 2: Discussion of Compiler Phases 37

EQUIVALENCE STATEMENT PROCESSING

The EQUIVALENCE text is processed by
Phase 12 so that equated variables are
assigned to the same address.

The following terms are used in the
description of EQUIVALENCE processing:

• EQUIVALENCE group the variable
and/or array names between a left and
right parenthesis in an EQUIVALENCE
statement.

• EQUIVALENCE class -- two or more EQUIV­
ALENCE groups that have the following
characteristic. If any EQUIVALENCE
groups contain the same element, these
groups form an EQUIVALENCE class.
Further, if any other group contains an
element in this class, the other group
is part of this class, etc.

• Root the member of an EQUIVALENCE
group or class from which all other
variables in that group or class are
referenced by means of a positive dis­
placement.

• Displacement -- the distance, in bytes,
between a variable and its root.

The root of an EQUIVALENCE group is
assigned an address, and all other varia­
bles in the group are assigned addresses
r'elative to that root.

To determine the root and the displace­
ment of the other elements in the group
from the root, the first element in the
EQUIVALENCE group is established initially
as the root. The displacement for the
other elements (in relation to the root) is
calculated by subtracting the offset of the
:root from the offset of the variable whose
displacement is being calculated. (The
offset for subscripted variables is con­
tained in the EQUIVALENCE text created by
Phase laD. The offset for nonsubscripted
variables is zero.)

If the resulting displacement is nega­
tive, the root is changed. The new root is
the variable whose displacement was being
calculated. Whenever a new root is
assigned to an EQUIVALENCE group, the pre­
viously calculated displacements must be
recalculated.

The root and the displacements in each
group are entered in an EQUIVALENCE table,
which is used by the storage assignment
routines of Phase 12 to assign addresses to
equated variables. (Refer to Appendix I
for the table format.>

38

Note: Phase 12 generates intermediate text
for nonsyntactical errors encountered in
COMMON and EQUIVALENCE statements during
relative address assignment. (The internal
statement number for the error messages
that are generated from this intermediate
text by Phase 30 is 0000.> The amount of
intermediate text for such errors depends
on whether the SPACE or the PRFRM option is
in effect.

If the SPACE option is in effect, the
amount of error text is limited by the size
of the first internal text buffer for the
SYSUT2 data set. Phase 12 does not write
any of the error text onto the SYSUT2 data
set; it places the text into the above
buffer. (The contents of the buffer are
written onto SYSUT2 by Phase 14.> If the
buffer is filled before COMMON and EQUIVA­
LENCE processing is completed, Phase 12
continues such processing, but does not
generate additional error text. If the
buffer is not filled before COMMON and
EQUIVALENCE processing is completed, Phase
12 places the displacement of the next
available location within the buffer into
the FTXTPTRB field in the communication
area. Phase 14 starts placing its inter­
mediate text output at the location indi­
cated by this field.

If the PRFRM option is in effect, there
is no limitation on the amount of inter­
mediate text generated by Phase 12 for
COMMON and EQUIVALENCE statement errors.
Phase 12 starts placing the error text into
the first text buffer in the first text
buffer chain for the SYSUT2 data set. When
that buffer is full, the next buffer in the
chain is used, etc. When all of the COMMON
and EQUIVALENCE text is processed, the
displacement of the next available location
within the current buffer is placed into
the FTXTPTRB field in the communication
area. Phase 14 starts placing its inter­
mediate text output at the location indi­
cated by this field.

BRANCH LIST TABLE PREPARATION

The branch list table is initialized by
Phase 12 (and is completed by Phase 25).
This table is used by the object module to
control the branching process. (Refer to
Appendix J for the table format.) Each
statement number referenced in a control
statement is assigned a position relative
to the start of the branch table. This
position is indicated to Phase 25 by a
relative number, which replaces the chain
field of the corresponding statement number
entry in the overflow table.

In the assignment process, the statement
number chains in the overflow table are
scanned sequentially. Each time an entry
for a statement number indicates a ref­
erenced statement other than the statement
number of a FORMAT or specification state­
ment, a counter associated with the branch
list table is incremented by 4. (Four
bytes are required for the referenced
statement number and the address that will
be assigned to the number by Phase 25.)
The current contents of that counter are
then placed in the chain field of the
corresponding overflow table entry.

This counter is initialized to O.
Therefore, the first statement number in
the first chain is assigned the number 0,
the second statement number is assigned the
relative number 4, the third statement
number is assigned/the relative number 8,
and so on. .After all statement numbers are
assigned, the location counter is incre­
mented by an amount equal to the size of
the branch list table (in bytes).

CARD IMAGE PREPARATION

Several card images are prepared during
the execution of Phase 12. This involves
setting up the proper formats for the card
images and inserting the pertinent informa­
tion into those formats. The card images
prepared are indicated below, along with
their functions. For a more complete dis­
cussion of the use and format of these
cards, refer to the publication IBM
Systeml360 Operating System: Linkage Edi=
tor, Program Logic Manual.

The cards generated by Phase 12 are:

• ESD-O

• ESD-2

• ESD-5

• TXT

This is the section definition
card for the source module being
compiled.

This card is produced for exter­
nal subprogram names. There may
be several such cards.

This is the section definition
card for COMMON (if a COMMON
statement exists in the source
module being compiled).

This card is produced for con­
stants that have been entered in
the dictionary. There may be
several such cards.

• RLD This card contains the address
of the location at which the
address of each external subpro­
gram will be loaded at object
time. There may be several such
cards.

PHASE 14 (IEJFNAAO)

Phase 14 is entered after the completion
of Phase 12. The functions of the phast
are:

• FORMAT statement processing.

• READ/WRITE/FIND statement processing.

• Replacing dictionary pointers.

• Miscellaneous statement processing.

The FORMAT statement processing converts
the intermeaiate text for FORMAT statements
into a form acceptable to IHCFCOME and
creates TXT card images. These card images
are used by IHCFCOME to set up the format
of the list items for the I/O oper'ations of
the compiled source module. For a discus­
sion of IHCFCOME, refer to Appendix L.

The processing for READ/WRITE/FIND
statements consists of checking the compo­
nents of the statements for validity, pro­
cessing implied DOs within the statements,
and rearranging the intermediate text for
the statements.

Phase 14 replaces dictionary pointers in
the intermediate text with the appropriate
address assigned by Phase 12, a data set
reference number, or a statement function
number. (For SPACE compilations, the main
storage occupied by the dictionary is freed
by Phase 14.)

Upon completion of the Phase 14 process­
ing, control is passed either to Interlude
14 (IEJFNGAO) for SPACE compilations, or to
Phase 15 for PRFRM compilations.

Figure 10 illustrates the data flow
within the phase.

Chart 80 illustrates the overall logic
of Phase 14 and the relationship among its
routines. Table 12, the routine directory,
lists the routines used in the phase and
their functions.

Section 2: Discussion of Compiler Phases 39

r--------------,
I I

Main Storage I Dictionary I
I and Overflow I

r--------------,
I I
I Dictionary I
I I

Main Storage

I Table I I I
L ______________ ~ ~--------------J

~------------~ r--------------,
I I I Intermediate I SYSUT2 or

Main Storage I Phase 14 I ., Text I
I I I Modified I ~ ____________ ~ L ______________ J

r--------------~ ~--------------,
I I I TXT Card I SYSLIN

and/or
SYSPUNCH

SYSUT1 or
Main Storage

I Intermediate 1 I Images for I
I Text I I FORMAT 1
I I I Statements I L ______________ J L ______________ J

Figure 10. Phase 14 Data Flow

FORMAT STATEMENT PROCESSING

A FORMAT statement is composed of one or
more format specifications that define an
I/O format. For a discussion of the physi­
cal structure of a FORMAT statement refer
to the publication IBM Systeml360 Operating
System: FORTRAN IV (E) Language.

Each FORMAT statement is examined begin­
ning with the first FORMAT code. For each
FORMAT code obtained, a specific processing
routine is called (refer to Table 11). The
processing of each routine consists of
entering the required informa.tion for the
FORMAT code into TXT card images. These
images are composed of 1-byte units con­
taining 2 hexadecimal digits. Each byte
contains one of the following:

• An adjective code, which indicates to
IHCFCOME the format conversion
(H,I,F,P,X, etc.), a group or field
count, or the end of a FORMAT state­
ment.

• A number that represents the actual
field count, field length, group count,
or decimal length.

One of the following is entered into a
TXT card image:

40

• Adjective Code and Number. (Entered
for FORMAT specifications P,I,T,A, and
X, and for entries made to indicate a
field or group count.)

• Adjective Code.. (Entered for a slash,
the right parenthesis that ends a

group, or the right parenthesis that
ends a FORMAT statement.)

• Adjective Code, Field Length, and Deci­
mal Length. (Entered for FORMAT speci­
fications D, E, and F.)

• Adjective Code, Field Length, and
Literal. (Entered for FORMAT specifi­
cations H and apostrophe.)

As the specific information is entered
into TXT card images, addresses are
assigned by incrementing the location
counter (according to the amount of storage
required to contain the contents of a TXT
card image).

During the processing of a FORMAT state­
ment, various accumulators are used to
determine the record length. That length
is compared to the user-specified length
(indicated by the LINELNG option). If the
record length is greater than the specified
length, a warning indicator is placed in
intermediate text. If the user has not
specified a record length, the standard
length is used.

READ/WRITE/FIND STATEMENT PROCESSING

READ/WRITE/FIND statement processing
involves four operations. The first is a
check for the validity of the symbol used
as the data set reference number. An
indicator for the end of the
READ/WRITE/FIND statement is made by enter­
ing an end-of-statement indicator in the

intermediate text before any entries for
the I/O list. This allows Phase 20 to
handle the I/O list as a separate statement
in intermediate text.

The second operation is the replacement
of dictionary pointers in intermediate text
(for the symbols in the I/O list) with
addresses assigned by Phase 12. This
includes a check for the validity of the
symbols in the I/O list. When an invalid
symbol (a symbol other than a variable or
array name) is encountered, an error condi­
tion is noted in the intermediate text and
the remainder of the I/O list is deleted.

The third operation is to check for and
process implied DOs, which are recognized
by a left parenthesis within a READ/WRITE
statement. For each encounter, an implied
DO adjective code is inserted in the inter­
mediate text for the READ/WRITE statement.
When the end of an implied DO is recognized
(right parenthesis), an end DO adjective
code is inserted in the intermediate text.

The fourth operation is to rearrange the
READ/WRITE statement entries so that later
phases can process the statement correctly.
The implied DO variable and parameters are
placed ahead of any subscripted variables
(whose intermediate text is also
rearranged).

REPLACING DICTIONARY POINTERS

In the intermediate text entries, except
for the END and FORMAT statements, diction­
ary pOinters are replaced by:

• The address assigned and placed in the
dictionary chain field by Phase 12 if
the pointer refers to an entry for a
variable, constant, array, or external
function. (The assigned addresses are
obtained from the chain address fields
of the affected entries in the diction­
ary.)

• A data
pointer
number.

set reference number if the
refers to a data set reference

• A statement function number if the
pointer refers to a statement function.

MISCELLANEOUS STATEMENT PROCESSING

Statement function (SF) definition
statements are assigned a unique SF number
by Phase 14. This number is used to
reference the SF within an associated
branch list table in the compiled source
module (refer to Phase 25). This unique
number is assigned, in sequence beginning
with 01, to each SF in the program and is
moved to the dictionary entry for the name
of that SF. This number also replaces the
pointer field of the intermediate text
entry for the SF.

The text for RETURN, DO, GO TO, IF,
PAUSE, and STOP statements is examined to
determine if the statement in question ends
a DO loop. If it does, an error condition
is noted in the intermediate text. In
addition to this error check, if the adjec­
tive code for a RETURN statement appears
within a main program, that adjective code
is changed to the adjective code that
represents a STOP statement.

A statement number entry in the inter­
mediate text, other than a FOR~~T statement
number, is moved unchanged from the input
buffer to the output bu.ffer. A FORMAT
statement number is treated as follows:

• If the number is
warning condition
intermediate text.

not referenced, a
is noted in the

• If the number is associated
FORMAT statement that ends a DO
an error condition is noted
intermediate text.

with a
loop,

in the

• The contents of the location counter
are entered in the chain address field
of the associated overflow table entry.

BACKSPACE, REWIND, and END FILE state­
ments are examined to verify that the data
set reference number is a valid symbol.

Intermediate text for computed GO TO
statements is rearranged, putting the vari­
able and the number of statement numbers
before the statement numbers themselves.

Any intermediate text for COMMON and
EQUIVALENCE statements is deleted by Phase
14 since that text is no longer used.

Section 2: Discussion of Compiler Phases 41

PHASE 15 (IEJFPAAO)

Phase 15 is entered either after the
completion of Interlude 14 for SPACE compi­
lations, or after the completion of Phase
14 for PRFRM compilations. The functions
of the phase are:

• Reordering intermediate text.
• Modifying intermediate text.
• Assigning registers.
• Creating argument lists.
• Checking for statement errors.

All of the above functions are performed
for the processing of statements that can
contain arithmetic expressions; only the
error checking function is performed for
the remaining statements.

Phase 15 reorders the sequence of inter­
mediate text words within: (1) statements
that can contain arithmetic expressions
(arithmetic, arithmetic IF, CALL, and
statement functions), and (2) DEFINE FILE
statements. As intermediate text words are
being reordered, they are modified, depend­
ing on the operators and operands, to a
form closely resembling an instruction for­
mat. When the intermediate text words are
modified, registers are assigned, when nec­
essary, to the operands of all arithmetic
operators. Argument lists for subprogram
and statement function references are
created, and in-line function references
are processed by generating the appropriate
instruction format intermediate text or
intermediate text word for an in-line func­
tion call. During the input text process­
ing, errors pertaining to DO loops, arith­
metic IF statements, statement numbers,
function arguments, and operand usage and
form are recognized, and the appropriate
error messages are given.

Upon completion of Phase 15 processing,
control is passed either to Interlude 15
(IEJFPGAO) for SPACE compilations, or to
Phase 20 for PRFRM compilations.

Figure 11 illustrates the data flow
within Phase 15.

Chart 90 illustrates the overall logic
of Phase 15 and the relationship among its
routines. Table 15, the routine directory,
lists the routines of the phase and their
functions.

REORDERING INTERMEDIATE TEXT

For Arithmetic Expressions

Phase 15 reorders the sequence of inter­
mediate text words within arithmetic
expressions so that the resulting code
generated by Phase 25 will cause evaluation
of arithmetic expressions according to a
hierarchy of operators. The desired order
is defined by a hierarchy of the specific
operations as represented by adjective
codes and is determined by a comparison of
forcing values (a forcing value indicates
an operator's priority in the hierarchy of
operators). (Refer to Appendix I, Figure
77, for a list of the various operators and
their corresponding forcing values.)
Depending on the operator in an intermedi­
ate text word and its relative position in
the hierarchy of operators, that intermedi­
ate text word is either:

• Processed (this consists of modifying
the intermediate text word by replacing
the adjective code field and the
mode/type field, when necessary, with a
machine operation code and a register
number, respectively), er

• Stored in an operations table or sub­
script table (refer to Appendix I,
Figures 78 and 79).

The operations and subscript tables
function as pushdown tables in which the
top entry in the table is the most recently
entered item. (This process is known as
LIFO: last in, first out.)

The actual reordering of intermediate
text words is controlled by a routine
(FOSCAN) that scans the input intermediate

r--------------, r------------, r--------------,
SYSUT2 OR I Intermediate I I I I Modified I SYSUTl or
Main Storage I Text ~I------~.~I Phase 15 ~I--------~.~I Intermediate I Main Storage

Main
Storage

I I I I I Text I l ______________ J ~------------J l ______________ J
r--------------~
I Overflow I
I Table I l ______________ J

Figure 11. Phase 15 Data Flow

42

text words. This routine compares the
forcing values of the various adjective
codes under consideration to determine
their disposition. Each adjective code has
a left and a right forcing value. The
right forcing value applies to the adjec­
tive code within the current input inter­
mediate text word. The left forcing value
applies to the adjective code within the
top entry in the operations table. The
adjective code of the first intermediate
text word of an arithmetic statement has
the highest left forcing value of any
adjective code except for the end-of­
statement indicator.

The first intermediate text word of any
arithmetic statement is first written on
the output data set and then entered in the
operations table. The next word of the
input intermediate text for this statement
is then obtained and examined. If it is
subscript intermediate text, it is entered
in the subscript table. The following word
is then obtained and examined. When the
word (in the operations table) containing
the subscripted variable is processed, the
related subscript intermediate text is
obtained from the subscript table. The
related subscript intermediate text is
always the top entry in the subscr1pt
table.

If the word obtained from the input
intermediate text is not a subscript inter­
media te text word., the right forcing value
of that word is compared to the left
forcing value of the top entry in the
operations table. If the right forcing
value is greater than or equal to the left
forcing value, the top entry of the opera­
tions table is forced out, processed, and
written on the output data set. If the
right forcing value is less than the left
forcing value, the current word of the
input intermediate text is entered into the
operations table. The next input inter­
mediate text word is then obtained. This
comparison process continues until the
first entry (for the statement under
consideration) made in the operations table
is forced out (by the end mark) and proc­
essed. In this way, the input data set is
reordered when it leaves Phase 15 as the
output data set.

If an attempt is made to enter informa­
tion in the operations or subscript table
when they are full, an error condition is
recognized. An error intermediate text
word, which indicates that the statement is
too long and should be subdivided, is
generated and placed at the end of the
intermediate text words for the statement
containing the error.

For DEFINE FILE Statements

Phase 15 reorders the intermediate text,
created by Phase 100, for DEFINE FILE
statements to facilitate the generation of
TXT card images for the parameter lists
included in those statements (refer to
Appendix F). (The parameter lists are
required at object-time by IHCDIOSE, the
direct access I/O data management inter­
face.)

Each parameter list is reordered into a
three-argument format that contains the
parameters which define the corresponding
direct access data set. Phase 15 generates
an intermediate text word containing a
constant of three, and places this text
word prier to each of the parameter lists.
The constant three indicates that a param­
eter list occupies the next three inter­
mediate text words.

In addition, Phase 15 generates an
intermediate text word containing an end
mark, and places this text word after each
parameter list. The end mark indicates the
end of a parameter list. The text word
containing the end mark that is generated
for the last parameter list also contains
the internal statement number (ISN) that
Phase 10D assigned to the DEFINE FILE
statement.

MODIFYING INTERMEDIATE TEXT

As intermediate text words for an arith­
metic expression are being reordered, they
are modified, depending on the operators
and operands, to a form closely resembling
an instruction format. The contents of the
adjective code field for arithmetic opera­
tors (unary minus (u), +, -, *, and /) are
replaced by the appropriate machine opera­
tion code. The contents of the mode field
are replaced by a register number when the
operator and operands require a register
assignment.

Note: Phase 15 allocates main storage for
a special work area if the FDATEMP field in
the communication area is nonzero. Phasf~
10E makes the FDATEMP field nonzero if i"t
encounters a direct access I/O statement in
which the parameter that indicates the
relative position within the data set of
the record to be read or written involves a
subscripted expression. Phase 10E also
generates the intermediate text, in the
form of an arithmetic expression, that is
required to evaluate the subscript expres­
sion.

section 2: Discussion of Compiler Phases 43

Phase 15 inserts the address of the work
area back into the FDATEMP field. Phase 25
obtains the address and inserts it into the
store instruction that places the value of
the expression into the work area. In
addition, Phase 25 includes the address of
the work area as a part of the calling
sequence to IHCFCOME that is generated for
the I/O statement. At object-time,
IHCFCOME passes the address to IHCDIOSE
(the direct access data management I/O
interface). IHCDIOSE needs the contents of
that address in order to determine which
record is to be read or written.

ASSIGNING REGISTERS

Registers are assigned by Phase 15
according to the adjective code encountered
and the mode of the operands. There are
eight registers (general registers 0, 1, 2,
and 3; floating-point registers 0, 2, 4,
and 6) that may be assigned by Phase 15.
When a register is required for a particu­
lar operation and one is not available, the
contents of the required register are
transferred to a work area. That register
acquires "available" status and is then
used for the operation.

Register assignments are made by Phase
15 according to the following rules:

44

• The instruction generated for the add
operator and the floating-point multi­
ply operator requires that one of its
operands be in a register. The
instruction generated for the multiply
operator for integer quantities
requires that the multiplicand (left
operand) be in an odd register. The
even register that precedes the multi­
plicand must be made available, unless
it already contains the multiplier.

• The instruction generated for the sub­
tract operator and the divide operator
for real quantities requires that its
left operand be in a register.

• For integer division, the dividend must
be in an even-odd register pair.

• A work register is assigned to each
subscript expression to aid in the
computation of subscript expressions by
Phase 20.

• Exponentiation requires library subpro­
grams; therefore, a specific register
is required to contain the result of
the subprogram execution.

• Registers are assigned to single and
double in-line functions, as follows:

There are eight single-argument, in­
line functions: lFlX, FLOAT, DFLOAT,
SNGL, DBLE, ABS, lABS, and DABS.
Instructions are generated to perform
the functions of the SNGL and DBLE
in-line functions. For the remaining
single-argument, in-line functions, a
word in the following format is gener­
ated:

r-----------T----T---T----------------,
lin-line I I Icode number I
I function IR2 IR1 Ifor the I
I adjective I I lin-line function I
I code I I 1 1
~-----------+----~---+----------------1
11 byte 11 byte 12 bytes 1 L ___________ ~ ________ ~ ________________ J

Depending upon the specific in-line
function, up to three registers are
assigned oy Phase 15. For ABS, lABS,
and DABS, only an argument register is
required. This register is indicated
in the R1 field; the R2 field is made
zero. For IFIX, FLOAT, and DFLOAT,
three registers are required: an argu­
ment register, a result register, and a
work register. The argument register
is indicated in the R1 field, the
result register in R2. The work reg­
ister is the register preceding R1.

For in-line functions with two argu­
ments, an in-line call word is generat­
ed with the same format as for single­
argument, in-line functions. Phase 15
assigns a register to each argument in
a double-argument, in-line function.
The first argument register is
indicated in the R1 field; the second
argument register is indicated in the
R2 field. R1 is used as the result
register.

CREATING ARGUMENT LISTS

To assist Phase 25 in the generation of
the object module instructions, a list of
arguments is created when an adjective code
is encountered that represents a call to a
subprogram or to a statement function. The
argument list is preceded by an intermedi­
ate text word that defines the specific
function call. The first word of the
argument list contains the number of argu­
ments in the list, and is followed by an
intermediate text word for each argument.
The total number of arguments in all lists
created by Phase 15 is kept in the communi­
cation area to be used by Phase 20 process­
ing.

CHECKING FOR STATEMENT ERRORS

As each statement is processed, Phase 15
checks for specific error conditions. Gen­
eral format errors as well as specific
errorS connected with DO statements, arith­
metic IF statements, statement numbers, and
argument lists are noted. Following are
the error checks performed by Phase 15:

• DO loops are examined to determine if
the DO variable is redefined, or if a
DO loop is nested to a depth greater
than 25.

• Arithmetic IF statements are examined
to determine if the arithmetic expres­
sions contain valid symbols. They are
also examined to determine if more or
fewer than three statement numbers have
been specified ..

• Statement numbers are examined to
ensure that they are uniquely defined
and do not indicate transfers to nonex­
ecutable statements.

• If a FUNCTION s~bprogram is being com­
piled, a check 1S made to determine
whether the subprogram name is defined.

• The members of an argument list are
examined to determine whether they are
valid. If a particular list has a
required length, that list is examined
to determine if it is of the required
length.

If any of the designated error condi­
tions are encountered, an intermediate text
word, which contains an adjective code
indicating an error and a number represent­
ing the specific error, is generated and
placed at the end of the intermediate text
words for the statement in which the error
was detected.

PHASE 20 (IEJFRAAO)

Phase 20 is entered either after the
completion of Interlude 15 for SPACE compi­
lations, or after the completion of Phase
15 for PRFRM compilations. The major func­
tions of the phase are:

• Processing of statements that require
subscript optimization.

• ProceSSing of statements that affect,
but do not require, subscript optimiza­
tion.

• Creating the argument list table.

Phase 20 increases the efficiency of the
object module by decreasing the amount of
computation associated with subscript
expressions. A subscript expression can
recur frequently in a FORTRAN program.
Recomputation at each occurrence is time­
consuming and results in an inefficient
object module. Therefore, Phase 20
performs the initial computation of any
given subscript expression and assigns a
register which, at object time, contains
the result of this computation. Phase 20
then modifies (that is, optimizes) the
intermediate text for subsequent occurren­
ces of this subscript expression. This
intermediate text optimization consists
essentially of replacing the computation of
the subscript expression, at each recur­
rence, with a reference to its initial
value (that is, to the register that con­
tains the result of the initial
computation). The subscript intermediate
text for each subsequent occurrence of the
subscript expression can be optimized in
this manner as long as the values of the
integer variables in the expression remain
unchanged.

In addition, the following functions are
performed by Phase 20:

1. Generation of ESO card images for:

a. Implied external references to any
required library exponentiation
sUbprograms. For example,
IHCFRXPI (i.e., FRXPI#), IHCFRXPR
(i.e., FRXPR#), IHCFIXPI (i.e.,
FIXPI#), IHCFDXPI (i.e., FOXPI#),
and IHCFOXPD (i.e., FDXPD#).

b. Implied external references to
IHCFCOME (i.e., IBCOM#), IHCFIOSH
(i.e., FIOCS#), and IHCDIOSE
(i.e., DIOCS#).

c. Implied external references to
IHCCGOTO (i.e., CGOTO#). IHCCGOTO
is an implicitly called library
subprogram that aids in the execu­
tion of computed GO TO statements
by supplying the object-time
branch addresses.

2. Generation of TXT and RLD card images
for literals generated by Phase 20 and
argument list table entries.

3. Generation of TXT card images for each
three-word parameter list associated
with the unit numbers that are defined
in DEFINE FILE statements. (The first
TXT card image contains the relative
address at which the first parameter
list resides at object-time.)

4. Generation of calling sequences to
IHCIBERR (that is, IBERR#) when source
statement errors are encountered.

Section 2: Discussion of Compiler Phases 45

(Refer to Appendix L for a description
of the IHCIBERR object-time library
subprogram.)

5. Printing of a storage map for all
literals generated by Phase 20, and
for all implied external references
made by the source module being com­
piled, if the MAP option is specified.

6. Allocation of storage for the branch
list table for SF expansions and DO
statements.

Upon completion of Phase 20 processing,
control is passed either to Phase 30 (if
the NOLOAD option was specified and source
module errors were detected), or to
Phase 25.

Figu~e 12 illustrates the data flow
within Phase 20.

Chart AO illustrates the overall logic
and the relationship among the routines of
Phase 20. Table 18, the routine directory,
lists the routines used in the phase and
their functions.

r--------------,
Main Storage I Overflow I

I Table I L _____________ _

PROCESSING OF STATEMENTS THAT REQUIRE
SUBSCRIPT OPTIMIZATION

Phase 20 scans the input text for state­
ments that may require subscript optimiza­
tion. Subscript expressions may occur in
the following statements:

• Arithmetic.
• CALL.
• Arithmetic IF.
• Input/output lists (input/output lists

are treated as statements by Phase 20).

When Phase 20 encounters one of these
statements containing a subscripted vari­
able, the subscript optimization process
begins.

An index mapping table (refer to Appen­
dix I, Figure 80), containing all informa­
tion pertinent to a subscript expression,
is used to aid subscript processing. When
the index mapping table indicates the first
occurrence of the current subscript expres­
sion, a register is assigned and a corres­
ponding entry is made in the index mapping
table. When a register is not available,
the register that is currently assigned to
the subscript expression of least dimension

r--------------,
I Intermediate I
IText (sub- I
Iscript text I
I optimized) I ______________ J

r--------------,
IESD Card I
IImages for 1m-I
Iplied External
IReferences;
ITXT and RLD

SYSUT2 or
Main storage

SYSLIN
and/or
SYSPUNCH

Phase 20 1------~~ICard Images

r--------------
SYSUTl or I Intermediate I
Main Storage I Text I L ______________ J

Figure 12. Phase 20 Data Flow

46

Ifor Generated
ILiterals and
Ifor Argument
IList Table
IEntries; and
ITXT Card
IImages for
IDEFINE FILE
I Statement
I Parameter
ILists L _____________ _

--------------,
IMap of Genera-I
Ited Literals I
land External I
I References I L ______________ J

SYSPRINT

is reassigned to the current subscript
expression.

If the current subscript expression has
been encountered previously, the intermedi­
ate text for its computation can be
replaced effectively by a reference to the
register assigned at the first encounter.
However, redefinition of any integer vari­
able in the expression invalidates the
previous computation and prohibits the
assignment of the same register to the
current subscript expression. In this
case, recomputation is necessary and anoth­
er register must be assigned for the sub­
script expression.

During the subscript optimization pro­
cess, Phase 20 may be required to generate
literals connected with the array displace­
ment associated with any given subscript
expression. (Refer to Appendix G for a
discussion of the calculation of an array
displacement. This explanation includes a
description of the offset and CDL
(constant, dimension, and length) portions
of an array displacement.) Literals are
generated by Phase 20 under the following
conditions:

• When the optimization routine encoun­
ters a value outside the addressable
range of 0 through 4095 bytes as a
result of adding the offset (calculated
in Phase 10E) to the displacement of
the array variable (calculated in Phase
15), an offset literal is generated.
The generation of an offset literal
allows Phase 25 to produce instructions
involving these subscripted variables
without having to assign a new base
register •

• Phase 20 .generates a literal for each
component of the CDL portion of the
array displacement associated with a
subscript expression except for the
first component if it is a power of 2.
In this case, that power, instead of
the address for the literal Cl*L, is
placed in the subscript text.

The preceding discussion of subscript
optimization applies to subscript expres­
sions that are neither constant nor asso­
ciated with a dummy subscripted variable.
These two conditions are discussed in the
following paragraphs.

Phase 20 does not assign a register to a
constant subscript expression which, when
added to the offset portion of the array
displacement, lies within the addressable
range of 0 through 4095 bytes. However, if
this computation lies outside the above
range, a register is assigned for this
constant and an entry is made in the index
mapping table.

In addition to normal optimization, a
base register is assigned to any dummy
variable so that the variable may be
addressed during execution of the object
module. This assignment is entered in the
index mapping table.

PROCESSING OF STATEMENTS THAT AFFECT, BUT
DO NOT REQUIRE, SUBSCRIPT OPTIMIZATION

In addition to previously mentioned
statements that require subscript optimiza­
tion, various other statements that can
affect the subscript optimization process
are processed by Phase 20.

DO and READ Statements

The DO and READ statements sometimes
cause the redefinition of the integer
variable(s) in a subscript expression. Any
integer variable that is redefined becomes
a bound variable. Any encounter of a bound
variable causes Phase 20 to examine the
subscript expressions that are assigned
registers in the index mapping table. A
bound variable in a subscript expression
invalidates any previous computation for
that expression and causes a new register
to be assigned for that expression.

Referenced statement Numbers

When a statement number is referred to
in other statements (for example, a GO TO
statement), Phase 20 does not know if the
values of previously encountered integer
variables can still be used by subscript
expressions containing these variables.
Because any given variable may now be a
bound variable, Phase 20 deletes all reg­
ister assignments (in the index mapping
table) for subscript expressions involving
that variable.

Subprogram Argument

Any subprogram argument that is an inte­
ger variable causes redefinition of that
variable and, therefore, invalidates any
previous computations of subscript expres­
sions containing that variable. All reg­
ister assignments (in the index mapping
table> for subscript expressions involving
that variable are deleted.

Section 2: Discussion of Compiler Phases 47

CREATING THE ARGUMENT LIST TABLE

A count of the number of arguments
contained in the source module for subpro­
gram and SF (statement function) calls is
passed to Phase 20 via the communication
area. This number is used by Phase 20 to
allocate storage for the argument' list
table. Phase 20 allocates a word (4 bytes)
for each argument, and inserts the relative
address of each argument in the argument
list table.

If an argument is a
able, its address is
time. Instructions are
the address of this
argument list table at

subscripted vari­
not known at this

generated to load
argument into the

object-time.

The table is used at object-time to
provide the addresses of argument lists to
the subprograms and SFs being called.
Refer to Appendix J, Figure 87, for the
format of the argument list table.

For each subprogram name or SF name
encountered, Phase 20 generates the
appropriate calling sequence. A register
is used to supply the referenced SUbprogram
or SF with the address of its argument
list. Phase 20 also generates RLD and TXT
card images for each entry in the argument
list table.

PHASE 25 (IEJFVAAO)

Phase 25 is entered after the completion
of Phase 20. The main functions of the
phase are:

• Generation of object module instruc­
tions •

• Completion of object module tables.

Phase 25 creates the object coding for
the FORTRAN source module from the inter­
mediate text entries and the overflow table
(refer to Appendix H). TXT card images for
instructions are generated and then written
on the SYSLIN data set (if the LOAD option
is specified) and/or the SYSPUNCH data set
(if the DECK option is specified).

Phase 25 also generates, as a part of
the object module, a calling sequence to
the file definition section of IHCDIOSE
(the direct access data management I/O
interface) if the FDEFILCT field in the
communication area is nonzero,. That is, if
a DEFINE FILE statement is included in the
source module being compiled.

48

Several tables (branch list table for
statement numbers, branch list table for SF
expansions and DO statements, and base
value table) are used by the object module
during execution of the instructions gener­
ated by Phase 25. These tables are assem­
bled in their final form by Phase 25.

In addition to the above functions,
Phase 25 generates: (1) a listing of ref­
erenced statement numbers if the MAP option
is specified, and (2) an object module
listing if the object listing option is
specified and if the object listing facili­
ty of the compiler has been enabled. The
object module listing contains the machine
language instructions generated by Phase 25
and their equivalent assembly language
instructions. The equivalent assembly lan­
guage instructions are generated by an
object listing module (IEJFVCAO) that Phase
25 loads (via the LOAD macro-instruction)
into main storage. The object listing
module is deleted (via the DELETE
macro-instruction) before control is passed
to the next phase.

Upon completion of Phase 25 processing,
control is passed to Phase 30 (to generate
error/warning messages and to process the
END statement).

Figure 13 illustrates the data flow
within Phase 25.

Chart BO illustrates the overall logic
and the relationship among the routines of
Phase 25. Table 20, the routine directory,
lists the routines used in the phase and
their functions.

GENERATION OF OBJECT MODULE INSTRUCTIONS

Phase 25 creates the object module
instructions from the intermediate text
entries and the overflow table. These
instructions are in the RR, RX, and RS
formats of the System/360 instructions.

The control routine (PRESCN) for Phase
25 obtains each intermediate text entry and
examines its adjective code. The adjective
code determines which Phase 25 subroutine
is to process the current entry or the next
series of entries. The processing subrou­
tine generates the required object coding.

r-------------,
Main Storage 10verfiow I

I Table I L _____________ _

--------------,
ITXT Card I
IImages for I
I Instructions I
land RID Card I
IImages for I
I Address I
I Constants I L ______________ J

SYSLIN
and/or
SYSPUNCH

r--------------, ------------ r--------------,
Main Storage ISource Symbol I ~ ______ ~~~Map of Refer- I SYSPRINT

I Table if t-I -----~.~I Phase 25 I I enced State- I

I~~~~~~ t!si!ng
: I ____________ ~L~:~:-~~~::~--J

I Effect I L _____________ J

--------------,
r-------------

SYSUT2 or I Intermediate I
Main Storage IText I L ______________ J

Figure 13. Phase 25 Data Flow

Intermediate text entries for operations
within arithmetic expressions are almost in
a final instruction format as a result of
Phase 15 processing. The intermediate text
words generated by Phase 15, for arithmetic
expressions, contain all the elements
required for the RX format instruction:
operation code, result register, base reg­
ister, and displacement. When Phase 25
encounters an adjective code indicating an
arithmetic expression, control is passed to
the routine (RXGEN) that generates RX for­
mat instructions.

other intermediate text entries still
resemble the output generated by Phase 14.
An adjective code identifies the type of
entry and possibly several entries that
follow it. Various Phase 25 subroutines
analyze these entries and generate the
appropriate instructions.

If a subprogram is being compiled, Phase
25 generates an epilog table when the
FUNCTION or SUBROUTINE adjective code is
encountered. The epilog table provides
Phase 25 (when it encounters the RETURN
statement) with the information necessary
for the generation of instructions that

IBranch List I
ITables and I
IBase Value I
I Table I L ______________ J

--------------,

SYSUTl or
Main Storage

10bject Module I SYSPRINT
IListing if I
10bject Listing I
10ption is in I
I Effect I L ______________ J

return the new values of variables, used as
parameters, to the calling program. This
information consists of the following:

• Length and address of the variable in
the subprogram.

• The relative position of the variable
in the parameter list of the calling
program.

Refer to Appendix I, Figure 81, for the
format of the epilog table.

COMPLETION OF OBJECT MODULE TABLES

Several tables are used by the object
module during the execution of the instruc­
tions generated by Phase 25. These tables,
assembled in their final form by Phase 25,
are:

• The branch list table for referenced
statement numbers.

• The branch list table for SF expansions
and DO statements.

• The base value table.

Section 2: Discussion of Compiler Phases 49

Branch List Table for Statement Numbers

Phase 12 allocated storage for a branch
list table (refer to Appendix J, Figure 85)
for referenced statement numbers. Each
statement number referenced by a GO TO,
computed GO TO, IF, or DO statement was
assigned a number relative to the start of
the branch table. This relative number was
placed in the chain field of the statement
number entry in the overflow table (refer
to Appendix H).

When an intermediate text entry for a
statement number definition is recognized
by Phase 25, the corresponding overflow
table entry is obtained, and the relative
number, assigned by Phase 12, is used to
determine the position of the statement
number in the branch table. The value of
the location counter is placed in this
position and is the actual relative address
of that statement.

Two instructions are generated for the
portion of a FORTRAN statement that ref­
erences a statement number. The first
instruction loads the address portion of
the proper entry in the branch table into a
general register; the second instruction
branches to the address placed in that
general register.

Branch List Table for SF Expansions and DO
Statements

A second branch list table is completed
by Phase 25 for statement function (SF)
expansions and DO statements. Phase 14
assigned a unique number to each SF and
placed this number in the pointer field
portion of the intermediate text entry for
each SF. Phase 25 uses this number to
assign a location in this second branch
list table when it encounters an SF adjec­
tive code. The address of the first
instruction in the SF expansion in question
is placed in this location. Any statement
referencing this SF uses the number of the
SF to obtain this location in the branch
list table, and branches to the address in
the location (that is, to the beginning of
the SF expansion).

Phase 25 also assigns each DO statement
a location in this branch list table. The
address of the second instruction of the DO
loop in question is entered in the proper
location. The object module instruction
that controls the iteration of the DO loop
obtains this location in the branch list,
and branches to the address in the location
(that is, to the beginning of the DO loop).

50

Refer to Appendix J, Figure
format of the branch list
expansions and DO statements.

Base Value Table

86, for the
table for SF

The base value table (refer to Appendix
J, Figure 88) is continually generated by
the various phases of the compiler as base
registers are required for the object cod­
ing. An object module can only use general
registers 4, 5, 6, and 7 as base registers.
(When the object module is entered at
object-time, these registers are initial­
ized from entries in the base value table.)
If the base register requirements for the
object module extend beyond the four avai­
lable registers, the base value table is
used to take special action.

During compilation (prior to Phase 25),
the value for each base register to be used
by the object module is inserted in the
base value table, regardless of the general
register number used as the base register.
The first entry in the base value table is
the value placed in register 4; the second
refers to register 5; etc.

For a source module for which the com­
piler assigns registers 4 and 5 to ref­
erence data in COMMON and assigns registers
6, 7, and 8 to reference data and instruc­
tions in the object module, the base value
table contains the values indicated in
Figure 14.

r------------T---T------T---T------T------,
I Register I 4 I 5 I 6 I 7 I 8 I
~------------+---+------+---+------+------~
I Value I 0 I 4096 I 0 I 4096 I 8192 I L ___________ -i ___ ~ ______ i ___ i ______ i ______ J

Figure 14. Sample Base Value Table Values

The value 8192 is initially assigned to
gener~l register 8, and that register num­
ber ~s entered in the intermediate text
entry requiring the base register. Howev­
er, when Phase 25 encounters this inter­
mediate text entry with a base register
number of 8, an instruction is generated to
load the value 8192 into register 7, and
general register 7 is used as the base
register in this instruction.

In general, when a base register other
than 4, 5, 6, or 7 is encountered by Phase
25, the base value table is used to obtain
the value of that base register, and an
instruction is generated to load that value
into register 7. Register 7 is used as the
base register in the instruction at object­
time

PHASE 30 (IEJFXAAO)

Phase 30, the last phase of the
compiler, may be entered either after the
completion of Phase 20 processing if the
NOLOAD option was specified and errors were
detected in the source module, or after the
completion of Phase 25 processing. The
functions of the phase are:

• Producing error and warning messages.
• processing the END statement.

When Phase 30 is entered from Phase 20,
only the first function (producing error
and warning messages) is performed. Howev­
er, when Phase 30 is entered from Phase 25,
both fUnctions are performed.

Upon the completion of Phase 30 process­
ing, control is passed to Phase 1.

Figure 15 illustrates the data flow
within Phase 30.

Chart CO illustrates the overall logic
and relationship among the routines of
Phase 30. Table 21, the routine directory,
lists the routines used in the phase and
their functions.

PRODUCING ERROR AND WARNING MESSAGES

Phase 30 checks the adjective code of
each intermediate text word for an error or
warning condition. If one is encountered,
Phase 30 obtains the error or warning
number (set up by the phase that detected

r----------------,
I Branch List I
I Tables and I
I Base Value I

the error or warning condition) from the
mode/type field of that intermediate text
word. This number is used as an indexing
value to obtain the length and address of
the actual message corresponding to the
specific error or warning detected.

The length of the message is obtained
from the message length table. The address
of the message is obtained from the message
address table. The actual message is
obtained from the message text table •
(Refer to Appendix I for a description of
the use and format of the message tables.)

When the message length and the message
address are obtained, Phase 30 then prints
the corresponding message on the SYSPRINT
data set. (For a description of the messa­
ges capable of being generated by the
compiler refer to the publication IBM
System/360 Operating System: FORTRAN IV (E)
Programmer's Guide.)

PROCESSING THE END STATEMENT

When the intermediate text entry for the
END statement is recognized by Phase 25,
control is passed to Phase 30. Phase 30
first produces any error or warning messa­
ges detected by earlier phases of the
compiler. Phase 30 then writes both branch
list tables and the base value table onto
the output data set(s). Because all three
of these tables must be relocatable, all
entries in the tables are entered in RLD
card images, as well as in TXT card images.
Phase 30 also creates the END card image
for the object module.

r-----------------,
I SIZE OF COMMON, 1 SYSPRINT
I SIZE OF PROGRAM 1
I Message I

SYSUTl or
Main Storage
(only if
entered from
Phase 25)

t_::~:: __________ ~1 /,I _________________ J

r-----------------,
------------ I List of Error I SYSPRINT

SYSUT2 or
Main Storage

Figure 15.

I Phase 30 I I and Warning I
I I Itl Messages I

/
------------~ (if any) I L _________________ J

r---------------- -----------------,
I Intermediate I I TXT and RLD Card I
I Text I I Images for I
L ___________ ~ ____ J I Branch List I

Phase 30 Data Flow

I Tables and Base I
I Value Table, andl
1 END Card Image 1 L _________________ J

SYSLIN
and/or
SYSPUNCH

Section 2: Discussion of Compiler Phases 51

SECTION 3: CHARTS AND ROUTINE DIRECTORIES

The following charts describe the overall logic of the major components of the FORTRAN
IV (E) compiler. Routine directories are included for those components that contain
numerous routines and subI·outines. Multiple entries to subroutines are indicated by a
slash (/).

Flowchart Conventions

41:.* .. *** ... ** *** *********** *** ... ** ***** ***** ... ** ** *. ** .. ** ** *** ** ***** ** ** ** ********** ** ******** **** ... ** ***** .. ************ ** ******
" FUNCTIONAL SYMBOLS "

" " II

"

" " ..
"

" II

.. ..
" ..

------------------ ..
*****Al ********** . "
" PROCESSING
" BLOCK

.*.
Bt * •

• * * • • * DECISION *.
. BLOCK .

. .
. .

* *

****Cl *********
.. TERMINAL "
: BLOCK :

:****01 ******* ..
.. MODIFICATION II
: BLOCK ..

..

*****.E 1 ***********
.. INPUT/OUTPUT "

BLOCK

:****F 1 ****.****:
--*-*-*-*-*-*-*
.. SUBROUTINE
: dLOCK

G 1 ***** * ..
.. PiU.DEFINED "

.. PROCESS ..
BLOCK

OFF-PAGE

~~~~;;!~~ 

I 
**~** 
" " " .. 
" " 

****C2********* 
" " : USER ENTRY : .... ··T· .... · 

.. ****F2********* .. 

.. USER EXIT ,,<-
" " L *************** I 

N 
E 
S 

C 
R 
o 
S 
S 
I 
N 
G 

SAMPLE FLOWCHART 

"ZA " 

**** * * c~* 
* "" : ,,::* :-> 1 

v 
:****C3*********: 
* 
* 

" ***************** 

I 
>1 .V. 

03 * • 
• * * • 

BLOCK C3 IS ENTERED FROM THIS CHART AND FROM 
AT LEAST ONE OTHER CHART. 

THE TERMI NAL BLOCK I S USED TO SHOW USER ENTRY 
AND EXIT POINTS WHEN THE PROGRAM BEING 
FLOWCHARTED IS AVAILABLE TO AN IBM CUSTOMER. 
I TIS ALSO USED AS AN EX I T CONNECTOR WHEN 
THE TO LOCATION IS TO NO SPECIFIC CHART AS IN 
A MULTIPLE USE SUBROUTINE. 

~
":" ":" *. .* 

*. .* 
* •• * 

* 

I 
GO TO v 

*****E3********** 
::~~~~*-*-*-~~::: THE INSTRUCTION AT SYMBOLIC LOCATION GOTO 

CALLS A SUBROUTINE NAMED SUBNM. THE LOGIC OF 
SUBNM IS SHOWN ON CHART ZC STARTING AT BLOCK 
Al. 1 * : 

I 
""""""""i"""""""" 

1<-.v. 
F3 * • 

.* *. 
.* *.... * 

--*. .*-->* C3 ... 
*. .* * * 
*..* ***. 

* •• * 
* ON-PAGE EX I T CONNECTOR-

CONTROL TRANSFERS TO BLOCK C3 ON THI S CHART. 

'-----> LINE JUNCTION 

V 

****H2********* :****H3**.******: 
.. * *-*-*-*-*-*-*-*-* 
:VARIABLE RETURN:<---: .. 

*************** 
***************** 

I 
V 

***** 
*ZB * 
* *A~* 

* 

OFF-PAGE CONNECTOR-
CONTROL TRANSFERS TO BLOCK A2 ON CHART ZB. 

" .. 
* ~ * **** ** ... *. ****** ** * ** * * * '* '* ** * *. if .... * .. * .. * * ....... * ........................ * ... ** ......... ** ** * _ *'* *** * ... ** ** * * * ** ** '* * *'* ** * * ** ... ** *****_ * .*** * * .** ** ** ** *** _ *_ 

section 3: Charts and Routine Directories 53 



Chart 10. Phase 1 (IEJFAAAO/IEJFAABO) Overall Logic 

IE.JFAAAO 
(INITIAL ENTRY) 

-·--At-------*­* * * CALLING * 
* PROGRAM * 

*************** 

VIA 
ASSISTED 

SUPERVISOR 
LINKAGE 

V 
*****Bl********** 
*STARTI * 
*-*-*-*-*-*-*-*-* *LOAD INTERFACE * 
* MODULE * 

***~!~~~!~!~l***: 

I 
V 

SEE TABLE 2 FOR A 
BRIEF DESCRIPTION OF 
THE FUNCTION OF EACH 
PHASE 1 ROUT I NE/ 
SUBROUTINE 

*****Cl********** *****C2********** 
*OPTNSCAN * * DDNMSCAN * 
*-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* 
* SCAN ~.------->* REPLACE * 
* PARM * * ODNAMES * 
* OPTIONS * * IN DCBS * 
***************** ***************** 

~ .*. 
01 *. 

.* s *. 

I 
:****02*********: 

.* OPTION *. YES * LOAD SORSYM 
*. IN EFFECT • *-------> * MODULE 

*. .* * (IE.JFAXAO) * 
*..* .. .. ··.·:0 ........ r· ..... 

L-------J 
V .*. .*. 

El *. E2 *. 
.* *. .·'SIZE' * • 

• * SPACE OR *. PRFRM .* GREATER *. YES 
*PRFRM OPTION IN*------->*.THAN OR EQUAL.*\ 

*. EFFECT .* *.TO 18504 .* 
*..* *..* - •• * * •• * v 

*SPACE * NO **** 

IEJFAABO 
(SUCCESSIVE ENTRIES) 

.****A3*********. 
CALLING 

* PHASE * 
*********.***** 

I 
V .*. 

B3 *. 
• * *. 

.* *. NO 
*. FINAL ENTRY .* 

*. .-.. .. -.. -
i

m 

RUNCMPLT V :* ••• C3*********: 
* FLUSH OUTPUT * 
* BUFFERS FOR * 
: BLOCKED I/O : 

**********.****** 

I 
V 

·*·*·03******·*·-
* * * CLOSE ALL * 
* DATA CONTROL * 
: BLOCKS : 

***************** 

I 
FREEMAIN V 

·****E3********** 
* FREE ALL MAIN * 
*STORAGE ALLOC. * 
* TO COMPILER * 
: BY PHASE 5 

******.********** 
****** I~ I: G4 : 
* Fl *-> * * 
* * 1 **** V .*. 

Fl *. *****F2********** 
.*AD.JUST *. *OPNFILES * 

.*DR NOAD.JUST*. NOAD.JUST *-*-*-*-*-*-*-*-* 
*. OPTION IN .*------->* OPEN DCBS FOR * 

*. EFFECT .* *SPACE AND NOAD-* 
*..* *.JUST COMPILAT. * "j':'"" ........ j ....... . 

V V 
.****Gl********** *****G2***** ••• •• 
*OPNFILES * * * 
*-*-*-*-*-*-*-*-* * LOAD * 
* OPEN DCBS FOR *------->* PHASE 5 *< 
* SPACE AND AD- * * (IE.JFCAAO) * 
*JUST COMPILAT. * * * 
***************** ***************** 

54 

>cIR 
V 

*****H2********** 

* PHASE 5 * 
* (IE.JFCAAO) * 
******** ••••••• 

V 
*****F3********** 
* DELETE * 
* PERFORMANCE * 
*MODULE IF PRFRM* 
* COMPILATION : 

**********.** •• ** 

1 
V 

*****G3********** 
* * * DELETE SORSYM * 
* MODULE IF $ * 
* OPTION IS * 
* IN EFFECT * 
***************** 

*****H3********** 
*OPNFILES * 
*-*-*-*-*-*-*-*-* 
* OPEN DC8S FOR *< 
* PRFRM * 
* COMPILATION * 
***************** 

:****A4*********: 
* RESET * 

>* COMMUNICATION * 
: AREA : 

***************** 

I 
V .*. 

64 * • 
.*·:PACE OR*· •• PRFRM *****85********** 

*PRFRM OPTION IN*------->" XCTL TO 
*. EFFECT .* * PHASE 7 " 
*..* *************** 

* •• * (IE.JFEAAO) 
jSPACE 

V 
.*. FREEMAIN 

C4 *. *****C5********** .* *. * FREE ALL MAIN * 
.* RESTART *. NO * STORAGE 

*. CONDITION .*------->" ALLOCATED TO 
*. ." * COMPILER dY 
*..* * PHASE!> ... "j';" ·······T······· 

RESTART V I 
:****04*********: 
* DELETE * 
* PERFORMANCE 
* MODULE AND 
* PHASE 5 " 
***************** 

1,-
V 

:****E4*********: 
* CLOSE ALL 
* DATA CONTROL " " * 
* BLOCKS :-->: Fl : 

* ***************** 

*****F4********** 
* * 

>: I ~~~~~~CE :_RE_T_U_R_N ________ _ 
* MODULE 

* G4 *1 * * **** V 
*****G4********** 
*LOAD * 
*-*-*-*-*-*-*-*-* 
* LOAD PERFORM- * 
* ANCE MODULE * 
* (IE.JFAPAO) * 
***************** 

VIA SUPERVISOR-
ASSISTED LINKA~E 

V 
****GS********* 

* * * CALLING 
" PROGRAM * 

*************** 



Table 2. Phase 1 Main Routine/Subroutine Directory 
r------------------~-------------------------------------------------------------------, 
I Routine/Subroutine I Function I 
~------------------+--------------------------------------------------------------------~ 
IDDNMSCAN IReplaces DDNAMES in the data control blocks (in the interface I 
I I module) when requested by the calling program. I 
I I I 
I FREE MAIN IFrees all main storage allocated to compiler by Phase 5. I 
I I I 
I LOAD I Loads the performance module into main storage if the PRFRM option I 
I lis in effect and if the SIZE option is at least 18504. I 
I I I 
IOPNFILES IOpens data control blocks for compiler data sets as indicated byl 
I Iswitches (in the communication area) for options. I 
I I I 
IOPTNSCAN I Scans the compiler options and sets appropriate switches in thel 
I Icommunication area. I 
I I I 
I RESTART ICloses all data control blocks for compiler data sets, deletes thel 
I Iperformance module and Phase 5, and initializes compiler for a SPACE I 
I I compilation. I 
I I I 
I RUNCMPLT I Closes all data control blocks for compiler data sets, frees alll 
I Imain storage allocated to the compiler, and returns control to thel 
I Icalling program. I 
I I I 
ISTART1 I Performs housekeeping and loads the interface module, and Phase 51 
I I into main storage. I L __________________ ~ ____________________________________________________________________ J 

Section 3: Charts and Routine Directorie3 55 



Chart 11. Interface Module CIEJFAGAO) Routines 

SNEXT (SEE NOTE 1) .*. PRTCTRL (SEE NOTE 1) NUTE 3 
A2 *. 

****A1********* .* IS AN *. 
* CALLING * .* INTERLUDE *. YES 
* *------->*.BEING CALLED .*---, 
* ROUTINE * *. .* 

***********.*** *..* 
*. .* 

r---------------------~i NO 
~ .*. 

B1 *. 
• * *. 

*. .* 
* •• * 

* YES 

*::~cn~~~EgE '::lNO 

•••• *C ..1........ ,r----------' 
* TCLOSE THE * ****C2********* 
* DATA SETS * V *NEXT PHASE/INT * 
* INDICATED IN ~I------->*AS INDICATED IN* 
*THE LINKAGE TO * * CALLING RTN * 
* THIS ROUTINE * *************** 
***************** 

.*. 
02 * • 

***.A3********* 
* * CALLING 
* ROUTINE * 

.**********.*** 

V 
*****83*·******** 
* * * MOVE CARR I AGE * 
* CONTROL CHAR. * 
* TO OUTPUT * 
* BUFFER * ........ j ....... . 

V 
*****C3********** 
*SIORTN 1102* 
*-*-*-*-*-*-*-*-* 
*WRITE CONTENTS * 
* OF OUTPUT BFR * 
* (SEE NOTE 3) * 
*****.****.****** 

SIORTN (SEE NOTE 1) 

• * *. ****03*******·· 
NO • * CHECK *. *CALL I NG PROGRAM* 

1
*. OPERATION .*<-------* (SEE NOTE 2) * 

*. .* * * 
*..* *.*.******.**** 

* •• * 

:*::*!-> *1 YES 

* * **** v .*. v .*. 

··***A4******··** 
*SIORTN 1102* 
*-*-*-*-*-*-*-*-* 

>* CHECK RESULTS I 
* OF WRITE I 
* (SEE NOTE 3) I 
***************** 

1 
v .". 

64 * • 

FOR A PRFRM COMPILATION. 
THE PRTCTRL ROJTI I~E 
LINKS TO THE PIORTN 
ROUT! NE I N THE PER-
MANCE MODULE. THE PIORT,' 
ROUTINE. IN TURN. _INKS 
TO THE SIORTN ROuTINE 
WHEN I/O IS NEC~SSARY. 

.* *. ****a5******~** 
.* ERROR *. YES *ABNORMAL RETURN* 

*. OR-END-OF ."------->* TO I 
*.OATA SET .* *CALLING ROUTINe" 

*'. • * **************«. *. .* 

j" 
V 

****C4********* 
* NORMAL RETURN I 
* TO I 
*CALLING ROUTINEI 

*************** 

El *. *****E2********** E3 *. *****E4** •• ****** 
PATCH (SEE NOTE 1) 

.* ANY *. * * .*EITHER *. *SAVE GR14. AND I 
.*FURTHER 1/0*. NO * ISSUE CHECK * .* ERROR *. YES *FOR ERROR. SET I 

*. OPERATIONS., * MACRO- .*------->*. OR-END-OF .*------->*GRl TO POINT TO* 
*. .- * INSTRUCTION * *.DATA SET .* *GR 14. 15. O. 1* 
*..* * * *..* * SAVE AREA * 

*. .* v ******* •••• ****** .. .. ** ••••••• *** ••• ** i ,.. :*::': t E·::·: ~ 
v **** .*. FI *. *****F2**.******. .****F3*** ••••••• . *.. • •. * 

• * READ *. YES * ISSUE READ * * SET ERROR * 
*. OPERATION ••• ------->* MACRO- * * OR END-OF- *< 

*. *. .*.* : INSTRUCTION : : ~~b~c!f~R : 
•• .* .**** •• *.**.*.*.* *.*.*.* •• *.*.**** 

i~ 
V 

**** 
* * * G2 -> 
* * 

··**ES********* 
* CALLING * 
.. ROUTINE 
* I 

······T·· .. ·· 
V .*. 

F5 * • 
.* * • r::' :~::i~~:;'> 

*****Gl********** V 
* I ****G2********* 

V 
****G3***"***** 

*ABNORMAL RETURN* 
****G4* .. *I** .. ** I :**IIG5******"**: 

* ISSUE WRITE * * NORMAL RETURN * 
* MACRO- ~I ------->* TO * 
* INSTRUCTION * *CALLING ROUTINE* 
• * *************** 
•• *****.********* 

* TO * 
*CALLING ROUTINE" 

******.**.***.* 

* CALLING .. V IPATCH INOICATED* 
* ROUTINE *<-------.. AREA IN CALLING* 
* .. I ROUTINE * 

********.* •• *.* .. * 
***.*******.***** 

NOTE 1 
AN INSTRUCTION TO BRANCH TO THESE ROUTINES IS A 
PART OF THE COMMUNICATION AREA. THESE INSTRUCTIONS 
ARE UABELED FNEXT. FIORTN. FPRTCTRL. AND COMPILE-TIME I/O RECOVERY PROCEOURE 
FPATCH FOR SNEXT. SIORTN. PRTCTRL. AND 
PATCH. RESPECTIVELY. WHEN THESE 
ROUTINES ARE NEEDED. A BRANCH TO ****H3********* NOTE 4 
THE RROPER INSTRUCTION IN THE .. INTERFACE MOO * THE I/O SUPERVISOR IS 
COMMUNICATION AREA IS EXECUTED. * AND BSAM RTN * ENTERED FROM THE SIORTN 

* (SEE NOTE 4) .. OF THE I NTERFACE MODULE 
*** .. ** .... ******* WHEN A READ. WRITE. OR NOTE 2 

THE CALLING ROUTINE MAYBE WITHIN A 
PHASE.· WITHIN ANOTHER INTERFACE 
MODULE ROUTINE. OR WITHIN THE 
PERFORMANCE MODULE. 

IS ISSUED. 

I 
CHECK MACRO-INSTRUCTION I .. 

* J2 I 

* .. 
"~"" 

56 

V I YES .*. .* . 
• **IJ1********* :***:~~~:~*;~***: .*J3 *.*. :****J4*********: .*J5 * .... 

.. * *BSAM. INTERFACE* NO.* I/O *. YES * RETRY * .* HAS *. 
* CALLING *<------* MOOULE. ANO *<l<-*. ERROR IN .~I------->** APNPURM~PER'RIAOFTE **-------> ..... E.RCRooRRREaCETEENo.*·· 
* PHASE * *PHASE REQUEST- * *. lOS .* .. 
• ************** * ING I/O * *..* * TIMES * *..1 
CONTINUES * ••• ***** •• ****** *. .* *******.* •• ****.* *. •• 
NORMAL **** * .. NO 
PROCESS I NG .. .. 1 * .J2 * 

* * ** .. * 

V 
* •••• K2*****..... • •••• K3.......... • •••• K4.......... • •• ·*K5 •••• ••• ••• 

****Kl********* * * * *.. * * RETURN ABORT * 
* * *PHASE 1 PAS~ES * * CALLING" .. CALLING PHASE I I CODE TO BSAM ... 
*CALLING PROGRAM*<------*ABORT CODE 16)*<-------* PHASE XCTL'S *<-------*SETS ABORT BIT *<-------* INT MOO. AND * 
* *.. TO CALLIN * .. TO PHASE 1 * * IN COMM AREA * *PHASE REQUEST- * 

.. ***** .. ***** .. ** * PROGRAM * * * * * * ING I/O * 
***************** ***************** ***************** **********1***1 .. * 



Chart 12. Perfor .. nce Modul@ (IEJFAPAO) I/O Routine 

... .•. .-. 
A2 *. A3 *. A4 ". 

PIORTN. 

****Al********* .* IS *. .* IS *. .* IS *. *"""A5"*"*""*"" 
" SIORTN * NO ." BLOCKING ". NO.. SYSUT2.. NO.* SYSUTl ". "CALLING" 
" (REFER TO .<------*.FAcT. GREATER.*<-----*. REFERENCED .*<----*. REFERENCED • * <----* PHASE * 
* NOTE l) * *. THAN.* II *. .* ". ." " " 
* ••••••••••• *.. *. 1.* L *..* *..* *************** * •• * * •• * * •• * i YE' i YE' i YE' 

.-. .-. CHAINIO V 
•• 82 •••• ..83 IS ._.. :**.*64.********: :****85*********: 

NO.* 'CHECK' •• NO .*PHASE 12 OR •• YES " UPDATE" * UPDATE " 

I
.. REGUEST.· •• LATER IN .·----->.BUFFER SIZE IN • >"BUFFER POINTER6· 

*. .* *. CONTROL .* * FCOMM. • IN FCOMM • 
*..* *..... * * v * •• * *_._* *.*.*.********.** 

~.::.~ *\ YES 1 

*.*. v V 
PTST.R1 .*. • •• 

•• ***C1*.*.*.*... C2 *. .****C3*.** ••• *** C4 *. 
• MOVE LOG RCO * •• WAS •• *SIORTN 1102. ..EITHER •• 
* INTO OUPT BFR • NO .* LAST REQ *. *-*-.-*-*-.-*-*-* NO .* 'READ' OR *. YES 
*UPDATE BFR PTR *<----*.FOR THIS DATA.* >* INITIATE. \*. 'WRITE' .* 
* AND LOGICAL * *. SET A •• * 'CHECK-READ' • •• REQUEST •• 
* RECORD COUNT * •• READ .* * OPERATION * *..* 
·······**1········ ···I·~ES *********1·*·*··*· ".~... • •••• 

* G2 * 
* * 

V V V 

*** ..... *.**-***-** 

1 
V 

.* • 
CS " • 

•• DOES ". 
." SPECIFIED •• YE~ 

*.BUFFER POINT ."-, 
".!~ ITSE~~.. 1 

*. L~; .::*: II 

" " *.** .*. .-. .-. 
01 *. 02 *. 03 •• ** ••• 04*** •• *.*** 05-*-._ I 

.* *. .* ANY *. .*-. 
NO.* IS *. .* RECORDS *. NO .* ABNORMAL •• YES 

I
*.OUTPUT BUFFER.· *. LEFT TO BE .* *. RETURN FROM .*\ 

*. FULL •• *.DEBLOCKED.* *. SIORTN •• 
*..* *..* *..* 

v * •• * *. .* *. .* v 

:~~: i m j m (::::->j NO (::) 

V PGETRCD V V 
.**-**E1 *******.** *****E2*********. ****.E3********** 
* RESET LOGICAL * * MOVE NEXT LOG.. * 
* RECORD COUNT, * • RCD INTO RE- • • SW ITCH * 
* SET 'WRITE' n * QUESTED AREA, ·<------·BUFFER POINTERS* 
* BIT, INDICATE * *UPDATE LOGICAL.. * 
• POSSIBLE CLOSE * * RECORO COUNT • * " 

::::::.****.* ••• * ~*::*~ ;:;;:;::·1········ ................ . 

: Fl ~ **** * * NOTE 1 __ THE 
It**.* V **.* SIORTN ROUTINE 

TSTPLUSH .*. PNORMRET V IN THE INTERFACE 
Fl *. * •• **F2.***"*.*** MODULE PERFORMS 

•• *. * SAVE • THE REQUESTED 
.* .AS A *. NO *LOGICAL RECORD * OPERATION AND 

*. 'FLUSH' •• >* COUNT AND * THEN RETURNS 
•• REQUESTED." • CURRENT I/O • C~NTROL TO THE 
*..* • PARAMETERS * PHASE THAT RE-

"SET 'CHECK' BIT. ." *. I 
:(~~~ ~g~ ~l~~T :< ______ N_O,,:" ~~~C~~T .:.< __ J 
" SET, ON "II •• •• 
* OTHERWISE) • I *. • 

·······T······· L 'r;' 
v .*_ 

••• **E4* •• * •• **.. E5 •• • • .* WERE *. 
* I NCREMENT YES • *MORE THAN 2*. 
* RECORD COUNT • ".RCDS WRITTEN •• 
* " ". ON DATA •• 
* • . ... __ ._-_ ...... . 

V 
****F4********* 

• SIORTN " 
" (REFER TO * 
" NOTE 1) • ........ _ ..... . 

*. SET .* 
* •• * * NO 

L * ---* * >* G2 * 
" * 

*·*I·~ES ~::::;::'I"""" OUESTEO "D. : os !--1 

.••. ..** v V RETURN V PTESTRD .*. ." • • ** •• Gl.......... .**.*G2.......... G3 .. . ... *G4**........ G5 *. 
• •• " ." IS *. * SET LOGICAL • •• ". 
* CALCULATE. * RESTORE * .*THIS FIRST *. NO * RECORD COUNT * •• ". YES 
: RECORD LENGTH: : REGISTERS. r>*· *!~gRR~~¥:S! •• *--, : Act~~gi~G o~O :<-'L*· .~ND-OF-FIL:" ·*-'1 
* *. " ". SET •• I * SHORT BLOCK * "" ...... **......... . ..... *.* ••••••• * •• •• v ....... * ••••• __ •• _. ••• ••• I 

1 

:*::* ~ *\ YES :*::* : L>:*·::" :. ·1 NO I 
_... •••• 1 

V V *.,,* V .*. .*. .-. 
Hl *. V H3 *. .*.**H4**"***"""* H5 " • 

• *.. ·**"H2·"·*"·**" .".. "SET" •• WAS ". 1 
.* IS *. YES • NORMAL. •• 'READ' *. YES * 'READ' BIT, * YES." A VALID ". 

*.:~CO~~R~ENG!~. : CA~EI~~Np~~SE : •• ". REQUEST .*.*------->:Po~~~~t:T~L~~E : * •• ~H"O.~~AgLO.C,,~ •• * .... _ .....•... *.... *... . . 

'T:O 'T:O ~:~~:;:r""" ···I:~O j 
V PINITWR V V • •• *.Jl ••• ••••••• •••• *J3 •••• ** ••• * ••••• J4.......... V 

"* " INITIALIZE * *SIORTN 1102. ."**JS.""."*.** 
* SET 'WRITE' * "LOGICAL RECORD * *-*-*-*-*-"-*-*-,, "ABNORMAL" 
• BIT FOR SHORT • .COUNT TO VALUE *~ • PERFORM * * RETURN TO * 
* BLOCK * * OF BLOCKING * * REQUESTEO" " CALLING PHASE" 
* * * FACTOR * "OPERATION. ..""",,.,,"*"*"*. 
·········1····**·* *.**".***.,,****** :*::*: ***"*****1·······-

**** 
V 

v .*. 
:.;~~:~~** ••• ~~~:: : •••• K2 ••••••••• : :.*.*K3 •••••••• *: _.K4 *_._ 
*-*-*-*-*-*-*-*-* V * SET 'CHECK- * * INDICATE * YES .* ". NO 
* PERFORM ~.------->. ONLY' BIT FOR * • NO POSSIBLE *<-------.. POSSIBLE .~ : ~~~~~n~~: : THIS DATA SET: : CLOSE: * ••• CLOSE .*.* I 
***************** *******.***.***** ****** •• ********* *. •• V 

I I • .••.•• 
* F2 • 

*~** *~** .. .. 
* * * * * J4 • * Fl * . . .. .. ... -

Section 3: Charts and Routine Directories 57 



Chart 13. Performance Module CIEJFAPAO) End-of-Phase Routine 

PNEXT 

****A3********* 
* * * CALLING * 
* PHASE * 

*************** 

V 
*****B3********** 
* TURN OFF * 
* 'ALL INT TEXT * 
* IN MAIN * 
*STORAGE' SWITCH* 
* IN FCOMM * 
***************** 

1 
v .*. 

C3 * • 
• * *. **** 

.* ANY *. NO * * 
*. DCBS TO BE .~>* F4 * 

*. TCLOSED .* * * 
*..* **** 

* •• * i VES 

V 
*****03********** 
* BUILD TCLOSE * 
* LIST AS * 
* INDICATED IN * 
* LINKAGE * 
* PARAMETERS * 
***************** 

1 
v .*. 

*****E2********** E3 *. *****E4********** 
*RESET REQUIRED * .*EITHER *. * * 
*FLDS IN FCOMM, * YES .* SYSUTI OR *. NO * TCLOSE THE * 
* PERFORMANCE *<--------*.SYSUT2 TO BE .*-------->*INDICATED DATA * 
* MODULE, AND * *. TCLOSED .* A *CONTROL BLOCKS * 
*BLOCKING TABLE * *..* * * 
***************** *. .* ***************** 

* :*::*:->1 

* * **** v .*. V 
*****F2********** 
*SIORTN 1102* 

F4 *. *****F5********** 

*-*-*-*-*-*-*-*-* 
* ISSUE CHECK *--------------------------------~ 
* FOR * 
* SYSUTl/SYSUT2 * 
***************** 

58 

.* IS *. *OBTAIN NAME OF * 
.* NEXT *. YES *NEXT PHASE FROM* 

*. COMPONENT • *--------> * BLDL TABLE, * 
*.AN INTER-.* * AND MODIFY * 

*.LUDE .* * XCTL MACRO * 
* •• * ***************** 

i NO >1 

V 
*****G5********** 
* EXAMINE RESET * 
*TAHLE AND RESET* 
* RECORD COUNT * 
* FOR CHAINED * 
*OUTPUT BUFFERS * 
***************** 

V 
****H5********* 

* * * NEXT PHASE * 
* * *************** 



Chart 20. Phase 5 (IEJFCAAO) Overall Logic 

···.·Al········· • PHAse 1 • 
• ~IEJFAABDj • • SEe NOTE • •• •••••••• ••• 

V ·····Bl·········· • START • . -.-.-.-.-.-.-.-. 
• PHASE • • INITIALIZATION • · . ··_····r······· 

v ••.. ·Cl·········· ·GETSTRG • 
*-*-*-*-----*-*-* 
• OBTAIN • 
• MAIN • 
• STORAGE • ;::::;::., ....... . 
· . •••• v .•. 

SEE TABLE 3 FOR A BRIEF 
DESCRIPTION OF THE FUNCTION 
OF EACH PHASE S ROUTINE/ 
SUBROUTINE. 

NOTE -- PHASE S {S ENTERE1 FROM 
PHASE I IEJFAAAO FOR 
THE FIRS COMPILA ION 
IN A BATCH. PHASE 5 
IS EXECUTED FOR EACH 
SOURCE MODULE IN A 
BATCH SPACE RUN. IT 
IS EXECUTED ONLY FOR 
THE FIRST SOURCE MODULE 
IN A BATCH PRFRM RUN • 

Dl •• • •••• D2 •••••••••• 
•• MAIN •• • • 

LESS .STORAGE OBT ••• GREATER. FREE • 
•• VERSUS AMOUNT ••• ------->. EXCESS MAIN • 

•• REQUESTED.. • STORAGE • 
*..* .. .. ··t·L 

• .. •• .. r· ... ·· 
II v ... 

E2 •• • •••• E3 •••••••••• 
•••• ·DCBEXAM· 

•• IS •• YES .-.-.-.-.-.-.-.-. 
•• I/O BLOCKED ••• ------->. ALLOCATE MAIN • 

•• •• .STRG TO BLOCKED. 
•••• • I/D BUFFERS • ··r·:o ••••••••• , •••••••• 

.... 
v • • v .•. .. AS • • •• 

Fl •• • • F3 •• 
• * *. 

•• MAIN STRG •• 
• OBTAINED VERSUS 

•• MINIMUM.. GREATER OR 
REQUIRED. EQUAL 

* •• * i LESS 

V .•. 
Gl •• • •••• G2 •••••••••• 

•••• ·FREEALL· 
•• 5PACE •• PRFRM .-.-.-.-.-.-.-.-. 

•• OR PRFRN .... ---->. FREE ALL MAIN. 
•• •• • STORAGE • 
•••• • OBTAINED • ··r:·CE •••••••• 1' ....... 

v v ...... Hl.......... • .... H2 ......... . 
• MINCORE. • ALTER • 
• -.-.-.--.-.-.-. • PRFRM • 
• UNCONDITIONAL n ·COMPILATION TO • 
• GETMAIN FOR • • SPACE • 
.... INIMUM AMOUNT. • COMPILATION • ................. V··············.·· .... · . • Dl • · . ••• * XC TL 

V ····J2········· • PHASE 1 • 
• (IEJFAABO) • · . ............... 
RESTART 
COMPILATION 

• * *. *.* • 
•• ENOUGH •• YES. • 

•• MAIN STORAGE .->. A5 • 
•• LEFT.· •• 
*..* •••• 

* •• * 

"I~~ 
V ····G3········· . . 

.• PHASE 1 • 

• •• U~~::::~l ••• • 
TERMINATE 
COMPILATION 

Section 3: 

• ••• • • 
• A5 • · . ·r· 

v 
••••• A5·········· 
·PATCH • 
*-*-*-*-*-*-*-*-* 
• READ AND PRO- • 
.CESS ANY PATCH • 
• RECORDS • 

·· ... ···r······· 
V 

·.···BS·········· 
• MESSGOUT • .-*-.-.-.-.-.-.-. .WRITE MESSAGES • 
• ON SYSPRINT • · . 
· .. · .. ··1········ 

v 
·····CS·········· 
.GETIOBFS • . -.-.-.-.-.-.-.-. 
• ALLOCATE MAIN. 
.STORAGE FOR I/O. 
• TEXT BUFFERS • .. ...... 1' ....... 

V 

..··.05·········· ·GETDANDO • .-.-.-.-.-.-.-.-. 
• ALLOCATE MAIN • 
.STORAGE FOR OCT. 
.ANO OVFLOW T~L • ..•..... j ....... . 

V . .. 
ES •• 

.* -. 
SPACE.. SPACE •• 

•• OR PRFRM •• 
*. .* 

*. .* 
* •• -rR

' 

CHAINALL V 
.···.FS·········· 
• ALLOCATE RE- • 
.MAINOER OF MAIN • 
• STORAGE TO • 
• CHAINEO TEXT • 
• BUFFERS • 

·······:1········ 

v 
·.··.G5······.··· 
·FREEALL • 
*-*-*-*-*-*-*-*-* 
• FREE ANY • 
• UNUSED MAIN • 
• STORAGE • • ••••••••••• * •••• 

XC TL 

V 
• •••• HS •••••••••• 

• PHASE 7 • 

• .. ~!~~~;::~l ••• • 

Charts and Routine Directories 59 



Table 3. Phase 5 Main Routine/Subroutine Directory 
r------------------T--------------------------------------------------------------------, I Routine/Subroutine I Function I 
~------------------+--------------------------------------------------------------------i I ALLOCATE IInterpolates (using the allocation table) the amount of main storage I 
I Ito be allocated to the dictionary, overflow table, and text buffers. I 
I I I 
IALLOC40 ICompletes the construction of SEGMAL (begun in GETSTRG). I 
I I I 
ICHAINALL IAllocates remainder of obtained main storage to text buffer chains I 
I I (for PRFRM compilations only). I 
I I I 
DCBEXAM I Determines the DCBs that have been opened, and allocates main I 

Istorage to special block/deblock I/O buffers for those data sets for 
Iwhich blocking is specified. 
I 

FREEALL IFrees any unusable main storage. 
I 

GETDANDO IAllocates main storage to the dictionary and the overflow table. 
I 

GETIOBFS Allocates main storage to the four I/O text buffers. 

GETSTRG Obtains main storage for the compiler. 

MESSGOUT Writes messages on SYSPRINT. 

MINCORE Obtains minimum amount of main storage required for a SPACE I 
compilation. I 

I 
PATCH Builds patch table by reading and then converting patch records. I 

I 
I START Performs Phase 5 initialization. I L __________________ ~ ____________________________________________________________________ J 

60 



Chart 30. Phase 7 (IEJFEAAO) Overall Logic 

····A3 .. ·· ... ·. • PHASE 1 OR • 
• PHASE 5 • 
• (SEE NOTE) • •••• *** •••••••• 

V 
•• •• ·B3 ••• • ••• • •• · . 
• MOVE • 
• OVERFLOW INDEX " 
• I NTO PLACE • · . **.* •• *.****.** •• 

I 
V 

····"C3·········· " . 
• INITIALIZE • 
• FOVFLNXT. AND • 
• FDICTBLK • · . 
········1········ 

V 
·****03**·*···**­
.MOVE DICTIONARY. 
• INDEX AND RE- • 
• SERVED WORD • 
• PORTION OF DICT. 
• INTO PLACE • ........ j ....... . 

V 
:****E3*********: 

INITIALIZE 
" FDICTNDX, " 
" FDICTNXT. AND" 
" FOVFBLK " 
***********.***** 

I 
V 

***.*F3********** 
" " "EJECT SYSPRINT " 
"TO NEW PAGE AND" 
: PRINT HEADING: 

********.** •• **** 

I 
V 

NOTE -- ~~~~~ r l ~ E~~!~:~~ ~S~M 
PRFRM COMPILATIONS OTHER 
THAN FIRST. FROM PHASE 5 
(IEJFCAAO) FOR SPACE 
COMPILATIONS OR FIRST 
PRFRM COMPILATION IN A 
BATCH. 

.*. .*. 
G3 ". G4 " • • * SPACE *. .* * • 

•• OR PRFRM ". PRFRM .FIRST COMPILE. NO 
". COMPILATION ."---->". OF A BATCH ."--, 

". •• ·COMPILATION" 
*..* *..* 

* •• * * •• * 
j:'XC. i ,., 
V 

*·***H3*····***** 

• * • * :OELETE PHASE 5 : 

" " .**********.*.*** 

L-----' V .•. 
J3 " • 

• "ADJUST *. 

~.::~~;~~:~::::::.~ 

xcl,e xcl,e 
V V 

****K2********* ****K4***.***** .... .... 
• PHASE 8 " PHASE 100 " 

".~!;~~~::~J""" ""~!~~~~~~21",,,,* 

Section 3: Charts and Routine Directories 61 



Chart 40. Phase 8 (IEJFFAAO) Overall Logic 

·····A2·········· 
····Al·******** * * SEE TABLE 4 FOR A BRIEF 

DESCRIPTION OF THE FUNCTION 
OF EACH PHASE 8 ROUT I NE. 

· ... .. 
• PHASE 7 •• -------:>. INITIALIZE * 
• (IEJFEAAO) * * PHASE * 

*************** * * ................. 

62 

: *::* :->1 
* * <--------------------------------------------------------~ 

**** 
V 

*****B2********** *****B3********** · .... .. 
* READ CARD * * MOVE CARD 
* IMAGE INTO *------->* IMAGE TO 
* INPUT BUFFER * * PRIMARY WORK * 
* * * AREA * ................. . ............... . 

I 
V .*. 

C3 *. • •• **c ••••••••• ** 
.* *. * WRITE OUT * 

.* SOURCE *. YES * CONTENTS OF * 
*. OPTION IN .*------->*INPUT BUFFER ON* 

*. EFFECT .* * SYSPRINT • 
*..* * .. 

r-_______________________________ .:j:~O ........ j ....... . 
SCAN V 

*****03********** NOTE - THE TRT I NSTRUCT I ON 
* * IS USEO TO SCAN EACH 
*SCAN CARD IMAGE* CARD IMAGE OF THE 
* FOR NAMES AND * SOURCE MODULE. 
* DELIMITERS * 
* * •••• ** ••••••••••• 

1 
V 

*****E2********** *****E3********** NOTE - IF FORMAT STATEMENT. 
* MOVE PACKED * * PACK NAME AND * DO NOT PACK H OR 
*SEGMENT OF CARD* * ASSOCIATED * QUOTE FIELDS. 
*IMAGE TO INTER-*<-------* DELIMITER * 
* MEDIATE WORK * * (ELIMINATE * 
* AREA * • BLANKS) * ••••••••••••••••• .****** ••••••• *** 

I 
V .*. 

F2 *. • •••• F3 •••••••••• 
• * ANY *. • INSERT * 

.*KEYWORDS IN*. YES * SPECIAL 
*. PACKED • *-------> * CHARACTERS * 

*. SEGMENT .* *WHERE NECESSARY* 
*..* .. .. 

··i:~O ........ j ....... . 
V .*. 

G2 * • 
• * -. NO.* END *. 

*.OF CARD IMAGE.* 
*. .* *. .* * •• * i YES 

V I .*. .*. 
H2 *. H3 *. *****H4********** 

.* IS *. .* IS *. *DELETE SPECIAL * I 
.*THIS FIRST *. YES .* STATEMENT *. NO *CHARACTER FROM * 

*. CARD IMAGE .*------->*. ARITHMETIC .*------->* KEYWORD WHICH * I 
*.FOR STMT .* *. .* *DEFINES STATE- • 
*..* *.... * MENT TYPE .. 

* •• * * •• * .* .. * •••• ****.*** 

j,NO r "5 I 
V .*. I 

.*.**J2********** *****.J3* ••• ****** .J4 ... ~ 
*MOVE CARD IMAGE* * * .* *. 
*TO OUTPUT BFR. * *WRITE CONTENTS * .* END *. NO 
*INSERT REQUJRED*------->* OF OUTPUT *------->*.OF STATEMENT .* 
• MEANINGFUL * * BUFFER ON * *. .* 
• BLANKS. • SYSUT2 * *..* 
•• *** •••••••••• ** .******** •••• **** * •• * i YES 

V XCTL .*. USED 
K4 * • • * LAST *. ****KS********* 

.* STATEMENT *. YES * * 
*. OF SOURCE • *-------> * PHASE 10~ 

*. MODULE •• * * (IEJFGAAO) * 
*..* *************** * •• * * NO 

I 
V 

**** 
* * 
: B2 : 



Table 4. Phase 8 Routine/Subroutine Directory 
r------------------~-------------------------------------------------------------------, 
I Routine/Subroutine I Function I 
~------------------+--------------------------------------------------------------------i 
IBROOT IBranch table for delimiters that may appear in a FORTRAN statement. 
I I 
IDOOUT IInitializes move of DO statement to output area. 
I I 
IENDCARD IChecks for the END statement. 
I I 
IENDCOMP IPerforms final Phase 8 processing when an END statement is encoun-
I Itered. 
I I 
FINDEND IMoves remaining characters of statement to output area. 

I 
FMTEST ITests for a possible FORMAT statement. 

I 
GET Obtains next card image to be processed. 

HMOVE 

LBLSCN 

OUT 

OUT MOD 1 

PAC KSCAN 

PHASE8 

Moves Hollerith fields in FORMAT statements from input area to work 
area. 

Scans and packs statement numbers, and moves packed statement 
numbers to output buffer. 

Determines statement type and initializes for output. 

Moves statement control words to output area. 

Begins processing of each statement. 

Performs Phase 8 initialization. 

PRINT1 Prints source module listing on the SYSPRINT data set if the SOURCE 
loption is in effect. 
I 

PUT IWrites input for Phases 100 and 10E on SYSUT2. 
I 

RESUME IPerforms initialization to resume statement processing after part of 
la statement has been processed. 
I 

SCAN IScans and packs segments of card images, and moves packed segments 
Ifrom primary work area to intermediate work area. 
I 

SCAN3 IIdentifies reserved words. 
I 

SEARCH3 IChecks for reserved words embedded within statement. 
I 

ISSCAN I Identifies and determines length of Hollerith fields in FORMAT I 
I I statements. I L __________________ L-___________________________________________________________________ J 

Section 3: Charts and Routine Directories 63 



chart 50. Phase 100 (IEJFGAAO) Overall Logic 

NOTE -- PHASE 100 IS ENTERED FROM 
PHASE 7 (IEJFEAAO) IF THE 
NOADJUST OPTION IS IN 
EFFECT. FROM PHASE 8 
(IEJFFAAO) IF THE ADJUST 
OPTION IS IN EFFECT. 

64 

****A3********* 
* PHASE 7 OR * 
* PHASE 8 * 
* (SEE NOTE) * 

*************** 

V 
*****B3********** 
* START * 
*-*-*-*-*-*-*-*-* 
* PHASE * 
*INITIALIZATION * 
* * ***************** 

r----------> 
V 

*****C3********** 
* * * OBTAIN A * 
* SOURCE MODULE * 
* STATEMENT * 
* * ***************** 

V 
*****03********** 
*ENTER STATEMENT* 
*ON SYSPRINT IF * 
*SOURCE AND NO- * 
*ADJUST OPTIONS * 
* ARE IN EFFECT * 
***************** 

V 
*****E3********** 
* CLASS * 
*-*-*-*-*-*-*-*-* 
* DETERMINE * 
* STATEMENT * 
* TYPE * 
***************** 

I 
v .*. 

F3 * • 

SEE TABLE 6 FOR A dRIEF 
DESCRIPTION OF THE 
FUNCTION OF EACH PHASE 100 
ROUTINE/SUBROUTINE. 

• * *. ****F4********* 
.* SF OR *. YES * * 

*. EXECUTABLE • *--------> * PHASE IOE * 
*. .* * (IEJFJAAO) * 
*..* *************** 

* •• * i NO 

V 
*****G3********** *****G4********** 
* * * EOSR * 
* * PROCESS * *-*-*-*-*-*-*-*-* 
* SOURCE * <-------> * CHECK FOR * 
* STATEMENT * * END-OF- * 
* * * STATEMENT * 
***************** ***************** 

* SEE TABLE 5 FOR A LIST 
OF THE STATEMENTS PROCESSED 
BY PHASE 100 AND THE MAIN 
ROUTINES AND SUBROUTINES 
THAT PROCESS THESE 
STATEMENTS. 



Table 5. Phase 10D Statement Processing 
r----------------~----------------------T----------------------------------------------, 
Istatement Type IMain processing Routine I Main Subroutines Used 3 I 
.----------------+-----------------------+----------------------------------------------~ 
I REAL I REAL/ INTGER/DOUBLE 1 I I 
~----------------+-----------------------i I 
I INTEGER IREAL/INTGER/DOUBLE 1 I Control is passed to DIM I 
r----------------+-----------------------i I 
IDOUBLE PRECISIONIREAL/INTGER/DOUBLE 1 I I 
.----------------+-----------------------+----------------------------------------------~ I DIMENSION IDIM 1 I GETWD, RCOMA, CSORN, DIMSUB, WARN/ERRET I 
~----------------+----~------------------+----------------------------------------------i 
I COMMON I COMMON 1 I DIM I 
I I 2 I I 
~----------------+-----------------------+----------------------------------------------~ I EQUIVALENCE IEQUIV 1 I GETWD, CSORN, WARN/ERRET, RCOMA I 
I I 2 I I 
r----------------+-----------------------+----------------------------------------------i I EXTERNAL I EXTERN 1 I GETWD, RCOMA, CSORN I 
~----------------+-----------------------+----------------------------------------------i 
I FUNCTION I FUNCT 1 I I 
I I 2 I I 
~----------------+-----------------------i GETWD, CSORN, PUTX I 
I SUBROUTINE I SUBRUT 1 I I 
I I 2 I I 
~----------------+-----------------------+----------------------------------------------i 
I FORMAT IFOR~AT 2 I GETWD, WARN/ERRET, PUTX I 
~----------------+-----------------------+----------------------------------------------i 
IDEFINE FILE I DEFINE 1 I GETWD, CSORN, PUTX I 
I I 2 I I 
~----------------L-----------------------L----------------------------------------------i 
11Table entries may be prepared when processing this statement. I 
12 Text is created when processing this statement. I 
13Al1 routines except FORMAT use ERROR as an error exit for errors that cause termina- I 
I tion of the statement processing FORMAT has no error exit. I l _______________________________________________________________________________________ J 

Section 3: Charts and Routine Directories 65 



Table 6. Phase 100 Main Routine/Subroutine Directory 
r------------------T--------------------------------------------------------------------, 
I Routine/Subroutine I Function I 
t------------------t--------------------------------------------------------------------~ I CLASS Determines which routine will process the statement type. May usel 
I LOADE and LABLU. I 
I I 
I COMMON Processes COMMON statements. I 
I I 
ICSORN Processes names, constants, data set reference numbers, and DOl 
I parameters. May use LITCON and SYMTLU. I 
I I 
I DEFINE Processes DEFINE FILE statements. I 
I I 
IDIM Processes the variables of DIMENSION, COMMON, INTEGER, REAL, andl 
I DOUBLE PRECISION statements. I 
I I 
DIMSUB Scans the subscript portion of a statement that is dimensioning an 

EOSR 

ERROR 

EQUIV 

EXTERN 

FORMAT 

FUNCT 

GETWD 

array. 

Processes the end of statement. 

Enters error intermediate text for errors that cause termination of 
the processing of that statement. 

Processes EQUIVALENCE statements. 

Processes EXTERNAL statements. 

Processes FORMAT statements. 

Processes the header card image for a FUNCTION subprogram. 

Obtains a word or element in a statement and gets a new card image, 
if necessary. Prints the card if SOURCE option requested. May use 
PRMBLD. 

INTGER/REAL/DOUBLE Processes INTEGER, REAL, and DOUBLE PRECISION statements. 

LABLU 

LABTLU 

LITCON 

LOADE 

PRMBLD 

PUTX 

RCOMA 

START 

SUB RUT 

SYMTLU 

Enters only statement number information into the overflow table. 
IUses LABTLU. 
I 
Enters all information into the overflow table. 

Processes literals. 

Performs end-of-phase processing and passes control to Phase 10E. 

Performs all operations associated with I/O interfacing and buffer 
switching. 

Puts entries into the SYSUTl text buffers. 

Enables skipping of redundant commas in a parameter list. 

Performs initial phase housekeeping. 

Processes the header card for a SUBROUTINE SUbprogram. 

Enters symbols and/or units into the dictionary. 

IWARN/ERRET Enters warning and error intermediate text for error and warning 
I conditions that permit the continuation of the processing of thel 
I statement. I L __________________ ~ ___________________________________________________________________ J 

66 



Chart 60. Phase 10E (IEJFJAAO) Overall Logic 

****A3********* 
* * * PHASE 100 * 
* (IEJFGAAO) * 

*************** 

V 
*****B3********** 
* START * 
*-*-*-*-*-*-*-*-* 
* PHASE * 
*INITIALIZATION * 
* * ***************** 

r----------> 
V 

*****C3********** 
* * *OBTAIN A SOURCE* 
* MODULE * 
* STATEMENT * 
* * ***************** 

V 
*****03********** 
*ENTER STATEMENT* 
*ON SYSPRINT IF * 
*SOURCE AND NO- * 
*ADJUST OPTIONS * 
* ARE IN EFFECT * 
***************** 

V 
*****E3********** 
* CLASS * 
*-*-*-*-*-*-*-*-* 
* DETERMINE * 
* STATEMENT * 
* TYPE * 
***************** 

I 
v .*. 

SEE TABLE 8 FOR A BRIEF 
DESCRIPTION OF THE FUNCTION 
OF EACH PHASE lOE ROUTINE/ 
SUBROUTINE. 

F3 *. *****F.********** *****F5********** 
.* *. * END * * EXIT * 

.* END *. YES *-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* 
*. STATEMENT • *--------> * PROCESS *·-------->*PERFORMS FINAL * 

*. .* * END * * PHASE lOE * 
*..* * STATEMENT * * PROCESSING * 

*. .*' ***************** ***************** 

i NO 

V 
*****G3********** *****G.********** 
* * * EOSR * 
* * PROCESS * *-*-*-*-*-*-*-*-* 
* SOURCE * <-------> * CHECK FOR * 
* STATEMENT * * END-OF- * 
* * * STATEMENT * 
***************** ***************** 

I 
v .*. 

H5 *. 
****H4********* .* SPACE *. 

* * SPACE.* OR PRFRM *. 
* INTERLUDE 10E *<--------*. COMPILATION .* 
* (IEJFJGAO) * *. .* 

* SEE TABLE 7 FOR A LIST OF 
THE STATEMENTS PROCESSED 
BY PHASE lOE AND THE 
MAIN ROUTINES AND SUB­
ROUTINES THAT PROCESS 
THESE STATEMENTS. 

*************** *..* 
* •• * 

*PRFRM 

V 
****J5********* 

* * * PHASE 12 * 
* (IEJFLAAO) * 

*************** 

Section 3: Charts and Routine Directories 67 



Table 7. Phase lOE Statement Processing 
r--------------T-----------------------T------------------------------------------------, 
IStatement TypelMain Processing Routine I Main Subroutines Used 3 I 
~--------------t-----------------------t------------------------------------------------i 
I ARITHMETIC IARITH 1 ICSORN, PUTX, GETWD, SUBS (ARITH may pass control I 
I I 2 Ito ASF, DO, and GO) I 
~--------------t-----------------------t------------------------------------------------i 
ISF IASF 1 ICSORN, GETWD I 
I I 2 I I 
~--------------t-----------------------t------------------------------------------------i 
I CALL I CALL 1 IPUTX, GETWD, CSORN (exits to ARITH) I 
I I 2 I I 
~--------------t-----------------------t------------------------------------------------1 
100 100 1 IARITH, CSORN, GETWD, LABLU, PUTX I 
I I 2 I I 
~--------------t-----------------------t------------------------------------------------1 
I GO TO I GO 1 I I 
I I 2 I I 
t--------------t-----------------------1ARITH, GETWD, LABLU, PUTX, CSORN, WARN/ERRET I 
ICOMP GO TO IGO 1 I I 
I I 2 I I 
t--------------t-----------------------t------------------------------------------------i 
IIF ISUBIF 1 IGO, PUTX (exits to ARITH) I 
I I 2 I I 
t--------------t-----------------------t------------------------------------------------i 
I READ I READ/WRITE/FIND 1 I I 
I I 2 I I 
t--------------t-----------------------~GETWD, CSORN, PUTX, LABLU (exits to ARITH) I 
I WRITE I READ/WRITE/FIND 1 I I 
I I 2 I I 
t--------------t-----------------------~ I 
I FIND I READ/WRITE/FIND 1 I I 
I I 2 I I 
t--------------t-----------------------t------------------------------------------------1 
I FORMAT I FORMAT 2 IGETWD, WARN/ERRET, PUTX I 
t--------------t-----~-----------------t------------------------------------------------~ 
ICONT ICONT/RETURN 2 I I 
t--------------t-----------------------iGETWD, WARN/ERRET, PUTX I 
I RETURN ICONT/RETURN 2 I I 
t--------------t-----------------------t------------------------------------------------i 
I STOP I STOP/PAUSE 2 I I 
t--------------t-----------------------iGETWD, PUTX (exits to CLASS) I 
I PAUSE I STOP/PAUSE 2 I I 
~--------------t-----------------------t------------------------------------------------i 
I BACKSPACE I BKSP/ 1 I I 
I I 2 I I 
~--------------i I I 
I REWIND I REWINO/ 1 ICSORN, GETWD, PUTX I 
I I 2 I I 
~--------------i I I 
I END FILE I ENDFIL 1 I I 
I I 2 I I 
t--------------L-----------------------~------------------------------------------------~ 
11 Table entries may be prepared when processing this statement. I 
12 Text is created when processing this statement. I 
13 All routines except FOR~AT and CONT/RETURN use ERROR as an error exit for errors I 
I that cause termination of the statement processing. I L _______________________________________________________________________________________ J 

68 



Table 8. Phase 10E Main Routine/Subroutine Directory 
r-----------------------T---------------------------------------------------------------, 
I Routine/Subroutine I Function I 
~-----------------------+---------------------------------------------------------------~ 
IARITH Processes arithmetic statements. May use SUBS. 
I 
IASF 
I 
IBKSP/REWIND/ENDFIL 
I 
I CALL 
I 
I CLASS 
I 
ICONT/RETURN 
I 
ICSORN 
I 
I 
IDO 
I 
lEND 
I 
IEOSR 
I 
I ERROR 
I 
I 
IEXIT 
I 
I FORMAT 
I 
IGETWD 
I 
I 
I 
IGO 
I 
I 
LABLU 

LABTLU 

LITCON 

Processes the parameter list of a statement fUnction. 

Processes the BACKSPACE, REWIND, and ENDFILE statements. 

Processes the name of a CALL statement. 

Determines which routine will process the statement type. 

Processes CONTINUE and RETURN statements. 

Processes names, constants, data set reference nurrbers, and DO 
parameters. May use LITCON and SYMTLU. 

Processes the DO statement and implied DOs. 

Processes the END statement. 

Processes the end of the statement. 

Enters error text into the interffiediate text and terminates the 
processing of current statement. 

Performs end-of-phase processing. 

Processes FORMAT statements. 

Obtains a word or element in a statement and gets a 
image, if necessary. Prints the card if SOURCE 
requested. May use PRMBLD. 

new card 
option is 

Processes the statement number branched to by an IF, GO TO, 
computed GO TO statement. 

or 

Enters 
table. 

only statement 
Uses LABTLU. 

number information into the overflow 

Enters all information into the overflow table. 

Processes literals. 

I , , 
I 

PRMBLD Performs all operations associated with I/O interfacing andl 
buffer switching. I 

I 
PUTX Puts entries into the inter~mediate text buffers. I 

I 
READ/WRITE/FIND Processes the portion of the statement preceding the I/O list., 

I 
START Performs Phase 10E initialization. I 

I 
STOP/PAUSE Processes the STOP and PAUSE statements. , , 
SUBIF Begins the IF statement processing. I , 
SUBS Processes subscript variables. I 

I 
SYMTLU Enters symbols and/or units into the dictionary. I 

I 
IWARN/ERRET Processes warning and error conditions that do not prevent I 
I completion of the processing of the current statement. I L _______________________ ~ _______________________________________________________________ J 

section 3: Charts and Routine Directories 69 



Chart 70. Phase 12 (IEJFLAAO) Overall Logic 

****A2********* 
* PHASE 10E OR * 
: I ~~~~L~g~E ~ OE : 

*************** 

V 
*****82*********· 
* STARTA * 
*-*-*-*-*-*-*-*-* 
* PHASE * 
*INITIALIZATION * 
* * ***************** 

I 
V 

*****Cl********** *****C2********** 
* EQINIT * * COMALO * 
*-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* 
*INITIALIZES FOR*<-------*ASSIGN ADDR. TO* 

COMALO USES THE 
ALOWRN/ALERET. 
SORSYM**. GETCOMI. 

SEE TABLE 9 FOR A BRIEF 
DESCRIPTION OF THE FUNCTION 
OF EACH PHASE 12 ROUTINE/ 
SUB ROUT I NE. 

NOTE--
PHASE 12 IS ENTEREO FROM 
PHASE 10E (IEJFJAAO) FOR 
PRFRM COMPILATIONS. OR FROM 
INTERLUDE 10E (IEJFJGAO) 
FOR SPACE COMPILATIONS. 

* EQUIVALENCE * *VAR. AND ARRAYS* AND GETCOM SUBROUTINES 
*TXT PROCESSING * * IN COMMON * 
***************** ***************** 

I 
V 

*****01*********­
* EQUIVP * 
*-*-*-*-*-*-*-*-* 
* PROCESSES * 
* EQUIVALENCE * 

TEXT * 
***************** 

I 
V 

·****El********** 
* EXT COM * 
*-*-*-*-*-*-*-*-* 
* INCR.LOCATION * 
*CNTR BY SIZE OF* 
* COMMON * 
***************** 

I 
V --*4*F1--* ______ _ 

* DPALOC * 
*-*-*-*-*-*-*-*-* 
* ASGN ADDR TO * 
* DBL-PREC VAR. * 
*ARRAYS IN OICT.* 
***************** 

I 
V 

*****Gl********** 
* SALO * 
*-*-*-*-*-*-*-*-* 
* ASGN AD DR TO * 
* REAL AND INT * 
*VAR AND ARRAYS * 
***************** 

I 
V 

·****Hl********** 
* ALOC * 
*-*-*-*-*-*-*-*-* 
*ASGN AODRESSES * 
* TO EQUATED * 
* VAR 
***************** 

I 
V 

··***.Jl ********** 
* LDCN * 
*-*-*-*-*-*-*-*-* 
'* PROC DICT ENT * 
• FOR EXT AND IN * 
*L I NE FUNCT IONS * 
***************** 

I 
V 

EQUIVP USES THE 
EQUS02. EQUS03. 
AND EQUS1~ 
SUBROUTI NES 

EXTCOM USES THE 
ALOWRN/ALERET 
SUBROUTINE 

DPALOC USE THE 
INTDCT. EQSRCH. 
SORSYM**. 'AND 
DELETE SUBROUTINES 

SALO USES THE 
INTDCT. EQSRCH. 
AND SORSYM** 
SUBROUTI NES 

ALOC USES THE 
INTOCT. ALOWRN/ 
ALERET. EQSRCH. 
AND OELETE SUB­
ROUTINES 

LDCN USES THE 
INTDCT. ESO*. 
OELETE. RLO* • 
AND GOFILE SUB­
ROUTINES 

****J3********* 
* PHASE 1~ * 
: (IEJFNAAO) * 

*************** 
/I 

*****K 1 ******* .. ** .... ***K2********** *****K3********** * ASGNBL * * SSCK * * SORLIT * 
*-*-*-*- .. - .. -*-*-* *-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* 
*PREPARES BRANCH*------->*REPL CHAIN FLO *------->* ASSIGN ADDR * 
*LIST TABLE FOR * *FOR SUBSCRIPTED* * TO CONSTANTS * 
* REF STMT NOS. * * VAR WITH ADDR * * IN DICTIONARY * 
***************** ***************** ***************** 

70 

* CARD IMAGE 
PREPARATION 

STORAGE MAP 
PREPARATION 

SORLIT USES THE 
TXT*. ESD*. 
SORSYM**. GOFILE. 
AND RLO* SUBROUT I NES 



Table 9. Phase 12 Main Routine/Subroutine Directory 
r------------------T--------------------------------------------------------------------, 
I Routine/Subroutine I Function I 
.------------------+--------------------------------------------------------------------~ 
IALOC IAssigns addresses to all equated variables. I 
I I I 
IALOWRN/ALERET IProcesses the error and warning conditions detected in Phase 12. I 
I I I 
I ASGNBL Allocates a branch list position for each referenced stmt. number. I 
I I 
I CO MALO Assigns addresses for variables or arrays to be placed in CO~~ON and 
I removes these variables from the appropriate dictionary chain. 
I 
I DELETE 
I 
I DPALOC 
I 
I 
IEQINIT 
I 
IEQSRCH 
I 
IEQUIVP 
I 
IEQUS02 
I 
IEQUS03 
I 
IEQUS14 
I 
IESO 
I 
I EXT COM 
I 
IGETCOM/GETEQUIV 
I 
IGETCOMI 
I 
GOFILE 

INTOCT 

LDCN 

RENTER/ENTR 

RLO 

SALO 

SORLIT 

SORSYM 

SSCK 

STARTA 

SWROOT 

Removes dictionazy entries from chain. 

Assigns addresses to all 
entered in the dictionary. 

double-precision variables 

Performs initialization for equivalence text processing. 

Checks for variables previously equated to a root. 

Performs equivalence text processing. 

Processes first name in an EQUIVALENCE group. 

Processes rest of EQUIVALENCE group and switches root if 

I Processes all equated variables and arrays in COMMON. 
I 
IProcesses ESO card images. 
I 

or arrays 

necessary. 

I Enters size of COMMON in comm. area, and adjusts location counter. 
I 
I Updates COMMON or EQUIVALENCE text pointer, reads in text records. I 

I I 
IInitializes pointers and I/O parameters for COMMON-EQUIVALENCE 
I 
I Generates card images for data sets SYSLIN and/or SYSPUNCH. 
I 
IRetrieves entries from the dictionary. 
I 

text. I 
I 
I 
I 
I 
I 

IProcesses dictionary entries for functions and external references. I 
IAlso prepares ESD section definition card images for the objectl 
Imodule and COMMON areas. 
I 
IEnters variables in the EQUIVALENCE table either as a root or as 
lequated variable. 
I 
IProcesses RLO card images. 
I 
IAssigns addresses to real and integer variables and arrays. 
I 

I 
I 

ani 
I 
I 
I 
I 
I 
I 

I Assigns addresses and generates text card images for all Ii tt:r"als I 
I (constants); performs the final processing of the phase. 
I 
IArranges and prints the storage map for all arrays, constants, 
lexternal references assigned addresses by Phase 12. 
I 
I Replaces 
I addresses 
I 

pointers to variables used in subscript expressions 
assigned by Phase 12. 

IInitializes Phase 12. 
I 
IChanges a root previously entered. 
I 

I 
I 

andl 
I 
I 

withl 
I 
I 
I 
I 
I 
I 

I TXT IProcesses TXT card images. I L __________________ ~ ____________________________________________________________________ J 

Section 3: Charts and Routine Directories 71 



Chart 80. Phase 14 (IEJFNAAO) Overall Logic 

****A2********* 
* * * PHASE 12 * 
* (IEJFLAAO) * 

*************** 

I 
V 

*****B2********** 
* PHINIT * 
*-*-*-*-*-*-*-*-* 
* PHASE * 
*INITIALIZATION * 
* * ***************** 

**** 
* * * C2 *-> 
* * **** 

V 
*****C2********** 
* PRESCN * 
*-*-*-*-*-*-*-*-* 
* OBTAIN STATE- * 
* MENT AND OE- * 
* TERMINE TYPE * 
***************** 

1 
v 

SEE TABLE 12 FOR A BRIEF 
DESCRIPTION OF THE FUNCTION 
OF EACH PHASE 14 ROUTINE/ 
SUBROUTINE. 

.*. .*. 
02 *. *****03********** 04 * • 

• * *. * END * .* SPACE *. ****05********* 
.* END *. YES *-*-*-*-*-*-*-*-* .* OR PRFRM *. PRFRM * * 

*. STATEMENT • *--------> * PERFORMS *-------->*. COMPILATION .*-------->* PHASE 15 * 
*. .* *FINAL PHASE 14 * *. .* * (IEJFPAAO) * 
*..* * PROCESSING * *..* *************** 

*. .* ***************** *. .* I NO iSPACE 

.*. V 
E2 *. *****E3********** *****E4********** 

.* *. * FORMAT * * * ****E5********* 
.* FORMAT *. YES *-*-*-*-*-*-*-*-* * DELETE MAIN * * * 

*. STATEMENT • *--------> * ** PROCESS * * STORAGE *-------->* INTERLUDE 14 * 
*. .* * FORMAT * * OCCUPIED BY * * (IEJFNGAO) * 
*..* * STATEMENT * * DICTIONARY * *************** 

*. .* ***************** ***************** 

*1 NO .1 .. 
* * v * C2 * 

*****F2********** * * 
* * **** 
* * PROCESS * 
* STATEMENT * 
* * * * ***************** 

72 

I 
v 

**** 
* * * C2 * 
* * **** 

* SEE TABLE 10 FOR A LIST 
OF THE STATEMENTS PROCESSED 
BY PHASE 14 AND THE ROUTINES 
AND SUBROUTINES THAT PROCESS 
THESE STATEMENTS. 

** SEE TABLE 11 FOR A LIST 
OF THE FORMAT CODES THAT 
MAY APPEAR IN A FORMAT 
STATEMENT AND THE SUB­
ROUTINES THAT PROCESS 
THESE CODES. 

FORMAT USES THE 
CKENDO. GETWDA. 
INTCON. AND MSG/ 
MSGMEM SUBROUTINES 



Table 10. Phase 14 statement Processing (FORMAT Statements Excluded) 

r--------------------T-----------------------------T------------------------------------, I statement Type I Main Processing Routine I Main Subroutines Used I 
~--------------------t-----------------------------t------------------------------------1 
I FORMAT I FORMAT I Refer to Table 11 I 
~--------------------t-----------------------------t------------------------------------i 
I WRITE I READWR I I 
t--------------------t-----------------------------i UNITCK, ERROR, MSG~ffiM I 
I READ I READ I I 
~--------------------t-----------------------------+------------------------------------~ 
I SUBROUTINE I SUBFUN I I 
~--------------------t-----------------------------i RDPOTA 1, MSGMEM, RPTRB I 
I FUNCTION I SUBFUN I I 
t--------------------t-----------------------------t------------------------------------1 
I CONTINUE I SKIP I MSGMEM I 
t--------------------t-----------------------------t------------------------------------1 
I BACKSPACE I BSPREF I I 
t--------------------t-----------------------------~ I I REWIND I BSPREF I UNITCK, MSGMEM I 
t--------------------t-----------------------------i I 
I ENDFILE I BSPREF I I 
t--------------------t-----------------------------t------------------------------------i I DO I DO I CKENDO, ERROR, MSGMEM, RDPOTA 1 I 
~--------------------t-----------------------------t------------------------------------~ I STATEMENT I LABEL I None I 
I NUMBER I I I 
~--------------------t-----------------------------t------------------------------------i I SF I ASF I PASSON, CEM, RPTRB I 
t--------------------t-----------------------------t------------------------------------~ I RETURN I RETURN I CKENDO, MSG~~M, SKIP I 
t--------------------t-----------------------------t------------------------------------i 
I STOP I STOP I CKENDO, SKIP I 
t--------------------t-----------------------------t------------------------------------~ 
I PAUSE I PAUSE I CKENDO, SKIP, RDPOTA 1 I 
t--------------------t-----------------------------t------------------------------------~ I INVALID I INVOP I None I 
t--------------------t------·-----------------------t------------------------------------i 
I ERROR I ERWNEM I I 
t--------------------t------·-----------------------i None I 
I WARNING I ERWNEM I I 
t--------------------t------·-----------------------t------------------------------------i I END MARK I MSG I None I 
t--------------------t------·-----------------------t------------------------------------1 
I IF I PASSON I I 
t--------------------t------·-----------------------i I 
I ARITH I PASSON I I 
~--------------------t------·-----------------------~ I 
I CALL I PASSON I CEM I 
t--------------------t------·-----------------------i I 
I GO TO I PASSON I I 
t--------------------t------·-----------------------t------------------------------------i I COMP GO TO I CGOTO I CKENDO, RDPOTA, MSG, MSGMEM I 
t--------------------t------·-----------------------t------------------------------------i 
I COMMON I COMEQUIV I I 
t--------------------t------·-----------------------i None I 
I EQUIVALENCE I COMEQUIV I I 
t--------------------t------·-----------------------+------------------------------------i I DEFINE FILE I PASSON I CEM I 
t--------------------~------·-----------------------~-----------------------------------i 
11Replaces dictionary pointE!rs. I L ___________________________ . _________________________ --_________________________________ J 

section 3: Charts and Routine Directories 73 



Table 11. Phase 14 FORMAT statement Processing 
r-------------------------------------------~------------------------------------------, 
I FORMAT Code I Main Subroutine Used I 
~-------------------------------------------+-------------------------------------------i 
I blank I BLANKZ I 
~-------------------------------------------+-------------------------------------------~ 
I D I FMDCON I 
~-------------------------------------------+-------------------------------------------i 
I E I FMECON I 
~-------------------------------------------+-------------------------------------------i 
I F I FMFCON I 
~-------------------------------------------+-------------------------------------------i 
I I I FMTINT I 
~-------------------------------------------+-------------------------------------------i 
I A I FMACON I 
~-------------------------------------------+-------------------------------------------1 
I X I FMXCON I 
~-------------------------------------------+-------------------------------------------i 
I P I FSCALE I 
~-------------------------------------------+-------------------------------------------1 
I + I FMPLUS I 
~-------------------------------------------+-------------------------------------------1 
I - I FMINUS I 
~-------------------------------------------+-------------------------------------------i I ( I LPAREN I 
~-------------------------------------------+-------------------------------------------1 
I / I FSLASH I 
~-------------------------------------------+-------------------------------------------i 
I T I FSUBST I 
~-------------------------------------------+-------------------------------------------1 
I H I FHOLER I 
~-------------------------------------------+-------------------------------------------~ 
I' I FQUOTE I 
~-------------------------------------------+-------------------------------------------i 
I, I FCOMMA I 
~-------------------------------------------+-------------------------------------------~ I) I RPAREN I L ___________________________________________ ~ ___________________________________________ J 

Table 12. Phase 14 Main Routine/Subroutine Directory 
r------------------T--------------------------------------------------------------------, 
I Routine/Subroutine I Function I 
~------------------+--------------------------------------------------------------------~ 
ASF Processes the SF definition text. I 

I 
BLANKZ Processes any blanks encountered while scanrdng a FORMAT statement. I 

I 
BSPREF Processes BACKSPACE, REWIND, and ENDFILE statement text. I 

I 
CEM/RDPOTA/RPTRB Completes text processing for arithmetic, BACKSPACE, REWIND, END-

FILE, GO TO, DO, CALL, IF, PAUSE, and SF definition statements. 

CGOTO Processes text for computed GO TO statements. 

CKENDO Determines if a statement has invalidly ended a DO lOOp. 

COMEQUIV IDeletes COMMON and EQUIVALENCE text from intermediate text. 
I 

DO IPerforms diagnostic checks on the DO variable and the DO parameter. 
I 

END IProcesses END text. 
I 

ERROR IGenerates intermediate text for errors detected in Phase 14. 
I 

IERWNEM IProcesses error and warning text. 
L __________________ ~ __________________________________ ----------------------------------

(Continued) 

74 



Table 12. Phase 14 Main Routine/Subroutine Directory (Continued) 
r------------------T--------------------------------------------------------------------, 
I Routine/Subroutine I Function I 
~------------------+--------------------------------------------------------------------i 
I FCOMMA Processes any commas found in a FORMAT statement. 
I 
FHOLER Processes the H specification in a FORMAT statement. 

FMACON Processes the A specification in a FORMAT statement. 

FMDCON Processes the D specification in a FORMAT statement. 

FMECON Processes the E specification in a FORMAT statement. 

FMFCON Processes the F specification in a FORMAT statement. 

FMINUS Processes the . -' specification in a FORNAT statement. 

FMPLUS Processes the • +' specification in a FORIv'JAT statement. 

FMTINT Processes the T specification in a FORMAT statement. 

FMXCON Processes the X specification in a FORMAT statement. 

FORMAT Performs ana directs some FORMAT processing. May use INTCON. 

FQUOTE Processes the apostrophe specification in a FORMAT statemE::nt. 

FSCALE Processes the P specification in a FORMAT statement. 

FSLASH Processes the slash format specification in a FORMAT statement. 

FSUBST Processes the T specification in a FORMAT statement. 

GETWDA IScans FORMAT statements. 

INTCON converts integer constants to binary and checks their validity. 

INVOP Processes invalid adjective codes. 

LABEL Processes statement number definition text. 

LPAREN Processes left parentheses. 

MSG/MSGMEM Inserts error/warning messages into text and detects end of stmt. 

PASSON Processes CALL, IF, and arithmetic IF statement text. 

PAUSE Processes PAUSE statement text. 

PHINIT Performs phase initialization. 

PRESCN Performs phase initialization and controls processing of int. text. I 

IREAD/READWR Processes READ/WRITE text. 
I 
I RETURN Processes RETURN statement text. 
I 
I RPAREN Processes any right parenthesis occurring in a FORMAT statement. 
I 
ISKIP Processes CONTINUE statement text. 
I 
I STOP Processes STOP statement text. 
I 
ISUBFUN Processes SUBROUTINE and FUNCTION text entries. 
I 
IUNITCK Checks validity of symbols used to reference a DSRN. L __________________ 4-__________________________________________________________________ _ 

Section 3: Charts and Routine Directories 75 



Chart 90. Phase 15 (IEJFPAAO) Overall Logic 

****A3********­
* PHASE 14 OR * 
* INTERLUDE 14 * 
* (SEE NOTE) * 

*************** 

:·::·:->1 
* * I **** 

V 
*****B3********** 
* PRESCN * 
*-*-*-*-*-*-*-*-* 
* OBTAIN STATE- * 
*MENT AND DETER-* 
*MINE STMT TYPE * 
***************** 

1 
v .*. 

SEE TABLE 15 FOR A BRIEF 
DESCRIPTION OF THE FUNCTION 
OF EACH PHASE 15 ROUTINE/ 
SUBROUTINE. 

NOTE --
PHASE 15 IS ENTERED FROM 
PHASE 14 (IE~FNAAO) FOR 
PRFRM COMPILATIONS. OR 
FROM INTERLUDE 14( (IE~FNGAO) 
FOR SPACE COMPILATIONS. 

C3 *. *****C4********** 
.* *. * MOPUP * ****C5********* 

.* END *. YES *-*-*-*-*-*-*-*-* * * 
*. STATEMENT • *---------> * PERFORMS *1 * INTERLUDE 15 * 

*. .* *FINAL PHASE 15 * * (IE~FPGAO) * 
*..* * PROCESSING * *************** 

* •• * ***************** A i NO 1 ISPACE 

.~. I .*. 
*****02********** 03 *. *****04********** 05 *. 
* * .* *. * FOSCAN ** * L .* SPACE *. 
* * PROCESS * NO.* CAN *. YES *-*-*-*-*-*-*-*-* .* OR PRFRM *. 
: STAT~MENT :<:---------*.~~MTAg~~~AI~*.*---------:>: c~~6~g~~!~g : >*.*:OMPILATIO~*.* 

* * *.EXPR .* *MOD OF INT TXT * *..* 
***************** * •• * ***************** * •• * 

"Si~i;~~~~;~:~~i:: I ...... 5.1::::: .. . 
L-________________ >* PROC REM OF * < ________________ -J_ * PHASE 20 * 

76 

*STMT AND FORMS * * (IEJFRAAO) * 
*E/W TXT IF NEC * *************** 
***************** 

I 
v 

***~ 

* * * B3 * 
* * **** 

* SEE TABLE 13 FOR A LIST 
OF THE NONARITHMETIC 
STATEMENTS PROCESSED BY 
PHASE 15 AND THE MAIN 
ROUTINES AND SUBROUTINES 
THAT PROCESS THESE STATEMENTS. 

** FOSCAN PROCESSES ARITHMETIC. 
ARITHMETIC IF. STATEMENT FUNCTION 
AND CALL STATEMENTS. SEE TABLE 14 
FOR A LIST OF THE OPERATORS THAT MAY 
APPEAR IN THE ABOVE STATEMENTS AND 
THE MAIN ROUTINES AND SUBROUTINES 
THAT PROCESS THESE OPERATORS. 



Table 13. Phase 15 Nonarithmetic statement Processing 
r--------------------------------T---------------------------T--------------------------, I Statement Type or Adjective Cd I Main processing Routine.1. I Main Subroutines Used I 
t--------------------------------+---------------------------+--------------------------~ I COMPUTED GO TO I CGOTO I LAB, CEM I 
t--------------------------------+---------------------------+--------------------------1 
I DEFINE FILE I DEFNFL I None I 
t--------------------------------+---------------------------+--------------------------~ 
I DO I DO I LABl, CEM I 
t--------------------------------+---------------------------+--------------------------~ 
I END MARK I MSG I None I 
t--------------------------------+---------------------------+--------------------------1 
I ERROR I ERWNEM I None I 
t--------------------------------+---------------------------+--------------------------~ 
I GOTO I GOTO I LAB, CEM I 
t--------------------------------+---------------------------t--------------------------i I INVALID I INVOP I ERROR I 
t--------------------------------+---------------------------+--~-----------------------1 
I I/O LIST I BEGIO I MSGMEM I 
t--------------------------------+---------------------------+--------------------------~ I STATEMENT NUMBER I LABEL I ERROR I 
t--------------------------------+---------------------------+--------------------------i 
I WARNING I ERWNEM I None I 
t--------------------------------+---------------------------+--------------------------~ I READ/WRITE I D02 I CEM I 
t--------------------------------+---------------------------+--------------------------i I RETURN/CONTINUE I SKIP I None I 
t--------------------------------~---------------------------~--------------------------i 
I.1.Routine MSGNEMlMSGMEM/MSG is entered from all these routines except ERWNEM and LABEL. I 
I These two routines return control directly to PRESCN. I L ____________________________________________________________________________________ ~ __ J 

Section 3: Charts and Routine Directories 77 



Table 14. Phase 15 Arithmetic Operator Processing 
r------------------T--------------------T-----------------------------------------------, 
I I Main Processing I I 
I Operator I Routine I Main Subroutines Used I 
~------------------+--------------------+-----------------------------------------------~ 
I ADD I ADD I FREER, SAVER 1, SYMBOL, MODE, MVSBXX, FINDR, I 
I I I LOADR1 I 
~------------------+--------------------+-----------------------------------------------1 
I ARGUMENT I COMMA I CKARG, ERROR, WARN, SAVER 1, INLIN2, INARG, I 
I I I MSGMEM I 
~------------------+--------------------+-----------------------------------------------1 
I CALL FORCING I CALL I MSG I 
~------------------+--------------------+-----------------------------------------------~ 
I DIVIDE I MULT I SYMBOL, MODE, LOADR1, CHCKGR 1, SAVER 1, I 
I I I FREER, DIV, MVSBXR, MVSBXX I 
~------------------+--------------------+-----------------------------------------------1 
I EQUAL I EQUALS I ERROR, TYPE, MODE, MVSBRX, WARN, MVSBXR, I 
I I I ASFDEF I 
~------------------+--------------------+-----------------------------------------------1 
I EXPONENTIATION I EXPON I SYMBOL, MODE, CKARG I 
~------------------+--------------------+-----------------------------------------------~ 
I FUNCTION ( I FUNC I CKARG, INLIN1 I 
~------------------+--------------------+-----------------------------------------------1 
I ILLEGAL I INVOP I ERROR I 
~------------------+--------------------+-----------------------------------------------1 
I LEFT PAREN I LFTPRN I CKARG, ERROR, ARTHIF, WARN, LOADR1 I 
~------------------+--------------------+-----------------------------------------------~ 
I MULTIPLY I MULT I SYMBOL, MODE, MVSBXX, LOADR1, CHCKGR 1, FREER I 
~------------------+--------------------+-----------------------------------------------1 
I RIGHT PAREN I RTPRN I ERROR I 
~------------------+--------------------+-----------------------------------------------i 
I SUBTRACT I ADD I SYMBOL, MODE, MVSBXX, FINDR, LOADR1, FREER, I 
I I I SAVER 1 I 
~------------------+--------------------+-----------------------------------------------1 
I UNARY MINUS I UMINUS I TYPE, FINDR, LOADR1, MVSBRX, INVOP I 
~------------------+--------------------+-----------------------------------------------1 
I UNARY PLUS I UPLUS I INVOP I 
~------------------~--------------------~-----------------------------------------------1 
11Specific sections of the SAVER and CHCKGR routines operate upon specific registers I 
I (general registers 0, 1, 2, 3; floating point register 0, 2, 4, 6). I L _______________________________________________________________________________________ J 

78 



Table 15. Phase 15 Main Routine/Subroutine Directory 
r------------------~---------------------------------------------------~---------------, 
I Routine/Subroutine I Function I 
~------------------+--------------------------------------------------------------------~ 
I ADD Determines register assignment for add, subtract, multiply, and 
I divide operators. 
I 
IARTHIF Processes the statement numbers of an arithmetic IF statement. 
I 
ASFDEF Processes statement function definitions. 

BEGIO 

CALL 

CEM 

CHCKGR 

CKARG 

I 
I COMMA 
I 
ICGOTO 
I 
IDEFNFL 
I 
IDIV 
I 
100 
I 
ID02 
I 
lEND 
I 
I 
I EQUALS 
I 
I ERROR 
I 
IERWNEM 
I 
I EXPON 
I 
IFINDR 
I 
I FOSCAN 
I 
I 
I 
I FREER 
I 
I FUNC 
I 
IGOTO 
I 
IINARG 
I 
IINLIN1 
I 
IINLIN2 
I 
IINVOP 
I 

Processes the I/O list of READ and WRITE statements. 

Processes CALL statements. 

Checks for an end mark. 

Obtains a specific general register for assignment. 

Checks the argument in an external call for validity, and ensures 
that the argument has a storage location. 

Processes the argument lists. 

Processes the statement numbers in a computed GO TO statement. 

Processes DEFINE FILE statements. 

Processes integer operands of a divide operation. 

Processes DO statements. 

Writes out a text word if not an end mark. 

Determines 
processed. 

if the arithmetic IF, arithmetic, and SF statements were I 

Processes equal adjective code text. 

Processes error conditions detected in the phase. 

Processes end mark, error, and warning text. 

Processes exponentiation text. 

Finds a register and indicates that it is a register. 

Checks the syntax of arithmetic, arithmetic IF, CALL, and SF 
statements, and orders the arithmetic expression text according to a 

Ihierarchy of operators. Uses END. 
I 
IIndicates a register is available. 
I 
IProcesses one-argument functions. 
I 
I Processes statement numbers referenced by a GO TO statement. 
I 
Iprocesses the argument of an in-line function. 
I 
IProcesses one-argument, in-line functions. 
I 
IProcesses two-argument, in-line functions. 
I 
IProcesses invalid adjective codes. 
I 

I LAB IChecks for illegal statement number references. L __________________ 4 ___________________________________________________________________ _ 

(Continued) 

Section 3: Charts and Routine Directories 79 



Table 15. Phase 15 Main Routine/Subroutine Directory (Continued) 
r------------------T--------------------------------------------------------------------, 
I Routine/Subroutine I Function I 
~------------------+--------------------------------------------------------------------~ 

LAB 1 Checks whether label is defined. 

LABEL Checks statement numbers used to indicate the end of a DO loop. 

LFTPRN Process the text for a left parenthesis. 

LOADR1 Enters an operand into a specific register. 

MODE Checks the mode of operands and changes them if necessary. 

MOP UP Performs final phase processing for Phase 15. 

MSGNEM/MSGMEM/MSG Processes the remaining text words of a statement and puts out any 

MOLT 

MVSBXR/MVSBRX 

IMVSBXX 
I 
I 
IPRESCN 
I 
I 
RTPRN 

SAVER 

SKIP 

SYMBOL 

TYPE 

UMINUS 

IUPLUS 
I 

necessary error, warning, and end do text. I 
I 

IAids in processing the operands of multiply and divide instructions. I 
I 
IFrocesses a left operand subscripted variable. 
I 

I 
I 
I 

IProcesses a left operand subscripted variable if the right operandi 
Imight also be a subscripted variable. 
I 

I 
I 

I Determines what statement type is represented in the text and which I 
lmajor routine will process it. 
I 
IProcesses illegal use of right parenthesis as a delimiter. 
I 

I 
I 
I 
I 

IStores the contents of a specified register into the next available I 
Iwork area space. 
I 
IProcesses RETURN and CONTINUE statements. 
I 
I Checks the left and right operands of an operator. 
I 
IChecks each symbol used as an operand. 
I 
IProcesses unary minus operations. 
I 
IProcesses unary plus operations. 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I WARN IProcesses warning conditions detected in the phase. I L __________________ ~ ____________________________________________________________________ J 

80 



Chart AO. Phase 20 (IEJFRAAO) Overall Logic 

NOTE--

PHASE 20 IS ENTERED 
FROM PHASE 15 (IEJFPAAO) 
FOR PRFRM COMPILATIONS. 
OR FROM INTERLUDE 15 
(IEJFPGAO) FOR SPACE 
COMPILATIONS. 

*****E2********** 
* * 

****A3********* 
* PHASE 15 OR * 
* INTERLUDE 15 * 
* (SEE NOTE) * 

*************** 

V 
*****83********** 
* INIT * 
*-*-*-*-*-*-*-*-* 
* PHASE * 
* INITILIZATION * 
* * ***************** 

**** I 
* * I * C3 *-> 
* * **** 

V 
*****C3********** 
* STATA * 
*-*-*-*-*-*-*-*-* 
*OBTAIN STMT AND* 
*DETERMINE STMT * 
* TYPE * 
***************** 

I 
v 

• *. 
03 *. 

.* * • 
• * END *. YES 

*. STATEMENT .* 
*. .* 

*. .* 
* •• * 

j"" 
v .*. 

SEE TABLE 18 FOR A BRIEF 
DESCRIPTION OF THE FUNCTION 
OF EACH PHASE 20 ROUTINE/ 
SUBROUTINE. 

*****B4********** 
* PHEND * 
*-*-*-*-*-*-*-*-* 

* CESSING * **** i
>*PERFORMS FINAL * 

* PHASE 20 PRO- * 

*********v

l
******** * * * C5 * 

* * **** 

.*. I 
C4 *. V 

.* ANY *. ****C5********* 
.* SOURCE *. NO * « 

*. MODULE • *--------> * PHASE 25 « 
*. ERRORS .* * (IEJFVAAO) « 
*..* *************** 

* •• * i YES 

V 
.* • 

04 * • 
• * IS *. **.~J5********* 

.* 'LOAD' *. NO * * 
*. OPTION IN • *--------> * PHASE 30 * 

*. EFFECT .* * (IEJFXAAO) * 
*..* *************** 

* •• * 
* YES 

L **** 
* * >* C5 * 
* * **** 

E3 *. *****E4********** 
.* *. * * 

* 
* * 

* PROCESS 
STATEMENT 

* NO.* CAN *. YES * ** PROCESS * 
*<--------*.STMT CONTAIN .*-------->* STATEMENT * 
* *.SUBSCRIPT.* * * 

* * *.EXPR .* * * 
***************** *. .* ***************** 

I * I 
v v 

**** **** 
* * * * * C3 * * C3 * 
* * * * 

**** **** 

* SEE TABLE 16 FOR A LIST OF· 1) 
THE STATEMENTS PROCESSED BY PHASE 20 
THAT DO NOT CONTAIN SUBSCRIPT EXPRESSIONS, 
AND 2) THE MAIN ROUTINES AND SUBROUTINES 
THAT PROCESS THESE STATEMENTS. 

** SEE TABLE 17 FOR A LIST OF 1) 
THE STATEMENTS PROCESSED BY PHASE 
20 THAT MAY CONTAIN SUBSCRIPT EXPRESSIONS, 
AND- 2) THE MAIN ROUTINES AND SUB­
ROUTINES THAT PROCESS THESE STATEMENTS. 

Section 3: Charts and Routine Directories 81 



Table 16. Phase 20 Nonsubscript Optimization Processing 
r----------------------~----------------------------T----------------------------------, I Statement Type I Main Processing Routine I Main Subroutines Used I 
~----------------------+-----------------------------+----------------------------------i 
I DO I DO I BVLSR, RMVBVL I 
t----------------------+-----------------------------+----------------------------------i 
I END DO I ENDOO I None I 
t----------------------+-----------------------------+----------------------------------i I IMPLIED DO I IOLIST I BVLSR, CALSEQ, RMVBVL,SUBVP I 
t----------------------+-----------------------------+----------------------------------i 
I READ I READ I None I 
t----------------------+-----------------------------+----------------------------------i I STATEMENT I LABEL I None I 
I NUMBER I I I L ______________________ i-____________________________ ~ __________________________________ J 

fable 17. Phase 20 Subscript Optimization Processing 
r----------------------T-----------------------------T----------------------------------, 
I Statement Type I Main Processing Routine I Main Subroutines Used I 
t----------------------+-----------------------------+----------------------------------i I ARITHMETIC 1 I ARITH I CALSEQ, CKCOD, RMVBVL, SUBVP I 
t----------------------+-----------------------------+----------------------------------i I CALL 1 I I FCALL I BVLSR, CALSEQ, RMVBVL, SUBVP I 
~-------------~--------+-----------------------------+----------------------------------i I IF 1 I IFCALL I None I 
t----------------------+-----------------------------+----------------------------------i I I/O 1 I IOLIST I BVLSR, CALSEQ, RMVBVL, SUBVP I 
.----------------------~-----------------------------~----------------------------------i 11 Whenever exponentiation is encountered subroutine ESDRLD processes the exponentiation I 
I operands. I 
L ____________ -------------------------------------------________________________________ J 

82 



Table 18. Phase 20 Main Routine/Subroutine Directory 
r------------------T--------------------------------------------------------------------, 
I Routine/Subroutine I Function I 
~------------------+--------------------------------------------------------------------~ 
IARITH IOptimizes arithmetic statement text. I 
I I I 
I BVLSR tEnters bound variables on the bound variable list. I 
I I I 
ICALSEQ IProcesses argument lists. I 
I I I 
ICKCOD I Assigns an area and a constant for use by the IFIX, FLOAT, and 
I IDFLOAT in-line functions. 
I I 
100 IProcesses DO statements. 
I I 
10UMPR IProcesses d~my subscripted variables. 
I I 
IENDDO IEnsures that the end of a DO loop is recognized. 
I I 
I ESDRLD IGenerates ESD and RLD card images. 
I I 
IGENGEN IBegins the generation of literals. 
I I 
IIFCALL 10ptimizes the arithmetic expression of an arithmetic IF statement orl 
I la CALL statement. 
I I 
IINIT IPerforms Phase 20 initialization. 
I I 
I IOLIST IProcesses DO variables of an implied DO and I/O lists of READ/WRITE 
I lstatements. 
I I 
I LABEL IModifies register assignments due to referenced statement numbers. 
I I 
IPHEND IPerforms final Phase 20 processing. 
I I 
I READ IProcesses external references within a READ statement. 
I I 
IRMVBVL I Removes register assignments from the index mapping table for 
I Isubscript expressions that involve bound variables. 
I I 

I 
I 
I 
I 

ISTATA IChecks the statement type represented by the text and determines the I 
I Icorrect Phase 20 processing routine. I 
I I I 
ISUBVP 10ptimizes subscript expressions. I L __________________ ~ ____________________________________________________________________ J 

Section 3: Charts and Routine Directories 83 



Chart BO. Phase 25 (IEJFVAAO) Overall Logic 

****A3********1t 
* * * PHASE 20 * 
* (IEJFRAAO) * 

*************** 

I 
V 

*****B3********** 
* START * 
*-*-*-*-*-*-*-*-* 
* PHASE * 
*INITIALIZATION * 
* * ***************** 

I 
v .*. 

SEE TABLE 20 FOR A BRIEF 
DESCRIPTION OF THE FUNCTION 
OF EACH PHASE 25 ROUTINE/ 
SUBROUTINE. 

C3 *. *****C4********** 
.* IS *. * * 

.* OBJECT *. YES * LOAD OBJECT * 
*LISTING OPTN IN*-------->*LISTING MODULE * 

*. EFFECT .~ * (IEJFVCAO) * 
*..* * * 

* •• * ***************** 

.-----> i <NO I 
PRESCN V 

*****03********** 
* OBTAIN TEXT * 
* WORD AND * 
* DETERMINE * 
*ADJECTIVE CODE * 
* OR STMT. TYPE * 
***************** 

I 
v .*. 

E3 *. 
.* *. 

.* END *. YES 
*. STATEMENT .* 

*. .* 
*. .* 

* •• * 

j"0 
V 

*****F3********** 
* * * * PROCESS * 
* STATEMENT OR * 
*ADJECTIVE CODE * 
* * ***************** 

* SEE TABLE 19 FOR A LIST 
OF THE STATEMENTS AND 
ADJECTIVE CODES PROCESSED 
BY PHASE 25 AND THE MAIN 
ROUTINES AND SUBROUTINES 
THAT PROCESS THE STATEMENTS 
OR ADJECTIVE CODES. 

84 

*****04********** 
* END * 
*-*-*-*-*-*-*-*-* 

>*PERFORMS FINAL * 
* PHASE 25 * 
* PROCESSING * 
***************** 

V 
*****E4********** 
* * * DELETE OBJECT * 
*LISTING MODULE * 
* IF IT WAS * 
* LOADED * 
***************** 

V 
****F4********* 

* * * PHASE 30 * 
* (IEJFXAAO) * 

*************** 



Table 19. Phase 25 statement and Adjective Code Processing 
r-----------------------T----------------------------T----------------------------------, 
Istatement or Operation IMain Processing Routine q I Main Subroutines Used I 
~-----------------------+----------------------------+----------------------------------~ 
IAOP IAOP IBASCHK I 
~-----------------------+----------------------------+----------------------------------~ 
IArith expressions in IRXGEN/LMVSTM IBASCHK/RROUT, RXOUT , 
lapproximate instr. forml I , 
~-----------------------+----------------------------+----------------------------------~ 
tSF DEFINITION IASFDEF 1 ILISTOUTB I 
~-----------------------+----------------------------+----------------------------------1 
'SF USAGE I ASFUSE IBASCHK/RROUT, RXOUT , 
~-----------------------+----------------------------+----------------------------------~ 
I BACKSPACE IRDWRT IBASCHK, ARGOUT, GET, RXOUT I 
~-----------------------+----------------------------+----------------------------------~ 
I CALL IFUNGEN IBASCHK/RROUT I 
~-----------------------+----------------------------+----------------------------------1 
ICOMPUTED GOTO ICGOTO IBASCHK/RROUT, ARGOUT I 
~-----------------------+----------------------------+----------------------------------~ 
100 1001 IBASCHK, RXOUT I 
~-----------------------+----------------------------+----------------------------------1 
I END DO I ENDDO I BASCHK, RXOUT , 
~-----------------------+----------------------------+----------------------------------1 
lEND FILE IRDWRT IBASCHK, ARGOUT, RXOUT, GET I 
~-----------------------+----------------------------+----------------------------------~ 
lEND I/O LIST IENDIO I RXOUT I 
~-----------------------+----------------------------+----------------------------------1 
I ERROR IIBERR IBASCHK, RROUT I 
~-----------------------+----------------------------+----------------------------------~ 
I FUNCTION ISUBRUT 2 IGENBR, GET, RROUT, RXOUT , 
~-----------------------+----------------------------+----------------------------------~ 
IFUNCTION CALL I FUNGEN IBASCHK/RROUT, RXOUT , 
~-----------------------+----------------------------+----------------------------------~ 
IGO TO ITRGEN 'BASCHK/RROUT, RXOUT , 
~-----------------------+----------------------------+----------------------------------~ 
I IF , ARITHI I BASCHK/RROUT , 
~-----------------------+----------------------------+----------------------------------~ 
I IMPLIED DO 1001 I BASCHK, RXOUT, LISTOUTB I 
~-----------------------+----------------------------+----------------------------------~ 
11/0 LIST ITEM I IOLIST IARGOUT, BASCHK/RROUT, Rx6uT I 
~-----------------------+----------------------------+----------------------------------1 
I LABEL ILABEL 3 ILISTOUTl I 
~-----------------------+----------------------------+----------------------------------1 
ILOAD MULTIPLE ILM IBASCHK/RROUT, RXOUT I 
~-----------------------+----------------------------+----------------------------------~ 
I PAUSE I PAUSE , BASCHK/RROUT, RXOUT I 
~-----------------------+----------------------------+----------------------------------1 
!READ/WRITE/FIND 'RDWRT !BASCHK/RROUT, ARGOUT, RXOUT , 
~-----------------------+----------------------------+----------------------------------~ 
I RETURN I RETURN IBASCHK/RROUT, RXOUT, LISTOUTl I 
~-----------------------+----------------------------+----------------------------------~ 
I REWIND IRDWRT IBASCHK, ARGOUT, RXOUT I 
~-----------------------+----------------------------+----------------------------------~ 
I STOP I STOP I None I 
~-----------------------+----------------------------+----------------------------------~ 
ISTORE MULTIPLE ISTM !BASCHK/RROUT, RXOUT I 
~-----------------------+----------------------------+----------------------------------~ 
I SUBROUTINE ISUBRUT 2 IGENBR, BASCHK/RROUT, RXOUT , 
~-----------------------+----------------------------+----------------------------------~ 
I SUBSCRIPT ISAOP IBASCHK/RROUT, RXOUT , 
~-----------------------~----------------------------~----------------------------------~ 
11 Makes an entry in the statement function and DO branch list table. I 
12 Makes an entry in the epilog table. I 
13 Makes an entry in the statement number branch list table. I 
14All of the above routines return control to the PRESCN routine to begin the I 
I processing of the next text word. I L _______________________________________________________________________________________ J 

Section 3: Charts and Routine Directories 85 



Table 20. Phase 25 Main Routine/Subroutine Directory 
r--------------------T------------------------------------------------------------------, 
I Routine/Subroutine I Function I 
~--------------------+------------------------------------------------------------------i 
IAOP Processes subscript text when the entire subscript expression need 
I not be calculated. 
I 
IARGOUT Inserts addresses for arguments into the object module. 
I 
IARITHI Processes arithmetic IF statements. 
I 
I ASFDEF Processes the first text word of a statement function definition. 
I 
ASFUSE Generates instructions to use a statement function at object time. 

BASCHK/RROUT, RXOUT Generates RX and RR format instructions. 

CGOTO Processes computed GO TO statement text. 

DOl Begins processing of the DO statement text. 

END Performs the final Phase 25 processing. 

ENDDO Generates instructions to end a DO loop. 

ENOIO Processes the end I/O text. 

FUNGEN/IBERR Processes in-line and library function calls. 

GENBR Makes entries to the branch list tables. 

GET Obtains intermediate text words. 

IOLIST Processes the I/O list sUbstatement text. 

LABEL Processes statement number definition text entries. 

LISTOUTB/LISTOUT1 Generates branch list text. 

PRESCN 

RDWRT 

RETURN 

Determines which routine will process a particular portion of 
intermediate text. 

Processes READ, WRITE, FIND, BACKSPACE, REWIND, and ENDFILE 
statements. 

Processes RETURN statement text. 

RXGEN/LMVSTM Processes intermediate text entries with adjective codes between I 
25 and 8F (hexadecimal). I 

I 
SAOP Processes subscript text when the entire subscript ordering factor I 

must be calculated. I 
I 

START Performs phase initialization. I 
I 

STOP/PAUSE Generates instructions for the STOP and PAUSE statement text. I 
I 

SUBRUT Processes FUNCTION and SUBROUTINE header card text. I 
I 

TRGEN Generates branching instructions for GO TO statements. I L ____________________ ~ __________________________________________________________________ J 

86 



Chart CO. Phase 30 (IEJFXAAO) Overall Logic 

NOTE--

PHASE 30 IS ENTERED FROM 
PHASE 20 (IEJFRAAO) IF THE 
NOLDAD OPTION IS IN EFFECT 
AND IF SOURCE MODULE ERRORS 
WERE DETECTED, OTHERWISE, 
PHASE 30 IS ENTERED FROM 
PHASE 25 (IEJFVAAO). 

****A2********* 
* PHASE 20 OR * 
* PHASE 25 * 
* (SEE NOTE) * 

*************** 

1 v .*. 
B2 *. .- -. 

NO .*ANY ERRORS *. 

1
*. OR WARNINGS .* 

*. .* 
*. .* 

v *. •• 

SEE TABLE 21 FOR A BRIEF 
DESCRIPTION OF THE FUNCTION 
OF EACH PHASE 30 ROUTINE/ 
SUBROUTINE. 

:'::': i 'E' 

V 
*****C2*********. 
*THIRTY * 
*-*-*-*-*-*-*-*-*<--> 
* PRIME * 

TEXT * 
* BUFFERS * 
*.*************** 

.-----,1 
V 

*****02********** 
* ERR/WARN * 
*-*-*-*-*-*-*-*-*<--> 
* SET UP * 
: MESSAGE * 

*******.*.******. 

I v .*. 
E2 *. 

.* -. 
ND.* LAST *. 

*. MESSAGE .* 
*. .* 

*. .* * ••• 

_ .. -. 
* * 
: G2 :-> 

* YES 

**** v .*. 
G2 *. .- .. 

INCTXT 
TXTIN 

PRINT 

.* DETERMINE *. PHASE 25 
*. ENTRANCE .*----------------' 

*. .* 
*. .* 

* •• * V" " 
V 

**··H2****** ••• 
* * * PHASE 1 * 
* (IEJFAABO) * 
****** ••• ****** 

Section 3: 

V 
*****B4********** 
* TWNFIV * 
*-*-*-*-*-*-*-*-* 
*PRIMES TEXT BFR* 
* COMPUTES SIZE * 
*OF BR LIST TBLS* 
***************** 

1 
V 

****·C4********** 

:-*-*~~~!~~-*-*-: 
* BUILDS AN IN- * 
*TERNAL TBL FOR * 
*BR LIST TABLES * 
***************** 

1 
V 

****·04*********-
* CHKLBL * 
*-*-*-*-*-*-*-*-*<--> 
*GEN TXT AND RLD* 
*CARD IMAGES FOR* 
*BR LIST TABLES * 
***************** 

1 
V 

*****E4********** 
*ZRTXT * 
*-*-*-*-*-*-*-*-*<--> 
* GENERATE TXT * 
*CARD IMAGES FOR* 
*BASE VALUE TBL * 
**.************** 

1 
V 

*****F4********** 
*BASRLD * 
*-*-*-*-*-*-*-*-*<--> 
* GENERATE RLD * 
*CARD IMAGES FDR* 
*BASE VALUE TBL * 
***************** 

1 
V 

*****G4********** 
* ENDCRD * * 
*-*-*-*-*-*-*-*-*<--> 
* GENERATE END * 
*CARD IMAGE FOR * 
* OBJECT MODULE * ........ , ....... . 

NXTOUT 
ENDTXT<-->TXTOLlT 
ANYRLD 

TXTOUT 

TXTOUT 

TXTOUT 
PRINT 

* SUBROUT 1 NE ENDCRD 
ALSO SETS UP THE 
'SIZE OF COMMON 
AND SIZE OF PROGRAM' 
MESSAGE. 

Charts and Routine Directories 87 



Table 21. Phase 30 Main Routine/Subroutine Directory 
r------------------T--------------------------------------------------------------------, 
I Routine/Subroutine I Function I 
~------------------+--------------------------------------------------------------------i 
ANYRLD IGenerates RLD card images for branch list tables. I 

I I 
BASRLD IGenerates RLD card images for base value table. I 

I I 
CHKLBL IControls generation of TXT and RLD card images for branch lists. I 

I I 
ENDCRD IGenerates END card image for object module, and sets up 'SIZE OF 

END TXT 

ERR/WARN 

GENTAB 

INC TXT 

NXTOUT 

PRINT 

I THIRTY 
I 
I TWNFIV 
I 
I TXTIN 
I 
I TXTOUT 
I 

COMMON and SIZE OF PROGRAM' message. 

Switches input/output buffers. 

Sets up error and warning messages. 

Builds an internal table for branch list tables. 

Increments intermediate text pointer. 

Generates TXT card images for branch list tables. 

Interfaces with control program to print messages. 

Primes input text buffers. 

Primes input text buffers. 

IReads intermediate text. 
I 
IOutputs card images on SYSLIN and/or SYSPUNCH data sets. 
I 

IZRTXT IGenerates TXT card images for base value table. I L __________________ L ____________________________________________________________________ J 

88 



APPENDIX A: MAIN STORAGE ALLOCATION 

The amount of main storage allocated to 
the compiler depends on whether a SPACE or 
a PRFRM compilation is being performed. 

contiguous only for each control section. 
Figures 16 through 22 reflect the main 
storage allocation associated with each 
successive phase/interlude as it performs 
its functions, when only a minimal amount 
of storage (15K bytes, where K = 1024) is 
available for compilation. FOR SPACE COMPILATIONS 

For SPACE compilations, the compiler 
requires main storage for: 

When the main storage allocated to the 
compiler (specified in the SIZE option) is 
greater than 15K bytes, the internal text 
buffers may be interspersed within the area 
occupied by the dictionary and the overflow 
table. In this case, there need be no 
relationship between the various areas 
required by the compiler. 

• Load modules (phases, interludes, and 
interface). 

• Resident tables (dictionary, overflow 
table, SEGMAL). 

• Internal text buffers. 

• BSAM I/O routines and control blocks. 

The main storage 
phase/interlude of the 

required by each 
compiler need be 

These figures are schematics showing the 
main storage allocated; proportional sizes 
within the diagrams do not necessarily 
indicate proportional amounts of main stor­
age. 

32K r------------------------, 
I INTERFACE MODULE I 
~------------------------~ 
I BSAM ROUTINES I 
I I 
~------------------------~ 
I PHASE 5 I 
~------------------------~ 
I AVAILABLE MAIN I 
I STORAGE I 
I I 
I I 
I I 
~------------------------~ 
I I 
I PHASE 1 I 
I I 
I I 

17K~------------------------i 

RESIDENT 
CONTROL 
PROGRAM 

o ------------------------
Figure 16. Main Storage at 

the End of Phase 1 
(initial entry) 

32Kr------------------------, 
I INTERFACE MODULE I 
~------------------------i 
I BSAM ROUTINES I 
I I 
~------------------------~ 
I PHASE 5 I 
~------------------------~ 
I AVAILABLE MAIN I 
I STORAGE I 
~------------------------i 
I PHASE 1 I 
I I 
I I 
~------------------------~ I OVERFLOW TABLE, SEGMAL I 
~------------------------i 
I 4 INTERNAL TEXT BUFFERS I 

17K~------------------------~ 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

RESIDENT 
CONTROL 
PROGRAM 

OL------------------------
Figure 17. Main Storage at 

the End of Phase 
(subsequent 
entries) 

32K r------------------------, 
I INTERFACE MODULE I 
~------------------------i 
I BSAM ROUTINES I 
I I 
~------------------------~ 
I PHASE 5 I 
~------------------------i 
I AVAILABLE MAIN I 
I STORAGE I 
~------------------------~ 
I TRANSIENT wORK AREA I 
~------------------------~ 
I DICTIONARY I 
~------------------------i 
I OVERFLOW TABLE, SEG~~L I 
~------------------------i 
I 4 INTERNAL TEXT BUFFERS I 

17K~------------------------i 

RESIDENT 
CONTROL 
PROGRAM 

o ------------------------
Figure 18. Main storage at 

1 the End of 
Phase 5 

Appendix A: Main storage Allocation 89 



32K r-------------------------, 
I INTERFACE MODULE I 
t-------------------------~ 
I BSAM ROUTINES I 
I I 
t-------------------------~ 
I TRANSIENT WORK AREA I 
t-------------------------~ 
I PHASE 7, PHASE 8, I 
I PHASE 100, PHASE 10E, I 
I INTERLUDE 10E I 
.-------------------------~ I DICTIONARY I 
t-------------------------~ 
I OVERFLOW TABLE, SEGMAL I 
.-------------------------~ I 4 INTERNAL TEXT BUFFERS I 

17K t-------------------------~ 
I I 
I I 
I I 
I RESIDENT I 
I CONTROL I 
I PROGRAM I 
I I 
I I 
I I o L _________________________ J 

Figure 19. Main storage at the End of 
Phases 7, 8, 10D, and 10E; 
and Interlude 10E 

32K r-------------------------, 
I INTERFACE MODULE I 
t-------------------------i 
I BSAM ROUTINES I 
.-------------------------~ I TRANSIENT WORK AREA I 
t-------------------------~ 
I I 
I I 
I PHASE 15, I 
I INTERLUDE 15 I 
I I 
I I 
t-------------------------~ I OVERFLOW TABLE, SEGMAL I 
.-------------------------i 
I 4 INTERNAL TEXT BUFFERS I 

17K .-------------------------i 
I I 
I I 
I I 
I RESIDENT I 
I CONTROL I 
I PROGRAM I 
I I 
I I 
I I o L _________________________ J 

Figure 21. Main Storage at the End of 
Phase 15 and Interlude 15 

90 

32K r-------------------------, 
I INTERFACE MODULE I 
.-------------------------~ 
I I 
I BSAM ROUTINES I 
I I 
.-------------------------~ 
I TRANSIENT WORK AREA I 
.-------------------------i 
I PHASE 12, PHASE 14, I 
I INTERLUDE 14 I 
.-------------------------i I DICTIONARY I 
.-------------------------~ 
I OVERFLOW TABLE, SEGMAL I 
t-------------------------i 
I 4 INTERNAL TEXT BUFFERS I 

17K .-------------------------i 
I I 
I I 
I I 
I RESIDENT I 
I CONTROL I 
I PROGRAM I 
I I 
II 

I I o L _________________________ J 

Figure 20. Main Storage at the End 
of Phases 12 and 14, and 
Interlude 14 

32K r-------------------------, 
I INTERFACE MODULE I 
.-------------------------i 
I I 
I BSAM ROUTINES I 
I I 
t------------~------------i 
I TRANSIENT WORK AREA I 
.-------------------------i 
I PHASE2b~ I 
I PHASE 25, I 
I PHASE 30 I 
I I 
t-------------------------i 
I OVERFLOW TABLE, SEGMAL I 
.-------------------------~ 
I 4 INTERNAL TEXT BUFFERS I 

17K t-------------------------i 
I I 
I I 
I I 
I RESIDENT I 
I CONTROL I 
I PROGRAM I 
I I 
I I 
I I o L _________________________ J 

Figure 22. Main storage at the End 
of Phases 20, 25, and 30 
(on entry to Phase 1) 



FOR PRFRM COMPILATIONS 

For PRFRM compilations, the compiler 
requires main storage for: 

• Load modules (phases, interface, and 
performance) • 

• Resident tables (dictionary, overflow 
table, and SEGMAL). 

• Internal text buffer chains. 
• BSAM I/O routines. 
• Block/deblock buffers if blocking is 

specified. 

The main storage required by any given 
phase of the compiler need be contiguous 
only· for each control section within that 
phase. Figure 23 reflects the main storage 
allocation for the duration of a PRFRM 
compilation, when only a minimal amount of 
main storage (19K bytes, where K=1024) is 
available for compilation. 

When the main storage allocated to the 
compiler (specified in the SIZE option) is 
greater than 19K bytes, the internal text 
buffers may be interspersed within the area 
occupied by the dictionary and the overflow 
table. In this case, there need be no 
relationship among the various areas 
required by the compiler. 

Figure 23 is a schematic showing the 
main storage allocated; proportional sizes 
within the diagram do not necessarily indi­
cate proportional amounts of main storage. 

36K r--------------------------------------, 
I INTERFACE MODULE I 
~--------------------------------------i I PERFORMANCE MODULE I 
~--------------------------------------~ 
I I 
I BSAM ROUTINES I 
I I 
~--------------------------------------~ I TRANSIENT WORK AREA I 
~--------------------------------------~ 
I PHASE 1, PHASE 5, I 
I PHASE 7, PHASE 8, I 
I PHASE 100, PHASE 10E, I 
I PHASE 12, PHASE 14, I 
I PHASE 15, PHASE 20, I 
I PHASE 25, OR PHASE 30 I 
~--------------------------------------1 
I I 
I DICT!ONARY, OVERFLOW I 
I TABLE, AND SEGMAL I 
I I 
~--------------------------------------1 I 4 INTERNAL TEXT BUFFER CHAINS I 
~--------------------------------------~ 
I BLOCK/DEBLOCK BUFFERS (IF I 
I BLOCKING IS SPECIFIED) I 

17K~--------------------------------------~ 
I I 
I I 
I RESIDENT I 
I CONTROL I 
I PROGRAM I 
I I 
I I Ol-----_________________________________ J 

Figure 23. Main Storage Allocation for a 
PRFRM Compilation 

Appendix A: Main storage Allocation 91 



APPENDIX B: COMMUNICATION AREA (FCOMM) 

The communication area is a central 
gathering area used to communicate neces­
sary information between the various phases 
of the compiler. The communication area, 
as a portion of the interface module, is 
resident throughout the compilation. 

Several entries in the communication 
area are equated to the addresses of other 
entries in the communication area used 
during earlier phases. Equating the 
entries keeps the size of the communication 
area to a minimum. 

Various bits in the communication area 
are examined by the phases of the compiler. 
The status of these bits determines such 
things as: 

The communication area is assembled as a 
DSECT (dummy section) within each phasE. 
This allows the phases to symbolically 
address the entries in the communication 
area without the communication area actual­
ly residing in each phase. • Options specified by the source pro­

grammer. 

• Specific action to be taken by a phase. 
Table 22 indicates the format and organ­

ization of the communication area. 

Table 22. Communication Area 
r--------T--------------T---------------------------------------------------------------, 
I I I I 
I Entry I Size I Meaning I 
~--------+--------------+---------------------------------------------------------------~ 

FCOMM DS XL4 BITO SOURCE 1 

BIT1 DECK 1 

BIT2 MAP 1 

BIT3 ADJUST 1 

BIT4 PRFRM 1 

BITS 5-6 00 NOLOAD 1 

11 LOAD 1 

BIT? 
BIT8 
BITS 9-10 

BIT11 
BIT12 
BIT13 
BIT14 
BIT15 
BIT16 
BIT1? 
BIT18 

BIT19 
BIT20 
BIT21 
BIT22 

BIT23 
BIT24 
BIT25 
BIT26 
BIT2? 
BITS 28-31 

BCD 1 

NAME PARAMETER EXISTED 
00 MAIN PROGRAM 
10 SUBROUTINE SUBPROGRAM 
11 FUNCTION SUBPROGRAM 

FUNCTION NAME DEFINED 
OBJECT MODULE CALLS AN EXTERNAL S/P 
SPARE 
LAST COMPILE OF THIS JOB STEP-PH 10E/1 
ERROR ON ANY COMPILE OF A BATCH RUN 
WARNING MESSAGES 
ERROR MESSAGES 
MESSAGE IN CURRENT STATEMENT-PH 10D/10E 
INPUT BUFFER TO BE PRIMED-PH 12/14 
'DIOCS' ESD TO BE GENERATED-PH 14/20 
WARNING IN ANY COMPILE OF A BATCH RUN 
ABORT COMPILATION 
ALL INTERNAL TEXT IN STORAGE 
ONE INTERNAL TEXT RECORD-PH 10D/l0E 
OBJ. MOD. USES A SPILL BASE REG-PH 12/25 
BRANCH LIST TEXT NOT ALL IN STORAGE-PH 25/30 
OBJECT LISTING 
OTHER THAN FIRST COMPILE 
COMPILATION RESTARTED 
INVALID OPTION(S) IN 'PARM' FIELD 
'NAME' OPTION TOO LONG-TRUNCATED 
SPARE 

L ________ ~ ______________ ~ _____________________________ ----------------------------------

(Continued) 

92 



Table 22. Communication Area (Continued) 
r--------T--------------T---------------------------------------------------------------, 
I I I I 
I Entry I Size I Meaning I 
t--------t--------------t---------------------------------------------------------------~ 
IFSIZE IDS F IBYTES OF STORAGE REQUESTED FOR COMPILER 1 I 
I FDATE IDS CL5 I YEAR (2 DIGITS), DAY (3 DIGITS) I 
IFLINELNGIDS X IOBJECT PROGRAM PRINT LINE LENGTH 1 I 
IFINDEX IDS H IDISPLACEMENT FROM FCOMM TO FDECBIN I 
IFMAXLINEIDS H IMAXIMUM NUMBER OF LINES ON LISTING PAGE I 
IFCURLINEIDS H ICURRENT LINE ON LISTING PAGE I 
IFIEJF IDS CL4 IFORTRAN E INTERNAL COMPONENT CODE - IEJF I 
I FPHASE IDS CL4 IENTRY POINT OF PHASE IN CONTROL I 
IFDMRRDCDIDS X IHI-ORDER BYTE OF REREAD ITEM IN CLOSE LIST I 
IFDMLSTCDIDS X IHI-ORDER BYTE OF LAST ITEM IN CLOSE LIST I 
IFPRTCTRLIDS 2H IBRANCH TO PRINT CONTROL ROUTINE I 
t--------L--------------t---------------------------T-----------------------------------~ 
I THE CONTENTS OF THE I FOR SPACE I FOR PRFRM I 
INEXT 4 FIELDS DEPENDS I COMPILATIONS I COMPILATIONS I 
ION WHETHER A SPACE OR AI I I 
IPRFRM COMPILATION IS I I I 
IBEING PERFORMED. I I I 
t--------T--------------t---------------------------t-----------------------------------~ 
I FIORTN IDS 2H I B SIORTN I MVI FPRFRMDL, X' 4' I 
I FNEXT IDS 2H I B SNEXT I L 13, FPRFRMDL I 
I IDS H I (NOT USED) IBR 13 I 
IFPRFRMDLIDS A I ZERO IADDR. OF IEJFAPAO I 
t--------t--------------t---------------------------~-----------------------------------~ 
I FAGAOENDI DS A IADDRESS OF (END OF INTERFACE MODULE + ONE) 
I FSAVADDRI DS A IADDRESS OF CONTROL PROGRAM SAVE AREA 
I FTXBFSZAI DS H ISIZE OF 'SYSUT1' INT. TEXT BUFFER 
IFTXBFSZBIDS H ISIZE OF • SYSUT2 , INT. TEXT BUFFER 
IFTXTPTRAIDS H IDISP. OF NEXT SYSUT1 TEXT RCD.-PH 10D/10E,12/14 
I FTXTPTRB IDS H IDISP. OF NEXT SYSUT2 TEXT RCD.-PH 12/14 
IFTXTBFA11DS A IADDRESS OF INTERNAL TEXT BUFFER 1 - SYSUT1 
IFTXTBFA2lDS A IADDRESS OF INTERNAL TEXT BUFFER 2 - SYSUT1 
IFTXTBFB11DS A IADDRESS OF INTERNAL TEXT BUFFER 1 - SYSUT2 
IFTXTBFB2lDS A ADDRESS OF INTERNAL TEXT BUFFER 2 - SYSUT2 
IFPRTBUF11DS A ADDRESS OF FIRST PRINT BUFFER 
IFPRTBUF21DS A ADDRESS OF SECOND PRINT BUFFER 
IFINITBFSIDS 4A INITIAL TEXT BUFFER POINTERS 
FDICTNDXIDS A • ADDRESS OF DICTIONARY INDEX - PHASE 7/12 
FOVFLNDXIDS A ADDRESS OF OVERFLOW INDEX 
FDICTBLKIDS A DICT. BLOCK NOW BEING BUILT - PH. 10D/E 
FOVFLBLKIDS A OVFL. BLOCK NOW BEING BUILT - PH. 10D/E 
FDICTNXTIDS A DICT. ENTRY NEXT TO BE BUILT - PH. 10D/E 
FOVFLNXTIDS A OVFL. ENTRY NEXT TO BE BUILT - PH. 10D/14 
~ISNEX1 IDS F ISN OF FIRST EXECUTABLE-PHASE 10D/E 
FOBJPROGIDS CL6 NA~~ OF OBJECT PROGRAM 
FOBJREGSIDS X BITS 0-2 SPARE 

I BIT 3 EXTERNAL FUNCTION HAS BEEN CALLED 
I BITS 4-7 LOWEST INDEX REGISTER IN OBJ. PROG. 

FASFCNT IDS X COUNT OF SF'S IN OBJECT PROGRAM 
I FDOCOUNTI DS H NUMBER OF DO STATEMENTS 
I IDS H SPARE L ________ ~ ______________ ~ ______________________________________________________________ _ 

<Continued) 

Appendix B: Con~unication Area (FCOMM) 93 



Table 22. Communication Area (Continued) 
r--------T--------------T---------------------------------------------------------------, 
I Entry I Size I Meaning I 
~--------+--------~-----+---------------------------------------------------------------i 
FCOMSIZEIEQU FDICTBLK ISIZE OF OBJECT PROGRAM COMMON - PH. 12/30 
FALSIZE IEQU FDICTBLK+2ISIZE OF OBJ. PROG. ARGUMENT LIST - PH. 15/20 
FBLSIZE IEQU FOVFLBLK ISIZE OF OBJ. PROG. BRANCH LIST - PH. 12/30 
FBLSTRT IEQU FOVFLBLK+2IADDR. OF OBJ. PROG. BRANCH LIST - PH. 12/30 
FASFDOBLIEQU FOVFLNXT+2IADDRESS OF ASF/OO BRANCH LIST - PH. 20/30 
FBVSTRT IEQU FDICTNXT IADDR. OF OBJ. PROG. BASE VAL. LIST - PH. 12/30 
FOBJSTRTIEQU FDICTNXT+2ISTARTING ADDR. OF OBJECT PROG~l - PH. 12/30 
FLOCCTR IEQU FISNEXl ILOCATION COUNTER FOR OBJ. PROG. - PH. 12/30 
FFNCADDRIEQU FDICTBLK+2IADDRESS OF RESULT (FUNCTION S/P) - PH. 14/15 
FIBCOM IEQU FOVFLNXT IADDRESS OF IBCOM - PHASE 20/25 
FOBJERR IEQU FDICTBLK+2 ADDR. OF OBJ. PROG. ERROR RTNE. - PH. 20/25 
FDECKSEQIEQU FDICTNDX OBJECT PROGRAM DECK SEQUENCE NU~illER·- PH. 12/30 
FESDSEQ IEQU FDICTNDX+2 OBJECT PROGRAM ESD SEQUENCE NUMBER - PH. 12/20 
FENDSTORIEQU FDICTNDX+2 END-OF-DATA STORAGE ADDRESS - PH 25/30 
FALSTRT IDS F DSRN ARGUMENT LIST ADDRESS 
FDATEMP IDS F ADDRESS OF DIRECT ACCESS I/O TEMPORARY AREA 
FDEFILCTIDS F 'DEFINE FILE' DSRN COUNT - PH. 10D/20 
FDIOCS IEQU FDEFILCT ADDRESS OF DIOCS - PH. 20/25 
FPATCH IDS 2H BRANCH TO PATCH ROUTINE IN INTERFACE MODULE 
FPTCHTBLIDS A ADDRESS OF PATCH TABLE 
FPTCHPTRIDS A PATCH TABLE ENTRY NEXT TO BE POSTED 
FSORSYMllDS A ADDRESS OF SORSYM TABLE 
FSORSYM21DS A SORSYM TABLE ENTRY NEXT TO BE BUILT I 
~--------~--------------~---------------------------------------------------------------i 
I~Default values for these compiler options may be specified by the user during the I 
I system generation process via the FORTRAN macro-instruction. The default values I 
I specified at system generation time are assumed if the corresponding parameters in I 
I the PARM field of the user's EXEC statement are not included. I L _______________________________________________________________________________________ J 

94 



APPENDIX C: LINKAGES TO THE INTERFACE MODULE AND THE PERFORMANCE MODULE 

LINKAGE TO THE INTERFACE MODULE 

For SPACE compilations, the components 
of the compiler link to the interface 
module (IEJFAGAO) for input/output requests 
and end-of-phase/interlude requests. In 
addition, for both SPACE and PRFRM compila­
tions, the compiler components link to the 
interface module for patch requests and for 
print control operations. 

Input/Output Request Linkage 

The linkage to the interface module for 
an I/O request is: 

L LNKREG,IOPARS 
BAL 15,FIORTN 

where: 
• LNKREG is general register o. 
• IOPARS is the following 4-byte word: 

r---------T---------------------------, 
I Operation I Address of the I/O buffer I 
IField IFor this operation 1 
~---------+---------------------------i 
11 byte 13 bytes I L _________ ~ ___________________________ J 

The operation field bits and their 
meanings are illustrated in Table 23. 

Table 23. Operation Field Bit Meanings 
r--------T----------------------------, 
IBit 0 ICheck operation t 
~--------+----------------------------~ 
IBit 1 IRead operation I 
~--------+----------------------------i 
IBit 2 IWrite operation 1 
~--------+----------------------------~ 
IBit 3 IFlush operation 1 
~--------+----------------------------~ 
tBit 4 INot used I 
~--------+----------------------------i 
Bits 5-71000 - SYSIN is to be used I 

1001 - SYSPUNCH is to be usedl 
1010 - SYSLIN is to be used 1 
1011 - SYSUTl is to be used I 
1100 - SYSUT2 is to be used t 
1101 - SYSPRINT is to be usedl 
1110 - Not used 1 
1111 - Indicates that thel 
I address of the DECB tol 
1 be used is supplied inl 
I general register 1. I ________ ~ ____________________________ J 

• General register 15 contains the 
address of the instruction following 
the BAL instruction. 

• FIORTN is the name of a branch instruc­
tion in the communication area that 
branches to the I/O routine (SIORTN) of 
the interface module. 

RETURNS: The SIORTN routine may return to 
the caller either normally or abnormally. 

Normal Return: The normal return is to the 
instruction that i~ 4 bytes beyond the BAL 
instruction. 

Abnormal Return: The abnormal return is to 
the instruction immediately following the 
BAL instruction. Two conditions may result 
in an abnormal return. They are: 

1. End-of-data set in which case general 
register 14 contains a zero. 

2. Permanent I/O error is which case 
general register 14 contains a four, 
and general register 1 contains the 
address of a save area for general 
registers 14, 15, 0, and 1. The save 
area has the following format: 

SYNADRET DS F 
SAVERET DS F 
IOPARS DS F 
DECBADDR DS F 

where: 

SYNADRET corresponds to general reg­
ister 14 and contains the address to 
which control is to be passed if an 
I/O error is accepted and processing 
is to continue. 

SAVERET corresponds to general reg­
ister 15 and contains the address of 
the instruction immediately following 
the BAL instruction. 

IOPARS corresponds to general register 
o and contains the 4-byte word des­
cribed previously in this section. 

DECBADDR corresponds to general reg­
ister 1 and contains the address of 
the DECB associated with the data set 
for which the I/O operation was 
requested. 

Appendix C: Linkages to the Interface Module and the Performance Module 95 



End-Of-Phase/Interlude Request Linkage 

The linkage to the interface module 
an end-of-phase/interlude condition is: 

for 

L LNKREG,NXPARS 
BC 15,FNEXT 

where: 

• LNKREG is general register O. 
• NXPARS is the following 4-byte word: 

r-------------------------T-----------, 
IEntry pOint identifier IData set I 
lof next phase/interlude I disposition I 
I I field I 
~-------------------------+-----------1 
13 bytes 11 byte I L _________________________ ~ ___________ J 

The data set disposition field bits and 
their meanings are illustrated in Table 
24. 

Table 24. Data set Disposition 
Field Bit Meanings 

r--------T----------------------------, 
IBits 0-11 Not used I 
~--------+----------------------------1 
IBit 2 ITCLOSE the DCB for SYSIN I 
~--------+----------------------------1 
IBit 3 ITCLOSE the DCB for SYSPUNCH I 
~--------+----------------------------1 
IBit 4 ITCLOSE the DCB for SYSLIN I 
~--------+----------------------------1 
IBit 5 ITCLOSE the DCB for SYSUTl I 
~--------+----------------------------i 
IBit 6 ITCLOSE the DCB for SYSUT2 I 
~--------+----------------------------1 
IBit 7 ITCLOSE the DCB for SYSPRINT I L ________ ~ ____________________________ J 

• FNEXT is the name of a branch instruc­
tion in the communication area that 
branches to the end-of-phase routine 
(SNEXT) of the interface module. 

RETURN: Control is never returned to the 
caller; it is transferred to the next phase 
or interlude via the XCTL macro-instruction 
(refer to Table 25). 

Patch Requests 

The linkage to the interface module for 
a patch request is: 

LR WRKREG, BASEA 
BAL 15, FPATCH 
DC C'XX' 

96 

where: 

• WRKREG is general register 14. 

• BASEA contains the absolute address of 
relative location 0002 in the control 
section of the component to be tempo­
rarily modified. 

• FPATCH is the name of a branch instruc­
tion in the communication area that 
branches to the patch routine (PATCH) 
in the interface module • 

• 'XX' is the fifth and sixth characters 
in the name of the component to be 
temporarily modified (refer to Table 
25). That is, 'XX' indicates the com­
ponent to be modified. 

RETURN: Control is returned from the PATCH 
routine to the instruction immediately fol­
lowing the DC C'XX ' instruction. 

Print Control operations 

The linkage to the interface module for 
a print control operation is: 

BAL 15, FPRTCTRL 
DC B'xxxxxxxx' 
DC AL3 (IOERR) 

where: 

• FPRTCTRL is the 
instruction in the 
that branches to 
operations routine 
interface module. 

name of a oranch 
communication area 
the print control 

(PRTCTRL) of the 

• 'xxxxxxx' is the carriage control char­
acter. 

• AL3 (IOERR) is an "address constant 
containing the address of the I/O error 
routine of the component requesting the 
print control operation. 

RETURNS: The PRTCTRL may return to the 
caller either normally or abnormally. 

Normal Return: The normal return is to the 
instruction "immediately following the 
DC AL3(IOERR) instruction. 

Abnormal Return: 
the I/O error 
The contents of 
are the same 
abnormal return 

The abnormal return is to 
routine within the caller. 

general registers 14 and 0 
as that described for an 
for an I/O request. 



LINKAGE TO THE PERFORMANCE MODULE 

For PRFRM compilations, the components 
of the compiler link to the performance 
module (IEJFAPAO) for: 

• Input/output requests. 

• End-of-phase requests. 

Input/Output Request Linkage 

The linkage to the performance module 
for an I/O request is the same as that 
described for the linkage to the interface 
module for an I/O request. However, the 
FIORTN field in the communication area is 
effectively replaced, by Phase 5, with a 
branch to the PIORTN routine in the perfor­
mance module. All I/O requests for PRFRM 
compilations are automa,tically rerouted to 
the PIORTN routine. The PIORTN routine, in 
turn, links to the I/O routine (SIORTN) of 
the interface module when it is either 
ready to read or write, or to check the 
result of a previous read or write. 

RETURNS: The returns from the PIORTN rou­
tine are the same as those described for 
the SIORTN routine. 

End-Of-Phase Request Linkage 

The linkage to the performance module 
for an end-of-phase request is the same as 
that described for the linkage to the 
interface module for an 
end-of-phase/interlude request. However, 
the FNEXT field in the communication area 
is effectively replaced by Phase 5, with a 
branch to the PNEXT routine in the perfor­
mance module. All end-of-phase requests 
for PRFRM compilations are automatically 
rerouted to the PNEXT routine. 

RETURN: Control is never returned to the 
caller; it is transferred to the next phase 
via the XCTL macro-instruction. 

Note: Internally, the compiler components 
use symbolic names when transferring con­
trol to a subsequent component. The sym­
bolic names and the actual names of the 
components are illustrated in Table 25. 

Table 25. Symbolic and Actual Names of 
Compiler Components 

r-------------T---------------------------, 
ISymbolic NamelActual Name I 
~-------------+---------------------------~ 
IEJFAAAO 1,2 IPhase i-Initial entry 
IEJFAABO IPhase i-Subsequent entries 
IEJFAGAO 1,3 IInterface module 
IEJFAPAO 1,3 IPerformance module 
IEJFAXAO 1,3 ISource symbol module 
IEJFCAAO 3 IPhase 5 
IEJFEAAO IPhase 7 
IEJFFAAO Phase 8 
IEJFGAAO Phase 100 
IEJFJAAO Phase 10E 
IEJFJGAO Interlude 10E 
IEJFLAAO Phase 12 
IEJFNAAO Phase 14 
IEJFNGAO Interlude 14 
IEJFPAAO Phas~ 15 
IEJFPGAO Interlude 15 
IEJFRAAO Phase 20 
I EJ FVAA 0 Phase 25 
IEJFVCAO 1,~ Object listing module 
IEJFXAAO Phase 30 
~-------------i---------------------------1 
11Never receives control, via the XCTLI 
I macro-instruction, from another compiler I 
I component. I 
12Transferred to (via XCTL macro-I 
I instruction) by calling progra.m. I 
13 Loaded (via LOAD macro-instruction) byl 
I Phase 1. I 
14Loaded (via LOAD macro-instruction) byl 
I Phase 25. I L _________________________________________ J 

Appendix C: Linkages to the Interface Module and the Performance Module 97 



APPENDIX 0: DATA CONTROL BLOCK MANIPULATION 

The manipulation of the data control 
blocks for the data sets required by the 
compiler depends on whether a SPACE or a 
PRFRM compilation is being performed. For 
SPACE compilations, there is more data 
control block manipulation because of main 
storage limitations. (The main storage 
required to contain all the BSAM routines 
and the control blocks for I/O operations 
may not be available or may be restricted 
from the compiler by the value specified in 
the SIZE option.) For PRFRM compilations, 
the availability of main storage is not a 
limitation. Therefore, less data control 
block manipulation is required. 

For both SPACE and PRFRM batch compila­
tions (i.e., more than one source module), 
the SYSPRINT, SYSLIN, and SYSPUNCH data 
sets are manipulated so that each data set 
contains the output for the entire compila­
tion (i.e., for all the source modules). 
However, for a batch SPACE compilation, if 
the SYSOUT parameter is used on the DO 
statements associated with SYSPRINT, SYS­
LIN, and/or SYSPUNCH; new data sets are 
created for the output of each of the 
compiled source modules. 

FOR SPACE COMPILATIONS 

For a SPACE compilation, Phase 1 ini­
tially opens only the data control blocks 
for the data sets used by Phases 5, 7, 8 
(if the ADJUST option is in effect), 100, 
and 10E (SYSIN, SYSUT1, SYSUT2, SYSPRINT). 
For the remainder of the compilation, the 
data control blocks are opened by the 
interludes only when their corresponding 
data sets are to be used by a specific 
compiler component. Each interlude first 
closes all the data control blocks and then 
opens only those that are to be used. This 
process decreases the size of the resident 
BSAM routines and provides the compiler 
with the additional main storage necessary 
for compilation. 

Figure 24 (refer to Note 1) illustrates 
the manipulation of data control blocks for 
SPACE compilations. 

98 

FOR PRFRM COMPILATIONS 

For PRFRM compilations, Phase 1 initial­
ly opens the data control blocks for all 
the data sets required by the compiler. 
Because all the required data control 
blocks are opened initially, the compiler 
can bypass the execution of Interludes 10E, 
14, and 15. Bypassing the execution of the 
int~rludes reduces data control block 
manipulation and phase-to-phase transition 
time; therefore, compilation time is also 
reduced. 

Figure 25 (refer to Note 1) illustrates 
the manipulation of data control blocks for 
PRFRM compilations. 

Note 1: In Figures 24 and 25, OPEN indi­
cates that the data control block is opened 
during execution of a compiler component. 
CLOSE indicates that the data control block 
is closed during execution of a compiler 
component. TCLOSE indicates that the cor­
responding data set is logically reposi­
tioned to the beginning of the data set for 
subsequent reading or writing. IN, OUT, 
INOUT, and OUTIN indicate that the corres­
ponding data set is used for initial or 
intermediate compiler input, for intermedi­
ate or final compiler output, for input 
followed by output, and for output followed 
by input. READ indicates that the corres­
ponding data set is read from during execu­
tion of a compiler component. WRITE indi­
cates that the corresponding data set is 
written onto during execution of a compiler 
component. FLUSH indicates that the con­
tents of the buffer currently being used 
are written out (only for a PRFRM compila­
tionwith blocking). 

Note 2: For SPACE compilations, READ, 
WRITE, and TCLOSE operations are controlled 
by the interface module. For PRFRM compi­
lations, READ, WRITE, FLUSH, and TCLOSE 
operations are controlled by the perfor­
mance module. (Figure 25 shows the logical 
DCB manipulation, rather than the actual 
DCB manipulation, since blocking on SYSIN, 
SYSLIN, SYSPUNCH, SYSPRINT, and SYSUT2 (for 
ADJUST runs), and chaining on SYSUTl and 
SYSUT2 determine when these operations are 
actually performed. 



r--------------------T---------T---------T---------T----------T----------T--------------, 
I I DCB for I DCB for I DCB for I DCB for I DCB for I DCB for I 
I Compiler Component I SYSIN I SYSUT1 I SYSUT2 I SYSPRINT I SYSLIN 1 I SYSPUNCH 2 I 

~--------------------+---------+---------+---------+----------+----------+--------------~ 
I Phase 1 (initial I OPEN I OPEN I OPEN I OPEN I I 1 
I entry) I IN lOUT I OUTIN 3 lOUT I I I 

t--------------------+---------+---------+---------+----------+----------+--------------i 
I Phase 5 1 READ I I I WRITE 1 1 I 

~--------------------+---------+---------f---------f----------f----------f--------------~ 
I Phase 7 I I TCLOSE 51 TCLOSE 51 WRITE I I 1 
t--------------------f---------+---------f---------+----------f----------+--------------i 
I Phase 8 (executed I 1 I WRITE 3 I 1 I 1 
I only for ADJUST I READ 3 I I TCLOSE I WRITE 31 I I 
I compilations) I 1 I 1 I 1 1 
t--------------------+---------+---------+---------+----------+----------+--------------i 
I Phase 10D 1 READ 4 1 WRITE 1 READ 3 1 WRITE 41 1 1 

t--------------------f---------+---------f---------f----------f----------f--------------~ 
I Phase 10E I READ 4 I WRITE I READ 3 I WRITE 41 1 1 

t--------------------+---------f---------f---------+----------+----------+--------------i 
I 1 CLOSE I CLOSE 1 CLOSE I CLOSE I I I 
I Interlude 10E I I OPEN I OPEN I OPEN 1 OPEN 1 OPEN I 
I I I IN lOUT lOUT lOUT lOUT I 
t--------------------+---------f---------+---------f----------+----------+--------------~ 
I I I READ I I I I I 
I Phase 12 1 I TCLOSE I I WRITE I WRITE I WRITE I 

t--------------------f---------+---------f---------f----------+----------+--------------i 
I Phase 14 I I READ I WRITE I 1 WRITE I WRITE I 

t--------------------+---------+---------+---------+----------+----------+--------------i 
I I I CLOSE I CLOSE I CLOSE I CLOSE I CLOSE I 
I Interlude 14 I I OPEN I OPEN I I I I 
I I lOUT I IN I I I I 
t--------------------+---------f--------~+---------+----------+----------+--------------i 
I Phase 15 I I WRITE I READ I 1 I I 
t--------------------+---------f---------f---------f----------f----------f--------------i 
I I I CLOSE I CLOSE I I I I 
I Interlude 15 I I OPEN I OPEN I OPEN I OPEN I OPEN I 
I I I INOUT I OUTIN lOUT lOUT lOUT I 
~--------------------+---------+---------f---------f----------+----------f--------------~ 
I I I READ I WRITE I I I 1 
I Phase 20 I I TCLOSE 1 TCLOSE I WRITE I WRITE 1 WRITE I 

~--------------------f---------f---------f---------f----------+----------f--------------i 
I 1 I WRITE I READ I 1 I I 
I Phase 25 1 I TCLOSE I TCLOSE I WRITE I WRITE I WRITE I 
t--------------------f---------f---------f---------f----------f----------f--------------i 
I Phase 30 I I READ I READ I WRITE I WRITE I WRITE I 
t--------------------f---------f---------f---------+----------f----------f--------------~ 
I Phase 1 (subsequent I I CLOSE I CLOSE I CLOSE I CLOSE I CLOSE I 
I entries other than I OPEN I OPEN I OPEN I OPEN I I I 
I final entry) I IN lOUT I OUTIN 3 lOUT I I I 

~--------------------+---------+---------+---------+----------+----------f--------------i 
I Phase 1 (final I I I I I I I 
I entry) I CLOSE I CLOSE I CLOSE I CLOSE I CLOSE I CLOSE I 

t--------------------~---------~---------~---------~----------~----------~--------------~ 
11SYSLIN is used only if the LOAD option is in effect. I 
13SYSPUNCH is used only ,if the DECK option is in effect. I 
13 For ADJUST compilations only. I 
14 For NOADJUST compilations only. I 
150nly for compilations other than the first. in a batch. I L _______________________________________________________________________________________ J 

Figure 24. Data Control Block Manipulation for SPACE Compilations 

Appendix D: Data Control Block Manipulation 99 



r--------------------T---------T---------T---------T----------T----------T--------------, 
I I DCB for I DCB for I DCB for I DCB for I DCB for I DCB for I 
I Compiler Compon,ent I SYSIN I SYSUTl I SYSUT2 I SYSPRINT I SYSLIN 1 I SYSPUNCH 2 I 
~--------------------+---------+---------+---------+----------+----------+--------------i 
I Phase 1 (initial I OPEN I OPEN I OPEN I OPEN I OPEN I OPEN I 
I entry) I IN I OUT IN I OUTIN lOUT lOUT lOUT I 
~--------------------+---------+---------+---------+--~-------+----------+--------------i 
I Phase 5 (executed I I I I I I I 
I only for first I READ I I I WRITE I I I 
I source module in I I I I I I I 
I batch I I I I I I I 

~--------------------+---------+---------+---------+----------+----------+--------------i 
I Phase 7 I I TCLOSE 51 TCLOSE 51 WRITE I I I 
~--------------------+---------+---------+---------+----------+----------+--------------i 
I Phase 8 (executed I I I WRITE 3 I I I I 
I only for ADJUST I READ 3 I I FLUSH I WRITE 31 I I 
I compilations) I I I TCLOSE I I I I 

~--------------------+---------+---------+---------+----------+----------+--------------i 
I Phase 100 I READ 4 I WRITE I READ 3 1 WRITE 41 I I 
~--------------------+---------+---------+---------+----------+----------+--------------i 
I I 1 WRITE I READ 3 I I I I 
I Phase 10E I READ 4 I TCLOSE I TCLOSE I WRITE 41 I I 
~--------------------+---------+---------+---------+----------+----------+--------------i 
I Interlude 10E I I I I I I I 
I (not executed) I I I I I I I 

~--------------------+---------+---------+---------+----------+----------+--------------i 
I I I READ I I I I. I 
I Phase 12 1 I TCLOSE I WRITE I WRITE 1 WRITE I WRITE I 

.--------------------+---------+---------+---------+----------+----------+--------------i 
I I I READ I WRITE I I I I 
I Phase 14 I I TCLOSE I TCLOSE I I WRITE I WRITE I 
.--------------------+---------+---------+---------+----------+----------+--------------i 
I Interlude 14 I I I I I I I 
I (not executed) I I I I I I I 

~--------------------+---------+---------+---------+----------+----------+--------------i 
I I I WRITE I READ I I I I 
I Phase 15 I I TCLOSE I TCLOSE I I I I 

.--------------------+---------+---------+---------+----------+----------+--------------i 
I Interlude 15 I I I I I I I 
I (not executed) I I I I I I I 

.--------------------+---------+---------+---------+----------+----------+--------------i 
I I I READ I WRITE I I I I 
I Phase 20 I I TCLOSE I TCLOSE I WRITE I WRITE I WRITE I 

~--------------------+---------+---------+---------+----------+----------+--------------i 
I I I WRITE I READ I I I I 
I Phase 25 I I TCLOSE I TCLOSE I WRITE I WRITE I WRITE I 

.--------------------+---------+---------+---------+----------+----------+--------------i 
I Phase 30 I I READ I READ I WRITE I WRITE I WRITE I 

.--------------------+---------+---------+---------+----------+----------+--------------i 
I Phase 1 (restart I CLOSE I CLOSE I CLOSE I CLOSE I CLOSE I CLOSE I 
I condition) I OPEN I OPEN I OPEN I OPEN I I I 
1 I IN lOUT I OUTIN 3 I OUT I I I 
.--------------------+---------+---------+---------+----------+----------+--------------i 
I Phase 1 (subsequent I I I I I I I 
I entries other than I I I I I I I 
I the final entry) I I I I I I I 

.--------------------+---------+---------+---------+----------+----------+--------------i 
I Phase 1 I I I I FLUSH I FLUSH I FLUSH I 
I (final entry) I CLOSE I CLOSE I CLOSE I CLOSE I CLOSE I CLOSE I 
• ____________________ L _________ L _________ L _________ i ___ -------i----------i--------------i 
I~SYSLIN is used only if the LOAD option is in effect. I 
12SYSPUNCH is used only if the DECK option is in effect. I 
13 For ADJUST compilations only. I 
1 4 For NOAOJUST compilations only. I 
leOnly for compilations other than the first in a batch. I L _______________________________________________________________________________________ J 

Figure 25. Data Control Block Manipulation for PRFRM Compilations 

100 



Phase 100 and Phase 10E convert each 
FORTRAN source statement into a form 
(intermediate text) usable to subsequent 
phases of the compiler. Intermediate text 
is developed by scanning the source state­
ments from left-to-right and by construct­
ing four-byte intermediate text entries for 
the source text contained in the state­
ments. (Six-byte entries are constructed 
for EQUIVALENCE statements.) 

Phase 100 scans the declarative state­
ments in the source module, and creates 
intermediate text for those statements. 
When Phase 100 encounters either the first 
statement function or the first executable 
statement, control is passed to Phase 10E 
via the interface module. Phase 10E con­
tinues the scan of the source module and 
creates intermediate text for statement 
functions and executable statements. 

As source statements are scanned, 
entries are made to the dictionary and 
overflow table. The information in the 
dictionary and overflow table supplements 
the intermediate text in the generation of 
machine-language instructions by subsequent 
phases of the compiler. This information 
is associated with the intermediate text 
entries by means of pointers that reside in 
the text entries. 

Each source statement of the source 
module consists of one or more card images. 
To scan source statements, each card image 
of the source module is first read into one 
of two I/O buffers in the interface module 
(IEJFAGAO). The double-buffer scheme 
allows for overlapping the scanning of a 
card image in one buffer with the reading 
of the next card image of the source module 
into the other buffer. If the SOURCE and 
NOADJUST options are in effect, the I/O 
buffers are used tq print a listing of the 
source module. 

In general, the processing of a source 
statement is divided into three operations: 

• Preliminary scan of the card image(s) 
for the statement. 

• Classification scan of the first card 
image for the statement. 

• Reserved word or arithmetic scan of the 
card image(s) for the statement, which 
scans the source text of the statement. 
(The reserved word or arithmetic scan 
also creates intermediate text.) 

APPENDIX E: SOURCE STATEMENT SCAN 

PRELIMINARY SCAN 

The preliminary scan first determines 
the address of the end of the source text 
in the card image to be processed. This 
address is obtained by examining the card 
image from right-to-left in groups of four 
bytes. The address of the last blank group 
encountered is used as the ending address 
of the card image. This address is used in 
the reserved word or arithmetic scan of the 
card image and indicates the point at which 
the scan of the card image and the creation 
of intermediate text for the card image is 
to terminate. In the case of the last card 
image for a statement, the ending address 
indicates the end of the statement. 

The preliminary scan then determines the 
type of the card image to be scanned. A 
card image may correspond to the start of a 
FORTRAN statement, the continuation of a 
FORTRAN statement, or a user's con~ent. 

If the card image corresponds to the 
start of a FORTRAN statement, a unique 
internal statement number is assigned to 
the statement. This number is placed in 
front of the card i~age in the buffer 
containing that card ~mage. control is 
then passed to the classification scan. 

If the card image corresponds to a 
continuation of a FORTRAN statement, a new 
internal statement number is not assigned. 
Control is immediately passed to the clas­
sification scan. 

If the card image corresponds to a 
user's comment, no further processing is 
required. The next card image of the 
source module is read into the buffer that 
contained the comments card image. The 
address of the other buffer (previously 
filled) is obtained from the communication 
area, and scanning starts for the card 
image in that buffer. 

In each case, if the SOURCE and NOADJUST 
options are in effect the buffer containing 
the card image is first written onto the 
SYSPRINT data set before any further proc­
essing. 

CLASSIFICATION SCAN 

The classification scan determines the 
type (arithmetic or reserved word) of the 

Appendix E: Source Statement Scan 101 



FORTRAN statement to be processed. The 
first action taken by the classification 
scan is to determine if a statement number 
defines the statement under consideration. 
If a statement number is associated with 
the statement, an overflow table entry for 
that statement number is created. 

The next item of the source statement is 
then obtained. If the item is a symbol, 
control is passed to a routine that scans 
arithmetic statements. If the item is a 
reserved word (e.g., READ), control is 
passed to the appropriate reserved word 
routine. The arithmetic or reserved word 
routine controls the scanning of the 
remainder of the statement, and creates 
intermediate text for the statement. 

If the item is neither a symbol nor a 
reserved word, the source statement in 
question is invalid. processing of that 
statement is terminated, and processing of 
the next statement of the source module 
begins. 

RESERVED WORD OR ARITHMETIC SCAN 

The main function of the reserved word 
or arithmetic scan is to scan the card 
image(s) for each statement of the source 
module. During this scan, dictionary and 
overflow table entries are constructed, and 
intermediate text entries are created. In 
addition, each statement is examined for 
correct use of the FORTRAN IV (E) language. 

The reserved word or arithmetic scan is 
performed by either a reserved word routine 
or the arithmetic routine. A reserved word 
routine exists for each of the reserved 
word source statements. Certain reserved 
word routines, namely those that process 
statements that may contain arithmetic 
expressions (e.g., IF and CALL statements) 
and those that process statements that 
contain I/O lists (e.g., READ and WRITE 
statements) pass control to the arithmetic 
routine to complete the scanning of the 
associated reserved word statements. 

When the appropriate reserved word rou­
tine or the arithmetic routine receives 
control, a left-to-right scan of the cur­
rent card image is then initiated. The 
first operand of the card image is 
obtained, and a check is made to determine 
if a dictionary or overflow table entry has 
previously been created for the operand. 
If an entry has not been created, a dic­
tionary or overflow table entry (depending 
on the operand) is created and entered in 
the appropriate resident table. Scanning 
is resumed and the first operator of the 
card image is obtained. 

102 

The intermediate text for each card 
image is developed by constructing inter­
mediate text entries for operator-operand 
pairs as they are scanned by a reserved 
word routine or the arithmetic routine. In 
this context, operator refers to commas, 
parentheses, etc., as well as to arithmetic 
operations (e.g., + and -). Operand refers 
to variables, constants, statement numbers, 
data set reference numbers, etc., that are 
operated on. 

The procedure of: (1) scanning operators 
and operands, (2) constructing dictionary 
or overflow table entries when necessary 
for the operands, and (3) developing inter­
mediate text entries for the operator­
operand pairs is repeated until the end of 
the card image is recognized by the 
reserved word or arithmetic scan. 

When the address indicating the end of 
the card image is recognized by the res­
erved word or arithmetic scan, the next 
card image of the source module is read 
into the buffer that contained the cara 
image just processed. The address of the 
other buffer (previously filled) is 
obtained from the communication area, and 
processing starts for the card image in 
that buffer. 

When an entire source statement has been 
scanned, a special intermediate text entry 
indicating the end of the intermediate text 
representation for a given statement is 
generated and then written onto an inter­
mediate storage data set at the end of the 
intermediate text representation for the 
statement. This special text entry con­
tains the internal statement number 
assigned to the statement by the prelimi­
nary scan section. 

During the reserved word or arithmetic 
scan, each card image is examined for 
proper use of the FORTRAN IV (E) language. 
The format of the card image is checked to 
see if the statement associated with the 
card image has been coded properly by the 
source programmer. 

If a serious error is encountered, scan­
ning of the statement associated with the 
card image is terminated. An intermediate 
text word indicating the end of the inter­
mediate text representation for the state­
ment is generated and then written onto an 
intermediate storage data set. This text 
word also indicates that an error was 
encountered in the processing of the state­
ment. An intermediate text word, rep­
resenting the error, which contains a num­
ber corresponding to the specific error 
detected, is generated and then written 
onto the intermediate storage data set at 



the end of the intermediate text represen­
tation for the statement in which the error 
was detected. 

If an error is encountered that is not 
serious enough to tf~rminate the scan of a 
statement, an intE~rmediate text word rep­
resenting a warning is generated. This 
word is saved and scanning is resumed. 
When the scan of thE~ statement is terminat­
ed (either when the end of the statement is 
recognized or when a serious error is 
encountered), the warning text word is 
written onto the intermediate storage data 
set immediately f()llowing the text word 
that indicates the end of the intermediate 

text representation for the statement and 
any intermediate text words generated for 
serious errors. (A maximum of four warning 
text words per statement may be saved and 
then written onto the intermediate storage 
data set. If more than four warning condi­
tions are encountered, an intermediate text 
word representing an error is generated and 
scanning of the statement is terminated.) 

The source statement scan for the fol­
lowing READ statement is illustrated in 
Chart DO. 

READ (5,10) A,B(1),(C(I),I=1,10),D 

Appendix E: Source Statement Scan 103 



Chart DO. READ statement Scan Logic 

***** 
*DO .. 
* AI* 
* * 
* 
I 

RE.AD V 
*****AI********** 
* * 

*****A2********** 
* GETWD * 
*-*-*-*-*-*-*-*-*OTHER 

* * 
SET UP 

READ BCD 
ADJ CODE 

•• ------->* GET *--. 
: : OPERATOR * I 

***************** V 

I

L PAREN **** 
* * * F5 * 
* * **** 

V 
*****82******·*·* 
* GETWD * 
*-*-*-*-*-*-*-*-* 
* GET DATA SET * 
* REFERENCE 
* NUMBER * 
* .. *********.***** 

I 
V 

*****C2********** 
* CSORN * 
*-*-*-*-*-*-*-*-* 
* ENTER * 
* DSRN IN 
* DICTIONARY 
• ****.****.****** 

I 

**** 

* * : A3 ! 

*j** 
V 

*****A3********** 
* CSORN * 
*-*-*-*-*-*-*-*-* 
* ENTER * 
* VARIABLE IN * 
* DICTIONARY * 
***************** 

1 
v .*. 

83 *. *****B4-********* *****as********** 
.* *. * SUBS * * PUTX * 

.* VARIABLE *. YES *-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* 
*. DIMENSIONED .*------>* PROCESS *------->* ENTER 

*. .* * SUBSCRIPTED * * INTO 
*..* * VARIABLE * * TEXT * 

... .* **** ......... ***** .. ** ***************** 

i NO L>:*::* : 
v .... .-. 

C3 *. C4 *. *****(5********** 
.*.* IS * ••• NO •• -* IS *.*. YES :-*-*-~~;~*-*-*-: 

*. OPERATOR .*------->*. OPERATOR • *-------> * END OF 
*. .* *.END MARK .* A * STATEMENT 
*..* *..* I * PROCESSING .. 

V 

'f" ::C: ......... 1
1 

....... . 

004 V * K2 * CLASS 
*****01********** *.***02* •• ******* 
* * *. GETWD * 
*CHANGE AOJ CODE* R PAREN *-*-*-*-*-*-*-*-* 
* TO UNFORMATTED*<-------* GET OPERATOR * 
* READ * * 
* * * 
***************** 

I 
V 

*****El********** 
* PUTX * 
*-*-*-*-*-*-*-*-* 

ENTER ADJ * 
CODE INTO * 

* TEXT * 
***************** 

I 
*~** 

* * 
: K2 : 

***************** 

1'0'" 
V 

*****E2********** 
* PUTX * 
*-*-*-*-*-*-*-*-* 
* ENTER ADJ * 
* CODE INTO * 
* TEXT * 
***************** 

I 
V 

*****F2********** 
* GETWD * 
*-*-*-*-*-*-*-*-* 
* GET FORMAT * 
* STATEMENT * 
* NUMBER * 
***************** 

I 
V 

*****G2********** 

:-*-*-~~~:~-*-*-: 
ENTER 

* STMT NUMBER * 
* IN OVERFL TBL * 
***************** 

I 
V 

*****H2********** 
**** * GETWD * 

*"***03*** •• **.** * .. v 
* GETWD * **** ****D5********* 
*-*-*-*-*-*-*-*-* * START * 
* GET DO *< * ON NEXT 
* PARAMETER * * STATEMENT * 

* *******.*.*** ... 

·······T······· 

V 
***··E3·* .. ··****· 
* CSORN * 
*-*-*-*-*-*-.-*-* 
* ENTER * 
* PARAMETER IN * 
* DICTIONARY * 
***************** 

I 
V 

*****F3********** 
* PUTX * 
*-*-*-*-*-*-*-*-* 
* ENTER * 
* PARAMETER 

INTO TEXT * 
.**************** 

I 
V 

*****G3********** 
* GETWD * 
*-*-*-*-*-*-*-*-* 
* GET * 
: OPERATOR : 

***************** 

1 
v .*. 

H3 *. 
.* *. 

.*** 
* .. * F5 .. 
* .. 
**** 

1 I 

L*****F5*~******** 
:-*-*-~~~~:-*-*-: 
* C,ENERATE .. 
* APPROPRIATE * 

***~::~:*!~:!***: 

* *OTHER*-*-*-*-*-*-*-*-* 
* F5 *<--* GET * 
****** : OPERATOR : 

***************** I' p,"" 

V 
*****J2********** 
* PUTX * 
*-*-*-*-*-*-*-*-* 
* ENTER PTR TO * 
* STMT NUMBER * 

I
''''::::::~i:~~:·> I 

.*. 
J3 *. ***.*J4******.*** 

.* *. * PUTX * 
.* IS *. YES *-*-*-*-*-*-*-*-* 

**** * INTO TEXT * 
* * ***************** 
* K2 * 1 

* *~** * : *::* :-> <-----' 

I **** I 
ARITHIO v 

:****Kl*********: :****K~~;:;*****: 
* SET UP * ZERO*-*-*-*-*-*-*-*-* 
* ADJ CODE *<----* GET * 
: FOR OPERATOR : : :6~b : 
***************** ***************** 

104 

I NON-ZERO 

V 
**** 

* * * A3 * 
* * 

*. OPERATOR • *-------> * ENTER 
*. R PAREN .* * OPERATOR 
*..* * INTO TEXT 

* •. * .************** •• i NO 

V .*. 
K3 *. *****k4-********* 

.* *. * PUTX * 
.* TWO *. YES *-*-*-*-*-*-*-*-* 

*. PARAMETERS • *-------> * ENTER IMMED * 
*. .* * PARAMETER * 
*..* • OF ONE· * 

* •• * ******.********** i NO I 
V V 

**** **** 
* * * F5 * 
* * 

.. * 
* K2 * 
* * 



Intermediate text is an internal rep­
resentation of the source statements from 
which the machine-language instructions are 
produced. The conversion from intermediate 
text to machine-language instructions 
requires information about variables, con­
stants, arrays, statement numbers, in-line 
functions, and subscripts. This informa­
tion, derived from the source statements, 
is contained in the dictionary and overflow 
table, and is referenced by the intermedi­
ate text. The dictionary and overflow 
table supplement the intermediate text in 
the generation of machine instructions by 
the various phases of the compiler. 

Phases 100 and 10E create intermediate 
text for use as input to subsequent phases 
of the compiler. Intermediate text is 
created by Phase 100 for the following 
declarative statements: 

• COMMON and EQUIVALENCE 
• DEFINE FILE 
• FORMAT 
• SUBROUTINE or FUNCTION 
• Specification statements 

Phase 10E creates intermediate text for 
all statement functions and executab1e 
statements in the source module and for 
FORMAT statements interspersed within the 
executable statements. 

Phase 12 uses COMMON and EQUIVALENCE 
text during relative address assignment. 

Phase 14 converts the FORMAT intermedi­
ate text to a form acceptable to IHCFCOME. 
It also inserts the addresses assigned by 
Phase 12 to variables, constants, etc., 
into the intermediate text. In addition, 
Phase 14 modifies the intermediate text for 
READ/WRITE statements. Phase 14 also 
deletes any COMMON and EQUIVALENCE text 
from the intermediate text since that text 
is no longer needed. 

Phase 15 reorders the sequence of inter­
mediate text entries in statements that can 
contain arithmetic expressions, and modi­
fies these entries to a format that closely 
resembles machine-language instructions. 
The intermediate text for DEFINE FILE 
statements is also reordered by Phase 15. 
Machine operation codes and registers (when 
required) are inserted in the intermediate 
text. Argument 1ists for externa1 and 
function references are created by modify­
ing the intermediate text for those state­
ments. 

APPENDIX F: INTERMEDIATE TEXT 

Phase 20 modifies the intermediate text 
entries that represent subscript expres­
sions. Registers are assigned to subscript 
expressions (once they have been initially 
computed) and are inserted in the text 
entries for those expressions. 

Phase 25 uses the intermediate text in 
conjunction with the overflow table to 
generate the object module instructions. 

Phase 30 uses the intermediate text to 
generate any error and warning messages and 
to process the END statement. 

AN ENTRY IN INTER~ffiDIATE TEXT 

The intermediate text is constructed by 
Phases 100 and 10E for some dec~arative 
statements, all statement functions, and 
all executable statements. Each stat~ment 
is represented in the intermediate text. by 
one or more intermediate text words. (An 
intermediate text word is four bytes long.) 
This word normally contains three fields 
(as illustrated in Figure 26). 

r-----------------T------------T----------, 
I adjective code I mode/type I pointer I 
I field I field I field I 
~-----------------+------------+----------~ 
I 1 byte I 1 byte I 2 bytes I L _________________ ~ ____________ ~ _______ ~ __ J 

Figure 26. Intermediate Text Word Format 

Adjective Code Field 

The adjective code field in the initial 
intermediate text word indicates the type 
of statement for which the intermediate 
text entries are constructed, i.e.: 

• Reserved word, e.g., DO, CALL, GO TO. 
• Statement function (SF). 
• Arithmetic. 

The adjective 
intermediate text 
indicate: 

codes 
words 

in the subsequent 
for a statement 

• Delimiters, i.e., + - * / ** ( ) , 
• The end of a statement (end mark) 
• An error 

Each adjective code is composed of two 
hexadecimal digits. The various adjective 
codes possible (and their use) are indicat­
ed in Figure 27. 

Appendix F: Intermediate Text 105 



r----~--~-__y---~----~--------T-------T-------~-------r------T-------T------T-----T------T------T------T-----------~----------------, 
I'L I I I I I I I I I I I I I I I I I I 
111'\0 I I I I I I I I I I I I I I I I I I 
Ii' w I 0 11 12 J3 I 4 15 16 17 I 8 I 9 I A I B I C I D IE I F I I 
I g' I I I I I I I I I I I I I I J I I I 
I h'l I I I I I I I I I I I I I I I I I 
~---+-----+_------+----+_----+--------+-------+-------+_-------~------+-------t------+-~---+------+------+------+-----------+-----------------~ 
I 0 I I I I. I ( I> 1= 10 I , I I I I I I I I I I 
I I I I I I I I I ARGO- IN10 I ILLEGAL I + 1- 1* 1/ 1** I FONC ( I I 
I I I I I I I I IMENT I I I I I I I I I I 
~----+-----+-------+----+-----+--------+-------+-------+-------~------+------~+------+-----+------+------+------+-----------+-----------------~ 
I 1 IAOP lUNARY I ISAOP I ISIZE OFIEND I I I I I IONARY I 110 I" 10 I I 
I I IMINOS101 I I IARRAY IMARK I I I I I IPLOS10 1 I IAPOSTROPHE I I 
~-----+-----+-------+----+-----+--------+-------+-------+-------~------+-------+------+-----+------+------+------+-----------+-----------------~ 
I 2 I I I I IN-1O I ARITH- I I I I I I I I I I I I I 
I I liST ILlNE IMETIC IMVI 1$ 10 I IBLANK I I I I I I I I I 
I 1 1 1 1 FONC 1 IF 1 I 1 1 1 1 I I I I I I I 
~--+-----+-------+----+-----+--------+-------+-------+-------~------+-------+------+-----+------+------+------+-----------+-----------------~ 
I 3 I I I 1 1 I 1 I I 1 1 I I I I I 1 I 
~-----+-----+-------+----+-----+--------+-------+-------+-------~------+-------+------+-----+------+------+------+-----------+-----------------~ 
I 4 lSI I 1 I I 1 I BC10 I 1 I I I I I I I I 
~-----~ ~------+----+-----+--------+-------+-------+-------~------+-------+------+-----+------+------+------+-----------+-----------------~ 
I 5 I T I I I LCR I I I I I I I I S I M I I I I INTEGER I 
~--~ ~-------+----+-----+--------+-------+-------+-------_I I C I 10 10 I .------+-----------+-----------------~ 
I 6 10 I I I I I I I I 10 I I B I LID I I I DOOBLE PRECISION I 
~-----i ~-------+----+-----+--------+-------+-------+_------_I I M I I TIT I I ~------+-----------+-----------------~ 
I 7 IR I I I I I I I IL IP I IR II IV I I I REAL I 
~---i ~-------+----+-----+--------+-------+-------+_------_IO IA IA IA IP II ~------+-----------+-----------------~ 
I 8 I E I I I LCER I I I I I A I RID I C I LID I I I I 
I I I I I I I I I I DIE I D 1 T 1 Y lEI SRDA10 I 1 I 
~-----+-----+-------+----+-----+--------+-------+-------+-------~------+-------+------+-----+------+------+------+-----------+-----------------~ 
1 9 I I I I 1 INTEGER 1 DOUBLE 1 REAL I I COMMON 1 EQUIVA-I EXTER- 1 1 DIMEN-I DEFINE 1 I SOBROO- I 1 
I 1 I I I I I II I ILENCE INAL I ISION IFlLE I I TINE I I 
~-----+-----+_------+----+-----+--------+-------+-------+_------~------+-------+------+-----+------+------+------+-----------+-----------------1 
I A I FONC-I FORMAT I END I CON- I UNCONDI-I COMPUT;- I BACK- I REWIND I END I WRITE I READ I WRITE I READ I DO I STMNT. I I I 
I ITION liDO ITINUEITIONAL lED I SPACE I lFILE IBINARY IBINARYIBCD I BCD 1 INO. I 1 I 
I I I I I I GO TO I GO TO I I 1 I I I I I I DEF. I I I 
.-----+-----+_------+----+-----+--------+-------+-------+-------~------+-------+------+-----+------+------+------+-----------+-----------------1 
I B lEND I I CALLI SF I IARITH I I BEGIN lEND IRETURN ISTOP IPAOSEIARITH lIMP IERROR IWARNING I I 
I I I I I I I I I I/O I I/O I I I I IF I DO I MESS- I MESS- I I 
I I I I I I I 1 I LIST I LIST 1 I I I I I AGE I AGE 1 I 
~---+-----+------~+----+-----+--------+-------+-------+--------.------+-------+------+-----+------+------+------+-----------+-----------------~ 
I C I I I I 1 I I I I 1 I 1 1 I 1 I I I 
~---__+-----+__-----+----+-----+--------+-------+-------+-------~------+-------+------+-----+------+------+------+-----------+_----------------1 
I D I I I I I I I I I I I I I I I I I I 
~---+-----+-------+----+-----+--------+-------+-------+-------~------+-------+------+-----+------+------+------+-----------+-----------------~ 
I E I I I I I I I I I I I I I I I I I I 
~-----+-----+-------+----+-----+--------+-------+-------+--------~------+-------+------+-----+------+------+------+-----------+-----------------~ 
I F I I I I I I I I I I I I I I I I I I 
~-----L-----L-------i----~---~--------~-------~-------~--------L-_____ i-______ i_ _____ i_ ____ L-_____ ~ ______ ~ ______ ~ __________ _L _________________ ~ 

110Subject to change in later phases. I 
l~---------____________________________________________________________________________________________________________________________________ -J 

Figure 27. Intermediate Text Adjective Codes 



Mode/Type Field 

The mode/type field indicates the mode 
and the type of a symbol: e.g., a real 
function for a function name, or dummy 
variable for the variable name. These 
mode/type codes are the same as those used 
in the dictionary entries (refer to Appen­
dix H). 

In the word with an end mark adjective 
code, another indicator may appear in the 
mode/type field. Normally, this field con­
tains zeros: however, if any errors or 
warnings are detected in a statement, this 
field contains a hexadecimal 01. 

If errors or warnings are detected, the 
error/warning message number appears in the 
mode/type field of the word inserted in the 
intermediate text to represent that 
error/warning. Errors and warnings are 
detected by Phases 10D, 10E, 12, 14, 15, 
and 20. 

Pointer Field 

The pointer field consists of the last 
two bytes of the intermediate text word. 
It normally contains a relative pointer to 
the dictionary or overflow table entry for 
the symbol with which the adjective code is 
associated, e.g., the term +A has a + 
adjective code and an associated pointer 
field that contains a relative pointer to 
the dictionary entry for A. The pointer 
field may also be used to contain either 
the increment of a DO or implied DO vari­
able, or the internal statement number in 
the word containing the end mark or the 
error/warning adjective code. 

The internal statement number is 
assigned during Phases 100 and 10E to each 
FORTRAN source statement. This number dif­
fers from the user-assigned statement num­
ber. It is assigned whether or not inter­
mediate text is to be created for that 
statement; therefore, there may be gaps in 

the internal statement numbers appearing in 
the intermediate text. Errors 1n the 
source module may cause the same statement 
number to be assigned more than once. If 
the user has requested a source listing, 
the internal statement number assigned to 
each statement appears next to that state­
ment in the listing. 

AN EXAMPLE OF INTERMEDIATE TEXT 

Figure 28 illustrates the intermediate 
text created by Phase 10E for the following 
IF statement. 

3 IF (+19 - MART) 11, 7, 61 

r-----------------T------------T----------, 
I adjective code I mode/type I pointer I 
I field I field I field I 
I (1 byte) I (1 byte) I (2 bytes), 
~-----------------+------------+----------~ 
, statement I statement I p(3) , 
I number I number I , 
~-----------------+------------+----------~ 
I arithmetic IF ,00 I 0000 I 
~-----------------+------------+----------~ 
I ( I 00 I 0000 I 
~-----------------+------------+----------~ 
I unary + I integer I p(19) I 
I I constant I , 
~-----------------+------------+----------~ 
I I integer I p(MART) , 
I I variable, I 
~-----------------+------------+----------~ 
I) I statement I p(ll) , 
I , number I , 
~-----------------+------------+----------~ 
I I statement I p(7) , 
I I number' , 
~-----------------+------------+----------~ 
I I statement I p(61) I 
I I number I , 
~-----------------+------------+----------~ 
I end mark I 00 I internal , 
I I I statement, 
I I I number I L _________________ ~ ____________ ~ __________ J 

Figure 28. Example of Intermediate Text 
for an IF Statement 

Appendix F: Intermediate Text 107 



UNIQUE FORMS OF INTERMEDIATE TEXT 

When intermediate text is created, there 
are four unique forms: the text for FORMAT 
statements; subscripted variables; COMMON 
statements; EQUIVALENCE statements; and 
READ" FIND, and WRITE statements. 

FORMAT Statements 

For FORMAT statements, the adjective 
code field of the first intermediate text 
word of the statement indicates a FORMAT 
statement; the remaining two fields contain 
three bytes of the FORMAT statement card 
image. The remainder of the card image of 
the FORMAT statement appears in the follow­
ing intermediate text words. Figure 29 
illustrates the intermediate text created 
for the following FORMAT sta.tement. 

12 FORMAT (F20.5,I6) 

r--------------T-------------T------------, 
I adjective I mode/type I pointer I 
I code field I field I field I 
I (1 byte) I (1 byte) I (2 bytes) I 
~--------------+-------------+------------i 
I statement I statement I I 
'number I number I p(12) I 
~--------------+-------------+-----T------i 
'FORMAT I ( I F I 2 I 
~--------------+-------------+-----+------i 
I 0 , , 5 I , I 
~--------------+-------------+-----+------i 
, I , 6 , ) I blank , 
~--------------~-------------~-----~------i 
I blanks represent the remaining card I 
I columns to column 72 , I 
I (Each card column represents 1 byte. AI 
I hexadecimal 'DF' follows the last card I 
, column.) , 
~--------------T-------------T------------i 
, I I internal , 
, end mark ,00 I statement I 
, I 'number I L ______________ ~ _____________ ~ ____________ J 

Figure 29. FORMAT Statement Intermediate 
Text 

108 

Subscripted Variable 

When a subscripted variable is encoun­
tered in a source statement, an entry for 
the variable is made. That entry is fol­
lowed by two additional intermediate text 
words to define the subscripted expression. 
Figure 30 illustrates the format of the 
first word. 

r-----------------T------------T----------, 
I adjective code I mode/type I pointer I 
I field I field I field I 
I (1 byte) I (1 byte) I (2 bytes) I 
~-----------------+------------+----------i 
, SAOP I 00 I offset I 
~-----------------~------------~----------i 
ISAOP represents the subscript arithmetic, 
I operator, and the offset represents al 
,part of the array displacement. (Referl 
Ito Appendix G for a discussion of array I 
,displacement.) I L _________________________________________ J 

Figure 30. Subscripted Variable Intermedi­
ate Text - (First Word) 

Figure 31 illustrates the format of the 
second word. 

r---------------T-----------T-------------, 
, adjective code I mode/type I pointer I 
I field I field I field I 
I (1 byte) I (1 byte) I (2 bytes) I 
~---------------~-----------+-------------i 
I p(subscript Ip(dimension I 
I information) I information) I 
~---------------------------~-------------i 
The first field contains a relative pOin-1 
ter to the subscript information in thel 
overflow table if the subscripted expres-I 
sion contains variables. If the sub-I 
scripted expression does not contain I 
variables, this field contains zeros. I 

I 
I 

The second field contains a relative I 
pointer to the dimension information inl 
the overflow table for the array that I 
contains the subscripted expression. Fori 
example, if A (I,J) is an element inl 
array A, the field contains the pointer I 

Ito the dimension information for array A.I L _________________________________________ J 

Figure 31. Subscripted Variable Intermedi­
ate Text - (Second Word) 



Figure 32 illustrates the intermediate 
text created for the following statement, 
which involves two subscripted variables. 

APPLE = A(POT,3) + B(2,1) 

r-------------T-----------T---------------, 
I adjective I mode/type I pointer I 
I code field I field I field J 
I (1 byte) I (1 byte) I (2 bytes) I 
~-------------+-----------+---------------~ 
I arithmetic I mode/type I I 
I statement I of APPLE I p(APPLE) I 
~-------------+-----------+---------------~ 
I I mode/type I I 
I = I of A I p (A) I 
~-------------+-----------+---------------i 
I SAOP I 00 I offset I 
~-------------~-----------+---------------i 
I p(subscript I p(dimension I 
I information) I information) I 
~-------------~----------+---------------i 
I I mode/type I I 
I + I of B I p (B) I 
~-------------+-----------+---------------~ 
I SAOP I 00 I offset I 
~-------------+-----------+---------------i 
I I I p(dimension I 
I 00 I 00 I information) I 
~-------------+-----------+---------------i 
I I I internal I 
I I I statement I 
I end mark I 00 I number I L _____________ ~ ___________ ~ _______________ J 

Figure 32. Example of subscripted Variable 
Intermediate Text 

COMMON statements 

COMMON intermediate text is constructed 
by Phase 100 as a series of four-byte 
entries (one for each variable or array 
name that appears in a COMMON statement). 
Phase 12 serially references these entries 
and assigns addresses to them in the COMMON 
area. (The assignment of addresses is 
discussed in detail in the Phase 12 des­
cription. ) 

Figure 33 illustrates the intermediate 
text created for a COMMON statement. 

AN EXAMPLE OF CO~~ON INTERMEDIATE TEXT: 
Figure 34 illustrates the intermediate text 
created for the following COMMON statement. 

COMMON (A,R,ARNONN) 

r--------------------T---------T-·---------, 
198 I not used I not used I 
~--------------------+---------+----------i 
Ip(A) I 1 I not used I 
~--------------------+---------+----------i 
Ip(R) I 1 I not used I 
~--------------------+---------+----------i 
Ip(ARNONN) I 6 I not used I 
~~-------------------~---------~----------i 
I 00000001 I 
~--------------------T---------T----------i 
I 2 bytes 11 byte I 1 byte I L ____________________ ~ _________ ~ __________ J 

Figure 34. Example of COMMON Intermediate 
Text 

r-------------------------------------------T---------------------T---------------------, 
I 1 98 I not used I not used I 
~-------------------------------------------+---------------------+---------------------i 
1 pointer to the dictionary entry for the I 2 length of the I not used I 
I first variable or array name in statement I first variable I I 
I I or array name I I 
I I in statement I I 
~-------------------------------------------~---------------------~---------------------i 
I · I 
I . I 
I . I 
~-------------------------------------------T---------------------T---------------------i I pointer to the dictionary entry for the I length of the I not used I 
I last variable or array name in statement I last variable I I 
I I or array name I I 
I I in statement I I 
~-------------------------------------------~---------------------~---------------------i 
I 3 00000001 I 
~-------------------------------------------T---------------------T---------------------i I 2 bytes I 1 byte I 1 byte I 
~-------------------------------------------~---------------------~---------------------~ 
11 Indicates COMMON intermediate text. I 
12 The length is used to determine the dictionary chain in which the variable or array I 
I name is entered. I 
13 Indicates the end of the intermediate text for the COMMON statement. I L _____________________________________________________ - _________________________________ J 

Figure 33. COMMON Intermediate Text 

Appendix F: Intermediate Text 109 



EQUIVALENCE Intermediate Text 

EQUIVALENCE intermediate text is con­
structed by Phase 10D as a series of 
six-byte entries (one for each variable or 
array name that appears in an EQUIVALENCE 
statement). Phase 12 serially references 

these entries and assigns addresses to 
them. (The assignment of addresses is 
discussed in detail in the Phase 12 des­
cription.) 

Figure 35 illustrates the intermediate 
text created for an EQUIVALENCE statement. 

r----------------------------T----------------------------, 
I 1 99 I not used I 

~----------------------------+----------------------------+-----------------------------, 
I pointer to dictionary I I I 
I entry for first vari- I size of first variable I 2 offset of first vari- I 
I able or array name in I or array in first I able or array in first I 
I first EQUIVALENCE I EQUIVALENCE group in I EQUIVALENCE group in I 
I group in statement I statement I statement I 

~----------------------------~----------------------------~-----------------------------i 
I . I 
I • I 
I • I 
~----------------------------T----------------------------T-----------------------------i I pointer to dictionary I size of last variable I offset of last vari- I 
I entry for last vari- t or array in first I able or array in first I 
, able or array name in , EQUIVALENCE group in , EQUIVALENCE group in , 
I first EQUIVALENCE I statement I statement I 
I group in statement I I I L ____________________________ +------------------------____ ~ _____________________________ J 

I 3 OOOF I 
~----------------------------+----------------------------T-----------------------------, 
I pointer to dictionary I size of first variable I offset of first vari- I 
I entry for first vari- I or array in last I able or array in last I 
I able or array name in I EQUIVALENCE group in I EQUIVALENCE group in I 
I last EQUIVALENCE I statement I statement I 
I group in statement I I I 
~----------------------------~----------------------------~-----------------------------i 
I· I 
I '. I 
I '. I 
~----------------------------T----------------------------T-----------------------------i 
I pointer to dictionary I size of last variable I offset of last vari- I 
I entry for last vari- I or array in last I able or array in last I 
I able or array name in I EQUIVALENCE group in I EQUIVALENCE group in , 
I last EQUIVALENCE I statement I statement I 
I group in statement I I I 
~----------------------------+----------------------------~-----------------------------i 
I OOOF I ~ 00000001 I 
t----------------------------+----------------------------T-----------------------------i 
I 2 bytes I 2 bytes I 2 bytes I 
~----------------------------~----------------------------~----------------------------i 
11 Indicates EQUIVALENCE intermediate text. I 
12 Contains 0000 if the variable or array is not subscripted. I 
13 Indicates the end of the intermediate text for an EQUIVALENCE group. , 
I~Indicates the end of the interroediate text for the EQUIVALENCE statement. It must, 
I reside on a full-word boundary. If necessary, this entry is preceded by two bytes ofl 
I zeros in order to adjust it to a full-word boundary. I L _______________________________________________________________________________________ J 

Figure 35. EQUIVALENCE Intermediate Text 

110 



~ Phase 10D generates a special eight­
byte intermediate text entry following the 
last EQUIVALENCE statement. This special 
entry indicates to Phase 12 that it can 
ignore the remaining intermediate text on 
SYSUTl because it has processed all of the 
COMMON and EQUIVALENCE intermediate text. 
The special entry has the following format: 

r--------------------T--------------------, I 99FFOOOO I 00000001 I 
~--------------------+--------------------~ I 2 bytes I 2 bytes I L ____________________ i ____________________ J 

AN EXAMPLE OF EQUIVALENCE INTERMEDIATE 
TEXT: Consider 
Statement: 

the following EQUIVALENCE 

EQUIVALENCE (GRW,KEL),(RBJ(1,9),AMV(2,4» 

There are two EQUIVALENCE groups in the 
statement: 

• GRW,KEL 

• RBJ(1,9),AMV(2,4) 

Assume that: 

• GRW is a real variable. 

• KEL is an integer variable. 

• RBJ is a real array dimensioned as 
(9,9). 

• AMV is a real array dimensioned as 
(9,4) • 

Figure 36 
text created 
statement. 

illustrates the intermediate 
for the above EQUIVALENCE 

r-------------T-------------, 
I 99 I not used I 
~-------------+-------------+-------------, 
I p (GRW) I 1 I 0 I 
~------------+-------------+-------------~ 
I p(KEL) I 1 I 0 I 
~------------_+-------------i-------------J 
I OOOF I 
~------------+-------------T-------------, 
I p(RBJ) I 81 . I 72 I 
t-------------+-------------+-------------i 
I p(AMV) I 36 I 28 I 
t-------------+-------------i-------------~ 
I OOOF I 00000001 I 
t-------------+-------------T-------------~ 
I 2 bytes I 2 bytes I 2 bytes I L-____________ i _____________ i _____________ J 

Figure 36. Example of EQUIVALENCE 
Intermediate Text 

READ/WRITE and FIND Statements 

Phase 10E generates intermediate text 
for: (1) both sequential and direct access 
READ/WRITE statements, and (2) direct 
access FIND statements. (Phase 10E inter­
prets the FIND statement as a direct access 
READ statement without format and without 
I/O list.) 

The intermediate text generated for both 
sequential and direct access READ/WRITE 
statements is essentially the same. The 
main difference is that additional inter­
mediate text must be generated for direct 
access statements for the integer expres­
sion (r) that represents the relative posi­
tion within the data set of the record to 
be read or written. 

If the integer expression contains any­
thing other than a constant, or a nonsub­
scripted integer variable, Phase 10E gener­
ates special intermediate text to evaluate 
that expression. This special text is 
treated as an arithmetic expression. Phase 
10E also sets a switch (FDATEMP) in the 
communication area that indicates to Phase 
15 that an integer work area must be 
allocated. 

Figure 37 illustrates the intermediate 
text generated for a general I/O statement 
(that is, a sequential access READ or WRITE 
statement: or a direct access READ, WRITE, 
or FIND statement). 

EXAMPLES OF INTERMEDIATE TEXT CREATED FOR 
SPECIFIC I/O STATEMENTS: The following 
figures illustrate the intermediate text 
generated by Phase 10E for specific I/O 
statements. 

Figure 38 illustrates the intermediate 
text generated for the following sequential 
access READ statement. 

READ (1,10) (A(N),N=l,lO), B 

Figure 39 illustrates the intermediate 
text generated for the following direct 
access WRITE statement. 

WRITE (5'I(J),10) (A(N),N=l,lO),B 

Figure 40 illustrates the intermediate 
text generated for the following direct 
access FIND statement. 

FIND (3'5) 

Appendix F: Intermediate Text 111 



r-----------------------------T----------------------------T----------------------------, 
I adjective code I mode/type field I pointer field I 
I field (1 byte) I (1 byte) I (2 bytes) I 
~-----------------------------+----------------------------+----------------------------1 
I I integer I I 
I arithmetic I work area I 0000 I 
~-----------------------------~----------------------------~----------------------------~ I intermediate text for subscripted expression (r) 1 I 
~-----------------------------T----------------------------T----------------------------1 
I end mark I 00 I 0000 I 
~-----------------------------+----------------------------+----------------------------~ 
I IOCODE 2 I DACODE 3 I 0000 I 
~-----------------------------+----------------------------+----------------------------1 
I I uni t I u 't I 
I ~----------------------------+----------------------------1 I I integer variable I p(u) I 
~-----------------------------+----------------------------+----------------------------~ 
I I integer variable I I 
I I or constant I per) I 
I • 5 ~----------------------------+----------------------------~ 
I I integer work area I 0000 I 
~-----------------------------+----------------------------+----------------------------1 
I I statement I I 
I , I number I p(f) 6 I 
~-----------------------------+----------------------------+----------------------------~ 
I ) I 00 I 0000 I 
~-----------------------------~----------------------------~----------------------------1 
I intermediate text for I/O list if any 7 I 
~-----------------------------T----------------------------T----------------------------~ 
I I I internal I 
I end mark I 00 I statement number I 
~-----------------------------~----------------------------~----------------------------~ 
1This intermediate text is not created for: (1) sequential access I/O statements, orl 

(2) direct access I/O statements if r (the integer expression indicating the relative 
position within a data set of the record to be read or written) is a constant or a 
nonsubscrip~ed integer variable. 

2IOCODE = A9, for non-formatted write 
= AA, for non-formatted read 

AB, for formatted write 
= AC, for formatted read 

3DACODE 00, for sequential access READ/WRITE 
= 80, for direct access READ/WRITE 
= CO, for direct access FIND 

'tu is an integer constant or integer variable that represents a unit number. For 
direct access statements, u must be followed by an apostrophe ('). 

5This intermediate text is not created for sequential access I/O statements. 
6f is optional and, if given, is the statement number of the F'ORMAT statement 
describing the format of the data to be read or written. 

171/0 list is optional and, if given, is a series of variable or array names, separated 1 
I by commas. The names represent the storage locations to be read into or written from. I L _______________________________________________________________________________________ J 

Figure 37. Intermediate Text Created for General I/O Statement 

112 



r-----------------------------T----------------------------T----------------------------, 
1 adjective code field 1 mode/type field 1 pointer field I 
1 (1 byte) I (1 byte) I (2 bytes) I 
~-----------------------------+----------------------------+----------------------------~ 
I I sequential I I 
I formatted read I access I/O I 0000 I 
~-----------------------------+----------------------------+----------------------------~ 
1 ( 1 integer variable I p (I) I 
~-----------------------------+----------------------------+------~---------------------~ I , I statement number I p(10) I 
~----------------------------+----------------------------+----------------------------~ 
I ) I 00 I 0000 I 
~-----------------------------+----------------------------+----------------------------~ I ( I real subscripted I peA) I 
I 1 variable I I 
~-----------------------------+----------------------------+----------------------------~ 
1 SAOP I 00 I offset I 
~-----------------------------~----------------------------+----------------------------~ I p(subscript information) I p(dimension I 
1 1 information) 1 
~-----------------------------T----------------------------+----------------------------~ 
I , I integer variable I peN) I 
~-----------------------------+----------------------------+----------------------------i 
1 I immediate DO I 1 I 
I I parameter I I 
~-----------------------------+----------------------------+----------------------------~ 
1 I immediate DO I 10 I 
I I parameter I I 
~-----------------------------+----------------------------+----------------------------~ 
I 1 I immediate DO I 1 I 
I I parameter I I 
~-----------------------------+----------------------------+----------------------------~ 
I ) I 00 I 0000 I 
~-----------------------------+----------------------------+----------------------------i 
I , I real variable I p (B) I 
.-----------------------------+----------------------------+----------------------------i 
I end mark I 00 I internal statement I 
I I I number I 
~-----------------------------~----------------------------~----------------------------1 
11If the third DO parameter is missing, Phase 10E assumes a value of 1. I L _______________________________________________________________________________________ J 

Figure 38. Intermediate Text Created for READ (1,10) (A(N),N=1,10),B 

Appendix F: Intermediate Text 113 



r-----------------------------T----------------------------T----------------------------, 
I adjective code field I mode/type field I pointer field I 
I (1 byte) I (1 byte) I (2 bytes) I 

~-----------------------------+----------------------------+----------------------------~ 
I arithmetic I integer work area I 0000 I 

~-----------------------------+----------------------------+----------------------------~ 
I I subscripted I I 
I I integer variable I p(I) I 

~-----------------------------+----------------------------+----------------------------~ 
I SAOP I 00 I offset I 

~-----------------------------~----------------------------+----------------------------~ I p(subscript information) I p(dimension information) I 
~-----------------------------T----------------------------+----------------------------~ 
I end mark I 00 I 0000 I 
~-----------------------------t----------------------------t----------------------------~ I formatted read I direct access I/O I 0000 I 
~-----------------------------t----------------------------+----------------------------~ I ( I uni tip ( 5 ) I 
~-----------------------------t----------------------------t----------------------------~ 
I ' I integer work area I 0000 I 
~-----------------------------t----------------------------t----------------------------~ I , I statement number I p(10) I 
~-----------------------------t----------------------------t----------------------------~ 
I ) I 00 I 0000 I 
~-----------------------------t----------------------------t----------------------------~ 
I I real subscripted I I 
I ( I variable I p (A) I 
~-----------------------------t----------------------------t----------------------------~ 
I SAOP I 00 I offset I 
~-----------------------------~----------------------------+----------------------------~ I p(subscript information) I p(dimension information) I 
~-----------------------------T----------------------------+----------------------------~ I , I integer variable I peN) I 
~-----------------------------t----------------------------t----------------------------i I = I immediate DO parameter I 1 I 
~-----------------------------t----------------------------t----------------------------i I , I immediate DO parameter I 10 I 
~-----------------------------t----------------------------+----------------------------~ 
I , I immediate DO parameter I 1 I 
~-----------------------------t----------------------------+----------------------------i 
I ) I 00 I 0000 I 
~-----------------------------t----------------------------+----------------------------~ I , I real variable I p (B) I 
~-----------------------------t----------------------------t----------------------------i 
I end mark I 00 I internal statement nwnberl L-____________________________ ~ ____________________________ ~ ____________________________ J 

Figure 39. Intermediate Text Created for WRITE (S'I(J), 10) (A(N),N=1,10), B 

r-----------------------------T----------------------------T----------------------------, 
I adjective code field I mode/type field I pointer field I 
I (1 byte) I (1 byte) I (2 byt es ) I 
~-----------------------------+----------------------------t----------------------------~ I non-formatted I direct access I I 
I read 'I/O for FIND I 0000 I 
~-----------------------------+----------------------------t----------------------------~ 
I ( I unit I p(3) I 
~-----------------------------+----------------------------+----------------------------i 
I ' I constant I peS) I 
~-----------------------------+----------------------------+----------------------------i 
I ) I 00 I 0000 I 
~-----------------------------t----------------------------t----------------------------i 
I end mark I 00 I internal I 
I I I statement number I L _____________________________ ~ ____________________________ ~ ____________________________ J 

Figure 40. Intermediate Text Created for FIND (3'5) 

114 



MODIFYING INTERMEDIATE TEXT 

The intermediate text is created by 
Phases 100 and 10E, and is modified by 
Phases 14, 15, and 20. This modification 
prepares the intermediate text for use by 
Phase 25 in -the generation of machine­
language instructions. The modifications 
made to the intermediate text are 
discussed, phase by phase, in the following 
pages. 

Phase 14 

During Phase 14 processing, the inter­
mediate text is modified in the following 
ways: 

• Replacement of dictionary pointers. 

• Modification of I/O statement inter­
mediate text. 

• Modification of computed GO TO inter­
mediate text. 

• Modification of RETURN 
text. 

intermediate 

REPLACEMENT OF DICTIONARY POINTERS: Dic­
tionary pointers in the intermediate text 
are replaced by information essential for 
the processing to be performed by subse­
quent phases of the compiler. 

Figure 41 illustrates this modification 
to intermediate text entries. 

r-------------------------------------------T-------------------------------------------, 
I Input to Phase 14 I Output from Phase 14 I 
~-------------------------------------------+-------------------------------------------i 
I For: I the dictionary pointer is replaced by: I 
~-------------------------------------------+-------------------------------------------i 
I variables, constants, arrays, and external I the relative address assigned by I 
I functions, I Phase 12. I 
I I I 
I r-----------T-----------T-----------, I r-----------T-----------T-----------, I 
I I adjective I mode/type I I I I adjective I mode/type I I I 
I I code I of ACCESS I p(ACCESS) I I I code I of ACCESS I a (ACCESS) I I 
I ~-----------+-----------+-----------~ I ~-----------+-----------+-----------i I 
I I 1 byte I 1 byte I 2 bytes I I I 1 byte I 1 byte I 2 bytes I I I L ___________ ~ ___________ ~ ___________ J I L ___________ ~ ___________ ~ ___________ J I 

I I I 
~-------------------------------------------+-------------------------------------------i 
I data set reference numbers, I the data set reference number. I 
I I I 
I r-----------T-----------T-----------, I r-----------T-----------T-----------, I 
I I ( I mode/type I p(3) I I I ( I mode/type I 3 I I 
I ~-----------+-----------+-----------~ I ~-----------+-----------+-----------~ I 
I I 1 byte I 1 byte I 2 bytes 1 I I 1 byte I 1 byte I 2 bytes I I I L ___________ ~ ___________ ~ ___________ J I L ___________ ~ ___________ ~ ___________ J I 

I I I 
~-------------------------------------------+-------------------------------------------~ 

statement functions, I the SF number assigned by Phase 14. 

definition 
r-----------T-----------T-----------, 
ISF defini- Ireal state-I I 
ltion adjec-Iment func- 1 p(SF) I 
Itive code Ition I I 
~-----------+-----------+-----------~ 
I 1 byte I 1 byte I 2 bytes I L ___________ ~ ___________ ~ ___________ J 

~ 

I 
I 
I 
I 

r-----------T-----------T-----------, 
ISF defini- Ireal state-Ithe rela- I 
Ition adjec-Iment func- Itive SF I 
Itive code Ition I number I 
~-----------+-----------+-----------i 
I 1 byte I 1 byte I 2 bytes I L ___________ ~ ___________ ~ ___________ J 

r-----------T-----------T-----------, r-----------T-----------T-----------, 
I SF use Ireal state-I I I SF use Ireal state-Ithe rela- I 
I adjective Iment func- I p(SF) I I adjective Iment func- Itive SF I 
I code I tion I I I code I tion I number I 
~-----------+-----------+-----------i ~-----------+-----------+-----------i 
I 1 byte I 1 byte I 2 bytes I I 1 byte I 1 byte I 2 bytes 1 L ___________ ~ ___________ ~ ___________ J L ___________ ~ ___________ ~ ___________ J 

-------------------------------------------~-------------------------------------------
Figure 41. Replacement of Dictionary Pointers by Phase 14 

Appendix F: Intermediate Text 115 



MODIFICATION OF I/O STATEMENT INTERMEDIATE 
TEXT: An I/O statement is modified in two 
ways. A begin I/O intermediate text word 
is inserted in the intermediate text for 
each element of an I/O list. Implied DOs 
are detected, and implied DO and end DO 
intermediate text words are entered in the 
text. An end I/O is placed at the end of 
the I/O list. 

These modifications are illustrated in 
Figures 42 and 43. The intermediate text 
in these figures is developed from the 
following sequential access non-formatted 
WRITE statement: 

WRITE (N) «A(I,J) ,J=1,10) ,1=1,15) 

r----------T------------T-----------------, 
ladjective Imode/type Ipointer field I 
I code fieldl field I (2 bytes) I 
I (1 byte) I (1 byte) I I 
~----------+------------+-----------------~ 
Inonformat-Isequential I I 
Ited write laccess I/O 10000 I 
~----------+------------+-----------------~ 
I( linteger var·lp(N) I 
~----------+------------+-----------------~ 
P 100 10000 I 
~----------+------------+-----------------~ 
1< 100 10000 I 
~----------+------------+-----------------~ 
I Ireal sub- I I 
I( Iscript var. Ip(A) I 
~----------+------------+-----------------1 
ISAOP 100 I offset I 
~----------~------------+-----------------1 
Ip(subscript) Ip(dimension) I 
~----------T------------+-----------------~ 
I, I integer var·lp(J) I 
~----------+------------+-----------------~ 
I I immediate 001 I 
I = I parameter 11 I 
~----------+------------+-----------------1 
I limmediate 001 I 
I, I parameter 110 I 
~----------+------------+-----------------i 
I, I parameter 11 I 
~----------+------------+-----------------~ 
P 100 10000 I 
~----------+------------+-----------------~ 
I, I integer var·lp(I) I 
~----------+------------+-----------------i 
I I immediate 001 I 
1= I parameter 11 I 
~----------+------------+-----------------i 
I limmediate 001 I 
I, I parameter 115 I 
~----------+------------+-----------------i 
I I immediate 001 I 
I, I parameter 11 I 
~----------+------------+-----------------i 
P 100 10000 I 
~----------+------------+-----------------i 
lend mark 100 linternal stmt no.1 L __________ ~ ____________ ~ _________________ J 

Figure 42. Example of Input to Phase 14 

116 

r----------T------------T-----------------, 
ladjective Imode/type Ipointer field I 
Icode fieldlfield I (2 bytes) I 
I (1 byte) I (1 byte) I I 
~----------+------------+-----------------i 
I non- I I I 
Iformatted Isequential I I 
I write laccess I/O 10000 I 
~----------+------------+-----------------i 
I I integer I I 
I ( I variable laddress(N) I 
~----------+------------+-----------------i 
lend mark 1100 10000 I 
~----------+------------+-----------------i 
limplied 00100 10000 I 
~----------+------------+-----------------1 
I I integer I I 
I, I variable I addr:ess (I) I 
~----------+------------+-----------------i 
I limmediate 001 I 
1= I parameter 11 I 
~----------+------------+-----------------i 
I limmediate 001 I 
I, I parameter 115 I 
~----------+------------+-----------------i 
I limmediate 001 I 
I, I parameter 11 I 
~----------+------------+-----------------i 
limplied DOIOO 10000 I 
~----------+------------+-----------------i 
I I integer I I 
I , I variable I address (J) I 
~----------+------------+-----------------i 
I I immediate DOl I 
I = I parameter 11 I 
~----------+------------+-----------------i 
I limmediate 001 I 
I, I parameter 110 I 
~----------+------------+-----------------i 
I limmediate 001 I 
I, I parameter 11 I 
~----------+------------+-----------------i 
Ibegin I/O 100 10000 I 
~----------+------------+-----------------i 
ISAOP 100 loffset I 
~----------~------------+-----------------i 
Ip(subscript) Ip(dimension) I 
~----------T------------+-----------------i 
I I real I I 
I ( Isubscripted laddress(A) I 
I I variable I I 
~----------+------------+-----------------i 
lend DO 100 10000 I 
~----------+------------+-----------------i 
lend DO 100 10000 I 
~----------+------------+-----------------i 
lend I/O 100 10000 I 
~----------+------------+-----------------i 
I I I internal I 
lend mark 100 I statement I 
I I I number I 
~----------~------------~-----------------i 
11 An end mark is inserted prior to the 1/01 
I list. This allows Phase 20 to treat thel 
I I/O list as a separate statement. I L-________________________________________ J 

Figure 43. Example of output from Phase 14 



MODIFICATION OF COMPUTED GO TO STATEMENTS: 
During Phase 14 processing, a count of the 
number of statement numbers in the computed 
GO TO statement is inserted into the inter­
mediate text for that statement. This 
simplifies the processing of this inter­
mediate text for the following phases. The 
intermediate text is rearranged so that the 
word containing the integer variable pre­
cedes the count word. 

Figure 44 illustrates the intermediate 
text input to Phase 14 for the following 
computed GO TO statement. .• 

GO TO (11,11,42,23,99),1 

r-----------------T------------T----------, 
I adjective code I mode/type I pointer I 
I field I field I field I 
I (1 byte) I (1 byte) I (2 bytes) I 
~-----------------+------------+----------i 
I computed GO TO I 00 I 0000 I 

~-----------------+------------+----------i 
I ( I statement I p(ll) I 
I I number I I 
~-----------------+------------+----------i 
I I statement I p(ll) I 
I I number I I 
~-----------------+------------+----------~ 
I I statement I p(42) I 
I I number I I 
~-----------------+------------+----------i 
I ,statement I p(23) , 
I I number I I 
~-----------------+------------+----------i 
I I statement I p(99) , 
I I number I , 
~-----------------+------------+----------i 
I ) ,00 I 0000 I 
~-----------------+------------+----------i 
I ,integer 'p(I) , 
, ,variable" 
~-----------------+------------+----------i 
I end mark ,00 I internal , 
I I I statement, 
I I I number I L _________________ 4 ____________ 4 __________ J 

Figure 44. Intermediate Text Input to 
. Phase 14 for a Computed GO TO 

Statement 

Figure 45 illustrates the output of 
Phase 14 for the above computed GO TO 
statement. 

r-----------------T------------T----------, 
I adjective code I mode/type I pointer I 
I field I field I field I 
I (1 byte) I (1 byte) I (2 bytes), 
~-----------------+------------+----------i 
I computed GO TO I 00 I 0000 I 
~-----------------+------------+----------i 
I I integer I a(I) I 
I I variable I , 
~-----------------+------------+----------i 
I count I 00 ,5 , 
~-----------------+------------+----------~ 
I ( I statement I p(ll) I 
I , number I I 
~-----------------+------------+----------~ 
I ,statement ,p(11) I 
I I number I I 
~-----------------+------------+----------~ 
I I statement ,p(42) I 
I , number I , 
~-----------------+------------+----------~ 
I I statement I p(23) , 
I , number I , 
~-----------------+------------+----------i 
I I statement I p(99) I 
I I number I I 
~-----------------+------------+----------i 
I ) I 00 I 0000 I 
~-----------------+------------+----------i 
I end mark ,00 I internal I 
I I , statement I 
I I I number I L _________________ 4 ____________ 4 __________ J 

Figure 45. Intermediate Text output From 
Phase 14 for a Computed GO TO 
statement 

MODIFICATION OF RETURN STATEMENT INTERMEDI­
ATE TEXT: If a RETURN statement appears 
within a main program, Phase 14 modifies 
the adjective code field so that a STOP is 
indicated. If the RETURN statement is not 
within the main program, no modification is 
made. 

Phase 15 

During Phase 15 processing, the follow­
ing intermediate text modifications are 
made: 

• Replacement of adjective codes and 
mode/type codes. 

• Reordering of intermediate text for 
arithmetic expressions. 

• Reordering of intermediate text for 
DEFINE FILE statements. 

Appendix F: Intermediate Text 117 



REPLACEMENT OF ADJECTIVE CODES AND 
MODE/TYPE CODES: During the processing of 
arithmetic expressions, Phase 15 replaces 
the adjective codes (within the intermedi­
ate text entries for arithmetic 
expressions) by actual machine operation 
codes. Phase 15 also assigns registers to 
the operands in arithmetic expressions 
(when required); the corresponding register 
numbers are inserted in the mode/type 
fields of the intermediate text that rep­
resents those expressions. 

The result of the above modification is 
a transformation of the intermediate text 
entries for arithmetic expressions into a 
form that closely resembles the RX instruc­
tion format. 

The following figures indicate the 
replacement of adjective codes by machine 
operation codes, and the replacement of 
mode/type codes by registers. 

Figure 46 illustrates the intermediate 
text input to Phase 15 for the following 
arithmetic statement. 

PRI +VATE - VAR 

r------------T---------------T------------, 
I adjective I mode/type I pointer I 
I code field I field I field I 
I (1 byte) I (1 byte) I (2 bytes) I 
~------------+---------------+------------~ 
I arithmetic Ireal variable la(PRI) I 
I statement I I I 
~------------+---------------+------------~ 
1= 100 10000 I 
~------------+---------------+------------~ 
lunary plus Ireal variable I a (VATE) , 
~------------+---------------+------------~ 
1- Ireal variable la(VAR) I 
~-----------+---------------+------------~ 
I end 100 I internal I 
I mark I I statement I 
I I I number I l ____________ ~ _______________ ~ ____________ J 

Figure 46. Intermediate Text Input to 
Phase 15 for an Arithmetic 
Statement 

118 

Figure 47 illustrates the intermediate 
text output from Phase 15 for this state­
ment. 

r------------T---------------T------------, 
I adjective I mode/type I pointer I 
I code field I field I field I 
I (1 byte) , (1 byte) I (2 bytes) , 
~------------+---------------+------------~ 
I arithmetic ,real variable la(PRI) , 
I statement I I , 
~------------+------T--------+------------~ 
IL Ireg.#3Ivariablela(VATE) I 
~------------+------+--------+------------i 
IS Ireg.#3I variablela(VAR) I 
~------------+------+--------+------------~ 
1ST Ireg.#3Ivariablela(PRI) 1 I 
~------------+------+--------+------------~ 
lend 100 I I internal I 
I mark I I I statement I 
I I I I number I 
~------------~------~--------~------------i 
11 The pOinter field contains the address I 
I of the resultant field of the arithmetic I 
I sU~~~. I L _________________________________________ J 

Figure 47. Intermediate Text Output From 
Phase 15 for an Arithmetic 
Statement 

Note: The first operand VATE, is loaded 
into register #3. The second operand, VAR, 
is subtracted from VATE. The result is 
stored in the resultant field, PRI. 

In addition, registers are assigned and 
are inserted in the mode/type field of the 
following: 

• Intermediate text entries for exponen­
tiation. 

• Intermediate text entries for in-line 
functions, referenced subprograms, and 
statement function calls. 

• Intermediate text entries for subscript 
expressions. 

Figure 48 illustrates these modifica­
tions to the intermediate text. 



r-------------------------------------------T-------------------------------------------, 
I I I 
I Input To Phase 15 I Output From Phase 15 I 
I I I 
t-------------------------------------------t-------------------------------------------i 
I For: I Phase 15 assigns: I 
~-------------------------------------------+-------------------------------------------~ I exponentiation, I a register to contain the result of the I 
I I required library subprogram execution. I 
I I I 
I r-----------T-----------T-----------, I r-----------T---T-------T-----------, I 
I I I mode/type I I I I I I result I I I 
I 1** I information I a(POWER) I I 1** I 0 I reg la(POWER) I I 
I t-----------+-----------+-----------~ I t-----------+---~-------+-----------i I 
I I 1 byte I 1 byte I 2 bytes I I I 1 byte I 1 byte I 2 bytes I I I L ___________ ~ ___________ L ___________ J 1 L ___________ L ___________ ~ ___________ J I 

~-------------------------------------------+-------------------------------------------i 
in-line functions, one or two registers (depending 

r-----------T-----------T-----------, 
lin-line I Icode num- I 
I function Inot used Iber of in- I 
ladj. code I Iline funct.1 
t-----------+-----------+-----------i 
I I I I 
IF( Inot used la(argument) I 
I 1 I I 
t-----------+-----------+-----------i 
I 1 byte I 1 byte 12 bytes I L ___________ ~ ___________ ~ ___________ J 

on the specific in-line function) 
to be used as argument registers. 
The register specified in the Rl 
field is used as the result register. 

r-----------T----T------T-----------, 
I I I I I 
I I I not I I 
Iloa,d I Rl I us ed I a (argument) I 
t-----------+----+------+-----------i 
lin-line I I Icode num- I 
I function IR2 I Rl Iber of in- I 
ladj. code I I Iline funct·1 
t-----------+----~------+-----------i 
I 1 byte I 1 byte I 2 bytes I L ___________ ~ ___________ ~ ___________ J 

t-------------------------------------------+-------------------------------------------i I subscript expressions, I a work register (to be used by I 
I I Phase 20) to aid in the computa- I 
I I tion of the subscript expression. I 
I I I 
I r-----------T-----------T-----------, I r-----------T----T------T-----------, I 
I I subscript I mode/type I I I I subscript I I work I I I 
I ladj. code I information I offset I I ladj. code 10 Ireg. ,offset I I 
I t-----------+-----------+-----------i I t-----------+----~------+-----------i I I I 1 byte I 1 byte I 2 bytes I I I 1 byte, 1 byte, 2 bytes I I I L ___________ ~ ___________ ~ ___________ J I L ___________ ~ ___________ ~ ___________ J I 
L ___________________________________________ ~ ___________________________________________ J 

Figure 48. Assignment of Registers by Phase 15 

REORDERING OF INTERMEDIATE TEXT FOR ARITH­
METIC EXPRESSIONS: Phase 15 reorders the 
intermediate text entries within arithmetic 
expressions so that the object module 
instructions produced by subsequent phases 

are generated according to a hierarchy of 
operators. 

The following figures indicate this 
reordering process. 

Appendix F: Intermediate Text 119 



Figure 49 illustrates the intermediate 
text input to Phase 15 for the following 
arithmetic statement. 

DGM = BCR*(WRG+WAR) 

r----------T--------------------T---------, 
ladjective I mode/type I pointer I 
Icode fieldl field I field I 
I (1 byte) I (1 byte) I (2 bytes) I 
~----------+--------------------+---------i 
I arithmetic I real variable I a(DGM) I 
~----------+--------------------+---------i 
1= I real variable I a(BCR) I 
~----------+--------------------+---------i 
1* I 00 I 0000 I 
~----------+--------------------+---------i 
I ( I real variable I a (WRG) I 
~----------+--------------------+---------i 
1+ I real variable I a(WAR) I 
~----------+--------------------+---------i 
I) I 00 I 0000 I 
~----------+--------------------+---------~ 
lend I linternal I 
I mark I 00 I statement I 
I I I number I L __________ L ____________________ L _________ J 

Figure 49. Unordered Intermediate Text for 
an Arithmetic statement 

Figure 50 illustrates the intermediate 
text output from Phase 15 for this state­
ment. 

r----------T--------------------T---------, 
I adjective I mode/type I pointer I 
Icode fieldl field I field I 
I (1 byte) I (1 byte) I (2 bytes) I 
~----------+--------------------+---------~ 
I arithmetic I real variable I a (DGM) I 
~----------+--------T-----------+---------~ 
ILE I register I variable I a (WRG) I 
I I 6 I information I I 
~----------+--------+-----------+---------i 
IAE I register I variable I a (WAR) I 
I I 6 I information I I 
~----------+--------+-----------+---------i 
IME I register I variable I a (BCR) I 
I I 6 I information I I 
~----------+--------+-----------+---------i 
ISTE I register I variable I a (DGM) I 
I I 6 I information I I 
~----------+--------~-----------+---------i 
lend I linternal I 
I mark I 00 I statement I 
I I I number I L __________ ~ ____________________ ~ _________ J 

Figure 50. Reordered Intermediate Text for 
an Arithmetic Statement 

120 

REORDERING OF INTERMEDIATE TEXT FOR DEFINE 
FILE STATEMENTS: Phase 15 reorders the 
intermediate text for DEFINE FILE state­
ments to facilitate the generation of TXT 
card images for the parameter lists includ­
ed in those statements. Each parameter 
list is reordered into a three-argument 
format and is considered as a separate 
DEFINE FILE statement. (The parameter 
lists define the format of the direct 
access data sets to be used at 
object-time.) 

The following figures illustrate the 
reordering process. 

Figure 51 illustrates the input to Phase 
15 for the following DEFINE FILE statement. 

DEFINE FILE 2(50,20,L,I2), 3(100,20,U,J3) 

r-------------T-------------T-------------, 
I adjective I mode/type I pointer I 
I code field I field I field I 
I (1 byte) I (1 byte) I (2 bytes) I 
~-------------+-------------+-------------i 
I DEFINE FILE I unit I 2 I 
~-------------+-------------+-------------i 
I I integer I I 
I ( I constant I a(50) I 
~-------------+-------------+-------------i 
I , I integer I I 
I I constant I a (20) I 
~-------------+-------------+-------------i 
I I immediate I I 
I , I constant I L I 
~-------------+-------------+-------------i 
I I integer I I 
I , I variable I a(I2) I 
~-------------+-------------+-------------i 
I ) I unit I 3 I 
~-------------+-------------+-------------i 
I I integer I I 
I , I constant I a(lOO) I 
~-------------+-------------+-------------i 
I I integer I I 
I , I constant I a (20) I 
~-------------+-------------+-------------i 
I I immediate I I 
I , I constant I U I 
~-------------+-------------+-------------i 
I I integer I I 
I , I variable I a (J3) I 
~-------------+-------------+-------------i 
I ) I 00 I 0000 I 
~-------------+-------------+-------------i 
I I I internal I 
I end mark I 00 I statement I 
I I I number I L _____________ ~ _____________ ~ _____________ J 

Figure 51. Intermediate Text Input to 
Phase 15 for a DEFINE FILE 
Statement 



Figure 52 illustrates the output from 
Phase 15 for the statement. 

r-------------T-------------T-------------, 
I adjective I mode/type I pointer I 
I code field I field I field I 
I (1 byte) I (1 byte) I (2 bytes) I 
~-------------t-------------t-------------i 
I DEFINE FILE I 00 I 0000 I 
~-------------t-------------t-------------~ 
I 00 I 00 I 0003 1. I 
t-------------t-------------t-------------i 
I I integer I I 
I 2 I constant I a(50} I 
t-------------t-------------+-------------i 
I I integer I I 
I L I constant I a(20} I 
t-------------t-------------t-------------i 
I I integer I I 
I 80 2 I variable I a(I2} I 
t-------------t-------------t-------------i 
I end mark I 00 I 0000 I 
t-------------t----------~--t-------------i 
I DEFINE FILE I 00 I 0000 I 
~-------------t-------------t-------------i 
I 00 I 00 I 0003 1. I 
t-------------t-------------t-------------i 
I I integer I I 
I 3 I constant I a(100} I 
t-------------t-------------t-------------i 
I I integer I I 
I U I constant I a(20} I 
~-------------t-------------t-------------i 
I I integer I I 
I 00 3 I variable I a(J3} I 
t-------------t-------------+-------------~ 
I I I internal I 
I end mark I 00 I statement I 
I I I number I 
t-------------i-------------i-------------i 
I1.The constant 0003 indicates that thet 
I next three intermediate text words con-I 
I tain a parameter list. I 
12The constant 80 indicates to Phase 201 
I that this is not the last parameter listl 
I in the DEFINE FILE statement. I 
13 The constant 00 indicates to Phase 201 
I that this is the last parameter list inl 
I the last DEFINE FILE statement. I L _________________________________________ J 

Figure 52. Intermediate Text Output From 
Phase 15 for a DEFINE FILE 
Statement 

Phase 20 

Phase 20 optimizes the intermediate text 
entries for subscript expressions. This 
optimization consists of modifying portions 
of existing subscript intermediate text and 
creating new subscript intermediate text 
for literals that are generated during the 
subscript optimization process. The chan­
ges made to subscript intermediate text 

will be discussed by examining a general 
subscript expression as it appears in the 
input to Phase 20 and by examining the 
subscript intermediate text output from 
Phase 20 for this expression. 

SUBSCRIPT INTERMEDIATE TEXT INPUT: The 
intermediate text input to Phase 20 for a 
general expression is shown in Figure 53. 

r-----------------T----------T------------, 
I adjective code Imode/type I pointer I 
I field I field I field I 
I (1 byte) I (1 byte) I (2 bytes) I 
.-----------------t-----T----t------------~ 
I adjective code I 0 IW loffset I 
t-----------------i-----i----+------------i 
I p(subscript} Ip(dimension} I 
t-----------------T-----T----t------------i 
I OP I R ttypela(variable} I 
.-----------------i-----i----~------------i 
I Adjective code contains the adjective 
Icode for a subscripted variable portion 
lof text. 
I 
10 contains a zero value. 
I 
W contains a work register assigned by 
Phase 15. 

Offset contains the value of the offset 
portion of the array displacement. 

p(subscript} contains the pointer to sub­
script information in the overflow table 
for this expression. 

p(dimension} contains the pointer to 
dimension information in the overflow I 
table for this expression. I 

lOP contains 
tby Phase 15. 
I 
IR contains a 

I 
the operation code assigned I 

I 
I 

register assigned by Phasel 
I 
I 

IType contains the residual (since it isl 

115. 
I 

Ino longer necessary) type information fori 
Ithe subscripted variable. I 
I I 
la(variable) contains the address of thel 
Isubscripted variable. I L _________________________________________ J 

Figure 53. Subscript Intermediate Text 
Input Format 

SUBSCRIPT INTERMEDIATE TEXT OUTPUT: Sub­
script intermediate text output from Phase 
20 depends on the previous optimization (if 
any) of the subscript expression. Three 
adjective codes are used to indicate the 
different conditions that can be present in 
subscript intermediate text output. These 
conditions are explained in the following 
paragraphs. 

Appendix F: Intermediate Text 121 



SAOP (Subscript Arithmetic Operator) Adjec­
tive Code: This code indicates that a 
subscript expression has not been previous­
ly optimized, and that an offset literal 
was not generated for the value resulting 
from the addition of the offset portion of 
the array displacement to the subscripted 
variable address displacement. Subscript 
text output associated with an SAOP adjec­
tive code is shown in Figure 54. 

r-----------------T---------T-------------, I adjective code I mode/type I pointer I 
I field I field I field I 
I (1 byte) I (1 byte) I (2 bytes) I 
~-----------------+----T----+-------------~ 
I SAOP I N I W loffset I 
~-----------------~----~----+-------------~ 
I p(subscript) la(Cl*L) I 
~---------------------------+-------------~ 
I a(C2*Ol*L) la(C3*Ol*02*L) I 
~-----------------T----T----+-------------~ 
I OP I R I X I a (variable) I 
~-----------------~----i----~-------------~ 
SAOP contains an adjective code designat-I 
ing the form of the intermediate sub-I 
script text. I 

I 
N contains the number of dimensions ofl 
the subscripted variable. I 

I 
a(Cl*L), a(C2*Ol*L), and a(C3*Ol*02*L)I 
contain the addresses of the literals I 
that combine to form the COL portion (see 
Appendix G) of the array displacement. N 
determines which addresses must appear. 
For example, if N is 1, only a(Cl*L) 
appears. (If the first literal, Cl*L, is 
a power of 2, that power appears instead 
of the address of that literal.) 

X contains the register assigned to the 
subscript expression for computation by 
Phase 20. 

Note: All other entries are as defined I 
lin Figure 53. I L _________________________________________ J 

Figure 54. Subscript Intermediate Text 
Output From Phase 20 -- SAOP 
Adjective Code 

XOP (Offset Literal) Adjective Code: This 
code indicates that the subscript expres­
sion has not been previously assigned a 
register and that an offset literal was 
generated for the value resulting from the 
addition of the offset portion of the array 
displacement to the displacement of the 
subscripted variable address. The sub­
script intermediate text output associated 
with an XOP adjective code is shown in 
Figure 55. 

122 

AOP (Arithmetic Operator Without Subscript) 
Adjective Code: This code indicates that 
the subscript expression has previously 
been assigned a register. The subscript 
intermediate text output associated with an 
AOP adjective code is shown in Figure 56. 

r-----------------T---------T-------------, 
I adjective code I mode/type I pointer I 
I field I field I field I 
I (1 byte) I (1 byte) I (2 bytes) I 
~-----------------+----T----+-------------~ 
I XOP I N I W la(generated I 
I I I I literal) I 
~-----------------~----i----+-------------~ 
I p(subscript) la(Cl*L) I 
~---------------------------+-------------~ 
I a (C2*Ol*L) la(C3*Ol*02*L)I 
~-----------------T----T----+-------------~ 
I OP I R I X I a (variable) I 
~-----------------~----~----~-------------~ 
IXOP contains an adjective code designat-I 
ling the form of the subscript intermedi-I 
late text. I 
I I 
la(generated literal) contains the address I 
lof the offset literal generated by Phase I 
120. I 
I I 
INote: All other entries are as defined inl 
IFigures 53 and 54. I L _________________________________________ J 

Figure 55. Subscript Intermediate Text 
Output from Phase 20 -- XOP 
Adjective Code 

r-----------------T---------T-------------, 
I adjective code I mode/type I pointer I 
I field I field I field I 
I (1 byte) I (1 byte) I (2 bytes) I 
~-----------------+----T----+-------------~ 
I AOP I 0 I B loffset I 
~-----------------+----+----+-------------i 
I OP I R I x I a (variable) I 
~--_--------------i----i----i-------------~ 
AOP contains an adjective code designat-
ing the form of subscript intermediate 
text. 

o contains a zero value. 

B contains an indicator. A hexadecimal 0 
indicates that the actual offset is in 
the offset field. A hexadecimal F indi­
cates that the address of the generated 
offset literal appears in the offset 
field. 

Note: All other entries are as defined inl 
IFigures 53 and 54. I L _________________________________________ J 

Figure 56. Subscript Intermediate Text 
Output from Phase 20 -- AOP 
Adjective Code 



Array displacement is the distance 
between the first element in an array and a 
specified element to be referenced from the 
array. To increase compilation efficiency, 
the array displacement is divided into 
portions and computed during different 
phases. 

Before discussing the actual computa­
tion, it is desirable to understand how an 
element is referenced in a 1-, 2-, and 
3-dimensional array. 

ONE DIMENSION 

Assume a 1-dimensional array of five 
elements~ expre~sed as A(S). To reference 
any given element in this array, the only 
factor to be considered is the length of 
each element. The third element, for exam­
ple, is two element lengths from the begin­
ning of the array. 

TWO DIMENSIONS 

For a 2-dimensional array, A(3,2), an 
element can no longer be thought of as a 
single array element. Instead, each ele­
ment in a 2-dimensional array consists of 
the number of array elements designated by 
the first number in the subscript expres­
sion used to dimension the array. For 
reference, an element in a 2-dimensional 
array will be called a dimension part. For 
example, in the array of A(3,2): 

A(l,l) A(2,1) A(3,1)-, Dimension Part 
r------------------------ J 

L>A(1,2) A(2,2) A(3,2) - Dimension Part 

APPENDIX G: ARRAY DISPLACEMENT COMPUTATION 

the first dimension part consists of 
A(l,l), A(2,1), and A(3,1). Note that the 
number of elements in each dimension part 
is the same as the first number (3) in the 
subscript expression used to dimension 
array A. 

Dimension parts are consistent in 
length. Length is determined by multiply­
ing the number of elements in a dimension 
part by the array element length. The 
resulting value is considered a dimension 
factor for the following discussion. (If 
the element length in array A is 4, the 
dimension factor is 3 times 4, or 12.) The 
dimension factor plays a significant role 
in referencing a specific element in a 
2-dimensional array. 

Before discussing how a specified ele­
ment is referenced, the hexadecimal number 
scheme used to address an array element 
must be considered. The first digit of the 
hexadecimal number scheme (as used in the 
compiler) is zero. The 16 hexadecimal 
digits are: 

0,1,2,3,4,S,6,7,8,9,A,B,C,D,E, and F. 

Consider that the element A(1,2) is to 
be referenced from the array dimensioned as 
A(3,2). Observation shows one dimension 
part must be bypassed in order to reference 
the specified element. The computation to 
reference this element requires the values 
in the subscript expression (1,2). Each 
number must be decremented by 1 to compen­
sate for the zero-addressing scheme used by 
the compiler. This leaves an expression of 
(0,1). The second number (1) dictates the 
number of dimension parts to be bypassed in 
order to arrive at the dimension part in 
which the specified element is located. 
Once this dimension part is found, the 
first number (0) indicates the number of 
elements in that dimension part that must. 
be bypassed to reference the specified 
element. 

Appendix G: Array Displacement Computation 123 



THREE DIMENSIONS 

The same reasoning can be projected into 
a 3-dimensional array. For a 3-dimensional 
array" A( 3,2,3), an element can neither be 
considered a single array element,- nor 
thought of as a dimension part. Each 
element in a 3-dimensional array consists 
of the number of dimension parts designated 
by the second number in the subscript 
expression used to dimension the array. 
For reference, therefore, an element in a 
3-dimensional array will be called a dimen­
sion section. For example, in the array 
A(3, 2, 3) : 

Dimension section 
A(l,l,l) A(2,1,1) A(3,l,1), - Dim.Part 

I 
r-----------------------------J 
L>A(1,,2,1) A(2,2,1) A(3,2,1), - Dim.Part 

I 
r-----------------------------J 

I 
IDimension section 
L>A(1,1,2) A(2,1,2) A(3,1,2), - Dim.Part 

I 
r-----------------------------J 

L>A(1,2,2) A(2,2,2) A(3,2,2), - Dim.Part 
I 

r-----------------------------J 

I 
IDimension section 
L>A(1,1,3) A(2,1,3) A(3,1,3), - Dim.Part 

I 
r-----------------------------J 

L>A(1,2,3) A(2,2,3) A(3,2,3) - Dim.Part 

the first dimension section consists of the 
dimension part beginning with A (1,1,1) and 
the dimension part beginning with A(1,2,1). 
In this example, we have three dimension 

sections, as specified by the third number 
in the subscript expression used to dimen­
sion the array. 

Again, the length of the dimension sec­
tions is consistent. The length, in this 
case, is determined by multiplying the 
number of elements in a dimension part by 
the number of dimension parts by the array 
element length. The resulting value is 
considered a dimension multiplier for the 
following discussion. (If the element 
length in array A is 4, the dimension 
multiplier is 3 times 2 times 4 or 24.) 

Consider that the element A (2,2,3) is 
to be referenced from the array dimensioned 
as A (3,2,3). Observation shows two dimen­
sion sections, one dimension part, and one 
array element must be bypassed in order to 
obtain the specified element. The computa­
tion to reference this element requires the 
values in the subscript expression (2,2,3). 
Each number must be decremented by 1 to 
compensate for the zero-addressing scheme 
used by the compiler. This leaves an 
expression of (1,1,2). The third number 
(2) indicates the number of dimension sec­
tions to bypass in order to arrive at the 
dimension section in which the specified 
element is located. The second number (1) 
indicates the number of dimension parts, 
within the referenced dimension section, 
that must be bypassed to arrive at the 
dimension part in which the specified ele­
ment is located. Once this dimension part 
is found, the first number (1) indicates 
the number of elements in that dimension 
part that must be bypassed to reference the 
specified element. The preceding example 
is illustrated in Figure 57. 

This concept of how a specified element 
is referenced from an array is generalized 
in the following text. 

r---------------------------------------------------------------------------------------, 
A(2,2,3) 

I 
I Zero-addressing adjustment 
V 

A(1,1,2) 
I I I 
I I I I I L ___ > 
I I I L _____ > 

I L _______ > 

Must be bypassed to 
1 dimension part 

2 dimension sections ! 
obtain specified element 

1 array element 

Figure 57. Referencing a Specified Element in an Array 

124 



General Subscript Form 

The general subscript form 
(C1*V1+J1,C2*V2+J2,C3*V3+J3) refers to some 
array, A, with dimensions (01, 02, 03). 
The required number of elements is speci­
fied by (C1*V1+J1)i (C2*V2+J2) *01; and 
(C3*V3+J3) *01*02, representing the first, 
second, and third subscript parameters mul­
tiplied by the pertinent dimension informa­
tion for each parameter. Therefore, the 
required number of elements for the general 
subscript form is: 

(C1*V1+J1)+(C2*V2+J2)*01+(C3*V3+J3)*01*02 

Array Displacement 

The array displacement for a subscript 
expression, specifically stated, is the 
required number of array elements multi­
plied by the array element length. There­
fore, the array displacement is: 

[(Cl*V1+J1)+(C2*V2+J2)*01+ 

Because of the zero-addressing scheme, the 
displacement is: 

(C1*Vl+Jl-l)*L+(C2*V2+J2-1)*D1*L+ 
(C3*V3+J3-1)*D1*D2*L 

This expression can be rearranged as: 

(C1*V1*L+C2*V2*D1*L+C3*V3*D1*D2*L)+ 
[(J1-1)*L+(J2-1)*01*L+(J3-1)*01*D2*L)1 

The first portion of the array displace­
ment is referred to as the COL (constant, 
dimension, length) portion and is derived 
from: 

C1*Vl*L+C2*V2+Dl*L+C3*V3*D1*D2*L 

V1, V2, and V3 are the variables of the 
expression and cannot be computed until the 
execution of the object module. This 
leaves the following components, which con­
stitute the CDL portion of the displace­
ment: 

C1*L is the first component, 
C2*D1*L is the second component, and 
C3*D1*D2*L is the third component. 

The second portion of the array dis­
placement: 

(J1-1)*L+(J2-1)*D1*L+(J3-1)*Dl*D2*L 

is known as the offset portion and is 
calculated by Phase iDE. The offset is 
calculated using the following formulas for 
1-, 2-, and 3- dimensional arrays. 

OFFSET=[J1-11*Length 

OFFSET=[(J1-1)+(J2-1)*D11 
* Length 

OFFSET=[(Jl-l)+(J2-1)*D1 
+(J3-1) *D1*D21 *Length 

1-dimensional 

2-dimensional 

3-dimensional 

This calculation is performed and the 
result is entered in the offset field of 
the intermediate text entry for that sub­
script. Refer to Appendix F for the inter­
mediate text format. 

The COL components are calculated during 
Phase 20. If the CDL component is a power 
of 2, that power replaces the offset field 
in the intermediate text entry. If the COL 
component is not a power of 2, a literal is 
formed and assigned an address (by Phase 
20). The address of the literal is then 
entered in the offset field of the inter­
mediate text entry. Refer to Appendix F 
for the intermediate text form and content. 

Phase 25 combines the COL components, 
the variables, and the offset to produce 
the array displacement. The procedure is 
as follows: the first component of the 'COL 
multiplied by' the first variable of the 
subscript expression (C1*L)*V1i plus the 
second component of the COL multiplied by 
the second variable of the subscript 
expression (C2*D1*L)*V2, plus the third 
component of the COL multiplied by the 
third variable of the subscript expression 
(C3*D1*D2*L)*V3; plus the offset: 

(Jl-l)*L+(J2-1)*01*L+(J3-1)*Dl*D2*L. 

Note: Table 26 illustrates the maximum 
sizes of the various arrays. 

Table 26. Array Size Maximums 
r--------------------T--------------------, 
I Array Type I Maximum Number I 
I I of Elements I 
~--------------------+--------------------i 
I Integer I 32767 I 
~--------------------+--------------------~ 
I Real I 32767 I 
~--------------------+--------------------~ 
I Oouble- I I 
I Precision I 16383 I L ____________________ ~ ____________________ J 

Appendix G: Array Displacement Computation 125 



APPENDIX H: RESIDENT TABLES 

The compiler uses the following resident 
tables: 

• The dictionary. 

• The overflow table. 

• The segment address list (SEGMAL). 

• The patch table. 

• The blocking table <resident only for 
PRFRM compilations). 

• The BLDL table (resident only for PRFRM 
compilations). 

• The reset table (resident only for 
PRFRM compilations). 

The dictionary contains information 
about variables, arrays, constants, data 
set reference numbers, etc., used in the 
source module. The overflow table contains 
all dimension, subscript, and statement 
number information within the source 
module. SEGMAL is used for main storage 
allocation within the compiler. The patch 
table contains information for modifying 
compiler components. The blocking table 
contains the information necessary for 
deblocking compiler input and blocking com­
piler output for PRFRM compilations. The 
BLDL table contains the information neces­
sary for transferring control from one 
component of the compiler to the next for 
PRFRM compilations. The reset table 
(RESETABL) is used to determine which, if 
any, of the record counts for SYSUTl and 
SYSUT2 must be reset. 

THE DICTIONARY 

Phase 5 allocates main storage for the 
dictionary. The dictionary (constructed by 
Phases 7, 100, and 10E) is used and modi­
fied by Phase 12 in address assignment, and 
is further used by Phase 14 when addresses 
from the dictionary replace pointers to the 
dictionary in the intermediate text entries 
(refer to Appendix F). For SPACE compila­
tions, Phase 14 frees the dictionary area 
of storage for use by subsequent phases. 

The dictionary is organized as a series 
of chains related by the dictionary index, 

126 

which indicates the first entry in each 
chain. There are 15 chains, used for 
various entries, as follows: 

• Eleven are organized on the basis of 
length of the symbol being entered 
<e.g., DO has a length of 2, END has a 
length of 3, etc.). The first chain is 
for entries of length 1, the second is 
for entries of length 2, the third is 
for entries of length 3, and so on. 

These chains contain entries for res­
erved words (chains 2-11), in-line 
functions, variables, and arrays. 

• One chain for real constants. 

• One chain for integer constants. 

• One chain for integer data set ref­
erence numbers. 

• One chain for double-precision con­
stants. 

Phase 7 Processing 

Phase 7 enters all reserved words (words 
that indicate a specific FORTRAN statement) 
and the dictionary index into the dictiona­
ry. 

Figure 58 illustrates the dictionary 
after it is constructed by Phase 7. 

Phases 100 and 10E Processing 

Additions to the dictionary occur as 
entries are made to the various chains 
during Phases 100 and 10E processing. To 
enter an item in the dictionary, the perti­
nent chain is located via the dictionary 
index. The chain is searched until the 
last entry is found. The current end-of­
chain indicator is replaced with a pointer 
to the new entry; the new entry is then 
marked as the end of the chain. 



For example, assume the variable ABC is 
to be entered in the dictionary. ABC 
belongs in the third chain of the diction­
ary (length 3). Using the dictionary 
index, the first entry of the chain for 
length 3 is obtained. Assume that Figure 
58 indicates the condition of the diction­
ary at this time. The chain for length 3 
is searched for the last entry (the entry 
for DIM), which is modified to appear as: 

The entry for ABC appears as: 

r--------------------T--------------------, 
I end of I entry for I 
I chain I ABC I L ____________________ ~ ____________________ J 

r--------------------T--------------------, 
Ipointer to the entrylentry for I 
Ifor ABC IDIM I L ____________________ ~ ____________________ J 

When the dictionary and overflow table 
overlap, a message is issued; no new 
entries are made; and compilation proceeds. 

DICTIONARY INDEX 
r---------------------------------------------------------------------------------, 
lend of the chain of length 1 

r--Ipointer to the first entry in the chain of 
rt--Ipointer to the first entry in the chain of 
I I Ipointer to the first entry in the chain of 
II Ipointer to the first entry in the chain of 
II Ipointer to the first entry in the chain of 
II Ipointer to the first entry in the chain of 
II Ipointer to the first entry in the chain of 
I I Ipointer to the first entry in the chain of 

rtt--Ipointer to the first entry in the chain of 
rttt--Ipointer to the first entry in the chain of 

I lend of the chain for integer constants 
I lend of the chain for real constants 

length 2 
length 3 
length 4 
length 5 
length 6 
length 7 
length 8 
length 9 
length 10 
length 11 

I lend of the chain for data set reference numbers 
I lend of the chain for double-precision constants 
I ~---------------------------------------------------------------------------------~ I IThere are several chains that have no entries when the dictionary is constructed I 
1 Iduring Phase 7. That is, there are no reserved words of length 1, and no entries I 
I Iwould be made in the data set reference number chain or constant chains. I I L _____________________________________________________ ---_________________________ J 

1 
L _______ • r------------------. r------------------. 

t-----~----T----------, t-----~----T----------, t----------T----------, 
Ipointer tolentry for I Ipointer tolentry for I I end of lentry for I 
I the entry I 00 I I the entry I GO I I chain I IF I 
I for GO I I 1 for IF I I I I I I L __________ ~ __________ J L __________ ~ __________ J L __________ ~ __________ J 

IL--------. r------------------. r------------------I 
I, t-----~---T----------, t----~----T----------, t----------T----------, 
I Ipointer tolentry for I Ipointer tolentry for I I end of lentry for I 
I I the entry I END I I the entry I ABS I I chain I DIM I 

II I for ABS I I I for DIM I I I I I II L __________ ~ __________ J L __________ ~ __________ J L __________ ~ __________ J 

II 
II 
II • 
IL---------t. 
I t----------T----------, 
I I end of I entry for I 
I I chai n I SUBROUTINE I I L-_________ ~ __________ J 
L _________ • 

t---------~----------, I end of lentry for I 
I chain IEQUIVA- I 
I I LENCE I L-_________ ~ __________ J 

Figure 58. The Dictionary as Constructed by Phase 7 

r------------~-----------, 
INote: See Figure 61 fori 
Ithe general format of al 
Idictionary entry. 1 L ________________________ J 

Appendix H: Resident Tables 127 



Phase 12 Processing chain. Figure 60 indicates removal of an 
entry from the middle of the chain. 

During Phase 12 processing, addresses 
are assigned to the symbols entered in the 
first six chains of the dictionary. In 
assigning these addresses, Phase 12 uses 
the contents of the dictionary entries. 
The addresses replace: (1) the pointers to 
following entries in the dictionary, and 
(2) the end-of-chain indicators. To ensure 

Phase 14 Processing 

that the chain is not broken, the chain is 
continued by modifying the pointer to the 
entry just assigned an address. Figures 59 
and 60 illustrate two cases of the "before" 
and "after" in removing an entry from a 
dictionary chain. Figure 59 indicates 
removal of an entry from the end of the 

During Phase 14 processing, each inter­
mediate text pointer to a dictionary entry 
is replaced by information contained in 
that dictionary entry (e.g., a relative 
address assigned by Phase 12). Refer to 
Appendix F for examples of this intermedi­
ate text modification'. 

"before" an address 
is assigned to the 
variable ABC 

"after" an address 
is assigned to the 
variable ABC 

,--------------------T--------------, 
I I I 
Ipointer to the entrylentry for DIM I 
Ifor ABC I I 
I I I L ____________________ ~ ______________ J 

l--------------------T--------------, 
I I I 
lend of chain lentry for DIM I 
I I I 
I I I L ____________________ ~ ______________ J 

t-------------T--------------, 
I I I 
I end of chainlentry for ABC I 
I I I 
I I I L _____________ ~ ______________ J 

r-------------T--------------, 
I I I 
I assigned ad-Ientry for ABC I 
I dress of ABC I I 
I I I L _____________ ~ ______________ J 

Figure 59. Removing an Entry From the End of a Dictionary Chain 

"before" an address 
is assigned to 
the variable ABC 

"after" an address 
is assigned to 
the variable ABC 

t-----L----T-----' 
Ipointer tolentryl 
Ithe entry Ifor I 
Ifor ABC IAAA I L __________ ~ _____ J 

t-----l----T-----' 
Ipointer tolentryl 
Ithe entry Ifor I 
Ifor CCC IAAA I L __________ ~ _____ J 

t-----l----T-----, 
Ipointer tolentryl 
Ithe entry Ifor I 
Ifor CCC IABC I L __________ ~ _____ J 

r----------T-----' 
lassigned I entry I 
laddress oflfor I 
I ABC I ABC I L __________ ~ _____ J 

Figure 60. Removing an Entry From the Middle of a Dictionary Chain 

128 

t----J-----T----~ 
Ipointer tolentryl 
Ithe entry Ifor I 
Ifor DDD ICCC I L __________ ~ _____ J 

t----JL----T----~ 
Ipointer tolentryl 
Ithe entry Ifor I 
Ifor DDD lece I L __________ ~ _____ J 



Dictionary Entry Format 

The entries to the dictionary may vary; 
however, they all have the same general 
format. Figure 61 indicates this general 
format. 

r--------T-----T-----T-----T-------T------, 
1 chain lusagelmode/limageladdresslsize I 
I field Ifieldltype Ifieldlfield Ifield I 
I I I fieldl I I I 
~--------+-----+-----+-----+-------+------i 
I 2 11 11 11-11 12 12 1 
1 bytes Ibyte Ibyte 1 bytes I bytes Ibytes 1 L ________ ~ _____ ~ _____ ~ _____ ~ _______ ~ ______ J 

Figure 61. General Format of a Dictionary 
Entry 

Each field contains specific information as 
indicated below: 

CHAIN FIELD: The chain field is used to 
maintain the linkage between the various 
elements of the chain. It either contains 
the relative pointer to the next entry or 
indicates that its associated entry is the 
last entry in the chain. 

USAGE FIELD: The usage field is divided 
into eight subfields. Each subfield is one 
bit long and is numbered from 0 through 7, 
inclusive. Figure 62 indicates the func­
tion of each subfield in the usage field. 

MODE/TYPE FIELD: This field is divided 
into two parts (each four bits long). The 
first four bits are used to indicate the 
mode of an entry, while the last four bits 
are used to indLcate the type. For exam­
ple, a real quantity has the mode 7; 
therefore, the mode field fori a real is 
0111 (the bit configuration for 7). Simi­
larly, a subscripted variable has the type 
C; therefore, the type field for a sub­
scripted variable is 1100 (the bit configu­
ration for C). The mode/type field for a 
real subscripted variable is 01111100. The 
various mode/type combinations possible are 
indicated in Figure 63. 

IMAGE FIELD: The image field contains the 
appropriate image of the s}~bol. The 
length of the symbol determines the length 
of the field. 

ADDRESS FIELD: The address field is pre­
sent in dictionary entries for: 

• Reserved words -- to indicate the posi­
tion of the displacement of the proc­
essing routine for that reserved word 
in the Phase 10D or Phase 10E Routine 
Displacement Table (see Appendix I). 

• In-line functions to indicate the 
code value used within the compilation 
for that in-line function. 

• Arrays -- to indicate the displacement 
within the overflow table of the dimen­
sion information for tha.t array. 

SIZE FIELD: The size field is present for 
the dictionary entries that represent 
arrays. It indicates the size of the 
array. 

All fields are present in each diction­
ary entry, except the address field and the 
size field. The fields and the phases that 
enter information into the fields are indi­
cated in Figure 64. 

r-----------T-----------------------------, 
IUsage fieldl Function of the subfield I 
I s?bfield I I 
~-----------+-----------------------------i 
I Bit 0 I Indicates if the mode of thel 
I lentry has been defined I 
~-----------+-----------------------------i 
I Bit 1 IIndicates if the type of thel 
I lentry has been defined I 
~-----------+-----------------------------i 
1 Bit 2 1 Indicates if the entry is inl 
I I COMMON 1 
~-----------+-----------------------------i 
1 Bit 3 I Indicates if the entry isl 
I I equated I 
~-----------+-----------------------------i 
I Bit 4 I Indicates if" the entry isl 
I lassigned an address I 
~-----------+-----------------------------i 
1 Bit 5 1 Indicates if this is thel 
1 lentry for the root of ani 
I IEQUIVALENCE group (see Phasel 
1 112) I 
~-----------+-----------------------------i 
I Bit 6 IIndicates if the entry rep-I 
1 Iresents double-precision I 
~-----------+-----------------------------i 
I Bit 7 IIndicates if the entry is fori 
1 Ian in-line function or ani 
1 lexternal reference. I L ___________ ~ ____________________________ J 

Figure 62. Function of Each Subfield in 
the Dictionary Usage Field 

Appendix H: Resident Tables 129 



~------T---------T---T----T--T--T-----------T--T--T---------T---------T--T--T--T--T--T--' 

I', LI I I I I I I I I I I I I I I I 1 
I ,01 I I I I I I I I I I I I I I I I 
IHIGH,WIO I 1 12 13 14 I 5 16 17 I 8 I 9 IA IB IC 10 IE IF I 
~------~---------+---+----+--+--+-----------+--+--+---------+---------+--+--+--+--+--+--~ 
I 0 1 I I I I I I I I I I / I I / / / 
~------+---------+---+----+--+--+-----------+--+--+---------+---------+--+--+--+--+--+--~ 
I 1 I statement I lunitl I 11 immediate I I 11sub- I 1 dummy I I I / I I I 
I I number I I 1 I I constants I I I program I subprog·1 I I I I I I 
~------+---------+---+----+--+--+-----------+--+--+---------+---------+--+--+--+--+--+--~ 
121 I 1 1 111 111 
~------~ I e 
I 3 I I x d 
I I I t u 
I I e m 
~------i r m 
141 n y 
I I a 
I I 1 s s 
~------~ g u u 
151 e s & b b 
linte- / n t s s 
Iger I e ail c c 
I I r t n i r r 
~------i a e - b d d i i 
16/ t m 1 r u u p p 
I double I e e i a m ro t t 
I pre- I d n n r m m e e d 
Icisionl t e y y y d d u 
~------i w 1m 
I 7 I 0 c f f f f v v v v 1m 
Ireal I r 0 u u u u a a a a Iy 
I I k n n n n n r r r r I 
1 I s c c c . c iii i a la 
~------~ a t t t t t a a a a r Ir 
1 8 1 r a iii i b b b b r Ir 
lie n 0 0 0 0 III 1 a la 
I 1 a t n n nne e e e y. Iy 
~------~---------~---~----~--~--~-----------~--~--~---------~---------~--~--~--~--~--~--i 
11Subject to change after Phases 100 and 10E I L _______________________________________________________________________________________ J 

Figure 63. The Various Mode/Type Combinations 

~----------------T-------T-------------------------------T---------T-----T-------T-----' 

1 " FI I I I 1 I 1 
1 '..... il I 1 1 1 I I 
I , ell Usage field 1 I 1 1 1 
I ',llchain ~---T---T---T---T---T---T---T---iMode/TypeIImageIAddresslSize 1 
IEntry type ',dlfield 1 0 I 1 I 2 1 3 I 4 I 5 I 6 I 7 Ifield Ifieldlfield Ifieldl 
~----------------~-------+---+---+---+---+---+---+---+---+----T----+-----+-------+-----i 
IReserved word 1 7 1 7 1 7 I 1 I I I 1 1 7 1 7 1 7 I 7 I / 
~-----------------+-------+---+---+---+---+---+---+---+---+----+----+-----+~------+-----i 
lIn-line function I 7 I / 7 I I / I I I 7 I 7 I 7 I 7 I 7 I I 
~-----------------+-------+---+---+---+---+---+---+---+---+----+----+-----+-------+-----i 
I Variable 1 100 11001100110011001 112 112 11001100 1100 I 100 I 1 1 
1 1 10E 110El10EI 1 1 I I 110El10E 110E 1 10E I 1 I 
~-----------------+-------+---+---+---+---+---+---+---+---+----+----+-----+-------+-----~ 
1 Array I 100 11001100110011001 112 112 11001100 1100 I 100 I 100 I 100 I 
I I 10E I I I I I I I 110E 110E 110E I 10E I I I 
~-----------------+-------+---+---+---+---+---+---+---+---+----+----+-----+-------+-----i 
I Constant 1 100 110011001 I I 1 1 1 1 1 1 100 / I 1 
1 I 10E 110E 110E 1 1 I I I I /10E 110E I 10E / / I 
~-----------------+-------+---+---+---+---+---+---+---+---+----+----+-----+-------+-----i 
10SRN I 10E 110E 110E 1 I I 1 I I 1 110E 1 10E I I I L _________________ ~ _______ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ ~ ____ ~ ____ ~ _____ ~ _______ ~ _____ J 

Figure 64. Phases That Enter Information Into Specific Fields of a Dictionary Entry 

130 



THE OVERFLOW TABLE 

Phase 5 allocates main storage for the 
overflow table. The overflow table is 
constructed by Phases 7, 100, and 10E. The 
overflow table is used by: 

• Phase 12 to modify subscript 
entries, and to reserve storage for the 
branch list table for referenced state­
ment numbers. 

• Phases 14 and 15 -- for verifying that 
labels are referenced correctly. 

• Phase 20 -- for subscript optimization. 
• Phase 25 -- for the construction of 

object module coding. 

Organization of the Overflow Table 

The overflow table is organized as a 
series of chains related by the overflow 
index. The overflow index indicates the 
displacement of the first entry in each 
chain relative to the beginning of the 
table. There are 11 chains, used for 
various entries, as follows: 

• Three chains are organized for the 
dimension information of an array; that 
is, for 1-, 2-, and 3-dimensional 
arrays. 

• Three chains are organized for sub­
script information; that is, for 1-, 
2-, and 3-dimensional subscripts. 

• Five chains are organized for statement 
number information. All statement num­
bers ending in 0 and 1 are entered in 
the first chain. The remaining chains 
handle statement numbers ending in 2 
and 3, 4 and 5, 6 and 7, and 8 and 9, 
respectively. 

Construction of the Overflow Table 

Phase 5 allocates storage for the over­
flow table. Because there are no reserved 
words entered in the overflow table as in 
the dictionary, only the overflow index is 
actually constructed by Phase 7. The index 
contains the end-of-chain indicator for 
each chain, as no entries exist in any 
chain at this time. Figure 65 indicates 
the overflow table as it appears after it 
is constructed by Phase 7. 

Phases 100 and 10E construct all entries 
to the overflow table. Each entry is 
entered in an overflow table chain; e.g., 
assume the l-dimensional array ARRYl is the 
first array entered in Phase 100. The 
first overflow index entry is modified to 
contain: 

r-----------------------------------------, 
Ipointer to the dimension entry for ARRYl I L _________________________________________ J 

The overflow table entry (in the first 
array chain> appears as: 

r-------------------T---------------------, 
lend of chain lentry for ARRYl I l ___________________ ~ _____________________ J 

When the next l-dimensional array, ARRY2, 
is entered in the overflow table, the entry 
for ARRYl is modified as follows: 

r--------------------T--------------------, 
Ipointer to the entrylentry for ARRYl I 
Ifor ARRY2 I I L ____________________ ~ ____________________ J 

and the entry for ARRY2 appears as: 

r--------------------T--------------------, 
lend of chain lentry for ARRY2 I L ____________________ ~ ____________________ J 

The entries to other chains are made in 
like manner during Phase 100 and the Phase 
10E processing. 

r-----------------------------------------, 
lend of chain for information onl 
11- dimensional arrays I 
~-----------------------------------------~ 
lend of chain for information onl 
12-dimensional arrays I 
~--------------------~--------------------~ 
lend of chain for information onl 
13-dimensional arrays I 
~-----------------------------------------~ 
lend of chain for information onl 
11-dimensional subscripts I 
~-----------------------------------------~ 
lend of chain for information onl 
12-dimensional subscripts I 
~-----------------------------------------1 
lend of chain for information onl 
13-dimensional subscripts I 
~-----------------------------------------1 
lend of chain for information on statement I 
Inumbers ending in 0 or 1 I 
~-----------------------------------------i 
lend of chain for information on statement I 
Inumbers ending in 2 or 3 I 
~-----------------------------------------~ 
lend of chain for information on statement I 
Inumbers ending in 4 or 5 I 
~-----------------------------------------~ 
lend of chain for information on statement I 
Inumbers ending in 6 or 7 I 
~-----------------------------------------~ 
lend of chain for information on statement I 
Inumbers ending in 8 or 9 I L _________________________________________ J 

Figure 65. The Overflow Table Index as 
Constructed by Phase 7 

Appendix H: Resident Tables 131 



Use of the Overflow Table 

Phase 12 modifies the statement number 
chains when the branch list table for 
statement numbers (refer to Appendix J) is 
prepared initially by Phase 12. The chain 
field is replaced by a number that 
indicates the position the statement number 
has in the branch list table. Phase 12 
also replaces the chain field in each 
overflow table entry for a subscripted 
variable with the relative address assigned 
to that variable. 

Phases 14 and 15 use the overflow table 
to verify that labels are referenced cor­
rectly. 

Phase 20 uses the information about 
subscripted expressions in performing its 
function of subscript optimization. This 
information is obtained via a pointer, in 
the intermediate text, to the pertinent 
overflow table entry (in a subscript 
chain). 

Phase 25 uses the branch list table 
number, assigned by Phase 12, to determine 
the position of a statement number in the 
branch table. (Phase 25 can then insert 
the object-time address, associated with 
the statement number, in the table.) The 
number is obtained via a pointer, in the 
statement number intermediate text entry, 
to the overflow table. 

Overflow Table Entry 

An entry in the overflow table has one 
of three formats: 

1. Dimension. 
2. Subscript. 
34 Statement number. 

DIMENSION ENTRY: 
formed for each 
defined as: 

A dimension entry is 
array. An array may be 

• I-dimensional, e.g., ARRAY (Dl). 
• 2-dimensional, e.g., ARRAY (Dl,02). 
• 3-dimensional, e.g., ARRAY (01,02,03). 

One-dimensional arrays are entered in 
the first dimension chain of the overflow 
table" 2-dimensional arrays in the second, 
and 3-dimensional arrays in the third. The 
formats for the entries of 1-, 2-, and 
3-dimensional arrays are indicated in Fig­
ure 66. 

132 

r-----T-----T------, 
/chain/ 1 /length/ 
~-----+-----+------+---------, 
/chain/ 2 /length/Dl*length/ 
~-----+-----+------+---------+------------, 
/chain/ 3 Ilength/Dl*length/Dl*D2*length/ 
~-----+-----+------+---------+------------~ 
12/2 121 2 I 2 I 
/bytes/bytes/bytes I bytes / bytes / L ____ ~ _____ ~ ______ ~ _________ ~ ____________ J 

Figure 66. Format of Dimension Information 
in the Overflow Table 

The fields of a dimension entry contain 
the follo'wing information: 

• The first field contains the displace­
ment (relative to the beginning of the 
overflow table) of the next element in 
the chain. 

• The second field is a digit, either 1, 
2, or 3, to indicate whether one, two, 
or three fields will follow. This is 
the same as the number of dimensions. 

• The next field is of the form: 

r------------T------------T-----------, 
I L ID1*L ID1*02*L 1 
~------------+------------+-----------~ 
12 bytes 12 bytes /2 bytes 1 L ____________ ~ ____________ ~ ___________ J 

where: 

D1*L and Dl*D2*L are optional fields 
depending on the dimension. 

L indicates the length of an element in 
words (e.g., 1 for integer or real 
quantities and 2 for double-precision 
quantities). 

01 represents the value of the first 
dimension of the array. 

D2 represents the value of the second 
dimension of the array. 

SUBSCRIPT ENTRY: A subscript entry is 
formed for each subscripted variable. A 
subscripted variable may be defined as: 

• I-dimensional, e.g., A(I) 
• 2-dimensional, e.g., A(I,J) 
• 3-dimensional, e.g., A(I,J,K) 

One-dimensional subscripts are entered 
in the first subscript chain of the over­
flow table, 2-dimensional subscripts in the 
second, and 3-dimensional subscripts in the 
third. The formats for the entries of 1-, 
2-, and 3-dimensional subscripts are illus­
trated in Figure 67. 



r-------T-------T-----------------, 
I chain I C1 Ipointer to V1 in I 
I I Ithe dictionary I 
~-------~-------~-----------------i 
~-------T-------T-----------------t-------T-----------------, 
1 chain 1 C1 Ipointer to V1 in 1 C2 Ipointer to V2 in I 
I lithe dictionary lithe dictionary I 
~-------~-------~-----------------~-------~-----------------i 
~-------T-------T-----------------T-------T-----------------t-------T-------------------, 
1 chain I C1 Ipointer to V1 in I C2 Ipointer to V2 in I C3 Ipointer to V3 in I 
1 lithe dictionary lithe dictionary lithe dictionary I 
~-------t-------t-----------------t-------t-----------------t-------+-------------------i 
12 bytesl2 bytes I 2 bytes 12 bytes I 2 bytes 12 bytes 1 2 bytes I L _______ ~ _______ ~ _________________ ~ _______ ~ _________________ ~ _______ ~ ___________________ J 

Figure 67. Format of Subscript Information in the Overflow Table 

The fields of a subscript entry contain 
the following information: 

• The first field contains the displace­
ment (relative to the beginning of the 
overflow table) of the next element in 
the chain. 

• The second and third, fourth and fifth, 
and sixth and seventh fields represent 
the first, second, and third dimensions 
of the subscript. The explanation and 
use of Cl, V1, C2, V2, C3, and V3 are 
given in Appendix G. 

STATEMENT NUMBER ENTRY: A statement number 
entry is constructed for each statement 
number encountered in the source state­
ments. The format of an entry in the 
statement number chains is illustrated in 
Figure 68. 

r-------T------T--------------------------, 
I chain lusage Ipacked statement number 1 
~-------+------t--------------------------i 
12 bytesl1 by tel 3 bytes 1 L _______ ~ ______ ~ __________________________ J 

Figure 68. Format of Statement Number 
Information in the Overflow 
Table 

The fields of a statement number entry 
contain the following information: 

• The first field contains the displace­
ment (relative to the beginning of the 
overflow table) of the next element in 
the chain. 

• The second field is a usage field. The 
usage field bits and their meanings are 
illustrated in Figure 69. 

• The third field contains the actual 
statement number (as it appeared in the 
source statement) in packed form. 

r-----T-----------------------------------, 
IUsagel I 
IFieldl Function of the Field 1 
IBit I I 
~-----+-----------------------------------~ 
1 0 I Indicates if the statement number I 
1 I is defined 1 
~-----t-----------------------------------i 
1 1 IIndicates if the statement number I 
1 lis referenced I 
~-----+-----------------------------------i 
I 2 1 Indicates if the statement nun,ber I 
I Irepresents the end of a DO loop I 
~-----+-----------------------------------i 
I 3 IIndicates if the statement number I 
I I represents a specification state-I 
I Iment I 
~-----+-----------------------------------i 
I 4 IIndicates if tne statement number I 
I I represents a FORf'I.lAT statement 1 
~-----+-----------------------------------i 
1 5 I Indicates if the statement number I 
I lindicates DO nesting errors I 
~-----t-----------------------------------i 
I 6 INot used 1 
1 1 I 
~-----+-----------------------------------i 
I 7 INot used 1 
I 1 I L _____ ~ ___________________________________ J 

Figure 69. Statement Number Entry Usage 
Field Bit Functions 

Appendix H: Resident Tables 133 



SEGMAL 

SEGMAL, constructed by Phase 5, contains 
the beginning and ending address of each 
segment of main storage assigned to the 
dictionary and overflow table by Phase 5. 
This main storage is assigned to the com­
piler as a result of the GET~mIN macro­
instruction issued by the compiler during 
Phase 5. SEGMAL resides at the beginning 
of the lowest segment assigned to the 
dictionary and overflow table. 

Phase 1 Use 

Phase 1, between compilations in a batch 
SPACE run, frees the overflow table and 
SEGMAL via SEGMAL. For all compilations, 
before returning control to the calling 
program, Phase 1 uses SEGMAL to free any 
remaining segments in the dictionary and 
overflow table. 

Phase. 5 Use 

When SEGMAL is constructed by Phase 5, 
the various segments are put into ascending 
order; that is, the segment entries of main 
storage are sorted. Contiguous segments 
are then combined into a single segment. 

The communication area contains fields 
that are used to indicate which segment is 
currently being used for the overflow table 
and which is currently being used for the 
dictionary. 

Phase 7 Use 

Phase 7 uses SEGMAL to load: (1) the 
dictionary index and the reserved word 
portion of the dictionary into the diction­
ary, and (2) the overflow index into the 
overflow table. In addition, Phase 7 uses 
SEGMAL to reinitialize the above-mentioned 
fields in the communication area. 

Phases 10D, 10E, and 14 Use 

Phases 10D and 10E use SEG~~L when new 
segments of the dictionary and overflow 
table are required. For SPACE 
compilations, Phase 14 uses SFGMAL to free 
the main storage areas allocated to the 
dictionary. 

Format of SEG~~L 

Figure 70 illustrates the format of 
SEGMAL for N segments, where each segment 
is entered in ascending sequence by 
address. The entry for each segment con­
sists of the beginning address of the 
segment and the ending address of the 
segment plus 1. (The storage location 
containing the ending address of segment N 
is adjacent to the storage location con­
taining the starting address of the over­
flow index. The starting address of the 
overflow index is an entry in the communi­
cation area.) 

N~te: The ending address of segment N 
m1nus the beginning address of segment 1 
must be,less than or equal to 65,536. 

r-------------T-------------T-------------T---------7 r-T-------------T--------------, 
I beginning I ending ad- I beginning I ending I I I beginning I ending ad- I 

I address of I dress of I address of I addr I - -/ I address of I dress of I 

I segment 1 I segment 1 I segment 2 I seg I I I segment N I segment N I 

~-------------+-------------+-------------+------' ~-----+-------------+--------------~ 
I 4 bytes I 4 bytes I 4 bytes I I II I 4 bytes I 4 bytes I 

~-------------~-------------+-------------~---,1 r-------+-------------i--------------~ 
I entry for segment 1 I I I I entry for segment N I L ___________________________ ~ _______________ _I L _________ ~ ____________________________ J 

Figure 70. Format of SEGMAL 

134 



PATCH TABLE 

The patch table (100 bytes) is a part of 
the interface module. It is used only if 
the patch facility has been enabled and if 
patch records precede the source statements 
of the FORTRAN source module being com­
piled. The patch table (constructed by 

Phase 5) contains a converted form (for 
internal use) of the information contained 
in the patch records. When the patch table 
is full, any further patch records are 
ignored and are not placed onto the SYS­
PRINT data set. 

Figure 71 illustrates the format of the 
patch table. 

r--------------------------------------------------------------------------T------------, 
IIdentifier for first module to be modified I 2 bytes 1 
~--------------------------------------------------------------------------+------------~ 
IRelative address of first patch for this module 1 2 bytes I 
~--------------------------------------------------------------------------+------------1 
ILength (in bytes) of first patch for this module 1 2 bytes 1 
~--------------------------------------------------------------------------+------------1 
IFirst patch for this module I variable I 
~--------------------------------------------------------------------------+------------~ 
1 • I 1 
I· I 1 
1 • I I 
~--------------------------------------------------------------------------+------------1 
IRelative address of last patch for this module 1 2 bytes 1 
~--------------------------------------------------------------------------+------------~ 
ILength (in bytes) of last patch for this module 1 2 bytes 1 
~--------------------------------------------------------------------------+------------~ 
ILast patch for this module 1 Variable I 
~--------------------------------------------------------------------------+------------1 
100000001 (Indicates last patch for this module) I 4 bytes I 
.--------------------------------------------------------------------------+------------~ 
I· i 1 
I • 1 I 
I · I I 
.--------------------------------------------------------------------------+------------~ 
IIdentifier for last module to be modified 1 2 bytes I 
~--------------------------------------------------------------------------+------------1 
IRelative address of first patch for this module I 2 bytes I 
~--------------------------------------------------------------------------+------------~ 
ILength (in bytes) of first patch for this module I 2 bytes 1 
.--------------------------------------------------------------------------+------------1 
I First patch for this module I Variable 1 
.--------------------------------------------------------------------------+------------~ 
I • I I 
1 • I I 
I • I 1 
~--------------------------------------------------------------------------+------------~ 
IRelative address of last patch for this module 1 2 bytes I 
.--------------------------------------------------------------------------+------------1 
ILength (in bytes) of last patch for this module 1 2 bytes I 
~--------------------------------------------------------------------------+------------~ 
I Last patch for this module I Variable I 
~--------------------------------------------------------------------------+------------~ 
100000001 (Indicates last patch for this module) I 4 bytes I 
.--------------------------------------------------------------------------+------------~ 
IZZ (Indicates last module to be patched) I 2 bytes I L-_________________________________________________________________________ ~ ____________ J 

Figure 71. Format of the Patch Table 

Appendix H: Resident Tables 135 



BLOCKING TABLE 

The blocking table is constructed by 
Phase 5 only for PRFRM compilations. Phase 
5 constructs a blocking table entry for 
each of the data control blocks for the 
compiler data sets. The blocking table 
contains the information required for 
deblocking compiler input and for blocking 
compiler output. 

Each blocking table entry is 24 bytes in 
length. Figure 72 illustrates the format 
of a blocking table entry. 

r-----------------------------------------, 
ILogical record length 1 I 
I (2 bytes) I 
~-----------------------------------------~ 
IBlocking factor I 
I (2 bytes) I 
~-----------------------------------------~ 
IAddress of buffer 2 (next) 1 
1 (4 bytes) I 
~-----------------------------------------~ 
IAddress of buffer 1 (current) 1 
1 (4 bytes) 1 
~-----------------------------------------~ 
IAddress of next logical record I 
Iwithin the current buffer 1 
I (4 bytes) I 
~-----------------------------------------~ 
IAddress to or from which the next I 
Irecord is to be moved I 
I (4 bytes) 1 
~-----------------------------------------~ 
INumber of logical records in current 1 
Ibuffer that remain to be processed 1 
1 (2 bytes) 1 
~-----------------------------------------~ 
IIndicates if priming is requirea (input 1 
Idata sets only) I 
I (1 byte) I 
~-----------------------------------------~ 
IIndicates the I/O activity for this I 
Idata set I 
1 (1 byte) 1 
~-----------------------------------------~ 
1180 for SYSIN, SYSLIN, SYSUT2, and 1 
1 SYSPUNCH; 121 for SYSPRINT I L _________________________________________ J 

Figure 72. Blocking Table Entry Format 

BLDL TABLE 

The BLDL table is constructed by Phase 5 
only for PRFRM compilations. It is built 
using a BLDL macro-instruction. Phase 5 
supplies, as a parameter of the BLDL macro­
instruction, the address of a skeleton BLDL 
table. The skeleton BLDL table contains: 
(1) the names (8 bytes per name) of the 
compiler components to which control may be 

136 

transferred via an XCTL macro-instruction, 
and (2) a 36-byte field for each of the 
above names. The BLDL routine completes 
the skeleton BLDL table by placing 
information into these 36-byte fields. 
This information is obtained from the data 
set directory of the partitioned data set 
containing the FORTRAN IV (E) compiler. 
This information (such as the physical 
location of each compiler component in the 
partitioned data set) is used for transfer­
ring control from one component of the 
compiler to the next for PRFRM compila­
tions. 

The BLDL table allows more efficient 
phase-to-phase transition, through the use 
of the DE parameter in the XCTL macro­
instruction, than is possible for a SPACE 
compilation in which the EPLOC parameter 
must be used. For a description of the 
XCTL macro-instruction and the DE and EPLOC 
parameters, refer to the publication IBM 
System/360 Operating System: Control 
Program services. 

Each entry in the BLDL table is 44 bytes 
in length. Figure 73 illustrates the for­
mat of the BLDL table. 

NOTE: Although entries for the interludes 
are included in the BLDL table, the inter­
ludes are never executed for a PRFRM compi­
lation. When an interlude is specified in 
the linkage to the end-of-phase routine 
(PNEXT) in the performance module, the 
phase in the BLDL table that follows the 
specified interlude is automatically trans­
ferred to by modifying the XCTL macro­
instruction to point to the directory entry 
for that phase. 

RESET TABLE (RESETABL) 

The reset table is a 39-byte index table 
that is used by the PNEXT routine in the 
performance module to determine which, if 
any, of the record counts for the chained 
buffer data sets (SYSUT1 and SYSUT2) must 
be reset. The record count of the data set 
that is to be used for output by the next 
phase is always reset. 

The fifth character in the symbolic name 
of the phase to be executed next is used to 
reference the appropriate entry in the 
table. If the value of that entry is zero, 
no action is taken. If the value is two, 
the record count in the blocking table 
entry for SYSUT1 is reset. If the value is 
eight, the record count in the blocking 
table entry for SYSUT2 is reset. Resetting 
the record count is necessary in order to 
determine whether actual READs are required 
for the data set when it is used as input 
by a subsequent phase. 



r---------------T-------------------------, I Compiler IDirectory information fori 
I component Icompiler component I 
I (8 bytes) I (36 bytes) I 
~---------------+-------------------------i 
IIEJFAABO IDirectory information fori 
I (Phase 1) IPhase 1 (subsequent I 
I subsequent I entries) I 
I entries I I 
~---------------+-------------------------~ 
IIEJFCAAO IDirectory information fori 
I (Phase 5) IPhase 5 I 
~---------------+-------------------------i 
IIEJFEAAO IDirectory information fori 
I (Phase 7) IPhase 7 I 
~--------------+-------------------------i 
IIEJFFAAO IDirectory information fori 
I (Phase 8) IPhase 8 I 
~---------------+-------------------------i 
IIEJFGAAO IDirectory information fori 
I (Phase 100) IPhase 10D I 
~---------------+-------------------------i 
IIEJFJAAO IDirectory information fori 
I (Phase 10E) IPhase 10E I 
~---------------+-------------------------i 
IIEJFJGAO IDirectory information fori 
I (Inter1ude 10E) I Interlude 10E I 
~---------------+-------------------------i 
IIEJFLAAO IDirectory information fori 
I (Phase 12) IPhase 12 I 
~---------------+-------------------------i 
IIEJFNAAO IDirectory information fori 
I (Phase 14) IPhase 14 I 
~---------------+-------------------------i 
IIEJFNGAO IDirectory information fori 
I (Interlude 14) IInter1ude 14 I 
~---------------+-------------------------i 
IIEJFPAAO IDirectory information fori 
I (Phase 15) IPhase 15 I 
~---------------+-------------------------i 
IIEJFPGAO IDirectory information fori 
I (Inter1ude 15) IInterlude 15 I 
~--------------+-------------------------i 
IIEJFRAAO IDirectory information fori 
I (Phase 20) IPhase 20 I 
~---------------+-------------------------i 
IIEJFVAAO IDirectory information fori 
I (Phase 25) IPhase 25 I 
~---------------+-------------------------i 
IIEJFXAAO IDirectory information fori 
I (Phase 30) IPhase 30 I L _______________ ~ _________________________ J 

Figure 73. BLDL Table Format 

Appendix H: Resident Tables 137 



APPENDIX I: TABLES USED BY PHASE LOAD MODULES 

During a compilation, the compiler uses 
the following tables: 

• Allocation table. 

• Routine displacement tables. 

• EQUIVALENCE table. 

• Forcing value table. 

• Operations table. 

• Subscript table. 

• Index mapping table. 

• Epilog table. 

• Message length table. 

• Message address table. 

• Message text table. 

Some tables are actual segments of the 
phase load modules; others are created 
during the compilation. Each table is used 
only by the phase that contains it (as a 
part of the phase load module) or creates 
it. The following discussions describe the 
use and format of each table. 

Table 27. Allocation Table 

ALLOCATION TABLE 

The allocation table is a part of the 
Phase 5 load module. It is used to 
allocate the amount of main storage 
obtained among buffer areas and resident 
tables. Table 27 illustrates the format of 
the allocation table. 

ROUTINE DISPLACEMENT TABLES 

The routine displacement tables for re­
served word processing routines are parts 
of the Phase 10D and Phase 10E load 
modules. Reserved words are those that 
indicate a specific FORTRAN statement. The 
Phase 10D and Phase 10E routine displace­
ment tables are identical in structure and 
in purpose (locating the processing routine 
for a given reserved word). The Phase 10D 
table aids in the location of reserved word 
routines for declarative statements; the 
Phase 10E table aids in the location of 
reserved word routines for executable 
statements. 

Each reserved word causes an entry to be 
made in the dictionary by Phase 7 (refer to 
Appendix H). The address field of these 
entries contains a displacement, used as an 
indexing value, relative to the start of 
the appropriate routine displacement table. 

r-------------T--------------------T--------------T-------------------------------------, 
1 1 1 Dictionary and 1 Internal Text Buffer 1 
I I Average number of IOverflow 1 Size (in bytes) 1 
1 SIZE 1 source statements ITable Size ~-------------T-----------------------~ 
I Ithat can be compiledl (in bytes) I SPACE I PRFRM 1 
~-----T-------+---------T----------+-------T------+-------------+------------T----------i 
ISPACEI~ PRFRMI SPACE 1 PRFRM ISPACE IPRFRM I I/O Buffers 1 I/O Buffers I Non-I/O I 
1 1 1 1 1 1 I 1 I Buffers 1 
t-----+-------t---------t----------t-------t------t-------------t------------+----------i 
1 15K 1 19K I 170 1 170 1 2216 I 2216 1 4x(104) 1 4x(96) I 0 1 
1 44K 1 48K 1 2500 I 1980 125512 120328 I 4x(1704) 1 4x(1696) I 5184 1 
1 86K 1 90K I 6500 1 6500 165536 165536 I 4x(1704) 1 4x(1696) I 8104 1 
1200K 1 204K 1 6500 1 6500 165536 165536 1 4x(1704) 1 4x(1696) I 119720 I 
~-----~-------~---------~----------~-------~------~-------------~------------~----------~ 
I~If blocked I/O is specified, the value of the expression 2*(BLKSIZE) must be added,1 
I for each data set that contains blocked records, to the number shown under the PRFRMI 
1 option. 1 L _______________________________________________________________________________________ J 

138 



This index is used to obtain the actual 
displacement, relative to a base register. 
of a specific reserved word routine located 
within the Phase 100 or Phase 10E load 
module. The effective address of the 
desired reserved word routine is obtained. 
by Phase 100 or Phase 10E, by adding this 
displacement to the value in the base 
register. 

Figures 74 and 75 illustrate the format 
of the routine displacement tables. 

r-----------------------------------------, 
IDisplacement from base register value ofl 
IDEFINE FILE reserved word routine I 
~-----------------------------------------~ 

,IDisplacement from base register value ofl 
IREAL reserved word routine I 
~-----------------------------------------~ 
IDisplacement from base register value ofl 
ICOMMON reserved word routine I 
~-----------------------------------------i 
IDisplacement from base register value ofl 
IFOR~~T reserved word routine I 
~-----------------------------------------i 
IDisplacement from base register value ofl 
IDOUBLE reserved word routine I 
~-----------------------------------------i 
IDisplacement from base register value ofl 
IINTGER reserved word routine I 
~-----------------------------------------i 
IDisplacement from base register value ofl 
IEXTERN reserved word routine I 
~-----------------------------------------~ 
IDisplacement from base register value ofl 
IFUNCT reserved word routine I 
~-----------------------------------------i 
IDisplacement from base register value ofl 
IDIM reserved word routine I 
~-----------------------------------------i 
IDisplacement from base register value ofl 
ISUBRUT reserved word routine I 
~-----------------------------------------i 
I Displacement from base register value ofl 
IEQUIV reserved word routine I 
~-----------------------------------------i 
I 2 bytes I L _________________________________________ J 

Figure 74. Phase 10D Routine Displacement 
Table Format 

r-----------------------------------------, 
IDisplacement from base register value ofl 
IFIND reserved word routine I 
~-----------------------------------------i 
I Displacement from base register value ofl 
IDO reserved word routine I 
~-----------------------------------------i 
IDisplacement from base register value ofl 
IGO reserved word routine I 
~-----------------------------------------i 
IDisplacement frolli base register value ofl 
IFORMAT reserved word routine I 
~-----------------------------------------i 
IDisplacement from base register value ofl 
IIF reserved word routine I 
~-----------------------------------------i 
IDisplacement from base register value ofl 
lEND reserved word routine I 
~-----------------------------------------i 
IDisplacement from base register value ofl 
ICALL reserved word routine I 
~-----------------------------------------i 
IDisplacement from base register value ofl 
IGOTO reserved word routine I 
~-----------------------------------------i 
IDisplacement from base register value ofl 
IREAD reserved word routine I 
~-----------------------------------------i 
IDisplacement from base register value ofl 
ISTOP reserved word routine I 
~-----------------------------------------i 
IDisplacement from base register value ofl 
IPAUSE reserved word routine I 
~-----------------------------------------i 
I Displacement from base register value ofl 
IWRITE reserved word routine I 
~-----------------------------------------i 
IDisplacement from base register value ofl 
IRETURN reserved word routine I 
~-----------------------------------------i 
I Displacement from base register value ofl 
IREWIND reserved word routine I 
~-----------------------------------------i 
IDisplacement from base register value ofl 
IENDFIL reserved word routine I 
~-----------------------------------------i 
IDisplacement from base register value ofl 
ICONT reserved word routine I 
~-----------------------------------------i 
IDisplacement from base register value ofl 
IBKSP reserved word routine I 
~-----------------------------------------i 
I 2 bytes I L _________________________________________ J 

Figure 75. Phase 10E Routine Displacement 
Table Format 

Appendix I: Tables Used by Phase Load Modules 139 



Figure 76 illustrates 
served word routine is 
10E. 

how the DO re­
located in Phase 

r------------------------------------, 
r----i Dictionary entry for GO I I L ____________________________________ J 

I Phase 10E Routine Displacement 
I Table 
I 
I 
I 

r------------------------------------, 
I Displacement for FIND I 
I reserved word routine I 

I ~------------------------------------i 
L ___ +I Displacement f or DO 
r----i reserved word routine I 

~------------------------------------i 
I I 
I I 
I I 
~------------------------------------i 
I Displacement for BKSP I 
I reserved word routine I L ____________________________________ J 

r------------------------------------, 
I DO reserved word I 

---~ processing routine I L ____________________________________ J 

Figure 76. Locating the DO Reserved Word 
Routine 

EQUIVALENCE TABLE 

The EQUIVALENCE table is constructed by 
Phase 12 for use by the Phase 12 storage 
allocation routines, which assign addresses 
to equated variables. This table is a 
serial list in which each member follows 
the preceding one. 

The format of a typical entry in the 
EQUIVALENCE table is as follows: 

r-----------T-------T-------------T-------, 
Ip(variable) Ip(root) I displacement Isize I 
lor p(array) I lor address inl I 
I I I COMMON I I 
~-----------+-------+-------------+-------i 
I 2 bytes 12 bytes 1 2 bytes 12 bytes I L ___________ ~ _______ ~ _____________ ~ _______ J 

140 

Each field in an entry is two bytes in 
length. The first field contains a pointer 
to the entry for the variable or array in 
the dictionary. The second field contains 
a pointer to the dictionary entry for the 
root to which the variable or array is 
equated. (If the variable or array is the 
root of the EQUIVALENCE group, the first 
two fields contain the same pointer.) The 
third field contains the displacement or 
address assigned to the variable or array 
in COMMON. (The addresses for variables 
and arrays are assigned before this table 
is constructed.) The fourth field is the 
size, in bytes, of the EQUIVALENCE group or 
class. 

The maximum number of entries in the 
EQUIVALENCE table is the larger of: 

• 100, or 

• The largest unused segment of the dic­
tionary and overflow table divided by 
eight (if this segment exceeds 800 
bytes) • 

For example, if the compiler allocates 
5500 contiguous bytes to the dictionary and 
the overflow table, and 3100 bytes are 
used, then the maximum number of entries in 
the EQUIVALENCE table is: 

(5500 - 3100)/8 2400/8 300 

FORCING VALUE TABLE 

The forcing value table is a part of the 
Phase 15 load module. The forcing value 
table is used by Phase 15 as an aid in the 
reordering of intermediate text entries in 
arithmetic expressions. This table defines 
the relative position of each operator in 
the hierarchy of operators. 

Each entry in the forcing value table is 
five bytes in length. The forcing value 
table is illustrated in Figure 77. 



r---------T------~----------T------------, 
I Adjective I Left IAddress ofl Right I 
I Code I Forcing I Associatedt Forcing I 
I I Value I Routine t Value I 
~---------+-------+----------+------------~ 
I ( I 64 I a (LFTPRN) I 01 I 
~-----~---+-------+----------+------------i 
I ) I 00 I a (RTPRN) I 69 I 
~---------+-------+----------+------------~ 
I = I 70 I a (EQUALS) I 70 I 
~---------+-------+----------+------------i 
I , I 49 I a (COMMA) I 48 I 

~---------+-------+----------+------------i 
I n I 80 I never I 01 I 
I I I forced outl I 
~---------+-------+----------+------------i 
I + I 09 I a (ADD) I 09 I 
~---------+-------+----------+------------i 
I I 09 I a (ADD) I 09 I 
~---------+-------+----------+------------i 
I * I 05 I a (MULT) I 05 I 
~---------+-------+----------+------------i 
I / I 05 I a (MULT) 1 05 I 
~---------+-------+----------+------------i 
I ** I 04 I a (EXPON) I 03 I 
~---------+-------+----------+------------i 
I F ( I 64 I a (FUNC) I 01 I 
~---------+-------+----------+------------i 
lunary - I 05 I a (UMINUS) I 01 I 

~---------+-------+----------+------------i 
lend mark I 00 I never I 80 I 
I I Iforced out I I 
~---------+-------+----------+------------i 
lunary + I 05 la(UPLUS) I 01 I 
~---------+-------+----------+------------i 
I SF I I I \ 
I Forcing I 72 la(END) I 70 I 
~---------+-------+----------+------------i 
I ARITH I I I I 
I Forcing I 72 la(END) I 70 I 
~---------+-------+----------+------------i 
I CALL I I I I 
I Forcing I 72 la(CALL) I 70 I 
~---------+-------+----------+------------i 
\ IF I I I I 
I Forcing I 72 \ a (END) I 70 I 

~---------+-------+----------+------------i 
11 byte 11 byte 12 bytes I 1 byte I L _________ ~ _______ 4 __________ ~ ____________ J 

Figure 77. Forcing Value Table 

OPERATIONS TABLE 

The operations table is a temporary 
storage area (part of the Phase 15 load 
module) used during the reordering of oper­
ations within statements that can contain 
arithmetic expressions. This table func­
tions as a "pushdown table" (that is, a 
table in which the top entry is the most 
recently entered item) for storing inter­
mediate text words that refer to the opera­
tion in question. An exception is made for 
subscript text, which is stored in the 
subscript table. 

The operations table can contain no more 
than 50 entries. Entries are four bytes in 
length and are obtained by a pointer to the 
last entry in the table for the specific 
statement under consideration. The format 
of a typical entry in the operations table 
is shown in Figure 78. 

r--------T---------------T----------------, 
ladj codel mode/type I pointer I 
~--------+---------------+----------------i 
11 byte I 1 byte \ 2 bytes I L ________ ~ _______________ ~ ________________ J 

Figure 78. Operations Table Entry Format 

SUBSCRIPT TABLE 

The subscript table is a temporary stor­
age area (part of the Phase 15 load module) 
used for subscript text encountered during 
the reordering of intermediate text words 
by Phase 15. This table functions as a 
"pushdown table" (that is, a table in which 
the top entry is the most recently entered 
item) for storing subscript intermediate 
text words that refer to the operation in 
question. 

The subscript table can contain no more 
than 38 entries. Entries are eight bytes 
in length and are obtained by a pointer to 
the top entry in the table for the specific 
statement under consideration. The format 
of a typical entry in the subscript table 
is shown in Figure 79. 

r----------T----------T-------------------, 
\subscript I not used I I 
ladjective I by I offset I 
I code I Phase 15 I I 
~----------~----------+-------------------i 
I p(subscript) I p(dimension) I 
~----------T----------+-------------------i 
I 1 byte I 1 byte I 2 bytes I L __________ ~ __________ ~ ___________________ J 

Figure 79. Subscript Table Entry Format 

The subscript adjective code indicates 
to other phases of the compiler that sub­
script calculation is necessary. The off­
set is an index used to find the correct 
element in an array associated with a 
particular subscript expression. The sec­
ond word of an entry in the subscript table 
contains two pointers to information in the 
overflow table. The first points to the 
subscript information for the subscripted 
variable; the second points to the dimen­
sion information for the array indicated by 
the subscripted variable. 

Appendix I: Tables Used by Phase Load Modules 141 



INDEX MAPPING TABLE 

The index mapping table (part of the 
Phase 20 load module) is used to aid the 
implementation of subscript optimization. 
This table maintains a record of all infor­
mation pertinent to a subscript expression. 
Because the computation of any unique sub­
script expression is placed in a register, 
the number of entries in the table depends 
on the number of registers available for 
this purpose. The initial register 
assigned to a subscript expression is det­
ermined during the initialization process 
for Phase 20. Each entry in the index 
mapping table is eight bytes in length. 
The format of a typical entry in the index 
mapping table is shown in Figure 80. 

r------T------T----------T----------------, 
I I number I I I 
Iregis-Iof I status I offset I 
Iter Idimen-I I I 
Inumberlsions I I I 
~------~------~----------+----------------~ 
I p(subscript) I p(dimension) I 
~-------------T----------+----------------i 
I 1 byte I 1 byte I 2 bytes I L _____________ ~ __________ ~ ________________ J 

Figure 80. Index Mapping Table Entry For­
mat 

The register number field contains the 
number of the register assigned to the 
subscript expression. The dimension number 
field contains the number 1, 2, or 3, 
depending on the number of dimensions. The 
status field indicates whether the register 
referenced by this entry is: (1) unas­
signed, (2) assigned t~ a normal subscript 
expression for indexing computation, or (3) 
assigned to the address of a dummy vari:­
able. The offset field contains the offset 
index used to obtain the correct element of 
the array associated with -a particular 
subscript expression. The last two fields 
contain pointers to information in the 
overflow table. 

EPILOG TABLE 

The epilog table is created by Phase 25 
when the FUNCTION or SUBROUTINE adjective 
code is encountered. An entry is made in 
the epilog table for each variable used as 
a parameter in the calling program. The 
instructions generated during Phase 25 for 
the RETURN entry in the intermediate text 
reference the epilog table to return the 
value of variables to the calling program. 

142 

Each entry in the epilog table is four 
bytes in length. The format of a typical 
entry in the epilog table is shown in 
Figure 81. 

r----------T---------T--------------------, 
IL ts I address I 
~----------+---------+--------------------i 
11 byte 11 byte I 2 bytes I L __________ ~ _________ ~ ____________________ J 

Figure 81. Epilog Table Entry Format 

L is the field length of the variable in 
the subprogram, S is the relative position 
of the variable in the parameter list of 
the calling program, and address is the 
address of the variable in the subprogram. 

MESSAGE LENGTH TABLE 

The message length table is loaded into 
main storage as a part of the Phase 30 load 
module. It contains tne lengths of all the 
messages capable of being generated by the 
compiler. The length of any message is 
obtained by using the number corresponding 
to that message as a displacement from the 
start of the message length table. 

Figure 82 illustrates the format of the 
message length table. 

r-----------------------------------------, 
I Length of first message I 
~-----------------------------------------1 
I Length of second message I 
~-----------------------------------------1 
I I 
I I 
I I 
~-----------------------------------------~ 
I Length of last message I 
~-----------------------------------------1 
I 1 byte I L _________________________________________ J 

Figure 82. Message Length Table Format 

MESSAGE ADDRESS TABLE 

The message address table is loaded into 
main storage as a part of the Phase 30 load 
module. It contains the displacements from 
the start of the message text table of all 
the messages capable of being generated by 
the compiler. The displacement of any 
message is obtained by using the number 
corresponding to the message multiplied by 
two as a displacement from the start of the 
message address table. 



Figure 83 illustrates the format of the 
message address table. 

r-----------------------------------------, 
IDisplacement of text for first message I 
Ifrom start of the message text table I 
~-----------------------------------------i 

" IDisplacement of text for second message I 
Ifrom start of the message text table I 
• -----------------------------------------i 
I · I 
I· I 
I· I 
.-----------------------------------------i 
IDisplacement of text for last message I 
Ifrom start of the message text table I 
~-----------------------------------------i 
I 2 bytes I L _________________________________________ J 

Figure 83. Message Address Table Format 

MESSAGE TEXT TABLE 

The message text table is loaded into 
main storage as a part of the Phase 30 load 

module. It contains all the messages capa­
ble of being generated by the compiler. 
Each message is obtained by using the 
displacements contained in the message 
address table. 

Figure 84 illustrates the format of the 
message text table • 

r-----------------------------------------, 
IMessage text corresponding to first I 
Imessage number I 
~-----------------------------------------~ 
IMessage text corresponding to second I 
Imessage number I 
~-----------------------------------------~ 
I . I 
I · I 
I · I 
~-----------------------------------------~ 
IMessage text corresponding to last I 
Imessage number I 
.-----------------------------------------~ 
I variable length I L _________________________________________ J 

Figure 84. Message Text Table Format 

Appendix I: Tables Used by Phase Load Modules 143 



APPENDIX J: TABLES USED BY THE OBJECT MODULE 

The following tables are 
object module to execute the 
generated by the compiler: 

used by the 
instructions 

• Branch list table for referenced state­
ment numbers. 

• Branch list table for SF expansions and 
DO statements. 

• Argument list table for subprogram and 
SF calls. 

• Base value table. 

The following discussions describe the 
use and format of each table. 

BRANCH LIST TABLE FOR REFER~NCED STATEMENT 
NUMBERS 

Phase 12 allocates storage for the 
branch list table for referenced statement 
numbers and assigns a relative position 
(relative to the start of the branch table) 
to each executable statement that is ref­
erenced by other statements. Phase 25 
inserts the relative addresses, for these 
statements, into the positions dictated by 
Phase 12. The table is used, at object­
time, by the instructions generated to 
branch to executable statements. 

Each entry in the table is the address 
of a referenced statement number. The 
format of the branch list table for 
referenced statement numbers is illustrated 
in Figure 85. 

r-----------------------------------------, 
I address of first referenced statement I 
I number I 
~-----------------------------------------~ 
laddress of second referenced statement I 
I number I 
~-----------------------------------------~ 
I I 
I I 
I I 
~-----------------------------------------~ 
laddress of last referenced statement num-I 
Iber I 
~-----------------------------------------~ 
I 4 bytes I L _________________________________________ J 

Figure 85. Format of Branch List Table for 
Referenced Statement Numbers 

144 

BRANCH LIST TABLE FOR SF EXPANSIONS AND DO 
STATEMENTS 

Phase 20 allocates storage for the 
branch list table for SF (statement 
function) expansions and DO statements. 
During Phase 25 processing, the relative 
addresses for the first executable instruc­
tions in the SF expansions and DO loops are 
inserted into locations relative to the 
start of the branch table. The locations 
for the SF expansions were determined by 
Phase 14; the locations for the DO loops 
are determined by Phase 25. The table is 
used, at object time, either by the 
instructions generated to reference SF 
expansions or by the instructions generated 
to control the iteration of DO loops. 

Each entry in the table is either the 
address of the first instruction in an SF 
expansion or the address of the secona 
instruction in a DO loop. (The first 
instruction of the DO loop initializes the 
DO counter.) 'I'he format and organization 
of the branch list table for SF expansions 
and DO statements is illustrated in Figure 
86. 

r-----------------------------------------, 
laddress of first instruction in SF expan-I 
Ision 1 I 
~-----------------------------------------~ 
laddress of first instruction in SF expan-I 
Ision 2 I 
~-----------------------------------------i 
I I 
I I 
I I 
~-----------------------------------------1 
laddress of first instruction in SF expan-I 
Ision N 1 
~-----------------------------------------i 
laddress of second instruction in DO loopl 
11 I 
~-----------------------------------------i 
1 address of second instruction in DO loopi 
12 1 
~-----------------------------------------i 
I 1 
I 1 
I 1 
~-----------------------------------------~ 
laddress of second instruction in DO loopi 
1M I 
~-----------------------------------------i 
I 4 bytes I L _________________________________________ J 

Figure 86. Format of Branch List Table for 
SF Expansions and DO Loops 



All SF definitions must appear prior to 
the executable statements (this includes DO 
statements) in a source module. Therefore, 
Phase 25 encounters all the SF adjective 
codes prior to the first DO statement 
adj~ctive code. This accounts for the 
placement of all SF expansion addresses 
into the branch table befo"re the first DO 
loop address. 

ARGUMENT LIST TABLE FOR SUBPROGRAM AND SF 
CALLS 

Phase 20 allocates storage for the argu­
ment list table for the arguments of sub­
program and SF calls. During Phase 20 
processing, the relative addresses of the 
above arguments are inserted into the argu­
ment list table. The starting address of 
the first argument of each argument list is 
passed as part of the intermediate text to 
Phase 25 (the total number of SFs is passed 
in the communication area). 

Each entry in the argument list table is 
either the address of an argument used in a 
subprogram or the address of an argument 
used in an SF. Entries are made in the 
table as Phase 20 encounters each subpro­
gram or SF reference.. The format and 
organization of the argument list table is 
illustrated in Figure 87. 

BASE VALUE TABLE 

The base value table is generated by the 
various phases of the compiler as base 
registers are required by the object cod­
ing. The table is assembled in its final 
form by Phase 25. The compiler-generated 
instructions that load base registers, at 
object time, use the base value table in 
order to obtain the proper base register 
values. 

Figure 88 illustrates the format and 
organization of the base value table. 

r-----------------------------------------, 
Ifirst argument of first subprogram or SFI 
Ireference encountered I 
~-----------------------------------------~ 
I I 
I I 
I I 
~-----------------------------------------i 
Ilast argument of first subprogram or SFI 
Ireference encountered I 
~----------------------------------~------i 
Ifirst argument of second subprogram or SFI 
Ireference encountered I 
~-----------------------------------------i 
I I 
I I 
I I 
~-----------------------------------------i 
Ilast argument of second subprogram or SFI 
Ireference encountered I 
~-----------------------------------------i 
I I 
I I 
I I 
~-----------------------------------------i 
Ifirst argument of last subprogram or SFI 
Ireference encountered I 
~-----------------------------------------i 
I I 
I I 
I .1 
~-----------------------------------------i 
Ilast argument of last subprogram or SFI 
Ireference encountered I 
~-----------------------------------------i 
I 4 bytes I L _________________________________________ ~ 

Figure 87. Format of Argument List Table 
for Subprogram and SF Calls 

r-----------------------------------------, 
Ivalue placed in the first base register I 
lused to obtain data in COMMON I 
~-----------------------------------------i 
I I 
I I 
I I 
.-------.---------------------------------~ 
I value placed in the last base register I 
lused to obtain data in COMMON I 
~-----------------------------------------i 
Ivalue placed in the first base register I 
lused to obtain data in the object module I 
~-----------------------------------------i 
I I 
I I 
I I 
~-----------------------------------------~ 
Ivalue placed in the last base registerl 
lused to obtain data in the object module I 
~-----------------------------------------i 
I 4 bytes I L _________________________________________ J 

Figure 88. Format of Base Value Table 

Appendix J: Tables Used by the Object Module 145 



APPENDIX K: DIAGNOSTIC MESSAGES AND STATEMENT/EXPRESSION PROCESSING 

This appendix contains the names of the 
phases and the routines within the phases 
that: (1) generate diagnostic messages, and 
(2) process the various FORTRAN statements 
and expressions. 

DIAGNOSTIC MESSAGES 

Two types of diagnostic messages are 
generated by the FORTRAN compiler - infor­
mative messages and error/warning messages. 
The messages produced by the compiler are 
explained in the IBM System/360 Operating 
System: FORTRAN IV (E) Programmer's Guide. 

Informative Messages 

Four informative messages are generated 
by the compiler to inform the programmer or 
operator of the status of the compilation. 
The messages and the phases and subroutines 
in which they are generated are illustrated 
in Table 28. 

Table 28. Informative Messages 
r-------------------------T-----T---------, 
I Message/number IPhaselSubrtn. I 
~-------------------------+-----+---------~ 
,IEJ0011 I 5 IMESSGOUT I 
~-------------------------+-----+---------~ 
I LEVEL: rmthyr I I I 
I IBM OS/360 BASIC FORTRAN I I , 
IIV (E) COMPILATION I I I 
I DATE: yy.ddd I 7 IEJECTPRT I 
~-------------------------+-----+---------i 
ISIZE OF COMMON xxx xxx I 30 IENDCRD I 
IPROGRAM yyyyyy 'I I 
~-------------------------+-~---+---------i 
lEND OF CO~~ILATION zzzzzzi 30 I EOJOB I L _________________________ ~ _____ ~ _________ J 

Error/Warning Messages 

Each error/warning message produced by 
the compiler is identified by an associated 
number. Table 29 relates a message number 
with the phase(s) and subroutine(s) in 
which the corresponding message is generat­
ed. 

146 

Table 29. Error/Warning Messages 
r-------T-------T-------------------------, 
I Message I Phase I Subroutine or Routine , 
INumber I I I 
~-------+-------+-------------------------i 
IIEJ002I1 5 I~~SSGOUT I 
~-------+-------+-------------------------i 
IIEJ003I1 5 IMESSGOUT I 
~-------+-------+-------------------------i 
IIEJ004I1 5 IMESSGOUT I 
~-------+-------+-------------------------i 
IIEJ005I1 5 IMESSGOUT I 
~-------+-------+-------------------------i 
IIEJ006I1 5 IMESSGOUT I 
~-------+-------+-------------------------~ 
IIEJ007I1 5 IMESSGOUT I 
~-------+-------+-------------------------1 
IIEJ008I1 5 IMESSGOUT I 
~-------+-------+-------------------------i 
IIEJ0291110D IDIMSUB I 
~-------+-------+-------------------------i 
IIEJ0301110D I COMMON, EQUIVP I 
~-------+-------+-------------------------i 
IIEJ0311112 IEQUIVP I 
~-------+-------+-------------------------i 
IIEJ0321110D,lOBILITCON I 
~-------+-------+-------------------------i 
IIEJ033IIIOD,10EIGETWD I 
~-------+-------+-------------------------i 
IIEJ034IIIOD I FUNCT, SUBRUT I 
~-------+-------+-------------------------~ 
IIEJ035IIIOD I FUNCT, SUBRUT I 
~-------+-------+-------------------------~ 
IIEJ036IIIOE IARITH I 
~-------+-------+-------------------------i 
IIEJ0371110D,10EICLASS, ARITH, ASF, IF I 
~-------+-------+-------------------------i 
IIEJ038III0D IINTGER/REAL/DOUBLE, I 
, I I EXTERN, COMMON, EQUIV, I 
I I IDIM I 
~-------+-------+-------------------------i 
IIEJ039III0D,10EISYMTLU I 
~-------+-------+-------------------------~ 
IIEJ041III0D,lOEIASF, EXTERN, DIM I 
~-------+-------+-------------------------i 
IIEJ043III0D,10EIINTGER/REAL/DOUBLE, GO I 
~-------+-------+-------------------------i 
IIEJ0431112 IALOC I 
~-------+-------+-------------------------i 
IIEJ044III0D,10EILITCON I 
~-------+-------+-------------------------~ 
IIEJ045III0D,10EILITCON I 
~-------+-------+-------------------------i 
IIEJ046IIIOD,10EILITCON I 
~-------+-------+-------------------------i 
IIEJ0471110D,10EICLASS, LIM I 
~-------+-------+-------------------------~ 
IIEJ048III0D IDIMSUB I 
~-------+-------+-------------------------i 
I IEJ0491IIOD IDIM, DIM90 I L _______ ~ ______ ~ _________________________ J 

(Continued) 



Table 29. Error/Warning Messages ( continued) 

r-------~-------T------------------------, 
IMessagel Phase I Subroutine or Routine I 
INumber I I I 

r-------T--------T------------------------, 
IMessagel Phase I Subroutine or Routine I 
INumber I I I 

~-------+--------+------------------------~ 
IIEJ050II10D IEQUIV I 

~-------f--------f------------------------~ 
IIEJ078I114 ICKENDO I 

t-------t--------t------------------------i 
IIEJ051II10D IEQUIV, DIM I 
~-------+--------+------------------------~ 
IIEJ051II14 I FCOMACHK I 

t-------t--------t------------------------i 
IIEJ079II10E IGO I 
t-------f--------t------------------------i 
IIEJ079II14 IREAD/READWR, DO I 

t-------t--------t------------------------i t-------t--------t------------------------i 
IIEJ052Il10D ISUBS, EQUIV I IIEJ080II10E IGO I 
t-------t--------t------------------------i t-------f--------t------------------------i 
IIEJ053II10D I SUBS I IIEJ080II14 IREAD/READWR I 
~-------t--------t------------------------i t-------+--------f------------------------i 
IIEJ054Il10E IASF I IIEJ081II10D,lOE IARITH, EQUIV I 
t-------t--------t------------------------i t-------t--------t------------------------i 
IIEJ055II10D I FUNC, SUBRUT I IIEJ081II14 IREAD/READWR, FMDCON, I 
t-------t--------f------------------------~ I I I FMECON, FMFCON, FMTINT, I 
IIEJ056II10E IGO I I I I FMACON, FORMAT I 
t-------t--------t------------------------i t-------t--------t------------------------i 
IIEJ057II10E I READ/WRITE I IIEJ082II10D,lOE ILITCON I 
t-------f--------f------------------------~ t-------f--------t------------------------i 
IIEJ058II10E I READ/WRITE I IIEJ082II14 I NOFDCT, INTCON I 
t-------t--------t------------------------~ t-------+--------t------------------------i 
IIEJ060II10D IEQUIV I IIEJ083II10D,lOE ICSORN, INTCON I 
t-------t--------t------------------------i t-------t--------t------------------------i 
IIEJ061II10D,lOE IEOSR I IIEJ083I114 IINTCON I 
t-------t--------t------------------------i t-------t--------t------------------------i 
IIEJ063II10E IEQUIV I IIEJ084II10D,10E IWARN/ERRET I 
t-------t--------t------------------------i t-------t--------t------------------------i 
IIEJ064II10D,10E,ILABTLU, SYMTLU, I IIEJ084I114 I ERROR, WARN I 
t-------t--------t------------------------i t-------t--------t------------------------i 
IIEJ064I130 I TWNFIV I IIEJ084I115 I ERROR, WARN I 
t-------t--------t------------------------i t-------t--------t------------------------i 
IIEJ065II10D,10E I CLASS, LABLU, PAKNUM I IIEJ085I112 I DPALOC, SALO I 
~-------t--------f------------------------~ t-------t--------f------------------------i 
IIEJ066II10E IDO I IIEJ0851114 IPRESCN I 
t-------t--------t------------------------i t-------+--------t------------------------i 
IIEJ067II10D I DEFINE I IIEJ086I114 IBLANKZ I 
t-------t--------t------------------------i t-------t--------t------------------------i 
IIEJ068II10D,lOE ILITCON I IIEJ087II14 IFMDCON, FMECON, FMFCON, I 
t-------t--------t------------------------i I I I FMTINT, FI~CON, FSUBST I 
IIEJ069II10E IASF I t-------f--------t------------------------i t-------t--------t------------------------i IIEJ088I114 I LPAREN I 
IIEJ070II10D IFUNCT, SUBRUT I t-------t--------t------------------------i 
t-------f--------t------------------------i IIEJ089I114 IUNITCK I 
IIEJ071II10E I CALL I t-------t--------t------------------------i t-------t--------t------------------------i IIEJ090II14 IFQUOTE I 
I IEJ072I1lOE IARITH I t-------t--------t------------------------i t-------t--------t------------------------i IIEJ0911114 IFMINUS, FPLUS I 
IIEJ073II10D,lOE IPUTX I t-------t--------t------------------------i 
t-------t--------+------------------------i IIEJ0921114 IFCOM~m I 

. IIEJ074II10D I COMMON I t-------t--------t------------------------i t-------t--------t------------------------i IIEJ093I114 IREAD/READWR I 
IIEJ075II14 I FORMAT, CKLM I t-------t--------t------------------------i 
~-------+--------+------------------------i I IEJ094I1 14 IFMDCON, FMECON, FMFCON, I 
IIEJ076II14 IREAD/READWR, FORMAT I I I IFMTINT, FMACON I 
t-------t--------t------------------------i t-------t--------t------------------------i 
IIEJ077II10D,lOE IASF, READ/WRITE, EOSR, I I IEJ095I1 14 IREAD/READWR I 
I I I DO, SUBS, EQUIV, FUNCT, I t-------t--------t------------------------i 
I I ISUBRUT, DIMSUB, DIM, I IIEJ0961114 IREAD/READWR I 
I I ISKPBLK I t-------t--------t------------------------i 
~-------t--------t------------------------i IIEJ0971114 IINSAV I 
IIEJ0771114 IREAD/READWR, DO, FILLEG,I t-------+--------+------------------------i 
I I ISKPBLK I IIEJ098II14 IFQUOTE I L _______ ~ ________ ~ ________________________ J L _______ ~ ________ ~ ________________________ J 

(Continued) 

Appendix K: Diagnostic Messages and Statement/Expression Processing 147 



Table 29. Error/Warning Messages 
r-------T--------T------------------------, 
IMessagel Phase I Subroutine or Routine I 
INumber I I I 
~-------+--------+------------------------~ 
IIEJ099I114 IFQUOTE I 
~-------+--------+------------------------~ 
IIEJ100I114 100, READ/READWR I 
~-------+--------+------------------------~ 
IIEJ123II15 I MOPUP I 
~-------+--------+-----------------~------~ 
IIEJ124II15 I EQUALS I 
~-------+--------+------------------------~ 
IIEJ125II15 100, BEGIO I 
~-------+--------+------------------------~ 
IIEJ126II15 ICKARG I 
~-------+--------+------------------------~ 
IIEJ127II12 ICOMALO, ALOC I 
~-------+--------+------------------------~ 
IIEJ127II15 IPRESCN, UMINUS, UPLUS, I 
I I I FOSCAN I 
~-------+--------+------------------------~ 
IIEJ128I115 ILFTPRN I 
~-------+--------+------------------------~ 
IIEJ129I115 I TYPE I 
~-------+--------+------------------------~ 
IIEJ130II15 I COMMA I 
~-------+--------+------------------------~ 
IIEJ131I115 IINLINl I 
~-------+--------+------------------------~ 
IIEJ132I115 I LABEL I 
~----~--+--------+------------------------~ 
IIEJ133II15 I EQUALS I 
~-------+--------+------------------------~ 
IIEJ135I115 ICO~A, TYPE I 
~-------+--------+------------------------~ 
IIEJ136II15 I LAB I 
~-------+--------+------------------------~ 
IIEJ137I115 I COMMA, TYPE, RTPRN, I 
I I I FOSCAN I 
~-------+--------+------------------------~ 
IIEJ139I115 I COMMA I 
~-------+--------+------------------------~ 
IIEJ140II15 I FOSCAN I 
~-------+--------+------------------------~ 
IIEJ141I115 ICOMMA I 
~-------+--------+------------------------~ 
IIEJ142I115 100, BEGIO I 
~-------+--------+------------------------~ 
IIEJ143II15 I EQUALS I 
~-------+--------+------------------------~ 
IIEJ144I115 IARTHIF I 
~-------+--------+------------------------~ 
IIEJ145I120 IPHENO I 
~-------+--------+------------------------~ 
IIEJ147II12 IEQUIVP I 
~-------+--------+------------------------~ 
IIEJ148II12 I RENTER/ENTER, SWROOT I L _______ ~ ________ ~ ________________________ J 

148 

(Continued) 
r-------T--------T------------------------, 
IMessagel Phas~ I Subroutine or Routine I 
INumber I I I 
~-------+--------+------------------------~ 
IIEJ149I112 ICO~~LO I 
~-------+--------+------------------------~ 
IIEJ150I112 IALOC I 
~-------+--------+------------------------~ 
IIEJ1591115 I MOPUP I 
~-------+--------+------------------------~ 
IIEJ160I114 IINTCON I 
~-------+--------+------------------------1 
IIEJ160I115 ICOMlflli I 
~-------+--------+------------------------~ 
IIEJ161I112 I EXTCOM I 
~-------+--------+------------------------~ 
IIEJ162I110D,10E ICLASS I 
~-------+--------+------------------------~ 
IIEJ163IIIOD,lOE ILITCON I 
~-------+--------+------------------------~ 
IIEJ164IIIOE ICONT/RETURN I 
~-------+--------+------------------------~ 
IIEJ164II14 IFOR1~T I 
~-------+--------+------------------------~ 
IIEJ166IIIOD,10E I EOSR, DO, FUNCT,SUBRUT I 
~-------+--------+------------------------~ 
IIEJ166II14 IREAO/READWR I 
~-------+--------+------------------------~ 
IIEJ167II14 ILINECK I 
~-------+--------+------------------------~ 
IIEJ168I110D,10E IEOSR I 
~-------+--------+------------------------~ 
IIEJ169IIIOD IDIMSUB I 
~-------+--------+------------------------~ 
IIEJ169II15 ICO~4A I 
~-------+--------+------------------------~ 
IIEJ171IIIOD,10E IEOSR I 
~-------+--------+------------------------~ 
IIEJ171II14 I RPAREN I 
~-------+--------+------------------------~ 
IIEJ172IIIOE IASF I 
~-------+--------+------------------------~ 
IIEJ173II10E IARITH I 
~-------+--------+------------------------1 
IIEJ174II15 I EQUALS, LFTPRN, INARG, I 
I I I TYPE I 
~-------+--------+------------------------i 
1 IEJ1751 114 1 LA.BEL I L _______ i ________ ~ ________________________ J 

STATEMENT/EXPRESSION PROCESSING 

Table 30 indicates the routine/subrou­
tine responsible for the processing of the 
statement/expression under consideration, 
and the phase in which it appears. 



Table 30. Statement/Expression Processing 
r-------------------T---------------T------T--------T-------T-------T----------T--------, 
I Statement/ 1 Phase IPhase IPhase IPhase IPhase IPhase 1 Phase I 
1 Expression 1 10D/10E 1 12 1 14 1 15 1 20 1 25 1 30 1 
~-------------------+---------------+------+--------+-------+-------+----------+--------~ 
IArithmetic Expres- 1 1 1 1 1 1 1 I 
Ision or Statement IARITH (E) 1 I PASSON IFOSCAN IARITH 1 RXGEN I I 
~-------------------+---------------+------+--------+-------+-------+----------+--------~ 
I 1 1 1 I I 1 FUNGEN/ I I 
IFUNCTION Call IARITH (E)ILDCN 1 PASSON IFOSCAN ICALSEQ IEREXIT I 1 
~-------------------+---------------+------+--------+-------+-------+----------+--------~ 
1 1 1 1 1 FOSCAN, I I I I 
I Subscripted I 1 I IMVSBXX/I 1 1 1 
IVariable 1 SUBS (E) ISSCK 1 PASSON IMVSBRX ISUBVP ISAOP, AOP 1 1 
~-------------------+---------------+------+--------+-------+-------+----------+--------~ 
ISF Definition and I I I I I I ASFDEF, I I 
I Expansion IASP (E) ILDCN IASF IFOSCAN IARITH I ASFEXP I I 
~-------------------+---------------+------+--------+-------+-------+----------+--------~ 
I statement Number I I I I I I I I 
I Definitions I CLASS (E) I ASSNBLI LABEL ILABEL 1 LABEL 1 LABEL I I 
~-------------------+---------------+------+--------+-------+-------+----------+--------~ 
ISF Call IARITH (E)ILDCN IPASSON IFOSCAN ICALSEQ IASFUSE I I 
~-------------------+---------------+------+--------+-------+-------+----------+--------~ 
1 IBKSP/REWIND I I I I I I I 
I BACKSPACE 1 END/ENDFIL (E) I 1 BSPREF 1 D02 1 ESDRLD 1 RDWRT I 1 
~-------------------+---------------+------+--------+-------+-------+----------+--------~ 
1 1 1 I I ICALSEQ,IFUNGEN/ 1 I 
I CALL 1 CALL (E) 1 LDCN I PASSON I FOSCAN IIFCALL I EREXIT 1 1 
~-------------------+---------------+------+--------+-------+-------+----------+--------~ 
I COMMON 1 COMMON (D) I COMAL I COMEQUIV I 1 1 I 1 
~-------------------+---------------+------+--------+-------+-------+----------+--------~ 
I Computed GOTO I GO (E) I I CGOTO I CGOTO I COGOTO I CGOTO I I 
~-.------------------+---------------+------+--------+-------+-------+----------+--------~ 
I ICONT I I 1 1 1 I 1 
I CONTINUE I RETURN (E)I ISKIP ISKIP I 1 1 1 
~-------------------+---------------+------+--------+-------+-------+----------+--------~ 
IDEFINE FILE I DEFINE (D)I I PASSON IDEFNFL I I I I 
~-------------------+---------------+------+--------+-------+-------+----------+--------~ 
I DIMENSION 101M (D) 1 I I 1 1 I 1 
~-------------------+---------------+------+--------+-------+-------+----------+--------~ 
100 IDO (E)I 100 IDO IDO ID01,ENDDO 1 1 
~-------------------+---------------+------+--------+-------+-------+----------+--------~ 
I IINTGER/ (D) I I I 1 1 1 I 
I DOUBLE PRECISION I READ/DOUBLE I DPALOC I I 1 I 1 I 
~-------------------+---------------+------+--------+-------+-------+----------+--------~ 
I IBKSP/REWIND/ I I I I I I 1 
lEND IEND/ENDFIL (E)I lEND I MOPUP IPHEND lEND IENDCRD I 
~-------------------+---------------+------+--------+-------+-------+----------+--------~ 
I I BKSP/REWIND/ I I I I I I I 
IENDFILE IEND/ENDFIL (E) I I BSPREF ID02 IESDRLD IRDWRT 1 I 
~-------------------+---------------+------+--------+-------+-------+----------+--------~ 
I EQUIVALENCE IEQUIV (D) I EQUIVP ICOMEQUIVI I I I I 
~-------------------+---------------+------+--------+-------+-------+----------+--------~ 
I EXTERNAL I EXTERN '(D) I LDCN I I I I I I 
~-------------------+~--------------+------+--------+-------+-------+----------+--------~ 
I I READ/WRITE/ I I I I I I I 
IFIND I FIND (E) I I READ ID02 I IRDWRT I I 
~-------------------+---------------+------+--------+-------+-------+----------+--------~ 
I FORMAT 1 FORMAT (D,E) 1 I FORMAT 1 I 1 1 1 
~-------------------+---------------+------+--------+-------+-------+----------+--------i 
I I FUNCT/SUBRUT I I I I I I I 
I FUNCTION I (D)ILDCN ISUBFUN IFHDR 1 ISUBRUT I I 
~-------------------+---------------+------+--------+-------+-------+----------+--------i 
IGO IGO (E) I I ENDOCK I GOTO I I TRGEN 1 1 
~-------------------+---------------+------+--------+-------+-------+----------+--------~ 
IIF IIF (E) I IENDOCK IFOSCAN IIFCALL IARITHI I I L ___________________ ~ _______________ ~ ______ ~ ________ ~ _______ ~ _______ ~ __________ ~ ________ J 

(Continued) 

Appendix K: Diagnostic Messages and Statement/Expression Processing 149 



Table 30. statement/Expression Processing (Continued) 
r-------------------T---------------T------T------T-------T-------T----------T----------, 
I Statement/ I Phase IPhase IPhase I Phase I Phase I Phase I Phase I 
I Expression I 10D/10E I 12 I 14 I 15 I 20 I 25 I 30 I 

~-------------------+---------------+------+------+-------+-------+----------+----------~ 
I I I I I I I FUNGEN/ I I 
lIn-line Functions IARITH (E) ILDCN I PASSON I FOSCANI CKOD I EREXIT I I 
~-------------------+---------------+------+------+-------+-------+----------+----------~ 
, , INTGER/ , I I I I ! , 
I INTEGER I REAL/DOUBLE (D) I SALO I I I I I I 
~-------------------+---------------+------+------+-------+-------+----------+----------~ 
,PAUSE ,STOP/PAUSE (E) I IPAUSE ID02! ISTOP/PAUSE! ! 
~-------------------+---------.------+------+------+-------+-------+----------+----------~ 
I I I I I I READ, IRDWRT/ I I 
tREAD IREAD/WRI'l~E (E) I IREAD ID02 I LIST I IOLIST , I 
~------------------+---------.------+------+------+-------+-------+----------+----------~ 
I , INTGER/ , , I I I I I 
, REAL I REAL/DOUBLE (D) I SALO 1 I I I I I 
~-------------------+---------.------+------+------+-------+-------+----------+----------~ 
I ICONT 1 1 I I I I I 
1 RETURN I RETURN (E) I I RETURN I SKIP I I RETURN I I 
~-------------------+---------.------+------+------+-------+-------+----------+----------~ 
1 I BKSP/REWIND/ 1 1 I I I I I 
I REWIND IEND/ENDFIL (E) I 1 BSPREFI D02 IESDRLD IRDWRT I I 
~-------------------+---------------+------+------+-------+-------+----------+----------~ 
ISTOP ,STOP/PAUSE (E), 1 STOP 1002 1 tSTOP/PAUSEI I 
~-------------------+---------------+------+------+-------+-------+----------+----------~ 
1 ,FUNCT/SUBRUT, 1 I I 1 I I 
I SUBROUTINE , (D)ILDCN ISUBFUNlD02 1 ISUBRUT 1 I 
~-------------------+---------------+------+------+-------+-------+----------+----------~ 
I I I I I I I RDWRT / I I 
I WRITE I READ/WRITE (E), 1 READWRI D02 ILIST 1 IOLIST , I l ___________________ ~ _______________ ~ ______ ~ ______ ~ _______ ~ _______ ~ __________ ~ __________ J 

150 



This appendix describes the logic of 
some' of the object-time library subprograms 
that may be referenced by the FORTRAN load 
module. Included at the end of this appen­
dix are flowcharts that describe the logic 
of the subprograms. (E is the first char­
acter in the chart identification for each 
flowchart associated with a library subpro­
gram. ) 

Each object module, compiled from a 
FORTRAN source module, must be first proc­
essed by the linkage editor prior to execu­
tion on the IBM System/360. The linkage 
editor must combine certain FORTRAN library 
subprograms with the object module to form 
an executable load module. The library 
subprograms exist as separate load modules 
on the FORTRAN system library 
(SYS1.FORTLIB). Each library subprogram 
that is externally referenced by the object 
module is included in the load module by 
the linkage editor. Among the library 
subprograms that may be so referenced are: 

• IHCFCOME (Object-time I/O source state­
ment processor) - entry name IBCOM#. 

• IHCFIOSH (Object-time sequential access 
I/O data management interface) - entry 
name FIOCS#. 

• IHCDIOSE (Object-time direct access I/O 
data management interface) - entry name 
DIOCS#. 

• IHCIBERR (Object-time source statement 
error processor) - entry name IBERR#. 

IHCFCOME receives I/O requests from the 
FORTRAN load module via compiler-generated 
calling sequences. IHCFCOME, in turn, sub­
mits these requests to the appropriate data 
management interface (IHCFIOSH or 
IHCDIOSE) • 

IHCFIOSH receives sequential 
input/output requests from IHCFCOME 
turn, submits those requests 
appropriate BSAM (basic sequential 
method) routines for execution. 

access 
and, in 
to the 
access 

IHCDIOSE receives direct access 
input/output requests from IHCFCOME and, in 
turn, submits those requests to the 
appropriate BDAM (basic direct access 
method) routines for execution. 

If the LOAD option is specified, and if 
source statement errors are detected during 
compilation, the compiler generates a call-

APPENDIX L: OBJECT-TIME LIBRARY SUBPROGRAMS 

ing sequence to the IHCIBERR subprogram. 
IHCIBERR processes object-time errors 
resulting from improperly coded source 
statements. 

IHCFCOME 

IHCFCOME performs object-time implemen­
tation of the following FORTRAN source 
statements. 

• READ and WRITE (for sequential I/O). 

• READ, FIND, and WRITE (for direct 
access I/O). 

• BACKSPACE, REWIND, and ENDFILE 
(sequential I/O device manipulation). 

• STOP and PAUSE (write-to-operator). 

In addition, IHCFCOME: (1) processes 
object-time errors aetected by various FOR­
TRAN library subprograms, (2) processes 
arithmetic-type program interruptions, and 
(3) terminates load module execution. 

All linkages from the load module to 
IHCFCOME are compiler generated. Each time 
one of the above-mentioned source state­
ments is encountered during compilation, 
the appropriate calling sequence to 
IHCFCOME is generated and is included as 
part of the object module. At object-time, 
these calling sequences are executed, and 
control is passed to IHCFCOME to perform 
the specified operation. 

Note: IHCFCOME itself does not perform the 
actual reading front or wri ting onto data 
sets. It submits requests for such opera­
tions to the appropriate I/O data manage­
ment interface (IHCFIOSH or IHCDIOSE). The 
I/O interface, ~n turn, interprets and 
submits the requests to the appropriate 
access method (BSAM or BDAM) routines for 
execution. Figure 89 illustrates the rela­
tionship between IHCFCOME and the I/O data 
management interfaces. 

Charts EO, El, and E2 illustrate the 
overall logic and the relationship among 
the routines of IHCFCOME. Table 36, the 
IHCFCOME routine directory, lists the rou­
tines used in IHCFCOME and their functions. 

Appendix L: Object-Time Library Subprograms 151 



Submit 
sequential 
Access I/O 
Request to 
IHCFIOSH 

I/O 

r--------, 
I FORTRAN I 
I Load I 
I Module I 
L----f----J 

I 
I 

Request I 
I 

r-----1-----, 
I IHCFCOME I 
I (Determine I 
IRequest type) I 
Lf---------f-J 

I I 
I I 
I I 
I I 
I I 
I I 
I I 

Submit 
Direct 
Access I/O 
Request to 
IHCDIOSE 

r-----------i -, r-t-----------, 
I IHCFIOSH I I IHCDIOSE I 
I (Sequential I I (Direct I 
I Access I/O I I Access I/O I 
I Interface) I I Interface) I 
L-------f-----J L-----f-------J 

I I 
Interpret I I Interpret 
And submit I I And submit 
Request to I I Request to 
Appropriate I I Appropriate 
BSAM Routine I I BSAM/BDAM 

I I Routine 

r-----~----, r-----t-----, 
I BSAM I I BSAM/BDAM I 
I Routines I I Routines I L ___________ J L ___________ J 

Figure 89. Relationship Between IHCFCOME 
and I/O Data Management Inter­
faces 

OPERATION OF IHCFCOME ROUTINES 

The routines of IHCFCOME are divided 
into the following categories: 

• Read/write routines. 

• I/O device manipulation routines. 

• Write-to-operator routines. 

• Utility routines. 

The read/write routines implement both 
the sequential I/O statements (READ and 
WRITE) and the direct access I/O statements 

152 

(READ, FIND, and WRITE). (The 
access FIND statement is treated as a 
statement without format and list.) 

direct 
READ 

The I/O device manipulation routines 
implement the BACKSPACE, REWIND, and END 
FILE source statements for sequential data 
sets. These statements are ignored for 
direct access data $ets. 

The write-to-operator routines implement 
the STOP and PAUSE source statements. 

The utility routines: (1) process errors 
detected by FORTRAN library subprograms, 
(2) process arithmetic-type program inter­
rupts, and (3) terminate load module execu­
tion. 

Read/Write Routines 

For the implementation of both sequen­
tial and direct access READ and WRITE 
statements, the read/write routines of 
IHCFCOME consist of the following three 
sections: 

• An opening section, which initializes 
data sets for reading and writing. 

• An I/O list section, which transfers 
data from an input buffer to the I/O 
list items or from the I/O list items 
to an output buffer. 

• A closing section, which terminates the 
I/O operation. 

Within the discussion of each section, a 
read/write operation is treated in one of 
two ways: 

• As a read/write requiring a format. 

• As a read/write not requiring a format. 

Note: In the following discussion, the 
term "read operation" implies both the 
sequential access READ statement and the 
direct access READ and FIND statements. 
The term "write operation" implies both the 
sequential access WRITE statement and the 
direct access WRITE statement. 

OPENING SECTION: The compiler generates a 
calling sequence to one of four entry 
points in the opening section of IHCFCOME 
each time it encounters a READ or WRITE 
statement in the FORTRAN source module. 
These entry points correspond to the opera­
tions of read or write, requiring or not 
requiring a format. 



Read/Write Requirinq a Format: If the 
operation is a read requiring a format, the 
opening section passes control to the 
appropriate I/O data management interface 
to initialize the unit number specified in 
the READ statement for reading. (The unit 
number is passed, as an argument, to the 
opening section via the calling sequence.) 
The I/O interface: (1) opens the data 
control block (via the OPEN 
macro-instruction) for the specified data 
set if it was not previously opened, and 
(2) reads a record (via the READ 
macro-instruction) containing data for the 
I/O list items into an I/O buffer that was 
obtained when the data control block was 
opened. The I/O interface then returns 
control to the opening section of IHCFCOME. 
The address of the buffer and the length of 
the record read are passed to IHCFCOME by 
the I/O interface. These values are saved 
for the I/O list section of IHCFCOME. The 
opening section then passes control to a 
portion of IHCFCOME that scans the FORMAT 
statement specified in the READ statement. 
(The address of the FORMAT statement is 
passed, as an argument, to the opening 
section via the calling sequence.) The 
first format code (either a control or 
conversion type) is then obtained. 

For control type codes (e.g., an H 
format code or a group count), an I/O list 
item is not required. Control passes to 
the routine associated with the control 
code under consideration to perform the 
indicated operation. Control then returns 
to the scan portion, and the next format 
code is obtained. This process is repeated 
until either the end of the FORMAT state­
ment or the first conversion code is 
encountered. 

For conversion type codes (e.g., an I 
format code), an I/O list item is required. 
Upon t~e first encounter of a conversion 
code 1.n the scan of the FORMAT statement, 
the opening section completes its process­
ing of a read requiring a format and 
returns control to the next sequential 
instruction within the load module. 

The action taken by IHCFCOME when the 
various format codes are encountered is 
illustrated in Table 31. 

If the operation is a write requ1.r1.ng a 
format, the opening section passes control 
to the I/O interface to initialize the unit 
number specified in the WRITE statement for 
writing. (The unit number is passed, as an 
argument, to the opening section via the 
calling sequence.) The I/O interface opens 
the data control block (via the OPEN 
macro-instruction) for the specified data 
set if it was not previously opened. The 

I/O interface then returns control to the 
opening section of IHCFCOME. The address 
of an I/O buffer that was obtained when the 
data control block was opened is saved for 
the I/O list section of IHCFCOME. Subse­
quent opening section processing, starting 
with the scan of the FORMAT statement, is 
the same as that described for a read 
requiring a format. 

Read/Write Not Requiring a Format: If the 
operation is a read or write not requiring 
a format, the opening section processing 
except for the scan of the FORMAT statement 
is the same as that described for a read or 
write requiring a format. (For a read or 
write not requiring a format, there is no 
FORMAT statement.) 

I/O LIST SECTION: The compiler generates a 
calling sequence to one of four entry 
points in the I/O list section of IHCFCOME 
each time it encounters an I/O list item 
associated with the READ or WRITE statement 
under consideration. These entry points 
correspond to a variable or an array list 
item for a read and write, requiring or not 
requiring a format. The I/O list section 
performs the actual transfer of data from: 
(1) an input buffer to the list items if a 
READ statement is being implemented, or (2) 
the list items to an output buffer if a 
WRITE statement is being implemented. In 
the case of a read or write requiring a 
format, the data must be converted before 
it is transferred. 

Read/Write Requiring a Format: In process­
ing a list item for a read requiring a 
format, the I/O list section passes control 
to the conversion routine associated with 
the conversion code for the list item. 
(The appropriate conversion routine is det­
ermined by the portion of IHCFCOME that 
scans the FORMAT statement associated with 
the READ statement. The selection of the 
conversion routine depends on the conver­
sion code of the list item being 
precessed.) The conversion routine obtains 
data from an input buffer and converts the 
data to the form dictated by the conversion 
code. The converted data is then moved 
into the main storage address assigned to 
the list item. 

In general, after a conversion routine 
has processed a list iten~, the I/O list 
section determines if that routine can be 
applied to the next list item or array 
element (if an array is being processed). 
The I/O list section examines a field count 
that indicates the number of times a parti­
cular conversion code is to be applied to 
successive list items or successive ele­
ments of an array. 

Appendix L: Object-Time Library Subprograms 153 



Table 31. IHCFCOME FORMAT Code Processing 
r------------T--------------T----------T------------------------------------------------, 
I I I I I 
IFORMAT Code IDescription I Type ICorresponding Action Upon Code by IHCFCOME I 
I I I I I 
~------------+--------------+----------+------------------------------------------------~ 

beginning of control Save location for possible repetition of thel 
statement format codes; clear counters. I 

I 
I 

nC group count control Save n and location of left parenthesis fori 
possible repetition of the format codes in the I 
group. I 

I 
I 

n field count control Save n for repetition of format code which I 
follows. I 

I 
I 

nP scaling factor control Save n for use by F, E, and D conversions. I 
I 
I 

Tn column reset control Reset current position within record to nth 
column or byte. 

nX skip or blank control Skip n characters of an input record or insert n 
blanks in an output record. 

'text' or nH literal data 

Fw.d 
Ew.d 
Dw.d 
Iw 
Aw 

/ 

conversions 

group end 

record end 

end of 
statement 

control Move n characters from an input record to the 
FORV~T statement, or n characters from the 
FORMAT statement to an output record. 

conversion Exit to the load module to return control tol 
subroutine FIOLF or FIOAF. Using information I 
passed to the I/O list section, the address andl 
length of the current list item are obtained I 
and passed to the proper conversion routine I 
together with the current position in the 1/01 

control 

control 

control 

buffer, the scale factor, and the values of wi 
and d. Upon return from the conversion routine I 
the current field count is tested. If it isl 
greater than 1, another exit is made to the loadl 
module to obtain the address of the next listl 
item. I 

I 
I 

Test group count. If greater than 1, repeat I 
format codes in group; otherwise continue tol 
process FORMAT statement from current position. I 

I 
I 

Input or output one record via I/O Interface I 
and READ/WRITE macro-instruction. I 

I 
I 

If no I/O list items remain to be transmitted, I 
return control to the load module to link to thel 

\closing section; if list items remain, input orl 
\output one record using I/O interface and READ/I 
IWRITE macro-instruction. Repeat format codes I 
Ifrom last parenthesis. I L ____________ ~ ______________ ~ __________ ~ ________________________________________________ J 

154 



If the conversion code is to be repeated 
and if the previous list item was a vari­
able, the I/O list section returns control 
to the load module. The load module again 
branches to the I/O list section and pass­
es, as an argument, the main storage 
address assigned to the next list item. 

The conversion routine that processed 
the previous list item is then given con­
trol. This procedure is repeated until 
either the field count is exhausted or the 
input data for the READ statement is 
exhausted. 

If the conversion code is to be repeated 
and if an array is being processed, the I/O 
list section computes the main storage 
address of the next element in the array. 
The conversion routine that processed the 
previous element is then given control. 
This procedure is repeated until either all 
the array elements associated with a speci­
fic conversion code are processed or the 

. input data for the READ statement is 
exhausted. 

If the conversion code is not to be 
repeated, control is passed to the scan 
portion of IHCFCOME to continue the scan of 
the FORMAT statement. If the scan portion 
determines that a group of conversion codes 
is to be repeated, the conversion routines 
corresponding to those codes are applied to 
the next portion of the input data. This 
procedure is repeated until either the 
group count is exhausted or the input data 
for the READ statement is exhausted. 

If a group of conversion codes is not to 
be repeated and if the end of the FORMAT 
statement is not encountered, the next 
format code is obtained. For a control 
type code" control is passed to the asso­
ciated control routine to perform the indi­
cated operation. For a conversion type 
code, control is returned to the load 
module if the previous list item was a 
variable. The load module again branches 
to the I/O list section and passes, as an 
argument, the main storage address assigned 
to the next list item. control is then 
passed to the conversion routine associated 
with the new conversion code. The conver­
sion routine then processes the data for 
this list item. If the data that was just 
converted was placed into an element of an 
array and if the entire array has not been 
filled, the I/O list section computes the 
main storage address of the next element in 
the array and passes control to the conver­
sion routine associated with the new con­
version code. The conversion routine then 

processes the data for this array element. 
Subs~q';1ent I/O list processing for a READ 
requ~r~ng a format proceeds at the point 
where the field count is examined. 

If the scan portion encounters the end 
of the FORMAT statement and if all the list 
items are satisfied, control returns to the 
next sequential instruction within the load 
module. This instruction (part of the 
calling sequence to IHCFCOME) branches to 
the closing section. If all the list items 
are not satisfied, control is passed to the 
I/O interface to read (via the READ 
macro-instruction) the next input record. 
The conversion codes starting from the last 
left parenthesis are then repeated for the 
remaining list items. 

If the operation is a write requiring a 
format, the I/O list section processing is 
similar to that for a read requiring a 
format. The main difference is that the 
conversion routines obtain data from the 
main storage addresses assigned to the list 
items rather than from an input buffer. 
The converted data is then transferred to 
an output buffer. If all the list items 
have not been converted and transferred 
prior to the encounter of the end-of-the 
FORMAT statement, control is passed to the 
I/O interface. The I/O interface writes 
(via the WRITE macro-instruction) the con­
tents of the current output buffer onto the 
output data set. The conversion codes 
starting from the last left parenthesis are 
then repeated for the remaining list items. 

Read/Write Not Requiring a Format: In 
processing a list item for a read not 
requiring a format, the I/O list section 
must know the main storage address assigned 
to the list item and the size of the list 
item. Their values are passed, as argu­
ments, via the calling sequence to the I/O 
list section. The list item may be either 
a variable or an array. In either case, 
the number of bytes specified by the size 
of the list item is moved from the input 
buffer to the main storage address assigned 
to the list item. The I/O list section 
then returns control to the load module. 
The load module again branches to the I/O 
list section and passes, as arguments, the 
main storage address assigned to the next 
list item and the size of the list item. 
The I/O list section moves the number of 
bytes specified by the size of the list 
item into the main storage address assigned 
to this list item. This procedure is 
repeated either until all the list items 
are satisfied or until the input data is 
exhausted. control is then returned to the 
load module. 

Appendix L: Object-Time Library Subprograms 155 



If the operation is a write not requir­
ing a format, the I/O list section process­
ing is similar to that described for a read 
not requiring a format. The main differ­
ence is that the data is obtained from the 
main storage addresses assigned to the list 
items and is then moved to an output 
buffer. 

CLOSING SECTION: The compiler generates a 
calling sequence to one of two entry points 
in the closing section of IHCFCOME each 
time it encounters the end of a READ or 
WRITE statement in the FORTRAN source 
module. The entry points correspond to the 
operations of read and write, requiring or 
not requiring a format. 

Read/Write Requiring a Format: If the 
operation is a read requiring a format, the 
closing section simply returns control to 
the load module to continue load module 
execution. If the operation is a write 
requiring a format, the closing section 
branches to the I/O interface. The I/O 
interface writes (via the WRITE 
macro-instruction) the contents of the cur­
rent I/O buffer (the final record) onto the 
output data set. The I/O interface then 
returns control to the closing section. 
The closing section, in turn, returns con­
trol to the load module to continue load 
module execution. 

Read/Write Not Requiring a Format: If the 
operation is a read not requiring a format, 
the closing section branches to the I/O 
interface. The I/O interface reads (via 
the READ macro-instruction) successive 
records until the end of the logical record 
being read is encountered. (A FORTRAN 
logical record consists of all the records 
necessary to contain the I/O list items for 
a WRITE statement not requiring a format.) 
When the I/O interface recognizes the end-

156 

of-Iogical- record indicator, control is 
returned to the closing section. The 
closing section, in turn, returns control 
to the load module to continue load module 
execution. 

If the operation is a write not requir­
ing a format, the closing section inserts: 
(1) the record count (i.e., the number of 
records in the logical record) into the 
control word of the I/O buffer to be 
written, and (2) an end-of-Iogical-record 
indicator into the last record of the I/O 
buffer being written. The closing section 
then branches to the I/O interface. The 
I/O interface writes (via the WRITE 
macro-instruction) the contents of this I/O 
buffer onto the output data set. The I/O 
interface then returns control to the clos­
ing section. The closing section, in turn, 
returns control to the load module to 
continue load module execution. 

Examples of IHCFCOME READ/WRITE Statement 
Processing 

The following examples illustrate the 
opening section, I/O list section, and 
closing section processing performed by 
IHCFCOME for sequential access READ and 
WRITE statements, requiring or not requir­
ing a format. 

Note: IHCFCOME processing for the direct 
access READ, FIND, and WRITE statements is 
essentially the same as that described for 
the sequential access READ and WRITE state­
ments. The main difference is that for 
direct access statements, IHCFCOME branches 
to the direct access I/O interface 
(IHCDIOSE) instead of to the sequential 
access I/O interface (IHCFIOSH). 



READ REQUIRING A FORMAT: The processing 
performed by IHCFCOME for the following 
READ statement and FORMAT statement is 
illustrated in Table 32. 

READ (1,2) A,B,C 
2 FORMAT (3F12.6) 

Table 32. IHCFCOME Processing for a READ 
Requiring a Format 

r--------T--------------------------------, 
IOpening 11. Receives control from load I 
ISection I module and branches tol 
I I IHCFIOSH to initialize datal 
I I set for reading. I 
I I I 
I 12. Passes control to scan por-I 
I I tion of IHCFCOME. I 
I I I 
I _1 3 • Returns control to loadl 
I I module. I 
~--------+--------------------------------i 
I/O List 1. Receives control from load I 
section module, converts input datal 

for A, and moves converted I 
data to A. I 

2. Returns 
module. 

control to 
I 

load I 
I 
I 

3. Receives control from loadl 

4. 

5. 

module, converts input datal 
for B, and moves converted I 
data to B. I 

Returns 
module. 

control 

Receives control 
module, converts 
for C, and moves 
data to c. 

I 
to loadl 

I 
I 

from load I 
input datal 
converted I 

I 
I 

6. Returns control to load I 
module. I 

~--------+--------------------------------~ 
IClosing 11. Receives control from load I 
ISection I module and closes out 1/01 
I I operation. I 
I I I 
I 12. Returns control to loadl 
I I module to continue load I 
I I module execution. I L ________ ~ ________________________________ J 

WRITE REQUIRING A FORMAT: The processing 
performed by IHCFCOME for the following 
WRITE statement and FORMAT statement is 
illustrated in Table 33. 

WRITE (3,2) (D(I) ,1=1,3) 
2 FORMAT (3F12.6) 

Table 33. IHCFCOME Processing for a WRITE 
Requiring a Format 

r--------T--------------------------------, 
10pening 11. Receives control from load I 
ISection I module and branches tol 
I I IHCFIOSH to initialize datal 
I I set for writing. I 
I I I 
I 12. Passes control to scan por-I 
I I tion of IHCFCOME. I 
I I I 
1 13. Returns control to load I 
I I module.. I 
.--------+--------------------------------~ 
I/O List 1. Receives control from load I 
Section module, converts 0(1), andl 

moves 0(1) to output buffer. I 
I 

2. Returns control to loadl 
module. I 

I 
3. Receives control from load I 

module, converts D(2), andl 
moves 0 (2) to output buffer. I 

I 
4. Returns control to loadl 

module. I 
I 

5. Receives control from load I 
module, converts 0(3), andl 
woves 0(3) to output buffer. I 

I 
6. Returns control to loadl 

module. I 
.--------+--------------------------------~ 
IClosing 11. Receives control from load I 
ISection I module and branches tol 
I I IHCFIOSH to write contents I 
I I of output buffer. I 
I I I 
I 12. Returns control to loadl 
I I module to continue load I 
I I module execution. I L ________ ~ _____________________________ ~-J 

Appendix L: Object-Time Library Subprograms 157 



READ NOT REQUIRING A FORMAT: The process­
ing performed by IHCFCOME for the following 
READ statement is illustrated in Table 34. 

READ (5) X,Y,Z 

Table 34. IHCFCOME Processing for a READ 
Not Requiring a Format 

r--------T--------------------------------, 
10pening 11. Receives control from load I 
Isection I module and branches tol 
I I IHCFIOSH to initialize datal 
I I set for reading. I 
I I I 
I 12. Returns control to loadl 
I I module. I 
I I I 
~--------+--------------------------------i 
I/O List 1. Receives control from load 
section module and moves input data 

to X. 

2. Returns control to load 
module. 

3. Receives control from load 
module and moves input data 
to Y. 

4. Returns control to load 
module. 

5. Receives control from load 
module and moves input data 
to z. 

6. Returns control to loadl 
module. I 

~--------+--------------------------------i 
IClosing 11. Receives control from load I 
Isection I module and branches tol 
I I IHCFIOSH to read successivel 
I I records until the end-of-I 
I I logical-record indicator isl 
I I encountered. I 
I I I 
I 12. Returns control to loadl 
I I module to continue load I 
I I module execution. I L ________ ~ ________________________________ J 

158 

WRITE NOT REQUIRING A FORMAT: The process­
ing performed by IHCFCOME for the following 
WRITE statement is illustrated in Table 35. 

WRITE (6) (W(J) ,J=1,10) 

Table 35. IHCFCOME processing for a WRITE 
Not Requiring a Format 

r--------T--------------------------------, 
10pening 11. Receives control from load I 
ISection I module and branches tol 
I I IHCFIOSH to initialize datal 
I I for writing. I 
I I I 
I 12. Returns control to loadl 
I I module. I 
~--------+--------------------------------i 
I/O List 1. Receives control from load I 
section module and moves W(l) tol 

output buffer. I 
I 

2. Returns control to loadl 
module. I 

I 
3. Receives control from loadl 

module and moves W(2) tol 
output buffer. I 

I 
4. Returns control to loadl 

module. I 
I 
I 
I 
I 
I 

5. Receives control from loadl 
module and ~oves W(10) tol 
output buffer. I 

I 
6. Returns control to loadl 

module. I 
~--------+--------------------------------1 
IClosing 11. Receives control from load I 
ISection I module and branches tol 
I I IHCFIOSH to write contents I 
I I of output buffer. I 
I I I 
I 12. Returns control to loadl 
I I module to continue load I 
I I module execution. I L ________ ~ ________________________________ J 



I/O Device Manipulation Routines 

The I/O device manipulation routines of 
IHCFCOME implement the BACKSPACE, REWIND, 
and END FILE source statements. These 
routines receive control from within the 
load module via calling sequences that are 
generated by the compiler when these state­
ments are encountered. 

Note: The I/O device manipulation routines 
apply only to sequential access I/O devices 
(e.g., tape units). BACKSPACE, REWIND, and 
ENDFILE requests for direct access data 
sets are ignored. 

The implementation of REWIND and END 
FILE statements is straightforward. The 
I/O device manipulation routines submit the 
appropriate control request to IHCFIOSH, 
the I/O interface module. After the 
request is executed, control is returned to 
the calling routine within the load module. 

The BACKSPACE statement is processed in 
a similar fashion. However, before control 
is returned to the calling routine, it is 
determined whether the record backspaced 
over is an element of a data set that does 
not require a format. If the record is an 
element of such a data set, that record is 
read into an I/O buffer and the record 
count is obtained from its control word. 
Backspace control requests, equal in number 
to the record count, are then issued and 
control is returned to the calling routine. 
If the record is not an element of such a 
data set, control is returned directly to 
the calling routine. 

~rite-to-Operator Routines 

The write-to-operator routines of 
IHCFCOME implement the STOP and PAUSE 
source statements. These routines receive 
control from within the load module via 
calling sequences generated by the compiler 
upon recognition of the STOP and PAUSE 
statements. 

STOP: A write-to-operator (WTO) macro­
instruction is issued to display the 
message associated with the STOP statement 
on the console. Load module execution is 
then terminated by passing control to the 
program termination routine of IHCFCOME. 

PAUSE: A write-to-operator-with-reply 
(WTOR) macro-instruction is issued to dis­
play the message associated with the PAUSE 
statement on the console and to enable the 
operator's reply to be transmitted. A WAIT 
macro-instruction is then issued to deter­
mine when the operator's reply has been 

transmitted. After the reply has been 
received, control is returned to the call­
ing routine within the load module. 

Utility Routines 

The utility routines of IHCFCOME perform 
the following functions: 

• Process object-time error messages. 
• Process arithmetic-type program inter­

ruptions. 
• Terminate load module execution. 

PROCESSING OF ERROR MESSAGES: 
message processing routine 
receives control from various 
library subprograms when they 
object-time errors. 

The error 
(IBFERR) 
FORTRAN 
detect 

Error message processing consists of 
initializing the data set upon which the 
message is to be written and also of 
writing the message. If the type of error 
requires load module termination, control 
is passed to the termination routine of 
IHCFCOME; if not, control is returned to 
the calling routine. 

PROCESSING OF ARITHMETIC INTERRUPTIONS: 
The arithmetic-interrupt routine (IBFINT) 
of IHCFCOME initially receives control from 
wi thin the load If,odule via a compiler­
generated calling sequence. The call is 
placed at the start of the executable 
coding of the load module so that the 
interrupt routine can set up the program 
interrupt mask. Subsequent entries into 
the interrupt routine are made through 
arithmetic-type interruptions. 

The interrupt routine sets up the 
program interrupt mask by means of a SPIE 
macro-instruction. This instruction speci­
fies the type of arithmetic interruptions 
that are to cause control to oe passed to 
the interrupt routine, and the location 
within the routine to which control is to 
be passed if the specified interruptions 
occur. After the mask has been set, con­
trol is returned to the calling routine 
within the load module. 

In processing an arithmetic interrup­
tion, the first step taken by the interrupt 
routine is to determine its type. If 
exponential overflow or underflow has 
occurred, the appropriate indicators, which 
are referenced by OVERFL (a library 
subprogram), are set. If any type of 
divide check caused the interruption, the 
indicator referenced by DVCHK (also a 
library subprogram) is set. 

Appendix L: Object-Time Library Subprogra.ms 159 



Regardless of the type of interruption 
that caused control to be given to the 
interrupt routine, the old program PSW is 
written out for diagnostic purposes. 

After the interruption has been proc­
essed, control is returned to the inter­
rupted routine at the point of interrup­
tion. 

PROGRAM TERMINATION: The load module ter­
mination routine (IBEXIT) of IHCFCOME 
receives control from various library sub­
programs (e.g., DUMP and EXIT) and from 
other IHCFCOME routines (e.g., the routine 
that processes the STOP statement). 

This routine terminates execution of the 
load module by the following means: 

• Calling the appropriate 
interface(s) to check (via the 
macro-instruction) outstanding 
requests. 

I/O 
CHECK 
write 

• Issuing a SPIE macro-instruction with 
no parameters indicating that the FOR­
TRAN object module no longer desires to 
give special treatment to program 
interruptions and does not want maska­
ble interruptions to occur. 

• Returning to 
supervisor. 

IHCFIOSH 

the operating system 

IHCFIOSH, the object-time FORTRAN 
sequential access input/output data manage­
ment interface, receives I/O requests from 
IHCFCOME and submits them to the appropri­
ate BSAM (basic sequential access method) 
routines and/or open and close routines for 
execution. 

Chart E3 illustrates the overall logic 
and the relationship among the routines of 
IHCFIOSH. Table 37, the IHCFIOSH routine 
directory, lists the routines used in 
IHCFIOSH and their functions. 

BLOCKS AND TABLE USED 

IHCFIOSH uses the following blocks and 
table during its processing of sequential 
access input/output requests: (1) unit 
blocks, and (2) unit assignment table. The 
unit blocks are used to indicate I/O activ­
ity for each unit number (i.e., data set 
reference number) and to indicate the type 
of operation requested. In addition, the 

160 

unit blocks contain skeletons of the data 
event control blocks (DECB) and the data 
control blocks (DCB) that are required for 
I/O operations. The unit assignment table 
is used as an index to the unit blocks. 

Unit Blocks 

The first reference to each unit number 
(data set reference number) by an 
input/output operation within the FORTRAN 
load module causes IHCFIOSH to construct a 
unit block for each unit number. The main 
storage for the unit blocks is obtained by 
IHCFIOSH via the GET~AIN macro-instruction. 
The addresses of the unit blocks are placed 
in the unit assignment table as the unit 
blocks are constructed. All subsequent 
references to the unit numbers are then 
made through the unit assignment table. 
Figure 90 illustrates the format of a unit 
block for a unit that is defined as a 
sequential access data set. 

r-----T-----T-----T-------, 
IABYTEI BBYTE I CBYTE I LIVECNTI 
~-----~-----~-----~-------~ 
IAddress of Buffer 1 I 
~-------------------------~ Housekeeping 
IAddress of Buffer 2 I Section 
~-------------------------~ 
ICurrent buffer pOinter I 
~-------------------------~ 
IRecord offset I 
~-------------------------~ 
IDECB skeleton section I 
~-------------------------~ 
IDCB skeleton secticn I L _________________________ J 

Figure 90. Format of a Unit Block for a 
Sequential Access Data Set 

Each unit block is divided into three 
sections: a housekeeping section, a DECB 
skeleton section, and a DCB skeleton sec­
tion. 

HOUSEKEEPING SECTION: The housekeeping 
section is maintained by IHCFIOSH. The 
information contained in it is used to 
indicate data set type, to keep track of 
1/0 buffer locations, and to keep track of 
addresses internal to the IIO buffers to 
enable the processing of blocked records. 
The fields of this section are: 

• ABYTE. This field, containing the data 
~type passed to IHCFIOSH by 
IHCFCOME, can be set to one of the 
following: 



FO - Input data set requiring a format. 
FF - output data set requiring a for-

mat. 
00 - Input data set not requiring a 

format. 
OF - output data set not requiring a 

format. 

• BBYTE. This field contains bits that 
are set and examined by IHCFIOSH during 
its processing. The bits and their 
meanings are as follows: 

Bit on 

o - exit to IHCFCOME on I/O error 
1 - I/O error occurred 
2 - current buffer indicator 
3 - not used 
4 - end-of-current buffer indicator 
5 - blocked data set indicator 
6 - variable record format switch 
7 - not used 

• CBYTE. This field also contains bits 
that are set and examined by IHCFIOSH. 
The bits and their meanings are as 
follows: 

Bit on 

o - data control block opened 
1 - data control hlock not TCLOSEd 
2 - data control block not previously 

opened 
3 - buffer pool attached 
4 - data set not previously rewound 
5 - data set not previously backspaced 
6 - concatenation occurring -- reissue 

READ 
7 - not used 

• LIVECNT. This field indicates whether 
any I/O operation performed for this 
data set is unchecked. (A value of 1 
indicates that a previous read or write 
has not been checked; a value of 0 
indicates that all previous read and 
write operations for this data set have 
been checked.) 

• Address of Buffer 1 and Address of 
Buffer 2. These fields contain poin­
ters to the two I/O buffers obtained 
during the opening of the data control 
block for this data set. 

• Current Buffer Pointer. 
contains a pointer to the 
currently being used. 

This 
I/O 

field 
buffer 

• Record Offset. This field contains a 
pointer to the current logical record 
within the current buffer. 

DECB SKELETON SECTION: The DECB (data 
event control block) skeleton section is a 
block of main storage within the unit 

block. It is of the same form as the DECB 
constructed by the control program for an L 
form of an S-type READ or WRITE macro­
instruction (refer to the publication IBM 
System/360 Operating System: Control 
Program Services). The various fields of 
the DECB skeleton are filled in by 
IHCFIOSH; the completed block is referred 
to when IHCFIOSH issues a read/write 
request to BSAM. The read/write field is 
filled in at open time. For each I/O 
operation, IHCFIOSH supplies IHCFCOME with: 
(1) an indication of the type of operation 
(read or write), and (2) the length of and 
a pointer to the I/O buffer to be used for 
the operation. 

DCB SKELETON SECTION: The DCB (data con­
trol block) skeleton section is a block of 
main storage within the unit block. It is 
of the same form as the DCB constructed by 
the control program for a DCB macro­
instruction under BSAM (refer to the 
publication IBM System/360 Operating Sys­
tem: Control Program Services). The var­
ious fields of the DCB skeleton are filled 
in by the control program when the DCB for 
the data set is opened (refer to the 
publication IBM Systeml360 Operating Sys­
tem: Concepts and Facilities). (Standard 
default values may also be inserted in the 
DCB skeleton by IHCFIOSH. Refer to "Unit 
Assignment Table" for a discussion of when 
default values are inserted into the DCB 
skeleton. ) 

Unit Assignment Table 

The unit assignment table (IHCUATBL) 
resides on the FORTRAN system library 
(SYS1.FORTLIB). Its size depends on the 
maximum number of units that can be 
referred to during execution of any FORTRAN 
load module. This number (~ 99) is speci­
fied by the user during the system genera­
tion process via the FORTLIB macro­
instruction. 

The unit assignment table is designed to 
be used by both IHCFIOSH and IHCDIOSE. It 
is included once, by the linkage editor, in 
the FORTRAN load module as a result of an 
external reference to it within IHCFIOSH 
and/or IHCDIOSE. 

The unit assignment table contains a 16 
byte entry for each of the unit numbers 
that can be referred to by the user. These 
entries differ in format depending on 
whether the unit has been defined as a 
sequential access or a direct access data 
set. 

Figure 91 illustrates the format of the 
unit assignment table. 

Appendix L: Object-Time Library Subprograms 161 



r----------------------T----------T-------, 
IUnit number (DSRN) I I I 
Ibeing used for current I I I 
I operation I 1 n x 16 14 bytes I 
~----------------------+----------+-------i 
IUnit number (DSRN) of 1 I 1 
lerror output device 1 not used 14 bytes I 
~----------------------L----------+-------i 
IUBLOCK01 field 14 bytes I 
~---------------------------------+-------i 
IDSRN01 default values 18 bytes I 
~---------------------------------+-------~ 
ILIST01 field 14 bytes 1 
~---------------------------------+-------i 
I I I 
I . I . I 
I • I • 1 
1 • 1 • 1 
I I I 
~---------------------------------+-------i 
IUBLOCKn field 2 14 bytes 1 
~---------------------------------+-------i 
IDSRNn default values 3 18 bytes 1 
~---------------------------------+-------~ 
ILISTn field q 14 bytes 1 
~---------------------------------L-------~ 
1n is the maximum number of units that 

can be referred to by the FORTRAN load 
module. The size of the unit table is 
equal to (8 + n x 16) bytes. 

2The UBLOCKn field contains either a 
pointer to the unit block constructed 
for unit number n if the unit is being 
used at object-time, or a value of 1 if 
the unit is not being used. 

3The default values for the various unit 
numbers are specified by the user and 
are asserr~led into the unit assignment 
table entries during the system genera­
tion process. The default values arel 
used only by IHCFIOSH; they are ignored I 
by IHCDIOSE. 1 

I~If the unit is defined as a direct 1 
I access data set, the LISTn field con-I 
I tains a pointer to the parameter listl 
I that defines the direct access data set. 1 
I Otherwise, this field contains a value I 
1 of 1. I L _________________________________________ J 

Figure 91. Unit Assignment Table Format 

Because IHCFIOSH deals only with 
sequential access data sets, the remainder 
of the discussion on the unit assignment 
table is devoted to unit assignment table 
entries for sequential access data sets. 
If IHCFIOSH encounters a reference to a 
direct access data set, it is considered 
as an error, and control is passed to the 
load module termination routine of 
IHCFCOME .• 

The pointers to the unit blocks created 
for sequential data sets are inserted into 
the unit assignment table entries by 
IHCFIOSH when the unit blocks are con­
structed. 

162 

Note: Default values are standard values 
that IHCFIOSH inserts into the appropriate 
fields (e.g., BUFNO) of the DCB skeleton 
section of the unit blocks if the user 
either: 

• Causes the load module to be executed 
via a cataloged procedure, or 

• Fails, in stating his own procedurE 
for execution, to include in the DCB 
parameter of his DD statements those 
subparameters (e.g., BUFNO) he is per­
mitted to include (refer to the publi­
cation IBM System/360 Operating Sys­
tem: FORTRAN IV (E) programmer's 
Guide) • 

control is returned to IHCFIOSH during 
data control block opening so that it can 
determine if the user has included the 
subparameters in the DCB parameter of his 
DD statements. IHCFIOSH examines the DCB 
skeleton fields corresponding to user­
permitted subparameters, and upon 
encountering a null field (indicating that 
the user has not specified the 
subparameter), inserts the standard value 
(i.e., the default value) for the subpar­
ameter into the DCB skeleton. (If the 
user has included these subparameters in 
his DD statement, the control program 
routine performing data control block 
opening inserts the subparameter values, 
before giving control to IHCFIOSH, into 
the DCB skeleton fields reserved for those 
values. ) 

BUFFERING 

All input/output operations are double 
buffered. (The double buffering scheme 
can be overriden by the user if he speci­
fies in a DD statement: BUFNO=l.) This 
implies that during data control block 
opening, two buffers will be obtained. 
The addresses of these buffers are given 
alternately to IHCFCOME as pointers to: 

• Buffers to be filled (in the case 
output). 

• Information that has been read in 
is to be processed (in the case 
input) • 

COMMUNICATION WITH THE CONTROL PROGRAM 

of 

and 
of 

In requesting services of the control 
program, IHCFIOSH uses Land E forms of 
S-type macro-instructions (refer to the 
publication IBM System/360 Operating Sys­
tem: Control Program Services). 



OPERATION 

The processing of IHCFIOSH is divided 
into five sections: initialization, read, 
write, device manipulation, and closing. 
When called by IHCFCOME, a section of 
IHCFIOSH performs its function and then 
returns control to IHCFCOME. 

Initialization 

The initialization action taken by 
IHCFIOSH depends upon the nature of the 
previous I/O operation requested for the 
data set. The previous operation possi­
bilities are: 

• No previous operation. 
• Previous operation read or write. 
• Previous operation backspace. 
• Previous operation write end-of-data 

set. 
• Previous operation rewind. 

NO PREVIOUS OPERATION: If no previous 
operation has been performed on the unit 
specified in the I/O request, the initial­
ization section generates a unit block for 
the unit number. The data set to be 
created is then opened (if the current 
operation is not rewind or backspace) via 
the OPEN macro-instruction. The addresses 
of the I/O buffers, which are obtained 
during the opening process and placed into 
the DCB skeleton, are placed into the 
appropriate fields of the housekeeping 
section of the unit block. The DECB 
skeleton is then set to reflect the nature 
of the operation (read or write), the 
format of the records to be read or 
written, and the address of the I/O buffer 
to be used in the operation. 

If the requested operation is a write, 
a pointer to the buffer position, at which 
IHCFCOME is to place the record to be 
written, and the block size or logical 
record length (to accommodate blocked log­
ical records) are placed into registers, 
and control is returned to IHCFCOME. 

If the requested operation is a read, a 
record is read, via a READ macro­
instruction, into the I/O buffer, and the 
operation is checked for completion via 
the CHECK macro-instruction. A pointer to 
the location of the record within the 
buffer, along with the number of bytes 
read or the logical record length, are 
placed into registers, and control is 
returned to IHCFCOME. 

Note: During the opening process, control 
is returned to the IHCDCBXE routine in 
IHCFIOSH. This routine determines if the 
data set being opened is a 1403 printer. 
If it is, the RECFM field in the DCB for 
the data set is altered to machine 
carriage control (FM). The value 144 is 
inserted into both the block size and 
record length fields in the DCB. In 
addition, a pointer to the unit block 
generated for the printer, and the physi­
cal address of the p1:°inter are placed into 
a control block area (CTLBLK) for the 
printer within IHCFIOSH. CTLBLK also con­
tains a third print buffer. This buffer 
is used in conjunction with the two buf­
fers already obtained for the printer. 

Figure 92 illustrates the format of 
CTLBLK. 

r-------------------------T---------, 
CTLBLKla(BUF 3) I 4 bytes I 

~-------------------------+---------i 
I a (unit block) 1 4 bytes 1 
~-----------T-------------+---------~ 
I a (printer) Irecord lengthl 4 bytes I 
~-----------~-------------+---------~ 
11 FTOO 1 4 bytes 1 
~-------------------------+---------~ 
11 F 001 1 4 byt es 1 
~-------------------------+---------i 

BUF3 Ithird print buffer 1144 bytes 1 
~-------------------------~---------~ 
11Used in the task input/output 1 
1 table (TIOT) search. 1 L ___________________________________ J 

Figure 92. CTLBLK Format 

PREVIOUS OPERATION READ OR WRITE: If the 
previous operation performed on the unit 
specified in the present I/O request was 
either a read or write, the initialization 
section determines the nature of the pre­
sent I/O request. If it is a write, a 
pointer to the buffer position, at which 
IHCFCOME is to place the record to be 
written, and the block size or logical 
record length are placed into registers, 
and control is returned to IHCFCOME. 

If the operation to be performed is a 
read, a pointer to the buffer location of 
the record to be processed, along with the 
number of bytes read or logical record 
length, are placed into registers, and 
control is returned to IHCFCOME. 

PREVIOUS OPERATION BACKSPACE: If the pre­
vious operation performed on the unit spec­
ified in the present I/O request was a 
backspace, the initialization section det­
ermines the type of the present operation 
(read or write) and modifies the DECB 
skeleton, if necessary, to reflect the 
operation type. (If the operation type is 

Appendix L: Object-Time Liorary Subprograms 163 



the same as that of the operation that 
preceded the backspace request, the DECB 
skeleton need not be modified.) Subsequent 
processing steps are the same as those 
described for "No Previous Operation," 
starting at the point after the DECB skele­
ton is set to reflect operation type. 

PREVIOUS OPERATION WRITE END-OF-DATA SET: 
If the previous operation performed on the 
unit specified in the present I/O request 
was a write end-of-data set, a new data set 
using the same unit number is to be creat­
ed. In this case, the initialization sec­
tion closes the data set. Then, in order 
to establish a correspondence between the 
new data set and the DD statement describ­
ing that data set, IHCFIOSH increments the 
unit sequence number of the ddname. (The 
ddname is placed into the appropriate field 
of the DCB skeleton prior to the opening of 
the initial data set associated with the 
unit number.) During the opening of the 
data set, the ddname will be used to merge 
with the appropriate DD statement. The 
data set is then opened. Subsequent proc­
essing steps are the same as those des­
cribed for "No Previous Operation," start­
ing at the point after the data set is 
opened. 

PREVIOUS OPERATION REWIND: If the previous 
operation performed on the unit specified 
in the present I/O request was a rewind, 
the ddname is initialized (set to FTxxF001) 
in order to establish a correspondence 
between the initial data set associated 
with the unit number and the DD statement 
describing that data set. The data set is 
then opened. Subsequent processing steps 
are the same as those described for "No 
Previous Operation," starting at the point 
after the data set is opened. 

The read section of IHCFIOSH performs 
two functions: (1) reads physical records 
into the buffers obtained during data set 
opening, and (2) makes the contents of 
these buffers available to IHCFCOME for 
processing. 

If the records being processed are 
blocked, the read section does not read a 
physical record each time it is given 
control. IHCFIOSH only reads a physical 
record when all of the logical records of 
the blocked record under consideration have 
been processed by IHCFCOME. However, if 
the records being processed are either 
unblocked or of U-format, the read section 
of IHCFIOSH issues a READ macro-instruction 
each time it receives control. 

164 

The reading of records by this section 
is overlapped. That is, while the contents 
of one buffer are being processed, a physi­
cal record is being read into the other 
buffer. When the contents of one buffer 
have been processed, the read into the 
other buffer is checked for completion. 
Upon completion of the read operation, 
processing of that buffer's contents is 
initiated. In addition, a read into the 
second buffer is initiated. 

Each time the read section is given 
control it makes the next record available 
to IHCFCOME for processing. (In the case 
of blocked records, the record presented to 
IHCFCOME is logical.) The read section of 
IHCFIOSH places: (1) a pointer to the 
record's location in the current I/O buf­
fer, and (2) the number of bytes read or 
logical record length into registers, and 
then returns control to IHCFCO~£. 

The write section of IHCFIOSH performs 
two functions: (1) writes physical records, 
and (2) provides IHCFCOME with buffer space 
in which to place the records to be writ­
ten. 

If the records being written are 
blocked, the write section does not write a 
physical record each time it is given 
control. IHCFIOSH only writes a physical 
record when all of the logical records that 
comprise the blocked record under consider­
ation have been placed into the I/O buffer 
by IHCFCOME. However, if the records being 
written are either unblocked or of U­
format, the write section of IHCFIOSH 
issues a WRITE macro-instruction each tiwe 
it receives control. 

The writing of records by this section 
is overlapped. That is, while IHCFCOME is 
filling one buffer, the contents of the 
other buffer are being written. When an 
entire buffer has been filled, the write 
from the other buffer is checked for com­
pletion. Upon completion of the" write 
operation, IaCFCOME starts placing records 
into that buffer. In addition, a write 
from the second buffer is initiated. 

Each time the write section is given 
control, it provides IHCFCOl~ with buffer 
space in which to place the record to be 
written. IHCFIOSH places: (1) a pointer to 
the location within the current buffer at 
which IHCFCOME is to place the record, and 
(2) the block size or logical record length 
into registers, and then returns control to 
IHCFCOME. 



Note: The write section checks to see if 
the data set being written on is a 1403 
printer. If it is, the carriage control 
character is changed to machine code, and 
three buffers, instead of the normal two, 
are used when writing on the printer. 

ERROR PROCESSING: If an end-of-data set or 
an I/O error is encountered during reading 
or writing, the control program returns 
control to the location within IHCFIOSH 
that was specified during data set initial­
ization. In the case of an I/O error, 
IHCFIOSH sets a switch to indicate that the 
error has occurred. Control is then 
returned to the control program. The con­
trol program completes its processing and 
returns control to IHCFIOSH, which interro­
gates the switch, finds it to be set, and 
passes control to the I/O error routine of 
IHCFCOME. 

In the case of an end-of-data set, 
IHCFIOSH simply passes control to the end­
of-data set routine of IHCF'COME. 

Chart E4 illustrates the execution-time 
I/O recovery procedure for any I/O errors 
detected by the I/O supervisor. 

Device Manipulation 

The device manipulation section of 
IHCFIOSH processes backspace, rewind, and 
write end-of-data set requests. 

BACKSPACE: IHCFIOSH processes the back­
space request by issuing a BSP (physical 
backspace) macro-instruction. It then 
places the data set type, which indicates 
the format requirement, into a register and 
returns control to IHCFCOME. (IHCFCOME 
needs the data set type to determine its 
subsequent processing.) 

REWIND: IHCFIOSH processes the rewind 
request by issuing a CLOSE macro­
instruction, using the REREAD option. This 
option has the same effect as a rewind. 
Control is then returned to IHCFCOME. 

WRITE END-OF-DATA SET: IHCFIOSH processes 
this request by issuing a CLOSE macro­
instruction, type = T. It then frees the 
I/O buffers by issuing a FREEPOOL macro­
instruction, and returns control to 
IHCFCOME. 

Closing 

The closing section of IHCFIOSH examines 
the entries in the unit assignment table to 
determine which data control blocks are 

open. In addition, this section ensures 
that all write operations for a data set 
are completed before the data control block 
for that data set is closed. This is done 
by issuing a CHECK macro-instruction for 
all double-buffered output data sets. Con­
trol is then returned to IHCFCO~~. 

Note: If a 1403 printer is being used, a 
write from the last print buffer is issued 
to insure that the last line of output is 
written. 

IHCDIOSE 

IHCDIOSE, the object-time FORTRAN direct 
access input/output data management inter­
face, receives I/O requests from IHCFCOME 
and submits them to the appropriate BDAM 
(basic direct access method) routines 
and/or open and close routines for execu­
tion. (For the first I/O request involving 
a nonexistent data set, the appropriate 
BSAM routines must be executed prior to 
linking to the BDAM routines. The BSAM 
routines format and create a new data set 
consisting of blank records.) 

IHCDIOSE receives control from: (1) the 
initialization section of the FORTRAN load 
module if a DEFINE FILE statement is 
included in the source module, and (2) 
IHCFCOME whenever a READ, WRITE, or FIND 
direct access statement is encountered in 
the load module. 

Charts E5 and E6 illustrate the overall 
logic and the relationship among the rou­
tines of IHCDIOSE. Table 38, the IHCDIOSE 
routine directory, lists the routines used 
in IHCDIOSE and their functions. 

BLOCKS AND TABLE USED 

IHCDIOSE uses the following blocks and 
table during its processing of direct 
access input/output requests: (1) unit 
blocks, and (2) unit assignment table. The 
unit blocks are used to indicate I/O activ­
ity for each unit nURioer (i.e., data set 
reference number) and to indicate the type 
of operation requested. In addition, each 
unit block contains skeletons of the data 
event control blocks (DECB) and the data 
control block (DCB) that are required for 
I/O operations. The unit assignment table 
is used as an index to the unit blocks. 

Appendix L: Object-Time Library SUbprograms 165 



Unit Blocks 

The first reference to each unit number 
<i.e., data set reference number> by a 
direct access input/output operation within 
the FORTRAN load module causes IHCDIOSE to 
construct a unit mlock for each of the 
referenced unit numbers. The main storage 
for the unit blocks is obtained by IHCDIOSE 
via the GETMAIN macro-instruction. The 
addresses of the unit blocks are inserted 
into the corresponding unit assignment 
table entries as the unit blOCKS are con­
structed. Subsequent references to the 
unit numbers are then made through the unit 
assignment table. 

Figure 93 illustrates the format of a 
unit block for a unit that has been defined 
as a direct access data set. 

r-------T-------T------T------T-----------, 
IIOTYPE ISTATUSUI not I not I 4 bytes I 
I I I used I used I I 
~-------~-------~------~------+-----------~ 
I RECNUM I 4 bytes I 
~-------T---------------------+-----------~ 
I STATUSAI CURBUF I 4 bytes I 
~------~---------------------+-----------~ 
I BLKREFA I 4 bytes I 
~-------T---------------------+-----------~ 
I STATUSB I NXTBUF I 4 bytes I 
~-------~---------------------+-----------~ 
I BLKREFB I 4 bytes I 
~-----------------------------+-----------~ 
I DECBA I 28 bytes I 
~-----------------------------+-----------~ 
I DECBB I 28 bytes I 
~-----------------------------+-----------~ 
I DCB I 104 bytes I L _____________________________ ~ ___________ J 

Figure 93. Format of a unit Block for a 
Direct Access Data Set 

The meanings of the various unit block 
fields are outlined below. 

IOTYPE: This field, containing the data 
set type passed to IHCDIOSE by IHCFCOME, 
can be set to one of the following: 

FO - input data set requiring a format 

FF - output data set requiring a format 

00 - input data set not requiring a 
format 

OF - output data set not requiring a 
format 

STATUSU: This field specifies the status 
of the associated unit number. The bits 
and their meanings are as follows: 

166 

Bit on 

o - not used 
1 - error occurred 
2 - two buffers are being used 
3 - data control block for data set is 

open 
4-5 10 - U form specified in DEFINE 

FILE statement 
01 - E form specified in DEFINE 
FILE statement 
11 - L form specified in DEFINE 
FILE statement 

6-7 not used 

Note: IHCDIOSE references only bits 1, 2, 
and 3. 

RECNUM: This field contains the number of 
records in the data set as specified in the 
parameter list for the data set in a DEFINE 
FILE statement. It is filled in by the 
file initialization section after the data 
control block for the data set is opened. 

STATUSA: This field specifies the status 
of the buffer currently being used. The 
bits and their meanings are as follows: 

Bit on 

0 - READ macro-instruction has been 
issued 

1 - WRITE macro-instruction has been 
issued 

2 - CHECK macro-instruction has been 
issued 

3-7 Not used 

CURBUF: This field contains the address of 
the DECB skeleton currently being used. It 
is initialized to contain the address of 
the DECBA skeleton by the file initializa­
tion section of IHCDIOSE after the data 
control block for the data set is opened. 

BLKREFA: This field contains an integer 
that indicates either the relative position 
within the data set of the record to be 
read, or the relative position within the 
data set at which the record is to be 
written. It is filled in by either the 
read or write section of IHCDIOSE prior to 
any reading or writing. In addition, the 
address of this field is inserted into the 
DECBA skeleton by the file initialization 
section of IHCDIOSE after the data control 
block for the data set is opened. 

STATUSB: This field specifies the status 
of the next buffer to be used if two 
buffers are obtained for this data set 
during data control block opening. The 
bits and their meanings are the same as 
described for the STATUSA field. However, 
if only one buffer is obtained during data 
control block opening, this field is not 
used. 



NXTBUF: This field contains the address of 
the DECB skeleton to be used next if two 
buffers are obtained during data control 
block opening. It is initialized to con­
tain the address of the DECBB skeleton by 
the file initialization section of IHCDIOSE 
after the data control block for the data 
set is opened. However, if only one buffer 
is obtained during data control block open­
ing, this field is not used. 

BLKREFB: The contents of this field are 
the same as described for the BLKREFA 
field. It is filled in either by the read 
or the write section of IHCDIOSE prior to 
any reading or writing. In addition, the 
address of this field is inserted into the 
DECBB skeleton by the file initialization 
section of IHCDIOSE after the data control 
block for the data set is opened. However, 
if only one buffer is obtained during data 
control block opening, this field is not 
used. 

DECBA SKELETON: This field contains the 
DECB (data event control block) skeleton to 
be used when reading into or writing from 
the current buffer. It is of the same form 
as the DECB constructed by the control 
program for an L form of an S-type READ or 
WRITE macro-instruction under BDAM (refer 
to the publication IBM System/360 Operating 
System: Control Program Services). 

The various fields of the DECBA skeleton 
are filled in by the file initialization 
section of IHCDIOSE after the data control 
block for the data set is opened. The 
completed DECB is referred to when IHCDIOSE 

. issues a read or a write request to BDAM. 
For each I/O operation, IHCDIOSE supplies 
IHCFCOME with the address of and the size 
of the buffer to be used for the operation. 

DECBB SKELETON: The DECBB skeleton is used 
whenl reading into or writing from the next 
buffer. Its contents are the same as 
described for the DECBA skeleton. The 
DECBB skeleton is completed in the same 
manner as described for the DECBA skeleton. 
However, if only one buffer is obtained 
during data control block opening, this 
field is not used. 

DCB SKELETON: This field contains the DCB 
(data control block) skeleton for the asso­
ciated data set. It is of the same form as 
the DCB constructed by the control program 
for a DCB macro-instruction under BDAM 
(refer to the publication IBM System/360 
Operating System: Control Program 
Services). 

The various fields of the DCB skeleton 
are filled in by the control program when 
the DCB for the data set is opened (refer 
to the publication IBM System/360 Operating 
System: Concepts and Facilities). 

Unit Assignment Table 

The unit assignment table <IHCUATBL) 
resides on the FORTRAN system library 
(SYS1.FORTLIB). Its size depends on the 
maximum number of units that can be 
referred to during execution of any FORTRAN 
load module. This number (~99) is speci­
fied by the user during the system genera­
tion process via the FORT LIB macro­
instruction. 

The unit assignment table is designed to 
be used by both IHCFIOSH and IHCDIOSE. It 
is included once, by the linkage editor, in 
the FORTRAN load module as a result of an 
external reference to it within IHCFIOSH 
and/or IHCDIOSE. 

The unit assignment table contains a 
16-byte entry for each of the unit numbers 
that can be referred to by either IHCDIOSE 
or IHCFIOSH. These entries differ in 
format depending on whether the unit has 
been defined as a direct access or as a 
sequential access data set. Because IHCDI­
OSE deals only with direct access data 
sets, only the entry for a direct access 
unit is shown here. (Refer to the IHCFIOSH 
section "Table and Blocks Used", for the 
format of the unit assignment table as a 
whole.) If IHCDIOSE encounters a reference 
to a sequential access data set, it is 
considered as an error, and control is 
passed to the load module termination rou­
tine of IHCFCOME. 

Figure 94 illustrates the unit assign­
ment table entry format for a direct access 
data set. 

r---------------------------------T-------, 
I Pointer to unit block xx 14 bytes 1 
I (UBLOCKxx) I 1 
~---------------------------------+-------~ I Default values for DSRNxx (only 18 bytes 1 
I applies to sequential access 1 1 
I data sets not used by 1 1 
I IHCDIOSE) 1 1 
~---------------------------------+-------i 
I Pointer to parameter listxx 14 bytes I 
I (LISTxx) I 1 
~---------------------------------~-------1 
I UBLOCKxx is the unit block generated 1 
I for unit number xx. I 
I 1 
I DSRNxx is the unit number for the 1 
I direct access data set (xxs99). 1 
I I 
I LISTxx is the parameter list that 1 
1 defines the direct access data set I 
I associated with unit number xx. I L _________________________________________ J 

Figure 94. Unit Assignment Table Entry for 
a Direct Access Data Set 

Appendix L: Object-Time Library Subprograms 167 



The pointers to the unit blocks are 
inserted into the unit assignment table 
entries by IHCDIOSE when the unit blocks 
are constructed. 

The pointers to the parameter lists are 
inserted into the unit assignment table 
entries by IHCDIOSE when IHCDIOSE receives 
control from the initialization section of 
the FORTRAN load module being executed. 

BUFFERING 

All direct access input/output opera­
tions are double-buffered. (The double 
buffering scheme. may be overridden by the 
user if he specifies in his DD statements: 
BUFNO=l.) This implies that during data 
control block opening, two buffers will be 
obtained for each data set. The addresses 
of these buffers are given alternately to 
IHCFCOME as pointers to: 

• Buffers to be filled in the case of 
output. 

• Data that has been read in and is to be 
processed in the case of input. 

Each buffer has its own DECB. This 
increases I/O efficiency by overlapping of 
I/O operations. 

COMMUNICATION WITH THE CONTROL PROGRAM 

In requesting services of the control 
program BSAM and BDAM routines, IHCDIOSE 
uses Land E forms of S-type macro­
instructions (refer to the publication IBM 
System/360 Operating System: Control 
Program Services). 

OPERATION 

The processing of IHCDIOSE is divided 
into five sections: file definition, file 
initialization, read, write, and termina­
tion. When a section receives control, it 
performs its functions and then returns 
control to the caller (either the FORTRAN 
load module or IHCFCOI~). 

File Definition section 

The file definition section is 
from the FORTRAN load module, 

168 

entered 
via a 

compiler-generated calling sequence, if a 
DEFINE FILE statement is included in the 
FORTRAN source module. The file definition 
section performs the following functions: 

• Checks for the redefinition of each 
direct access unit number. 

• Enters the address 
access unit number's 
into the appropriate 
table entry. 

of each direct 
parameter list 
unit assignment 

• Establishes addressability for IHCDIOSE 
within IHCFCOME. 

Each direct access unit number appearing 
in a DEFINE FILE statement is checked to 
see if it has been defined previously. If 
it has been defined previously, the current 
definition is ignored. If it has not been 
defined previously, the address of its 
parameter list (i.e., the definition of the 
unit number) is inserted into the prop€;r 
entry in the unit assignment table. The 
next unit number if any is then obtained. 

When the last unit number has been 
processed in the above manner, the file 
definition section stores the address of 
IHCDIOSE into the FDIOCS field within 
IHCFCOME. This enables IHCFCOME to link to 
IHCDIOSE when IHCFCOME encounters a direct 
access I/O statement. Control is then 
returned to the FORTRAN load IT10duie to 
continue normal processing. 

File Initialization Section 

The file initialization section receives 
control from IHCFCOME whenever input or 
output is requested for a direct access 
data set. The processing performed by the 
initialization section depends on whether 
an I/O operation was previously requested 
for the data set. 

NO PREVIOUS OPERATION: If no operation was 
previously requested for the data set spec­
ified in the current I/O request, the file 
initialization section first constructs a 
unit block for the data set. (The GET~AIN 
macro-instruction is used to obtain the 
main storage for the unit block.) The 
address of the unit block is inserted into 
the appropriate entry in the unit assign­
ment table. 

The file initialization section then 
reads the JFCB (job file control block) via 
the RDJFCB macro-instruction. The value in 
the BUFNO field of the JFCB is inserted 
into the DCB skeleton in the unit block. 
This value indicates the number of buffers 
that are obtained for this uata set when 



its data control block is opened. If the 
BUFNO field is null (i.e., if the user did 
not include the BUFNO sUbparameter in the 
DD statement for this data set), or other 
than 1 or 2, the file initialization sec­
tion inserts a value of two into the DCB 
skeleton. 

The file initialization section next 
examines the JFCBIND2 field in the JFCB to 
determine if the data set specified in the 
current I/O request exists. If the 
JFCBIND2 field indicates that the specified 
data set does not exist, and if the current 
request is a write, a new data set is 
created. (If the current request is a 
read, an error is indicated and control is 
returned to IHCFCOME to terminate load 
module execution. If the current request 

. is a find, the request is ignored, and 
control is returned to IHCFCOME.) If the 
JFCBIND2 field indicates that the specified 
data set already exists, a new data set is 
not created. The file initialization sec­
tion processing for a data set to be 
created, and for a data set that already 
exists is discussed in the following para­
graphS. 

Data Set to be Created: The data control 
block for the new data set is first opened 
for the BSAM, load reode, WRITE macro­
instruction. The BSAM WRITE macro­
instruction is used to create a new data 
set according to the format specified in 
the parameter list for the data set in a 
DEFINE FILE statement. The data control 
block is then closed. Subsequent file 
initialization section processing after 
creating the new data set ~s the same as 
that described for a data set that already 
exists (refer to the section "Data Set 
Already Exists"). 

Data Set Already Exists: The data control 
block for the data set is opened for direct 
access processing by the BDAM routines. 
After the data control block is opened, the 
file initialization section fills in var­
ious fields in the unit block: 

• The number of records in the data set 
is inserted into the RECNUM field. 

• The address of the DECB skeletons 
(DECBA and DECBB) are inserted into the 
CURBUF and the NXTBUF fields, respec­
tively. 

• The addresses of the I/O buffers 
obtained during data control block 
opening are inserted into the appropri­
ate DECB skeletons. 

• The address of 
BLKREFB fields 
inserted into 
skeletons. 

the 
in 
the 

BLKREFA and the 
the unit block are 
appropriate DECB 

Note: If the user specifies BUFNO=l in the 
DD statement for this data set, only one 
I/O buffer is obtained during data control 
block opening. In this case, the NXTBUF 
field, the BLKREFB field, and the DECBB 
skeleton are not ustd. 

Subsequent file initialization section 
processing for the case of no previous 
operation depends upon the nature of the 
I/O request (find, read, or write). This 
processing is the same as that described 
for the case of a previous operation (refer 
to the section "Previous Operation"). 

PREVIOUS OPERATION: If an operation was 
previously requested for the data set spec­
ified in the current I/O request, the file 
initialization section processing depends 
upon the nature of the current I/O request. 

If the current request is either a find 
or a read, control is passed to the read 
section. 

If the current request is a write, 
control is passed to the secondary entry in 
the write section. 

Read Section 

The read section of IHCDIOSE processes 
read and find requests. The read section 
may be entered either from the file ini­
tialization section of IHCDIOSE, or from 
IHCFCOME. In either case, the rrocessing 
performed is the same. In processing read 
and find requests, the read section per­
forms the following functions: 

• Reads physical records into the 
buffer(s) obtained during data control 
block opening. 

• Makes the contents of these buffers 
available to IHCFCOME for processing. 

• Updates the associated variable that is 
defined in the DEFINE FILE statement 
for the data set. 

The read section, upon receiving con­
trol, first checks to see if the record to 
be found or read is already in an I/O 
buffer. Subsequent read section processing 
depends upon whether the record is in the 
buffer. 

RECORD IN BUFFER: If a record is in the 
buffer, the read section determines whether 
the current request is a find or a read. 

If the current request is a find, the 
associated variable for the data set is 
updated so that it points to the relative 

Appendix L: Object-Time Library SUbprograrr.s 169 



position within the direct access data set 
of the record that is in the buffer. 
Control is then returned to IHCFCOME. 

If the current request is a read, the 
read operation that read the record into 
the buffer is checked for completion. The 
read section then places the address of the 
buffer and the size of the buffer into 
registers for use by IHCFCOME. The asso­
ciated variable for the data set is updated 
so that it points to the relative position 
within the direct access data set of the 
record following th~ record just read. 
Control is then returned to IHCFCOME. 

RECORD NOT IN BUFFER: If a record is not 
in the buffer, the read section first 
obtains the address of the buffer to be 
used for the current request. The relative 
record number of the record to be read is 
then inserted into the appropriate BLKREF 
field in the unit block (i.e., BLKREFA or 
BLKREFB). The proper record is then read 
from the specified data set into the buf­
fer. Subsequent read section processing 
for the case of a record not in the buffer 
is the same as that described for a record 
in the buffer (refer to the section "Record 
In Buffer"). 

Note 1: Record retrieval can proceed con­
currently with CPU processing only if the 
user alternates FIND statements with READ 
statements in his program. 

Note 2: If an I/O error occurs during 
reading, the control program returns con­
trol to the synchronous exit routine 
(SYNADR) within IHCDIOSE. The SYNADR rou­
tine sets a switch to indicate that an I/O 
error has occurred, and then returns con­
trol to the control program. The control 
program completes its processing and 
returns control to IHCDIOSE. IHCDIOSE 
interrogates the switch, finds it to be 
set, and passes control to the I/O error 
routine of IHCFCOME. 

Write Section 

The write section of IHCDIOSE processes 
write requests. The write section may be 
entered either from the file initialization 
section of IHCDIOSE, or from IHCFCOME. The 
processing performed by the write section 
depends upon where it is entered from. 

PROCESSING IF ENTERED FROM FILE INITIALIZA­
TION SECTION: If the write section is 
entered from the file initialization sec­
tion of IHCDIOSE, no writing is performed. 
The write section only provides IHCFCOME 
with buffer space in which to place the 
record to be written. The relative record 

170 

number of the record to be written is 
inserted into the appropriate BLKREF field 
(i.e., BLKREP'A or BLKREFB). (The record is 
written the next time the write section is 
entered.) For a formatted write, the buf­
fer is filled with blanks. For a nonfor­
matted write, the buffer is filled with 
zeros. The write section then places the 
address of the buffer and the size of the 
buffer into registers for use by IHCFCOME. 
Control is then returned to IHCFCOME. 

PROCESSING IF ENTERED FROM IHCFCOrlli: Each 
time the write section is entertd from 
IHCFCOME, it writes the contents of the 
buffer onto the specified data set. Subse­
quent write section processing for entran­
ces from IHCFCO~£ is the same as that 
described for entrances from the file ini­
tialization section of IHCDIOSE (refer to 
"Processing If Entered From File Initiali­
zation Section"). In addition, the asso­
ciated variable is modified prior to 
returning to IHCFCOME. The associated 
variable for the data set is updated so 
that it pOints to the relative position 
within the direct access data set of the 
record following the record just written. 

Note 1: The writing of physical records by 
this section is overlapped. That is, while 
IHCFCOME is filling buffer A, buffer B is 
being written onto the output data set. 
When buffer A has been filled, the write 
from buffer B is checked for completion. 
Upon completion of the write operation, 
IHCFCOME starts placing data into buffer B. 
In addition, a write from buffer A is 
initiated. 

Note 2: If an I/O error occurs during 
writing, the control program returns con­
trol to the synchronous exit routine 
(SYNADR) within IHCDIOSE. The SYNADR rou­
tine sets a switch to indicate that an I/O 
error has occurred, and then returns con­
trol to the control program. The control 
program completes its processing and 
returns control to IHCDIOSE. IHCDIOSE 
interrogates the switch, finds it to be 
set, and passes control to the I/O error 
routine of IHCFco~m. 

Termination section 

The termination section of IHCDIOSE 
receives control from the load module ter­
mination routine of IHCFCOME. The function 
of this section is to terminate any pending 
I/O operations involving direct access data 
sets. The unit blocks associated with the 
direct access data sets are examined by 
IHCDIOSE to determine if any I/O is pend­
ing. CHECK macro-instructions are issued 
for all pending I/O operations to insure 
their completion. 



The data control blocks for the direct 
access data sets are closed, and the main 
storage occupied by the unit blocks is 
freed via the FREEMAIN macro-instruction. 
Control is then returned to the load module 
termination routine of IHCFCOME to complete 
the termination process. 

IHCIBERR 

IHCIBERR, a member of the FORTRAN system 
library (SYS1.FORTLIB), processes object­
time source statement errors if the LOAD 
option is specified. IHCIBERR is entered 
(via a compiler-generated calling sequence) 
when an internal sequence number (ISN) 
cannot be executed because of a source 
statement error. 

The ISN of the invalid source statement 
is obtained (from information in the 
calling sequence) and is then converted to 
decimal form. IHCIBERR then links to 
IHCFCOME to implement the writing of the 
following error message: 

IHC230I - SOURCE ERROR AT ISN 
XXXX - EXECUTION FAILED 

After the error message is written on 
the user-designated error output data set, 
IHCIBERR passes control to the IBEXIT rou­
tine of IHCFCOME to terminate execution. 

Chart E7 illustrates the overall logic 
of IHCIBEftR. 

Appendix L: Object-Time Library Subprograms 171 



Chart EO. IHCFCOME Overall Logic and Utility Routines 

NOTE -- IHCFCOME IS ENTERED 
VIA CALLING SEQUENCES 
GENERATED AT 
COMPILE TIME. 

****A3********* 
* FORTRAN * 
* LOAD MODULE * 
* (SEE NOTE) * 

*************** 

I 
V 

*****B3********** 
* * * DETERMINE * 
* REQUEST TYPE * 
* * 
* * ***************** 

I 
V 

SEE TABLE 36 FOR A BRIEF 
DESCRIPTION OF THE FUNCTION 
OF EACH IHCFCOME ROUTINE/ 
SUBROUTINE. 

*************************************************************************************** 
* * * * * * REQUEST TYPE *CHART * MAJOR PROCESSING * SUBROUTINES CALLED * 
* *10. * ROUTINES * * 
* * * * * 
*====================*======*=====~~=============*====================================* 
* * * * * 
* SEQUENTIAL ACCES'S * * * * 
* AND DIRECT ACCESS * EIA2 * FRDWF. FIOLF. * FCVII. FCVEI. FCVDI. * 
* READ REQUIRING A * * FIOAF. FENDF * FCVFI. FCVAI * 
* FORMAT * * * * 
* * * * * 
*************************************************************************************** 
* * * * * 
* SEQUENTIAL ACCESS * * * * 
* AND DIRECT ACCESS * EIA2 * FWRWF. FIOLF. * FCVIO. FCVEO. FCVDO. * 
* WRITE REQUIRING A * * FIOAF. FENDF * FCVFO. FCVAO * 
* FORMAT * * * * 
* * * * * 
*************************************************************************************** 
* * SEQUENTIAL ACCESS 
* AND DIRECT ACCESS 
* READ NOT REQUIRING 
* A FORMAT 

* * 
* * * EIF2 * FRDNF. FIOLN. 
* * FIOAN. FENDN 
* * 

* 
* * NONE 
* 
* 

* * 
* * 
* * * * * * 

*************************************************************************************** 
* * * * * * SEQUENTIAL ACCESS * * 
* AND DIRECT ACCESS * EIF2 * FWRNF. FIOLN 
* WRITE NOT REQUIRING* * FIOAN. FENDN 
* A FORMAT * * 

* * NONE 
* * 

* 
* 
* 
* * * * * * 

*************************************************************************************** 
* * * * * DIRECT ACCESS * EIF2 * FRDNF. FENDN * NONE * 
* FIND * * * * 
* * * * * 
*************************************************************************************** 
* * * * * * DEVICE * E2B3 * FBKSP. FRWND. FEOFM* NONE * 
* MANIPULATION * * * * 
* * * * * ***********************************************-*************************************** 
* * * * * 
* WRITE TO * E2G3 * FSTOP. FPAUS * NONE * 
* OPERATOR * * * * 
* * * * * *************************************************************************************** 

UTILITY ROUTINES 

IBEXIT IBFERR IBFINT 

****Gl********* 
* FSTOP. * 
* IHCIBERR. OR * 
* IBF6RR * 

*************** 

I 
V 

*****Hl********** 
* IBEXIT * 
*-*-*-*-*-*-*-*-* 
*CLOSE ALL DCBS * 
* AND TERMINATE * 
* EXECUTION * 
***************** 

I 
V 

****..11********* 
* * * JOB * * SCHEDULER * 

*************** 

172 

****G2********* 
* FORTRAN * 
* LIB. * 
* SUBPRS. * 

*************** 

I 
V 

*****H2********** 
* IBFERR * 
*-*-*-*-*-*-*-*-* 
* PROCESS * 
* OBJECT-TIME * 
* ERRORS * 
***************** 

I 
V 

****J2********* 
* * * IBEXIT * 
* * *************** 

****G4********* 
* FORTRAN * 
* LOAD 
* MODULE * 

*************** 

I 
V 

*****H4********** 
* IBFINT * 
*-*-*-*-*-*-*-*-* 
* PROCESS * 
* ARITHMETIC * 
* INTERRUPTIONS * 
*****************' 

I 
V 

****J4********* 
* FORTRAN * 
* LOAD * 
* MODULE * 

*************** 



Chart E1. Implementation of READ/WRITE/FIND Source Statements 

***** IHCFCOME FORTRAN 
LOAD MODULE *El * 

* A2* FRDWF/FWRWF 
* * *****A2********** * *PERFORM OPENING* 
L->:OP~~~b~~~iT~OR : 

* REQUIRING * 
* A FORMAT * 
***************** 

I 
I 

FIOAF/FIOLF V 
*****82********** *****64********** 
* * * .. * PERFORM I/O * *GET LIST ITEM. * 
*LIST OPERATIONS*<-------------------------------* CALL I/O LIST *<-. 
: ON LIST ITEM : : si~2~g~M~F : I 
***************** ***************** t 

I ,J.. JI 
.* * • 

• * LAST *. NO 
*. LIST .* 

*. ITEM .* 
*. .* 

* •• * 

j'" 
FENDF V 

:****02*********: :****04*********: 
* CLOSE OUT * * CALL CLOSING 
* I/O * <:-----------------------------* SECT I ON OF 
* OPERATION : : IHCFCOME 

* ***************** ***************** 

I 
I 
v 

:****E4*********: 
* CONTINUE WITH * 
* LOAD MODULE * 
: EXECUTION * 

***************** 

***** IHCFCOME FORTRAN 
LOAD MODULE *El * 

* F2* FRDNF/FWRNF 
* * *****F2********** 

* *PERFORM OPENING* 

L->:~~~~~~~~~~/~~~D: 
* NOT REQUIRING * 
* A FORMAT * 
***************** 

I 
I 

FIOLN/FIOAN v 
:****G2*********: :****G4*********: 
* PERFORM I/O * *GET LIST ITEM. * 
*LIST OPERATIONS*<:------------------------------* CALL I/O LIST *<-. 

:·::·~::I·::::··: : .. :!~~~~:~: ... :J 
.*. 

H4 * • 
• * * • 

• * LAST *. NO 
*. LIST .* 

*. ITEM .* 
*. .* 

* •• * 

j'" 
F~~ V 

*****J2********** *****J4********** .... ...... 
* CLOSE OUT * * CALL CLOS I NG * 
* I/O * <:------------------------------* SECTION OF * 
: OPERATION : : IHCFCOME : 

***************** ********~******** 

I 
I 
v 

:****K4*********: 
* CONTINUE WITH * 
* LOAD MODULE * 
* EXECUTION * 
* ***************** 

Appendix L: 

THIS CALL IS 
GENERATED BY 
COMPILER iIIHEN 
I/O LIST ITEM 
IS ENCOuNTEREu 

THIS CALL IS 
GENERATED BY 
COMPILER WHEN 
ALL I/O LIST 
I TEMS PROCESSED 

THIS CALL IS 
GENERATED BY 
COMPILER WHEN 
I/O LIST ITEM 
I S ENCOUNTERED 

THIS CALL IS 
GENERATED ElY 
COMPILER WHEN 
ALL I/O LIST 
ITEMS PROCESSLD 

Object-Time Library Subprograms 173 



Chart E2. Device Manipulation and Write-to-Operator Routines 

***** 
*E2 * 
* B3* 
* * * 

I 
V 

*****B3********** 
** * 
*DETERMINE TYPE * 
* OF DEVICE * 
* MANIPULATION * 
* (SEE NOTE) * 
***************** 

NOTE--

THE DEVICE MANIPULATION 
ROUTINES ONLY APPLY TO 
SEQUENTIAL ACCESS DATA SETS. 
DEVICE MANIPULATION RE­
QUESTS FOR DIRECT ACCESS 
DATA SETS ARE IGNORED. 

"--1 -V'-----, 

BACKSPACE , 
FBKSP 

V 
*****02********** 
* * * IMPLEMENT * 
* BACKSPACE * 
* SOURCE * 
* STATEMENT * 
***************** 

REWIND , 
FRWND 

V 
*****03********** 
* * * IMPLEMENT * 
* REWIND * 
* SOURCE * 
* STATEMENT * 
***************** 

ENDFILE , 
FEOFM 

V 
*****04********** 
* * * IMPLEMENT * 
* ENDFILE * 
* SOURCE * 
* STATEMENT * 
***************** 

I 

****E3*~******* ~ 
* FORTRAN * 

~---------------->* LOAD *< 

1 
STOP , 
FSTOP 

V 
*****J2********** 
* * 
* IMPLEMENT * 
* STOP * 
* SOURCE * 
* STATEMENT * 
***************** 

V 
****K2********* 

* * * IBEXIT * 
* * *************** 

174 

* MODULE * 
*************** 

***** 
*E2 * 
* G3* 
* * * 

I 
V 

*****G3********** 
* * *DETERMINE TYPE * 
* OF WRITE-TO- * 
* OPERATOR * 
* * ***************** 

V 

1 
PAUSE , 
FPAUS 

V 
*****J4********** 
* * 
* IMPLEMENT * 
* PAUSE * 
* SOURCE * 
* STATEMENT * 
***************** 

V 
****K4********* 

* FORTRAN * 
* LOAD * 
* MODULE * 

*************** 



Table 36. IBCFCOME Routine/Subroutine Directory 
r------------------T--------------------------------------------------------------------, 
I Routine/Subroutine I Function I 

~------------------+--------------------------------------------------------------------~ IFBKSP IImplements the BACKSPACE source statement. 
I I 
I FCVAI IReads alphameric data. 
I I 
FCVAO IWrites alphameric data. 

I 
FCVDI IReads double-precision data with an external exponent. 

I 
FCVDO IWrites double-precision data with an external exponent. 

I 
FCVEI tReads real data with an external exponent. 

I 
FCVEO IWrites real data with an external exponent. 

I 
FCVFI IReads real data without an external exponent. 

I 
FCVFO IWrites real data without an external exponent. 

I 
FCVII IReads integer data. 

I 
FCVIO IWrites integer data. 

I 
FENDF IClosing section for a READ or WRITE requiring a format. 

I 
FENDN Closing section for a READ or WRITE not requiring a format. 

FEOFM 

IFIOAF 
I 

Implements the ENDFILE source statement. 

I/O list section for list array of 
format. 

a READ or WRITE requiring a 

I 
IFIOAN I/O list section for list array of a READ or WRITE not requiring a 
I 
I 
IFIOLF 
I 

format. 

I/O list section for list variable of a READ or 
format. 

WRITE requiring a 

I 
IFIOLN 
I 

I/O list section for list variable of a READ or WRITE not requiring 
la format. 

I I 
I FPAUS IImplements the PAUSE source statement. 
I I 
FRDNF IOpening section of a READ not requiring a format. 

I 
FRDWF 10pening section of a READ requiring a format. 

I 
FRWND IImplements the REWIND source statement. 

I 
FSTOP IImplements the STOP source statement. 

I 
FWRNF 10pening section for a WRITE not requiring a format. 

I 
FWRWF IOpening section for a WRITE requiring a format. 

I 
IBEX IT ICloses the data control blocks for all FORTRAN data sets that are 

Istill open and terminates the execution. 
I 

IBFERR IProcesses object-time errors. 
I 

IIBFINT IProcesses arithmetic-type program interruptions. L __________________ ~ __________________________________ ----------------__________________ J 

Appendix L: Object-Time Library Subprograms 175 



Chart E3. IHCFIOSH Overall Logic 

**** * * INITIALIZATION 
: Cl :-, 

**** FINIT V 
:****Cl*********: 
* DECODE DSRN * 
*ANO BUILD UNIT * 
*BLOCK IF NECES-* 
* SARY * 
***************** 

READ 

I 
FREAD .v. 

C2 *. 
.* ANY *. 

YES .MORE RCDS IN*. 
, *.THIS BLOCK TO.* 

BE PROCESSED* 
*. .* v *. .* 

****A3********* 
* * * IHCFCOME * 

*************** 

I 
V .*. 

83 * • 
• * * • 

• * DETERMINE *. 
*. OPERATION .* 

*. TYPE .* 
*. .* *-.--

WRITEI 

I 
V 

FRITE .*. 
C3 *~ 

.* *. NO.* OUTPUT *. 
, *. BUFFER .* 

*. FULL .* 
*. .* 

v * •• * 

I 
* **** * *1 NO 
* Kl * 
* * **** 

****** *1 YES 
* Kl * 
* * 
**** 

V 
*****01********** 
* OPEN DATA * 
* CONTROL BLOCK * 
*FOR DATA SET IF* 
*NOT PREVIOUSLY * 
* OPENED * 
.**************** 

1 
V .*. 

El *. 
.* *. 

.* DCB *. NO 
*. OPENED • 

*.PROPERLY .* 
*. .* * •• * * YES 

1 
V 

:****Fl*********: 
* DETERMINE * 
* RECORD FORMAT * 
: AND BLOCKING : ........ , ....... . 

V .*. 
G1 *. 

.* IS * • 
• *CURRENT OP-*. YES 

*ERATION DEVICE'I *. MANIP. .* 
*. .* * •• * v 

*1 NO : *::*: 

* * 
V .*. 

HI *. 
.* *. 

.* READ *. WRITE 
*. OR 

*. WRITE .* 
*. .* * •• * 

, "AO 

V 
*.***** J 1 *********** 

READ 
A 

BLOCK 

: ':::~:'I ::-*-**-*-*---' 

**** 
V 

*****Kl********** 
* PASS CURRENT * 
*RECORD POINTER * 
* AND LOGICAL --, 
* RECORD LENGTH * V 

V 
*****02********** 
* READ * 
*NEXT BLOCK INTO* 
* THIS BUFFER. * 
* SWITCH BUFFER * 
* POINTERS * 
***************** 

I 
V 

*****E2********** 
* * * CHECK RESULT * 
* OF READ INTO *1 
* OTHER BUFFER * 
* * 
***************** **~** 

:****F2*********: 
* ISSUE * 

*E4 * 
**B~* 

>* MESSAGE *\ 
* IHC219C * 
* * 
***************** **~** 

*E4 * 
**F~* 

* 

* TO IHCFCOME * ***** 
**.*************** *E4 * 

**B~* 

* 

176 

V 
*****03********** 
* WRITE * 
* CONTENTS OF 
* THIS BUFFER. * 
* SWITCH BUFFER * 

:***:~!~!;~;****: 

I 
V 

:****E3*********: 
* CHECK RESULT * 
* OF WRITE * 
* FROM OTHER * 
* BUFFER * 
***************** 

I 
V 

***** *E4 * 
**B;* 

SEE TABLE 37 FOR A BRIEF 
OESCRIPTION OF THE FUNCTION 
OF EACH IHCFIOSH ROUTINE. 

DEVICE 
MAN I PULAT I ON 

I 
FCNTL V 

:****C4*********: 

CLOSE 

1 
FCLOS V 

:****cs*********: 
* CHECK ANY * * CHECK * 

STATUS OF 
: UNIT * 

***************** 

L * **** ... 
>* Cl * 
* * 

1
>* OUTSTANDING * 
* INPUT OR * 
* OUTPUT * 

I 

········r······ 

.*. 
05 *. 

.* it. 

~*:* ~~~~ *:* 

* * * E4 * 
* * **** 

I 
V .*. 

*. .* 
*. .* * •• * * YES 

I **** 
L *E4 * 
->: 132** 

**** 
• * E4 *. *. :****ES*********: 

EOF .* DETERMINE *. RWND * ISSUE CLOSE * 
*. OPERATION • *-------> * WITH REREAD * 

*. TYPE.* * OPTION * 
*..* * *. .* ***************** 

* 6KSP l 
1 ->~:i::-
V 

*****F4********** 
* ISSUE * 
* BACKSPACE. * 
: IN~~~Ai~p~ATA :, 
* * I ***************** v 

:****G4*********: 
* ISSUE CLOSE. 

>* TYPE=T. WITH * 
: LEAVE OPTION * 

*.*************** 

I 
V 

*****H~********** 

* * * FREE I/O * 

***** *E4 * 
* 62* 
* * 

* BUFFERS FOR *\ 
* THIS DATA SET * 
* * 
***************** **~** 

*E4 * 
**B~* 

* 



Chart E4. Execution-Time I/O Recovery Procedure 

THE I/O SUPERVISOR IS ENTERED 
VIA DATA MANAGEMENT ROUTINE 
WHEN IHCFIOSH OR IHCDIOSE 
ISSUES A MACRO-INSTRUCTION. 

***** 
*E4 * 
* B2* 
* * * 
I 
V .*. 

B2 *. *****B3********** 
.* *. * * 

.* HAS AN *. YES * ISSUE * 
*. EOF BEEN • *--------> * MESSAGE ***1 

*. READ.* * IHC217I 
*..* * 

* •• * ***************** V 

*1 NO :*::*: 

* * **** 
v .*. .*. 

*****Cl********** C2 *. *****C3********** C4 *. 
* * .* *. *DATA MANAGEMENT* .* *. -*** 
* RETURN TO * NO.* I/O *. YES * RETRY * .* I/O *. YES * * 
* IHCFCOME *<l<----*. ERROR IN • *--------> * APPROPRIATE *------~'>*. ERROR BEEN .*---->* Cl * 
* * *. IOS.* * NUMBER OF * *.CORRECTED.* * * 
* * *..* * TIMES * *..* **** 
***************** * •• * ***************** * •• * 

V 
****01********* 

* FORTRAN * 
* LOAD * 
* MODULE * 

*************** 
CONTINUES 
NORMAL 
PROCESSING 

:*::*: * *1 NO 

* * **** 

V 
*****03********** *****04********** 
* IHCFCOME * * * 
* DETERMINES * * RETURN * 
* IF AN INVALID *<--------* ABORT CODE * 
* BUFFER HAS * * TO IHCFCOME * 
* BEEN READ * 
***************** 

1<:-
V .*. 

*****E2********** E3 *. 
* * .* *. 
* ISSUE * YES.* HAS *. 
* MESSAGE *<--------*. BUFFER BEEN .* 
* IHC218I * *.READ YET .* 
* * *..* 
***************** *. .* 

**** 
*E4 * 
* F2 *-> 
* * **** 

V 
*****F2********** 
* * * PASS * 
* ABORT CODE * 
* TO SCHEDULER * 
* * ***************** 

V 
*,***G2********* 

* * * SCHEDULER * 
* * *************** 

ISSUES ABEND 
MESSAGE AND 
THEN CONTI NUES 
NORMAL PRO­
CESSING 

j"0 
.~. j F3 *. 

.* *. 
.* REWIND *. NO 

*.OR BACKSPACE .* 
*. BEEN .* 

*ISSUED.* 
*. .* rES 

V 
*****G3********** 
* * * VOID * 
* ABORT CODE * 
* IN IHCFCOME * 
* * ***************** 

V 
****H3********* * FORTRAN * 

* LOAD * 
* MODULE * 

*************** 

CONTINUES 
NORMAL 
PROCESSING 

* * ***************** 

Appendix L: Object-Time Library Subprograms 177 



Chart ES. IHCDIOSE Overall Logic - File Definition section 

NOTE--

THE FILE DEFINITION 
SECTION IS ENTERED 
FROM THE FORTRAN 
LOAD MODULE VIA A 
COMPILER-GENERATED 
CALLING SEQUENCE. 

178 

****A3********* 
* FORTRAN LOAD * 
* MODULE * 
* (SEE NOTE) * 

*************** 
I 

V 
*****B3********** 
* GET FIRST * 
* UNIT NUMBER * 
* (DSRN) FROM * 
*PARAMETER LIST * 
* * ***************** 

SEE TABLE 38 FOR A 
BRIEF DESCRIPTION OF THE 
FUNCTION OF EACH IHCDIOSE 
ROUTINE. 

<--------------------------, 
V 

*****C3********** 
* INSERT UNIT * 
* NUMBER'S * 
*PARAMETER LIST * 
*ADDRESS IN UNIT* 
*ASSIGNMENT TBL * 
***************** 

I 
V .*. 

03 *. *****04********** 
.* *. * GET NEXT * 

.* LAST UNIT *. NO * UNIT NUMBER * 
*. NUMBER IN • *--------> * (DSRN) FROM * 

*.PARAMETER.* *PARAMETER LIST * 
*.LIST .* * * 

* •• * ***************** 

rES 
V 

*****E3********** 
* * * ESTABLISH * 
*LINKAGE BETWEEN* 
* IHCDIOSE AND * 
* IHCFCOME * 
***************** 

V 
****F3********* 

* FORTRAN * 
* LOAD * 
* MODULE * 

*************** 

CONTINUE NORMAL 
PROCESSING 



Chart E6. IHCDIOSE 
Sections 

Overall Logic File Initialization, Read, Write and Termination 

F1LE INITIALIZATION 
SECTION 

I 
OASINIT .v. 

Bl *. 
• * -. 

YES .* PREVIOUS *. 

r . OPERATION .* 
*. .* 

*. .* 
v *. .* :-::*: *1 NO 

* • 
V 

·****Cl********** 
.CONSTRUCT UNIT * 
* BLOCK. INSERT * 
• ADDR OF UNIT * 
.BLOCK INTO UNIT. 
.ASSIGNMENT TBL • 

·······T······· 

V 
• *.*·01 ** •••••••• 
* READ JOB FILE * 
* !,:ONTRJL BLOCK * 
• (JFCB ,INSERT * 
• BUFN VALUE * 
• INTO DCB * ·_····1 .. ·· .. ·· 

V 
• •• ··El·········· · . • EXAMINE * 
• JFCBIND2 FIELD • 
• IN JFCB • • • 

OASTRA .*. 
A3 *. 

****A2********* .* *. 
* * .* DETERMINE *. 
* IHCFCOME •• ------->*. OPERATION .* 
* * *. TYPE .* ............... .. .. 

'*'1'*' 

OASREAD 

READ 
SECTION 

I .V. 
v 

B2 •• • •••• B3 •••••••••• 
• * *. * .. 

.* IS *. NO • OBTAIN • 

r>.. RECORD IN. *------->* ADDRESS OF • 
•• BUFFER •• • INPUT BUFFER * 
*..* .. .. :*::.: •. *I'~ES ··*·*····1········ 

•• ** <:------, 
v .*. V 

C2 *. **.**C3*** ••• *.** 
•• *. *INSERT RELATIVE* 

YES.. IS THIS •• .RCD NO. OF RCD * 
•• A FIND.. *TO BE READ INTO. 

•• REQUEST .* * BLKREFA OR * 
*..* • BLKREFB FIELD * ·T:· ·······T······· 

v V ..... 02.......... ..** •• 03 ....•..•... 
• * • CHECK • READ 
• FOR I/O * A RECORD 
: COMPLETION : 

•••••••••••••• **. 

1 

WRITE SECTION 
( PR I MARY ENTRY 
FROM IHCFCOME) 

I 
DASWRITE V 

·.···*B4****·*****· 

WRITE 
A 

RECORD 

*****.*** •• ** 

••• * 1 SECONDARY 
* * ENTRY 
: C4 :-> 
.*** v ···**c.······**** * OBTAIN NEXT • 

*OUTPUT BUFFER. * 
* BLANK DR ZERO * 
• DEPENDING ON * 
*DATA SET FORMAT* •••••••••• ** ••••• 

1 
V 

·····04···**····· *INSERT RELATIVE. 
.RCD NO. OF RCD • 
• TO BE WRITTEN • 
.INTO BLKREFA OR. 

:.~~~~~~~.~!~~~*: 

1 
V .*. V 

·.···E2·········· 
• PLACE * 

•• *.*E3.......... E4 •• 

• BUFFER POINTER • 
• AND BUFFER SIZE • 
• IN REGISTERS * · . •••••• ** ••••••••• 

• .. .*-. 
• PLACE BUFFER • IHCFCOME •• DETERMINE •• 
• POINTER AND .<-------.. ENTRANCE •• 
.BUFFER SIZE IN • *. •• 
• REGISTERS • *... ••••••••••••••••• • ••• * 

TERMINATION 
SECTION 

I 
DASTERM .V. 

BS •• 
.* •• 

•• ANY •• NO 
*. PENDING I/O •• -

·OPERATIONS.* 
*. .* * ••• 

rEO 
V 

·····cs·········· 
• * • WAIT • 
• FOR I/O • 
: COMPL ET I ON 

*.**.* •••• ****.*. 

1< 
V *···*05*·*······· 

• * .CLOSE DCBS FOR * 
* DIRECT ACCESS • 
: DATA SETS : 

••••••••••••••• *. 

1 
V 

·····ES···*······ • FREE MAIN • 
• STORAGE • 
* OCCUPIED BY 
• UNIT BLOCKS · ................. ········r······· 

+ 
FILE INITIALIZATION 
SECTION OF IHCDIOSE L-____________________> 

V .•. 
Fl·. 

.* -. 
v .*. 

• •••• F2 ••• * •• *... F3 •• • •••• F4 •••••••••• 
.GET ASSOCIATED. •••• • UPDATE • 

A 

V 
·.·.FS········· 

•• NEW DATA •• NO 
... SET TO BE " 

•• CREATED •• 

• VARIABLE'S. •• IS THIS •• YES .ASSOCIATED VAR • 
• ADDRESS AND .------->.. A FIND •• ------->. SO THAT IT *--> :. IHCFCOME : 
• CURRENT. *. REQUEST •• * POINTS TO RCD • · *. .* • RECORD NUMBER. *..* • JUST READ * *** ••• ** ....... ** 

* •• * v .••........ *..... .. .. • .••.••..••••.•.. 
., YES : .::. : . . .... 
v .•. 

Gl •• • ••• *G2 •• *.* ••• ** 
• * *. .. .. 

•• •• YES • OPEN • 
•• :~ITE REQUE!! ••• ------->: D~:T~O~E~EW : 

*..* .. .. *. .* ••••••••••••••••• r 1 .*. V 
HI.. • •••• H2 •••••••••• 

•••• • CREATE • 
FIND.. READ.. .AND FORMAT NEW • 

• OR FIND.. .DATA SE'f.. USING • 
•• REQUEST •• • BSAM WRITE * 
•••• • MACRO • ··rEA

• ········r······· 

v v 
.. ~ ••• J 1 •••••••••• • •••• J2 •••• * ••••• 
• •• • 
• *. CLOSE • 
• INDICATE ERROR. • DCB FOR DATA • 
: :: SET : ·······It········· ...••...... * ••••• 

'------> 

V 
• .. ··Kl········· • • 

• I HCFCOME • · . ............... 

:.::.!->1 · . •••• V 
••• •• K2·········· 
• OPEN OCB FOR • 
• DATA SET FOR • 
• DIRECT ACCESS 
• PROCESSING • • • ................. 

i NO 

·····G3····.·.··· 
* INSERT RECORD • 
* NUMBER INTO • 

>. RECNUM FIELD • 
• OF UNIT • 
• BLOCK • ................. 

1 
V 

·····H3·········· 
.INSERT ADDR OF • 
.DECBA SKELETON • 
• INTO CURBUF • 
• FIELD OF • 
• UNIT BLOCK • 

········r····-
V 

·····J3·········· 
• INSERT ADDR OF • 
.DECBB SKELETON • 
• INTO NXTBUF • 
• FIELD OF UNIT • 
• BLK IF 2 BFRS • . ............... . 

1 
V 

·····K3·.······.· 
• INSERT ADDR OF • 
• I/O BFAS • 
• INTO OElB .SKELETON( S IN. 
• UNIT aLO K • . ............... . 

Appendix L: 

I 
V 

·····G.·········· • UPDATE • 
• ASSDCIATEQ VAR • 
• SO THAT IT • 
.POINTS TO NEXT • 
.RCD IN DATA SET. . ............... . 
·····H4·········· 
.INSERT ADDR OF • 
.·BLKREFA INTO • 

>.DECBA SKELETON • 
• IN UNIT • 
• BLOCK • 

········r········ 

v ................... 
.INSERT ADDR OF • 
• BLKREFB' INTO • 
.DECBB SKELETON * 
• IN UNIT BLOCK • 
• IF TWO BFRS • . ............... . 
(::*:->1 
•••• v .•. 

K4 •• .. .. . ... 
•• WRITE •• YES. • 

•• REQUEST .->. C4 • 
•• .* .... ..... . ... 

* •• -
• NO 

I 
V .... · . 

• B2 • · . .... 
Object-Time Library Subprograms 179 



Table 37. IHCFIOSH Routine Directory 
r----------T---------~------------------------------------------------------------------, 
I Routine I Function I 
~----------+----------------------------------------------------------------------------~ 
I FCLOS ICHECKS double-buffered output data sets. I 

I FCNTL :services device manipulation requests. : 
I I I 
IFINIT IInitializes unit and data set. I 
I I I 
I FREAD IServices read requests. I 
I I I 
IFRITE IServices write requests. I L __________ ~ ____________________________________________________________________________ J 

Table 38. IHCDIOSE Routine Directory 
r----------T----------------------------------------------------------------------------, 
I Routine I Function I 
~----------+----------------------------------------------------------------------------~ 
DASDEF Processes DEFINE FILE statements: enters address of parameter lists intol 

DASINIT 

DASREAD 

DASTERM 

DASTRA 

unit assignment table, checks for redefinition of direct access unit I 
numbers, and establishes addressability for IHCDIOSE within IHCFCOME. I 

I 
anal 
fori 

Constructs unit blocks for nonopened direct access data sets, creates 
formats new direct access data sets, and opens data control blocks 
direct access data sets. I 

I 
IHCFCOME,1 Reads physical records, passes buffer pointers and buffer size to 

and updates the associated variable. I 
I 

Checks pending I/O operations, closes direct access data sets, and frees I 
main storage occupied by unit blocks. I 

Determines operation type and transfers control to appropriate routine. 
I 
I 
I 

IDASWRITE Writes physical records, provides IHCFCOME with buffer space, and updates I 
I the associated variable. I L __________ ~ ____________________________________________________________________________ J 

180 



Chart E7. IHCIBERR Overall Logic 

****A3********* 
* FORTRAN * 
* LOAD * 
* MODULE * 

*************** 

V 
*****B3********** 
* * *OBTAIN INTERNAL* 
*SEQUENCE NUMBER* 
* ( ISN) * 
* * ***************** 

I 
V 

*****C3********** 
* * * CONVERT ISN * 
* TO DECIMAL * 
* FORMAT * 
* * ***************** 

V 
*****03********** 
* BRANCH TO * 
* IHCFCOME TO * 
* HANDLE THE * 
* WRITING OF * 
* ERROR MESSAGE * 
***************** 

v 
****E3********* 

* IBEXIT RTN * 
* OF * 
* IHCFCOME * 

*************** 

IHCIBERR IS 
ENTERED VIA 
CALLING SE­
QUENCES GEN­
ERATED BY 
PHASE 20 AT 
COMPILE-TIME. 

Appendix L: Object-Time Library SUbprograms 181 





a(xxxx): Indicates the address of the sym­
bol within parentheses. 

adjective code field: A field of an inter­
mediate text entry that contains either an 
adjective code assigned by the compiler or 
an actual machine operation code. 

allocation table: Used in PhaseS to deter­
mine the amount of main storage to be 
allocated to the dictionary and the over­
flow table, and the internal text buffers. 

~a~r~g~u~m~e~n~t~~1~1=·~s~t: A list containing the 
addresses of arguments constructed when an 
adjective code indicating a call to a 
subprogram or statement function is detect­
ed. 

argument list table: Used at object-time to 
provide the starting address of the argu­
ment list for each subprogram or statement 
function called. 

base value table: Used at object-time to 
obtain base register values. 

BLDL table: Provides information necessary 
for transferring control from one phase to 
the next for PRFRM compilations. 

blocking table: Provides information neces­
sary to deblock compiler input and to block 
compiler output for PRFRM compilations. 

bound variable: An integer variable in a 
subscript expression that is redefined. 

branch list table for SFs and DOs: Used at 
object-time either by the instructions gen­
erated to reference SF expansions or by the 
instructions generated to control the iter­
ation of DO loops. 

branch list table for referenced statement 
numbers: Used at object-time by the 
instructions generated to branch to execu­
table statements. 

CDL: A portion of the array displacement 
for subscripted variables. 

COMMON text: An internal format used to 
transmit the information in a COMMON source 
s·tatement to Phase 12. 

communication area: A central gathering 
area used to communicate information 
between the various phases of the compiler. 

declarative statement: Anyone of the fol­
lowing statements: COMMON, DEFINE FILE, 

GLOSSARY 

DIMENSION, EQUIVALENCE, INTEGER, REAL, DOU­
BLE PRECISION, EXTERNAL, FORMAT, and SUB­
ROUTINE or FUNCTION. 

dictionary: A resident table of the compil­
er used to store information about symbols 
used in the source statements. For PRFRM 
compilations, the aictionary resides in 
main storage throughout the compilation; 
for SPACE compilations, the dictionary 
resides in main storage only through Phase 
14. 

dictionary index: consists of pointers to 
the first entries in the various chains 
that constitute the dictionary. 

end-of-statement indicator: An adjective 
code that signals the end of a particular 
statement to a processing phase. 

epilog table: Used during Phase 25 when 
generating the instructions that return the 
value of variables used as parameters to 
the calling program. 

EQUIVALENCE table: Used 
that assign addresses 
entries. 

by 
for 

the routines 
EQUIVALENCE 

EQUIVALENCE text: An internal format used 
to transmit the information in an EQUIVAL­
ENCE source statement to Phase 12. that 
may force the end of compilation. 

ESD card image: A card image containing an 
external symbol that is defined or referred 
to in the source module. 

executable statement: A 
causes the compiler to 
instructions. 

statement that 
generate machine 

flush: A compile-time I/O request that 
forces the current output buffer being used 
for a blocked output data set to be writ­
ten. 

forcing value: A value that indicates an 
operator's relative position in the hierar­
chy of operators. 

=f~o~r~c~1=·n~g~~v~a~1=u~e __ ~t~a~b==l~e: Used during Phase is 
processing to aid in the reordering of 
intermediate text entries for arithmetic 
expressions. 

hierarchy of operators: Defines the order 
in which operations must be performed in an 
arithmetic expression. 

Glossary 183 



interface module: The communications link 
between the compiler and the operating 
system. 

index mapping table: Used during Phase 20 
processing of subscript expressions to 
maintain a record of all information perti­
nent to the subscript expression. 

interlude: A compiler component that closes 
and then reopens the various data sets used 
by the compiler for SPACE compilations. 
(Interludes do not perform source statement 
processing.) 

intermediate text: An internal representa­
tion of the source statements that may 
eventually be converted to machine-language 
instructions. 

internal 
assigned 
compiler. 

statement number: A number 
to each FORTRAN statement by the 

internal text buffer chain: A series of 
buffers that are chained together by means 
of pointers. Constructed for the SYSUTl 
and SYSUT2 data sets if the PRFRM option is 
specified. 

list item: A variable used in a READ or 
WRITE statement. 

load module: The output of the linkage 
editor; a program in a format suitabie for 
loading into main storage for execution. 

location counter: A counter used to assign 
addresses. 

message address table: Used during Phase 30 
to aid in the generation of error and 
warning messages. 

message lenqth table: Used during Phase 30 
to aid in the generation of error and 
warning messages. 

messaqe text table: Used during Phase 30 to 
aid in the generation of error and warning 
messages. 

mode/type field: A field used in the dic­
tionary and intermediate text denoting the 
mode (real, integer, or double precision) 
and type (variable, array, function or 
constant) of a symbol. 

object module: The output 
execution of an assembler 
which constitutes input to 
editor. 

of a single 
or compiler, 
the linkage 

offset: A calculated indexing factor used 
to find the correct element in an array for 
a particular subscript expression. 

~o~p~e~r~a~t~i~o~n~s~_t~a~b~l~e: A temporary storage area 
used during -Phase 15 processing in the 

184 

reordering of intermediate text entries for 
arithmetic expressions. 

overflow table: A resident table that con­
tains all dimension, subscript, and state­
ment number information within the source 
module being compiled. 

overflow table index: Consists of pointers 
to the first entries in the various chains 
that constitute the overflow table. 

p(xxxx): Indicates a pointer to the infor­
mation (within the parentheses) as rep­
resented in the dictionary or the overflow 
table. 

patch table: Used to contain patch records 
if the patch facility has been enabled and 
if patch records precede th~ FORTRAN source 
module to be compiled. 

performance module: Processes compiler I/O 
requests and end-of-phase requests for 
PRFRM compilations. The performance module 
also contains the blocking table, the BLDL 
table, and the reset table. 

phase: Performs compiler initialization or 
actual source statement processing. 

pointer field: The last two bytes of an 
intermediate text word. It normally con­
tains a relative pointer to a dictionary or 
overflow table entry. 

reset table: Used by the performance module 
to determine which, if any, of the record 
counts for the SYSUTl and SYSUT2 data sets 
must be reset. 

resident table: A table that remains in 
main storage throughout an entire compila­
tion or throughout a part of a compilation. 
(The dictionary is resident only up to the 
end of Phase 14 for SPACE cQmpilations.) 

RLO card image: Contains information about 
an address constant used in the object 
module. 

routine displacement tables: Aid in the 
location of reserved word processing rou­
tines in Phases 100 and 10E. 

SEGMAL: A resident table that contains the 
beginning and ending address of each seg­
ment of main storage assigned to the dic­
tionary and overflow table by Phase 5. 

SF number: Assigned to each SF def1nition 
encountered by Phase 14. 

source module: A series of statements in 
the symbolic language of an assembler or 
compiler, which constitutes the entire 
input to a single execution of an assewDler 
or compiler. 



subscript table: Temporary storage area 
used for subscript text encountered during 
the reordering of intermediate text words 
by Phase 15. 

subscript optimization: The process of 
replacing the computation of a subscript 
expression at each recurrence with a ref­
erence to its initial computation (that is, 
to the register assigned to contain the 
result of its initial computation). 

SYSIN data set: The source module, which is 
used as input to the compiler. 

SYSLIN data set: The object module in card 
image form (if the LOAD option is 
specified). 

SYSUT1 data set: Used as a work data set by 
the compiler to contain intermediate text. 

SYSUT2 data set: Used as a work data set by 
the compiler to contain intermediate text, 
and the output of Phase 8 if the ADJUST 
option is specified. 

SYSPRINT data set: contains list of patch 
records if any, compiler informative messa­
ges, the source module listing if the 
SOURCE option is in effect, the storage map 

if the MAP option is in effect, the object 
module listing if the object listing option 
is in effect, and error and warning messa­
ges if any. 

SYSPUNCH data set: 
card image form (if 
specified). 

The object module in 
the DECK option was 

SYS1.FORTLIB: A partitioned data set that 
contains FORTRAN subprograms (including 
IHCFCOME, IHCFIOSH, IHCDIOSE, and IHCIBERR 
in the form of load modules. 

SYS1.LINKLIB: A partitioned data set that 
contains executable load modules, which can 
be reached via the XCTL, ATTACH, LINK, and 
LOAD macro-instructions. The FORTRAN IV 
(E) compiler resides on the SYS1.LINKLIB. 

TXT card image: A card image containing 
either an instruction of the object module 
or data used in the object module. 

unit assignment table: Used by IHCFIOSH and 
IHCDIOSE during processing of execution­
time I/O requests. 

unit blocks: Used by IHCFIOSH and IHCDIOSE 
during processing of execution time I/O 
requests. 

Glossary 185 



ABS in-line function 
compile-time processing of 44 

Address assignment 36-37 
Adjective code 

definition of 105 
forcing values 42,43,141 
replacement of 42-43,118 

Adjective code field 
in intermediate text 105 

ADJUST option 
compiler processing for 31-32 

Adjusting source statements 31-32 
Allocation of storage 

for argument list table 48 
for branch list tables 38-39,46 
for compiler 25-26,89-90 

Allocation table 138 
AOP adjective code 

in intermediate text 122 
Argument list count 44,48 
Argument list table 

format of 145 
generation of 48 
use of 145 

Argument list table entry 
generation of RLD and TXT card images 

for 48 
Argument lists 

creation of 44 
Arithmetic expressions 

generation of instructions for 49 
processing of 42-44,149 
reordering of 42-44,119-120 

Arithmetic scan 
of source statements 102-103 

Arithmetic-type interruptions 
object-time processing of 159 

Array displacement 
computation of 123-125 
definition of 123 

Array element 123-125 
Array I/O list items 

object-time processing of 153-156 
Arrays 

compile-time processing of 
36-37,123-125 

maximum sizes of 125 
Assignment 

of registers 44,118-119 
of relative addresses 36-37 
of storage to the compiler 25-26,89-90 

ATTACH macro-instruction 
specifying sUbstitute DDNAMES for 

compiler data sets via 22 

BACKSPACE statement 
compile-time processing of 
object-time implementation 

Base value table 
format of 145 
generation of 50 

186 

41,149 
of 159,165 

generation of RLD and 'I'XT card images 
for 51 

object-time use of 50,145 
Base-displacement address 

definition of 37 
Basic direct access method 

object-time use of 151,152 
Basic sequential access method 

compile-time use of 9 
object-time use of 151,152 

BDAM 
(see basic direct access method) 

BLDL macro-instruction 
compile-time use of 29,136 

BLDL table 
construction of 29,136 
format of 137 
in performance module 23 
use of 136 

Block/deblock I/O buffers 26 
Blocking table 

construction of 29,136 
format of 136 
in performance module 23 
use of 136 

Bound. variable 
definition of 47 
subscript optimization processing for 

47 
Branch list table for referenced statement 

numbers 
allocation of storage for 38-39 
format of 144 
generation of 38-39 
object-time use of 144 

Branch list table for statement fUnction 
expansions and DO statements 

allocation of storage for 46 
format of 144 
generation of 50 
object-time use of 144 

BSAM 
(see basic sequential access method) 

BSP macro-instruction 
object-time use of 165 

Buffers 
chained text 26-28 
for blocked I/O 26 
in interface module 22 
object-time use of 162-165,168-170 

Build table 
(see BLDL table) 

CALL statement 
compile-time processing of 42,149 

Card image generation 17,39-40,45,48,51 
Card images 

END 17,51 
ESD 17,39,45 
RLD 17,39,45,48,51 
TXT 17,39-40,45,48,51 



CDL 
calculation of 125 
definition of 125 
generation of literals for 47 

Chain field 
in dictionary 129 
in overflow table 132-133 

Chaining 
in dictionary 126-128 
in overflow table 131-133 
text buffers 26-28 

CHECK macro-instruction 
compile-time use of 56 
object-time use of 160,163,165,170 

Classification scan 
of source statements 101-102 

CLOSE macro-instruction 
compile-time use of 24,98-100 
object-time use of 165,171 

CLOSE macro-instruction, type=T 
compile-time use of 21,23,56,58 

Comments card image 
scanning of 101 

COMMON intermediate text 
creation of 34 
deletion of 41 
format of 109 

COMMON statement 
compile-time processing of 

33-34,36-38,149 
generation of intermediate text for 

nonsyntactical errors encountered in 
38 

Communication area 
definition of 92 
format of 92-94 
in interface module 20-21 
initialization of 30-31 

Compilation 
data sets used for 10-11 

Compilation input 
deblocking of 23 

Compilation output 
blocking of 23 

Compiler 
components of 9,18-19 
control flow in 11-12,15 
data sets used by 10-11 
input to 10 
input/output requests of 9,21,95,97 
main storage allocation to 25,26,89-91 
organization of 9 
output from 11,16-17 
overall operation 11-14 
relation to operating system 9 
system macro-instructions used by 9 
tables used by 126-143 

Compile-time I/O errors 
processing of 20,56 

Computation 
array displacement 123-125 
subscript 45-47 

Computed GO TO statement 
compile-time processing of 

41,45,50,117,149 
Constants 

assignment of relative addresses to 
36-37 

dictionary chains for 126-127 
Construction of resident tables 

BLDL table 29,136 
blocking table 29,136 
dictionary 30,34,36,126 
overflow table 30,34,36,131 
patch table 29,135 
SEGMAL 29,134 

Continuation card image 
scanning of 101 

CONTINUE statement 
compile-time processing of 149 

Control codes 
(see format codes) 

Control flow 
for PRFRM compilations 11-12,15 
for SPACE compilations 11,15 

Control operations routine 
definition of 21 
in interface module 21,56 

Conversion codes 
(see format codes) 

Conversion routines 
in IHCFCOME 153,155 

Counter, location 
relative address assignment use of 37 

DABS in-line function 
compile-time processing of 44 

Data control block skeleton section 
in unit blocks 160-161,166-167 

Data control blocks 
compile-time manipulation of 

23-24,96,98-100 
object-time use of 

161,163,165,167,169,171 
Data definition (DO) statement 9,98,162 
Data event control block 

compile-time use of 21 
object-time use of 161,167 

Data event control block skeleton section 
in unit blocks 160-161,166-170 

Data flow 
compiler overall 16-17 
Phase 8 31 
Phase 100 33 
Phase 10E 35 
Phase 12 37 
Phase 14 40 
Phase 15 42 
Phase 20 46 
Phase 25 49 
Phase 30 51 

Data set reference numbers 
compile-time processing of 

34,36,39-40,115,126 
object-time creation of unit blocks for 

160,166 
Data sets 

for compiler input 10-11 
for compiler output 10-11 
manipulation of data control blocks for 

98-100 
object-time initialization of 

163-164,168-169 
DBLE in-line function 

compile-time processing of 44 

Index 187 



DCB 
(see data control block) 

DCB skeleton section 
(see data control block skeleton 

section) 
DDNAMES, new 

substituting for compiler data set 
DDNAMES 22 

DECB 
(see data event control block) 

DECB skeleton section 
(see data event control block skeleton 

section) 
DECK option 

compiler output for 17 
Declarative statements 

definition of 32-33 
intermediate text for 34 

Default values 
for compiler options 20 
object-time insertion of into DCB 

skeletons 162 
system generation specification of 20 

DEFINE FILE statement 
compile-time processing of 

34,43,45,48,120-121,149 
object-time processing of 168,178 

DELETE macro-instruction 
compile-time use of 24-25,31,48 

Deleting load modules 
interface module 25 
object listing module 48 
performance module 25 
Phase 5 31 
source symbol module 25 

Device manipulation 
object-time routines for 159,165 

DFLOAT in-line function 
compile-time processing of 44 

Diagnostic messages 
compiler informative 146 
error/warning 146-148 
generation of 51 

Dictionary 
chaining in 126-127 
entry format 129 
freeing of main storage for 39 
index 127 
initialization of 30 
organization of 126 
use of 126 

Dictionary pointers 
replacement of 41,115 

Dimension entry 
in overflow table 132 

Dimension information 
array displacement use of 123-125 

Dimension part 123-125 
Dimension section 123-125 
DIMENSION statement 

compile-time processing of 33,149 
Direct access I/O data management interface 

(see IHCDIOSE library subprogram) 
Displacement 

base 37 
in arrays 123-125 

Displacement tables 
(see routine displacement tables) 

188 

DO statement 
compile-time processing of 

41,45,47,50,149 
Double argument in-line functions 

compile-time processing of 44 
DOUBLE PRECISION statement 

compile-time processing of 33-34,149 
Double-precision constants 

assignment of relative addresses for 
36-37 

dictionary chain for 126 
DSRN 

(see data set reference nllir~er) 

Dummy subscripted variables 
subscript optimization processing of 47 

Dynamic text buffer chains 
(see text buffer chains) 

Editor 
(see linkage editor) 

Element 
in arrays 123-125 

Embedded blanks 
elimination of in source statements 32 

END card image 
generation of 51 
in object module 17 

End DO adjective code 
insertion of into intermediate text 

41,116 
End mark 

in intermediate text 43,105 
END statement 

compile-time processing of 51,149 
End-of-FORVlliT statement indicator 

object-time encounter of 153,155 
End-of-Iogical record indicator 

object-time encounter of 156 
End-of-object module indicator 

generation of 51 
in object module 17 

End-of-phase requests 
compile-time processing of 21,23,56,58 

End-of-phase routine 
in interface module 21,56 
in performance module 23,58 

End-of-statement indicator 
(see end mark) 

ENDFILE statement 
compile-time processing of 41,149 
object-time implementation of 159 

Epilog table 
format of 142 
generation of 49 
use of 142 

EQUIVALENCE class 38 
EQUIVALENCE group 38 
EQUIVALENCE intermediate text 

creation of 34 
deletion of 41 
format of 110-111 

EQUIVALENCE root 38 
EQUIVALENCE statement 

compile-time processing of 34,38,149 
generation of intermediate text for 

nonsyntactical errors encountered in 
38 

EQUIVALENCE table 140 



Error intermediate text entry 
generation of 35,45,102-103 

Error messages 
compile-time generation of 51,146-148 
object-time generation of 159 

Error recovery procedure, I/O 
compile-time 56 
object-time 177 

Errors, source statement 

ESD 

intermediate text for 35,45,102-103 
messages for 51,146-148 

(see external symbol dictionary) 
ESD card images 

generation of 17,39,45 
in object module 17 

Executable statements 
generation of intermediate text for 

34-35,105 
Execute (EXEC) statement 9,20,22 
External functions 

(see library subprograms) 
External references 

generation of ESD and RLD card images 
for 39,45 

EXTERNAL statement 
compile-time processing of 33,149 

External symbol dictionary 13 

Files 
(see data sets) 

FIND statement 
compile-time processing of 

35,40,114,149 
object-time processing of 

151-152.169-170 
FLOAT in-line function 

compile-time processing of 44 
Flush requests 

definition of 23 
performance module processing of 23,57 

Forcing value 
definition of 42 
use of 42-43 

Forcing value table 141 
Format codes 

compile-time processing of 40,74 
object-time processing of 153-155 

FORMAT intermediate text 
format of 108 
generation of 34,105 

FORMAT statement 
compile-time processing of 34,40,74,149 
object-time processing of 153-155 

FREEMAIN macro-instruction 
compile-time use of 24-26 
object-time use of 171 

FREE POOL macro-instruction 
object-time use of 165 

Function calls 
compile-time processing of 42-44,149 

FUNCTION statement 
compile-time processing of 34,49,149 

GETMAIN macro-instruction 
compile-time use of 25,29 
object-time use of 160,166 

GO TO statement 
compile-time processing 'of 41,47,50,149 

Heading 
printing of 29 

Hierarchy of operators 42,119-120,140 

lABS in-line function 
compile-time processing of 44 

IF statement 
compile-time processing of 

42,45-46,50,149 
IFIX in-line function 

compile-time processing of 44 
IHCCGOTO library subprogram 45 
IHCDIOSE library subprogram 

buffering scheme of 168 
communication with control program 168 
file definition section of 168 
file initialization section of 168-169 
functions of 165 
I/O error processing of 170,177 
overall logic of 178-179 
read section of 169-170 
table and blocks used in 165-168 
termination section 170-171 
write section 170 

IHCFCO~E liorary SUbprogram 
closing section of 156 
format scan of 153-155 
functions of 151 
generation of calling sequences to 151 
I/O device manipulation routines of 159 
I/O list section of 153,155-156 
opening section of 152-153 
overall logic of 172 
read/write routines of 152-156 
utility routines of 159-160 
write-to-operator routines of 159 

IHCFIOSH library subprogram 
buffering scheme of 162 
closing section of 165 
communication with control program 162 
device manipulation section of 165 
functions of 160 
initialization section of 163-164 
I/O error processing of 165,177 
overall logic of 176 
processing for 1403 printer 163,165 
read section of 164 
table and blocks used in 160-162 
write section of 164-165 

IHCIBERR library SUbprogram 
functions of 171 
generation of calling sequences to 45 
overall logic of 181 

Images 
(see card images) 

Immediate DO parameter 
insertion of into intermediate text 

104,116 
Implied DOs 

checking of READ/WRITE statements for 
41,116 

Index 
in dictionary 30,127 
in overflow table 30,131 

Index 189 



Index mapping table 142 
In-line functions 

compile-time processing of 44,119,150 
Input/output buffers 

(see buffers) 
Input/output data sets 

(see data sets) 
Instruction generation 48-49 
Integer constants 

assignment of relative addresses to 
36-37 

dictionary chain for 126 
INTEGER statement 

compile-time processing of 33,150 
Interface module 

components of 20-22 
functions of 9 
I/O buffers in 22 
linkages to 95-96 
loaded into main storage 20 
returns froro 95-96 

Interface module routines 21-22,56 
Interlude 10E 

functions of 18 
Interlude 14 

functions of 19 
Interlude 15 

functions of 19 
Intermediate text 

adjective code field 105 
COMMON intermediate text 109 
definition of 105 
EQUIVALENCE intermediate text 110-111 
FORMAT intermediate text 108 
generation of 13,34-35 
mode/type field 107 
modification of 13,115-122 
pointer field 107 
READ/WRITE/FIND intermediate text 

111-114 
reordering of 41-43,119-121 
subscript intermediate text 

108-109,121-122 
Internal statement number 

compiler assigning of 101,107 
Internal text 

(see intermediate text) 
Internal text buffer chains 

(see text buffer chains) 
Interruptions, arithmetic 

object-time processing of 159-160 
I/O error recovery procedure 

compile-time 56 
object-time 177 

I/O list items 
object-time processing of 153-155 

I/O requests 
compile-time processing of 

9,21-23,56,57 
I/O routine 

in interface module 21,56 
in performance module 22-23,57 

I/O statements 
object-time implementation of 151-171 

ISN 
(see internal statement number) 

Job (JOB) statement 9 

190 

Keywords 
processing for if used as variables, 

arrays, or external names in source 
statements 32 

Library exponentiation subprograms 
assignment of registers for 44 
generation of ESD card images for 45 

Library subprograms 
exponentiation 45 
generation of ESD card images for 39,45 
IHCCGOTO 45 
IHCDIOSE 165-171,178-180 
IHCFCOME 151-160,172-175 
IHCFIOSH 160-165,176,180 
IHCIBERR 171,181 

LINK macro-instruction 
specifying substitute DDNru~ES for 

compiler data sets via 22 
Linkage editor 

processing of the object module 13-14 
Linkages to interface module 95-96 
Linkages to performance module 97 
List items 

(see I/O list items) 
Literals 

assignment of relative addresses for 37 
generation of 47 
generation of TXT and RLD card images 

for 45 
LOAD macro-instruction 

compile-time use of 20,22,24,48 
LOAD option 

compiler output for 17 
Loading modules 

interface module 20 
object listing module 48 
performance module 22 
Phase 5 24 
source symbol module 22 

Location counter 
used in assigning relative addresses 37 

Machine-language instructions 
generation of 48-49 

Macro-instructions 
(see system macro-instructions) 

Main storage allocation 
for branch list tables 38-39,46 
for compiler 25-26,89-91 

Manipulation 
of compile-time data sets 21,23,98-100 
of object-time I/O devices 159,165 
of text buffer chains 22,28,57 

MAP option 
compiler output for 16 

Mask, program interrupt 
object-time setting of 159 

Meaningful blanks 
insertion into source statements 32 

Message address table 142-143 
Message length table 142 
Message text table 143 
Messages 

compile-time generation of 51,146-148 
object-time generation of 159 



Mode/type field 
in dictionary 129 
in intermediate text 107 

Modification of compiler modules 21-22 
Modification of intermediate text 

for arithmetic expressions 
42-43,118-120 

for computed GO TO statements 117 
for DEFINE FILE statements 120-121 
for I/O statements 116 
for RETURN statements 117 

NOADJUST option 12,31-34 
NOLOAD option 46,51 
Nonexecutable statements 

(see declarative statements) 

Object listing facility 
enabling of 22 

Object listing module 19,48 
Object listing option 

compiler output for 16 
compiler processing for 22,36,48 

Object module 
components of 13,17 
generation of 13 

object module instructions 
generation of 48-49 

Object module tables 144-145 
Object program 

(see object module) 
Object-time error messages 

generation of 159 
Object-time I/O errors 

processing of 165,170,177 
Offset 

computation of 123-125 
generation of literal for 47 

1-dimensional array 
array displacement computation of 

123-125 
overflow table entry for 132 

Opening 
of data control blocks at compile-time 

23-24,98-100 
of data control blocks at object-time 

163-164,168-169 
OPEN macro-instruction 

compile-time use of 23-24,98-100 
object-time use of 153,163,169 

Operands 
source statement scan of 102-103 

Operations table 141 
Operators 

source statement scan of 102-103 
Optimization, subscript 45-47 
Overflow table 

chaining in 131 
entry formats in 132-133 
index for 131 
initialization of 30 
organization of 131 
use of 132 

Parameter lists 
in DEFINE FILE statements 43 
generation of TXT card images for 45 

Patch facility 
enabling of 29 

Patch requests 
compile-time processing of 21-22,56 

Patch routine 
functions of 21-22 
in interface module 21-22,56 

Patch table 135 
PAUSE statement 

compile-time processing of 41,150 
object-time implementation of 159 

Performance module 
components of 22-23 
functions of 22 
linkages to 97 
loaded into main storage 22 
manipulating of text buffer chains 

22,28,57 
returns from 97 

Performance module routines 22-23,57-58 
Performance module tables 23,136-137 
Pointer field 

in intermediate text 107 
Preliminary scan 

of source statements 101 
PRFRM compilations 

blocking compiler output for 22-23,57 
constructing text buffer chains for 

26-28 
control flow for 11-12 
data control block manipulation for 

98,100 
deblocking compiler input for 22-23,57 
linkages to performance module for 97 
main storage allocation for 26,91 
obta.ining main storage for 25 
opening data control blocks for 24 
restart condition for 24,26 

Print control operation requests 
compile-time processing of 21,56 

READ macro-instruction 
compile-time use of 9,56,98-100 
object-time use of 153-156,163-164,169 

READ statement, direct access 
compile-time processing of 

35,40-41,43-44,47,111-114,150 
object-time implementation of 

151-156,168-170,179 
READ. statement, sequential access 

compile-time processing of 
40-41,43-44,47,111-114,150 

object-time implementation of 
151-156,163-164,176 

Real constants 
assignment of relative addresses for 

36-37 
dictionary chain for 126 

REAL statement 
compile-time processing of 33,150 

Recovery procedure, I/O error 
compile-time 56 
object-time 177 

Redefinition of integer variables 
in subscript expressions 47 

Referenced statement numbers 
branch list table for 144 

Index 191 



References, external 
generation of ESD card images for 39,45 

Registers 
assignment of 44,118-119 
base 37,50 

Relative addresses 
assignment of 36-37 

Relocation dictionary 13 
Removing entries from chains 

in dictionary 128 
Reordering of intermediate text 

for arithmetic expressions 
42-43,119-120 

for computed GO TO statements 41,117 
for DEFINE FILE statements 43,120,121 
for READ/WRITE statements 41 

Replacement of dictionary pointers 41,115 
Reserved word 

dictionary section 30,126-127 
Reserved word scan 

of source statements 102-103 
Reset table 

format of 136 
in performance module 23 
use of 136 

RESETABL 
(see reset table) 

Resident tables 
BLDL table 23,29,136-137 
blocking table 23,29,136 
dictionary 126-130 
overflow table 130-133 
patch table 135 
reset table 23,136 
SEGMAL 134 

Resident table construction 
BLDL table 29,136 
blocking table 29,136 
dictionary 30,34,36,126 
overflow table 30,34,36,131 
patch table 29,135 
SEGMAL 29,134 

Restart condition 
definition of 24 
processing for 24,26 

RETURN macro-instruction 
compile-time use of 9 

RETURN statement 
compile-time processing of 

41,49,117,150 
REWIND statement 

compile-time processing of 41,150 
object-time implementation 159,165 

RLD 
(see relocation dictionary) 

RLD card images 
generation of 17,39,45,48,51 

Routine displacement tables 
format of 139 
use of 138 

SAOP adjective code 
in intermediate text 122 

Scan 
of source statements 101-104 

SEGMAL 
construction of 29 

192 

format of 134 
use of 134 

Sequential access I/O data management 
interface 

(see IHCFIOSH library subprogram) 
SF 

(see statement functions) 
Single-argument in-line functions 

compile-time processing of 44 
SIZE option 23-26 
SNGL in-line function 

compile-time processing of 44 
Source module 

input to compiler 10-11 
Source module listing 16,31,33-34 
SOURCE option 

compiler output for 16 
Source program 

(see source module) 
Source statement adjustment 12,31-32 
Source statement scan 101-104 
Source symbol module 19,22,36 
Source symbol table 

creation of 17,36 
SPACE compilations 

control flow for 11 
data control block manipulation for 

98-99 
linkages to interface module for 95-96 
main storage allocation for 25,89-90 
obtaining main storage for 25-26 
opening data control blocks for 23-24 

SPIE macro-instruction 
object-time use of 159 

Statement function numbers 
assignment of 41 

Statement functions 
compile-time processing of 

35,41,42,50,145,149 
Statement number definitions 

compile-time processing of 50,144,149 
Statement numbers 

overflow table entries for 34,36,133 
Statement processing, compile-time 

BACKSPACE 41,149 
CALL 42,149 
COMMON 33-34,36-38,149 
CONTINUE 149 
DEFINE FILE 34,43,45,48,120-121,149 
DIMENSION 33,149 
direct access READ 

35,40-41,43-44,47,111-114,150 
direct access WRITE 

35,40-41,43-44,111-114,150 
DO 41,45,47,50,149 
DOUBLE PRECISION 33-34,149 
END 51,149 
ENDFILE 41,149 
EQUIVALENCE 34,38,110-111,149 
EXTERNAL 33,149 
FIND 35,40,114,149 
FORMAT 34,40,74,149 
FUNCTION 34,49,149 
GO TO 41,47,50,149 
IF 42,45-46,50,149 
INTEGER 33,150 
PAUSE 41,150 
REAL 33,150 



RETURN 41,49,117,150 
REWIND 41,150 
sequential access READ 

40-41,43-44,47,111-114,150 
sequential access WRITE 

40-41,43-44,111-114,150 
STOP 41,150 
SUBROUTINE 34,49,150 

statement processing, object-time 
BACKSPACE 159,165 
DEFINE FILE 168,178 
direct access READ 151-156,168-170,179 
direct access WRITE 151-156,168-170,179 
ENDFILE 159 
FIND 151-152,169-170 
FORMAT 153-155 
PAUSE 159 
REWIND 159,165 
sequential access READ 

151-156,163-164,176 
sequential access WRITE 

151-156,163-165,176 
STOP 159 

STOP statement 
compile-time processing of 41,150 
object-time implementation of 159 

storage allocation 
(see main storage allocation) 

storage allocation schematics 
for PRFRM compilations 91 
for SPACE compilations 89-90 

storage map 
for assigned relative addresses 36 
for generated literals 46 
for implied external references 46 
for referenced statement numbers 48 
generation of 14 

subprograms 
argument lists for 48 
epilog table for 49,142 
ESD card images for 39,45 

SUBROUTINE statement 
compile-time processing of 34,49,150 

Subscript expressions 
computation of 123-125 
optimization of 47-48 
overflow table entries for 132-133 

Subscript intermediate text 
108-109,121-122 

Subscript optimization 
statements subject to 46,82 
statements that affect 47,82 

Subscript table 141 
SYSIN 

input data set for compiler 10-11 
manipulation of 98-100 
opening of data control block for 

23,98-100 
SYSLIN 

manipulation of 98-100 
output data set for compiler 10-11,17 

SYSPRINT 
manipulation of 98-100 
opening of data control block for 

23,98-100 
output data set for compiler 10-11,17 

SYSPUNCH 
manipulation of 98-100 

output data set for compiler 10-11,17 
System macro-instructions 

used by compiler 9 
SYSUTl 

constructing text buffer chains for 
26-28 

manipulation of 98-100 
opening of data control block for 

23,98-100 
overlaying of DCB block size for 21 
work data set for compiler 10-11,16-17 

SYSUT2 
constructing text buffer chains for 

26-28 
manipulation of 98-100 
opening of data control block for 

23,98-100 
overlaying of DCB block size for 21 
work data set for compiler 10-11,16-17 

Tables 
allocation 139 
argument list 145 
base value 145 
BLDL 136-137 
blocking 136 
branch list 144 
dictionary 126-130 
epilog 142 
equivalence 140 
forcing value 140-141 
index mapping 142 
message address 142-143 
message length 142 
message text 143 
operations 141 
overflow 131-133 
patch 135 
reset 136 
resident 126-137 
routine displacement 138-139 
SEGMAL 134 
subscript 141 
unit assignment 161-162,167-168 
used by compiler 138-143 
used by object module 144-145 

Termination of compilation 
abnormal 25,56 
normal 24-25,56 

Termination of load module execution 
160,171,177 

Text 
(see intermediate text) 

Text buffer chains 
construction of for SYSUTl and SYSUT2 

data sets 26-28 
format of 27 
manipulation of by performance module 

22,28,57 
use of 28 

3-dimensional array 
array displacement compuation of 

123-125 
overflow table entry for 132 

Transient work area 
required for control program 25 

Index 193 



Y28-6601-2 

2-dimensional array 
array displacement computation of 

123-125 
overflow table entry for 132 

TXT card image 
generation of 17,39-40,45,48,51 
in object module 17 

unit assignment table 161-162,167-168 
Unit blocks 

for direct access data sets 165-167 
for sequential access data sets 160-161 

unit number 
(see data set reference number) 

Unit tables 
(see unit blocks) 

Variables 
assignment of relative addresses for 

36-37 
dictionary entries for 34-36 

Warning 
definition of 103 

Warning messages 
generation of 51,103 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N. Y. 10601 
[USA Only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[International] 

Work data sets 
for compiler 10-11,16-17 

WRITE macro-instruction 
compile-time use of 9,56,98-100 
object-time use of 154-156,170 

WRITE statement, direct access 
compile-time processing of 

35,40-41,43-44,111-114,150 
object-time implementaion of 

151-156,168-170,179 
WRITE statement, sequential access 

compile-time processing of 
40-41,43-44,111-114,150 

object-time implementation of 
151-156,163-165,176 

Write-to-operator routines 159 
WTO macro-instruction 

object-time use of 159 

XCTL macro-instruction 
compile-time use of 

11-12,15,21,23-24,56,58 
XOP adjective code 

in intermediate text 122 

Zero-addressing scheme 
used in array displacement computation 

123-125 

. 
~ 

t< 
IV 
co 
I 

0'\ 
0'\ 
o 
~ 

I 
IV 



READER'S COMMENTS 

Title: IBM System/360 Ot:erating System 
FORTRAN IV (E) 
Program Logic Manual 

Is the material: 
Easy to Read? 
Well organized? 
Complete? 
Well illustrated? 
Accurate? 
Suitable for its intended audience? 

How did you use this publication? 
___ As an introduction to the subject 

Yes 

Other ________________________________ _ 

Please check the items that describe your position: 

No 

Form: Y28-6601-2 

For additional knowledge 
f~ 

___ Customer personnel _ Operator 
_ IBM personnel _ Programmer 

_ Sales Representative 
_ Systems Engineer 

_ Manager _Customer Engineer ___ Trainee 
_ Systems Analyst _ Instructor Other ____________ __ 

Please check specific criticism(s), give page number(s),and explain below: 
_ Clarification on page (s) 

I - Addi tion on page (s) 
tzJ - Deletion on page (s) a I - Error on page (s) 
...:II 
C,!) Explanation: 

~I 
~ 

FOLD ON TWO LINES,STAPLE AND MAIL 
No Postage Necessary if Mailed in U.S.A. 

fold 



Y28-6601-2 

staple 

fold 

told 

r------------------------------------------------, 
I BUSINESS REPLY MAIL I 
I NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. I L ________________________________________________ J 

POSTAGE WILL BE PAID BY 

IBM CORPORATION 
P.O. BOX 390 
POUGHKEEPSIE, N. Y. 12602 

ATTN: PROGRAMMING SYSTEMS PUBLICATIONS 
DEPT. D58 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N.Y. 10601 
[USA Only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[International] 

staple 

r--------------------, 
I FIRST CLASS I 
I PERMIT NO. 81 I 
I I 
I POUGHKEEPSIE, N.Y. I L ____________________ J 

111111 

111111 

111111 

III fli 

111111 

I111I1 

111111 

"tl 
t1 ...,-
::! 
r+ 
(!) 
0. 

...,-
::! 

c:: . 
en . 
~ 

t< 
N 
00 
I 

0\ 
0\ 
0 
-J, 

I 
N 

fold 

fold 

staple 


	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	replyA
	replyB

