
Control Program-67/Cambridge Monitor System
(CP-67 /CMS) Version 3.1
CMS Program Logic Manual
Progra,m No. 3600-05.2.005

The Cambridge Monitor System (eMS) is a conversational
monitor system that provides a comprehensive, easy-to-use
set of programs (commands} giving the CMS user a wide
variety of functions, including the ability to create addi­
tional commands or subsystems to satisfy his special
requ irements.

This manual provides a detailed description of the inter­
nals of CMS.

GY20-0591-1

Type III Class A Program

The following documents are referenced in this manual:

CP-6 I/CMS User's Cuide, Form GH20-0~5,)
CP-n 7/CllS insral/ariuN Guide, Form GH20-0857
SRI-if' A STring Pr(Jcessing Language, Form 320-2005,

IB\l Cambridge Scientific Center
SCRIPT: An Online J/allllscripl Processing Sysrem,

Form 320-:~023. IBM Cambridge Scientific Center
OS/360 Supervisor & Duta Management

;Viano-Instructions. Form GC28-6647

Second Edition (Octol'er 1971)

This Type I II Program performs functions that may be fundamental tl) the operation and maintenance of a
s} stem. It has not been subjected to formal test by IB\'1.

U util this program is reclassified. IB:v1 will provide for it: (1) Central Programming Service, including design
errOl correction and all tt: matic d istribu tion of COrTec lions: and (2) FE Programming Service, including design
error ,'crification. A PA R docun':ntation and submis<;ion. and application of Program Temporary Fixes or de­
velopment of an em('rf!\~tll'Y hYra~s when required IH\-1 floe, not guarantee service results or represent or war­
rant that all errors WIll be correded.

The user is e'-.pected to make the final evaluation as to the usefulness of this program in his own environment.

THE I {)RLGOP,(; IS IN LIFt: 01 ALL WARRAl'\TILS LXPRESSED OR I~U)LIED.INCLLJDING, BUT NOT
U\lITLD TO. TilL 1\1PLIJ·[) \\":\RRA.YfIl.S Of- \11 RCHAi\TABlLITY AND FITNESS fOR A PARTICULAR
PURPOSE.

This edition applies to \'n-;ion 3. \!odifica tion Level J, of Can tr01 Program-6 7 !Cam bridge \1onitor System
(3600-05.2.005 i and to all :-.ubscquent ver\iom and modifications until othen"ise indicated in new editions or
Technical !\e,vslctter'

Changes arc continually made 1<) the information herein: therefore. before using this publication, consult the
latest Sy~tern36(j SRL:'\ewsletter ((;N20-0360) for the editions that arc applicable and current.

(opiesoitlii,and otll('[IB,\! publiL'alion~ c:an be obtained through IB\1 branch offices.

I' form ha-; lv-.'en rrovidcd at tl1e baL'k of this publicatIOn for readers' comments. If this form has been removed,
address comments to: IHM Corporation, Technical Publicatiom Department, 1133 Westchester Avenue,
White Plains. New York 10604.

COKTEXTS

Section 1: Introduction to C:\IS
Components and Facilities Provided by C:VIS. .

C l\IS Commands . . . • . . • • • . • . •
File Creation, Maintenance and Manipulation .
Language Processors . . • •
Execution Control.•.•.
Debugging Facilities .
Utilities
Control Commands
Library Facilities . .
Page Release Facility
C 1\1S Core Requirements
C MS Batch Monitor.

Machine Configuration

Section 2: Internal Characteristics
Internal Linkage Scheme . . . •
Return Code Conventions .
Main Storage Management
eMS Nucleus .•.... . ..•••
C MS Disk File Organization and Management

Disk Management . • • . . • 0

System Disk .••.• • • 0 • • 0

Disk Space Management •• 0 0 • • • •

Read-Write Disks
System and Other Read-Only Disks . • . .

Active File Table (AFT)Management
Active Disk Table (ADT) Management
I/O Operations

C lVIS Terminal I/O . . • • .
C::.vIS Non-terminal I/O• 0 • •

Cser Input/Output Operations
HNDINT .••..•

SVC Simulation u 0 • • 0

OS Simulation L'nder Cl\'IS
Operating S~'stem/360 SVC Simulation Routines

Section ~3: ;VIonitor Operations
System Initialization
System Continuity c • • •

Stacking of Typed-in Commands.
Abbreviations for C:;\IS Commands.

Interruption Handling
SVC Interruptions

HKDSVC

1
1
1
1
1
2
2

2
2
3
3
3
3

4

7

7

8
8

14
16
17
27

27

29

34

34

34

35
36
38
38
39
40

41
42

71
71
72

73
74
71

75
75
79

iii

Input/Output Interruptions
Cl\IS Terminal Interruptions
CMS Reader/Punch/Tape Interruptions
CMS Printer/Disk Interruptions. . .
User Controlled Device Interruptions
Program Interruptions . . .
External Interruptions
Machine-Check Interruptions

Override Handling
Normal Override Operations
Error Override Operations

System Restart .••• 0 • • • • • • •

Section 4: Command Program Descriptions
File Creation, Maintenance, and Manipulation

ALTER . • • • • •. 0 •

CEDIT
CLOSIO
COMBINE
EDIT
ERASE
FILEDEF
FINIS
LISTF
OFFLINE
PRINTF
SCRIPT
SPLIT
STATE
STATEW
UPDATE

Execution Control
EXEC . G •••

GENMOD
GLOBAL
LOAD
LOADMOD
USE-REUSE
START

S •••.
Debugging Command Programs

CLROVER .•••••
DEBUG
SETERR .• 0

SETOVER
Language Processsing Command Programs

ASSEl\IBLE .•...••••
FORTRA~

PLI

81
'32
83
83
84
84
84
84
85
85
86
86

87
87
87
90
90
91
93
98

101
106
106
108
111
113
115
116
117
118
119
119
120
124
125
126
128
129
130
132
132
133
136
137
138
138
140
141

S~OBOL • 143
BRCIK • 144

Ctilities 146
CNVT:26 146
C01\TPARE 147
CYTFV 148
DISK 150
DUMPD 152
DUMPF 153
DCMPREST 154
ECHO 155
FORMAT. 155
GENDIRT 165
J\IAPPRT; 166
lVIODMAP. 167
OSTAPE 0 167
SORT 169
STAT 169
TAPE 171
TAPEIO 174
TAPRINT 175
TPCOPY. 175
\VRTAPE. 176

Control Commands 177
BLIP. 178
CHARDEF 178
CPFUNCTN 178
IPL 179
KE. 180
KO. 180
KT. 181
KXo 181
LINEND 182
LOGIN. 182
LOGOUT. 188
RELEASE 189
RT. 191
SY~ Q 191
VSET 194
VSET BLIP. 194
VSET I:YIPEX Q 196
VSET IDRTBLS • 196
VSET LINEND 197
VSET RDYMSG • 197
VSET REDTYPE 198
VSET RELPAG • 198

Libraries. 199
:\IAC LIB 0 199
TXTLIB 202
Fortran Subroutines. 206

v

Section 5: Service Program Descriptions .

vi

Storage 'Management Function Programs
FREE ...
FRET .•.
SVCFREE
SVCFRET .

File Management Macros
ADT. . . •..
AFT. • • • •••
DIOSCT .
FSTB .
FVS •..

File Management Function Programs •
RDBUF • • • • • • • •
WRBUF
FINIS •
STATE
STATEW
POINT •••

File Management Routines. •
TFINIS ..
RELUFD •••
READFST .
READMFD ..
FSTLKP
FSTLK\V.
UPDISK ..
UPUFD ..
LOGDISK.
SYSGEN-INITSYS. .

Disk Space Management Routines. •
QQTRK . . • ••.
QQTRKX. • . •••
TRKLKP.
TRKLKPX.

Active File Table Management Routines.
ACTLKP. • •••
ACTNXT.
ACTFREE .
ACTFRET .

Acti ve Disk Table Management Routines
ADTLKP. • • • • • • • • • .
ADTNXT ..•...••••.•

Disk Handling Function Programs
RDTK • • • . • .. . •••
\YRTK" • • • • • •
Direct I/O

213
213
213
213
214
214
215
216
218
219
220
221
223
223
227
232
235
237
238
240
240
242
243
245
247
249
251
254
255
256
258
258
259
261
262
264
264
265
266
268
270
270
271
273
273
275
276

Unit Record Handling Function Programs. .
CARDIO '... 0 •••

PRINTR-PRINTIO
Tape Handling Function Program

TAPEIO
Terminal Hardling Function Programs

CONWAIT. ••..
TYPLIN - CONWRITE .
TYPE
W AITRD - CONREAD •

User Program Device Handling Routine
Input/Output Service Routines .
Synchronize Routine

WAIT
Centralized Error Recovery Program
Normal/Error Override Function Programs

.RDERR ..

.RESNRM

.RESERR

. RESUME
• RPLERR
.STEROV
.STNOV ••

Debugging Function Program
DEBDUMP ••••.••.

Control and Service Function Programs
GETCLK
KILLEXF
LIBEPACK ••
PRTCLK
IPLDISK - INITIPL •
SCAN •.••.••
SETCLK ..•.•
BARE67 - INITB67
DEFTFLV ••.•.

CMS Loader
OVRLD Initial ~nd Resume Loading Routine
SLC Card Routine
ICS Card Routine - C2AEI
ESD Card Analysis Routine - C3AAI
ESD Type 0 Card Routine - C3AA3 .
ESD Type 1 Card Routine - E~TESD

ESD Type 2 Card Routine - C3AHI
ESD Type 4 Card Routine - PC .. .
ESD Types 5 and 6 Card Routine - PRVESD and CO:\lESD .
TXT Card Routine - C4AAI

278
278
280
283
283
285
285
285
286
287
288
289
289
289
290
297
297
297
299
300
300
301
302
302
302
304
304
304
305
305
306
306
307
308
308
309
310
311
312
312
314
315
315
316
317
317

vii

REP Card Routine - C4AA3
RLD Card Routine - C5AA1
END Card Routine - C6AA1
LDT Card Routine - C6AC1
Control Card Routine - CTLCRDI
REF ADR Routine
PRSERCH Routine
HEXB Conversion Subroutine • • .
Start Execution Routine - XEQQ
Disk and Type Output Routine - LDRlO
Library Search Routine - LIBEP ACK • .
Relevant Loader Data Bases

Section 6: CMS Batch Monitor. . .

App~ndix A: CMS File Naming Conventions •

Appendix B: CMS Directory

Appendix C: CMS File System Cross-Reference List

Appendix D: CMS Control Blocks.

Index

viii

318
319
321
322
323
324
324
325
326
327
328
329

335

337

342

350

353

355

ILLUSTRATIONS

Figure

I. Internal Linkage Scheme • · · · · · · · · · · · · · · 8

2. Internal Linkage Scheme - Multiple Levels · · · · · · · · 9

3. CMS Main Storage Layout. · · · · · · · · · · · · · · · 10

4. Example of Chaining of Free Storage Blocks · 11

5. Example of Free Storage After First Request · · · · · · · · 12

6. Example of Free Storage After Second Request. · · · · · · · · · 13

7. Example of Free Storage After Five Requests ~ · 14

8. Free Storage After Second Block Has Been Returned · · · · 15

9. n;Qnl~nDl'Y\DntQ f nl'Y\ NTT(Y)N · · · · 17, ... -t' """''''''.&.,.a..&'''- _ ,--.....,.

10. Displacements of V-cons from SYSREF · · · · 18

II. File status Table Entry. · · · · · 19

12. Master File Directory (MFD) • · · · · · · · · · · 20

13. MFD, FSTB, and FST Relationship · · · · · · · · 21

14. First Chain Link (FCL) · · · · · · · · · · · · · 22

15. Nth Chain Link · · · · · · · · · · · · 23

16. Relationship of FST, Chain Links, Data Blocks, and
Items of a File. · · · · · · · · · · · · 24

17. Example of Three FST Hyperblocks in Main storage. · · · · 25
18. Active File Table Block · · · · · · · · · · · · · 26

19. Active File Table (AFT) · · · · · · · · · · · 27
20. Data Block Structure for File Consisting of Fixed- Length

Items . . . · 28
2I. Data Block Structure for File Consisting of Variable-Length

Items . . . · 28
22. Disk Quarter-Track Assignment (QMSK) • · · 30
23. Disk Sixteenth Track Assignment (QQMSK) • · · · · · · · 31
24. Disk Address Format for First Chain Links 32
25. Disk Address Format for Nth Chain Links and for

Data Blocks · 32
26. Read/Write Stack · · · 36

27. Pending Read Stack · .. · .. · · · · 37

28. Finished Read Stack • · · · · · · · · · · 37

29. Contents of a CMS MODULE File
(Variable Records) · · · · · · · · · · · · · 123

30. Macro Dictionary Format · · · · · · · · 201

31. Dictionary Header Record Format· · · · · · · 202

32. Text Library Dictionary Format · · · · · · · · 205
33. Text Library Dictionary Header Record Format · · · 205

34. CMS ADT Macro. · · · · · · · · · · · 216

35. CMS AFT Macro. · · · 218

36. CMS DIOSCT Macro · · · 219

37. CMS FSTB Macro . 220

38. ClVIS FVS Macro · · · 221

39. Relationship of IOERR to RDTK/WRTK · · · · 278

40. Relationship of IOERR to PRINTIO 282

ix

SECTION 1: INTRODUCTION TO CMS

The Cambridge Monitor System (CMS) is a single-user ,conversational operating sys­
tem. It is designed to allow full use of an IBM System/360 through a simple terminal­
orientated command language. CMS gives the user a full range of capabilities - creating
and managing files, compiling and executing problem programs, and debugging -
requiring only the use of his remote terminal.

CMS also provides a batch version that will process non-conversational user jobs. Job
control cards that are imbedded within the input stream dictate which batch function will
be executed.

COlvlPO~'"ENTS & FA CILITIES PROVIDED BY CIVIS

eMS Commands

A CMS command is (1) the name of a program resident in the nucleus or on any CMS
disk, or (2) the name of a file containing other CIVIS commands. C1,[S commands fall
into seven categories: file creation, maintenance, and manipulation; language proc­
essors; execution control; debugging facilities; utilities; control commands; and library
facilities.

File Creation, Maintenance and Manipulation

The file handling commands of Cl\IS allow the user to create and modify disk files via
a context editor as well as to rename, copy, combine, split, update, erase, and print
disk files. The user can also print or punch files on unit record equipment. He can
create disk files from cards read via the card reader. He also can format text infor­
mation for letters, documents, or reports by utilizing the SCRIPT facility of CMS.

Language Processors

Some Operating System/360 Language Processors are used under CMS. These include
Assembler (F), FORTRAN IV (G), and PLI (F). The Assembler produces object pro­
grams that may be executed under either CMS or OS, depending on the macros used in
the source program. Special file handling routines for macro libraries are included.
The FORTRAN and PL/I compilers also produce OS-compatible object programs.
Diagnostics from the OS compilers are printed at the terminal unless suppressed by the
user or directed to disk. Because the CMS file system does not provide as many access
methods as OS/360, some features of PL/I are not supported at program execution time.

SCRIPT, a text processor, is also provided. There are two additional processors
available as Type III programs from the IBM Program Information Department; they
are SNOBOL, a string processing language, and BRUIN, an interpretive language.
BRUIN, BRown University INterpreter, was adapted from the OS version of BRUIN
developed at Brown University, Providence, Rhode Island. BRUIN provides two

I modes of operation: a desk calculator mode and a stored program mode.

1

Execution Control

The execution control commands allow the user to load his programs from single object
decks called TEXT files (the filetype TEXT is reserved for relocatable object prograJ;l1s)
or from a program library. The user can pass a list of parameters to his program
from the terminal and specify the point at which execution is to begin. To bypass the
re locating loader for each execution of the program, he can create a file consisting of an
image of the portion of core storage containing his program and load that non-relocatable
copy back at any time. Since the loading commands can be accessed by executing pro­
grams, overlay structures may be set up and dynamic loading can occur.

During program execution under CMS the user can fully interact with his programs. For
example, in FORTRAN Gunder OS/360 a READ to logical unit 5 reads the SYSIN device
and a WRITE to logical unit 6 writes to the SYSOUT device; under CMS, a READ to 5
reads the operator's console (remote terminal under CP) and a WRITE to 6 writes the
console.

The user also has the facility to create a procedure that is a series of commands and then
to execute these commands by typing a single instruction; logic statements can be placed
in the file with the commands so that the order of command execution may be dynamically
set or altered. This capability is called EXEC and allows a user to develop his own
command language or sets of procedures. EXEC also allows for the passing of variable
arguments from the terminal as well as between EXEC files, since EXEC files can be
nested and/or recursive.

Debugging Facilities

A permanent, nucleus-resident debugging facility is available to the user. It allows
stoppage of programs at predetermined points and examination of registers, PSW, and
storage, and permits modification of these if it is desired. This information may be
typed out at a user's terminal or printed offline. A program interrupt gives control to
DEBUG, as does the external interrupt caused by the EXTERNAL console function. The
user may also employ the program tracing routines, which record all SVC transfers,
or just those sve's in which an error return is made.

Utilities

The utility functions in CMS provide tape copying facilities, disk file comparison, a disk
file sort, and the dumping of files either by name onto the console or by cylinder loca­
tions onto the offline printer, as well as the facility to dump files to tape and reload
them onto disk. There are commands also for converting files of fixed-length records
to variable-length records, for converting BCDIC files to EBCDIC, and for obtaining
statistics on file space.

Control Comlnands

There are other commands that give the user the facility to suppress the typeout at his
terminal, to restore typing at his terminal once the typeout is suppressed, and to kill
program execution. The user can redefine the logical line-end character, the character
delete and line delete characters, as well as the blip character that notifies him of CPU

2

utilization. He can also rename any command and define his own abbreviations to be
used.

Library Facilities

CMS provides library facilities for program libraries. The user can generate his own
libraries or add, delete, or list entries in existing libraries. He can also specify which
libraries to use for program assemblies as well as program execution.

Page Release Facility

Certain CMS routines include a page release facility. This means that following a
successful completion and before returning to the user or caller, the routine ref­
erences NUCON and turns a page release flag on. When the routine then returns to
INIT, INIT checks this flag. If it is on, !NIT issues a diagnose X'lO' to CP to re­
lease user pages from X'12000' up to the value in LOWEXT.

For the user to prevent this release of pages, the CMS VSET RELPAG OFF command
should be issued. The commands that have the page release facility are: ASSEMBLE,
CEDIT, COMBINE, COMPARE, EDIT, FORTRA.."N", MACLIB, MAPPRT, PLI, SORT,
SPLIT, TAPE, TXTLIB, and UPDATE.

CMS Core Requirements

eMS has a prerequisite for 80R bytes of virtual memory for the nucleus, transient area,
and loader tables. At login time, core space for user file directories is allocated
dynamically as required. The rest of core storage is available to user programs.

CMS Batch Monitor

As well as being a conversational monitor, CMS provides a batch facility for running
CMS jobs. The CMS batch monitor accepts a job stream from a tape unit or from the
card-reader and writes the output either on tapes, the printer, or the card-punch. The
job stream can consist of a System/360 Operating System SYSIN job stream with
FORTRAN (G), and Assembler (F) compile, load, and go jobs or it can consist of CMS
commands along with control cards and card decks for compile, load, and go jobs for
all the CMS supported c'Jmpilers.

Just as the conversational CMS does, the batch monitor can run from either a virtual
machine or a real machine. Under CP, it can be used as a background monitor along
with other conversational CMS users.

To eliminate the possibility of one job modifying the eMS batch monitor's nucleus in such
a way as to affect the next job, the batch monitor is re-IPLed before each job begins.
Files can also be written onto the batch monitor's primary disk and then punched or
printed, such as files written by FORTRAN programs; these files should be of limited
size and considered as temporary, as they are erased at the completion of each job.

3

MACHINE CONFIGURATION

Whether running on a real (see Note below) or a virtual machine, CMS expects the fol­
lowing machine configuration:

Device Virtual Symbolic
Address Name

1052 009 CON1 console
2311,2314 190 DSK1 system disk (read-only)
2311,2314 191** DSK2 primary disk (user files)

*2311,2314 192** DSK3 temporary disk (work space)
*2311,2314 000** DSK4 A dis k (us er files)
*2311,2314 000** DSK5 B disk (user files)
*2311,2314 19C** DSK6 I C disk (user files)

1403 OOE PRNI line printer
2540 OOC RDR1 card reader
2540 OOD PCH1 card punch

*2400 180 TAP 1 tape drive
*2400 181 TAP2 tape drive

at least 256K bytes of core storage, 360/40 and up

*The 2311 or 2314 for the temporary disk, the A, B and C disks, and the two 2400
tape drives are optional devices; they are not included in the minimum configura­
tion.

**The specified virtual addresses may be changed at any time by the CMS LOGIN
command.

Note: For use on a real machine not having this I/O configuration, the device addresses
can be redefined at 'load' time.

Under CP, of course, these devices are simulated and mapped to different addresses
and/or different devices. For instance, CMS expects a 1052 printer-keyboard operator's
console, but most remote terminals are 2741's; CP handles all channel program modi­
fications necessary for this simulation.

CMS allows the user to add his own programs for I/o devices not supported by the
standard system. CMS also provides for dynamic specification of SVC routines.

The system disk, located at address 190, is read-only and contains the CMS system
commands. These system programs are physically divided into two groups: nucleus
functions and disk-resident command modules. The nucleus programs are loaded into
main storage during initial program load (IPL) and remain resident throughout system
operation. The disk resident modules are loaded into main storage only when their
services are needed. Certain disk resident programs are loaded into the transient area.
The primary disk, 191, is a read-write disk and normally is the first user disk. Files
that the user wishes to retain for use across terminal sessions are stored on one of the
user! s disks. Information stored on the primary disk remains there until it is deliber-

4

ately erased or destroyed by the user. Commands and input files are entered into the
system from the console (that is, the terminal located at address 009). Output files,
program results, and error and prompting messages are directed from within CMS to
the console. The card reader, located at address OOC, may be used as the input
medium for files, source decks, and data to be processed by user programs. The card
punch, address OOD, may receive user output files, processor object decks, and vari­
ous other types of data. The printer, address OOE, may receive user program results,
and Assembler, FORTRAN and PLI listlngs. A tape, located at address 181, may be
used in Dump/Restore operation and as an input/output medium for files.

5

6

SECTION 2: INTERNAL CHARACTERISTICS

This section describes the internal characteristics of CMS, including the way in which
control is passed among the programs that make it up, the manner in which it manages
main storage, disk space, and files, and the nature of its I/o operations.

INTERNAL LINKAGE SCHEME

In CMS, control is generally passed from one program to another (for example, from a
command program to a function program) by means of a supervisor call (SVC) instruc­
tion. When one CMS program requires the services of another, it issues a special SVC
of the form SVC X' CA'. (This SVC may be followed by a 4-byte address constant con­
taining an error return address.) Associated with the sve is a paran:eter list that iden­
tifies, by name, the program whose services are desired (that is, the called program).
The execution of the SVC instruction causes an interruption, and controi passes to a
SVC interruption handler (SVCINT). When SVCINT receives control, it saves (1) con­
tents of the calling program's registers and (2) the SVC old PSW. This PSW contains
the address within the calling program to which control is to be returned when execution
of the called program is complete. Having saved these items, SVCINT sets up a return
register with an address pointing to a location within itself. This location is where the
called program is to return control. It then branches to the called program. When ex­
ecution of the called program is complete, it returns to SVCINT through the return
register.

In an error occurred during execution of the caiied program, SVCIl\J"'T returns control:

• To the error return address, if one followed the SVC Xl CA' instruction.

• To the CMS standard error routine (STDERR), if no error return address was given
after the SVC in the calling program.

If no errors occurred during execution of the called program, SVCINT restores the call­
ing program's registers, and loads the saved PSW. Control returns to the calling pro­
gram at the executable instruction following the SVC Xl CA' instruction. Figure 1 shows
how this scheme works.

Control within CMS may be passed via SVC's to a level of twenty calls. For example,
one CMS program may call another (first-level call), which may call another (second­
level call), which may call another (third-level call), etc. SVCINT intercepts each of
these nested calls and takes steps to ensure proper return to the calling program. It
does this for each call by: (1) storing the SVC old PSW that results from the interrup­
tion and the contents of the registers as they exist at the time for the inteTruption in a
last-in, first-out list, and (2) passing control to the called program. Upon return from
the last called program (the program at the lowest level will return to SVCINT first),
SVCINT restores the registers with the saved register data stored in the last entry in
the list, deletes that entry from the list, and loads the saved PSW. Control is thereby
ret'urned to the program at the next higher le\~e1. 'Vhen execution of this program i~
complete, SVCINT follows a similar procedure to return control to the program that
called it. Figure 2 shows how this scheme works.

7

Calling Program

• SVCX' CA'
SVCINT

~----,---
• (See Note) NRMISAV

I I <:J • Save registers, return address,
, • and PSW

Note: I f an error occurs during
execution of the called program,

I
I • Set up return register

Return
Register

control is passed either to:
(1) The CMS standard error

I
I
I
I

C>R
- Branch to called program I ,
~-------- -~ I routine; or

(2) An error return location
whose address is contained
in an address constant
followina the SVC.

• Restore Registers

! I.: Load PSW

I-I+ _________ ~
I I Called Program

I
I
I
i
I
I

Return --L------J
Figure 1. Interoallinkage scheme

RETURN CODE CONVENTIONS

When a program, called via an SVC X' CAl instruction, returns to the calling program,
register 15 contains a positive, negative, or zero code. A positive code indicates that
an error occurred during the execution of the called program. A negative code indicates
that control was never passed to the called program. (This might occur if, for example,
the user incorrectly types a command from the terminal.) A zero code indicates that
the called program was executed successfully.

SVCINT is the only CMS program that returns negative error codes.

MAIN STORAGE MANAGEMENT

Main storage is composed of five main areas: the nucleus, free storage area, a tran­
sient area, user program area, and a loader tables area. The nucleus contains the core
resident portion of CMS; it begins at Page 0 of main storage and extends upward into
Page 13. Free storage is that portion of main storage between the end of the nucleus and
the start of Page 17 of main storage. Page 17 is a transient area into which certain CMS
commands are loaded. The user program area, which starts at Page 18 (or above), is
the area into which the user programs are loaded. The last two pages prior to the end of
core are reserved for the loader tables used by the Cl\fS commands LOAD, USE, and
REUSE for loading in programs. (See Figure 3.)

Passing Control to

Called Programs

Program A
(Calls B Via
SVC X' CA')

!A REGS! A PSW !

W

i i
A REGS A

8 REGS 8

A REGS A

8 REGS B

C REGS C

psw

PSW

PSW

PSW

PSW

Program B
(Calls C Via
SVC X' CA')

"

Program C
(Calls D Via
SVC X' CA')

~

Program D
(No Calls)

Save A's Registers
and Resultant PSW;

Pass Control To B.

Save B's Registers
And Resultant PSW;

Pass Control To C.

Save C's Registers
And R esu Itant PSW;

Pass Control to D

+

Figure 2. Internal linkage scheme - multiple levels

t
Restore A's Register;
Load A PSW To

Return To A

Restore S's Registers;
Load 8 PSW To
Return to 8

Restore C's Registers;
Load C PSW To
Return to C.

Returning To Cailer 'vVhen
Called Program Finished

Program A

I I

I

Program B

All

Program C

J~

Program D

ARE

ARE

B RE

GS A PSW

GS A PSW

GS 8 PSW

9

~ End Of Core
Loader Tables

(Two Pages)

User
Programs

.,.Startof Page 18
Transient Area

4-Start Of Page 17

~ree Stor~ge

... End of Nucleus Code

Nucleus

4- Start Of Page 0

Figure 3. CMS main storage layout

Main storage management allocates and keeps track of the free storage that is available.
Free storage is used by the various eMS programs requiring blocks of main storage for
temporary use (for example, as buffer space into which data blocks are read for proc­
essing). When a program requires main storage, it calls the FREE storage management
program indicating the number of double words required. The storage management pro­
gram allocates the required storage and returns a pointer to its starting location to the
calling program.

When a program has finished with such temporary storage, it returns it to a free storage
via the FRET storage management program, indicating the size and starting location of
the block being returned.

The storage management programs keep track of free storage through a series of pointers,
the first of which originates in the storage cell FREELIST. FREELIST always contains a
pointer to the free storage block at the lowest address. The free storage block pointed to
from FREELJST starts with two fields; the first contains a pointer to the second free
storage block (that is, the free storage block that starts at the next higher address); the
second field contains the size (in bytes) of the block itself. Similar fields exist for the
second, third, and subsequent free storage blocks. Thus, free storage blocks are always
chained from low to high addresses. Figure 4 illustrates this concept.

Main storage management works in the follOwing way. The first request for main storage
causes Page 16 to be made available as free storage. A block of storage of the requested
size is allocated to the caller from the high-numbered end of Page 16, FREELIST is ini­
tialized to point to the beginning Q.ow-numbered end) of Page 16; the pointer and size fields

10

End Of P'ge 16 T

Block C [I

l Size of C
1-----------10

Block B

r,
Freelist

"-~-.~{ ~­--=-l Key:
,/ ////1) Portion Of Free Storage V:// ~ / /...1 Currently I n Use And

- - - Not Available For
Allocation.

Figure 4. Example of chaining of free storage blocks

End of Page 15

Size Of B

Ql
Cl

~
~
en
Ql

~
II..

I I
- - - - - - _!4-EndOfpage13i

Size Of A

Pointer To B End Of Nucleus

Code

at the beginning of Page 16 are initialized appropriately, and FREENUM is set to one.
(See Figure 5.) A second request for free storage causes the next available lower block
near the end of Page 16 to be allocated to the caller, and the size field at the beginning of
the one and only free storage block at the beginning of Page 16 is decremented by the
number of bytes just allocated. (See Figure 6.)

Assume now that three additional requests for free storage blocks are satisfied (see
Figure 7), but that after the last of these, the program that received the second block no
longer needs it and returns it for use by other programs. The released block is chained
into the free storage list as the second entry, and FREENUM is appropriately updated.
(See Figure 8.)

For each subsequent request for free storage, the storage management programs scan
the chain of free storage blocks for one that is equal in size to that requested. H one is
found, it is immediately allocated to the caller, the chain of free storage blocks is broken

11

First Block
Allocated

Remaining
Free Storage
In Page 16
Available
For Allocation

rr-,........,.........,--;?'-r..,....-r-.."......-:~......,........,..-r-,..- End Of Page 16

Size This Block

r-__ ~ _______________________ O~~EndOfPa~15

Freenum

Key: First Block Of Free

V// / //:Ii Storage AII~ated
... rL // __ / / .. _ // _ /~ A To Requesting

Program.

Figure 5. Example of free storage after rust request

End of Page 14

End Of Pa~ 13

End Of Nucleus

Code

and relinked to delete the allocated block from the free storage list, and FREENUM is
decremented by one. If a free storage block equal in size to that requested cannot be
found, but one or more free storage blocks larger in size than that requested are found,
storage is allocated to the caller from the high-numbered end of the last larger block
that was found, and the size of that block is decremented appropriately.

If neither a matching nor a larger block of free storage is available, the EXTEND stor­
age management program allocates another large block of free storage as available be­
tween the end of the eMS nucleus and the start of Page 17. This large block (for exam­
pIe, Page 15, later Page 14, then whatever free storage may be available at the end of
block 13) is merged properly into the free ~torage chain (that is, FREELIST points to its
beginning), and the caller's previously unsatisfied request is then handled in accordance
with the revised chain of available storage. (Note in Figure 7 that Page 15 had to be ob­
tained to allocate the third block, and later Page 14 was needed for allocation of the fifth
block.)

12

Eod of P'g' 161 ::~:c!::k {WWh00//A
Second Block J
Allocated L ~

In Page 16
Available for I---------S-iz-e-T-h-is-S-IO-C-k -I
Allocation I-----________ ~

a

~~~:a~;~~:ge [ 

~-----4 .......... ------------..... End of Page 15 

I 

r---Fre_eL_ist ---:-._----JI 
FreeNum 

Key: Portion Of Free Storage 

V// / //J Currentl~ I n Use And 
.... rL"'--~// .... _/ /;........0._ // ...... _ /'--U j Not Available For 

Allocation. 

I I 
I 

l-----
I 

- +End of Page ,. 

I 
I 
I 
~-------

I 

I 

End Of Page 13 

End Of Nucleus 

Code 

Figure 6. Example of free storage after second request 

I 

Q) 
Cl 
III 

B 
til 
Q) 

~ 
u... 

I 
I 

I 
I 

When a program returns a block of storage via FR ET, it is linked into the chain in its 
proper place, and FREELIST, FREE~T(JM, and the necessary pointer and size fields are 
appropriately updated as necessary. If the block returned abuts a free storage block 
(either above, below, or both), they are combined into a single block with pointers, 
sizes, FR EE LIST, and FREENUM being appropriatelv adjusted as needed to maintain 
proper chain sequence and block sizes. 

If there is not sufficient free storage available in the free storage area following the 
nucleus, pages are allocated by EXTEND and merged into the chain as needed, one at a 
time, from the end of the user program area, just below the loader tables. If a page (or 
more) of such storage is returned, this storage is also "given back". Care is taken by 
the storage management programs t~ ensure that any such storage allocated from the end 
of the user program area does not run into conflict with loaded programs, storage allo­
cated by the GET MAIN procedure, COlVIMON area, and the like. 

13 



Freelist 

First Block 

Allocated 

Second Block 

Allocated 

Third Block 
Allocated 

Fourth Block 
Allocated 

Filth Biock 

Allocated 

Remaining 

Free Storage 
in Page 14 
Available 
For Allocation 

_ Fnri Of P1I9f> 14 

Size This Block 

o 
~--------~----------------•• ~~----------------------~4-EndOfPa~13 

Freenum 

Key: Portion Of Free Storage 

Currently In Use And 

Not Available For 

Allocation. 

Figure 7. Example of free storage after five requests 

CMS NUCLEUS 

L..-________________ ...J_ End Of Nucleus 

Code 

A key portion of the CMS nucleus, located near the beginning of Page 0, is the Nucleus 
Constant Area Table (NUCON). NUCON contains (1) several parameters used by the 
loading routines and storage management programs, (2) a table of device addresses, and 
(3) a table of address constants giving the location of certain nucleus-resident CMS tables 
(for example, FVS, !ADT), and routines called via BALR instructions (for example, 
FREE & FRET). Some of the constants and parameters in NUCON, with their meaning 
and their usual values on a 256.K System/360, are as follows: 

CORESIZ The size of core (computed at the beginning of a terminal session - for ex­
ample, 40000 hex = 262144). 

USFL User first location (12000 hex) 

14 



Freelist 

First Block 
Allocated 

Second Block 
Allocated 

Third Block 
Allocated 

Fourth Block 
Allocated 

Fifth Block 
Allocated 

Remaining 
Free Storage 
in Page 14 
-Available 
For Aiiocation 

Size This Block 

Pointer To Second Block 

End Of Page 16

1 

4- End Of Page 14 

~ 
I 

I 

I 
I 
I 

t----------------f 4- End Of Page 13 

Freenum 

L...-____________ --l+_ End Of Nucleus.-l 

Key: Portion Of Free Storage 
Currently I n Use And 
Not Available For 
Allocation. 

Figure 8. Free storage after second block has been returned 

STADDR Address to start user execution (frequently 12000 hex) 

LDRTBL End of loader tables (40000 hex = 262144) 

LOCCNI' Next core location to start (or resume) loading 

Code 

LOWEXT Lowest core address given out by EXTEND routine of the storage management 
programs (starts at 3E 000 hex) 

HIMAIN Highest address given out by GETMAIN program 

CONGEN An area used by the tvpe.writer routines (WAITRD, TYPLIN, CO NSI, etc.) for 
input and output areas, etc. 

SYSREF Start of tables of address constants of certain CMS tables and routines. 

15 



To refer to NUCON and its contents, the CMSYSREF macro can be used. The CMSYSREF 
macro contains three main parts: Absolute, NUCON, and SYSREF. The Absolute sec­
tion gives the displacenlents of absolute locations in page O. The NUCON part gives rel­
ative displacements for the miscellaneous paranleters and device addresses. The 
SYSREF part of the CMSYSREF macro gives relative displacements of the address con­
stants starting at SYSREF. In both the NUCON and SYSREF parts, the label of each 
parameter constant begins with D. For example, the label for the displacement of 
LOWEXT in NUCON is DLOWEXT. 

Note that NUCON and SYSREF are always known locations to the CMS loading programs. 
Thus, any disk resident program, by procedures outlined above using the CMSYSREF 
macro and the NUCON and SYSREF V-constants, can indirectly reference any quantities 
which are specified in the NUCON and SYSREF portions of the CMS Nucleus Constant 
Area. 

For a complete list of the NUCON and SYSREF values, see the CMSYSREF macro as 
shown in Figures 9 and 10. 

eMS DISK FILE ORGANIZATION AND MANAGEMENT 

eMS files are stored on read-write and read-only disks. The CMS file management 
scheme uses various commands, functions, routines, and tables to structure and keep 
track of these files. 

eMS handles up to six disks, one of which is the read-only System Disk (8-Disk), nor­
mally having a device-address of 190. Up to five other disks can be active at any given 
time, each of them either read-write or read-only. Usually one of these is a read-write 
disk called the P-Disk or Primary disk (normally with a device-address of 191), on 
which a user keeps his files, which are preserved by the CMS file system until they are 
purposely updated, erased, or replaced by the user or various command programs. 

Each disk can be either a 2311 or 2314, from one to 203 cylinders. Other pertinent 
parameters for each disk are as follows: 

• A 2311 holds a maximum of 8120 800-byte physical records 
• A 2314 holds a maximum of 30,448 800-byte physical records 
• Up to 3500 files may reside on a given disk 
• Any given file can be as large as either 

1. 16060 800-byte physical records 
or 

2. 65533 logical records (items) 

The following pages describe the file management scheme used by CMS for files on read­
write and read-only disks. For further information, see the sections "Disk .~ace Man­
agement", "Active File Table (AFT) Management", and "Active Disk Table (ADT) 
Management' '. 

16 



2294 +* DISPLACEMENTS WITHIN I I NUCONSCT I I 

2295H 
OOOOlC 2296 +DCMSAREA EQU X I 1 C I 
000300 2297+0CONSOLE EQU X1 300 ' 
000004 2298+DCORESIZ EQU X I 4J 

1"'\1"\1"\1"\,,-
UUUUI~ 2299+DERRINF EQU X I 1 C I 
OOOODC 2300 +OH I MA I N EQU X'DC' 
OOOOEO 2301+DIPLDEV EQU X'EO' 
OOOOCC 2302+DLDAOOR EQU X'CC' 

BSC CTF BASIC COMPILER EXECUTIVE PROGRAM 

LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT 

000014 2303+DLDRTBL EQU X' 14 ' 
0000C8 2304+DLOCCNT EQU X' C8' 
000008 2305+DLOWEXT EQU X'DS' 
0000C4 2306+DLSTADR EQU X' C4' 
000000 2307 +0 L S T S V C EQU X'O ' 
0000lC 2308+DNRMINF EQU X'lC' 
000318 2309+DPDISK EQU x 1 318 ' 
000000 2310+DPSW EQU Xi DOi 
00030C 2311+DSDISK EQU X' 30C ' 
000010 2312+0STADDR EQU X! 10 I 

0000E2 2313+DSYSDEV EQU X I E2' 
000018 2314+DTBLNG EQU X'18' 
000324 2315+0TOISK EQU x'324' 
000008 2316+DUSFL EQU X'S' 

2317+* 

Figure 9. Displacements from NUCON 

Disk Management 

Disk files are managed by a series of control blocks and tables. These blocks and 
tables are disk resident when the system is not in operation and, for the most part, 
main storage resident during a session. Because the blocks and tables are dynam­
ically updated during the course of a session, an up-to-date copy of ~l].em is stored 
on the disk whenever necessary or requested. (The previous copy is deleted.) This 
is done to minimize the effect of a system malfunction. 

File Management Tables on Disk 

A description of each existing file is maintained in a file status table (FST) for that file. 
The format of an FST entry is shown in Figure 11. 

The file status tables for all files on the disk are grouped into a series of 800-byte disk 
records referred to as file status table blocks (FSTB). The file status table blocks are 
stored on the disk in available 800-byte records e Each file status table block can ac­
commodate up to 20 file status tables. Each of the file status table blocks is pointed to 
by an entry in the master file directory (MFD). The master file directory is the major 
file management table for disk. It is an 800-byte disk record located at a fixed point on 
the disk (cylinder 00, track 0, record 4). Figure 12 shows the format of the master file 
directory. Figure 13 shows the relationship of the master file directory, file status 
table blocks and file status tables. 

17 



2318+* DISPLACEMENT WITHIN "SYSREF I --- COMMUNICATION VECTOR REGION 
2319+* 

00009C 2320+DADTLKP EQU 156 
000000 2321+DADTLKW EQU 192 
000028 2322+DADTP EQU 40 
00004C 2323+DADTS EQU 16 
000040 2324+DADTT EQU 64 
000050 2325+DBTVPLIN EQU 80 
000004 2326+DBUFFER EQU 4 
000008 2321+DCMSOP EQU 8 
OOOOAC 2328+DCMSRET EQU 112 
OOOOBC 2329+DCOM6UF EQU 188 
oooooe 2330+DDEVTA8 EQU 12 
000084 2331+DDIOSECT EQU 132 
00007C 2332+DDMPEXEC EQU 124 
000064 2333+00MPLIST EQU 100 
000064 2334+DEXEC EQU 180 
0000C8 2335+DEXISECT EQU 200 
OOOOFO 2336+0FC6TAB EQU 240 
000054 2331+DFRE06UF EOU 84 
000068 2338+0FREE EOU 104 
00006C 2339+0FRET EQU 108 
000010 2340+OFSTLKP EQU 16 
00001C 2341+DFSTLKW EQU 28 
000000 2342+DFVS EOU 0 
000014 2343+DGETCLK EOU 20 
000018 2344+0GFLST EQU 24 
OO(Hnh 234SfC!ACT L.-.,u 3l; 
000030 2346+OIOERRSP EQU 46 
0000E8 2341+OIONTA6L EQU 232 
00005C 2348+0LNKLST EQU 92 
000090 2349+0MACLI 8L EQU 144 
000094 2350+0MACSECT EOU 148 
000080 2351+0NOTRKST EQU 116 
000018 2352+0NUMTRKS EQU 120 
000008 2353+00PSECT EOU 8 
0000A8 2354+DOSRET EQU 168 
000064 2355 +OOSYEC T EOU 100 
000088 2356+DOSTA8LE EQU 136 
000020 2357+0PIE EOU 32 

8se CTF BASIC COMPILER EXECUTIVE PROGRAM 

LOC OBJECT CODE ADDRl ADDR2 STMT SOURCE STATEMENT 

00002e 2358+OPRTeLK EOU 44 
000034 2359+0ROTK EQU 52 
000038 2360+0SCAN EOU 56 
000004 2361+0SCBPTR EQU 212 
000010 2362+DSETCLK EQU 112 
00003e 2363+0SSTAT EQU 60 
000088 2364+0START EQU 184 
0000A4 2365+0STATEXT EQU 164 
000060 2366+0STR INIT EQU 96 
000098 2367+0SYCSEeT EQU 152 
000044 2368+0SWITeH EOU 68 
OOOOEe 2369+OSYSeTL EQU 236 
000048 2370+OTA8ENO EOU 12 
ooooee 2371+0TBL2311 EOU 204 
000000 2372+oT8L2314 EQU 208 
000074 2373+0TXTLI8S EQU 116 
OOOOAO 2374+DUPUFD EQU 160 
0000e4 237S+OUSABRY EOU 196 
000008 2376+DUSER 1 EOU 216 
OOOODe 2371+OUSER2 EOU 220 
OOOOEO 2318+DUSER3 EOU 224 
OOOOE" 2379+0USER4 EOU 228 
00008e 2380+0USyeTBL EOU 140 
000058 2381+DWRTK EOU 88 

Figure 10. Displacements of V-cons from SYSREF 

18 



~r --4---------+1 
r-~ ______ ~LE _______ _ 

I NAME 

8 
FILE 

1-----------------
TYPE 

16 
DATE LAST WRITTEN 

40 20 

I 24 

28 

Write Pointer 
(Number of Item) 

Filemode 

Disk Address 
Of 1st Chain Link 

122 Read Pointer 
I (Number Of Item) 

126 Number Of 
Items In File 

30 F;x,d 1
31 Flag 

Variable (1) Byte (2) 

32 Item Length (F) 

Max. Item Length (V) 

36 
Number of 

L-
800-Byte Data Blocks 

i'limes on Date and Year: 

(1) Date Last written is in packed 

decimal format MM DO HH MM 

e.g. 02 20 14 07 represents 

February 20, 2:07 p.m. 

(2) Year is in character form 

e.g. C'69' for 1969 

Figure 11. File status table entry 

N '"'-r ... · I VIC. 

Year 

(1) F = Fixed Length Items 

V = Variable Length Items 

(2) Flag BYTE: = a 

19 



BYTES 0 - 1: Disk Address of First FST Block 

Disk Address of 2nd FST Block (if any) 
--

• 
• 
• 1-----. 

Disk Address of Nth FST Block (if any) 

Sentinel, as follows: 

FFFD = Disk Addresses follow of Block (s) 

containing POMSK extension (s) 

FFFF = No POMSK extensions 

Disk Address of First POMSK extension (if any) 

• • • 
Disk Address of Nth POMSK extension (if any) 

• • • 
(Not Used - zero-filled) 

• • • 
BYTES 364-379: NUMTRKS, OTUSEDP, OTLEFTP, and LASTRK 

(16 bytes - 4 each) 

BYTES 380-381 : Not Used (zero) 
---- -------------- --

BYTES 382-383: NUMCYLP (2 bytes) 

BYTES 384-598: First 215 Bytes of POMSK 

I BYTE 599 = UNIT-TYPE BYTE 

BYTE 600-799: Entire 200-Byte POOMSK Table 

NOTES: NUMTRKS = Total number of 8oo-byte records on User's P-Disk 
OTUSE DP = Number of records currently in use on User's P-Disk 
OTLEFTP = Number of records left (NUMTRKS less OTUSEDP) 
LASTRK '" Relative byte-address of last record in use on P-Disk 

NUMCYLP = Number of cylinders in User's P-Disk 
UNIT-TYPE = 01 for 2311 Disk, 08 for 2314 Disk 

Figure 12. Master file directory (MFD) 

20 

I 
I 
I 



I L: 
I 

I 

Pointer to FSTB i 

Pointer to FSTB2 

Pointer to FSTB3 

The MFD is 
An 800 BYTE 
Disk Record. 

1 

Figure 13. MFD, FSTB, and FST relationship 

Permanent 

Disk 

Location 

--

I II 
FSTBI 

FSTi 

FST2 

L\ 
FST3 

FST4 

• 

II 
• 
• 

FST20 

Each FSTB is an 
800 byte disk record 
that can contain 
up to 20 FSTs. 

The individual items in a file (for example, card images, live print images) are stored 
in 800-byte disk records referred to as data blocks. A series of pointers that originate 
in the associated file status table keep track of the data blocks. This series of pointers 
is called a chain link. Within the file status table entry is a pointer to the first chain 
link, a 200-byte disk record that contains (1) the disk addresses of the first 60 data blocks 
for the file and (2) the disk addresses of up to 40 other chain links. Figure 14 shows the 
format of the first chain link. Each of the other chain links (the second through the 
forty-first) is an 800-byte disk record containing the disk addresses of up to 400 addi­
tional data blocks. The second chain link (if required) contains the disk addresses of 
data blocks 61 through 460; the third chain link (if required) contains the disk addresses 
of data blocks 461 through 860, etc. Figure 15 shows the format of the Nth chain link. 
Figure 16 shows the relationship of the file status table, chain links, data blocks, and 
items for a file. 

21 



... I .. f------------\~ 2 S\----------1 
-~--------------~------------------~ 

Disk Address of 
2nd Chain Link 

Disk Address of 
3rd Chain Link 

• 

• 

• 

Disk Address of 
40th Chain Link 

Disk Addre.ss of 
41st Chain Link 

g ~-~------------------------------------~ 
N 

Figure 14. First chain link (FCL) 

Disk Address of 
1st Data Block 

Oi<;k Arlrlrp.ss of 

2nd Data Block 

• 
• 

• 

Disk Address of 
59th Data Block 

Disk Address of 
60th Data Block 

File Management Tables in Main Storage 

i 

Chain 

Linkage 
Directory 

During a session, CMS maintains a user file directory for a user's active disk; it includes 
pertinent information on a user's files, his QMSK and QQMSK (see the next section), and 
the number of cylinders and other statistical data on his permanent disk. 

The user file directory (UFD) is kept on the user's disk in the form of (1) a master file 
directory (MFD), which is kept in a fixed place on disk (cylinder 0, track 0, record 4), 
(2) an 800-byte record for the first file status table block, (3) additional records (as 
needed) for any additional file status table blocks and (4) any QMSK extensions as needed, 
if there is Significant data beyond the first 215 bytes of QMSK. 

At CMS initialization time, the user file directory is brought into core by the LOGIN com­
mandprogram (unless the user's first command is LOGIN NO-UFD, FORMAT P, or FORMAT 
P ALL). The file status table blocks that contain the individual file status tables required 
for the session are linked together into a chain that originates in the data area PSTA T. 
See Figure 17. The user file directory is then maintained in core in the active disk table 
by the various file maintenance and disk programs, for the duration of this session. At 
the completion of each typed-in command, between commands executed under the EXEC 
command, upon eMS LOGOUT, and at other key points as needed, the user file directory 
is updated on the user's disk by the UPDISK routine. 

22 



T I Disk Address of I 
~ ____________ L~_+_O_t_h_D_at_a_B_lo_C_k __________ ~ 

I 
I 

1 J.. 
o 

~ T 

I I 

I I 

I • 

Disk Address of 
i\ + 1 st Data Block 

• 
• 
• 
• 

Disk Address of 

!\ + 398 th Data Block 

Disk Address of 
t\ + 399th Data Block 

6. = (n-21 • 400 + 61 
where n = Chain Link Number 

Figure 15. Nth chain link 

1, 

T 

I 

Before a file can be read or written, it must be opened and made active. Making a file 
active consists of constructing an entry in the active file table (AFT), which includes a 
copy of the file I s FST entry. An active file table entry contains disk addresses and core 
addresses for the chain link and data block that are currently in core. Figure 18 shows 
the format of a single active file table entry, and Figure 19 illustrates the form of the 
active file table showing several entries. 

A file's entry is removed from the active file table when the FINIS command is issued 
for it. See the section" Active File Table (AFT) Management" for further information. 

Data Block Structure 

Files stored on the disk may be made up of either fixed-length or variable-length 
itenls. (A nlixture of fixed-length and variable-length items within a particular file 
is not pernlitted.) Regardless of their fornlat, the items are stored in sequential 
order in as many data blocks as are required to accommodate them. Each data block, 
with the exception of the last, is completely filled and, where necessary, items that are 
started in one data block are continued in the next. Figures 20 and 21 show the data 
block formats for files containing fixed-length and variable-length items, respectively. 

23 



FST 

I Pointer U 

The FST Is Located In 
A FSTB, Which Is 
Pointed To By The 
MFD. (See Fig. 14-B) 

First Chain 
Link 
(200-BYTE 
Disk Record) 

Pointer To 2nd 
Chain Link 

Pointer To 
3rd Chain LINK 

• • • 
Pointer To 41st 
Chain Link 

Puint~1 To ist 

Data Block 
Pointer To 2nd 
Data Block 

• 
• 
• 

Pointer To 
60th Data Block 

t 
1 
Q) 

>-
aJ 
0 
00 

-

<II 

~ 
>-
aJ 
0 
N ,... 

J 

Second Chain 
Link 
(BOO-BYTE 
Disk Record) 

Pointer To 61st 
Data Block 

Pointer To 62nd 
Data Block 

• • 
• 

Pointer To 
460th Data Block 

First Data Block (800 BYTE Disk Record Containing Items In File, Appropriately Blocked) 

Item 1 litem 2 litem 3 I • • • litem N.' 

Second Data Block 

litem N+11 ltem N+2l • • • litem 2N I 

Figure 16. Reiationship of r SI, chain links, data blocks, and items of a file 

24 

I 



First FST 

Hyperblock' 
(816 bytes) 

= PSTAT or 

equ ivalent: 

*AOTFOA -.. _ ~ble Wid~=~ ___ I 
Table length = 800 

r--+LFST 1 (40 bytes) I 

I r-:-------l 
I I I 

I I I 

"NOTES: 1. For P·Oisk, 1st Hyperblock 
= "PST AT" is included in 

"FVS" CSECT. For all other 

disks, 1st Hyperblock is 

in free storage. 

2. "AOTFOA" in active disk table 

poi nts to 15t Hyperblock. 

I l : I 
I - -;S~ ~4~~S~ ··-l ~;g8 Hb~::~:~Ck r--: I free storage) 

! :~~t~~~~r~~~Ck -+ -~I FST 2 I (40 bytes) I 
~--------1 ! ~-------~ 

Backpointer = 0 

for 15t block 
! I I It 

I I • 

I 1 

I 

• 
• 

I FST 40 (40 bytes) 
3rd Hyperblock 

(808 bytes, in 

free storage): I I Poin", to 3cd 

L ____________ Jr-~HY~CbIO~-- --~-:ST,,~bY"'I--
I I Backpomter to 
I 1st Hyperblock 

I 
I 
I 
I 
I 
I 

• 
• 
• 

f-----------

o 

0= End of 

Chain 

L ___________ :-~ackPointert:---1 
2nd Hyperblock i 

J 

l-"i~lIr(' 17. L\~lmplc of ri1r('(' FST hyp('rblllcks in rnJin stllra~(' 

25 



COtJTENTS OF ONE ACT I VE-F I LE-TABLE BLOCK 

AFTSECT DSECT 

~: ~: 

AFTCLD DS 
AFTCLN DS 
AFTCLA DS 
AFTDBD DS 
AFTDBN DS 
AFTDBA DS 
AFTCLB DS 
AFTFLG DS 

H 
H 
F 
H 
H 
F 
XL80 
X 

( D SEC T n a G1 e i f ref ere nee d v i a II AFT II ~·1 a c r 0 ) 

~. Contents: 

o 
2 
4 
8 

10 
12 
16 
96 

DISK ADDRESS OF CURRENT CHAIN LINK 
t·/UMBER OF CURRENT CHAltJ LINK 
CORE ADDRESS OF CHAIN LINK BUFFER 
DISK ADDRESS OF CURRENT DATA BLOCK 
NUMBER OF CURRENT DATA BLOCK 
CORE ADDRESS OF CURRENT DATA BLOCK 
CHAIN LINK BUFFER FROf1 1ST CHAIN LINK 
FLAG BYTE 

FLAG dYTE (AFTFLG) DEFINITIONS: 

AFTUSED EQU 
*** EQU 
Af-TICf- EQU 
AFTFl:SA EQU 
AFTDBF EQU 
AFT~'JRT EQU 
AFTRD EQU 
AFTFULD EQU 

AFTPFST OS 
AFTIN OS 
AFTID DS 

AFTFST DS 

AFTN OS 
AFTT OS 
AFTO OS 
AFTHP OS 
AFTRP OS 
AFT~i OS 
AFTIC OS 
AFTFCL OS 
AFTFV OS 
AFTFB OS 
AFTIL OS 
AFTDBC OS 
AFTYR OS 

AFTADT DS 
AFTPTR OS 

AFTFSF EQU 

X' 80' 
X' 40' 
Xi 20 i 

X' 10' 
X'08' 
X'04' 
X' 02' 
X'Ol' 

3X 
H 
H 

00 

o 
o 
F 
H 
H 
H 
H 
H 
C 
X 
F 
H 
H 

F 
F 

X' 40' 

Figure 18. Active file table block 

26 

ACTIVE FILE TABLE BLOCK IN USE 
*NOT CURRENTLY USEO* 
FIRST CHAIN LINK IN CORE FLAG 
FULL BUFFER ASSIGNED 
DATA BLOCK IN CORE FLAG 
ACT I VE \'JR I TE 
ACTIVE READ 
FULL-DISK SPECIAL CASE 

97 POINTER TO FST-ENTRY in FST HYPERBLOCK 
100 CURRENT ITEM NUMBER 
102 DISPLACEMENT OF CURRENT ITEM IN DATA BLOCK 

104 ACTIVE FST BLOCK (AFTN thru AFTYR): 

104 FILE NAME 
112 FILE TYPE 
120 DATE/liME LAST WRITTEN 
124 WRITE POINTER (ITE~ NO.) 
126 READ POINTER (ITEM NO.) 
128 FILE [·1ODE 
130 I TEM COUNT 
132 FIRST CHAIN LINK 
134 FIXEO(F)/VARIABLE(V) FLAG 
135 FST FLAG BYTE (=0) 
13 6 ( M A X 1r·1 U t~ ) I T EM LEN G T H 
140 800-BYTE DATA BLOCK COUNT 
142 YEAR 

144 POINTER TO ACTIVE DISK TAGLE 
148 PO I t~TER TO rJEXT AFT StOCK IN CHA IN 

BIT ItJ AFTPTR INDICATES IN FREE STORAGE 



FVSAFT 

First AFT Block 
Limited number (3) of 

L.. __ AFT Blocks included 
~ in "FVS" CSECT 

Pointer to 2nd Block , (starting at "FVSAFT") 

~---------- -- ---~ 

Second AFT Block I 

Pointer to 3rd Block 
I 
I 

,------------- -i 
I Third AFT Block I 

I 
I 

a or Pntr to 4th Blk 

7 
( 

r--,: -----, 

Fourth AFT Block 
(if any - in 

'---t free storage) , 
I 

a or Pntr to 5th Blk 

/ 
: I • \ I 

~ 
I 
I 

Figure 19. Active file table (AFT) 

System Disk 

Nth AFT Block 
(if any - in 

free storage) 

a = End of AFT Chain 

The file management scheme for the system disk is similar to that for any read-only 
disk. However, the usual file status table blocks are replaced by a system status table 
(SSTAT) , which becomes part of the nucleus. 

The system status table contains a file status table for each system disk file (for ex­
ample, a disk resident command program) that has a filemode of P2 when generated onto 
the system disk. 

SSTAT is created by the SYSGEN routine, as required at IPL time. SSTAT is constructed 
within the free storage of the nucleus. It contains references to all files of mode P2. 
When the IPL CMS feature (IPL by name) is used, however, a copy of the nucleus with 
SSTAT already filled in is obtained, and SYSGEN is not called. 

DISK SPACE MANAGEMENT 

Disk space management allocates and keeps track of storage on the primary, tenlpo­
rary, or 3..11Y other read-write disk. Various CMS programs require disk space in which 
to write user files and control tables. When a program needs disk space, it calls the 

27 



I 1st Item 

First 
I 

I First 
Data 800 r-- ----- 800 Data 
Block 

Second 

Data 

Block 

Third 

Data 

Block 

I 
_.J 

2nd Item r---

-- __ -..J 

I 
I 3rd Item 

800 r 
I I 
! --- _ --.J 

4th Item 

I 

t 
8j 5th Item I T 
L __ I ~r-______ j ----1....-1 

Figure 20. Data block structure for file consisting of fixed-length items 

r F 1st Item 
1 

r J First 

Data 800 I B ---- -- 800 I 
Block ~-- -

I j 2nd Item 

I 

~ I B-3rd1t:-m - [SJ-
Second 

,- - - --
Data 800 800 
Block 

-~ 
4th Item 

--- ---- ---
I Ls 

Third 
5th Item 

Data 800 800 
I 

Block 

L .--- - ------

--.L 

Figure 21. Data block structure for file consisting of variable-length items 

28 

Block 

Second 

Data 

Block 

Third 

Data 

Block 

First 

Data 

Block 

Second 

Data 

Block 

Third 

Data 

Block 

NOTE: The location of an 

arbitrary I tern in a file 

consisting of fi xed-length 

items is determined by 

the following formula: 

(Item Number - 1) x Item Length 

80r:' 

where the Quotient=Data Block Number 

and the Remainder=Displaceme'lt 

in Data Block 

NOTE: Each variable 

length item is preceded 

by a two-byte field 

that contains the 

length of the item. 



dl.:-;k space ri.tanagement routines, \vhich allocate an are;:t of the requested size and return 
the staL'ting address of the area to the caller. 

A disk area of 800 bytes (a quarter-track on a 2311) is requested for a data-block or Nth 
chain link. A 200-byte area (a sixteenth-tl'ack on a 2311) is requested if a first chain link 
is needed. 

(On a 2311, the records are physically grouped four 829-byte records per track, of which 
C::VIS uses the first 800 bytes -- hence, the terrns "quarter-trackf! and!! sixteenth-track" 0 

On a 2314 disk, the records are actually grouped fifteen 829-byte records per two tracks, 
of 'which eMS uses the first 800 bytes. ) 

Read- 'Vrite Disks 

The status of quarter tracks on any read-write disk (w.hich are available and \vhich are in 
current use) is stored in a table called QIvISK. 

\Vhen the system is not in use, a u.ser's QMSK is disk--resident On the user file directory); 
during a session it is maintained on disk, but also resides in main storage. QMSK is of 
variable-length, depending on hmv many cylinders exist on the primary disk (2311 or 
2314), but is an integral number of bytes. Each bit is associated \vith a particular quarter 
track on the prinlary disk. The first bit in Q~ISK corresponds to the first quarter track, 
the second bit to the second quarter track, etc. \Vhen a bit in QNISK is set to one, it 
indicates that the corresponding quarter track is in use and not available for allocation. A 
zero bit indicates that the corresponding quarter track is available. Figure 22 illustrates 
the fornlat of QMSK for a 203-cylinder 2311. 

A..l1other table, called QQMSK indicates which sixteenth tracks are available for allocation 
and which are currently in use. QQMSK contains 100 entries, which are used to indicate 
the status of up to 100 sixteenth tracks. An entry in QQ11SK contains either a disk address, 
pointing to a sixteenth track that is available for allocation, or zero. Figure 23 shows the 
format of the QQLVISK. 

Disk space management is implemented as follows. \\7hen a progranl requires a quarter 
track, it calls the disk space management routine TRKLKP, which scans the QMSK table 
for the first zero bit. \\Then found, the bit is turned on to indjcate that the corresponding 
quarter track is being used, and the address of the quarter track is returned to the caller. 
\\ben a program frees a particular quarter track, it passes the address of the quarter 
track to the disk management routine TRKLKPX, \vhich sets the corresponding bit in 
Ql\ISK to zero. The quarter track is thereby flagged as being available for allocation to 
another program. 

\\11en a program (namely \VRBUF) requires a sixteenth of a track it calls the disk space 
management routine QQTRK, which scans the QQIVISK table, starting from the beginning, for 
the first entry containing a disk address. If such an entry exists, t.he disk address is given 
to the caller and the entry is set to zero. If no such entry mjsts, QQTRK obtains a quarter 
track from TRKLKP, 110rmally ... ,el?,"lneI-;.f·s ~i_ ~l:=0 ~cu..l. (;q~lJ.l part.::l, pJ::lCG~ the adcrcsses of 
the last three-sixteenths of the track into the fjrst three zero entries in QQMSK, and 
returns the address of the first sixteenth of the track to the caller. 

29 



114--.. ----10 Bits -------t·1 

1 
., ... 
co 
N 

co 

I 
I 
i 

L 

CYL.O 
Track 0 
Rec.1 

1 
t'rw' 

I 

NOTE: 
Bit Value 

o 

I 

I 
I 
i 

I 

CYL.O CYL. 0 

Track 0 Track 0 

Rec. 2 Rec. 3 

Meaning 
Quarter Track 
not in use. 

Quarter Track 

in use. 

CYL.O 
Track 0 
Rec.4 

• 
• 
• 

I 
I 
I 

I 
I 
I 

CYL. 0 CYL. 0 
Track 1 Track 1 • • • 
Rec.1 Rec. 2 

CYL. 202 CYL. 202 

• ••• Track 9 Track 9 
Rec. 2 

I 
Rec.3 

QMSK for a 2311 Disk (up to 203 cylinders): maximum of 8120 bits 
(1015 bytes) 

For a 2314 Disk, a bit is assigned to each 800-byte record, 
15 bits per two tracks, up to 150 bits per cylinder. 

For permanent disk, first 215 bytes of PQMSK are kept in MFD; 
the remaining bytes (if any) on disk (in as many PQMSK 

extensions as necessary l, poi nted to by M F D. 

Figure 22. Disk quarter-track assignment (QMSK) 

30 

I 

1 
T 

I 
i 1 
! CYL. 202 I 

Track 9 

I Rec.4 
i 



T Disk address of 

available 1/16 track or zero 

ETC. 

I~ 1 • 1 V> 

1: • 1 Ii 1 • r ro 
I 
0 
~ 

I I I 
I I I ~ 

Figure 23. Disk sixteenth track assignment (QQMSK) 

\Vhen a program (for example, ERASE) frees a sixteenth of a track, it passes its address 
to the disk space management routine QQTRKX. This routine scans the QQMSK table for 
the addresses of the three other sixteenths that resulted from the division of the quarter 
track. If all three addresses are present, indicating that a complete quarter track has 
been freed, the three addresses are deleted from QQMSK, and the bit in QMSK correspond­
ing to the freed quarter track is set (via TRKLKPX) to reflect its availability for allocation. 
If all three addresses are not present, the address of the sixteenth to be freed is placed in 
the first zero entry in QQMSK. 

The disk addresses used throughout eMS are in the form of halfword block numbers. 
Figures 24 and 25 show their format for first chain links (sixteenth-tracks) and other 
(800-byte) records, respectively. 

Some special logic is used for first chain links if a block number obtained from TRKLKP 
exceeds 8191. The notes on Figure 24 show the algorithms used. 

The location of the QQMSK table, and the location and size of the QMSK table are kept for 
each disk in the active disk table. Pertinent information, with the mnemonics used in the 
ADT macro, are given below. The complete information is given in Figure 34 under 
File Management Macros. 

31 



Block Number of 

BOO-byte block 
containing 200-byte 

First Chain Link 

1-8191 * 

8192-16383 ** 

16384-24575 * * 

24576-32767 ** 

Format of halfword 

Disk Address 

Bits 0-1 contain 
00,01, 10, or 11 

Bits 2-15 contain 

block number 

Block Number "as is" 

Block Number + 24576 

Block Number "as is" 

For Block Numbers (8192, first chain links are grouped 
four per 800-byte block. The first two bits of the disk-address 

(00,01, 10, or 11) signify which 200 bytes of the 800-block are used. 

For Block Numbers of 8192 or greater, first chain links occupy the 
first 200 bytes of an 800-byte block. (Remaining 600 bytes are unused) 

Note that the various disk routines (RDTK-WRTK, OOTRK, & OOTRKX) can 
readily distinguish between the two types of first chain link from 
the third bit of the disk-address with no ambiguity 

(0 for block-numbers 1-8191,1 for block numbers from 8192 up). 

Figure 24. Disk address format for fIrst chain links 

Disk-Addresses for Data-Blocks and 

N'th Chain Links are in the form 

of a halfword 'Block Number' from 1 up, 

as follows: 

Oxxx xxxx xxxx xxxx I 
(The largest possible block-number for a full 

203-cylinder 2314 Disk is less than 32767) 

Figure 25. Disk address format for Nth chain links and for data blocks 

1. Disk statistics available on any logged-in disk: 

Binary 

Representation * * * 

xxOx xxxx xxxx xxxx 

001 x xxxx xxxx xxxx 

101 x xxxx xxxx xxxx 

011 x xxxx xxxx xxxx 

ADTIST Displacement of first full-word in QMSK containing at least one bit = 0 
(maintained in core by TRKLKP and TRKLKPX) 

ADTNUM 

ADTUSED 

ADTLEFT 

ADTLAST 

ADTCYL 

32 

Total number of BOO-byte records on disk 
(formerly called NUMTRKS) 

Number of records in use 
(formerly called QTUSEDP) 

Number of records left = ADTNUM - ADTUSED 
(formerly called QTLEFTP) 

Displacement of last nonzero byte in QMSK 
(formerly LASTRK) 

Number of Cylinders on Disk 
(formerly NUMCYLP or NUMCYLT) 



2. Kept in core only for a logged-in-read-write disk: 

ADTMSK Core-address of Ql\ISK table. 

ADTQQM Core-address of QQMSK table. 

ADTPQM1 Number of bytes (in any) in QMSK exceeding 215 
(formerly PQMSIZ) 

ADTPQM2 Number of SOO-byte records (Ql\ISK extensions) needed for maintaining 
on disk a QMSK exceeding 215 bytes in length. 
(formerly PQ1<INUM) 

ADTPQM3 Number of double words in GMSK 
(formerly RONUM) 

For any read-write disk, the QMSK and QQMSK tables are brought into core when the disk 
is logged in by the READMFD routine. They are maintained as described above by 
TRKLKP, TRKLKPX, QQTRK, and QQTRKX. The updated QMSK and QQMSK tables are 
written on disk when appropriate by the UPDISK routine, which maintains the User File 
Directory for any given read-write disk. 

Size of QMSK Bit-Mask 

As mentioned above, the size of the QMSK is a function of the size of the disk. A one­
cylinder 2311, containing only 40 records, would require only five bytes, or one double 
word, for the QMSK. A 2311 of up to ·13 cylinders, or a 2314 of up to 11 cylinders, would 
require no more than 215 bytes for its QMSK, \vhich would be kept entirely in the Master 
File Directory (MFD) on disk. A larger disk would require additional QMSK extensions 
for maintaining the QMSK on disk, as shown in the following table: 

Number of QMSK 
Extensions Required (If Any) 

None 

1 

2 

3 

4 

5 

Number of CylL'1ders on Disk 

2311 2314 

1 - 43 1 - 11 

44 - 203 12 - 54 

55 - 96 

97 - 139 

140 - 182 

1~2 - 203 



System and Other Read-Only Disks 

When any disk (system disk or otherwise) is read-only, its QMSK and QQMSK tables are 
not brought into core and, like the rest of the UFD for that disk, remain as is on disk 
until such time as the disk is logged in as a read-write disk. 

ACTIVE FILE TABLE (AFT) MANAGEMENT 

When files are being read or written by CMS, the necessary data is kept in the Active 
File Table (AFT). 

There is no specific limit as to how many files can be active at anyone time (formerly 
there was a limit of 8). Since many I/o programs handle at least two or three active 
files, it is convenient to have a few AFT blocks available at all times; others are 
created from free storage upon demand and are released when no longer needed. 

A limited number of AFT blocks, therefore are provided in the CMS nucleus, referenced 
at FVSAFT within the FVS storage c-Sect. This number is set to 3 as a practical 
value, but could easily be changed if desired, by a revision of the FVS table. It must 
be at least 1, however. 

Fo·ur routines are used for active file table management - ACTLKP, ACTNXT, 
ACTFREE, & ACTFRET. 

The AFT macro is used by these and other programs for referencing an Active File 
Table block. The form of this macro is shown in Figure 18. 

ACTIVE DISK TABLE (ADT) MANAGEMENT 

For each disk handled by CMS, the pertinent file directory information is stored in an 
active disk table entry for that disk. The initial active disk table (IADT) in the CMS 
nucleus contains the active disk table entries for the six disks handled by CMS. The 
ADT macro is used to reference an entry in this table. 

The disks included in the table, not all of which are necessarily attached to a CMS user 
at any given time, are shown as follows (showing the order of search used if "any" 
disk is requested): 

P-Disk 
T-Disk 
A-Disk 
B-Disk 
S-Disk 
C-Disk 

Primary Disk - usually logged in - normally read - write 
(if any - normally read-write if logged in) 
(if any - read-write or read-only) 
(if any - read-write or read-only) 
CMS System Disk (read-only) 
(if any - read-write or read-only) 

The file directory for the S-Disk is brought into core at CMS initialization time by 
SYSGEN and READFST, ,,,ith the FST entries being stored in the SSTAT system status 
table. 

34 



The file directory for the P-Disk and/ or any othe;' disk 18 brought into core oy the 
CMS LOGIN command, and released \vhen no longer needed by the RELEASE 
command. 

The S-Disk Carl!lot be logged in (via LOO IX) or released by RELEASE 0 

The A-Disk, B-Disk, or C-Disk can each be logged in as a separate, unique disk 
(either read-only or read-write), or as read-only extension of another disk higher 
in the order of search. For example, the A-Disk could be a read-only extension 
of the P-Disk or T-Disk; the C-Disk could be a read-only extension of any of the 
other types. 

The T-Disk is normally a unique disk, since many eMS commands have the capability 
of handU.!'l~ a T-Disk if present. 

Note that the C-Disk has a lower priority than the S-Disk. This serves two very 
important purposes, as follows: 

1. Any disk (such as an old CMS S-Disk) which has modules on it that have been 
superseded by newer modules on the ClVIS system -disk should be logged in (if needed 
at all) as the C-DISK. This ensures (through the order of search) that the new 
module from the S-Disk will be used in preference to the obsolete module on the old 
disk. (This can be particularly inlportant for an old S-Disk having an obsolete copy 
of certain file management modules such as LOGIN, LISTF, OFFLINE, etc.) 

2. A C-Disk can purposely be made as a read-only extension of an S-Disk, for any 
of several good reasons. This procedure is discussed in the CP-67/CMS L'1stal­
lation Guide. 

Two routines in particular are used for active disk table management - ADTLKP and 
ADTNXT. 

I/O OPERATIONS 

CMS input/output operations nlay be either synchronous or asynchronous. These I/O 
operations for direct access storage devices, tapes, card readers, card punches, 
printers, and the console (when under a programmed controlled read) are synchronous. 
That is, CMS enters the wait state after starting the I/O operatio"n and resumes proc­
essing when the initiated I/O operation causes an interrupt. 

Those input/output operations for the console when performing either an output or an in­
put operation initiated by an attention interrupt, are asynchronous. For asynchronous 
I/O, CMS does not enter the ,vait state, but rather, C':'IS continues processing while the 
user enters data from the terminal or 'vhi 1e data is typed to the termina1. 

User input/output operations can be either synchronous or asynchronous depending on 
user requirements. Refer to the section I 'Gsel' Input/Uutput Operations!' for ll10re 

detail. 

35 



Cl\IS Terminal I/O 

Terminal handling deals with the way in which CMS controls ternlinal I/O activity. 
This activity is nlanaged by three first-in, first-out lists. The first of these, called 
the read-write stack, contain an entry for each read or write request that has not been 
satisfied. The first and last entries in the read-write stack are pointed to by fields 
(FSTRDWRT, LSTRDWRT) in the console constant area (CONGEN). All other entries 
are chained together. (See Figure 26.) The number of entries in the read/write 
stack is also stored in a field (NUMRDWRT) in CONGEN. Each entry in the read­
write stack is called a CCW package. The CCW package describes the corresponding 
read or write. When a read or write request is satisfied, the corresponding CCW 
package is removed from the read-write stack. 

The second list, referred to as the pending read stack, contains an entry for each read 
request that is pending (that is. waiting to be satisfied). It is similar in structure to 
the read-write stack except that it only contains entries for pending reads. (See 
Figure 27. ) 

\Vhen a read request is satisfied, the corresponding entry is removed from the pending 
read stack and placed into a third stack called the finished read stack. 

The finished read stack is similar in structure to the other two stacks except that it 
only contains entries for finished read operations. (See Figure 28. ) 

Congen 

CCW Package # 1 

FSTRDWRT 
(First read/write) 

LSTRDWRT 

\ !\ NUMRDWRT 

~ 
Figure 26. Read/write stack 

36 

CCW Package # 2 
(Second read/write) 

1\ 
. 

CCW Package # 
(Last read/write 

0 

3 
) 



Congen 

FSTPENRD 

LSTPENRD 

NUMPENRD 

Figure 27. Pending read stack 

Congen 

FSTFINRD 

LSTFINRD r-\ 
I NUMFINRD 

I I 

Figure 28. Fmished read stack 

CCW Package:::: 1 
(First Pending Read) 

CCW Package:::: 1 

(First Finished Read) 

,\ 
I \ CCW Package ::::2 

(Second Finished Read) 

~----I\ 

\ CCW Package Z"3 

(Last Finis"ed Read) 

o 

37 



Detailed information on how terminal operations L1re handled can be found in the discus­
sions of the WAITRD, TYPLIN, and Ty'"PE function progranls and in the discussion of 
input/output interruptions. 

CMS Nonterminal I/O 

As previously stated, non-ternlinal I/O operations are synchronous. When a CMS pro­
gram starts an I/O operation on a device other than the terminal, it enters the wait 
state to wait for an interruption from that device. The progranl does this by calling a 
common wait progranl (WAIT). When WAIT receives control, it loads a PSW that has 
the wait bit set. This PSW also contains an address pointing to a location within WAIT 
to which control is to be returned when the interruption being waited for occurs. 

When an I/O interrupt occurs, control goes to IOINT as the new I/O PSW points to 
IOn..:rT. IOINT passes control to the program that handles interrupts for the particular 
device that caused the interrupt if ::my such progranl exists. The program analyzes 
the interrupt to determine (1) if another interrupt is necessary to complete this par­
ticular interrupt sequence (e. g., channel end, followed by device end), and (2) if an 
error has occurred during the I/O operation. The progranl sets GPR15 to 0 for a 
completed interrupt sequence, and sets GPR15 to nonzero for an incompleted sequence. 
(The actions taken on an error are discussed in IOERR, the eMS program providing 
centralized error recovery.) The interrupt processing progranl then returns to IOINT 
which either (1) returns control to WAIT with all interrupts disabled and in the runnable 
state (i. e., the wait bit turned off) when the interrupt was caused by the waited-for­
device and GPR15 is zero; (2) places the machine in the wait state by loading the old 
I/O PSW - which had previously been used to place the machine in the wait state - when 
the interrupt was caused by the waited-for-device and GPR15 is nonzero; or (3) places 
the nlachine in the wait state by loading the I/O PS\V when the interrupt was not caused 
by the waited-for-device. 

User Input/Output Operations 

eMS allows the user to perfornl his own input/output operations, i. e., issue his own 
start I/O (SIO) instructions anywhere in his C:.\IS machine. This is accomplished by 
always running eMS in the supervisor state so privileged instructions can be issued 
by the user. 

eMS also provides the user utilizing this facility with an interface enabling him to use 
the eMS I/O interrupt handling routines WAIT and IOINT and the centralized eMS I/C 
error recovery IOERR. The interrupt handling interface, H~'DINT, is described below. 
The I/O error interface is described under "Input/Output Service Routines". 

System i:q.put/output activity to disk nlay be initiated without using an SIO instruction. 
This I/O can be perfornled by using a Diagnose instruction to signal CP-67 to perform 
certain disk r/o operations. See the section "Disk Handling Function Programs" for 
further details 

38 



HNDI~T 

FUNCTION: Tne HNDIN'"T function sets the ClVIS I/O interrupt handling routines to trans­
fer control to a given location for an I/O device other than those n<:>rmally handled by 
CMS, or to clear such transfer requests. 

ATTRIBUTES; Disk resident, transient 

CALLING SEQUENCE: 

DS OF 
PLIST DC CL8 1fINDINT 1 called routine 

DC CL4'SET' or CL4'CLR' function 
IODEV NAME, NUMBER, ADDRESS, 

ASAP/WAIT-FLAG, KEEP/CLEAR FLAG 

DC X'FFFFFFFF' end of list 

ERROR CODES: 

E (00001) Incorrect parameter list 

MACRO IODEV: The lODE V macro sets up the following information in a 12-byte field: 

NAME Symbolic device name (1st 4 letters) 
NUMBER = Hexadecimal device address 
ADDRESS Symbolic address of interrupt-handler to be invoked. If 

address = 0, interrupts will be ignored when received. 
ASAP iWAIT-F LAG: 

ASAP = Invoke interrupt-handler immediately. 
WAIT = Invoke interrupt-handler only when WAIT is called. 

KEEP/CLEAR-FLAG: 
KEEP Retain interrupt-handling between CMS commands. 
CLEAR = Clear interrupt-handling after each CMS command. 

CLEAR = DEFAULT OPTION 
Example: IODEV NEWD, 387, MYCODE, ASAP, KEEP 

OPE RATION: "When an interrupt is received and processed by IOINT, it passes control 
to the interrupt-handler as follows: 

Register 0 1 
2, 3 
4 
14 
15 

1/0 OLD P~\:V 
CSW 
Device address 
Return address to IOINT 
Address of interrupt-handler 

39 



When processing is complete, the interrupt-handler must return to IOINT via register 14, 
with Register 15 as follows: 

R15 = 0 means SUCCE SSFUL HANDLING 
R15 = Nonzero means ANOTHER INTERRUPT EXPECTED 

The general procedures for CMS I/O handling using HNDINT are as follows: 

1. The program must initialize handling to be done via HNDINT SET. 

2. When I/O to the appropriate device is to be done, the system-mask must be set OFF 
(by SSM instruction) and appropriate SIO given. 

3. When SIO is performed satisfactorily, the system-mask can be set to allow all 
interrupts. 

4a. If ASAP was specified, the interrupt-handler is invoked as soon as the interrupt is 
fielded by CMS 101 NT • The interrupt-handler returns to IOINT, which returns to 
user's program. 

4b. If ASAP was not specified, IOINT retains needed information until eMS WAIT 
function is called. 

5. When program cannot proceed until the interrupt has been received, CMS WAIT 
function is called. If interrupt has not yet been received, CMS goes in WAIT state 
until IOINT fields and processes the interrupt in the normal way. 

If the interrupt has been received and processed (for example, on ASAP), WAIT 
returns to caller with necessary internal flags cleared. 

If the interrupt has been received but not yet processed (as under WAIT option 
instead of ASAP), CMS WAIT now calls IOINT to invoke desired interrupt-handler, 
then clears needed flags and returns to caller. 

6. When finished, using program should normally clear the interrupt-handling scheme 
thru HNDINT C LR call (unless KEEP option is used and the interrupt-handler re­
mains intact in core). 

SVC SIMULATION 

The SVC interruption handler (INTSVC), in addition to processing the special SVC 
X'CA' supervisor call instruction (refer to "Internal Linkage Scheme "), also will 
transfer control to routines that will simulate various Operating System/360 super­
visor functions. The simulation is required to enable the language processing programs, 
which nlake extensive use of Operating System/360 macro instructions, to function in the 
CMS environnlent. (Many Operating System/360 macro Instructions expand into SVC's). 

40 



These functions are simulated to yiel'-l the S8 .. mc results ~s sepi1 tTG}'" thr> processing 
program, as specified by OS progranl logic maJ.lUals, I-fol \'E;\"e 1 ', the,? Ui'{3 sGPported only 
to the extent stated in C::\IS documentation and to 1.;1'= D:le:lt 1~2r~eS S3.l'Y to suc(~essfully 
execute OS language processors. The usel' ~hould he 8.',\<1re that restrictil)1ls to as 
functions as viewed from OS exist in C:· IS. 

The OS Functions that CMS will simulate are: 

OS Simulation Under eMS 

The OS sinlulation routines provide the C .\IS supervisory ;::nd fi Le nlanagenlcnt functions 
necessary to support Assenlbler F, FORTR:\N G compHer I'nRT"f\AN G text decks, 
FORTRAN G library routines, PL/l compiler, PL/l text decks., and PL/llibrary 
routines. 

Since the OS sinlulation routines are C ~\lS rou.ti:r:e1:l (i e .. ~ht'.j' are nc~ OS routines), 
there is no guarantee that jobs, other thar. Lhose iisted ~.Lc'.-e. rh.;::J rc.n under OS ',vin 
also run under CMS, 

The following Operating Systenl/360 Iill1cEon.s are simu1atci b~T C:~\IS: 

SVC OS 
Number Function 

00 *XDAP 
01 WAIT 
02 POST 
03 RETURN 
04 GETMAIN 
05 FREEMAIN 
06 LINK/GETPOOL 
07 XCTL 

08 LOAD 
09 DELETE 

GETMAIN 
10 FREE ::VIAIN 

FREEPOOL 

11 *TEvIE 
13 ABEND 
14 *SPIE 

18 *BLDL/FI~D 
19 OPEN 
20 CLOSE 
21 *STOW 
22 OPENJ 

Sinlulation 
Routine 

SOSVCTR 
SOSVCNU 
SOSVCNU 
SOLIKKS 
SOl\IAlr~ 

SOMAli\' 
SOLINKS 
SOL~KS 

SOLTh'KS 
SOLIKKS 

SOl\IAn~ 

SOSVCTP. 
SOABEXD 
SOSVCTR 

SOSVC 2:':? 
SOOPCi.. 
SOOPCL 
SOSVC7R 
SOOPCL 

LJsed to access SYSl'Tl 
wait fol' 8.n I/O c8nlpletion 
post ihe I/O completion 
return from a LINK-·to routine 
conditionally acquire user free storage 
:release UBl=>l-<lCqUi red free stol'age 
link control to another lO2.d phase 
release; then link control to another 
load pURse 

read into core another load phase 
delete a loaded phase 

manipuhLe user fl'ee storage 

gel the 11 I'll I? Gf QiiY 

abort p:'oC:2ssing, and enter DEBUG 
aUo-w a ~)roce3c;:illg pr0gr3Yll to decipher 
p1'ogran.1 i:r:ter:rllpts 
YYl~m:pl:~'lt2 si:1'~:ll::!.tec~ partitioned cht2. f:lcs 
J.cti'\,'a~;;; ~l ~l~uJ.. file 
deactiv::.te ::. daTa file 
111anipubte pal'ili..~Oned directories 
acti',ratc ;1 '::~:1.i:~t file 



I 

I 

SVC OS Silnulation 
Number Function Routine Usage 

23 TCLOSE SOOPCL temporary deactivate a data file 
24 *DEVTYPE SOSVCTR obtain device-type physical character-

istics 
35 *WTO/WTOR SOSVCTR communicate with the console 
40 *EXTRACT SOSVCTR effective NOP 
41 *IDENTIFY SOSVCTR effective NOP 
44 *CHAP SOSVCTR effective NOP 
46 *TTIM:ER SOSVCTR effective NOP 
47 *STIMER SOSVCTR effective NOP 
48 *DEQ SOSVCTR effective NOP 
51 ABDUMP SOABEND (same as ABEND) 
56 *ENQ SOSVCTR effective NOP 
57 *FREEDBUF SOSVCTR release a free storage buffer 
60 *STAE SOSVCTR allow processing program to decipher 

abort condition 
62 *DETACH SOSVCTR effective NOP 
63 *CHKPT SOSVCTR effective NOP 
64 *RDJFCB SOSVCT2 obtain information from FILEDEF 

command 
68 *SYNAD SOSVCT2 handle data set error conditions 
69 *BACKSPACE SOSVCT2 backup a record on a tape or disk 

GET/PUT SOQSAM access system-blocked data 
READ/WRITE SOBSAM access systenl-record data 
NOTE/POINT SOCNTRL access or change relative track address 
CHECK SOCNTRL test ECB for completion and errors 

* These SVCs are sinlulated in SOSVCTR. This. routine is loaded into the transient 
area whenever one of these SVCs is issued. 

Operating System/360 SVC Simulation Routines 

CMS provides a number of routines to simulate certain Operating System/360 functions 
used by programs such as the Assembler and the FORTRAN and PL/I compilers. Some 
of the SVC sinlulation routines are located in the disk resident modules SOSVCTR and 
SOSVCT2. Whenever one of the SVC routines in SOSVCTR or SOSVCT2 is invoked, 
that routine is loaded into the transient area. The following paragraphs describe how 
these sinlulation routines work. 

XDAP-SVC 0: Used by OS conlpilers to read the source code spill file, SYSUT1 

WAIT-SVC 1: This routine (WAITX) receives control when a WAIT macro instruction 
is issued. When it gets control, \V AlTX tests the conlpletion bit in the ECB. If the 
bit is on, indicating that the event being waited for is complete, it returns to the 
calling program. If the bit is off, a wait state PSW is loaded and waits for the bit to 
be turned on, at which tinle it returns to the calling program. 

42 



POST-SVC 2: POST will set bits in the event control block (ECB) to signify termination 
of an I/o operation upon receiving an I/O interrupt from the specific device. 

RETURN-SVC 3: To return from a load module that was given control by a LINK or 
XCTL call, SVC 3 may be used. SVC 3 will cause control to be passed to the RETURN 
entry point in the core resident routine, SOLINKS. If the load module was LOADMOD1ed 
by CMS, the chaining stack will be updated, the PSW at the time of the LINK or XCTL 
will be loaded, and the address of the returning phase will be deleted from the stack. If 
the load module was dynamically loaded by the relocation of the object code, transfer 
is made to DEL4. All entries, In the load tables (LDRTBL) in high-numbered core, 
that are a result of the returning phase having been loaded, will be blanked out. The 
core storage that was obtained to load the phase w ill be returned to the system pool of 
free storage by a call to FRET. 

GETMAIN-SVC 4: Control is passed to the GETlvIAIN entry point in the SOMAIN core 
resident routine. The mode is determined: VU, VC, EC. A call is made to GETBLK 
to obtain the block of storage. General storage maintenance is described elsewhere in 
this manual. Control blocks of two fullwords precede each section of available core: 
(1) the address of the next block, (2) the size of this block. The head of the pointer 
string is located at the words FSTFRE - initial free block, LENFRE - size of initial 
block, FRELST - address of first link in chain of free block pointers. 

FREEMAIN - SVC 5: Releases a block of free storage. If the block is part of segmented 
core, a control block of two full words is placed at the beginning of the released area. 
Adjustment is made to include this block in the chain of available areas. 

LINK-SVC 6: Program transfer is controlled by the nucleus routine SOLINKS. The 
LINK macro causes program control to be passed to a designated phase. If any X' 80' 
bit within the word SWITCH is on, loading will consist of LOADMODing a CMS MODULE 
into core. If all bits are off, dynamic loading will be initiated. The TEXT deck of the 
desired phase will be located, and the first ESD card will be scanned (in DYNALOAD) to 
obtain the length of the CSECT. A GETMAIN will be issued to obtain enough core storage 
so that the loader (LDR) may relocate the phase into core. If other text decks or library 
routines are needed to complement the desired phase, a GETMAIN is issued for each 
segment length. A chain of pointers is built to record the old SVC PSW, the entry point 

I of the new phase, and the loader table entries caused by the new phase. 

I GETPOOL: GETPOOL routine is entered via a link SVC 6 with an entry point of IECQBFG1 
whenever the user issues a GETPOOL macro. The routine gets core and builds the pool 
of buffers. GETMAIN is issued to obtain the storage necessary for the number and size 
of buffers requested, and a chain of buffer pointers is built whose address is placed in the 
DC B pas sed by the calle r . 

XCTL-SVC 7: XCTL determines whether LOADMOD or dynamic loading is required for 
loading the module to which XCTL will transfer control after loading is complete. 

LOAD-SVC 8: Control is passed to SVC08 located in SOLINKS when a LOAD macro is 
issued. Upon entry, SVC08 determines if the CMS overlay structure is in effect. If it 
is, LOAD MOD is called to read a CMS MODULE. If dynamic loading is desired, a 
CMS TEXT file is loaded. Control then passes back to the user. 



DELETE-SVC 9: DELETE removes all references caused by the specified module from 
the loader tables; and frees acquires main storage if the dynamic loader was in effect. 

GETMAIN/FREEMAIN-SVC 10: Control is passed to the SVC 10 entry point in SOMAIN. 
Storage management is analogous to SVC 4/5 respectively. 

TIME-SVC 11: This routine (TIME) located in SOSVCTR receives control when a TIME 
macro instruction is issued. A call is made to the pseudo timer device, X'OFF'. The 
real time of day and date are returned to the calling program in a specified form: 
decimal (DEC) binary (BIN), or timer units (TU). 

ABEND-SVC 13: This routine (SOABEND) receives control when either an ABEND macro 
or an unsupported OS/360 SVC is issued. If an SVC 13 was issued, a check is made to 
see if there are any outstanding ST AE requests. If not, or if an unsupported SVC was 
issued, TYPLIN is called to type a descriptive error message at the terminal. Next, 
CONWAIT is called to wait until all terminal activity has ceased, and then, control is 
passed to DEBUG. If a ST AE macro was issued, a STAE work area is built and control 
is passed to the ST AE exit routine. Mter the exit routine is through, a test is made to 
see if a retry routine was speCified. If so, control is passed to the retry routine. Other­
wise control passes back to the user. 

SPIE-SVC 14: This routine (SPIE) receives control when a SPIE macro instruction is 
issued. When it gets control, SPIE inserts the new program interruption control area 
(PICA) address into tllt] program interruption element (PIE). The program interruption 
element resides in the Iytogra:m interruption h.andler (PRGINT). It then returns the 
address of the old PICA to the calling program, sets the program mask in the calling 
program's PSW, and returns to the calling program. 

BLDL/FIND-SVC 18: See BLDL and FIND under description of BPAM routines. 

STOW-SVC 21: See STOW under description of BPAM routines. 

OPEN/OPENJ-SVC's 19/22: OPEN will simulate the data management function of open­
ing one or more files. It is a nucleus routine and receives control from SVCint when an 
executing program issues an OPEN macro instruction. See SOOPC L for a description 
of its operation. 

CLOSE/TCLOSE-SVC's 20 and 23: CLOSE and TCLOSE are simulated in the nucleus 
routine SOOPCL. It receives control whenever a CLOSE or TCLOSE macro instruction 
is issued. See SOOPCL for a description of its operation .. 

DEVTYPE-SVC 24: This routine (DEVTYPE), located in SOSVCTR, receives control 
when a DEVTYPE macro is issued. Upon entry, DEVTYPE moves Device Character­
istic Information for the requested data set into a user specified area, and then returns 
control to the user. 

43a 



I Section I Page I 

WTO, WTOR--SVC 35: This routine (\VTO) , located in SOSVCTR, receives control 
when either a WTO or a WTOR macro instruction is issued. For a WTO, it constructs 
a calling sequence to the TYPLI~ function program to type the message at the terminal. 
(The address of the message and its length are provided in the parameter Est that 
results from the expansion of the WTO macro instruction.) It then calls the CONW AIT 
function program to wait until all terminal I/O activity has ceased. Next, it calls the 
TYPLIN function program to type the message at the terminal and returns to the 
calling program. 

For a WTOR macro instruction, this routine proceeds as described for WTO; however, 
after it has typed the message at the terrllinal it calls the W AITRD function prograrn to 
read the user's reply from the terminal. When the user replies with a message, it moves 
the message to the buffer spec ified in the WTOR parameter list, sets the completion bit 
in the ECB, and returns to the calling program. 

EXTRACT-SVC 40: This routine (EXTRACT), located in SOSVCTR receives control 
when an EXTRACT macro is issued. Upon entry, EXTRACT clears the first word of 
the user provided answer area and returns control to the user. 

IDENTIFY -SVC 41: IDENTIFY is a NOP located in SOSVCTR. 

CHAP-SVC 44: CHAP is a NOP located in SOSVCTR. 

TTIMER-SVC 46: TTIMER signals zero time remaining and signals no errors (in 
effect a NOP). TTIMER is located in SOSVCTR. 

STIMER-SVC 47: STIMER is a NOP located in SOSVCTR. 

DEQ-SVC 48: DEQ is a NOP located in SOSVCTR. 

ABEND-SVC 51: See ABEND-SVC 13. 

ENQ SVC 56: ENQ is a NOP located in SOSVCTR. 

43b 



FREEDBUF-SVC 57: This routine (FREEDBUF) located in SOSVCTR receives control 
when a FREEDBUF macro is issued. Upon entry, FREEDBUF sets up the correct 
DSECT registers and calls the FREEDBUF routine in SOBDAM. This routine returns 
the dynamically obtained buffer (BDAM) specified in the DECB to the DCB buffer control 
block chain. Control is then returned to the SOSVCTR routine which returns control 
to the user. 

STAE-SVC 60: This routine (ST AE) located in SOSVCTR receives control when a STAE 
macro is issued. Upon entry, STAE creates, overlays or cancels a STAE control 
block (SCB) as requested. Control is then returned to the user with one of the following 
return codes in register 15. 

Code Meaning 

00 1\.n SeB is successfull:'T created, c,Yerl2.id or c2-l1celled. 

08 The user is attempting to cancel or overlay a non-existent SC B. 

Format of SCB 

o 
o or pointer to next SC B 

4 
exit address 

8 
parameter list address 

12 

DETACH-SVC 62: DETACH is a NOP located in SOSVCTR. 

CHKPT-SVC 63: CHKPT is a NOP located in SOSVCTR. 

RDJFCB-SVC 64: This routine (RDJFCB) receives control when a RDJFCB macro 
instruction is issued. When it gets control, RDJFCB obtains the address of the JFCB 
from the DCBEXLST field in the DCB and sets the JFCB to zero. It then determines 
if a FORTRAN object program - not the FORTRAN compiler - is being executed. (If 
a FORTRAN object program is being executed, a switch given by the system reference 
table (SYSREF) in the nucleus constant area (NUCON) will be set on. This switch is 
set on by the FORTRAN object-time I/O program, IXCCMS, at the start of execution 
of the object program.) If a FORTRAN object program is not being executed, RDJFCB 
returns to the calling program. If such a program is being executed; RDJFCB calls 
the STATE function program to determine if the associated file exists. If it does, 
RDJFCB returns to the calling program. If the file does not exist, RDJFCB sets a 
switch in the DCB to indicate this and then returns to the calling program. RDJFC B 
is located in SOSVCT2. 

Note: The switch set by the RDJFCB is tested by the FORTRAN object-time direct­
access handler (DIOCS) to determine whether or not a referenced disk file exists. If 
it does not, DIOC S will initialize the direct access file. 

44 



I 

SYNAD-SVC 68: Located in SOSVCT2, SYNAD simulates the functions SYNADAF and 
SYNADBLS. SYNADAF expansion includes an SVC 68 and a high-order byte in register 
15 denoting an access method. SYNAD will prepare an error message line and swap 
save areas and register 13 pointers. The message buffer is 120 bytes: b~ytes 1-40, 
blank; bytes 41-120, "BSAM/QSAM INPCT/OUTPUT ERROR nn CN FILE: "dsname"; 
where nn is the CMS RDBUF /\VRBUF error code, or the residual count, if an error 
is encountered. 

SYNADRIS expansion includes SVC 68 and a high order byte of X'FF' in register 15. 
The save area will be returned, and the message buffer will be returned to free 
storage. 

BACKSPACE-SVC 69: Also in SOSVCT2. For a tape, a BSR command is issued to 
the tape. For a direct access data set, the CMS write and read pointers are decre­
mented by one. 

GET/PUT - See SOQSAM for a description. 

READ/WRITE - See SOBSAM for a description. 

NOTE/POINT - See NOTE and POINT for descriptions. 

CHECK - See CHECK for a description. 

Notes on using the as simulation routines: 

* CMS files are physically blocked in 800-byte blocks, and logically blocked 
according to a logical record length. If the filemode of the file is not 4, the 
logical record length is equal to the DCB LRECL - and the file must always be 
referenced with the same DCB LRECL, whether or not the file is blocked. If 
the filemode of the file is 4, the logical record length is equal to the DCB BLKSIZE -
and the file must always be referenced with the same DCB BLKSIZE. 

I * To set the READ/WRITE pointers for a file at the end of the file, a FILEDEF 
command must be issued for the file specifying the MOD option. I 

i 
i 
I 

I * 
J 

A file will be erased and a new one created if the file is opened and the following 
conditions exist: 

a. the OUTPUT option of OPEN is specified. 

b. the TYP E option of OP EN is not J. 

c. the dataset organization option of the DCB is not direct access. 

d. a FILEDEF command has not been issued for dataset specifying the MOD 
option. 

45 



SOOPCL 

FUNCTION: To process OPEN and CLOSE nlacros. 

EXIT CONDITIONS: If an OPEN is successful, control is returned to the user with 
the DCBOFLGS OPEN bit on. If an OPEN fails for one of the reasons listed below, 
the DCBOFLGS OPEN bit is turned off. The following message is on the console and 
control is returned to the user. 

OPN-CONFLICTING XXXXXXXX PARAMETERS 
XXXXXXXX is equal to the 
DCB DDNAME of the DCB that failed to open. 

REASONS WHY AN OPEN MIGHT FAlL. 

1. The data set organization is not physical sequential, partitioned or direct 
access. 

2. No LRECL, BLKSIZE or BUFL is filled in. 

3. BLKSIZE conflicts with LRECL and RECFM. 

4. Default FILEDEF issued by OPEN failed. 

5. RECFM does not agree with the format of the existing file. 

6. RECFM is fixed and LRECL does not agree with the record length of the 
existing file or if filemode is 4 the BLKSIZE does not agree with the record 
:length of the existing file. 

CALLS TO OTHER ROtJTINES: FILEDEF STATE ERASE 
TYPEIN TAPEIO CLOSIO 
FINIS 

CALLED BY: OS OPEN or CLOSE macro 

OPERATION: OPEN (SVC 22) and OPENJ (SVC 19) 

Initialization: On entry to SOOPCL, rOTYPE is set to indicate OPEN or OPENJ and 
the address of the current DCB is obtained from the list pointed to by Register 1. 

Determination of Access Method: The data set organization (DCBDSORG) switch is 
checked to see if it is either physical sequential, partitioned, or direct access 
(effectively eliminating only rSAM). If none of the above, the DeB will not be opened. 

Next the macro format field (DCBMACRF) is checked to see which access method is 
requested, and the access method indicator (DCBCIND2) is set to signal QSAM or ESAM. 

46 



QSAlVI: If the access method is QSAM, DCBlVIACRF is tested for a GET or PUT request, 
and the relevant routine address is placed in the corresponding DC B access field (note 
that GET and PUT are in the ClVlS routine SOQSAM). 

BSAl\1: If the access method is BSAM, the address of SOBSAM is placed in DCB access 
field; the CHECK address is placed in the DCB check field; and if POINT is requested, 
the SOCNTRL address is placed in the DCBNOTE field. 

Setting up DCB fields: After the relevant QSAM or BSAM processing, a check is made 
to see if CONTROL is specified and if it is, the CNTRL address is placed in the 
DCBCNTRL field. Next the CMSCB chain is tested to see if there is a CMSCB for 
this DCB, that is, if a FILEDEF command for the respective data set has been issued. 

If one does not exist, the assumption is made that the us~r has set up the required DCB 
fields, and FILEDEF is called to create a CMSCB with a filename of FILE, a filemode 
of PI, and a filetype equal to the DCB DDNAME after a matching CMSCB is found or 
created, and it is used to fill in vacant entries in the DCB. 

The following table shows the CMSCB fields that are used to complete DCB fields 
not initialized by the user prior to issuing the OP EN call. It also shows the 
JFCBMASK bit setting which is on if the associated CMSCB field nlust be used. If 
BLKSIZE, DSORG, or RECFM are not speCified by a FILEDEF conlmand, the defaults 
of 80, PS (sequential), and F (fixed) are used to fill in the respective fields of the 
CMSCB. 

DCB FCB JFCB DEFAULTS JFCBMASK 

DCBBLKSI JFCBLKSI 80 
I 
I X'OOOOlOOO' 

DCBDSORG JFCBSORG PO X'OOOOOOOl' 
DCBLRECL JFCLRECL 0 X'OOOOOOO2' 

I 

DCBRECFM 
I 

JFCRECFM F 

I 
X'OOOOO400' 

DCBKEYLE JFCKEYLE 0 X'OOOOOO20' 
DCBOPTCD I JFCOPTCD 0 I X'00OO8000' 

I DCBLIMCT 
I 

II JFCLIMCT 
II 

o X'00004000' 

Setting up a new CMSCB: If it is necessary to set up and initialize a new CMSCB for 
the DCB currently being opened, free storage space is obtained and cleared. The 

CMSCB Ch::~::::ated Ir r;::::TadmtiO~~:~::::~::i~~d are filled in: 
I this CMSCB. 

FCBDEV I 
FCBDSNAM .i 
FCBDD 
FCBDSTYP 
FCBDS1'lD 

X'14' 
filename 
DCBDDNA)'I 
DCBDDNAlVI 
file mode 

disk default 
CMS filenanle 
C M8 filetype 
eMS filetype 
C MS filemode 

47 



Setting Up Control Block Pointers: After the CIVISCB is initialized, the address 
pointers are set to link the various simulated control blocks. 

Control 
Block Field Contents after completion 

DCB DCBDVTBL CMSCB address 
DCB DCBDEBAD DEB address 
DCB DCBIOBAD lOB address chained scheduling 
DCB DCBIOBA lOB address normal scheduling 
DCB DCBIOBL Length in double words of lOB 

ICB IOBDCBPT DCB pointer 

DEB DEBDCBAD DCB pointer 
DEB DE BDE BID X'OF' flag to show block is DEB 
DEB DEBOPATB Open option byte 

File Verification: The DEB option byte (DEBOPATB) is checked and if outin has been 
specified control passes to the user exit processing routine (EXITLIST). If the file 
device type for the current DCB is not disk, control passes to EXITLIST. 

If the device type is disk, its current status is checked. The table below shows the 
action taken. 

File Condition Action 

Non-existent New file to be written 

present and read/write erase old copy, for 
pointers set to one new file to be written 

present and write new information will be 
pointer not equal to appended to file 
one 

EXIT LIST - User Exit Processing Routine: If the exit list field (DCBEXLST) is 
empty, control passes immediately to VEROPEN - the verification routine for 
record format dependent quantifiers. 

If DCBEXLST contains a code other than X'05', checking continues until an end-of-list 
tag is found, at which time control returns to VEROPEN, or until an X '05', is found, 
in which case the DCBOFLGS are locked on and a branch is taken to the user DCB exit 

" 
processing routine. On return exit conditions are restored and the possible existence 
of further requests is checked. 

48 



I VEROPEN - Validate Contents of Record Format Dependent Fields: Tests DCBRECFM 
to find the record format, then tests various fields to validate the contents and sets up 
record description fields in accord with what it finds. 

Each of the following tables attempts to show the kind of validation which is required 
by the particular format. After completion of control block analysis and set up, 
control passes to BUFFPOOL to handle buffer pool requirements. 

DCBRECFM = FIXED, UNBLOCKED 

I
I Fields Filled In II Action 

DCBLRECL IDCBBLKSI I DCBBUFL I NONE IIAssilffiIllent is in the arrow direct 
i ~ -- - --

I 

I 

I x LRECL --+ BLKSIZ --+ BUFL 

x BLKSIZ --+ LRECL --+ BUFL 

x BUFL --+ LRECL --+ BLKSIZ 

x Error Exit, R15=2 

• 
DCBRECFM = FIXED, BLOCKED 

Since blocksize is a multiple of logical record length, either blocksize or ouffer length 
must be specified. 

Fields Filled In Action 

DCBBLKSI DCBBUFL DCBLRECL NONE Assignment is in arrow direction 

x BLKSIZ ---. BUFL 
x BUFL -+ BLKSIZ 

x Error exits R15=3 

No DCBLREC L specified I BLKSIZ ---. (BUFL) ---. LRECL 

DCBLRECL specified but not a multiple 
Error exit R15=4 

of BLKSIZ (BUFL) 

DCBRECFM = VARIABLE 

There must be either a buffer length or a blocksize and the chosen field must be longer 
than the 4-byte block description word. 

49 



Fields Filled 

DCBBLKSI DCBBUFL NONE 

x 

x 

x 

Blksize < 4 bytes 

DCBRECFM Variable 

Is BLKSIZ-4 an 
Unte~al naultiple of 
lrecl? 

Action 

Assignment is in arrow direction 

DCBBLKSI ---+ BUFL 

BUFL ---+ BLKSIZ 

Error Exit RI5=5 

Error Exit RI5=6 

NO ---+ HLKSIZ= 
(N*LRECL)+4 

DCBBRECFM = UNDEFINED 

Takes the largest value of LRECL, BUFL, or BLKSIZ and uses it to set the others. 

Final naerging occurs as follows for all fornaats: DCBBLKSI FILLED IN? 

YES - is LRECL larger than BLKSIZE? 
YES - LRECL ---+ BUFL ---+ BLKSIZ 
NO - BLKSIZ ---+ BUFL ---+ LRECL 

NO - Is LRECL filled in? 
YES - LRECL ---+ BLKSIZ --+ BUFL 
NO - Is BUFL filled in? 

YES - BUFL ---+ LREC L ---+ BLKSIZ 
NO - BSAM, BPAM? 

NO - Error exit RI5, x'OI' 

Buffpool: If user does not supply a buffer pool, parameters for the GETPOOL naacro 
are set up by examining DCBBUFNO and DCBFUFL. If BUFNO is not specified, the 
default value of one is used. If the length is not specified, and the naethod is BSAM, 
the buffer pool acquisition is ignored; if QSAM, an error exit is taken. The GETPOOL 
naacro is issued. 

BUCN3: After a buffer pool has been either verified or obtained by GETPOOL, the 
address of the first buffer in the chain is stored in IOBSTART. The address of the 
first buffer to be used (sarne address) is stored in DCBRECAD. If the naethod is 
QSAM and the fornaat is variable, the address is adjusted to elinainate the BDW. 

The same address as for IOBSTART is placed in IOBNXTAD as initial condition of next 
buffer and in DCBEOBAD as initial end of block condition. A 1 is inserted in the high 
order byte of DCBEOBAD as the ID of the next buffer to be used. 

50 

! 



If the method is QSAM, put-locate mode, the address of the next buffer is placed in 
DCBEOBAD. A 2 is set in IOBSTART as ID of next buffer to be used, unless there are 
no more. 

SETEOD: If the user has not specified EOD and SYNAu addresses, the standard EOD 
and SYNAD address are placed in DCBEODAD and DCBSYNAD respectively. 

OPENED: DCBOFLGS is set to indicate that the DCB has been opened successfully 
and return is set to INTSVC if there are no more DCBs to be processed. Otherwise, 
return is to COMOPEN. 

OPERATION: CLOSE (SVC 20) and TCLOSE (SVC 23) 

Initialization: IOTYPE is set to indicate CLOSE or TCLOSE. 

COMCLOSE: Mter checking to make sure that the particular DCB has actually been 
opened, the address of the CMS Control Block is obtained from DCBDVTBL, FCBIOSW 
is set to indicate closing in process, and DCBOFLGS are set to "busy". If the access 
method used is QSAM, put-locate, the last record must be outputted and control is 
passed to SOQSAM-PUT. If the requested file disposition was LEAVE, FCBIOSW is 
set to indicate this. Then the FCBDEV is checked for device type code and the appro­
priate device routine is branched to: 

TAPE: If the file disposition was LEAVE, the routine goes off to CLOSE2-the common 
close routi.ne. If not, the tape is rewound before going off to the common close routine. 

UNIT RECORD: A CLOSIO is issued to the device-printer, punch, or reader-and a 
branch taken to common close. 

CONSOLE: Go to common close. 

CLOSE2: If IOTYPE is T, control is passed to CLOSED. otherwise, a check is made 
to see if FCBPOS or FCBKEYS is zero. If not SOS'"v'"CTR is called to free and, if 
necessary, save any PDS or KEY table in core. Next DCBMACR, DCBIFLG, 
DCBDDNAM, DCBLRECL, DCBRECFIVI, DC BDSORG , DE BCIND2 , DCBKEYLE, 
DCBDETCD and DCBLIMCT are restored to their status before OPEN and control is 
passed to CLOSED. 

CLOSED: The DCB list pointer is restored and, if this was the last DCB, the routine 
returns to the user. If not, the routine returns to COMCLOSE and proceeds to close 
the next DCB. 

51 



SOQSAM (CMS Queued Sequential Access Method) 

FUNCTION: To analyze record format and set up the buffers accordingly for GET and 
PUT requests. 

CALLS TO OTHER ROUTINES: SOEOB 

CALLED BY: GET or PUT macro 

OPERATION: 

Initialization: IOTYPE and IOBERBPT are set to indicate access method and FCB 
address respectively. Then a branch is taken to GETTER or PUTTER, depending on 
whether the request is a GET or a PUT. 

GETTER: After FCBIOSw and IOBIOFLG are set to indicate input in process, DCB 
fields DCBMACF and DCBRECFM are analyzed to determine the type of move desired 
- move or locate - and the record format. If the mode is MOVE, the user specified 
'move to' address is stored in DEBTCBAD. Both modes continue by determining 
whether end of block conditions exist. 

EOB = no: If EOB does not exist, DCBBLKSI is accessed to obtain the record length 
and SOEOB is called to get a record. On return, if the end of data set has been 
reached, then DCBEODAD is accessed and control passed to that address. If any 
other error code is detected, control is passed to the address in the DCBSYNAD field. 

On a good return from SOEOB, the following actions are taken: 

Locate mode, fixed format - Reset DCBRECAD and return to user. 

Locate mode. undefined format - Set DEBLRECL equal to DCBBLKSI, reset 
DCBRE CAD and return to user. 

Locate mode, variable format - Set DCBLRECL from RDW field in record, reset 
DCBRECAD and return to user. 

Move mode, all formats - Same'procedure as in locate mode, except that just before 
returning to the user, the record is moved to the user 
buffer. 

EOB = yes: It is necessary to obtain a new buffer from the buffer pool, which has 
been initialized by SOOPC L. 

Upon Entry: 
A (DC BBUFCB) = A (BUFCB) 

where the l}uffer number (DCBBU FNO) is the high order byte of the buffer, and 
the buffer length is the halfword following DCBBUFCB. 

A (IOBNXTAD) = A (NEXT VALID BUFFER TO-BE-USED) 
A (IOBSTART) = X'ID OF NEXT BUFFER I, AL3 (INITIAL BUFFER IN BLOCK) 

52 



During: 
The' 'NEXT" buffer becomes the' 'CURRENT' I buffer. 
The "CURRENT" buffer + BUFL = "NEXT" buffer. 
The ID + 1 = the ID of the "NEXT" buffer that will be used. 
If ID > BUFNO, ID is set = 1; and A (IOBNXTAS)=A (IOBSTART). 

On completion processing proceeds as in EOB = No. 

SOBSAM (CMS Basic Sequential Access Method) 

FUNCTION: The CMS BSAM routine processes sequential READ and WRITE macros. 
All the OS macro options are supported except those dealing with spanned records. 

EXIT CONDITIONS: The SOBSAM routine passes control back to the user with the 
following error codes in the ECB and a zero in register 15: 

Successful Completion 
Unsuccessful Completion 
End of EXTENT 

ECB Code 

7F 
42 
7F 

Register 15 

o 
o 
8 

CALLS TO OTHER ROUTINES: SOBDAM, PDSSAVE, SOECB 

CALLED BY: OS READ or WRITE macro 

OPERATION: The CMS BSAM routine is called by an OS READ or WRITE macro. It 
checks DCBFDAD to see if the first byte is a P. If so, the contents of the last two 
bytes of DCBFDAD are incremented by one and stored in FCBITEM. Next the DSORG 
option is checked. 

• If the DSORG option in the DCB is DA (Direct Access), control is given to the 
SOBDAM routine to convert the record identification into an item number and process 
any keys used. If SOBDAM completes successfully, control is returned to BSAM. 
Otherwise, control is returned to the user. 

• If the DSORG option in the DCB is PO (Partitioned Organization), and a write is 
specified, and the FCBPDS entry is zero, control is passed to the PDSSAVE routine 
to save the directory of the PDS (Partitioned Data Set) and point the FCB file item 
number to a free member slot. If PDSSAVE completes successfully, control is re­
turned to SOBSAM. Otherwise, control is returned to the user. 

• If the DSORG option in the DCB is PS (Physical Sequential) and the MACRF option 
is VV"L (create a BDA11 data set) *, an eight is put in register 15 and a check is made to 
see if end of EXTENT has been reached. If so, control is returned to the user. If not, 
register 15 is set to zero and a check is made of the option specified in the WRITE 
macro's DECB. If SZ is specified, control is returned to the user with a hex '7F' in 
the ECB. If SD is specified, SOBDAM is called to write a dummy key and upon return 

53 



from SOBDAM control is passed back to the user with a hex '7F' in the ECB. If SF 
is specified, a hex '7F' is stored in the EOB and if the keylength is not zero SOBDAM 
is called to process a key. If the SOBDAM routine and/or the check for valid options 
is completed successfully SOBSAM begins filling in the lOB and the WRBUF PLIST. 
Otherwise control is returned to the user with a hex '42' in the ECB, denoting an error. 

• If the DSORG option in the DCB is PS or PO, a write is specified, and the MACRF 
option in the DCB is not WL, a check is made to see if the keylength is zero. If not, 
SOBDAM is called. If the SOBDAM routine and or the check for valid options is com­
pleted successfully, SOBSAM begins filling in the lOB and the WRBUF PLIST. Other­
wise control is returned to the user with a hex '42' in the ECB. 

• After the necessary checks and calls to SOBDAM and PDSSAVE are made, SOBSAM 
fills in the IOBIOFLG bit, the IOTYPE byte, the DCBOFLGS bit, the buffer length if 
the record format is not fixed, the buffer address, the DECB I/O started bit, the lOB 
pointer in the DECB and the ECB poInter in the IOB. Control is thell passed to the 
SOEOB routine to do the I/O and fill in the ECB. After control is passed back to SOBSAM 
from SOEOB, control is passed back to the user. 

* If the WL (create a BDAM data set) option is specified, the number of records in 
the data set extent must be specified using the FILEDEF command. The default 
size is 50 records. 

*NOTE (BSAM and BPAM) - supported for DISK only 

FUNC TION: To return in register one the relative position of the last block read from 
or written into a data set. The return format of register 1 is the same as in OS. 

EXIT CONDITIONS: Control is returned to the user. 

CALLS TO OTHER ROUTINES: None 

CALLED BY: OS NOTE macro 

OPERATION: Upon entry to NOTE, a check is made to see if a POINT was just issued. 
If not, the item number of the next record to be processed is loaded from FCBITEM 
into register 1, register 1 is decremented by 1, and control is returned to the user. 
If a POINT was just issued, register 1 is loaded with the value in DCBFDAD and 
control is returned to the user. 

* The NOTE routine is part of the SOCNTRL routine. 

54 



*CHECK (BDAM, BSAM, BPAM) 

FUNC TION: To check for errors or exceptional conditions on a previous READ or 
WRITE. If the previous READ or 'VRITE completed successfully, control is returned 
to the user. If not, the error analysis (SYNAD) routine is given control, or, if no 
error analysis routine is provided, the task is abnormally terminated. 

EXIT CONDITIONS: If no error flags are set in the ECB or DECB, control is returned 
to the user. If the ECB input end-of-data (EODAD) flag is set, control is given to the 
EODAD routine. If other DECB or ECB error flags are set, the error analysis (SYNAD) 
routine is e:iven control or if no error analvsis routine is nrovidp.d thp. t~~k i~ ~hnn ... m~l1v - ., - - - - - - --- - -- .- - . ----- --- ----- -- -..----------J 
terminated. 

CALLS TO OTHER ROUTINES: EODAD routine, SYNAD routine, DEBUG 

CALLED BY: OS CHECK macro 

OPERATION: CHECK is called by an OS CHECK macro. Upon entry the DECB or ECB 
is tested for I/O errors. If there are no errors, control is returned to the user. If an 
ECB end-of-data-set flag is on, the EODAD routine is given control. If there is an error 
other than end-of-file, the SYNAD exit routine is called. If no SYNAD exit is given, 
DEBUG is entered. 

* The CHECK routine is part of the SOCNTRL routine. 

*POINT (BDAM and BSAL'W-supported for DISK only) 

FUNCTION: The point macro causes 'processing for a data set to start at a specified 
block in the data set. The format of the block address must be the same as in OS. 

EXIT CO~1J)ITIONS: Control is returned to the user. 

CALLS TO OTHER ROUTINES: None. 

CALLED BY: OS POINT macro 

OPERATION: The POINT routine is called by the user. Upon entry, the relative 
block address is loaded into a register and right adjusted. If the rightmost byte of 
the block address is not set to one, a one is subtracted from the register. The content 
of the register is stored in DCBFDAD. Control is then returned to the user. 

* The POINT routine is part of the SOCNTRL routine. 

55 



CMS BDAM (CMS BASIC DIRECT ACCESS METHOD) 

FUNCTION: The CMS BDAM macro routine is used to access data set records 
directly by item number. It converts record identifications given by OS BDAM macros 
into item numbers and uses'these item numbers to access records. The CMS BDAM 
macro routine supports all the Release 20 OS BDAM macro functions except those 
listed as restrictions. 

EXIT CONDITIONS: If ID, KEY, BUFFER, LIMIT, SEARCH or I/O errors occur, 
they are reflected in the DECB and control is returned to the SOBSAM routine which 
returns control to the user. The error codes correspond to OS error codes and are 
listed below. 

Error Codes put in DECB + 1 

DUMl\fYERR DC X'lOOl' Key to be added begins hex 'FF' 
NOTFCUND DC X'lOOO' The record was not found 
IDTOBIG DC X'lOlO' Record ID was more than 2 bytes 
IOERR DC X'0800' Uncorrectable I/O error 
BADDCB DC X'1020' DCB and macro entries conflict 
NOBUFFER DC X'0200' No buffers free 
NOSPACE DC X'2000' No space found 

CALLS TO OTHER ROUTINES: RDBUF, SVCFREE, WRBUF, FINIS, KEYSAVE 

CALLED BY: SOBSAM 

OPERATION: For Relative Block, Relative Track and Actual addresses, the low order 
two bytes of a record identification are used as an item number. For Relative Track 
Address and Actual Key, the low order byte of the relative track address is used to 
access a table of keys which, if not already in core, is brought in and searched for the 
correct key. 

CMS does not support actual key I/O so the CMS EDAM routine simulates it. In CMS, 
all keys are kept at the end of their data file. When the data file is opened, two new 
files are created with the same filetype, but with filenames of $KEYTEMP and 
$KEYSAVE. Both these files contain all the keys in the original data file. $KEYTEMP 
is used for updating keys and $KEYSA VE is used to save all the keys in case of a' re-IPL 
or system crash. For every item in the original file there is a corresponding key space 
in the $KEYTEMP file. Each item in the $KEYTEMP file is a key table that contains 
256 keys. When the data file is closed, the $KEYTEMP file is written at the end of the 
data file, and the $KEYTEMP and $KEYSAVE files are erased. 

The CMS BDAM routine gets control from the CMS BSAM routine which in turn gets 
control from an OS READ or WRITE macro. Upon entry to SOBDAM, a check is made 
to see if dynamic buffering is needed. If so, key buffer and or data buffer is acquired 
or returned depending on whether a read or write is requested. Next the relative or 
actual address is checked to make sure it does not exceed two bytes. This address is 
converted into an item number and, if keys are not involved, the feedback option is taken 
care of and control is passed back to SOBSAM. If keys are accessed and the key table 

56 



I containing the key wanted is not in core, it is brought in and searched or updated. If a 
search is specified, the itenl number of the key table containing the key is conlbined 
with the position number of the key in the table to form the item number of the data. 
If the extended search option is not specified, only one key table of 256 keys are 
searched. If the extended search option is specified, the linlit parameter in the DCB 
is converted to a number of key tables and that number of tables are searched for a 
matching key. After the key table has been read, updated, or searched, the item 
number, if feedback is requested, is stored in the correct feedback address and con­
trol is returned to SOBSAM. Core for the key table and its control parameters is 
acquired the first time a key is accessed. The address of this core is stored in the 
FCB and the core is not freed until the data set is closed. 

The format of the disk key table and the in-core key table and control words is des­
cribed below. 

KEYTABL 
KEYLNGTH 
ENDDATA 
KEYOP 
KEYNAME 
KEYTYPE 
KEYMODE 
KEYTBLNO 
KEYTBLAD 
TBLLNGTH 
KEY FORM 
KEYCHNG 
KEYCOUT 

Key Table 

keylength 

1st KEY n is 256 

2nd KEY 

I I 

~ 
In-Core Key Table and Control Words 

DSECT 
DS 1F Key length 
DS IF Last data itenl in file 
DS 2F Command Name 
DS 2F Filename of key file 
DS 2F Filetype of key file 
DS 1H Filemode of key file 
DS 1H Item nunlber of key table 
DC A (KEYTABLE) Address of key table 
DS 1F Byte size of key table 
DC C'F' Fornlat of key table 
DC X'OO' Byte to signify change in key table 
DC X'OOOl' Number of tables per item 
DS 1F U sed by RD BUF for residual counts 

KEYTABLE DS OF Table of keys 

57 



RESTRICTIONS: The four methods of accessing BDAM records: 

1. Relative Block REB: 
2. Relative Track TTR 
3. Relative Track and Key T! ~ey 
4. Actual Address MBBCCHHR 

The restrictions on these methods: 

• Spanned records are not supported in CMS. 

• Only the BDAM identifiers underlined above cali be used to reference records 
as CMS files have a two-byte record identifier. 

• If BDAM methods 2, 3 or 4 are used and the RECFM is U or V, the BDAM 
user mlJst not upd~te the track indip.ator until a no space founfl mes~age js 
returned on a write. For method 3 (WRITE ADD), this is when no more 
dummy records can be found on a WRITE request. For methods 2 and 4, this 
will not occur, and the track indicator will only be updated when the record 
indicator reaches 256 and overflows into the track indicator. 

• Two files with keys and the same file type cannot be open at the same time. 
If a program that is updating keys does not close the file it is updating for 
some reason, e. g., a system crash or a re-IPL, the original keys' are saved 
in a temporary file with the same filetype and a filename of $KEYSAVE. To 
finish the update, run the program again. 

• Once a file is created using keys, the file must not be added to without 
using keys and specifying the original key length. 

*KEYSA V (BDAM or BSAM) 

FUNC TION: To build a keys file when a data file using keys is opened and to save the 
keys at the end of the data file when it is closed. 

EXIT CONDITIONS: Control is returned to caller with a zero in register 15 if execu­
tion was successful, and a nonzero, if not. 

CALLS TO OTHER ROUTINES: FINIS FRET WRBUF RDBUF ERASE STATE 

CALLED BY: SOOPCL SOBDAM 

OPERATION: KEYSAV gets control from either SOBDAM or the CLOSE routine, 
SOOPCL. 

58 



• If KEYSA V gets control from SOBDAM, a key table and a PLIST for accessing the 
key table is built in core. Next, two new files with the same filetype as the data 
file, but with filenames of $KEYTEMP and $KEYSA VE are created, using the 
keys at tIle elld of tIle data file. TIle $KEYTEIVlP file will be used f01"; updates to 
the keys, and the $KEYSAVE file will be used in case of a system crash or re-IPL. 
If a $KEYSA VE file already exists for a data file when it is opened, then the keys 
from that file rather than the keys from the end of the data file, will be used to 
create $KEYTEMP. Mter the two files are created, control is returned to SOBDAM. 

I
• If KEYSAV gets control from SOOPCL, then keys from the $KEYTEMP file are 

read in and written at the end of the data file. \\Then tr...is is complete,the 

I ~~ET\~~~~~ ~~~!~~YS::~~:~::~la;: ::::~:~~ :~e ~c::~~~~r the key table and 

I eMS l:p=O::~::::~~:~=:" ~~:E~~:~:~::vr V~. 
I The CMS BP AM macro routines are used to access and build Partitioned data sets. 
I These data sets are divided into sequentially organized members, each of which has 
i a unique name stored in a directory. The CMS BPAM macro routines support all the 
I os BP AM macro functions except the OS facility of adding user data to the directory 
I entries. 
! 

The functions and operations of the CMS BPAM macro progranls are given below. 

*FIND (BPAM) 

FUNCTION: When called by the user: Causes the control program to use the address 
of the first block of a specified partitioned data set member as the starting point for 
the next READ macro instruction for the same data set. 

When called by STOW or BLDL: Finds the directory entry for a member and pass back 
the in -core address of the entry. 

When called by DICTSAVE: Reads in the directory 

EXIT CONDITIONS: When control is returned to the problem program or calling 
routine, the return code in register 15 is as follows: 

Name Provided 

OO-successful execution 
04-name not found 
08-permanentI/0 

error reading 
directory 

Relative Address Provided 

OO-at all times. 
If the relative address is bad 
it is reflected in the next 
REAP. 

59 



CALLS TO OTHER ROUTINES: RDBUF . .sVCFREE 

CALLED BY: OS FIND macro, BLDL, PDSSAVE, and STOW 

STORAGE ALLOCATION: 

-nucleus o 
-control blocks 24 + (12 times no. of entries in PDS) 

OPERATION: Upon entry to FIND, a check is made to determine if a relative address 
list was provided. If it was, the item number is obtained from the list and stored in 
FCB ITEM, and control is returned to the user with a zero in register 15. If a 
relative list was not provided, a search is made for the member name in the directory. 
If FCDDSTYP in the FCB is MACLIB, the name of the first macro library is moved 
from the Maclib list to FCBDSNAM and the address of the first macro library 
directory is loaded. Next a check is made of the FCBPDS entry in the FCB. If it 
is zero, the directory header record is read into a save area, SVCFREE is called to 
obtain core for the directory and its control words, the directory is read into core, 
and the pointer to the in-core directory is stored in FCBPDS. If, when the dictionary 
header record is read, the eighth character in it is a '$', a one is put in the change 
byte and the PDS directory is read from a file with the same filetype and a filename 
of $PDSTEMP. Once in, the directory is kept in core until a BLDL or a CLOSE is 
issued for the data set. After FIND has the pointer to the in-core directory, it begins 
searching for a matching member name. If the member name is not found, a check 
is made to see if any additional directory blocks have been added by STOW. If so, 
they are searched. 

After the directory search is through and the member is either found or not found, a 
check is made to see from where the search was requested. If it was PDSSAVE, BLDL, 
or STOW, control is returned to the requesting routine. If it was a successful user 
request, the item number of the member is moved from the directory into FCBITEM 
and DCBRELAD, and control is returned to the user with a zero in register 15. If it 
was an unsuccessful user request and the FCBDSTYP in the FCB macro isnot MACLIB, 
control is returned to the user with a four in register 15. If FCBDSTYP in the FCB 
macro is MACLIB, the next maclib name in the Maclib list is moved to the FCB, the 
address of the next maclib directory is loaded, and the search for the member starts 
again. If the next FCB pointer in the Maclib FCB list is zero, control is returned to 
the user with a four in register 15. 

* • There are two FIND routines. One is part of SOCNTRL and is used only when 
a relative address list is provided. The other is part of SOSVCTR. 

60 

• The DCBDSORG option in the DCB must always be PO when referencing a 
BPAM data set. 



*BLDL (BPAM) 

FUNCTION: To fill a users list in main storage with the relative track addresses 
(item numbers) for requested members. 

EXIT CONDITIONS: When control is returned to the problem program, the return 
code in register 15 is as follows: 

Code (Hexadecinlal) 

00 

04 

08 

Successfui compietion 

List could not be filled. 
The TTR field of the member 
not found is filled in as zero. 

Permanent input or output error 
while reading in directory. 

CALLS TO OTHER ROUTINES: FIND, PDSSAVE 

CALLED BY: OS BLDL macro 

STORAGE ALLOCATION: 

-nucleus 0 
-control blocks 0 

* The BLDL routine is part of SOSVCTR 

OPERATION: Upon entry to BLDL, a zero is put in register 15 and a check is made 
to determine if the DCB DDNAME is TXTLIB. If it is, control is returned to the user. 

If it is not, FIND is called to search the directory for a match of the first member name 
in the user's list. If a match is not found, the TTR field is filled in with zeroes, FIND 
is called to search for the next member, and a four is put into register 15. If it is 
found, BLDL fills in the users list with the member's item number and continues 
calling FIND until the entire BLDL list has been filled in. PDSSAVE is called to 
free the in -core directory and control is returned to the user. The format of the 
user's list after calling BLD L follows: 

2 2 8 3 3 8 3 3 

FF LL NAME TTR KzC NAME TTR KzC 

TTR the itenl number will always be right justified in these three bytes. 
KzC These .:bree bytes will always be zero. 

61 



*STOW (BP AM) 

FUNCTION: To add, change, replace or delete an entry in a Partitioned Data Set 
(PDS) Directory. 

EXIT CONDITIONS: When control is returned to the problem program, the return 
code in register 15 is as follows: 

Code (Hexadecimal) 

00 
04 
08 
OC 
10 

Successful update 
Name already in directory 
Name not found 
Directory or file full 
Permanent input or output 

error detected attempting 
to update the directory. 

CALLS TO OTHER ROUTINES: FIND, NOTE, SVCFREE, WRBUFF 

CALLED BY: OS STOW macro 

* • The STOW routine is part of SOSVCTR 

• Files with a filetype of MAC LIB must be altered to another filetype before 
they can be updated. Two files with the same filetype cannot be updated at 
the same time. 

OPERATION: 

• If the DELETE option is specified, FIND is called to search the directory for 
a match to the member in the users list. If the search is successful, the directory 
entry is zeroed out, a one is put in the change byte, and control is returned to the user 
with a zero in register 15. If the search is not successful, control is returned to the 
user with an eight in register 15. 

• If the CHANGE option is specified, FIND is called to search the directory 
for ·a match to the member in the users list. If the search is not successful, control 
is returned to the user with an eight in register 15. If the search is successful, FIND 
is called again to search for the new member name. in the directory. If this second 
search is successful control is returned to the user with a four in register 15. If 
this second search is not successful, the directory is changed, a one is put in the change 
byte, and control is returned to the user with a zero in register 15. 

• If the REPLACE or ADD option is specified, FIND is called to search the 
directory for a match to the member in the user list. If a match is found and ADD 
is specified, control is returned to the user with a 4 in register 15. 

62 



If a nlatch is not found, FIND is called to search the directory for a member name of 
all zeroes. After the search is complete, an end-of-data-set mark (hex 61FFFF61) 
is written at the end of the member, NOTE is called, and a check is made to make 
sure there is room for the new J:neJ:nber, and, if necessary, a new PDS block on the 
disk. If there is not enough room, control is returned to the user with a twelve in 
register 15. If there is enough room and an unsuccessful search for a name of zeroes; 
SVCFREE is called to obtai:Q. enough core for a PDS block and four (4) extra bytes. 
The PDS block size is then added to the CORESIZE, the item number of the item after 
the end-of-data-set nlark is stored in DICTPTR, and the new PDS block is zeroed out. 
After a nlatch is found or a new PDS block is added, the directory entry or new PDS 
block is updated, the pointer to any new PDS block is stored ~fter the last member 
searched, a two is stored in the change byte and control is returned to the user with 
a zero in register 15. 

• The updated directory is not written to disk until the data set is closed. If 
an update program does not close a PDS data set for some reason, e. g., a system 
crash or a re-IPL, the PDS directory for that file will be saved in a temporary file 
with the same filetype and a filename of $PDSTEMP. To restore the directory to the 
original file the update program must be run again. 

*PDSSAVE (BPAM) 

FUNCTION: To ensure that a BPAM PDS directory is not destroyed during an update 
and is saved after it. 

EXIT CONDITIONS: Control is returned to the calling routine with the following code: 

Successful 

No 
Yes 

Yes 

No 

Calling Routine 

SOB SAM 
SOBSAM 
SOOPCL 

SOOPCL 

FCBPDS entry 

address of directory 
zero 
zero 
address of directory 

CALLS TO OTHER ROUTINES: FIND, SVCFRET, WRBUF, ERASE 

CALLED BY: SOBSAM, SOOPCL, BLDL 

* The PDSSAVE routine is part of SOSVCTR 

OPERATION: PDSSAVE obtains control from SOBSAM on the first write to a BPAM 
file after OPEN, and from SOOPCL when an updated BPAM file is closed. When called 
by SOBSAM' PDSSA VE calls FIND to read the directory. The change byte is checked 
and, if it is on, control is returned to SOBSAM. If the change byte is not on, a $ is 
written in the temporary indicator of the directory header record of the original file, 
FIND is called to read the directory, ·and a new file is created with the same filetype 
and a filename of $PDSTEMP. A directory header record and a copy of the in-core 
directory is written into this file and control is returned to SOBSA...l\II. 

63 



When called by SOOPCL or BLDL, PDSSAVE checks the change byte and, if it is zero, 
frees the directory core, sets FCBPDS to zero, and returns to the caller. If the 
change byte is not zero, PDSSAVE writes the directory to disk. If there are no errors, 
the directory header record is written, SVCFRET is called to free the directory core, 
FCBPDS is set to zero, the $PDSTEMP file is erased, and control is returned to the 
caller. If there are errors writing the directory to disk, the directory header record 
is not written and the $PDSTEMP file is not erased. 

TABLE/RECORD FORMAT: The format of the directory header record, the directory 
on disk and the in-core directory with its control words is described below. 

Directory Bytes 

1 - 6 
7 - 8 

11 - 12 
13 - 80 

Header Record Contents 

U sed for MAC LIB 
Item pointer to start of directory 
Byte size of directory 
Rest of record not used 

Directory on Disk 

8 Bytes 2 Bytes 2 Bytes 

Name of first member Item PTR no. of items 
Name of second member Item PTR no. of items 

Name of nth member Item PTR no. of items 

In-Core Directory and Control Words 

DmNAME 
DmPTR 
TEMPEYTE 
CORESIZE 
PDSBLKSI 
CHNG BYTE 
R15CODE 
PDSDffi 

DS 
DS 
DS 
DS 
DS 
DC 
DC 
DS 

3H 
1H 
1H 
IH 
1H 
X'OO' 
X'OO' 
OF 

U sed for MAC LIB indicator 
Item pointer to start of directory 
TEMP indicator 
Byte size of original in-core directory 
Byte size of each PDS block 
Byte used to indicate directory change 
Used to save register fifteen. 
In -core directory 
At the end of the in-core directory is a full 
word that is either zero or a pointer to the 
next PDS block. 

PDS Block 
(added to in-core directory by STOW) 

Bytes Contents 

1 to n block of PDS entries 
n + 1 to n + 4 Zero or pointer to next PDS block 

n = number of entries in a block 

64 



SOEOB 

FUNCTION: Perform actual device I/O. 

CALLS TO OTHER ROUTINES: SYSCTL, FINIS, FREE, FRET, RDBUF, WRBUF, 
STATE 

CALLED BY: SOQSAM, SOBSAM 

OPERATION: 

EOBROUTN: If the BATCH monitor is running, control is passed to BATCHOP for 
specific data sets: standard processor input and output files; e. g. 1 SYSIN. FORTRAN ~ 
PLI, LISTING, TEXT. Otherwise, if FCBPROC contains the address of a user-pro­
vided processing routine, control is passed to that routine. If not, control passes to 
EOB2. 

On returning from the user-provided routine, Rl is loaded with the number of bytes 
actually read or written, R14, with ECB code x'7F', R15 is cleared, and a branch 
taken to EOBRETRN if the I/O is completed without error. If there is an error, Rl 
is cleared, R14 is loaded with FCB code x'4F', R15, with the CMS error code, and a 
branch taken to EOBRETRN. 

EOB2: If either I/O is to be performed or there was no address in OSVECTOR, the 
FCBDEV is obtained and control is passed to the appropriate device dependent code. 
When device dependent processing is completed, return is via EOBRETRN, 
URERROR for unit record errors, or DSKERR for disk errors. 

BATCHOP: If the operation is a GET, SYSTCTL is called with a read request. If the 
operation is a PUT and the dsname indicates LISTING, SYSCTL is called with a write 
request. Any other PUT goes to EOB2 for routing to standard device dependent code. 

EOBRETRN: The residual count, if any, is stored in IOBCSW + 6; the contents of R14 
are stored in the ECH completion code field (IOBFCBCC); the FCB completion code 
and CMS error code, if any, are placed in the ECB, and return is to the caller. 

URERROR: R14 is loaded with '42' and control is passed to EOBRE TRN. 

CRT: The ECB completion code x'42' is put in R14, and a x'FF' is inserted in R15. 

DUMMY: The ECB completion code x'7F' is put in R14, and R15 is cleared. 

CONSOLE: If the desired operation is a READ, a console read is issued and DCBBLKSI 
is accessed to obtain the length of the desired record. The residual count is calculated 
and the record moved from the console input buffer to the IOAREA. If FORTRAN 
execution is in process, Rl is cleared to ensure a zero residual count. In all cases, 
x'7F' is put in R14, and R15 is cleared. 

On output the contents of IOAREA are placed in the console buffer and the record is 
written. 

65 



DISK: A call to either WRBUF (a PUT request) or RDBUF (a GET request) is issued. 
For a READ request, the residual count is placed in FILEREAD. In either case a 
x'7F' is placed in R14 and RI5 is cleared. 

READR: CARDRD is called with the address of the IOAREA in the plist. For a 
successful return, RI4 is loaded with a '7F' before returning to EOBRETRN. 
If the error return is end-of-file, a x'7F' is put in RI4 and a X'C' is inserted in RI5 
prior to going to EOBRETRN. 

All other errors go to URERROR. 

PUNCH: CARDPH is called with the address of the IOAREA in the plist. 

PRINT: Requesting blocked records is an error and control goes to URERROR. _ If 
the format is variable, the LRECL is adjusted to eliminate the block descriptor word 
and Ult: record description word. Truncation length is 133 bytes. PRlNTIU is called 
with the address of IOAREA. 

CMSCB 

This macro contains the fields from the following OS control blocks that CMS 
utilizes: 

JFCB, DEB, lOB, DECB 

* 

MACRO 
CMSCB 

* FCB HEADER CONTROL WORDS 

* 
FCBHEAD DSECT 
FCBFffiST DC A(O) 
FCBNUM DC H'O' 

DC H'O' 

* 
* SIMULATED OS CONTROL BLOCKS 

* 
FCBSECT DSECT 
FCBINIT DS OX 
FCBNEXT DS A 
FCBPROC DS A 
FCBDD DS CL8 
FCBOP DS CL8 
IHAJFCB DS on 
JFCBDSNM DS OX 
FCBTAPID DS OX 
FCBDSNAM DS CL8 
FCBDSTYP DS CL8 
FCBPRPU EQU FCBDSTYP + 4 
FCBDSMD DS CL2 

66 

A (FIRST FCB IN CHAIN) 
NUMBER OF FCB BLOCKS CHAIN 
- NOT USED-

X'08' = OPEN ACQUffiED THIS CMSCB 
AL3 (NEXT CMSCB) 
A (SPECIAL PROCESSING ROUTINE) 

DATA DEFINITION NAME 
CMS OPERATION 
*** JOB FILE CONTROL BLOCK *** 
44 BYTES, DATA SET NAME 
TAPE IDENTIFICATION 

DATA SET NAME 
DATA SET TYPE 
PRINTER/PUNCH COM~MAND LIST 
DATA SET MODE 



FCBITEM DS H ITEM IDENTIFICATION NUMBER 
FCBBUFF DS F A (INPUT-OUTPUT BUFFER) 
FCBBYTE DS F DATA COUNT 
FCBFORM DS CL2 FILE FORiviAT: FIXED/VARIABLE 

RECORDS 
FCBCOUT DS H RECORDS PER CMS PHYSICAL 

BLOCK 
FCBREAD DS F N'BYTES ACTUALLY READ 
FCBDEV DS X DEVICE TYPE CODE' 
FCBDUM EQU 0 DUMMY DEVICE 
FCBPTR EQU A PRINTER I:i; 

FCBRDR EQU 8 READER 
FCBCON EQU 12 CONSOLE TERrviINAL 
FCBTAP EQU 16 TAPE 
FCBDSK EQU 20 DISK 
FCBPCH EQU 24 PUNCH 
FCBCRT EQU 28 CRT 
FCBMODE DS X MODE: 1, 2, 3, 4, 5 
FCBXTENT DS H NUMBER OF ITEMS IN EXTENT 

DS F - NOT USED-
DS F - NOT USED-
DS F - NOT USED-
DS F - NOT USED = 

DS F - NOT USED-
FCBR13 DS F SAVEAREA VECTOR R13 
FCBKEYS DS A A (DDS IN'CORE KEY TABLE) 
FCBPDS DS A A (pDS IN-CORE DffiECTORY) 
JFCBMASK DS 8X V ARIOUS MASK BITS 
JFCBCRDT DS 3C DATA SET CREATION DATE (YDD) 
JFCBXPDT DS 3C DATA SET EXPIRATION DATE (YDD) 
JFCBINDI DS X INDICATOR ONE 
JFCBIND2 DS X INDICATOR TWO 
JFCBUFNO DS X NUMBER OF BUFFERS 
JFCBFTEK DS OX BUFFERING TECHNIQUE 
JFCBFALN DS X BUFFER ALIGNMENT 
JFCBUFL DS H BUFFER LENGTH 
JFCEROPT DS X ERROR OPTION 
JFCKEYLE DS X KEYLENGTH 

DS X - NOT USED-
JFCLIMCT DS 3X BDAM SEARCH LIMIT 
FCBDSORG DS OX DATA SET ORGANIZATION 
JFCDSORG DS 2X 
FCBRECFM DS OX RECORD FORMAT 
JFCRECFM DS X 
JFCOPTCD DS X OPTION CODES 
FCBB.LKSZ DS OH BLOCK SIZE 
JFCBLKSI DS H 
FCBLRECL DS OH LOGICAL RECORD LENGTH 
JFCLRECL DS H 

67 



FCBICSW DS x I/O OPERATION INDICATOR 
FCBICRD EQU X'OI' READ/SOQSAM 
FCBICWR EQU X'02' WRITE/PUT 
FCBCLOSE EQU X'80' DURING "CLOSE" 
FCBCLEAV EQU X'40' DISP=LEAVE DURING CLOSE 
FCBPVMB EQU X'04' PUT-MOVE-VAR-BLK 
FCBCASE EQU X'08' ON=LOWER CASE CONSOLE I/O 

DS IX - NOT USED-
DEBLNGTH DS OX L'DEB IN DBLW WORDS 

DS F - NOT USED-
mADEB DS OD *** DATA EXTENT BLOCK *** 
DEBTCBAD DS A A (MOVE-MODE USER BUFFER) 

DS F - NOT USED-
DEBOFLGS DS 4X DATA SET STAUS FLAGS 
DE BOPATB DS 4X OPEN/CLOSE OPTION BYTE 
IOBICFLG DS OX (START OF lOB PREFIX FOR 

NORMAL SCH) 
10 BOUT EQU X'40' "WRITE, PUT" IN PROGRESS 
10 BIN EQU X'20' "READ, GET" IN PROGRESS 
10 BNXT AD DS A A (NEXT BUFFER TO BE USED) 
10BECB DS F ECB FOR QSAM NORMAL SCHEDUL-

ING 
IHAIOB DS OF *** INPUT/OUTPUT BLOCK *** 
DEBDEBID DS OX DEB IDENTIFICATION 
DEBDCBAD DS A A (DATA CONTROL BLOCK) 
10BECBCC DS OX ECB COMPLETION CODE 
IOBECBPT DS A A (EVENT CONTROL BLOCK) 
IOBFLAG3 DS OX I/O ERROR FLAG 
IOBCSW DS 8X LAST CCW STORED (I. E. , RESIDUAL 

COUNT) 
IOBSTART DS A X'ID-NEXT BUFFER', AL3 (INITIAL 

BUFFER) 
IOBDCBPT DS A A (DATA CONTROL BLOCK) 
IOBEND DS OX END-OF-INPUT/OUTPUT BLOCK 
FCBEND DS OD END-OF FCB, JFCB, DEB, lOB 

BLOCKS 
FCBENSIZ EQU (*-FCBSECT)/8 SIZE OF FCB ENTRY, DOUBLE-

WORDS 
SPACE 3 

* 
* DATA EVENT CONTROL BLOCK 
* 
mADECB DSECT 
DECSDECB DS F EVENT CONTROL BLOCK 
DECTYPE DS H TYPE OF I/O REQUEST 
DECBRD EQU X'80' READ SF 
DECBWR EQU X'20' WRITE SF 
DECLNGTH DS H LENGTH OF KEY & DATA 
DECDCBAD DS A V (DATA CONTROL BLOCK) 

68 



DECAREA DS A 
DECIOBPT DS A 

* BDAM EXTENSION 
DECKyADR DS A 
DECRECPT DS A 

SPACE 3 

* 
* SOME FREQUENTLY USED EQUATES 

* 
DDNAM EQU FCBDSTYP 
DT'V EQU X'lO' ~.LI.L~ 

BS EQU X'20' 
T"I>'\ "r.'r"t.TT "Innt 
l.J.& .c.."tu A'-'iV' 

FXD EQU X'80' 
IS EQU X'80' 
LOC EQU X'08' 
MOV EQU X'lO' 
PS EQU X'40' 
PO EQU X'02' 
PREVIOUS EQU X'80' 
QS EQU X'40' 
lJND EQU X'CO' 
VAR EQU X'40' 

MEND 

V (KEY & DATA, BUFFER) 
V (lOB) 

V (KEY) 
V (BLOCK REFERENCE FIELD) 

FILETYPE = DATA SET NAME 
RECFl\1:=BLOCKED RECOP.DS 
MACRF=BSAM 
DSORG=DIRECT ACCESS 
RECFM=FIXED LENGTH RECORDS 
DSORG=INDEXED SEQUENTIAL 
MACRF=LOCATE MODE 
MACRF=MOVE MODE 
DSORG=PHYSICAL SEQUENTIAL 
DSORG=PARTIONED ORGANIZATION 
OFLGS=PREVIOUS I/O OPERATION 
MACRF=QSAM 
RECFM=UNDEFIN FORMAT RECORDS 
RECFIVI=V ~"IUABLE LENGTH 

RECORDS 

69 



70 



SECTION 3: MONITOR OPERATIONS 

The monitor is responsible for the following operations: 

• System Initialization 
• Syste:m Continuit-y 
• Interruption Handling 
• Override Handling 
• System Restart 

SYSTEM INITIALIZATION 

After initial program load (IPL) , control passes to the eMS initis:.l ization progra...m 
(INIT) , which immediately establishes addressability and sets up the interrupt new 
PS\V's. INIT then calls 11\TITSUB, \vhich performs one time OI"ly initialization. 
INITSUB is covered up once intialization is completed. If the IPL was from the card 
reader, INITSUB calls CLOSIO PRINTER (via BALR) to ensure printing of the load 
map generated by the nucleus loader. INITSUB then initializes the interval timer in 
hex location 50 and calls the IPLDISK function program to write an IPL program and 
a copy of the CMS nucleus on the system disk. Subsequently, an IPL may be from the 
system disk (usually 190). On return from IPLDISK, INIT proceeds as if the IPL had 
been from disk, as described below. (IPL by hexadecimal disk address enters 
INITSUB at this point.) 

INITSUB tests for IPL on a bare machine and calls BAREMACH to redefine device ad­
dresses, if this test is positive. INITSYS is called to generate the SSTAT table. 
INITSUB then branches to hexadecimal location FO so that a saved version of CMS can 
be made for IPL by name. (IPL by name (IPL CMS) starts at location FO.) The in­
structions at location FO return control to INITSUB, which then proceeds to complete 
the one time only initialization as follows: 

1. Set up all new PSW's. 

2. Set BLIP timer interrupt. 

3. Clears IPLDEV if IPL by name was the mode of entry into INITSUB. This enables 
the IPL module to work correctly. 

4. Calculate core size and store in NUCON and other places. Calculate and store 
core size related parameters. 

5. Pass control to BATCH if present within the nucleus. 

6. OtherWise, return to INIT. 

A message that includes the version number and date of the CMS currently in use is 
then typed, indicating that CMS has been initialized. After that INIT issues a read to 
the terminal for the user's first command and waits for the command to be entered. If 
the first command is a carriage return, INIT calls LOGIN UFD to read the P-Disk 
user file directory into core, tests for the existence of the file PROFILE EXEC (and if 

71 



the file exists calls EXEC PROFILE), and enters the main control loop (the CMS com­
mand environment) at the point where a command has been successfully completed. 

If the first user command is not a carriage return, INIT calls the SCAN function pro­
gram to convert· the input line into the standard CMS parameter-list format and checks 
the first command. If it is FORMAT P or FORMAT P ALL (but not FORMAT PC), 
INIT calls the FORMAT command via SVC X'CA' and checks for a successful return 
therefrom. If the FORMAT command was successful, INIT enters the main control 
loop as described in the above paragraph. If the FORMAT command failed, the read is 
reissued, and the typed-in command is again analyzed. If the command was LOGIN, 
INIT calls the LOGIN command via SVC X'CA' and checks for a successful return from 
the command. If the LOGIN failed, the read is reissued and the typed-in command is 
again analyzed. If LOGIN NOPROF was not specified, INIT tests for the existence of 
the file PROFILE EXEC, calls EXEC PROFILE via SVC X'CA' if the file exists, and 
then enters the main control loop. If LOGIN NOPROF was specified, INIT enters the 
main control loop directly. If the first command is none of the above, an implied auto­
matic login procedure is invoked via an SVC cal! to LOGIN UFD (without disturbing the 
first entered command); upon successful completion of this LOGIN, PROFILE EXEC is 
tested for and executed if it exists, and the main control loop is then entered to execute 
the first command entered by the user. 

Having thus initialized eMS, handled the first user command, and ensured that the user 
is properly logged in, INIT has· finished the initialization phase and subsequently han-

I dIes typed-in commands as described under "SYSTEM CONTINUITY." 

I 
SYSTEM CON'l'lNUITY 

INIT is responsible for the continuity of operation of the CMS command environment. 
When a typed-in command has been executed and SVCINT returns to INIT, it passes 
along the return code from the called command in register 15. A code of zero indicates 
successful completion of the command; a positive code indicates that the command was 
completed but with an apparent error; and a negative code returned by SVCINT indicates 
that the typed-in command could not be found or executed at all. 

Upon return from SVCINT, INIT saves this return code briefly and calls the UPUFD 
function program to update the user file directory (UFD) on the user's P-disk. (If the 
user had typed in "ko" while the previous command was running, INIT calls CLROVE R 
at this point to ensure completion of the override trace printing.) 

Having updated the user file directory, INIT checks the return code that had been 
passed back by SVCINT. If the code is zero, INIT types a READY message and the 
CPU time used by the gi ven command. If the code is positive, an error message is 
typed, including the error code returned (as a five-digit decimal number), along with 
the CPU time used. If the code is negative, INIT types the message "INVALID CMS 
COMl'iIAND". INIT then proceeds in the main control loop to call W AITRD to get the 

72 



next command. When the command is entered, INIT calls SE TC LK to initialize the 
CPU time for the new command and then puts it in standard parameter-list form by 
calling the SCAN function program. After calling SCAN, INIT checks to see if an exec 
filetype exists with a filename of the typed-in command. (For example, if ABC was 
typed in, INIT checks to see if ABC EXEC existso) If such an EXEC file does exist, 
INIT adjusts register 1 to point to the same command as set up by SCAN, but preceded 
by CL8'EXEC', and then issues an SVC X'CA' to call the corresponding EXEC proce­
dure ('ABC EXEC' in the example). 

If no such EXEC file exists for the first word typed in, INIT makes one further check 
using the,CMS 'ABBREV' abbreviation-checker. If, for example, the first word typed 
in had been 'FORT', INIT looks up FORT via the ABBREV routine (if included in the 
nucleus); if an equivalent is found (for example, 'FORTRAN' for 'FORT'), I:N"IT looks 
for an EXEC file with the name of the equivalent word (for example, FORTRAN EXEC); 
ii such a file is found, nuT adjusts Rl as described above to call EXE C and substi­
tutes the equivalent word (for example, FORTRAN) for the first word typed in (for 
example, FORT). Thus if FORT is a valid abbreviation for FORTRAN and the user 
has an EXEC file called 'FORTRAN EXEC', he invokes this when he merely types in 
'FORT' from the terminal. 

If no EXEC file is found either for the entered command name or for any equivalent 
found by ABBREV, INIT leaves the terminal command as processed by SCAN and then 
issues an SVC X' CA' to pass control to SVCINT, which, in turn, passes control to the 
appropriate command program. When the command terminates execution, or if 
S"ICINT cannot execute it, the return code is passed in register 15, and the C:MS 
command environment continues as described earlier. 

Stacking of Typed-in Commands 

While a CMS command is being executed, it is possible for a user to type in or stack 
the next command (or commands) which he would like executedo To do this he hits the 
attention key once if running on an actual 360, or twice if running under the Control 
Program. This action generates an attention interrupt, which is processed by the 
CONS! console interrupt routine and the WAITRD function program. The CONS! rou­
tine issues a read from the terminal into an area of free storage; when the desired 
command has been typed in, it is placed in a chained list of finished read commands. 
Then when WAITRD asks for a line to be typed in, the previously typed-in finished in­
put commands are supplied on a first-in, first-out basis. 

For example, while an assembly of PROGRAM is being run, a user might stack his 
next two commands, which might be OFFLINE PRINT PROGRAM LISTING and OFF­

LINE PUNCH PROGRAM TEXT. stacked input commands can be abbreviated the 
same as other typed-in commands. 

When stacked-up input commands are processed by INIT, several READY or error 
messages are typed in a row before a new read is issued. In the example above, 
three consecutive READY messages would be given, one from the assembly, one from 
the OFFLINE PRINT, and one from the OFF LINE PUNCH. 

'7'"2 .u 



CMS commands (or input data to EDIT) can also be stacked by entering several logical 
lines on one physical line, separated by the CMS line-end character, which is usually 
a pound-sign (#). 

In the above example, the three commands could be typed in as follows: 

assemble program #Offline print program listing#offline punch program text 

Abbreviations for CMS Commands 

As mentioned elsewhere, INIT and SVCINT sometimes wish to check if an abbreviation 
(or synonym) has been substituted for a CMS (or user) command. To implement this 
feature, the CMS nucleus normally includes the ABBREV abbreviation-checker function 
program. Use of ABBREV facilitates certain abbreviations for CJ.\IIS commands. For 
example, A suffices for ASSEMBLE, E for EDIT, F for FORTRAN, 0 for OFFLINE, 
L for LISTF, and the like. 

The abbreviations are interpreted based on the number of characters contained in the 
first word of a command. ABBREV looks this up in a user defined synonym table (if 
one has been set up in core by calling the CMS 'SYN' command), or in a table of stan­
dard cms system abbreviations. If a match is found, and a count in the table indicates 
that sufficient characters were in the abbreviation to identify it without ambiguity (for 
example, 'ALTER' requires at least two characters to distinguish it from 'A' for 'AS­
SEMBLE'), then ABBREV returns the equivalent match, which is then substituted for 
the given abbreviation by SVCINT or INIT. For example, EDIT is substit\1ted for 
either E, ED, or EDI; ALTER for AL, ALT, or ALTE. 

Note: Abbreviations as described herein are valid for the first word of commands 
typed in from the terminal under the CMS command environment (including stacked 
commands), or for parameter lists in existing CMS programs, or for commands han­
dled by the CMS EXEC command. They are not valid, however, for: (1) debug re­
quests, (2) edit requests, or (3) RETURN from the ECHO command. Note that the 
EDIT and DEBUG requests have their own abbreviation schemes. 

Minimum Abbreviations for CMS System Commands 

The complete list of minimum abbreviations for CMS System commands is given in the 
following table. 

System Command Shortest Form System Command Shortest Form 

ASSEMBLE A LISTF L 
ALTER AL OFFLINE 0 
CLOSIO CL PRINTF P 
CPFUNCTN CP SCRIPT SC 
DEBUG DE STAT S 
EDIT E TAPE T 
FORTRAN F UPDATE U 
GENMOD G VSET V 

74 



INTERRUPTION HANDLING 

The monitor processes all SVC, input/output, program, machine, and external inter­
ruptions. The following paragraphs describe the processing carried out for each type 
of interruption. 

SVC Interruptions 

Supervisor call (SVC) interruptions are handled by the SVCINT monitor program. Two 
types of SVC's are processed by SVCINT: internal linkage SVC's (refer to ''Internal 
Linkage Scheme") and certain Operating System/360 SVC's (refer to "svc Simulation"). 
Internal linkage SVC's are issued by the monitor, command, and function programs of 
the systel11 when they require the services of other Cl\1:S progr~"'TIs. (Co:mmands en­
tered by the user from the terminal are converted to internal linkage SVC's by INIT.) 
The Operating System/360 grvC's are issued by the processing progratlls (for eXat'llple, 
Assembler, FORTRAN compiler). The following paragraphs describe how these inter­
rupts are handled by SVCINT. 

Internal Linkage SVC' s 

When SVCINT receives control as a result of an internal linkage SVC (that is, an SVC 
X'CA'), it saves the contents of the general purpose and floating-point registers and 
the SVC old PSW in the normal save area (NRMSAV) and establishes the normal and 
error return addresses and stores them along with the name of the called program in 
the normal save area. It then determines if the called program is in the transient 
area (TRANSAR) by comparing the first 8 bytes of the parameter list with TRANSRT. 
TRANSRT is a 12-byte area with the following content: 

(1) First 8 bytes (TRANSRT): filename of routine or program currently in TRANSAR. 

(2) Next byte (TRANMSK): desired system-mask for routine or program currently in 
TRANSAR. 

(3) Next 3 bytes: DC AL3(TRANSAR) = address of transient area. 

If the name of the called program matches TRANSRT, the called program is already 
in the transient area. If so, SVCINT stacks the register contents and return addresses 
as the last entry in a last-in, first-out list, and then branches to the called program 
in TRANSAR. 

If the called program does not happen to be in TRANSAR (its name does not match 
TRANSRT), then SVCINT scans through the function table FUNCTAB. FUNCTAB con­
tains the name, desired system mask, and core address of all programs which are in 
(or can be included in) the CMS nucleus. Each entry in FUNCTAB is 12 bytes long, in 
a similar format to that shown above for TRANSRT. If the called program is found in 
FUNCTAB, and the core address is valid (that is, nonzero), then SVCINT stacks the 
register contents and return address as above, sets the system mask if necessary~ 
and branches to the called program at its given address. 

75 



If the called program is in FUNCT AB but its core address is zero (indicating that the 
program is actually disk-resident), or if the called program is not found in FUNCTAB 
at all, then SVCINT stacks the register contents and return addresses as above and 
attempts to call in a module of this name via the LOADMOD command. If the LOAD­
MOD succeeded, then SVCINT sets the system mask appropriately and transfers con­
trol to the called program. (The core address is given by the constant STADDR in 
the NUCON table, having been placed there by LOADMOD.) If LOADMOD brought the 
called program into TRANSAR, it stored its name in TRANSRT. SVCINT, in turn, 
recognizes that the called program is now in TRANSAR, and branches to it there (ig­
noring STADDR); SVCINT, of course, is now cognizant of the fact that a new program 
resides in TRANSAR. 

(Note: the loading of a transient disk resident program via LOADMOD is com­
pletely transparent to the normal LOAD and START commands. For example, a pro­
gram can be LOADed, then perhaps OFFLINE PIDNT or PRINTF called to print the 
load map, ERASE called to remove the LOAD map, etc., and then the program 
STARTed. NUCON and the loader tables are unaffected by the calls to the transient 
disk resident routines OFFLINE or PRINTF.) 

If the program was not found in either TRANSRT or FUNCTAB, nor successfully 
LOADMODed, SVCINT makes one further effort to link to the command. The 
ABBREV abbreviation checker (if included in the CMS nucleus) is called to determine 
whether an equivalent match (for example, EDIT) is found for the input command (for 
example, E, ED, or ED!). If an equivalent is found, it is substituted (not in core, but 
in registers) for the original command, and the threefold search (TRANSRT, 
FUNCTAB, and LOADMOD) is initiated once more. If successful this time, SVCINT 
links to the command in the usual way. 

If (1) the abbreviation-checker is not included in the nucleus (a permissible installa;.. 
tion option), (2) if no equivalent was found by ABBREV, or (3) if the second threefold 
search for the equivalent command fails, SVCINT returns a negative error code to 
the caller. (If the caller was INIT, the message "? CMS:xxxxxxxx" is typed. ) 

When the called program returns, SVCINT determines whether or not there were any 
errors encountered during the execution of that program. (A code returned by the 
called program in register 15 will indicate this.) If there were no errors, SVCINT 
saves the contents of the general purpose and floating point registers in the normal 
save area as they exist upon return from the called program. If normal overriding is 
not in effect (via SETOVER command), SVCINT restores the calling program's regis­
ters, deletes the last entry from the last-in, first-out stack, and makes the appropri­
ate normal (errorless) return to the calling program. 

If there were no errors and normal overriding is in effect, SVCINT moves the data re­
quired by the normal override handling program (HNDLNRM) into the normal override 
save area NOVSA V, saves the addresses contained in the normal and error override 
switches (NRMOVR and ERROVR), and sets these switches to zero so that overriding 
will not occur during execution of the normal override program. It then deletes the 
last entry in the last-in, first-out stack and passes control to the normal override 
handling program. This program, after completing its processing, will return to 
SVCINT, which will, in turn, return to the calling program. 

76 



If errors are encountered during the execution of the called program, and error over­
riding is not in effect (via either SETOVER or SETERR commands), SVCINT compiles 
data for use by the error return program (either STDE RR or the portion of code 
pointed to by the address constant following the SVC X'CA') in the error save area 
(ERRSAV), restores the calling program's registers, deletes the last entry in the 
last-in, first-out stack, and masks the appropriate error return as defined by the 
calling program. (If the calling prograrfl provides an address constant following the 
SVC X'CA', the portion of code pOinted to by that address constant can gain access to 
the data in ERRSA V through the use of the . RDERR function program. ) 

If there were errors and error overriding is in effect, SVCINT moves the data re­
quired by the error override handling program (HNDLERR) into the error override 
save area (ERRSAV), saves the addresses contained in t.~e normal and error override 
switches and sets these switches to zero so that overriding will not occur during exe­
cution of the error override program. It then deletes the last entry in the last-in, 
first-out stack and passes control to the error override handling program. This pro­
gram, after completing its processing, will return to SVCINT, which will, in turn, 
make the appropriate error return as defined by the calling program. 

I Other System/360 SVC's 

The general approach taken by SVCINT to process other SVC I S supported under CMS is 
essentially the same as that taken for an internal linkage SVC. (Refer to "svc 
Simuiationslf for a Ust of the Operating System/360 SVC! s supported by CMS.) However, 
rather than passing control to a command or function program, as is the case with an 
internal linkage SVC, SVCINT _passes control to the appropriate routine. If overriding 
is not specified, SVCINT will return directly to the program. If overriding is specified, 
the override program will return to SVCINT, which will return to the program. 

In linking to the particular SVC routine, however, SVCINT uses a different procedure 
than the threefold (TRANSRT, FUNCTAB, and LOADMOD) search used for 
SVC X'CA' calls. 

In handling these other calls, SVCINT uses two tables, a user-defined SVC table (if 
any - set up by the HNDSVC program), and the table of standard system OS calls sup­
ported (to whatever extent feasible) by CMS. 

Each of these tables is in the form of several four-byte items, each of which is of the 
following format: 

First byte: SVC number (for example, 19). 

Next 3 bytes: Core-address of appropriate routine for that OS-call (for example, 
OPEN routine to handle SVC 19 calls). 

If the user-defined SVC table is present, any SVC number (other than X'CA ') is looked 
for in that table (checking the number against the first byte). If it is found, control is 
transferred to the routine at that address. 

77 



If the sve number is not found in the user-defined sve table (or if the table is non­
existent), it is then looked for in a similar fashion in the standard system table of as 
calls. 

If it is found there, and the routine address is nonzero, control is transferred to that 
address in the usual way. 

If it is found there, but the routine address is zero, this signals SVeINT that the par­
ticular routine is included in a transient disk resident module named 'SVCCARE', 
which handles various OS calls that need not always reside in the CMS nucleus. If 
SVCCARE happens to be in the transient area (TRANSAR), control is passed to 
SVCCARE forthwith. If not, SVeCARE is LOADMODed as any other transient disk 
resident routine, and then receives control. 

In any event, SVeCARE then distinguishes which particular OS call has been passed 
to it, and handles it accordingly. 

If the sve number is not in either table, then it is treated like an ABEND call. 

For setting up the user-defined sve table mentioned above, the HNDSVe initialization 
program is provided, making it possible for a user to provide his own sve routines. 
This function program is described on the following pages. 

When SVCINT passes control to any SVC routine, the following conditions exist: 

Registers 

0-11 and 15 as they were at SVC time. 
12 address of SVC-handler routine. 
13 address of SVC save area. 
14 return address to SVCINT. 

The SVC save area has the following format: 

78 

0- 63 
64- 71 
72- 95 
96-175 

Contents 

caller's registers 0-15 
SVC-old-PSW 
floating-point registers 2,4,6* 
80 bytes for use by SVC-simulation routine 

*FPR 0 is saved by eMS elsewhere. 



HNDSVC 

Filename - HNDSVC, module - HNDSVC, Disk Resident, Transient. 

Function 

The HNDSVC function initializes the SVC Interrupt Handler to transfer control to a 
given location for a specific SVC number (other than X'CA' or 202), or to clear such 
previous handling. 

Calling Sequence 

DS OF 

PLIST DC CL8'HNDSVC' called routine 

DC CIAtSET' or CL4'CLR' function 

DC ALI (SVC number), AL3 (address) argument(s) 

DC X'FFFFFFFF' end of list 
(must be present) 

Notes: 

1. For CLR, the address fields are irrelevant. 

~. Individual SVC numbers may be added or cleared before termination of the 
command. 

Error Codes 

E(OOOOI) INCORRECT HNDSVC PARAMETER LIST 

E(00002) SVC number replaces another of the same number (for HNDSVC SET). 

E(00003) SVC number clearing one which was not set (for HNDSVC CLR). 

79 



Operation 

HNDSVC processes the parameter list checking for possible ·errors. An SVC number 
of 202 (x'CA') is illegal, and two SVC, numbers that are the same are also invalid. The 
function must, of course, be either SET or CLR. 

For the HNDSVC SET call, a check of addresses is also made for reasonableness 
(each must be an even number greater than 0 and within the user's core size). An 
error code 1 (with a message) is given if the parameter list is incorrect. 

If the parameter list appears valid, for HNDSVC SET, the logic is as follows: 

1. If no user-defined SVC table exists, pointers are set up to the part of the caller's 
parameter list (from his first argument through the last), that forms the user­
defined SVC table until it is cleared. 

2. If a user-defined table already exists, enough free storage is obtained for both 
tables, the old one and the new one. The two are then merged into the free stor­
age area, and pointers to the new table are set up for SVCINT. If the new table 
contains any SVC numbers identical to the old, the new ones replace the old, and 
an error code 2 is subsequently returned to advise the caller of this situation. 
This is purposely not treated as an ABEND condition so that a user could start off 
with one table, then add a new one, replacing only those in the old table that he 
wishes to supersede. (The error code is given, however, so that the caller is 
aware of the replacement, in case it was accidental.) 

For the HNDSVC CLR call, the parameter list is checked against the table (if any) 
currently in use. If the numbers match the table, the table is returned via FRET to 
free storage (if necessary), and the pointers for SVCINT are cleared. If the numbers 
do not match the table perfectly, those that do match are cleared, the table compacted 
appropriately leaving only those which have not been cleared, and the pointers for 
SVCINT revised accordingly. If any number tries to clear an SVC number not in the 
table, an error code 3 is given subsequently, but processing continues. ,If the table 
does not exist at all, an error code 3 is also given. 

In any case, after the HNDSVC CLR call, the pointers will be clear if there is no 
table left, or revised accordingly if there are still some calls left. 

In actual practice, the parameter list is set up so that the function can be initialized 
to CIA'SET' for the set call, and later to CIA'CLR' for the clear call, using the same 
parameter list. 

At the completion of each CMS command, the INIT program clears any remaining 
user-defined SVC table, in the event that a program loaded and run in user core forgot 
to issue a HNDSVC CLR call when finished. 

If HNDSVC is inadvertently called from a terminal, error code 1 (with message) will 
be given. 

80 



Input/ Output Interruptions 

All input/output interruptions are received by the I/O interruption handler (IOINT). 
IOINT saves the I/O old PSW and the channel status word (CSW). It then determines 
the nature of the device causing the interruption and passes control to the program 
that processes interruptions from that device. It does this by scanning the entries in 
the device table (DEVT AB) lll1til it finds the one containing the device address that is 
the same as that of the interrupting device. (DEVTAB is a block of storage within the 
nucleus constant area (NUCON). It contains an entry for each device in the CMS sys­
tem. The entry within DEVTAB for a particular device contains, among other things, 
the address of the program that processes interruptions from that device.) 

""'hen the interrupt handling program corresponding to the interrupting device com­
pletes its processing, it returns control to IOINT. At this point, IOINT tests the wait 
bit in the saved lio old PSW. If this bit is off, it usually indicates that the interrup­
tion was caused by a terminal (asynchronous) I/o operation. In this case, IOINT re­
turns control to the interrupted program by loading the I/O old PSW. 

If the wait bit is on, this usually indicates that the interruption was caused by a non­
terminal (synchronous) I/O operation and that the program that initiated the operation 
called the WAIT function program to wait for a particular type of interruption (usually 
a device end, signaling the completion of an I/O operation). (Refer to "Nonterminal 
I/O" .) In this case, IOINT determines whether or not an interruption from the inte.a."­
rupting device is being waited for. It does this by checking the pseudo-wait bit in the 
device table entry for the interrupting device. If this bit is off, the system is waiting 
for some event other than the interruption from the interrupting device; IOINT returns 
to the wait state by loading the saved I/O old PSW. (This PSW has the wait bit on. ) 

If the pseudo-wait bit is on, an interruption from a particular device is being waited 
for. (The WAIT flll1ction program sets this bit when called by a program that is wait­
ing for an I/O interruption from a particular device.) In this case, IOINT determines 
whether or not the interruption was the one being waited for. (The interruption may 
or may not be the one being waited for; for example, a program may be waiting for a 
device-end interruption from the device, but a channel-end or error interruption may 
occur.) The program that processes the interruption from the interrupting device 
will inform IOINT of this. If the interruption is not the one being waited for, IOINT 
loads the saved I/O old PSW. This will again place the machine in the wait state. 
Thus, the program that is waiting for a particular interruption will be kept waiting 
lll1til that interruption occurs. 

If the interruption is the one being waited for, IOINT resets both the pseudo-wait bit 
in the device table entry and the wait bit in the I/O old PS'W. It then loads that PSW. 
This causes control to be returned to the WAIT function program, which, in turn, re­
turns control to the program that called it to wait for the interruption. 

81 



eMS Terminal Interruptions 

Terminal input/ output interruptions are handled by the CONS! program. Upon receiving 
control, CONS! determines the nature of the interruption. If it is a channel end, CONS! 
returns control to IOINT and indicates that it is awaiting an interruption other than the 
channel end. 

If it is a device end, indicating the completion of an I/O operation, CONS! checks whether 
the finished operation was a read or a write. If it was a write, CONSI deletes the corre­
sponding CCW package from the read-write stack, and frees the storage occupied by it. 
If there are no more requests in the read-write stack, CONS! then exits to IOINT. If 
there are some requests in the stack, CONS! obtains the next, and starts the new I/O 
operation. If this operation is started successfully, CONS! then returns to IOINT. If 
the I/o was not started successfully, it is either because of an error or a pending 
attention. In the former case, CONS! terminates CMS operation. In the latter case, 
the user wishes to stack a command for later processing or to enter a request (either 
KT, KX, or KO). To enable the user to enter his input line, CONS[ constructs a CCW 
package for a read. If, at this time, there are no requests in the read-write stack, 
CONSI immediately makes the CCW package the first and only entry in both the read­
write and pending read stacks, starts the read operation, and exits to IOINT. If there 
are requests in the read-write stack, but there are no pending reads, CONSI makes the 
CCW package the first and only entry in the pending read stack and also links' it into the 
read-write stack as the first entry. It then starts the read operation and exits to IOINT. 
If there are requests in the read/write stack and there are entries in the pending read 
stack, CONSI makes the CCW package the last entry in both stacks, starts the next I/o 
request in the read/write stack, and exits to IOINT. 

If a device end caused the interruption and the oper ation just finished was a normal read 
(that is, a read not triggered by an attention), CONS! links the CCW package for that 
read into the finished read stack as the last entry and deletes it from the read-write 
stack and the pending read stack. From this point, CONS! proceeds in essentially the 
same manner as it does for a device end caused by the completion of a write (see pre­
vious paragraph). 

If a device end caused the interruption and the operation just finished was a read trig­
gered by an attention (for example, KT, KX, KO, or a stacked input comm-and), CONSI 
determines whether it was a KT, KX, or KO request by examing the input buffer. If it 
was not, CONS! handles the input command as it does a normal finished read. If the 
read was KO, CONS! sets the kill-override flag that is referenced by SVCINT in deter­
mining where control is to be returned. If the read was KT, CONS! deletes all write 
requests from the read-write stack and sets the kill-typing flag that is referenced by the 
terminal write programs (TYPLIN/TYPE). After performing the special processing for 
KT or KO, CONS! proceeds in essentially the same manner as it does for a device end 
caused by the completion of a write. 

82 



If the read was KX, CONS! transfers control to the routine KILLEX, which terminates 
CMS execution. KILLEX performs the following operations: 

• Calls DESBUF to remove all console 1/0 requests from the read-write stack. 

• Calls LOG DISK to close any open CMS files and to update the user file directory on 
any active read-write disk(s}. 

• Calls CLOSIO to close the printer and the card reader/punch (the Control Program 
will interpret this as a request to close the spooling files for these devices). 

• Calls the CMS 'IPL' command to re-IPL a fresh copy of CMS. 

If an attention caused the interrupt that gave CONS! control, CONS! enables the user to 
stack his command as previously described. 

CMS Reader/Punch/Tape Interruptions 

Interruptions from these devices are handled by the programs that actually issue the 
corresponding I/o operations. (Refer to the discussions of CARDIO and TAPEIO.) 
\Vhen an interruption from any of these devices occurs, control passes to IOINT. Then, 
lOINI' returns control to WAIT, which returns control to the program that issued the 
I/O operationo This program can then analyze the cause of the interruption. 

Since the address of the interrupt processor in the device table of these devices is 0, 
IOINT assumes the interrupt was correct and resumes as if a successful return was 
obtained from an actual interrupt processor. 

CMS Printer/Disk Interruptions 
c 

Interruptions from either of these devices give control to IOINT, through which control 
passes to the appropriate interrupt processing program. As described under" CMS 
Non-Terminal I/O", the interrupt processing program determines if this is the interrupt 
requested and if an error has occurred. The channel programs for the printer and disk 
end with a NOP channel command to cause channel end (CE) and device end (DE) to 
occur together, thereby ensuring the associat~d interrupt processing program that the 
interrupt being serviced is the requested one. On an error, the old I/O PSW, the 
Channel Status Word, and an error indicator are moved to the proper device table 
(DEVTAB). 

The interrupt processor then returns control to IOINT, which returns control to WAIT, 
which in turn returns control to the program that issued the r/o operation. This I/O 
handling program then checks the error indicator in the corresponding device table. 
If an error is indicated, the program calls the CMS centralized error recovery program, 
IOERR; if there is no error, the I/O handling program continues its normal processing. 

83 



User Controlled Device Interruptions 

Interrupts from devices under user control·are serviced the same as CMS devices 
except that WAIT and IOINT manipulate a user created device table, .and that IOINT 
passes control to a user written interrupt processing routine. 

Program Interruptions 

The program interruption handler (PRGINT) receives control when a program interrup­
tion occurs. When it gets control, PRGINT determines if the executing program has 
specified a program interruption exit via a SPIE macro instruction. If it has not, 
PRGINT passes control to the DEBUG command program. This allows the user to deter­
mine the cause of the interruption through use of DEBUG requests. 

If the executing program has specified a program interruption exit via SPIE, PRGINT 
completes the construction of the program interruption element (PIE) by storing the 
program old PSWand the contents of registers 14, 15, 0, 1, and 2 into it. (The routine 
that handles the SPIE macro instruction has already placed the address of the program 
interruption control area (PICA) into PIE.) PRGINT then determines if the event that 
caused the interruption was one of those selected by the SPIE macro instruction. If it 
was not, PRGINT passes control to the DEBUG command program. 

If the cause of the interruption was one of those selected in the SPIE macro instruction, 
PRGINT picks up the exit routine address from the PICA and passes control to the exit 
routine. Upon return from the exit routine, PRGINT generates a program interruption 
to obtain the system mask from the current PSW. (The exit routine may have altered 
the system mask and PRGINT must restore it before returning to the interrupted 
program.) It then places the obtained system mask into the appropriate field of the 
program old PSW it saved on entry and loads that PSW to return to the interrupted 
program. 

External Interruptions 

An external interruption causes control to be passed to the external interrupt handler 
(EXTINT), which passes control to PEBUG if the interrupt was not a timer interrupt. 
If the interrupt was caused by the timer, EXTINT resets the timer and types the BLIP 
character at the terminal. The standard BLIP timer setting is two seconds, and the 
standard BLIP character is upper case, followed by lower case (it moves the typeball 
without printing). 

Machine-Check Interruptions 

When a machine-check interruption occurs, control is passed to a corresponding inter­
ruption handler (MCHINT). MCHINT calls the TYPLIN function program to type a 
message· at the terminal to the effect that a machine error has occurred. Next, it calls 
the WAIT function program to wait until the message has been typed. When the message 
has been typed, MCHINT passes control to the DEBUG command program, which enables 
the user to determine the effects of the interruption through the use of the DEBUG 
program. 

84 



Note: If a machine check occurs while running under CP-67, the following message is 
typed and CP is entered: 

MACHINE CHECK INTERRUPT 
CP ENTERED, REQUEST PLEASE 

To reflect this machine check to the CMS virtual machine, issue a BEGIN console 
function, and CMS will handle the interrupt as described above. 

OVERRIDE HANDLING 

Override handling deals with the processing carried out when the normal and/or error 
override faciiities have been activated by the SETOVER or SETERR commands. The 
override handling programs (HNDLNRM and HNDLERR) are part of the OVERRIDE 
module. This module is in core only when the normal and/or error override facilities 
have been activated. 

Normal Override Operations 

The normal override handling program (HNDLNRM) gets control from SVCINT when 
normal overriding has been activated by the SETOVER command and when a program 
that received control as a result of an sve executes without error (that is, it returns a 
zero in general purpose register 15). HNDLNRM calls the FREE function program to 
obtain a block of free storage for use as a work area. It then calls the • RDERR function 
program to place the normal override data saved in NOVSAV by SVCINT into the work 
area. This data consis ts of the address of the calling program, the name of the called 
program, the SVC old PSW that resulted from the call, the normal return address, the 
error return address, the contents of the general purpose and floating-pOint registers 
at the time of the call, and the contents of the general purpose and floating-point regis­
ters upon return to SVCINT from the called program. The normal return address is 
either the address of the instruction immediately following the SVC, or the address of 
the instruction immediately after- the address constant, if one is provided by the calling 
program. The error return address is either the address contained in the address 
constant (if one is provided) or the address of the standard error routine, STDERRo 

If the called program is the WAIT function program and the user has speCified NOWAIT 
in the SETOVER command, HNDLNRM releases the storage previously obtained and 
calls the 0 RESUME function program, which returns to SVCINT. SVCINT will, in turn, 
return to the calling program. If the user has not specified NOWAIT, HNDLNRM sets a 
switch to indicate that the called program was WAIT. 

HNDLNRM then places the standard override inforrnation into a buffer and calls the 
PRINTR function program to print it. (This information is in the work area after the 
call to . RESUME; it consists of the address of the calling program, the name of the 
called program, the SVC old PS\V, the normal return address. and the error return 
address. ) 

85 



86 

If the called program was WAIT and the user specified WAITSAME, or if a program 
other than WAIT was called, HNDLNRM proceeds as follows. If GPRSB was specified, 
it moves the contents of general purpose registers 0 through 7 as they existed at the 
time of the call, from the work area to the print buffer and calls PRINTIO to print the 
contents of the buffer. HNDLNRM does the same for general purpose registers 8 through 
15. Next, if FPRSB was specified, it moves the contents of the floating-point registers, 
as they existed at the time of the call, to the print buffer and prints them. If GPRSA 
and FPRSA are specified, HNDLNRM follows similar procedures to print the contents 
of the general purpose and floating-point register as they exist upon return from the 
called program. Then, if parameter list printing was specified, HNDLNRM moves 
successive doubleword entries from the parameter list to the print buffer until it is filled, 
and prints the contents of the buffer. If a second line of the parameter list was specified, 
HNDLNRM does the same for the next series of doublewords in the parameter list. Final­
ly, HNDLNRM calls the FRET function program to release first the work area and then 
the • RESUME function program to SVCINT and eventually to the calling program; 
HNDLNRM then returns to SVCINT. 

If the called program was WAIT and the user specified either WAITl or WAIT2, 
HNDLNRM merely prints the corresponding number of lines of the parameter list, re­
leases the work area, and returns to SVCINT by calling. RESUME. 

Error Override Operations 

The error override handling program (HNDLERR) receives control from SVCINT when 
error overriding is in effect and an error is encountered during execution of the called 
program. The logic of HNDLERR is essentially the same as that of the normal override 
handling program. However, as part of initialization, HNDLERR sets switches for 
maximum printing. Thus, regardless of whether or not the called program is WAIT, 
each time HNDLERR gets control it prints the standard override information, the con­
tents of the general purpose and floating-point register (both before and after the call), 
and two lines of parameter list. 

SYSTEM RESTART 

CMS operation can be restarted when the user issues a RESTART or IPL request while 
in the DEBUG environment. When such a request is made, the DEBUG command issues 
a call to the CMS "IPL" command, which reads into core a clean version of the CMS 
nucleus. CMS nucleus in-core reinitialization is no longer supported by the DEBUG 
request BE START. 

Note: The CMS 'IPL' command can also be invoked from the DEBUG environment, or 
CP can be called upon to re-IPL through IPL CMS or IPL 190. If CMS is being run as 
a stand-alone program, CMS can be IPL'ed from the 360 operator console. 



SECTION 4: COMMAND PROGRAM DESCRIPTIONS 

FILE CREATION, MAINTENANCE, AND MANIPULATION 

This section describes the processing performed by the various CMS command pro­
grams. The calling sequence and parameter list for each command are described. 

Note: 

1. A few CMS programs require alignment of the parameter list to be on a doubleword 
boundary, notably OFFLINE, MACLIB, and TXTLffi. If any of these programs is 
called from within a written program, make sure the parameter list is doublewQrd 
aligned (for example, preceded by DS OD). 

Other CMS programs require only that the parameter list be fullword aligned. 

As a precaution, you may, of course, align all parameter lists on a doubleword 
boundary, if desired. 

2. Each parameter list passed to a command should end with the constant 
X'FFFFFFFF'. For example, see the HNDINT function program described under 
"Nonterminal II 0". 

3. The four bytes following a CMS Supervisor Call (SVC 202, or SVC X'CA i) may 
contain the error return address of the form: 

DC A L4 (routine) 

If the high-order byte is nonzero, SVCINT will assume no error return address 
provided, and will transfer control to SDTERR if an error return from the given 
program should occur. 

ALTER 

FUNCTION: To alter the identification of a file or related group of files on a read­
write disk. 

CA LLING SEQUENCE: 

LA Rl, PLIST Rl must point to P- List as usual 
SVC X'CA' 
DC A L4 (ERROR) 

87 



ENTRY REQUIREMENTS: 

R1 must point to ALTER parameter list: 
DS OF 

PUST DC CLS'ALTER' 
DC CLS' Old Filename ('*' means all names) 
DC CLS' Old Filetype (' *, means all types) 

DC CL2' Old Filemode ('*' means any read-write disk) 
DC CL6' Not used 
DC CL8' New Filename (= or * means no change) 
DC CL8' New Filetype (= or * means no change) 
DC CL2' New Filemode (= or * means no change) 

DC CLS'( Option delimiter 

DC CIA' option' either or both TYPE to type the identifier(s) 
of ALTER' ed files 

DC CIA' option' or NOUP to suppress the updating of the 
user's file directory 

EXIT CONDITIONS: 

Normal Return 
R15 = 0 (and condition code = 0) 

Error Returns 
R15 nonzero (and condition code = 2) 

CALLS TO OTHER ROUTINES: 

ACTLKP, ADTLKP, FSTLKW, TFlNIS, UPDISK 

CALLED BY (where known): 

Disk resident routines 

MACROS USED: 

ADT, AFT, FSTB, FVS 

ERROR RETURNS: (R15 value at exit): 

1. Old specified file cannot be found 
2. New specified file already exists 
3. Old mode is illegal for a change 
4. No changes were made at all 
5. Change of mode is illegal 
6. New mode is illegal 
7. Incorrect ALTER parameter list (for example, insufficient parameters) 
S. Specified file is in Active File Table (cannot change a file while it is active) 

88 



EXAMPLES: 

ALTER LOAD MAP P5 SAVED MAP PI 
ALTER CMS-NUC ALPHANUM * LATEST LOADMAPS PI 
ALTER SPRT * P SCRIPT = = 
ALTER * EXEC PI " EXEC P2 
ALTER ** P5 = = PI 

OPERATION: ALTER checks the parameter list for various types of errors, and gives 
error returns, with messages, for any error detected. 

Only read-write disk(s) are checked for the files specified; read-only disks are ignored. 

When the parameter list has been checked and appropriate flag-bits set as needed, 
A LTER checks for existence of the given file(s), and changes the file identification, as 
follows: 

1. ACTLKP is called to check if the file to be changed happens to be active - that is, 
in the Active File Table. This is treated as an error - see error 8. In a couple 
of cases where this error has been known to occur, the calling program either 
forgot to close the file before ALTER'ing it, or tried to ALTER it first and close 
it afterwards. Thus, if this error should occur (a message is typed to warn the 
user), look for this type of bug in the calling progr&m. 

2. If the given fHe is not in the active file tabie, A LTER checks for the file by a call to 
FSTLKW. If not found, ALTER exits with a normal return if at least one file was 
changed, or with an error 4 (with message) if no files at all were changed. 

3. If the given file was found by FSTLKW, ALTER checks to make sure that the file 
identified by the new name and type does not already exist in the active file table 
for the same disk (via A CTLKP call - error 8 return if found), or in the FST 
tables for the same disk (via FSTLKW). If it is found, an error 2 is returned. 

4. If not, the file identification is altered as specified by the caller's parameter list, 
and a flag-bit is set if a change was actually made (for the subsequent exit as 
described above in step 2). 

5. ALTER then checks the NOUP flag bit of ALTRFLG to determine if the NOUP 
option - to prohibit the updating of the file directory - was specified. If so, the 
flag bit used to signal that the file directory is to be updated via a call to UPDISK 
is not turned on. 

6. ALTER then checks the flag bit in ALTRFLG to determine ~f the TYPE option - to 
type the identifier(s) of the file(s) altered to the console - was specified. If TYPE 
was specified, the PLIST is set up, and a call to TYPLIN types the identifier of 
the file. 

7. Then a call to the TFINIS routine is made (if necessary) to temporarily close all 
output files for the disk involved, and then U PDISK is called to update the file 
directory. 

89 



8. Finally, if the parameter list specified all names and/or types, the process is 
repeated, starting at step 1, to alter all appropriate filenames, types, or modes 
as desired .. 

See the examples given above for an insight into the kind of legitimate changes that can 
be made by an ALTER command. 

Installation Note: 

ALTER is a transient-disk-resident command. 

If another transient-disk-resident command should be programmed which required the 
use of ALTER as a called subroutine, the ALTER program should be included with it in 
the module of the new program (NEWPROG), and the new program call ALTER (via 
BALR) when needed. ALTER saves and restores registers, so the calling program 
would not have to do that. 

Example: LOAD NEWPROG ALTER (TRANS TYPE) 
GENMOD NEWPROG 

In any event, the system mask must be 00 when ALTER is invoked, as is generally 
required for all nucleus and transient-disk-resident routines. 

CEDIT 

FUNCTION: To create and/or edit card images files. 

ATTRmUTES: Disk resident 

Note: For a detailed explanation of CEDIT, see the \\Tite-up on the EDIT command. 

CLOSIO 

FUNCTION: To close out a file and cause an EOF on an output file to the card punch or 
printer. The output file may now be spooled out to the real device. 

ATTRIBUTES: Nucleus resident 

CALLING SEQUENCE: 
LA 1, PLIST 
SVC X'CA' 

90 



PUST DC 
[DC 
[DC 
iDC 

CL8' CLOSIO' 
CL8'READER 'J 
CL8'PRINTER'1 
CL8'PUNCH'] 

[DC CL8'OFF TJ 
[DC CL8'ON'] 

OPERA TION: CLOSIO determines whether the first entry in the parameter list is for a 
card reader, a printer, or a card punch, and issues a start I/O (SIO) to that device. In 
each case, the CCW used for the operation is invalid and is interpreted by the control 
program (CP67) as a signal that I/O operations on the corresponding virtual device are 
complete. CLOSIO repeats this for each parameter in the list. When all parameters 
are processed, it returns (via SVCINT) to the calling program. If no parameters are 
supplied, CLOSIO closes all three devices. 

If the parameter OFF is entered, any subsequent calls to CLOSIO will be ignored until 
the ON parameter is supplied. 

COMBINE 

ATTRIBUTES: Filename - COMBINE, disk resident moduie 

FUNCTION: To concentrate one or more files into a new file. 

CALUNG SEQUENCE: 

LA 1, PLIST 
SVC X'CA' 

PLIST DC CL8'COMBINE' 
DC CL8' new filename (=means retain old name) 
DC CL8' new filetype (= means retain old type) 
DC CL8' new filemode (= means retain old mode) 
DC CL8' old filenamel (* means all filenames) 
DC CL8' old filetypel (* means all filetypes) 
DC CL8' old filemode 1 
DC CL8' old filename2 
DC CL8' old filetype2 
DC CL8' old filemode2 

91 



DC 
DC 
DC 
DC 

CLB' 
CLB' 
CLB' 
CL5' (TYPE' 

Entry Requirements: 

, old filename n 
, old filetype n 
, old filemode n 

option to type file identifiers 
of files being COMBINE'd 

R1 must point to the COMBINE parameter list. 

EXIT CONDITIONS: 

Register 15 contains the error code, if any, to the user. If no errors were encountered, 
register 15 contains zero. 

ERROR RETURNS: (R15 value at EXIT) 

1. INVALID PARAMETER LIST 
2. OUTPUT DISK TO BE WRITTEN ON NOT LOGGED IN 
3. OUTPUT DISK NOT IN WRITE STATUS 
4. INPUT FILE DOE S NOT EXIST 
5. ERROR WHILE TRYING TO WRITE 
6. ERROR TRYING TO ALTER OUTPUT FILE 
7. INPUT FILE DISK, NOT LOGGED IN 
B. DISK SPECIFIED NOT IN ACTIVE DISK TABLE 
9. ATTEMPT TO COMBINE FIXED AND VARIABLE LENGTH FILES 

Calls to Other Routines: 

ADTLKP, FSTLKP, STATE, ALTER, ERASE, RDBUF, WRBUF, FINIS 

OPERATION: After checking that all necessary parameters are present; COMBINE 
checks for either a '=' or '*' in each argument, setting an appropriate flag for each 
specified if the (TYPE option is specified, a flag is also set. COMBINE then checks 
to see if the output disk is available in write status. If so, COMBINE checks that the 
input disk is logged in. 

COMBINE then checks the flag it set to see if either a ,*, or '=' was specified. 

If not, the input filename is moved ·into a STATE parameter list which verifies that the 
file exists. If the file is found, the location of the file status table is obtained and the 
input file is read. Data is written into a temporary file called (TEMP) (FILE). When 
an END of FILE is encountered FINIS is called to close the input file and determines 
if another file is to be combined repeating the above procedure to this point. The 
output file is then FINIS'ed. COMBINE calls ERASE in the event there already exists 
a file with the same name and type as the new file is to have, then ALTER's the (TEMP) 

92 



(FILE) to the new filename and filetype. After successful completion and prior to 
returning to the user or caller, COMBINE references NUCON and turns th~ page 
release flag on. 

When the program returns to INIT, this flag is checked and, if it is on, INIT issues a 
diagnose X'10' to CP to release the user pages from X'12000' up to the value of 
LOWEXT. COMBINE then calls FINIS to close all active files and branches to the 
caller. 

If a '=' or ,*, was specified, COMBINE sets the input filename, filetype, and filemode 
in the usual parameter lists and calls FSTLKP to determine if the file exists. If 
the file exists and an ! *! was specified in either the filename, filetype, or both, a 
negative sign bit is moved into the pointer to the parameter list signifying that the 
disk table is to be searched again for another file. With a fHe found COMBINE moves 
into the output parameter list, the name, type or mode depending on whether a '=' was 
specified in either of the fields. A check is then made to determine if the (TYPE option 
was specified and if it was, the name and/or type, depending on the field .in which an 
asterisk was specified, is moved into a TYPLIN plist and typed to the terminal. 
COMBINE then calls RDBUF to read the input file and calls WRBUF to write into the 
(TEMP) (FILE). FINIS is called to close the input file and output file. ERASE is 
called to erase the original file, if any, that has the same name and type as the new 
output file will have and ALTER's the (TEMP) (FILE) to the appropriate name. If an 
'*' was present for filename, or filetype, COMBINE returns to recall 'FSTLKP' to 
continue where it had previously left off. I f another correct file is found, the above 
procedure is repeated. If not, COMBINE releases the user pages as described in the 
preceding paragraph and exits to the caller. 

EDIT 

FUNCTION: To create and/or edit card image files. 

CALLING SEQUENCE: 

LA 1, PLIST 
SVC XYCA' 

{
'CEDIT} 

DC CL8 'EDIT' 

DC 
DC 

CL8' 
CL8' 

filename (optional) 
filetype 

OPERATION: The operation of the Editor programs consists of initialization, input 
environment processing; and edit environment processing. The functional difference 
between EDIT and CEDIT is that EDIT will place the entire file into core, whereas 
CEDIT will READ into core only the current line and WRITE to an intermediate file 
when finished with each line. 

93 



Note 1: When in the input and edit environments, a line entered from the terminal is 
read into a buffer called DDLIN. The input line is formatted according to tab settings 
in a buffer called TABLIN. The line to be written into the output file is located in a 
buffer called LINE. The current line always resides in the buffer called LINE. 

Note 2: During editing, the file being read from and updated is an intermediate file 
designated as (INPUT) (FILE) Pl. The new file being created or written into (that is, 
the updated version is an intermediate file designated as (INPUT)(FILE) PI). These 
two files exchange roles whenever the pointer is positioned to the top of the file. 

INITIA LIZA TION: EDIT will warn the user if the intermediate files (that is, lINPUT) 
(FILE) PI and (INPUTl)(FILE) PI) exist. It then sets the TABPNT storage cell to point 
to the tab settings to be used. (The tab settings to be used are determined according to 
the file type of the file. TABPNT always contains a pointer to the tab settings that are 
currently in effect.) If the user did not provide a filename, EDIT immediately enters 
the input environment. If the user did provide a filename, EDIT calls the STATE 
function program to determine if the file exists. If it exists, EDIT enters the edit 
environment. If the file does not exist, EDIT types a message at the terminal to that 
effect and enters the input environment to enable the user to create a file. 

INPUT ENVIRONMENT PROCESSING: The input environment of the EDIT command 
program is entered when the user wishes to create a new file or to add records to an 
existing file. When this environment is entered, EDIT types the message INPUT at the 
terminal. Next, it reads the user's first input line. It then spreads the line according 
to the tab settings that are currently in effect and writes the previous input line into the 
file being created. Finally, EDIT moves the input line into the output buffer (LINE) from 
where it will be written into the file being created when the user enters the next input 
line from the terminal. EDIT repeats this procedure of reading a line from the terminal, 
spreading it, and inserting the previous line into the file until the user enters a line with 
only a carriage return. The carriage return indicates that the user wishes to enter the 
edit environment and EDIT passes control to the portion of code that controls execution 
in the edit environment. 

EDIT ENVIRONMENT PROCESSING: The edit environment of the EDIT command 
program is entered when the designated file exists or when the user switches to it from 
the input environment. The various requests for editing functions are processed by 
correspondingly named programs. 

Control Within the Edit Environment: When the edit environment is entered, EDIT types 
the message 'EDIT:' at the terminal. It then reads the user's first request. Next, 
EDIT determines the nature of the request through a table":'lookup procedure and branches 
to the program that is responsible for satisfying the request. When that program is 
done, it returns control to the control element, which obtains the next request. This 
request is satisfied in a similar manner. 

Delete Request: EDIT reads successive lines from the file being updated (that is, (INPUT) 
FILE PI). It does not transmit these lines to the file being created. EDIT then returns 
for the next request. (If an end-of-file occurs during reading, EDIT signals the con­
dition via terminal message and returns for the next request.) 

94 



Insert Request: If this request does not provide a line, EDIT enters the input environ­
ment. If there is a line, it places the current line into the file being created. It then 
spreads the line provided with the request according to the current table settings. \Vhen 
the line is spread, EDIT makes it the current line by moving it to the LINE buffer. 
EDIT then returns for the next request. 

Retype Request: EDIT spreads the line supplied as part of the request according to the 
current tab settings. It then overlays the current line (in the LINE buffer) with the spread 
input line and returns for the next request. 

Serial Request: EDIT checks for the (NO) parameter. If present, it sets a switch to 
indicate that no serialization is to take place. If not present, EDIT saves the first three 
characters following the request name for use in columns 73-75 of the output lines (that 
is, card images). EDIT next obtains the increment field (if any) and saves it for future 
use. (If an increment field is not provided, EDIT assumes an incremental value of 10.) 
It then returns for the next request. 

Backspace Request: EDIT saves the backspace character for subsequent use. It then 
returns for the next request. 

Tab Definition Request: EDIT saves the tab definition character for use in spreading 
subsequent input lines. It then returns for the next request. 

Tabset Request: EDIT saves each of the tab settings supplied in the corresponding entry 
in the tab setting table (DEFTAB). These will be used during the spreading of sub­
sequently processed lines. It then returns for the next request. (A pointer to the 
current tab settings is always kept in a storage cell called TABPNT.) 

Quit Request: EDIT calls the FINIS command program to close both the file being 
changed or created and ERASE any work files. In effect, the file has remained unchanged. 
It then returns (via SV CINT) to the calling program, which is usually INIT. 

Verify Request: EDIT sets the verify mode switch on. This switch is referred to by 
various other request processing programs. EDIT then returns for the next request. 

Brief Request: EDIT sets i:he verify mode switch off to indicate that brief mode is in 
effect. It then returns for the next request. 

Input Request: EDIT goes directly into the input environment. 

Overlay Request: EDIT spreads the line entered as part of the request according to the 
current tab settings. It then scans the spread line for non-blank characters. Upon 
encountering one, it replaces the character located at the same relative position on the 
current line (in LINE) with that non-blank character. When the entire input line has 
been scanned, EDIT determines if verify mode is in effect. If it is, EDIT types the up­
dated current line at the terminal. If verify mode is not in effect, EDIT does not type 
the updated current line. EDIT then gives control to the REPEAT request routine to 
determine if OVERLA Y processing is to be repeated for the next line in the file. If not, 
EDIT returns for the next request. 

95 



Blank Request: EDIT spreads the line entered as part of the request according to the 
current tab settings. It then scans the spread line for non-blank characters. Upon 
encountering one, it replaces the character located at the same relative position in the 
current line (in LINE) with a blank. When. the entire input line has ,been scanned, EDIT 
determines if verify mode is in effect. If it is, EDIT types the updated current line at 
the terminal. It then gives control to the REPEAT request routine to determine if 
BLANK processing is to be repeated for the next line in the file. If not, EDIT returns 
for the next request. 

Repeat Request: EDIT stores the specified number of repeats and decrements this count 
each time the REPEA T routine is entered. If the count is not zero, the current line is 
written into the file being created (that is, (INPUT) FILE Pl), and the next line is read 
from the file being updated (that is, (INPUT1) FILE Pl). Control is then given to the 
routine that processes the request being repeated (either OVRLA Y or BLKOUT). If the 
repeat count is zero, EDIT returns for the next request. 

Next Request: The current line pointer is moved ahead n lines within the file. EDIT 
then returns for the next request. 

Print Request: EDIT types the current line of the file onto the online terminal. EDIT 
repeats this n times and returns for the next request. (If the user specifies either L or 
lJNENO, serial numbers are included with each typed line. If the user does not specify 
either of these, serial numbers are not included. Also, if an end-of-file is encountered 
during the reading of the file being updated, EDIT signals the condition via terminal 
message and returns for the next request. ) 

Top Request: If an end-of-file has been reached on the file being updated, CEDIT switches 
that file with the file being created and returns for the next request. After the switch, 
the file that was being used for output is used as input; thus, the newly created file 
becomes the one to be updated on the next pass. If an end-of-file has not been reached, 
CEDIT transfers the records remaining in the file being updated to the file being created. 
It then switches the roles of the two files and returns for the next request. 

The switching of files is done in the following manner: The FINIS command program will 
close the newly created file and then the POINT function program will position the read­
write pointers to the first item in the file. It does the same for the file that was being 
updated. Next, the file-names in the corresponding read and write parameters lists are 
switched. (Refer to the discussions of the RDBUF and WRBUF function programs.) 
Finally, the old file is erased. 

For EDIT, the incore line pointer is placed at the top of the file. 

Backup Request: The line pointer is moved backward n lines within the file. 

Bottom Request: The line pointer is positioned at the end of the file - last line. 

Locate Request: (If an end-of-file is in effect when this request is issued, EDIT switches 
the two files in, the same manner as it does for a TOP request. If an end-of-file is not in 
effect, no switch is made.) EDIT reads a line from the file and scans across it for a 
string of characters that match those supplied with the located request. If no such string 

96 



exists in that line, EDIT will obtain the next line in the file. EDIT scans this line for a 
match. If a match does not occur, it repeats the procedure. If a match is found, EDIT 
determines whether verify mode is in effect. If it is, EDIT types the line having the 
matching string at the terminal and returns for the next request. If an end-of-file is 
encountered before a match, EDIT signals this via a terminal message and returns for 
the next request. 

Find Request: EDIT spreads the line supplied with the request according to the tab 
settings currently in effect. (If an end-of-file is pending when this re,quest is made, 
EDIT switches the two files in the same manner as it does for a TOP request. If an end­
of-file is not pending, no switch is made.) It then reads a line from the file being up­
dated. Next, EDIT scans this line to determine if it contains the same characters 
supplied in the input line in the same relative positions. If the line does not, EDIT will 
obtain the next line from the file and scan this line in a similar fashion. EDIT repeats 
this procedure until either a match or an end-of-file is encountered. If a match occurs, 
EDIT determines whether verify mode is in effect. If it is, EDIT types the line containing 
the matching character string at the terminal and returns for the next request. If 
verify mode is not in effect, it merely returns for the next request. If an end-of-file 
occurs before the match, EDIT signals this via terminal message and returns for the 
next request. 

Change Request: (If an end-of-file is in effect when this request is issued, EDIT switches 
the two files in the same manner as it does for a TOP request. If an end-of-file is not 
in effect, no switch is made.) EDIT scans the line supplied with the CHANGE request 
and retrieves the character string to be replaced. It then determines whether the 
current line contains this string. If it does not, EDIT returns for the next request. 
If the current line contains the string of characters to be replaced, EDIT retrieves the 
replacement characters from the line supplied with the CHANGE request. It then makes 
the requested replacement of characters in the current line. (The length of the current 
line will be appropriately adjusted to accommodate the replacement characters.) If the 
global option is specified, EDIT continues to scan the current line for a second occur­
rence of the string of characters .to be replaced. If there is a second occurrence, EDIT 
makes the requested replacement. EDIT continues to scan the current line until all such 
occurrences have been replaced. (If the global option is not specified, EDIT only 
replaces the first occurrence in the current line.) Then, if verify mode is in effect, 
EDIT types the updated current line at the terminal. If lnore than one line is to be con­
sidered for change, EDIT writes the updated current line into the file being created and 
reads the next line from the file being updated. This line then becomes the current line. 
EDIT then scans the current line to determine whether it contains the character string 
to be replaced. If it does, EDIT makes the requested replacement (more than one 
replacement if the global option is speCified and there is more than one occurrence of 
the string in the line), types the updated line at the terminal if verify mode is in effect, 
and determines if another line is to be considered for phange. If the current line does 
not contain the character string to be replaced, EDIT merely determines whether there 
is another line to be considered for change. If there is, EDIT replaces the current line 
into the file being created and obtains the next line from the file being updated. EDIT 
repeats this procedure until n lines have been considered. (The default value if n is not 
specified on the CHANGE request is one.) If an end-of-file on the input file (that is, the 
file being updated) is encountered before n lines have been considered, EDIT types a 
message at the terminal to that effect and returns for the next request. 

97 



File Request: If the user did not provide a filename on the EDIT command and also did 
not provide one on the FILE request, EDIT prompts the user (via a terminal message) to 
reissue the FILE request and supply a filename. When the user complies, EDIT deter­
mines if an end-of-file on the file being updated is pending. If it is not, EDIT transfers 
the remaining lines in the file being updated to the file being created. It then calls the FINIS 
command program to close both the file being updated and the file being created. EDIT 
then calls the STATE function program to determine whether the new file already exists. 
If it does, EDIT calls the ERASE command program to erase that file. After the file 
has been erased 'or if no such file exists, EDIT calls the ALTER command program to 
change the designation of the file just created to the designation supplied by the user. It 
then erases the old file (that is, the one being updated), if necessary, and returns (via 
SVCINT) to the calling program, which is usually INT. (The old file need not be erased 
at this time if a top was done just before the FILE request was issued because it is 
erased as part of the top operation.) 

Save Request: The current contents of the file are written on disk, FINIS is called to 
close the file, and a return to the INPUT mode is made. 

ERASE 

FUNCTION: To delete a file or related group of files from the permanent, temporary, 
and/or other read-write disk(s). 

A TTRffiUTES: Nucleus resident 

CALLING SEQUENCE: 
LA RI, PLIST 

then either 
SVC X'CA' 
DC AIA(ERROR) 

or 
L R15, AERASE 
BALR R14, RI5 
BNZ ERROR 

ENTRY REQUIREMENTS: 

RI must point to P-List as usual 

Call E RASE via SV C 
Error-return (for example, if file not found) 

Where AERASE = V (ERASE) 
Call ERASE via BALR within Nucleus 
Transfer if error (for example, file not found) 

RI must point to ERASE parameter list: 
DS OF 

PLIST DC CL8'ERASE' (Note - immaterial if called by BALR) 
DC CL8' Filename 
DC CL8' Filetype 
DC CL2' Filemode 

or 
DC X'FFFFFFFF' Delimiter (necessary if fHemode omitted) 

98 



EXIT CONDITIONS: 

Normal Return (File successfully erased): 
R15=0 (and condition - code -.0) 

Incorrect ERASE Parameter List (Error 1) 
R15=1 (and condition - code = 2) 

File(s) not Found (Error 2) 
R15=2 (and condition - code = 2) 

File Faulty (but erased) - Error 3 
R15=3 (and condition - code = 3) 

CALLS TO OTHER ROUTINES: 

ACTFRET, ACTLKP, ACTNXT, DISKDIE, FREE, FRET, 
FSTLKW, QQTRKX, RDTK, TFINIS, TRKLKPX, UPDISK 

CALLED BY (where known): 

DISK, FINIS, GENMOD, LISTF, LOAD, OFFLINE, plus disk resident 
routines. 

MACROS USED: 

ADT, AFT, FSTB, FVS 

OPERA TION: ERASE checks the parameter list for errors by the caller. The filename 
and filetype must each be given, or else a single asterisk to indicate all names and/or 
types. The filemode may be omitted (that is, =X' FF'), in which case the first read­
write disk is assumed. If not omitted, the filemode must be alphabetic, or a single 
asterisk. If alphabetic, a mode number is acceptable. If the mode is ,* I, all read­
write disk(s) are searched by ERASE. 

For example, a call of ERASE * TEST P5 would erase all text files on the P-Disk that 
had a mode number of 5. All other text files on any disks would remain intact, and all 
other P5 files would remain also. 

If any errors are detected in the parameter list, the message INCORRECT ERASE 
PARAMETER-LIST is given, error 1 is returned, and nothing is erased. 

Mter checking the parameter list and setting flagbits as needed, E RASE checks for a 
given file and deletes it if found using the following procedure: 

1. ACTLKP is called to determine if perchance the file to be erased is still active -
that is, in the Active File Table (AFT). If it is (only a file on a read-write disk is 
acceptable, of course), then it is temporarily closed via a special EFINIS call to 
the TFINIS routine, which performs just enough of the normal closing steps 
ordinarily performed by FIN1S to permit the file to be successfully erased. Proceeds 
then to step 3 below. 

99 



2. If not found by ACTLKP, then ERASE calls FSTLKW to find the file. If not found, 
exit is made from ERASE as described in step 14 below. 

3. When the file has been found either by ACTLKP (and EFINIS called), or by 
FSTLKW, then TFINIS is called to temporarily close all output files for this 
particular disk (unless this was already accomplished by an earlier excursion 
through this procedure for another file on the same disk). 

4. ERASE then checks the TYPE option flag bit to determine if the user specified 
that the identifier(s) of the file(s) being erased are to be typed to the console. 
If the hit is on, the PLIST is set up, and a call is made to TYPLIN. 

I 5. Before releasing any tracks belonging to the file that has been found, ERASE calls a 
special entry in the UPDISK routine (see description of entry (2) in UPDISK routine 
for details) to reserve enough disk records for a new file directory, to be updated 
when the file has been erased. This procedure is part of CMS's double directory 
scheme, and ensures that the file directory for the disk from which the file is being 
erased is updated when and only when the erase has been completed. (If any system 
malfunction or user intervention interrupts the process before completion, the old 
file directory and the file being erased are both still intact.) 

6. Then (unless it is already available), 1000 bytes of free storage are obtained via 
FREE, for use in reading in the first and other (if any) chain links of the file. 

7. Next the first chain link of the file is read into core, into the first 200 bytes of the 
free storage area, via RDTK. 

8. The data blocks pointed to by the first chain link are then released via TRKLKPX, 
and the first chain link itself via QQTRKX (the first chain link remaining in core, 
however). 

9. If any data blocks remain, according to the FSTDBC data-block-count in the FST 
entry, then additional chain links are read into core, as pointed to by the first chain 
link. For each of these Nth chain links, the data blocks pointed to thereby are 
released via TRKLKPX, and then the chain link itself. This process continues, with 
a count of data blocks returned being decremented, until there are none left, or all 
available chain links have been exhausted. 

I 10. At this point, all data blocks and chain links have been given back to the QMSK and 
QQMSK via appropriate calls to TRKLKPX and the one call to QQTRKX. Now a 
check is made to see if perchance the file being erased happens to be contained in 
STATEFST. If so, the 48 bytes at STATEFST are cleared to reflect the deletion of 
the given file. (Note -RDBUF utilizes the STATEFST information in some circum­
stances; thus it must be either correct or null.) 

I 11. Next provisions are made to keep the FST hyperblocks compacted, for the disk on 
which the file was found and erased. In this process, the last FST entry for the 
disk involved is moved to where the FST entry was for the file that we just erased, 
and the place from which it was moved is cleared. A check is made of the active 

100 



file table via ACTNXT in case an active file entry points to the file moved, in which 
case the pointer is corrected; the pointer following ST ATEF ST is also checked, and 
corrected if necessary. In any event, the compacting is carefully accomplished, 
with all pointers, displacements, block counts, etc., being corrected as necessary. 

I 12. Finally, a call to the other special entry of UPDISK (entry 3 in the UPDISK 
description) is made to complete the updating of the file directory for the disk 
involved. 

I 13. At this point, if the entire FST hyperblock and the last FST entry in the preceding 
hyper block have all become clear, the last hyperblock is returned to free storage, 
and all pointers and counts corrected accordingly. (This is done to avoid keeping a 
number of empty hyperblocks in core in case a large number of files are erased.) 

I 14. Finally, the entire procedure is repeated starting at step 1, if the parameter list 
specified all names, types, or modes. 

I 15. When all appropriate erasing (if any) has been completed., ERASE returns the 1000-
byte buffer to free storage, and exists to the caller with the appropriate error code. 

If no files at all were erased, ERASE returns an error code 2, but without an error 
message. (Several system programs call ERASE to eliminate old listings, old text files, 
etc.;; in case they might exist, so that an error message for FILE NOT FOUND in 
E RASE itself would be impractic tl1 ;) 

Several error conditions are detected by ERASE. On one of these, a permanent I/O 
error in reading in a chain link due to hardware disk errors, ERASE purposely invokes 
the code at DISKDIE (within the FINIS command) to leave the file directory intact until 
the disk error can be corrected. 

On all others, when the error is detected, ERASE ceases to give back records using 
TRKLKPX and/or QQTKRX, but deletes the files and compacts the directory as usual. 
An error 3 is given on exit, when ERASE is finished. 

This feature makes it feasible to ERASE a faulty file from one's directory without 
endangering the integrity of other files on the same disk. 

FILEDEF 

FUNCTION: To allow the user to specify, in a manner similar to the OS data definition 
card, I/O devices and certain file characteristics which will be used by a program at 
execution time. Can also be used to modify delete and list previously defined file 
descriptions. 

ATTffiBUTES: Disk resident, transient 

101 



CALLING SEQUENCE: 

LA RI, PLIST 
SVC X'CA' 
DC AL4 (error) 

ENTRY REQUIREMENTS: 

RI must point to FlLEDEF parameter list: 
DS OF 

PLIST DC CL8 'FILEDEF' 
DC CL8 'fileid' 
DC CL8 'device' 
DC CL8 ' 
DC CL8 ' 
DC CL8 '(I 
DC CL8 ' 
DC 8X 'FF' 

ENTRY POINTS: 

FlLEDEF 

EXIT CONDITIONS: 

Normal Return 
RI5 = 0 
R0 = address of FCB 

parameter pairs 
parameter pairs comb'd 
option delimiter 
options 
fence 

positi ve if already exi.sts 
negati ve if obtained or modified by this call 

Error Return 
RI5 non zero (See Error Returns) 

CALLS TO OTHER ROUTINES: 

FREE, FRET, CONWRITE 

EXTERNAL REFERENCE: 

SYSREF 

CALLED BY: 

SOlOMAN, LANGUAGE PROCESSORS, 
Execution interface - PLI, FORTRAN 

MACROS USED: 

TYPE, CMSTYPE, CMSCB, CMSYSREF, CMSREG 

102 



TABLES AND WORK AREAS: 

COPY LIST 
FCB 

plist copy 
file control block 

REGISTER USAGE: 

RO - Address Return 
R1 - Plist on entry 
R2 - Temporary 
R3 - FCBLEAD 
R4 - FCBSECT 
R5 - Plist - working copy 

I 

R6 I R7 
RB Working temporary 

R9 
R10 - internal linkage 
R11 - conversion 
R12 - Base 
R13 - Save area 

~~: } External linkage 

ERROR RETURNS: 

1. FIL001: Parm 1 invalid 
2. FIL002: Mode number missing 
3. FlL003: Parm missing a.fter xxxxxxxx 
4. FIL004: Invalid Parm after xxxxxxxx 
5. FlL005: Bad LRECL/BLKSIZE values 
6. FIL006: illegal clear request 
7. FIL007: Filename/filetype required 
B. FILOOB: Unknown device type 
9. FIL009: Bad opted parameters 

10. FIL010: Invalid option 

internal 
free storage 

OPERATION: The starting address of the chain of FCB I s is obtained from the nucleus. 
The PLIST is then analyzed to determine if there is enough space in the transient area 
for a working copy of the PLIST; if not, free storage is obtained and the PLIST copy is 
placed there. 

The PLIST is then examined for options. If either PERM and/or NOCHNG is specified, 
appropriate flags are set. Any other options are invalid, and cause an exit with error 
code 10. 

Subsequent processing depends on the operands specified. The first operand is checked, 
and depending on its contents, operation continues as described below. 

103 



No Operand. FILE DE F with no operand requests a list of current file definitIons. 
FCBNUM contains the number of entries in the chain of FCB's. This is used to loop 
through the chain. For each, FCBDD and FCBDEV is typed to the terminal. For 
definitions to DSK, FCBDSNAM (the CMS filename) and FCBDSTYP (the CMS filetype) 
are also typed. 

*CLEAR. All FCB's on the chain are released except those flagged PERManent. These 
are released only when specifically cleared. 

Numeric Fileid. The number is converted to a data set reference number (i. e. , 
FTxxFnnn). Processing continues as described under alpha fileid below. 

Alpha Fileid. FCB is used to loop through the FCB chain in free storage looking for the 
specified FCB. If no match is found, the new FCB flag is set, free storage is obtained, 
and the address of this is placed in the first word of the last FCB on the chain. The 
address of the new FCB is put in register 0 as a negative quantity and saved to be 
passed back to the user when parameter processing is complete. If the PERM flag is 
set, the high order byte of the new FCB is flagged PERManent. 

If a matching FCB is found, and the NOCHNG flag is set, FILEDE F returns to the 
user with the address of the FCB in register O. 

If a matching FCB is found and the NOCHNG flag is not set, the old FCB is saved in 
case of an error, the old entry flag is set, and the address of the FCB is negatively 
stored in register O. If the PERM flag is set, the FCB is flagged PERManent. 

Processing is then dependent on the device type and related parameters specified. 

Device DUMMY. For device DUMMY an FCB is created with a ddname of dummy' 
and a device type of X' 00' . 

Device Batch. For device BATCH an FCB is created with a device type of disk. 

The following chart shows the RANGE of each option and the device types to which it 
applies. 

104 



Paran -1 ] leter Range 
:::==="==:-'-'=======.:==- "= 

:N L61439 

. L61439 

L61439 
--

) E,F,A,R 
_ ._ .. - --- ---------

PS, DA, IS, PD 
------

MOD 
- _._-_._-- ---

-------

BLKSIZ ~E 
~--

LRECI ~ 
-.... -. 

(2) 

AUXPR OC 

----

----

FB, V, VS, VB, VBS, U 
c----

L61438 -c----

L61438 
1--._-------

ABSOLUTE 
ADDRESS 

--

C'16' 

Default 

---

50 

---
-----

---
---
---
---
---

---

---
---

~ Disk T~ r Console FCB Field 

{ JFCKEYLE 
f---------- ----f-----+--. 

t/ FCBXTENT 

t/ JFCLIMCT 
1----- 1------

{ JFCOPTCD 
A. ___ 

1-------- ------f--. 

t/ FCBDSORG 
-.-.- 1---- ------

t/ FCBIND2 
---- f--- --"- ----

{ t/ " I " " FCBRECFM 
.----- c--- --- ---

~ t/ " FCBBLKSZ 
-- --- --~".---

t/ " I FCBLRECL 
--.--- -- ----- ---

{ " t/ t/ " " FCBPROC 
_ .. _ .. _-- i-_ ---- ----

FCBMODE 

(1) If there are no entries after disk, a default dsname of file and dstype equal to the ddname will be established. 

(2) Auxproc is the auxiliary processing routine address which is primarily used by language processors for special 
handling routines. Referenced by SOEOB. 



FINIS 

FUNCTION: To allow the user to close one or more selected files. 

ATTRIDUTES: Nucleus resident 

CALLING SEQUENCE: 

LA 1, PIlST 
SVC X'CA' 

PLIST DC CL8'FINIS' 
DC 

DC 

DC 

CL8 {'Filename't 
'*' J 

C L8 \' Filetype' } 

'*' 
CL2 ~ 'Filemode' ~ 

1,*, 

OPERATION: Refer to the description of FINIS under" File Management Function 
Programs" • 

Note: Since INIT closes all files after each command, FINIS as a terminal command 
would not normally be issued. For FINIS from the terminal, error 6 "NO FILES 
OPEN" would occur. 

LISTF 

FUNCTION: To list the names of the files that exist on one or more of the CMS disks. 

ATTRffiUTES: Disk resident, transient 

CALLING SEQUENCE: 

LA 
SVC 
DC 

RI, PIlST 
X'CA' 
AIA(ERROR) 

ENTRY REQUIREMENTS: 

RI must point to P-List as usual 

RI must point to LISTF parameter list: 
DS OF 

106 



PLIST DC 
DC 
DC 
DC 
DC 
DC 

DC 
DC 

CL8'LISTF' 
CL8' 
CL8' 
CL8' 
CL8'( 
CL8 i 

CL8' 
X'FF' 

EXIT CONDITIONS: 

Normai Return 
R15 = 0 

filenam.e or '*' or omitted 
file type or '*' or omitted 
filemode or '*' or omitted 
precedes options (if any) 
option 1 (if any) 

option N (if any) 
signals end of P-List 

Error Returns (R15 values, with messages as shown): 
R15 = 1: INVALID LISTF PARAME TE R LIST. 
R15 = 2: FILE NOT FOUND 
R15 = 3: NO R/W DISK LOGGE D IN 

CALLS TO OTHER ROUTINES: 

ADTLKP, ADTNXT, ERASE, FINIS, \VRBUF 

CALLED BY: 

User 

MACROS USED: 

ADT, FVS 

OPERATION: The disk(s) searched for the given file(s) are determined by LISTF as 
follows: 

1. If filemode is given, ADTLKP is called to reference the given disk; if found, LISTF 
searches the directory to find the given file(s). If not found by ADTLKP or if the 
disk is not logged in, error 2 (FILE NOT FOUND) is returned. 

2. If the filemode is omitted, ADTNXT is called (repeatedly if necessary), and LISTF 
searches all read-write disk(s) currently logged in, to find the given file(s). If no 
read-write disks are logged in, error 3 (NO R/w DISK LOGGE D IN) is returned. 

3. If the filemode was given as asterisk (*), then ADTNXT is called as above, and all 
disks, read-write and read-only, are searched by LISTF for the given file(s). 

VVhen LISTF, in scanning a particular FST table as obtained from ADTLKP or ADTNXT, 
finds an FST entry whose filename and filetype satisfy the param.eter list, it moves the 
filename, filetype, filemode, and number of data blocks in the file from that file status 
table to the buffer. If the EXEC option is not requested, it then calls the TYPLIN func­
tion program to type the contents of the buffer at the terminal. (The output lines are 

107 



preceded by an appropriate heading.) LISTF repeats this procedure for each file status 
table whose filename and filetype fields satisfy the listing requirements. When the scan 
of all participating file status tables is completed, LISTF returns to the caller. 

If the EXEC option is requested, the contents of the buffer are not written to the terminal. 
Instead, a CMS EXEC PI file, containing the dummy arguments "&1 &2" followed by the 
buffer contents, is created. This file may later be accessed by the EXEC program, 
which will replace the dummy arguments. 

Along with the statistics of file: name, type, mode, and number of records, the date and 
time that the file was last opened for writing will be obtained from the FST, and made 
available to the printed line. 

If the SORT option is specified, the printed output will group together all identical 
filetypes. 

Several options are available in the LISTF command. See the CMS User's Guide for full 
information. 

Note: 

If the P-Disk is read-only and LISTF is given with the filemode omitted, an error 3 (with 
message) is returned. 

For listing files on a read-only P-Disk, therefore, be sure to include the mode 
letter P. 

OFFLINE 

FUNCTION: To perform the 'necessary conversion between unit record files and disk 
files and vice versa. 

A TTRffiUTES: Disk resident, transient 

CALLING SEQUENCE: 

108 

LA 1,PllST 
SVC X'CA' 

DS OD 



PLIST DC CL8'OFFLINE ' 

r
READ 
PUNCH 

::~~~:~~ 
DC CLS' ~UNV Vi PRINT 

PIDNTCC 
PRINTUPC 
PRINTVLR 

DC CL8' t filename or * 
DC CL8' filetype 
DC CL2' file:mode 

Note: Asterisks can be used in place of the filename and filetype if special read mode is 
desired; that is, if OFFLINE READ filename filetype control cards precede each logical 
deck. 

OPERATION: OFFLINE calls the SVCFREE function program to obtain a block of free 
storage for use as a work area. Next, it calls the STATE function program to locate the 
file status table for the specified file. (This file status table will exist only if a file 
identically named exists in the system.) From here on, the operation of the OFFLINE 
command program depends on which function was invoked. 

READ: The operation of the read portion of the OFFLINE command program depends on 
whether or not the caller selects special read mode. 

Special Read Mode (*): OFFLINE reads the first card from the card reader via a call to 
the CARDRD function program. If this card is not an OFFLINE control card, OFFLINE 
signals the error and will then assume a control card of the form "OF FLINE READ 
• • NAME. • • • TYPE. .". (The user may then ALTER the file identification to 
what was intended.) If an asterisk was specified only in the filename field, OFFLINE 
will take the filename, filetype and filemode from the OFFLINE READ card and place that 
information in the parameter list. If asterisks were placed in the filename and filetype 
fields, and no mode specified, the filename and filetype from the OFFLINE READ card 
will be placed in the parameter list and a default mode of P will be placed into the para­
meter listo If' * * fm' was specified, the filename and filetype are taken from the 
OFFUNE READ card and put into the parameter list and the mode specified is the mode 
that is placed into the PLIST. 

OFFLINE calls the STATE function program to locate the file status table entry for the 
indicated file. It will erase the copy of the old file once verification of the input file 
is obtained. Next, it reads a block of cards as described below. If neither another 
OFFLINE control nor an end-of-file is encountered during reading, OFFLINE calls the 
WRBUF function program to place the card images into a disk file. It repeats this pro­
cedure for the next block of cards in the reader. 

If another OFFLINE control card appears in the input stream, OFFLINE calls SCAN to 
format it and TYPLIN to type it at the terminal. It then writes the remaining image of 
the previous file into the disk file, calls the FINIS command program to close that file, 

109 



and returns to process the new fil~ of cards following the second OFFLINE control card 
in the prescribed manner. OFFLINE repeats this procedure' for each logical file of 
cards in the reader. 

When an end-of-file is encountered during the reading of cards, OFFLINE places the 
remaining images into the last disk file, calls FINIS to close that file, calls CLOSIO 
to close card reader operations, calls the SVCFRET functIon program to release the 
storage previously obtained, and returns to the calling program. Thus, during proc­
essing, OFFLINE converts each card file in the card reader to a correspondingly 
named disk file. 

No Special Read Mode: OFFLINE calls the ERASE command program to erase the 
identically named file (if one exists and if there are cards to be read) •. Next, it reads 
a block of cards as described below. It then calls the WRBUF function program to 
write the images into a disk file. OFFLINE repeats this procedure for each block of 
cards until an end-of-file occurs. At this time, it writes the remaining images into 
the disk file, closes that file (vis FINIS), closes card reader operations (via CLOSIO), 
releases the storage previously obtained (via SVCFRET), and returns to the calling 
program. Thus, if the special read mode is not selected, OFFLINE creates a single 
file from the cards in the reader. 

In either case, (Special Read Mode (*) or not), OFFLINE will read the first data record 
and compare its record length against the specified length. If it gets an incorrect 
length, it checks to see if an error has been encountered and branches out with the 
appropriate error code. If there is no error, OFFLINE checks to see if the record 
length is 132 bytes; if affirmative, it types the message "RECORD LENGTH = 132 
BYTES" on the console and continues to read and write as described in the two read 
mode descriptions. If the record length is not 132 bytes, OFFLINE assumes the file 
record length to be equal to the length of the first record read and continues to read 
and write as described in the Read mode descriptions depending on which was specified. 

PUNCH: OFFLINE calls the RDBUF function to read a card image from the named disk 
file into an I/o buffer and then calls the CARDPH function to punch that image on the 
card punch. It repeats this process for each image in the disk file. When an end-of­
file is detected during a disk read operation, OFFLINE closes the disk file (via FINIS), 
closes punch operations (via CWSIO), releases the storage previously obtained (via 
SVCFRET), and returns to the calling program. 

PUNCHCC: Prior to punching the specified card file as described above under PUNCH, 
a control card of the form "OFFLINE READ filename filetype" is punched preceding 
the normal punched output. ' 

P~UNCHOT: Prior to punching the specified card file as described under PUNCH, a 
control card of the form "OFFLINE READ filename filetype filemode date-last-written 
time-last-written" is punched preceding the normal punched output. 

PRINT: OFFLINE first calls the PRINTIO function program to print a page heading and 
then to double space. Next, it calls the RDBUF function program to read a line image 
from the named disk file and the PRINTIO function program to print the Hne on the 

110 



printer. OFFLI~"'E repeats the process of reading an image and printing it for 55 lines. 
At this time, it ejects the printer to a new page, prints a page heading, double spaces, 
and prints the next 55 line images. When an end-of-file is detected during a disk-read 
operation, OFFLlNE closes the disk file, closes printer operations, releases the 
storage previously obtained, and returns to the calling program. 

PRINTCC: For PRlNTCC, OFFLINE operation parallels that for PRlNT, except that 
OFFLINE does not directly control printer facilities (for example, spacing, ejection), 
but rather, allows the first character of the print line image to be used for this 
purpose. 

PRINTUPC: The function PRINT is performed after each print line image has under­
gone a translation on each character to uppercase representation. Each character is 
OR I ed with a value of X' 40' • 

PRINTVLR: The first four bytes of the print record are scanned for the effective length 
of the data record. The length is then passed to the PRlNT function. 

PRINTF 

FUNCTION: To print all or a specified part of a given file on the user's console 
typewriter. 

ATTRlliUTES: Disk resident, transient 

CALLING SEQUENCE: 

LA 1, PUST 
SVC X'CA' 

PLIST DC CL8'PRINTF' 
DC CL8' filename 
DC CL8' , filetype 

{ DC CL8' } * or starting item number 
{ DC CL8' } * or ending item number 
{ DC CL8' , } print line width 

111 



OPERATION: PRINTF checks the filename and filetype to ensure they are both present 
and not asterisks. Then the STATE function program is called to verify the existence of 
the given file and to determine the number of items, fixed or variable 'filetype, etc. If 
STATE cannot find the file, a message 'FILE NOT FOUND' is given, with error code 3. 

If an error in the parameters is detected (for example, filename or filetype omitted, or 
the ending item number less than the starting item number), the message "INCORRECT 
'pmNTF' PARAMETER-LIST" is given, and error code 1 is returned. 

Several possible file types are checked for, and certain default values are chosen for, 
various line lengths, as follows: 

Filetype Line-Length 

MEMO 80 
SCRIPT 120 
LISTING 121 
Any Other 72 

If the starting item number is greater than the number of items in the file, the message 
*EOF * is printed, and return is made (without an error indication). 

If the starting and/or ending item number has been supplied, PRINTF sets the RDBUF 
parameter list as needed to read the items desired. 

PRINTF then calls RDBUF to read several items at once into a very large (3200-byte) 
buffer included with the program (unless the file is variable, in which case, one item at 
a time is read). The items are then printed online one at a time via calls to TYPLIN, 
with the desired or actual line-length used, until the buffer is exhausted, at which time it 
is refilled if necessary, etc., until printing is complete. 

To enhance overall CP/CMS performance ill case several users are using PRINTF at the 
same time (each in his own virtual machine), PRINTF is deliberately designed to take as 
few pages in core as possible while running, and to minimize disk reading by reading 
several items at once. (For example, a PRINTF of the first 40 items of a fixed file of 
80-byte records would require just one call to RDBUF to fill the 3200-byte buffer, and 
very few actual SlO's performed by RDTK to satisfy the RDBUF call.) 

112 



SCRIPT 

FUNCTION: To print a file of English text at the terminal or on the printer. 

ATTRffiUTES: Disk resident 

CALLING SEQUENCE: 
LA 1,PLIST 
SVC X'CA' 

PLIST DC 
DC 
DC 

DC 

CL8'SCRIPT' 
CL8' 
CL8' 

CL8' 

filename 
option 1 

option N 

OPERATION: The operation of SCRIPT consists of initialization and text processing. 

INITIALIZATION: SCRIPT determines if the user has provided a filename and saves the 
name if it is specified. If it is not specified, SCRIPT signals the error and returns to 
the calling program. SCRIPT then processes the parameter list (of PARMROUT) to 
determine specified options. If the PAGE option was specified, PARI\'IROUT sets an 
indicator (at SWON). If the user has provided a filename, SCRIPT determines if the file 
to be typed at the terminal exists. If it does not, SCRIPT signals the error and returns 
to the calling program. If the file exists, it then types the message 'SEM---VERSION 2' 
at the terminal and waits for the user to reply with a carriage return (unless the NOWAIT 
option was specified). SCRIPT then tests for the OFFLINE option and ejects a page on 
the offline printer if it was specified. When the reply is received, SCRIPT sets the top 
margin by skipping five lines. This completes initialization. 

TEXT PROCESSING: When initialization is complete, SCRIPT reads, in turn, each line 
in the specified file until the end-of-file is encountered. It then returns to the calling 
program. The processing performed on each line read depends upon the nature of the 
first character in the line. This character may be either a nonblank character, blank, 
or a period. 

First Character Nonblank: If the first character in the line read from the file is neither 
a blank nor a period, SCRIPT determines whether or not fill mode is in effect. If it is 
not, SCRIPT types the line, as is, at the terminal. (In this case, the line will be 
truncated if the length to be typed is greater than the current line length.) If fill mode is 
in effect, SCRIPT types the line, appropriately justified, at the terminal or on an offline 
printer, if the OFFLINE option was specified. (One or more right-justified lines may be 
typed at the ternl~nal, depending on hOVI the length of the line to be typed compares with 
the line length that is currently in effect. Also, some characters at the end of the line to 
be typed may remain in the output buffer and be merged with characters from the next 

113 



line read to produce the next right-justified line typed at the terminal. If the 
TRANSLATE option was specified, the line will be printed in uppercase letters. ) 

First Character Blank: If the first character in the line read from the file is a blank, 
indicating that a new paragraph is to be started, SCRIPT types the remainder of the 
previous line at the terminal or on an offline printer, if the OFF liNE option was 
specified. It then determines whether or not fill mode is in effect. If it is not, SCRIPT 
types the line just read, as is, at the terminal or offline printer. If fill mode is in 
effect, SCRIPT types the line, appropriately justified, at the terminal or offline printer. 
The line is typed or printed in upper case, if the TRANSLATE option was specified. 

First Character Period: If the first character in the line read from the terminal is a 
period, a control word is contained in the line, and control is passed to a corresponding 
program to carry out the required processing. 

Break (. BR): SCIDPT types the remainder of the previous line at the terminal or offline 
printer and returns to read the next line from the file. 

Page Eject (. P A): SCRIPT types the remainder of the previous line at the terminal or 
offline printer and skips to the bottom of the page. If the STOP option has been specified, 
it waits for the user to enter a carriage return. When the carriage retUrn is received, 
or if the STOP option is not specified, SCRIPT skips all but two lines of the top margin, 
types the page heading and page number, skips one line, and returns to read the next line 
from the file. 

Space (. SP): SCRIPT types the remainder of the previous line at the terminal or offline 
printer, skips n lines by typing n null lines, and returns to read the next line from the 
file. (If the bottom of the page is reached during skipping, a page is ejected and skipping 
continues. Also if double spacing is in effect, 2n lines will be skipped.) 

Heading (. HE): SCRIPT saves the heading for future use and returns to read the next line 
from the file. 

Line Length (. LL): SCRIPT types the remainder of the previous line at the terminal or 
offline printer, saves the specified line length for future use, and returns to read the 
next line from the file. 

Center (. CE): SCRIPT types the remainder of the previous line at the terminal or off­
line printer and reads the next line from the file. This is the line to be centered. It then 
centers that line in an output buffer, types the line, and returns to read the next line 
from the file. 

Page Length (. PL): SCRIPT types the remainder of the previou~ line at the terminal or 
offline printer, saves the specified page length for future use, and returns to read the 
next line from the file. 

Top Margin (. TM): SCIDPT types the remainder of the previous line at the terminal or 
offline printer, saves the top margin size speCified for future use, and returns to read 
the next line from the file. 

114 



Bottom Margin (. BM): SCRIPT types the remainder of the previous line at the terminal 
or offline printer, saves the bottom margin size specified for future use, and returns to 
read the next line from the file. 

Fill (. FI): SCRIPT sets a switch to indicate that fill mode is in effect, types the 
remainder of the previous line at the terminal or offline printer, and returns to read the 
next line from the file. 

No Fill (. NF): SCRIPT sets a switch to indicate that "no-fill" mode is in effect, types 
the remainder of the previous line at the terminal or offline printer, and returns to read 
the next line from the file. 

For details on the philosophy of the SCRIPT System and certain algorithms used, see 
"SCRIPT: An Online Manuscript Processing System", Form 320-2023 from the mM 
Cambridge Scientific Center, Cambridge, Massachusetts. 

SPLIT 

FUNCTION: To copy a portion of the one file into another. 

A TTRffiUTES: Disk resident 

CALLING SEQUENCE: 
LA 1,PUST 
SVC X'CA' 

PUST DC CL8'SPUT' 
DC CL8' filename 1 
DC CL8' filetype1 
DC CL8' filename2 
DC CL8' filetype2 
DC CL8' 1st delimiter 
DC CL8' 2nd delimiter (optional) 

OPERA TION: SPliT first performs a series of tests to ensure that the parameter list 
is valid. If it is not valid, it signals the error and returns to the calling program. If 
the parameter list is valid and the first and second delimiters are numeric, SPLIT 
stores the first delimiter in the calling sequence to RDBUF. This causes RDBUF to 
start reading from the appropriate place in the file being copied from. It also saves the 
second delimiter. SPLIT then reads the speCified number of records from the file being 
copied from and transmits them to the file that is to receive them. Next, SPLIT types 
the message 'FILE MODIFIED' at the terminal. It then calls the FINIS command pro­
gram to close both files and returns to the calling program. 

115 



If the first delimiter is numeric and the second is symbolic, SP LIT stores the first de­
limiter in the calling sequence to RDBUF. It then reads the first record to be copied 
and determines if the label field of that record matches the symbolic second delimiter. 
If it does not, SPLIT writes that record into the file that is to receive it and reads the 
next record from the file being copied from. SPLIT repeats this process until a match 
of label field and symbolic delimiter occurs. At this time, it types the message 'FILE 
MODIFIED' on the terminal, closes both files, and returns to the calling program. 

If the first delimiter is symbolic and the second is numeric, SP LIT reads successive 
records from the file being copied from until it encounters the one containing a label 
field that matches the symbolic delimiter. At this point, SPLIT transfers the specified 
number of records from the file being copied from into the file that is to receive them. 
It then types "the message 'FILE MODIFIED' at the terminal, closes both files, and re­
turns to the calling program. 

If both delimiters are symbolic, SPLIT reads successive records from the file being 
copied from until it encounters the one containing a label field that matches the symbolic 
first delimiter. It then transfers that record to the file that is to receive it and reads 
the next record from the file being copied from. If this record does not contain a label 
field that matches the symbolic second delimiter, SPLIT writes it into the file that is to 
receive it and reads the next record from the file being copied from. SPLIT repeats 
this procedure until it encounters the record containing the label field that matches the 
symbolic second delimiter. At this time, all specified records have been copied, and 
SPLIT types the message 'FILE MODIFIED' at the terminal, closes both files, and re­
turns to the calling program . 

. Note: If the second delimiter is not given, SPLIT copies records until the end-of-file 
is reached. 

STATE 

FUNCTION: To determine if a given file exists on P-Disk, T-Disk, S-Disk, or any 
other available read-write or read-only disk. 

ATTRffiUTES: Nucleus Resident 

CALLING SEQUENCE: 
DC CL8' 
DC CL8' 
DC CL2' 

filename 
filetype 
filemode 

OPERATION: STATE (when entered from the terminal, or as part of an EXEC file) is 
identical to the STATE function program, except that from the terminal (or as part of an 
EXEC procedure) it is used only to determine if a file exists on the specified (or any, if 
1* 1 was given) disk. 

116 



If a mode-letter was specified, only the FST hyperblocks for the disk specified for that 
letter (for example, PSTAT for P-Disk) are searched for the given file. (If a file is on 
a read-only extension of a disk -for example, an A-Disk as an extension of a P-Disk -
it will be found if either mode-letter -A or P in the example - is specified.) 

If the filemode is * (or omitted entirely), all logged-in read-write and read-only disk(s) 
will be searched (if necessary) to find the file. 

If the file is not found, an error code 1 (with no message) is returned. 

See also STATEW command. 

STATEW 

FUNCTION: To determine if a given file exists on P-Disk, T-Disk, or any other 
a vailable read-write disk. 

A TTRffiUTES: Nucleus resident 

CALLING SEQUENCE: 
DC CL8' 
DC CL8! 
DC CL2' 

filename 
filetype 
filemode 

OPERATION: STATEW (when entered from the terminal, or as part of an EXEC file) 
is identical to the STATEW function program, except that from the terminal (or as part 
of an EXEC procedure) it is used only to determine if a file exists on the specified ( or 
any, if ,*, was given) read-write disk. 

If a mode-letter was specified, only the FST hyperblocks for the disk specified for that 
letter (for example, PSTAT for P-Disk) are searched for the given file. 

If the filemode is * (or omitted entirely), all logged-in read-write disk(s) will be 
searched (if necessary) to find the file. 

If the file is not found, an error code 1 (with no message) is returned. 

STATEW is similar to the STATE command (see description), except that only read­
write disk(s) are searched (read-only disks being ignored). 

117 



UPDATE 

FUNCTION: To resequence, insert, replace, or delete records on a file. 

ATTRffiUTES: Disk resident 

CALLING SEQUENCE: 

LA I,PLIST 
SVC X'CA' 

PLIST DC CL8'UPDATE' 
DC CL8' filename 1 
DC CL8' filetype 1 
DC CL8' filename 2 
DC CL8' filetype 2 
DC CL8'(, separator for option 
DC CL8' options 

OPERATION: UPDATE first scans the parameter list for errors. If an error exists, a 
message is generated and UPDATE returns to the caller. If the parameter list is valid, 
it enters the specified filenames and filetypes in the SYSIN and UPDATE file control 
blocks. UPDATE then determines if an intermediate file (INTER), containing changes 
from a previous update, exists. If an intermediate file does exist, a message is gener­
ated and UPDATE returns to the caller; the user either erases it or combines it with 
the original file and reissues the UPDATE command. If an intermediate file does not 
exist, the update log (UPDLOG) is erased. During update file processing, a record of 
control cards in the update file (UPDATE), items added to or deleted from the original 
file, and error messages are stored in the UPDLOG file. 

Cards are then read from the UPDATE file. When a control card is read (identified by 
a 'I I' or '. I' in columns 1 and 2), the FORMAT routine checks to see that it is a valid 
card, saves sequence numbers, and checks for valid numerics. When a sequence (I/s 
or . IS) control card is read, the file is sequenced on columns 76 through 80 of each card 
image. When a delete (liD or .ID) control card is read, the DELETE routine finds 
the speCified sequence numbers on the SYSIN file, writes the associated cards into the 
INTER file and UPDLOG file, and deletes them from the SYSIN file. When an insert 
(I II or • II) control card is read, the INSERT routine does the following: finds the spec­
ified sequence numbers in the SYSIN file, resequencing the file (via the RESEQ routine) 
if necessary; writes SYSIN into the INTER file; inserts the cards into the INTER file; 
and writes the inserted cards into the UPDLOG file. When a replace (IIR or ./R) con­
trol card is read, the REPLACE routine performs a Delete and Insert operation. 

There are three possible options to UPDATE. SEQ8 specifies that sequencing is to be 
done on all eight characters in columns 73 to 80, rather than the default of five charac­
ters. INC specifies that the sequence number in the update card is to be placed in the 

118 



updated deck rather than the default of eight asterisks to distinguish updated cards. P 
specifies that the original file is to be erased and the updated file altered to its filename 
and filetype rather than the default which retains the original file and alters the up­
dated file to a filename of . plus the first seven characters of the original filename • 

. EXECUTION CONTROL 

The commands that control the execution of programs under Cl\IS are EXEC, GENMOD, 
GLOBAL, L OAD MOD , REUSE, START, USE, and $. These are described in the follow­
ing section. 

EXEC 

FUNCTION: To execute the commands stored in a specified file of filetype EXE C. 

ATTRIBUTES: Nucleus resident 

CALLING SEQUENCE: 
LA 1, PLIST 
SVC X'CA' 

PLIST DC 
DC 
DC 
DC 

DC 

CL8'EXEC' 
CL8' 
CL8' 
CL8' 

CL8' 

filename 
argumentl 
argument2 

argumentN 

OPERATION: 'The EXEC command proper is a short nucleus-resident bootstrap pro­
gram that (when entered initially) obtains main storage using the FREE function program, 
then RDBUF's the main (much larger) disk-resident portion of EXEC (called "EXECTOR 
MODULE") into that free storage. (When the last EXEC call has been completed, 
indicated by a level-counter returning to zero, that free storage is returned via FRET.) 
This procedure makes it unnecessary to keep the entire EXEC code in the CMS nucleus at 
all times. 

When the EXECTOR MODULE has been loaded, orif it is already in core, it calls 
FREE as needed for working storage. It then determines via the STATE function pro­
gram whether the specified file exists. If the file does not exist, EXECTOR calls the 
TYPLIN function program to type a message to that effect at the terminal, calls the 
FRET function program to release the previously obtained storage, and returns (via the 
EXEC bootstrap program) to the calling program, which is usually INIT. 

119 



If the specified file exists, EXECTOR saves the arguments that are to replace the dum­
my arguments in the commands. Next, it reads the first command to be executed from 
the specified file. Then, EXECTOR calls the SCAN function program to place the com­
mand to be executed into parameter list format. Subsequently, EXECTOR replaces the 
dummy arguments in the parameter list for the command to be executed with the 
substitutes provided for them in the 'EXEC command. Next, as a rule EXECTOR calls 
the TYPLIN function program to type the command to be executed at the terminal. It 
then executes the command by issuing a SVC X' CA' with register 1 pointing to the param­
eter list for the command. When execution of the command is complete, EXE CTOR reads 
the next command from the file and executes it Similarly. When the last command has 
been executed (i. e. , when an end-of-file is encountered), EXECTOR calls the FINIS 
command program to close the file, calls the FRET function program to release the 
storage previously obtained, and returns via the EXEC bootstrap program to the calling 
program. 

EXECTOR, in addition to processing CMS commands in an EXEC file, also handles 
several exec command words, which are not CMS commands at all, but directions to 
EXEC as to how and/or where to proceed if errors occur in execution of the various com­
mands, typing or non-typing of the comma nds, etc. 

Note: To ensure maximum possible file integrity, and to be compatible with INIT in its 
running of CMS commands, EXECTOR calls LOGDISK to update the user file directly 
after each execution of a CMS command in an EXEC file. 

GENMOD 

FUNCTION: To create a file in nonrelocatable core-image form on the user's P-Disk. 

ATTRIBUTES: Nucleus resident 

CALLING SEQUENCE: 
LA R1, PLIST R1 must point to P-List as usual 
SVC X'CA' 
DC AL4(ERROR) 

ENTRY REQUIREMENTS: 

R1 must point to GENMOD parameter-list: 
DS OF 

PLIST DC CL8'GENMOD' 

120 

DC 
[DC 
[DC 

[DC 

CL8' 
CL8' 
CL8'( 

CL8' 

, entry 1 (= filename of module) 
'J entry 2 
'J additional options. namely 

NO and/or P2 (preceded by left-paren) 

'J 



EXIT CONDITIONS: 

Normal Return 
R15 = 0 

Loader Tables empty, or Entry 1 or Entry 2 not found 
"R1 ~ = 1 11<'~~n~ 1 \ 
..L"'~V -..L \..L.I .......... V.L...&.I 

Error Writing Module 
R15 = value returned by WRBUF or FINIS 

CALLS TO OTHER ROUTINES: 

START, ERASE, WRBUF, FINIS 

CALLED BY (where known): 

User, and by various EXEC procedures which generate modules. 

MACROS USED: 

FVS 

OPERATION: The GENMOD program obtains the entry addresses specified in the 
GENMOD command. If a second entry is not specified in the command, it uses the 
pointer LOCCNT (established by LOAD, LOADMOD, USE, or REUSE) to the next avail­
able load location. GENMOD also calls "START (NO)" to resolve any establishment of 
.common storage, undefined names, etc., as left by the loader. 

Before creating the new module on disk, GENMOD erases any old module on the P-Disk 
that may exist with the same name. 

If the P option was specified in the caller's parameter list, the module is created with a 
mode of P2. Otherwise, a mode of PI is used. 

The new module is then created on the P-Disk with appropriate ca lIs to WR BU F, and then 
FINIS, to close the iile. 

The module created by G ENMOD (to be reada ble by LOADMOD) is a variable file con­
sisting of two or more records (the last may be omitted) as follows: 

1. A 44-byte record containing vital information from NUCON table, length of second 
record, indicator of presence or absence of last record, etc. 

2. A Core-image of program from entry 1 to entry 2 (or LOCCNT). 

3. Loader-tables. (Omitted for transient disk-resident routines, or if the (NO) option 
was specified in GENMOD parameter list.) 

121 



If the entry 1 or entry 2 (if present) is not found in the loader tables, an error message 
is printed of the following form: 

NO "XXXXXXXX" MODULE 

and an error code 1 is returned (no module is written). 

Notes: 

1. GENMOD itself is called only via SVC, but when calling ERASE, WRBUF, and 
FINIS, G ENMOD calls them via BA LR, for maximum speed. 

2. As a debugging aid, like LOADMOD, GENIVI0D leaves the following meaningful 
information in registers 1 - 4 upon exit (which can be displayed by running with 
SETOVER GPRS or with a suitable breakpoint using DEBUG): 

RI: Starting Address of GENMOD'ed Region 

R2: Ending Address of GENMOD'ed Region 

R3: Starting Address of Loader Tables (if written) 
(R3 meaningless if R4 = 0) 

R4: 00, or Size in Bytes of Loader Tables (if written) 

3. See Figure 29 for details on the content of a CMS "IVI0DULE" file. 

4. The loader tables (if written) include the entire loader tables as in existence at the 
time of the GENMOD call (!!2! just the entry points included between entry 1 and 
entry 2, or between entry 1 and the value of LOCCNT). 

I 5. LOADMOD is also included with the GENMOD program. 

122 



1. First Record (44 bytes): 

Number of NUCON VALUES DETAILED BREAKDOWN 
Bytes Bytes or other quantity Bytes 

0-17 18 USFL thru first 2 bytes 0- 3 
of TBLNG 

r 4- 7 

8-11 

12-15 

16-17 

18·19 2 Last 2 bytes of TBLNG, 

I or 0 if loader tables 
omitted from module 

20·23 4 o if loader tables 

I 
omitted from module; 
nonzero if loader tables 
present in module 

I 
24·35 

I 
12 i LOCCNT thru first 4 24·27 

I bytes of "PSW" 28-31 

32·35 

36-39 4 Starting Address of 
Loaded Region 

4043 4 Ending Address of 
Loaded Region 

2. Next record(s) (maximum of 65535 bytes) 

Core image to be LOADMOD'd (broker. into 65535-byte records 
if necessary) 

3. Last record (if presentj 

Loader Tables (multiple of 16 bytes) 

Figure 29. Contents of a CMS MODULE file (variable records) 

NUCON VALUE 

USFL 

USLL 

STADDR 

LDRTBL 

TBLNG (first 
two bytes) 

LOCCNT 

LDADDR 

"PSW" (first 
four bytes) 

123 



GLOBAL 

FUNCTION: To allow the user to specify alternate MACRO libraries to be searched 
during assembly and alternate TXTLm libraries to be searched during loading. 

ATTRIBUTES: Disk resident, transient 

CALLING SEQUENCE: 
LA 1,PLIST 
SVC X'CA' 

PLIST DC CL8'GLOBAL' 

CL8' TXTUB ' { 
MACUB} 

PRINT 
DC CL8' libnamel 

DC CL8' libnameN 

OPERATION: GLOBAL first determines whether MACLIB, TXT LIB, or PRINT was 
specified. If neither was specified, it signals the error (code 1) and returns to the call­
ing program. If MACLIB was specified, GLOBAL moves the specified library names 
into the macro library list (MACLIBL) and returns to the calling program. This list will 
be referred to by the routine that simulates the FIND macro instruction. (The assembler 
issues a FIND when it attempts to locate a particular macro instruction in the specified 
macro libraries. ) 

Note: If the user does not supply any libr~ry names with a GLOBAL MACLIB command, 
no MACLIB file will appear in the macro library list. 

If 'l'XTLIB was specified, GLOBAL moves the specified library names into the text 
library list (TXTLIBS) and r~turns to the calling program. This list is referred to when 
the loader is searching for subroutines to resolve cross references. 

Note: If the user does not supply any library names with a GLOBAL TXTLm command, 
no TXTLm file will appear in the text library list. 

If PRINT was specified G LOBA L prints at the terminal a list of the macro and text 
libraries currently being searched. 

The existence of each libname specified will be verified by a call to STATE. If the file 
"libname MACLIB" or "libname TXTLIB" is not found, it is not included in the 
respective library list, and GLOBAL will issue a message (error 3) and return. Also, 
if more than five (5) macro libnames or more than eight (8) text libnames are specified, 
an error message is typed (error code 2) and a return is executed. 

124 



LOAD 

FUNCTION: To read specified programs from disk into core, establish proper linkages, 
and initiate execution when specified. 

A TTRIBUTES: Nucleus resident 

CALLING SEQUENCE: 
LA 1, PLIST 
SVC X'CA' 

PLIST DC CLS'LOAD' 
DC CLS' ( 'filenamel 

DC CLS' 
DC CLSt( 
DC CLS' 

DC CLS' 

DC CLS' 

DC CLS' 

, filenameN 
separator for options 

, option! 

, optionN 

, libnamel 

, libnameN 

OPERATION: When the command scanner detects a LOAD ~ommand, it gives control to 
the CMS loader (LDR). The CMS loader will load the program at location 12000 (unless 
an SLC address was specified), search specified libraries for missing subroutines, and 
esta blish proper linkages. The operation of the loader is described in Section 5 under 
the heading "CM S Loaders". 

If the SLC option is used, it must not immediately follow a left-parenthesis, resulting 
in nine consecutive nonblank characters. A blank in between the left parenthesis and the 
SLC will solve this problem. 

Examples: 

No Good: LOAD SOMEPROG (SLC13000 
OK: LOAD SOMEPROG ( SLC13000 

125 



If the program is to be loaded into the transient area, the old module (if any) is to be 
erased first, then the program loaded with a TRANS option. For example, if a new 
version of STAT were to be loaded and GENMOD'ed, the sequence might be as follows: 

ERASE STAT MODULE P 
LOAD STAT (TRANS TYPE) 
GENMOD STAT 

LOADMOD 

FUNCTION: To load a nonrelocatable core image file into core. 

CALLING SEQUENCE: 

LA R1, PLIST Rl must point to P- List a s usual 
SVC X'CA' 
DC AIA(ERROR) 

ENTRY REQUffiEMENTS: 

R1 must point to LOADMOD parameter list: 
DS OF 

PLIST DC 
DC 
DC 
DC 

CL8' LOAD MOD , 
CL8' 
CL2' 
X'FFOOOOOO' 

, filename of module 
mode (optional) 
delimiter if mode omitted 

or 
DC X'FFFFFFFF' (see OPERATION) 

EXIT CONDITIONS: 

Normal Return 
R15 = 0 

Module Not Found (Error 1) 
R15 = 1 

Module will not fit in core (Ending Address higher than LOWEXT) 
R15 = 8 (Error 8) 

Error Reading Module 
R15 = value returned by RDBUF 

CALLS TO OTHER ROUTINES: 

STATE, RDBUF. FINIS 

CA LLED BY (where known): 

LINKAGE, SVCINT, $ Command 

126 



MACROS USED: 

FVS 

OPERATION: The LOADMOD program checks to ensure that a module of the given 
filename exists; then it reads that module into the locations at which it had been gener­
ated. If the module was brought into the TRANSAR transient area, the name of the 
module is stored in the appropriate place (TRANSRT) for SVCINT, and reading is 
terminated. Otherwise, the starting address of the module is placed in STADDR within 
the NUCON table, and other pertinent information (but not including actual core size) is 
stored in the l\TUCON table. If the module was generated using the (NO) option for 
GENMOD, reading is terminated. Otherwise, the loader tables are read into high­
numbered core, and are thus restored to their value at the time the module is generated. 
Note that the loader tables are restored in high-numbered core depending on core-size at 
LOADMOD time, not at the time the module was generated. Thus, for example, a 
module generated on a 64-page (40000 hex) machine would have its loader tables ending 
just prior to location 40000 hex; if this module were WADMOD'ed into a 128-page 
machine, the loader tables would be stored just prior to location 80000 hex. This feature 
of LOADMOD makes it possible to generate modules on, say, a standard size machine of 
64 pages and to loadmod these modules on any machine big enough to run the programs 
(either smaller or larger than the standard machine). 

If WADMOD cannot find the specified module, an error message is normally printed of 
the following form: 

NO "XXXXXXXX" MODULE 

and an error code 1 is returned. 

(If the delimiter in the parameter list was X' FFOOOOOO', as it is when LOADMOD is 
called from SVCINT to load a module that mayor may not exist, the above typeout is 
omitted. ) 

Before reading the core-image file, WADMOn checks to ensure that it will fit in core 
as of the moment, that is, that it will not overlap live data in high-numbered core as 
given by the LOWEXT value in NUCON. If an overlap would occur, the core-image is not 
read in, and an error 8 from WADMOD is given, with the error message Dlentioned 
below. 

If a read error from RDBUF occurs, an error message is printed, for example, BAD 
"XXXXXXXX" MODULE (with the name filled in), and the error-code obtained from 
RD BUF is returned. 

Notes: 

1. LOADMOD itself is called only via SVC, but when calling STATE, RDBUF, and 
FINIS, LOAD::\10D calls them via BALR, for max:mum speed. 

127 



2. As a debugging aid, LOADMOD leaves the following meaningful information in 
registers 1-4 upon exit (this information can be displayed by running with SETOVER 
GPRS or with a suitable breakpoint using DEBUG): 

Rl: Starting Address of Loaded Region 
R2: Ending Address of Loaded Region 
R3: Starting Address of Loader Tables (if any) 

(R3 meaningless if R4 = 0) 
R4: 00, or Size in Bytes of Loader Tables (if any) 

3. See Figure 29 for details on the content of a CMS "MODULE" file. 

4. LOADMOD is an entry point included in the GENMOD program. If a user abbrevia­
tion should be set up for LOADM OD using the SYN command, it must begin with the 
letter L (for example, LQ for load quickly). 

USE - REUSE 

FUNCTION: To load programs into core and establish linkages with previously-loaded 
programs. 

A TTRffiUTES: Nucleus resident 

CALLING SEQUENCE: 
LA I,PLIST 
SVC X'CA' 

PLIST DC {
USE} 

CL8' REUSE.' 

128 

DC CL8' 

DC CL8' 
DC CL8' (' 
DC CL8' 

DC CL8' 
DC CL8' 

DC CL8' 

, filenamel 

, filenameN 
separator for options 

, option 1 

, optionN 
, libnamel 

, libnameN 



OPERATION: USE picks up the address of the nucleus constant area (NUCON) and passes 
control to the loader at entry point OVR LD; the program is then loaded at the next high 
core location above the point at which the last load was terminated. 

If REUSE was specified, USE zeroes STADDR (the address at which execution of the 
user program is to start) before it passes control to the loader; the defaUlt entry point 
will be the entry point of the first file specified with REUSE. 

Mter loading, USE determines if there were any errors, saves the error code in 
register 15, and returns to the calling program. 

START 

FUNCTION: To set undefined symbols to zero, define COMMON, then determine where 
to start execution of a program that has been loaded into core, and transfer control. 

A TTRffiUTES: Nucleus resident 

CALLING SEQUENCE: 
LA 1, PLIST 
SVC X'CA' 

PLIST DC 
DC 
DC 

DC 

CL8' argument 1 
~~::START:l entry point 

CL8' ,J argument N 

OPERATION: START obtains the parameter list and the return address and links to the 
start execution routine (XEQQ) in the loader to define any undefined symbols and deter­
mine the start execution address. (Refer to "Start Execution Routine", in the CMS 
Loader description.) A message is returned to the user if any error is encountered. 
Register 15 is set to the entry address. START does not operate on arguments specified 
on the START statement; they are passed to the ~ser's program via a pointer in general 
purpose register 1. If an asterisk, '*' is specified as the first argument, control is 
passed to the location specified at STADDR in NUCON. 

When control is passed to the program being started, the message "EXECUTION 
BEGINS. • ." is typed (without waiting for completion). Also, a zero-filled 18-word 
save area (STRTSAV) is provided, with its address in register 13. 

If a call to START is made when nothing has been loaded, an error of code will be 
returned to the caller. This may also occur if a program which was GENMOD'ed with 

129 



no loader tables (using the (NO) option of GENMOD) is LOADMOD'ed and then 
START'ed. 

A special call START (NO) causes the loading process to be c<?mpleted without actually 
transferring to a program. Thus undefined names are handled, common (if any) is 
assigned, undefined names are handled, free storage used by the loader returned~ etc. 

This call, in particular, is used by GENMOD. 

FUNCTION: To execute a file of filetype EXEC, MODULE, or TEXT. 

A TTRIBUTES: Disk resident, transient 

CALLING SEQUENCE: 
LA l,PLIST 
SVC X'CA' 

PLIST DC CL8'$' 
DC CL8' 
DC CL8' 
DC CL8' 

DC CL8' 

filename 
argument 1 
argument 2 

argument·n 

OPERATION: $ calls the FREE function program to obtain a block of storage for use as 
a work area. Next, it calls the STATE function program to determine if a file deSignated 
as 'filename EXEC' exists. If it does, $ proceeds as described below. If it does not, 
$ calls STATE to determine whether a file designated as "filename MODULE" exists. 
If it does, $ proceeds as described below. If it does not, $ again calls STATE to 
determine whether a file designated as "filenanle TEXT" exists. If it does, $ proceeds 
as described below. If it does not, the desired file does not exist, and $ signals this 
by terminal message (using the TYPLIN function program), releases the storage 
previously obtained (using the FR ET function program), sets a code to indicate the error. 
and returns (via SVCINT) to the calling program, which is usuaJ!y INIT. 

EXEC FILE EXISTS: If a file deSignated as "filename EXEC" exists, $ releases the 
storage previously obtained and passes control to the EXEC command program that will 
process the list of commands. EXEC will return control (via SVCINT) to the program 
that called $. 

130 



MODULE FILE EXISTS: If a file designated as "filename MODULE" exists, $ calls the 
LOAD MOD command program to load the core image file into main storage. Next, it 
calls the FRET function program to release the storage previously obtained. Finally, $ 
passes control to the START command program, which will begin execution of the pro­
gram. START will return control (via SVCINT) to the program that called $. 

Note: No module that was loaded at TRANSAR before being GENMOD'ed, or was 
GENMOD'ed with the (NO) option should be initiated by the $ command, as START will be 
unable to find the entry point. This, however, is not a problem, because programs of 
this type should be invoked directly via an SVC call. 

TEXT FILE EXISTS: If a file designated as "filename TEXT" exists, $ calls the LOAD 
command program to load the relocatable module into main storage and to resolve any 
external references. Next, it releases (using FRET) the storage previously obtained. 
Finally, $ passes control to the START command program to begin execution of the file 
(that is, the program). START will return control (via SVCINT) to the program that 
called $. 

Note: In the case of an EXEC file, the arguments are passed to the EXEC command pro­
gram for processing. General purpose register 1 is used for thi.s purpose. In the case 
of a MODULE or TEXT file, the arguments are passed to the loaded program. General 
purpose register 1 is aga in used for this purpose. 

131 



132 

DEBUGGING COMMAND PROGRAMS 

The debugging command programs allow the user to access and modify registers and 
core storage from his terminal. They may also be called directly by a user or CMS 
program. 

CLROVER 

FUNCTION: To negate normal and error overriding activity. 

CALLING SEQUENCE: 

LA 1, PLIST 
SVC X'CA' 

PLIST DC CL8' CLROVER' 

OPERATION: SVCINT passes control to OVERNUC, the core resident part of the 
OVERRIDE program. OVERNUC then branches to code for SETOVER, SETERR, or 
CLROVER as determined by the command that was in the parameter list. A flag called 
STA TUS is set to 0 when the OVERRIDE module is not in core, and is set to I when the 
OVERRIDE module is in core. 

CLROVER returns immediately to the calling program (via SVCINT) if the OVERRIDE 
module is not in core. If the OVERRIDE module is in core, CLROVER sets an offset 
for dispatching in SETLOC and branches to the OVERRIDE module. 

OVERRIDE does some entry initialization and then dispatches to code for the CLROVER, 
SETERR, or SETOVER command as determined by the offset in SETLOC. 

The code for CLROVER in the OVERRIDE module calls the STNOV function program to 
set the normal override switch (NRMOVR) in SVCINT off (that is, to zero), calls the 
• STEROV function program to set the error override switch (ERROVR) in SVCINT off, 
calls the PRINTIO function program to print a message to the effect that normal and 
error overriding have been cancelled, performs a CLOSIO to the printer, and returns 
to WATCHDOG in the nucleus. 

OVERNUC tests for CLROVER (as determined by SETLOC) and if that function is being 
performed, resets the STATUS flag to 0 (OVERRIDE not in core), calls FRET to re­
lease the core required for the OVERRIDE module, and then returns (via SVCINT) to 
the calling program, which is usually INIT. 



DEBUG 

FUNCTION: To enable the user to debug his program from the ternlinal. 

A TTRIBUTES: Nucleus resident 

CALLING SEQUENCE: 

LA 1, PLIST 
SVC X'CA' 

PLIST DC CL8'DEBUG' 

OPERA TION: The discussion of the DEBUG command program will be divided into two 
parts: processing on entry, and request environment processing. 

PROCESSING ON ENTRY: The processing performed by the DEBUG command program 
when it receives control depends on whether it was given control because of either a 
DEBUG command entered from the terminal, an external interruption, or a program 
interruption. 

DEBUG Command: DEBUG saves the contents of the general purpose registers and 
saves the CSW and CAW. It then types the message 'DEBUG ENTERED' at the terminal 
and enters the request environment. 

External Interruption: DEBUG saves the external old PSW, saves the contents of the 
general purpose registers, and saves the CSW and CAW. It then types the message 
'DEBUG ENTERED' at the terminal. Next, it types the message 'EXTERNAL INT. ' 
at the terminal and enters the request environment. 

Program Interruption: DEBUG saves the program old PSW, saves the contents of the 
general purpose registers, and saves the CSWand CAW. It then determines if the pro­
gram interruption occurred at a break point. (If the. address of the instruction that 
caused the interruption matches the address in an entry in the break point table (refer 
to "Break Request", later in this section, the interruption occurred at a break point. ) 
If not, DEBUG types the message 'PROGRAM INT.' at the terminal and enters the re­
quest environment. If the program interruption occurred at a breakpoint, DEBUG 
moves the absolute address of the breakpoint to the last three bytes of the saved PSW 
and restores the operation of the instruction located ,at the break point. It then types 
the message 'BREAKPOINT XX AT YYYYYY' (where XX is the breakpoint number and 
yyyyyy the core-address of the breakpoint reached) and enters the request en­
vironment. 

On any entry, DEBUG will save lowcore locations 0-256; that is, a dump of low core 
will reflect their value at the time of entering DEBUG. 

133 



134 

REQUEST ENVIRONMENT PROCESSING: When this environment is entered, the user 
is given the opportunity to make DEBUG requests from the terminal. For eaCh such 
request, DEBUG determines its nature through a table-lookup procedure and passes 
control to a corresponding program to implement the request. When the execution of 
that program is complete, it returns contr.ol to the control element, which obtains the 
next request. This request is processed similarly. 

Addressing: An address may be speCified two ways: (1) as a symbolic address if pre­
viously defined, (2) as a hexadecimal constant. The current value of the origin will 
be added to the address if it was hexadecimal. 

Origin Request: DEBUG converts the origin value supplied on the request to binary, 
saves it for future use, and returns for the next request. The origin value may be a 
symbolic address or a hexadecimal address. The previous origin value is not added 
into the hexadecimal address. 

Define Request: DEBUG converts the hexadecimal address to binary, makes the 
address absolute by adding the current origin value to it, and stores the resultant abso­
lute address in the temporary symbol table (TSYM). It then retrieves the symbol being 
defined and places it into the temporary symbol table. Next, DEBUG retrieves the 
length value for the symbol (if any) supplied on the request and places it into the 
temporary symbol table. (If a length value is not provided, a default value of four is 
assumed.) Finally, DEBUG moves the contents of the temporary symbol table into the 
next available entry in the defined symbol table (SYMTBG) and returns for the next 
request. 

Examine (X) Request: DEBUG uses the address speCified to determine the locations to 
be examined (see the foregoing description under" Addressing"). If the length is spec­
ified, that is used; otherwise, the length is obtained from the symbol table if the 
address was symbolic or is assumed to be the default value of four if the address was 
hexadecimal. Finally, DEBUG moves the number of bytes speCified by the length 
starting from the location of the first byte to an ~tput buffer, types them at the 
terminal, and returns for the next request. 

Break Request: DEBUG uses the address specified to determine the breakpoint loca­
tion (see "addreSSing"). This address is stored in the break point table entry cor­
responding to the break point number supplied with the request. DEBUG saves the 
operation code (the first byte) located at the break point, replaces the operation code 
located at the break point with an invalid operation code, and returns for the next 
request. (When the invalid operation code is encountered during execution of the 
program containing the break point, a program interruption occurs and control is 
passed to DEBUG, which types a message at the terminal indicating that the break 
point has been reached.) 

Store Request: DEBUG uses the address speCified to determine the absolute location 
where the data is to be stored (see "Addressing'-'). It then converts the data to be 
stored to binary, moves it to the absolute core locations, and returns for the next 
request. 



Change to Debug 

Dump Request: Debug determines from the command line the absolute limits of the 
main storage to be dumped and places the appropriate values into the DUMPLIST 
plist. Note that the DUMPLIST plist can be located in the routine GENSECT. Also 
placed into the plist area are the addresses of the general register save area, the 
floating-point register save area, and the address of a low core save area. Descrip­
tion of the plist and its use can be found in the routine DEBDUMP, which is the dump 
executioner. DEBUG then BALR's to the DEBDUMP routine, the dump is executed 
and the next command may be issued. 

Set Request: If the PSW is to be set, DEBUG converts the data to binary, overlays the 
PSW it saved on entry with the converted data, and returns for the next request. 
DEBUG sets the CSW. CAW. and the contents of the specified register in a similar 
manner. 

PSW Request: DEBUG moves the PSW it saved on entry to an output buffer, types it at 
the terminal, and returns for the next request. (The PSW saved by DEBUG on entry 
may have been modified by a SET command. ) 

CSW Request: DEBUG moves the CSW it saved on entry to an output buffer, types it at 
the terminal, and returns for the next request. (The CSW saved by DEBUG on entry 
may have been modified by a SET request. ) 

CAW Request: DEBUG moves the CAW it saved on entry to an output buffer, types it at 
the terminal, and returns for the next request. (The CAW saved by DEBUG on entry 
may have been modified by a SET request. ) 

GPR Request: DEBUG determines the first register specified. It then moves the con­
tents of that register (saved upon entry) to an output buffer and types it at the terminal. 
DEBUG repeats this process for each register to be considered. It then returns for 
the next request. (The contents of the registers saved by DEBUG on entry may have 
been modified by a SET request. ) 

Go Request: If an address was speCified (see addressing), its absolute value is stored 
into the saved PSW. DEBUG restores the CSW and CAW it saved on entry to their 
corresponding locations in lower main storage, restores the registers with the contents 
it saved on entry, and loads the PSW it saved on entry. (The contents of the registers 
and the CSWand CAW saved by DEBUG on entry may have been modified by a SET 
request.) If the GO address was not specified, loading of the PSW causes control to be 
returned to the interrupted program at the point of interruption, or passed to the loca­
tion specified if the user modified·the address portion of the PSW with a SET request. 

Return Request: DEBUG restores the registers with the contents it saved on entry, 
clears register 15, and branches unconditionally through register 14. (The contents of 

/ 
the registers saved by DEBUG on entry may have been modified by a SET request.) 
Return is valid only if DEBUG was entered via the DEBUG command. 

135 



Restart Request: RESTART is equivalent to the IPL request, discussed below. 

See IPL. 

136 

IPL Request: If the IPL request is given, DEBUG branches directly to the CMS IPL 
command, which brings in a fresh copy of CMS from the system disk. 

KX Request: If KX is given as a request to DEBUG, the kill execution logic is invoked 
as if KX had been entered via the CMS command environment. The kill execution 
program closes all open. files and updates the user file directory before going to the 
CP environment. Thus, if DEBUG is reached and the user wishes his files to be closed 
and updated at their current status, he can issue the KX request. The KX request 
causes a fresh copy of CMS to be IPL' ed from the system disk. 

SETERR 

FUNCTION: To activate error overriding facilities. 

CALIJNG SEQUENCE: 

LA 
SVC 

PIJST DC 

1, PIJST 
X'CA' 

CL8'SETERR' 

OPERATION: SVCINT passes control to OVERNUC, the core resident part of the 
OVERRIDE program. OVERNUC then branches to the code for the SETERR com­
mand. SETERR (within the JOINT subroutine in OVERNUC) tests for the OVER-
RIDE module loaded into core (STATUS set to 1). If the OVERRIDE module is not in 
core, FREE is called to obtain free storage, and then the OVERRIDE module is copied 
into core and STATUS is set to 1. Within the OVERRIDE module SETERR calls the 
. STEROV function program to set the error override switch on by placing the address 
of the error override handling program (HNDLERR) into the ERROVR field within 
SVCINT, calls the PRINTR function program to print a message to the effect that error 
overriding has been activated, and returns (via OVERNUC and then via SVCINT) to 
the calling program, which is usually INIT. 



SETOVER 

FUNCTION: To activate normal and error overriding facilities. 

CALLING SEQUENCE: 

LA 1, PLIST 
SVC X'CA' 

PLIST DC CL8'SETOVER' 
r ....... ,... 

CL8~SAlviELAST~ L l.JLi 

[nC rPRS 

1 .] CL8' GPRSB 
GPRSA 

[DC fPRS 

} ~ CL8' FPRSB 
FPRSA 

[DC tOPARM! J CLS' PAR:MI 

r (~~';!I: )~ 

rc CL8'1 W= .. &.ME U 
WAIT 1 
WAIT 2 

[DC CL8' DEFAULT' ] 

OPERATION: SVCINT passes control to OVERNUC the core resident part of the 
OVERRIDE program which causes the OVERRIDE module to be read into free storage 
if it is not already in core. SETOVER cheQks for the presence of the SAMELAST 
option. If provided, it scans the remainder of the parameter list and sets switches to 
indicate the options specified therein, calls the PRINTIO function program to print a 
message to the effect that both normal and error overrides are in effect, calls the 
. STEROV function program to set the error override switch on by placing the address of 
the error override handling program (HNDLERR) into the ERROVR field within SVCINT, 
calls the. STNOV routine to set the normal override switch on by placing the address 
of the normal override handling program (HNDLNRM) into the NRMOVR field within 
SVCINT, and returns (via OVERNUC and then via SVCINT) to the calling program, 
which is usually INIT. 

If the SAMELAST option is not present, SETOVER sets all option switches to their de­
fault values and proceeds as described above from the point where the parameter list 
is scanned. 

(If, during the scan, SETOVER encounters a DEFAULT parameter, it sets all option 
switches to their default values and processes the remainder of the parameter list in 
the normal fashion. ) 

137 



LANGUAGE PROCESSING COMMAND PROGRAMS 

The language processing command programs perform all required initialization functions 
in preparation for language compiiations, and transfer control to the appropriate com­
piler. Languages supported by CMS include: ASSEMBLER F, PL/I F, and FORTRAN 
IV G. Two additional language processors are available as Type III programs: SNOBOL 
and BRUIN. 

ASSEMBLE 

FUNCTION: To assemble one or more files. 

A TTRIBU TES: Disk resident 

CALLING SEQUENCE: 
LA 1, PLJST 
SVC X'CA' 

PLIST DC 
DC 

DC 
DC 
DC 

DC 

C L8' ASSEMBLE t 
CL8' 

CL8' 
CLS' (f 

CLS' 

CL8 1 

filenamel 

filenameN 
separator for options 
optionl 

optionN 

OPERATION: ASSEMBLE first places the address of the auxiliary assembler 
dictionary in SSTATEXT and then sets a bit in SWITCH to indicate assembler mode is 
running. 

ASSEMBLE next scans the options specified and uses the information ther~by obtained 
to set up the option list for the assembler and the FILE DE F plists for the calls to 
FILEDE F. If a particular option is not selected, the corresponding default value 
appears in the list, which is then compacted to eliminate blanks' before passing it to 
the assembler. 

138 



After all the options have been processed, if more than one filename was specified with 
the command, ASSEMBLE types a message at the terminal giving the name of the file 
about to be assembled. It then calls STATE to verify the existence of this file. If it 
does not exist, ASSEMBLE issues an error message (code 1) and returns to the caller. 
If it does exist, ASSEMBLE checks the item length, issues an error message if item 
length is incorrect and returns to the caller. 

If the length is correct, ASSEMBLE calls ERASE to delete any existing TEXT, LISTING, 
and utility files for the current SYSIN file, and sets up storage by calls to STRINIT and 
GETMAIN. 

It then calls ADTLKW to obtain the mode of the read-write disk with most available 
space and uses it to set up the FILE DE F plist for the SYSUT files. CMS control blocks 
(CMSCB's), which reflect the selected option, are set up for the TEXT, LISTING, SYSIN 
and utility files. After each successful return from FILEDEF, ASSEMBLE sets a 
clear switch to indicate which CMSCB's are to be cleared at the end of assembly and 
finally branches to IEUASM. 

On return from the assembler, ASSEMBLE saves the returned error code if it is 
larger than the one returned for any previous assembly, erases the utility and clears 
the FeB which it had set up. If there are more files to be assembled, it goes back to 
the point after option scan to repeat the processing loop. At the completion of all 
assemblies, ASSEMBLE sets the release page bit, clears the SSTATEXT extension, 
clears SWITCH, places the error code in register 15 and returns to the user. 

SPECIAL OUTPUT HANDLING ROUTINE: 

The system routine SOEOB interfaces with LISTING and SYSUT2 files during the 
assembly. 

SYSUT2 - If the file is not in "close" and it is being read in Phase 1, ASMHAND 
accesses the utility control table to ascertain the length and location of the record to be 
moved and moves it to the specified location. If the file is being read, but not in 
Phase 1, fixed length is forced and ASMHAND returns to the user. 

If the file is being written in Phase 1, the utility control table is first set up by a call 
to GETMAIN and then updated to reflect the numbers of records read. If the file is 
being written but is not in Phase 1, ASMHAND forces a write of 4000 bytes and returns 
to the caller. 

LISTING - If online diagnostics have been requested; ASMHAND checks each line for 
an error flag and prints these on the terminal along with a summary of errors at the 
end. 

139 



FORTRAN 

FUNCTION: To provide interface functions between the FORTRAN IV compiler and 
the CMS nucleus. 

A TTRIBUTES: Disk resident 

CALLING SEQUENCE: 

LA 1, PLIST 
SVC X'CA' 

PLIST DC CL8'FORTRAN ' 
DC CL8' 

DC CL8' 
DC CL8'(' 
DC CL8' 

DC CL8' 
DC XL8'xx' 

ENTRY REQUffiEMENTS: 

, filename1 

, filenameN 
separator for options 

, option 1 

, option N 
fence 

R1 must contain address of plist referred to in cailing sequence. 

EXIT CONDITIONS: 

Return to SVCINT. 

CALLS TO OTHER ROUTINES: 

FORTRAN compiler, SOEOB 

CALLED BY: 

SOEOB 

OPERATION: 

INITIALIZATION: FORTRAN saves the names of all requested program names and 
verifies that no more than 32 compilations are requested. 

140 



Then the option line is analyzed and the default option list modified to reflect user re­
quests. An internal control swit,ch is set to flag certain requests such as listing to 
printer, BATCH, NODIAG, LIST and such options as TDECK which require a call to the 
GMS routine FILE DE F for their implementation. 

The auxiliary directory address is stored in SSTA TEXT and the CMS compiler control 
switch SWITCH in NUCON is set to indicate FORTRAN compilation in process. 

Initial housekeeping is completed by a series of S'l'A TE 's to verify requested file exist­
ence, and ERASE's to eliminate existing LISTING and TEXT files for those FORTRAN 
files whose compilation is requested. 

FILEDEF: This procedure, which is executed for each compile requested, starts with a 
series of calls to eMS FlLEDEF to set up the FeB for the LISTING~ TEXT, and 
FORTRAN files to be compiled, followed by a call to STRINIT to initialize free storage 
for the use of the compiler. Upon return from FILEDEF, R15 is tested: a positive 
return signals an error and causes cancellation of the job; a negati ve return indicates 
that the user has already set up his own FCB for this program so the FILEDEF clear 
switch is not set to prevent clearing of user specified FCB' s; a zero return indicates 
a successful FCB initialize and the FILEDE F clear switch for that file is set. 

On return from the compiler those FCB's for which the clear switch is set are 
cleared. If additional files remain to be compiled, FORTRAN returns to FILEDEF; 
otherwise CMS SWITCH SSTATEXT are cleared, the printer and punch are closed, 
and return is made to the user. 

FORTHELP: This routine is entered from SOEOB whenever a listing line is processed. 
Its purpose to check for diagnostics and to print them on the terminal if the user has 
not specified NODIAG. Return ~s to SOEOB in all cases. 

PLI -
FUNCTION: Compile PL/I source programs. 

A TTHffiUTES: Disk resident 

CALLING SEQUENCE: 
LA HI, PLIST 
SVC 202 

PLIST DS 
DC 
bc 
DC 
DC 
DC 

OF 
CL8'PLI' 
C L8 'filename l' 
C L8' (' option delimiter 
C L8 'options' 
CL8 ') j option terminator 

141 



OPERATION: 

1. Uses the value of register 15 as its base address. 

2. Saves all registers in SAVEREG. 

3. Sets SSTATEXT pointer to the address of PLIDmT. 

4. Sets the PL/I byte in the system SWITCH to signal PL/I Compilation in progress. 

5. Sets the "OS language processor I/O pointer" to the address of PLIHAND - the 
P L/I LISTING file processor. 

6. By using HNDSVC, sets pointers to alternate simulation routines for SVC's 19 
(OPEN), 00 (XDAP), 47 (STIMER), 40 (EXTRACT). 

7. U sing the PLIOPTST section, isolates and scans all compiler and CMS options to 
be in use during its compilation - an option list (OPTIONS) is presented to the 
compiler phase IEMAB; this list consists Of all defaulted values, unless an alter­
nate option has been entered which matches one of its acceptable values from the 
list, OPTKEYWD. 

8. A call to STRINIT initializes free storage pOinters. 

9. A GETMAIN macro is used to reserve core for the longest branch within the 
compiler overlay structure. 

10. Sets the two flag bytes to reflect compiler information: 

SWITCH+2 PLSW 

X'80' Compilation LISTING on Printer 

X'40' LISTING on Printer No printing 

X'20' DIAG not wanted DIAG not wanted 

X'10' No printing Punch TEXT deck 

X'08' Execution Not used 

X'04' Typing begun Not used 

X'02' Not used Not used 

X'Ol' Not used Not used 

11. Uses STATE to verify existence and correct format of the source file. 

142 



12. Uses ERASE to remove all utility and output files for this source file (SYSUTl, 
SYSUT3, TEXT, USTING). 

13. Initializes file maintenance by placing the filename into the system I/O Plist -
DCMSOP. 

14. Uses the LOAD nlacro, SVC 8, to read into core IEMAA, the compiler basic 
phase. 

15. Sets registers R13 - R1 and branches to IEMAA: 

R13 - A(SAVEAREA), R14 - A (return) , R15 - V (IEMAA), 
RO - (0), HI - A(parameter list) 

16. Upon return from IEMAA, the error code, if any, is stored into ERRCODE; the 
utility files are erased; the PRINTER is CLOSED, if the LISTING file was printed; 
and the TEXT deck is punched if desired. 

17. Before returning to CMS, clears SWITCH, resets STRINIT storage pointers, 
zeroes out SSTATEXT, destroys the alternate SVC simulation list, performs 
FINIS on all files, places the ERRCODE into 15, and returns to INIT. 

During compilation, when a PUT to the LISTING file is executed, control will reach 
PLllIAND. It will be determined whether the LISTING file is to be output to the printer, 
left on the user1s P-Disk, or destroyed because the no print option was specified. Aiso, 
if NODIAG was not specified, a search for the listing record "-~ COMPILER D. 
DIAGNOSTICS.D." is made. When found, all subsequent lines are also typed to the 
user's terminal with a call to the TYPLIN routine. Records are put onto the printer with 
a call to PRINTIO routine. 

SNOBOL* 

FUNCTION: To compile programs written in SNOBOL into SPL/1, a more basic string­
processing language, and to execute SPL/1 programs interpretively. 

CALLING SEQUENCE: 

LA 
SVC 

PLIST DS 
DC 
DC 
DC 
DC 

1, PLIST 1 
X'CA' 

OD 
CL8'SNOBOL' 
CL8' 
C L8' (option 1 ' 
C L8' option N) , 

filename 
option I preceded by ( 
option N ending with ) 

*SNOBOL is available as Type III program number 360D-03. 2.016. 

143 



OPERATION: The CMS SNOBOL system operates in two passes: compilation and 
assembly-interpretation. The SNOBOL-to SPL/I compiler was itself written in SNOBOL, 
and consists of three SPLI subprograms on the system disk: MONITOR, COMPILER, 
and CRUNCH. The output from the compiler--the user program in SPL/1--is input to 
the SPL/1 assembler-interpreter, which is a group of programs written in assembler 
language. The components of the assembler-interpreter are: SPLI, containing the 
main control routine and some I/O routines for other phases; SPLlASM, the assembler 
phase; SPLlINT, the interpretive execution phase; SPL1IOS, a general I/o handler for 
all phases; and SPL1FRE, a storage management routine. 

During the compilation phase, a file--filename LISTING PI--is generated, unless the 
option NOLIST is included in the parameter list. If OFFLINE or PRINT is specified, 
this information is also printed offline. ONLINE specifies that the information is to be 
printed at the terminal. The SPLI option specifies that the file named in the parameter 
list has already been compiled into SPL/I, and the compilation phase may be skipped. 

When SNOBOL is issued, the main SPLI control routine is entered. SPL1 branches to 
SPLlIOS, to interpret the parameter list, and to SPLIFRE, for free storage, then 
passes control to SPL1ASM to assemble the SNOBOL compiler. The compiler is sub­
sequently executed by SPL1INT, producing a user program in SP UI, which in turn is 
passed again to SPL1ASM. For details on the compiler itself, and the operation of the 
assembler-interpreter, see SPL/I:A String Processing Language, (320-2005) available 
from the mM Cambridge Scientific Center, Cambridge, Massachusetts. 

BRUIN* 

FUNCTION: To provide an interactive algebraic desk calculator/interpreter facility 
within CMS. 

CALLING SEQUENCE: 

LA 
SVC 

PLIST DC 

1, PLIST 
X'CA' 

CL8'BRUIN' 

OPERATION: BRUIN accepts commands from the terminal that fall into two classes: 
(1) direct commands that are executed immediately; (2) indirect commands that are 
stored and may be executed as part of a program at a later time. Values of variables 
defined by direct or indirect commands are also stored in core. 

*BRUIN is available as Type III program number 360D-03. 3. 013. 

144 



BRUIN can store and retrieve indirect commands and values of variables on the disk. 
Files created by BRUIN have the file name defined by the user and a filetype of BRUIN. 

While BRUIN is in the process of creating or replacing a file, the file name .TEMP. 
BRUIN IS USED. 

BRUIN is a module loaded at 12000 that contains the following text decks: 

BRUIN 
BOIL 
ABS 
SQRT 
LOG2E10 
EXP 
SIN COS 
TAN 
ATAN 
SINCOSH 
TANH 
ATNH 
ERF 
IPFP 
RAND 
GAMMA 
UPPR 
LENGTH 

must be first - contains CALCIO 
BRUIN interprets except for I/O and functions 

Arithmetic function subroutines 

Note: BOIL and all of the arithmetic functions are combined into a deck called 
BRUINTXT TEXT. 

The only program that was modified to place BRUIN into CMS instead of an OS environ­
ment was CALCIO. This subroutine (called BRUIN in the CMS version) has two func­
tions: (1) entry is from CMS and return is back to CMS; (2) all input/output functions, 
input/output calls are made with explicit CMS -BVC calls rather than with simulation of 
OS access methods. 

To assemble BOIL and the arithmetic functions, BRUINLIB MACLID, consisting of one 
macro called BOILSECT, must be made accessible with a GLOBAL command. 

145 



UTILITIES 

The utilities available to the CMS user are CNVT26, COMPARE, CVTFV, DISK, DU:WPD, 
DUMPF, DUMPREST, ECHO, FORMAT, MAPPRT, MODMAP, OSTAPE, SORT, STAT, 
TAPE, TAPEIO, TAPRINT, TPCOPY, and WRTAPE. These are described in detail on 
the following pages. 

CNVT26 

FUNCTION: Convert a BCDIC (026) file to an EBCDIC (029) file. 

ATTRIBUTES: Disk resident 

CALLING SEQUENCE: 

LA 
SVC 

PLIST DC 
DC 
DC 

1, PLIST 
X'CA' 

CL8'CNVT26' 
C L8 'filename' 
C L8' filetype' 

SOURCE LANGUAGE: 

CNVT26 was originally coded in the AED-O language. The BAL source is the output 
produced by the AED-O compiler. All procedures uses are members of the AED 
program library AEDLIB TXTLIB. 

OPERATION: 

1. If the filename and/or filetype are miSSing, types 'FILENAME(S) MISSING' and 
returns error code 2. 

2. If the file is not present, types 'FILE NOT FOUND' and returns error code 1. 

3. Erases the work file BCDEBC UTILITY if present. 

4. For each record: 

a. Reads a record via procedure RDCMS. 
b. Expands and translates character string via procedure SPRBCD. 
c. Contracts character string via procedure GLUE. 
d. Writes record into work file BCDEBC UTILITY via procedure WRCMS. 

5. Closes both files, erases original file, and alters name of work file to that of 
original file. 

146 



I COMPARE 

FUNCTION: To compare two disk files~ 

ATTRffiUTES: Disk resident. 

CALLING SEQUENCE: 

PLIST 

LA 1, PLIST 
SVC 202 

DC 
DC 
DC 
DC 
DC 
DC 
DC 

CLB'COMPARE' 
CLB 'filename1 ' 
CL8'filetype1' 
CLB 'filemode1 ' 
CLB 'filename2' 
CLB 'filetype2' 
CL8 'filemode2' 

DC CLB' (NOSEQ' option to omit comparison on last 8 bytes of each record. 

EXIT CONDITIONS: 

Exits to user. R15 = 0 of no errors 

ERROR RETURNS: 
E(00001) 
E(0002) 
E(0003) 
E(0004) 

CALLS TO OTHER ROUTINES: 

Parameter error 
First and second files are the same file 
At least one r~cord differs 
Fatal error 

STATE, RDBU F, FINIS 

CALLED BY: 

User 

OPERATION: The COMPARE parameter list is checked for errors, and if an error 
exists COMPARE exits with an Error 1. If all parameters are present, COMPARE 
checks to see if the user specified the option (NOSEQ). If this option was specified, the 
last eight bytes of each record will not be compared. A STATE is then done of each 
file in the parameter list, and, if they both exist, the following is checked. Are they 
the same file? If so, exit with Error 2. Is one file a fixed number of bytes per record 
and the other variable? If so, exit with Error 4. If there are no errors, COMPARE 

147 



now RDBU F' s each file comparing a record of one file against the corresponding record 
of the second file on a byte to byte comparison. If a discrepancy is found the records 
that were being checked are typed on the terminal to the user. The checking is 
finished. 

After successful completion, and prior to returning to the user or caller, COMPARE 
references NU CON and turns the page release flag on. When the program returns to 
INIT, this flag is checked and, if it is on, INIT issues a diagnose X'10' to CP to 
release the user pages from X'10' 12000 Hex up to the value of LOWEXT. 

COMPARE then calls FINIS to close the files and exit to the user. 

CVTFV 

ATTRIBUTES: Disk resident, module name = CNVTFV 

FUNCTION: To convert a fixed-length record file to a variable-length record file. 
Option T specifies deletion of trailing blanks. 

ATTRIBUTES: Disk resident 

CALLING SEQUENCE: 

LA 1, PLIST 
SVC X'CA' 

PLIST DC CL8'CVTFV' 
DC CL8'filename' 
",)C CL8'filetype' 
DC CL8'(T)' optional 

CALLS TO OTHER ROUTINES: 

ERASE, ALTER, RDBUF, WRBUF, STATE, FI~1JS 

CALLED BY: 

User 

148 



SOURCE LANGUAGE: 

The CVTFV module is an AED-compatible assembly language module. All non-CMS 
procedures called by CVTFV are AED program library routines. Therefore, to load 
CVTFV, AEDLIB T:A7LIB is required. 

OPERATION: 

1. If filename and/or filetype not supplied, types 'INCORRECT FORMAT' and returns 
error code 3. 

2. Checks for optional parameter T. If item in parentheses not T, types 'INCORRECT 
FORMAT' and returns error code 2. 

3. Checks for existence of file. If not found, types 'FILE NOT FOUND' and returns 
error code 1. 

4. If file already has variable length records, types 'FILE 18 ALREADY VARIABLE' 
and returns error code 4. 

5. Erases 'filename CVTUTl' if it exists. 

6. For each record, performs the following operations: 

a. Calls RDCMS procedure to re ad a record. 

b. If truncation (T) was not specified, goes to step e. 

c. If record length is 80 bytes, deletes bytes 73-80 regardless of contents. 

d. Reduces record length to delete any trailing blanks. 

e. Calls WRCMS procedure to write variable record in work file 'filename 
CVTUTli. 

7. When all records are processed, closes all files, erases the original file, and 
alters the name of the work file to the originai filename. 

149 



DISK 

FUNCTION: To dump a disk file to cards, or to load one or more files from cards to 
disk. 

ATTRIBUTES: Disk resident, transient 

CALLING SEQUENCE: 
LA Rl, PLIST Rl must point to P-List as usual 
SVC X'CA' 
DC AL4(ERROR) 

ENTRY REQUffiEMENTS: 

Rl must point to DISK parameter list, either: 
DS OF 

PLIST DC CLS'DISK' 
DC CLS'LOAD' 

or 
DS OF 

PLIST DC CL8'DISK' 
DC CLS'DUMP' 
DC CLS' 
DC CLS' 

[DC C12' 

EXIT CONDITIONS: 

Normal Return 
R15 =0 

Error Returns 
R15 = 1 to 8 

'J 

CALLS TO OTHER ROUTINES: 

Filename 
File type 
Filemode 

(See "ERROR RETURNS" later in this section) 

ERASE, FINIS, FSTLKP, RDBUF, STATE, UPDISK, \VRBUF 

CALLED BY: 

User 

MACROS USED: 

FSTB, FVS 

150 



ERROR RETURNS (R15 value at exit): 

1. Invalid Parameter List 
2. FATAL PUNCH ERROR 
3. FATAL DISK ERROR 
4. FATAL READER ERROR 
5. ILLEGAL CARD IN DISK LOAD DECK 
6. END CARD MISSING FROM DISK LOAD DECK 
7. FILE NOT FOUND 
8. READER EMPTY OR NOT READY 

OPERATION: The operation of DlSK depends on whether the calling program specifies 
DUMP or LOAD. 

DUMP: DlSK copies the file designation from the parameter list into bytes 58 - 76 of 
and 80-byte buffer. (The first four bytes of the buffer contain an identifier consisting 
of an internal representation of a 12-2-9 punch and the characters 'CMS'.) Then DISK 
temporarily changes the characteristics of the file in the 40-byte FST entry to make it 
appear as a file of 800-byte fixed-length records. (The correct FST entry is restored 
when the file has been dumped, of course.) DlSK moves the initial value for sequencing 
(0001) into bytes 77-80 of the buffer. DlSK next calls the RDBUF function program to 
read the first 50 bytes of the temporary copy into bytes 6-55 of the buffer and then the 
CARDPH function program to punch the contents of the buffer. Having punched the first 
card, DlSK increments the sequence number (bytes 77-80 of the output buffer) and over­
lays bytes 6-55 of the buffer with the next 50 bytes of the file by calling RDBUF. It then 
punches the contents of the buffer. DISK repeats this process for each subsequent 50 
bytes of data in the temporary disk file. When the end-of file is encountered, DlSK 
generates an end card (one with N in column 5) and punches it, calls the CLOSIO com­
mand program to close punch operations, restores the FST entry to its correct value, 
and returns to the caller. 

LOAD: DlSK calls the ERASE command program to erase the temporary file ( (DlSK) 
(TFlLE) P3) created during a load operation •. Next, it calls the CARDRD function pro­
gram to read the first card. (If this card was produced by the dump portion of DISK, it 
will contain an identifier in columns 1-4.) DlSK then checks the identifier in the card. 
If invalid, it issues a message to the effect that there is an illegal card in the disk load 
deck, calls the CLOSIO command program to close card reader operations, and returns 
(via SVCINT) to the calling program (error code 4). If the identifier is valid, DlSK 
determines whether the card is an end card (that is, one with N in the fifth byte). If it 
is not, DlSK moves the file data portion of the card (50 bytes in columns 6-55) into the 
next available location in an 800-byte output buffer. DlSK then calls the CARDRD func­
tion program to read the next card, which it processes similarly. When the entire 800-
byte output buffer has been filled with data from the input cards, DISK calls the WRBUF 
function program to write the contents' of the buffer into a file designated as (DlSK) 
(TFILE) P3. DlSK repeats the process of filling the output buffer and writing its con­
tents into the disk file until the end card is read. 

"'hen the end card is read. DISK cans the FINIS command progran: to clOSE; the disk 
file ( (DISK) (TFILE) P3) created from the file in the card deck. It then calls the ERASE 
command program to erase the file (if any) that has the same designation as the card file 
just converted to a disk file. Next, DISK calls the FSTLKP function program t-o l-ocate 

151 



the file status table for the disk file. (This file is again (DISK) (TFILE) P3.) Subse­
quently, DISK moves the designation for the card file from the end card into the cor­
responding locations in the file status table. This completes the conversion of the first 
card file in the card reader to a disk file, and DISK calls the TYPLIN function program 
to type a message at the terminal to the effect that the file has been loaded. DISK pro­
cesses the next file in the card reader in a similar manner. 

When an end-of-file on the card reader is encountered, DISK calls the CLOSIO com­
mand program to close card reader operations and returns to the calling program. 

Notes: UPDISK is called at the appropriate time when DISK LOAD is being executed, to 
update the directory for the file being loaded. 

DISK is a feasible way to transfer variable-length files, such as MODULE's or SCRIPT 
files, between one user and another. 

DISK DUMP can dump files from any disk. DISK LOAD loads files only onto the P-Disk. 
The mode number of the file is retained (for example, a T5 file that was dumped would 
become a P5 file when loaded), except that an SY file becomes P1 when loaded. 

The date/time are that of the new file loaded. 

DUMPD 

FUNCTION: To dump the contents of one direct access record, specified by a CCHHRR 
address. (The dump is in hexadecimal. ) 

ATTRIBUTES: Disk resident 

CALLING SEQUENCE: 

PLIST 

152 

LA 1, PLIST 
SVC X'CA' 

DC CLB'DUMPD' 
DC CLB' 
DC CL8' 
DC CLBI 
DC CL8' 

device address 
cylinder 
head 
record number 



OPERA TION: DUMPD scans the arguments entered by the user to determine whether 
the user has requested a dump of a whole cylinder, a track, or a specific record. It 
converts the arguments found to binary and tests to determine whether the unit being 
dumped is a 2311 or a 2314. DUMPD then converts the unit address to binary and reads 
a record into core. It determL~es whether the right tU"lit has been accessed and if so 
dumps the record to the printer. 

DUMPF 

FUNCTION: To type online, the contents of a specified file in hexadecimal. 

A TTRIBUTES: Disk resident 

CALLING SEQUENCE: 

PLIST 

LA 1, PLIST 
SVC X'CA' 

DC CLS'DUMPF' 
DC C L8 'filename' 
DC C L8 'filetype , 
DC CLS' 
DC CLS' 
DC CL8' 

starting line (optional) 
ending line (optional) 
line-limit (optional) 

OPERATION: DUMPF scans the P-List to determine the file requested. It then calls 
STATE to see if the file exists. If the file exists, DUMPF gets the location of the FST. 
It checks the arguments to determine whether a starting line is supplied, whether an 
ending line is supplied, and whether the user has requested a line limit. 

DUMPF then sets a read pointer to the specific line requested by calling POINT and then 
calls RDBUF to read the line. DUMPF then converts the data to hexadecimal and prints 
the hex information online. It repeats this procedure until the requested number of 
lines have been done. 

153 



DUMPREST 

FUNCTION: To dump the contents of a disk to tape or to restore a disk from the con­
tents of the tape. 

i ATTRIBUTES: Disk resident 

CALLING SEQUENCE: 
LA 1, PLIST 
SVC X'CA' 

PLIST DC CLB'DUMPREST' 

OPERATION: DUMPREST prompts the user via terminal message to indicate whether 
he wishes to dump or restore, to specify the addresses of the disk and tape as well as 
the device type of the disk, and to indicate whether tape rewind is desired. DUMPREST 
will operate only on CMS-formatted disks (that is, 4 blocks per track for a 2311, 15 
blocks per 2 tracks for a 2314. A block is 829 bytes.) If cancel is entered in response 
to any of these requests, DUMPREST will reinitialize itself. 

DUMP: DUMPREST reads a track from the disk and writes it onto tape. It does this 
for each track on the disk; a block of disk data becomes one tape record. 'When the end 
of the disk is reached or if an error occurs during a disk-read operation, DUMPREST 
writes an end-of-file on the tape, types a message at the terminal indicating the num­
ber of cylinders that were successfully dumped, types a message at the terminal indi­
cating the number of recoverable tape-write errors there were, and returns to the call­
ing program. 

If an error is encountered during a tape-write operation, DUMPREST retries the opera­
tion.. If the operation is not successful after 10 retries, DUMPREST types a message at 
the terminal indicating the number of cylinders that were successfully dumped, types a 
message at the terminal indicating the number of recoverable tape-write operations, and 
returns to the calling program. 

If the end of the tape is reached before the entire disk has been dumped, DUMPREST 
proceeds in the same manner as for an unrecoverable tape error. 

RESTORE: DUMPREST restores cylinders by reading records from tape and writing 
them onto disk. When an end-of-file on the tape is encountered, or if a disk erl"or oc­
curs, DUMPREST types a message at the terminal indicating the number of cylinders 
that were successfully restored, types a message at the terminal inqicating the number 
of recoverable tape errors, and returns to the calling program. 

'When restoring, DUMPREST retries an unsuccessful tape-read operation a maximum of 
10 times. If the retries are not successful, it types both the number of cylinders that 
were successfully restored and the number of recoverable tape errors at the terminal, 
and returns to the calling program. 



ECHO 

FUNCTION: Test terminal input/output 

ATTRIBUTE S: Dis k resident 

CALLING SEQUENCE: 
LA 1, PLIST 
SVC X'CA' 

PLIST DC CL8'ECHO' 

DC CL8' 

DC CL2'nn' 

Translate lower case to upper case 
and interpret delete characters. 
Do not translate but do interpret delete 
characters - do not change line. 
Repeat input line, nn time s. 

OPERATION: ECHO first checks to see if a parameter has been issued for the input 
line to be repeated. If none has been stipulated, the default is 1. Next ECHO calls the 
'TYPLIN' function to print onto the console 'START CONSOLE TEST'. It then checks the 
supplied code (U, S, X) to determine which has been supplied. If this parameter is an 
! X', ECHO saves the present linend character by setting up a PLiST with a cail to the 
LINEND command. The WAITRD function reads the first input line provided and edits it 
according to the code that was supplied. When return is made from WAITRD, echo calls 
the TYPLIN function to type the input line onto the console, where the user can verify 
that the output is identical to the input. This is repeated until the user enters RETURN, 
then ECHO restores the original linend character if the X parameter was in effect, calls 
the TYPLIN function to type 'END CONSOLE TEST', and then returns to the user via 
a branch to register 14. 

FORMAT 

FUNCTION: To set the P-Disk, T-Disk, or other pead-write disk to CMS record for­
mat, clearing any information currently on the disk; to write a record-label on a read­
write disk; or to recalculate the number of cylinders and other disk statistics. 

ATTRIBUTES: Disk resident 

CALLING SEQUENCE: 

LA Rl, PLIST 
SVC X'eA' 
DC AL4 (ERROR) 

Rl must point to P-List as usual 

155 



ENTRY REQUffiEME NTS : 

RI must point to FORMAT parameter list: 
DS OF 

PLIST DC CLS' FORMAT' 
DC CLS'm' 

[DC CLS' 

[DC CLS' 

E xrr CONDITIONS: 

Normal Return 
R15 =0 

Error Returns 
RI5 nonzero 

CALLS TO OTHER ROUTINES: 

m = Disk-Mode (P, T, etc. ) 
Additional parameters as needed 

(See examples of valid P-Lists) 

(See "ERROR RETURNS") 

ADTLKP, FREE, FRET, RDTK, RELUFD, STAT, UPDffiK, WRTK 

CALLED BY (where lmown): 

INIT, or User from terminal 

MACROS USED: 

ADT, FVS 

EXAMPLES OF VALID FORMAT PARAMETER LISTS: 

For permanent disk (P-Disk) ... 

156 

To format a disk very first time 
FORMAT PALL 

To format disk subsequently 
FORMAT P 

To format a disk limiting the number of cylinders (examples) 
FORMA T PALL 54 

or 
FORMAT P 150 

etc. 

To write new label on disk 
FORMAT P L 



To check nun1ber of cylinders and disk counts 
FORMAT PC 

To check number of cylinders and disk counts and to revise (expand or reduce) bit­
mask (PQMSK) if necessary 

FORMAT P R 

To revise disk counts for smaller number of cylinders (examples) 
FORMAT P R 53 

or 
FORMAT P R 200 

To revise disk counts to leave room for CMS nucleus as written by IPLDlSK, on 
54-cylinder 2314, or 203-cylinder 2311 

FORMAT P R SYS 

To suppress normal typed messages (example) 
FORMAT P (NOTYPE) 

For temporary disk (T-Disk) ••• 

To format T-Disk first time or subsequently 
FORMA T T or FORMAT T ALL (equivalent) 

To check number of cylinders and disk counts 
FORMAT T C 

To suppress normal typed messages (example) 
FORMAT T C (NOTYPE) 

ERROR RETURNS (R15 value at exit, with message as shown): 

1. NEITHER PERMANENT (P) NOR TEMPORARY (T) DlSK SPECIFIED. 

2. CONDITION CODE 1, 2, OR 3--.DN SIO IN FORMATTING DlSK. 

3. UNEXPECTED UNIT-CHECK FORMATTING DlSK (SENSE-BYTE NOT 81). 

4. CE & DE NOT FOUND TOGETHER (IN CSW) WHILE FORMATTING DlSK. 

5. CONDITION CODE 1, 2, OR 3 ON SIO IN CHECKING NO. CYL. ETC. 

6. CE & DE NOT FOUND TOGETHER (IN CSW) WHILE CHECKING NO. CYL. 

7. UNEXPECTED UNIT-CHECK CHECKING NO. CYL (SENSE-BYTE NOT 81). 

8. NO T-DlSK AVAILABLE. 

10·. DISK READ-ONLY OR NOT LOGGED-IN FOR "FORMAT P CIRI! CALL. 

157 



11. FORMAT NOT EXECUTED IF "YES" NOT INPUTTED FROM TERMINAL. 

12. DISK (OTHER THAN T-DISK) NOT ATTACHED. 

13. "FORMAT P R" FAILURE - DATA-LOSS WOULD RESULT. 
(NOTE - COUNTS ARE UNCHANGED, TO PRESERVE USER'S DATA). 

14. "FORMAT P R SYS" FAILURE - DISK IS SMALLER THAN REQUIRED FOR USE 
OF "SYS" OPTION. 
(NOTE - COUNTS ARE UNCHANGED, TO PRESERVE USER'S DATA). 

OPERATION: The CMS FORMAT program has many options, as seen above in the 
ExAMPLES OF VALID FORMAT PARAMETER LISTS. These include the following: 

• FORMATing the P-Disk (or A-Disk, B-Disk, or C-Disk) 
or 

the T-Disk (handled somewhat differently) 

• FORMATing a 2311 or 2314 

• FORMATing "all" records, or skipping over the first three records 

• Limiting the number of cylinders formatted, if desired 

G Checking the number of cylinders and verifying other disk counts 

o Checking number of cylinders and disk counts as above, but revising the counts as 
desired (if feasible) 

• Writing a new label on Disk 

• Typing normal messages, or omitting such typeouts 

• The option to cancel the FORMAT call and not format the disk at all, in case 
FORMAT was called accidentally or inadvisedly. 

Initialization Phase 

FORMA T checks the parameter list for which options were specified; it also checks for 
various parameter list errors. 

The disk mode letter is checked; it must b~ alphabetic, and S (for the S-Disk) is not 
permitted. ADTLKP is called to find the corresponding active disk table. If an error 
from ADTLKP occurs, FORMAT types an error message and returns an error code 1. 
The device-address in NUCON (pointed to by thB ADTDTA pointer in the active disk 
table) is obtained and checked. A value of zero is not valid, and an error message and 
code are returned. 

158 



The disk is then sensed to make sure it is attached and ready, and to see if it is a 2311 
(sense byte of x'C8'), or a 2314 (sense byte x'40'). Anything else results in the return 
of a suitable error message and code. 

At this point FORMAT continues, depending upon which of the several options was speci­
fied' as described in the following sections. 

Real Format 

If the disk is really to be formatted (none of the special options C, R, or L was specified), 
the procedure used is as follows. The general description will be that of the procedure 
foHowed for the P-Disk; formatting of the A-Disk, B-Disk, or C-Disk is identical in 
operation. Where there are differences for the T-Disk, they are noted and also sum.­
marized in a later section. 

1. To guard against accidental or incorrect call of FORMAT, whinh wipes out all files 
on disk, a message is typed on the user's terminal before any tables are cleared or 
anything is written on disk. This message (with disk-mode and device-address 
filled in to their correct values) is as follows: 

**"FORMAT P" WILL ERASE ALL YOUR P-DISK (0191) FILES** 
**DO YOU WISH TO CONTINUE? ENTER "YES" or "NO": 

The user must type in YES or IiYE S for formatting to be undertaken. Any othel' 
input at all from the terminal (such as "NO") will result in an error-code 11 being 
returned, nothing at all in the NUCON or Active Disk Table being affected, and the 
following message: 

"FORMAT" WILL NOT BE EXECUTED 

For the T-Disk, if the (NOTYPE) option was given, this entire step is omitted; 
formatting proceeds with no message to the terminal or further input from the user. 

2. If FORMAT P ALL was specified, the user is now prompted to enter a label which 
is-to be written on record 3 of the disk. (See "CMS Disk Label" later in this 
section.) A message is typed on the terminal as follows: 

ENTER 6-BYTE LABEL (IF WANTED), OR NULL liNE (IF NOT). 
WAITRD is then called to obtain the label typed in by the user. 

If a null line (plain carriage return) was entered, some time information from loca­
tion x'98' in lower core is used in place of the label. Otherwise, the typed-in label 
(blank-filled if less than six bytes, truncated if more) is writt~n on the first ten 
bytes of record 3 when the formatting is done. (For example, if the user typed in 
MYDISK, the label would be: CMS=MYDISK) 

159 



For the T-Disk, FORMAT T is treated as FORMAT T ALL; no message on the 
terminal is given, nor user reply, and a label of CMS=T-DISK is always used. 

3. If ALL was not specified, for the P-Disk or equivalent, the first three records of 
cylinder 0, head 0 are read instead of being written. (If the disk has never been 
formatted before, this will normally cause an error, and FORMAT P ALL should 
then be used instead.) 

4. At this point, RELUFD is called to release and clear all appropriate old core­
resident tables for this disk, and the RIo and R/w flag-bits in the ADTFLG1 flag­
byte in the Active Disk Table are cleared. 

5. Just before formatting starts, a message is typed, of the following form: 

FORMATTING P-DISK (2314) ..• 

This message confirms to the user that the format program is formatting the 
desired disk, and indicates the disk type. If the (NOTYPE) option was specified, 
the message is omitted. 

Formatting of the disk then commences. A 2311 is formatted by writing four 
829-byte records per head, ten heads per cylinder. A 2314 is formatted with 
fifteen 829-byte records per two heads, for ten pairs of heads per cylinder. The 
data written (except for the label) consists of binary zeroes. A read-after-write 
check is included in the CCW chain for the P-Dlsk or equivalent, where the data 
written on disk is immediately read (in non-transmit mode) to check that the 
formatting was successful. For purposes of speed, the read-after-write check 
is not performed on the T-Disk, as the T-Disk may be formatted once for each 
terminal session, while the P-Disk is usually formatted only once in a great while. 

The CCW chain writes no less than 8 bytes for any single CCW command and always 
writes from a double-word boundary. This is the correct procedure to preclude 
data-chaining errors, particularly when running on a 360 model slower than a 65. 

If errors do occur, repeated efforts to recover are made; if a permanent error 
occurs, a message is typed indicating the trouble, and formatting of the disk is 
truncated at the end of the last cylinder successfully written. 

6. Formatting of the disk concludes when the end of disk is reached (determined by a 
unit check coupled with a sense byte of x'81'), or if a specified limit by the user is 
reached (for example, 50 cylinders for FORMAT P 50), or if a permanent error 
occurs, whichever happens first. 

160 

If the number of cylinders formatted is zero, then FORMAT exits with an error 
message, and no further action is taken. 



7. If at least one cylinder was successfully formatted, then FORMAT concludes as 
follows: 

a. Stores the number of cylinders ADTCYL in the active disk table. 

b. Types a message indicating how many cylinders were formatted, unless the 
(NOTYPE~ parameter was given, in which case it is omitted. 

c. Stores the unit-type-byte of x'OI' or x'OS' in the appropriate slot in the NUCON 
table. 

d. Obtains a 816~byte block from free storage, if necessary, for 'the first FST 
hyper block , clears it, and places its address in the active disk table. 

e. Obtains a 200-byte block from free storage, if necessary, for the QQMSK 
table, clears it, and places its address in the ADT table. 

f. Obtains free storage for the QMSK bit-mask table, the size depending on the 
number of cylinders, sets the first word to its default value of x'FOOOOOOO' , 
clears the remainder of the table, and places its address in the ADT table. 

g. Initializes all other counts in the ADTtable as needed (ADTNUM, etc.), and 
flags the disk as logged in and read-write. 

h. Calls UPDISK to write the finished file directory on disk. 

S. Finally, FORMAT returns to the caller with the appropriate error-code (= 0 if all 
was successful) in RI5. 

FORMAT P C Call 

If a FORMAT P C (or FORMAT T C, etc.) call is issued, FORMAT takes the following 
action: 

1. ADTLKP is called (in the initialization process, as usual) to ensure that the disk 
mode is valid, and the active disk table is checked to make sure that the disk is 
logged in and in read-write form (error message and return if not). 

2. Successive seeks are executed to determine how many cylinders are actually avail­
able on the 2311 or 2314 disk. 

3. The number of records on disk ADTNUM is computed, depending on the number of 
cylinders, and compared with the old ADTNUM. Whichever is less is taken ,as the 
correct value of ADTNUM. The actual bits in the QMSK bit-mask are then counted 
to compute the value of ADTUSED (number of records in use), ADTLEFT (number 
left), and ADTLAST. ADT1ST is cleared, and the number of cylinders ADTCYL 
(from step 2) is storea. 

161 



4. UPDISK is then called to ensure that the recomputed counts are stored on disk. 

5. Finally, STAT P (or STAT T, ere.) is called to display the disk counts to the user. 

FORMA T P C can be called by the user if desired to ascertain the actual number of 
cylinders on a disk, and to verify that the other disk counts are correct. If it is 
desired to revise the number of cylinders and disk counts, FORMAT P R should be 
called. 

FORMAT P R Call 

FORMAT P R (or FORMAT T R, etc.) has several uses, particularly when its options 
FORMA T P R nn (nn being a cylinder count) or FORMAT P R SYS are used. 

FORMA T P R (with no options) is used to ascertain the number of cylinders and recom­
pute the disk counts as in FOR.M:AT P C, but also has the capability of revising the disk 
counts upward if ADTNUM is greater than it was previously. 

FORMAT P R nn (where nn is a decimal number of cylinders desired) works like 
FORMAT P R with no options, except that the number of cylinders is limited to the 'nn' 
given by the user. 

FORMA T P R SYS is a special option used for a 54-cylinder 2314 or 203-cylinder 2311 
to recompute the counts to leave room for the CMS nucleus as written on disk by the 
IPLDISK program, precluding the possible loss of data. 

The action taken for FORMAT P R (with or without options) is as follows: 

1. ADTLKP is called and the disk checked to make sure it is logged in and in read­
write form, as in FORMAT P C. 

2. SUccessive seeks to the disk are performed as in FORMAT P C to determine the 
actual number of cylinders on the 2311 or 2314 disk. 

3. The number of records on disk ADTNUM is computed from the actual number of 
cylinders, if no options were given. If "nn" was specified, the "nn" count or the 
actual number of cylinders is used, whichever is less. The revised disk counts are 
then computed as in FORMAT PC. If the new "ADTLAST" (plus a safety factor for 
the ADTRES reserve count) is less than the old ADTLAST, a loss of data would re­
sult; in this case, a warning message is given to the user, the old disk counts are 
left intact, and error 13 is returned to the caller. If the new ADTNUM is tile same 
as the old, FORMAT P R finishes up the same as FORMAT P C, with a call to 
UPDISK and STAT. 

4. If the total number of records on disk ADTNUM is not the same as previously (and 
no data-loss will occur), FORMAT P R obtains a new QMSK bit-mask corresponding 
to the new disk counts, moves the old QMSK bit-mask thereto, truncating or zero­
filling as appropriate, and gives back the old bit-mask to free storage. Then all 
new cOWltS are stored in the active disk table (including the revised ADTCYL 
cylinder count), UPDISK is called, and STAT, as in FORMAT P C. 

162 



5. FORMAT P R SYS is similar to FORlVIAT P R nn, but has the following fea1nres: 

a. Uses an ADTNUM of 7976 (the largest multiple of 8 records within the block­
number of 7980 used by IPLDISK). 

b. If truncation of the disk counts at 7976 wotild cause loss of data, gives an error­
message and error-return similar to the logic for FORMAT P R nne The old 
disk counts are retained as is. 

c. A check is also made to ensure that the disk is big enough for the new ADTNUM 
of 7976 records. If not, an error message is given, error 14 is re1nrned, and 
the old disk counts are retained. 

d. If the disk is large enough. and no data-loss would result i then FORMAT P R 
SYS recomputes them on the basis of ADTNUM=7976, with the correct other 
disk counts, obtains a new QMSK if necessary as in FORMAT P R, stores all 
corrected counts, calls UPDISK, and finally STAT, as above. 

These three options (FORMAT P R, FORMAT P R nn, and FORMAT P R SYS) make it 
possible to revise disks whenever feasible, to larger or smaller sizes, without the 
necessity of dumping files out on tape, formatting the disk, and loading them back in 
again. The only requirement, other than those discussed above, is that when a disk is 
enlarged via FORMAT P R it was previously formatted at some time to its ftill size. 

CMS Disk Label 

Record 3 (Cylinder 0, Head 0, Record 3) of a CMS Disk now includes a ten-byte label, 
consisting of the following: 

1. Four bytes: CMS= 

2. Six bytes: desired label 
(blank-filled if less than 6 bytes; 
truncated if more t.lJ.a..lJ. 6 byt.,es) 

3. Remaining 819 bytes of record = 00 (binary zeroes) 

Option to Write a Label on Disk 

As mentioned earlier, the option to format all of a eMS Disk causes the disk to be for­
matted including a label on record 3. (See "CMS Disk Label" for details.) 

A label can also be entered on a disk that has been formatted previously (either to change 
an existing label or to place a new label on a CMS Disk that does not have a 10-byte label 
as now used), without affecting any other information on rlisk. 

163 



This is done by issuing the command FORMAT P L (or FORMAT T L - the T-Disk is 
quite acceptable for this option). The logic performed by FORMAT P L (or equivalent) 
is as follows: 

1. ADTLKP is called to make sure a disk exists for the mode-letter given, and does 
not = the S-Disk. (This is accomplished as part of the general initializing process.) 
The disk must, of course, be attached, ready, and be a read-write disk, for the 
command to succeed. 

2. RDTK is called to read the old label from disk into an 829-byte I/O buffer. (If 
RDTK should fail, a descriptive error message is given, and the error-code from 
RDTK is returned to the caller of FORMAT P L.) 

3. A message is typed on the user terminal as follows: 

ENTER 6-BYTE LABEL: 

4. WAITRD is called to obtain the label typed in by the user. 

5. CMS= (four bytes) and the first six bytes of the entered label (blank-filled, if less 
than 6 were inputted) are moved to the first ten bytes of the 829-byte I/o buffer 

6. WRTK is then called to write the new Label back on the disk. (If WRTK should fail, 
a descriptive error message is given, and the error-code from WRTK is returned 
to the caller of FORM:AT P L. If the failure is because the disk is read-only, the 
error-code = 6). 

SUmmary of Differences in Formatting aT-Disk 

As mentioned above, there are several differences in the way a T-Disk is formatted 
from the procedure used for a P-Disk or other read-write disk. These are summarized 
as follows: 

1. FORMA T T is equivalent to FORMAT T ALL. (All records on the disk are 
formatted. ) 

2. 'A label of CMS=T-DISK is automatically written on record 3. (See note below.) 

3. The read-after-write check in the CCW chain to format the disk is omitted, in the 
interests of making the formatting of a temporary disk as fast as possible. 

4. The requirement for the user to type in YES or "YES before formatting begins is 
waived if the (NOTYPE) parameter was given. 

5. The "NO T-DISK AVAILABLE" error message (if appropriate) is omitted (as well 
as the normal formatting messages) if the (NOTYPE) parameter was given. 

Note: If desired to change the label on a T-Disk after it has been formatted, the com­
mand FORMAT T L can be issued, and the replacement label entered on disk. 

164 



GENDIRT 

FUNCTION: To complete auxiliary system status tables. 

ATTRIBUTES: Disk resident, 'transient 

CALLING SEQUENCE: 
module other directory 

GENDIRT 
name phases name 

OPE Ri\.TION: GENDIRT will be used primarily by the system progra...mmer whose 
responsibility it will be to maintain language processor modules on the system disk. 

All TEXT decks for the language compiler, the CMS interface and other routines, and 
the auxiliary directory should be placed onto the read-write system disk. A series of 
LOAD, REUSE, GENMOD, and LOAD]\1:0D commands can now be used to create a 
modular overlay structure that will be in effect during compilation. After the last 
module is created, the CMS interface routine, other needed routines, and finally the 
auxiliary directory are again loaded. The GENDIRT command is issued with the inter­
face name as the first argument, and the auxiliary directory as the last argument. 

GENDIRT will operate on the auxiliary directory in the same manner as SYSGEN, when 
the latter routine completes the nucleus directory:; SST AT . That is, each FST entry 
will be STATE'd and the address of file's First Chain Link will be placed into the FST 
slot. Then a GENMOD will be issued to create an interface module. 

SUbsequently, whenever the language processor is invoked, part of the interface module 
will be the completed auxiliary directory that is used as an extension to the system disk 
directory, SST AT. 

To satisfy a reference to a processor module, SSTAT will be searched to locate its FST 
entry and then its first chain link address. If the entry is not found, the SSTATEXT 
pointer is used to access the address of any extension directories (if zero, no directories 
exist). Scanning of the auxiliary directory commences until the FST entry for the 
desired module is found and the loading of the routine may be executed. 

Auxiliary directories are used so that the core-resident nucleus routine, SSTAT, would 
not be cluttered with specific 40-byte FST entries that are referenced by occasional 
calls to language processors. 

For an example of the usage of GENDffiT, see the CP-67/CMS Installation Guide, 
GH20-0857. 

165 



MAPPRT 

FUNCTION: To create, and optionally print, a file containing a map of entry points in 
the CMS nucleus. 

A TTRffiUTES: Disk resident 

CALLING SEQUENCE: 
LA 1, PUST 
SVC X'CA' 

PUST DC CLS'MAPPRT' 
A 

DC CL8' N' 
C 

ON 
DC CL8' OFF' 

NO 

OPERATION: MAPPRT examines the parameter list and sets switches according to the 
type of file to be created and the location of the printout, if a printout was requested. If 
the parameter A was specified, the file CMS-NUC ALPHABET PI is erased; the names 
of the entry points in the nucleus are then sorted into alphabetical order and written into 
the file CMS-NUC ALPHABET Pl. If the parameter N was specified, the file CMS­
NUC NUMERIC PI is erased; the core locations of the entry points are then sorted into 
numeric order and written into the file CMS-NUC NUMERIC Pl. 

If neither A nor N were specified, MAPPRT assumes C, proceeds as for A, above, and 
then proceeds as for N, above. The file CMS-NUC ALPHANUM PI is erased, and the 
contents of the ALPHABET file and the NUMERIC file are combined into the file CMS­
NUC ALPHANUM Pl. 

MAPPRT then determines if the previously created file is to be printed or typed. If NO 
was specified, MAPPRT returns to the caller. If ON was specified, MAPPRT calls the 
PRINTF command to type out the file on the console and returns to the caller. If OFF 
was specified, it calls the OFFLINE PRINT command to print the file and returns to the 
caller. 

Note: MAPPRT should only be called when IPL'ing 190 to obtain its eMS nucleus and 
after the LOGIN command. MAPPRT will expect the nucleus loader map to be at core 
positions lE800 and continue downward to lDOOO. 

166 



MODMAP 

FUNCTION: To type at the console typewriter the load map associated with the module 
specified by the MODMAP command. 

ATTRillUTES: Disk resident, transient 

CALLING SEQUENCE: 
LA 1, PLIST 
SVC X'CA' 
DC AL4 (error return) 

PLIST DC 
DC 

CL8'modmap' 
CL8' , module filename 

OPERATION: MODMAP first calls the STATE function to determine whether the file 
exists. If the file does not exist, MODMAP returns the error message' FILE NOT 
FOUND' and branches back to the user. With confirmation that the file is there, MOD-
MAP checks the number of logical records in the file to determine if a load map does 
exist with the module specified. (The load map is the last record of the module - norm­
ally the third record). If the module has less than three records, it was a t1:ansient or 
was created with the NOMAP option. If there is not a map, l\1:0DldAP types the message 
'LOAD MAP UNAVAILABLE', and branches back through Register 14 to the user. If 
the third record is present, MODMAP sets up the module name specified in a PLIST 
and SVC's to LOADMOD the module into core. MODMAP next loads the address of 
NUCON to establish certain CMS parameters and addresses, reads and unpacks the 
third record, which is the load map. MODMAP then sets up the map information in a 
buffer and places the address of the buffer in a PLIST with the command call in the 
PLIST to TYPIlN. MODMAP then, via the TYPLIN function, prints the map onto the 
console typewriter and branches back to the U$er via Register 14. MODMAP is a 
trans ient routine. 

OSTAPE 

FUNCTION: To enable users to read a tape consisting of 80 byte, unblocked records 
and create a eMS file from it. The PDS option is designed to read a tape produced by 
the OS utility IEBPTPCH and create a set of CMS files from it. 

A TTRIBUTES: Disk-resident utility. 

CALLING SEQUENCE: 
LA HI, PLIST 
SVC 202 
DC AL4 (E RROR) 

i67 



PLIST DC CLS'OSTAPE' 

DC 'SYSIN' 
CLS 'filetype' 

DC 
'OSTAPE' 

CLS 'filename' 

DC CLS'(' 

DC CLS'NPI?S' 
'PDS' 

DC 
'NCOLl' 

CLS'COLl' 

DC 
'TAP2' 

CLS'TAPx' 

DC 
'NEND' 

CLS'END' 

DC 
'NMAXTEN' 

CLS'MAXTEN' 

Note: The underlined alternate indicates default option. 

OPERATION: OSTAPE sets flag bits either to the default setting or to the requested 
option setting. If a user filename, filetype, or tape unit is requested, these are saved 
in locations NAM2, NAMl, and TAPID. Tape records are read; the end-of-file flag is 
cleared after each read. If OS labels are on the tape, they are typed on the terminal 
and the next record is read. 

If colmnns 2 - S contain 'MEMBER', the option bits are checked for the partitioned 
data set request. If there is a PDS request and the file is open, FINIS and LOGDISK 
are called to close it, the user is notified, and the program continues. Otherwise, 
STATE is called for the file - if it exists, ERASE is called. The open file bit is set on, 
and the records are brought in. If there is no PDS request, the field is ignored, the 
file opened, and WRBUF is called to write the record on disk. Succeeding records go 
directly to WRBUF until an END or MEND card is encountered. 

The file is then closed by calls to CMS FINIS and CMS LOGDISK, the user is informed 
and the MAXTEN counter is updated and checked. If MAXTEN is requested and the 
limit is reached, the user is informed and the program is terminated. If the MAXTEN 
is not requested, the tape scans for the next file. 

An encounter of two tape marks in a row will also terminate the program. 

16S 



SORT 

FUNCTION: To sort records from one disk file to a second disk file in ascending order 
accol""ding to specified sort fields. 

ATTRIBUTES: Disk-resident. 

CALliNG SEQUENCE: 

LA 
SVC 

PUST DC 
DC 
DC 
DC 
DC 

1, PUST 
202 

CLS'SORT' 
CLS'filenamel ' 
C LS' filetypel ' 
CLS 'filename 2 , 
C L8 'filetype2' 

OPERATIONS: SORT saves the filenames and filetypes and, after the field definitions are 
entered, calls STRINIT to set up storage and calculate the amount it has. After issuing 
the GETl\IAIN, it analyzes the SORT field parameter and then checks to see if the re­
quested output file already exists. If it does, the user has the option of either erasing 
the old file, appending the new output, quitting, or entering a new filename and filetype. 

If core is exceeded during SORT, the messages: 

'*CORE OVERFLOW DURING SORT, LAST ITEM PROCESSED: XXX' 
'*SIM:ULA TING END-OF-INPUT' 

are sent to the user and the command is terminated. 

STAT 

FUNCTION: To type on the terminal pertinent disk statistics for a given disk, for all 
read-write disks, or for all disks. 

ATTRIBUTES: Disk resident, transient 

CALLING SEQUENCE: 
LA Rl, PUST R1 must point to P-List as usual 
SVC X'CA' 
DC AL4 (ERROR) 

169 



ENTRY REQUIREMENTS: 

Rl must point to STAT parameter-list: 
DS OF 

PLIST DC CL8'STAT' 
[DC CL8' 'J Disk-mode, '*', I?', or omitted 
[DC CL8'? 'J? = Optional Parameter 

EXIT CONDITIONS: 

Normal Return 
R15 = 0 
Error Returns (R15 values, with messages as shown): 
R15 = 1 INCORRECT "STAT" PARAMETER-LIST 
R15 = 2 **Z-DISK (CUU) NOT CURRENTLY LOGGED IN** 
R15 = 3 **NO READ-WRITE DISK(S) CURRENTLY LOGGED IN** 

CALLS ~o OTHER ROUTINES: 

ADTLKP, ADTNXT 

CALLED BY: User 

MACROS USED: 

ADT, FVS 

OPERATION: If a specific disk-mode letter is given to STAT (for example, STAT P, 
STAT T, STAT S, etc.), the disk statistics for that disk are typed on the terminal, if 
the disk is currently logged in. If there is no disk corresponding to the disk-mode 
given, error 1 is returned. If the disk is not currently logged in, error 2 (with the 
message filled in to include the disk-address and mode-letter) is returned. 

If the disk mode-letter is omitted entirely (that is, the command is just "STAT"), then 
statistics are given on all currently logged-in read-write disks. (If none is currently 
logged in, error 3 is returned. ) 

If the disk mode-letter is an asterisk f' STA T *"), then the disk statistics for all 
currently logged-in disks, both read-write and read-only, are given. 

The message typed on the terminal now includes the number of files currently represent­
ed in the in-core file directory. For a read-write disk, this also equals the number of 
files on the disk. For a read-only disk, however, there maybe many more files on disk; 
the count is just that of the files currently available through the directory currently in 
core. (For example, STAT S would give the number of files in the SSTA T table, 
equivalent to the P2 files of the S-Disk.) 

170 



If a '?' is entered as the only parameter, a brief status of all currently logged-in disks 
is typed. This brief status gives disk labels, disk address, disk mode, and Rio 
if the disk is read-only. 

If an additional parameter of '?' is given, added information is typed, specifically 
whether the disk is 2311 or 2314, and whether it is read-only or read-write. 

If a user has been logging in several disks and wants to be sure which ones he has log­
ged in at the moment, a call to 'STAT?' will provide the clue needed as to which disks 
are indeed logged in. (This would also show the order of search.) 

The STAT command is transient-disk-resident. The name of the text deck is 
j STA TDSK'; thus a procedure for generating a new module of 'STAT' would be as 
follows (or equivalent): 

LOAD STATDSK (TRANS TYPE 
GENMOD STAT 

The logic of STAT is simple. ADTLKP or ADTNXT is called to find the appropriate 
Active Disk Table block; if the flag bits indicate the disk is logged in the pertinent disk, 
statistics are simply converted to printable form and typed. Leading zeros are elim­
inated by shifting the typeout left for any leading zeros found, and adding a blank at the 
end, with the subsequent caii to TYPLIN deieting the traiiing blanks. 

TAPE 

FUNCTION: To dump disk files to tape, to restore files that were dumped to tape back 
onto disk, to rewind a tape, to write an end-of-file mark on a tape, or to skip to the 
next end-of-file mark on a tape .. 

ATTRIBUTES: Disk resident 

CALLING SEQUENCE: 
LA 1, PLIST 
SVC X'CA' 

171 



REWIND: 

PLIST DC 
DC 
DC 

WRITEOF: 

PLIST DC 
DC 
DC 
DC 

SKIP: 

PLIST DC 
DC 
DC 
DC 

DUMP: 

PLIST DC 
DC 
DC 
DC 
DC 
DC 

LOAD: 

PLIST DC 
DC 
DC 
DC 

SCAN: 

PLIST DC 
DC 
DC 
DC 

172 

CL8'TAPE' 
CLS'REWIND' 
CLS'TAPn' CMS device name (optional) 

CLS'TAPE' 
CLS'WRITEOF' 
CLS'n' 
CLS'TAPn' 

CLS'TAPE' 
CLS'SKIP' 
CLS'n' 
CLS'TAPn' 

CLS'TAPE' 

Write In' EOF marks (optional) 
CMS device name (optional) 

nmnber of EOF marks (optional) 
CMS device name (optional) 

CLS'DUMP' 
CL8'fUename' or CL8'*' 
CLS'fUetype' of CLS'*' 
CLS'fUemode' default of 'PI' if omitted 
CLS'TAPn' CMS device name (optional) 

CLS'TAPE' 
CL8'LOAD' 
CLS'n' 
CL8'TAPn' 

CLS'TAPE' 
CLS'SCAN' 
CLS'n' 
CL8'TAPn' 

stop after 'n' EOF marks (optional) 
CMS device name (optional) 

stop after 'n' EOF marks (optional) 
CMS device name (optional) 



SLOAD: 

PLIST DC 
DC 
DC 
DC 
DC 
DC 

CL8'TAPE' 
CL8'SLOAD' 
CL8'filename' or CL8'*' 
CL8'filetype' or'CL8'*' 
CL8'n' stop after 'n' EOF marks (optional) 
CL8'TAPn' CMS device name (optional) 

Note: The default value for 'TAPn' is TAP2' and the default value for In' is'1'. 

OPERATION: The operation of the TAPE command program depends on whether the 
calling program specifies REWiND, WRITE OF , SKIP, DUIvIP, LOAD, SCAL~, or 
SLOAD. 

REWIND: TAPE calls the TAPEIO function program to rewind the tape. It then returns 
(via SVCINT) to the calling program, which is usually INIT. 

WRITE OF: TAPE calls the TAPEIO function program to write an end-of-file marker. 
It then returns to the calling program. 

SKIP: TAPE repeatedly calls the TAPEIO function program to read successive records 
from the tape until an end-of-file marker is encountered. It then returns to the calling 
program. 

DUMP: TAPE calls the F STLKP function program to locate the file status table (F ST) 
block for the file. TAPE then temporarily alters the FST block characteristics to 800-
byte fixed-length records. TAPE then calls the RDBUF function program to read the 
first 800-byte block in the file into a buffer and the TAPEIO function program to write 
the data block from the buffer onto tape. TAPE repeats this procedure of calling 
RDBUF and T APEIO for each data block in the file. When an end-of-file is reached, 
T APE calls TAPEIO and writes a trailer record on the tape. The trailer record 
identifies the file and contains an N in the fifth byte, the last 20 bytes of the file, status 
table for the file in bytes 6 - 25: and the file designation in bytes 70 - 87. Finally, TAPE 
restores the FST block and calls the FINIS command program to close the file. It then 
returns to the calling program. 

Note: Each data block is written, as a single tape record. The tape record is 805 bytes 
long. The first four bytes contain a code indicating that the record was produced by the 
TAPE command program. The next byte is zero, except for the trailer record. The 
remaining 800 bytes contain the data block. 

LOAD: TAPE calls the ERASE command program to erase the file (if any) designated 
as (DISK) (TFILE) P3. Next it calls the T APEIO function program to read the first 
record on the tape. (If the record was produced by the dump portion of TAPE, it will 
be 805 bytes in length and contain a code in the first four bytes and a data block in the 
last 800 bytes). TAPE then checks the code in the record. If invalid, TAPE issues 
a message to the effect that the tape is not in tape load format,and returns to the calling 

173 



program. If the code is valid, TAPE determines if it is a trailer record (that is, one 
with N in the fifth byte). If not a trailer record, TAPE calls the WRBUF function 
program to write the data block contained in the record into a file deSignated as (DISK) 
(TFILE) P3. Then TAPE calls the TAPEIO function program to read the next record 
from the tape, which it processes in the sam~ manner. 

If the tape record read is a trailer record, TA PE calls the FINIS command program to 
close the disk file «DISK) (TFILE) P3) created from the first tape file. It then calls 
the ERASE command program_to erase the file (if any) that has the same designation as 
the tape file just converted to a disk file. Next, TAPE calls the FSTLKP function pro­
gram to locate the file status table for the disk file just created. (This is again (DISK) 
(TFILE) P3.) Sub se quently 9 TAPE overlays the last 20 bytes of the file status table, 
(except for the first chain link address) with the corresponding data from the trailer 
record and moves the filename, filetype, and date last updated for the tape file from 
the trailer record into the corresponding locations in the FST block. The directory is 
then updated with a call to UPDISK. This completes the conversion of the first file on 
the tape to a disk file, and TAPE calls the TYPUN function program to type a message 
at the terminal to the effect that the file has been loaded. TAPE processes the next file 
on the tape in a similar manner. When the 'n'th end-of-file on the tape is encountered, 
TAPE returns to the calling program. If 'n' was not specified, TAPE returns to the 
calling program when the first end-of-file is reached. 

SCAN: TAPE sets SCANSWT to disable disk operation and to enable end-of-file printout 
and then branches into the code for TAPE LOAD. The effect of this command is to list 
the contents of a tape (including end-of-file marks) at the terminal until the 'n'th end­
of-file mark is encountered. The default value of 'n' is one. 

SLOAD: TAPE searches for the file whose filename and filetype were specified in the 
parameter list. When the matching file is found, SLDSWT is set, and TAPE branches 
into the TAPE LOAD code to copy the file from tape to disk. SLDSWT enables control 
to return to the SLOAD coding after the file is copied. If neither the filename nor filetype 
was '*' TAPE returns control to the calling program, otherwise the above search and 
load procedure is continued until the 'n'th end-of-file mark is encountered. Control is 
returned to the user when the 'n'th end-of-file mark is encountered even if no files were 
copied fro:nl tape to disk. The default value of tn' is one. 

TAPEIO 

FUNCTION: To (1) read or write tape records, (2) rewind the tape, and (3) write an end­
of-file marker on tape. 

A TTRIBUTES: Disk resident, transient 

Note: For a detailed explanation on TAPEIO, see the write-up on the TAPEIO function. 

174 



TAPRINT 

FUNCTION: To print the contents of a tape containing assembler or FORTRAN LISTING 
files. 

ATTRIBUTES: Disk resident 

CALLING SEQUENCE: 
LA 1, PLIST 
SVC X'CA' 

PUST DC 
[DC 

CL8'TAPRINT'_ 
CL8' ~ symbolic tape name 

OPERATION: TAPRINT receives the symbolic name of the tape to be printed from the 
parameter list and inserts it into the calling sequence to the TAPEIO function program. 
It then calls the TAPEIO function program to read the first record from the tape. This 
record contains 10 blocked print line images. Next, TAPRINT repeatedly calls the 
PRINTR function program to print each of the 10 print line images on the printer. 
TAPRINT repeats this process of reading a record from tape and printing the 10 print 
line images contained therein until it encounters an end-of-file on the tape. At this 
time, it calls the TYPLIN function program to type a message at the terminal signaling 
the end-of-file. It then prints the next file on the tape in a similar manner. When two 
consecutive end-of-files are encountered, meaning that the end of the tape has been 
reached, TAPRINT calls the TYPLIN function program to indicate this. It then calls 
the TAPEIO function program to rewind the tape, calls the CLOSIO command program 
to close printer operations, and returns to the calling program. 

Note: If the calling program does not provide a symbolic tape name, TAP2 is assumed. 

TPCOPY 

FUNCTION: To copy tape files. 

ATTRIBUTES: Disk resident. 

175 



CALLING SEQUENCE: 

LA 1, PLIST 
SVC 202 

PLIST DC CL8'TPCOPY' 

DC { CLS'TAPi' 
CL8'*' -TAPI 

DC {CLS'TAPO' 
CL8'*' -TAP2 

DC {CLS'n' 
CLS'*' -1 

DC { CL8'yes' 
CLS'*' -no 

OPERATION: TPCOPY calls SVCFREE to get free storage and then analyzes the param­
eter list looking for defaults and errors such as the same unit for both input and out­
put, and a fUe number less than 1 and greater than 9. 

It uses TAPEIO to read tape input records, and calculates the actual length and number 
of records. This information is given to the user if the file summary option has been 
selected. 

Error messages on read and write tape errors will be passed to the user by TPCOPY. 

WRTAPE 

FUNC.TION: To write a disk file onto tape. 

ATTRmUTES: Disk resident 

CALLING SEQUENCE: 
LA 1, PLIST 
SVC X'CA' 

PLIST DC 
DC 
DC 
DC 
DC 
DC 

176 

CL8 '\VRTAPE , 
CLS' 
CLS' 
CL2' 
CLS' 
CL3'EOF' 

filename 
filetype 
filemade - defaults to P 
blocking factor - defaults to 10 
defaults to no-eof 



EXIT CONDITIONS: 

Normal return: R15 = 0 

Error returns: 

1. TAPE ERROR 
2. PARAMETER ERROR 
3. BLOCK SIZE TOO LARGE (Byte Count) 
4. FILE NOT FOUND 
5. FATAL ERROR FROM STATE 

CALLS TO OTHER ROUTINES: 

STAFF, RDBUF, FINIS, TAPEIO 

CALLED BY: 

User. 

OPERATION: WRTAPE checks the parameter list to determine if the mode has been 
specified. If not, a P mode is assumed. Checking is then done to determine if a 
blocking factor was specified. If not, a default blocking factor of 10 is used. If the 
E nd-Of-File parameter has been entered, an appropriate flag is turned on. 

WRTAPE then calls STATE to locate the file. Once located, an output PLIST is set 
up from the STATEFST. If the file is a listing file all ASA carriage control characters 
are converted to machine code. 

WRTAPE repeatedly calls RDBUF to read the file and block the records according 
to the desired blocking factor and calls the TAPEIO function program to write the 
blocked records to tape, until an end-of-file is encountered. At this time, WRTAPE 
checks the EOF flag to determine if an END-OF- FILE was requested. If EOF was 
requested, WRTAPE calls 'TAPEIO' to write an END-OF-FILE. 

Note: WRTAPE writes to tape device TAP2. 

CONTROL COMMANDS 

The commands CPFUNCTN, IPL, KE, KO, KT, KX, LOGIN, LOGOUT, RELEASE, 
RT, SYN, and VSET control the user's virtual machine environment. These are 
described in detail on the following pages. 

177 



BLIP 

FUNCTION: To enable the user to specify the terminal two- second time count 
character. 

Note: For information on BLIP, see the VSET writeup. 

CHARDEF 

FUNCTION: To enable the user to change the default characters for character delete, 
line delete, EDIT backspace and logical tab, and to specify the hexadecimal representa-
tion of characters. 

Note: For information on CHARDEF, see the VSET writeup. 

CPFUNCTN 

FUNCTION:' Transmits console function commands to CP-67 without leaving the CMS 
virtual machine environment. Permits incorporation of CP console functions in EXEC 
files and programs. 

A TTRmUTES: Disk resident, transient 

CALLING SEQUENCE: 
LA 1,PLIST 
SVC X'CA' 

PLIST DC 
DC 

CL8 'CPFUNCTN' 
C L8 'NOMSG' optional 

DC C' 'command string' 

where 'string' is a CP-67 console function 

OPERAT10N: CPFUNCTN calls CONVVAIT to drain any stacked terminal output. It then 
moves 'command string' into a buffer, places the address of the buffer in register 1 and 



the. byte count for t.l}e string in register 2. A DIAGNOSE instruction X'83120008' is then 
executed, transmitting to CP-67 the desired console function. CP-67 returns to CMS 
the following error codes: 

o Command accepted 
4 INVALID CP REQUEST 
8 BAD ARGUMENT 

For codes 4 and 8 the indicated messages are typed by CMS. Any other nonzero error 
code is dependent upon the particular function. At this time, only LINK returns addi­
tional codes. 

The NOMSG option inhibits typing of the messages for codes 4 and 8. It is intended pri­
marily for use by calls from other programs. Other CP messages will be typed by CP 
directly. 

FUNCTION: To initial program load the CMS nucleus into core. 

ATTRIDUTES: Disk resident, transient 

CALLING SEQUENCE: 
LA 1,PLIST 
SVC X'CA' 

PLIST DC 
[DC 

CL8'IPL' 
CL8'xxx'] IPL-Device (optional) 

OPERATION: If the IPL-Device was specified, and the user is running in a virtual 
machine, the parameters are passed to CP (via a diagnose instruction), and GP performs 
the IPL. 

If the IPL-Device was specified but CMS is running on a real machine, the device num­
ber given is used for the disk to be used for the IP L sequence, as described later. 

If the IPL-Device is omitted from the parameter list, a halfword "IPLDEV" in NUCON 
is examined. If this = 0, that is an indication that CMS is being run on -a virtual ma­
chine via IPLCMS- thatis, IPL by name; for this case, CP is invoked by the diagnose 
instn~ction to execute IPL GMS. 

179 



If CP is not calied upon to do the IPL sequence, then CMS uses the given IPL-Device (if 
present) or the contents of IPLDEV for the disk from which the IPL is to be performed, 
and then IPL's from that disk as follows: 

The IPL sequence from cylinder 0, track 0, records 1 and 2 of the disk is read in. The 
IP L sequence then reads in the IPLDISK function program from the system disk. 
IP LDISK then reads in the CMS nucleus. 

KE 

FUNCTION: To increase or decrease the length of lines being typed to the terminal. 

ATTRIBUTES: Nucleus resident 
Imbedded in CONSI 

CALLING SEQUENCE: 

This routine is not called. CONSI tests each input line from an ATTN interrupt for the 
presence of KE, KT, RT, KX, and KO. 

OPERATIONS: Hit the ATTN key twice to open the console, and enter KE. When CONSI 
receives control from IOINT, it picks up the KE from the input line, and checks to see 
if a number has been entered for a specific line length to be typed. If a number was 
specified, the column limit is set, the KE flag is set, and the ATTN buffer is released. 
If no number was specified, a default column limit of 72 is assumed. CONSI then 
returns to IOINT. 

KO 

FUNCTION: To kill overrides. 

ATTRIBUTES: Nucleus resident. 
Imbedded in 'CONSI' 

CALLING SEQUENCE: 

This routine, along with KT and RT, is not formally called. CONSI tests each input line 
from an ATTN interrupt for the presence of KT, KO, RT, and KX. 

OPERATION: Hit ATTN key twice to open console and enter KO. When CONSI receives 
control from IOINT, it picks up the KO from the input line and sets the KLOVER flag, 
releases the ATTN buffer by a call to FRET, and returns to IOINT. 

180 



KT 

FUNCTION: To kill typing at the user terminal. 

ATTRIBUTES: Nucleus resident. 
Imbedded in CONSI. 

CALLING SEQUENCE: 

This routine, along with KO and RT, is not called. CONSI tests each input line from an 
ATTN interrupt for the presence of KE, KT, RT, KX, and KO. 

OPERATION: Hit the ATTN key twice to open console~ and enter KT. When CONSI 
receives control from IOINT, it picks up the KT from the input line, sets the KT flag, 
releases the ATTN buffer by a call to FRET, and returns to IOINT. 

KX 

FUNCTION: To kill execution during a running program. 

ATTRIBUTES: Nucleus resident. 
Entry point - Killex in LOG 

CALLING SEQUENCE: 

Extrn KILLEX 
or 

DC V (KILLEX) 

OPERATION: Comes here (via CONS!) if user hits ATTN twice and types KX. (Also, 
could come here on purpose from DEBUG) Does the following: 

1. Calls DESBUF to clear out any stacked-up console I/O. 

2. Clears KT and KE flags to ensure typing of console messages. 

3. Sets kill-overrides flag to finish up in case overrides set. 

4. Calls FINIS*** to close out any open files. 

5. Calls CONWAIT to wait for console I/O. 

6. Calls CLOSIO to finish reader, printer, and punch. 

7. Calls IPL to load a fresh copy of CMS. 

181 



LINEND 

FUNCTION: To enable the user to define his own logicallinend character in place of 
the default character of if. 

Note: For information on LINEND see the VSET writeup. 

LOGIN 

FUNCTION: To bring into core the User File Directory for a given disk (e. g., 191, 
192), setting up the necessary information in the Active Disk Table for the given disk 
mode (e. g., P, T). 

ATTRffiUTES: Transient, reentrant 

CALLING SEQUENCE: 

LA Rl, PLIST Rl must point to P-list as usual 
SVC X'CA' 
DC AL4(ERROR) 

ENTRY REQUffiEMENTS: 

Rl must point to LOGIN parameter list: 

DS 
PLIST DC 

DC 

DC 
DC 

OF 
CL8'LOGIN' 
CL8' 

CL8' 
X'FFFFFFFF' 

EXIT CONDITIONS: 

Normal Return 

R15 = C 

Error Returns 

Additional parameters as needed 
(See examples of valid plists) 

Signifies end of P-List 

R15 nonzero (See "ERROR RETURNS") 

182 



CALLS TO OTHER ROUTINES: 

ADTLKP, ADTNXT, FREE, FRET, READFST, READMFD, RELUFD 

CALLED BY (where known): 

INIT, or User (from terminal or EXEC file) 

MACROS USED: 

ADT, FVS 

EXAMPLES OF VALID LOGIN PARAMETER LISTS: 

Note: In the following examples, "ccu" stands for a hexadecimal disk-address (e. g. , 
192, etc.) and "m" or "n" stands for the given Disk-Mode (for example, P). 

1. Valid Parameter Lists to LOGIN an entire Disk: 

LOGIN 
LOGIN (NOTYPE 
LOGIN (NOPROF NOTYPE 
LOGIN (NOPROF NO TYPE 
LOGIN CCll 

LOOIN CCll (NOPROF NOTYPE 
LOGIN CCll m 
LOGIN CCll m (NOTYPE NOPROF 

ExamEle: LOGIN 196 (NOPROF 

2. Valid Parameter Lists to LOGIN NO-UFD from a DIS~: 

LOGIN (NO_UFD 
LOGIN (NO-UFD 
LOGIN ccu (NO_UFD 
LOGIN ccu (NO-UFD 
LOGIN ccu m (NO_UFD 
LOGIN ccu m (NO-UFD 

Example: LOGIN 192 T (NO-UFD 

3. Valid Parameter Lists to LOG IN selected files from a disk "m" known to be 
read-only: 

LOGIN 
LOGIN 
LOGIN 

CCll m filename 
CCll m filename 
CCll m filename 

(options 
filetype 
filetype 

Example: LOGIN 194 C * TEXT PI 

(options 
filemode (options 

183 



4. Valid Parameter Lists to LOGIN from a disk "m" as a read-only extension of 
another disk "xl

' (accessing either all or selected files): 

LOGIN ccu m,x 
LOGIN ccu m, x (options 
LOGIN ccu m,x filename (options 
LOGIN ccu m, x filename filetype (options 
LOGIN ccu m,x filename filetype filemode (options 

ExamEle: LOGIN 193 A, P CON*UPDG* (NOTYPE 

ERROR RETURNS (R15 value at exit, with message as shown): 

~ In the following messages, "m" or "n " stands for a disk-mode (e.g., P or T 
or A etc.) and ccu stands for a disk-address (e. g., 191 or 192 etc.). 

Error 
No. Message Comments 

1. ** m (ccu) DEVICE ERROR ** File Directory is Unreadable 

2. ** m (ccu) NOT· ATTACHED ** 

3. ** m (ccu) DEVICE ERROR ** ccu not recognizable device-type 

4. ** m (ccu) Rio - CANNOT LOGIN No-UFD** 

5. ** m (ccu) DEVICE ERROR ** ccu is in old 2311 format no longer 
supported. 

6. LOGOO6: PARAMETER ERROR Error in LOGIN P-List 

7. ** m (ccu) ACCESSEDAS n-DISK (R/W)** 

8. ** m (ccu) NOT ACCESSED - 0 FILE S ** 

OTHER RESPONSES (given with normal return if appropriate but omitted if the 
NOTYPE option was given): 

ccu REPLACES m (ccu) 
m (ccu) Rio 
ccu ALSO = n-DISK 
ccu m RELEASED 
ccu m, x RE LEASED 

OPERATION: LOGIN is the command which is used to bring into core the User File 
Directory (UFD) for the user's P-Disk or any other disk (except the S-DISK, which is 
logged in earlier by INITSYS & READFST). 

184 



In the CMS initialization process, if the user's first command is anything other than 
LooIN or FORMAT P ALL, the LOGIN command is invoked automatically to log in a 
user's files from his P-Disk. Then, if a PROFILE EXEC exists in the user's 
directory, this is executed, followed by the first command typed in. If the usel 
wishes to bypass the automatic call of his PROFILE E~C, his first command must be 
LooIN (NOPROF. This logs in his files as usual, but bypasses the call to PROFILE 
EXEC. 

If a LooIN is issued at any later time, for any disk, no such automatic call to 
PROFILE 'EXEC is made - it is effective only on the first command, as described 
above. 

If desired, the PROFILE EXEC on a user's P-Disk can contain EXEC commands to 
login other disks. 

As shown under Valid Parameter Lists above, LOGIN can be called in several ways to 
bring in the file directory for a given disk. However, these break down to two major 
cases: 

Case 1 LooIN without the NO-UFD option brings in the directory of existing files for 
the given disk. If the disk is read-write, the directory of all existing files is 
brought into core (regardless of any remaining operands in the Loo IN 
parameter list). If the disk is read-only, the directory of only those files 
specified as operands in the LOGIN P=List is brought into core; if no 
specific filenames, filetypes, or filemodes were specified, then the directory 
of all files (except PO files) is brought in. 

Case 2 "LOGIN (No-UFD" (or equivalent) brings in the necessary file directory 
information from the disk-resident file directory, but omits the FST entries 
of pre-existing files. All necessary tables and disk counters are cleared, 
gi ving the user a clean directory for the given disk as if he had called 
FORMAT or had erased all files. LOGIN (NO-UFD or equivalent is valid only 
for a read,..write disk. Error 4 is returned if it is attempted on a read-only 
disk. 

LOGIN checks the parameter-list for the existence of a ccu disk-address and a possible 
mode-letter. 

If the ccu is provided, the value of the hexadecimal number is computed; leading zeroes 
are permissible, but the computed value must be nonzero and less than X'6 FF'. If 
provided and legitimate, its value is used in place of the default disk-address (i. e. , 
191) in the NUCON table •. 

If a disk mode is given, ADTLKP is called to find the rnatching Active Disk Table for 
the given letter. (If the diskmode is omitted, the P-Disk is used as a default.) If a 
read-only extension is also given (e. g., LOGIN 193 A, P or such) ADTLKP is again 
called, to ensure that an active disk table exists for the disk given by the extension­
mode-letter. 

185 



A check is made to ensure that the disk to be logged in is not already logged in as 
another read-write disk. If so, error 7 is returned, with an error message to the user. 

If a disk to be logged in will replace another disk which is currently logged in, then a 
message indicating that this will occur is typed unless the NOTYPE option has been 
speCified. If, e. g., a disk addressed as 196 is about to replace a currently logged in 
191 P-Disk, the message would be: 

196 REPLACES P (191) 

After the parameter list has been checked for errors and special options, LOGIN then 
proceeds as follows, for Case 1 or 2 as described earlier. 

Case 1 - LOG IN existing files: 

1. RELUFD is called to clear all pertinent information in the old active disk table. 

2. If the disk to be logged in will be a read-only extension of another (or of itself), the 
read-only flag-bit in ADTFLGI is then set to force the disk to be read-only. 

3. READFST is then called to bring in the entire or partial directory of the disk. 

4. If this disk was read-only (either from setting the flag-bit from above or from 
obtaining an error 4 from READFST), a check is made to see if any files at all 
were accessed; if not, an error 8 is returned, RELUFD is called to clear the 
Active Disk Table (ADT) entry, and the disk is not logged in. If read-only and 
at least one file is accessible, then the read-only response is given (unless the 
NOTYPE option was specified by the caller). 

5. If the disk is to be a read-only extension of another, the extension-mode-letter is 
stored in the ADT:MX slot in the ADT block for the disk just logged in. Also, 
another bit (ADTROX) is set in the ADTFLG1 flagbyte of the ADT for the other 
disk, to indicate that it has at least one read-only extension. 

6. A check is made to see if the disk just logged in is also logged in as any other 
disk(s). If yes, and the newly logged in disk is read-write, the other disk(s) 
are released via RELUFD and a message is typed (unless NOTYPE was specified) 
to indicate the release of the ccu as the other disk(s). If yes, and the newly'logged 
in disk is read-only, a message is typed (unless NOTYPE was specified) indicating 
that ccu is also logged in as the other mode letter. 

LOGIN for case 1 is finished. The disk is logged in, an extension-mode-letter 
stored if appropriate,. informative messages (if any) have been typed, and the disk is 
ready to use. 

186 



Case 2 - LOGIN {NO-UFD: 

1. 

2. 

3. 

5. 

6. 

RELUFD is called to clear all pertinent information in the old active disk table. 

Then READMFD is called to bring in all pertinent information on the disk except 
the FST hyperblocks containing the FST entries (which would have been brought in 
if READFST had been called). 

If an error is returned by READMFD it is returned to the caller of LOGIN, with 
the error message as shown above. Note that if the disk is read-only, this is 
treated as an error· condition. 

Upon successful return from READMFD, LOGIN obtains an 816-byte block from 
free storage for the first FST hyperblock, clears it, and initializes the ADTRES 
reserve-count and all other necessary pointers and counters in the ADT. 

The QMSK brought in by READMFD is now cleared, and the appropriate disk 
counts recomputed and stored to reflect a clean disk. 

The QQMSK brought in by READMFD is also cleared. 

CAUTION: TTLOGIN (NQ-UFDTT (or equivalent) should only be used when all old files 
on a disk (if any) are to be discarded. It is equivalent, in effect, to FORMAT'ing 
the disk, or erasing all files thereon, but is much faster and more efficient. Note, 
however, that if a user issues "LOGIN (No-UFD" by mistake, the file directory on 
the given disk has purposely not been updated by LOGIN (no call to UPDISK is made); 
and therefore the user can recover his files by immediately issuing a LOGIN command 
for the disk without the NQ-UFD option. 

Notes: 

1. If any disk is logged in as a read-only disk, for whatever reason, only files having 
a mode-number of 1-6 are accessed. For a read-write disk, all files are accessible, 
from mode numbers 0-6. Therefore, PO files on any disk can be considered 
ffPrivate" to the user who has read-write access to the disk, and no one having 
read-only acceRS to the disk can reference them. 

2. If the first user command is 'LOGIN', then INIT & LOGIN (which work together 
on the first command issued at the terminal) accept that first command as is, and 
do not issue any implied automatic login of the user's normal P-Disk (191). 
Therefore, if the user wishes to login his P-Disk and then immediately login 
another disk in addition, he should issue a specific login command for his P-Disk 
first (e. g. LOGIN 191), and then the other LOGIN command (perhaps LOGIN 
193 A, P or whatever). This could of course be conveniently done utilizing the 
CMS linend character, e. g. : 

LOGIN 191#LOGIN 193 A, P 

187 



3. If the user wishes to login a disk in a read-only status which is normally read­
write, this can be accomplished by making the disk a read-only extension of itself, 
e. g.: 

LOGIN 191 P, P 
LOGIN 193 A,A 

etc. 

4. If the user does not wish to login any user disks at all with his first command, this 
can be accomplished by issuing the command: 

LOGIN NODISK 

This is effectively handled as a no-operation by LOGIN when called by INIT 
to handle the first user command. 

LOGOUT 

FUNCTION: To log a user out of the system. 

A TTRmUTES: Nucleus resident 

CALLING SEQUENCE: 
LA 1, PLIST 
SVC X'CA' 

PIJST DC 
DC 

DC 

CL8'LOGOUT' 
CL8' 

X'FF' 

Note: An additional command can be added 
to the LOGOUT command here, if desired. 
For example, LISTF or STAT would be 
permissible. 

(Must follow LOGOUT or 'added-on' 
command.) 

OPERA TION: The CMS LOGOUT command calls LOGDISK CHANGE to close any files 
that may be open and ensure that all file directories are updated. CLOSIO is called to 
ensure that reader, printer, and punch operations are finished. At this point, any added­
on command (such as LISTF or STAT) is called, ignoring any possible error-return. 
Then the PRNFINAL entry in the CMS timer program is called to compute and print the 
cumulative CPU time used during the terminal session. Finally, LOGOUT loads a PSW, 

188 



causing the system to enter the WAIT state with no interrupts enabled. When running 
under CP/67, the Control Program is reached by this loading of the PSW, and CP/67 
indicates its readiness for a new command by typing" CP ENTERED, REQUEST, 
PLEASE". 

The CMS LOGOUT command can conveniently be stacked as the last command in a string 
of CMS commands to be executed. Furthermore, if an appended command CP LOGOUT 
is added, forming the command LOGOUT CP LOGOUT, the user will then log out of CP 
after he has done all his work and logged out of CMS. 

RELE...<\SE 

FUNCTION: To release all core-resident tables pertaining to a given disk when it is no 
longer needed; and to detach the disk, as an option. 

A TTRIBUTES: Disk resident, transient 

CALLING SEQUENCE: 

LA R1, PLIST 
SVC X'CA' 
DC AL4(ERROR) 

ENTRY REQUIREMENTS: 

R1 must point to the Parameter List as usual: 

DS 

PLIST DC 
DC 
DC 

[DC 

OF 

CL8!RELEASE' 
CL8' 
CL8' 
CL8' (DETACH) ~ 

EXIT CONDITIONS: 

Normal Return 

R15 = 0 

Error Returns 

Disk-address (for example, 192) 
Disk mode (for example, T) 
Optional if disk to be detached 

R15= 1 Invalid RELEASE Parameter List (Disk address not hex num­
ber up to f3FF, disk mode not letter from A to Z$ etc.) 

189 



R15 = 2 No Active-Disk-Table found for given mode (ADTLKP did not 
find disk corresponding to disk mode letter given) 

R15 = 3 : Disk-Number does not match Device-Table 

CALLS TO OTHER ROUTINES: 

RELUFD, CPFUNCTN 

CALLED BY: 

User 

MACROS USED: 

ADT, FVS 

OPERATION: The parameter list is checked for errors. The disk-address must be a 
hex number (digits from 0 to 9 and letters from A to F, with a value no more than 
X'6FF'). The disk mode must be alphabetic. It is not legal to RELEASE the 8-Disk. 
Error 1 is returned if any errors are detected. ADTLKP is called to find the Active Disk 
Table (ADT) block. If an error occurs from ADTLKP, error 2 is returned. If ADTLKP 
found the ADT block, the given disk-address is checked against the disk number in the 
NUCON table that is pointed to by the ADT block. If it does not match, error 3 is re­
turned. If all checks so far are correct, RELUFD is called for this disk, and the 
ADTFRO and ADTFRW read-only and read-write flag bits in the ADTFLGI flag byte in 
the ADT block are also cleared, to signal that the disk referenced by the ADT block is 
not logged in. (It is not an error condition if nothing was logged in when RELEASE was 
called. ) 

If the parameter list specified at least" (DET", signifying the "(DETACH)" option is de­
sired, CPFUNCTN is called upon (with a suitable parameter list) to detach the disk, and 
the error-code from CPFUNCTN is passed back to the caller. 

Installation Note: RELEASE is a transient disk resident command, GENMOD'ed with a 
copy of CPFUNCTN (CMSCONF). 

Other Notes: RELEASE is normally called when a disk that has been used for a while is 
no longer needed, so that its tables will no longer take room in core and so that its file 
directory cannot be confused with others. When it is desired to log in a read-write disk 
which is already logged in as another, however, RELEASE must be called first, since it 
is not practical to have a read-write disk logged in as two separate disks. 

190 



RT 

FUNCTION: To resume typing at the terminal. 

A TTRIBUTES: Nucleus resident. 
Imbedded in CONSI 

CALLING SEQUENCE: 

This routine, along with KT and KO, is not formally called. CONSI tests each input line 
from an Attn interrupt for the presence of KT, KO, RT, and KX. 

OPERATION~ Hit ATTN key twice to open keyboard and enter RT. When CONSI receives 
control from IOINT, it picks up the RT from the input line and clears the KT flag, re­
leases the A TTN buffer by a call to FRET, and returns to IOINT. 

SYN 

FUNCTION: The SYN command allows the user to specify his own command names to 
be used with or in place of the standard system command names. 

ATTRffiUTES: Disk resident, transient 

CALLING SEQUENCE: 
SYN [FILENAME FILETYPE FILE MODE (OPTION! .... OPTION-N) J 

If filemode is omitted, mode of ,*, is assumed (P, T, S-Disk) 

If filetype is omitted, filetype of 'SYN' is assumed. 

If filename is omitted, no user synonyms are set up. (Only the options are 
processed. ) 

Options (if any) must be preceded by left-paren, and are as follows: 

P prints the standard system abbreviations and user synonyms currently 
defined. 

PUSER prints only the user synonyms currently defined. 

STD speCifies standard system abbreviations are to be used. This is the 
default value. 

NOSTD specifies standard system abbreviations are not to be used. 

]\tUN use minimum number of characters speCified to identify commands. 
The default value. 

191 



EXACT use exact number of characters specified to identify commands. 

CLEAR clears any previously defined synonym table set up by SYN. 

OPERATION: The SYN command permits user-defined nanles to be used either alone or 
in conjunction with the standard CMS system abbreviations - that is, it permits the user 
to modify the command names acceptable to his own environment. 

User-defined synonyms are located in a file identified as Tlfilename filetype file mode" in 
the format shown in Note 2. If filetype is omitted, a filetype of SYN is assumed; if file­
mode is omitted, a mod~ of * is assumed, meaning the P, T, or S-Disk. If no file is 
specified, no user-defined synonyms are set up, and the system abbreviations are used 
in the manner defined by the specified options. 

All options (if any) are specified between a pair of parentheses. (The right paren, how­
ever, may be omitted.) The default options are STD - use standard abbreviations, and 
MIN - allow a minimum number of characters to represent a command. NOSTD will 
flag the standard system abbreviations as unusable; MlN accepts abbreviations as long 
as the minimum number of characters specified in the abbreviation table are present; 
EXACT accepts only the entry as specified. 

SYN can also be used to print out the list of synonyms and abbreviations currently 
acceptable. 

Notes: 

1. SYN with no additional parameter is the same as SYN (P); that is, it types a listing 
of system and user abbreviations currently in effect. 

2. The user synonym file "filename filetype filemode" consists of SO-byte fixed-length 
records in freeform format with columns 73 to SO ignored. The format for each 
record is: 

system-command I user-synonym I count 

where count is the number of characters necessary for the synonym to be accepted. 
IT omitted, the entire synonym must be entered. SYN builds a table from the contents 
of this file to use for command synonyms. 

EXAMPLES: 

192 

SYN 
SYN (CLEAR P) 
SYN MYOWN (PUSER) 
SYN MY ABBS (NOSTD PUSER) 
SYN OUR ABBS SY (NOSTD 



ERROR GODES (With Messages) 

1 INCORRECT 'SYN' PARAMETER LIST 

2 NO ABBREVLJ\.TIONS AT ALL ("ABBREV" NOT IN NUCLEUS) 

3 GIVEN USER SYNONYM FILE NOT FOUND 

4 USER SYNONYM FILE BAD (MUST BE 80-BYTE FIXED RECORDS) 

5 FAULTY DATA IN USER SYNONYM FILE 

*** DISK ERROR READING USER SYNONYM FILE 

***Note - Error-code from RDBUF returned to caller. 

OTHER RESPONSES: 

a. SYSTEM ABBREVIATIONS FLAGGED "NOT IN USE" 

A request has been made to print the system abbreviations while a previous 
NOSTD is in effect. 

b. NO USER SYNONYM TABLE CURRENTLY IN USE 

A request has been made to print the user-defined synonym table while no such 
table has been defined by SYN command. 

193 



VSET 

FUNCTION: VSET allows the user to control different aspects of his environment at 
his console. VSET BLIP controls the character designated to notify the user of every 
two CPU seconds of execution time; VSET CHARDEF controls the definitions for 
logical symbols, such as line delete, character delete, backspace, and tab characters, 
and the hexadecimal representation of defined characters: VSE T ThfPEX controls the 
order of search for commands: VSET LDRTELS controls the number of pages of core 
used for loader tables: VSET LlNEND controls the definition for the logical line-end 
character: VSET RDYMSG controls the length of the error and ready messages typed 
by CMS: VSET REDTYPE controls the color of the CMS error messages: and VSET 
RELPAG controls the releasing of pages of core upon command completion. 

A TTRffiUTES: Disk resident, transient Module=CMSCAR E 

ENTRY REQUffiEMENTS: 

Rl must point to plrameter list. The calling sequences are shown with the 
different VSE T functions. 

EXIT CONDITIONS: 

R15 = return-code 

All other registers restored. 

CALLED BY: 

User. 

VSET BLIP 

FUNCTION: To enable the user to specify the terminal two-second time count 
character. 

CALLING SEQUENCE: 

DS OF 
PLIST DC CL8'VSET' 

DC CL8 'BLIP' 
DC CL8 'char' BLIP character(s) or (OFF) 
DC CL8 'nn' number of characters in char 

CALLS TO OTHER ROUTINES: 

None 

194 



OPERATION: VSET BLIP first determines if the machine is running in Batch nlode. If 
it is, an exit back to the caller is taken. If not, it checks for a BLIP OFF request. If 
no blip is desired, it sets the timer to a larger positive number (effectively turning off 
the blip) and exits to the caller. If a blip is desired and it is not the nonprinting default, 
the desired character is stored in TIM CHAR and the count is moved to the timer CCW 
string. 

VSET CHARDEF 

It'UNCTION: To enable the user to change the default characters for logical symbols 
and to specify the hexadecimal representation of characters. 

CALLING SEQUENCE: 

For logical symbols: 

DS OF 
PLIST DC CLB'VSET' 

DC CLB'CHARDEF' 
DC CL8'type' B, C, L, or T 
DC CLB' character' 

For character representation: 

DS OF 
PLIST DC CLB'VSET' 

DC CL8'CHARDEF' 
DC CL8'type' IN,OU, or 10 
DC C L8' character' 
DC CL8'hexcode' 

CALLS TO OTHER ROUTINES: 

FREE, FRET 

OPERATION: If the request is for delete character, DELSYM indexes the delete table 
by a 4 in R4 to insert the new character. If the request is for delete line, the index is 
8 for the same operation. For EDIT backspace, it places the address of SVCSECT in 
R4 and inserts the character at displacement 290. For EDIT logical tab, it uses the 
same operation with a displacement of 291. In all cases, the return to the caller is 
through R14. The revised table is kept in free storage, and its address is placed in a 
filled-in word in the CONGEN section of the NUCON table. 

Prior to exit from CHARDE F a check is made to see if the free storage table (as re­
vised) is identical to the standard table. If yes, the free storage table is returned via 
FRET and its address in CONGEN is cleared. 

195 



"CHARDEF IN T XX" causes a table to be set up for use by WAITRD in preference to 
the usual upper-case translation table, with the desired 'XX; equivalent used as an 
argument byte corresponding to 'T'. 

r'CHARDEF OU U xxr' causes a table to be set up for use by TYPLIN or TYPE which 
is used for output translation. 

"'CHARDEF 10 V xxr' causes both of the above to be set up. 

"CHARDEF IN, OU, or IOff with no additional parameters causes the tables to be 
returned to free storage via FRET and their use discontinued. 

VSET IMPEX 

CALLING SEQUENCE: 

DS OF 
PLIST DC 

DC 
DC 

CL8'VSET' 
CL8'IMPEX' 
CLS' 

CALLS TO OTHER ROUTINES: 

None 

ON or OFF 

OPERATION: VSET IMPEX OFF causes a bit to be set in the NUCON table which 
inhibits the implied exec procedure, when examined by !NIT for commands entered 
from the terminal. 

VSET IMPEX ON resets this bit, causing the implied exec procedure to be in effect. 

VSET IDRTBLS 

CALLING SEQUENCE: 

DS 
PLIST DC 

DC 
DC 

OF 
CL8'VSET' 
CL8'LDRTBLS' 
CLS'nn' 

CALLS TO OTHER ROUTINES: 

None 

196 

optional number of pages desired 



OPERATION: VSET LDRTBLS checks to see if any free storage is in use by CMS; if 
so, the loader tables cannot be revised. If not, a check is made to see if the loader 
tables can be revised to the number of pages desired. If yes, the revised number of 
pages of loader tables is stored in the NUCON table. 

If no operand is specified, the number of pages of loader tables is obtained from 
NUCON, and typed. 

VSET LINEND 

FUNCTION: To enable the user to define his own logicallinend character in place of 
the default character of 

CALLING SEQUENCE: 

DS 
PLIST DC 

DC 
DC 

OF 
CL8'VSET' 
CL8'LINEND' 
CLS'char' 

CALLS TO OTHER ROUTINES: 

FREE, FRET 

optional character for line-end 

OPERATION: BREAK stores the new linend char3:cter in BRKCHR, and returns to the 
caller through register 14. 

VSET RDYMSG 

CALLING SEQUENCE: 

DS 
PLIST DC 

DC 
DC 

OF 
CL8'VSET' 
CL8'RDYMSG' 
CLS' 

CALLS TO OTHER ROUTINES: 

None 

ON or OFF 

OPERATION: VSET RDYMSG OFF causes a bit to be set in the NUCON table, which, 
when examined by !NIT, causes the abbreviated ready and error messages to be typed. 

VSET RDYMSG ON clears this bit, causing the full-length ready and error messages 
to be typed. 

197 



VSET REDTYPE 

CALLING SEQUENCE: 

DS 
PLIST DC 

DC 
DC 

OF 
CL8'VSET' 
CL8'REDTYPE' 
CL8' 

CALLS TO OTHER ROUTINES: 

None 

ON or OFF 

OPERATION: VSET REDTYPE ON sets a bit to the CONGEN part of the NUCON table 
which causes typeouts to be typed in red if CONWRITE or TYPE is called with an 'R' 
color code, as for error messages. 

VSET REDTYPE OFF clears this bit, so that all messages will be in black. 

VSET RELPAG 

CALLING SEQUENCE: 

DS 
PLIST DC 

DC 
DC 

OF 
CLB'VSET' 
CLB'RELPAG' 
CLB' 

CALLS TO OTHER ROUTINES: 

None 

ON or OFF 

OPERATION: VSET RELPAG OFF causes a bit to be reset in the NUCON table, which 
Operation: when examined by INIT, causes the release-pages feature to be bypassed. 

VSET RELPAG ON sets this bit, enabling the release-pages feature. 

198 



LIBRARIES 

CMS provides two types of libraries - macro and text (subroutine). Macro libraries are 
searched for missing macros during assemblies. Text libraries are searched for miss­
ing subroutines or undefined filenames during the LOAD, USE, or REUSE commands. 

To generate, add to, delete, or replace in macro or text libraries, the :MACUB and 
TXTLIB commands are used. These are described in detail in the following section. 

MACUB 

FUNCTION: To generate a macro library, to add macros to an existing library, and 
to list the dictionary of an existing macro library. 

A TTRIBUTES: Disk resident 

CALLING SEQUENCE: 
LA 1,PUST 
SVC X'CA' 

DS OD 
PLIST DC CL8':MACUB' 

COMP 
GEN 
ADD 

DC CL8' LIST 
PRINT 
REP 

DC CL8' 
DC CL8' 

DC CL8' 

",DEL -
macro library name 
filename 1 

filename N 

OPERA TION: The operation of the MACLIB command program depends on whether the 
calling program specifies GEN, ADD, LIST, COMP, PRINT, REP, or DEL. 

GEN: MACLIB calls the ERASE command pro graIn to erase the file (if any) that is 
identically designated as the macro library to be created. MACLIB then calls the 
WRBUF function program to write a dummy, 80-byte record as the first record in the 
macro library. This dummy record will later be replaced by a macro directory 
descriptor record. Next, :MACLIB initializes the index, which corresponds to the item 
number, to one. Then it calls the STATE function program to locate the file status table 

199 



for the first macro file - filetype must be ASP360 or COPY. MACLIB next calls the 
RDBUF function program to read the first record in the first macro file, calls the 
WRBtJF function program to write it into the macro library being created, and incre­
ments the index. After writing the first (or any) record, the action taken by :MACLIB 
depends on the nature of the record. 

If the record is a macro header record (that is, it contains the characters" :MACRO" 
starting in column 10), :MACLIB saves the current index value for subsequent use in 
calculating the size (that is, the number of items) of the macro. Then, it stores the 
index value in the appropriate entry in the macro dictionary (refer to "TABLE/ 
RECORD FORMATS" later in this section), reads the next record, which is the prototype 
record, obtains the macro name from that record, moves the name to the appropriate 
entry in the macro dictionary, writes the prototype record into the macro library, 
increments the index, and reads and processes the next record. 

If the record read is eitoo r a comment or an element 6f the body of the macro, :MAC LIB 
merely reads and processes the next record. 

If the record is a macro trailer record (that is, it contains the characters " MEND" 
starting in column 10), :MACLIB calculates the size of the macro, places the size in the 
appropriate entry in the macro dictionary, increments a pointer to point to the next entry 
in the macro dictionary, and returns to read and processes the next entry. 

:MACLIB repeats this process for all records in the first macro file. When an end-of-file 
is encountered, it calls the FINIS command program to close that file, and processes 
the next macro file similarly. 

When all macro files are processed, MACLIB writes the macro dictionary out at the end 
of the macro library, overlays the dummy record at the start of the macro library with a 
dictionary header record (refers to "TABLE/RECORD FORMATS"), closes the newly c'reated 
macro library, and returns (via SVCINT) to the calling program, which is usually INIT. 

Note: Throughout its proceSSing, :MACLIB checks to ensure that the records in each 
macro definition are in correct sequence. If they are not, it signals the error by means 
of a terminal message (error-code 4), and returns to the calling program. 

ADD: :MACLIB calls the STATE function program to determine if the macro library to 
which the macros are to be added exists. If it does not, it signals the error and returns 
to the calling program. If the macro library exists, :MACLIB calls the RDBUF function 
program to read the dictionary header record into main storage so that it can get the 
starting location of the macro dictionary. It then sets the read pointer in the file status 
table to point to the start of the macro dictionary and repeatedly calls the RDBUF func­
tion program to read the macro dictionary into main storage. MACLIB next calls the 
FINIS command progr"am to close the macro library. Having closed the library, :MACLIB 
calls the POINT function program to set the write pointer to the start of the old macro 
dictionary. Next, :MACLIB sets a pointer to the next available location in the macro 
dictionary and then proceeds to add the macros in the same manner as it does if G EN 
is specified. 

200 



DEL: The specified macro name is deleted from the macro library dictionary. 

RE P: The macro filename (with a filetype of ASP360 or COPy) is used as the name of 
the macro to be replaced. If the replacing macro has more items than already exist in 
the library; t.he macro is DEL.eted from the library and then ADDed to the end of the 
MAC LIB. Otherwise, if the replacing macro is not larger than the existing macro, it 
will occupy exactly the same position within the library as the replaced macro. 

LIST: MACLIB reads the macro dictionary into main storage as it does for ADD. It then 
calls the TYPLIN function program to print a heading for the list. Next, MACLIB obtains 
the first entry in the dictionary, moves the name, index, and size to a buffer, and calls 
TYPLIN to print the contents of the buffer at the terminal. MACLIB repeats this for 
each entry in the dictionary. When all entries are processed, MACLIB returns to the 
calling program. 

PRINT: The same function as LIST is performed with the following results: a file 
identified as "libname" MAP PI will be written onto the user-disk area and automatically 
printed onto the OFFLINE PRINTer. 

TABLE/RECORD FORMATS: The formats of the macro dictionary and the dictionary 
header record are described below. 

MACRO DICTIONARY: In the macro dictionary (see Figure 30) each entry is 12 bytes in 
length and contains three fields. The name field (8 bytes) contains the name of the 
macro. The index field (2 bytes) indicates where, within the macro library, the first 
record (item) in the macro is located. The index field (2 bytes) is expressed as an item 
number. The size field (8 bytes) contains the size of the macro. It is expressed in 
terms of the number of items in the macro. 

DICTIONARY HEADER RECORD: The dictionary header record (see Figure, 31) defines 
the location and size of the macro dictionary. It is an 80-byte record and contains three 
meaningful fields. The first field (bytes 1-6) contains the characters 'MACLIB'. The 
second field (bytes 7 and 8) is a pointer to the start of the macro dictionary. It is ex­
pressed as an item number. The third field (bytes 11 and 12) contains the size of t..lJ.e 
macro dictionary (in bytes). 

Name of first macro Index Size 

Name of second macro Index Size 

T Name of nth macro r 
Figure 30. Macro Dictionary Format 

201 



Bytes Contents 

1-6 MACLIB 

7-8 Pointer to start of macro 
dictionary 

9-10 Size of macro dictionary 

11-80 Not used 

Figure 31. Dictionary Header Record Format 

TXTLIB 

FUNCTION: To create a text library, to add text files to an existing text library, to 
create a disk file that lists the control section and entry point names in a text library, 
or to type at the terminal the control section and entry point names in a text library. 

ATTRffiUTES: Disk resident 

CALLING SEQUENCE: 
LA 1, PI1ST 
SVC X'CA' 

DS 
PLIST DC 

DC 

DC 
DC 

DC 

OD 
CL8'TXTLIB' 

CL8' 

CL8' 
CL8' 

CL8' 

GENERATE 
ADD 

library name 
filenamel/ csectnamel 

filenameN/ csectnameN 

OPERATION: The operation of TXTLIB depends on whether the calling program 
speCifies GENERATE, ADD, PRINT, or LIST. 

GENERATE: TXTLIB calls the SVCFREE function program to obtain a block of free 
storage for use as a work area. It then calls the ERASE command program to erase the 
existing text library (if any) with the same name as the one to be created. Next, 

202 



TXTLIB initializes the index and saves it for subsequent use to calculate the size of the 
first control section. Then TXTLIB calls the STATE function program to determine if 
the first input text file specified exists. If it does not, TXTLIB signals an error by 
means of a terminal message and processes the next input text file o 

If the text file exists, TXTLIB calls the RDBUF function program to read the first record 
in the file, increments the index, and calls the WRBUF function program to write the 
record into the text library. Subsequent processing of this record (or of any record read 
from an input file) depends upon its nature. 

If the record is not an ESD, LDT, or END record, TXTLIB merely reads and processes 
the next record in the input file. 

If the record is a ESD record, TXTLIB obtains the first ESD data item in the record. 
If this data item is for a section definition (SD) or label definition (LD) , TXTLIB puts 
the as sociated name into the next available entry in the text library dictionary. Next, 
it places the saved index value, which indicates the relative location within the library 
in terms of items (that is, 80-byte records) of the start of the control section, into the 
dictionary entry. It then obtains and similarly processes the next ESD data item in the 
record. If the obtained data item is neither for a section definition nor for a label 
definition, TXTLIB skips it and obtains the next data item. When all the data items in 
the ESD record are processed, TXTLIB reads and processes the next record in the input 
file. (During the processing of the ESD record, the name and index fields of one or more 
entries in the dictionary may be filled in. The size field of these entries i which indicates 
the size of the corresponding control section in terms of number of items (that is, 80-
byte records), will be filled in when the next LDT record is encountered. Also, the 
index fields in the dictionary entries for the section definition and all label definitions 
of a control section will contain the same value.) 

If the record read is an LDT record, TXTLm computes the size of the control section 
in terms of number of items, stores the size in the successive entries in the dictionary 
that were partially filled when the preceding ESD record(s) was processed, saves the 
current index value for use in computing the size of the next control section, and reads 
and processes the next record in the input text ine. 

If the record read is an END record, TXTLIB generates an LDT record from the 
information on the END record, writes the LDT record into the text library, and 
processes the LDT record as previously described. 

When an end-of-file on the input text file is encountered, TXTLIB calls the FINIS com­
mand program to close that file, obtains the next file, and adds its contents to the 
text library in a similar fashion. 

When the last input file has been processed, TXTLIB successively calls the WRBUF 
function program to write the dictionary (80 bytes at a time) at the end of the text 
library, constructs a dictionary header record, and writes the header record at the 
beginning of the text library. (TXTLIB has left room at the beginning of the library 
for the header record.) Finally, TXTLIB calls the FINIS command program to close 
the text library, calls the SVCFRET function program to release the free storage used 
as a work area, and returns (via SVCINT) to the calling program, which is usually INIT. 

203 



OVERFLOW: The maximum number of entries allowed in the dictionary is 1000. Each 
time an ESD card is encountered the total is checked. If the number exceeds 1000, the 
pointer to the end of the file is set back to the end of the last complete CSECT, the 
dictionary is written out, and the program completes in the normal way often issuing a 
message to indicate which CSECT caused an overflow. 

ADD: TXTLIB calls the STATE function program to determine whether the text library 
to be added to exists. If it does not, TXTLIB types a message at the terminal to that 
effect and returns to the calling program. If the library exists, TXTLIB calls the 
RDBUF function program to read the header record into main storage. From the header 
record, TXTLm obtains the location and size of the dictionary. It again calls RDBUF 
to read the entire dictionary into main storage. Then, TXTLm sets the write pointer to 
the location of the dictionary in the text library. This is done so that the dictionary will 
be written over when the new text files are added to the library. Next, TXTUB calls the 
FINIS command program to close the l~brary. It then adds the new text files to the end 
of the library by following a procedure identical to that for GENERATE. 

PRINT: TXTLIB calls the STATE function program to determine whether the text 
library whose control section and entry point names are to be placed into a disk file 
exists. If it does not, TXTLIB types a message at the terminal to that effect and 
returns to the calling program. If the library exists, TXTLIB reads the header record 
into main storage and then reads the dictionary into main storage. Next, it calls the 
FINIS command program to close the library. TXTUB then calls the ERASE command 
program to erase the previously created disk file (that is, the MAP file), if one exists. 
Next, TXTLIB calls the WRBUF function program to write a head ing into the new 
MAP file being created. Subsequently, TXTLIB repeatedly calls the WRBUF function 
program to write a record into the new MAP file for each entry in the dictionary. If 
the dictionary entry represents the start of a control section, the corresponding record 
consists of the name of the control section, the location of the control section within the 
text library in terms of an index value, and the size of the control section in terms of 
number of items (that is, 80-byte records). If the dictionary entry is for an entry 
point (that is, a label definition), the corresponding record consists only of the entry 
point name. When all dictionary entries are processed, TXTLIB writes a record 
containing a count of the number of entries in the dictionary into the MAP file. It then 
calls the FINIS command program to close the MAP file, releases the free storage 
previously obtained, and returns to the calling program. 

LIST: The processing performed by TXTLIB if LIST is specified is essentially the 
same as that for PRINT. However, in this case, TXTLIB calls the TYPUN function 
program, rather than WRBUF, to type the records produced for the entries in the 
dictionary at the terminal. 

DE LE TE : TXTLIB takes a filename of filetype TXTLIB and a 1i.st of CSE CT names in the 
TXTLIB file to be deleted. TXTLIB scans the dictionary and copies everything not found 
in the list of CSECT names to be deleted into a new dummy file (.DUMMY TXTLIB). A 
new dictionary is created for this new TXTLIB file. When the operation is complete, 
the original TXT LIB file. is erased and the file • DUMMY TXTLIB has its name altered to 
that of the original file. 

204 



Note: If a CSECT name occurs twice within the TXTLIB file, only the first occurrence 
is deleted. A CSECT name may be entered into the argument list two or more times to 
delete two or more CSECT's with the same CSECT name. 

TABLE/RECORD FORMATS: The formats of the text library dictionary and the 
dictionary header record are described below. 

TEXT LmRARY DICTIONARY: ·This dictionary has room for 1000 entries. Each entry 
is associated with either a control section name (section definition ESD item) or an 
entry point name (label definition ESD item). An entry is 12 bytes in length and contains 
three fields. The name field (8 bytes) contains either the control section or entry point 
name. The index field (2 bytes) contains the location of the corresponding control 
section from the start of the text library. This field is expressed as an item number. 
The size field (2 bytes) contains the size of the control section in terms of number of 
items (i. e., 80-byte records). The text library dictionary is illustrated in Figure 32. 

DICTIONARY HEADER RECORD: The dictionary header record defines the location and 
size of the text library dictionary. It is an 80-byte record and contains four meaningful 
fields. The first field (bytes 65-68) is a pointer to the start of the text library dictionary. 
It is expressed as an item number. The second field (bytes 69-72) contains the size of 
the macro dictionary (in bytes). The third field (bytes 73-76) contains the number of 
items in use and the fourth (bytes 77-80) the number of items not in use. The dictionary 
header record is illustrated in Figure 33. 

9-10 11-12 

4.-------12 bytes -------... 

Name! 

Name2 

'=oo!: 

Figure 32. Text Library Dictionary Format 

Bytes 

1-64 

65-68 

69-72 

73·"76 

77-80 

Figure 33. Text Library Dictionary Header Record Format 

Index! Size! 

Index2 Size2 

,.~ 

T 
Sizen I J 

Contents 

Not used 

Pointer to start of 
dictionary 

Size of dictionary - 12 
in bytes 

#free 

Maximum of 
1 000 Entries 

205 



FORTRAN Subroutines 

In addition to the standard program library, the following subroutines found in the 
FORTRAN library SYSUB TXTUB are provided to aid the terminal user in more 
effectively utilizing CP/CMS: 

Entry Point Filename of 
Source Deck 

CPNMON/CPNMOF IXCFREM 
NLSTON/NLSTOF IXCFREM 
DEFINE IXCDEF 
DSDSET IXCDSD 
ERASE IXCRENM 
GETPAR IXCGETP 
LOODSK IXCRENM 
RENAME IXCRENM 
REREAD IXCRERD 
TRAP IXCBPTRP 
BLIP/TRAP IXCBPTRP 

CPNMON/CPNMOF (alias NLSTON/NLSTOF) 

Purpose: This routine provides the ability to enter namelist data from the terminal in a 
free format mode. 

Usage: 

206 

Before issuing any free format reads you must issue: 

Call CPNMON, or 
Call NLSTON 

To return to standard namelist format, issue: 

Call CPNMOF, or 
Call NLISTOF 

Regular namelist data is entered in the following manner: 

)S&listl)Sa=l, b=2, c=3, 4, 5)S&end 

Free format data for the same variables would be entered: 



Data must be entered in sequential order, unlike regular namelist mode in which the 
order is of no consequence, as the variables appear in the specific namelist referenced. 
In addition, the namelist must be exhausted before attempting to read another namelist, 
since if a second read to a second namelist is attempted before the first namelist has 
been exhausted, the data intended for the second namelist will be placed in the first read 
iocations. 

The call to CPNMON or NLSTON results in a dynamic overlay of FORTRAN IHCNAMEL 
calls to rnCFIOCS, with a transfer to rnCFREM, the free format routine. At execution 
of the namelist read, control is passed to the mCFREM at this point. mCFREM then 
goes to mCFIOCS and picks up the record. It then constructs a standard namelist 
record, which it passes back to rnCNAMEL at the point where processing normally 
continues. 

Externai Reierences: 

mCNAMEL 
mCFIOCS 

Entry Points: 

DEFINE 

CPNMON 
NLSTON 
CPNMOF 
NLSTOF 

Purpose: 1) To permit the use of sequential access disk files as direct access files. 
2) To tie a CMS filename-type to a FORTRAN DSRN. 

Usage: 

CALL DEFINE (DSRN, NAME, type, recno, recsiz) 
where DSRN = FOR TRAN file number 

NAME = filename 
TYPE = filetype 
RE CNO:l: integer or integer variable containing location of the 

record number to be read or written 
RECSIZ= maximum record size 

then issue a normal sequential read or write, not a direct access read. 

Constraints: 1) Must be fixed-length records 
2) Must be a disk file 
3) If a data set reference number is assigned to a new filename and 

fi1etype, the record number for the old filename filetype is lost. 

207 



External References: 

1) Rereadv 
2) FlOeS 
3) Deftblv 
4) meOM 

DSDSET 

Purpose: To enable users to alter the data set default specifications for all the defined 
units in the csect 'lli CV A TBL' with the exception of DSRN's 5, 6 & 7. 

Usage: 

Call DSDSET (DSRN, BLKSIZE, TYPE, LKECL) 
where 

DSRN = the data set reference number of the data set that is to be 
modified 

BLKSIZE = is the new blocksize to be used as default on the data set 

TYPE = code number from 1 - 5 to change the default RECFM 
1 - fixed 
2 - fixed/blocked 
3 - variable 
4 - variable/blocked 
5 - undefined 

LRECL = is the logical record length to be used as a default on 
the data set. It is optional in the parameter list, but 
must exist in correct relationship to the BLKSIZE if 
the RECFM is defined as fixed/blocked. 

External References: 

ERASE 

IHCUATBL 
IHCFCO:MH 

Purpose: To erase a file from within a FORTRAN program. 

Usage: Call ERASE (FNAME, FTYPE, <FMODE» 
FNAME is filename 
F TYPE is filetype 
FMODE is fHemode 

~: This subroutine uses the eMS function ERASE to erase the file named in the call. 

208 



GETPAR 

Purpose: To enable the user to obtain parameters entered from the terminal at 
program ioad time. 

Usage: 

CALL GETPAR ( name , item-no , 'RITE' , 7LAST ) 
where ~ is the variable (real *8) that is to be set to the values of the 
parameter number 'ITEM-NO'. 
ITEM-NO is the location (integer *4) in the initial parameter list of the 
parameter desired; it may be any non-negative value, with 0 indicating the 
parameter pointed to by GRI on initiai entry (that is the program name;; 
if item number exceeds the number of parameters in the string, no parameter 
is passed and control will pass to statement 'lost' if &LAST was specified. 
'RITE is an optional literal which causes the current parameter to be 
right-justified in its double word field, with leading blanks supplied; this is 
useful in reading numeric parameters; and, finally, &LAST is an optional 
statement label to which control is passed if item number exceeds the number 
of variables. 

Notes: The program load parameter is accessed by indirect addressing: 

LOGDSK 

L R3, = V(CMSFORTR) gets original FORTRAN area 
L R3, 4(0, R3) gets original CMS save area 
L R3, 24(0, R3) gets Reg 1 

Purpose: To close all open files and write the user file directory on P-disk. 

Usage: CALL LOGDSK 

~: This subroutine uses the CMS function LOODSK to close all open files and write 
the user file directory on disk. 

RENAME 

Purpose: To change file identifiers within a FORTRAN programo 

209 



Usage: Call RENAME (OLDFN, OLDFT, NEWFN, NEWFT) 

OLDFN is old file name 
OLDFT is old file type 
NEWFN is new file name 
NEWFT is new file type 

Notes: This subroutine uses the CMS function ALTER to make the desired changes. 

REREAD 

PUrpose: To enable the user to reread a record which has already been read into core. 

Usage: Call REREAD ( DSRN, BLKSIZE ) 

DSRN may be any number between 0 and 4 or 8 and 99. 
Default value is 99. 

BLKSIZE may be any integer greater than zero. 
Default value is 140 bytes. 

The reread unit is a block of core which is obtained when the call ''REREAD'' is issued. 
The user then can use the reread unit any time he chooses by first writing data into the 
block, rewinding the unit and then reading it under what ever format control he chooses. 
Failure to rewind the unit will result in an end-of-file condition because the pOinter will 
be positioned at the end of the buffer. 

Possible uses include testing a code on input and branching to different reread routines 
based on the codes. 

210 

Ex. Call reread (25, 80) 

Read (l, 10) list 
If co180 9'1. x go to 40 
If co180 9'1. Y go to 50 

40 write (25, 10) list 

rewind 25 
read (25, 20) list 

50 write (25, 10) list 

rewind 25 
read (25. 30) list 



External References: 

illegal usage: DSRN 5, 6, 7 

VFI0CS 
FI0CSff 
IBCOM# 
DEFTBLV 

negative DSRN 

TRAP 

Floating point blocksize 
unformatted records 

Purpose: To enable the user to specify a program interrupt location. 

Usage: Call TRAP (statement number). 

Note: The TRAP flag is set so that on a program interrupt you will go to your routine 
and not into DEBUG. 

BLIP/TRAP 

Purpose: Provides the ability to use the CMS functions BLIP and TRAP from within a 
FORTRAN program. For a discussion of TRAP, see TRAP. 

Usage: 

1. Call BLIP (character string, count) 
2. Call BLIP (0) 

3. Call BLIP (character) 

The first way enables a user to specify a printing blip character or character string -
up to 8 characters - with a count of how many there are in the string. 

The second way gives just a character with a count of one. 

The third way resets the blip character to the non-printing CMS character. 

~ Since the blip character types on the terminal every 2 seconds of CPU time, this 
can be used to roughly measure time spent in various parts of a complex program by 
calling different blip characters for each part to be measured. 

2'1 ...... 



212 



SECTION 5: SERVICE PROGRAM DESCRIPTIONS 

This section describes the programs that provide the monitor and command programs 
with the services provided. These include the function, loader, and processing pro­
grams. The following text contains detailed descriptions of the various CMS function 
programs. 

STORAGE MANAGEMENT FUNCTION PROGRAMS 

The following text describes the operation of the routines which manage free storage; 
they include FREE, FRET, SVCFREE, and SVCFRET. 

FREE 

FUNCTION: To allocate free storage 

CALLING SEQUENCE: 

LA 
L 
BALR 

0, NDBLWDS 
15, =A(FREE) 
14, 15 

number of double words wanted in register 0 

OPERATION: Refer to "Main Storage Management" in Section 2. 

COMMENTS: FREE returns the address of the allocated storage in register 1. Registers 
o and 2 thru 15 are preserved. 

FUNCTION: To release storage that is no longer needed by a program to free storage. 

CALLING SEQUENCE: 

LA 0, NDBLWDS 

LA 1, BLOCK 

L 15, = A(FRET) 

BALR 14, 15 

number of double words to be released in 
register o. 
starting address of storage to be released 
in register 1. 

213 



OPERATION: Refer to "Main Storage Management" in Section 2. 

COMMENTS: All 16 registers are preserved. 

SVCFREE 

FUNCTION: To allocate free storage 

CALLING SEQUENCE: 

LA 1, PLIST 
SVC X'CA' 

PUST DC 
DC 
DC 

CLS'SVCFREE' 
F' , 

A(*) 
number of double words wanted 
address of allocated storage returned to 
caller here 

OPERA TION: SVCFREE calls the FREE function program that will allocate the re­
quested storage and return its starting address to SVCFREE. SVCFREE then loads the 
starting address into the last entry in the parameter list and returns (via SVCINT) to 
the caller. 

SVCFRET 

FUNCTION: To return storage that is no longer needed by a program to free storage. 

CALLING SEQUENCE: 

LA 1, PLIST 
SVC X'CA' 

PLIST DC 
DC 
DC 

CL8'SVCFRET' 
F' 
A( 

number of double words to be returned 
address of first double word 

OPERA TION: SVCFRET calls the FRET function program to return the storage to free 
storage. It then returns (via SVCINT) to the calling program. 

214 



FILE MANAGEMENT MACROS 

Several macros are used for convenience by the various file management and related 
function programs and routines. Appendix B shows which programs and routines use 

These I/o macros are as follows: 

Macro 

AnT 

AFT 

DIOSCT 

FSTB 

FVS 

Description or Use 

Shows one Active Disk Table entry (See Figure 34.) 

Shows one Active File Table entry (See Figure 35. ) 

Macro corresponding to DIOSECT (used by RDTK­
WRTK-DSKERR) (See Figure 36. ) 

Shows one FST Entry (See Figure 37. ) 

Macro corresponding to most of FVS c-Sect 
(heavily used to reference I/o tables and 
routines) (See Figure 38.) 

215 



I 

* * ACTIVE 
* AOTSECT 
* 
* 
* AOTID 
ADTFLG3 
ADTFTYP 
ADTPTR 
ADTDTA 
ADTFOA 
ADTr1FDN 
A o Tt .. 1 FDA 
ADTHBCT 
ADTFSTC 
ADTCHBA 
ADTCFST 
AOT1ST 
ADTNUM 
AOTUSED 
ADTLEFT 
ADTLAST 
ADTCYL 
AOTM 
AOTI·1X 
AOTFLG1 
ADTFLG2 
* AOT2NO 
* 
* 
* AOTMSK 
AOTQQr-1 
AOTPQt-11 
ADTPQt·12 
ADTPQr,A3 
ADTLHBA 
ADTLFST 
ADTNAC\'/ 
ADTRES 
* ADTLBr, 
AnTLor~ 

* 
ADTL8 
AOTLD 

(showing form of an Active Disk Tahle Block) 

r·1ACRO 
ADT 

DISK TABLE BLOCK 

DSECT 

NEEDED FOR READ-ONLY DISKS ANP READ-WRITE DISKS 

OS 
OS 
OS 
OS 
OS 
OS 
OS 
OS 
DS 
OS 
OS 
OS 
OS 
OS 
OS 
DS 
OS 
OS 
OS 
OS 
DS 
OS 

CL6 
lX 
lX 
1A 
1A 
1A 
IF 
1A 
IF 
IF 
1A 
IF 
IF 
IF 
IF 
IF 
IF 
IF 
1C 
1C 
IX 
IX 

OS 00 

DlSK-IDENTI FIER (LABEL) 
-RESERVED FOR FUTURE USE­
FILETYPE FLAG-BYTE 
POINTER TO NEXT ADT BLOCK IN CHAIN 
DEVICE TA,BLE ADDRESS IN Nt/CON 
FILE DIRECTORY (P5TAT) ADDRESS 
t.!urmER OBL-\'IORf1S I N ~1FD 
MASTER FILE DIRECTORY AnDRESS 
FST HYPERBLOCK C011NT 
NUMBER OF FST 40-BYTE ENTRIES (FILES) 
POINTER TO CURRENT FST HYPERBLOCK 
DISPLACEt~ENT OF CURRENT FST ENTRY 
DISP. OF 1ST WORD IN BIT-MASK WITH 'HOLE' 
NW·1BER OF RECORDS (Nur~TP.KS) 
NUMBER OF RECORDS H! USE (OTtJSEDP) 
rJUMBEP OF RECORDS LEFT (OTLEFTP) 
DISP. OF LAST rJ0NZERn BYTE IN BIT-~1ASK 
NUMBER OF CYLINDERS ON DISK (NU~CYLP) 
MODE LETTER (P,T,S,A,B,C, ETC.) 
EXTENSION-OF-MOOE LETTER (P,T,S, ETC.) 
FIRST FLAG-BYTE 
SECOND FLAG BYTE 

NEEDED JIJST FOR READ-WRITE DISKS 

OS 
OS 
OS 
OS 
OS 
DS 
OS 
DS 
DS 

1A 
1A 
IF 
IF 
IF 
1A 
IF 
1H 
1H 

SOO-BYTE (pnr~SK) BIT-f.,1ASK ADDRESS 
200-BYTE (P0Qf1SK) BIT-r,1ASK ADDRESS 
PO~SIZ = NO. BYTES IN PCMSK > 215 
POrl.NU~1 = no. 800 BYTE-REC FOR P()t1SK 
RONU~1 = rIO. DB L-WOROS I ~~ pnr~SK 

POH!TFP TO Lft.ST FST HYPEr-Bl.OCK 
DISP. OF LAST FST I~ LAST HYDER-BLOCK 
t.JunBER OF ACTIVE \,!RITE FILES - HALF\'!OP,D 
RESERVE-COUNT (R~SRVrNT) - HALFWORD 

EQU AOT2ND-ADTSr::CT LEtJGTH 0F rQr,lH1lH' A.DT 3LnCK (BYTES) 
EQIJ AOTLBr1/ R LEf-.'('-:TH OF r'l tJ I ~'I!r~ ]\nT RlrCK I tl DBL-\-!Oprs 

EQU 
EQU 

*-ADTSECT 
(ADTLB+7)/8 

LENGTH OF FULL ADT GLeCK (RYTES) 
L E ~l G THO F F U L L ,,, D T B L 0 C K I ~! !! R L - ~.JO R D S 

Figure 34. eMS ADT macro (sheet 1 of 2) 

216 



(continued) 

* FIRST FLAG-BYTE (ADTFlGl) DEFINITiOnS 
* AOTFSF EQLJ 
ADTFRO EQU 
ADTFRW EQU 
ADTFFSTF EQU 
ADTFFSTV EQU 
ADTFQOF EQU 

I ADTROX EQU 
ADTFM ttJ EQU 
* 

x' 80' 
·x '40' 
X'20' 
X'lO' 
x!os' 
X'04' 
X' 02' 
X'OI' 

ADT BLOCK IN FREE STORAGE 
READ-ONLY DISK (ATTACHED & READY) 
READ-WRITE DISK (ATTACHED & READY) 
1ST FST HYPERBLOCK IS IN FREE STORAGE 
FST HYPERBLOCKS ARE OF VARYING LENGTH 
200-BYTE QQMSK IS IN FREE STORAGE 
THIS DISK HAS READ-ONLY EXTENSION (S) 
ADT BLOCK IS MINIMUf1 SIZE 

* SECOND FLAG-BYTE (ADTFLG2) DEFINITIONS 
* ADTFMFD EQU 
ADTFALN~1 EQU 
ADTFALTY EQU 
ADTFMDRO EQU 
ADTFALMD EQU 

X'gO' MFD IS IN CORE 
X'40' ALL FILENAr·1ES ARE IN CORE 
X'20' ALL FILETYPES ARE IN CORE 
X' 10' MODES 1-6 ARE IN CORE 
ADTFMDRO+X' 08' ALL MODES (0-6) ARE IN CORE 

ADTFALUF EQU 
ADTWr,1SG EQU 

AnTFMFD+AnTFAu~r.~+ADTFAL TY+ADTFA 13·10 ALL UFO I SIN CORE 
X' 04 ' READ-ONLY \~!ARN I NG rv~ESSAGE HAS BEEN r, I VEN BY WRBt!F 

* * OTHER PARAMETERS 
* 
ADTRL 
ADTML 
* 

EQU 
EQU 

800 
5 

LOGICAL nECORD LENGTH 
t;AxIMln~ GIT t·'ASK LENGTH - IN RECORDS 

* NUCON DEVICE TABLE OFFSETS 
* 
DTAD 
DTADT 
DTAS 

EQU 0 
EQU 3 
EQU 4 
~,1END 

Figure 34. eMS ADT macro (sheet 2 of 2) 

DEVICE NUMBER 
DEVICE TYPE BYTE 
SYMBOLIC DEVICE NAME 

217 



* 
* {\CT I VE 

* 
AFTSECT 
AFTCLD 
!\FTCUJ 
AFTCL/\ 
AFTDBD 
AFTDBt~ 
AFTPBA 
AFTCLB 
AFTFLG 
AFTPFST 
AFTIN 
AFTID 

* 

nACR.O 
AFT 

FILE 

DSECT 
OS 
OS 
OS 
OS 
OS 
OS 
OS 
OS 
OS 
OS 
OS 

TABLE 

H 
H 
F 
H 
H 
F 
XL80 
X 
3X 
H 
H 

GLOCK 

DISK J'lrPRESS OF C{!PRErJT CHI'. I r: L I m~ - 0 
r!U~ir.EP OF CI!PRENT CHi\ I ~J t I tIl( - 2 
COR E Il.DDR ESS r. F CHA I N L I ~'K Dt'FF FP - lJ 
DISK ADDRESS OF CURRENT DATA BLOCK - P 
Nl'tABEP 0F CUPRF~!T [)}\TA, BLOCK - 10 
CORE ArnRESS OF CI'PPFNT nAT/\. Plncv., - 12 

CHA I~' L I t'K RI' FF f n Frnr·\ 15T CHA I~' I ,~"~ - 11:: 
FLAG RYTJ: - qG 
POH'TER TO (ST~TIC) FST-Et.lTRY - 97 
curRENT ITEr' ~!I'nBEP - 100 

01 S PLACEr,1ENT OF curRENT I TEr'1 H' nATA 1:; U( - 102 

* FLAG BYTE (AFTFLG) rEFINITIOt!~ 

* 
AFTUSEO EQU 
*** EQU 
AFTICF EOU 
AFTFBA E0lJ 
AFTDBF EC1U 
AFT\JRT EQU 
AFTRD EQU 
AFTFULD EQU 

* 

X'80' 
X'40' 
X'20' 
X'IO' 
X'OB' 
X'04' 
X'02' 
X'OI' 

ACT I V E F I LET A 8 L E 8 L r C I~ H! lJ S E 
(NOT USED = SPARE) 
FIR S T C H A I ~I L I r Jl( It! con E F LA G 
Fur L r. U F F F. f' t" S:-' I r r-.' E n 
DATA BLOCK IN COPE FLAG 
~\CT I VE \JR I TE 
ACTIVE READ 
FULL-DISK SPECIAL CASE 

* COPY OF FST BLOCK IMBEDDED IN AFT BLOCK 

* 
AFTFST 
AFTN 
AFTT 
AFTO 
AFT\',!P 
AFTRP 
AFTr1 
AFTIC 
AFTFCL 
AFTFV 
AFTFB 
AFTIL 
AFTOBC 
AFTYR 

* 
AFTADT 
AFTPTR 

* 
l\FTFSF 

* 
AFTLB 
AFTLD 

* 

OS 
OS 
OS 
DS 
DS 
OS 
OS 
OS 
OS 
OS 
OS 
OS 
ns 
OS 

OS 
OS 

EQU 

DS 
EQU 
Enu 

t.!l E tl [) 
Figure 35. eMS AFT macro 

218 

00 
o 
o 
F 
H 
H 
H 
H 
H 
C 
X 
F 
H 
H 

F 
F 

X'40' 

00 
*-AFTSECT 
AFTLB/8 

- 104 
FILE NAnE 
FILE TYPE 
DATE/T I t1E LAST V:r., TTF:N 
\'IRITE priNTEr ('TD~ tIC.) 
READ PO INTER (I TEr1 ~~C'.) 
FILE ~.10nE 

I TJ::'~ rounT 
FI PST CHA I ~.I L.I ~'K 
FIXEn(F)/VARIA~LE(V) FLAG 
FST FLAG BYTE 
O~/,X 1r~(Iro ITFT LENCTH 
80 0 - BY TED A TAB L 0 C I~ CO U fJ T 
YF:AP 

P a I r J TEn TO ACT I V E [) I S K T A [3 (E - 1l~ 4 
r 0 I r'T E R T 0 r,~ EXT AFT B L r C Kin C H f, I r J - 14 P 

niT I r; 1\ F T P T p n If) I C 1\ T E S H·: F REF: S T r p /\ ~ E 

[Nil or nSECT 
LEN G THO F ;\ F T 8 L 0 C !< 'tr G Y T E S 
LEN G THO F /\ F T B L () C !( I ~! no U D L E \ 'm R D S 



IGOLo 
CS\"! 

* 
* 
* 

P~~A I T 

* 
Q0DSKI 
nr.n('v"l 
\..t\.{V':> "L 

* 
* 
* 
CCWI 
CCl-'/2 
CC\'-/3 
RWCC\'} 
CC\'INOP 
* 

MACRO 
DIOSCT 

DC 
DC 

10'0' 
1D' 0' 

I O-OLn-PS~v (FRor~ I ~'TERRlJPT ROUT I iT) 
CS~"J (FROt·1 I NTEfH?U PT ROUT J rJ E) 

\'JAIT CALLING SEOU[NCE 

OS OF 
DC CL8'HAIT' 
DC C'DSK-' FILLED IN TO CORRECT Syt·iBOLIC DISK t-!O. 
DC F' 0 I 
DC F' a ' 

DC F' 0 ' 1ST T\'IO BYTES Au,rAYS = a 
[:'('\11 ('\('Inc"".&-" L.\.{V 4.4. LJ ..... , ... • '" HALFWORD COpy OF 16TH TRACK DISK-ADDRESS 

CC\~ CHAIN 

CCW X'07',SEEKADR,CC,6 
CCW X'31',SEEKADR+2,CC,5 
CCW X'08',*-8,O,1 
CCW x'no',*-*,CC+SILI,*-* 
CCW X'03',O,SILI,1 

= SEEK 
= SEARCH 
= TIC BACK TO SEARCH 
= READ OR WRITE DATA 
= N0-0P FOR CE & DE TOGETHER 

SEEKADR DC XL7'OO' SEEK/SEARCH INFO (1ST 3 BYTES ARE 0) 
* IOCOMM 
* SENCC\'1 
* 
CC 
SILl 
* 
* 
* 

DC 

CCW 

EQU 
EQU 

LASTCYL DC 
LASTHED DC 
* 
DEVTYP 
FLAG 
* 
SENSB 
* 

DC 
DC 

DC 

X'oo' SET TO READ (06) OR WRITE (05) 

X'04',SENSB,SILI,6 = SENSE COMMAND (USEr IF ERROR) 

X'40' 
X'20' 

I/O INFCl 

F' 0 ' 
F' 0 ' 

X'OQ' 
X'QO' 

XL6'QO' 

COf1MAf\!D- CHA IN 

BECOMES 'LAST CYLINDER-NUMBER USEO' 
BECOMES 'LAST HEAD-NUMBER USED' 

UNIT-TYPE = 01 (2311), 08 (2314) 
FLAG BYTE 

SENSE-INFORMATION 

* MISCELLANEOUS STORAGE ••• 
* 
DOUBLE 
* 
* XRSAVE 

ERRCODE 
* 
* 
FREERO 
OJ OFREE 
* 
R1SAVE 

DC 

KEEP 
DS 
DC 
DC 

KEEP 
DC 
DC 

DC 

10'0' 

THE FOL LO\'J I NG 
15F 
AL3(O) 
AL1(*-*) 

THE FOLLOHING 
F'O' 
F'O' 

F' n ' 

(FOR 'cvn' USE) 

THREE I fJ ORDER ••• 
REG I STERS 0-14 SAVED HERE FOR rr.T~-V'RTK 

FIRST 3 BYTES OF P15 FPROR-corE 
EPR0R-conE (I~ P15 AT EXIT) 

T\\lO I rJ OROER •• 
~JO. DBL-HORDS OF FREE ST0RArE (I F A~'!Y) 
ADD. OF FREE STORfI,GE FOR DUFFER OR CCll'S 

ACT I V E - 0 , S l< - TAB L E P n I ~!T E R S ~. v [ c ~ IF P F: 

Figure 36. eMS DIOSCT macro (sheet 1 of 2) 

219 



* 
* 
DIOMSG1 OC 
t1SG1A DC 
'·lSG1B DC 
'·iSGIC DC 
r1SG1D DC 
t.1SGl E DC 
MsrlF nc 
t,1SGIG DC 
LE~'SG1 EflU 
* 
DIOMSG2 DC 
r·1SG2A DC 
MSG2B DC 
"SG2 C nc 
tlSG2D OC 
,..1SG2E DC 
LEf-1SG2 EQU 

DC 

r1END 

I/O ERROR MESSA~ES 

C'*** ERROR' 
C'----If~G ' 
C'Z-f)fSK (' 
C'XXX), CYl ' 
C'OOO HEAD' 
C'OO PEC ' 
ClO~ (231' 
C' -) , 
*-0 r or~SGI 

C' CS\>J = ' 
C'ooxxxxxx xxxxxxxx' 
C', CC\~ = , 
C'xxxxxxxx xxxxxxxx' 
C', SENSE-INFO = ' 
C'OOOOOOOOOOOO' 

'SIO' OR ,***, 
'rEAD' 0R 'HRIT' 
'p' 0R 'T' 0R 'Sf ETC. 
DF.VICE ~Hn~BEr (PEX) E.fl. 191 
CYl. NO. (nECn~/\L.) noo T0 202 
flEAO ~!O. (rECIr'J\L) no TO 19 
RECORD NO. (DEClr~AL) 01 Tn 15 
'1' FOR 2311, '4' FOR 2314 

BYTES 1-3 AND 4-7 OF CSW 
(PUT ror 1t:1A BACK I N AFTER ut·'PK) 
LAST rc\'I r,()E~ IN HERE 
(PUT cr,,,,".l\, BACK IrJ AFTER UNPK) 
SENSE-INFORMATION 

*-D I or·1SG2 
c' , (EXTRA BYTE FOR UNPK SPILLOVER) 

Figure 36. CMS DIOSCT macro (sheet 2 of 2) 

Cr·1S "FSTB tI r,1ACRO 

(showing form of a 40-byte FST-entry) 

* 

r~ACRO 
FSTB 

* FILE STATUS TABLE (FILE DIRECTORY) BLOCK 
* FSTSECT 
FSTN 
FSTT 
FSTD 
FST~'JP 
FSTRP 
FSTr~ 
FSTIC 
FSTFCL 
FSTFV 
FSTFB 
FSTIL 
FSTDBC 
FSTYR 
FSTL 
* 
* 

OSECT 
OS 
OS 
DS 
OS 
OS 
OS 
DS 
OS 
OS 
OS 
OS 
OS 
OS 
EQU 

10 
10 
IF 
IH 
IH 
IH 
IH 
IH 
lC 
lC 
IF 
IH 
IH 
*-FSTSECT 

FILE NAf.1E - 0 
FILE TYPF - 8 
DATE/TI~E LAST WRITTEN - 16 
WRITE POINTER (ITEM NO.) - 20 
READ POINTER (ITEM NO.) - 22 
FILE nODE - 24 
I T E r1 CO U t·! T - 2 6 
FIRST CHAIN LINK - 28 
FIXEO(F)/VARIABLE(V) FLAG - 30 
FLAG BYTE (IF USED) - 31 
(~1AX ItIjUt,n IT Er1 L E rJGTH - 32 
SOD-BYTE nATA 8L0CK COUr)T - 36 
YEAR - 38 

* FST HYPER-BLOCK PARA""ETERS 
* FSTFHDP E0U 
FSTBKHD EQU 
* rn::rm 
Figure 37, eMS FSTB macro 

220 

800 
804 

FOR\',rARD PO, NTER (Tr. t'EXT HY PE RB LOC K "1 COR E) 
Bt',CK\IARD POlr!TER (TC rrEVIOUS HYPERBLOCK IN CORE) 



cns "FVS" r~t\CRO 

HACRO 
FVS 
DSECT FVSECT 

OISK$SEG 
PEGSAV3 
Rl,'!r-STRG 

OS 15F (1) FOR FSTLKP, FSTLKW, ACTLKP, TRKLKP, rrTRK 
[')S 
DS 

15F 
18F 

(2) REG I STERS S.~"ED P,Y Rf'lBI'F, \'JRBUF, F I~" S, STATE 
(3) RErYi,ININ~ STORAGr F()P RGRUF, HRBUF, Flr'IS 

* ADTFVS DC 2 F' 0' ADTLKP 
* 
* S A V E - ARE A FOR L 0 \'1 EST - LEV E L R OUT I N E S : 
* E.G. REAor~FD, RELUFD, UPOISK, ETC. 
REGSAVO OS 15F -- (1) SAVEO RO-R15 

DC AL3(OO) -- (2) FIRST 3 BYTES OF rETURN-CODE 
ERRCODO (3) ERROR-CODE GOES HERE 
* 
TRKLSAVE EOU REGSAVO FOR TRKLKP/X ONLY WHEN CALLED BY nOTRK/X 
* 
* SAVE-AREA FOR NEXT-TO-LOWEST LEVEL ROUTINES: 
* E.G. READFST, LOGDISK, UPUFD, ERASE, ETC. 
REGSAVI OS 15F -- (I) 

DC AL3(OO) -- (2) 
ERRCODI DC ALl(*-*) -- (3) 
* AACTLKP 
AACTrJXT 
AACTFREE 
AACTFRET 
AADTLKP 
AADTtJXT 
AFSTLKP 
AFSTLKlJ 
ARDTK 
Al'!RTK 
ATRKLKP 
ATRKLKPX 
AQQTRK 
AqOTRKX 
AREADFST 
AREAor-1FD 
ARELUFD 
AUPDISK 
AKILLEX 
ATFINIS 
ARDBUF 
Al:R BU F 
AFlrJlS 
ASTATE 
,,\STATE\! 
1\ PO I tIT 
F65535 
* 
F4 
q4 

DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
OC 
DC 
DC 
DC 
DC 
DC 
DC 

OC 
E0L! 

V(ACTLKP) 
V(ACTNXT) 
V(ACTFREE) 
V(ACTFRET) 
V(ADTLKP) 
V(ADTNXT) 
V{FSTLKP) 
V( FSTLK~'!) 
V(RDTK) 
V( \,IRTK) 
V(TRKLKP) 
V(TRKLKPX) 
V(QQTRK) 
V(QQTRKX) 
V(READFST) 
V ( REA or·1 F n ) 
V(RELUFD) 
V(UPDISK) 
V(KILLEX) 
V(TFINIS) 
V(RDBUF) 
V(WRBUF) 
V(FINIS) 
V(STATE) 
V( STATE'.'!) 
V(POltlT) 
F'65535' 

F'4' 
Fl~+2 

Figwe 38. eMS FVS macro (sheet 1 of 2) 

= X'OOOOFFFF' 

221 



AFREE 
FIOO 
* AFRET 
JSRO 
JSRI 
* 

DC 
DC 

DC 
DC 
DC 

CMS "FVS" t1ACRO (continued) 

V(FREE) -- (1) 
FrIOO' -- (2) 

V(FRET) 
F' 0 ' 
F' 0 ' 

( HI T 0 RIS) 
RO AND ••• 
RI SAVED ~EnE FOR FRET CALLS. 

* PARAr'iETER-L I ST TO REAO/\t.rR ITf: r'FD ••• 
R ~Jt1 F 0 DCA ( * - * ) con E - AD [) RES S 
F800 DC F'SOO' SOO BYTES 

DC A(H4) 
FVSDSKA DC A(*-*) ADD. OF ACTIVE-DISK-TABLE 
* 
DSKlST 
DSKLOC 
R\'JCNT 
DSKADR 
ADTA.DD 
* 
FINISLST 

* 
FFF 
FFE 
FFD 

OS 
DC 
DC 
DC 
DC 

DC 
DC 
DC 
DC 

OS 
DC 
DC 
DC 

OF 
A(*-*) 
A(*-*) 
A(*-*) 
A(*-*) 

CLS'FINIS' 
CL8'*' 
CLS'*' 
CL2'*' 

OH 
X'FFFF' 
X'FFFE' 
X'FFFD' 

A L '- - PUP PO S F R [) T K / ~'!R T K P - LIS T ••• 
CORE LOC. OF I TF.r·1 
BYTE-COU~~T (USUALLY SaO) 
DISK ADDRESS OF I TEi 1 
ADDRESS OF cnRRECT ACTlvr-DISK-TABlE 

P-LIST TO Cln~r ALL FILES 

HALFWORn r0NSTAMTS ••• 
~~ E A N S NOS r G N I F I CAN T rAT 1\ P 1\ S T 2 15 T H [3 Y T E 

19G8-ERA t'lFD STILL SUPPORTED ON I~JPUT OrJLY 
NEWEST SIGNAL FOR FULL '-14 ~ANDLING 

* 
* 's I GNA.L' = SCRATCH HALn',JORO lISEO I1Y REAf)f1FD nR ERASE ••• 
SIGNAL DC H'O' = 0000, X'FFFF', X'FFFE', OR X'FFFD' 
SHTCH EQU SIGNAL+I 00, FF, FE, OR FD 
* UFO BUSY DC 
KXFlAG DC 
EXTFLAG OC 
FLGSAVE DC 
* 
* WRBIT 
UPBIT 
FNBIT 
ERBIT 
DIOBIT 
* 

FLAG 
E0lf 
En,U 
EQU 
EQU 
EQU 

FVSFLAG DC 
* 

X'OO' 
x'OO' 
x'OO' 
XIOO' 

BITS FOR 
X'SO' 
X'40' 
X'20' 
X'IO' 
X'OS' 

x'no' 

nONZERO ~1EANS 'UFO I S BUSY BE I NG UPDA.TJ:D' 
NONZEro MEANS IKX' DESIRED ASAP. 
~!oNZEPO nEANS EXTERNAL I NTERRUPT "'A~·!TEn. 
FOR 1I S [ A S ~l E E 0 E D (A S BY' F I ~11 S ' ) 

'UFDBUSY' FLAG ••• 
~mBUF 
!.IPDISK - REA.or~Fn 

FINIS 
ERASE - ALTER - READFST 
RDTK/\1RTt: 

(FOR GENEPAL USE - AS nEEDED) 

* MISCELLANEOUS STORAGE USED BY ERASE (OR ALTER) •••• 
ERSFLAG DC x'Oo' FLAG FOR USE 8Y ERASE OR ALTER 
* 
FVSERASO DC 
FV5ERASI DC 
FVSERAS2 DC 

OS 
STATEFST DC 
STATERO DC 
STATERI DC 
* 

f1END 

F' 0 I 

Fin' 
F' 0' 

00 
IOF'O' 
FlO ' 
F' 0' 

Figure 38. eMS FVS macro (sheet 2 of 2) 

222 

( 1) - ROT 0/ FRO n F S T L K t·J (F ORE R AS t ) 
(2) - RI TO ACTLKP OR FSTLK\" (FOR ER.A.SE) 
(3) ADDRESS OF FREE STORAGE USED BY ERASE 

40-BYTE COpy OF FST-ENTRY 
no AND RI FRor,~ FSTLKP ON ~1OST RECE~!T 

SUCCESSFUL STATE ArE SAVED HERE. 



FILE MANAGEMENT FUNCTION PROGRAMS 

The file management function programs are used to create and read eMS files, to locate 
specified files, and to enable specified items in a file to be directly accessed. The file 
management function programs, which are generally called via SV C Xl CA 1, include 
RDBUF, WRBUF, FINIS, STATE, STATEW, and POINT. 

RDBUF 

FUNCTION: To read one or more successive items from a specified disk file. 

CALUNG SEQUENCE: 

LA Rl, PLIST 
then either 

SVC X'CA' 
DC ALA (RDERROR) 

or 
T R15, ARDBUF .Ll 

BALR R14, RI5 
BNZ RDERROR 

ENTRY REQUIREMENTS: 

Rl must point to P-List as usual 

Call RDBUF via SVC 
Error-return (for example, if end-of-file) 

\Vhere ARDBUF = V(RDBlJF) 
Call RDB{JF via BALR (within nucleus) 
Transfer if error(for example, end-of-file) 

Rl must point to RDBUF parameter list: 
DS OF 

PLIST DC CL8'RDBUF' 
DC CLB' 
DC CLB' 
DC CL2' 
DC H' 
DC 

DC 
DC 
DC 
DC 

A( 

F' 
CL2' 
H' 
A(*-*) 

EXIT CONDITIONS: 

Normal Return 
R15 = 0 

Error Returns 
R15 nonzero 

(note - immaterial if called by BA LR) 
filename 
filetype 
filemode 
item number of first (or only) item to be read 
address of buffer into which item(s) read are 
to be placed (that is, address of input buffer) 
size of input buffer. 
F IV Flag (in leftmost byte) 
number of items to be read 
number of bytes read returned here 

(and condition-code = 0) 

(and condition-code = 2) 

223 



CA LLS TO OTHER ROUTINES: 

ACTFREE, ACTLKP, FREE, FRET, FSTLKP, RDTK 

CA LLED BY (where known): 

LOADMOD (in particular - called by BA LR), and by all programs (usually 
by SVC) which read CMS files. 

MA CROS USED: 

AFT, FSTB, FVS 

ERROR RETURNS (R15 value at Exit): 

1. Given file not found. 

2. User Memory Area not within memory limits. 

3. Permanent disk error from RDTK. 

5. Number of items = O. 

7. Fixed/variable flag in FST entry = "R" (Should be "F" or ''V''). 

8. Given memory area was smaller than actual size of item read (Note: nonfatal; 
number of bytes corresponding to size of buffer have been read). 

9. File open for writing - must be closed before it can be read. 

11. Number of items greater than 1, for variable-length file. 

12. End of File (Item number specified exceeds number of items in file) 

13. Variable file has invalid displacement in active file table (indicates coding error -
should not occur). 

Note: All errors except error 8 cause the function call to be aborted. Error 8 is legiti­
mate if reading the first portion of a large record into a little buffer. 

OPERATION: After performing some error checks, RDBUF calls ACTLKP to determine 
if the given file is in the active file table. If it is found but is an active write, an error 
9 is given. If an active read, then processing proceeds as described under "File 
Active". If the file is active but neither a read nor a write, then it must have been 
placed in the active table by a POINT function call; processing continues as described 
below at the point after the entry is placed in the active file table by ACTFREE. 

224 



FILE NOT ACTIVE: If the file is not found by ACTLKP in the active file table, RDBUF 
checks to see if the file referenced at STATEFST (left by the most recent call to 
STATE) matches the caller's parameter list. (As many commands STATE a file to find 
its existence and characteristics and then immediately RDBUF the first record, there 
is a good chance this wili occur - thus saving a needless search of the FST tables). If 
found at STATEFST, the addresses of the active disk table and the FST entry itself are 
obtained from the eight bytes immediately following the STA TEFST copy, and FSTLKP 
is not called. If the file is not found in STA TEFST, then FSTLKP is called to find the 
given file. (If not found by FSTLKP, an error 1 occurs). If found by FSTLKP, or 
found in STATEFST as above, then ACTFREE is called to find or create an entry in the 
Active File Table and insert the 40-byte FST entry therein. 

When the file has been placed in the Active File Table (or was already there from a 
POINT function as mentioned above), RDBUF 111arks the file as being active. Next, 
RDBUF obtains buffer space into which to read the data blocks and into which to read 
the first chain link. It then calls the RDTK function program to read the first chain link 
into main storage. RDBUF next moves the first 80 bytes of the first chain link into the 
chain link directory in the active file table entry. Then RDBUF determines if the item(s) 
to be read is/are of fixed or variable leng!:h. If of variable length, processing proceeds 
as described under "Variable-Length Item" in this section. If of fixed length, proc­
essing proceeds as described below. 

Fixed-Length Item: RDBUF calculates the number of bytes to be read. This is equal to 
the item length multiplied by the number of items to be read. It then calculates (from 
the item number supplied in the parameter list) the data block from which the item(s) 
is/are to be read. This calculation also yields the displacement from the start of the 
data block of the first byte to be read. Next, RDBUF determines whether the affected 
data block is in main storage. If it is not, RDBUF determines whether the chain link 
required to access the needed data block is in main storage. If the required chain link 
is not in main storage, RDBUF calls the RDTK function program to read it into main 
storage. After the required chain link has been read into main storage, or if it is 
already in main storage, RDBUF determines whether the affected data block exists. (It 
will if its corresponding entry in the chain link that is in main storage contains a valid 
disk address.) If the affected data block does not exist, RDBUF filis the input buffer 
with zeroes and returns to the calling program. If it does exist, RDBUF reads it into 
the data block buffer. 

If the affected data block is in main storage when RDBUF is called, or if it is not, after 
it has been read into main storage (if necessary), RDBUF determines whether it con­
tains all of the bytes to be read. (It will if the result of 800 minus the previously calcu-
1ated displacement is greater than or equal to the number of bytes to be read.) If the 
data block contains all of the bytes to be read, RDBUF moves them from the data block 
buffer (where the data block resides) to the input buffer and returns to the calling pro­
gram. If the data block does not contain all of the bytes to be read, RDBUF moves the 
pertinent bytes from the data block buffer to the input buffer. It then reads the next 
data block into main storage, obtains the remaining bytes to be read from it, moves 
them to the input buffer, and returns to the calling program. (If the 800 bytes in the 
next data block are not sufficient to satisfy the read, RDBUF moves the entire 800 bytes 
to the input buffer and reads the next data block to get the remaining bytes. RDBUF 

225 



repeats this procedure unti~ the number of bytes in the input buffer equals the number 
of bytes to be read. It then returns to the calling program. ) 

Variable-Length Records: RDBUF reads successive data blocks (starting with the first) 
until it locates the one that contains the start of the variable-length item to be read. It 
then moves the item length to the start of the input buffet. If the first data block contains 
the entire item, RDBUF returns to the calling program. If the first data block does not 
contain the entire item, RDBUF reads the next data block into the data block buffer, 
moves the remainder of the item to the input buffer, and returns to the calling program. 
If the remainder of the variable-length item is not completely contained with the 800 
bytes of the second data block, RDBUF reads the next data block to get the remaining 
bytes. RDBUF repeats this procedure until the entire variable-length item has been 
placed in the input buffer. It then returns to the calling program. 

FILE ACTIVE: If the file is active, RDBUF determines whether the item to be read is 
of fixed or variable length. If of fixed length, it proceeds as described for fixed-length 
items under "File Not Active". If of variable length and the item to be read immediately 
follows the one just read, RDBUF moves the variable-length item into the input buffer in 
the previously described manner. If the variable-length item to be read precedes the one 
just read, RDBUF proceeds as described for variable-length records under "File Not 
Active". If the variable-length item to be read follows, but not immediately, the one 
just read, RDBUF reads forward from the current location in the file until it locates the 
data block containing the start of the desired item. It then moves that item to the input 
buffer as previously described. 

Notes: 

1. If feasible, RDBUF reads any physical blocks of 800 bytes or more directly into the 
caller's buffer, rather than into a free storage buffer and then moving the data. For 
example, if a caller (say PRINTF) calls for forty 80-byte records, totaling 3200 
bytes, RDBUF (when it has the data-block disk addresses available from the appro­
priate chain link) calls RDTK to read the 3200 bytes directly into the caller's buffer. 
This procedure saves considerable processing, SIO's to the disk, data moving, etc. 

2. RDBUF, in addition to various other error checking, checks the core-address given 
by the caller. This core address must be no lower than the beginning of free storage 
(FREAR), with the single exception of the storage area BLKl, which is legal for 
certain applications. If the core-address is not above FREAR or within BLKl, an 
error code 2 is given, and no reading occurs. This safeguards the CMS nucleus 
from being clobbered by an invalid RDBUF parameter list in any program. 

226 



WRBUF 

FUNCTION: To write one or more successive items into a specified disk file. 

CALliNG SEQUENCE: 

LA RI, PLIST 
then either 

SVC X'CA' 
DC AIA(ERROR) 

or 
L R15, AWRBUF 
BALR R14,R15 
BNZ ERROR 

ENTRY REQUIREMENTS: 

RI must point to P-List as usual 

Call WRBUF via SVC 
Error-return (for example, if read-only disk) 

Where AWRBUF = V(WRBUF) 
Call WRBUF via BA LR (within nucleus) 
Transfer if error (for example, read-only disk) 

RI must point to WRBUF parameter list: 
DS OF 

PLIST DC CL8'WRBUF' (Note - immaterial if called by BALR) 
DC CLa' filename 
DC CL8' filetype 
DC CL2' filemode 
DC Hf 
DC A( 

item number of first (or only) item to be written 
address of buffer containing item(s) to be written 
(that is, address of output buffer) 

DC F' 

DC CL2' 
DC H' 

EXIT CONDITIONS: 

Normal Return 
RI5 = 0 

Error Returns 
R15 nonzero 

CALLS TO OTHER ROUTINES: 

size of output buffer (number of bytes to be 
written) 
F/V Flag (in leftmost byte) 
Number of items to be written 

(and condition-code = 0) 

(and condition-code = 2) 

ACTFREE, ACTFRET, ACTLKP, ADTLKP, DISKDIE, FREE, FRET, 
FSTLKW, KILLEXF, QQTRK, QQTRKX, RDTK, TRKLKP, TRKLKPX, 
WRTK 

CALLED BY (where known): 

GENMOD (in particular - called by BALR), and by all programs (usually 
by SVC) which write CMS disk files 

227 



MACROS USED: 

ADT, AFT, FSTB, FVS 

ERROR RETURNS TO CA LLER (R15 value at Exit): 

1. Filename or filetype not specified or illegal 

2. User memory address = 0 

4. First character mode illegal 

5. Second character mode illegal 

6. Item number + number of items too large - will not fit in a halfword 

7. Attempt to skip over unwritten variable-length item 

8. Number of bytes not specified 

9. File already active for reading 

10. Maximum number of CMS files (3500) reached 

11. F-V flag not F or V 

12. Mode SY (SYSTEM) or other read-only disk 

14. Attempt to write on T-Disk which is not yet formatted 

15. Length this item not same as previous 

16. Characteristic (F-V Flag) not same as previous 

17. Variable-length item greater than 65K bytes 

18. Number of items greater than 1 for variable-length file 

19. Maximum number of data blocks per file (16060) reached 

OTHER ERROR RETURNS: 

Transfers to DISKDIE (within FINIS) on a permanent I/O Error. 
Transfers to KILLEXF (within LOGOUT) if disk is full. 

OPERA TION: WRBUF first performs a series of tests to ensure that the parameter list 
is legal. If it is not, WRBUF signals the error and returns to the calling program. If 
the parameter is legal, WRBUF calls the ACTLKP routine to see if the file exists and is 
active; if yes, processing proceeds as described under "File Active." If not, WRBUF 
calls the FSTLKW function program to determine whether the specified file exists. If 

228 



yes, processing proceeds as described under "File Exists, Not Active." If not, 
processing proceeds as described under "File Does Not Exist. " 

FILE DOES NOT EXIST: If the file does not exist, WRBUF calls ADTLKP to determine 
the active disk table pertaining to the given mode, and checks to ensure that the disk is 
available and in read-write status (error return if not). The A CTFREE is called to 
obtain an available slot in the Active File Table for the file about to be created. Then 
WRBUF initializes the AFT entry with necessary information including the name, type, 
and mode of the file. WRBUF then calls the QQTRK routine to obtain an available 
sixteenth of a track of disk space for use as the first chain link and stores the disk 
address returned by QQTRK in the file status table. Next, WRBUF calculates (from 
the item number supplied in the parameter list) the data block into which the item(s) is/ 
are to be written. This calculation also yields the location within the data block at which 
the item(s) will reside. (The calculation is «N-l) *L)/800. N is the item number, L 
is the itenllength, and 800 is the length of a data block. The quotient produced by this 
calculation is the number of the affected data block and the remainder is the displace­
ment into the data block at which the item(s) will reside.) Next, WRBUF calculates the 
number of bytes to be written. This is equal to the item length multiplied by the number 
of items to be written. Both values are obtained from the parameter list. WRBUF then 
marks the file active, obtains buffer space for the data block, and determines if the 
item to be written is of fixed or variable length. If of variable length, processing 
proceeds as described under ''Variable- Length Item". If of fixed length, processing 
proceeds as described below. 

Fixed-LengW'l Item: WRBUF determines the chain link that should contain the address of 
the affected data block. (Ordinarily, at this point, this will be the first chain link and it 
will exist in main storage.) If this chain link does not exist (that is, its corresponding 
entry in the first chain link is not a valid disk address), WRBUF calls the TRKLKP func­
tion program to obtain a quarter of a track for the new chain link, inserts the disk 
address returned by TRKLKP into the chain link directory of the active file table entry, 
and obtains storage for use in constructing the new chain link. If the chain link exists, 
WRBUF calls the RDTK function program to read it into main storage. WRBUF then 
determines if the affected data block exists. (It will if the corresponding entry in the 
chain link that is in main storage contains a valid disk address.) If it does not exist, 
WRB UF calls the TRKLKP function program to obtain a quarter of a track for the new 
data block, inserts the disk address returned by TRKLKP into the appropriate entry in 
the chain link that is in main storage, and clears the data block buffer for use in 
constructing the data block. If the data block exists, WRBUF calls the RDTK function 
program to read it into the data block buffer. WRBUF then calculates the number of 
bytes in the data block buffer that are available for use. (The number of bytes available 
is . equal to 800 minus the previously calculated displacement.) Next, WRBUF determines 
whether the number of bytes to be written is greater than the number of bytes available 
in the data block buffer. If the number of bytes to be written is not greater than the num­
ber available, WRBUF moves the bytes to be written from the input buffer to the data 
block buffer and returns to the calling program. (In this case, the data bloCk is not 
written onto disk because it is not full.) If the number of bytes to be written exceeds the 
number of bytes available, WRBUF moves sufficient bytes into the data block buffer to 
fill it, and writes the completed data block onto disk. WRBUF then determines if the 
chain link that should contain the address of the data block that is to receive the over­
flow from the previous data block is in main storage. If it is not, WRBUF writes the 

229 



current chain link (that is, the one in main storage) onto disk and retrieves the chain 
link containing the address of the data block that is to receive the overflow. This chain 
link mayor may not exist. If the chain link does not exist, WRBUF allocates disk 
space for the new chain link in the previously described manner and determines if the 
data block that is to receive the overflow' exists as previously described. If the chain 
link exists, WRBUF reads it into main storage and deter~ines if the data block that is 
to receive the overflow exists. When the dat;l block that is to receive the overflow is 
in main storage (that is, in the data block buffer), WRBUF calculates the number of 
bytes remaining to be written. If this is not greater than the number of bytes available 
in the data block buffer (on overflow, all 800 bytes of the data block buffer are available), 
WRBUF moves the remaining bytes from the input buffer to the data block buffer and 
returns to the caller. If the number of bytes remaining to be written is greater than the 
number of bytes available in the data block buffer, WRBUF moves sufficient bytes into 
the data block buffer to fill it, writes the data block onto disk, and moves the overflow 
into the next data block as described. 

Variable-Length Item: WRBUF rea~ successive data blocks (starting with the first) 
into the data block buffer until it locates the one that contains the item immediately 
preceding the one that corresponds to the item number specified in the parameter list. 
It then locates the end of that item. (This may entail reading additional data blocks, 
depending on the length of the item.) When it locates the end of the item, WRBUF moves 
the length of the item to be written from the input buffer to the location in the data block 
buffer immediately after the end of the previous item. It then moves the item to be 
written from the input buffer to the data block buffer in the same manner as for fixed­
length items. (If overflow occurs, it is handled in the same manner as for fixed-
length items.) 

FILE EXISTS, NOT AcTIvE: If the file exists but is not active, WRBUF calculates the 
data block into which the item(s) is to be written. This calculation also yields the 
location within the data block at which the item(s) will reside. ACTFREE is called 
to obtain an available slot in the Active File Table and to store the FST entry therein. 
Next, WRBUF marks the file as active, reads the first chain link into main storage, 
and moves the first 80 bytes of the first chain link into the chain link directory of the 
active file table entry. WRBUF then determines if the 'item(s) to be written are of 
fixed or variable length. For both of these item types, WRBUF proceeds as described 
under the corresponding heading in "FILE DOES NOT EXIST" in this section. 

FILE ACTIVE: If the file is active, WRBUF calculates the data block into which the 
item(s) is/are to be written. This calculation also yields the displacement into the 
data block at which the item(s) will reside. Next, WRBUF determines the nature of the 
item(s) to be written. If of variable length, WRBUF proceeds as described under 
''Variable-Length Item". If of fixed length, it proceeds as described below. 

Fixed-Length Item: WRBUF determines whether the affected data block is in main 
storage. If it is, WRBUF proceeds as described under "File Does Not Exist", starting 
at the point where the number of bytes available in the data block buffer is calculated. 
If the affected data block is not in main storage, WRBUF proceeds in essentially the 
the same manner as described under "File Does Not Exist", starting at the point where 
the data block·is written onto disk. (In this case, an overflow condition is not being 
processed; however, the logic used to obtain the affected chain link and data block is 

230 



essentially the same. Also, because this is not an overflow condition, when the affected 
data block is resident in the data block buffer, the number of bytes available in that 
buffer is equal to 800 minus the calculated displacement. ) 

Variable-Length Item: If the variable-length item to be written immediately follows the 
one that was just processed, WRBUF moves the item length from the input buffer into 
the data block buffer immediately after the end of the previous item. It then moves the 
item to be written from the input buffer into the data block buffer immediately after 
the length. This is done in the usual maliner. (If overflow occurs, it is handled in 
the usual manner.) If the item to be written does not immediately follow the one that 
was just processed, WRBUF proceeds in the same manner as described under the 
variable-length item portion of "FILE DOES NOT EXIST". 

Notes: 

1. WRBUF can only write a certain number of logical records or items, regardless of 
how much disk space may be available, because the ''number of items" is kept in 
a halfword in the 40-byte FST entry for that file, and is limited by the size of a 
number which will fit in a (16-bit) halfword. To avoid running into this limitation 
before it is too late to close the file successfully, WRBUF checks that the item­
number (when a WRBUF call has been completed) will not exceed a given limit. If 
it does, an error code 6 is returned, and no more data is written. The file may, 
however, at this point be successfully closed (via FINIS), and can later be read by 
RDBUF. At present this limiting number of records happens to be 65533. (65535 
would have been the absolute limiting factor.) 

2. In calls to QQTRK for obtaining the first chain link for a new file, and to TRKLKP 
for obtaining either a new Nth chain link or a data block, error codes are checked 
from these function programs for the full disk condition. If any of these situations 
occur, WRBUF carefully sets or resets any flags or conditions as needed, and calls 
upon the KILLEXF code to close all files, compact the directory, update the user 
file directory, and re-IPL. The file which was being WRBUF'ed (unless nUll) is 
then available and complete insofar as the data being written could fit in the space 
available. 

3. Because of the design of the first chain Unk in the eMS file system, there is a 
limitation of 16060 800-byte data blocks for any given file. If a file being WRBUF'ed 
reaches this limit, an error 19. is returned, and no more data is written. The file 
may be closed, and can then be successfully read (or erased), but it cannot be 
made any larger. (A file of this size would fill more than half of a full-size 2314 
disk). 

4. There is also a limit of 3500 files that can be represented for any given disk, as 
limited by the layout of the MFD block. If a disk already has reached this maximum 
and an attempt to WRBUF a new file is made, WRBUF returns an error code 10, 
and the new file is not opened. 

231 



FINIS 

FUNCTION: To close one or more input or output disk file(s). 

CA LLING SEQUENCE: 

LA RI, PLIST 
then either 

SYC X'CA' 
DC AIA(ERROR) 

or 
L R15, AFINIS 
BALR R14, R15 
BNZ ERROR 

ENTRY REQUIREMENTS: 

RI must point to P-List as usual 

Call FINIS via SVC 
Error-return (for example, if file not open) 

Where A FINIS = V (FINIS) 
Call FINIS via BALR (within nucleus) 
Transfer if error (for example, file not open) 

RI must point to FINIS parameter list: 
DS OF 

PLIST DC CL8' FINIS' 
DC CL8' 
DC CL8' 
DC CL2" 

EXIT CONDITIONS: 

Normal Return 
R15 = 0 

File Not Open 
R15 = 6 

CA LLS TO OTHER ROUTINES: 

(Note - immaterial if called by BALR) 
filename 
filetype 
filemode 

(and condition-code = 0) 

(and condition-code = 2) 

ACTFRET, ACTLKP, DISKDIE, ERASE, FREE, FRET, FSTLKW, RDTK, 
UPDISK, WRTK 

CA LLED BY (where known): 

GENMOD & LOADMOD (called by BALR) , UPUFD, LOGDISK, and by all 
commands which use RDBUF & WRBUF. 

MACROS USED: 

ADT, AFT, FSTB, FVS 

OPERATION: FINIS checks the caller's parameter list for ,*, in the filename or 
filetype, or a nonalphabetic character for the mode; if any of these conditions are met, 
a flag is set to check for additional entries in the Active File Table. 

232 



After this preliminary check, FINIS calls ACTLKP to find an AFT block that matches 
the caller's parameter list. If none is found, an error 6 is given as shown in the exit 
condi tions. 

If a match is found, a check is made to determine whether the file is an active write, an 
active read, or neither. If neither, it was placed there by POINT, but was not read or 
written subsequently. Action is taken in these three cases as described in the following 
paragraphs. 

Active Read File 

If the file found by ACTLKP is an active read file, FTh'1S takes the following steps to 
close the file: 

1. Release to free storage the 800-byte buffer used for the data block (via a call to 
FRET). 

2. Also release either the 200- or 800-byte buffer currently in use for the chain link. 

3. If the file has a mode number of 3 or 4 (for example, P3, T4, etc.), it is now 
erased. This is done by calling FREE to obtain free storage for a suitable call 
to ERASE, then calling ERASE to eliminate the file, and then giving back the free 
storage via FRET. Care is taken to preserve information to avoid re-enterability 
problems between FINIS and ERASE. 

4. Next, ACTFRET is called to release this slot in the Active File Table. 

5. Finally, if either the filename, filetype, or filemode indicated that additional files 
should be checked, FINIS returns to the portion of code which calls A CTLKP, to 
check for any more AFT blocks that may match the caller's P-List. 

6. Finally, when all appropriate file(s) have been closed, FINIS gives a normal return 
as indicated under exit conditions. 

File Active from a Point Call 

For this case (active but neither a read nor a write), ACTFRET is called, etc., as 
shown above in steps 4, 5, and 6 for the "Active Read File" case. 

Active Write File 

If the file found by ACTLKP is an active write file, FINIS takes the following steps to 
close the file: 

1. Checks the pointer (AFTPFST) in the AFT block to the FST entry (if any) in the 
FST hyperblocks. In nonzero, proceed to step 2. If zero (as is the case for a 
new file never before closed), the special FSTLKW entry to obtain an empty 
40-byte FST entry is called, and the AFTPFST pointer is set to the address 
provided by FSTLKW. 

233 



2. Moves the 40-byte entry from the AFTFST slot in the AFT block to its location 
within the FST hyperblocks, sets the mode-letter therein to P, and clears the 
flag-byte. 

3. Unless the first five letters of the filetype = SYSUT, the time of day and year are 
computed in the same manner as GETCLK, and the date-time stored in FSTD in 
tbe FST entry, and the year in FSTYR. (If the filetype indicates a utility file is 
being FINIS'ed, this step is unnecessary and is therefore omitted.) 

4: Next the current data block pointed to by AFTDBA is written on disk. 

5. Then the free storage block that was used for the data block is returned to free 
storage via FRET. 

6. If the first chain link is not in core, the current chain link (unless null) is written 
on disk, and the first chain link brought into core. 

7. The linkage portion of the first chain link (AFTCLB) is moved from the AFT block 
to the first chain link, and the first chain link written on disk. 

8. Then the free storage block used for the chain link (either 200 or 800 bytes in length) 
is returned to free storage via FRET. 

9. The write pointer is computed as the number of items plus one and stored in the 
FST entry. 

10. The number of active write files for this active disk table (ADTNACW) is 
decremented by one. 

11. If the number of active write files (ADTNACW) is now = 0, then UPDISK is called 
to update the file directory for this active disk table. 

12. ACTFRET is then called to release this slot in the Active File Table. 

13. Then if either the filename, filetype, or filemode indicated that additional files 
should be checked, FINIS returns to the portion of code that calls A CTLKP, to 
check for any more AFT blocks that may match the caller's P-List. 

14. Finally, when all appropriate file(s) have been closed, FINIS gives a normal return 
as indicated under exit conditions. 

1. A special entry to the FINIS program called "TFINIS" (called only by BA LR) is 
provided for some special logic necessary for use by ERASE and ALTER. This 
logic uses some, but not all, of the above steps in closing an input or output 
file. See the description of "TFINIS" under File Management Routines for details. 

2. If a permanent disk error occurs in closing an output file, FINIS types a warning 
message on the user's terminal, and loads a PSW with a disabled wait state, rather 

234 



than trying to continue. This procedure is purposely followed to preserve the 
user's old (ile directory, as part of CMS's double directory scheme. This code 
is also enterable from without the FINIS program, as the DISKDIE entry point, 
and is also invoked from WRBUF, ERASE, and UPDISK in the event of a 
permanent I/O error, ag-ain to preserve the old directory. The warning message 
(self-explanatory) is as follows: 

DISK HARDWARE ERROR; NOTIFY OPERATOR; RE-IPL WHEN CORRECTED 

STATE 

FUNCTION: To locate the file status table entry for a given file, and if found to provide 
the caller with a copy thereof. 

CA LLING SEQUENCE: 

LA R1, PLIST R1 must point to P-List as usual 
then either 

SVC X'CA' Call STATE via SVC 
DC AIA(NOT FOUND) Error-return (if not found) 

or 
L R15, ASTATE Where ASTATE = V(STATE) 
BALR R14,R15 Call STA TE via BA LR (within nucleus) 
BNZ NOTFOUND Transfer if error (not found) 

ENTRY REQUIREMENTS: 

R1 must point to STATE parameter list: 
DS OF 

PLIST DC CL8'STATE' 
DC CL8' 
DC CL8' 
DC CL2' 
DC CL2 

ADCONDC A(*-*) 

EXIT CONDITIONS: 

File Found 

(Note - immaterial if called by BA LR; 
filename 
filetype 
filemode 
not used 
Address of copy of FST entry returned here if 
file was found 

R15 = 0 (and condition-code = 0) 
also, ADCON in P-List filled in to V(STATEFST) 

File Not Found 
R15 = 1 (and condition-code = 2) 

235 



CALLS TO OTHER ROUTINES: 

ACTLKP, FSTLKP 

CA LLED BY (where Imown): 

LOADMOD (in particular - called by BA LR), and by all programs (usually 
by SVC) that check a file's existence and characteristics before reading it. 

MACROS USED: 

ADT, AFT, FSTB, FVS 

OPERATION: STATE calls ACTLKP to see if the given file is in the Active File Table. 
If found, the active 40-byte FST entry is moved from AFTFST in the AFT block to the 
copy at STATEFST to be provided to the caller, and the STATERO and STATERl words 
following STATEFST are set to the addresses of the ADT block and the FST entry 
respectively; then V(STATEFST) is stored in the caller's P-List (if necessary) as 
described below. 

If the file was not found by ACTLKP, STATE then calls FSTLKP to find the given file. 
If not found by FSTLKP, the error-code from FSTLKP (= 1 for file not found) is re­
turned to the caller as shown in the exit conditions. 

If the file was found by FSTLKP, then the 40-byte entry is moved to STA TEFST, and 
the RO and Rl values obtained from FSTLKP are stored at the STATERO and STATERl 
words following STATEFST. (These words are used by RDBUF to avoid an extra 
search of the FST tables under the circumstances given in the RDBUF description). 
Where the file was found by FSTLKP, the mode letter is stored in the STATEFST copy 
using the same algorithm as ACTFREE, being carefully chosen from that of the caller's 
parameter list, or the ADTM or ADT:MX mode given by the Active Disk Table. 

The result of the choice of mode-letter facilitates the feature of a read-only extension 
of a given disk. For example, if an A-Disk is a read-only extension of a P-Disk, if the 
caller's parameter list specified the A-mode, the mode stored in STATEFST will be A; 
but if the caller specified P or '*', the mode stored in STATEFST will be P. 

After setting up STATEFST and the two words that follow, as described above, STATE 
stores the address of STATEFST in the caller's P-List (unless it is already there), 
and returns to the caller as shown in the exit conditions. 

236 



STATEW 

FUNCTION: To locate the file status table entry for a given file on a read-write disk, 
and if found to provide the caner with a copy thereoi. 

CALLING SEQUENCE: 

LA Rl, PLIST 
then either 

Rl must point to P-List as usual 

SVC X'CA' Call STATEW via SVC 
DC A IA(NOTFOU~"D) Error-return (if not found) 

L 
BALR 
BNZ 

or 
R15, ASTATEW 
Rl4, Rl5 
NOTFOUND 

ENTRY REQUIREMENTS: 

\\t'here ASTATEW = V(STATEVYj 
Call STA TEW via BA LR (within nucleus) 
Transfer if error (not found) 

Rl must point to STATEW parameter list: 
DS OF 

PUST DC CL8'STATEW' 
DC CL8' 
DC CL8! 
DC CL2' 
DC CL2' 

ADCONDC A(*-*) 

EXIT CONDITIONS: 

File Found 

(Note - immaterial if called by BALR) 
filename 
filetype 
filemode 
not used 
Address of copy of FST entry returned here 
if file was found 

Rl5 = 0 (and condition-code = 0) 
also, ADCON in P-List filled in to V(STATEFST) 

File Not Found 
Rl5 = 1 (and condition-code = 2 

CALLS TO OTHER ROUTINES: 

ACTLKP, FSTLKW 

CA LLED BY (where known): 

OFFLINE 

M_~ eROS FSED: 

ADT, AFT, FSTB, FVS 

237 

\ 



OPERATION: STATEW is identical to STATE in operation, except that FSTLKW is 
called to find the given file on a read-write disk, instead of FSTLKP as called by 
STATE. 

STATEW is included in the STATE function program. 

POINT 

FUNCTION: To place a file status table entry in the Active File Table (if necessary), 
and to set the read pointer and/or write pointer for that file to a given item number. 

CA LLING SEQUENCE: 

LA RI, PLIST 
then either 

SVC X'CA' 
DC AIA(ERROR) 

or 
L R15, APOINT 
BALR R14, R15 
BNZ ERROR 

ENTRY REQUIREMENTS: 

RI must point to P-List as usual 

Call POINT via SVC 
Error-return 

Where A POINT = V(POINT) 
Call POINT via BA LR (within nucleus) 
Transfer if error 

RI must point to POINT parameter list: 
DS OF 

PLIST DC CLB'POINT' 
DC CL8' 
DC CL8' 
DC CL2' 

, 
DC H' 
DC H' 

EXIT CONDITIONS: 

Normal Return: 
R15 = 0 

File Not Found: 
R15 = 1 

Parameter List Error: 
R15 = 2 

CALLS TO OTHER ROUTINES: 

(Note - immaterial if called by BA LR) 
filename 
filetype 
filemode 
write pointer 
read pointer 

(and condition-code = 0) 

(and condition-code = 2) 

(and condition-code = 2) 

ACTFREE, ACTLKP, FSTLKP 

238 



CALLED BY (where known): 

Disk resident routines 

MACROS USED: 

AFT, FVS 

OPERA TION: POINT checks for possible parameter list errors (for example if 
called from a terminal), and exits with error 2 if parameter list is faulty. 

If not, POI:N"T calls ACTLKP to determine if the FST entry ior the given file is already 
in the Active File Table. If yes, the read and/or write pointers are set as described 
below. 

If not found by ACTLKP, then POINT calls FSTLKP to find the file. If it is not found, 
error 1 is returned to the caller. If found, then A CTFREE is called to place the given 
file in the active file table. 

POINT then checks the read pointer provided by the caller; if it is zero, no action is 
taken. But if nonzero, then its value is stored in the read pointer (AFTRP) in the 
active file table. 

Next, POINT checks the write pointer provided by the calier; if it is zero, no action is 
taken. If the write pointer is a halfword of all ones (that is, = 65535), then the write 
pointer AFTWP is set to the number of items (AFTIC) plus one. If the write pointer 
is neither 0 nor 65535, then its value is stored in the write pointer (AFTWP) in the 
active file table. 

When through, POINT returns to the caller as shown in the exit conditions above. 

239 



FILE MANAGEMENT ROUTINES 

The file management routines are used to locate specified files, to read file management 
tables from disk into main storage, to write file management tables from main storage 
onto disk, to delete old copies of file management tables, and to enable specified items 
in a file to be directly accessed. The file management routines, which are called via 
BALR R14, RI5 from the CMS initialization process, various commands, and the file 
management function programs, include TFINIS, RELUFD, READFST, READMFD, 
FSTLKP, FSTLKW, UPDISK, UPUFD, and SYSGEN. The LOGDISK command is also 
included in this section. 

TFINIS 

FUNCTION: To temporarily close a given file or active disk table, for the purpose of 
updating the file directory. 

CALLING SEQUENCE: 

L 
BALR 

R15, ATFINIS 
R14,R15 

where ATFINIS = V(TFINIS) 

ENTRY REQUIREMENTS: 

1. EFINIS Entry - to close a particular file without updating the directory or removing 
from Active File Table 

RO = Pointer to Active Disk Table 
RI = Pointer to Active File Table 

2. TFINIS Entry - to temporarily close all output files for a given Active Disk Table 

RO = Pointer to Active Disk Table 
RI = 0 

EXIT CONDITIONS: 

Normal Return 
RI5 = 0 

File Not Open 
R15 = 6 

CALLS TO OTHER ROUTINES: 

(and condition-code = 0) 

(and condition-code = 2) 

ACTLKP, ,DISKDIE, FRET, FSTLKW, RDTK, WRTK 

240 



CALLED BY (where known): 

EFINIS Entry called by ERASE 
TFINIS Entry called by ALTER and ERASE 

:MACROS USED: 

ADT, AFT, FSTB, FVS 

OPERA TION: The TFINIS Routine is part of the FINIS function program. It is called, 
however, only by BALR, as from ALTER or ERASE (not via SVC). 

The EFI~"IS entry is differentiated from the TFI~"IS entrj from Rl being zero (for 
TFINIS), or nonzero (for EFINIS). 

See the FINIS description for information on the FINIS steps, some of which are followed 
by EFINIS and TFINIS, as described below. 

1. The EFINIS logic is as follows: 

Active Read File 
Gives back the free storage buffers as done in steps 1 and 2 of the "Active Read 
File" in the FINIS description. (Note that ACTFRET is not called - this is 
done later by ERASE.) 

Active File From Point 
No action taken. (ERASE calls ACTFRET later. ) 

Active Write File 
Performs selected steps of those followed by the "Active Write File" logic as 
given in the FINIS description, namely steps 4 through 10 (omitting steps 1-3 
and 11-14). 

2. The TFINIS logic, for temporarily closing all output files for a given disk (called 
by ERASE and ALTER) is as follows: 

Search through Active File Table for entries (if any) whose active disk table matches 
that provided to TFINIS. For each one found (if any), action is as follows: 

Active Read File 
No action taken. 

Active File From Point 
No action taken. 

Active Write File 
Performs selected steps of those followed by the "Active Write File" logic as 
given in the FINIS description, namely steps 1, 2, 3, 4, 6, 7 t 9, 13, and 14 
(omitting steps 5, 8, and 10 through 12). 

241 



Note: One additional step is performed if needed; if it was necessary to bring the first 
chain link into core in step 6, the Nth chain link is brought back into core after step 7. 

See the ERASE and ALTER commands for further insight into the reasons for the EFINIS 
and TFINIS logic as outlined above. 

RELUFD 

FUNCTION: For a given disk, to release all tables kept in free storage and to clear 
appropriate information in the active disk table. 

CALLING SEQUENCE: 

L R15,ARELUFD where ARELUFD = V(RELUFD) 
BALR R14,R15 

ENTRY REQDmEMENTS: 

RO must point to Active Disk Table 

EXIT CONDITIONS: 

R15 = 0 (and condition-code = 0) 

CALLS TO OTHER ROUTINES: 

FRET 

CALLED BY (where Imown): 

LOGIN, and RELEASE, plus disk resident routines 

MACROS USED: 

ADT, FVS 

OPERATION: For the given Active Disk Table, the following tables are returned to free 
storage via FRET, if they are currently in core: 

1. All FST hyperblock extensions (if any) 
2. The first FST hyperblock if it was in free storage 
3. Master File Directory 
4. QMSK bit-mask 
5. QQMSK table if it was in free storage 

In clearing any of the above, the appropriate flag-bits are also cleared, and any pointers 
pointing to the old tables. 

242 



For certain tables, RELUFD clears them if they exist but are not in free storage, namely: 

1. First FST hyperblock if not in free storage (for example, PST AT) 
2. QQMSK if not in free storage (for example, PQQMSK) 

RELUFD also clears all information in the Active Disk Table from ADTMFDN through 
ADTCYL, and sets the ADTMX extension-mode-Ietter to a blank. Also, unless the ADT 
table is minimum size (ADTFMIN flag-bit set in ADTLFGI), RELUFD clears all infor­
mation in the active disk table from ADTPQMI to ADTRES, and also clears the ADTFLG2 
flag-byte. 

RE LUFD is called by RE LEASE for releasing an active disk, and by LOGIN and FORMAT 
to clear all information before reading in or creating a new user file directory for the 
given disk. 

RELUFD replaces the old RELPSTA routine. 

READFST 

FUNCTION: For a read-write disk, to read all of the User File Directory into core; for 
a read-only disk, to read in all or part of the User File Directory, at the caller's option. 

CALUNG SEQUENCE: 

L 
BALR 

R15, AREADFST 
R14,R15 

ENTRY REQumEMENTS: 

where AREADFST = V(READFST) 

EO must point to Active Disk Table 
RI must point to Parameter-list as usual: 

PUST 
DS 
DC 
DC 
DC 
DC 

EXIT CONDITIONS: 

Normal Return 
Rl5 = 0 

OF 
CL8' 
CL8' 
CL8' 
CL2' 

ImIlUlterial 
FILENAME (or '*') 
FILETYPE (or '*') 
MODE (e. g. P, '*', or P2) 

(and condition-code = 0) 

Error Returns (condition-code = 2) 
Rl5 = 4 Disk is read-only (nonfatal) 
Rl5 = 1,2,3, or 5: Same error conditions as READMFD 

(error from READMFD passed along as is) 

243 



CALLS TO OTHER ROUTINES: 

FREE, FRET, RDTK, READMFD 

CALLED BY (where known): 

SYSGEN, INIT, LOGIN 

MACROS USED: 

ADT, FVS 

OPERATION: READFST, together with READ:MFD, brings into core all or part of the 
user file directory for the given disk. If the disk is read-write, all of the UFD is 
brought into core; if read-only, the QMSK and QQMSK tables are not brought in by 
READMFD, and READFST can bring in selected portions of the FST entries, if specified. 

READFST does the following: 

First READMFD is called to read in its part of the UFD. If an error other than 4 is re­
turned by READMFD, READFST passes back this error code to the caller and exits 
immediately. If READMFD was successful, or returned an error-4 indicating the disk 
was read-only, READFST continues. An SI6-byte buffer for the first FST hyperblock is 
obtained from free storage if needed, and an SOO-byte work area is obtained. 

The FST hyperblocks on disk are now read into the work area, one at a time. All null 
FST entries are ignored; other entries are moved from the work area to the core-resident 
FST hyperblocks if the disk is read-write, thus resulting in compacted directory in core 
of all files. If the disk is read-only, each FST entry in the work area is checked against 
the parameter list provided to READFST. (If any field in the parameter list is '*' or 
X'FF', the filename, filetype, or mode number is accepted without checking.) Thus, for 
a read-only disk READFST can read in all files, or all 'P2' files, (as it does for the 
S-Disk when called by SYSGEN) or any conditions that satisfy the parameter list. 

READFST gets more hyperblocks from free storage when needed and refills the work 
buffer from disk when rieeded, until all FST entries have been checked and moved into 
the FST hyperblocks if acceptable. 

All appropriate counts in the Active Disk Table (number of files, pointer to last FST 
entry, etc.) are initialized as needed. 

When through, READFST returns the core resident MFD to free storage if the disk was 
read-only, as it is not needed any more. For a read-write disk, however, the MFD is 
purposely left in core for use by the UPDISK routine the next time the UFD is updated. 

The work-buffer is returned to free storage, and READFST returns to the caller, re­
turning an error-code 0 or 4 (if the disk was found to be read-only by RE AD:MF D) • 

244 



READMFD 

FUNCTION: To read the Master File Directory (MFD) and other information into core 

CALUNG SEQUENCE: 

L 
BALR 

R15,AREADMFD 
R14,R15 

ENTRY REQUIREMENTS: 

where AREADMFD = V(READMFD) 

RO must point to Active Disk Table 

EXIT CONDITIONS 

Normal Return 
R15 = 0 

Error Returns 
R15 = 1 : 
R15 = 2 : 
R15 =3 : 

R15 = 4 : 
R15 = 5 : 

CALLS TO OTHER ROUTINES: 

(and condition-code = 0) 

Disk error reading MFD, or first word of MFD = 0 
Disk not attached 
Unrecognizable DASD device (neither 2314, nor 
2311 or equivalent) 
Disk is found to be read-only (Note: nonfatal) 
Disk is apparently a 2311 with the old device­
dependent disk addresses (from 1966-67 era) 
(Unit-type-byte = 0) 

FREE, FRET, RDTK, WRTK 

CALLED BY (where mown.): 

READFST or LOGIN 

MACROS USED: 

ADT, FVS 

OPERATION: READFST and READMFD when used together (READFST calling READMFD) 
are called by LOGIN or SYSGEN to bring all or part of a user file directory into core. 
READMFD does not bring in any FST hyperblocks (that being done by READFST), and is 
therefore called directly by LOGIN (without calling READFST) when logging in a disk 
"NO-UFD". 

245 



READMFD does the following: 

A sense command is issued to the disk to make sure it is attached and ready. Error 2 
is made if not attached. 

The fourth sense byte is checked to make sure the disk is a 2314, or a 2311 (or equivalent). 
Error 3 is made if neither. The sense byte of 08 (for 2314) or 01 (for 2311) is stored in 
the fourth byte of the 12-byte device-table entry in the NUCON table, for the particular 
device given by the active disk table. 

Next, the Master File Directory (record no. 4 - that is, cylinder 0, head 0, record 4) is 
read from disk into a buffer obtained from free storage. (Error 1 if cannot be read suc­
cessfully). The first halfword of the MFD is checked to make sure data is there (error 
1 if not). 

The disk addresses at the beginning of the MFD are then checked, scanning for an ending 
sentinel of FFFF, FFFE, FFFD, to determine how many FST hyperblocks are on disk, 
and where the QMSK extensions (if any) are stored on disk. The number of FST hyper­
blocks is stored as ADTHBCT in the Active Disk Table for future use. (usually by 
READFST). The disk counts ADTNUM etc., are stored in the Active Disk Table from 
the MFD, along with the number of cylinders. 

At this point, if the read-only flag-bit ADTFRO in the ADTFLG1 flag is set, READMFD 
accepts the disk as read-only, leaves the MFD block in a free storage buffer of just 
enough size to include all the disk-addresses at the beginning, and exits to the caller, 
normally READFST. 

If the disk is not flagged read-only, READMFD attempts to write the MFD exactly as is 
right back on disk, using WR TK. If unsuccessful because the disk is read-only (an error 
6 from WRTK), READMFD finishes up as described in the above paragraph (the read­
only bit being set now), and exit is subsequently made with error 4 (nonfatal). 

If the MFD was successfully written back on disk, the read-write flag-bit is set, and 
READMFD continues. Next the right amount of free storage is obtained for the QMSK 
bit-mask (depending on the size of ADTNUM - the total number of records on disk). Then 
the QMSK extensions (if any) are read into the free storage area, double-word aligned, 
and with an integral number of double-words in the read (to prevent a possible chaining 
check when running on CP), and then moved to the proper place in the QMSK buffer; the 
first 215 bytes of the QMSK are then moved from the MFD to the QMSK in core. (If the 
QMSK is less than 215 bytes, only the correct number of bytes is moved). When through, 
the QMSK is laid out in core as one contiguous table, with an integral number of bytes, 
padded (if necessary) to an integral number of double words, in free storage. 

The location of the QMSK is of course stored where needed, and the other counts 
(ADTPQM1 through ADTPQM3), computed and stored. 

Free storage is then obtained for the QQMSK, if necessary, and the 200-byte QQMSK 
table moved into position from the MFD. 

246 



Lastly, as mentioned above for the read-only cases, just enough free storage is obtained 
for the information on disk addresses contained at the beginning of the MFD to be kept in 
core, the crucial data is moved thereto, and the 800-byte buffer is released. 

To summarize: 

For a read-write disk, READ~ITD reads in all of the User File Directory except the 
FST hyperblocks and initializes all appropriate information in the Active Disk Table. 

For a read-only disk, READMFD reads in all of the User File Directory except the FST 
hyperblocks, the QMSK and QQMSK tables, and the counts in the latter half of the active 
disk table associated with the QMSK and QQMSK tables, which are not needed in core 
for a read-only disk. 

FSTLKP 

FUNCTION: To find a specified 40-byte FST entry within the FST tables for read-only 
or read-write disk(s). 

CALUNG SEQUENCE: 

L 
BALR 

R15, AFSTLKP 
R14,R15 

ENTRY REQumEMENTS: 

where AFSTLKP = V(FSTLKP) 

I. To search appropriate disk table(s) from the beginning: 

RO = Immaterial 
Rl = Pointer to usual P-List (\\ith sign-bit plus): 

PUST 
DS 
DC 
DC 
DC 
DC 

OF 
CL8' 
CL8' 
CL8' 
CL2' , 

Immaterial 
FILENAME or '*' 
FILETYPE or '*' 
FILEMODE or '*' 

2. To search appropriate disk table(s), picking up from where you left off previously, 
starting with next 40-byte FST entry: 

RO = Pointer to Active Disk Table 
RI = Pointer to usual P-List but with sign-bit negative 

247 



EXIT CONDITIONS: 

File Found: 

RO = Pointer to Active Disk Table 
Rl = Pointer to (address of) 40-byte FST entry found 

R15 = 0 (and condition-code = 0) 

File Not Found: 

RO =0 
Rl = 0 (with sign-bit negative) 

R15 = 1 (and condition-code = 2) 

Parameter List Error: 

RO = 0 
Rl = 0 (with sign-bit negative) 

R15 = 2 (and condition-code = 2) 

CALLS TO OTHER ROUTINES: 

ADTLKP, ADTNXT 

CALLED BY (where known): 

DISK, INIT, POINT, RDBUF, STATE, plus disk resident routines 

MACROS USED: 

ADT, FVS 

OPERATION: FSTLKP checks to ensure that Rl is not zero (a calling error), and ini­
tializes to test for either a read-only or read-write disk. Then the parameter list is 
checked to ensure that the filename and filetype are present (calling error if not), and 
checks to see if the mode-letter is alphabetic, and if so whether a mode-number is given. 

If the mode is alphabetic, ADTLKP is called to check for a disk whose mode-letter ADTM 
matches the parameter list. If the mode is '*' or equivalent (not alphabetic), ADTNXT 
is called to check for any available disk. An error return from ADTLKP or ADTNXT 
triggers a 'file not found' return from FSTLKP. On a successful return, FSTLKP checks 
to make sure the disk found is logged in (as either read-only or read-write). If not, the 
logic continues as described below, where the given FST entry was not found on the disk. 

If the disk found by ADTLKP or ADTNXT is logged in, FSTLKP checks through the 
various FST hyperblocks in core to find a matching FST entry for the filename (if given 
in the parameter list) and filetype (if given). Note - If Rl was negative at entry to 
FSTLKP, the search for the given FST entry starts from where if left off as given by the 
ADTCHBA (current hyperblock address) and ADTCFST (current FST entry displacement) 
pointers in the active disk table for the given disk. 

248 



If the filename and filetype are both given and match explicitly, the file is deemed 'found' 
irrespective of any mode-number in the parameter list. If either (or both) was '*' in the 
parameter list, however, and the mode-number was given, then the mode-number in the 
parameter list must match the ,mode-number in the FST entry. 

Thus, for example, a call to FSTLKP for "SOME FILE P5" would consider "SOME FILE 
PI" (on the P-Disk) a match even though the mode-number is wrong. (This logic is pur­
posely provided to avoid misleading the user, since you cannot have two files on the same 
disk with same filename and filetype, but different mode numbers.) A search for "*FlLE 
P5", however, would not consider "SOME FILE PI" to match, since the mode number 
differs. 

(Note - this logic is now consistent throughout CMS, including some programs such as 
LISTF that search the FST hyperblocks themselv'8s. That is, if the filename and filetype 
match explicitly, the mode number need not be correct for a match; but if the filename 
and/or filetype is '*' and the mode-number is given, then it must equal the FST mode­
number to be considered a match. ) 

If FSTLKP finds the matching file on the given disk, it returns the addresses of the active 
disk table (ADT) and the FST entry in RO and RI as shown in exit conditions, and remem­
bers where it found the file in the ADTCHBA and ADTCFST pointers in the ADT block. 

FST entry not found on the disk 

If the FST entry was not found on the disk just checked, FSTLKP checks the mode sup­
plied in the P-List. If it was '*' (or equivalent), ADTNXT is called and the next disk (if 
any) is checked as above for the matching file. 

If the mode, on the other hand, was alphabetic, ADTNXT is called to determine if another 
disk is available for checldng. If so, the ADT:MX extension-mode-Ietter is checked to 
see if it matches the mode given in the parameter list. If it does, this indicates that the 
new disk is a read-only extension of the one previously checked, and the given file is 
looked up on this disk. If found, successful re1nrn is given pointing to this disk and the 
FST entry iound. Ii not, this process is repeated until a match is found, or until no more 
disk(s) with a matching ADTMX letter are found. 

FSTLKW 

FUNCTI ON: To find a specified 40-byte FST entry within the FST tables for read-write 
disk(s); also, to find an empty 40-byte entry for use by FINIS. 

CALUNG SEQUENCE: 

L 
BALR 

R15, AFSTLKW 
R14,R15 

where AFSTLKW = V(FSTLKW) 

249 



ENTRY REQDmEMENTS: 

1. To search appropriate disk table(s) from the beginning: 

RO = Immaterial 
RI = Pointer to usual P-List (with sign-bit plus) 

DS OF 
PUST DC CL8' Immaterial 

DC C L8' FILENAME or '*' 
DC 
DC 

CL8' 
CL2' 

F1LETYPE or '*' 
FILEMODE or '*' 

2. To search appropriate disk table(s) picking up from where you left off previously, 
starting with next 40-byte FST entry: 

RO = Pointer to Active Disk Table 
RI = Pointer to usual P-List but with sign-bit negative 

3. To find an empty 40-byte entry for a completed new output file (called only by 'FINIS') 

RO = Pointer to Active Disk Table 
RI = 0 

EXIT CONDITIONS: 

File Found: 
RO = Pointer to Active Disk Table 
RI = Pointer to (address 01) 40-byte FST entry found or provided 
RI5 = 0 (and condition-code = 0) 

File Not Found: 
RO = 0 
RI =0 
RI5 = 1 

Parameter List Error: 
RO =0 
RI = 0 
RI5 =2 

(with sign-bit negative) 
(and condition-code = 2) 

(with sign-bit negative) 
(and condition-code = 2) 

CALLS TO OTHER ROUTINES: 

ADTLKP, ADTNXT, FREE 

250 



CALLED BY (where known): 

ALTER, ERASE, FINIS, STATEW, TFINIS, WRBUF, plus disk resident 
routines 

MACROS USED: 

ADT, FVS 

OPERATION: FSTLKW checks to see if R1 = 0, indicating a special entry made by 
FINIS to find an empty 40-byte FST entry, or the regular entries made to locate a 
specific file. 

If Rl is nonzero, FSTLKW checks the specific read-write disk (if the mode letter was 
alphabetic) or all read-write disks (if the mode letter was ,*, or equivalent) for the given 
file. This search is almost identical to that performed by FSTLKP, except that only 
read-write disk(s) are examined, and read-only extension(s) via the ADTMX mode letter 
are not applicable. (See FSTLKP description for details.) 

If R1 = 0, the location of the last file is determined from the ADTLHBA and ADTLFST 
pointers in the given active disk table. If the 40-byte entry at this location is empty 
(= 0), its address is returned. If not, a check is made to see if the next 40-byte entry 
in the same in-core hyperblock is available; if yes, its address is returned and the 
ADTLFST pointer updated by 40. if not, then a new 808-byte block is obtained from free 
storage, cleared, chained to the end of the last FST hyperblock, all appropriate pointers 
and counters updated, and the address of the first 40-byte entry in the new block returned 
to the caller. 

In any event, the empty 40-byte entry is made available to the caller (FINIS), and all 
counters and pointers updated insofar as necessary. 

Note: FSTLKW is included with the FSTLKP routine. 

UPDISK 

FUNCTI ON: To reserve space on disk for rewriting a new copy of the User File 
Directory (UFD) on disk, and then to update the UFD on disk. 

CALUNG SEQUENCE: 

L 
BALR 

R15, AUPDISK 
R14,R15 

where AUPDISK = V(UPDISK) 

251 



ENTRY REQUffiEMENTS: 

1. To update UFD when an output file is closed: 

RO must point to Active Disk Table 
Rl must be positive and nonzero (any value) 

2. To reserve records via TRKLKP for future use: 

RO must point to Active Disk Table 
Rl = zero 

3. To update lJFD when records were reserved previously: 

RO must point to Active Disk Table 
Rl must be negative (any value) 

EXIT CONDITIONS: 

Successful Update of UFD 
R15 = 0 (and condition-code = 0) 

Failure updating UFD 
Transfer of Control to DISKDIE - see OPERATION for details. 

CALLS TO OTHER ROUTINES: 

FREE, FRET, TRKLKP, TRKLKPX, WRTK, DISKDIE 

CALLED BY (where known): 

ALTER, DISK, ERASE, FINIS, LOGDISK, LOGIN, plus disk resident routines 

MACROS USED: 

ADT, FVS 

OPERATION: UPDISK is the routine that updates the user file directory for a given disk., 
It is called in one of two ways: when FINIS has closed the last open output file for a given 
disk, it calls the first entry to update the UFD for that disk; when ERASE finds a file to 
be erased it first calls the second entry to reserve some tracks, then does its erasing 
function, then calls the third entry to write the new UFD on disk. 

This logic makes possible what is called a "double directory" scheme, wherein the old 
directory still exists on disk until the MFD itself is finally rewritten on record 4 of the 
disk, completing the new directory. If the system is interrupted in any way in the middle 
of the process, the old directory is still intact, and any old files pointed to thereby are 
s till intact. 

252 



UPDISK, then, has basically two steps. Entry (2) - called only by ERASE - does only 
the first step; Entry (3) - also called by ERASE - does only the second step. 

The action taken by each step is as follows: 

Step 1: An 800-byte buffer for the constructing of a new MFD is obtained from free 
storage, and the first 600 bytes are cleared. Available disk-addresses are obtained from 
TRKLKP for each FST hyperblock and stored in the MFD, just obtained, in sequential 
halfwords. Then, if there are no more than 215 bytes of significant data in the QMSK bit­
mask, a sentinel of X'FFFF' is stored following these, and step 1 is complete. If the 
QMSK is larger than 215 bytes in length and there is significant data past the 215th byte, 
how~nrer, additional disk-addresses are obtained (::J~ many as are needed), and stored 
following a sentinel of X'FFFD' • All needed disk-addresses for the new MFD have now 
been obtained and stored, ·wit."lout affecting any old data on disk. 

If entry (2) was called by ERASE, UPDISK exists at this point. 

Step 2: Now we continue in line, or enter here if entry (3) is called by ERASE. 

UPDISK now cycles through the old MFD (if any) left in core by the file management pro­
grams, and returns old disk-addresses contained therein by calling TRKLKPX to return 
them to the QMSK table. The old MFD is then returned to free storage via FRET. 

Now t.he FST hyperhlocks in core. and any PQMSK extensions, are written on disk, calling 
WRTK, using the disk-addresses reserved above in Step 1. Next, all the disk counts 
(ADTNUM, ADTCYL, etc.), the first 215 bytes (or less) of the QMSK, the QQMSK, and 
the unit-type byte are moved to the MFD, and the MFD finally written back on record 4 
of the disk, completing the new UFD on disk. 

Finaliy, the significant part of the new MFD, still in core, including the disk-addresses 
of the FST hyperblocks, the FFFF or the FFFD sentinel, and the disk-addresses of the 
QMSK extension(s) are retained in core (in the high-numbered end of the buffer that was 
used for the new MFD), and the rest of the 800-byte buffer given back to free storage via 
FRET. 

Notes: If a permanent disk error occurs writing the new UFD at any point, the UPDISK 
routine purposely transfers to the DISKDIE code (elsewhere), so that the old 
directory wi]: be intact until the disk error can be corrected. 

See also "UPUFD" and "LOGDISK", which still serve a useful purpose, and are retained 
for compatibility with existing programs. UPUFD and LOGDISK are included as entry­
points in the UPDISK routine. 

253 



UPUFD 

FUNCTION: To close all CMS file(s), thereby updating the user file directory (UFD) for 
any disk(s) which had output files open. 

CALliNG SEQUENCE: 

L 
BALR 

R15, = V(UPUFD) 
R14,R15 

ENTRY REQDmEMENTS: 

No register requirements. 

EXIT CONDITIONS: 

R15 = 0 

CALLS TO OTHER ROUTINES: 

FINIS 

CALLED BY (where lmown): 

(or equivalent) 

INIT, EXECTOR (disk-resident part of EXEC) 

MACROS USED: 

FVS 

OPERATION: 'FINIS * * * , is called to close any open flIes, in ~'le course of which, 
if any output files are open, the file directories for the appropriate disk(s) are 
automatically updated by UPDISK. 

UPUFD is called by !NIT and EXECTOR to ensure that mes are closed (and directories 
updated) in the event a user program left any files open on its completion. 

Note: UPUFD is included with the UPDISK routine; it includes code cummon to LOGDISK, 
a nearly identical ftmction also included with UPDISK. 

254 



LOGDISK 

FUNCTION: To close all CMS file(s), and (as an option) to update the file directory for 
the P-Disk in particular. 

CALLING SEQUENCE: 

LA Rl, PLIST 
SVC X'CA' 

ENTRY REQUffiEMENTS: 

Rl points to parameter list: 
DS OF 
T'\I"'I 
J..Iv 

[DC 

EXIT CONDITIONS: 

R15 = 0 

/"'I TO' T r'\/"'IT'\TC!T.r' 
v.l..JO - .lA.J\.:U . .I.Lon..-

CL8'CHANGE'J 

CALLS TO OTHER ROUTINES: 

FINIS, UPDISK 

CALLED BY (where known): 

LOGOUT 

MACROS USED: 

ADT, FVS 

I~_ /"'IT OfT."lT1l.TTTT.'!T'\',­
,Vol- v.l..JO £ ,U:'l U£ J..I J 

optional parameter 

OPERATION: 'FINIS * * * , is called to close any open files, in the course of which, 
ii any output files are open, the file directories for the appropriate disk(s) are 
automatically updated by UPDISK. 

If the 'CHANGE' option was specified, and the P-Disk is logged in and known to be read­
write, the P-Disk file directory is then specifically updated via a call to UPDISK. 

LOGDISK can be called by a user program if it is desired to close all files and update the 
directories thereby. 

LOGDISK CHANGE can be called by a user if he specifically wants his P-Disk file 
directory updated; for example, if he has made a change to his in-core P-Disk directory 
via the DEBUG command and wishes the UFD on disk to be updated reflecting that change. 

LOGDISK CHANGE is also called by LOGOUT, KILLEX, and KILLEXF. 

Note: LOGDISK is included with the UPDISK routine; it includes code common to UPUFD, 
a nearly identical function also included 'with UPDISK. 

255 



SYSGEN - INITSYS 

SYSGEN is the entry point name, INITSYS is the filename. 

FUNCTION: To generate a System Status Table (SSTAT), consisting of all the P2 files 
from the S-Disk, so that the location of all disk-resident commands is known by the 
various file management programs. 

CALLING SEQUENCE: 

L 
BALR 

R15, = V(SYSGEN) 
R14,R15 

ENTRY REQUIREMENTS: 

S-Disk must be attached and ready. 
SYSDEV in NUCON table must contain address of S-Disk 
(No parameters provided by registers.) 

EXIT CONDITIONS: 

SST AT table available in free storage; pointers to beginning and end stored in 
SYSREF table; ADT block for S-Disk initialized. 

R15 = 0 

CALLS TO OTHER ROUTINES: 

FREE, READFST 

CALLED BY: 

INITSUB 

MACROS USED: 

ADT (references ADTS "" Active Disk Table for S-Disk) 

OPERATION: During the system initialization process, the program INITSUB calls the 
SYSGEN routine. SYSGEN initializes the free storage management scheme to have sev­
eral pages of free storage available starting at one page above' LAST'. Then SYSGEN 
points RO to the ADTS Active Disk Table, which contains appropriate flags for reading 
the S-Disk as a read-only disk, with a parameter list of '**P2'. READFST then accord­
ingly reads in the file directory of the S-Disk, but accepting only P2 files therefrom, 
storing the appropriate FST hyperblocks in the free storage area reserved. SYSGEN 

256 



then reinitializes the free storage pointers as needed, obtains exactly the right amount of 
space for the System Status Table (using the information on number of files computed and 
saved by READFST), and moves the various 40-byte entries to the new SSTAT table, sub­
sti1nting 'SY' forP2 in each entry. 

Size and 'length counts at the beginning of this table are initialized, a pointer at the end 
(STATEXT) cleared, and the addresses of SSTAT and STATEXT stored in the SYSREF 
part of the NUCON table. After appropriate reinitiaIization, SYSGEN then returns 
control to INITSUB. 

When CMS is IPL'ed by name ("IPL CMS"), the SYSGEN function need not be performed, 
saving considerable input-output operations and time over the IPLfing eMS by iiIPL190ii

• 

257 



DISK SPACE MANAGEMENT ROUTINES 

The disk space management routines allocate and release free disk storage; they include 
QQTRK, QQTRKX, TRKLKP, and TRKLKPX. 

QQTRK 

FUNCTION: To allocate a 200-byte disk area to a calling program. 

CALLING SEQUENCE: 

L 
BALR 

RI5, AQQTRK 
RI4, RI5 

where AQQTRK = V(QQTRK) 

ENTRY REQUIREMENTS: 

RI must point to Active Disk Table block 
RI3 must point to FVS area 

EXIT CONDITIONS: 

Normal Return 

RI contains disk-address of available 200-byte area (see Figure 24 for format) 
RI5 = 0 (and condition -code = 0) 

No 200-byte area available (Error 1) 

HI = 0 
RI5 = 1 (and condition-code = 2) 

Error by Caller (Error 2) 

RI same as at entry 
RI5 = 2 (and condition -code = 2) 

CALLS TO OTHER ROUTINES: 

TRKLKP, TRKLKPX 

CALLED BY (where known): 

WRBUF 

MACROS USED: 

ADT, FVS 

258 



OPERATION: Refer to ''Disk Space Management" in Section 2 for general operation. 

Notes: At entry, QQTRK checks that the pointer to the Active Disk Table block in RI 
is positive and nonzero, that the disk referenced thereby is read-write, and that the 
user.Jile directory, includir.g the QQl\iSK table, is indeed in core. If not. an illegal 
halfword H'0002' is executed as a debugging aid (resulting in a program interrupt to 
DEBUG). If the program is continued (via "go" from DEBUG), an error code 2 is re­
turned to the caller. In actual practice, the above has not been known to occur, as 
QQTRK is called only by WRBUF, which has been thoroughly debugged. 

When calling TRKLKP, if QQTRK obtains an error 4 indicating ''very few" records left, 
QQTRK returns the record just obtained via TRKLKPX before returning with error-code 
1 to the caller, so that sufficient records are held in reserve to update the file directory 
~ ............. ,:n~ .... rr +lu~ fnll_~;Ql< QH·,,~t;{'\n 
J..U UQ.UU.L.LL.If) ... .&. ... "'" oLw..L .... ",-&,&.hJA:a.. ....,. .. ~ ..... ., .. _ ..... 

Note the change in entry requirements for QQTRK - RI must contain a pointer to the 
active disk table. (Formerly 24(Rl) held the disk mode - P or T.) 

QQTRKX 

FUNCTION: To make a 200-byte area that is no longer needed by one program available 
for allocation to another. 

CALLING SEQUENCE: 

L 
BALR 

R15, AQQTRKX 
R14~ R15 

ENTRY REQUmEMENTS: 

where AQQTRKX = V (QQTRKX) 

RO (rightmost 16 bits) must hold the disk address of the 200-byte disk 
area being returned. (See Figure 24 for format. ) 

Rl must point to Active Disk Table block. 

R13 must point to ''FVS'' Area. 

259 



EXIT CONDITIONS: 

Normal Return 

R15 = 0 (and condition-code = 0) 

Error by Caller (Error 2) 

R15 z 2 (and condition-code = 2) 

QQMSK is Full (Error 3) 

R15 = 3 (and condition-code = 2) 

CALLS TO OTHER ROUTINES: 

TRKLKPX 

CALLED BY (where known): 

ERASE, WRBUF 

MACROS USED: 
ADT, FVS 

OPERATION: Refer to ''DISK SPACE MANAGEMENT" in Section 2 for general operation. 

Notes: Like QQTRK, QQTRKX checks for errors by the caller, and an error 2 (with 
error halt first) is given if such errors occurred. In actual practice, this has not been 
known to occur, as QQTRKX is called only by ERASE and WRBUF, which have been 
thoroughly debugged. 

If a user had an extremely large number of files and erased them sporadically, it is 
theoretically possible that the QQMSK table could become full from the other three parts 
of 800-byte records being returned for each returned 200-byte record. If this should 
occur, QQTRKX detects this condition, and does not permit the table to overflow. An 
error 3 is given, which is nonfatal. Processing continues, and a user's files are intact 
(except those intentionally erased). The QQMSK table would then contain some entries 
for which all four parts would not subsequently be found, but these would still be available 
for allocation by QQTRK. 

Note the change in entry requirements for QQTRKX - Rl must contain a pointer to the 
active disk table. (Formerly 24(Rl) held the disk mode - P or T). 

QQTRKX is an entry-point in the QQTRK routine. 

260 



TRKLKP 

FUNCTION: To allocate an 800-byte disk area to a calling program. 

CALLING SEQUENCE: 

L 
BALR 

Rl5, ATRKLKP 
Rl4, Rl5 

ENTRY REQUIREMENTS: 

where A TRKLKP = V (TRKLKP) 

Rl must point to Active Disk Table block 
Rl3 must point-to a save-area of at least eleven words 

EXIT CONDITIONS: 

Normal Return 

Rl contains disk-address of available 800-byte area 
(See Figure 25 for format) 

R15 = 0 (and condition-code = 0) 

Very Few Records Left (Error 4) - Nonfatal 

Rl contains disk-address of available 800-byte area 
(Same as above) 

Rl5 =4 (and condition-code = 2) 

Error by Caller (Error 2) 

Rl same as at entry 
Rl5 = 2 (and condition-code = 2) 

CALLS TO OTHER ROUTINES: 

None 

CALLED BY (where known): 

QQTRK, UPDISK, and WRBUF 

MACROS USED: 

ADT 

OPERATION: Refer to "DISK SPACE MANAGEMENT" in Section 2 for general 
operation. 

261 



Notes: Like QQTRK and GQTRKX, TRKLKP checks for errors by the caller, and an error 
2 (with error halt first) is given if such occurred. In actual practice, this has not 
been known to occur, as TRKLKP is called only by QQTRK, UPDISK, and WRBUF, 
which have been thoroughly debuggefl 

TRKLKP now remembers (in ADT1ST) the displacement of the first fullword in the 
QMSK that has a zero-bit in it anywhere, to speed up searches after the first call to 
TRKLKP for any disk. (TRKLKPX of course maintains this word when records are 
returned. ) 

When the number of records remaining on the given disk no longer exceeds a reserve 
count (ADTRES) that is maintained by the file system, an error 4 (indicating very few 
records left) is returned. This feature enables WRBUF or QQTRK, on the one hand, 
to return the record via TRKlKPX and invoke the full-disk logic at KILLEXF, while 
UPDISK, on the other hand, can use the record for completing the new user file directory. 
(This is part of eMS's double directory scheme for maximum file integrity.) 

Note the change in entry requirements for TRKLKP - Rl must contain a pointer to the 
active disk table. (Formerly 24(Rl) held the disk mode - P or T). 

TRKLKPX 

FUNCTION: To make an SOO-byte disk area that is no longer needed by one program' 
available for allocation to another. 

CALIJNG SEQUENCE: 

L 
BALR 

R15, ATRKLKPX where ATRKLKPX = V(TRKLKPX) 
R14, R15 

ENTRY REQUIREMENTS: 

RO (rightmost 16 bits) must hold the disk address of the 
SOO-byte disk area being returned. (See Figure 25 
for format) 

R1 must point to Active Disk Table block 
R13 must point to a save-area of at least eleven words 

EXIT CONDITIONS: 

Normal Return 

R15 = 0 

262 



Error by Caller (Error 2) 

Rl5 = 2 (and condition-code = 2) 

Out of Range 800-byte area returned (Error 5) 

Rl5 = 5 (and condition-code = 2) 

Already Clear 800-byte area returned (Error 6) 

Rl5 = 6 (and condition-code = 2) 

CALLS TO OTHER ROUTINES: 

None 

CALLED BY (where known): 

ERASE, QQTRK, QQTRKX, UPDISK, WRBUF 

MACROS USED: 

ADT 

OPERATION: Refer to "DISK SPACE MANAGEMENT" in Section 2 for general 
operation. 

Notes: Like QQTRK, QQTRKX, and TRKLKP, TRKLKPX checks for errors by the 
caller, and an error 2 (with error halt first) is given if such an error occurred. In 
actual practice, this has not been known to occur, as TRKLKPX is called only by 
ERASE, QQTRK, QQTRKX, UPDISK and WRBUF, which have been thoroughly debugged. 

TRKLKPX now maintains (in ADTIST) the displacement of the first fullword in the 
QMSK that has a zero-bit in it anywhere (this being used by TRKLKP for speeding up the 
search of the QMSK table). 

Note the change in entry requirements for TRKLKPX - Rl must contain a pointer to the 
active disk table. (Formerly 24 (Rl) held the disk mode - P or T). 

TRKLKPX is an entry-point in the TRKLKP Routine. 

263 



ACTIVE FILE TABLE MANAGEMENT (AFT) ROUTINES 

Four routines are used for active file table management - ACTLKP, ACTNXT, ACTFREE, 
and ACTFRET. These are described on the following pages. 

ACTLKP 

FUNCTION: Find the active file table block whose filename, filetype, and mode 
match the one supplied by the caller. 

CALLING SEQUENCE: 

L 
BALR 

RI5, AACTLKP 
RI4, RI5 

where AACTLKP = V (ACTLKP) 

ENTRY REQUIREMENTS: 

RO = 0: Start search at beginning of Active File Table. 
or 
RO = nonzero: Given present Active File Table Block, resume searching 

at next AFT Block (if any). 

RI must point to Parameter List as usual: 

DS OF 
PLIST DC CLS' Immaterial 

,!)C CL8' FILENAME 
DC CLa' FILE TYPE 
DC CL2' , MODE 

RIS must point to a save-area of at least ten words (normally would point to 
FVS = DISK$SEG area). 

EXIT CONDITIONS: 

264 

Match Found 

RI = Address of Matching Active File Table Block 
RI5 = 0 (and condition-code = 0) 

Match Not Found 

RI same as at entry 
RI5 = I (and condition-code = 2) 



CALLS TO OTHER ROUTINES: 

None 

CALLED BY (where known): 

ALTER, ERASE, FINIS,.POINT, RDBUF, STATE, STATEW, TFINIS, and 
WRBUF. 

MACROS USED: 

AFT 

OPERA TION: If RO = 0 at entry, ACTLKP starts searching the Active File Table 
starting with the first block (at FVSAFT). If RO = nonzero at entry, the given value in 
RO is taken as the address of the present AFT block, and searching commences with the 
next block (if any). (This feature facilitates searching for more than one matching file 
by the calling function. ) 

ACTLKP examines each block in the active file table to see whether it has a filename, 
filetype, and mode matching those in the parameter list. If the given filename and/or 
filetype was specified as '*' in the parameter list, a matching filename or filetype, 
respectively, is assumed. If the mode was specified as either '*', binary 0, blank 
(X'40 '), or X'FF', the mode is assumed correct. If not, the given mode letter must 
equal the mode in the Active File Table block for a match. (It is not necessary to check 
the mode number.) 

Exit conditions are returned as speCified above, with the address of the matching block 
(if any) returned in RI. The condition-code is set per R15, for convenience of the caller 
(who can omit the usual LTR instruction before checking the return-code). 

ACTNXT 

FUNCTION: Find the next (or first) AFT block in the Active File Table. 

CALLING SEQUENCE: 

L 
BALR 

R15, AACTNXT 
R14, R15 

where AACTNXT = V(ACTNXT) 

265 



ENTRY REQUIREMENTS: 

RI = 0: Find First Active File Table Block. 
or 
RI = nonzero: Given present Active File Table Block, find 

next AFT Block (if any). 

EXIT CONDITIONS: 

HI = 0: 
RI = nonzero: 
HI5 = 0 

No more blocks in Active File Table. 
RI holds address of next (or first) AFT Block. 
(in any event) (and condition-code = 0) 

CALLS TO OTHER ROUTINES: 

None 

CALLED BY (where known): 

ERASE 

MACROS USED: 

AFT 

OPERA TION: If RI = 0 at entry, the address of the first Active File Table block 
(FVSAFT) is returned. 

If RI = nonzero at entry, the given value in RI is taken as the address of the present 
AFT block, and the pointer to the next AFT block (if any) is loaded into RI (with the 
high-order byte stripped off). 

In either event, no check is made as to whether the AFT block whose address is 
returned contains an active file (this being done by the caller). 

ACTNXT can be used (for example, by ERASE) for scanning through the Active File 
Table for particular conditions other than might be found by calling ACTLKP. 

Note: ACTNXT is an entry-point in the ACTLKP Routine. 

ACTFREE 

FUNCTION: Find an empty block in the Active File Table, or add a new block from 
free storage to the Active File Table, if necessary, and place a file status table entry 
(if given) into the AFT block. 

266 



CALliNG SEQUENCE: 

L 
BALR 

R15,AACTFREE 
R14, R15 

ENTRY REQUIREMENTS: 

where AACTFREE = V (ACTFREE) 

RO must poi.nt to Active Disk Table. 
R1 points to FST entry (or = 0). 
R11 must point to Parameter List belonging to Caller (P-List 
provided to RDBUF, WRBUF, or POINT, etc.). 
R13 must point to a save-area of at least ten words (normally would 
point to FVS = DISK$SEG area). 

EXIT CONDITIONS: 

R1 -= Address of Active File Table Block used for newly created. 
R15 = 0 (and condition-code = 0). 

CALLS TO OTHER ROUTINES: 

FREE 

CALLED BY (where known): 

POINT, RDBUF, WRBUF 

MACROS USED: 

AFT, ADT, FSTB 

OPERATION: ACTFREE is called by RDBUF, WRBUF, or POINT for placing a 40-byte 
file status table entry in the Active File Table, after a call to FSTLKP or FSTLKW to 
determine the location of the FST entry. (For a new file being created by WRBUF, 
R1 = 0 at entry indicating a new FST entry is about to be created. ) 

ACTFREE scans through the Active File Table looking for an empty slot, determined by 
the AFTUSED bit of AFTFLG for a given block being O. If no empty block is found, a 
new block is obtained from free storage via FREE and chained onto the end of the Active 
File Table; and a bit (AFTFSF) is set to indicate that the block is in free storage. 

After the empty block is found or created, ACTFREE clears the first 104 bytes, stores 
necessary pointers, and moves the 40-byte FST entry (if provided) into the space provided 
at AFTFST. 

267 



The mode-letter stored at AFTM in the Active File Table is carefully chosen from that of 
the caller's parameter list (given by RII at entry), or the ADTM or ADTMX mode 
given by the Active Disk Table. The STATE function uses the same algorithm for 
choosing this mode-letter. 

The result of the choice of mode-letter facilitates the feature of a read-only extension of 
a given disk. For example, if an A-Disk is a read-only extension of a P-Disk and the 
caller's Parameter List specified the A-mode, the mode stored will be A; but if the 
caller speCified P or '*', the mode stored will be P. 

Note: ACTFREE is an entry-point in the ACTLKP Routine. 

ACTFRET 

FUNCTION: Remove an AFT block from the Active File Table, returning it to fr.ee 
storage if appropriate. 

CALLING SEQUENCE: 

L 
BALR 

RIS, AACTFRET where AACTFRET:II: V(ACTFRET) 
R14, RIS 

ENTRY REQumEMENTS: 

RI must hold the address of the AFT block being returned. 

Rl3 must point to a save-area of at least ten words (normally would 
point to FVS :II: DISK$SEG area). 

EXIT CONDITIONS: 

Returned block was in AFT Table 

HIS = 0 (nnd condition-code = 0) 

Returned block was not in AFT Table 

H1S = 1 (and condition-code = 2) 

CALLS TO OTHER ROUTINES: 

FRET· 

CALLED BY (where known): 

ERASE, FINIS, WRBUF 

268 



MACROS USED: 

AFT 

OPERATION: The Active File Table is searched to find the AFT block matching the 
address provided by the caller. When it is found, the AFTFLG flag-byte and AFTPFST 
pointer are cleared (it is not necessary to clear all the other information). If the AF T 
block was in free storage, it is given back via FRET, and the chain patched accordingly. 

If the AFT block address provided in Rl at entry time is not found in the Active File 
Table, this indicates a programming bug on the part of the caller. As a debugging aid, 
an illegal halfword H'OOOl' is executed, resulting in a program interrupt, normally to 
the DEBUG command~ to warn the user that an illegal call has been issued; If the 
program is continued (via "go" from DEBUG), an error code 1 is returned to the caller. 
In actual practice, the above has not been known to occur, as ACTFRET is called only by 
ERASE, FINIS, and WRBUF, which have been thoroughly debugged. 

Note: ACTFRET is an entry-point in the ACTLKP Routine. 

269 



ACTIVE DISK TABLE MANAGEMENT (ADT) ROUTINES 

Two routines are used for active disk table management - ADTLKP and ADTNXT. 
These are described on the following pages. 

ADTLKP 

FUNCTION: Find the active disk table block whose mode matches the one supplied by 
the caller. 

CALLING SEQUENCE: 

L 
BALR 

R15,AADTLKP 
R14,R15 

ENTRY REQUmEMENTS: 

RI must point to Parameter List as usual: 
DS OF 

where AADTLKP = V(ADTLKP) 

PLIST DC 
DC 

CL24' 
CL2' 

Immaterial 
Mode (for example, P, T, S, A, B, C) 

EXIT CONDITIONS: 

Active Disk Table Block Found 
RI = Address of matching Active Disk Table Block 
RI5 = 0 (and condition-code = 0) 

Active Disk Table Block Not Found 
RI same as at entry 
RI5 = 1 (and condition-code = 2) 

CALLS TO OTHER ROUTINES: 

None 

CALLED BY (where known): 

ALTER, FSTLKP & FSTLKW, LISTF, LOGIN, RDTK & WRTK, 
RELEASE, STAT, TAPE, & WRBUF, plus disk resident routines 

MACROS USED: 

ADT 

OPERATION: ADTLKP searches through the Active Disk Table starting at IADT to find 
an ADT block whose mode-letter t as given by ADTM, matches that of the caller. If a 
matching ADT block is found, its address is returned in Rl as indicated above. If not, 

270 



an error-return is given. In either event, the condition-code is set per R15, for con­
venience of the caller (who can omit the usual LTR instruction before checking the 
return-code ). 

ADTLKP is called by man.y programs and functions to determine the address of the 
Active Disk Table pertaining to a given disk (for example, P-Disk, T-Disk, S-Disk)o 

ADTNXT 

FIJNCTION: Find the next (or first) ADT block in the Active Disk Table. 

CALLING SEQUENCE: 

L 
BALR 

R15, AADTNXT 
R14, R15 

ENTRY REQUIREMENTS: 

Where AADTNXT = V(ADTNXT) 

RI =0: Find First Active Disk Table Block 
or 

Rl = nonzero: Given present Active Disk Table Block, find next ADT Block 
(if any) 

EXIT CONDITIONS: 

Active Disk Table Block Found 
Rl = Address of ADT Block 
R15 = 0 (and condition-code = 0) 

Active Disk Table Block Not Found (none left) 
HI = 0 
R15 = 1 (and condition-code = 2) 

CALLS TO OTHER ROUTINES: 

None 

CALLED BY (where known): 

FSTLKP & FSTLKW, LISTF, LOGIN, STAT 

MACROS USED: 

ADT 

OPERATION: If RI = 0 at entry, the address of the first Active Disk Table Block at 
IADT is returned. 

271 



If R1 = nonzero at entry, the given value in RI is taken as the address of the present 
ADT block, and the pointer to the next ADT block (if any) is loaded into RI. If there is 
no ADT block left, error code I is given in RI5 as shown under exit conditions above. 

In any event, no check is made whether any disk is currently logged in for the disk table 
returned (these checks being performed by the caller). 

ADTNXT is used by various routines and commands for scanning through the chain of 
active disks for conditions to be satisfied, for example LISTF and STAT. ADTNXT is 
also used by FSTLKP to check for a disk which may be a read-only extension of another. 

Note: ADTNXT is an entry-pOint in the ADTLKP routine. 

272 



DISK HANDLING FUNCTION PROGRAMS 

The following text describes the routines which handle I/O operations for direct access 
devices: RDTK and WRTK. Both entry points reside in the module DISKIO. 

RDTK 

FUNCTION: To read one or more 800-byte records (quarter-tracks) from disk, or to 
read one 200-byte record (sixteenth-track) from disk. 

CALLING SEQUENCE: 

L R15,ARDTK where ARDTK ~ V(RDTK) 
BALR R14, R15 

ENTRY REQUffiEMENTS: 

Rl must point to Parameter List as follows: 
DS OF 

PLIST DC A(BUFF) Core-address of buffer into which data 

DC 
DC 

DC 

Notes: (1) 

F' 
A (DI SKA D) 

A (DSKTBL) 

is to be read 
Size of above buffer (byte count) 
Core-address of list containing 
disk addresses of all record(s) 
to be read 
Core-address of (pointer to) Active 
Disk Table block pertaining to disk 
to be read 

The format of each disk address supplied in the list for each 800-byte 
record is a halfword block number (from 1 up) as shown in Figure 25. 

(2) If the buffer-size (byte count) is zero, a 200-byte record (sixteenth-track) 
is to be read. Figure 24 shows the format of this type of disk address. 

(3) For compatibility with possible existing programs that may call RDTK 
directly, RDTK will accept a disk mode (for example, CL2'P' or 
CL2'SY', etc.) in place of the pointer to the active disk table; ADTLKP 
is called in this case to find the equivalent disk. 

273 



EXIT CONDITIONS: 

Normal Return 
R15 = 0 

Error Returns 
R15 = 1: 

R15 = 2: 
R15 = 3: 
R15 = 5: 

R15 = 7: 

(and condition - code = 0) 

No active-disk-table block found by ADTLKP 
where mode-letter was supplied (see note 3) 
Permanent I/o error reading disk 
Permanent SIO error attempting to read disk 
Disk-address = 0 (a programming bug by caller) 
or not within disk limits (Sense-byte = X'81' on 
error analysis) 
Attempt to read into CMS nucleus below FREAR 

CALLS TO OTHER ROUTINES: 

ADTLKP, FREE, FRET, WAIT, IOERR 

CALLED BY (where known): 

ERASE, FINIS, RDBUF, READFST, READMFD, TFINIS, and 
WRBUF, plus disk resident routines 

OPERATION: RDTK determines whether or not the calling program wishes to read a 
sixteenth track. If it does not, RDTK checks to see if the byte count exceeds 800 bytes, 
implying more than one 800-byte record to be read. If so, free storage is obtained, and 
chained CCW's are used insofar as practical to read as many records as possible with 
one SIO to the disk. If not more than 800, no free storage is necessary as a standard 
CCW package (in DIOSECT) is used. In any event, whether or not repeated SIO's are 
necessary, the data is read into the deSignated buffer, free storage is returned if 
necessary, and return is made to the caller. If the byte count exceeds 800, it need not 
necessarily be an exact multiple of 800. 

If the calling program wishes to read a sixteenth track, RDTK calls the FREE function 
program to obtain an 800-byte buffer. It then reads the quarter track containing the 
desired sixteenth track into the buffer. (This quarter track is pOinted to by the first 
disk address in the list.) Next, RDTK extracts the desired sixteenth track from the 800-
byte buffer and moves it to the 200-byte buffer specified in the parameter list. It then 
calls the FRET function program to release the 800-byte buffer into which the quarter 
track was read and returns to the calling program. Sixteenth tracks are reserved for 
first chain link areas and should not be used for other purposes. 

~: If the 200-byte sixteenth-track is the first 200 bytes of an 800-byte buffer, RDTK 
reads 200 bytes directly into the designated core-area instead of obtaining free storage 
and moving the 200 bytes later. Otherwise, the reading of 200-byte sixteenth tracks is 
as described above. 

274 



WRTK 

FUNCTION: To write one or more 800-byte records (quarter-tracks) on disk. or to 
write one 200-byte record (sLxteenth-track) on disk. 

CALLING SEQUENCE: 

L RI5, A WTRK where WRTK = V(WRTK) 
BALR RI4, RI5 

ENTRY REQUIRRMENTS: 

Rl must point to Para.Llleter List as follows~ 
DS 

PLIST DC 

DC 
DC 

DC 

Notes: (1) 

OF 
A (BUF F) 

F' 
A (DISKAD) 

A (DSKTBL) 

Core-address of buffer from which 
data is to be \\Titten 
Size of above buffer (byte count) 
Core-address of list containing disk 
addresses of all record(s) to be written 
Core-address oi (pointer to) Active Disk 
Table block pertaining to disk to be written 

The format of each disk address supplied in the list for each 800-byte 
record is a halfword block number (from 1 up) as shown in Figure 25. 

(2) If the buffer size (byte count) is zero, a 200-byte record (sixteenth-track) 
is to be written. Figure 24 shows the format of this type of disk address. 

(3) For compatibility with possible existing programs that may call WRTK 
directly, WRTK will accept a disk mode (for example, CL2'P', etc.) in 
place of the pointer to the active disk table; ADTLKP is called in this 
case to find the equivalent table. 

EXIT CONDITIONS: 

Normal Return 
RI5 = 0 (and condition-code = 0) 

Error Returns 
R15 = 1: No Active-Disk-Table block found by ADTLKP where 

mode-letter was supplied (see Note 3 above) 
RI5 = 2: Permanent 110 error writing disk 
RI5 = 3: Permanent SIO error attempting to write disk 
RI5 = 4: Attempt to write on system disk (mode = S) 
RI5 = 5: Disk-address = 0 (a programming bug by caller) 

or not within disk limits 
(Sense-byte = X'8I' on error analysis) 

RI5 = 6: Attempt to write on read-only disk 

275 



CALLS TO OTHER ROUTINES: 

ADTLKP, FREE, FRET, WAIT, 10ERR 

CALLED BY (where known): 

FINIS, READMFD, TFINIS, UPDlSK, WRBUF, plus disk resident routines 

OPE RATION: WRTK determines whether or not the calling program wishes to write a 
sixteenth track. If it does not, WRTK checks to see if the byte count exceeds 800 bytes, 
implying more than one 800-byte record to be written. If so, free storage is obtained, 
and chained CCW's are used insofar as practical to write as many records as possible 
with one SlO to the disk. If not more than 800, no free storage is necessary, as a 
standard CCW package (in DIOSECT) is used. In any event, whether or not repeated 
SlOts are necessary, the data is written from the designated buffer, free storage is 
returned if necessary, and return is made to the caller. If the byte count exceeds 800, 
it need not necessarily be an exact multiple of 800. 

If the calling program wishes to write a sixteenth track, WRTK obtains 800 bytes of 
buffer space into which to read the quarter track (in which the sixteenth track (200 bytes) 
of data is to be placed). It then reads that quarter track into the buffer. (The disk 
address for the quarter track is pointed to by the first disk address in the list.) Next, 
WRTK moves 200 bytes of data from the buffer pointed to by the parameter list into the 
appropriate sixteenth track location in the buffer containing the quarter track. WRTK 
then writes the updated quarter track back onto the disk at its original location, releases 
the 800 bytes it used as a buffer, and returns to the calling program. 

Note: If the 200-byte sixteenth-track is the first 200 bytes of an 800-byte buffer and the 
remaining 600 bytes are not used (see note accompanying Figure 24.) WRTK writes 200 
bytes directly from the designated core-area instead of the read, move, and write 
procedure described above. 

DffiECT I/O 

Input/Output activity to disk may be initiated by a specially coded DIAGNOSE instruc­
tion if: 

(1) CMS is running on a version of CP-67 which supports the I/O via 
Diagnose feature 

AND 
(2) a read or write of 800 bytes (or less) is performed. 

If both of these apply, the I/O is performed as follows: 

Instead of CMS doing the SIO, checking for success, then calling WAIT, and pro­
cessing the interrupt thru INTIO, back to WAIT & back to DISKIO, and check­
ing the CSW for successful completion, CMS does the following: 

a diagnose instruction with a code X'18' is issued to signal CP-67 to perform the 
deSignated I/O operation. R4 contains the device-address, and R8 points to the 
standard CCW chain: 

276 



SEEK CCHH 
SEAR CH C CHIffi 
TIC *-8 
READ/WRITE 
NOP 
DC X' CCHIffi' 

If the operation is successful, CP returns to CMS with a condition-code 0; this indicates 
that the operation was successfully started AND completed. DISKIO then continues as 
if the regular procedure had been followed, at the point AFTER the SIO would have 
been performed, WAIT had been called, the CSW had been checked for errors, and a 
check had been made for the handling of a request of more than 800 bytes. 

Upon return to CMS, the following condition codes and error codes are returned: 

condition-code (CC) = 0: I/O complete with no errors. 

CC = 1: SIO failed, CSW stored. 
(CSW+4 & CSW+5 returned to user) 

CC =2: Either an attempt to write on a read-only disk 
(program -check returned) 

or 
other I/O error on completion 
CSW (8 bytes) returned 
(sense bytes available if a 'SENSE' is issued) 

CC =3: Not attached; neither 2314 nor 2311; or invalid DIAGNOSE call 

Error-code returned in R15, as follows: 

1 = Not attached 
2 = Device is neither 2314 nor 2311 
3 = Pointer to user's CCW-string not dbl-word aligned 
4 = SEEK/SEAR CH arguments not within user core 
5 = Read/write CCW neither read (06) nor write (05) 
6 = Read/write byte-count = 0 
7 = Read/write byte-count greater than 4096 
8 = Read/write buffer not within user core 
9 = Condition-code 2 (busy) on actual SIO as attempted by CP 

10 = Condition-code 3 (not operational) on actual SIO as attempted 
by CP 

DISKIO will then invoke the IOERR error recovery procedures to attempt to rectify 
the operation. 

Unsuccessful Disk I/O: When an I/O operation is not started successfully or does not 
complete successfully, RDTK or wRTK branches to the I/O error recovery program, 

277 



IOERR. The calling parameter list - described under "Input/Output Service 
Routines" - is built in free storage by RDTK ~r WRTK. RDTK or WRTK requests 
IOERR to perform recovery on the specific DASD device, and IOERR returns the 
status of the completed recovery procedure. Figure 39, "Relationship of IOERR to 
RDTK/WRTK", shows the actions taken by RDTK or WRTK on the various errors from 
IOERR. 

IOERR Return Code 

1. EI0CC and R15 = Successful Retry (X'OO') 

2. EI0CC and R15 = Device now available (X'AF') 

3. EI0CC and R15 = Unknown Device (X'8F') 
= Error in IOERR (X' 9 F') 
= Device not available (X'BF') 
= Invalid Parameter List 

(X'CF') 
= Unknown I/O error (X'DF') 

4. EI0CC and R15 = RDTK/WRTK error code 

I Figure 39. Relationship of IOERR to RDTK/WRTK 

UNIT RECORD HANDLING FUNCTION PROGRAMS 

RDTK and WRTK Action 

1. Release free storage 
2. Return to calling program 
with successful return code 
(X'OO') 

1. Release free storage 
2. Retry I/O operation 

1. Release free storage 
2. Return to calling Program 
with I/O error Reading/Writing 
(X'02') or start I/O (X'03') 
error code 

1. Release free storage 
2. Return to calling program 
with this code (X'02', X'03', 

X'05', or X'06'). 

The following text describes the routines that handle I/O operations or unit record 
devices (printer and card reader/punch). 

CARDIO 

FUNCTION: To read cards from the card reader and punch cards on the card punch 

ATTRIBUTES: Nucleus resident 

278 



CALLING SEQUENCE: 

LA 
SVC 

1, PLIST 
X'CA' 

PLIST DC 

DC 
DC 
DC 
DC 

CL8' (CARDRD ) 
CARDPH 

X'flag' 
AL3 (buffer) 
H' number of bytes to read' 
H'O' number of bytes read 

EXIT OONDITIONS: 

Normal Return: 

R15 = 0 

Error Return 

Card Reader 

R15 = 1 
R15 = 2 
R15 = 3 
R15 = 4 
R15 = 5 

Card Punch: 

R15 = 2 
R15 = 3 
R15 = 4 

End of File 
Never Read 
Unknown Error 
Not Operational 
Count Not Equal to Requested Count 

Unrecoverable Unit Check 
Unknovvn Error 
Not Operational 

CALLS TO OTHER ROUTINES: 

None 

CALLED BY (where known): 

OFFLINE 

OPERATION: CARDIO first determines if a card read or card punch is to be executed. 
If a read is to be executed, CARDIa checks the high-order byte of the second word in 
the parameter list to see if it is an extended PLIST. If flag is a X'80', the extended 
PLIST is in effect and CARDIa reads the 2 high-order bytes in the third word of the 
parameter list to determine the number of bytes to be read. It then scans the device table 
(DEVTAB) in the nucleus constant area for the entry RDRl, the symbolic name of the 

279 



reader. When it finds this entry, it uses the device entry contained to construct a CCW. 
It then issues a start I/O operation. If the operation is started successfully, CARDIa 
calls the WAIT function program to wait for an interruption from t he card reader. 
When the interruption is received, CARDIa stores the number of bytes read in the two 
low order bytes of the third word in the parameter list. If the flag in the PLIST is not 
X'SO', then SO-byte record length is assumed. With successful operation completion, 
CARDIa returns to the caller. If the operation was not successfully completed, 
CARDIO signals an error and returns to the caller. 

If, after the SIO is issued, the CSW is stored, CARDIa checks for an error. If an 
error exists, CARDIa signals it and returns to the caller. If the CSW was stored 
because of a busy condition, CARDIO waits (via WAIT), if necessary for the device and 
condition, and then retries the operation. If an end-of-file condition caused the CSW to 
be stored, CARDIO indicates this "and returns to the caller. 

If the reader was "busy when it issued the SIO, CARDIa calls the WAIT function pro­
gram to wait for the condition to clear; it then retries the operation. The operation 
to punch cards is the same as above with the exception of the entended PLIST (for a 
special reader). The SO-byte record length is in effect for card punch. 

PRINTR - PRINTIO 

Filename: PRINTIO nucleus-resident, re-entrant code 

Entry Point: PRINTPR 

FUNCTION: To print a line on the printer with appropriate carriage control. 

CALLING SEQUENCE: 

LA 1, PLIST 
SVC X'CA' 

PLIST DC 
DC 
DC 

CL8'PRINTR' 
A( ) 
A( ) 

EXIT CONDITIONS: 

Normal Return: 

R15 == 0 

280 

Address of buffer containing line to be printed 
size of buffer 

Successful Operation 



Error Returns: 

RI5 = 1 
RI5 = 2 
RI5 - 3 
R15 = 5 

Unrecoverable Unit Check 
Invalid Parameter List from Caller 
Not Operational 
Unknown Error 

CALLS TO OTHER ROUTINES: 

FREE, FRET, 10ERR 

CALLED BY (WHERE KNOWN): 

OFFLINE 

OPERATION: The operation of PRINTIO depends upon the nature of the carriage 
control character in the first byte of the output buffer. 

First Character Blank: If the first character in the buffer is a blank, indicating that 
the caller wishes to print a line and space a line, PRINTIO issues a start I/O instruc­
tion to print the buffer and space a line. With a successfully started I/O operation, 
PRINTIO calls the WAIT function programs to wait for the completion of the operation. 
Upon return to PRINTIO with a successful operation, PRINTIO returns with a normal 
return code to the calling program. 

First Character Zero: If the first character in the buffer is a zero (hex' FO'), indi­
cating that the caller wishes to space a line, print the line in the buffer, then space 
another line, PRINTIO issues a SIO instruction to space one line. With a successful 
SIO, PRINTIO calls the WAIT function program to wait for an interrupt from the 
printer. Upon return to PRINTIO with a successful operation, PRINTIO proceeds 
to print the contents of the buffer and space a line in the same manner as when the 
first character in the buffer is a blank. 

First Character One: If the first character in the buffer is a one (hex 'FI'), indicating 
that the caller wishes to eject to a new page, print a line, and space a line, PRINTIO 
issues a start I/O to eject to a new page. It then proceeds in the same manner as it 
does when the first character in the buffer is a zero. 

First Character Machine Code: After determining that the first character is a machine 
code -- by comparing to the entries in a table containing all possible machine codes -­
PRINTIO executes a channel program containing the user machine code as the operation 
code of the first channel command words. With a successful SIO instruction, PRINTIO 
calls the WAIT function program to wait for an interrupt from the printer. Upon return 
to PRINTIO with a successful operation, PRINTIO returns to the calling program with 
the normal return code. 

281 



First Character Extended USA Carriage Control Character: After determining that the 
first character is an extended USA carriage control character -- by comparing it to the 
valid USA character -- PRINTIO translates it into machine code. PRINTIO then executes 
a channel program containing the translated control character as the operation code of 
the first channel command word. With a successful SIO, PRINTIO calls the WAIT func­
tion program to wait for an interrupt from the printer. Upon return to PRINTIO with a 
successful operation, PRINTIO checks to see if the caller desired only a carriage 
control operation (i.e., the caller did not provide any data in the buffer),. If so, PRINTIO 
returns to the calling program with a normal return code. If the caller desired a line to 
be printed, rather than only a carriage control operation, PRINTIO proceeds to print 
the contents of the buffer and space a line as it does when the first character in the 
buffer is a blank. 

First Character Undefined: If the character is not a blank, zero, one, machine code, 
or extended USA carriage control character, PRINTIO substitutes a "Write, Space 2 
after Print" operation code for the undefined user code -- i.e., it prints the contents 
of the buffer and spaces one line in the same manner as it does when the first character 
in the buffer is a blank. 

Unsuccessful I/O Operations: When an I/O operation is not started successfully or 
does not complete successfully, PRINTIO branches to the I/O error recovery program, 
IOERR with the calling parameter list described under "Input/Output Service Routines". 
This PLIST is built in free storage by PRINTIO. PRINTIO thereby requests IOERR to 
perform recovery on the printer, and IOERR returns to PRINTIO the status of the re­
covery procedure. Figure 40 relates the return code from IOERR and the corresponding 
action taken by PRINTIO. 

IOERR Return Code 

1. E10CC = Successful Retry (X'OO') 
and 
H15 

1. Release free storage 
2. Return to calling program with 

successful return code (X'OO') 

2. E10CC = Device Now Available (X'AF') 1. Release free storage 
Retry I/O operation 

3. 

and 2. 
R15 

E10CC = 

and 
R15 

Unknown Device Type 1. 
(X'8F') 2. 
Error in IOERR (X'9F' 
Device Not Available (X'BF') 
Invalid Parameter List 
(X'CF') 
Unknown I/O Error (X'DF') 

Release free storage 
Return to calling program with 
unknown return code (X'05') 

4. E10 CC = PRINTIO's error code 
and 

1. Release free storage 
2. Return to calling program with this 

code (X'02', X'03', or X'05') R15 

Figure 40. Relationship of IOERR to PRINTIO 

282 



TAPE HANDLING FUNCTION PROGRAM 

The following text describes the program that performs I/O operations to tape. 

TAPEIO 

FUNCTION: To (1) read or write tape records, (2) rewind the tape, and (3) write an 
end-of-file marker on tape. 

CALliNG SEQUENCE: 

LA 
SVC 

PLIST DC 

1, PLIST 
X'CA' 

CL8'TAPEIO' 

~ READ J 
~ WRITE (, 

CL8' ') REWIND l' 
( WRITE OF , 

DC 

DC 
DC 
DC 
DS 

CL4' 
A( 

F' 
IF 

EXIT CONDITIONS: 

Normal Return 

H15::::: 0 

Error Return 

H15::::: 1 
H15::::: 2 
RI5::::: 3 
RI5::::: 4 
RI5::::: 5 
RI5::::: 6 
H15 ::::: 7 
HI5::::: 8 

symbolic tape name 
buffer address for read/write 
buffer size 
number of bytes actually read 
(returned to caller by TAPEIO) 

Successful Operation 

Invalid Function 
End-of-file or End-of-tape 
Permanent I/O Error 
Illegal Symbolic Unit 
Tape is not attached 
Tape is file protected 
Serious tape error 
Channel busy on start of I/O operation 

283 



CALLED BY (WHERE KNOWN): 

Disk resident routines 

OPERATION: TAPEIO starts an I/O operation (read, write, rewind or write end-of-file) 
appropriate to the calling program's request (READ, WmTE, REWIND, or WRITE OF) . 
It then calls the WAIT function program to wait for an interruption from the tape device. 
When an interruption occurs, control is returned to TAPEIO, which analyzes it. If a 
unit exception (end-of-file) caused the interruption, TAPEIO places a code indicating this 
condition into register 15 and returns (via SVCINT) to the calling program. If a unit 
check caused the interruption, T APEIO retries a maximum of ten times to correct the 
error. (For each retry, TAPEIO backspaces the tape, starts the I/O, and calls the WAIT 
function program.) If unsuccessful, it signals the error and returns to the caller. If a 
channel end caused the interruption, the operation was successful, and TAPEIO returns 
to the caller. 

Note: When running CMS under CP/67, the user must request the operator to mount his 
tape on an available drive and attach that drive to this configuration at the address that 
corresponds to the specified symbolic name, "TAPn". 

ERROR RECOVERY and HANDLING 

Once the SlO to the particular tape address is given, a speCific branch is taken, 
depending on the condition code: 

0, the I/o has started, and a call to CMS WAIT is made to handle the terminating 
interrupt. When the interrupt occurs, the CSW is examined to determine if a 
unit check, unit exception, or no device end was present. For no device end, 
WAIT is reentered until the DE is received. Unit exception will return to the 
calling routine with a code of 2 in register 15. For a mit check, a sense is 
issued to the device. If a data error caused the unit check, the operation is 
repeated 10 times. If intervention is required, a message is typed indicating 
this. If file is protected, again a message is typed. If the operation is successful, 
control is returned to the calling program. 

1. CSW stored - the mit check process described above is·executed. If a weird 
permanent error is encomtered, operation is terminated. 

2. busy - wait is entered until device is free. 

3. not operational - a message is typed and control returned to the caller. 

284 



TERMINAL HANDLING FUNCTION PROGRAMS 

The following text describes the programs that perform I/O operations involving user 
terminals. These function programs include CONWAIT, TYPLIN, TYPE, and WAITRD. 

CONWAIT 

FUNCTION: To place the computer in the wait state until all terminal 1/0 requests have 
been satisfied. 

CALLING SEQUENCE: 
LA 
SVC 

PLIST DC 

1, PLIST 
X'CA' 

CL8'CONWAIT' 

OPERATION: CO~-rwAIT checks the number of read/write requests (NUMRDWRT) re­
maining in the read/write stack. If there are some, it calls the WAIT function program 
to place the computer in the wait state until a terminal I/O request is completed. Upon 
return from WAIT, CONWAIT again checks to see if there are any remaining read/write 
requests. If there are, it calls WAIT. CONWAIT repeats this procedure until all termi­
nal read/write requests have been satisfied. At this time, it returns (via SVCINT) to 
the calling program. 

TYPLIN - CONWRITE 

FILENAME - CONWRITE 

ENTRY POINT - TYPLIN 

FUNCTION: To write an output line on the console with terminal blanks deleted and an 

automatic carriage return added. 

CALLING SEQUENCE! 
LA 1, PLIST 
SVC X'CA' 

PLIST DC 
DC 
DC 

CL8'TYPLIN' 
AL1(1) 
AL3(MSG) 

terminal number 
addre s s of output 1 ine 

285 



MSG 
EMSG 

DC 

DC 

DC 
EQU 

Note: Write codes -

AL8(EMSG-MSG) 

C' 

* 

Not implemented 

see note 

message length 

message to be typed 

OPERATION: TYPLIN obtains the output line and truncates it after the last nonblank 
character. (If the kill-right-end flag is set, truncation will occur at or before 72 
characters.) If the kill-typing flag is set,TYPLIN exits without typing the line. If 
the kill-typing flag ~s not set but there is not enough room to insert the output line 
into the read/write stack area contained in the nucleus, TYPLIN creates room by 
calling the WAIT function program until the number of read/write entries Is reduced 
to one. TYPLIN then constructs a CCW package for this output line and inserts it 
into the read/write stack. If at this time there are no requests in the read/wrIte 
stack, TYPLIN branches to the start I/O routine in CONINT to initiate the I/O opera­
tion. On return to TYPLIN with a successful SIO, TYPLIN returns to the caller. If 
there are requests in the read/write stack, TYPLIN does not start the write operation; 
it links the CCW package into the read/write stack as the last entry and returns to the 
calling program. 

TYPE 

FUNCTION: To write an output line on the console without terminal blanks being deleted 
and without an automatic carriage return being added. 

CALLING SEQUENCE: See that for TYPLIN 

OPERATION: TYPE operates in essentially the same manner as TYPLIN, except that 
TYPE does not truncate the line after the last nonblank character and does not provide 
an automatic carriage return. 

286 



\VAITRD - CONREAD 

FILENAME: CONREAD 

ENTRY POINT: WAITRD 

FUNCTION: To read an input line from the terminal and make it available to the caller. 

CALLING SEQUENCE: 

LA 
SVC 

PLIST DC 
DC 
DC 

DC 

1, PLIST 
X'CA' 

CL8'WAITRD' 
ALI(I) 
AL3(INPBUF) 

U 
V 

C' S 
T 

\ X J 

address of 130-byte input buffer 

see note 

DC AL3( byte count of input message stored here 

INPBUF DS 130C input buffer 

Note: Read codes -

U = perform clean-up, uppercase translation, and blank-fill 

V = perform clean-up and uppercase translation 

S = perform clean-up and blank-fill 

T = perform clean-up only 

x = leave input line exactly as is 

OPERATION: WAITRD checks the validity of the read code. If invalid, it signals the 
error and returns to the caller. If valid, WAITRD checks to see if there are any fin­
ished reads. Ir there are, the input line pOinted to by the first CC\V package in the fin­
ished read stack is obtained and edited according to the read code, the CCW package is 
removed from the stack, the pointer to the first finished read (FSTFINRD) is updated to 
point to the next CC\V package (if any) in the stack, the number of finished reads counter 
(NUMFINRD) is decremented, and the line is made available to the requester. 

287 



If there are no finished reads, the pending read stack is checked to see if there are any 
pending reads. If there are, WAITRD calls the WAIT function program to wait until a 
pending read finishes. (An interruption will mark the completion of the read, and the 
CCW package in the pending read stack will be moved by the interrupt handler to the fin­
ished read stack.) When the read is finished, WAITRD proceeds as if there had been an 
entry in the finished read stack when the read request was made. 

When a request for an input line is made and there are neither finished reads nor pending 
reads, WAITRD checks to see if there is more than one entry in the read-write stack. 
If there is, WAITRD waits, by calling WAIT, until either a read is finished or until only 
one entry remains in the read-write stack. (At this point, all entries in the read-write 
are for write requests. As each of these writes is completed, an interruption occurs and 
the next write in the stack is started; eventually, the read-write stack will be reduced to 
a single entry. This will terminate the wait. A finished read will terminate the wait 
only if, during the depletion of the writes in the read-write stack, the user hits the atten­
tion button, indicating that he wishes to enter a new command. If this is the case, the 
terminal interruption program will place a read CCW package into the pending read stack, 
place a similar package at the start of the read/write stack, and start the read operation. 
When the operation is complete, the interrupt handler will move the CCW package from 
the pending read stack to the finished read stack.) 

If a finished read terminates the wait, processing proceeds as if there had been a fin­
ished read at the time the calling program made the read request. If the wait is termi­
nated by the depletion of the read/write stack to a single entry, WAITRD constructs a 
CCW package for a read and places it into the pending read stack as the only entry. If, 
by this time, the last write in the read-write stack has been completed (that is, there are 
no entries in the read-write stack), the CCW package is also made the first (only) entry 
in the read-write stack. W AITRD then starts a read and waits for its completion. When 
the read is finished, WAITRD proceeds as if there had been an entry in the finished read 
stack when the read request was made. If the last write in the read-write stack has not 
been completed, the CCW package is chained onto the read-write stack as the last (in 
this case the second) entry. WAITRD then waits for the read to finish. (The terminal 
interruption program will actually start the read and move the CCW package from the 
pending read stack to the finished read stack.) When the read is finished, WAITRD pro­
ceeds as if there had been an entry in the finished read stack when the reed request was 
made. 

USER PROGRAMMED DEVICE HANDLING ROUTINE 

FUNCTION: To perform I/O operations for an I/O device. 

CALLING SEQUENCE: 

User defined 

288 



EXIT CONDITIONS: 

User defined 

CALLS TO OTHER ROUTINES: 

User defined 

CALLED BY: 

User defined 

OPERATION: A description of ,the operation of user programmed device handling 
routines is given in "User Input/Output Operation" under "I/O Operations". 

INPUT /OUTPUT SERVICE ROUTINES 

There are two I/O service routines in CMS. These allow both the user and the system 
to synchronize I/O operations (via the WAIT function program), and allow the system 
to have centralized error recovery (via the IOERR function program). 

SYNCHRONIZE ROUTINE 

The WAIT function program allows both the user and the system to synchronize I/O 
operations. 

WAIT 

FUNCTION: To place the computer in the w~it state until the completion of an I/O 
operation on a particular device. 

CALLING SEQUENCE: 

LA 1, PLIST 
SVC X'CA' 

289 



I PIlST DC 
DC 

DC 

DC 
DS 

CL8'WAIT' 
CL4' 

CL4' 

F'O' 
IF 

symbolic device name (CONI, DSKl, 
PCHl, etc.) 
symbolic device name (CONI, DSKl, 
PCHl, etc.) 

signifies end of device list 
symbolic name of interrupting device 
is stored here (by WAIT) after 10lNT 
returns to WAIT. 

OPERATION: WAIT looks up the first symbolic device name in the user-defined inter­
rupt table (if any - as initialized by the HNDINT function program), or in the device 
table (DEVT AB) in the nucleus constant area (NUCON). If the device is not in either 
table, WAIT returns to the caller with error code 1 .. 

If the device was found, WAIT puts the pseudo-wait bit in the corresponding device table 
entry on. WAIT repeats this procedure for each symbolic device name on the par am -
eter list. It then loads a PSW with the wait bit on. This causes the system to enter the 
wait state until an I/O operation on one of the specified devices is completed. Mter the 
II 0 operation is completed, 10INT returns control to WAIT, which places the symbolic 
name of the interrupting device (that is, the device on which the I/o operation was 
completed) in the last entry in the. parameter list and returns control to the caller. 

In some cases, some special logic is used where the interrupt-handling was initialized 
by the HNDINT function program. See NONTERMINAL I/o - HNDINT for a full 
description of these special procedures. 

WAIT can be called via SVC, or can also be called by BALR if the caller's system-mask 
is x'OO'. For disk resident programs doing their own I/O operations WAIT should be 
ca11ed viaSVC. 

CENTRALIZED ERROR RECOVERY PROGRAM 

IOERR 

Purpose: IOERR is a table processing program providing CMS with centralized I/O 
error recovery. The devices for which error recovery is provided are the 2311 and 
2314 direct access storage devices and the 1403 printer. 

290 



Modules: IOERRSUP, IOERREC, IOERRMES, 
IONUTAB 

Called By: DISKIO, PRINTIO 

General Operation: When either PRINTIO or DISKIO (i.e., the system routines that 
perform the I/O operations on the devices supported by error recovery) encounters 
an I/O error, a parameter list is built in free storage and IOERRSUP (the error re­
covery interface) is called. IOERRSUP initializes its free storage (containing a trace 
table for debugging, a WAIT parameter list to synchronize the error recovery I/O 
operations, and a read list for bringing a copy of IONUT AB into free storage if neces­
sary). IOERRSUP then replaces the device's standard interrupt processing routine 
with ERPRINTD (the error recovery interrupt processing routine). 

If the error occurred during the initialization of the operation, SIOERRRT is entered. 
If the error occurred during the completion of the operation, CIOERRRT is entered. 

SIOERRRT contains three routines corresponding to the three possible errors during 
I/O initiation. SIOBUSY waits for the channel or subchannel to become available and 
returns to either PRINTIO or DISKIO. SIONOTOP (not operational) calls IOERRMES 
to type an error message, and returns to either PRINTIO or DISKIO with a not-opera­
tional return code in register 15. SIOCSW (channel status word stored) does one of 
four things depending on the condition causing the CSW to be stored. If the device is 
busy, SIOBUSY is entered. If the device contains a pending interrupt from a previously 
completed operation, SIOCSW initializes the return code to indicate to PRlNTIO or 
DISKIO that the device is now available and enters CLEANUP. If the started operation 
caused an error, CIOERRRT is entered. If the started operation is an unchained im­
mediate command and the immediate operation is error free, normal proceSsing 
continues; however, if the immediate command call.sed an error, the routine containing 
the I/O operation enters IOERRSUP. 

CIOERRRT contains four routines. CIOQUIES (quiesce I/O) analyzes the machine's 
state on entry into error recovery. CIONUCK (unit check) performs a sense operation 
if a unit check has occurred. RTLOADER initializes the device type table (IONUTAB 
for direct access, the copy of 10NUTAB in free storage called IOFRTAB for the printer), 
and passes control to IOERRREC. IOERREC searches the device type table for the 
error and executes the routine for the recovery action. When completed, IOERREC 
exits to RTLOADER. When a permanent I/O error has occurred, RTLOADER calls 
IOERRMES. With a successful recovery, RTLOADER exits to CLEANUP. CLEANUP 
releases free storage and returns to either PRlNTIO or DISKIO with register 15 con­
taining the status of the operation and/or device 

During error recovery, interrupts from the device in error are processed by ERPINTD. 

291 



I DISKIO and PRINTIO 

Purpose: I/O operations directed to the 2311 or 2314 direct access storage device are 
processed by DISKIO. Upon a start or completion error, DISKIO builds a parameter list 
for 10ERR to attempt recovery. On return from IOERR, DISKIO analyzes the return code. 
J?RINTIOhandles error I/o operations directed to the 1403 printer in the same way. 

Entry Conditions (when calling 10ERR) 

Rl: Address of PLIST 

R14: Return address in Routine Containing the I/O 
operation in error 

R15: Address of 10ERRSUP 

Exit Conditions (on return from error recovery) 

R15: Return Code 

X'OO': 
X'8F': 
X'9F': 
X'AF': 
X'BF': 
X'CF': 
X'DF': 
Other: 

Successful Retry 
Unknown Device Type 
Error in 10ERR 
Device Now Available 
Device Not Available 
Invalid Parameter List 
Unknown I/O Error 
Permanent I/O Error 

Operation: When either a start or completion I/O error occurs, DISKIO (or PRINTIO) 
issues the EIOPL macro to (1) obtain free storage for the parameter list, (2) build the 
parameter list by using the CSW, I/O old PSW, and information from the device table 
in NUCON, (3) set a flag indicating if this is start or completion error, and (4) enter 
10ERRSUP. 

On return from IOERRSUP, DISKIO (or PRINTIO) analyzes the return code. If the 
recovery was successful, DISKIO (or PRINTIO) releases free storage and returns 
to the calling program. If register 15 contains X' AF', DISKIO (or PRINTIO) releases 
free storage and retries the operation. If register 15 indicates a permanent I/O error 
DISKIO (or PRINTIO) releases free storage and returns to the calling program with 
register 15 indicating a permanent I/O error. 

292 



IOERRSUP 

Purpose: IOERRSUP is (1) the interface between I/O error recovery and either 
DISKIO or PRINTIO, and (2) the supervisor of error recovery. 

Modules: BEGERP, CLEANUP, CIDERRRT, STOERRRT 

Operation: 10ERRSUP controls the processing of the I/O error recovery procedures, 
and communicates with the calling routine (i.e., either DISKIO or PRINTIO. 

Module 1: BEGERP 

Purpose: BEGERP per"forms the initialization for the I/O error recovery. 

Operation: BEGERP establishes addressability and saves registers 0 to 15. The plist 
is then checked. If it is invalid, BEGERP exits to CLEANUP. If the parameter list is 
valid, BEGERP initializes free storage for the work area by the ERPTRWT macro, 
and for the error queue with the ERPERRQ macro. BEGERP then turns on the IOERR 
active flag in the nucleus, and sets up registers that IOERR will use. BEGERP 
activates ERPRINTD. If the error occurred on a state I/O, BEGERP exits to 
SIOERRRT; if the error occurred on an I/O completion, the exit is to CIOERRRT. 

Module 2: SIOERRRT 

Purpose: SIOERRRT processes errors that occur on a start I/O operation. 

Entry Points: SIOBUSY, SIONOTOP, SIOCSW 

Operation: SIOERRRT examines the condition code and branches to one of the three 
entry points depending on its contents. If the condition code is 3, SIOERRRT branches 
to SIONOTOP; if 2, to SIOBUSY; and if 1, to SIOCSW. 

SIOBUSY: SIOBUSY executes on a busy condition during a start I/O operation. 
SIOBUSY initializes ERPWT (the WAIT list) with the device name(s), then enters the 
WAIT function program. On return from WAIT, SIOBUSY indicates to the calling pro­
gram that the device is available, and exits to CLEANUP. 

SIONOTOP: SIONOTOP executes on a not operational condition during a start I/O 
operation. SIONOTOP calls QUEINSER to insert the I/O error into the error queue, 
and exits to RTLOADER to indicate the error to the user. 

SIOCSW: SIOCSW executes on a CSW stored condition during a start I/O operation. 
If the device or control unit is busy., SIOCSW exits to SIOBUSY. If a pending interrupt 
is indicated in the device field of the CSW (either busy plus attention, busy plus device 
end, busy plus control unit end, busy plus channel end, or busy plus channel and 

293 



device end), SIOCSW sets the return code to indicate that the device is available, and 
exits to CLEANUP. If the error is an I/O error indicated by other information in the 
device and channel fields of the CSW, SIOCSW calls QUEINSER to enter the I/O error 
information into the error queue, and exits to CIOERR1 (an entry point in CIOERRRT). 

Module 3: CIOERRRT 

Purpose: CIOERRRT processes errors that occur on the completion of an I/O 
operation. 

Entry Points: CIOQUIES, CIOUNCK, CIOERRl, RTLOADER 

Operation: CIOERRRT contains the code to process I/O errors encountered during the 
completion of an I/O operation. After QUEINSER is called to insert the I/O error 
into the error queue, CIOERRRT branches to CIOQUIES. 

CIOERR1: CIOERR1 is entered from SIOCSW. It branches to CIOQUIES. 

CIOQUIES: CIOQUIES exists to provide a hook whereby additional processing logic 
may be added to 10ERR. 

CIOUNCK: CIOUNCK obtains the sense information for a unit check error. It the 
error is not a unit check error, CIOUNCK branches to RTLOADER. If the I/O error 
is (1) a unit check, (2) a successful sense operation, and (3) not channel 9 on the 
printer, CIOUNCK moves the sense information from ERPSENIN (the input area) to 
ERPSEN (the sense field in the error queue), then branches to RTLOADER. If the 
I/O error is (1) unit check, (2) successful sense operation, and (3) channel 9 on the 
printer, CIOUNCK sets the return code to indicate a successful error recovery, and 
exits to OLEANUP. If the I/O error is a unit check and an unsuccessful sense opera­
tion, the sense operation is retried 10 times. If the retry is unsuccessful, an internal 
10ERR sense operation failure is indicated, and CIOUNCK exits to RTLOADER. If the 
retry is successful and it is not channel 9 on the printer, the sense information from 
ERPSENIN is moved to ERPSEN and CIOUNCK exits to RTLOADER. If the retry is 
successful and it is channel 9 on the printer, the return code is set to indicate a suc­
cessful error recovery and CIOUNCK exits to CLEANUP. 

RTLOADER: RTLOADER initializes the recovery table (IONUTAB or 10FRTAB) and 
passes control to 10ERREC and/or 10ERRMES. RTLOADER first determines which 
copy of the recovery tables is to be used. If the error is on a DASD device, 10NUTAB 
is used. If the error is not on a DASD device but there is also an I/O error while 
accessing the disk resident 10FRTAB, typing and I/O error message, or other internal 
error, 10NUTAB is used. Otherwise: if it is not a DASD error, free storage is obtained 
for 10FRTAB. 

If the I/O error has had a successful recovery, RTLOADER calls 10ERREC, then 
exits to CLEANUP. If the I/O error has had an unsuccessful recovery, RTLOADER 
calls IOERRRE C, then calls IOERRMES, then exits to CLEANUP. If an INTERVENTION 

294 



REQUIRED occurs during a retry operation, RTLOADER calls IOERRREC, then 
IOERRIVIES. On return, if the recovery is successful, RTLOADER exits to CLEANUP; 
if unsuccessful, it enters IOERRMES, then CLEANUP. 

Module 4: CLEANUP 

Purpose: CLEANUP terminates the I/O error recovery procedure. 

OPERATION: If the error device is the console and write operations exist in lhe 
read/write stack, a restart console is executed, and operation continues as follows: 
In all other insta...'lces, execution of CLE .. A~NUP begins at this poL~t. The error device's 
normal interrupt processing routine replaces ERPINTD, and, if free storage was 
used by IOFRTAB, it is returned along with all other free storage. The IOERR active 
flag in the nucleus is turned off, the user's registers are restored, and CLEANUP 
returns. to DISKIO (or PRINTIO). 

IOERRREC 

Purpose: !OEF .. RREC locates the entry for the error device in IONUTAB (or IOFRTAB) 
for the address of the recovery procedure and branches to the recovery procedure. 
On return, IOERRRE C exits to RTLOADER. 

OPERATION: IOERRREC uses the LOCATE macro to obtain the address of the device 
type table, then uses LOCATE again to find the error entry within the table. 
IOERRRE C then branches to the address of the recovery procedure then exits to 
RTLOADER. If the error entry is not located, a non-identifiable error is indicated, 
and IOERRREC exits to RTLOADER. 

IOERRMES 

Purpose: IOERRMES (the message routine) uses information in IONUTAB (or 
IOFRTAB) to create a unique error message. The error return code is placed in 
register 15. For INTERVENTION REQUIRED and DEVICE NOT OPERATIONAL, the 
terminal user is notified. 

OPERATION: IOERRMES uses the information from IONUT AB (or IOFRT AB) to format 
a 320 character error message for all unrecoverable errors. If the user is not to be 
notified of the error, IOERRMES exits to RTLOADER. 

If the message is either (1) INTERVENTION REQUIRED or (2) NON-EXISTENT 
DEVICE, the user is notified with an abbreviated form of the formatted message. 
IOERRMES types the message either by using TYPLIN or issuing an SIO to the console. 

295 



Using TYPLIN: The message constants and variables are moved to the output message 
area in free storage. If the message is NON-EXISTENT DEVICE t the message is 
typed via TYPLIN, and IOERRMES exits to RTLOADER. If the message is 
INTERVENTION REQUIRED, the message is typed via TYPLIN, WAIT is called to 
wait for device end on the device. 

Using SIO: The message constants and variables are moved to the message area in 
free storage. The console's standard interrupt routine is replaced by ERPINTD. The 
message is typed via an SIO to the console. WAIT is called to wait for the message 
to complete typing (and for INTERVENTION REQUIRED, to also wait for device end 
on the device requiring intervention). The console's interrupt processing routine 
replaces ERPINTD, and IOERRMES exits to RTLOADER. If the message does not 
type successfully, the address and length of the message is passed to the calling 
program along with an error retUrn code. IOERRMES then exits to RTLOADER. 

IONUTAB - IOFRTAB 

Purpose: IONUTAB is a table containing the recovery procedures and error mes­
sages by device type and error. 

OPERATION: There are two copies of IONUTAB. One copy, IOFRTAB, is disk 
resident and is brought into free storage when errors are encountered on devices 
other than DASD devices. IONUTAB is nucleus resident, and is used for DASD 
errors. 

296 



NORMAL/ERROR OVERRIDE FUNCTION PROGRAMS 

The following text describes the programs that store trace information when the CMS 
SVC is used to transfer control from one routine to another. These function programs 
include. RDERR, • RESNRM, 0 RESERR, "RESUME, . RTLERRi . STEROV, and • STNOV • 

• RDERR 

FUNCTION: To move either the normal or error override information saved by SVCINT 

CALLING SEQUENCE: 

LA 1,PLlST 
SVC X'CA' 

PLIST DC 
DC 

CL8'.RDERR' 
A( ) address of 56-word work area 

OPERA TION: . RDERR first checks the address of the work area to ensure that it is 
legitimate. If not, it signals the error and returns (via SVCINT) to the calling program. 
If the address of the work area is legitimate, it checks the first byte of the error over­
ride save area. If this byte indicates that the save area does, in fact, contain valid 
error override information, • RDERR moves the contents of this save area to the work 
area and returns to the calling program. (SVCINT will set the first byte of the error 
override save area to indicate that it· contains valid error-override information only when 
error overriding is in effect and an error was encountered during execution of the called 
program.) If the error override save area does not contain valid error override infor­
mation, .RDERR Similarly checks the normal override save area. (SVCINT will set the 
first byte of the normal override save area to indicate that it contains valid normal­
override information only when normal overriding is in effect and no error was encoun­
tered during execution of the called program.) If the normal override save area does 
contain valid normal-override information, • RDERR moves this information to the work 
area and returns to tl:e calling program. If the normal override save area does not 
contain valid normal override information, • RDERR similarly checks the error save 
area. If this save area does contain valid error information, .RDERR moves it to the 
work area and returns to the caller. If it does not, • RDERR signals an error and 
returns to the caller. 

Note: The check of the error save area is done to allow a user access to saved error 
information in his non-override error program. For example, if the user has provided 
an address constant after the SVC X'CA' and if (1) error overriding is not in effect, and 
(2) an error is encountered during execution of the called program, SVCINT will pass 
control to the portion of code indicated in the address constant. If, in this portion of 

297 



code, the user wishes to analyze the saved error information, he can call. RDERR and 
obtain it . 

. RESNRM 

FUNCTION: To make a normal return from a user-written normal override program to 
a program that called another via an SVC X, CA' . 

CALLING SEQUENCE: 

LA 1, PLIST 
SVC X'CA' 

PLIST DC CL8'. RESNRM' 
DC A( ) 

DC A( 

address of new normal override 
program, zero (0) , or one(l) 
address of new error override 
program, zero(O), or one(l) 

OPERATION: . RESNRM checks the first byte of the normal override save area to deter­
mine whether it contains valid normal override data. If it does not, . RESNRM generates 
a program interruption that causes control to be passed to the DEBUG command pro­
gram. If it contains valid data, . RESNRM sets register 15 to zero to ensure that 
SVCINT will make a normal return to the calling program. (Upon return from the called 
program, register 15 mayor may not be zero.) It then checks the normal return 
address saved by SVCINT when the SVC X'CA' was executed to make sure it is legiti­
mate. (This address is contained in the normal save area.) If not legitimate, • RESNRM 
generates a program interruption. If legitimate, it checks to see whether the kill­
override nag has been turned on. (This will have been turned on by the terminal inter­
rupt handling program, CONSI, if the user had entered a KO request.) If it is on, 
• RESNRM sets the normal and error override switches saved by SVCINT to zero. This 
will inhibit subsequent overriding. It then moves the data in the normal override save 
area into the normal save area, restores the override switches (now zero) to their 
original locations (NRMOVR and ERROVR), and returns to SVCINT, which will make the 
normal return to the caller. 

If the kill-override switch is not on, . RE SNRM checks the second parameter in the 
parameter list. If it is zero, indicating that the caller wishes to inhibit further normal 
overriding, • RE SNRM sets the saved normal override switch to zero. If it is one, 
indicating that the caller wishes to continue normal overriding and use the same normal 
override program, . RESNRM does not alter the saved normal override switch. If the 
second parameter is neither zero nor one, indicating that the caller wishes to continue 
normal overriding but use a new normal override program, • RE SNRM stores the 

298 



address of that program in the saved normal override switch. • RE SNRM then repeats a 
a similar procedure for the third parameter that indicates how the caller wishes to 
treat subsequent error overriding. • RESNRM then moves the data in the normal over­
ride save area to the normal save area, restores the appropriately set override switches 
to their original locations and returns to SVCINT • 

• RESERR 

FUNCTION: To make an error return from a user-written error override program to 
the a.ppropriate error location specified by a progra.-rn that c~lled another via an SVC 
X'CA'. 

CALLING SEQUENCE: 

LA 1, PLIST 
SVC X' CAw 

PLIST DC CL8'. RESERR' 
DC A( ) 

DC A( 

address of new normal 
override program, zero(O), 
or one(l) 
address of new error override 
program, zero(O), or one(l) 

OPERATION: • RESERR checks the first byte of the error override save area to deter­
mine whether it contains valid error override data. If it does not, • RESE RR generates 
a program interruption. If it contains valid data, • RESERR checks the contents of 
register i5, as returned by the called program. If register 15 contains a zero, indi­
cating no errors, • RESERR assumes that a normal return is to be made and proceeds as 
described for the • RESNRM function program starting at the point where. RESNRM 
checks the validity of the normal return address. If register 15 is not zero, • RESERR 
checks to ensure that the error return address is valid. If it is not valid, it generates 
a program interruption. If the error return address is valid, • RESERR proceeds as 
described for. RESNRM, starting at the point where. RESNRM checks the kill-override 
flag. 

299 



• RESUME 

FUNCTION: To make either a normal or error return from either a normal or error 
override program to a program that called another via an SVC X, CA' • 

CALLING SEQUENCE: 

LA 1, PLIST 
SVC X'CA' 

PLIST DC CLS'. RESUME' 
DC A( ) 

DC A( ) 

address of new normal override program, 
zero(O), or one(l) 
address of new error override program, 
zero(O) , or one(l) 

OPERATION: . RESUME checks the validity of the error override information. If valid, 
it proceeds in the same manner as described for • RESERR, starting at the point where 
• RESERR checks the contents of register 15. If the error override information is 
invalid, . RESUME checks the validity of the normal override information. If invalid, 
• RESUME generates a program interruption. If valid, it proceeds in the same manner 
as described for. RESERR, starting where. RESERR checks the contents of register 15. 
(In this case, register 15 will contain a zero and a normal return will be made.) 

.RPLERR 

FUNCTION: To replace either the normal override information in NOV SA V , the error 
override information in ERVSA V, or the error information in ERRSA V with the data 
supplied by a calling program in a 56-word area. (The data in the 56-word area shoUld 
be arranged in the same manner as it is in NOVSAV, ERVSAV, or ERRSAV. 

CALLING SEQUENCE: 

LA 1, PLIST 
SVC X'CA' 

PLIST DC CLS'. RPLERR' 
DC A( ) 

300 

address of 56-word area containing 
replacement data 



OPERATION: . RPLERR first checks to ensure that the address of the 56-word area is 
legitimate. If not, it signals the error and returns (via SVCINT) to the caller. If the 
address is valid, • RPLERR checks to ensure that the first byte of the area contains 
either 1 (for valid error information), 2 (for valid normal override information), or 3 
(for valid error override information). If the first byte does not contain 1, 2, or 3, 
• RPLERR signals an error and returns to the caller. If the first byte contains either a 
1, 2, or 3, • RPLERR checks to ensure that the normal return address provided in the 
56-word area is legitimate. If not, it signals an error and returns to the caller. If the 
normal return address is legitimate, • RPLERR similarly checks the error return 
address. If this is invalid, • RPLERR signals the error and returns to the caller. Then, 
if the information provided is error information, . RPLERR moves it to the error save 
area (ERRSAV) and returns to the calling program. If the information provided is 
nonnal oVerride L.1fonnation, • RPLE RR moves it to ~'le nonnal oVerride save area 
(NOV SA V) and returns to the caller. If the information provided is error override 
iniormation, • RPLERR moves it to the error override save area (ERVSAV) and returns 
to the calling program • 

. STEROV 

FUNCTION: To set the error override switch (ERROV) in SVCINT to the address of an 
error override handling program. 

CALIJNG SEQUENCE: 

LA 1, PLIST 
SVC X'CA' 

PLIST DC CL8' • STEROV' 
DC A( ) address of error override handling program 

OPERATION: • STEROV checks the address provided in the address constant to ensure 
that it is a valid one. If the address is invalid, it signals the error and returns (via 
SVCINT) to the calling program. If the address is valid, • STEROV moves it to the error 
override switch (ERROVR) within SVCINT and returns to the calling program. 

Note 1: The SETOVER and SETERR command program calls • STEROV and passes it the 
address of the CMS error override handling program (HNDLE RR). However, a user 
may call it and pass the address of his own error override handling program. 

Note 2: If the address constant is zero, the error override switch will be turned off, 
thus inhibiting error overriding activity. 

301 



.STNOV 

FUNCTION: To set the normal override switch (NRMOVR) in SVCINT to the address of 
a normal override handling program. 

CALliNG SEQUENCE: 

LA 1, PLIST 
SVC X'CA' 

PliST DC CL8'.STNOV' 
DC A( ) address of normal override handling program 

OPERATION: • STNOV checks the address provided in the address constant to ensure 
that it is a valid one. If the address is invalid, it indicates the error and returns (via 
SVCINT) to the calling program. If the address is valid, • STNOV moves it to the normal 
override switch (NRMOVR) within SVCINT and returns to the calling program. 

Note 1: The SETOVER command program calls • STNOV and passes it the address of the 
CMS normal override handling program (HNDLNRM). However, a user may call it and 
pass the address of his own normal override program. 

Note 2: If the address constant is zero, the normal override switch will be turned off, 
thus inhibiting normal override activity. 

DEBUGGING FUNCTION PROGRAM 

DEBDUMP Function 

FUNCTION: DEBDUMP enables a user to dump his virtual core from within an 
executing program. 

CALLING SEQUENCE: 

L RI5 = V (DMPEXE C) 
LA RI, DUMPLIST Dumplist DSECT in caller program 
BALR R14, RI5 

Note: DUMPLIST can be found in the routine called 'GENSECT' 

ENTRY REQUIREMENTS: Register I points to the following 'PLIST'. 

302 



DUMPLIST DC 
DC 
DC 
DC 
DC 
DC 

A (GPRS) 
A (LOWCORE) 
A (BEGIN) 
A (END) 
A (FPREGS) 
A (DUMPTITLE) 

Address of Reg Save Area (0-15) 
Address of Lowcore Save Area (0-256) 
Starting Dump Location (IN HEX) 
Ending Dump Location (IN HLX) 
Address Floating Point Reg Save Area 0-6 
Address of DUMPTITLE 

Register 0 contains the PSW location requested for the dump. 

EXIT CONDITIONS: There are no error codes supplied by DEBDUMP 

CALLS TO OTHER ROUTINES: None 

OPERATION: DEBDUMP first obtains the address of DUMPTITLE and sends the title 
to the virtual printer. It then obtains the addresses of the general-purpose register 
save area, the floating-point register save area, the PSW requested in register 0, the 
CSW and the CAW. The contents of the save areas are sent to the virtual printer with 
appropriate headings. 

The address of lowcore is then obtained. If this starting location is less than X'100' 
that portion or all of lowcore from 0 to X'lOO' up to and" including the ending dumping 
location is sent to the virtual printer. The printer is closed after the last line is 
dumped. Control is passed back to the caller program. 

Note: If the title is not filled in by the user a default TITLE of 'DUMP REQUESTED 
BY USER' is used. The user can specify a title up to 132 bytes in length. 

303 



CONTROL AND SERVICE FUNCTION PROGRAMS 

The control and service function programs provide facilities for using the interval 
timer, for searching libraries for undefined symbols, for closing libraries, for gener­
ating a copy of the CMS Nucleus onto disk, for IPL'ing CMS from the disk, for placing 
an input line into a parameter list format, and for waiting for an 110 completion from a 
specified device. These function programs included GETCLK, LDRLIBE, PRTCLK, 
IPLDISK, SCAN, SETCLK, WAIT, and BARE67. 

GETCLK 

Filename: CMSTIM:E, Nucleus 

FUNCTION: To calculate the time elapsed since SETCLK set the timer. 

CALLING SEQUENCE: 

L 
BALR 

15, = V(GETCLK) 
14,15 

OPERATION: GETCLK subtracts the current value of the timer from that saved by 
SETCLK in TIME. It then converts the result to hundredths of a second, stores it in 
registers 0 and 1, and returns to the calling program. 

KILLEXF 

FUNCTION: To kill execution if disk is full 

ATTRIBUTES: Nucleus resident. Entry point - KILLEXF in Log 

CALLING SEQUENCE: 

R2 = pointer to active disk table from WRBUF via R15. 

OPERATION: 

1. Calls CONW AIT to wait for any stacked up or busy typeouts. 
2. Types '*** 2-DISK (CCU) IS FULL ***' -(with mode letter and number filled in). 
3. Then does same as KILLEX. 

304 



LIBEPACK 

Filename: LDRLIBE, Nucleus 

FUNCTION: To search libraries for undefined symbols, and to close libraries. 

CALLING SEQUENCE: 

L 
BALR 

15, = V(LIBEPACK) 
14,15 

OPERATION: If LIBEPACK is not entered to close libraries, it calls TXTLIB to obtain 
a list of the entry points contained in each open teAi; libraL~Y. Each undefined symbol 
specified by the calling routine is checked against the lists of entry points. If a match 
is found, POINT is called to set the read item number in the file status table for the 
library containing the matching entry point. LIBEPACK then returns control to the 
caller. 

If lJBEPACK is entered to close text libraries, it issues calls to FINIS, passing each 
time a library name as a parameter. When all text libraries are closed, LIBEPACK 
re1nrns to the caller. 

PRTCLK 

Filename: CMSTIME, Nucleus 

FUNCTION: To calculate and type at the terminal the time elapsed since SETCLK set 
the timer. 

CALliNG SEQUENCE: 

L 
BALR 

15, = V(PRTCLK) 
14,15 

OPERATION: PRTCLK subtracts the current value of the timer from that saved by 
SETCLK in TIME. It then converts the result to hundredths of a second, calls the 
TYPliN function program to type the elapsed time at the terminal, and returns to the 
calling program. 

305 



IPLDISK- INITIPL 

1 
Filename: INITIPL, Nucleus-Resident 

Entry point: IPLDISK 

FUNCTION: To write and read an IPL-able copy of the absolute core image of the CMS 
nucleus. 

CALLING SEQUENCE: The nucleus routine INITSUB will transfer control to IPLDISK 
whenever the nucleus is IPL'ed from the card-reader using the NUCLEUS text deck. 
Upon subsequent IPL'ing of the CMS Nucleus from disk, the IPL sequence gives control 
to IPLDISK, which passes control back to INITSUB, after the nucleus is read into core. 

OPERA TION: Upon entry to IPLDISK, the DO flag will determine whether a read (R) or 
a write (W) of the nucleus should be executed. For a write, questions are asked to 
determine device address and starting cylinder; a sense operation will determine the 
device type (2311, 2314). Onto cylinder zero is then written an IPL control sequence of 
24 bytes, followed by the IPLDISK program itself with the DO switch set to read. Now, 
all CCW string and search arguments are initialized. The routine SETCORLC will 
increment arguments as the I/o operation progresses. The routine DIOCS will execute 
it actual I/o commands. Onto disk will be written core pages 0-11 (hex) and pages 
3D-3F in 820-byte blocks, one SlO execution per track. After writing, control is re­
turned to INITSUB. 

\Vhen the disk is subsequently IPL'ed to get a copy of the nucleus, the IPLDISK program 
is read in, receives control, and proceeds to read the blocks of nucleus data. The 
address of the IPL'ed device is saved in IPLDEV within NUCON. The Read phase con­
structs and executes its own CCW string. Control is passed to INITSUB upon completion 
of reading in core pages 0-11 and loader maps into pages ID-IF. 

SCAN (Nucleus) 

FUNCTION: To place an input line into the format of a parameter list. 

CALLING SEQUENCE: 

LA 

L 
BALR 

1, BUFF 

15, = A(SCAN) 
14,15 

address of buffer containing input 
line in register 1. 

Note: The first word of the buffer contains a count of the number of characters in the 
input line. The remainder of the buffer contains the input line. 

306 



OPERATION: SCAN scans the input line for strings of nonblank characters and 
places them into successive doublewords in the command buffer (COMBUF) included 
with the SCAN subroutine. (The first string is placed into the first doubleword of 
COMBUF, the second into the second, etc.) If a particular string exceeds eight 
characters, SCAN truncates it at eight. If a string is less than eight characters, SCAN 
fills out the right portion of the corresponding doubleword in COMBUF with blanks. 
SCAN flags the end of the resultant parameter list by placing a doubleword with all bits 
on after the last applicable doubleword in COMBUF. SCAN returns the address of the 
resultant parameter list (that is, COMBUF) in register 1 and the number of bytes in the 
parameter list in register o. 

SETCLK 

FUNCTION: To save the current value of the timer for subsequent use. 

CALliNG SEQUENCE: 

L 
BALR 

15, = V(SETCLK) 
14,15 

OPERATION: SETCLK stores the current value of the timer, which is located at 
address 80, in the storage call called TIME and returns to the calling program. 

307 



BARE67 - INITB67 

Filename: INITB67 

Entry point: BARE67 

FUNCTION: To initialize CMS execution on a real machine (not under CP virtual 
machine). 

CALI1NG SEQUENCE: BARE67 is given control by INITSUB when no chronological 
device, X'OFF' is present - no virtual machine. 

OPERATION: BARE67 will wait for an attention interrupt from the system console. It 
will then request the date in the format 'SPECIFY DATE: (,'mm/dd/yy"). • • • When 
the date has been entered, the time will be requested in the format 'SPECIFY TIME: 
("hh. mm. ss"). • • • With the completion of date and time, it will proceed to deter­
mine whether the operator wishes to redefine device addresses (that is, the CMS Device 
Table located in NUCON). If affirmative, BARE67 will request from the user the real 
device addresses and set these values into DEVT AB. 

The next logical step is a request to determine whether the CP-SA VE function for CMS 
will be executed. This is the next step whether or not there has been a redefiniter of 
CMS Device Addresses. If the CP-SA VE function is to be executed, it will set the real 
system disk address into SYSDEV located in NUCON. Then BARE67 will return control 
to INITSUB. 

DEFTFLV 

Purpose: To provide a dummy table for file pointers. 

Usage: Used by CMS FORTRAN library routines to hold file pointers. User does not 
have access to it. DEFINE uses it to check for too many fUes defined, by comparing 
next pointer to last. 

External References: None 

308 



CMS LOADER 

The CMS Loader consists of the in-core relocating loader (LDR), the disk and type out­
put program (LDRIO), and the library search program (LIBE). The loader reads spec­
ified files from the user's disk, searches specified libraries for missing subroutines, 
loads them into core storage, and establishes proper linkages. 

When entered via the LOAD or $ commands, the CMS loader starts loading at location 
12000 (hex) or at a user-specified location. When performing a USE or REUSE opera­
tion, loading resumes at the next available location after the previous LOAD, USE, 
REUSE, or LOADlVIOD. 

The loader reads in the entire user's program, which consists of one or more control 
sections, each defined by a type 0 ESD card. Each control section contains a type 1 ESD 
card for each entry point, and may contain type 2 ESD cards for external references to 
other control sections, type 4 ESD cards for private code, type 5 ESD cards for common 
references, and type 6 ESD cards for pseudo-registers. User programs also contain: 

• RLD (relocation dictionary) cards that indicate the positions of symbols within a 
control section; if the symbol contains a value defined in some other control section, 
the RLD points to that control section. 

• END cards, which mark the end of each controi section. 

• An LDT (load terminate) card that marks the end of the entire user's program. 

• REP (replace) cards with which the user makes corrections or additions to his 
program. 

• ICS (include segment) cards that define the name of control sections. 

• An SLC (set location counter) card that specifies an absolute address or a symbolic 
name whose assigned location is used by the loader. 

• TXT cards that contain the instructions and constants of the program and the start­
ing address at which the first byte of text is to be loaded. 

• Control cards: ~mRARY and ENTRY. LIBRARY specifies entries that should not 
be processed by automatic library processing. ENTRY specifies" start of execution" 
address. 

Once the user's program is in core, the loader begins to search his files for library 
subprograms called by the program. The loader reads the library subprograms into 
core, relocating and linking them as required. To relocate programs, the loader ana­
lyzes information on the SLC, ICS, ESD, TXT, and REP cards. To establish linkages, 
it operates on ESD, RLD, and REP cards. Information for end-of-Ioad transfer of 
control is provided by the END and LDT cards, the ENTRY control card or START 
co~mand. 

309 



The loader also analyzes the options specified on the LOAD, USE, and REUSE commands. 
In response to specified options, the loader can: 

• Zero the load area before loading (CLEAR option). 
• Load the program at a specified location (SLC option). 
• Suppress creation of the LOAD MAP file on disk (NOMAP option). 
• Print out the load map on-line (TYPE option). 
• Suppress the printing of invalid card images in the load map (SINV option). 
• Suppress the printing of REP card images in the load map (SREP option). 
• Load program into "transient area" (TRANS option). 
• Specify libraries to be searched (LIBE option). 
• Suppress TXTLIB search (SLIBE option). 
• Suppress TEXT file search (SAUTO option). 

During its operation, the loader uses a Reference Table (REFTBL), an External Symbol 
Identification Table (ESIDTB), and a location counter (LOCCT). The Reference Table 
contains the names of control sections and entry points, their current location, and the 
relocation factor. (The relocation factor is the difference between the compiler-assigned 
address of a control section and the address of the core location where it is actually 
loaded.) The ESIDTB contains pointers to the entries in REFTBL for the control section 
currently being processed by the loader. The loader uses the location counter to deter­
mine where the control section is to be loaded. Initially, the loader obtains from the 
nucleus constant area the address (LOCCNT) of the next location at which to start load­
ing. This value is subsequently incremented by the length indicated on an ESD (type 0), 
END, or ICS card, or it may be reset by an SLC card. 

The loader contains a distinct routine for each type of input card. These routines per­
form calculations using information contained in the nucleus constant area, the location 
counter, the ESIDTB, the Reference Table, and the input cards. Other loader routines 
perform initialization, read cards into core, handle error conditions, provide disk and 
typewritten output, search libraries, convert hexadecimal characters to binary, handle 
end of file conditions, and begin execution of programs in core. 

OVRLD - Initial and Resume Loading Routine 

FUNCTION - This routine performs initialization and is reentered during loader opera­
tion to prepare for each new loading operation. 

OPERATION - At initial entry, the routine saves the address of the parameter list, 
obtains free storage, initializes registers, counters, flags, and save areas, obtains 
constants from. the nucleus constant area, and sets up I/O operations. The routine also: 

• Clears core before'loading (optionally). 
• Reads cards from disk into the SPEC buffer. 

310 



• Compares card image parameters with a parameter list (PLIST) and branches to the 
appropriate routine when a match is found. 

• Closes files at end of file and opens next input file if more have been specified. 

SLC Card Routine 

FUNCTION - This routine sets the location counter (LOCCT) to the address specified on 
a SLC card; or to the address assigned (in the REFTBL) to a specified symbolic name. 

ENTRY - The routine is entered at the first instruction when it receives control from 
the Initial and Resume Loading routine. It is entered at ORG2 whenever a lo~der routine 
requires the current address of a symbolic location specified on an SLC card. 

OPERA TION - This routine determines which of the following six situations exists, and 
takes the indicated action: 

1. The SLC card contains neither an address nor a symbolic name. The SLC Card 
routine branches, via BADCRD in the Reference Table Search routine, to the Disk 
and Type -output routine (LDRIO), which generates an error message. 

2. The SLC card contains an address only. The SLC Card routine sets the location 
counter (LOCCT) to that address and returns to RD, in the Initial and Resume Load­
ing routine, to read another card. 

3. The SLC card contains a name only, and there is a Reference Table entry for that 
name. The SLC Card routine sets LOCCT to the current address of that name 
(at ORG2) and returns to the Initial and Resume Loading routine to get another card. 

4. The SLC card contains a name only, and there is no Reference Table entry for that 
name. The SLC Card routine branches via ERRSLC to the Disk and Type Output 
routine (LDRIO) , which generates an error message for that name. 

5. The SLC card contains both an address and a name. If there is a REFTBL entry for 
the name, the sum of the current address of the name and the address specified on 
the SLC card is placed in LOCCT; control returns to the Initial and Resume Loading 
routine to get another card. If there is no REFTBL entry for the name, the SLC 
Card routine branches via ERRSLC to the Disk and Type Output routine, which gen­
erates an error message for the name. 

311 



ICS Card Routine - C2AEl 

FUNCTION - This routine establishes a Reference Table entry for the control-segment 
name on the ICS card if no entry for that name exists, adjusts the location counter to a 
fullword boundary, if necessary, and adds the card -specified control-segment length to 
the location counter if necessary. 

ENTRY - This routine has one entry point, location C2AE1. The routine is entered 
from the Initial and Resume Loading routine when it finds an ICS card. 

OPERATION-

1. The routine begins its operation with a test of card type. If the card being processed 
is not an ICS card, the routine branches to the ESD Card Analysis Routine; other­
wise, processing continues in this routine. 

2. The routine tests for a hexadecimal address on the ICS card. If an address is 
present, the routine links to the HEXB Subroutine to convert the address to binary; 
otherwise the routine branches via BADCRD to the Disk and Type Output routine 
(LDRIO). 

3. The routine next links to the REFTBL Search Routine, which determines whether 
there is a Reference Table entry for the card-specified control-segment name. If 
such an entry is found, the REFTBL Search Routine branches to the Initial and 
Resume Loading Routine; otherwise, the REFTBL Search Routine places the control­
segment name in the Reference Table, and processing continues. 

4. The routine determines whether the card-specified control-segment length is zero 
or greater than zero. If the length is zero, the routine places the current location 
counter value in the Reference Table entry as the control segment's starting address 
(ORG2), and branches to the Initial and Resume Loading Routine. If the length is 
greater than zero, the routine sets the current location counter value at a fullword 
boundary address. The routine then places this adjusted current location counter 
value in the Reference Table entry, adjusts the location counter by adding the spec­
ified control-segment length to it, and branches to RD in the Initial and Resume 
Loading Routine to get another card. 

ESD Card Analysis Routine - C3AAl 

FUNCTION - This routine determines whether the card being processed is an ESD card, 
determines which type of ESD card it is, and branches to the proper ESD card processing 
routine. 

ENTRY - This routine has one entry point, location C3AAl. 

312 



OPERATION ,-

1. If dynamic loading has been indicated, a call is made to DYNALOAD for each seg­
ment to GETMAIN sufficient space and set LOCCT appropriately. 

2. The routine begins its operation with a test of card type. If the card being processed 
is not an ESD card, the routine branches to the TXT Card Routine; otherwise, proc­
essing continues in this routine. 

3. The routine tests for ESD Type 0 card. If the card is an ESD Type 0, the routine 
branches to the ESD Type 0 Card Routine; otherwise, processing continues in this 
routine. 

4. The routine then branches to location ESDOO in the ESD Ty~ 2 Card Routine if an 
absolute loading process is indicated; otherwise, processing continues in this 
routine •. The routine at location ESDOO determines whether there is'more than one 
entry on the ESD Type 2 card. If there is another entry, the ESDOO routine returns 
control to location CA3A1 for further processing (repeating operation 2, above); 
if not, the ESDOO routine branches to location RD in the Initial and Resume Loading 
Routine to get another card. 

EXITS - This routine exits to several routines. These are: 

1. Location C4AA1, an entry point in the TXT Card Routine. This exit occurs when 
the card being processed is not an ESD card. 

2. Location C3AA3, an entry point in the ESD Type 0 Card Routine. This exit occurs 
when the card being processed is an ESD Type 0 card. 

3. The ESD Type 1 Card Routine. This exit occurs when the card being processed is 
an ESD Type 1 card. 

4. Location ESDOO, an entry point in the ESD'Type 2 Card Routine. This exit occurs 
when the card being processed is not an. ESD Type 0 card and the loading process is 
absolute. 

5. Location C3AH1, an entry point in the ESD Type 2 Card Routine. This exit occurs 
when the card being processed is an ESD Type 2 card. 

6. Location PRVESD in the ESD Type 5 and 6 Card Routine, when the card is a 
pseudo-register. 

7. Location COMESD in the ESD Type 5 and 6 Card Routine, when the card is type 
common. 

8. Location BADCRD in the REFTBL Search Routine, when the card is invalid. 

313 



ESD Type 0 Card Routine - C3AA3 

FUNCTION - This routine makes Reference Table and ESID Table entries for the card­
specified control section. 

ENTRY - 'This routine has one entry point, location C3AA3. The routine is entered 
froIll- the ESD Card Analysis Routine. 

OPERATION -

1. This routine first determines whether a Reference Table (REFTBL) entry has 
already been established for the card-specified control section. To do this, the 
routine links to the REFTBL Search Routine. The ESD Type 0 Card Routine's sub­
sequent operation depends on whether there already is a REFTBL entry for this 
control section. If there is such an entry, processing continues with operation 4, 
below; if there is not, the REFTBL Search Routine places the name of this control 
section in REFTBL, and processing continues with operation 2, below. 

2. The routine obtains the card-specified control section length and performs operation 
3, below. 

3. The routine links to location C2AJl in the ICS Card Routine and returns to C3AD4 to 
obtain the current storage address of the control section from the REFTBL entry, 
inserts the REFTBL entry position-(N - where this is the Nth REFTBL entry) in the 
card-specified ESID Table location, and calculates the difference between the cur­
rent (relocated) address of the control section and its card-specified (assembled) 
address. This difference is the relocation factor; it is placed in the REFTBL entry 
for this control section. 

4. The entry found in the REFTBL is examined to determine whether it had been de­
fined by a COMMON. If so, it is converted from a COMMON to a CSECT and per­
forms operation 3 above. 

5. If the entry had not been defined previously by an ESD Type 0, processing continues 
at step 3. 

6. If the entry had been defined previously other than as COMMON, LDRIO is called 
via ERRORM, to print a warning message, "DUPLICATE IDENTIFIER". The entry, 
in the ESID table is set negative so that the CSECT will be skipped (that is, not 
loaded) by the TXT and RLD processing routines. 

314 



ESD TYPE 1 Card Routine - ENTESD 

FUNCTION - This routine establishes a Reference Table entry for the entry point spec­
ified on the ESD card, unless such an entry already exists. 

ENTRY - This routine is entered from the ESD Card Analysis Routine. 

OPERATIONS -

1. This routine first links to the REFADR routine in order to obtain the relocation factor 
of the card-specified entry point's control section. If the corresponding CSECT's 
ESD type 0 has not been processed yet, a warning is printed and a relocation factor 
is assumed. This can occur if the ENTRY card precedes the START or CSECT card. 

2. The routine then adds the relocation factor and the card -specified entry point 
address; the swn is the current storage address of the entry point. 

3. The routine links to the REFTBL Search Routine to find whether there is already a 
REFTBLentry for the card-specified entry point name. If such an entry exists, the 
routine performs operation 4, below. If there is no entry, the routine performs 
operation 5 , below. 

4. Upon finding a REFTBL entry that has been previously defined for the card-specified 
name, the routine then compares the REFTBL-specified current storage address 
with the address computed in operation 2, above. If the addresses are different, 
the routine branches to the LDRIO routine (Duplicate Symbol Error); if the addresses 
are the same, the routine branches to location RD in the Initial and Resume Loading 
Routine to read another card. Otherwise, it is assumed that the REFTBL entry was 
created as a result of previously encountered external references to the entry. The 
ADDEF routine is called to resolve the previous external references and adjust the 
REFTBL entry. The entry point name and address are printed by calling LDRIO. 

5. If there is no REFTBL entry for the card-specified entry point name: the routine 
makes such an entry and branches to the LDRIO routine. 

ESD Type 2 Card Routine - C3AHI 

FUNCTION - This routine makes the proper ESID Table entry for the card-specified 
external name and places that name's assigned address (ORG2) in the reference table 
relocation factor for that name. 

ENTRIES - This routine has two entry pOints, location C3AHl and location ESDOO. 
Location C3AHI is entered from the ESD Card Analysis Routine; this occurs when an 
ESD Type 2 card is being processed. Location ESDOO is entered from: 

315 



1. The ESD Card Analysis Routine, when the card being processed is an ESD Type 2, 
and an absolute loading process is indicated. 

2. The ESD Type 0 Card Routine and ESD Type 1 Card Routine, as the last step in each 
of these routines. 

OPERATION -

1. When this routine is entered at location C3AH1, it first links to the REFTBL Search 
Routine to determine whether there is a REFTBL entry for the card-specified ex­
ternal name. If none is found, the REFTBL Search Routine branches to the LDRIO 
routine, which generates an error message; otherwise, the ESD Type 2 Card Routine 
continues processing with operation 2, below. 

2. The routine next places the REFTBL entry's position-key in the ESID Table. If the 
entry has already been defined by means of an ESD Type 0, 1, 5, or 6, processing 
continues at step 4. Otherwise, continue at step 3. 

3. The relocated address is placed in the RELFAC entry in the external name's 
REFTBL entry. 

4. The ESD Type 2 card Routine then determines (at location ESDOO) whether there is 
another entry on the ESD card. If there is another entry, the routine branches to 
location CA3A1 in the ESD Card Analysis Routine for further processing of this card; 
otherwise, the routine branches to location RD in the Initial and Resume Loading 
Routine. 

EXITS - This routine exits to location CA3A1 in the ESD Card Analysis Routine if there 
is another entry on the ESD card being processed, and exits to location RD in the Initial 
and Resume Loading Routine if the ESD card requi res no further processing. 

ESD Type 4 Routine - PC 

FUNCTION - This routine makes Reference Table and ESIDTAB entries for private 
code CSECT. 

OPERATIONS - The ESD Type 4 Card Routine: 

2. 

316 

The routine LDRSYM is called to generate a unique character string nwnber of the 
form 00000001, which is left in the external data area NXTSYM; it is greater in 
value than previously generated symbol. 

The CSECT is then processed as a normal Type 0 ESD with the above assigned name. 



ESD Types 5 and 6 Card Routine - PRVESD and COMESD 

FUNCTION - This routine makes Reference Table and ESIDTAB entries for common 
and pseudo-register ESD's. 

OPERATION - The ESD Type 5 and 6 Card routine: 

1. Links to ESIDINC in the ESD Type 0 Card Routine, to update the number of ESIDTAB 
entries. 

2. Links to the REFTBL Search Routine to determine whether a Reference Table 
(REFTAB) entry has already been created. If there is no entry, the REFTBL 
Search Routine places the name of the item in the REFTBL. 

3. If the REFTBL Search Routine had to create an entry for the item, the ESD Type 5 
and 6 Card Routine indexes it in the ESIDTAB, enters the length and alignment in the 
entry, indicates whether it is a PR or common, and branches to ESDOO in the ESD 
Type 2 Card Routine to determine whet.~er the card contains additional ESDI s to be 
processed. If the entry is a PR, the ESD Type 5 and 6 Card Routine enters its dis­
placement and length in the REFTBL before branching to ESDOO. 

4. If the REFTBL already contained an entry, the ESD Type 5 and 6 Card Routine 
indexes it in the ESIDTAB, checks alignment and branches to ESDOO. 

Note: The PR alignment is coded and placed into the REFTBL. It is an error to 
encounter more restrictive alignment PR than previously defined. 

TXT Card Routine - C4AAI 

FUNCTION - This routine has two functions: address inspection and placing text in 
storage. 

ENTRIES - This routine has three entry points: location C4AAl, which is entered from 
the ESD Card Analysis Routine, and lo~ations REPENT and APRl, which are entered 
from the REP Card Routine for address inspection. 

OPERATIONS -

1. This routine begins its operation with a test of card type. If the card being proc­
essed is not a TXT-card, the routine branches to the REP Card Routine; otherwise, 
processing continues in this routine. 

2. The routine then determines how many bytes of text are to be placed in storage, and 
finds whether the loading process is absolute or relocating. If the loading process 
is absolute, the routine performs operation 4, below; if relocating, the routine per­
forms operation 3. 

317 



3. If the ESIDTAB entry was negative, this is a duplicate CSECT and processing 
branches to RD. Otherwise, the routine links to the REFADR Routine to obtain the 
relocation factor of the current control segment. 

4. The routine then adds the relocation factor (0, if the loading process is absolute) and 
the card-specified storage address. The result is the address at which the text 
must be stored. This routine also determines whether the address is such that the 
text, when loaded starting at that address, will overlay the loader or the Reference 
Table. If a loader overlay or a Reference Table overlay is found, the routine 
branches to the LDRIO Routine. If neither condition is detected, the routine pro­
ceeds with address inspection. 

5. The routine then determines whether an address has already been saved for possible 
use as the end-of-load branch address. If an address has been saved, the routine 
performs operation 7; if not, the routine performs operation 6. 

6. The routine determines whether the text address is below location 128. If the ad­
dress is below location 128, it should not be saved for use as a possible end-of-load 
branch address, and the routine performs operation 7; otherwise the routine saves 
the address and then performs operation 7. 

7. The routine then stores the text at the address specified (absolute or relocated) and 
branches to location RD in the Initial and Resume Loading Routine to read another 
card. 

EXITS - The routine exits to two locations, as follows: 

1. The routine exits to location RD in the Initial and Resume Loading Routine if it is 
being used to process a TXT card. 

2. The routine exits to location APRIL in the REP Card Routine if it is being used for 
REP card address inspection. 

REP Card Routine - C4AA3 

FUNCTION - This routine places text corrections in storage. 

ENTRY - This routine has one entry point, location C4AA3. The routine is entered 
from the TXT Card Routine. 

OPERATION -

1. This routine begins its operation with a test of card type. If the card being proc­
essed is not a REP card, the routine branches to the RLD Card Routine; otherwise, 
processing continues in this routine. 

318 



2. The routine then links to the HEXB Conversion Routine to convert the REP card­
specified correction address from hexadecimal to binary. 

3. The routine then links to the HEXB Conversion Routine again to convert the REP 
card-specified ESID from hexadecimal to binary. 

4. The routine then determines whether the two-byte correction being processed is the 
first such correction on the REP card. If it is the first correction, the routine 
performs operation 5, below; otherwise, the routine performs operation 6, below. 

5. When the routine is processing the first correction, it links to location REPENT in 
the TXT Card Routine, where the REP card-specified correction address is in­
spected for loader overlay and for end-of-Ioad branch-address saving; in addition, 
if the loading process is relocating, the relocated address is calculated and checked 
for Reference Table overlay. The routine then performs operation 7, below. 

6. When the correction being processed is not the first such correction on the REP 
card, the routine branches to location APR! in the TXT Card Routine for address 
inspection. 

7. The routine then links to the HEXB Conversion Routine to convert the correction 
from hexadecimal to binary, places the correction in storage at the absolute (card­
specified) or relocated address, and determines whether there is another correction 
entry on the REP card. If there is another entry, the routine repeats its proc­
essing from operation 4, above; otherwise, the routine branches to location RD in 
the Initial and Resume Loading Routine. 

EXITS - This routine exits, when all the REP-card corrections have been processed, to 
location RD in the Initial and Resume Loading routine. 

RLD Card Routine - C5AAI 

FUNC TION - This routine processes RLD cards, which are produced by the assembler 
when it encounters address constants within the program being assembled. This routine 
places the current storage address (absolute or relocated) of a given defined symbol or 
expression into the storage location indicated by the assembler. The routine must calcu­
late the proper value of the defined symbol or expression and the proper address at 
which to store that value. 

ENTRY - This routine has one entry point, location C5AA1. The routine is entered 
from the REP Card Routine. 

OPERATION -

1. This routine begins its operation with a test of card type. If the card being proc­
essed is not an RLD card, the routine branches to the END Card Routine; otherwise, 
processing continues in this routine. 

319 



2. The routine next determines whether the loading process is absolute or relocating. 
If absolute, the routine branches to location RD in the Initial and Resume Loading 
routine; if relocating, the routine continues processing the RLD card. 

3. The routine uses the Relocation Header (RH ESID) on the card to obtain the current 
address (absolute or relocated) of the symbol referred to by the RLD card. This 
address is found in the Relocation Factor section of the proper Reference Table 
entry. If the RH ESID is 0, the routine branches to the LDRIO Routine (Invalid 
ESD). 

4. The routine uses the Position Header (PH ESID) on the card to obtain the relocation 
factor of the control segment in which the Define Constant assembler instruction 
occurred. If the PH ESID is 0, the routine branches to BADCRD in the REFTBL 
Search Routine (Invalid ESID). If the ESIDTAB entry is negative (Duplicate CSECT), 
the RLD entry is skipped. 

5. The routine next decrements the card-specified byte count by 4 and tests it for 0. 
If the count is now 0, the routine branches to location RD in the Initial and Resume 
LQading Routine; otherwise, processing continues in this routine. 

6. The routine determines the length, in bytes, of the address constant referred to in 
the RLD card. This length is specified on the RLD card. 

7. The routine sets up an instruction (which will place the specified address value in 
storage at the specified address) by inserting the proper number in the Move in­
struction. This number is the address constant's byte-length. 

8. The routine then adds the relocation factor obtained in operation 4, above (reloca­
tion factor of the control segment in which the current address of the symbol must 
be stored), and the card-specified address. The sum is the current address of the 
location at which the symbol address must be stored. 

9. The routine then computes the arithmetic value (symbol address or expression value) 
that must be placed in storage at the address calculated in operation 8, above, and 
places that value at the indicated address. If the value is undefined, the routine 
branches to location APOINT, where the constant is added to a string of constants 
that are to be defined later. 

10. The routine again decrements the byte count (of information on the RLD card) and 
tests the result for zero. If the result is zero, the routine branches to location RD 
in the Initial and Resume Loading Routine; otherwise, processing continues in this 
routine. 

11. The routine next checks the continuation flag, a part of the data placed on the RLD 
card by the assembler. If the flag is on, the routine repeats its processing for a 
new address only; the processing is repeated from operation 5, above. If the flag 
is off, the routine repeats its processing for a new symbol; the processing is re­
peated from operation 3, above. 

EXITS - This routine exits to location RD in the Initial and Resume Loading Routine. 

320 



END Card Routine - C6AA1 

FUNCTION - This routine saves the END card address under certain circumstances, 
an.d il1iti,:tlizes the loader to load another control segment. 

ENTRY - This routine has one entry point, location C6AA1. The routine is entered 
from the RLD Card Routine. 

OPERATION -

1. This routine begins its operation with a test of card type. H the card being proc­
essed is not an END card, the routine branches to the LDT Card Routine; otherwise, 
processing continues in this routine. 

2. The routine then determines whether the END card contains an addresso H the 
card contains no address, the routine performs operation 7, below; otherwise, the 
routine performs operation 3. 

3. The routine next checks the end-address-saved switcho If this switch is on, an 
address has already been saved, and the routine performs operation 7. If the 
switch is off, the routine performs operation 4. 

4. The routine determines whether the loading process is absolute or relocating. H 
the loading process is absolute, the routine performs operation 6; otherwise, the 
routine performs operation 5. 

5. The routine links to the REFADR routine to obtain the current relocation factor, 
and adds this factor to the card-specified address. 

6. The routine stores the address (absolute or relocated) in area BRAD, for possible 
use at the end-of-Ioad transfer of control to the problem' program. 

7. The routine then clears the ESID Table, sets t..~e absolute load flag on, and branches 
to the location specified in a general register (see Exits). 

EXITS - This routine exits to the location specified in a general register. This may be 
either of two locations, as follows: 

1. Location RD in the Initial and Resume Loading Routine. This exit occurs when the 
END Card Routine is processing an END card. 

2. The location in the LDT Card Routine that is specified by that routine's linkage to 
the END Card Routine. This exit occurs when the LDT Card Routine entered this 
routine to clear the ESID Table and set the absolute load flag on. 

321 



LDT Card Routine - C6ACl 

FUNCTION - This routine determines the address at which the loaded program is to 
begin execution and transfers control to that address, terminating the loading process. 

ENTRY - The routine is entered at C6ACl from the END Card Routine. 

OPERATIONS - The LDT Card Routine: 

1. Tests the card type. If the card is not an LDT card, the routine branches to the 
Control Card Routine; otherwise, processing continues in this routine. 

2. Determines whether the LDT card contains a name. If there is a name, the routine 
performs operation 3; otherwise, the routine proceeds to operation 4. 

3. Links to the Reference Table Search Routine to determine whether there is an entry 
in REFTBL for the name specified in the LDT card. If there is no entry for the 
name, the Reference Table Search Routine branches to the Disk and Type Output 
routine, which generates an error message. If an entry is found, the address of the 
entry is returned to the LDT Card routine, which stores it in the end of load branch 
address save area (BRAD). 

4. Determines (at LIBGO) whether the library search has been suppressed. If the 
search has not been suppressed and there are missing subroutines to be read in, 
control passes to the LIBE program, which searches the specified libraries. If a 
needed entry is found in the library, processing continues at location NXTRD. 
Otherwise, processing continues at step 6. 

5. If the ENTRY control card had been encountered, the start address is set to the 
specified entry-address (if it was found). Otherwise, the previously determined 
start address is used. 

6. If any undefined symbols were referenced without specification as nonobligatory on 
a LIBRARY card, the names are printed as a warning to the user. 

7. Tests (at N03) for the XEQ option. If it was specified, control is passed to the Begin 
Execution Routine (XEQQ). If it was not specified, the libraries are closed (at N03), 
free storage is released, and control is returned to the loaded program. 

322 



Control Card Routine - CTLCRDI 

FUNCTION - This routine handles the ENTRY and LIBRARY control cards. 

ENTRY - This routine has one entry point, location CTLCRD1. The routine is entered 
from the LDT Card Routine. 

OPERATIONS -

1. The CMS function SCAN is called to parse the card. 

2. If the card is not an ENTRY or LIBRARY card, the routine determines whether the 
SH"nr option (suppress printing of invalid card images) was specified. If printing is 
suppressed, control passes to RD in the Initial and Resume Loading Routine, where 
a..'1other card is read. If printing is not suppressed, control passes to the Disk and 
Type Output Routine (LDRIO), where the invalid card image is printed in the load 
map. If the card is a valid control card, processing continues. 

ENTRY Card: 

3. If the ENTRY name is already defined in REFTBL, its REFTBL address is placed 
in ENTADR. Otherwise, a new entry is made in REFTBL, indicating an undefined 
external reference (to be resolved by later input or library search), and ti1l.S 
REFTBL entry's address is placed in ENTADR. 

4. The control card is printed by calling LDRIO via CTLCRD; it then exits to RD. 

LIBRARY Card: 

5. Only nonobligatory reference LIBRARY cards are handled; any other form is con­
sidered an invalid card. 

6. Each entry-point name is individually isolated and is searched for in the REFTBL. 
If it has already been loaded and defined, nothing is done and the next entry-point 
name is processed. Otherwise, the nonobligatory bit is set in the flag byte of the 
REFTBL entry. 

7. Processing continues at step 4. 

323 



REFADR Routine 

FUNCTION - This routine computes the storage address of a given entry in the Refer­
ence Table. 

ENTRY - This routine has one entry point, location REF ADR. The routine is entered 
from several of the routines within the loader. 

OPERATION -

1. The routine first obtains, from the indicated ESID Table entry, the position (n) of 
the given entry within the Reference Table (where the given entry is the nth 
REFTBL entry). 

2. The routine then multiplies n by 16 (the number of bytes in each REFTBL entry) and 
subtracts this result from the starting address of the Reference Table. The starting 
address of the Reference Table is held in area TBLREF; this address is the highest 
address in storage, and the Reference Table is always built downward from that 
address. 

3. The result of the subtraction in operation 2, above, is the storage address of the 
given Reference Table entry. If there is no ESD for the entry, the routine prints a 
warning by calling LDRIO via INVESD and assumes "next available location" as 
CSECT address; otherwise, this routine returns to the location specified by the 
calling routine. 

PRSERCH Routine 

FUNCTION - This routine compares each Reference Table entry name with the given 
name, determining first, whether there is an entry for that name and second, what the 
storage address of that entry is. 

ENTRY - This routine is initially entered at PRSERCH, and subsequently at location 
SERCR. The routine is entered from several routines within the loader. 

OPERATION -

1. This routine begins its operation by obtaining the nwnber of entries currently in the 
Reference Table (this number is contained in area TBLCT), the size of a Reference 
Table entry (16 bytes), and the starting address of the Reference Table (always the 
highest address in storage, contained in area TBLREF). 

2. The routine then checks the number of entries in the Reference Table. If the num­
ber is 0, the routine performs operation 5, below; otherwise, the routine performs 
operation 3. 

324 



3. The routine next determines the address of the first (or next) Reference Table entry 
to have its name checked, increments by one the count it is keeping of name com­
pari sons , and compares the given name with the name contained in that entry. If 
the names are identical, PRSERCH branches to the location specified in the routine 
that linked to it. PRSERCH then returns the address of the REFTBL entry; other­
wise, PRSERCH performs operation 4. 

4. The routine then determines whether there is another Reference Table entry to be 
checked. If there is none, the routine performs operation 5; if there is another, 
the routine decrements by one the number of entries remaining and repeats its oper­
ation starting with operation 3. 

5. If all the entries have been checked~ and none contains the given name for which this 
routine is searching, the routine increments by one the count it is keeping of name 
comparisons, places that new value in area TBLCT, moves the given name to form 
a new Reference Table entry, and returns to the calling program. 

EXITS - This routine exits to either of two locations, both of which are specified by the 
routine that linked to this routine. The first location is that specified, in the event that 
an entry for the given name is found; the second location is that specified, in the event 
that such an entry is not found. 

HEXB Conversion Subroutine 

FUNCTION - This subroutine converts a specified number of characters of hexadecimal 
data to binary form. 

ENTRIES - This routine has one entry point, location HEXB. The routine may be 
entered from: 

1. The REP Card Routine, for conversion of an address or of a text correction, or 

2. Any of several routines within the loader, for conversion of hexadecimal data. 

OPERATION -

1. In a series of tests beginning at location Ll, the routine determines whether the first 
hexadecimal character to be converted is a valid numeric, a valid alphabetic, or an 
invalid character. 

2. If operation 1 indicates that the character is a valid numeric character (0-9), the 
routine converts the hexadecimal character to binary by clearing its high-order 
(leftmost) four bits. The routine then performs operation 5, below. 

325 



3. If operation 1 indicates that the character is a valid alphabetic character (A-F), the 
routine converts the hexadecimal character to binary by subtracting a constant from 
the character. The routine then performs operation 5, below. 

4. If operation 1 indicates that the character is invalid, the routine branches to loca­
tion BADeRD in the REFTBL Search Routine. 

5. When the routine has converted a valid numeric or valid alphabetic character to 
binary form, it shifts the general register in which it returns the entire converted 
number four bits to the left and inserts the converted digit in the vacant low-order 
(rightmost) four bits of that register. 

6. The routine then determines whether it has converted all the characters that were 
passed to it for conversion. If it has not, it branches within itself to location Ll 
and repeats the conversion process for the next character; otherwise, it returns to 
the calling routine. 

EXIT - This routine has two exits: 

1. If the routine encounters an invalid hexadecimal character, it exits to BADeRD, in 
the REFTBL Search Routine. 

2. If the routine encounters no invalid hexadecimal character during the process of 
converting the entire specified number, it exits to the address contained in location 
RETT. This address is the return address specified by the loader routine or prob­
lem program that linked to this routine. 

Start Execution Routine - XEQQ 

FUNC TION - This routine begins execution of programs loaded into core. It is called 
by the START command or the LOAD, USE, or REUSE commands, if the XEQ option was 
specified with them. 

OPERA TIONS - The Start Execution Routine receives control from the START command 
or the LDT Card Routine if the XEQ option was specified. The Start Execution routine: 

1. Initializes free storage. 

2. Calls the Disk and Type Output program (LDRIO) to print a storage map header for 
COMMON, if the REFTBL contains any common entries. 

3. Searches the BE FTBL for entries with a nonzero flag (COMMON, CXD, PB, and 
references to undefined symbols). 

326 

(a) A pointer to a PR entry is placed in a separate table depending upon PR align­
ment: byte, halfword, fullword, or double-word. 



(b) A CXD entry is marked "undefined" for later processing and a pointer placed. in 
special CXD table. 

(c) A COMMON is defined at the next available load location and the location counter 
(LOCCT) is increased by the length of the COMMON. References to the COM­
Ivl0N are processed by calling ADDEF. The name, address, and lengt..~ of the 
COMMON are printed by calling LDRIO via CMVAL. 

(d) A reference to an undefined symbol is replaced by a value of zero by calling 
ADDEF. 

4. After scanning entire REFTBL, the Disk and Type Output program (LDRIO) is 
called to print a storage map header for PR's, if there are any pseudo-register 
entries in the REFTBL. The name, value, and length. of each PR (they were defined 
earlier when ESD was first encountered) are printed as well as the CXD request, 
which can only be deterulined after all PR's have been assigned. 

5. The starting address for execution is then determined: by entry-point name if sup­
plied, by START command or by the start execution address (in BRAD) set by first 
program loaded, END card, LDT card, or ENTRY control card. 

6. (a) If actual execution is suppressed, for example, by specifying START (NO) com­
mand, the library is closed, load map closed, free storage released, and con­
trol returned to caller. Otherwise, execution is performed by step 6(b). 

(b) The message "EXECUTION BEGINS" is printed, GETMAIN/FREEMAIN storage 
is initialized, save area set in register 13, and control transferred to loaded 
program via LPSW. 

Disk and Type Output Routine - LDRIO 

FUNCTION - The LDRIO routine creates the load map on disk and types it out at the 
terminal; it performs disk and typewriter output for the LDR. 

OPERATION - The LDRIO routine is entered by several CMS routines. At each entry, 
it writes data for the map on disk (unless the NOMAP option has been specified by the 
user). If the user has specified the TYPE option, LDRIO types out the map at the user's 
terminal. 

At the end of loading, LDRIO closes the map file and returns control to the user. 

327 



Library Search Routine - LIBEPACK 

FUNCTION - The LIBEPACK routine has several entries to set up core-resident 
library directories, release these directories, and search the directorieso 

OPERATION -

Initialization Entry: 

1. A special storage area is allocated and initialized. 

2. The nwnber of libraries specified either by GLOBAL TXTLIB command or LmE 
option is determined and the names processed. 

3. For each library, sufficient storage is allocated to hold its directory and then its 
directory is read into main storage. 

Release Entry: 

For each library, steps 1 and 2 are performed. 

1. The TXTLm file is closed via FINIS. 

2. The main storage area that holds a copy of its directory is released via FRET. 

3. The LIBEPACK special storage area is released via FRET. 

Search Entry: 

1. The reference table (REFTBL) is searched for occurrences of undefined references; 
if none are found, it returns to caller. 

2. If undefined reference is found, each library's core-resident directory is searched 
for the required entry-point. If entry cannot be found, control passes to step 1 
continuing the search of REFTBL, otherwise, to step 3. 

3. The file read pointer and parameter list are set to point to the library and card 
that correspond to the beginning of the CSECT deck that contains the desired entry­
point. Control is returned to caller via special return that continues the loading 
process from specified file. 

328 



Relevant Loader Data Bases 

NAME - SWS Flag Byte 

Bit Number 

o (80) 
1 (40) 
2 (20) 
3 (10) 
4 (08) 
5 (04) 
6 (02) 
7 (01) 

NAME - CONS Flag Byte 

Bit Nmnber 

1 (40) 
2 (20) 
3 (10) 
4 (08) 
5 (04) 

NAME - FLAGS Flag Byte 

Bit Number 

4 (08) 
5 (04) 
6 (02) 
7 (01) 

Meaning 

Absolute load 
TXT cards processed 
SLC card being processed 
END card processed 
REP card being processed 
not processing first ESD field on ESD card 
do not print illegal cards (SINV) 
do not print REP cards (SREP) 

Meaning 

no map option specified (NOMAP) 
PR entries exist 
CO:rvIMON entries exist 
online ioad map (TYPE) 
do not erase old load map (USE, REUSE, START) 

Meaning 

LIBEPACK has been initialized 
Close LIBE call in process 
Undefined references exist in REFTBL 
LIBE search suppressed. 

The next 3 bytes are a pointer to LIBEPACK storage area if it has been initialized 
(bit 4). 

NAME - ESD Card Codes (col. 25 ••• ) 

Code Meaning 

00 SD (CSECT or START) 
01 LD (ENTRY) 
02 ER (EXTRN) 
04 PC (Private Code) 
05 CM (COMMON) 
06 XD (Pseudo-Register) 

329 



ESIDTB Entry 

The ESD ID Table (ESIDTB) is constructed separately for each TEXT deck processed by 
the loader. The ESIDTB produces a correspondence between ESD ID numbers (used on 
RLb cards) and entries in the loader reference table (REFrBL) as specified by the 
ESD cards. Thus, the ESIDTB is constructed while processing the ESD cards. It is 
then used in order to process the TXT and RLD cards later in the TEXT deck. 

The ESIDTB is treated as an array and is accessed by using the ID number as an index. 
Each ESIDTB entry is 16 bits long: 

Bits 

o 

1 

2-3 

4-15 

Meaning 

If 1, this entry corresponds to a CSECT that has been 
previously defined. All TXT cards and RLD cards re­
ferring to this CSECT in this TEXT deck should be 
ignored. 

If 1, this entry corresponds to a CSECT definition (SD). 

Unused. 

REFrBL entry number (e.g. 1,2,3, ••• ) 

Bit 1 is very crucial since it is necessary to use the VALUE field of the REFTBL if 
the ID corresponds to an ER, CM, or PR; but, the INFO field of the REFrBL entry 
must be used if the ID corresponds to an SD. 

NAME - REFrBL Entry 

Byte Name Meaning 

0-7 NAME Symbolic Name 
8 FLAG Flag Byte 
9-11 INFO Necessary Information 
12 Unused (must be zero) 
13-15 VALUE Value of Symbol 

330 



NAME - REFTBL Entry Flag Byte Codes 

Code Translation Action Routine Meaning 

7C 00 XBYTE PR byte align 
7D 01 XHALF PR halfword align 
7E 03 XFULL PR fullword align 
7F 07 XDBL PR doubleword align 
80 05 XUNDEF Undefine symbol 
81 04 XCXD CXD 
82 02 XCOMSET COMMON 
90 06 NIBLK N onobligatoI"""j lli"ldefined 

NAME - REFrBL Info and Value Fields 

Symbol Type INFO Field 

SD (CSECT or START) Relocation -factor 

LD (ENTRY) zero 

GM (COM]\1 ON) Length (max) 

PR (Pseduo-Register) Length (e.g. 4) 

PC (Private Code) Relocation -factor 

symbol 

VALUE Field 

Absolute Address 

Absolute Address 

Absolute Address 

Assigned Value 
(starting from 0) 

Absolute Address 

Entries may be created in the loader reference table prior to the actual defining of 
the symbol. For example, an entry is created for a symbol if it is referenced by 
means of an EXTRN (ER) even if the symbol has not yet been defined nor even its 
type known. Furthermore, Common (CM) is not assigned absolute addresses until 
immediately prior to the start of execution by the START command. 

These circumstances are determined by the setting of the Flag Byte; if the symbol's 
value has not yet been defined, the VALUE field specifies the address of a Pat.ch 
Control Block (PCB). 

331 



NAME - Patch Control Block (PCB) 

These are allocated from free storage and pointed at from REFTBL entries or other 
PCB's. 

Byte 

0-3 

4 - 7 
8 - 11 

12 
13 - 15 

Meaning 

Value of constant [for example, A(EXTRN+4) results in 
constant = 4 ] 

Pointer to first such address constant. 
Pointer to last such address constant. 
Flag byte 
Pointer to next PCB for same external symbol but different 

constant, or zero. 

All address constant locations in loaded program for undefined symbols are placed on 
PCB chains. 

NAME - LIBEPACK storage Area 

0-3 
4 - 7 
8 - 11 

12 - 15 
16 - 23 
24 - 27 
28 - 31 
32 - 35 
36 - 39 
40 - 111 
112-175 

NAME - ESD Card Format 

332 

Column 

1 
2-4 
5-10 
11-12 
13-14 
15-16 
17-64 

(17-24) 
(25) 
(26-28) 
(29) 
(30-32) 

Meaning 

Number of libraries (present max = 8) 
TBLCNT 
Updated TBLCNT during search 
TBLREF, address of REFTBL 
Library name 
Length of dictionary in doublewords 
First location of dictionary in core 
"12" [constant] 
Last location of dictionary in core 
Field 16-39 repeated 3 times for other 3 libraries 
Register save area 

Meaning 

12-2-9 punch 
ESD 
Blank 
Variable field count 
Blank 
ESDID for first SD, XD, CM, PC, or ER 
Variable field, repeated 1 to 3 times 

Name 
ESD type code 
Address 
Alignment for XD, otherwise blank 
Length, LDID, or blank 



NAME - TXT Card Format 

Column 

1 
2-4 
5 
6-8 
9-10 
11-12 
13-14 
15-16 
17-72 

NAME - RLD Card Format 

Column 

1 
2-4 
5-10 
11-12 
13-16 
17-72 

(17-18) 
(19-20) 
(21) 
(22-24) 

Meaning 

12-2-9 punch 
TXT 
Blank 
Relative address of first data on card 
Blank 
Byte count 
Blank 
ESDID 
56-byte field 

Meaning 

12-2-9 punch 
RLD 
Blank 
Data field count 
Blank 
Data field 

Position ESDID 
Relocation ESDID 
Flag byte 
Address to be relocated 

333 



334 



SECTION 6: ClVIS BATCH MONITOR 

The CMS Batch Monitor is a method of providing a high-speed background batch job en­
vironment in a CMS machine. A job stream, consisting of batch control cards (BCC) , 
source decks to be compiled and/or object decks to be loaded and executed, and data, is 
placed in the input device - the tape at address 185, or the card reader at OOC. Assem­
ble, Fortran, pL/I and any legitimate CMS command may be executed in the batch en­
vironment. 

The batch nucleus is constructed by replacing the DEBUG text deck in the normal CMS 
nucleus with text decks of: 

BATCH 
BATBOMB 
BATDECC 
BATJCB 
BAT LIST 
BATPRES 
BATSCTL 
IPL 

main control routine 
ABEND routine 
decode standard OS JCL 
CSECT of standard system values 
data set management 
data set management 
main I/o interface management 
initial-program -load command 

A batch machine should be set up in ep's virtual machine directory to consist of: 

normal unit record equipment, 
core size desired, 
terminal, 
normal CMS system disk 190, 
normal CMS user disk 191, 
small work disk for batch nucleus only. 

The batch virtual machine is logged into CP as any other virtual CMS machine. The 
difference is solely in the construction of the nucleus and the subsequent activity. 

The batch nucleus must be available on a disk other than the normal system disk. Once 
the batch nucleus is IPL'ed, disk-resident commands are read from the normal CMS 
System Disk, 190. 

After IPL'ing the batch nucleus, BATCH responds with READY. The START command 
must then be given from the console. BATCH transfers to BATSCTL to determine the 
input device - tape 185, if ready; if not ready, it defaults to the card reader. If there is 
a job stream in the input device it will be processed until the input device indicates an 
EOF, at which time the message "END OF JOB STREAM" is typed. 

During processing, if a program interrupt occurs, BATBOMB receives control and in­
itiates a core dump to the output device. 

Between each I I JOB card, the batch nucleus re-IPL's itself, and issues a LOGIN 
NO _ UFD command to its P-disk. Notice, no data files will be retained on the P-disk 
during job transition. 

335 



Since all activity is initiated by control cards, no terminal input is necessary, and the 
normal CMS conversational routines are not entered. 

At the end of the job stream, Batch will enter an enabled wait state. It waits for an 
interrupt from its input device. A device-end interrupt on the virtual card reader may be 
caused by XFER'ing a card deck to batch virtual machine. In other words, jobs may be 
sent from any user's virtual machine to Batch. 

It is also possible to run Batch in the CP disconnect mode. To supplement the above 
discussion, refer to the CP-67/CMS Installation Guide (GH20-0857) and CP-67/CMS 
User's Guide (GH20-0859) for an explanation of DISCONNECT and XFER. 

The routine BATCH is entered from INITSUB, if the value V(BATCH) is nonzero. This 
is a method used throughout the CMS nucleus to determine whether BATCH is operating. 
Another method is to test the $BAT-bit in the word EXECSWT in SWITCH. BATCH sets 
this bit on (X'Ol')to signal that the Batch Monitor nucleus is operating. 

On the initial start-up, a READY message is typed. Upon receiving a START command 
from the console, the routine BATSCTL is entered to determine the input device. 
BA').'SCTL does all I/o processing peculiar to Batch; card I/O, printer output, etc. CMS 
will still manipulate the basic disk file I/O. 

From the OOC the function card is scanned, and the appropriate routine given control -
ASSEMBLY, FORTRAN, LOAD, GO, DATA, PRINT/PUNCH, etc. For a COMMAND 
card, the operand becomes the subject of an SVC to CMS; that is the operand is assumed 
to be any valid CMS command. Within the CMS normal I/O packages, tests are made 
to determine whether Batch is active. If so, for any I/O, control is passed to BATSCTL. 

The routine BATBOMB will output a core dump if a program check occurs; BAT LIST 
will print or punch the CMS file, which is the operand of a PRINT or PUNCH control 
card. BAT JCB contains program dependent constants; for example, a time limit per 
job may be set. BATPRES will write a eMS iile onto the Batch P-disk from data sets 
in the input device. 

336 



APPENDIX A: CMS FILE NAlVIING CONVENTIONS 

To make the filenames of CMS source routines more meaningful to the system pro­
grammer responsible for maintaining CMS, a naming convention has been established. 
A routine's function and relationship to other routines will consequently be identified 
by prefixes and suffixes. The naming conventions are: 

device dependent routines prefixed by a code denoting the physical device type: 
e. g., DISK, CONsole, etc. 

device interrupt handlers suffixed by "INT": CONINT 

software interrupts prefixed by "INT": INTSVC 

simulators of OS functions prefixed by , 'SO": SOQSAM 

miscellaneous routines of similar functions prefixed by the same code: 
FREESYS, FREEXTND 

device input/output executors suffixed by "10": TAPEIO 

The following chart will show: 

1. the filename of the source SYSIN deck 

2. the internal entry point(s) or START card label if dissimilar from the 
filename 

3. how the routine is used: 

N - nucleus resident 
NI - nucleus resident during the IPL procedure only - then no longer 

needed 
NS - nucleus reSident, sharable code 
D - disk resident module 
DC - component of a disk resident module 
T - transient module 

4. relationship between Version 3 Level 0 and Version 3 Levell with respect 
to the individual routine: 

S - same, routine is unchanged 
U - updated, the update deck that was used to generate the current 

version of the routine will be supplied. 
UN - updated and renamed. The newly named update deck will be supplied. 

Note: the Version 3 Level 0 source and the Version 3 Levell source 
- prior to applying the update - are identical 

R - replacement, complete substitute for the mentioned Version 3 source 
routines 

337 



RN - rename, the filename of the Version 3 Level 0 source deck was 
changed. 

N - new 

5. a brief comment about each function 

Internal Relation 
External Entry vis a vis 
Filename Point Usage Ver 3.0 Functions 

$ T U execution initiator 
ABBREV N S abbreviation processor 
ACTLKP NS U determine active files 
ADTLKP NS U determine available disks 
ALTER T U change file identification 
AS MDIRT DC R-ASMDIRT ASSEMBLER auxiliary 

directory 
ASSEMBLE D R-ASSEMBLE, 

ASMREAL 
ASMAOl, ASSEMBLER interface 
ASMA02 
ASMA03, 
ASMAFIND 

BATBOMB N S batch monitor component 
BATCH N U batch monitor component 
BATDECC N S batch monitor component 
BATJCB N S batch monitor component 
BAT LIST N S batch monitor component 
BATPRES N S batch monitor component 
BATSCTL N S batch monitor component 
CARDIO CARDRDPH N S reader/punch executor 
CEDIT D U editor for large files 
CLOSIO N S close executor for Unit 

Record Equipment 
CMSCARE T N auxiliary command module 
CMSCONF CPFUNCTN T U virtual CP console function 

executor 
CMSFORM FORMAT D U disk formattor 
CMSIPL IPL T S C MS IP L invoker 
CMSTIME NS R-CMSTIME virtual time accounter 
CNVTFV CVTFV D RN-CVTFV convert fixed/variable 
CNVT26 D S convert 026/029 
COMBINE D R-COMBINE fi Ie manipulator 
COMPARE D U file matchmaker 
CONATTN ATTN NS UN-ATTN attention handler 
CONINT CONSI NS UN-CONINT console interrupts 
CONREAD WAITRD NS UN-WAITRD console input 
CONWAIT NS U console wait 
CONWRITE TYPE NS UN-TYPLIN console write 

338 



Internal Relation 
External Entry vis a vis 
Filename Point Usage Ver 3.0 Functions 

DEBDUIvlF N N debug dump executor 
DEBUG N U problem determination aide 
DISK D U disk utility 
DISKINT N UN-DIOSECT disk interrupts 
DISKIO RDTK/WRTK NS UN-DIO disk I/O executor 
DUMPRST DUMPREST D S dump/restore utility 
DUMPD D S dump disk utility 
DUl\1:PF D S dump file utility 
ECHO D S terminal tester 
EDIT D U editor 
EDITDUAL NS U file eradicator 
ERASE NS U file eradicator 
EXEC NS U exec bootstrap 
EXECTOR D U exec work module 
FILEDEF T R-FILEDEF define file routine 
FINIS NS U file deactivator 
FORDIRT DC R-FORTDIRT FORTRAN auxiliary directory 
FORTRAN D R-FORTRAN, FORTRAN interface 

FORTIO, 
FREESYS FREE/FRET NS UN-CMSFREE system free storage 
FREEXTN EXTEND N UN-CMSEXTND system free storage 
FSTLKP NS U file lookup 
FUNCTAB NS R-FUNCTAB internal function table 
GENDIRT T S aUxiliary direct generator 

LOADMOD/ 
GENMOD GENMOD NS U module manipulator 
GLOBAL T R-GLOBAL library governess 
HNDINT T S handle I/O interrupts 
HNDSVC T S handle SVC interrupts 
IADT NS U in it Active Disk Tables 
INIT N U initializer 
INITIPL TRANSAR, NI R-LAST, 

IPLDISK IPLDISK reads C MS from disk 
INITB67 BARE67 NI R-BARE67 bare CPU initial processor 
INITSUB NI U sub-initializer 
INITSYS SYSGEN NI RN-SYSGEN initializes S-disk 
INTEXT EXTINT NS UN-CMSEXTIT external interrupt 
INTIO IOINT NS UN-CMSIOIT I/O interrupt 
INTMACH MCHINT NS N machine interrupt 
INTPROG PRGINT NS R-CMSPRGIT program interrupt 
INTSECT N N interrupts work area 
INTSVC SVCINT NS R-CMSSVCIT SVC interrupt 
IOFRTAB N N disk tables 
IOERR N N I/O error processor 
IONUTAB D N I/O error tables 

339 



Internal Relation 
External Entry vis a vis 
Filename Point Usage Vel' 3.0 Functions 

IXCBLTP DC S FORTRAN library 
IXCCMS DC U FORTRAN library 
IXCDEF DC S FORTRAN library 
IXCDEFTB DC S FORTRAN library 
IXCDSD DC U FORTRAN library 
IXCFREM DC S FORTRAN library 
IXCGETP DC S FORTRAN library 
IXCRENM DC S FORTRAN library 
IXCRERD DC S FORTRAN library 
IXCTAP DC S FORTRAN library 
IXECMS DC R-IXECMS P L/I library 
IXECLOK DC R-IXECLOK PL/I library 
IXEFILE DC R-IXEFILE PL/I library 
LDR NS U relocatable loader 
LDRIO N R-LDRlO loader I/O executor 
LDRLIBE N R-LDRLIBE loader library processor 
LDRSUBS N R-LDRSUBS loader subroutine 
LDRSYM GETSYM N RN-GETSYM loader symbols 
LISTF T S list files 
LOAD N U load initiator 
LOG N U maintain disk direct 
LOGIN T U login a disk 
MACUB D U macro library 
MAPPRT D U nucleus map 
MOD MAP T U module map 
NUCON N R-NUCONTS nucleus constants 
NUDVEXT N N I/O device tables 
NUSECT N N nucleus work section 
OFFUNE T R-OFFLINE file utility 
OSTAPE D S tape-file utility 
OVERRIDE D U override executor 
OVERSUB DC UN-JASOVER override executor 
PLI D R-PL/I PL/I interface 
PLIDIRT DC U PL/I aUxiliary directory 
POINT NS S sys file manipulator 
PRINTF T S print files 
PRlNTIO PRINTR NS UN-PRINTR printer executor 
QQTRK NS S track manager 
RDBUF NS U basic read executor 
READFST DC U login module 
READMFD DC U login module 
RELEASE T U release user disk 
RELUFD DC U login module 
SCAN N U decipher input lines 
SCSFOR DC S script module 
SCSLNK DC S script module 

340 



Internal Helation 
External Entry vis a vis 
Filename Point Usage Ver 3. ° Functions -
SCSPRT SCRIPT D S script processor 
SOABEND N N ABSTD *sim of OS ABEND 
SOBDAM NS N *sim of BDAM 
SOBSAM NS R-RDWR *sim of BSAM 
SOCNTRL NS R-NTPT, CHECK *sim of NOTE/POINT/CHECK 
SOEOB NS N *sim of end-of-block 
SOLINKS NS UN-LINKAGE *sim of control transfers 
SO MAIN NS RN-STORAGE *sim of SVC 4, 5, 10 
SOOPCL NS R-OPEN *sim of SVC 19, 20, 22: 23 
SOQSAM NS R-GET *sim of GET, PUT 
SORT D U sort data within files 
SORTREE DC S sort module 
SORTSRCH DC S sort module 
SOSVCNU NS N *sim of misc SVC in nucleus 
SOSVCTR T R-SVCCARE *sim of misc SVC in transient 
SOSVCT2 T N-SVCCARE *sim of misc SVC in tran-

sient (con' 
SPLIT D U file utility 
START N S commence execution 
STATDSK STAT T U disk statistician 
STATE NS U file lookup 
SYN T U synonym processor 
TAPE D U tape utility 
TAPEIO T S tape I/O executor 
TAPRINT D S Ii sting tape utility 
TPCOPY D S copy tapes 
TRAP N S interrupt trap 
TRKLKP NS S track management 
TXT LIB D U library processor 
UPDATE D U file utility 
UPDISK NS U disk management 
USE N U load initiator 
WAIT NS S I/O wait 
WRBUF NS U basic write executor 
WRTAPE D U tape write utility 

* "sim of" means "CMS simulation of the OS function " 

341 



APPENDIX B: CMS DIRECTORY 

DISK-RESIDENT ROUTINES 

Each eMS MODULE is the result of LOAD'ing the TEXT (Object) deck of one or more 
source programs, and then executing the GENMOD command. The following is a brief 
description of eMS MODULE's and the TEXT routines they contain. 

MODULE FUNCTION TEXT COMMENTS 

ALTER change file identification ALTER transient 

ASSEMBLE interface, I/O processor ASSEMBLE, see "ASMGEND" 
IEUASM, 
ASMDIRT 

BRUIN interface, language BRUIN, see BRUIN section 
processor BRUINTXT in PLM 

CEDIT file editor CEDIT unlimited file size 
EDITDUAL 

CNVT26 026-029 converter CNVT26 

COMBINE file concatenation COMBINE 

COMPARE file comparison COMPARE 

CVTFV fixed-variable converter CNVTFV 

DISK file util ity DISK transient 

DUMPD disk dump DUMPD 

DUMPF file dump DUMPF 

DUMPREST dump/restore DMPRST can be ~t'3..,rt-3.lone 

ECHO console test ECHO 

EDIT file editor EDIT, in-core editor 
EDITDUAL 

EXECTOR EXEC work routine EXECTOR relocatable module 

FORMAT disk organizer CMSFORM 

342 



MODULE FUNCTION TEXT COMlVIENTS 

FORTRAN interface, I/O handler FORTRAN, see "FORTGEND" 
FORTOUT, 
FORDIRT 

GENDIRT system programmer use GENDIRT used to complete 
only auxiliary directories 

(trans i ent) 

GLOBAL designate libraries GLOBAL transient 

HNDINT alternate I/O interrupt HNDINT transient 
processors 

HNDSVC alternate SVC handling HNDSVC transient 
routines 

IPL disk load simulator CMSIPL transient 

LISTF display user disk contents LISTF, transient 

M..ACLIB macro library manipulator MACLIB 

MAPPRT nucleus load map MAPPRT 

MODMAP module load map MODMAP transient 

OFFLINE unit record utility OFFLINE, transient 

OVERRIDE SVC tracing processor OVERRIDE, relocatable module 
OVERSUB 

PU interface, I/O handler PU, see "PUGEND" 
PLIDIRT 

PRINTF display file DFTNTF transient 

RELEASE release disk RELEASE transient 
no longer needed 

SCRIPT script processor SCSPRT, 
SCSLNK, 
SCSFOR 

SNOBOL string processor SPL1-
ASM,INT, 
EXT,FRE, 
lOS, CTL 

343 



MODULE FUNCTION 

SORT sort utility 

SPLIT file division 

STAT disk accounting 

SOSVCTR disk resident OS SVC 
simulation routines 

SOSVCT2 disk resident OS SVC 
simulation routines 

TAPE tape utility 

TAPEIO tape I/O processor 

TAPR.INT print tape assembly listings 

TPCOPY tape duplicator 

TXTLIB text library manipulator 

UPDATE file changer 

WRTAPE create listings tape 

TEXT 

SORT, 
SORTREE 
SORTSRCH 

SPLIT 

STATDSK 

SOSVCTR 

SOSVCT2 

TAPE 

TAPEIO 

TAPRINT 

TPCOPY 

TXTLIB 

UPDATE 

WRTAPE 

COMMENTS 

transient 

transient 

transient 

transient 

must have used 
LTAPE option 

maintain SOURCE 
code 

tape read only by 
TAPRINT 

Note: A series of E:A"'EC procedures entitled "nnnGEND" is used to produce modules 
and overlay structures for all CMS commands and language processors: 

CMSGEND 
ASMGEND 
FORTGEND 
PLIGEND 

- entire CMS command structure 
- Assembler 
- Fortran 

PL/I 

Also, each language processor will invoke other modules: 

ASSEMBLER - all modules prefixed: "lEU" 
FORTRAN - all modules prefixed: "lEY" 
PLI - all modules prefixed: "IEM" 

NUCLEUS ROUTINES 

The core-resident CMS nucleus consists of many routines. The object (TEXT) decks of 
all these routines are contained in the file "NUCLEUS type", where 'type' is the version 
identification (for example, 3. 1). Filename is the CMS identifier of the Object deck. 

344 



START is the label on the internal START card for the routine. Filename names are 
only given if different from the START label. 

FILENAME START COMMENTS 
(if dissimilar) 

ABBREV synonym or short-name verification 

ABSTD ABEND abnormal job termination 

ACTLKP active file table lookup 

ADTLKP active disk table lookup 

ATTN stack input lines 

INITB67 BARE MACH bare machine initiator 

BATCH Batch monitor control 

CARDIO CARDRD card I/O utility 

CHCK BSAM I/O function 

CLOSIO terminate unit record activity 

CMSTIME CMSTIMER time statistics 

CONSI console, interrupt 

CONWAIFJ clear console activity 

DEBUG programmer aid 

DISKINT DISK disk interrupt handler 

DSKERR disk error handler 

ERASE eradicate disk files 

EXEC command initiator 

FREEXTN EXTEND system free storage handler 

CMSEXTIT EXTINT external interrupt handler 

FCBTAB file control block table 

FINIS close out active I/O blocks 

345 



FILENAME START COMMENTS 
(if dissimilar) 

FREESYS FREE system free storage 

FREEIJST work area 

FSTLKP file search 

FUNCTAB index of nucleus commands 

FVS file management storage 

GENMOD write modules 

GET QSAM simulator 

GETSYM obtain variable symbol 

IADT initial active disk table 

INIT user /terminal interface 

INITSUB initial nucleus at login 

INTIO 10INT I/O interrupt handler 

IPLDISK reads/writes loadable nucleus 

LDR XEQQ relocatable loader 

LDRIO loader I/O uiility 

LDRSUBS loader utility routines 

LDRLIBE LIBE loader library search 

SOLINKS XCTL simulation for SVC 6, 7, 8, 9, 3 

LOAD loader initiator command 

LOG activate file maintenance 

NTPT BSAM I/O function 

NUCON NUCON nucleus constants, SYSREF device 
table 

OPEN activate data control blocks 

346 



FILENAME START COMMENTS 
(if dissimilar) 

POINT CMS file management 

INTPROG PRGINT program interrupt handler 

PRINTR printer I/O utility 

QQTRK assigns FCL blocks 

RDBUF basic file read operation 

DISKIO ADTK eMS disk JiO executor 

RDWR BSAM simulator 

READFST read FST 

READMFD read MFD 

RELUFD release UFD 

SCAN aiign input iine 

STORAGE simulation of SVC 4, 5, 10 

START execution 

STATE verify file existence 

SVCFREE path-way to FREE 

INTSVC SVCINT SVC interrupt handler 

SVeSECT data section for sve calls 

SWITCH data control section 

SYSGEN system directory initializer 

TPUST I/O data list for tape routines 

TRAP external interrupt user routines 

INITIPL TRANSAR end-of-nucleus storage 

TRKLKP track allocation 

TYPE output terminal I/O 

347 



FILENAME START COMMENTS 
(if dissimilar) 

UPDISK update UFD onto disk 

USE loader continuation 

WAIT CMS I/o interrupt handler 

WAITRD issues terminal read 

WAITREG dummy section 

OVERNUC override initiator 

WRBUF basic file write routine 

TRANSIENT ROUTlNES 

Module Text Function 

ALTER ALTER change file identification 

CPFUNCTN CMSCONF invoke virtual console function 

DISK DISK disk-card utility 

GENDffiT GENDffiT system programmer tool 

GLOBAL GLOBAL alter library reference lists 

HNDINT HNDINT specify alternate I/O interrupt routine 

HNDSVC HNDSVC specify alternate SVC listing routine 

IPL CMSIPL initial-program-Ioad simulator 

LISTS IJSTF list use=disk contents 

LOGIN LOGIN initiate disk processing 

MODMAP MODMAP type load map 

OFFIJNE OFFIJNE disk-card-printer utility 

PRINTF PRINTF type file contents 

348 



Module Text Function 

RELEASE RELEASE terminate disk processing 

STAT STATDSK type disk statistics 

SOSVCTR SVCCARE OS simulation routines 

SOSVCT2 SOSVCT2 OS simulations routines 

SYN SYN set user abbreviation 

TAPEIO TAPEIO ~<:>1'"\O T/" h<:>nrllo .... """"1-''''' ... , '-' .L.LLoIo.L"''-'I.'&''-'~ 

349 



NAME OF 
PROGRAM 

ACTlKP 

ADTlKP 

-""""-

AL TER 

-"" 

DISKIO 

---
DISK 

DSKERR 
--"------, 

ERASE 

FINIS 

_. 

APPENDIX C: CMS FILE SYSTEM CROSS-REFERENCE LIST (PAGE j OF 3) 

ENTRY 1/0 MACROS 
POINTS REFERENCED 

ACTlKP AFT 

ACTNXT AFT 

ACTFREE AFT,ADT,FSTB 

ACTFRET AFT 

ADTlKP ADT 

ADTNXT ADT 

ALTER ADT,AFT,FSTB, 
FVS 

RDTK ADT,DIOSCT, 
FVS 

WRTK SAME AS RDTK 

DISK FSTB,FVS 

DSKERR ADT,DIOSCT ._--_. 
ERASE ADT,AFT, 

FSTB,FVS 

FINIS ADT,AFT, 
FSTB,FVS 

TFINIS SAME AS FINIS 

DISKDIE (NONE) 

CAll .S 

FRE r: 

FRE T 

ACTL KP 
NIS TFI 

ADT 
FRE 

lKP 
T,W 

"-""-""""""-""""-"-"""---"--"""---"-"-

,ADfLKP,FSTlKW, 
,UPDISK 

-'-'-'-

,D<;KERR,FREE 
AIT 

ERAS FINIS,FSTlKP, E, 
JF, S 
JF 

RDBl TATE,UPDISK, 
WRBl 

--"-"--
ACT 
DIS 
FST 

FRE 
KDI 
lKW 
HS TFIr 

---

"" " """-"""-"-"------""---

.. .. __ ._, .---.-~ .. " .. -.---"--.--.-.------... --"-.. -

T,ACTlKP,ACTNXT, 
E,FREE,FRET, 
,QQTRKX,RDTK, 
,TRKlKPX,UPDISK 
"-""""----""-""------

ACT FRET ,ACTLKP,DISKDIE, 
ERAS F~EE,FRET,FSTLKW, E, 

<,U 
LKP 
K,WR 

RDTI PDISK,WRTK 
ACT ,DISKDIE, FSTLKW, 
ROT TK,FRET 

.... -.--.------"~- -.-.~ .. ~~-.-"-"---------

CALLED BY (WHERE KNOlm) 

ALTER,ERASE,FINIS,POI~T,RDBUF, 
STATE,STATEW,TFINIS,WRBUF 

ERASE 

POINT,RDBUF,WRBUF 

ERASE,FINIS,WRBUF 

ALTER,FORMAT,FSTLKP/FSTLKW,LISTF,lOGIN, 
RDTK/WRTK,RElEASE,STAT,TAPE,WRBUF 

FSTlKP/FSTlKW,lISTF,lOGIN,STAT 

BRUIN,CEDIT,CNVT26,COMBINE,CVTFV, 
EDIT,MAClIB,TXTlIB,UPDATE 

ERASE,FINIS,FORMAT,RDBUF,READFST, 
READMFD,TFINIS,WRBUF 

FINIS,FORMAT,READMFD,TFINIS,UPDISK,WRBUF 

USER 

RDTK/WRTK 
r-"------"" _m_ 

ASSEMBlE,BRUIN,CEDIT,CNVT26,COMBINE 
CVTFV,DISK,EDIT,FINIS,FORTRAN,GENMOD, 
lISTF,lOAD,MAClIB,MAPPRT,OFFlINE,PlI, 
SCRIPT,SORT,TAPE,TXTlIB,UPDATE 

f--

GENMOD,lOADMOD,lOGDISK,UPUFD, AND 
ALL COMMANDS WHICH USE RDBUF g WRBUF. 

ALTER,ERASE 

ERASE,FINIS,TFINIS,UPDISK,WRBUF 



APPENDIX C: CMS FILE SYSTEM CROSS-REFERENCE LIST (PAGE 2 OF 3) 

NAME 0 F ENTRY I/O MACROS 
M POINTS REFERENCE CALLS CALLED BY PROGRA (WHE :RE KNOWN) 

CMSFOR 

FSTLKP 

GENMOD 

INIT 

INITSU 

LISTF 

LOG 

LOGIN 

POINT 

QQTRK 

RDBUF 

M 

B 

FORMAT 

FSTLKP 

FSTLKW 

GENMOD 

LOADMOD 

INIT 

-
INITSUB 

LISTF 

LOGOUT 

KILLEX 

KILLEXF 

LOGIN 

POINT 

QQTRK 

QQTRKX 

RDBUF 

ADT,FVS 

ADT,FVS 

ADT,FVS 

FVS 

FVS 

(NONE) 

ADT,DIOSCT 

ADT,FVS 

ADT,FVS 

ADT,FVS 

ADT,FVS 

ADT,FVS 

AFT,FVS 

ADT,FVS 

ADT,FVS 

AFT,FSTB,FVS 

ADTLKP,FREE,FRE 
RELUFD,UPDISK,W 

ADTLKP,ADTNXT 

ADTLKP,ADTNXT,F 

ERASE,FINIS, 
START,WRBUF 

FINIS,RDBUF,STA 

FORMAT,FSTLKP,I 
LOGIN,READFST,U 

IPLDISK,BAREMAC 

ADTLKP,ADTNXT,E 
FINIS,WRBUF 

LOGDISK 

LOGDISK 

LOGDISK 

ADTLKP,ADTNXT,F 
FRET,READFST,RE 
RELUFD,UPDISK 

ACTFREE,ACTLKP, 

TRKLKP,TRKLKPX 

TRKLKPX 

T, 
RT 

RE 

TE 

NI 
PU 

H, 

RA 

RE 
AD 

FS 

ACTFREE,ACTLKP, 
FRET,FSTLKP,RDT 

FR 
K 

-
RDTK 
K 

E 

TSUB 
FD 

SYSGEN 

SE, 

E, 
MFD, 

TLKP 

EE, 

INIT,USER 

DISK,INIT 

ALTER,ERA 
TAPE,TFIN 

USER, AND 
WHICH GEN 

LINKAGE,S 

IPL CMS, 

INIT 

USER 

USER 

--
IT,RDBUF,STATE,TAPE 

INIS,STATEW, SE,F 
IS, W~ 

EXEC 
ERATE 

(BUF 

PROCEDURES 
: MODULES 

VCINl " $ 

IPL, IPL 190 

--

--

CONS I, DEB' UG 

WRBUF 

INIT, OR 

ASSEMBLE, 

WRBUF 

ERASE,WRB 

LOADMOD, 
WHICH REAl 

USER 

CEDIl ,EDIT 

UF 

~ND ~ 
) CMS 

,LL PROGRAMS 
FILES 

--



APPENDIX C: CMS FILE SYSTEM CROSS-REFERENCE LIST (PAGE 3 OF 3) 

NAME OF ENTRY I/O MACROS 
PROGRAM POINTS REFE,RENCED CALLS CALLED BY (WHERE KNOWN) 

--1--"""'"-'-'-'---""---'--'----'"---"---'-1--' 

READFST READFST ADT, FVS, FREE,FRET,RDTK,READMFD INIT,LOGIN,SYSGEN 
-- r--'" 

READMFD READMFD ADT,FVS FREE,FRET,RDTK,WRTK READFST,LOGIN 

RELEASE RELEASE ADT,FVS ADTLKP,CPFUNCTN,RELUFD USER 
---,---

RELUFD RELUFD ADT,FVS FRET FORMAT,LOGIN,RELEASE 

STATDSK STAT ADT,FVS ADTLKP,ADTNXT USER 

STATE STATE ADT,AFT,FSTB, ACTLKP,FSTLKP LOADMOD, AND OTHER PROGRAMS WHICH 
FVS CHECK THE CHARACTERISTICS OF A FILE 

STATEW SAME AS STATE ACTLKP,FSTLKW OFFLINE 
--

INITSYS SYSGEN ADTS (ADT) FREE,READFST INITSUB 

TAPE TAPE ADT,FVS ADTLKP,ERASE,FINIS USER 
FSTLKP,FSTLKW,RDBUF 
UPDISK,WRBUF 

TRKLKP TRKLKP ADT QQTRK,UPDISK,WRBUF 

TRKLKPX ADT ERASE,QQTRK,QQTRKX,UPDISK,WRBUF 
-

UPDISK UPDISK ADT,FVS DISKDIE,FREE,FRET, ALTER,DISK,ERASE,FINIS, 
TRKLKP,TRKLKPX,WRTK FORMAT,LOGDISK,LOGIN,TAPE 

UPUFD FVS FINIS INIT,ASSEMBLE,FORTRAN,EXECTOR 

LOGDISK ADT,FVS FINIS,UPDISK LOGOUT 

WRBUF WRBUF ADT,AFT,FSTB, ACTFREE,ACTFRET,ACTLKP, GENMOD, AND ALL PROGRAMS 
FVS ADTLKP,DISKDIE,FREE, WHICH WRITE CMS FILES 

FRET,FSTLKW,KILLEXF, 
QQTRK,QQTRKX,RDTK, 
TRKLKP,TRKLKPX,WRTK 



I FVS 

L-o 1 DISK a SEG 11 

40
38}----------.J REGSAV3 

181r------------R-w-FS-T-R-G----------~11 
col~ ADTFVS _ 
C8r-------------------------------~ 

REGSAVfl 

100 
108 

140 

148 
IliO 
158 

160 
168 

170 
178 

180 

188 
190 

198 
lAO 

IA8 

IBO 

IB8 

ICO 

IC8 

100 
108 

lEO 

IE8 

IFO 

200 I 

V (ACTLKP) 

V (ACTFREE) 

V (ADTLKP) 

V(FSTLKP) 

V(RDTK) 

V(TRKLKP) 
V(QQTRK) 

V (AOTLKW) 

V [TYPSRCHj 
V (KILLEX) 

V (ROBUF) 

V (FINIS) 

v (STATEW) 

6~li3li 

V (FREE) 

V (FRET) 

JSR I 

8", 
FVSOSKA 

RWCNT 

AOTADD 

I ERRCOO III 
REGSAVI 

I ERRCOD I 

I V (ACTNXT) 

Y(ACTFRET) 
I V(ADTNXT) 

V(FSTLKW) 

V(WRTK) 

V (TRKLKPX) 
V (QQTRKX) 

V(ERASE) 

V(UPOISK) 
V (TFINIS) 

v (WRBUF) 

v (STATE) 
v (POINT) 

4 

I~ 

JSRII 
RWMFD 

4 
OSKLOC 

DSKADR 

FINISLST 

1 FFF 
! - - I -- I .. I II n I 

208 I "F~ i ""0 ISIGNA,-! BiJs'Y 
210 I EYT IFJ Ai' I FV" I ERS 

!tx I FLAG 

FLAGISAVE iFLAG I FLAG i F\lSERASjil 

218 

220 

228 

230 

238 

140 

FYSERASI 1 FVSERAS2 

FVSFSTN 

FVSFSTT 

FVSFSTDT 1 FVSfSTWP 1 FVSFSTRP 

I I FYSF I FYSF I FVSF FVSFSTM FVSFSTIC STCL STFV STFB 

FVSFSTIL ! FVSFSTDB J FVSFSTYR 

!48 ... 1 ___ F_V_S_F_ST_A_O __ ....J. ___ FV_S_FS_T_A_C __ ...... 

NOTE: 

ZEROS ARE WRITTEN: ~ 

FILE SYSTEM CONTROL BLOCKS 

ACTIVE 
FILE TABLE 

MASTER 
FILE DIRECTORY 

OA [FSTH) 

i~~~A~-
-------- ....L.: ___ 

DA [OMSK EXTENSIONS) 
", (IF ANY) 

o AFTCLA r 
AFTDBA 

r------r-A-F-T-PF-S-T-,--A-F-T-IN-,--A-F-T-IO--~J 

o 
8 

10 

18 
20 

~l 
301 

L-2B I 
J. 

AFTO 

FILE STATUS 
TABLE BLOCK 

AFTN 

AFTT 

1 AFTWTP J AFTWRP 

AFTM 1 AFTIC ~ AFTFCL1AFTFV~ AFTF B 
AFTIL I AFTOBC I AFTYR 

SSTAT 

1 FSTSIZE FSTCOUNT·L 

FSTB I 

FSTB2 

FSTBL 

SSTATEXT , I 

168 

170 

178 

QTUSEOP 

LASTRK 

1 
1 
I 

NUMTRKS 

QTLEFTP 

II I NUMCYLP 

OMSK 180 

2~0}----------------------~~U~N~IT~T~Y~PE~f 
258 ENTIRE QQMSK } 
328r ... ______________ -fI--------------~ 

I 
ACTIVE 

DISK TABLE 

~~I--------~A~OT~I~D--~IA~D~T~F~LG~3~I~A~D~T~F~TY~P~ 

~ I A'''·O A A01"PTR t 

LI~ 
18 

20 
28 
30 

38 

40 

48 

50 

58 
60 
68 

DO 

AOTFDA 

AOTMFDA 

ADTFSTC 
ADTCFST 
ADTNUM 

ADTLEFT 

ADTCYL 

ADTMSK 

ADTPOMI 

ADTPQM3 
ADTLFST 

~, 

AOTMFDN 

AOTHBCT 

AOTCHBA 
ADTIST 
AgTUSED 

ADTLAST 

ADTI ADn ADT II ADT 
M MX FLA61 FLAG 2 

ADTQOM 

ADTPQM2 

ADTLHBA 
ADTNACW ADTRES 

ADTT 

ADTS 

~~ 
20 

28 

30 
38 

40 

48 
~ 

~8 

60 

68 
70 

78 

80 
88 

CO 

C8 

SEEKADR 

LASTCYL 

DEVTYI'[ DIOFLAGi 

FREERO 

RISAVE 

SAVECC 

~~ I DKFPKEY 

60 

70 
7B 

80 I
:~ 

IONTABL 
OLDEST 

NEXTO 

10PSW 
10CSW 

HOLD 

WAITREG 

DIOSECT 

100LO 
OIOCSW 
PWAIT 

I QQOSKI 

CCWI 

CCW2 
CCW3 

RWCCW 

CCWNOP 

IOCOMM 
SENCCW 

1 LASTHED 

SENSB 
DOUBLE 

! ERRCODE 

I OIOFREE 

j R2SAYE 

I DKIONORM 01(100£ 

D!CSF!' 
OKTIC 

10lSECT 

10SAVE 1 

VSTRANGE 

~--------------------------~l 88 

I-------------IT I I ! 
r------------------------;I ~~ ______________________ ~l 

118 I 
AOTA 

180 I 
ADTB 

IE81 

o 1 
L FLAG 

~ 

LOADER TABLE 
ENTRY 

NAME 

INFO "1 

-------FLAG 
7C - XBVTE 
70 - XHALE I 

f~ - XFULL 
~- AU ... 
B0- XUNDEF 
81 XCXD 
82- XCOMSET 
9Jii1 N1BLK 

T ADTC r 
J 

VALUE J 
PRGSECT 

DEBPSW 1 PICADOR OPSW 

28 TEMPOLD TEMPNEW 

30 RI3AREA PSAVE 

r 
CMS BLOCi( DiAGRAM 

VERSION 3 LEVEL I 

353 

I 

I 
L....-

I 

SYSREF 

0 v (FYS) 

4 V (BUFFER) 

B V(CMSOP) 
C 

10 
14 

18 

V (DEVTAB) 

I 
V (FSTLKP) 

I Y(GETCLK) 

V(GFLST) 

IC V(FSTLKW) 
20 V(PIE) 

24 V (tADT) 

2B V(ADTP) 

2C V(PRTCLK) 

30 V(IOERRSUP) 
34 Y [RDTK) 

38 Y [SCAN) I 

3C It-. A(SSTAT) I 
40 V (ADTT) 

44 
48 

4C 

~ 

="4 

V(SWITCH) 

I 
V(TABEND) 

V(ADTS) 

V(BTVPLIN) v, FREECBUf} 

58 V(WRTK) 

liC V (LNKLST) 

60 V (STRINIT) 

64 Y(DUMPLI$T) 

6B V(FREE) 

6C V (FRET) 

70 V{SETCLK) 

74 V(TXTLlBS) 

78 V (NUMTRKS) 
7C v (DMPEXEe) 
80 V(FEIBM) 

84 V (DIDsEeT) 

B8 V(OSTABLE) 

8C V(USVCTBLI 

90 V(MACLlBL) 

V (MACSECT) -94 

9B~I---V-(-SV-C-S-E-e-T~)~~ 
9C 
AO 

V(ADTLKPj 

A4 
A8 

AC 

BO 
84 
B8 
Be 
CO 
C4 

CB 

CC 
DO 

04 

08 

V(UPUFD! 

It-. A(SSTATEXT) 
V(OSRET) 

Y (CMSRET) 

V[NOTRKST) 
V(EXEC) 

Y[START) 
v COMBUF 

V(ADTLKW) 

YIUSA BREVI 
V{EXISECT) 

V(TBL23111 
V(TBL2314) 

V(SCBPTR) 

*-It A(USER I I 
..... it A{USfR2) 

It.-lt A(USER3) 

1 

0 
8 

38 
40 

48 

50 

58 
60 

68 
70 

78 

80 

EI 
A8l 

Dof 

0 
8 

10 

18 
20 

28 
~o 

38 
40 
4B 

RELND 

PBLDL 

DCB 

Mzeo 

USER , 
FCBINIT 

SIMULATED OS 
CONTROL BLOCKS 

CMSCVT 

I eVT 

I DATE 

1 EXIT J BRET 

NUCB 

OPTi!ll 

CMseB 

I FCBPRDC 
FCBDD 
FC80P 

FCBDSNAM 
FeBDSTYP 

FCBDSMD I FC81TEM 1 FCBBUFF 
FCB8YTE I FCBFORM I FCBCOUT 

FCB READ ! ~e l~~ !FeBXTENT 

- " NO, uSED 

i 

I 
1 

r 

~r-----F-C-B-K-E-YS----~----~:~~~:~:~~~~--~ 
60~----------~~~~~--_.~~-_1 
68 

78 

J 
0 JNI 

8 JI 
10 CLiI 
18 

20 NRM 

28 JSA 

30 NRM 

STI !loI 
:t.. 

160 Moe 
16B DUM ;;:5 
180 
188 ADOII 

190, 

0 JSINDJ DSF 

8 
10 Ol 

18 NRM 

20 

60l-

801r-----­
l' 

: DEBOPATB I~ ~ 
98 10BNXTAD 10BECB 

AO DEBDCBAD 10BECBPT 10 KEYLE 
A8 10BCSW 18 BUFL 

BOt===~120B~S~T~A~R!T========~1~0!B~DC~B~P~T=====t--------

EO 
E4 
EEl 

EC 

FO 

It-M A (USEI'!4) 
v (!ONTABl) 

EXISECT 2O~ 
28 

'---------·0 1 EXSAVE 1 30 O~, GS If 
I 

, -
Y(SYSCTL) 

V (FCBTABI 40 
48 
~ 

58 
60 
68 

A8 
BO 

B8 
CO JR III 

TYP LIST 
TlMCCW 

TIM CHAR 

SCAW 

I 
EXSAVE I 
EXT PSW 
SAVEXT 

EXTRET 

I. 

TiM INIT 

JR I 

28 

30 

30 

38 

40 

48 

S'I 
WCP!?lWCPI 

EC 

DIRECT 

~( 48 

50~ 
58~ 



----, 

L 0 

SYSREF 

v (FVS) 

4 V (BUFFER) 

8 V(CMSOP) 
C V (DEVTAB) 

10 1/ (FSTLKP) 

14 V(GETCLK) 

18 V(GFLST) 
IC V(FSTLKW) 

20 V(PIE) 

24 

28 

2C 

30 

V (lADT) 

V(ADTP) 

I I V(PRTCLK) 

V{IOERRSUP) 
34 V (RDTK) 

38 V(SCAN) 

I 
3C 

40 

44 

I 

48 
4C 

!IO 
54 
58 

A(SSTAT) It-.. 

V(AOTT) 

V(SWITCH) 
V(TABEND) 

I I 
V(ADTS) 

V(BTVPLlN) 

V(FREEDBUF) 
V(WRTK) 

5e V (LNKLsTl 
SO 

l 64 
68 

ie 
70 

I I 74 

78 

V(STRINITl 

V (OUMPLISTl 
V(FREE) 

V(FRET) 

V (SETCLK) 
V(TXTLlBS) I I 
V(NUMTRKS) 

7C V (OIoFEXEC) 
80 V (FEIBM) 

84 V (DIDSECT) 

88 V(OSTABLE) 

8C V (USVCTBL) 

90 V(MACLIBL) 

94 V (MACSECT) ~ 
98 V(SVCSECT) ~ 

9C V(ADTLKP) 
AO V(UPUF~ 

A4 "-II A(SSTATEXT) 
A8 V(OSRET) 

AC V (CMSRET) 

SO V(NOTRKSTl 
B4 V(EXEC) 

B8 V(START) 
DC V COMBUF 

CO V(ADTLKW) 
C4 V(USA BREV) 

C8 V(EXISECTl ~ 
CC V(TBL2311) 

DO V(TBL2314 ) 

04 V(SCBPTR) 

08 it-It A(USER/) 
DC "-II A(USER2) 
EO 11-" A (USER3) 

E4 11-. A (USER4) 
E8 v (IONTABL) 

EC V (SYSCTL) 

FO V (FCBTAB) 

0 

8 

38 
40 

48 

50 

58 
60 

68 

70 

78 

so 
as 
90 
98 
AO 

A8 

DoI 

01 
8 

10 

18 
20 

28 
30 

3B 
40 
48 

50 
58 
60 

68 

RELND 

PBLDL 

DCB 

MZCO 

USER , 
FCBINIT 

SIMULATED OS 
CONTROL BLOCKS 

CMSCVT 

CVT 

DATE 

EXIT I BRET 

NUCB 

OPT"1 

CMSCB 

I FC8PRDC 
FCBOD 
FCBOP 

FCBDSNAM 
FCBDSTYP 

FCBDSMO I FCBITEM I FCBBUFF 
FCBBYTE I FCBFORM I FCBCOUT 

FCB READ I ~e ,rggE FC8XTENT 

NOT USED 

I FCBRI3 
FCBKEYS I FC8PDS 

JFCBMASK 

JFCBCRDTI JFCBXPDT t~8'11~~ 

J.. 

r 

I 

70 a.::~~DI Eir~ JFC JFC IXJJ~T JFCBUFL 
EROPT KEYLE 

I 

78 
d;8Ti(CONT) FCBDSORG FCB JFC FCBBLKSI RECFM DPTCO 

FCBWIX DEB ~ 80 FCBLRECL IOSW LNCTH 

88 DEBTCBAD 

90 DEBOFLGS DEBOPATB 

98 108NXTAD 10BECB U AO DEBDCBAD 10BECBPT 
A8 10BCSW 

DO 10BSTART 10BDCBPT 

EXISECT 

or EXSAVE 1 
40 TYP LIST 

48 TIMCCW 

50 TIM CHAR 

58 SCAW 

60 TIM INIT 

68 EXSAVE I 

A8 EXT PSW 

80 SAVEXT 

B8 EXTRET 

CO JR III JR I 

SVCSECT 

0 JNUMB I JFIRST 

8 JF4 JLAST 
10 CLiLOOP 

iii i INDEX 
20 NRMOVR I ERROVR 

28 JSAVDV 

30 NRMSAV 
J. 

1101 
l' 

STACK .J, 

160 MOD LIST 
168 DUMCOM 
170 SSMON I ZERO 3 1 TRANSRT 

178 ITRAN"SK ADTRANS 

180 TEMP "2 
188 AOOVRSUB ADOVRRID 

190, BLK I . 
~ 

CMSSAVE 

0 1 J5!NO I OS FLAG I CHWRD I CALLER 
, 

8 CALLEE 
10 OLD SVC PSW 
18 NRMRET ERRET 

20 CPREGS Rill - R 15 

I 60! FPREGS Fill - F6 

801 } WORK AREA 

l' 

DCB 

} 0 RELAD .1 KEYLN FOAD 

8 1 DVTBL 
10 I TRBAL I 

} 10 KEYLE 1 BUFCB 

18 BUR DSORG I I08AO 

20 I 

} 28 

30 OFLGS I IFLG I MACR I 

28 

I-----------i } 30 

30 

38 

49 

4S 

50 

58 

~ _ _r~~I} 
~-'----+-----=-=:::-------1 } 

t------=,::;::~~--;I } 

E08W 

DIRECT POINT 

EOSAO RECAD 
QSWS EROPT 

PRECL EOB 

CM S CONTROL BLOCKS 
LIBSECT 

l[~""~~l 
I I 

I 
c.u J 1Il14.\JL.IOL 

68 I TXTLIBS . 

r 
I 

I 

BO I PRHOLD 

I 
NUSECT 

OPSECT 

• 0 PLIST (CMSOP) 

8 FILENAME 
10 FILETYPE 
18 FILEMODE I FILEITEM I FILEBUFF 

I 20 FILEBYTE FILEFORM -T FILECOUT 
28 FILEREAD ! SAVERI4 
30 SAVER IS SAVERf 
38 SAVERI FCBIO 

DECB 40 CMSNAME 

I CONREAC SOECB 48 
0 

50 I CONRDBtF 4 TYPE LNGTH 
58 CONROCOD I CONROCNT I NUMCH DCBAD 8 

INPBUF 60 
C AREA 

10 10BPT 
14 KYAD 

EO WAITLIST 
18 RECPT 

E8 CONWRITE 
FO CONWRBlII" 
F8 CONWR COD I CONWRCNT READLST 

100 ROBUFF 
108 RDCCW I RDCOUNT PUNCHLST 
110 PUNBUFF 
"0 FUNCOiiillT PRtNTLST 
120 PRBUF 

DEVICE INTERFACE 
12B PRCNT TAPELIST 

DISK 
130 TAPEOPER 
138 TAPEDEV 
140 TAPEMASK I TAPEBUFF TAPESIZE 

ACCESS METHOD 14B TAPECOUT CLOSIO 
COMMON INTERFACE 150 CLOSIOOV 

15B 

ISO RDSYS 
FOUNDATION EXTENSION 

178 IwRSYS FOUNDATION 

BEFORE OPEN 
l 1 

FOUNDATION 190 EX LEVEL EXFI 
AFTEROP£N 198 EX NUM EXAOD 

lAO OVER NUM OVER ADD 
QSAM-BSAM- BPAM 

IA8 DUMPUST ( GR015 ) L0C025S 
COMMON IBO FIRSOMP LASTOMP 

INTERFACE IB8 FRS06 DUMPTIT 

8SAM-SPA" FCBTAa (FCBHEAOI I 
FCBNUItl 

INTERFACE ICO (FCBFIRST) 

QSAIII 
INTERFACE 

o 

8 

10 
18 

60 

S8 

70 

7B 

NUCON 

LSTSVC 

USFL SWFORT 

FORTCOMF X'8~' 
FORTEXEC X'IIlB' 

STADoR 

TBLNG I TBENT 

CMS AREA 

LSTBEG I 
GFLST (FST FREE) I 

FRELST J 

CORESIZ 

SWITCH 

SWASM I SWPLI sweOB 

ASMCOMP X '81/1' I PLiCOMP X '811l' 
BLDLSWT X'10' I PlIEXEC X '0S' 
DYLO X'08' 
DYI.I80 X'fJ4 
DYLIBNOW X '''2' 
MNSO x',,' I 

--
LDRTBL 

LNKLST (CIiNPTR ) 

OEVEXT 

LENFRE 

OSAREA 

~~l---------------L-O~C~C~N~T---------------P-S~W--------------L=~~S:~:~~~:~------------~l' 
08 

EO 

LOWEXT i1iMAiN I 

ES 
FO 
Fe 

roo 
108 

110 

118 

120 

128 

130 

138 

IPLDEV 

I 
I 

NUMFINRO 

SYSDEV SYSFLAG 

BARECPU X'8~' I 
BATCHMON x'~' 
RDMSG ~:~:: I KLOYR 
INEXEC X'~'1 NDIMPEX x'III4' 
RELPE X'~2' 
MRElPG X'I/II' 

VIRTIME 

WAITCON 

PENRDADD 

LST FINRD 
CONFLAG 

PNRD X'8jt' 
KTBIT X'4' 
KEBIT X'291' 
REDBIT X'lji1' 

EMSSBIT X 'Ills' 
NMSGBtT X'jjJ4' 
XERMSG X'jjJ2' 

ALDELTAB 

SYS FLAGJ 10TYPE EXECSWT 

ERPSTAT X 'atJ' C· CLOSE $ EOS X"'4~' 
NOUPD X '491' E- NOTE $ BAT X '21" 
NOOATIM X '11/1' G-GET $ JTERM X '1111' 

r - POINT 

I 

$ LOAD X 'liS' 
J-OPENJ $ NONX X '1114' 
K· CHECK $ DUMP x'j1S2' 
L-SVC'S 4,5,10 $ INEX x' jil1' 
M-WTDR 

N-WTO 

o -OPEN 
P -PUT 
R -READ 

T -TCLOSE 

CPUT!ME 
CONGEN (OIEPSW) 

CCWS 

CCWNOP 

WAITLST 

NUMWRTS J KELIMIT 
FSTFINRD 

CURIO 
ATSGN CNTSGN I ENDlIN j EDBKSP I EOTAB 

I STDELTAB 
AD IN TAB AOOUTAB 140 ~ 

148 1~ ______________ ~R=D=Bu~F~s~ __________ ----J-__ ~ROB~u~F~2~~ __ ~R~D=B~UF~I~--~---~RD~B~u~F __ -11 

'" 1~------------~S~TN~X~T~A~O~----------------------------~S~T~K~8~U=F----------------1I 

300 

30S 
310 

318 

320 
328 
330 
338 
340 
348 

350 

358 

36B 

378 

3S0 

398 

3AO 

o 

CONSOLE 

DDISI( 

CREADR 

PRINTER 

TAP 2 

BDISK 

DEVADDR FLAG 

A (PROCESSING ROuTINE) 

DEVTAB 

J SD/SK 

I TOISI( 

J CPUNCH 

J TAP I 

I ADISK 

J CDISK 

I TA8END 

I DEVICE 

DEVTAB ENTRY 

SYMBOLIC NAME 

I 

I 
i 
I 

I 
I 



INDEX 

Abbreviations 74, 193 
ACTFREE routine 266 
ACTFRET routine 268 
Active Disk Table (ADT) 31, 34, 216, 270 
Active File Table (AFT) 23, 26, .27, 34, 

218, 264 
ACTLKP routine 264 
ACTNXT routine 265 
ADTLK:P routine 270 
ADTNXT routine 271 
ALTER 87 
ASSEMBLE 138 

I 
BARE67 function 308 
B3tch monitor 3, 335 

I 
BLIP subroutine 211 
BLIP 178 

I 
Block numbers 31-32 
BRUIN 144 

I CARDIO routine 278 
CEDIT 90, 93 
Chain link 21-24, 32 
CHARDEF 178 
CLOSIO 90 
CLROVER 132 
CMS command overview 1 
CMSYSREF macro 16, 17 
CNVT26146 
COMBINE 91 
COMPARE 147 

I 
CONREAD, see WAITRD 
CONWAIT function 285 

I CONWRITE, see TYPLIN 
CPFUNCTN 178 
CPNMON/CPNMOF subroutine 206 
CVTFV 148 
DEBUG 133 
DE FINE subroutine 207 
·DEFTFLV function 308 
DIAGNOSE instruction 179-180 
DIAGNOSE I/O 276 
Data block formats 23, 223, 229 
DillE CT I/O - see DIAGNOSE I/o 
DISK 150 
Disk address formats 29-32 
Disk labels 159-160, 163-164 

I 
Disk resident routines 342 
DSDSET subroutine 208 

DUMPD 152 
DUMPF 153 
DUMPREST 154 
ECHO 155 
EDIT 93 
ERASE subroutine 208 
ERASE 98 
EXEC 119 
External interrupts 84 
FILEDEF 101 
File management 16, 215, 223, 240 
File Status Table (FST) 19, 20, 21, 

25, 220, 247 
FINIS function 106, 232 
Fixed variable storage (FVS) 221 
FORMAT 155 
FORTRAN library 206 
FORTRAN 140 
FREE function 213 
Free storage 8-13, 213 
FRET function 213 
FSTLKP routine 247 
FSTLKW routine 249 
GENDffiT 165 
GENMOD 120 
GETCLK function 304 
GETPAR subroutine 209 
GWBAL 124 
HNDINT function 39 
HNDSVC function 79-80 
Initialization (CMS) 22, 71-72 
Internal linkage 7 
I/o interrupts 81-83 
I/o, non-terminal 38, 283 
I/o, terminal 35-38, 283 
INITB67, see BARE 67 function 
INITIPL, see IPLDISK function 
INITSYS, see SYSGEN routine 
IPL 179 
IPLDISK function 306 
KILLEXF function 304 
KO 82, 180 
KT 82, 181 
KX 82, 181 
Labels 159, 163 
Language processors 1, 138 
LIDEPACK function 305 

355 



Libraries 199 
LINEND 182 
LISTF 106 
LOAD 125 
Loader Tables 8 
Loader 309 
LOADMOD 126 
LOGDISK routine 255 
LOGDSK subroutine 209 
LOGIN 71, 182 
LOGOUT 188 
Machine check interrupts 84 
Machine configuration 4 
MACLIB 199 
Macro libraries 199 
Macros 199 
MAPPRT 166 
Master File Directory (MFD) 17, 20, 21, 

22, 245. 
MODMAP 167 
Nucleus routines 344-347 
Nucleus 14, 306 
NUCON 14-16 
OFFLINE 108 
OS SVCs 40-69, 77-78 
OSTAPE 167 
Overrides, normal 85-86, 297 
Overrides, error 86, 297 
PLI141 

I POINT function 238 

I 
PRINTF 111 
PRlNTR routine 280 
PRINTIO, see PRINTR routine 
PROFILE EXEC 71-72, 185-186 
Program interrupts 84 
PRTCLK function 305 
QMSK 22, 29-31, 33-34 
QQTRK routine 258 
QQTRKX routine 259 
RDBUF function 223 
RDTK routine 273 
Read-only disk 34 
Read-only extensions 186 
READFST routine 243 
READMFD routine 245 
RELEASE 189 
RE LUFD routine 242 
RENAME subroutine 209-210 
REREAD subroutine 210 
Return codes 8 

356 

REUSE 128 
RT 191 
SCAN function 306 
SCRIPT 113 
SETCLK function 307 
SETERR 136 
SETOVER 137 
SNOBOL 143 
SORT 169 
SPLIT 115 
Stacking commands 73, 74, 82 
START 129 
STAT 169 
STATE function 235 
STATE 116 
STATEW function 237 
STATEW 117 
Statistics, disk 32 
Storage management 8-13, 213 
Storage management function 213 
SVC handling 7, 75 
SVC simulation 40-69 
SVC X'CA' 7, 75 
SVCFREE function 214 
SVCFRET function 214 
SYN 191 
SYSGEN routine 256 
SYSREF 15, 16 
System disk 4-5, 27, 34 
System Status Table (SST AT) 27, 256 
TAPE 171 
TAPEIO routine 283 
TAPEIO 174 
TAPRINT 175 
Text libraries 202 
TFINIS routine 240 
TPCOPY 175 
Transient area 8 
Transient routines 348-349 
TRAP subroutine 211 
TRKLKP routine 261 
TRKLKPX routine 262 
TXTLm 202 
TYPE function 286 
TYPLIN function 285 
UPDATE 118 
UPDISI< routine 251 
UPUFD 254 
USE 128 



User File Directory (UFD) 22-23, 182 
242, 243 
251, 252 

Utilities 146 
WAIT function 289 

WAITRD function 287 
WRBUF function 227 
\VRTAPE 176 
WRTK routine 275 
$ 130 

357 



o 
'0 
o 
o . 
o . 
o 
o 

o 
o 

.0 

0' 

o 
o 
o 

. . 

READER'S COMMENT FORM 

Controi Program-67 iCambridge Monitoring System 

Program Logic Manual 

GY20-059i-i 

Please comment on the usefulness and readability of this publication, suggest additions and 
deletions, and list specific errors and omissions (give page numbers). All comments and sugges­
tions become the property of IBM. If you wish a reply, be sure to include your name and address. 

COMMENTS 

fold fold 

fold fold 

• Thank you for your cooperation. No postage necessary if mailed in the U,S.A. 
FOLD ON TWO LINES, STAPLE AND MAIL. 



GY20-0591·1 

YOUR COMMENTSPLI'ASE ••• 

Your comments on the other ~itle Qfthis 'fonn"will~helpllsknprove:future eaitions.of;this.'pub .. 
lication. Each reply will be carefully reviewed by the persons re~ponsible for writing and pub­
lishing this material. 

fold 

" 

fold 

••••••••••••••••••••••••••••• '.' ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••. ' .......... of. • 

Attention: Technical Publ.ications 

BUSINESS REPLY MAIL 
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES 

POSTAGE WILL BE PAID BY . , , 

IBM Corporation 

1133 Westchester Avenue 

White Plains, N.Y. 10604 

FIRST CLASS 

PERMIT NO. 13.59 

WHITE PLAINS, N. Y. 

4' 
:r ....................................................................................................... ,... 

fold 

Int.rnational Bu.in ••• Machin •• Corporation 
Data Proc ••• tng Dtvi.lon 
1133 W •• tch •• tlr AVlnu., Whitl Plain., N.w York 10804 
[U.S.A. only) 

IBM World Trada Corporation 
821UnUId Natians Plaza, Naw Yark, Nlw York 10017 
[Int.rnatianal) 

fold 

• CD • c. 
5' 

· c en 
· l> 
• G) 
• -< · ~ 
· 6 
· $ 

-0 

-0 



GY20-0591-1 

Int.matlonal Bu.ln ... Machin •• Corporation 
Data Proc .... ng DlvllIon 
1133 WHtch.".r Avenue, White Plain., New York 10804 
(U.S.A. only) 

IBM World Trade Corporation 
821 United Nation. Plaza, New York, New York 10017 
(I.,tematlonal) 


	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	043a
	043b
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353a
	353b
	355
	356
	357
	replyA
	replyB
	xBack

