GY20-0591-1

Type Il Class A Program

Control Program-67/Cambridge Monitor System
(CP-67/CMS) Version 3.1

CMS Program Logic Manual

Program No. 360D-05.2.005

The Cambridge Monitor System (CMS) is a conversational
monitor system that provides a comprehensive, easy-to-use
set of programs (commands) giving the CMS user awide
variety of functions, including the ability to create addi-
tional commands or subsystems to satisfy his special
requirements.

This manual provides a detailed description of the inter-
nals of CMS.

RLFERENCES

The tollowing documents are referenced in this manual:

CP-67;CAMS User's Guide, Form GH20-0859

CP-67/CMS 1nstallatrion Guide, Form GH20-0857

SRL/1: A String Processing Language. Form 320-2003.
IBM Cambridge Scientific Center

SCRIPT.: An Online Manuscript Processing System,
Form 320-2023. IBM Cambridge Scientific Center

08/360 - Supervisor & Data Management
Macro-Instructions. Form GC28-6647

Second Edition (October 1971)

This Type HI Program pertforms functions that may be fundamental to the operation and maintenance of a
system. It has not been subjected to formal test by IBM.

Until this program is reclassified. IBM will provide tor it: (1) Central Programming Service, including design
errot correction and autematic distribution of corrections: and (2) FE Programming Service, including design
error verification, APAR documeontation and submission. and application of Program Temporary Fixes or de-
velopment of an emergency hypass when required. [BM does not guarantee service results or represent or war-
rant that all errors will be corrected.

The user is expected to make the final evaluation as to the usefulness of this program in his own environment.

THE FOREGOING 13 IN LIFU O ALL WARRANTILS EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THL IMPLIFD WARRANTIES OF MIFRCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

This edition applies to Version 3. Modification Level 1. of Control Program-67/Cambridge Monitor System
(360D-05.2.005) and to all subscquent versions and modifications until otherwise indicated in new editions or
Technical Newsletiers

Changes are continually made to the information herein: therefore. before using this publication, consult the
latest System’360 SRL Newsletter (GN20-0360) for the editions that are applicable and current.

Copies of this and other [BM publications can be obtuined through IBM branch offices.
A form has been provided at the back of this publication for readers’ comments. If this form has been removed,

address comments to: 1BM Corporation, Technical Publications Department, 1133 Westchester Avenue,
White Plains, New York 10604.

CONTENTS

Section 1: Introduction to CMS

Components and Facilities Provided by C\IS
CMS Commands e e e e e e
File Creation, Mamtenance and Manipulation .
Language Processors . . . « « « &« « + . .
Execution Control
Debugging Facilities o .
Utilities e e
Control Commands C e e e e e e e e e e
Library Facilities ¢ « « ¢ « ¢ « o« &
Page Release Facility
CMS Core Requirements e e e e e
CMS Batch Monitor. o + o &

Machine Configuration

Section 2: Internal Characteristics
Internal Linkage Scheme
Return Code Conventions
Main Storage Management o . ©

CMS Nucleus
CMS Disk File Orgamzamon and Managernent
Disk Management . . . C e e e e e e e
System Disk 0. 00 e e
Disk Space Management
Read-Write Disks . "
System and Other Read- Only DlSkS . ..
Active File Table (AFT)Management
Active Disk Table (ADT) Management
l I/OOperations . . « v v v v ¢ o s v v o 0 o
CMS Terminal /O«
] CMS Non-terminal I/0
User Input/Output Operations
HNDINT ..
SVC Simulation .
[OS Simulation Under C\IS] .
GCperating System/360 SVC Slmulatxon Routlnes

Section 3: Monitor Operations
System Initialization
System Continuity .
Stacking of Typed-in Commandq e e e e
Abbreviations for CMS Commands .

Minimum Abbreviations for CJIS Svstem Commani's .
Interruption Handling
SVC Interruptions . . « ¢ ¢ ¢« + v 4 ¢ o
HNDSVC s e

W W W W NN DN R

71
71
72
73
74

74

75

79

iii

Input/Output Interruptions + v v v v 0 e v e e e e e e 81
CMS Terminal Interruptions« « v v v v« v . o4 . 32
CMS Reader/Punch/Tape Interruptions « « « « « . . 83
CMS Printer/Disk Interruptions « . v . v v v e 0. 83
User Controlled Device Interruptions « .« « . . 84
Program Interruptions L L 00 e e e 0. 84
External Interruptionso 00 000w e 84
Machine-Check Interruptions « « . « .« . .. 84
Override Handling e e e e e et e e e e e e e e et e e e e e e e 85
Normal Override Operations ¢ & ¢ ¢ ¢ ¢ « & o o « + + o o & 85
Error Override Operations e e s 4 s s s s e e s e e e e e e e 86
System Restart . . . & o o 4 ¢ ¢ v ¢ 6 4 o o s 5 s 6 s 6 4 s s o e e 86

Section 4: Command Program Descriptions c e e e e e s s e e e e e e 87
File Creation, Maintenance, and Manipulation . ., 87
ALTER . & 0 v v 6 6 o o s e o o o o o o s o o o o o o o s s o 87
CEDIT 90
hhhhhh . . s v e c e s e = . e . . . « s = S
COMBINE . . 4 & ¢ 4 it e e v e s v o s o o o s o s o o o o o o 91
EDIT 93
ERASE . 4 v 6 ¢ ¢ o o ¢ v o o o s o o s s o o s o 5 o s s s o s 98
FILEDEF ¢ v v 6 v 6 v vt s o s o o o 0 s 6 0 s s o o s 101
FINIS 106
LISTF 106
OFFLINE . . . ¢ ¢t e v e et e e v 6 s e e s s o s o s s o s 108
S 111
SCRIPT & v v v v v 6 o v e s o v oe o s e o o s o e o o a s 113
SPLIT 115
STATE & v v 6 v e 4 v o v 4 o o o o o o o o o 5 o o o o 6 o o o 116
STATEW . 0 i 6 v e v v e s 6 s e o s o o a o s s o o o o o o 117
UPDATE e v s s s e s s e s s e e e s e a e e e e e e s e 118
Execution Control o . . 4 v 0 0 e e e e s e e e e e e e e 119
EXEC © 8 s s s s s+ e s e e e o s s e s a6 s 6 s s 5 6 @ s 119
GENMOD . . & i i 4 6 v o o s o s o o o o o o o s o v o s o o 120
GLOBAL . o i v v it v 6 e v v o s e s e e e e e e e e e e e 124
LOAD o e e e e 8 6 4 5 o e & s st e e e s s e e e s 125
LOADMOD © ot e e e e 9 s s e 5 s o e s s o s e e s e s e e s 126
USE-REUSE e s 8 s 6 6 e s s s s e s s e s e s s e s e e 128
START e e s e s s s s s s e s e b s s s s s s e ee s e e 129
Debugging Command Programs o « o o ¢ o « « o o « = o o o & 132
CLROVER . & & ¢ 4 4 4 v e 6 o v s st s e s s s s s s o s o s 132
DEBUG . i ¢ 6 v v e o o o o o o o o o o o o o e v o o o o o o 133
SETERR . & ¢ v i v v 6 6t v o o 6t o e s e o s v b e e e e 136
SETOVER . & . & v i vt 6 v s 6 e v o e e e e v o v v o e e e s 137
Language Processsing Command Programs e e e e e e o e e e e e 138
ASSEMBLE © & v 4 e s % s o s s 5w s s e s e e o s s e e 138
FORTRAN . & v v ¢ v o v v v 6 o o o o o o o s o s o o o o o o s 140
PLI 141

SNOBOL .

BRUIN .
Utilities
CNVT26

COMPARE .

CVTFV

DISK .
DUMPD
DUMPF

DUMPREST

ECHO

FORMAT.

GENDIRT

MAPPRT.

MODMAP
OSTAPE
SORT .
STAT .
TAPE .
TAPEIO
TAPRINT
TPCOPY
WRTAPE

o« o

s o

o e

o e

e o

o e

.

Control Commands

BLIP. .

e o

CHARDEF .
CPFUNCTN

IPL . .
KO. . .
KT, . .
LINEND
LOGIN ,
LOGOUT

o e

® o

« o

RELEASE .,

RT. . .
SYN ., .
VSET .

. e

. o

o o

VSET BLIP .,

VSET IMPEX
VSET IDRTBLS

o

°

VSET LINEND
VSET RDYMSG .
VSET REDTYPE
VSET RELPAG .

Libraries.
MACLIB
TXTLIB

Fortran Subroutines .

o o

o .

.

.

°

.

.

143
144
146
146
147
148
150
152
153

Saction 5: Service Program Descriptions ¢« + v v « « 4 « & « 213
Sterage Management Function Programs « « « o & 213
FREE . . . i i i i i e ... 213
FRET . & v v i ot e e e v v e e o e o e e o s o s e s 4 e e e e e .. 213
SVCFREE . & v v & v 4 v v e o o o o o o o o s o o o s o o o oo . 214
SVCFRET . & v 4 v 6 v v v e e e o 6t o et o e s s e e e e e o 214
File Management MacroS v v ¢« + + 4 o o o o o o« = o o « « o . 215
2 1 e £
DIOSCT . v v v v v v 4 o e v o o e o s o s o s s o o o o o« o o o« 219
FSTB . & i i i i v ittt v e e s e e e e e e e e e e e e e e e el 220
File Management Function Programs . . . « ¢ + + s 4 4 ¢ & o o« o &« « o . 223
BRDBUFE & . . i v v v s 4 e e v e s s o s 2 s o a o s o s o o o o o o 223
WRBUF & & it i e ot ettt e e s v s s e et e e e e e e e e e .. 22T
FINIS & v i i et e v e e e e 4 o o o s o o o o s e s e e e e e e .. 232
STATE 4 & 4 4 6 6 6 6 o o o o o o o « o o s s o o o o o o o o o« o+ 23
STATEW & i i it e e e e o e e s o o o o o o o 2 o o v o o o oo . 237
POINT . & i v v 6 v 4 4 o « o o 238
File Management Routines « ¢ v ¢ v « ¢ v o ¢« s s o « o+ o . 240
0 3 £ 72 11
RELUFD. & 4 4 v v v i v v v e o o o o o o o e o o s s s o o o o o+ 242
READFST . & . o i vt i e v 6 e o o s s o s s o s o o o o s o o o« « 243
READMED & v ot i it s v v o s o o s o o o o s s o o « o o o 245
S I N -
S -2 &t |
UPDISK « + & & v ¢ v v e e e v e e e e e 4 e e e e e e e e e e e .. o281
UPUFD . . . v v v v i v e e et s e s e s e e s o o e o v e aw .. 264
LOGDISK. + & v 4 4 ¢ 4 4 o o « o o o o o o« o o o & s s s « + o « « . 255
SYSGEN-INITSYS . v v v v v v v o s v v v o v o o o o v o s v o v o . 256
Disk Space Management RoUtines . . . ¢ « v « & 4 & o « + ¢ & o « o o« o« - 258
8 2 21
QQTRKX. + v v v v v v v e e e v h e e e e e e e e e e e e e e e .. 289
TREKLKP. . . . 0 vttt vt v et e v e o e e o e o e e v a s s 261
TRKLKPX . v 0 v v v v v e v v o e v v e o v s o s o s e e o oo . 262
Active File Table Management Routines . . . ¢« « o v ¢ ¢ « « « « « « « . . 264
ACTLEP. . v v v v v v v v v e e o o o e i s ot s o e s o e w . . 264
- 4
ACTFREE . . . & v v i v v v e o o o e ot e s s e e e o o o o o o o 266
ACTFRET . & 4 4 & v v v v v e s o o o o o s o o o s o o o« o o o . . 268
Active Disk Table Management Routines . . . « « v v ¢« v ¢« o + o o « « » 270
N I A A
ADTNXT . v v v v v 6 v e o e e s st e o o ot e s et e e e e e .. 211
Disk Handling Function Programs . . . « &+ & « o« & s o s o o » o o o » o 273
3 0 -
WRTK . v v v v e v e v e e e vt s s e o e o o s s oo s o a0 a . 205
DIrectI/O v v v v v v e v 4 e e e e e e e e e e e e e e e e e e .. . 276

Unit Record Handling Function Programs .
CARDIO .
PRINTR— PRINTIO .
Tape Handling Function Program
TAPEIO ce e
Terminal Hardling Functlon Programs .
CONWAIT .
TYPLIN — CO\WRITE
TYPE . .
WAITRD — CONREAD .
User Program Device Handling Routme
Input/Output Service Routines .
Synchronize Routine
WAIT . e e
Centralized Error Recovery Provram
Normal/Error Override Function Programs
.RDERR

LRESNRM
.RESERR
L.RESUME
.RPLERR
STEROV & 0 v 0 0 0 0 0 0w
LSTNOV o . C e e e
Debugging Function Program e
DEBDUMP e e e
Control and Service Func‘uon Programs
GETCLK
KILLEXF
LIBEPACK . e e e
PRTCLK
IPLDISK — INITIPL
SETCLK ¢ v v v v v v
BAREGS7 — INITB67
DEFTFLV
CMS Loader

OVRLD Initial and Resume Loadmg Routme

SLC Card Routine .

ICS Card Routine — C2AE1 .
ESD Card Analvsis Routine — C3AAl
ESD Type 0 Card Routine — C3AA3
ESD Type 1 Card Routine — ENTESD .
ESD Type 2 Card Routine — C3AH1
ESD Type 4 Card Routine — PC .

ESD Types 5 and 6 Card Routine — PRVESD and CO\IESD .

TXT Card Routine — C41AA1l

278
278
280
283
283
285
285
285
286
287
288
289
289
289
290
297
297
297
299
300
300
301
302
302
302
304
304
304
305
305
306
306
307
308
308
309
310
311
312
312
314
315
315
316
317
317

vii

REP Card Routine — C4AA3

RLD Card Routine — C5AA1

END Card Routine — C6AA1l

LDT Card Routine — C6AC1 . . .
Control Card Routine — CTLCRD1
REFADR Routine

PRSERCH Routine ..

HEXB Conversion Subroutine .

Start Execution Routine — XEQQ

Disk and Type Output Routine —~ LDRIO .
Library Search Routine — LIBEPACK
Relevant Loader Data Bases . .

Section 6: CMS Batch Monitor

| Appendix A: CMS File Naming Conventions . .

Appendix B: CMS Directory

Appendix C: CMS File System Cross-Reference List

| Appendix D: CMS Control Blocks.

Index

viii

318
319
321
322
323
324
324
325
326
327
328
329

335

337

342

350

353

355

Figure

o . .

-
= o
o &

12,
13.
14,
15.
16.

17,
18.
19.
20.

21,

22,
23.
24,
25,

26.
217,
28,
29,

30.
31.
32,
33.
34.
35,
36,
317.
38,
39.
40,

ILLUSTRATIONS

Internal Linkage Scheme + ¢« « « « &
Internal Linkage Scheme — Multiple Levels . .
CMS Main Storage Layout. . . . ¢« « « + « o« &
Example of Chaining of Free Storage Blocks . .

Example of Free Storage After First Request - -
Example of Free Storage After Second Request . .

Example of Free Storage After Five Requests .

Free Storage After Second Block Has Been Returned

Disnlacements from NIUCON =« + ¢ ¢ s & o o &«

AISPIaUlILCILVE 210 ANV

Displacements of V-cons from SYSREF ,

File Status Table Entry. ¢« + ¢« ¢« o« « &
Master File Directory MFD) « .« =«
MFD, FSTB, and FST Relationship
First Chain Link (FCL) « « « « &« « &

.

.

NthChain Link o ¢ o0 ¢ o o

Relationship of FST, Chain Links, Data Blocks, and

Items ofa File

o o

.

Example of Three FST Hyperblocks in Main Storage.

Active File Table Block « . .

Active File Table (AFT) . . ¢ . ¢ ¢ ¢« ¢ ¢ o o &
Data Block Structure for File Consisting of Fixed- Leng‘th
Items
Data Block Structure for File Consmtmg of Variable-Length
Items . . . & ¢ v v v o v v o o v e e e e

Disk Quarter-Track Assignment QMSK)
Disk Sixteenth Track Assignment (QQMSK). . .

Disk Address Format for First Chain Links ., . .

Disk Address Format for Nth Chain Links and for

Data Blocks + < s s s « s s s s s s s s s s 5 s s

Read/erteStack......-.-.-....

Pending Read Stack « ¢« . « « &

Finished Read Stack e s e e e e e s

Contents of a CMS MODULE Flle

(Variable Records) « 4 v ¢ & & & « &
Macro Dictionary Format
Dictionary Header Record Format. « « « « + . .

Text Library Dictionary Format
Text Library Dictionary Header Record Format

CMSADT MacCIO. v « « « o o o o o o o o o o »
CMSAFT MacCro. v v « « 4 o « o o s+ s o o o o
CMSDIOSCT MACrO » v & o « « o o o « o o « =
CMSFSTBMACIO . . v « « o + o o o o o o o &

CMSFVSMAcCro .+ « & ¢ o o o o o o « o « «
Relationship of IOERR to RDTK/WRTK
Relationship of IOERR to PRINTIO e s e e

10
11
12
13
14
15
17
18
19
20
21
22
23

24
25
26
27

28

123
201
202
205
205
216
218
219
220
221
278
282

ix

SECTION 1: INTRODUCTION TO CMS

The Cambridge Monitor System (CMS) is a single-user, conversational operating sys-
tem. It is designed to allow full use of an IBM System/360 through a simple terminal-
orientated command language. CMS gives the user a full range of capabilities - creating
and managing files, compiling and executing problem programs, and debugging ~
requiring only the use of his remote terminal.

CMS also provides a batch version that will process non-conversational user jobs. Job
control cards that are imbedded within the input stream dictate which batch function will
be executed.

COMPONENTS & FACILITIES PROVIDED BY CMS

CMS Commands

A CMS command is (1) the name of a program resident in the nucleus or on any CMS
disk, or (2) the name of a file containing other CMS commands. CMS commands fall
into seven categories: file creation, maintenance, and manipulation; language proc-
essors; execution control; debugging facilities; utilities; control commands; and library
facilities,

File Creation, Maintenance and Manipulation

The file handling commands of CMS allow the user to create and modify disk files via
a context editor as well as to rename, copy, combine, split, update, erase, and print
disk files. The user can also print or punch files on unit record equipment. He can
create disk files from cards read via the card reader. He also can format text infor-
mation for letters, documents, or reports by utilizing the SCRIPT facility of CMS.

Language Processors

Some Operating System/360 Language Processors are used under CMS. These include
Assembler (F), FORTRAN IV (G), and PLI (F). The Assembler produces object pro-
grams that may be executed under either CMS or OS, depending on the macros used in
the source program. Special file handling routines for macro libraries are included.
The FORTRAN and PL/I compilers also produce OS-compatible object programs.
Diagnostics from the OS compilers are printed at the terminal unless suppressed by the
user or directed to disk. Because the CMS file system does not provide as many access
methods as 0S/360, some features of PL/I are not supported at program execution time.

SCRIPT, a text processor, is also provided. There are two additional processors
available as Type III programs from the IBM Program Information Department; they
are SNOBOL, a string processing language, and BRUIN, an interpretive language.
BRUIN, BRown University INterpreter, was adapted from the OS version of BRUIN
developed at Brown University, Providence, Rhode Island. BRUIN provides two
modes of operation: a desk calculator mode and a stored program mode.

Execution Control

The execution control commands allow the user to load his programs from single object
decks called TEXT files (the filetype TEXT is reserved for relocatable object programs)
or from a program library. The user can pass a list of parameters to his program
from the terminal and specify the point at which execution is to begin. To bypass the
relocating loader for each execution of the program, he can create a file consisting of an
image of the portion of core storage containing his program and load that non-relocatable
copy back at any time. Since the loading commands can be accessed by executing pro-
grams, overlay structures may be set up and dynamic loading can occur.

During program execution under CMS the user can fully interact with his programs. TFor
example, in FORTRAN G under 0OS/360 a READ to logical unit 5 reads the SYSIN device
and a WRITE to logical unit 6 writes to the SYSOUT device; under CMS, a READ to 5
reads the operator's console (remote terminal under CP) and a WRITE to 6 writes the
console.

The user also has the facility to create a procedure that is a series of commands and then
to execute these commands by typing a single instruction; logic statements can be placed
in the file with the commands so that the order of command execution may be dynamically
set or altered. This capability is called EXEC and allows a user to develop his own
command language or sets of procedures. EXEC also allows for the passing of variable
arguments from the terminal as well as between EXEC files, since EXEC files can be
nested and/or recursive.

Debugging Facilities

A permanent, nucleus-resident debugging facility is available to the user. It allows
stoppage of programs at predetermined points and examination of registers, PSW, and
storage, and permits modification of these if it is desired. This information may be
typed out at a user's terminal or printed offline. A program interrupt gives control to
DEBUG, as does the external interrupt caused by the EXTERNAL console function. The
user may also employ the program tracing routines, which record all SVC transfers,

or just those SVC's in which an error return is made.

Utilities

The utility functions in CMS provide tape copying facilities, disk file comparison, a disk
file sort, and the dumping of files either by name onto the console or by cylinder loca-
tions onto the offline printer, as well as the facility to dump files to tape and reload
them onto disk. There are commands also for converting files of fixed-length records
to variable-length records, for converting BCDIC files to EBCDIC, and for obtaining
statistics on file space.

Control Commands

There are other commands that give the user the facility to suppress the typeout at his
terminal, to restore typing at his terminal once the typeout is suppressed, and to kill
program execution. The user can redefine the logical line-end character, the character
delete and line delete characters, as well as the blip character that notifies him of CPU

utilization. He can also rename any command and define his own abbreviations to be
used.

Library Facilities

CMS provides library facilities for program libraries. The user can generate his own
libraries or add, delete, or list entries in existing libraries. He can also specify which
libraries to use for program assemblies as well as program execution,

Page Release Facility

Certain CMS routines include a page release facility. This means that following a
successful completion and before returning to the user or caller, the routine ref-
erences NUCON and turns a page release flag on. When the routine then returns to
INIT, INIT checks this flag. If it is on, INIT issues a diagnose X'10' to CP to re-
lease user pages from X'12000' up to the value in LOWEXT.

For the user to prevent this release of pages, the CMS VSET RELPAG OFF command
should be issued. The commands that have the page release facility are: ASSEMBLE,
CEDIT, COMBINE, COMPARE, EDIT, FORTRAN, MACLIB, MAPPRT, PLI, SORT,

SPLIT, TAPE, TXTLIB, and UPDATE.

CMS Core Requirements

CMS has a prerequisite for 80K bytes of virtual memory for the nucieus, transient area,
and loader tables. At login time, core space for user file directories is allocated
dynamically as required. The rest of core storage is available to user programs.

CMS Batch Monitor

As well as being a conversational monitor, CMS provides a batch facility for running
CMS jobs. The CMS batch monitor accepts a job stream from a tape unit or from the
card-reader and writes the output either on tapes, the printer, or the card-punch. The
job stream can consist of a System/360 Operating System SYSIN job stream with
FORTRAN (G), and Assembler (F) compile, load, and go jobs or it can consist of CMS
commands along with conirol cards and card decks for compile, load, and go jobs for
all the CMS supported csmpilers.

Just as the conversational CMS does, the batch monitor can run from either a virtual
machine or a real machine. Under CP, it can be used as a background monitor along
with other conversational CMS users.

To eliminate the possibility of one job modifying the CMS batch monitor's nucleus in such
a way as to affect the next job, the batch monitor is re-IPLed before each job begins.
Files can also be written onto the batch monitor's primary disk and then punched or
printed, such as files written by FORTRAN programs; these files should be of limited
size and considered as temporary, as they are erased at the completion of each job.

MACHINE CONFIGURATION

Whether running on a real (see Note below) or a virtual machine, CMS expects the fol-
lowing machine configuration:

Device Virtual Symbolic
Address Name
1052 009 CON1 console
2311,2314 190 DSK1 system disk (read-only)
‘ 2311,2314 191 ** DSK2 primary disk (user files)

*2311,2314 192%% DSK3 temporary disk (work space)
*2311,2314 000** DSK4 A disk (user files)
*2311, 2314 000** DSK5 B disk (user files)
*2311,2314 19C** DSK6 C disk (user files)

1403 00E PRN1 line printer

2540 00C RDR1 card reader

2540 00D PCH1 card punch
*2400 180 TAP1 tape drive
*2400 181 TAP2 tape drive

at least 256K bytes of core storage, 360/40 and up

*The 2311 or 2314 for the temporary disk, the A, B and C disks, and the two 2400
tape drives are optional devices; they are not included in the minimum configura-
tion,

**The specified virtual addresses may be changed at any time by the CMS LOGIN
command.

Note: For use on a real machine not having this I/0 configuration, the device addresses
can be redefined at 'load' time,

Under CP, of course, these devices are simulated and mapped to different addresses
and/or different devices. For instance, CMS expects a 1052 printer-keyboard operator's
console, but most remote terminals are 2741's; CP handles all channel program modi-
fications necessary for this simulation,

CMS allows the user to add his own programs for I/O devices not supported by the
standard system, CMS also provides for dynamic specification of SVC routines,

The system disk, located at address 190, is read-only and contains the CMS system
commands. These system programs are physically divided into two groups: nucleus
functions and disk-resident command modules. The nucleus programs are loaded into
main storage during initial program load (IPL) and remain resident throughout system
operation, The disk resident modules are loaded into main storage only when their
services are needed, Certain disk resident programs are loaded into the transient area.
The primary disk, 191, is a read-write disk and normally is the first user disk, Files
that the user wishes to retain for use across terminal sessions are stored on one of the

| user's disks. Information stored on the primary disk remains there until it is deliber-

ately erased or destroyed by the user. Commands and input files are entered into the
system from the console (that is, the terminal located at address 009). Output files,
program results, and error and prompting messages are directed from within CMS to
the console, The card reader, located at address 00C, may be used as the input
medium for files, source decks, and data to be processed by user programs. The card
punch, address 00D, may receive user output files, processor object decks, and vari-
ous other types of data, The printer, address 00E, may receive user program results,
and Assembler, FORTRAN and PLI listings. A tape, located at address 181, may be
used in Dump/Restore operation and as an input/output medium for files,

SECTION 2: INTERNAL CHARACTERISTICS

This section describes the internal characteristics of CMS, including the way in which
control is passed among the programs that make it up, the manner in which it manages
main storage, disk space, and files, and the nature of its I/O operations.

INTERNAL LINKAGE SCHEME

In CMS, control is generally passed from one program to another (for example, from a
command program to a function program) by means of a supervisor call (SVC) instruc-
tion. When one CMS program requires the services of another, it issues a special SVC
of the form SVC X'CA'. (This SVC may be followed by a 4-byte address constant con-
taining an error return address.) Associated with the SVC is a parameter list that iden-
tifies, by name, the program whose services are desired (that is, the called program).
The execution of the SVC instruction causes an interruption, and control passes to a
SVC interruption handler (SVCINT), When SVCINT receives control, it saves (1) con-
tents of the calling program's registers and @) the SVC old PSW, This PSW contains
the address within the calling program to which control is to be returned when execution
of the called program is complete, Having saved these items, SVCINT sets up a return
register with an address pointing to a location within itself. This location is where the
called program is to return control. It then branches to the called program. When ex~
ecution of the called program is complete, it returns to SVCINT through the return
register,

In an error occurred during execution of the calied program, SVCINT returns controi:
e To the error return address, if one followed the SVC X' CA' instruction,

o To the CMS standard error routine (STDERR), if no error return address was given
after the SVC in the calling program.

F no errors occurred during execution of the called program, SVCINT restores the call-
ing program's registers, and loads the saved PSW, Control returns to the calling pro-
gram at the executable instruction following the SVC X'CA! instruction, Figure 1 shows
how this scheme works,

Control within CMS may be passed via SVC's to a level of twenty calls. For example,
one CMS program may call another (first-level call), which may call another (second-
level call), which may call another (third-level call), etc. SVCINT intercepts each of
these nested calls and takes steps to ensure proper return to the calling program, It
does this for each call by: (1) storing the SVC old PSW that results from the interrup-
tion and the contents of the registers as they exist at the time for the interruption in a
last~in, first-out list, and @) passing control to the called program. Upon return from
the last called program (the program at the lowest level will return to SVCINT first),
SVCINT restores the registers with the saved register data stored in the last entry in
the list, deletes that entry from the list, and loads the saved PSW, Control is thereby
returned to the program at the next higher level, When execution of this program is
complete, SVCINT follows a similar procedure to return control to the program that
called it, Figure 2 shows how this scheme works,

Calling Program

.
: svex' ca’ SVCINT
-l e e e e] e sy
« (See Note) NRM|SAV : _
? <| Save registers, return address,
X 1]
. ’ e Pl Return
* Register

Note: If an error occurs during
execution of the called program,
control is passed either to:

* Set up return register D F
.
.

Called Program

P

I — Branch to called program l
(1) The CMS standard error | — I | l
routine; or I . I
(2) An error return location I l . |
whose address is contained I + Restore Registers
in an address constant | . I
followina the SVC. I | " Load PSW |
11 i
—— - =t
_T I

Return cmme e e s e e —— —

Figure 1. Internal linkage scheme

RETURN CODE CONVENTIONS

When a program, called via an SVC X'CA' instruction, returns to the calling program,
register 15 contains a positive, negative, or zero code. A positive code indicates that
an error occurred during the execution of the called program. A negative code indicates
that control was never passed to the called program, (This might occur if, for example,
the user incorrectly types a command from the terminal.) A zero code indicates that
the called program was executed successfully.

SVCINT is the only CMS program that returns negative error codes,
MAIN STORAGE MANAGEMENT

Main storage is composed of five main areas: the nucleus, free storage area, a tran-
sient area, user program area, and a loader tables area. The nucleus contains the core
resident portion of CMS; it begins at Page 0 of main storage and extends upward into
Page 13, Free storage is that portion of main storage between the end of the nucleus and
the start of Page 17 of main storage, Page 17 is a transient area into which certain CMS
commands are loaded, The user program area, which starts at Page 18 (or above), is
the area into which the user programs are loaded. The last two pages prior to the end of
core are reserved for the loader tables used by the CMS commands LOAD, USE, and
REUSE for loading in programs. (See Figure 3.)

Passing Control to
Called Programs

Program A
{Calls B' Via’
SVC X CA)
A REGS| A PSW Save A’s Registers
and Resuitant PSW;
Pass Control To B,
Program B
(Calls C Via
'
svc x'ca)
A REGS| A PSW Save B’s Registers
And Resultant PSW;
B REGS| B PSW Pass Control To C.
Program C
(Calls I:'t Via
I
SVC X CA)
A REGS| A PSW Save C's Registers
And Resultant PSW;
B REGS| B PSW Pass Control to D
C REGS| C PSw

; Y

Program D
{No Calls}

Figure 2. Internal linkage scheme - multiple levels

Resto
Load

I~
[t

Resto
Load
Retur|

Restol
Load
Retur

re A's Register;
A PSW To

nTc A

B PSW To
nto B

C PSW To
ntoC.

re B's Registers;

re C's Registers;

A

Returning To Cailer When
Called Program Finished

Program A

[

Program B

i

A REGS

A PSW

Program C

T
a

A REGS

A PSW

B REGS

B PSW

Program D

«f}— End Of Core
Loader Tables

(Two Pages)

User
Programs

-}~ Start of Page 18

Transient Area
- Start Of Page 17

- End of Nucleus Code

Nucleus

«§- Start Of Page 0

Figure 3. CMS main storage layout

Main storage management allocates and keeps track of the free storage that is available,
Free storage is used by the various CMS programs requiring blocks of main storage for
temporary use {for example, as buffer space into which data blocks are read for proc-
essing). When a program requires main storage, it calls the FREE storage management
program indicating the number of double words required. The storage management pro-
gram allocates the required storage and returns a pointer to its starting location to the
calling program.

When a program has finished with such temporary storage, it returns it to a free storage
via the FRET storage management program, indicating the size and starting location of
the block being returned.

The storage management programs keep track of free storage through a series of pointers,
the first of which originates in the storage cell FREELIST, FREELIST always contains a
pointer to the free storage block at the lowest address. The free storage block pointed to
from FREELIST starts with two fields; the first contains a pointer to the second free
storage block (that is, the free storage block that starts at the next higher address); the
second field contains the size (in bytes) of the block itself. Similar fields exist for the
second, third, and subsequent free storage blocks. Thus, free storage blocks are always
chained from low to high addresses, Figure 4 illustrates this concept.

Main storage management works in the following way. The first request for main storage
causes Page 16 to be made available as free storage. A block of storage of the requested
size is allocated to the caller from the high-numbered end of Page 16, FREELIST is ini-
tialized to point to the beginning flow-numbered end) of Page 16; the pointer and size fields

10

End Of Page 16 -

v

Block C
Sizeof C
o
7// __,/..,4. L L le— End of Page 15
//' ,v'/// /
7
) :
Block B ;
-
1]
L Size Of B g
w
Point
o er/T° ¢ End Of Page 14

7

Freelist

l Pointer to A Block A ﬁ

Freenum
Size Of A

3 -
-\ Pointer To B End Of Nucleus £
Key: i Code
Portion Of Free Storage

m Currently In Use And

Not Available For
Allocation.

- - — — — — — —— —e— EndOfPage 13

Figure 4. Example of chaining of free storage blocks

at the beginning of Page 16 are initialized appropriately, and FREENUM is set to one,
(See Figure 5.) A second request for free storage causes the next available lower block
near the end of Page 16 to be allocated to the caller, and the size field at the beginning of
the one and only free storage block at the beginning of Page 16 is decremented by the
number of bytes just allocated, (See Figure 6,)

Assume now that three additional requests for free storage blocks are satisfied (see
Figure 7), but that after the last of these, the program that received the second block no
longer needs it and returns it for use by other programs. The released block is chained
into the free storage list as the second entry, and FREENUM is appropriately updated.
(See Figure 8.)

For each subsequent request for free storage, the storage management programs scan

the chain of free storage blocks for one that is equal in size to that requested, If one is
found, it is immediately allocated to the caller, the chain of free storage blocks is broken

11

@ End Of Page 16 .

FirstBlock [[
Allocated { / / // A
(

Remaining
Free Storage
In Page 16
Available
For Allocation Size This Block
\. 0 e EndOf Page 15
L]
8
g
%]
H
Iy
b — — — — — —— —— je—EndofPage14

Freelist

Freenum

L . e EndOfPage13

First Block Of Free

Storage Allocated
/‘ To Requesting End Of Nucleus

Program, Code

\

Figure 5. Example of free storage after first request

and relinked to delete the allocated block from the free storage list, and FREENUM is
decremented by one. If a free storage block equal in size to that requested cannot be
found, but one or more free storage blocks larger in size than that requested are found,
storage is allocated to the caller from the high-numbered end of the last larger block
that was found, and the size of that block is decremented appropriately.

If neither a matching nor a larger block of free storage is available, the EXTEND stor-
age management program allocates another large block of free storage as available be-
tween the end of the CMS nucleus and the start of Page 17. This large block (for exam-
ple, Page 15, later Page 14, then whatever free storage may be available at the end of
block 13) is merged properly into the free storage chain (that is, FREELIST points to its
beginning), and the caller's previously unsatisfied request is then handled in accordance
with the revised chain of available storage., (Note in Figure 7 that Page 15 had to be ob-
tained to allocate the third block, and later Page 14 was needed for allocation of the fifth
block,)

12

FreeList

FreeNum

Key:

v

First Block
Allocated

Second Block
Allocated

Remaining
Free Storage
in Page 16
Available for
Allocation

{

NN

L

Size This Block

0

End of Page 15

;
/

Portion Of Free Storage
Currently In Use And
Not Available For
Allocation.

Free Storage

le—End of Page 14

le— End Of Page 13

End Of Nucleus

End of Page 16 -3

Code

Figure 6. Example of free storage after second request

When a program returns a block of storage via FRET, it is linked into the chain in its
proper place, and FREELIST, FREENUM, and the necessary pointer and size fields are
appropriately updated as necessary, If the block returned abuts a free storage block
(either above, below, or both), they are combined into a single block with pointers,
sizes, FREELIST, and FREENUM being appropriatelv adjusted as needed to maintain
proper chain sequence and block sizes,

If there is not sufficient free storage available in the free storage area following the
nucleus, pages are allocated by EXTEND and merged into the chain as needed, one at a
time, from the end of the user program area, just below the loader tables, If a page (or
more) of such storage is returned, this storage is also "given back', Care is taken by
the storage management programs to ensure that any such storage allocated from the end
of the user program area does not run into conflict with loaded programs, storage allo-
cated by the GETMAIN procedure, COMMON area, and the like,

13

<«— End Of Page 16 B 1

First Block ”
Allocated i
Second Block \

Allocated

Third Block
Allocated

> «— End Of Page 15

\<

Fourth Block
Allocated

a

Free Storage

. g

Remaining

Free Storage

in Page 14 3

Available Size This Block
Freelist For Allocation o

I I > <— £nd Of Page 13

Freenum

End Of Nucleus —X
Code

Key: Portion Of Free Storage
/ Currently in Use And
Not Available For
Allocation.

Figure 7. Example of free storage after five requests

CMS NUCLEUS

A key portion of the CMS nucleus, located near the beginning of Page 0, is the Nucleus
Constant Area Table (NUCON). NUCON contains (1) several parameters used by the
loading routines and storage management programs, @) a table of device addresses, and
(3) a table of address constants giving the location of certain nucleus-resident CMS tables
(for example, FVS, IADT), and routines called via BALR instructions (for example,
FREE & FRET). Some of the constants and parameters in NUCON, with their meaning
and their usual values on a 256K System/360, are as follows:

CORESIZ The size of core (computed at the beginning of a terminal session — for ex-
ample, 40000 hex = 262144).

USFL User first location (12000 hex)

14

First Block <«— End Of Page 16 —F
Allocated

Second Block
Allocated Size This B!ock
Third Block
Allocated T
—Ad—End Of Page 15
S
Fourth Block
Allocated 3
g
<]
A
w
Fifth Block J «— End Of Page 14
Allocated
S /
Remaining
Free Storage
in Page 14 h
-Available Size This Block
Freelist For Aiiocation Pointer To Second Block
l | -~ <—End Of Page 13
Freenum
End Of Nucleus —X
Key: Portion Of Free Storage Code

7 Currently In Use And
Not Available For

Allocation,

Figure 8. Free storage after second block has been returned
STADDR Address to start user execution (frequently 12000 hex)
LDRTBL End of loader tables (40000 hex = 262144)

LOCCNT Next core location to start (or resume) loading

LOWEXT Lowest core address given out by EXTEND routine of the storage management
programs (starts at 3E000 hex)

HIMAIN Highest address given out by GETMAIN program

CONGEN An area used by the tvpewriter routines (WAITRD, TYPLIN, CONSI, etc.) for
input and output areas, etc,

SYSREF Start of tables of address constants of certain CMS tables and routines.

15

To refer to NUCON and its contents, the CMSYSREF macro can be used. The CMSYSREF
macro contains three main parts: Absolute, NUCON, and SYSREF, The Absolute sec-
tion gives the displacements of absolute locations in page 0. The NUCON part gives rel-
ative displacements for the miscellaneous parameters and device addresses. The
SYSREFT part of the CMSYSREF macro gives relative displacements of the address con-
stants starting at SYSREF, In both the NUCON and SYSREF parts, the label of each
parameter constant begins with D. For example, the label for the displacement of
LOWEXT in NUCON is DLOWEXT.

Note that NUCON and SYSREF are always known locations to the CMS loading programs,
Thus, any disk resident program, by procedures outlined above using the CMSYSREF
macro and the NUCON and SYSREF V-constants, can indirectly reference any quantities
which are specified in the NUCON and SYSREF portions of the CMS Nucleus Constant
Area,

For a complete list of the NUCON and SYSREF values, see the CMSYSREF macro as
shown in Figures 9 and 10,

CMS DISK FILE ORGANIZATION AND MANAGEMENT

CMS files are stored on read-write and read-only disks. The CMS file management
scheme uses various commands, functions, routines, and tables to structure and keep
track of these files.

CMS handles up to six disks, one of which is the read-only System Disk (S-Disk), nor-
mally having a device-address of 190, Up to five other disks can be active at any given
time, each of them either read-write or read-only, Usually one of these is a read-write
disk called the P-Disk or Primary disk (normally with a device-address of 191), on
which a user keeps his files, which are preserved by the CMS file system until they are
purposely updated, erased, or replaced by the user or various command programs.

Each disk can be either a 2311 or 2314, from one to 203 cylinders, Other pertinent
parameters for each disk are as follows:

A 2311 holds a maximum of 8120 800-byte physical records
A 2314 holds a maximum of 30,448 800-byte physical records
Up to 3500 files may reside on a given disk
Any given file can be as large as either
1. 16060 800-byte physical records

or
2, 65533 logical records (items)

The following pages deseribe the file management scheme used by CMS for files on read-
write and read-only disks. For further inforniation, see the sections ''Disk Space Man-
agement', "Active File Table (AFT) Management', and "Active Disk Table (ADT)
Management''.

16

229L +» DISPLACEMENTS WITHIN ''NUCONSCT''

2295++

00001C 2296+DCMSAREA EQU X'ic!
000300 2297+DCONSOLE EQU X'300"
000004 2298+DCORESIZ EQU X'u

00001C 2299+DERRINF EQU xtice
0000DC 2300+DHIMAIN EQU x'pc!
0000€0 2301+DIPLDEV EQU X'EQ!
oooocc 2302+DLDADDR EQU xtcc!

BSC CTF BASIC COMPILER EXECUTIVE PROGRAM

LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT

000014 2303+DLDRTBL EQU X'iu!
0000C8 230L+DLOCCNT EQU x'cs!
000008 2305+DLOWEXT EQU X'p8!
0000CH 2306+DLSTADR EQU Xtcu!
000000 2307+DLSTSVC EQU X'o!

00C01C 2308+DNRMINF EQU x*ic
000318 2309+DPDISK EQU X'318!
000000 2310+DPSW EQU X'DO*
00030C 2311+DSDISK EQU X'30C!
000010 2312+DSTADDR EQU X' 10!
0000E2 2313+DSYSDEV EQU X'g2
000018 2314+DTBLNG EQU x'18!'
00032u 2315+DTDISK EQU X'32u!
000008 2316 +DUSFL EQU x'8!'

2317 +»

Figure 9. Displacements from NUCON

Disk Management

Disk files are managed by a series of control blocks and tables. These blocks and

tables are disk resident when the system is not in operation and, for the most part,
main storage resident during a session. Because the blocks and tables are dynam-
ically updated during the course of a session, an up-to-date copy of them is stored

on the disk whenever necessary or requested. (The previous copy is deleted.) This
is done to minimize the effect of a system malfunction,

File Management Tables on Disk

A description of each existing file is maintained in a file status table (FST) for that file,
The format of an FST entry is shown in Figure 11,

The file status tables for all files on the disk are grouped into a series of 800-byte disk
records referred to as file status table blocks (FSTB). The file status table blocks are
stored on the disk in available 800-byte records, Each file status table block can ac-
commodate up to 20 file status tables. Each of the file status table blocks is pointed to
by an entry in the master file directory (MFD)., The master file directory is the major
file management table for disk. It is an 800-byte disk record located at a fixed point on
the disk (cylinder 00, track 0, record 4). Figure 12 shows the format of the master file
directory. Figure 13 shows the relationship of the master file directory, file status
table blocks and file status tables.

2318+» DISPLACEMENT WITHIN ''SYSREF'' ==~ COMMUNICATION VECTOR REGION

2319+

00009C 2320+DADTLKP EQU 156
000000 2321+DADTLKW EQU 192
000028 2322+DADTP EQU 40
0000uC 23234DADTS EQU 76
000040 2324 +DADTT EQU 64
000050 2325+DBTYPLIN EQU 80
000004 2326+DBUFFER EQU u
000008 2327+DCMSOP EQu 8
0000AC 2328+4DCMSRET EQU 172
00008C 2329+DCOMBUF EQU 188
00000C 2330+DDEVTAB EQU 12
00008u 2331+DDI0SECT EQU 132
00007C 2332+DDMPEXEC EQU 124
000064 2333+DDMPLIST EQU 100
000084 2334 +DEXEC EQU 180
0000C8 2335+DEXISECT EQU 200
0000F0 2336+DFCBTAB EQU 240
000054 2337+DFREDBUF EQU 84
000068 2338+DFREE EQU 104
00006C 23394+DFRET EQU 108
000010 23u0+DFSTLKP EQU 16
00001C 234 1+DFSTLKW EQU 28
000000 2342+DFVS EQU 0
000014 2343+DGETCLK EQU 20
000018 2344 +DGFLST EQU 24
Q0002n 245:DIADT cqu 26
000030 23u6+DIOERRSP EQU L8
0000E8 2347+DIONTABL EQU 232
00005C 2348+DLNKLST EQU 92
000090 23L9+DMACLIBL EQU Ll
000094 2350+DMACSECY EQU 148
000080 2351+DNOTRKST EQU 176
000078 2352+DNUMTRKS E€QU 120
000008 2353+DOPSECT EQU 8
0000A8 2354 +DOSRET EQU 168
000064 2355+DOSVECT EQU 100
000088 2356+DOSTABLE EQU 136
000020 2357+DPIE EQU 32

BSC CTF BASIC COMPILER EXECUTIVE PROGRAM

LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT

00002C 2358+0PRTCLK EQU ki
000034 2359+DRDTK EQU 52
000038 2360+DSCAN EQU 56
000004 2361+DSCBPTR EQU 212
000070 2362+4DSETCLK EQU 112
00003C 23634DSSTAT EQU 60
000088 2364 +DSTART EQU 184
0000AL 2365+DSTATEXT EQU 164
000060 2366+DSTRINIT EQU 96
000098 236T7+DSVCSECT EQU 152
000044 2368+DSWITCH EQU 68
0000EC 2369+DSYSCTL EQU 236
000048 2370+DTABEND EQU 72
0000CC 2371+DTBL2311 EQU 20
000000 2372+0TBL2314 EQU 208
000074 2373+DTXTLIBS EQU 116
0000A0 2374+DUPUFD EQU 160
0000CH 2375+DUSABRV EQU 196
000008 2376 +DUSER1 EQU 216
00000C 2377+DUSER2 EQU 220
0000E0 2378+DUSER3 EQU 224
0000EY 2379+DUSERY EQU 228
00008C 2380+DUSVCTBL EQU 1.0
000058 2381+DWRTK EQuU 88

Figure 10. Displacements of V-cons from SYSREF

18

4

o]

FILE

NAME
8

FILE

TYPE
16

DATE LAST WRITTEN
40 20 Write Pointer 22 Read Pointer
(Number of Item) {Number Of item)
2 Eil d % Number Of
flemode Items In File
28 Disk Address 30 fived |31 Fiag
Of 1st Chain Link Variable {1}| Byte (2}
32 ttem Length (F)
Max. Item Length (V)
36 Number of Year
! 800-Byte Data Blocks
Notes on Date and Year: NOTE:
(1) Date Last written is in packed (1) F = Fixed Length Items

decimal format MM DD HH MM
e.g. 02 20 14 07 represents
February 20, 2:07 p.m.

(2) Year is in character form
e.g. C'69’ for 1969

V = Variable Length ltems
(2) FlagBYTE:=0

Figure 11. File status table entry

BYTES 0- 1: Disk Address of First FST Biock

Disk Address of 2nd FST Block (if any)

Disk Address of Nth FST Block {if any)

Sentinei, as follows:

FFFD = Disk Addresses foliow of Block (s}
containing PQMSK extension (s}

FFFF = No PQMSK extensions

Disk Address of First PQMSK extension {if any)

Disk Address of Nth PQMSK extension (if any)

[]
[]
(Not Used - zero-filled)
®
L]
.

BYTES 364-379: NUMTRKS, QTUSEDP, QTLEFTP, and LASTRK
{16 bytes - 4 each)

BYTES 380-381: Not Used (zero)

BYTES 382-383: NUMCYLP (2 bytes}

BYTES 384-598: First 215 Bytes of POMSK

BYTE 599 = UNIT-TYPE BYTE

BYTE 600-799: Entire 200-Byte PQOMSK Table

NOTES: NUMTRKS = Total number of 800-byte records on User's P-Disk
QTUSEDP = Number of records currently in use on User's P-Disk
QTLEFTP = Number of records ieft (INUMTRKS less QTUSEDP)
LASTRK = Relative byte-address of last record in use on P-Disk

NUMCYLP = Number of cylinders in User's P-Disk
UNIT-TYPE = 01 for 2311 Disk, 08 for 2314 Disk

Figure 12. Master file directory (MFD)

20

Permanent
Disk

- ,
FSTB; -7
- . FSTB,

/ / \ S—
_/
/ MFD
FSTB
E | MFD N Fixed e :
a— Painter to FSTB; Location FST
} Pointer to FSTB; FST,
I— Pointer to FSTB3 FST3
— — FSTq
]
s
.
J "
The MFD is Each FSTB is an
An 800 BYTE 800 byte disk record
Disk Record. that can contain

up to 20 FSTs.

Figure 13. MFD, FSTB, and FST relationship

The individual items in a file (for example, card images, live print images) are stored
in 800-byte disk records referred to as data blocks. A series of pointers that originate
in the associated file status table keep track of the data blocks, This series of pointers
is called a chain link, Within the file status table entry is a pointer to the first chain
link, a 200-byte disk record that contains (1) the disk addresses of the first 60 data blocks
for the file and 2) the disk addresses of up to 40 other chain links, Figure 14 shows the
format of the first chain link, Each of the other chain links (the second through the
forty-first) is an 800-byte disk record containing the disk addresses of up to 400 addi-
tional data blocks. The second chain link (if required) contains the disk addresses of
data blocks 61 through 460; the third chain link (if required) contains the disk addresses
of data blocks 461 through 860, etc., Figure 15 shows the format of the Nth chain link,
Figure 16 shows the relationship of the file status table, chain links, data blocks, and
items for a file,

21

s

¢ 2 ¢
2%

Disk Address of
2nd Chain Link

Disk Address ot
3rd Chain Link

3
Chain
Linkage

~
d "
’1 Directory

'F’ .

Disk Address of
40th Chain Link

)Y
LK ¢

L Disk Address of
fo 41st Chain Link
© 7 J
N_, Disk Address of
~

1st Data Block

DNisk Address of
2nd Data Block

1
9

)2
AR

120

—

Disk Address of
59th Data Block

Disk Address of
60th Data Block

Figure 14. First chain link (FCL)

File Management Tables in Main Storage

During a session, CMS maintains a user file directory for a user's active disk; it includes
pertinent information on a user's files, his QMSK and QQMSK (see the next section), and
the number of cylinders and other statistical data on his permanent disk.

The user file directory (UFD) is kept on the user's disk in the form of (1) a master file
directory (MFD), which is kept in a fixed place on disk (cylinder 0, track 0, record 4),
(2) an 800-byte record for the first file status table block, (3) additional records (as
needed) for any additional file status table blocks and (4) any QMSK extensions as needed,
if there is significant data beyond the first 215 bytes of QMSK.

At CMS initialization time, the user file directory is brought into core by the LOGIN com-
mand program (unless the user's first command is LOGIN NO-UFD, FORMAT P, or FORMAT
P ALL). The file status table blocks that contain the individual file status tables required
for the session are linked together into a chain that originates in the data area PSTAT.
See Figure 17, The user file directory is then maintained in core in the active disk table
by the various file maintenance and disk programs, for the duration of this session, At
the completion of each typed-in command, between commands executed under the EXEC
command, upon CMS LOGOUT, and at other key points as needed, the user file directory
is updated on the user's disk by the UPDISK routine,

22

e 12} >

* Disk Address of
A+ Oth Data Block

Disk Address of
S+ 1st Data Block

800 {
.Y
1

*

Y
{

Disk Address of
/N + 398 th Data Block

Disk Address of
v A+ 399th Data Block

A& = (n-2) ® 400+ 61
where n = Chain Link Number

Figure 15. Nth chain link

Before a file can be read or written, it must be opened and made active, Making a file
active consists of constructing an entry in the active file table (AFT), which includes a
copy of the file's FST entry. An active file table entry contains disk addresses and core
addresses for the chain link and data block that are currently in core. Figure 18 shows
the format of a single active file table entry, and Figure 19 illustrates the form of the
active file table showing several entries.

A file's entry is removed from the active file table when the FINIS command is issued
for it, See the section '"Active File Table (AFT) Management" for further information,

Data Block Structure

Files stored on the disk may be made up of either fixed-length or variable-length

items, (A mixture of fixed-length and variable-length items within a particular file

is not permitted.) Regardless of their format, the items are stored in sequential

order in as many data blocks as are required to accommodate them. Each data block,
with the exception of the last, is completely filled and, where necessary, items that are
started in one data block are continued in the next, Figures 20 and 21 show the data
block formats for files containing fixed-length and variable-length items, respectively.

23

FST

First Chain
Link
(200-BYTE
Disk Record)

! Pointer

The FST Is Located In
A FSTB, Which Is
Pointed To By The
MFD. (See Fig. 14-B)

Pointer To 2nd
Chain Link

]

Second Chain
Link
{800-BYTE
Disk Record)

Pointer To
3rd Chain LINK

Pointer To 41st
Chain Link

80 Bytes

Pointer To 61st
Data Block

Pointer To 62nd
Data Block

Fointer 70 st
Data Block

Pointer To 2nd
Data Block

Pointer To
60th Data Block

120 Bytes

L
[]

Pointer To
460th Data Block

First Data Block (800 BYTE Disk Record Containing Items In File, Appropriately Blocked)

Figure 16, Relationship of FS'I, chain links, data blocks, and items of a file

24

Item 1 Item 2 Item 3 e o o Item N,
Second Data Block
Ftem N+1jltem N+2| o @ Item 2N

First FST
Hyperblock *
(816 bytes)
=PSTAT or
equivalent:

*ADTFDA - &

Table width = 40

Table length = 800

FST; (40 bytes)
.
.
.

FST,((40 bytes)

L — e e

Pointer to 2nd

Backpointer = 0
for 1st block

FST Hyperblock —

*NOTES: 1.

For P-Disk, 1st Hyperblock

= ""PSTAT" is included in
"“FVS” CSECT. For all other
disks, 1st Hyperblock is

in free storage.

N

. "ADTFDA" in active disk table

points to 1st Hyperblock.

2nd Hyperblock
(808 bytes, in
free storage):

FST,, (40 bytes)

FST4¢ {40 bytes)

Pointer to 3rd
ST Hyperblock ~
Backpointer to
1st Hyperblock

- ——>

Figure 17, Example of three ST hyperblocks in main storage

3rd Hyperblock
(808 bytes, in
free storage):

FST4, (40 bytes)

.
.
L]
0
0= End of
Chain

Backpointer to
2nd Hyperblock

AFTSECT
Name:

AFTCLD
AFTCLN
AFTCLA
AFTDBD
AFTDBN
AFTDBA
AFTCLB
AFTFLG

AFTUSED
* k%
AFTICF
AFTFBA
AFTDBF
AFTWRT
AFTRD
AFTFULD

AFTPFST
AFTIN
AFTID

AFTEST

AFTN
AFTT
AFTD
AFTWP
AFTRP
AFTHM
AFTIC
AFTFCL
AFTFV
AFTFB
AFTIL
AFTDBC
AFTYR

AFTADT
AFTPTR

AFTESF

CONTENTS

DSECT

FLAG BYTE (AFTFLG)

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

DS
DS
DS

DS

ImTIxT

—
—

L8O

X)X T

x'8o0’
X'so'
X'20°
x'10'
x'og'
x'oy'
X'o2'
Xx'ol!'

3X
H
H

o
lw)

IXZITMXOILIITLTILTIITMOO

F
E

X'uo'

Figure 18. Active file table block

26

OF ONE ACTIVE-FILE-TABLE BLOCK

(DSECT name if referenced via "AFT" Macro)

Disp.

Contents:

97
100
102

104

104
112
120
124
126
128
130
132
134
135
136
140
142

luy
148

DISK ADDRESS OF CURRENT CHAIN LINK
HUMBER OF CURREMNT CHAIN LINK

CORE ADDRESS OF CHAIN LINK BUFFER
DISK ADDRESS OF CURRENT DATA BLOCK
NUMBER OF CURRENT DATA BLOCK

CORE ADDRESS OF CURRENT DATA BLOCK
CHAIN LINK BUFFER FROM 1ST CHAIN LINK
FLAG BYTE

DEFINITIONS:

ACTIVE FILE TABLE BLOCK IN USE
NOT CURRENTLY USED=

FIRST CHAIN LINK IN CORE FLAG
FULL BUFFER ASSIGNED

DATA BLOCK IN CORE FLAG

ACTIVE WRITE

ACTIVE READ

FULL-DISK SPECIAL CASE

POINTER TO FST-ENTRY in FST HYPERBLOCK
CURRENT ITEM NUMBER
DISPLACEMENT OF CURRENT ITEM IN DATA BLOCK

ACTIVE FST BLOCK (AFTN thru AFTYR):

FILE NAME

FILE TYPE

DATE/TIME LAST WRITTEN
WRITE POINTER (ITEM NO.)
READ POINTER (ITEM NO,)
FILE IMODE

ITEM COUNT

FIRST CHAIN LINK
FIXED(F)/VARIABLE(V) FLAG
FST FLAG BYTE (=0)
(MAX1MUM) |ITEM LENGTH
800-BYTE DATA BLOCK COUNT
YEAR

POINTER TO ACTIVE DISK TAGSLE
POINTER TO MNEXT AFT BLOCK IN CHAIN

BIT IN AFTPTR INDICATES IN FREE STORAGE

FVSAFT

1 Limited number (3] of
fee — - AFT Blocks included
in "FVS" CSECT

r
| First AFT Block
| (starting at “FVSAFT")

Second AFT Block

Pointer to 3rd Block

Third AFT Block

O or Pntr to 4th Blk

| Fourth AFT Block
(if any -in
free storage)

| 0 or Pntr to 5th Blk

e]

7

/

{if any -in

free storage)

Nth AFT Block wl
!
0 = End of AFT Chain |

I

e

Figure 19. Active file table (AFT)
System Disk

The file management scheme for the system disk is similar to that for any read-only
disk. However, the usual file status table blocks are replaced by a system status table
(SSTAT), which becomes part of the nucleus,

The system status table contains a file status table for each system disk file (for ex-
ample, a disk resident command program) that has a filemode of P2 when generated onto
the system disk,

SSTAT is created by the SYSGEN routine, as required at IPL time, SSTAT is constructed
within the free storage of the nucleus. It contains references to all files of mode P2,
When the IPL CMS feature (IPL by name) is used, however, a copy of the nucleus with
SSTAT already filled in is obtained, and SYSGEN is not called,

DISK SPACE MANAGEMENT
Disk space management allocates and keeps track of storage on the primary, tempo-

rary, or any other read-write disk, Various CMS programs require disk space in which
to write user files and control tables, When a program needs disk space, it calls the

27

First
Data
Block

Second
Data
Block

Third
Data
Block

1st item
800 —— o ——— — —
t
A |
2nd item
—r—————
|
U |
800 3rd ftem ——— —
|
-
4th Item
8?0 5th Item
l]

800

800

1
l

Figure 20. Data block structure for file consisting of fixed-length items

First
Data
Block

Second
Data
Block

Third
Data
Block

U

1st ltem
800 - - = - — /7 800
2nd Item
_!‘__ —_—— e — —_—
I3 l 3rd Item [La lf
800 800
4th item
]
%00 5th item 800
———————— |
! '

Figure 21. Data block structure for file consisting of variable-length items

First
Data
Block
Second
Data
Block
NOTE: The location of an
arbitrary item in a file
consisting of fixed-length
Third items is deterrnined by
Data the following formula:
Block (1tem Number - 1) x Item Length
200
where the Quotient=Data Block Number
and the Remainder=Displacement
in Data Block
First
Data
Block
Second
Data
Block
Third
Data NQOTE: Each variable
Block

length item is preceded
by a two-byte field
that contains the
length of the item.

disk space rnanagement routines, which allocate an areu of the requested size and return
the starting address of the area to the caller.

A disk area of 800 bytes (a quarter-track on a 2311) is requested for a data-block or Nth
chzin link. A 200-bhyte area (a sixteenth-irack on a 2311) is requested if a first chain link
is needed.

(On a 2311, the records are physically grouped four 829-hyte records per track, of which
CHIS uses the first 800 bytes -- hence, the terms "quarter-track’ and "sixteenth-track".
On a 2314 disk, the records are actually grouped fifteen 829-byte records per two tracks,
of which CMS uses the first 800 bytes.)

Read-Write Disks

The status of quarter tracks on any read-write disk (whiclhi are available and which are in
curvent use) is stored in a table called QMSK.

When the system is not in use, a user's QMSK is disk-resident (in the user file directory);
during a session it is maintained on disk, but also resides in main storage. QMSK is of
variable-length, depending on how many cylinders exist on the primary disk (2311 or
2314}, but is an integral number of bytes. Each bit is associated with a particular guarter
track on the primary disk. The first bit in QMSK corresponds to the first quarter track,
the second bit to the second quarter track, etc. When a bit in QMSK is set to one, it
indicates that the corresponding quarter track is in use and not available for aliocation. A
zere bit indicates that the corresponding quarter track is available. Figure 22 illustrates
the format of QMSK for a 203-cylinder 2311.

Another table, called QQMSK indicates which sixteenth tracks are available for allocation
and which are currently in use. QQMSK contains 100 entries, which are used to indicate
the status of up to 100 sixteenth tracks. An entry in QQMSK contains either a disk address,
pointing to a sixteenth track that is available for allocation, or zero. Figure 23 shows the
format of the QQMSK.

Disk space management is implemented as follows. When a program requires a quarter
track, it calls the disk space management routine TRKLKP, which scans the QMSK table
for the first zero bit. When found, the bit is turned on te indicate that the corresponding
guarter track is being used, and the address of the quarter track is returned to the caller.
When a program frees a particular quarter track, it passes the address of the quarter
track to the disk management routine TRKLKPX, which sets the corresponding bit in
@QMSK to zero. The quarter track is thereby flagged as being available for allocation to
another program.

When a program (namely WRBUF) requires a sixteenth of a track it calls the disk space
management routine QQTRK, which scans the QQMSK tahle, starting from the beginning, for
the first entry containing a disk address. If such an entry exists, the disk address is given
to the caller and the entry is set to zero. If no such entry exists, QRTRK obtains a quarter
track from TRKLKP, normally segments 4 infe {ous equal purts, places the addresses of
the last three-sixteenths of the track into the first three zero entries in QQMSK, and
returns the address of the first sixteenth of the track to the caller.

29

10 Bits
CYL.0 CYL.0 CyL.0 CYL.0 CYL.0 CYL.0
Track O Track O Track 0 Track O Track 1 Track 1 eo 0
Rec. 1 Rec. 2 Rec. 3 Rec. 4 Rec. 1 Rec. 2
°
~s
2
© ~ b
o ~ I
@© .
-+~
CYL.202 | CYL.202 | CYL. 202
e oo Track 9 Track 9 Track 9
Rec. 2 Rec. 3 Rec. 4
NOTE:
Bit Value Meaning
0 Quarter Track
not in use.
1 Quarter Track

in use.

QMSK for a 2311 Disk (up to 203 cylinders): maximum of 8120 bits

{1015 bytes)

For a 2314 Disk, a bit is assigned to each 800-byte record,
15 bits per two tracks, up to 150 bits per cylinder,

For permanent disk, first 215 bytes of PQMSK are kept in MFD;
the remaining bytes {if any) on disk (in as many POQMSK
extensions as necessary), pointed to by MFD.

Figure 22. Disk quarter-track assignment (QMSK)

30

‘—‘F— Disk address of

available 1/16 track or zero

ETC.
[]
3
5 § ~ 4 ~
% E‘ ~s . ~
T |8
o | g
o
-

. B

Figure 23. Disk sixteenth track assignment (QQMSK)

When a program (for example, ERASE) frees a sixteenth of a track, it passes its address
to the disk space management routine QQTRKX. This routine scans the QQMSK table for
the addresses of the three other sixteenths that resulted from the division of the quarter
track. If all three addresses are present, indicating that a complete quarter track has
been freed, the three addresses are deleted from QQMSK, and the bit in QMSK correspond-
ing to the freed quarter track is set (via TRKLKPX) to reflect its availability for allocation.
If all three addresses are not present, the address of the sixteenth to be freed is placed in
the first zero entry in QQMSK.

The disk addresses used throughout CMS are in the form of halfword block numbers.
Figures 24 and 25 show their format for first chain links (sixteenth-tracks) and other

(800-byte) records, respectively.

Some special logic is used for first chain links if a block number obtained from TRKLKP
exceeds 8191, The notes on Figure 24 show the algorithms used.

The location of the QQMSK table, and the location and size of the QMSK table are kept for
each disk in the active disk table. Pertinent information, with the mnemonics used in the
ADT macro, are given below. The complete information is given in Figure 34 under

File Management Macros.

31

Block Number of
800-byte block

containing 200-byte Format of halfword Binary
First Chain Link Disk Address Representation ***
— e — — — e

Bits 0-1 contain

00, 01,10, 0r 11
18191 * L xx0X XXXX XXXX xxxx_}

Bits 2-15 contain

block number

8192-16383 ** Block Number “as is” r001x XXXX XXXX xxxxj
1638424575 ** Block Number + 24576 [107x xxxx xxxx xxxx_|
24576-32767 ** Block Number "as is” (—01 TX XXXX XXXX xxxx1

* For Block Numbers (8192, first chain links are grouped
four per 800-byte block. The first two bits of the disk-address
(00, 01, 10, or 11) signify which 200 bytes of the 800-block are used.

** For Block Numbers of 8192 or greater, first chain links occupy the
first 200 bytes of an 800-byte block. (Remaining 600 bytes are unused)

*** Note that the various disk routines (RDTK-WRTK, QQTRK, & QQTRKX) can
readily distinguish between the two types of first chain link from
the third bit of the disk-address with no ambiguity
(0 for biock-numbers 1-8191, 1 for block numbers from 8192 up).

Figure 24. Disk address format for first chain links

Disk-Addresses for Data-Blocks and

N'th Chain Links are in the form

of a halfword ‘Block Number’ from 1 up,
as follows:

{ OXXX XXXX XXXX XXXX“

(The largest possible biock-number for a full
203-cylinder 2314 Disk is less than 32767}

Figure 25. Disk address format for Nth chain links and for data blocks

1. Disk statistics available on any logged-in disk:

ADTI1ST Displacement of first full-word in QMSK containing at least one bit = 0
(maintained in core by TRKLKP and TRKLKPX)

ADTNUM Total number of 800-byte records on disk
(formerly called NUMTRKS)

ADTUSED Number of records in use
{formerly called QTUSEDP)

ADTLEFT Number of records left = ADTNUM - ADTUSED
(formerly called QTLEFTP)

ADTLAST Displacement of last nonzero byte in QMSK
(formerly LASTRK)

ADTCYL Number of Cylinders on Disk
(formerly NUMCYLP or NUMCYLT)

32

2. Kept in core only for a logged-in-read-write disk:

ADTMSK Core-address of QMSK table.
ADTQQRM Core-address of QQMSK table.

ADTPQM1 Number of bytes (in any) in QMSK exceeding 215
(formerly PQMSIZ)

ADTPQM2 Number of 800-byte records (QMSK extensions) needed for maintaining
on disk a QMSK exceeding 215 bytes in iength.
(formerly PQMNUM)

ADTPQM3 Number of double words in GMSK
{formerly RONUM)

For any read-write disk, the QMSK and QQMSK tables are brought into core when the disk
is logged in by the READMFD routine. They are maintained as described above by
TRKLKP, TRKLKPX, QQTRK, and QQTRKX. The updated QMSK and QQMSK tables are
written on disk when appropriate by the UPDISK routine, which maintains the User File
Directory for any given read-write disk.

Size of QMSK Bit-Mask

As mentioned above, the size of the QMSK is a function of the size of the disk. A one-
cylinder 2311, containing only 40 records, would require only five bytes, or one double
word, for the QMSK. A 2311 of up to 43 cylinders, or a 2314 of up to 11 cylinders, would
require nc more than 215 bytes for its QMSK, which would be kept entirely in the Master
File Directory (MFD) on disk. A larger disk would require additional QMSK extensions
for maintaining the QMSK on disk, as shown inthe following table:

Number of QMSK

Extensions Required (If Any) Number of Cylinders on Disk

2311 2314
None 1-43 1-11
1 44 - 203 12 - 54
2 - 55 - 96
3 - 97 - 139
4 - 140 - 182

(@3]
R
0
[¥%]
'
-]
2
W

(W]
(V0]

System and Other Read-Only Disks

When any disk (system disk or otherwise) is read~only, its QMSK and QQMSK tables are
not brought into core and, like the rest of the UFD for that disk, remain as is on disk
until such time as the disk is logged in as a read-write disk,

ACTIVE FILE TABLE (AFT) MANAGEMENT

When files are being read or written by CMS, the necessary data is kept in the Active
File Table (AFT).

There is no specific limit as to how many files can be active at any one time (formerly
there was a limit of 8), Since many I/O programs handle at least two or three active
files, it is convenient to have a few AFT blocks available at all times; others are
created from free storage upon demand and are released when no longer needed,

A limited number of AFT blocks, therefore are provided in the CMS nucleus, referenced
at FVSAFT within the FVS storage C-Sect. This number is set to 3 as a practical
value, but could easily be changed if desired, by a revision of the FVS table, It must

be at least 1, however,

Four routines are used for active file table management - ACTLKP, ACTNXT,
ACTFREE, & ACTFRET.

The AFT macro is used by these and other programs for referencing an Active File
Table block, The form of this macro is shown in Figure 18,

ACTIVE DISK TABLE (ADT) MANAGEMENT

For each disk handled by CMS, the pertinent file directory information is stored in an
active disk table entry for that disk. The initial active disk table (IADT) in the CMS
nucleus contains the active disk table entries for the six disks handled by CMS, The
ADT macro is used to reference an entry in this table,

The disks included in the table, not all of which are necessarily attached to a CMS user
at any given time, are shown as follows (showing the order of search used if "any"
disk is requested):

P-Disk Primary Disk - usually logged in - normally read - write
T-Disk (if any - normally read-write if logged in)

A-Disk (if any - read-write or read-only)

B-Disk (if any - read-write or read-only)

S-Disk CMS System Disk (read-only)

C-Disk (if any - read-write or read-only)

The file directory for the S-Disk is brought into core at CMS initialization time by
SYSGEN and READFST, with the FST entries being stored in the SSTAT system status
table,

The file directory for the P~Disk and/or any other disk 1s brought into core oy the
CMS LOGIN command, and released when no longer needed by the RELEASE
command,

The S-Digk cannot be logged in (via T.OGIN) or released by RELEASE.

The A-Disk, B-Disk, or C-Disk can each be logged in as a separate, unique disk
(either read-only or read-write), or as read-only extension of another disk higher
in the order of search. For example, the A-Disk could be a read-only extension
of the P-Disk or T-Disk; the C-Disk could be a read-only extension of any of the
other types.

The T-Disk is normally a unique disk, since many CMS commands have the capability
of handling a T-Disk if present.

Note that the C-Disk has a lower priority than the S-Disk, This serves two very
important purposes, as follows:

1. Any disk (such as an old CMS S-Disk) which has modules on it that have been
superseded by newer modules on the CMS system-disk should be iogged in (if needed
at all) as the C-DISK. This ensures (through the order of search) that the new
module from the S-Disk will be used in preference to the obsolete module on the old
disk. (This can be particularly important for an old S-Disk having an obsolete copy
of certain file management modules such as LOGIN, LISTF, OFFLINE, etc.)

2. A C-Disk can purposely be made as a read-only extension of an S-Disk, for any
of several good reasons, This procedure is discussed in the CP-67 /CMS Instal-
lation Guide.

Two routines in particular are used for active disk table management — ADTLKP and
ADTNXT.

1/0 OPERATIONS

CMS input/output operations may be either synchronous or asynchronous. These I/0
operations for direct access storage devices, tapes, card readers, card punches,
printers, and the console (when under a programmed controlled read) are synchronous.
That is, CMS enters the wait state after starting the I/O operation and resumes proc-
essing when the initiated I/O operation causes an interrupt.

Those input/output operations for the console when performing either an output or an in-~
put operation initiated by an attention interrupt, are asynchronous. For asynchronous
1/0, CMS does not enter the wait state, but rather, CMS continues processing while the
user enters data from the terminal or while data is typed to the terminal.

User input/output operations can be either synchronous or asynchronous depending on
user requirements. Refer to the section ''User Input/Output Operations'' for more
detail,

o
W

CMS Terminal 1/0

Terminal handling deals with the way in which CMS controls terminal I/0 activity.
This activity is managed by three first-in, first-out lists. The first of these, called
the read-write stack, contain an entry for each read or write request that has not been
satisfied. The first and last entries in the read-write stack are pointed to by fields
(FSTRDWRT, LSTRDWRT) in the console constant area (CONGEN). All other entries
are chained together. (See Figure 26,) The number of entries in the read/write
stack is also stored in a field WUMRDWRT) in CONGEN, Each entry in the read-
write stack is called a CCW package. The CCW package describes the corresponding
read or write, When a read or write request is satisfied, the corresponding CCW
package is removed from the read-write stack,

The second list, referred to as the pending read stack, contains an entry for each read
request that is pending (that is, waiting to be satisfied). It is similar in strueture to
the read-write stack except that it only contains entries for pending reads. (See
Figure 27.)

When a read request is satisfied, the corresponding eniry is removed from the pending
read stack and placed into a third stack called the finished read stack,

The finished read stack is similar in structure to the other two stacks except that it
only contains entries for finished read operations, (See Figure 28,)

Congen
CCW Package # 1
(First read/write)
FSTRDWRT
LSTRDWRT -—\ \
NUMRDWRT
CCW Package #2
(Second read/write)

CCW Package #3
(Last read/write)

0

Figure 26, Read/write stack

Congen

CCW Package #1
FSTPENRD {First Pending Read)

LSTPENRD _—j '——‘—\

NUMPENRD \ \\
\

\ CCW Package =2
\ {Last Pending Rsadi

a

Figure 27. Pending read stack

Congen

CCW Package 1
{First Finished Read)

FSTFINRD

LSTFINRD
NUMEINRD \

\ CCW Package =2
\ (Second Finished Read}
| —

\

CCW Pgckage ¥3
{Last Finished Readj

0

Figure 28. Finished read stack

Detailed information on how terminal operations are handled can be found in the discus-
sions of the WAITRD, TYPLIN, and TYPE function programs and in the discussion of
input/output interruptions.

CMS Nonterminal 1/0

As previously stated, non-terminal I/O operations are synchronous, When a CMS pro-
gram starts an I/O operation on a device other than the terminal, it enters the wait
state to wait for an interruption from that device. The program does this by calling a
common wait program (WAIT). When WAIT receives control, it loads a PSW that has
the wait bit set. This PSW also contains an address pointing to a location within WAIT
to which control is to be returned when the interruption being waited for occurs.

When an I/0 interrupt occurs, control goes to IOINT as the new I/O PSW points to
IOINT. IOINT passes control to the program that handles interrupts for the particular
device that caused the interrupt if any such program exists. The program analyzes

the interrupt to determine (1) if another interrupt is necessary to complete this par-
ticular interrupt sequence (e.g., channel end, followed by device end), and (2) if an
error has occurred during the I/O operation. The program sets GPR15 to 0 for a
completed interrupt sequence, and sets GPR15 to nonzero for an incompleted sequence.
(The actions taken on an error are discussed in IOERR, the CMS program providing
centralized error recovery.) The interrupt processing program then returns to IOINT
which either (1) returns control to WAIT with all interrupts disabled and in the runnable
state (i. e., the wait bit turned off) when the interrupt was caused by the waited-for-
device and GPR15 is zero; (2) places the machine in the wait state by loading the old
1/0 PSW — which had previously been used to place the machine in the wait state — when
the interrupt was caused by the waited-for-device and GPR15 is nonzero; or (3) places
the machine in the wait state by loading the I/O PSW when the interrupt was not caused
by the waited-for-device.

User Input/Output Operations

CMS allows the user to perform his own input/output operations, i.e., issue his own
start I/0 (SIO) instructions anywhere in his CMS machine. This is accomplished by

always running CMS in the supervisor state so privileged instructions can be issued

by the user.

CMS also provides the user utilizing this facility with an interface enabling him to use
the CMS I/0O interrupt handling routines WAIT and IOINT and the centralized CMS 1/C
error recovery JOERR. The interrupt handling interface, HNDINT, is described below,
The I/0 error interface is described under ''Input/Output Service Routines''.

System input/output activity to disk may be initiated without using an SIO instruction.
This I/0 can be performed by using a Diagnose instruction to signal CP-67 to perform
certain disk I/O operations. See the section "'Disk Handling Function Programs’ for
further details

HNDINT

P T als s e e R e Nian] -

FUNCTION: The HNDINT function sets the CMS I/O interrupt handling routines to trans-
fer control to a given location for an I/0 device other than those normally handled by
CMS, or to clear such transfer requests.

ATTRIBUTES: Disk resident, transient

CALLING SEQUENCE:

DS OF
PLIST DC CL8'HNDINT? cailed routine
DC CIA'SET! or CL4'CLR' function

IODEV NAME, NUMBER, ADDRESS,
ASAP/WAIT-FLAG, KEEP/CLEAR FLAG

DC X'FFFFFFFF!' end of list

E(00001) Incorrect parameter list

MACRO IODEV: The IODEV macro sets up the following information in a 12-byte field:

NAME = Symbolic device name (1st 4 letters)
NUMBER = Hexadecimal device address
ADDRESS = Symbolic address of interrupt-handler to be invoked. If

address = 0, interrupts will be ignored when received.
ASAP/WAIT-FLAG:

ASAP = Invoke interrupt-handler immediately.

WAIT = Invoke interrupt-handler only when WAIT is called.
KEEP/CLEAR-FLAG:

KEEP = Retain interrupt-handling between CMS commands.

CLEAR = Clear interrupt-handling after each CMS command.
CLEAR = DEFAULT OPTION
Example: IODEV NEWD, 387, MYCODE, ASAP,KEEP

OPERATION: When an interrupt is received and processed by IOINT, it passes control
to the interrupt-handler as follows:

Register 0. 1 T/0 OLD PSW

2, 3 CsSW

4 Device address

14 Return address to IOINT

15 Address of interrupt-handler

L2
©w

When processing is complete, the interrupt-handler must return to IOINT via register 14,
with Register 15 as follows:

R15 = 0 means SUCCESSFUL HANDLING
R15 = Nonzero means ANOTHER INTERRUPT EXPECTED

The general procedures for CMS I/0 handling using HNDINT are as follows:
1. The program must initialize handling to be done via HNDINT SET.

2. When I/O to the appropriate device is to be done, the system-mask must be set OFF
(by SSM instruction) and appropriate SIO given.

3. When SIO is performed satisfactorily, the system-mask can be set to allow all
interrupts.

4a, If ASAP was specified, the interrupt-handler is invoked as soon as the interrupt is
fielded by CMS IOINT. The interrupt-handler returns to IOINT, which returns to
user's program.

4b. If ASAP was not specified, IOINT retains needed information until CMS WAIT
function is called.

5. When program cannot proceed until the interrupt has been received, CMS WAIT
function is called. If interrupt has not yet been received, CMS goes in WAIT state
until IOINT fields and processes the interrupt in the normal way.

If the interrupt has been received and processed (for example, on ASAP), WAIT
returns to caller with necessary internal flags cleared.

If the interrupt has been received but not yet processed (as under WAIT option
instead of ASAP), CMS WAIT now calls IOINT to invoke desired interrupt-handler,
then clears needed flags and returns to caller.

6. When finished, using program should normally clear the interrupt-handling scheme
thru HNDINT CLR call (unless KEEP option is used and the interrupt-handler re-
mains intact in core).

SVC SIMULATION

The SVC interruption handler (INTSVC), in addition to processing the special SVC

X'CA' supervisor call instruction (refer to ''Internal Linkage Scheme!''), also will
transfer control to routines that will simulate various Operating System/360 super-
visor functions., The simulation is required to enable the language processing programs,
which make extensive use of Operating System/360 macro instructions, to function in the
CMS environment. (Many Operating System/360 macro Instructions expand into SVC's).

40

These functions are simulated to yield the same results as scen trom the processing
program, as specified by OS program logic maiuals. i—iowever. they ave supperted only
to the extent stated in CMS documentation and to e extent necessary to successfully
execute OS language processors. The user should be aware that restrictions e OS
functions as viewed from OS exist in TS,

The OS Functions that CMS will simulate are:

OS Simulation Under CMS

The OS simulation routines provide the CAIS superviscry and file management functions
necessary to support Assembler ¥, FORTRAN G compiler. TORTRAN G text decks,
FORTRAN G library routines, PL/1 compiler, PL/1 text decks. and PL/1 library
routines.

Since the OS simulation routines are CMES voutines (1 e. . they ave nct GS routines),
there is no guarantee that jobs, other than those ilisted abcve. thaf run under OS will

also run under CMS,

The following Operating System/360 functions are simulatcd by CMS:

SvC OS Simulation
Number Function Routine Usag

GO *XDAP SOSVCTR Used to access SYSUTI

01 WAIT SOSVCXNU wait for an 1I/0 completion

02 POST SOSVCNU post the I/O conipletion

03 RETURN SOLINKS return from a LINK-to routine

04 GETMAIN SOMAIN conditionaliv acquire user free storage

05 FREEMAIN SOMAIN release user-acquived {ree storage

06 LINK/GETPOOL SOLINKS link contrcl to another 1 ad phase

07 XCTL SOLINKS release, then link control to ancther
load phase

08 LOAD SOLINKS read into core another load phase

09 DELETE SOLINKS delete a loaded phase

GETMAIN
10 FREEMAIN SOMALN manipulaie user free storage
FREEPOOL

11 *TIME SOSV{C TR get the time of day

13 ABEND SOABEXND abort processing, and enter DEBUG

14 *SPIE SOSVCTR aliow a nrocessing program to decipher
program interrmpts

18 *BLDL /FIND SOSVCTR manipulate simulated partitioned date files

19 OPEN SOOPCL activace a data file

20 CLOSE SOOPCL deactivate 2 data file

21 *STOW SOSVITR manipulaie pariiioned directories

22 OPENJ SOOPCL aciivate o daic file

M
[

SvC 0S Simulation

Number Function Routine Usage

23 TCLOSE SOOPCL temporary deactivate a data file

24 *DEVTYPE SOSVCTR obtain device-type physical character-
istics

35 *WTO/WTOR SOSVCTR communicate with the console

40 *EXTRACT SOSVCTR effective NOP

41 *IDENTIFY SOSVCTR effective NOP

44 *CHAP SOSVCTR effective NOP

46 *TTIMER SOSVCTR effective NOP

47 *STIMER SOSVCTR effective NOP

48 *DEQ SOSVCTR effective NOP

51 ABDUMP SOABEND (same as ABEND)

56 *ENQ SOSVCTR effective NOP

57 *FREEDBUF SOSVCTR release a free storage buffer

60 *STAE SOSVCTR allow processing program to decipher
abort condition

62 *DETACH SOSVCTR effective NOP

63 *CHKPT SOSVCTR effective NOP

64 *RDJFCB SOSVCT2 obtain information from FILEDEF
command

68 *SYNAD SOSVCT2 handle data set error conditions

69 *BACKSPACE SOSVCT2 backup a record on a tape or disk

— GET/PUT SOQSAM access system-blocked data

— READ/WRITE SOBSAM access system-record data

- NOTE/POINT SOCNTRL access or change relative track address

— CHECK SOCNTRL test ECB for completion and errors

* These SVCs are simulated in SOSVCTR. This routine is loaded into the transient
area whenever one of these SVCs is issued.

Operating System/360 SVC Simulation Routines

CMS provides a number of routines to simulate certain Operating System/360 functions
used by programs such as the Assembler and the FORTRAN and PL/I compilers. Some
of the SVC simulation routines are located in the disk resident modules SOSVCTR and
SOSVCT2, Whenever one of the SVC routines in SOSVCTR or SOSVCT2 is invoked,

that routine is loaded into the transient area. The following paragraphs describe how
these simulation routines work.

XDAP-SVC 0: Used by OS compilers to read the source code spill file, SYSUT1

WAIT-SVC 1: This routine (WAITX) receives control when a WAIT macro instruction
is issued. When it gets control, WAITX tests the completion bit in the ECB. If the
bit is on, indicating that the event being waited for is complete, it returns to the
calling program. If the bit is off, a wait state PSW is loaded and waits for the bit to
be turned on, at which time it returns to the calling program.

42

POST-SVC 2: POST will set bits in the event control block (ECB) to signify termination
of an I/O operation upon receiving an I/O interrupt from the specific device.

RETURN-SVC 3: To return from a load module that was given control by a LINK or
XCTL call, SVC 3 may be used. SVC 3 will cause control to be passed to the RETURN
entry point in the core resident routine, SOLINKS. If the load module was LOADMOD'ed
by CMS, the chaining stack will be updated, the PSW at the time of the LINK or XCTL
will be loaded, and the address of the returning phase will be deleted from the stack. If
the load module was dynamically loaded by the relocation of the object code, transfer

is made to DEL4. All entries, in the load tables (LDRTBL) in high-numbered core,
that are a result of the returning phase having been loaded, will be blanked out. The
core storage that was obtained to load the phase will be returned to the system pool of
free storage by a call to FRET.

GETMAIN-SVC 4: Control is passed to the GETMAIN entry point in the SOMAIN core
resident routine. The mode is determined: VU, VC, EC. A call is made to GETBLK
to obtain the block of storage. General storage maintenance is described elsewhere in
this manual. Control blocks of two fullwords precede each section of available core:

(1) the address of the next block, (2) the size of this block. The head of the pointer
string is located at the words FSTFRE - initial free block, LENFRE - size of initial
block, FRELST - address of first link in chain of free block pointers.

FREEMAIN - SVC 5: Releases a block of free storage. If the block is part of segmented
core, a control block of two full words is placed at the beginning of the released area.
Adjustment is made to include this block in the chain of available areas.

LINK-SVC 6: Program transfer is controlled by the nucleus routine SOLINKS. The
LINK macro causes program control to be passed to a designated phase. If any X'860"

bit within the word SWITCH is on, loading will consist of LOADMODing a CMS MODULE
into core. If all bits are off, dynamic loading will be initiated. The TEXT deck of the
desired phase will be located, and the first £SD card will be scanned (in DYNALOAD) to
obtain the length of the CSECT. A GETMAIN will be issued to obtain enough core storage
so that the loader (LDR) may relocate the phase into core. If other text decks or library
routines are needed to complement the desired phase, a GETMAIN is issued for each
segment length. A chain of pointers is built to record the old SVC PSW, the entry point
of the new phase, and the loader table entries caused by the new phase.

GETPOOL: GETPOOL routine is entered via a link SVC 6 with an entry point of IECQBFG1
whenever the user issues a GETPOOL macro. The routine gets core and builds the pool
of buffers. GETMAIN is issued to obtain the storage necessary for the number and size

of buffers requested, and a chain of buffer pointers is built whose address is placed in the
DCB passed by the caller.

XCTL-SVC 7: XCTL determines whether LOADMOD or dynamic loading is required for
loading the module to which XCTL will transfer control after loading is complete.

LOAD-SVC &: Control is passed to SVCO08 located in SOLINKS when a LOAD macro is
issued. Upon entry, SVCO08 determines if the CMS overlay structure is in effect. If it
is, LOADMOD is called to read a CMS MODULE. If dynamic loading is desired, a
CMS TEXT file is loaded. Control then passes back to the user.

DELETE-SVC 9: DELETE removes all references caused by the specified module from
the loader tables; and frees acquires main storage if the dynamic loader was in effect.

GETMAIN/FREEMAIN-SVC 10: Control is passed to the SVC 10 entry point in SOMAIN.
Storage management is analogous to SVC 4/5 respectively.

TIME-SVC 11: This routine (TIME) located in SOSVCTR receives control when a TIME
macro instruction is issued. A call is made to the pseudo timer device, X'OFF'. The
real time of day and date are returned to the calling program in a specified form:
decimal (DEC) binary (BIN), or timer units (TU).

ABEND-SVC 13: This routine (SOABEND) receives control when either an ABEND macro
or an unsupported 0S/360 SVC is issued. If an SVC 13 was issued, a check is made to
see if there are any outstanding STAE requests. If not, or if an unsupported SVC was
issued, TYPLIN is called to type a descriptive error message at the terminal. Next,
CONWAIT is called to wait until all terminal activity has ceased, and then, control is
passed to DEBUG. If a STAE macro was issued, a STAE work area is built and control
is passed to the STAE exit routine. After the exit routine is through, a test is made to
see if a retry routine was specified. If so, control is passed to the retry routine. Other-
wise control passes back to the user.

SPIE-SVC 14: This routine (SPIE) receives control when a SPIE macro instruction is
issued. When it gets control, SPIE inserts the new program interruption control area
(PICA) address into the program interruption element (PIE). The program interruption
element resides in the nrogram interruption handler (PRGINT). It then returns the
address of the old PICA to the calling program, sets the program mask in the calling
program's PSW, and returns to the calling program.

BLDL/FIND-SVC 18: See BLDL and FIND under description of BPAM routines.
STOW-SVC 21: See STOW under description of BPAM routines.

OPEN/OPENJ-SVC's 18/22: OPEN will simulate the data management function of open-
ing one or more files. It is a nucleus routine and receives control from SVCint when an
executing program issues an OPEN macro instruction. See SOOPCL for a description
of its operation.

CLOSE/TCLOSE-SVC's 20 and 23: CLOSE and TCLOSE are simulated in the nucleus
routine SOOPCL. It receives control whenever a CLCSE or TCLOSE macro instruction
is issued. See SOOPCL for a description of its operation.

DEVTYPE-SVC 24: This routine (DEVTYPE), located in SOSVCTR, receives control
when a DEVTYPE macro is issued. Upon entry, DEVTYPE moves Device Character-
istic Information for the requested data set into a user specified area, and then returns
control to the user.

43a

Section

Page

WTO, WTOR--SVC 35: This routine (WTO), located in SOSVCTR, receives control
when either a WTO or a WI'OR macro instruction is issued. For a WTOQ, it constructs

a calling sequence to the TYPLIN function program to type the message at the terminal.

(The address of the message and its length are provided in the parameter list that
results from the expansion of the WTO macro instruction.) It then calls the CONWAIT
function program to wait until all terminal I/C dctivity has ceased. Next, it calls the
TYPLIN function program to type the message at the terminal and returns to the
calling program.

For a WTOR macro instruction, this routine proceeds as described for WTO; however,

41 TX7 quﬁ“ £

after it has typed the message at the terminal it calls the WAITRD function program to

read the user's reply from the terminal. When the user replies with a message, it moves

in the ECB, and returns to the calling program.

EXTRACT-SVC 40: This routine (EXTRACT), located in SOSVCTR receives control
when an EXTRACT macro is issued. Upon entry, EXTRACT clears the first word of
the user provided answer area and returns control to the user.

IDENTIFY-SVC 41: IDENTIFY is a NOP located in SOSVCTR.

CHAP-SVC 44: CHAP is a NOP located in SOSVCTR.

TTIMER-SVC 46: TTIMER signals zero time remaining and signals no errors (in
effect a NOP). TTIMER is located in SOSVCTR.

STIMER-SVC 47: STIMER is a NOP located in SOSVCTR.
DEQ-SVC 48: DEQ is a NOP located in SOSVCTR.
ABEND-SVC 51: See ABEND-SVC 13.

ENQ SVC 56: ENQ is a NOP located in SOSVCTR.

H>

o

FREEDBUF-SVC 57: This routine (FREEDBUF) located in SOSVCTR receives control
when a FREEDBUF macro is issued. Upon entry, FREEDBUF sets up the correct
DSECT registers and calls the FREEDBUF routine in SOBDAM. This routine returns
the dynamically obtained buffer (BDAM) specified in the DECB to the DCB buffer control
block chain. Control is then returned to the SOSVCTR routine which returns control

to the user.

STAE-SVC 60: This routine (STAE) located in SOSVCTR receives control when a STAE
macro is issued. Upon entry, STAE creates, overlays or cancels a STAE control
block (SCB) as requested. Control is then returned to the user with one of the following
return codes in register 15.

Code Meaning
00 An SCB is successfully created, overlaid or cancelled,
08 The user is attempting to cancel or overlay a non-existent SCB,

Format of SCB

0
0 or pointer to next SCB
4
exit address
8
parameter list address
12

DETACH-SVC 62: DETACH is a NOP located in SOSVCTR.
CHKPT-SVC 63: CHKPT is a NOP located in SOSVCTR.

RDJFCB-SVC 64: This routine (RDJFCB) receives control when a RDJFCB macro
instruction is issued. When it gets control, RDJFCB obtains the address of the JFCB
from the DCBEXLST field in the DCB and sets the JFCB to zero. It then determines
if a FORTRAN object program - not the FORTRAN compiler - is being executed. (If

a FORTRAN object program is being executed, a switch given by the system reference
table (SYSREF) in the nucleus constant area (NUCON) will be set on. This switch is
set on by the FORTRAN object-time 1/0 program, IXCCMS, at the start of execution
of the object program.) If a FORTRAN object program is not being executed, RDJFCB
returns to the calling program. If such a program is being executed, RDJFCB calls
the STATE function program to determine if the associated file exists. If it does,
RDJFCB returns to the calling program. If the file does not exist, RDJFCB sets a
switch in the DCB to indicate this and then returns to the calling program, RDJFCB
is located in SOSVCT2.

Note: The switch set by the RDJFCB is tested by the FORTRAN object-time direct-

access handler (DIOCS) to determine whether or not a referenced disk file exists. If
it does not, DIOCS will initialize the direct access file.

44

SYNAD-SVC 68: Located in SOSVCT2, SYNAD simulates the functions SYNADAF and
SYNADBLS. SYNADAF expansion includes an SVC 68 and a high-order byte in register
15 denoting an access method. SYNAD will prepare an error message line and swap
save areas and register 13 pointers. The message buffer is 120 bytes: bytes 1-40,
blank; bytes 41-120, "BSAM/QSAM INPUT/CUTPUT ERROR nn CN FILE: "dsname';
where nn is the CMS RDBUF/WRBUF error code, or the residual count, if an error

is encountered.

SYNADRIS expansion includes SVC 68 and a high order byte of X'FF' in register 15.
The save area will be returned, and the message buffer will be returned to free
storage.

ACKSPACE-SVC 69:

SVCT2, Fora d is issu
the tape. For a direct access data set, the CMS write and read pointers are decre-
mented by one.

GET/PUT — See SOQSAM for a description.

READ/WRITE — See SOBSAM for a description.

NOTE/POINT — See NOTE and POINT for descriptions.

CHECK — See CHECK for a description.

Notes on using the OS simulation routines:

* CMS files are physically blocked in 800-byte blocks, and logically blocked
according to a logical record length. If the filemode of the file is not 4, the
logical record length is equal to the DCB LRECL — and the file must always be
referenced with the same DCB LRECL, whether or not the file is blocked. If
the filemode of the file is 4, the logical record length is equal to the DCB BLKSIZE —
and the file must always be referenced with the same DCB BLKSIZE.

* To set the READ/WRITE pointers for a file at the end of the file, a FILEDEF
command must be issued for the file specifying the MOD option,

* A file will be erased and a new one created if the file is opened and the following
conditions exist:

a. the OUTPUT option of OPEN is specified.
b. the TYPE option of OPEN is not J.
c. the dataset organization option of the DCB is not direct access.

d. a FILEDEF command has not been issued for dataset specifying the MOD
option,

45

SOOPCL
FUNCTION: To process OPEN and CLOSE macros.

EXIT CONDITIONS: If an OPEN is successful, control is returned to the user with
the DCBOFLGS OPEN bit on. If an OPEN fails for one of the reasons listed below,
the DCBOFLGS OPEN bit is turned off. The following message is on the console and
control is returned to the user.

OPN-CONFLICTING XXXXXXXX PARAMETERS

XXXXXXXX is equal to the

DCB DDNAME of the DCB that failed to open.
REASONS WHY AN OPEN MIGHT FAIL.

1. The data set organization is not physical sequential, partitioned or direct
access.

2. No LRECL, BLKSIZE or BUFL is filled in,

3. BLKSIZE conflicts with LRECL and RECFM,

4. Default FILEDEF issued by OPEN failed.

5. RECFM does not agree with the format of the existing file,

6. RECFM is fixed and LRECL does not agree with the record length of the
existing file or if filemode is 4 the BLKSIZE does not agree with the record
iength of the existing file.

CALLS TO OTHER ROUTINES: FILEDEF STATE ERASE
TYPEIN TAPEIO CLOSIO
FINIS

CALLED BY: OS OPEN or CLOSE macro

OPERATION: OPEN (SVC 22) and OPENJ (SVC 19)

Initialization: On entry to SOOPCL, IOTYPE is set to indicate OPEN or OPENJ and
the address of the current DCB is obtained from the list pointed to by Register 1.

Determination of Access Method: The data set organization (DCBDSORG) switch is
checked to see if it is either physical sequential, partitioned, or direct access
(effectively eliminating only ISAM). If none of the above, the DCB will not be opened.

Next the macro format field (DCBMACRF) is checked to see which access method is
requested, and the access method indicator (DCBCIND2) is set to signal QSAM or BSAM.

46

QSAM: If the access method is QSAM, DCBMACRF is tested for a GET or PUT request,
and the relevant routine address is placed in the corresponding DCB access field {note
that GET and PUT are in the CMS routine SOQSAM).

BSAM: If the access method is BSAM, the address of SOBSAM is placed in DCB access
field; the CHECK address is placed in the DCB check field; and if POINT is requested,
the SOCNTRL address is placed in the DCBNOTE field.

Setting up DCB fields: After the relevant QSAM or BSAM processing, a check is made
to see if CONTROL is specified and if it is, the CNTRL address is placed in the
DCBCNTRL field. Next the CMSCB chain is tested to see if there is a CMSCB for
this DCB, that is, if a FILEDEF command for the respective data set has been issued.

If one does not exist, the assumption is made that the us®r has set up the required DCB
fields, and FILEDEF is called to create a CMSCB with a filename of FILE, a filemode
of P1, and a filetype equal to the DCB DDNAME after a matching CMSCB is found or
created, and it is used to fill in vacant entries in the DCB.

The following table shows the CMSCB fields that are used to complete DCB fields

not initialized by the user prior to issuing the OPEN call. It also shows the
JFCBMASK bit setting which is on if the associated CMSCB field must be used. If
BLKSIZE, DSORG, or RECFM are not specified by a FILEDEF command, the defaults
of 80, PS (sequential), and F (fixed) are used to fill in the respective fields of the
CMSCB.

DCB FCB JECB DEFAULTS JFCBMASK
DCBBLKSI JFCBLKSI 80 X'100001000"
DCBDSORG JFCBSORG PO X'00000001"
DCBLRECL JFCLRECL 0 X'00000002*
DCBRECFM JFCRECFM F X'00000400*
DCBKEYLE JFCKEYLE 0 X'00000020'
DCRBROPTCD JFCOPTCD 0 X'00008000*
DCBLIMCT JFCLIMCT 0 X100004000°

Setting up a new CMSCB: If it is necessary to set up and initialize a new CMSCB for
the DCB currently being opened, free storage space is obtained and cleared. The
CMSCB chain is updated to reflect the addition and the following fields are filled in:

FIELD CONTENT DESCRIPTION

FCBSECT X'08" indicates OPEN acquired
this CMSCB.

FCBDEV X114 disk default

FCBDSNAM filename CMS filename

FCBDD i DCBDDNAM CMS filetype

FCBDSTYP ;] DCBDDNAM CMS filetype

FCBDSMD i file mode CMS filemode

47

Setting Up Control Block Pointers: After the CMSCB is initialized, the address
pointers are set to link the various simulated control blocks.

Control

Block Field Contents after completion
DCB DCBDVTBL CMSCB address
DCB DCBDEBAD DEB address
DCB DCBIOBAD IOB address chained scheduling
DCB DCBIOBA I0OB address normal scheduling
DCB DCBIOBL Length in double words of IOB
ICB IOBDCBPT DCB pointer
DEB DEBDCBAD DCB pointer
DEB DEBDEBID X'0F' flag to show block is DEB
DEB DEBOPATB Open option byte

File Verification: The DEB option byte (DEBOPATB) is checked and if outin has been
specified control passes to the user exit processing routine (EXITLIST). If the file
device type for the current DCB is not disk, control passes to EXITLIST.

If the device type is disk, its current status is checked. The table below shows the
action taken.

File Condition Action
Non-existent New file to be written
present and read/write erase old copy, for
pointers set to one new file to be written
present and write new information will be
pointer not equal to appended to file
one

EXITLIST — User Exit Processing Routine: If the exit list field (DCBEXLST) is
empty, control passes immediately to VEROPEN - the verification routine for
record format dependent quantifiers.

If DCBEXLST contains a code other than X'05', checking continues until an end-of-list
tag is found, at which time control returns to VEROPEN, or until an X'05', is found,
in which case the DCBOFLGS are locked on and a branch is taken to the user DCB exit
processing routine. On return exit conditions are restored and the possible existence
of further requests is checked.

48

VEROPEN — Validate Contents of Record Format Dependent Fields: Tests DCBRECFM
to find the record format, then tests various fields to validate the contents and sets up
record description fields in accord with what it finds.

Each of the following tables attempts to show the kind of validation which is required
by the particular format. After completion of control block analysis and set up,
control passes to BUFFPOOL to handle buffer pool requirements.

DCBRECFM = FIXED, UNBLOCKED

Fields Filled In Action

DCBLRECL |DCBBLKSI | DCBBUFL | NONE |[|Assignment is in the arrow direct

X LRECL —» BLKSIZ —» BUFL

X BLKSIZ —» LRECL —» BUFL

X BUFL —» LRECL —» BLKSIZ

X Error Exit, R15=2

DCBRECFM = FIXED, BLOCKED

Since blocksize is a multiple of logical record length, either blocksize or puffer length
must be specified.

Fields Filled In Action

DCBBLKSI | DCBBUFL | DCBLRECL | NONE{|Assignment is in arrow direction

X BLKSIZ —» BUFL
X BUFI, —» BLKSIZ

X Error exits R15=3

No DCBLRECL specified BLKSIZ —» (BUFL) —» LRECL

DCBLRECL specified but not a multiple

of BLKSIZ (BUFL) Error exit R15=4

DCBRECFM = VARIABLE

There must be either a buffer length or a blocksize and the chosen field must be longer
than the 4-byte block description word.

49

Fields Filled Action

DCBBLKSI DCBBUFL NONE Assignment is in arrow direction
b4 DCBBLKSI —» BUFL
X BUFL -——» BLKSIZ
X Error Exit R15=5
Blksize < 4 bytes Error Exit R15=6

DCBRECFM Variable

Is BLKSIZ-4 an
integral multiple of NO —» BLKS1Z=
Irecl? (N*LRECL)+4

DCBBRECFM = UNDEFINED

Takes the largest value of LRECL, BUFL, or BLKSIZ and uses it to set the others,
Final merging occurs as follows for all formats: DCBBLKSI FILLED IN?

YES — is LRECL larger than BLKSIZE ?
YES — LRECL —& BUFL —» BLKSIZ
NO — BLKSIZ —» BUFL —» LRECL

NO — Is LRECL filled in?
YES — LRECL —» BLKSIZ —» BUFL
NO — Is BUFL filled in?
YES — BUFL —» LRECL —» BLKSIZ
NO — BSAM, BPAM?
NO — Error exit R15, x'01'

Buffpool: If user does not supply a buffer pool, parameters for the GETPOOL macro
are set up by examining DCBBUFNO and DCBFUFL. If BUFNO is not specified, the
default value of one is used. If the length is not specified, and the method is BSAM,
the buffer pool acquisition is ignored; if QSAM, an error exit is taken. The GETPOOL
macro is issued.

BUCN3: After a buffer pool has been either verified or obtained by GETPOOL, the
address of the first buffer in the chain is stored in IOBSTART, The address of the
first buffer to be used (same address) is stored in DCBRECAD, If the method is
QSAM and the format is variable, the address is adjusted fo eliminate the BDW,

The same address as for IOBSTART is placed in IOBNXTAD as initial condition of next

buffer and in DCBEOBAD as initial end of block condition, A 1 is inserted in the high
order byte of DCBEOBAD as the ID of the next buffer to be used.

50

If the method is QSAM, put-locate mode, the address of the next buffer is placed in
DCBEOBAD, A 2 is set in IOBSTART as ID of next buffer to be used, unless there are
no more.

SETEOD: If the user has not specified EOD and SYNAD addresses, the standard EOD
and SYNAD address are placed in DCBEODAD and DCBSYNAD respectively.

OPENED: DCBOFLGS is set to indicate that the DCB has been opened successfully
and return is set to INTSVC if there are no more DCBs to be processed. Otherwise,
return is to COMOPEN.,

OPERATION: CLOSE (SVC 20) and TCLOSE (SVC 23)
Initialization: IOTYPE is set to indicate CLOSE or TCLOSE.

COMCLOSE: After checking to make sure that the particular DCB has actually been
opened, the address of the CMS Control Block is obtained from DCBDVTBL, FCBIOSW
is set to indicate closing in process, and DCBOFLGS are set to ''busy''. If the access
method used is QSAM, put-locate, the last record must be outputted and control is
passed to SOQSAM-PUT. If the requested file disposition was LEAVE, FCBIOSW is
set to indicate this, Then the FCBDEYV is checked for device type code and the appro-
priate device routine is branched to:

TAPE: If the file disposition was LEAVE, the routine goes off to CLOSE2—the common
close routine, If not, the tape is rewound before going off to the common close rcutine.

UNIT RECORD: A CLOSIO is issued to the device—printer, punch, or reader—and a
branch taken to common close,

CONSOLE: Go to common close,

CLOSE2: If IOTYPE is T, control is passed to CLOSED. Otherwise, a check is made
to see if FCBPOS or FCBKEYS is zero. If not SOSVCTR is called to free and, if
necessary, save any PDS or KEY table in core. Next DCBMACR, DCBIFLG,
DCEBDDNAM, DCBLRECL, DCBRECFM, DCBDSORG, DEBCIND2, DCBKEYLE,
DCBDETCD and DCBLIMCT are restored to their status before OPEN and control is
passed to CLOSED,

CLOSED: The DCB list pointer is restored and, if this was the last DCB, the routine

returns to the user. If not, the routine returns to COMCLOSE and proceeds to close
the next DCB,

51

SOQSAM (CMS Queued Sequential Access Method)

FUNCTION: To analyze record format and set up the buffers accordingly for GET and
PUT requests.

CALLS TO OTHER ROUTINES: SOEOB
CALLED BY: GET or PUT macro
OPERATION:

Initialization: IOTYPE and IOBERBPT are set to indicate access method and FCB
address respectively. Then a branch is taken to GETTER or PUTTER, depending on
whether the request is a GET or a PUT,

GETTER: Alier FCBIOSW and IOBIOFLG are set to indicate input in process, DCB
fields DCBMACF and DCBRECFM are analyzed to determine the type of move desired
- move or locate - and the record format, If the mode is MOVE, the user specified
‘move to' address is stored in DEBTCBAD. Both modes continue by determining
whether end of block conditions exist.

EOB =no: If EOB does not exist, DCBBLKSI is accessed to obtain the record length
and SOEOB is called to get a record. On return, if the end of data set has been
reached, then DCBEODAD is accessed and control passed to that address. If any
other error code is detected, control is passed to the address in the DCBSYNAD field.

On a good return from SOEOB, the following actions are taken:
Locate mode, fixed format — Reset DCBRECAD and return to user.

Locate mode, undefined format — Set DEBLRECL equal to DCBBLKSI, reset
DCBRECAD and return to user.

Locate mode, variable format — Set DCBLRECL from RDW field in record, reset
DCBRECAD and return to user.

Move mode, all formats — Same procedure as in locate mode, except that just before
returning to the user, the record is moved to the user
buffer.

EOB = yes: It is necessary to obtain a new buffer from the buffer pool, which has
been initialized by SOOPCL.

Upon Entry:

A (DCBBUFCB) = A (BUFCB)
where the huffer number (DCBBUFNO) is the high order byte of the buffer, and
the buffer length is the halfword following DCBBUFCB.

A (IOBNXTAD) = A (NEXT VALID BUFFER TO-BE-USED)

A (IOBSTART) = X'ID OF NEXT BUFFER', AL3 (INITIAL BUFFER IN BLOCK)

52

During:

The "NEXT'" buffer becomes the '"CURRENT!'' buffer.

The ""CURRENT" buffer + BUFL = "NEXT" buffer.

The ID + 1 = the ID of the "NEXT'' buffer that will be used.

IfID > BUFNO, IDis set = 1; and A (IOBNXTAS)=A (IOBSTART).

On completion processing proceeds as in EOB = No,

SOBSAM (CMS Basic Sequential Access Method)

FUNCTION: The CMS BSAM routine processes sequential READ and WRITE macros.
Al]l the OS macro options are supported except those dealing with spanned records.

EXIT CONDITIONS: The SOBSAM routine passes control back to the user with the
following error codes in the ECB and a zero in register 15:

ECB Code Register 15

Successiul Completion 7F 0
Unsuccessful Completion 42 0
End of EXTENT TF 8

CALLS TO OTHER ROUTINES: SOBDAM, PDSSAVE, SOECB
CALLED BY: OS READ or WRITE macro

OPERATION: The CMS BSAM routine is called by an OS READ or WRITE macro. It
checks DCBFDAD to see if the first byte is a P, If so, the contents of the last two
bytes of DCBFDAD are incremented by one and stored in FCBITEM. Next the DSORG
option is checked.

® If the DSORG option in the DCB is DA (Direct Access), control is given to the
SOBDAM routine to convert the record identification into an item number and process
any keys used. If SOBDAM completes successfully, control is returned to BSAM,
Otherwise, control is returned to the user.

¢ If the DSORG option in the DCB is PO (Partitioned Organization), and a write is
specified, and the FCBPDS entry is zero, control is passed to the PDSSAVE routine
to save the directory of the PDS (Partitioned Data Set) and point the FCB file item
number to a free member slot. If PDSSAVE completes successfully, control is re-
turned to SOBSAM. Otherwise, control is returned to the user.

o If the DSORG option in the DCB is PS (Physical Sequential) and the MACRF option
is WL (create a BDAM data set)*, an eight is put in register 15 and a check is made to
see if end of EXTENT has been reached. If so, control is returned to the user. If not,
register 15 is set to zero and a check is made of the option specified in the WRITE
macro's DECB, I SZ is specified, control is returned to the user with a hex '"7F!' in
the ECB. If SD is specified, SOBDAM is called to write a dummy key and upon return

53

from SOBDAM control is passed back to the user with a hex '7F' in the ECB. If SF

is specified, a hex '"TF' is stored in the EOB and if the keylength is not zero SOBDAM
is called to process a key. If the SOBDAM routine and/or the check for valid options

is completed successfully SOBSAM begins filling in the IOB and the WRBUF PLIST.
Otherwise control is returned to the user with a hex '42' in the ECB, denoting an error.

e If the DSORG option in the DCB is PS or PO, a write is specified, and the MACRF
option in the DCB is not WL, a check is made to see if the keylength is zero. If not,
SOBDAM is called. If the SOBDAM routine and or the check for valid options is com-
pleted successfully, SOBSAM begins filling in the IOB and the WRBUF PLIST. Other-
wise control is returned to the user with a hex '42' in the ECB.

¢ After the necessary checks and calls to SOBDAM and PDSSAVE are made, SOBSAM
fills in the IOBIOFLG bit, the IOTYPE byte, the DCBOFLGS bhit, the buffer length if

the record format is not fixed, the buffer address, the DECB I/0 started bit, the IOB
pointer in the DECB and the ECB pointer in the I0B. Control is then passed to the
SOEOB routine to do the 1/0 and fill in the ECB. After control is passed back to SOBSAM
from SOEOB, control is passed back to the user.

* If the WL (create a BDAM data set) option is specified, the number of records in

the data set extent must be specified using the FILEDEF command. The default
size is 50 records.

*NOTE (BSAM and BPAM) — supported for DISK only

FUNCTION: To return in register one the relative position of the last block read from
or written into a data set. The return format of register 1 is the same as in OS.

EXIT CONDITIONS: Control is returned to the user.

CALLS TO OTHER ROUTINES: None

CALLED BY: OS NOTE macro

OPERATION: Upon entry to NOTE, a check is made to see if a POINT was just issued.
If not, the item number of the next record to be processed is loaded from FCBITEM
into register 1, register 1 is decremented by 1, and control is returned to the user.

If a POINT was just issued, register 1 is loaded with the value in DCBFDAD and

control is returned to the user,

* The NOTE routine is part of the SOCNTRL routine.

54

*CHECK (BDAM, BSAM, BPAM)

FUNCTION: To check for errors or exceptional conditions on a previous READ or
WRITE, If the previous READ or WRITE completed successfully, control is returned
to the user. If not, the error analysis (SYNAD) routine is given control, or, if no
error analysis routine is provided, the task is abnormally terminated.

EXIT CONDITIONS: If no error flags are set in the ECB or DECB, control is returned

to the user. If the ECB input end-of-data (EODAD) flag is set, control is given to the
EODAD routine. If other DECB or ECB error flags are set, the error analysis (SYNAD)
routine is given control or if no error analysis routine is provided the task is abnormally
terminated.

CALLS TO OTHER ROUTINES: EODAD routine, SYNAD routine, DEBUG

CALLED BY: OS CHECK macro

OPERATION: CHECK is called by an OS CHECK macro. Upon entry the DECB or ECB
is tested for I/0 errors. If there are no errors, control is returned to the user, If an
ECB end-of-data~set flag is on, the EODAD routine is given control, If there is an error

other than end-of-file, the SYNAD exit routine is called. If no SYNAD exit is given,
DEBUG is entered.

* The CHECK routine is part of the SOCNTRL routine,

*POINT (BDAM and BSAM—supported for DISK only)

FUNCTION: The point macro causes processing for a data set to start at a specified
block in the data set. The format of the block address must be the same as in OS,

EXIT CONDITIONS: Control is returned to the user.

CALLS TO OTHER ROUTINES: None,

CALLED BY: OS POINT macro

OPERATION: The POINT routine is called by the user. Upon entry, the relative
block address is loaded into a register and right adjusted. If the rightmost byte of

the block address is not set to one, a one is subtracted from the register. The content

of the register is stored in DCBFDAD. Control is then returned to the user.

* The POINT routine is part of the SOCNTRL routine.

55

CMS BDAM (CMS BASIC DIRECT ACCESS METHOD)

FUNCTION: The CMS BDAM macro routine is used to access data set records
directly by item number. It converts record identifications given by OS BDAM macros
into item numbers and uses these item numbers to access records. The CMS BDAM
macro routine supports all the Release 20 OS BDAM macro functions except those
listed as restrictions.

EXIT CONDITIONS: If ID, KEY, BUFFER, LIMIT, SEARCH or I/O errors occur,
they are reflected in the DECB and control is returned to the SOBSAM routine which
returns control to the user. The error codes correspond to OS error codes and are
listed below.

Error Codes put in DECB+ 1

DUMMYERR DC X'1001' Key to be added begins hex 'FI
NOTFCUND DC X'1000' The record was not found

IDTOBIG DC X'1010' Record ID was more than 2 bytes
IOERR DC X'0800' Uncorrectable I/0 error
BADDCB DC X'1020' DCB and macro entries conflict
NOBUFFER DC X'0200' No buffers free

NOSPACE DC X12000' No space found

CALLS TO OTHER ROUTINES: RDBUF, SVCFREE, WRBUF, FINIS, KEYSAVE
CALLED BY: SOBSAM

OPERATION: For Relative Block, Relative Track and Actual addresses, the low order
two bytes of a record identification are used as an item number. For Relative Track
Address and Actual Key, the low order byte of the relative track address is used to
access a table of keys which, if not already in core, is brought in and searched for the
correct key.

CMS does not support actual key I/O so the CMS BDAM routine simulates it. In CMS,
all keys are kept at the end of their data file. When the data file is opened, two new
files are created with the same filetype, but with filenames of $KEYTEMP and
$KEYSAVE. Both these files contain all the keys in the original data file. $KEYTEMP
is used for updating keys and $KEYSAVE is used to save all the keys in case of a're-IPL
or system crash. For every item in the original file there is a corresponding key space
in the $SKEYTEMP file. Each item in the $KEYTEMP file is a key table that contains
256 keys. When the data file is closed, the $KEYTEMP file is written at the end of the
data file, and the $SKEYTEMP and $KEYSAVE files are erased.

The CMS BDAM routine gets control from the CMS BSAM routine which in turn gets
control from an OS READ or WRITE macro. Upon entry to SOBDAM, a check is made
to see if dynamic buffering is needed. If so, key buffer and or data buffer is acquired
or returned depending on whether a read or write is requested. Next the relative or
actual address is checked to make sure it does not exceed two bytes. This address is
converted into an item number and, if keys are not involved, the feedback option is taken
care of and control is passed back to SOBSAM, If keys are accessed and the key table

56

containing the key wanted is not in core, it is brought in and searched or updated. If a
search is specified, the item humber of the key table containing the key is combined
with the position number of the key in the table to form the item number of the data.
If the extended search option is not specified, only one key table of 256 keys are
searched. If the extended search option is specified, the limit parameter in the DCB
is converted to a number of key tables and that number of tables are searched for a
matching key. After the key table has been read, updated, or searched, the item
number, if feedback is requested, is stored in the correct feedback address and con-
trol is returned to SOBSAM, Core for the key table and its control parameters is
acquired the first time a key is accessed. The address of this core is stored in the
FCB and the core is not freed until the data set is closed,

The format of the disk key table and the in-core key table and control words is des-
cribed below.

Key Table

keylength

1st KEY n is 256

2nd KEY

nth KEY

In-Core Key Table and Control Words

KEYTABL DSECT
KEYLNGTH DS 1F Key length
ENDDATA DS 1F Last data item in file
KEYOP ns 2F Command Name
KEYNAME DS 2F Filename of key file
KEYTYPE DS 2F Filetype of key file
KEYMODE DS 1H Filemode of key file
KEYTBLNO DS 1H Item number of key table
KEYTBLAD DC A (KEYTABLE) Address of key table
TBLLNGTH DS 1F Byte size of key table
KEYFORM DC C'F! Format of key table
KEYCHNG DC X'00' Byte to signify change in key table
KEYCOUT DC X'0001’ Number of tables per item
DS 1F Used by RDBUT for residual counts
KEYTABLE DS oF Table of keys

o7

RESTRICTIONS: The four methods of accessing BDAM records:

B

Relative Block RRR

Relative Track TTR

Relative Track and Key TT Key
Actual Address MBBCCHHR

The restrictions on these methods:

Spanned records are not supported in CMS,

Only the BDAM identifiers underlined above can be used to reference records
as CMS files have a two-byte record identifier.

If BDAM methods 2, 3 or 4 are used and the RECFM is U or V, the BDAM
user must not update the track indicator until a no space found megsage is
returned on a write. For method 3 (WRITE ADD), this is when no more
dummy records can be found on a WRITE request. For methods 2 and 4, this
will not occur, and the track indicator will only be updated when the record
indicator reaches 256 and overflows into the track indicator.

Two files with keys and the same filetype cannot be open at the same time.

If a program that is updating keys does not close the file it is updating for
some reason, e.g., a system crash or a re-IPL, the original keys are saved
in a temporary file with the same filetype and a filename of $KEYSAVE, To
finish the update, run the program again.

Once a file is created using keys, the file must not be added to without
using keys and specifying the original key length.

*KEYSAV (BDAM or BSAM)

FUNCTION: To build a keys file when a data file using keys is opened and to save the
keys at the end of the data file when it is closed.

EXIT CONDITIONS: Control is returned to caller with a zero in register 15 if execu-
tion was successful, and a nonzero, if not,

CALLS TO OTHER ROUTINES: FINIS FRET WRBUF RDBUF ERASE STATE

CALLED BY: SOOPCL SOBDAM

OPERATION: KEYSAV gets control from either SOBDAM or the CLOSE routine,
SOOPCL,.

58

e If KEYSAV gets control from SOBDAM, a key table and a PLIST for accessing the
key table is built in core. Next, two new files with the same filetype as the data
file, but with filenames of SKEYTEMP and $KEYSAVE are created, using the
keys at the end of the data file. The $KEYTEMP file will be used for updates to
the keys, and the $KEYSAVE file will be used in case of a system crash or re-IPL,
If a SKEYSAVE file already exists for a data file when it is opened, then the keys
from that file rather than the keys from the end of the data file, will be used to
create $3KEYTEMP, After the two files are created, control is returned to SOBDAM.

e If KEYSAV gets control from SOOPCL, then keys from the $SKEYTEMP file are
read in and written at the end of the data file. When this is complete, the
$KEYTEMP and $KEYSAVE files are erased, the core for the key table and

DT o Y=Y i
its PLIST is freed up, and control is returned to SOCOPCL.

CMS BPAM (BASIC PARTITIONED ACCESS METHOD)

The CMS BPAM macro routines are used to access and build Partitioned data sets.
These data sets are divided into sequentially organized members, each of which has
a unique name stored in a directory. The CMS BPAM macro routines support all the
OS BPAM macro functions except the OS facility of adding user data to the directory

entries,

The functions and operations of the CMS BPAM macro programs are given below,

*FIND (BPAM)

FUNCTION: When called by the user: Causes the control program to use the address
of the first block of a specified partitioned data set member as the starting point for
the next READ macro instruction for the same data set.

When called by STOW or BLDL: Finds the directory entry for a member and pass back
the in-core address of the entry.

When called by DICTSAVE: Reads in the directory

EXIT CONDITIONS: When control is returned to the problem program or calling
routine, the return code in register 15 is as follows:

Name Provided Relative Address Provided

00-successful execution 00-at all times.

04-name not found If the relative address is bad
08-permanent 1/0 it is reflected in the next
error reading READ,
directory

59

CALLS TO OTHER ROUTINES: RDBUF, SVCFREE
CALLED BY: OS FIND macro, BLDL, PDSSAVE, and STOW
STORAGE ALLOCATION:

-nucleus 0
-control blocks 24 + (12 times no. of entries in PDS)

OPERATION: Upon entry to FIND, a check is made to determine if a relative address
list was provided. If it was, the item number is obtained from the list and stored in
FCB ITEM, and control is returned to the user with a zero in register 15. If a
relative list was not provided, a search is made for the member name in the directory.
If FCDDSTYP in the FCB is MACLIB, the name of the first macro library is moved
from the Maclib list to FCBDSNAM and the address of the first macro library
directory is loaded. Next a check is made of the FCBPDS entry in the FCB. If it

is zero, the directory header record is read into a save area, SVCFREE is called to
obtain core for the directory and its control words, the directory is read into core,
and the pointer to the in-core directory is stored in FCBPDS. If, when the dictionary
header record is read, the eighth character in it is a '$', a one is put in the change
byte and the PDS directory is read from a file with the same filetype and a filename
of $PDSTEMP, Once in, the directory is kept in core until a BLDL or a CLOSE is
issued for the data set, After FIND has the pointer to the in-core directory, it begins
searching for a matching member name, If the member name is not found, a check
is made to see if any additional directory blocks have been added by STOW, If so,
they are searched.

After the directory search is through and the member is either found or not found, a
check is made to see from where the search was requested. If it was PDSSAVE, BLDL,
or STOW, control is returned to the requesting routine. If it was a successful user
request, the item number of the member is moved from the directory into FCBITEM
and DCBRELAD, and control is returned to the user with a zero in register 15, If it
was an unsuccessful user request and the FCBDSTYP in the FCB macro is not MACLIB,
control is returned to the user with a four in register 15, If FCBDSTYP in the FCB
macro is MACLIB, the next maclib name in the Maclib list is moved to the FCB, the
address of the next maclib directory is loaded, and the search for the member starts
again, If the next FCB pointer in the Maclib FCB list is zero, control is returned to
the user with a four in register 15.

* @ There are two FIND routines. One is part of SOCNTRL and is used only when
a relative address list is provided. The other is part of SOSVCTR.,

e The DCBDSORG option in the DCB must always be PO when referencing a
BPAM data set.

60

*BLDL (BPAM)

FUNCTION: To fill a users list in main storage with the relative track addresses
(item numbers) for requested members.

EXIT CONDITIONS: When control is returned to the problem program, the return
code in register 15 is as follows:

Code (Hexadecimal)

00 Successful completion

04 List could not be filled.
The TTR field of the member
not found is filled in as zero.

08 Permanent input or output error
while reading in directory.

CALLS TO OTHER ROUTINES: FIND, PDSSAVE
CALLED BY: OS BLDL macro
STORAGE ALLOCATION:

-nucleus 0
-control blocks 0

* The BLDL routine is part of SOSVCTR

OPERATION: Upon entry to BLDL, a zero is put in register 15 and a check is made
to determine if the DCB DDNAME is TXTLIB. If it is, control is returned to the user.

If it is not, FIND is called to search the directory for a match of the first member name
in the user's list. If a match is not found, the TTR field is filled in with zeroes, FIND
is called to search for the next member, and a four is put into register 15, If it is
found, BLDL fills in the users list with the member's item number and continues
calling FIND until the entire BLDL list has been filled in. PDSSAVE is called to

free the in-core directory and control is returned to the user. The format of the

user's list after calling BLDL follows:

2 2 8 3 3 8 3 3

FF LL NAME TTR KzC NAME TTR KzC

TTR the item number will always be right justified in these three bytes.
KzC These .aree bytes will always be zero.

61

*STOW (BPAM)

FUNCTION: To add, change, replace or delete an entry in a Partitioned Data Set
(PDS) Directory.

EXIT CONDITIONS: When control is returned to the problem program, the return
code in register 15 is as follows:

Code (Hexadecimal)

00 Successful update

04 Name already in directory
08 Name not found

0C Directory or file full

10 Permanent input or output

error detected attempting
to update the directory.

CALLS TO OTHER ROUTINES: FIND, NOTE, SVCFREE, WRBUFF
CALLED BY: OS STOW macro
* e The STOW routine is part of SOSVCTR

e Files with a filetype of MACLIB must be altered to another filetype before
they can be updated. Two files with the same filetype cannot be updated at
the same time.

OPERATION:

@ If the DELETE option is specified, FIND is called to search the directory for
a match to the member in the users list. If the search is successful, the directory
entry is zeroed out, a one is put in the change byte, and control is returned to the user
with a zero in register 15. If the search is not successful, control is returned to the
user with an eight in register 15.

o If the CHANGE option is specified, FIND is called to search the directory
for a match to the member in the users list, If the search is not successful, control
is returned to the user with an eight in register 15. If the search is successful, FIND
is called again to search for the new member name.in the directory. If this second
search is successful control is returned to the user with a four in register 15, If
this second search is not successful, the directory is changed, a one is put in the change
byte, and control is returned to the user with a zero in register 15.

e If the REPLACE or ADD option is specified, FIND is called to search the

directory for a match to the member in the user list. If a match is found and ADD
is specified, control is returned to the user with a 4 in register 15.

62

If a match is not found, FIND is called to search the directory for a member name of
all zeroes. After the search is complete, an end-of-data-set mark (hex 61FFFF61)
is written at the end of the member, NCTE is called, and a check is made to make

disk. If there is not enough room, control is returned to the user with a twelve in
register 15. If there is enough room and an unsuccessiul search for a name of zeroes,
SVCFREE is called to obtain enough core for a PDS block and four (4) extra bytes.
The PDS block size is then added to the CORESIZE, the item number of the item after
the end-of-data-set mark is stored in DICTPTR, and the new PDS block is zeroed out.
After a match is found or a new PDS block is added, the directory entry or new PDS
block is updated, the pointer to any new PDS block is stored after the last member
searched, a two is stored in the change byte and control is returned to the user with
a zero in register 15.

® The updated directory is not written to disk until the data set is closed., If
an update program does not close a PDS data set for some reason, e.g., a system
crash or a re-IPL, the PDS directory for that file will be saved in a temporary file
with the same filetype and a filename of $PDSTEMP, To restore the directory to the
original file the update program must be run again,

*PDSSAVE (BPAM

~—

FUNCTION: To ensure that a BPAM PDS directory is not destroyed during an update
and is saved after it,

EXIT CONDITIONS: Control is returned to the calling routine with the following code:

Successful Calling Routine FCBPDS entry

Yes SOBSAM address of directory
Ne SOBSAM Zero
Yes SOOPCL Zero

No SOOPCL address of directory

CALLS TO OTHER ROUTINES: FIND, SVCFRET, WRBUF, ERASE
CALLED BY: SOBSAM, SOOPCL, BLDL
* The PDSSAVE routine is part of SOSVCTR

OPERATION: PDSSAVE obtains control from SOBSAM on the first write to a BPAM
file after OPEN, and from SOOPCL when an updated BPAM file is closed. When called
by SOBSAM, PDSSAVE calls FIND to read the directory. The change byte is checked
and, if it is on, control is returned to SOBSAM, If the change byte is noton, a $ is
written in the temporary indicator of the directory header record of the original file,
FIND is called to read the directory, -and a new file is created with the same filetype
and a filename of $PDSTEMP. A directory header record and a copy of the in-core
directory is written into this file and control is returned to SOBSAM.

63

. When called by SOOPCL or BLDL, PDSSAVE checks the change byte and, if it is zero,
frees the directory core, sets FCBPDS to zero, and returns to the caller. If the
change byte is not zero, PDSSAVE writes the directory to disk, If there are no errors,
the directory header record is written, SVCFRET is called to free the directory core,
FCBPDS is set to zero, the $PDSTEMP file is erased, and control is returned to the
caller. K there are errors writing the directory to disk, the directory header record
is not written and the $PDSTEMP file is not erased.

TABLE/RECORD FORMAT: The format of the directory header record, the directory
on disk and the in-core directory with its control words is described below,

Directory Bytes Header Record Contents
1-6 Used for MACLIB
7-38 Item pointer to start of directory
11 - 12 Byte size of directory
13 - 80 Rest of record not used

Directory on Disk

8 Bytes 2 Bytes 2 Bytes
Name of first member Item PTR no. of items
Name of second member | Item PTR no, of items
Name of nth member Item PTR no. of items

In-Core Directory and Control Words

DIRNAME DS 3H Used for MACLIB indicator

DIR PTR DS 1H Item pointer to start of directory
TEMPEYTE DS 1H TEMP indicator

CORESIZE DS 1H Byte size of original in-core directory
PDSBLKSI DS 1H Byte size of each PDS block

CHNG BYTE DC X'00' Byte used to indicate directory change
R15CODE DC X'00' Used to save register fifteen.

PDSDIR DS OF In-core directory

At the end of the in-core directory is a full
word that is either zero or a pointer to the
next PDS block.

PDS Block
(added to in-core directory by STOW)

Bytes Contents

lton block of PDS entries
n+1lton+4 | Zero or pointer to next PDS block

n = number of entries in a block

SOEOB
FUNCTION: Perform actual device I/0.

CALLS TO OTHER ROUTINES: SYSCTL, FINIS, FREE, FRET, RDBUF, WRBUF,
STATE

CALLED BY: SOQSAM, SOBSAM
OPERATION:

EOBROUTN: If the BATCH monitor is running, control is passed to BATCHOP for
specific data sets: standard processor input and ontput files: e.g., SYSIN, FORTRAN,
PLI, LISTING, TEXT. Otherwise, if FCBPROC contains the address of a user-pro-
vided processing routine, control is passed to that routine. If not, control passes to

EOB2,

On returning from the user-provided routine, R1 is loaded with the number of bytes
actually read or written, R14, with ECB code x'7F', R15 is cleared, and a branch
taken to EOBRETRN if the I/0 is completed without error. If there is an error, R1
is cleared, R14 is loaded with FCB code x'4F', R15, with the CMS error code, and a
branch taken to EOBRETRN.,

EOB2: If either I/0 is to be performed or there was no address in OSVECTOR, the
FCBDEY is obtained and control is passed to the appropriate device dependent code.
When device dependent processing is completed, return is via EOBRETRN,
URERROR for unit record errors, or DSKERR for disk errors.

BATCHOP: If the operation is a GET, SYSTCTL is called with a read request. If the
operation is a PUT and the dsname indicates LISTING, SYSCTL is called with a write
request. Any other PUT goes to EOB2 for routing to standard device dependent code.
EOBRETRN: The residual count, if any, is stored in IOBCSW + 8; the contents of R14
are stored in the ECH completion code field (IOBFCBCC); the FCB completion code
and CMS error code, if any, are placed in the ECB, and return is to the caller.

(8]
C

URERROR: R14 is loaded with '42' and control is passed to EOBRETRN,

CRT: The ECB completion code x'42' is put in R14, and a x'FF' is inserted in R15,
DUMMY: The ECB completion code x'7F' is put in R14, and R15 is cleared.

CONSOLE: If the desired operation is a READ, a console read is issued and DCBBLKSI
is accessed to obtain the length of the desired record. The residual count is calculated
and the record moved from the console input buffer to the IOAREA. If FORTRAN
execution is in process, R1 is cleared to ensure a zero residual count, In all cases,
x'7TF' is put in R14, and R15 is cleared.

On output the contents of IOAREA are placed in the console buffer and the record is

written,

65

DISK: A call to either WRBUF (a PUT request) or RDBUF (a GET request) is issued.
For a2 READ request, the residual count is placed in FILEREAD, In either case a

x'7F' is placed in R14 and R15 is cleared.

READR: CARDRD is called with the address of the IOAREA in the plist. For a
successful return, R14 is loaded with a '7F' before returning to EOBRETRN.
If the error return is end-of-file, a x'7F' is put in R14 and a X'C' is inserted in R15

prior to going to EOBRETRN.

All other errors go to URERROR.

PUNCH: CARDPH is called with the address of the IOAREA in the plist.

PRINT: Requesting blocked records is an error and control goes to URERROR,. . If
the format is variable, the LRECL is adjusted to eliminate the block descriptor word
and the record description word, Truncation iengih is 133 bytes. PRINTIO is called

with the address of IOAREA.,

CMSCB

This macro contains the fields from the following OS control blocks that CMS

utilizes:
JFCB, DEB, IOB, DECB

MACRO
CMSCB
*

* FCB HEADER CONTROL WORDS
*

FCBHEAD DSECT

FCBFIRST DC A(0)
FCBNUM DC H'0'
DC H'0'

*

* SIMULATED OS CONTROL BLOCKS
*

FCBSECT DSECT

FCBINIT DS 0X
FCBNEXT DS A
FCBPROC DS A

| FCBDD DS CLS

i FCBOP DS CL8
IHAJFCB DS 0D
JFCBDSNM DS 0X
FCBTAPID DS 0X
FCBDSNAM DS CLS8
FCBDSTYP DS CLS8
FCBPRPU EQU FCBDSTYP + 4

FCBDSMD DS CL2

66

A (FIRST FCB IN CHAIN)
NUMBER OF FCB BLOCKS CHAIN
- NOT USED -

X'08' = OPEN ACQUIRED THIS CMSCB

AL3 (NEXT CMSCB)

A (SPECIAL PROCESSING ROUTINE)
DATA DEFINITION NAME

CMS OPERATION

+ JOB FILE CONTROL BLOCK ***

44 BYTES, DATA SET NAME

TAPE IDENTIFICATION
DATA SET NAME
DATA SET TYPE
PRINTER/PUNCH COMMAND LIST
DATA SET MODE

FCBITEM

FCBBUFF
FCBBYTE
FCBFORM

FCBCOUT

FCBREAD
FCBDEV
FCBDUM
FCBPTR
FCBRDR
FCBCON
FCBTAP
FCBDSK
FCBPCH
FCBCRT
FCBMODE
FCBXTENT

FCBR13
FCBKEYS
FCBPDS
JFCBMASK
JFCBCRDT
JFCBXPDT
JFCBIND1
JFCBIND2
JFCBUFNO
JFCBFTEK
JFCBFALN
JFCBUFL
JFCEROPT
JFCKEYLE

JFCLIMCT
FCBDSORG
JFCDSORG
FCBRECFM
JFCRECFM
JFCOPTCD
FCBBLKSZ
JFCBLKSI
FCBLRECL
JFCLRECL

DS

DS

DS
DS
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS

Cr = =om

oo M m T

-
[\

R R

ITEM IDENTIFICATION NUMBER
A (INPUT-OUTPUT BUFFER)
DATA COUNT
FILE FORMAT: FIXED/VARIABLE
RECORDS
RECORDS PER CMS PHYSICAL
BLOCK
N'BYTES ACTUALLY READ
DEVICE TYPE CODE
DUMMY DEVICE
PRINTER
READER
CONSOLE TERMINAL
TAPE
DISK
PUNCH
CRT
MODE: 1, 2, 3, 4, 5
NUMBER OF ITEMS IN EXTENT
- NOT USED -
- NOT USED -
- NOT USED -
- NOT USED -
- NOT USED -
SAVEAREA VECTOR R13
A (DDS IN'CORE KEY TABLE)
A (PDS IN-CORE DIRECTORY)
VARIOUS MASK BITS
DATA SET CREATION DATE (YDD)
DATA SET EXPIRATION DATE (YDD)
INDICATOR ONE
INDICATOR TWO
NUMBER OF BUFFERS
BUFFERING TECHNIQUE
BUFFER ALIGNMENT
BUFFER LENGTH
ERROR OPTION
KEYLENGTH
- NOT USED -
BDAM SEARCH LIMIT
DATA SET ORGANIZATION

RECORD FORMAT

OPTION CODES
BLOCK SIZE

LOGICAL RECORD LENGTH

67

FCBICSW
FCBICRD
FCBICWR
FCBCLOSE
FCBCLEAV
FCBPVMB
FCBCASE

DEBLNGTH

IHADEB
DEBTCBAD

DEBOFLGS
DEBOPATB
IOBICFLG

I0BOUT
IOBIN
IOBNXTAD
IOBECB

IHAIOB
DEBDEBID
DEBDCBAD
IOBECBCC
IOBECBPT
IOBFLAG3
IOBCSW

IOBSTART
IOBDCBPT
IOBEND
FCBEND

FCBENSIZ

*

DS X
EQU X'01!
EQU Xr02!
EQU X80’
EQU X'40'
EQU X'04!
EQU X'08'
DS X
DS (1):4
DS F

DS 0D
DS A

DS F

DS 4X
DS 4X
DS 0X
EQU X'40'
EQU X120
DS A

DS F

DS oF
DS 0X
DS A

DS 0xX
DS A

DS 0X
DS 8X
DS A

DS A

DS 0X
DS 0D

EQU (*-FCBSECT)/8

SPACE 3

* DATA EVENT CONTROL BLOCK

*

IHADECB
DECSDECB
DECTYPE
DECBRD
DECBWR
DECLNGTH
DECDCBAD

68

DSECT

DS F

DS H
EQU X'80'
EQU X'20'
DS H

DS A

I/0 OPERATION INDICATOR

READ/SOQSAM

WRITE/PUT

DURING ""CLOSE "

DISP=LEAVE DURING CLOSE

PUT-MOVE-VAR-BLK

ON=LOWER CASE CONSOLE 1/0

- NOT USED -

L'DEB IN DBLW WORDS

- NOT USED -

#** DATA EXTENT BLOCK ***

A (MOVE-MODE USER BUFFER)

- NOT USED -

DATA SET STAUS FLAGS

OPEN/CLOSE OPTION BYTE

(START OF IOB PREFIX FOR
NORMAL SCH)

"WRITE, PUT" IN PROGRESS

"READ, GET'' IN PROGRESS

A (NEXT BUFFER TO BE USED)

ECB FOR QSAM NORMAL SCHEDUL-
ING

*** INPUT/OUTPUT BLOCK ***

DEB IDENTIFICATION

A (DATA CONTROL BLOCK)

ECB COMPLETION CODE

A (EVENT CONTROL BLOCK)

1/0 ERROR FLAG

LAST CCW STORED (I E., RESIDUAL
COUNT)

X'ID-NEXT BUFFER', AL3 (INITIAL
BUFFER)

A (DATA CONTROL BLOCK)

END-OF-INPUT/OUTPUT BLOCK

END-OF FCB, JFCB, DEB, IOB
BLOCKS

SIZE OF FCB ENTRY, DOUBLE-
WORDS

EVENT CONTROL BLOCK
TYPE OF 1/O REQUEST
READ SF

WRITE SF

LENGTH OF KEY & DATA
V (DATA CONTROL BLOCK)

DECAREA
DECIOBPT

DS
DS

DS
DS

SPACE

A
A
BDAM EXTENSION
A
A
3

* SOME FREQUENTLY USED EQUATES

*
DDNAM

DT W
DL

BS
DA
FXD
IS
LoC
MOV
PS
PO
PREVIOUS
Qs
UND
VAR

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

MEND

FCBDSTYP
X'10'
X120

r1ont

N LY

X80
X180
X8
X'10'
X140
Xr02'
X'80*
X140
X' co
X'40!

V (KEY & DATA, BUFFER)
V (I0B)

V (KEY)
V (BLOCK REFERENCE FIELD)

FILETYPE = DATA SET NAME
RECFM=BLOCKED RECORDS
MACRF=BSAM
DSORG=DIRECT ACCESS
RECFM=FIXED LENGTH RECORDS
DSORG=INDEXED SEQUENTIAL
MACRF=LOCATE MODE
MACRF=MOVE MODE
DSORG=PHYSICAL SEQUENTIAL
DSORG=PARTIONED ORGANIZATION
OFLGS=PREVIOUS I/O OPERATION
MACRF=QSAM
RECFM=UNDEFIN FORMAT RECORDS
RECFM=VARIABLE LENGTH
RECORDS

69

70

SECTION 3: MONITOR OPERATIONS

The monitor is responsible for the following operations:

e System Initialization
& Sysiem Continuity

e Interruption Handling
e Override Handling

¢ System Restart

SYSTEM INITTALIZATION

After initial program load (IPL), control passes to the CMS initialization program
(INIT), which immediately establishes addressability and sets up the interrupt new
PSW's., INIT then calls INITSUB, which performs one time only inifialization,
INITSUB is covered up once intialization is completed. If the IPL was from the card
reader, INITSUB calls CLOSIO PRINTER (via BALR) to ensure printing of the load
map generated by the nucleus loader. INITSUB then initializes the interval timer in
hex location 50 and calls the IPLDISK function program to write an IPL program and
a copy of the CMS nucleus on the system disk. Subsequently, an IPL may be from the
system disk (usually 190). On return from IPLDISK, INIT proceeds as if the IPL had
been from disk, as described below. (IPL by hexadecimal disk address enters

INITSUB at this point.)

INITSUB tests for IPL on a bare machine and calls BAREMACH to redefine device ad-
dresses, if this test is positive., INITSYS is called to generate the SSTAT table.
INITSUB then branches to hexadecimal location F0O so that a saved version of CMS can
be made for IPL by name. (IPL by name (IPL CMS) starts at location F0.) The in-
structions at location F0O return control to INITSUB, which then proceeds to complete
the one time only initialization as follows:

1. Setup all new PSW's.
2. Set BLIP timer interrupt.

3. Clears IPLDEV if IPL by name was the mode of entry into INITSUB. This enables
the IPL module to work correctly.

4. Calculate core size and store in NUCON and other places. Calculate and store
core size related parameters.

5. Pass control to BATCH if present within the nucleus.

6. Otherwise, return to INIT.

A message that includes the version number and date of the CMS currently in use is
then typed, indicating that CMS has been initialized. After that INIT issues a read to
the terminal for the user's first command and waits for the command to be entered. If

the first command is a carriage return, INIT calls LOGIN UFD to read the P-Disk
user file directory into core, tests for the existence of the file PROFILE EXEC (and if

71

the file exists calls EXEC PROFILE), and enters the main control loop (the CMS com~-
mand environment) at the point where a command has been successfully completed.

If the first user command is not a carriage return, INIT calls the SCAN function pro-
gram to convert.the input line into the standard CMS parameter-list format and checks
the first command. If it is FORMAT P or FORMAT P ALL (but not FORMAT P C),
INIT calls the FORMAT command via SVC X'CA' and checks for a successful return
therefrom. If the FORMAT command was successful, INIT enters the main control
loop as described in the above paragraph. If the FORMAT command failed, the read is
reissued, and the typed-in command is again analyzed. If the command was LOGIN,
INIT calls the LOGIN command via SVC X'CA' and checks for a successful return from
the command. If the LOGIN failed, the read is reissued and the typed~in command is
again analyzed. If LOGIN NOPROF was not specified, INIT tests for the existence of
the file PROFILE EXEC, calls EXEC PROFILE via SVC X'CA' if the file exists, and
then enters the main control loop. If LOGIN NOPROF was specified, INIT enters the
main control loop directly. If the first command is none of the above, an implied auto-
matic login procedure is invoked via an SVC call to LOGIN UFD (without disturbing the
first entered command); upon successful completion of this LOGIN, PROFILE EXEC is
tested for and executed if it exists, and the main control loop is then entered to execute
the first command entered by the user.

Having thus initialized CMS, handled the first user command, and ensured that the user
is properly logged in, INIT has finished the initialization phase and subsequently han-
‘ dles typed-in commands as described under "SYSTEM CONTINUITY."

I
SYSTEM CONTINUITY

INIT is responsible for the continuity of operation of the CMS command environment.
When a typed-in command has been executed and SVCINT returns to INIT, it passes
along the return code from the called command in register 15. A code of zero indicates
successful completion of the command; a positive code indicates that the command was
completed but with an apparent error; and a negative code returned by SVCINT indicates
that the typed-in command could not be found or executed at all.

Upon return from SVCINT, INIT saves this return code briefly and calls the UPUFD
function program to update the user file directory (UFD) on the user's P-disk. (If the
user had typed in "ko" while the previous command was running, INIT calls CLROVER
at this point to ensure completion of the override trace printing.)

Having updated the user file directory, INIT checks the return code that had been
passed back by SVCINT. If the code is zero, INIT types a READY message and the
CPU time used by the given command. If the code is positive, an error message is
typed, including the error code returned (as a five-digit decimal number), along with
the CPU time used. If the code is negative, INIT types the message "INVALID CMS
COMMAND'", INIT then proceeds in the main control loop to call WAITRD to get the

next command. When the command is entered, INIT calls SETCLK to initialize the
CPU time for the new command and then puts it in standard parameter-list form by
calling the SCAN function program. After calling SCAN, INIT checks to see if an exec
filetype exists with a filename of the typed-in command. (For example, if ABC was
typed in, INIT checks to see if ABC EXEC exists.) If such an EXEC file does exist,
INIT adjusts register 1 to point to the same command as set up by SCAN, but preceded
by CL8'EXEC', and then issues an SVC X'CA' to call the corresponding EXEC proce-
dure ('ABC EXEC' in the example).

If no such EXEC file exists for the first word typed in, INIT makes one further check
using the-CMS 'ABBREV' abbreviation-checker. If, for example, the first word typed
in had been 'FORT', INIT looks up FORT via the ABBREV routine (if included in the
nucleus); if an equivalent is found (for example, '"FORTRAN' for 'FORT'), INIT looks
for an EXEC file with the name of the equivalent word (for example, FORTRAN EXEC);

tutes the equivalent word (for example, FORTRAN) for the first word typed in (for
example, FORT). Thus if FORT is a valid abbreviation for FORTRAN and the user
has an EXEC file called "FORTRAN EXEC', he invokes this when he merely types in
'FORT! from the terminal.

If no EXEC file is found either for the entered command name or for any equivalent
found by ABBREV, INIT leaves the terminal command as processed by SCAN and then
issues an SVC X'CA' to pass control to SVCINT, which, in turn, passes control to the
appropriate command program. When the command terminates execution, or if
SVCINT cannot execute it, the refurn code is passed in register 15, and the CMS
command environment continues as described earlier.

Stacking of Typed-in Commands

While a CMS command is being executed, it is possible for a user to type in or stack
the next command (or commands) which he would like executed. To do this he hits the
attention key once if running on an actual 360, or twice if running under the Control
Program. This action generates an attention interrupt, which is processed by the
CONSI console interrupt routine and the WAITRD function program. The CONSI rou-
tine issues a read from the terminal into an area of free storage; when the desired
command has been typed in, it is placed in a chained list of finished read commands.
Then when WAITRD asks for a line to be typed in, the previously typed=-in finished in-
put commands are supplied on a first-in, first-out basis.

For example, while an assembly of PROGRAM is being run, a user might stack his
next two commands, which might be OFFLINE PRINT PROGRAM LISTING and OFF-
LINE PUNCH PROGRAM TEXT. Stacked input commands can be abbreviated the
same as other typed-in commands.

When stacked-up input commands are processed by INIT, several READY or error
messages are typed in a row before a new read is issued. In the example above,
three consecutive READY messages would be given, one from the assembly, one from
the OFFLINE PRINT, and one from the OFFLINE PUNCH,

-3
(V]

CMS commands (or input data to EDIT) can also be stacked by entering several logical
lines on one physical line, separated by the CMS line-end character, which is usually
a pound-sign (#).

In the above example, the three commands could be typed in as follows:

assemble program#offline print program listing#offline punch program text

Abbreviations for CMS Commands

As mentioned elsewhere, INIT and SVCINT sometimes wish to check if an abbreviation
(or synonym) has been substituted for a CMS (or user) command. To implement this
feature, the CMS nucleus normally includes the ABBREV abbreviation-checker function
program. Use of ABBREYV facilitates certain abbreviations for CMS commands. For
example, A suffices for ASSEMBLE, E for EDIT, F for FORTRAN, O for OFFLINE,

L for LISTF, and the like.

The abbreviations are interpreted based on the number of characters contained in the
first word of a command. ABBREYV looks this up in a user defined synonym table (if
one has been set up in core by calling the CMS 'SYN' command), or in a table of stan-
dard cms system abbreviations. If a match is found, and a count in the table indicates
that sufficient characters were in the abbreviation to identify it without ambiguity (for
example, 'ALTER' requires at least two characters to distinguish it from 'A' for 'AS-
SEMBLE'), then ABBREV returns the equivalent match, which is then substituted for
the given abbreviation by SVCINT or INIT. For example, EDIT is substituted for
either E, ED, or EDI; ALTER for AL, ALT, or ALTE.

Note: Abbreviations as described herein are valid for the first word of commands
typed in from the terminal under the CMS command environment (including stacked
commands), or for parameter lists in existing CMS programs, or for commands han-
dled by the CMS EXEC command. They are not valid, however, for: (1) debug re-
quests, (2) edit requests, or (3) RETURN from the ECHO command. Note that the
EDIT and DEBUG requests have their own abbreviation schemes.

Minimum Abbreviations for CMS System Commands

The complete list of minimum abbreviations for CMS System commands is given in the
following table.

System Command Shortest Form System Command Shortest Form
ASSEMBLE A LISTF L
ALTER AL OFFLINE (o)
CLOSIO CL PRINTF P
CPFUNCTN CP SCRIPT sC
DEBUG DE STAT S
EDIT E TAPE T
FORTRAN F UPDATE U
GENMOD G VSET v

74

INTERRUPTION HANDLING
The monitor processes all SVC, input/output, program, machine, and external inter-
ruptions. The following paragraphs describe the processing carried out for each type

of interruption.

SVC Interruptions

Supervisor call (SVC) interruptions are handled by the SVCINT monitor program. Two
types of SVC's are processed by SVCINT: internal linkage SVC's (refer to "Internal
Linkage Scheme') and certain Operating System/360 SVC's (refer to '"SVC Simulation).
Internal linkage SVC's are issued by the monitor, command, and function programs of
the system when they require the services of other CMS programs. {(Commands en-
tered by the user from the terminal are converted to internal linkage SVC's by INIT.)
The Operating System/360 SVC's are issued by the processing programs (for example,
Assembler, FORTRAN compiler). The following paragraphs describe how these inter-
rupts are handled by SVCINT,

Internal Linkage SVC's

When SVCINT receives control as a result of an internal linkage SVC (that is, an SVC
X'CA"), it saves the contents of the general purpose and floating-point registers and
the SVC old PSW in the normal save area (NRMSAV) and establishes the normal and
error return addresses and stores them along with the name of the called program in
the normal save area. It then determines if the called program is in the transient
area (TRANSAR) by comparing the first 8 bytes of the parameter list with TRANSRT.
TRANSRT is a 12-byte area with the following content:

(1) First 8 bytes (TRANSRT): filename of routine or program currently in TRANSAR.

(2) Next byte (TRANMSK): desired system-mask for routine or program currently in
TRANSAR.

(3) Next 3 bytes: DC AL3(TRANSAR) = address of transient area.

If the name of the called program matches TRANSRT, the called program is already

in the transient area. If so, SVCINT stacks the register contents and return addresses
as the last entry in a last-in, first-out list, and then branches to the called program

in TRANSAR.

If the called program does not happen to be in TRANSAR (its name does not match
TRANSRT), then SVCINT scans through the function table FUNCTAB. FUNCTAB con-
tains the name, desired system mask, and core address of all programs which are in
(or can be included in) the CMS nucleus. Each entry in FUNCTAB is 12 bytes long, in
a similar format to that shown above for TRANSRT. If the called program is found in
FUNCTAB, and the core address is valid (that is, nonzero), then SVCINT stacks the
register contents and return address as above, sets the system mask if necessary,
and branches to the called program at its given address.

75

If the called program is in FUNCTAB but its core address is zero (indicating that the
program is actually disk-resident), or if the called program is not found in FUNCTAB
at all, then SVCINT stacks the register contents and return addresses as above and
attempts to call in a2 module of this name via the LOADMOD command. If the LOAD-
MOD succeeded, then SVCINT sets the system mask appropriately and transfers con-
trol to the called program. (The core address is given by the constant STADDR in
the NUCON table, having been placed there by LOADMOD.) ¥ LOADMOD brought the
called program into TRANSAR, it stored its name in TRANSRT. SVCINT, in turn,
recognizes that the called program is now in TRANSAR, and branches to it there (ig~
noring STADDR); SVCINT, of course, is now cognizant of the fact that a new program
resides in TRANSAR.

(Note: the loading of a transient disk resident program via LOADMOD is com-
pletely transparent to the normal LOAD and START commands. For example, a pro-
gram can be LOADed, then perhaps OFFLINE PRINT or PRINTF called to print the
load map, ERASE called to remove the LOAD map, etc., and then the program
STARTed. NUCON and the loader tables are unaffected by the calls to the transient
disk resident routines OFFLINE or PRINTF.)

If the program was not found in either TRANSRT or FUNCTAB, nor successfully
LOADMODed, SVCINT makes one further effort to link to the command. The
ABBREV abbreviation checker (if included in the CMS nucleus) is called to determine
whether an equivalent match (for example, EDIT) is found for the input command (for
example, E, ED, or EDI). If an equivalent is found, it is substituted (not in core, but
in registers) for the original command, and the threefold search (TRANSRT,
FUNCTAB, and LOADMOD) is initiated once more. If successful this time, SVCINT
links to the command in the usual way.

If (1) the abbreviation-checker is not included in the nucleus (a permissible installa=
tion option), (2) if no equivalent was found by ABBREV, or (3) if the second threefold
search for the equivalent command fails, SVCINT returns a negative error code to
the caller. (If the caller was INIT, the message ' ? CMS:xxxxxxxx'' is typed.)

When the called program returns, SVCINT determines whether or not there were any
errors encountered during the execution of that program. (A code returned by the
called program in register 15 will indicate this.) If there were no errors, -SVCINT
saves the contents of the general purpose and floating point registers in the normal
save area as they exist upon return from the called program. If normal overriding is
not in effect (via SETOVER command), SVCINT restores the calling program's regis-
ters, deletes the last entry from the last-in, first-out stack, and makes the appropri-
ate normal (errorless) return to the calling program.

If there were no errors and normal overriding is in effect, SVCINT moves the data re-
quired by the normal override handling program (HNDLNRM) into the normal override
save area NOVSAV, saves the addresses contained in the normal and error override
switches (NRMOVR and ERROVR), and sets these switches to zero so that overriding
will not occur during execution of the normal override program. It then deletes the
last entry in the last-in, first-out stack and passes control to the normal override
handling program. This program, after completing its processing, will return to
SVCINT, which will, in turn, return to the calling program.

76

If errors are encountered during the execution of the called program, and error over-
riding is not in effect (via either SETOVER or SETERR commands), SVCINT compiles
data for use by the error return program (either STDERR or the portion of code
pointed to by the address constant following the SVC X'CA') in the error save area
(ERRSAV), restores the calling program's registers, deletes the last entry in the
last-in, first-out stack, and masks the appropriate error return as defined by the
calling program. (If the calling program provides an address constant following the
SVC X'CA!', the portion of code pointed to by that address constant can gain acecess to
the data in ERRSAV through the use of the . RDERR function program.)

If there were errors and error overriding is in effect, SVCINT moves the data re-
quired by the error override handling program (HNDLERR) into the error override
save area (ERRSAV), saves the addresses contained in the normal and error override
switches and sets these switches to zero so that overriding will not occur during exe-
cution of the error override program. It then deletes the last entry in the last-in,
first-out stack and passes control to the error override handling program. This pro-
gram, after completing its processing, will return to SVCINT, which will, in turn,
make the appropriate error return as defined by the calling program.

Other System/360 SVC's

The general approach taken by SVCINT to process other SVC's supported under CMS is
essentially the same as that taken for an internal linkage SVC. (Refer to '""SVC
Simulations'™ for a list of the Operating System/360 SVC's supported by CMS.) However,
rather than passing control to a command or function program, as is the case with an
internal linkage SVC, SVCINT passes control to the appropriate routine. If overriding
is not specified, SVCINT will return directly to the program. If overriding is specified,
the override program will return to SVCINT, which will return to the program.

In linking to the particular SVC routine, however, SVCINT uses a different procedure
than the threefold (TRANSRT, FUNCTAB, and LOADMOD) search used for
SVC X'CA' calls.

In handling these other calls, SVCINT uses two tables, a user-defined SVC table (if
any - set up by the HNDSVC program), and the table of standard system OS calls sup~
ported (to whatever extent feasible) by CMS.

Each of these tables is in the form of several four-byte items, each of which is of the
following format:

First byte: SVC number (for example, 19).

Next 3 bytes: Core-address of appropriate routine for that OS-call (for example,
OPEN routine to handle SVC 19 calls).

If the user-defined SVC table is present, any SVC number (other than X'CA") is looked
for in that table (checking the number against the first byte). If it is found, contrel is
transferred to the routine at that address.

77

If the SVC number is not found in the user-defined SVC table (or if the table is non-
existent), it is then looked for in a similar fashion in the standard system table of OS
calls.

If it is found there, and the routine address is nonzero, control is transferred to that
address in the usual way.

If it is found there, but the routine address is zero, this signals SVCINT that the par-
ticular routine is included in a transient disk resident module named 'SVCCARE',
which handles various OS calls that need not always reside in the CMS nucleus. If
SVCCARE happens to be in the transient area (TRANSAR), control is passed to
SVCCARE forthwith. If not, SVCCARE is LOADMODed as any other transient disk
resident routine, and then receives control.

In any event, SVCCARE then distinguishes which particular OS call has been passed
to it, and handles it accordingly.

If the SVC number is not in either table, then it is treated like an ABEND call,
For setting up the user-defined SVC table mentioned above, the HNDSVC initialization
program is provided, making it possible for a user to provide his own SVC routines.
This function program is described on the following pages.
When SVCINT passes control to any SVC routine, the following conditions exist:
Registers
0-11 and 15 as they were at SVC time.
12 address of SVC-handler routine.
13 address of SVC save area.

14 return address to SVCINT.

The SVC save area has the following format:

Bytes Contents
0- 63 caller's registers 0-15
64- 71 SVC-old-PSW
72- 95 floating=-point registers 2, 4, 6*
96-175 80 bytes for use by SVC-simulatior routine

*FPR 0 is saved by CMS elsewhere.

78

HNDSVC
Filename - HNDSVC, module - HNDSVC, Disk Resident, Transient.

Function

The HNDSVC function initializes the SVC Interrupt Handler to transfer control to a
given location for a specific SVC number (other than X'CA' or 202), or to clear such
previous handling.

Calling Sequence

DS oF
PLIST DC CLS8'HNDSVC! called routine
DC CIA'SET! or CIA'CLR! function

DC ALl (SVC number), AL3 (address) argument(s)

DC X'FFFFFFFF! end of list
(must be present)

Notes:
1. For CLR, the address fields are irrelevant.

2. Individual SVC numbers may be added or cleared before termination of the
command.

Error Codes
E(00001) INCORRECT HNDSVC PARAMETER LIST
E(00002) SVC number replaces another of the same number (for HNDSVC SET).

E(00003) SVC number clearing one which was not set (for HNDSVC CLR).

79

Operation

HNDSVC processes the parameter list checking for possible errors. An SVC number
of 202 (x'CA") is illegal, and two SVC, numbersthatare the same are also invalid. The
function must, of course, be either SET or CLR.

For the HNDSVC SET call, a check of addresses is also made for reasonableness
(each must be an even number greater than 0 and within the user's core size). An
error code 1 (with a message) is given if the parameter list is incorrect.

If the parameter list appears valid, for HNDSVC SET, the logic is as follows:

1. If no user-defined SVC table exists, pointers are set up to the part of the caller's
parameter list (from his first argument through the last), that forms the user-
defined SVC table until it is cleared.

2. I a user-defined table already exists, enough free storage is obtained for both
tables, the old one and the new one. The two are then merged into the free stor-
age area, and pointers to the new table are set up for SVCINT. If the new table
contains any SVC numbers identical to the old, the new ones replace the old, and
an error code 2 is subsequently returned to advise the caller of this situation.
This is purposely not treated as an ABEND condition so that a user could start off
with one table, then add a new one, replacing only those in the old table that he
wishes to supersede. (The error code is given, however, so that the caller is
aware of the replacement, in case it was accidental.)

For the HNDSVC CLR call, the parameter list is checked against the table (if any)
currently in use. If the numbers match the table, the table is returned via FRET to
free storage (if necessary), and the pointers for SVCINT are cleared. If the numbers
do not match the table perfectly, those that do match are cleared, the table compacted
appropriately leaving only those which have not been cleared, and the pointers for
SVCINT revised accordingly. If any number tries to clear an SVC number not in the
table, an error code 3 is given subsequently, but processing continues. - If the table
does not exist at all, an error code 3 is also given.

In any case, after the HNDSVC CLR call, the pointers will be clear if there is no
table left, or revised accordingly if there are still some calls left.

In actual practice, the parameter list is set up so that the function can be initialized
to CIA'SET' for the set call, and later to CL4'CLR' for the clear call, using the same
parameter list.

At the completion of each CMS command, the INIT program clears any remaining
user-defined SVC table, in the event that a program loaded and run in user core forgot
to issue a HNDSVC CLR call when finished.

If HNDSVC is inadvertently called from a terminal, error code 1 (with message) will
be given.

R0

Input/Output Interruptions

All input/output interruptions are received by the I/0 interruption handler (IOINT).
IOINT saves the I/0 old PSW and the channel status word (CSW). It then determines
the nature of the device causing the interruption and passes control to the program
that processes interruptions from that device. It does this by scanning the entries in
the device table (DEVTAB) until it finds the one containing the device address that is
the same as that of the interrupting device. (DEVTAB is a block of storage within the
nucleus constant area (NUCON). It contains an entry for each device in the CMS sys-
tem. The entry within DEVTAB for a particular device contains, among other things,
the address of the program that processes interruptions from that device.)

When the interrupt handling program corresponding to the interrupting device com-
pletes its processing, it returns control to IOINT. At this point, IOINT tests the wait
bit in the saved I/0 old PSW. If this bit is off, it usually indicates that the interrup-
tion was caused by a terminal (asynchronous) I/O operation. In this case, IOINT re-
turns control to the interrupted program by loading the I/0 old PSW.

If the wait bit is on, this usually indicates that the interruption was caused by a non-
terminal (synchronous) I/0 operation and that the program that initiated the operation
called the WAIT function program to wait for a particular type of interruption (usually
a device end, signaling the completion of an I/O operation). (Refer to '""Nonterminal
I/0".) In this case, IOINT determines whether or not an interruption from the inter-
rupting device is being waited for. It does this by checking the pseudo-wait bit in the
device table entry for the interrupting device. If this bit is off, the system is waiting
for some event other than the interruption from the interrupting device; IOINT returns
to the wait state by loading the saved I/O old PSW. (This PSW has the wait bit on.)

If the pseudo-wait bit is on, an interruption from a particular device is being waited
for. (The WAIT function program sets this bit when called by a program that is wait-
ing for an I/0 interruption from a particular device.) In this case, IOINT determines
whether or not the interruption was the one being waited for. (The interruption may
or may not be the one being waited for; for example, a program may be waiting for a
device-end interruption from the device, but a channel-end or error interruption may
occur.) The program that processes the interruption from the interrupting device
will inform IOINT of this. If the interruption is not the one being waited for, IOINT
loads the saved I/0 old PSW. This will again place the machine in the wait state.
Thus, the program that is waiting for a particular interruption will be kept waiting
until that interruption occurs.

If the interruption is the one being waited for, IOINT resets both the pseudo-wait bit
in the device table entry and the wait bit in the I/0 old PSW. It then loads that PSW.
This causes control to be returned to the WAIT function program, which, in turn, re-
turns control to the program that called it to wait for the interruption.

81

| CMS Terminal Interruptions

Terminal input/output interruptions are handled by the CONSI program. Upon receiving
control, CONSI determines the nature of the interruption. If it is a channel end, CONSI
returns control to IOINT and indicates that it is awaiting an interruption other than the
channel end.

If it is a device end, indicating the completion of an I/O operation, CONSI checks whether
the finished operation was a read or a write. If it was a write, CONSI deletes the corre-
sponding CCW package from the read-write stack, and frees the storage occupied by it.
If there are no more requests in the read-write stack, CONSI then exits to IOINT. If
there are some requests in the stack, CONSI obtains the next, and starts the new I/O
operation. If this operation is started successfully, CONSI then returns to IOINT. If

the 1/0 was not started successfully, it is either because of an error or a pending
attention. In the former case, CONSI terminates CMS operation. In the latter case,

the user wishes to stack a command for later processing or to enter a request (either
KT, KX, or KO). To enable the user to enter his input line, CONSI constructs a CCW
package for a read. If, at this time, there are no requests in the read-write stack,
CONSI immediately makes the CCW package the first and only entry in both the read=-
write and pending read stacks, starts the read operation, and exits to IOINT. If there
are requests in the read-write stack, but there are no pending reads, CONSI makes the
CCW package the first and only entry in the pending read stack and also links:it into the
read-write stack as the first entry. It then starts the read operation and exits to IOINT.
If there are requests in the read/write stack and there are entries in the pending read
stack, CONSI makes the CCW package the last entry in both stacks, starts the next I/0
request in the read/write stack, and exits to IOINT.

If a device end caused the interruption and the operation just finished was a normal read
(that is, a read not triggered by an attention), CONSI links the CCW package for that
read into the finished read stack as the last entry and deletes it from the read-write
stack and the pending read stack. From this point, CONSI proceeds in essentially the
same manner as it does for a device end caused by the completion of a write (see pre-

vious paragraph).

If a device end caused the interruption and the operation just finished was a read trig-
gered by an attention (for example, KT, KX, KO, or a stacked input command), CONSI
determines whether it was a KT, KX, or KO request by examing the input buffer. If it
was not, CONSI handles the input command as it does a normal finished read. If the
read was KO, CONSI sets the kill-override flag that is referenced by SVCINT in deter-
mining where control is to be returned. If the read was KT, CONSI deletes all write
requests from the read-write stack and sets the kill-typing flag that is referenced by the
terminal write programs (TYPLIN/TYPE). After performing the special processing for
KT or KO, CONSI proceeds in essentially the same manner as it does for a device end
caused by the completion of a write.

82

If the read was KX, CONSI transfers control to the routine KILLEX, which terminates
CMS execution. KILLEX performs the following operations:

e Calls DESBUF to remove all console I/0 requests from the read-write stack.

e Calls LOGDISK to close any open CMS files and to update the user file directory on
any active read-write disk(s).

e Calls CLOSIO to close the printer and the card reader/punch (the Control Program
will interpret this as a request to close the spooling files for these devices).

e Calls the CMS '"IPL' command to re-IPL a fresh copy of CMS.

If an attention caused the interrupt that gave CONSI control, CONSI enables the user to
stack his command as previously described.

CMS Reader/Punch/Tape Interruptions

Interruptions from these devices are handled by the programs that actually issue the
corresponding I/O operations. (Refer to the discussions of CARDIO and TAPEIO.)
When an interruption from any of these devices occurs, control passes to IOINT, Then,
IOINT returns control to WAIT, which retfurns control to the program that issued the
1/0 operation, This program can then analyze the cause of the interruption.

Since the address of the interrupt processor in the device table of these devices is 0,
IOINT assumes the interrupt was correct and resumes as if a successful return was

obtained from an actual interrupt processor.

CMS Printer/Disk Interruptions

Interruptions from either of these devices give control to IOINT, through which control
passes to the appropriate interrupt processing program. As described under ""CMS
Non-Terminal I/0'", the interrupt processing program determines if this is the interrupt
requested and if an error has occurred. The channel programs for the printer and disk
end with a NOP channel command to cause channel end (CE) and device end (DE) to

occur together, thereby ensuring the associated interrupt processing program that the
interrupt being serviced is the requested one. On an error, the old I/O PSW, the
Channel Status Word, and an error indicator are moved to the proper device table
(DEVTAB).

The interrupt processor then returns control to IOINT, which returns control to WAIT,
which in turn returns control to the program that issued the I/O operation, This I/O
handling program then checks the error indicator in the corresponding device table.

If an error is indicated, the program calls the CMS centralized error recovery program,
IOERR; if there is no error, the I/O handling program continues its normal processing.

83

User Controlled Device Interruptions

Interrupts from devices under user control are serviced the same as CMS devices
except that WAIT and IOINT manipulate a user created device table, and that IOINT
passes control to a user written interrupt processing routine.

Program Interruptions

The program interruption handler (PRGINT) receives control when a program interrup-
tion occurs. When it gets control, PRGINT determines if the executing program has
specified a program interruption exit via a SPIE macro instruction. I it has not,
PRGINT passes control to the DEBUG command program. This allows the user to deter-
mine the cause of the interruption through use of DEBUG requests.

If the executing program has specified a program interruption exit via SPIE, PRGINT
completes the construction of the program interruption element (PIE) by storing the
program old PSW and the contents of registers 14, 15, 0, 1, and 2 into it. (The routine
that handles the SPIE macro instruction has already placed the address of the program
interruption control area (PICA) into PIE.) PRGINT then determines if the event that
caused the interruption was one of those selected by the SPIE macro instruction. If it
was not, PRGINT passes control to the DEBUG command program.

If the cause of the interruption was one of those selected in the SPIE macro instruction,
PRGINT picks up the exit routine address from the PICA and passes control to the exit
routine. Upon return from the exit routine, PRGINT generates a program interruption
to obtain the system mask from the current PSW. (The exit routine may have altered
the system mask and PRGINT must restore it before returning to the interrupted
program.) It then places the obtained system mask into the appropriate field of the
program old PSW it saved on entry and loads that PSW to return to the interrupted
program.

External Interruptions

An external interruption causes control to be passed to the external interrupt handler
(EXTINT), which passes control to DEBUG if the interrupt was not a timer interrupt.
If the interrupt was caused by the timer, EXTINT resets the timer and types the BLIP
character at the terminal. The standard BLIP timer setting is two seconds, and the
standard BLIP character is upper case, followed by lower case (it moves the typeball
without printing).

Machine-Check Interruptions

When a machine-check interruption occurs, control is passed to a corresponding inter-
ruption handler (MCHINT). MCHINT calls the TYPLIN function program to type a
message. at the terminal to the effect that a machine error has occurred. Next, it calls
the WAIT function program to wait until the message has been typed. When the message
has been typed, MCHINT passes control to the DEBUG command program, which enables
the user to determine the effects of the interruption through the use of the DEBUG
program.

84

Note: If a machine check occurs while running under CP-67, the following message is
typed and CP is entered:

MACHINE CHECK INTERRUPT
CP ENTERED, REQUEST PLEASE

To reflect this machine check to the CMS virtual machine, issue a BEGIN console
function, and CMS will handle the interrupt as described above,

OVERRIDE HANDLING

Override handling deals with the processing carried out when the normal and/or error
override facilities have been activated by the SETOVER or SETERR commands. The
override handling programs (HNDLNRM and HNDLERR) are part of the OVERRIDE
module. This module is in core only when the normal and/or error override facilities

have been activated.

Normal Override Operations

The normal override handling program (HNDLNRM) gets control from SVCINT when
normal overriding has been activated by the SETOVER command and when a program
that received control as a result of an SVC executes without error (that is, it returns a
zero in general purpose register 15). HNDLNRM calls the FREE function program to
obtain a block of free storage for use as a work area. It then calls the . RDERR function
program to place the normal override data saved in NOVSAV by SVCINT into the work
area. This data consists of the address of the calling program, the name of the called
program, the SVC old PSW that resulted from the call, the normal return address, the
error return address, the contents of the general purpose and floating-point registers
at the time of the call, and the contents of the general purpose and floating-point regis-
ters upon return to SVCINT from the called program. The normal return address is
either the address of the instruction immediately following the SVC, or the address of
the instruction immediately after the address constant, if one is provided by the calling
program. The error return address is either the address contained in the address
constant (if one is provided) or the address of the standard error routine, STDERR.

If the called program is the WAIT function program and the user has specified NOWAIT
in the SETOVER command, HNDLNRM releases the storage previously obtained and
calls the . RESUME function program, which returns to SVCINT. SVCINT will, in turn,
return to the calling program, If the user has not specified NOWAIT, HNDLNRM sets a
switch to indicate that the called program was WAIT,

HNDLNRM then places the standard override information into a buffer and calls the
PRINTR function program to print it. (This information is in the work area after the
call to .RESUME; it consists of the address of the calling program, the name of the
called prograr.:n, the SVC old PSW, the normal return address, and the error return
address,)

85

If the called program was WAIT and the user specified WAITSAME, or if a program
other than WAIT was called, HNDLNRM proceeds as follows. If GPRSB was specified,

it moves the contents of general purpose registers 0 through 7 as they existed at the

time of the call, from the work area to the print buffer and calls PRINTIO to print the
contents of the buffer. HNDLNRM does the same for general purpose registers 8 through
15. Next, if FPRSB was specified, it moves the contents of the floating-point registers,
as they existed at the time of the call, to the print buffer and prints them. K GPRSA
and FPRSA are specified, HNDLNRM follows similar procedures to print the contents

of the general purpose and floating-point register as they exist upon return from the
called program. Then, if parameter list printing was specified, HNDLNRM moves
successive doubleword entries from the parameter list to the print buffer until it is filled,
and prints the contents of the buffer. I a second line of the parameter list was specified,
HNDLNRM does the same for the next series of doublewords in the parameter list. Final-
ly, HNDLNRM calls the FRET function program to release first the work area and then
the . RESUME function program to SVCINT and eventually to the calling program;
HNDLNRM then returns to SVCINT,

If the called program was WAIT and the user specified either WAIT1 or WAIT2,
HNDLNRM merely prints the corresponding number of lines of the parameter list, re-
leases the work area, and returns to SVCINT by calling . RESUME.

Error Override Operations

The error override handling program (HNDLERR) receives control from SVCINT when
error overriding is in effect and an error is encountered during execution of the called
program, The logic of HNDLERR is essentially the same as that of the normal override
handling program, However, as part of initialization, HNDLERR sets swifches for
maximum printing, Thus, regardless of whether or not the called program is WAIT,
each time HNDLERR gets control it prints the standard override information, the con-
tents of the general purpose and floating-point register (both before and after the call),
and two lines of parameter list,

SYSTEM RESTART

| CMS operation can be restarted when the user issues a RESTART or IPL request while
in the DEBUG environment, When such a request is made, the DEBUG command issues

| a call to the CMS "IPL" command, which reads into core a clean version of the CMS
nucleus. CMS nucleus in~core reinitialization is no longer supported by the DEBUG
request RESTART.

Note: The CMS 'IPL’' command can also be invoked from the DEBUG environment, or

CP can be called upon to re-IPL through IPL CMS or IPL 190, If CMS is being run as
| a stand-alone program, CMS can be IPL'ed from the 360 operator console.

86

SECTION 4: COMMAND PROGRAM DESCRIPTIONS

FILE CREATION, MAINTENANCE, AND MANIPULATION

This section describes the processing performed by the various CMS command pro-
grams. The calling sequence and parameter list for each command are described.

Note:

1. A few CMS programs require alignment of the parameter list to be on a doubleword

boundary, notably OFFLINE, MACLIB, and TXTLIB. If any of these programs

is

called from within a written program, make sure the parameter list is doubleword

aligned (for example, preceded by DS 0D).
Other CMS programs require only that the parameter list be fullword aligned.

As a precaution, you may, of course, align all parameter lists on a doubleword
boundary, if desired.

2. Each parameter list passed tc a command should end with the constant

X'FFFFFFFF'. For example, see the HNDINT function program described under

"Nonterminal I/0".

3. The four bytes following a CMS Supervisor Caill (SVC 202, or SVC X'CA') may
contain the error return address of the form:

DC Al4 (routine)

If the high-order byte is nonzero, SVCINT will assume no error return address

provided, and will transfer control to SDTERR if an error return from the given

program should occur.

ALTER

FUNCTION: To alter the identification of a file or related group of files on a read-
write disk.

CALLING SEQUENCE:
LA R1, PLIST R1 must point to P-List as usual

SVC X'CA!
DC Al4 (ERROR)

87

ENTRY REQUIREMENTS:

R1 must point to ALTER parameter list:

DS oF
PLIST DC CLS'ALTER'
DC CLs8' ' Old Filename ('*' means all names)
DC CLs' ! 01d Filetype ('*' means all types)
DC cL2' Old Filemode ('*' means any read-write disk)
DC CLsé' ! Not used
DC CLS8' ! New Filename (= or * means no change)
DC CLS8' ! New Filetype (= or * means no change)
DC Ccr2' New Filemode (= or * means no change)
DC CLS8'(! Option delimiter
DC C14' option' either or both TYPE to type the identifier(s)
of ALTER'ed files
DC CL4' option' or NOUP to suppress the updating of the

user's file directory
EXIT CONDITIONS:

Normal Return

R15=0 (and condition code = 0)
Error Returns

R15 nonzero (and condition code = 2)

CALLS TO OTHER ROUTINES:

ACTLKP, ADTLKP, FSTLKW, TFINIS, UPDISK
CALLED BY (where known):

Disk resident routines
MACROS USED:

ADT, AFT, FSTB, FVS
ERROR RETURNS: (R15 value at exit):

Old specified file cannot be found

New specified file already exists

Old mode is illegal for a change

No changes were made at all

Change of mode is illegal

New mode is illegal

Incorrect ALTER parameter list (for example, insufficient parameters)
Specified file is in Active File Table (cannot change a file while it is active)

QO =3 O U W

88

EXAMPLES:

ALTER LOAD MAP P5 SAVED MAP P1
ALTER CMS-NUC ALPHANUM * LATEST LOADMAPS P1

ALTER SPRT * P SCRIPT = =
ALTER * EXEC P1 " EXEC P2

ALTER ** P5 == P1

OPERATION: ALTER checks the parameter list for various types of errors, and gives
error returns, with messages, for any error detected.

Only read-write disk(s) are checked for the files specified; read-only disks are ignored.

When the parameter list has been checked and appropriate flag-bits set as needed,
ALTER checks for existence of the given file(s), and changes the file identification, as
follows:

1.

ACTLKDP is called to check if the file to be changed happens to be active — that is,
in the Active File Table. This is treated as an error — see error 8. In a couple
of cases where this error has been known to occur, the calling program either
forgot to close the file before ALTER'ing it, or tried to ALTER it first and close
it afterwards. Thus, if this error should occur (a message is typed to warn the
user), look for this type of bug in the calling program.

If the given file is not in the active fiie tabie, ALTER checks for the file by a call to
FSTLKW. If not found, ALTER exits with a normal return if at least one file was
changed, or with an error 4 (with message) if no files at all were changed.

If the given file was found by FSTLKW, ALTER checks to make sure that the file
identified by the new name and type does not already exist in the active file table
for the same disk (via ACTLKP cali — error 8 return if found), or in the FST
tables for the same disk (via FSTLKW). If it is found, an error 2 is returned.

If not, the file identification is altered as specified by the caller's parameter list,
and a flag-bit is set if a change was actually made (for the subsequent exit as
described above in step 2).

ALTER then checks the NOUP flag bit of ALTRFLG to determine if the NOUP
option — to prohibit the updating of the file directory — was specified. If so, the
flag bit used to signal that the file directory is to be updated via a call to UPDISK
is not turned on.

ALTER then checks the flag bit in ALTRFLG to determine if the TYPE option — to
type the identifier(s) of the file(s) altered to the console — was specified. If TYPE
was specified, the PLIST is set up, and a call to TYPLIN types the identifier of
the file.

Then a call to the TFINIS routine is made (if necessary) to temporarily close all

output files for the disk involved, and then UPDISK is called to update the file
directory.

89

8, TFinally, if the parameter list specified all names and/or types, the process is
repeated, starting at step 1, to alter all appropriate filenames, types, or modes
as desired.

See the examples given above for an insight into the kind of legitimate changes that can
be made by an ALTER command,

Installation Note:

ALTER is a transient-disk-resident command,

If another transient-disk-resident command should be programmed which required the
use of ALTER as a called subroutine, the ALTER program should be included with it in
the module of the new program (NEWPROG), and the new program call ALTER (via
BALR) when needed. ALTER saves and restores registers, so the calling program
would not have to do that,

Example: LOAD NEWPROG ALTER (TRANS TYPE)
GENMOD NEWPROG

In any event, the system mask must be 00 when ALTER is invoked, as is generally
required for all nucleus and transient-disk-resident routines,

CEDIT

FUNCTION: To create and/or edit card images files,

ATTRIBUTES: Disk resident

Note: For a detailed explanation of CEDIT, see the write-up on the EDIT command,
CLOSIO

FUNCTION: To close out a file and cause an EOF on an output file to the card punch or
printer. The output file may now be spooled out to the real device.

ATTRIBUTES: Nucleus resident

CALLING SEQUENCE:
LA 1, PLIST
SVC X'CA'

90

PLIST DC CL8'CLOSIO!
§sle; CL8'READER']

[DC CL8'PRINTER"]
"DC CL8'PUNCH"]
DC CL8'OFF']

DC CL8'ON']

OPERATION: CLOSIO determines whether the first entry in the parameter list is for a
card reader, a printer, or a card punch, and issues a start I/0 (SIO) to that device. In
each case, the CCW used for the operation is invalid and is interpreted by the control
program (CP67) as a signal that I/O operations on the corresponding virtual device are
complete. CLOSIO repeats this for each parameter in the list. When all parameters
are processed, it returns (via SVCINT) to the calling program. If no parameters are
supplied, CLOSIO closes ail three devices.

If the parameter OFY is entered, any subsequent calls to CLOSIO will be ignored until
the ON parameter is supplied.

COMBINE

ATTRIBUTES: Filename — COMBINE, disk resident moduie
FUNCTION: To concentrate one or more files into a new file.
CALLING SEQUENCE:

LA 1, PLIST
SVC X'CA!

PLIST DC CL8'COMBINE'

DC CL8' ' new filename (=means retain old name)
DC CLS8' ' new filetype (= means retain old type)
DC CL8' ' new filemode (= means retain old mode)
DC CL8' ' old filenamel (* means all filenames)
DC CLS8' ' old filetypel (* means all filetypes)

DC CLS8' ' old filemodel

DC CLS8' ' old filename2

DC CLS8’ ' old filetype2

DC CLs8! ' old filemode2

91

DC CLS8’' ' old filename n

DC CLS8' ' old filetype n

DC CLS8’ ' old filemode n

DC CL5' (TYPE' option to type file identifiers
of files being COMBINE 'd

Entry Requirements:
R1 must point to the COMBINE parameter list,
EXIT CONDITIONS:

Register 15 contains the error code, if any, to the user, If no errors were encountered,
register 15 contains zero,

ERROR RETURNS: (R15 value at EXIT)

INVALID PARAMETER LIST

OUTPUT DISK TO BE WRITTEN ON NOT LOGGED IN

OUTPUT DISK NOT IN WRITE STATUS

INPUT FILE DOES NOT EXIST

ERROR WHILE TRYING TO WRITE

ERROR TRYING TO ALTER OUTPUT FILE

INPUT FILE DISK, NOT LOGGED IN

DISK SPECIFIED NOT IN ACTIVE DISK TABLE

ATTEMPT TO COMBINE FIXED AND VARIABLE LENGTH FILES

Calls to Other Routines:
ADTLKP, FSTLKP, STATE, ALTER, ERASE, RDBUF, WRBUF, FINIS

OPERATION: After checking that all necessary parameters are present; COMBINE
checks for either a '=' or '*' in each argument, setting an appropriate flag for each
specified if the (TYPE option is specified, a flag is also set. COMBINE then checks
to see if the output disk is available in write status. If so, COMBINE checks that the
input disk is logged in.

COMBINE then checks the flag it set to see if either a '*' or '=' was specified,

If not, the input filename is moved into a STATE parameter list which verifies that the
file exists. If the file is found, the location of the file status table is obtained and the
input file is read. Data is written into a temporary file called (TEMP) (FILE), When
an END of FILE is encountered FINIS is called to close the input file and determines

if another file is to be combined repeating the above procedure to this point. The
output file is then FINIS'ed. COMBINE calls ERASE in the event there already exists

a file with the same name and type as the new file is to have, then ALTER's the (TEMP)

92

(FILE) to the new filename and filetype. After successful completion and prior to
returning to the user or caller, COMBINE references NUCON and turns the page
release flag on,

When the program returns to INIT, this flag is checked and, if it is on, INIT issues a
diagnose X'10' to CP to release the user pages from X'12000' up to the value of
LOWEXT. COMBINE then calls FINIS to close all active files and branches to the
caller,

If a '=' or '*' was specified, COMBINE sets the input filename, filetype, and filemode
in the usual parameter lists and calls FSTLKP to determine if the file exists. If

the file exists and an '*' was specified in either the filename, filetype, or both, a
negative sign bit is moved into the pointer to the parameter list signifying that the
disk table is to be searched again for another file. With a file found COMBINE moves
into the output parameter list, the name, type or mode depending on whether a '=' was
specified in either of the fields. A check is then made to determine if the (TYPE option
was specified and if it was, the name and/or type, depending on the field in which an
asterisk was specified, is moved into a TYPLIN plist and typed to the terminal.
COMBINE then calls RDBUF to read the input file and calls WRBUTF to write into the
(TEMP) (FILE). FINIS is called to close the input file and output file. ERASE is
called to erase the original file, if any, that has the same name and type as the new
output file will have and ALTER's the (TEMP) (FILE) to the appropriate name. If an
'*! was present for filename, or filetype, COMBINE returns to recall 'FSTLKP' to
continue where it had previously ieft off, If another correct file is found, the above
procedure is repeated. If not, COMBINE releases the user pages as described in the
preceding paragraph and exits to the caller,

EDIT

FUNCTION: To create and/or edit card image files.
CALLING SEQUENCE:

LA 1, PLIST

SVC X'CA?
'CEDIT}
pc cCrs {‘EDIT'
DC CcL8' ' filename (optional)
DC CLs8! ' filetype

OPERATION: The operation of the Editor programs consists of initialization, input
environment processing, and edit environment processing. The functional difference
between EDIT and CEDIT is that EDIT will place the entire file into core, whereas
CEDIT will READ into core only the current line and WRITE to an intermediate file
when finished with each line.

93

Note 1: When in the input and edit environments, a line entered from the terminal is
read into a buffer called DDLIN. The input line is formatted according to tab settings
in a buffer called TABLIN. The line to be written into the output file is located in a
buffer called LINE. The current line always resides in the buffer called LINE,

Note 2: During editing, the file being read from and updated is an intermediate file
designated as (INPUT)(FILE) P1. The new file being created or written into (that is,
the updated version is an intermediate file designated as (INPUT)(FILE) P1). These
two files exchange roles whenever the pointer is positioned to the top of the file.

INITIALIZATION: EDIT will warn the user if the intermediate files (that is, {INPUT)
(FILE) P1 and (INPUT1)(FILE) P1) exist. It then sets the TABPNT storage cell to point
to the tab settings to be used. (The tab settings to be used are determined according to
the filetype of the file. TABPNT always contains a pointer to the tab settings that are
currently in effect.) If the user did not provide a filename, EDIT immediately enters
the input environment. If the user did provide a filename, EDIT calls the STATE
function program to determine if the file exists. If it exists, EDIT enters the edit
environment. If the file does not exist, EDIT types a message at the terminal to that
effect and enters the input environment to enable the user to create a file.

INPUT ENVIRONMENT PROCESSING: The input environment of the EDIT command
program is entered when the user wishes to create a new file or to add records to an
existing file. When this environment is entered, EDIT types the message INPUT at the
terminal. Next, it reads the user's first input line. If then spreads the line according
to the tab settings that are currently in effect and writes the previous input line into the
file being created. Finally, EDIT moves the input line into the output buffer (LINE) from
where it will be written into the file being created when the user enters the next input
line from the terminal. EDIT repeats this procedure of reading a line from the terminal,
spreading it, and inserting the previous line into the file until the user enters a line with
only a carriage return. The carriage return indicates that the user wishes to enter the
edit environment and EDIT passes control to the portion of code that controls execution
in the edit environment.

EDIT ENVIRONMENT PROCESSING: The edit environment of the EDIT command
program is entered when the designated file exists or when the user switches to it from
the input environment. The various requests for editing functions are processed by
correspondingly named programs.

Control Within the Edit Environment: When the edit environment is entered, EDIT types
the message 'EDIT:' at the terminal. It then reads the user's first request. Next,

EDIT determines the nature of the request through a table-lookup procedure and branches
to the program that is responsible for satisfying the request. When that program is
done, it returns control to the control element, which obtains the next request. This
request is satisfied in a similar manner.

Delete Request: EDIT reads successive lines from the file being updated (that is, (INPUT)
FILE P1). It does not transmit these lines to the file being created. EDIT then returns
for the next request. (If an end-of-file occurs during reading, EDIT signals the con-
dition via terminal message and returns for the next request.)

94

Insert Request: If this request does not provide a line, EDIT enters the input environ-
ment. If there is a line, it places the current line into the file being created. It then
spreads the line provided with the request according to the current table settings. When
the line is spread, EDIT makes it the current line by moving it to the LINE buffer.
EDIT then returns for the next request.

Retype Request: EDIT spreads the line supplied as part of the request according to the
current tab settings. It then overlays the current line (in the LINE buffer) with the spread
input line and returns for the next request.

Serial Request: EDIT checks for the (NO) parameter. If present, it sets a switch to
indicate that no serialization is to take place. If not present, EDIT saves the first three
characters following the request name for use in columns 73-75 of the output lines (that
is, card images). EDIT next obtains the increment field (if any) and saves it for future
use. (If an increment field is not provided, EDIT assumes an incremental value of 10.)
It then returns for the next request.

Backspace Request: EDIT saves the backspace character for subsequent use. It then
returns for the next request.

Tab Definition Request: EDIT saves the tab definition character for use in spreading
subsequent input lines. It then returns for the next request.

Tabset Request: EDIT saves each of the tab settings supplied in the corresponding entry
in the tab setting table (DEFTAB). These will be used during the spreading of sub-
sequently processed lines. It then returns for the next request. (A pointer to the
current tab settings is always kept in a storage cell called TABPNT.)

Quit Request: EDIT calls the FINIS command program to close both the file being
changed or created and ERASE any work files. In effect, the file has remained unchanged.
It then returns (via SVCINT) to the calling program, which is usually INIT.

Verify Request: EDIT sets the verify mode switch on. This switch is referred to by
various other request processing programs. EDIT then returns for the next request.

Brief Request: EDIT sets the verify mode switch off to indicate that brief mode is in
effect. It then returns for the next request.

Input Request: EDIT goes directly into the input environment.

Overlay Request: EDIT spreads the line entered as part of the request according to the
current tab settings. It then scans the spread line for non-blank characters. Upon
encountering one, it replaces the character located at the same relative position on the
current line (in LINE) with that non-blank character. When the entire input line has
been scanned, EDIT determines if verify mode is in effect. If it is, EDIT types the up-
dated current line at the terminal. If verify mode is not in effect, EDIT does not type
the updated current line. EDIT then gives control to the REPEAT request routine to
determine if OVERLAY processing is to be repeated for the next line in the file. If not,
EDIT returns for the next request.

95

Blank Request: EDIT spreads the line entered as part of the request according to the
current tab settings. It then scans the spread line for non-blank characters. Upon
encountering one, it replaces the character located at the same relative position in the
current line (in LINE) with a blank. When the entire input line has been scanned, EDIT
determines if verify mode is in effect. If it is, EDIT types the updated current line at
the terminal. It then gives control to the REPEAT request routine to determine if
BLANK processing is to be repeated for the next line in the file. If not, EDIT returns
for the next request.

Repeat Request: EDIT stores the specified number of repeats and decrements this count
each time the REPEAT routine is entered. If the count is not zero, the current line is
written into the file being created (that is, (INPUT) FILE P1), and the next line is read
from the file being updated (that is, (INPUT1) FILE P1). Control is then given to the
routine that processes the request being repeated (either OVRLAY or BLKOUT). If the
repeat count is zero, EDIT returns for the next request.

Next Request: The current line pointer is moved ahead n lines within the file. EDIT
then returns for the next request.

Print Request: EDIT types the current line of the file onto the online terminal. EDIT
repeats this n times and returns for the next request. (If the user specifies either L or
LINENO, serial numbers are included with each typed line. If the user does not specify
either of these, serial numbers are not included. Also, if an end-of-file is encountered
during the reading of the file being updated, EDIT signals the condition via terminal
message and returns for the next request.)

Top Request: If an end-of-file has been reached on the file being updated, CEDIT switches
that file with the file being created and returns for the next request. After the switch,
the file that was being used for output is used as input; thus, the newly created file
becomes the one to be updated on the next pass. If an end-of-file has not been reached,
CEDIT transfers the records remaining in the file being updated to the file being created.
It then switches the roles of the two files and returns for the next request.

The switching of files is done in the following manner: The FINIS command program will
close the newly created file and then the POINT function program will position the read-
write pointers to the first item in the file. It does the same for the file that was being
updated. Next, the file-names in the corresponding read and write parameters lists are
switched. (Refer to the discussions of the RDBUF and WRBUF function programs.)
Finally, the old file is erased.

For EDIT, the incore line pointer is placed at the top of the file.

Backup Request: The line pointer is moved backward n lines within the file.

Bottom Request: The line pointer is positioned at the end of the file — last line.

Locate Request: (If an end-of-file is in effect when this request is issued, EDIT switches
the two files in the same manner as it does for a TOP request. If an end-of-file is not in
effect, no switch is made.) EDIT reads a line from the file and scans across it for a

string of characters that match those supplied with the located request. If no such string

96

exists in that line, EDIT will obtain the next line in the file. EDIT scans this line for a
match. If a match does not occur, it repeats the procedure. If a match is found, EDIT
determines whether verify mode is in effect. If it is, EDIT types the line having the
matching string at the terminal and returns for the next request. If an end-of-file is
encountered before a match, EDIT signals this via a terminal message and returns for
the next request.

Find Request: EDIT spreads the line supplied with the request according to the tab
settings currently in effect. (If an end-of-file is pending when this request is made,
EDIT switches the two files in the same manner as it does for a TOP request. If an end-
of-file is not pending, no switch is made.) It then reads a line from the file being up-
dated. Next, EDIT scans this line to determine if it contains the same characters
supplied in the input line in the same relative positions. If the line does not, EDIT will
obtain the next line from the file and scan this line in a similar fashion. EDIT repeats
this procedure until either a match or an end-of-file is encountered. If a match occurs,
EDIT determines whether verify mode is in effect. If it is, EDIT types the line containing
the matching character string at the terminal and returns for the next request. If

verify mode is not in effect, it merely returns for the next request. If an end-of-file
occurs before the match, EDIT signals this via terminal message and returns for the
next request.

Change Request: (If an end-of-file is in effect when this request is issued, EDIT switches
the two files in the same manner as it does for a TOP request. If an end-of-file is not
in effect, no switch is made.) EDIT scans the line supplied with the CHANGE request
and retrieves the character string to be replaced. It then determines whether the
current line contains this string. If it does not, EDIT returns for the next request.

If the current line contains the string of characters to be replaced, EDIT retrieves the
replacement characters from the line supplied with the CHANGE request. It then makes
the requested replacement of characters in the current line. (The length of the current
line will be appropriately adjusted to accommodate the replacement characters.) If the
global option is specified, EDIT continues to scan the current line for a second occur-
rence of the string of characters to be replaced. If there is a second occurrence, EDIT
makes the requested replacement. EDIT continues to scan the current line until all such
occurrences have been replaced. (If the global option is not specified, EDIT only
replaces the first occurrence in the current line.) Then, if verify mode is in effect,
EDIT types the updated current line at the terminal. If more than one line is to be con-
sidered for change, EDIT writes the updated current line into the file being created and
reads the next line from the file being updated. This line then becomes the current line.
EDIT then scans the current line to determine whether it contains the character string
to be replaced. If it does, EDIT makes the requested replacement (more than one
replacement if the global option is specified and there is more than one occurrence of
the string in the line), types the updated line at the terminal if verify mode is in effect,
and determines if another line is to be considered for change. If the current line does
not contain the character string to be replaced, EDIT merely determines whether there
is another line to be considered for change. If there is, EDIT replaces the current line
into the file being created and obtains the next line from the file being updated. EDIT
repeats this procedure until n lines have been considered. (The default value if n is not
specified on the CHANGE request is one.) I an end-of-file on the input file (that is, the
file being updated) is encountered before n lines have been considered, EDIT types a
message at the terminal to that effect and returns for the next request.

97

File Request: If the user did not provide a filename on the EDIT command and also did
not provide one on the FILE request, EDIT prompts the user (via a terminal message) to
reissue the FILE request and supply a filename. When the user complies, EDIT deter-
mines if an end-of-file on the file being updated is pending. If it is not, EDIT transfers
the remaininglines in the file being updated tothe file being created. Itthen calls the FINIS
command program to close both the file being updated and the file being created. EDIT
then calls the STATE function program to determine whether the new file already exists.
If it does, EDIT calls the ERASE command program to erase that file. After the file
has been erased or if no such file exists, EDIT calls the ALTER command program to
change the designation of the file just created to the designation supplied by the user. It
then erases the old file (that is, the one being updated), if necessary, and returns (via
SVCINT) to the calling program, which is usually INT. (The old file need not be erased
at this time if a top was done just before the FILE request was issued because it is
erased as part of the top operation.)

Save Request: The current contents of the file are written on disk, FINIS is called to
close the file, and a return to the INPUT mode is made.

ERASE

FUNCTION: To delete a file or related group of files from the permanent, temporary,
and/or other read-write disk(s).

ATTRIBUTES: Nucleus resident

CALLING SEQUENCE:

LA R1, PLIST R1 must point to P-List as usual
then either
svC X'CA! Call ERASE via SVC
DC AI4{ERROR) Ertor-return (for example, if file not found)
or
L R15, AERASE Where AERASE = V(ERASE)
BALR R14,R15 Call ERASE via BALR within Nucleus
BNZ ERROR Transfer if error (for example, file not found)

ENTRY REQUIREMENTS:

R1 must point to ERASE parameter list:

Ds OF
PLIST DC CLS'ERASE' (Note - immaterial if called by BALR)
DC CLs8!' ! Filename
DC CLs! ! Filetype
DC cL2' ‘! Filemode
or
DC X'FFFFFFFF' Delimiter (necessary if filemode omitted)

EXIT CONDITIONS:

Normal Return (File successfully erased):

R15=0 (and condition - code = 0)
Incorrect ERASE Parameter List (Error 1)

R15=1 (and condition - code = 2)
File(s) not Found (Error 2)

R15=2 (and condition - code = 2)
File Faulty (but erased) - Error 3

R15=3 (and condition - code = 3)

CALLS TO OTHER ROUTINES:

ACTFRET, ACTLKP, ACTNXT, DISKDIE, FREE, FRET,
FSTLKW, QQTRKX, RDTK, TFINIS, TRKLKPX, UPDISK

CALLED BY (where known):

DISK, FINIS, GENMOD, LISTF, LOAD, OFFLINE, plus disk resident
routines.

MACROS USED:
ADT, AFT, FSTB, FVS

OPERATION: ERASE checks the parameter list for errors by the caller. The filename
and filetype must each be given, or else a single asterisk to indicate all names and/or
types. The filemode may be omitted (that is, =X'FF'), in which case the first read-
write disk is assumed. If not omitted, the filemode must be alphabetic, or a single
asterisk, If alphabetic, a mode number is acceptable. If the mode is '*', all read-
write disk({s) are searched by ERASE.

For example, a call of ERASE * TEST P5 would erase all text files on the P-Disk that
had a mode number of 5. All other text files on any disks would remain intact, and all
other P5 files would remain also.

If any errors are detected in the parameter list, the message INCORRECT ERASE
PARAMETER-LIST is given, error 1 is returned, and nothing is erased.

After checking the parameter list and setting flagbits as needed, ERASE checks for a
given file and deletes it if found using the following procedure:

1. ACTLKP is called to determine if perchance the file to be erased is still active —
that is, in the Active File Table (AFT). If it is (only a file on a read-write disk is
acceptable, of course), then it is temporarily closed via a special EFINIS call to
the TFINIS routine, which performs just enough of the normal closing steps
ordinarily performed by FINIS to permit the file to be successfully erased. Proceeds
then to step 3 below.

99

| 10.

| 11.

. If not found by ACTLKP, then ERASE calls FSTLKW to find the file. If not found,

exit is made from ERASE as described in step 14 below.

. When the file has been found either by ACTLKP (and EFINIS called), or by

FSTLKW, then TFINIS is called to temporarily close all output files for this
particular disk (unless this was already accomplished by an earlier excursion
through this procedure for another file on the same disk).

ERASE then checks the TYPE option flag bit to determine if the user specified
that the identifier(s) of the file(s) being erased are to be typed to the console.
If the bit is on, the PLIST is set up, and a call is made to TYPLIN.

Before releasing any tracks belonging to the file that has been found, ERASE calls a
special entry in the UPDISK routine (see description of entry (2) in UPDISK routine
for details) to reserve enough disk records for a new file directory, to be updated
when the file has been erased. This procedure is part of CMS's double directory
scheme, and ensures that the file directory for the disk from which the file is being
erased is updated when and only when the erase has been completed. (If any system
malfunction or user intervention interrupts the process before completion, the old
file directory and the file being erased are both still intact.)

Then (unless it is already available), 1000 bytes of free storage are obtained via
FREE, for use in reading in the first and other (if any) chain links of the file.

Next the first chain link of the file is read into core, into the first 200 bytes of the
free storage area, via RDTK.

The data blocks pointed to by the first chain link are then released via TRKLKPX,
and the first chain link itself via QQTRKX (the first chain link remaining in core,
however).

If any data blocks remain, according to the FSTDBC data-block~count in the FST
entry, then additional chain links are read into core, as pointed to by the first chain
link. For each of these Nth chain links, the data blocks pointed to thereby are
released via TRKLKPX, and then the chain link itself. This process continues, with
a count of data blocks returned being decremented, until there are none left, or all
available chain links have been exhausted.

At this point, all data blocks and chain links have been given back to the QMSK and
QQMSK via appropriate calls to TRKLKPX and the one call to QQTRKX. Now a
check is made to see if perchance the file being erased happens to be contained in
STATEFST. If so, the 48 bytes at STATEFST are cleared to reflect the deletion of
the given file. (Note ~-RDBUF utilizes the STATEFST information in some circum-
stances; thus it must be either correct or null.)

Next provisions are made to keep the FST hyperblocks compacted, for the disk on
which the file was found and erased. In this process, the last FST entry for the
disk involved is moved to where the FST entry was for the file that we just erased,
and the place from which it was moved is cleared. A check is made of the active

100

file table via ACTNXT in case an active file entry points to the file moved, in which
case the pointer is corrected; the pointer following STATEFST is also checked, and
corrected if necessary. In any event, the compacting is carefully accomplished,

with all pointers, displacements, block counts, etc., being corrected as necessary.

| 12. Finally, a call to the other special entry of UPDISK (entry 3 in the UPDISK
description) is made to complete the updating of the file directory for the disk
involved.

| 13. At this point, if the entire FST hyperblock and the last FST entry in the preceding
hyperblock have all become clear, the last hyperblock is returned to free storage,
and all pointers and counts corrected accordingly. (This is done to avoid keeping a
number of empty hyperblocks in core in case a large number of files are erased.)

| 14. Finally, the entire procedure is repeated starting at step 1, if the parameter list
specified all names, types, or modes.

| 15. When all appropriate erasing (if any) has been completed, ERASE returns the 1000-
byte buffer to free storage, and exists to the caller with the appropriate error code.

If no files at all were erased, ERASE returns an error code 2, but without an error
message. (Several system programs call ERASE to eliminate old listings, old text files,
ete., in case they might exist, so that an error message for FILE NOT FOUND in
ERASE itself would be impractical.)

|
Several error conditions are detected by ERASE. On one of these, a permanent I/0
error in reading in a chain link due to hardware disk errors, ERASE purposely invokes
the code at DISKDIE (within the FINIS command) to leave the file directory intact until
the disk error can be corrected.

On all others, when the error is detected, ERASE ceases to give back records using
TRKLKPX and/or QQTKRX, but deletes the files and compacts the directory as usual.
An error 3 is given on exit, when ERASE is finished.

This feature makes it feasible to ERASE a faulty file from one's directory without
endangering the integrity of other files on the same disk.

FILEDEF

FUNCTION: To allow the user to specify, in a manner similar to the OS data definition
card, 1/0 devices and certain file characteristics which will be used by a program at
execution time. Can also be used to modifv. delete and list previously defined file
deécriptions.

ATTRIBUTES: Disk resident, transient

[
[l
[

CALLING SEQUENCE:

LA R1, PLIST
SvC X'CA!
DC Al4 (error)

ENTRY REQUIREMENTS:

R1 must point to FILEDE F parameter list:
DS oF
PLIST DC CL8 'FILEDEF'
DC CLS8 ‘fileid'
DC CLS8 'device'
DC CL8 ' ! parameter pairs
DC CL8 ' ! parameter pairs comb'd
DC CL8 '(' option delimiter
DC CLS8 ' ! options
DC 8X 'FF' fence

ENTRY POINTS:
FILEDEF
EXIT CONDITIONS:
Normal Return
R15=0
R# = address of FCB
positive if already exists
negative if obtained or modified by this call
Error Return
R15 non zero (See Error Returns)
CALLS TO OTHER ROUTINES:
FREE, FRET, CONWRITE
EXTERNAL REFERENCE:
SYSREF
CALLED BY:

SOIOMAN, LANGUAGE PROCESSORS,
Execution interface — PLI, FORTRAN

MACROS USED:

TYPE, CMSTYPE, CMSCB, CMSYSREF, CMSREG

TABLES AND WORK AREAS:

COPYLIST plist copy internal
FCB file control block free storage

REGISTER USAGE:

R0 — Address Return

R1 — Plist on entry

R2 — Temporary

R3 — FCBLEAD

R4 — FCBSECT

R5] Plist — working copy
R6
R7
R8
R9
R10 — internal linkage
R11 - conversion

Working temporary

R12 — Base
R13 — Save area
R14

R15 } External linkage

ERROR RETURNS:

1. FILO01l: Parm 1 invalid
2. FIL002: Mode number missing
3. FILO003: Parm missing after xxxxxxxx
4, FIL004: Invalid Parm after xxxxxxxx
5. FILO05: Bad LRECL/BLKSIZE values
6. FIL006: TIllegal clear request
7. FILO07: Filename/filetype required
8. FIL008: Unknown device type
9. FIL009: Bad opted parameters

10, FIL010: Invalid option

OPERATION: The starting address of the chain of FCB's is obtained from the nucleus.
The PLIST is then analyzed to determine if there is enough space in the transient area
for a working copy of the PLIST; if not, free storage is obtained and the PLIST copy is
placed there.

The PLIST is then examined for options. If either PERM and/or NOCHNG is specified,
appropriate flags are set. Any other options are invalid, and cause an exit with error

-code 10,

Subsequent processing depends on the operands specified. The first operand is checked,
and depending on its contents, operation continues as described below.

103

No Operand. FILEDEF with no operand requests a list of current file definitions.
FCBNUM contains the number of entries in the chain of FCB's., This is used to loop
through the chain, For each, FCBDD and FCBDEYV is typed to the terminal. For
definitions to DSK, FCBDSNAM (the CMS filename) and FCBDSTYP (the CMS filetype)
are also typed.

*CLEAR. All FCB's on the chain are released except those flagged PERManent. These
are released only when specifically cleared.

Numeric Fileid. The number is converted to a data set reference number (i.e.,
FTxxFnnn). Processing continues as described under alpha fileid below.

Alpha Fileid. FCB is used to loop through the FCB chain in free storage looking for the
specified FCB. If no match is found, the new FCB flag is set, free storage is obtained,
and the address of this is placed in the first word of the last FCB on the chain, The
address of the new FCB is put in register 0 as a negative quantity and saved to be
passed back to the user when parameter processing is complete. If the PERM flag is
set, the high order byte of the new FCB is flagged PERManent.

If a matching FCB is found, and the NOCHNG flag is set, FILEDEF returns to the
user with the address of the FCB in register 0.

If a matching FCB is found and the NOCHNG flag is not set, the old FCB is saved in
case of an error, the old entry flag is set, and the address of the FCB is negatively
stored in register 0. If the PERM flag is set, the FCB is flagged PERManent.

Processing is then dependent on the device type and related parameters specified.

Device DUMMY. For device DUMMY an FCB is created with a ddname of dummy -
and a device type of X'00'.

Device Batch. For device BATCH an FCB is created with a device type of disk,

The following chart shows the RANGE of each option and the device types to which it
applies.

104

S0T

1)

Parameter Range Default || Disk Tape| Reader | Punch | Printer | Console| FCB Field
KEYLEN L 61439 — v JFCKEYLE
XTENT £ 61439 50 v FCBXTENT
LIMCT L 61439 -—- v JFCLIMCT
OPTCD E,F,A,R — v JFCOPTCD
DSORG PS, DA, IS, PD — v FCBDSORG
DISP MOD - v FCBIND2
RECFM FB,V,VS,VB,VBS,U -— v V4 ' v 4 4 FCBRECFM
BLKSIZE £ 61438 -— v v FCBBLKSZ
LRECL £ 61438 --- v v FCBLRECL
(2) ABSOLUTE
AUXPROC ADDRESS — v V' v v v 4 FCBPROC
MODE C'16' — v FCBMODE

(1) If there are no entries after disk, a default dsname of file and dstype equal to the ddname will be established.

(2) Auxproc is the auxiliary processing routine address which is primarily used by language processors for special

handling routines.

Referenced by SOEOB.

FINIS

FUNCTION: To allow the user to close one or more selected files.
ATTRIBUTES: Nucleus resident

CALLING SEQUENCE:

LA 1,PLIST
sve X'CA!

PLIST DC CLS8'FINIS'
DC CLS8 { 'Filename'}

1kt

DC CL8|'Filetype' |

k1t

CL2 3 'Filemode' z

DC k1

OPERATION: Refer to the description of FINIS under "File Management Function
Programs'',

Note: Since INIT closes all files after each command, FINIS as a terminal command
would not normally be issued. For FINIS from the terminal, error 6 '"NO FILES
OPEN" would occur.

LISTF

FUNCTION: To list the names of the files that exist on one or more of the CMS disks.
ATTRIBUTES: Disk resident, transient

CALLING SEQUENCE:
LA R1, PLIST R1 must point to P-List as usual
SVC X'CA'
DC AL4(ERROR)

ENTRY REQUIREMENTS:

R1 must point to LISTF parameter list:
DS OF

106

PLIST DC CLS8'LISTF"

DC CL8! ! filename or '*' or omitted
DC CcLs! ! filetype or '*' or omitted
DC CLs! ! filemode or "*' or omitted
DC CL8(' precedes options (if any)
DC CL8? ! option 1 (if any)

DC CLs8' ! option N (if any)

DC X'FF!' signals end of P-List

EXIT CONDITIONS:

Normal Return
R15=0

Error Returns (R15 values, with messages as shown):
R15 = 1: INVALID LISTF PARAMETER LIST.
R15 = 2: FILE NOT FOUND
R15 = 3: NO R/W DISK LOGGED IN

CALLS TO OTHER ROUTINES:
ADTLKP, ADTNXT, ERASE, FINIS, WRBUF
CALLED BY:
User
MACROS USED:
ADT, FVS

OPERATION: The disk(s) searched for the given file(s) are determined by LISTF as
follows:

1. If filemode is given, ADTLKP is called to reference the given disk; if found, LISTF
searches the directory to find the given file(s). If not found by ADTLKP or if the
disk is not logged in, error 2 (FILE NOT FOUND) is returned.

2. If the filemode is omitted, ADTNXT is called (répeatedly if necessary), and LISTF
searches all read-write disk(s) currently logged in, to find the given file(s). If no
read-write disks are logged in, error 3 (NO R/W DISK LOGGED IN) is returned.

3. If the filemode was given as asterisk (*), then ADTNXT is called as above, and all
disks, read-write and read-only, are searched by LISTF for the given file(s).

When LISTF, in scanning a particular FST table as obtained from ADTLKP or ADTNXT,
finds an FST entry whose filename and filetype satisfy the parameter list, it moves the
filename, filetype, filemode, and number of data blocks in the file from that file status
table to the buffer. If the EXEC option is not requested, it then calls the TYPLIN func-
tion program to type the contents of the buffer at the terminal. (The output lines are

107

preceded by an appropriate heading.) LISTF repeats this procedure for each file status
table whose filename and filetype fields satisfy the listing requirements. When the scan
of all participating file status tables is completed, LISTF returns to the caller.

If the EXEC option is requested, the contents of the buffer are not written to the terminal.
Instead, a CMS EXEC P1 file, containing the dummy arguments "&1 &2" followed by the
buffer contents, is created. This file may later be accessed by the EXEC program,
which will replace the dummy arguments.

Along with the statistics of file: name, type, mode, and number of records, the date and

time that the file was last opened for writing will be obtained from the FST, and made
available to the printed line.

If the SORT option is specified, the printed output will group together all identical
filetypes.

Several options are available in the LISTF command. See the CMS User's Guide for full
information.

Note:

If the P-Disk is read-only and LISTF is given with the filemode omitted, an error 3 (with
message) is returned.

For listing files on a read-only P-Disk, therefore, be sure to include the mode
letter P.

OFFLINE

FUNCTION: To perform the necessary conversion between unit record files and disk
files and vice versa.

ATTRIBUTES: Disk resident, transient

CALLING SEQUENCE:

LA 1,PLIST
SVC X'CA'
DS 0D

108

PLIST DC CLS8'OEFLINE'

READ
PUNCH
PUNCHCC
, / PUNCHOT
DC CL8 <PR’[NT
PRINTCC
PRINTUPC
LPRINTVLR
DC CLs! ' filename or *
DC cCLs! ! filetype
DC CL2' ! filemode

Note: Asterisks can be used in place of the filename and filetype if special read mode is
desired; that is, if OFFLINE READ filename filetype control cards precede each logical
deck,

OPERATION: OFFLINE calls the SVCFREE function program to obtain a block of free
storage for use as a work area. Next, it calls the STATE function program to locate the
file status table for the specified file. (This file status table will exist only if a file
identically named exists in the system.) From here on, the operation of the OFFLINE
command program depends on which function was invoked.

READ: The operation of the read portion of the OFFLINE command program depends on
whether or not the caller selects special read mode.

Special Read Mode (*): OFFLINE reads the first card from the card reader via a call to
the CARDRD function program. If this card is not an OFFLINE control card, OF FLINE
signals the error and will then assume a control card of the form "OFFLINE READ

. .NAME. . . .TYPE. .". (The user may then ALTER the file identification to

what was intended.) If an asterisk was specified only in the filename field, OFFLINE
will take the filename, filetype and filemode from the OFFLINE READ card and place that
information in the parameter list. If asterisks were placed in the filename and filetype
fields, and no mode specified, the filename and filetype from the OFFLINE READ card
will be placed in the parameter list and a default mode of P will be placed into the para-
meter list. If '* * fm' was specified, the filename and filetype are taken from the
OFFLINE READ card and put into the parameter list and the mode specified is the mode
that is placed into the PLIST.

OFFLINE calls the STATE function program to locate the file status table entry for the
indicated file, It will erase the copy of the old file once verification of the input file

is obtained. Next, it reads a block of cards as described below, If neither another
OFFLINE control nor an end-of-file is encountered during reading, OFFLINE calls the
WRBUF function program to place the card images into a disk file. It repeats this pro-
cedure for the next block of cards in the reader.

If another OFFLINE control card appears in the input stream, OFFLINE calls SCAN to

format it and TYPLIN to type it at the terminal. It then writes the remaining image of
the previous file into the disk file, calls the FINIS command program to close that file,

109

and returns to process the new file of cards following the second OFFLINE control card
in the prescribed manner. OFFLINE repeats this procedure for each logical file of
cards in the reader.

When an end-of-file is encountered during the reading of cards, OFFLINE places the
remaining images into the last disk file, calls FINIS to close that file, calls CLOSIO
to close card reader operations, calls the SVCFRET function program to release the
storage previously obtained, and returns to the calling program. Thus, during proc-
essing, OFFLINE converts each card file in the card reader to a correspondingly
named disk file.

No Special Read Mode: OFFLINE calls the ERASE command program to erase the
identically named file (if one exists and if there are cards to be read). . Next, it reads
a block of cards as described below. It then calls the WRBUF function program to
write the images into a disk file. OFFLINE repeats this procedure for each block of
cards until an end-of-file occurs. At this time, it writes the remaining images into
the disk file, closes that file (vis FINIS), closes card reader operations (via CLOSIO),
releases the storage previously obtained (via SVCFRET), and returns to the calling
program. Thus, if the special read mode is not selected, OFFLINE creates a single
file from the cards in the reader.

In either case, (Special Read Mode (*) or not), OFFLINE will read the first data record
and compare its record length against the specified length. If it gets an incorrect
length, it checks to see if an error has been encountered and branches out with the
appropriate error code. If there is no error, OFFLINE checks to see if the record
length is 132 bytes; if affirmative, it types the message "RECORD LENGTH = 132
BYTES" on the console and continues to read and write as described in the two read -
mode descriptions, If the record length is not 132 bytes, OFFLINE assumes the file
record length to be equal to the length of the first record read and continues to read
and write as described in the Read mode descriptions depending on which was specified.

PUNCH: OFFLINE calls the RDBUF function to read a card image from the named disk
file into an 1/0 buffer and then calls the CARDPH function to punch that image on the
card punch. It repeats this process for each image in the disk file. When an end-of-
file is detected during a disk read operation, OFFLINE closes the disk file (via FINIS),
closes punch operations (via CLOSIO), releases the storage previously obtained (via
SVCFRET), and returns to the calling program.

PUNCHCC: Prior to punching the specified card file as described above under PUNCH,
a control card of the form "OFFLINE READ filename filetype' is punched preceding
the normal punched output. '

PUNCHOT: Prior to punching the specified card file as described under PUNCH, a
control card of the form "OFFLINE READ filename filetype filemode date-last-written
time-last-written'" is punched preceding the normal punched output.

PRINT: OFFLINE first calls the PRINTIO function program to print a page heading and

then to double space. Next, it calls the RDBUF function program to read a line image
from the named disk file and the PRINTIO function program to print the line on the

110

printer. OFFLINE repeats the process of reading an image and printing it for 55 lines.
At this time, it ejects the printer to 2 new page, prints a page heading, double spaces,
and prints the next 55 line images. When an end-of-file is detected during a disk-read
operation, OFFLINE closes the disk file, closes printer operations, releases the
storage previously obtained, and returns to the calling program.

PRINTCC: For PRINTCC, OFFLINE operation parallels that for PRINT, except that
OFFLINE does not directly control printer facilities (for example, spacing, ejection),
but rather, allows the first character of the print line image to be used for this

purpose.
PRINTUPC: The function PRINT is performed after each print line image has under-
gone a translation on each character to uppercase representation. Each character is

OR'ed with a value of X'40',

PRINTVLR: The first four bytes of the print record are scanned for the effective length
of the data record. The length is then passed to the PRINT function.

PRINTF

FUNCTION: To print all or a specified part of a given file on the user's console
typewriter.

ATTRIBUTES: Disk resident, transient

CALLING SEQUENCE:

LA 1,PLIST
SVC X'CA’

.

PLIST DC CL8'PRINTF!

DC CL8' ' filename

DC CLs' ' filetype
{ DC CcLs' ' { ¥ or starting item number
{pCc cCLs8 '} * or ending item number
{DC CL§' '} print line width

111

OPERATION: PRINTF checks the filename and filetype to ensure they are both present
and not asterisks. Then the STATE function program is called to verify the existence of
the given file and to determine the number of items, fixed or variable filetype, etc. I
STATE cannot find the file, a message 'FILE NOT FOUND' is given, with error code 3.

If an error in the parameters is detected (for example, filename or filetype omitted, or
the ending item number less than the starting item number), the message "INCORRECT
'"PRINTF' PARAMETER-LIST" is given, and error code 1 is returned.

Several possible file types are checked for, and certain default values are chosen for,
various line lengths, as follows:

Filetype Line-Length
MEMO 80
SCRIPT 120
LISTING 121
Any Other 72

If the starting item number is greater than the number of items in the file, the message
*EOQOF * is printed, and return is made (without an error indication).

If the starting and/or ending item number has been supplied, PRINTF sets the RDBUF
parameter list as needed to read the items desired.

PRINTF then calls RDBUF to read several items at once into a very large (3200-byte)
buffer included with the program (unless the file is variable, in which case, one item at
a time is read). The items are then printed online one at a time via calls to TYPLIN,
with the desired or actual line-length used, until the buffer is exhausted, at which time it
is refilled if necessary, etc., until printing is complete.

To enhance overall CP/CMS performance in case several users are using PRINTF at the
same time (each in his own virtual machine), PRINTF is deliberately designed to take as
few pages in core as possible while running, and to minimize disk reading by reading
several items at once. (For example, a PRINTF of the first 40 items of a fixed file of
80-byte records would require just one call to RDBUF to fill the 3200-byte buffer, and
very few actual SIO's performed by RDTK to satisfy the RDBUF call.)

112

SCRIPT
FUNCTION: To print a file of English text at the terminal or on the printer.
| ATTRIBUTES: Disk resident

CALLING SEQUENCE:
LA 1,PLIST

svC X'cA

PLIST DC CL8'SCRIPT'

DC CLS8! ' filename
DC CLs! ' option 1
DC CL8! ' option N

OPERATION: The operation of SCRIPT consists of initialization and text processing.

INITIALIZATION: SCRIPT determines if the user has provided a filename and saves the
name if it is specified. If it is not specified, SCRIPT signals the error and returns to
the calling program. SCRIPT then processes the parameter list (of PARMROUT) to
determine specified options. If the PAGE option was specified, PARMROUT sets an
indicator (at SWON). If the user has provided a filename, SCRIPT determines if the file
to be typed at the terminal exists. If it does not, SCRIPT signals the error and returns
to the calling program. If the file exists, it then types the message 'SEM---VERSION 2!
at the terminal and waits for the user to reply with a carriage return (unless the NOWAIT
option was specified). SCRIPT then tests for the OFFLINE option and ejects a page on
the offline printer if it was specified. When the reply is received, SCRIPT sets the top
margin by skipping five lines. This completes initialization.

TEXT PROCESSING: When initialization is complete, SCRIPT reads, in turn, each line
in the specified file until the end-of-file is encountered. It then returns to the calling
program. The processing performed on each line read depends upon the nature of the
first character in the line. This character may be either a nonblank character, blank,
or a period.

First Character Nonblank: If the first character in the line read from the file is neither
a blank nor a period, SCRIPT determines whether or not fill mode is in effect. If it is
not, SCRIPT types the line, as is, at the terminal. (In this case, the line will be
truncated if the length to be typed is greater than the current line length.) If fill mode is
in effect, SCRIPT types the line, appropriately justified, at the terminal or on an offline
printer, if the OFFLINE option was specified. (One or more right-justified lines may be
typed at the terminal, depending on how the length of the line to be typed compares with
the line length that is currently in effect. Also, some characters at the end of the line to
be typed may remain in the output buffer and be merged with characters from the next

113

line read to produce the next right-justified line typed at the terminal. If the
TRANSLATE option was specified, the line will be printed in uppercase letters.)

First Character Blank: If the first character in the line read from the file is a blank,
indicating that a new paragraph is to be started, SCRIPT types the remainder of the
previous line at the terminal or on an offline printer, if the OFFLINE option was
specified. It then determines whether or not fill mode is in effect. If it is not, SCRIPT
types the line just read, as is, at the terminal or offline printer. If fill mode is in
effect, SCRIPT types the line, appropriately justified, at the terminal or offline printer.
The line is typed or printed in upper case, if the TRANSLATE option was specified.

First Character Period: If the first character in the line read from the terminal is a
period, a control word is contained in the line, and control is passed to a corresponding
program to carry out the required processing.

Break (. BR): SCRIPT types the remainder of the previous line at the terminal or offline
printer and returns to read the next line from the file.

Page Eject (. PA): SCRIPT types the remainder of the previous line at the terminal or
offline printer and skips to the bottom of the page. If the STOP option has been specified,
it waits for the user to enter a carriage return. When the carriage return is received,
or if the STOP option is not specified, SCRIPT skips all but two lines of the top margin,
types the page heading and page number, skips one line, and returns to read the next line
from the file.

Space (. SP): SCRIPT types the remainder of the previous line at the terminal or offline
printer, skips n lines by typing n null lines, and returns to read the next line from the
file. (If the bottom of the page is reached during skipping, a page is ejected and skipping
continues. Also if double spacing is in effect, 2n lines will be skipped.)

Heading (. HE): SCRIPT saves the heading for future use and returns to read the next line
from the file.

Line Length (. LL); SCRIPT types the remainder of the previous line at the terminal or
offline printer, saves the specified line length for future use, and returns to read the
next line from the file.

Center (. CE): SCRIPT types the remainder of the previous line at the terminal or off-
line printer and reads the next line from the file. This is the line to be centered. It then
centers that line in an output buffer, types the line, and returns to read the next line
from the file.

Page Length (. PL): SCRIPT types the remainder of the previous line at the terminal or
offline printer, saves the specified page length for future use, and returns to read the
next line from the file.

Top Margin (. TM): SCRIPT types the remainder of the previous line at the terminal or

offline printer, saves the top margin size specified for future use, and returns to read
the next line from the file.

114

Bottom Margin (. BM): SCRIPT types the remainder of the previous line at the terminal
or offline printer, saves the bottom margin size specified for future use, and returns to
read the next line from the file.

Fill (.FI): SCRIPT sets a switch to indicate that fill mode is in effect, types the
remainder of the previous line at the terminal or offline printer, and returns to read the
next line from the file.

No Fill (.NF): SCRIPT sets a switch to indicate that ""no-fill" mode is in effect, types
the remainder of the previous line at the terminal or offline printer, and returns to read
the next line from the file.

For details on the philosophy of the SCRIPT System and certain algorithms used, see

"SCRIPT: An Online Manuscript Processing System', Form 320-2023 from the IBM
Cambridge Scientific Center, Cambridge, Massachusetts.

SPLIT

FUNCTION: To copy a portion of the one file into another.
ATTRIBUTES: Disk resident

CALLING SEQUENCE:
LA 1,PLIST
SVC X'CA'

PLIST DC CLS8'SPLIT'

DC CLs' ' filenamel

DC CLs' ' filetypel

DC CLs! ! filename?2

DC CL8' ' filetype2

DC CLs! ! 1st delimiter

DC CLs' ! 2nd delimiter (optional)

OPERATION: SPLIT first performs a series of tests to ensure that the parameter list
is valid. If it is not valid, it signals the error and returns to the calling program. If
the parameter list is valid and the first and second delimiters are numeric, SPLIT
stores the first delimiter in the calling sequence to RDBUF. This causes RDBUF to
start reading from the appropriate place in the file being copied from. It also saves the
second delimiter. SPLIT then reads the specified number of records from the file being
copied from and transmits them to the file that is to receive them. Next, SPLIT types
the message 'FILE MODIFIED! at the terminal. It then calls the FINIS command pro-
gram to close both files and returns to the calling program.

115

If the first delimiter is numeric and the second is symbolic, SPLIT stores the first de-
limiter in the calling sequence to RDBUF, It then reads the first record to be copied
and determines if the label field of that record matches the symbolic second delimiter.
If it does not, SPLIT writes that record into the file that is to receive it and reads the
next record from the file being copied from. SPLIT repeats this process until a match
of label field and symbolic delimiter occurs, At this time, it types the message 'FILE
MODIFIED' on the terminal, closes both files, and returns to the calling program.

If the first delimiter is symbolic and the second is numeric, SPLIT reads successive
records from the file being copied from until it encounters the one containing a label
field that matches the symbolic delimiter. At this point, SPLIT transfers the specified
number of records from the file being copied from into the file that is to receive them,
It then types the message 'FILE MODIFIED' at the terminal, closes both files, and re-
turns to the calling program.

If both delimiters are symbolic, SPLIT reads successive records from the file being
copied from until it encounters the one containing a label field that matches the symbolic
first delimiter, It then transfers that record to the file that is to receive it and reads
the next record from the file being copied from. If this record does not contain a label
field that matches the symbolic second delimiter, SPLIT writes it into the file that is to
receive it and reads the next record from the file being copied from. SPLIT repeats
this procedure until it encounters the record containing the label field that matches the
symbolic second delimiter. At this time, all specified records have been copied, and
SPLIT types the message 'FILE MODIFIED' at the terminal, closes both files, and re-
turns to the calling program,

Note: If the second delimiter is not given, SPLIT copies records until the end-of-file
is reached.

STATE

FUNCTION: To determine if a given file exists on P-Disk, T-Disk, S-Disk, or any
other available read-write or read-only disk.

ATTRIBUTES: Nucleus Resident

CALLING SEQUENCE:

DC CLS' ! filename
DC CLs8' ! filetype
DC CL2' ! filemode

OPERATION: STATE (when entered from the terminal, or as part of an EXEC file) is
identical to the STATE function program, except that from the terminal (or as part of an
EXEC procedure) it is used only to determine if a file exists on the specified (or any, if
*' was given) disk.

116

If a mode-letter was specified, only the FST hyperblocks for the disk specified for that
letter (for example, PSTAT for P-Disk) are searched for the given file. (If a file is on

a read-only extension of adisk — for example, an A-Disk as an extension of a P-Disk —
it will be found if either mode-letter — A or P in the example — is specified,)

If the filemode is * (or omitted entirely), all logged-in read-write and read-only disk(s)
will be searched (if necessary) to find the file.

If the file is not found, an error code 1 (with no message) is returned,

See also STATEW command,

STATEW

FUNCTION: To determine if a given file exists on P-Disk, T-Disk, or any other
available read-write disk,

ATTRIBUTES: Nucleus resident

CALLING SEQUENCE:

DC CLS8!' ' filename
DC CLS8' ' filetype
DC CL2' ' filemode

OPERATION: STATEW (when entered from the terminal, or as part of an EXEC file)
is identical to the STATEW function program, except that from the terminal (or as part
of an EXEC procedure) it is used only to determine if a file exists on the specified (or
any, if ™' was given) read-write disk.

If a mode-letter was specified, only the FST hyperblocks for the disk specified for that
letter (for example, PSTAT for P-Disk) are searched for the given file.

If the filemode is * (or omitted entirely), all logged-in read-write disk(s) will be
searched (if necessary) to find the file.

If the file is not found, an error code 1 (with no message) is returned.

STATEW is similar to the STATE command (see description), except that only read-
write disk(s) are searched (read-only disks being ignored).

117

UPDATE

FUNCTION: To resequence, insert, replace, or delete records on a file,
ATTRIBUTES: Disk resident

CALLING SEQUENCE:

LA 1,PLIST
SVC X'CA’
PLIST DC CL8'UPDATE’

[DC CL8' '] filename 1
DC CL8! ! filetype 1
DC CL8’ ! filename 2
DC CL8' ! filetype 2
DC CL8'(" separator for option
DC CLs8! ! options

OPERATION: UPDATE first scans the parameter list for errors, If an error exists, a
message is generated and UPDATE returns to the caller. If the parameter list is valid,
it enters the specified filenames and filetypes in the SYSIN and UPDATE file control
blocks. UPDATE then determines if an intermediate file (INTER), containing changes
from a previous update, exists. If an intermediate file does exist, a message is gener-
ated and UPDATE returns to the caller; the user either erases it or combines it with
the original file and reissues the UPDATE command, If an intermediate file does not
exist, the update log (UPDLOG) is erased. During update file processing, a record of
control cards in the update file (UPDATE), items added to or deleted from the original
file, and error messages are stored in the UPDLOG file.

Cards are then read from the UPDATE file. When a control card is read (identified by
a'//'or'./'in columns 1 and 2), the FORMAT routine checks to see that it is a valid
card, saves sequence numbers, and checks for valid numerics. When a sequence (//S
or ./S) control card is read, the file is sequenced on columns 76 through 80 of each card
image, When a delete (//D or ./D) control card is read, the DELETE routine finds

the specified sequence numbers on the SYSIN file, writes the associated cards into the
INTER file and UPDLOG file, and deletes them from the SYSIN file. When an insert
(//T or ./I) control card is read, the INSERT routine does the following: finds the spec-
ified sequence numbers in the SYSIN file, resequencing the file (via the RESEQ routine)
if necessary; writes SYSIN into the INTER file; inserts the cards into the INTER file;
and writes the inserted cards into the UPDLOG file. When a replace (//R or ./R) con-
trol card is read, the REPLACE routine performs a Delete and Insert operation,

There are three possible options to UPDATE, SEQ8 specifies that sequencing is to be

done on all eight characters in columns 73 to 80, rather than the default of five charac-
ters. INC specifies that the sequence number in the update card is to be placed in the

118

updated deck rather than the default of eight asterisks to distinguish updated cards. P
specifies that the original file is to be erased and the updated file altered to its filename
and filetype rather than the default which retains the original file and alters the up-
dated file to a filename of . plus the first seven characters of the original filename,

-EXECUTION CONTROL
The commands that control the execution of programs under CMS are EXEC, GENMOD,

GLOBAL, LOADMOD, REUSE, START, USE, and $. These are described in the follow-
ing section,

FUNCTION: To execute the commands stored in a specified file of filetype EXEC.
ATTRIBUTES: Nucieus resident

CALLING SEQUENCE:

LA 1, PLIST
svC X'CA!

PLIST DC CL8'EXEC’
DC CLS8' ' filename
DC CLS8! ' argumentl
DC CL8! argument2
DC CLS8!' ' argumentN

OPERATION: The EXEC command proper is a short nucleus-resident bootstrap pro-
gram that (when entered initially) obtains main storage using the FREE function program,
then RDBUF's the main (much larger) disk-resident portion of EXEC (called "EXECTOR
MODULE") into that free storage. (When the last EXEC call has been completed,
indicated by a level-counter returning to zero, that free storage is returned via FRET.)
This procedure makes it unnecessary to keep the entire EXEC code in the CMS nucleus at
all times.

When the EXECTOR MODULE has been loaded, orif it is already in core, it calls
FREE as needed for working storage. If then determines via the STATE function pro-
gram whether the specified file exists. If the file does not exist, EXECTOR calls the
TYPLIN function program to type a message to that effect at the terminal, calls the
FRET function program to release the previously obtained storage, and returns (via the
EXEC bootstrap program) to the calling program, which is usually INIT,

119

If the specified file exists, EXECTOR saves the arguments that are to replace the dum-
my arguments in the commands. Next, it reads the first command to be executed from
the specified file. Then, EXECTOR calls the SCAN function program to place the com-
mand to be executed into parameter list format. Subsequently, EXECTOR replaces the
dummy arguments in the parameter list for the command to be executed with the
substitutes provided for them in the'EXEC command. Next, as a rule EXECTOR calls
the TYPLIN function program to type the command to be executed at the terminal. It
then executes the command by issuing a SVC X'CA' with register 1 pointing to the param-
eter list for the command. When execution of the command is complete, EXECTOR reads
the next command from the file and executes it similarly. When the last command has
been executed (i. e. , when an end-of-file is encountered), EXECTOR calls the FINIS
command program to close the file, calls the FRET function program to release the
storage previously obtained, and returns via the EXEC bootstrap program to the calling
program,

EXECTOR, in addition to processing CMS commands in an EXEC file, also handles
several exec command words, which are not CMS commands at all, but directions to
EXEC as to how and/or where to proceed if errors occur in execution of the various com-
mands, typing or non-typing of the commands, etc.

Note: To ensure maximum possible file integrity, and to be compatible with INIT in its
running of CMS commands, EXECTOR calls LOGDISK to update the user file directly
after each execution of a CMS command in an EXEC file.

GENMOD

FUNCTION: To create a file in nonrelocatable core-image form on the user's P-Disk.
] ATTRIBUTES: Nucleus resident
CALLING SEQUENCE:
LA R1, PLIST R1 must point to P-List as usual
SVC X'CA!
DC AT14(ERROR)
ENTRY REQUIREMENTS:

R1 must point to GENMOD parameter-list:

DS oF
PLIST DC CL8'GENMOD'
DC CcL8' ' entry 1 (= filename of module)
[DC CL8' '] entry 2
[DC CL8'('] additional options, namely
NO and/or P2 (preceded by left-paren)
[Dc cL®]

120

EXIT CONDITIONS:

Normal Return
R15 =0
Loader Tables empty, or Entry 1 or Entry 2 not found

Ri5 =1 (Errorl)

v = 1 \d AUl oy

Error Writing Module
R15 = value returned by WRBUF or FINIS

CALLS TO OTHER ROUTINES:

START, ERASE, WRBUF, FINIS
CALLED BY (where known):

User, and by various EXEC procedures which generate modules.
MACROS USED:

FVS
OPERATION: The GENMOD program obtains the entry addresses specified in the
GENMOD command, If a second entry is not specified in the command, it uses the
pointer LOCCNT (established by LOAD, LOADMOD, USE, or REUSE) to the next avail-
able load location. GENMOD also calls "START {(NO)" to resclve any establishment of

common storage, undefined names, etc., as left by the loader.

Before creating the new module on disk, GENMOD erases any old module on the P-Disk
that may exist with the same name,

If the P option was specified in the caller's parameter list, the module is created with a
mode of P2, Otherwise, a mode of P1 is used.

The new module is then created on the P-Disk with appropriate calls to WRBUF, and then
FINIS, to close the file,

The module created by GENMOD (tc be readable by LOADMOD) is a variable file con-
sisting of two or more records (the last may be omitted) as follows:

1. A 44-byte record containing vital information from NUCON table, length of second
record, indicator of presence or absence of last record, etc.

2. A Core-image of program from entry 1 to entry 2 (or LOCCNT).

3. Loader-tables. (Omitted for transient disk-resident routines, or if the (NO) option
was specified in GENMOD parameter list.)

121

If the entry 1 or entry 2 (if present) is not found in the loader tables, an error message
is printed of the following form:

NO "XXXXXXXX'' MODULE
and an error code 1 is returned (no module is written),

Notes:

1. GENMOD itself is called only via SVC, but when calling ERASE, WRBUF, and
FINIS, GENMOD calls them via BALR, for maximum speed.

2, As a debugging aid, like LOADMOD, GENMOD leaves the following meaningful
information in registers 1 — 4 upon exit (which can be displayed by running with
SETOVER GPRS or with a suitable breakpoint using DEBUG):

R1: Starting Address of GENMOD'ed Region
R2: Ending Address of GENMOD'ed Region

R3: Starting Address of Loader Tables (if written)
(R3 meaningless if R4 = 0)

R4: 00, or Size in Bytes of Loader Tables (if written)
| 3. See Figure 29 for details on the content of a CMS "MODULE" file,
| 4. The loader tables (if written) include the entire loader tables as in existence at the
time of the GENMOD call (not just the entry points included between entry 1 and
entry 2, or between entry 1 and the value of LOCCNT).

| 5. LOADMOD is also included with the GENMOD program,

122

First Record (44 bytes):

Number of NUCON VALUES DETAILED BREAKDOWN
Bytes Bytes or other quantity Bytes NUCON VALUE
0-17 18 USFL thru first 2 bytes 0-3 USFL
of TBLNG 4-7 USLL
8-11 STADDR
12-15 LDRTBL
16-17 TBLNG (first
two bytes)
18-19 2 Last 2 bytes of TBLNG,
or O if loader tables
omitted from module
20-23 4 0 if loader tables
omitted from module;
nonzero if loader tables
present in module
24-35 12 LOCCNT thru first 4 24-27 LOCCNT
bytes of “PSW 2831 LDADDR
32-35 “PSW" {first
four bytes)
36-39 4 Starting Address of
Loaded Region
4043 4 Ending Address of
Loaded Region
2. Next record(s) (maximum of 65535 bytes)
Core image to be LOADMOD’d (broken into 66535-byte records
if necessary)
3. Last record (if present)

Figure 29. Contents of a CMS MODULE file (variable récords)

Loader Tables {multiple of 16 bytes)

123

GLOBAL

FUNCTION: To allow the user to specify alternate MACRO libraries to be searched
during assembly and alternate TXTLIB libraries to be searched during loading.

ATTRIBUTES: Disk resident, transient

CALLING SEQUENCE:
LA 1,PLIST
SVC X'CA'

PLIST DC CL8'GLOBAL'
MACLIB
CL8' { TXTLIB } '
PRINT
DC CLS8! ' libnamel

DC CLS8' ' libnameN

OPERATION: GLOBAL first determines whether MACLIB, TXTLIB, or PRINT was
specified. If neither was specified, it signals the error (code 1) and returns to the call-
ing program, If MACLIB was specified, GLOBAL moves the specified library names
into the macro library list (MACLIBL) and returns to the calling program,. This list will
be referred to by the routine that simulates the FIND macro instruction. (The assembler
issues a FIND when it attempts to locate a particular macro instruction ir the specified
macro libraries.)

Note: If the user does not supply any library names with a GLOBAL MA CLIB command,
no MACLIB file will appear in the macro library list,

If TXTLIB was specified, GLOBAL moves the specified library names into the text
library list (TXTLIBS) and returns to the calling program. This list is referred to when
the loader is searching for subroutines to resolve cross references,

Note: If the user does not supply any library names with a GLOBAL TXTLIB command,
no TXTLIB file will appear in the text library list,

If PRINT was specified GLOBAL prints at the terminal a list of the macro and text
libraries currently being searched.

The existence of each libname specified will be verified by a call to STATE, If the file
"libname MA CLIB" or "libname TXTLIB" is not found, it is not included in the
respective library list, and GLOBAL will issue a message (error 3) and return, Also,
if more than five (5) macro libnames or more than eight (8) text libnames are specified,
an error message is typed (error code 2) and a return is executed,

124

LOAD

FUNCTION: To read specified programs from disk into core, establish proper linkages,
and initiate execution when specified.

ATTRIBUTES: Nucleus resident

CALLING SEQUENCE:
LA 1,PLIST
SVC X'CA!

PLIST DC CL8'LOAD'

DC CL8'(' filenamel

DC CLS8’ ' filenameN

DC CL8¥%(! gseparator for options
DC CLS! ' optionl

DC CLS8' ! optionN

DC CLs8 ' libnamel

DC CLS& ' libnameN

OPERATION: When the command scanner detects a LOAD command, it gives control to
the CMS loader (LDR). The CMS loader will load the program at location 12000 (unless
an SLC address was specified), search specified libraries for missing subroutines, and
establish proper linkages, The operation of the loader is described in Section 5 under
the heading "CMS Loaders'".

If the SLC option is used, it must not immediately follow a left-parenthesis, resulting
in nine consecutive nonblank characters, A blank in between the left parenthesis and the
SLC will solve this problem,

Examples:

No Good: LOAD SOMEPROG (SLC13000
OK: LOAD SOMEPROG (SLC13000

125

If the program is to be loaded into the transient area, the old module (if any) is tc be

erased first, then the program

loaded with a TRANS option. For example, if a new

version of STAT were to be loaded and GENMOD'ed, the sequence might be as follows:

ERASE STAT MODULE P
LOAD STAT (TRANS TYPE)

G

LOADMOD

ENMOD STAT

FUNCTION: To load a nonrelocatable core image file into core,

CALLING SEQUENCE:
LA R1, PLIST R
SVC X'CA'
DC AL4(ERROR)

ENTRY REQUIREMENTS:

1 must point to P-List as usual

R1 must point to LOADMOD parameter list:

DS OF

PLIST DC CLS8'LOADMOD'
DC CLS8' !
DC CL2' !

DC X'FF000000'
or
DC X'FFFFFFFF'

EXIT CONDITIONS:

Normal Return
R15 =0

filename of module
mode (optional)
delimiter if mode omitted

(see OPERATION)

Module Not Found (Error 1)

R15=1

Module will not fit in core (Ending Address higher than LOWEXT)

R15 =8 (Error
Error Reading Module

8)

R15 = value returned by RDBUF

CALLS TO OTHER ROUTINES:
STATE, RDBUF, FINIS

CALLED BY (where known):

LINKAGE, SVCINT, $ Command

126

MACROS USED:

FVS

OPERATION: The LOADMOD program checks to ensure that a module of the given
filename exists; then it reads that module into the locations at which it had been gener-
ated. If the module was brought into the TRANSAR transient area, the name of the
module is stored in the appropriate place (TRANSRT) for SVCINT, and reading is
terminated. Otherwise, the starting address of the module is placed in STADDR within
the NUCON table, and other pertinent information (but not including actual core size) is
stored in the NUCON table. I the module was generated using the (NO) option for
GENMOD, reading is terminated. Otherwise, the loader tables are read into high-
numbered core, and are thus restored to their value at the time the module is generated.
Note that the loader tables are restored in high-numbered core depending on core-size at
LOADMOD time, not at the time the module was generated. Thus, for example, a
module generated on a 64-page (40000 hex) machine would have its loader tables ending
just prior to location 40000 hex; if this module were LOADMOD'ed into a 128-page
machine, the loader tables would be stored just prior to location 80000 hex. This feature
of LOADMOD makes it possible to generate modules on, say, a standard size machine of
64 pages and to loadmod these modules on any machine big enough to run the programs
(either smaller or larger than the standard machine).

If LOADMOD cannot find the specified module, an error message is normally printed of
the following form:

NO "XXXXXXXX'" MODULE
and an error code 1 is returned.

(If the delimiter in the parameter list was X'FF000000', as it is when LOADMOD is
called from SVCINT to load a module that may or may not exist, the above typeout is
omitted.)

Before reading the core-image file, LOADMOD checks to ensure that it will fit in core

as of the moment, that is, that it will not overlap live data in high-numbered core as
given by the LOWEXT value in NUCON, If an overlap would occur, the core-image is not
read in, and an error 8 from LOADMOD is given, with the error message mentioned
below.

If a read error from RBBUF occurs, an error message is printed, for example, BAD
MXXXXXXXX'" MODULE (with the name filled in), and the error-code obtained from
RDBUF is returned.

Notes:

1. LOADMOD itself is called only via SVC, but when calling STATE, RDBUF, and
FINIS, LOADMOD calls them via BALR, for maximum speed,

127

2. As a debugging aid, LOADMOD leaves the following meaningful information in
registers 1-4 upon exit (this information can be displayed by running with SETOVER
GPRS or with a suitable breakpoint using DEBUG):

R1:
R2:
R3:

R4:

Starting Address of Loaded Region

Ending Address of Loaded Region

Starting Address of Loader Tables (if any)
(R3 meaningless if R4 =0)

00, or Size in Bytes of Loader Tables (if any)

3. See Figure 29 for details on the content of a CMS "MODULE" file,

4, LOADMOD is an entry point included in the GENMOD program. If a user abbrevia-
tion should be set up for LOADMOD using the SYN command, it must begin with the
letter L (for example, LQ for load quickly).

USE — REUSE

FUNCTION:

programs.

To load programs into core and establish linkages with previously-loaded

ATTRIBUTES: Nucleus resident

CALLING SEQUENCE:

LA
SvC

PLIST DC
DC

DC
DC
DC

DC
DC

128

1, PLIST
X'CA!

{ USE }
CL8' \REUSE/S"'
CLS' ' filenamel
CLs8! ' filenameN
CL8' (' separator for options
CL8’ ' option 1
CLS8! ' optionN
CLS8’ ' libnamel
CL38' ' libnameN

OPERATION: USE picks up the address of the nucleus constant area (NUCON) and passes
control to the loader at entry point OVRLD; the program is then loaded at the next high
core location above the point at which the last load was terminated.

If REUSE was specified, USE zeroes STADDR (the address at which execution of the
user program is to start) before it passes control to the loader; the default entry point
will be the entry point of the first file specified with REUSE.

After loading, USE determines if there were any errors, saves the error code in
register 15, and returns to the calling program.

START

FUNCTION: To set undefined symbols to zero, define COMMON, then determine where
to start execution of a program that has been loaded into core; and transfer control.

ATTRIBUTES: Nucleus resident

CALLING SEQUENCE:
LA 1,PLIST
SVC X'CA!

PLIST DC CLS8'START'_

DC CLs8! ! entry point
DC CLS§ ! argument 1
| DC CLS8' ' | argument N

OPERATION: START obtains the parameter list and the return address and links to the
start execution routine (XEQQ) in the loader to define any undefined symbols and deter-
mine the start execution address. (Refer to '"Start Execution Routine", in the CMS
Loader description.) A message is returned to the user if any error is encountered.
Register 15 is set to the entry address. START does not operate on arguments specified
on the START statement; they are passed to the user's program via a pointer in general
purpose register 1, If an asterisk, '*' is specified as the first argument, control is
passed to the location specified at STADDR in NUCON.

When control is passed to the program being started, the message "EXECUTION
BEGINS, . ." is typed (without waiting for completion). Also, a zero-filled 18-word
save area (STRTSAYV) is provided, with its address in register 13,

If a call to START is made when nothing has been loaded, an error of code will be
returned to the callér. This may also occur if a program which was GENMOD'ed with

129

no loader tables (using the (NO) option of GENMOD) is LOADMOD'ed and then
START'ed.

A special call START (NO) causes the loading process to be completed without actually
transferring to a program., Thus undefined names are handled, common (if any) is
assigned, undefined names are handled, free storage used by the loader returned, etc.

This call, in particular, is used by GENMOD.

3

FUNCTION: To execute a file of filetype EXEC, MODULE, or TEXT.
ATTRIBUTES: Disk resident, transient

CALLING SEQUENCE:
LA 1,PLIST
SVC X'CA!

.

PLIST DC CL8'§$'

DC CL8 ! filename

DC CL& ! argument 1
DC CLs8' ! argument 2
DC CL& ! argument-n

OPERATION: §$ calls the FREE function program to obtain a block of storage for use as
a work area, Next, it calls the STATE function program to determine if a file designated
as 'filename EXEC' exists. If it does, $ proceeds as described below. If it does not,

$ calls STATE to determine whether a file designated as "filename MODULE" exists.

If it does, $ proceeds as described below. If it does not, $ again calls STATE to
determine whether a file designated as "filename TEXT" exists, If it does, $ proceeds
as described below., If it does not, the desired file does not exist, and $ signals this

by terminal message (using the TYPLIN function program), releases the storage
previously obtained (using the FRET function program), sets a code to indicate the error,
and returns (via SVCINT) to the calling program, which is usually INIT,

EXEC FILE EXISTS: If a file designated as "filename EXEC" exists, $ releases the
storage previously obtained and passes control to the EXEC command program that will
process the list of commands, EXEC will return control (via SVCINT) to the program
that called $.

130

MODULE FILE EXISTS: If a file designated as "'filename MODULE" exists, $ calls the
LOADMOD command program to load the core image file into main storage. Next, it
calls the FRET function program to release the storage previously obtained. Finally, $
passes control to the START command program, which will begin execution of the pro-
gram, START will return control (via SVCINT) to the program that called $.

Note: No module that was loaded at TRANSAR before being GENMOD'ed, or was
GENMOD'ed with the (NO) option should be initiated by the $ command, as START will be
unable to find the entry point. This, however, is not a problem, because programs of
this type should be invoked directly via an SVC call.

TEXT FILE EXISTS: If a file designated as 'filename TEXT" exists, $ calls the LOAD
command program to load the relocatable module into main storage and to resolve any
external references. Next, it releases (using FRET) the storage previously obtained.
Finally, $ passes conirol to the START command program to begin execution of the file
(that is, the program). START will return control (via SVCINT) to the program that
called $.

Note: In the case of an EXEC file, the arguments are passed to the EXEC command pro-
gram for processing. General purpose register 1 is used for this purpose, In the case
of a MODULE or TEXT file, the arguments are passed to the loaded program, General
purpose register 1 is again used for this purpose.

131

132

DEBUGGING COMMAND PROGRAMS

The debugging command programs allow the user to access and modify registers and
core storage from his terminal. They may also be called directly by a user or CMS
program.

CLROVER

FUNCTION: To negate normal and error overriding activity.
CALLING SEQUENCE:

LA 1, PLIST
SVC X'CA!

PLIST DC CL8'CLROVER!'

OPERATION: SVCINT passes control to OVERNUC, the core resident part of the
OVERRIDE program. OVERNUC then branches to code for SETOVER, SETERR, or
CLROVER as determined by the command that was in the parameter list. A flag called
STATUS is set to O when the OVERRIDE module is not in core, and is set to I when the
OVERRIDE module is in core.

CLROVER returns immediately to the calling program (via SVCINT) if the OVERRIDE
module is not in core, If the OVERRIDE module is in core, CLROVER sets an offset
for dispatching in SETLOC and branches to the OVERRIDE module,

OVERRIDE does some entry initialization and then dispatches to code for the CLROVER,
SETERR, or SETOVER command as determined by the offset in SETLOC.

The code for CLROVER in the OVERRIDE module calls the STNOV function program to
set the normal override switch (NRMOVR) in SVCINT off (that is, to zero), calls the
.STEROV function program to set the error override switch (ERROVR) in SVCINT off,
calls the PRINTIO function program to print a message to the effect that normal and
error overriding have been cancelled, performs a CLOSIO to the printer, and returns
to WATCHDOG in the nucleus.

OVERNUC tests for CLROVER (as determined by SETLOC) and if that function is being
performed, resets the STATUS flag to O (OVERRIDE not in core), calls FRET to re-
lease the core required for the OVERRIDE module, and then returns (via SVCINT) to
the calling program, which is usually INIT,

DEBUG

FUNCTION: To enable the user to debug his program from the terminal.
ATTRIBUTES: Nucleus resident

CALLING SEQUENCE:

LA 1, PLIST
SVC X'CA!

PLIST DC CL8'DEBUG!

OPERATION: The discussion of the DEBUG command program will be divided into two
parts: processing on entry, and request environment processing.

PROCESSING ON ENTRY: The processing performed by the DEBUG command program
when it receives control depends on whether it was given control because of either a
DEBUG command entered from the terminal, an external interruption, or a program
interruption.

DEBUG Command: DEBUG saves the contents of the general purpose registers and
saves the CSW and CAW, It then types the message '"DEBUG ENTERED! at the terminal
and enters the request environment,

External Interruption: DEBUG saves the external old PSW, saves the contents of the
general purpose registers, and saves the CSW and CAW, It then types the message

'DEBUG ENTERED' at the terminal, Next, it types the message ' EXTERNAL INT.'
at the terminal and enters the request environment,

Program Interruption: DEBUG saves the program old PSW, saves the contents of the
general purpose registers, and saves the CSW and CAW, It then determines if the pro-
gram interruption occurred at a break point, (If the address of the instruction that
caused the interruption matches the address in an entry in the break point table (refer
to " Break Request'', later in this section, the interruption occurred at a break point.)
If not, DEBUG types the message 'PROGRAM INT, ' at the terminal and enters the re-
quest environment., If the program interruption occurred at a breakpoint, DEBUG
moves the absolute address of the breakpoint to the last three bytes of the saved PSW
and restores the operation of the instruction located at the break point. It then types
the message '"BREAKPOINT XX AT YYYYYY' (where XX is the breakpoint number and
YYYYYY the core~-address of the breakpoint reached) and enters the request en-
vironment.

On any entry, DEBUG will save lowcore locations 0-256; that is, a dump of low core
will reflect their value at the time of entering DEBUG.

133

134

REQUEST ENVIRONMENT PROCESSING: When this environment is entered, the user
is given the opportunity to make DEBUG requests from the terminal. For each such
request, DEBUG determines its nature through a table-lookup procedure and passes
control to a corresponding program to implement the request. When the execution of
that program is complete, it returns control to the control element, which obtains the
next request. This request is processed similarly.

Addressing: An address may be specified two ways: (1) as a symbolic address if pre-
viously defined, (2) as a hexadecimal constant. The current value of the origin will
be added to the address if it was hexadecimal.

Origin Request: DEBUG converts the origin value supplied on the request to binary,
saves it for future use, and returns for the next request, The origin value may be a
symbolic address or a hexadecimal address. The previous origin value is not added
into the hexadecimal address.

Define Request: DEBUG converts the hexadecimal address to binary, makes the
address absolute by adding the current origin value to it, and stores the resultant abso-
lute address in the temporary symbol table (TSYM). It then retrieves the symbol being
defined and places it into the temporary symbol table. Next, DEBUG retrieves the
length value for the symbol (if any) supplied on the request and places it into the
temporary symbol table. (If a length value is not provided, a default value of four is
assumed.) Finally, DEBUG moves the contents of the temporary symbol table into the
next available entry in the defined symbol table (SYMTBG) and returns for the next
request.

Examine (X) Request: DEBUG uses the address specified to determine the locations to
be examined (see the foregoing description under ""Addressing"). If the length is spec-
ified, that is used; otherwise, the length is obtained from the symbol table if the
address was symbolic or is agssumed to be the default value of four if the address was
hexadecimal. Finally, DEBUG moves the number of bytes specified by the length
starting from the location of the first byte to an output buffer, types them at the
terminal, and returns for the next request.

Break Request: DEBUG uses the address specified to determine the breakpoint loca-
tion (see "addressing''). This address is stored in the break point table entry cor-
responding to the break noint number supplied with the request. DEBUG saves the
operation code (the first byte) located at the break point, replaces the operation code
located at the break point with an invalid operation code, and returns for the next
request. (When the invalid operation code is encountered during execution of the
program containing the break point, a program interruption occurs and control is
passed to DEBUG, which types a message at the terminal indicating that the break
point has been reached.)

Store Request: DEBUG uses the address specified to determine the absolute location
where the data is to be stored (see ""Addressing'), It then converts the data to be
stored to binary, moves it to the absolute core locations, and returns for the next
request.

Change to Debug

Dump Request: Debug determines from the command line the absolute limits of the
main storage to be dumped and places the appropriate values into the DUMPLIST
plist, Note that the DUMPLIST plist can be located in the routine GENSECT. Also
placed into the plist area are the addresses of the general register save area, the
floating-point register save area, and the address of a low core save area. Descrip-
tion of the plist and its use can be found in the routine DEBDUMP, which is the dump
executioner. DEBUG then BALR's to the DEBDUMP routine, the dump is executed

and the next command may be issued.

Set Request: If the PSW is to be set, DEBUG converts the data to binary, overlays the
PSW it saved on entry with the converted data, and returns for the next request.
DERUG sets the CSW, CAW, and the contents of the specified register in a similar

22DV 2l LtILT

PSW Request: DEBUG moves the PSW it saved on entry to an output buffer, types it at
the terminal, and returns for the next request. (The PSW saved by DEBUG on entry
may have been modified by a SET command.)

CSW Request: DEBUG moves the CSW it saved on entry to an output buffer, types it at
the terminal, and returns for the next request. (The CSW saved by DEBUG on entry
may have been modified by a SET request,)

CAW Request: DEBUG moves the CAW it saved on entry to an output buffer, types it at
the terminal, and returns for the next request. (The CAW saved by DEBUG on entry
may have been modified by a SET request.)

GPR Request: DEBUG determines the first register specified. It then moves the con-
tents of that register (saved upan entry) to an output buffer and types it at the terminal.
DEBUG repeats this process for each register to be considered. It then returns for
the next request. (The contents of the registers saved by DEBUG on entry may have
been modified by a SET request.)

Go Request: If an address was specified (see addressing), its absolute value is stored
into the saved PSW, DEBUG restores the CSW and CAW it saved on entry to their
corresponding locations in lower main storage, restores the registers with the contents
it saved on entry, and loads the PSW it saved on entry. (The contents of the registers
and the CSW and CAW saved by DEBUG on entry may have been modified by a SET
request.) If the GO address was not specified, loading of the PSW causes control to be
returned to the interrupted program at the point of interruption, or passed to the loca-
tion specified if the user modified the address portion of the PSW with a SET request.

Return Request: DEBUG restores the registers with the contents it saved on entry,
clears register 15, and branches unconditionally through register 14, (The contents of
the registers saved by DEBUG on entry may have been modified by a SET request.)

| Return is valid only if DEBUG was entered via the DEBUG command.

=t
[V}
(%]

136

Restart Request: RESTART is equivalent to the IPL request, discussed below.
See IPL.

IPL Request: If the IPL request is given, DEBUG branches directly to the CMS IPL
command, which brings in a fresh copy of CMS from the system disk.,

KX Request: If KX is given as a request to DEBUG, the kill execution logic is invoked
as if KX had been entered via the CMS command environment. The kill execution
program closes all open files and updates the user file directory before going to the

CP environment, Thus, if DEBUG is reached and the user wishes his files to be closed
and updated at their current status, he can issue the KX request. The KX request
causes a fresh copy of CMS to be IPL'ed from the system disk.

SETERR

FUNCTION: To activate error overriding facilities,

CALLING SEQUENCE:

LA 1, PLIST
SVC X'CA!
PLIST DC CL8'SETERR'

OPERATION: SVCINT passes control to OVERNUC, the core resident part of the
OVERRIDE program, OVERNUC then branches tao the code for the SETERR com-
mand. SETERR (within the JOINT subroutine in OVERNUC) tests for the OVER-

RIDE module loaded into core (STATUS set to I), If the OVERRIDE module is not in
core, FREE is called to obtain free storage, and then the OVERRIDE module is copied
into core and STATUS is set to I. Within the OVERRIDE module SETERR calls the

. STEROV function program to set the error override switch on by placing the address
of the error override handling program (HNDLERR) into the ERROVR field within
SVCINT, calls the PRINTR function program to print a message to the effect that error
overriding has been activated, and returns (via OVERNUC and then via SVCINT) to

the calling program, which is usually INIT.

SETOVER

FUNCTION: To activate normal and error overriding facilities.

CALLING SEQUENCE:

LA 1, PLIST
SVC X'CA!

PLIST DC CL8'SETOVER'
sle CL8'SAMELAST'
- GPRS .
DC CLS' {GPRSB } '
| GPRSA |
- FPRS .
DC CLS' {FPRSB } '
| FPRSA i
] NOPARM| '
bC PARMI | |
- T\IOWAIT) 7

, WAITSAME '

DC CL8 iw AT 1 §_|
L WAIT 2
[pC CL8' DEFAULT' |

OPERATION: SVCINT passes control to OVERNUC the core resident part of the
OVERRIDE program which causes the OVERRIDE module to be read into free storage

if it is not already in core. SETOVER checks for the presence of the SAMELAST
option. If provided, it scans the remainder of the parameter list and sets switches to
indicate the options specified therein, calls the PRINTIO function program to print a
message to the effect that both normal and error overrides are in effect, calls the

. STEROV function program to set the error override switch on by placing the address of
the error override handling program (HNDLERR) into the ERROVR field within SVCINT,
calls the . STNOV routine to set the normal override switch on by placing the address

of the normal override handling program (HNDLNRM) into the NRMOVR field within
SVCINT, and returns (via OVERNUC and then via SVCINT) to the calling program,
which is usually INIT,

If the SAMELAST option is not present, SETOVER sets all option switches to their de~
fault values and proceeds as described above from the point where the parameter list
is scanned.

(TIf, during the scan, SETOVER encounters a DEFAULT parameter, it sets all option
switches to their default values and processes the remainder of the parameter list in
the normal fashion.)

LANGUAGE PROCESSING COMMAND PROGRAMS

The language processing command programs perform all required initialization functions
in preparation for language compilations, and transfer control to the appropriate com-
piler. Languages supported by CMS include: ASSEMBLER F, PL/I F, and FORTRAN

IV G. Two additional language processors are available as Type III programs: SNOBOIL
and BRUIN.,

ASSEMBLE

FUNCTION: To assemble one or more files.
ATTRIBUTES: Disk resident

CALLING SEQUENCE:

LA 1, PLIST
svC X'CA!
PLIST DC CL8' ASSEMBLE!
DC CLs8! ' filenamel
DC CL8' ' filenameN
DC CL3" (¢ ' separator for options
DC CLs! ' optionl
DC CcLeg? ' optionN

OPERATION: ASSEMBLE first places the address of the auxiliary assembler
dictionary in SSTATEXT and then sets a bit in SWITCH to indicate assembler mode is
running.

ASSEMBLE next scans the options specified and uses the information thereby obtained
to set up the option list for the assembler and the FILEDEF plists for the calls to
FILEDEF. If a particular option is not selected, the corresponding default value
appears in the list, which is then compacted to eliminate blanks before passing it to
the assembler.

138

After all the options have been processed, if more than one filename was specified with
the command, ASSEMBLE types a message at the terminal giving the name of the file
about to be assembled. It then calls STATE to verify the existence of this file. If it
does not exist, ASSEMBLE issues an error message (code 1) and returns to the caller,
If it does exist, ASSEMBLE checks the item length, issues an error message if item
length is incorrect and returns to the caller.

If the length is correct, ASSEMBLE calls ERASE to delete any existing TEXT, LISTING,
and utility files for the current SYSIN file, and sets up storage by calls to STRINIT and
GETMAIN.

It then calls ADTLKW to obtain the mode of the read-write disk with most available
space and uses it to set up the FILEDEF plist for the SYSUT files. CMS control blocks
(CMSCB's), which reflect the selected option, are set up for the TEXT, LISTING, SYSIN
and utility files, After each successful return from FILEDEF, ASSEMBLE sets a

clear switch to indicate which CMSCB's are to be cleared at the end of assembly and
finally branches to IEUASM.

On return from the assembler, ASSEMBLE saves the returned error code if it is
larger than the one returned for any previous assembly, erases the utility and clears
the FCB which it had set up. If there are more files to be assembled, it goes back to
the point after option scan to repeat the processing loop. At the completion of all
assemblies, ASSEMBLE sets the release page bit, clears the SSTATEXT extension,
clears SWITCH, places the error code in register 15 and returns to the user.

SPECIAL OUTPUT HANDLING ROUTINE:

The system routine SOEOB interfaces with LISTING and SYSUT?2 files during the
assembly.

SYSUT2 — If the file is not in '"close and it is being read in Phase 1, ASMHAND
accesses the utility control table to ascertain the length and location of the record to be
moved and moves it to the specified location. If the file is being read, but not in
Phase 1, fixed length is forced and ASMHAND returns to the user.

If the file is being written in Phase 1, the utilify control table is first set up by a call
to GETMAIN and then updated to reflect the numbers of records read., If the file is
being written but is not in Phase 1, ASMHAND forces a write of 4000 bytes and returns
to the caller.

LISTING — If online diagnostics have been requested; ASMHAND checks each line for

an error flag and prints these on the terminal along with a summary of errors at the
end.

139

FORTRAN

FUNCTION: To provide interface functions between the FORTRAN IV compiler and
the CMS nucleus.

ATTRIBUTES: Disk resident
CALLING SEQUENCE:

LA 1, PLIST
SVC X'CA!

PLIST DC CL8'FORTRAN '

DC CL8' ! ' filenamel

DC CLS8!' ! ' filenameN

DC CL8'(separator for options
DC CLS8' ! ' option 1

DC CL8' ! ' option N

DC XL8'xx' fence

ENTRY REQUIREMENTS:
R1 must contain address of plist referred to in calling sequence.
EXIT CONDITIONS:
Return to SVCINT,
CALLS TO OTHER ROUTINES:
FORTRAN compiler, SOEOB
CALLED BY:
SOEOB
OPERATION:

INITIALIZATION: FORTRAN saves the names of all requested program names and
verifies that no more than 32 compilations are requested,

140

Then the option line is analyzed and the default option list modified to reflect user re-
quests. An internal control switch is set to flag certain requests such as listing to
printer, BATCH, NODIAG, LIST and such options as TDECK which require a call to the
CMS routine FILEDEF for their implementation.

The auxiliary directory address is stored in SSTATEXT and the CMS compiler control
switch SWITCH in NUCON is set to indicate FORTRAN compilation in process.

Initial housekeeping is completed by a series of STATE's to verify requested file exist-
ence, and ERASE's to eliminate existing LISTING and TEXT files for those FORTRAN
files whose compilation is requested.

FILEDEF: This procedure, which is executed for each compile requested, starts with a
series of calls to CMS FILEDEF to set up the FCB for the LISTING, TEXT, and
FORTRAN files to be compiled, followed by a call to STRINIT to initialize free storage
for the use of the compiler. Upon return from FILEDEF, R15 is tested: a positive
return signals an error and causes cancellation of the job; a negative return indicates
that the user has already set up his own FCB for this program so the FILEDEF clear
switch is not set to prevent clearing of user specified FCB's; a zero return indicates

a successful FCB initialize and the FILEDEF clear switch for that file is set.

On return from the compiler those FCB's for which the clear switch is set are

cleared. If additional files remain to be compiled, FORTRAN returns to FILEDEF;
otherwise CMS SWITCH SSTATEXT are cleared, the printer and punch are closed,

and return is made to the user.

FORTHELP: This routine is entered from SOEOB whenever a listing line is processed.

Its purpose to check for diagnostics and to print them on the terminal if the user has
not specified NODIAG. Return is to SOEOB in all cases.

FUNCTION: Compile PL/I source programs.
ATTRIBUTES: Disk resident

CALLING SEQUENCE:

LA R1, PLIST
SvC 202
PLIST DS OF
DC CLS8'PLI'
DC CL8'filename 1’
DC CL8' (' option delimiter
DC C L8'options'
DC cL8Yy’ option terminator

141

OPERATION:

10,

11.

142

Uses the value of register 15 as its base address.

Saves all registers in SAVEREG,

Sets SSTATEXT pointer to the address of PLIDIRT.

Sets the PL/I byte in the system SWITCH to signal PL/I Compilation in progress.

Sets the ""OS language processor 1/0 pointer" to the address of PLIHAND - the
PL/1 LISTING file processor,

By using HNDSVC, sets pointers to alternate simulation routines for SVC's 19
(OPEN), 00 (XDAP), 47 (STIMER), 40 (EXTRACT).

Using the PLIOPTST section, isolates and scans all compiler and CMS options to
be in use during its compilation - an option list (OPTIONS) is presented to the
compiler phase IEMAB; this list consists of all defaulted values, unless an alter-
nate option has been entered which matches one of its acceptable values from the
list, OPTKEYWD,

A call to STRINIT initializes free storage pointers.

A GETMAIN macro is used to reserve core for the longest branch within the
compiler overlay structure,

Sets the two flag bytes to reflect compiler information:

SWITCH+2 PLSW
X'80!' Compilation LISTING on Printer
X'40" LISTING on Printer No printing
X120 DIAG not wanted DIAG not wanted
X'10! No printing Punch TEXT deck
X'08' Execution Not used
X104’ Typing begun Not used
X'02' Not used Not used
X1 Not used Not used

Uses STATE to verify existence and correct format of the source file,

12, Uses ERASE to remove all utility and output files for this source file (SYSUT1,
SYSUT3, TEXT, LISTING).

13. Initializes file maintenance by placing the filename into the system I/O Plist -
DCMSOP.

14. Uses the LOAD macro, SVC 8, to read into core IEMAA, the compiler basic
phase.

15, Sets registers R13 - R1 and branches to IEMAA:

R13 - A(SAVEAREA), R14 - A(return), R15 - V(IEMAA),
RO - (0), R1 - A(parameter list)

16. Upon return from IEMAA, the error code, if any, is stored into ERRCODE; the
utility files are erased; the PRINTER is CLOSED, if the LISTING file was printed;
and the TEXT deck is punched if desired.

17, Before returning to CMS, clears SWITCH, resets STRINIT storage pointers,
zeroes out SSTATEXT, destroys the alternate SVC simulation list, performs
FINIS on all files, places the ERRCODE into 15, and returns to INIT.

During compilation, when a PUT to the LISTING f{ile is executed, control will reach
PLIHAND. It will be determined whether the LISTING file is to be output to the printer,
left on the user's P-Disk, or desiroyed because the no prini opiion was specified. Also,
if NODIAG was not specified, a search for the listing record '""-AAAA COMPILER A
DIAGNOSTICS, A" is made. When found, all subsequent lines are also typed to the
user's terminal with a call to the TYPLIN routine. Records are put onto the printer with
a call to PRINTIO routine,

SNOBOL*

FUNCTION: To compile programs written in SNOBOL into SPL/1, a more basic string-
processing language, and to execute SPL/1 programs interpretively.

CALLING SEQUENCE:

LA 1, PLIST 1
svC X'CA'
PLIST DS 0D
DC CLR'SNOBOL'
DC CLs8!' ! filename
DC CL8' (option 1’ option 1 preceded by (
DC C18' option N)' option N ending with)

*SNOBOL is available as Type III program number 360D-03, 2, 016.

143

OPERATION: The CMS SNOBOL system operates in two passes: compilation and
assembly-interpretation. The SNOBOL-to SPL/1 compiler was itself written in SNOBOL,
and consists of three SPL1 subprograms on the system disk: MONITOR, COMPILER,
and CRUNCH. The output from the compiler--the user program in SPL/1--is input to
the SPL/1 assembler-interpreter, which is a group of programs written in assembler
language. The components of the assembler-interpreter are: SPL1, containing the

main control routine and some I/O routines for other phases; SPL1ASM, the assembler
phase; SPL1INT, the interpretive execution phase; SPL1IOS, a general I/O handler for
all phases; and SPL1FRE, a storage management routine,

During the compilation phase, a file--filename LISTING P1-~is generated, unless the
option NOLIST is included in the parameter list. If OFFLINE or PRINT is specified,
this information is also printed offline, ONLINE specifies that the information is to be
printed at the terminal. The SPL1 option specifies that the file named in the parameter
list has already been compiled into SPL/1, and the compilation phase may be skipped.

When SNOBOL is issued, the main SPL1 control routine is entered. SPL1 branches to
SPL1IOCS, to interpret the parameter list, and to SPL1FRE, for free storage, then
passes control to SPL1ASM to assemble the SNOBOL compiler. The compiler is sub-
sequently executed by SPL1INT, producing a user program in SPL/1, which in turn is
passed again to SPL.1ASM. For details on the compiler itself, and the operation of the
assembler-interpreter, see SPL/1:A String Processing Language, (320-2005) available
from the IBM Cambridge Scientific Center, Cambridge, Massachusetts.

BRUIN*

FUNCTION: To provide an interactive algebraic desk calculator/interpreter facility
within CMS.

CALLING SEQUENCE:

LA 1, PLIST
SVC X'CA'
PLIST DC CL8'BRUIN'

OPERATION: BRUIN accepts commands from the terminal that fall into two classes:
(1) direct commands that are executed immediately; (2) indirect commands that are
stored and may be executed as part of a program at a later time. Values of variables
defined by direct or indirect commands are also stored in core.

*BRUIN is available as Type III program number 360D-03, 3, 013.

144

BRUIN can store and retrieve indirect commands and values of variables on the disk.
Files created by BRUIN have the file name defined by the user and a filetype of BRUIN.

While BRUIN is in the process of creating or replacing a file, the file name TEMP.
BRUIN IS USED.

BRUIN is a module loaded at 12000 that contains the following text decks:

BRUIN - must be first - contains CALCIO
BOIL - BRUIN interprets except for I/O and functions
ABS

SQRT

LOG2E10

EXP

SINCOS

TAN

ATAN

SINCOSH

TANH

ATNH Arithmetic function subroutines
ERF

IPFP

RAND

GAMMA

UPPR

LENGTH

Note: BOIL and all of the arithmetic functions are combined into a deck called
BRUINTXT TEXT.

The only program that was modified to place BRUIN into CMS instead of an OS environ-
ment was CALCIO. This subroutine (called BRUIN in the CMS version) has two func-
tions: (1) entry is from CMS and return is back to CMS; (2) all input/output functions,
input/output calls are made with explicit CMS SVC calls rather than with simulation of
OS access methods.

To assemble BOIL and the arithmetic functions, BRUINLIB MACLIB, consisting of one
macro called BOILSECT, must be made accessible with a GLOBAL command.

145

UTILITIES
The utilities available to the CMS user are CNVT26, COMPARE, CVTFV, DISK, DUMPD,
DUMPF, DUMPREST, ECHO, FORMAT, MAPPRT, MODMAP, OSTAPE, SORT, STAT,

TAPE, TAPEIO, TAPRINT, TPCOPY, and WRTAPE. These are described in detail on
the following pages.

CNVT26

FUNCTION: Convert a BCDIC (026) file to an EBCDIC (029) file.
ATTRIBUTES: Disk resident
CALLING SEQUENCE:

LA 1,PLIST
SVC X'CA'

PLIST DC CL8'CNVT26'

DC CL8'filename'

DC CL8'filetype’
SOURCE LANGUAGE:
CNVT26 was originally coded in the AED-0 language. The BAL source is the output
produced by the AED-0 compiler. All procedures uses are members of the AED
program library AEDLIB TXTLIB.
OPERATION:

1. If the filename and/or filetype are missing, types 'FILENAME (S) MISSING' and
returns error code 2,

2, If the file is not present, types 'FILE NOT FOUND' and returns error code 1,
3. Erases the work file BCDEBC UTILITY if present,

4, For each record:

a. Reads a record via procedure RDCMS,

b. Expands and translates character string via procedure SPRBCD.

c. Contracts character string via procedure GLUE,

d. Writes record into work file BCDEBC UTILITY via procedure WRCMS,

5. Closes both files, erases original file, and alters name of work file to that of
original file,

146

COMPARE

FUNCTION: To compare two disk files,
ATTRIBUTES: Disk resident.

CALLING SEQUENCE:

LA 1, PLIST
SvcC 202
PLIST DC CL8'COMPARE'
DC CL8'filenamel"
DC CL38'filetypel'
DC CL8'filemodel!
DC CL8'filename?2'
DC CL8'filetype2!
DC CL8'filemode2'
DC CL8'(NOSEQ' option to omit comparison on last 8 bytes of each record.

XIT CONDITIONS:

t=1

Exits to user. R15 = 0 of no errors

ERROR RETURNS:

E(00001) Parameter error

E(0002) First and second files are the same file
E(0003) At least one record differs

E(0004) Fatal error

CALLS TO OTHER ROUTINES:
STATE, RDBUF, FINIS
CALLED BY:
User

OPERATION: The COMPARE parameter list is checked for errors, and if an error
exists COMPARE exits with an Error 1. If all parameters are present, COMPARE
checks to see if the user specified the option (NOSEQ). If this option was specified, the
last eight bytes of each record will not be compared. A STATE is then done of each
file in the parameter list, and, if they both exist, the following is checked. Are they
the same file? If so, exit with Error 2. Is one file a fixed number of bytes per record
and the other variable? If so, exit with Error 4, If there are no errors, COMPARE

[
W
-1

now RDBUF's each file comparing a record of one file against the corresponding record
of the second file on a byte to byte comparison, If a discrepancy is found the records
that were being checked are typed on the terminal to the user. The checking is
finished,

After successful completion, and prior to returning to the user or caller, COMPARE
references NUCON and turns the page release flag on, When the program returns to
INIT, this flag is checked and, if it is on, INIT issues a diagnose X'10' to CP to
release the user pages from X'10' 12000 Hex up to the value of LOWEXT.

COMPARE then calls FINIS to close the files and exit to the user,

CVTFV
ATTRIBUTES: Disk resident, module name = CNVTFV

FUNCTION: To convert a fixed-length record file to a variable-length record file.
Option T specifies deletion of trailing blanks.

ATTRIBUTES: Disk resident
CALLING SEQUENCE:

LA 1, PLIST
SVC X'CA!'

PLIST DC CL8'CVTFV!'

DC CL8'filename'

nC CL8'filetype'

DC CL8'(T)' optional
CALLS TO OTHER ROUTINES:

ERASE, ALTER, RDBUF, WRBUF, STATE, FINIS
CALLED BY:

User

148

SOURCE LANGUAGE:

The CVTFV module is an AED-compatible assembly language module. All non-CMS
procedures called by CVTFV are AED program library routines, Therefore, to load
CVTFV, AEDLIB TXTLIB is required,

OPERATION:

1,

If filename and/or filetype not supplied, types 'INCORRECT FORMAT' and returns
error code 3,

Checks for optional parameter T, If item in parentheses not T, types 'INCORRECT
FORMAT" and returns error code 2,

Checks for existence of file, If not found, types 'FILE NOT FOUND' and returns
error code 1,

If file already has variable length records, types 'FILE IS ALREADY VARIABLE'
and returns error code 4.

Erases 'filename CVTUTL' if it exists,

For each record, performs the following dperations:

a, Calls RDCMS procedure to read a record.

b. I truncation (T) was not specified, goes to step e.

c. I record length is 80 bytes, deletes bytes 73-80 regardless of contents,
d. Reduces record length to delete any trailing blanks,

e. Calls WRCMS procedure to write variable record in work file 'filename
CVTUT1',

When all records are processed, closes all files, erases the original file, and
alters the name of the work file to the original filename,

‘149

DISK

FUNCTION: To dump a disk file to cards, or to load one or more files from cards to

disk.

ATTRIBUTES: Disk resident, transient

CALLING SEQUENCE:

LA

SVC

DC

R1, PLIST R1 must point to P-List as usual
X' CA'
AL4(ERROR)

ENTRY REQUIREMENTS:

R1 must point to DISK parameter list, either:

DS
PLIST DC
DC

DS
PLST DC
DC

DC

DC

[DC

OF
CL8'DISK'
CL8'LOAD!

OF

C18'DISK'

CL8'DUMP'

CL8' ' Filename
CLs' ! Filetype
CL2' '] Filemode

EXIT CONDITIONS:

Normal Return

R15 =0

Error Returns

Ri15=1to 8 {See "ERROR RETURNS" later in this section)

CALLS TO OTHER ROUTINES:

ERASE, FINIS, FSTLKP, RDBUF, STATE, UPDISK, WRBUF

CALLED BY:

User

MACROS USED:

FSTB, FVS

150

ERROR RETURNS (R15 value at exit):

Invalid Parameter List

FATAL PUNCH ERROR

FATAL DISK ERROR

FATAL READER ERROR

ILLEGAL CARD IN DISK LOAD DECK

END CARD MISSING FROM DISK LOAD DECK
FILE NOT FOUND

READER EMPTY OR NOT READY

OJOH O WN -

OPERATION: The operation of DISK depends on whether the calling program specifies
DUMP or L.OAD,

DUMP: DISK copies the file designation from the parameter list into bytes 58 - 76 of
and 80-byte buffer, (The first four bytes of the buffer contain an identifier consisting
of an internal representation of a 12-2-9 punch and the characters 'CMS'.) Then DISK
temporarily changes the characteristics of the file in the 40-byte FST entry to make it
appear as a file of 800-byte fixed-length records. (The correct FST entry is restored
when the file has been dumped, of course,) DISK moves the initial value for sequencing
(0001) into bytes 77-80 of the buffer, DISK next calls the RDBUF function program to
read the first 50 bytes of the temporary copy into bytes 6-55 of the buffer and then the
CARDPH function program to punch the contents of the buffer, Having punched the first
card, DISK increments the sequence number (ytes 77-80 of the output buffer) and over-
lays bytes 6-55 of the buffer with the next 50 bytes of the file by cailing RDBUF, I then
punches the contents of the buffer. DISK repeats this process for each subsequent 50
bytes of data in the temporary disk file, When the end-of file is encountered, DISK
generates an end card (one with N in column 5) and punches it, calls the CLOSIO com-~
mand program to close punch operations, restores the FST entry to its correct value,
and returns to the caller,

LOAD: DISK calls the ERASE command program to erase the temporary file ((DISK)
(TFILE) P3) created during a load operation.. Next, it calls the CARDRD function pro~
gram to read the first card, (If this card was produced by the dump portion of DISK, it
will contain an identifier in columns 1-4,) DISK then checks the identifier in the card,

If invalid, it issues a message to the effect that there is an illegal card in the disk load
deck, calls the CLOSIO command program to close card reader operations, and returns
(via SVCINT) to the calling program (error code 4), If the identifier is valid, DISK
determines whether the card is an end card (that is, one with N in the fifth byte), If it

is not, DISK moves the file data portion of the card (50 bytes in columns 6~55) into the
next available location in an 800-byte output buffer. DISK then calls the CARDRD func-
tion program to read the next card, which it processes similarly, When the entire 800-
byte output buffer has been filled with data from the input cards, DISK calls the WRBUF
function program to write the contents of the buffer into a file designated as (DISK)
(TFILE) P3, DISK repeats the process of filling the output buffer and writing its con-
tents into the disk file until the end card is read.

When the end card is read, DISK calls the FINIS command program o close the disk

file ((DISK) (TFILE) P3) created from the file in the card deck, It then calls the ERASE
command program to erase the file (if any) that has the same designation as the card file
just converted to a disk file, Next, DISK calls the FSTLKP function program to locate

151

the file status table for the disk file. (This file is again (DISK) (TFILE) P3.) Subse-
quently, DISK moves the designation for the card file from the end card into the cor-
responding locations in the file status table, This completes the conversion of the first
card file in the card reader to a disk file, and DISK calls the TYPLIN function program
to type a message at the terminal to the effect that the file has been loaded. DISK pro-
cesses the next file in the card reader in a similar manner.

When an end-of-file on the card reader is encountered, DISK calls the CLOSIO com-
mand program to close card reader operations and returns to the calling program,

Notes: UPDISK is called at the appropriate time when DISK LOAD is being executed, to
update the directory for the file being loaded.

DISK is a feasible way to transfer variable-length files, such as MODULE's or SCRIPT
files, between one user and another,

DISK DUMP can dump files from any disk, DISK LOAD loads files only onto the P-Disk,
The mode number of the file is retained (for example, a T5 file that was dumped would
become a P5 file when loaded), except that an SY file becomes P1 when loaded.

The date/time are that of the new file loaded.

DUMPD

FUNCTION: To dump the contents of one direct access record, specified by a CCHHRR
address. (The dump is in hexadecimal,)

ATTRIBUTES: Disk resident
CALLING SEQUENCE:

LA 1, PLIST
SVC X'CA'

PLIST DC CL8' DUMPD'

DC CLs' ! device address
DC CLs8' ! cylinder

DC CLs8' ! head

DC CL8 ! record number

152

OPERATION: DUMPD scans the arguments entered by the user to determine whether
the user has requested a dump of a whole cylinder, a track, or a specific record. It
converts the arguments found to binary and tests to determine whether the unit being
dumped is a 2311 or a 2314, DUMPD then converts the unit address to binary and reads
a record into core. If determines whether the right unit has been accessed and if so
dumps the record to the printer.

DUMPF

FUNCTION: To type online, the contents of a specified file in hexadecimal,
ATTRIBUTES: Disk resident

CALLING SEQUENCE:
LA 1, PLST
SVC X CA'

.

PLIST DC CL8'DUMPF'
DC CL8'filename!'
DC CLs8'filetype'

DC CL8' ! starting line (optional)
DC CL® ! ending line (optional)
DC CLS8' ! line-limit (optional)

OPERATION: DUMPF scans the P-List to determine the file requested. I then calls
STATE to see if the file exists, I the file exists, DUMPF gets the location of the FST.
It checks the arguments to determine whether a starting line is supplied, whether an
ending line is supplied, and whether the user has requested a line limit,

DUMPTF then sets a read pointer to the specific line requested by calling POINT and then
calls RDBUF tc read the line., DUMPF then converts the data to hexadecimal and prints
the hex information online. It repeats this procedure until the requested number of
lines have been done.

153

DUMPREST

FUNCTION: To dump the contents of a disk to tape or to restore a disk from the con-
tents of the tape.

ATTRIBUTES: Disk resident

CALLING SEQUENCE:
LA 1, PLIST
SVC X CA'

PLIST DC CIL8'DUMPREST'

OPERATION: DUMPREST prompts the user via terminal message to indicate whether
he wishes to dump or restore, to specify the addresses of the disk and tape as well as
the device type of the disk, and to indicate whether tape rewind is desired, DUMPREST
will operate only on CMS-formatted disks (that is, 4 blocks per track for a 2311, 15
blocks per 2 tracks for a 2314, A block is 829 bytes,) I cancel is entered in response
to any of these requests, DUMPREST will reinitialize itself.

DUMP: DUMPREST reads a track from the disk and writes it onto tape, & does this
for each track on the disk; a block of disk data becomes one tape record, When the end
of the disk is reached or if an error occurs during a disk-read operation, DUMPREST
writes an end-of-file on the tape, types a message at the terminal indicating the num-
ber of cylinders that were successfully dumped, types a message at the terminal indi-
cating the number of recoverable tape-write errors there were, and returns to the call-
ing program,

If an error is encountered during a tape-write operation, DUMPREST retries the opera-
tion, If the operation is not successful after 10 retries, DUMPREST types a message at
the terminal indicating the number of cylinders that were successfully dumped, types a
message at the terminal indicating the number of recoverable tape-write operations, and
returns to the calling program,

If the end of the tape is reached before the entire disk has been dumped, DUMPREST
proceeds in the same manner as for an unrecoverable tape error,

RESTORE: DUMPREST restores cylinders by reading records from tape and writing
them onto disk, When an end-of-file on the tape is encountered, or if a disk error oc-
curs, DUMPREST types a message at the terminal indicating the number of cylinders
that were successfully restored, types a message at the terminal indicating the number
of recoverable tape errors, and returns to the calling program,

When restoring, DUMPREST retries an unsuccessful tape-read operation a maximum of
10 times, If the retries are not successful, it types both the number of cylinders that
were successfully restored and the number of recoverable tape errors at the terminal,
and returns to the calling program,

1
N

ECHO

FUNCTION: Test terminal input/output
ATTRIBUTES: Disk resident

CALLING SEQUENCE:
LA 1, PLIST
SVC X' CA'

PLIST DC CL8'ECHO'

D / Translate lower case to upper case
DC CLS' Jgt and interpret delete cha.racters.
) & Do not translate but do interpret delete
X characters - do not change line.
DC CL2'nn' ! Repeat input line, nn times.

OPERATION: ECHO first checks to see if a parameter has been issued for the input
line to be repeated, If none has been stipulated, the default is 1. Next ECHO calls the
'"TYPLIN' function to print onto the console 'START CONSOLE TEST'. It then checks the
supplied code (U, S, X) to determine which has been supplied, ¥ this parameter is an
*X', ECHO saves the present linend character by setting up a PLIST with a call to the
LINEND command, The WAITRD function reads the first input line provided and edits it
according to the code that was supplied. When return is made from WAITRD, echo calls
the TYPLIN function to type the input line onto the console, where the user can verify
that the output is identical to the input, This is repeated until the user enters RETURN,
then ECHO restores the original linend character if the X parameter was in effect, calls
the TYPLIN function to type '"END CONSOLE TEST', and then returns to the user via

a branch to register 14.

FORMAT

FUNCTION: To set the P-Disk, T-Disk, or other read-write disk to CMS record for-
mat, clearing any information currently on the disk; to write a record-label on a read-
write disk; or to recalculate the number of cylinders and other disk statistics.

ATTRIBUTES: Disk resident
CALLING SEQUENCE:

LA R1, PLIST R1 must point to P-List as usual
sve X'CA!
DC AL4 (ERROR)

ENTRY REQUIREMENTS:

R1 must point to FORMAT parameter list:

DS OF
PLIST DC CL8'FORMAT'
DC CL8'm' m = Disk-Mode (P, T, etc.)
[Dc cis "] Additional parameters as needed
[DC cLs '] (See examples of valid P-Lists)

EXIT CONDITIONS:

Normal Return
R15 =0
Error Returns
R15 nonzero (See "ERROR RETURNS")

CALLS TO OTHER ROUTINES:
ADTLKP, FREE, FRET, RDTK, RELUFD, STAT, UPDISK, WRTK
CALLED BY (where known):
INIT, or User from terminal
MACROS USED:
ADT, FVS
EXAMPLES OF VALID FORMAT PARAMETER LISTS:
For permanent disk (P-Disk)...

To format a disk very first time
FORMAT P ALL

To format disk subsequently
FORMAT P

To format a disk limiting the number of cylinders (examples)
FORMAT P ALL 54
or
FORMAT P 150
etc.

To write new label on disk
FORMAT P L

156

To check number of cylinders and disk counts
FORMAT PC

To check number of cylinders and disk counts and to revise (expand or reduce) bit-
mask (PQMSK) if necessary

FORMAT PR
To revise disk counts for smaller number of cylinders (examples)

FORMAT PR 53

or

FORMAT P R 200
To revise disk counts to leave room for CMS nucleus as written by IPLDISK, on
54-cylinder 2314, or 203-cylinder 2311

FORMAT P R SYS

To suppress normal typed messages (example)
FORMAT P (NOTYPE)

For temporary disk (T-Disk)., . .

To format T-Disk first time or subsequently
FORMAT T or FORMAT T ALL (equivalent)

To check number of cylinders and disk counts
FORMAT T C

To suppress normal typed messages (example)
FORMAT T C NOTYPE)

ERROR RETURNS (R15 value at exit, with message as shown):

1. NEITHER PERMANENT (P) NOR TEMPORARY (T) DISK SPECIFIED,

2, CONDITION CODE 1, 2, OR 3.ON SIO IN FORMATTING DISK.,

3. UNEXPECTED UNIT-CHECK FORMATTING DISK (SENSE-BYTE NOT 81),
4, CE & DE NOT FOUND TOGETHER (IN CSW) WHILE FORMATTING DISK,
5, CONDITION CODE 1, 2, OR 3 ON SIO IN CHECKING NO, CYL, ETC.

6. CE & DE NOT FOUND TOGETHER (IN CSW) WHILE CHECKING NO, CYL,
7. UNEXPECTED UNIT-CHECK CHECKING NO, CYL (SENSE-BYTE NOT 81),
8. NO T-DISK AVAILABLE,

10, DISK READ-ONLY OR NOT LOGGED-IN FOR "FORMAT P C/R" CALL,

157

11. FORMAT NOT EXECUTED IF "YES" NOT INPUTTED FROM TERMINAL.
12. DISK (OTHER THAN T-DISK) NOT ATTACHED.

13. "FORMAT P R" FAILURE -~ DATA-LOSS WOULD RESULT.
(NOTE - COUNTS ARE UNCHANGED, TO PRESERVE USER'S DATA).

14, "FORMAT P R SYS" FAILURE - DISK IS SMALLER THAN REQUIRED FOR USE
OF ""SYS" OPTION.
(NOTE - COUNTS ARE UNCHANGED, TO PRESERVE USER'S DATA).

OPERATION: The CMS FORMAT program has many options, as seen above in the
EXAMPLES OF VALID FORMAT PARAMETER LISTS. These include the following:

e FORMATing the P-Disk (or A-Disk, B-Disk, or C-Disk)
the T-Disk (handled szewhat differently)
e FORMATing a 2311 or 2314
e FORMATiIng "all" records, or skipping over the first three records
e Limiting the number of cylinders formatted, if desired

o Checking the number of cylinders and verifying other disk counts

e Checking number of cylinders and disk counts as above, but revising the counts as
desired (if feasible)

e Writing a new label on Disk
e Typing normal messages, or omitting such typeouts

e The option to cancel the FORMAT call and not format the disk at all, in case
FORMAT was called accidentally or inadvisedly.

Initialization Phase

FORMAT checks the parameter list for which options were specified; it also checks for
various parameter list errors.

The disk mode letter is checked; it must be alphabetic, and S (for the S-Disk) is not
permitted. ADTLKP is called to find the corresponding active disk table. If an error
from ADTLKP occurs, FORMAT types an error message and returns an error code 1.
The device-address in NUCON (pointed to by the ADTDTA pointer in the active disk
table) is obtained and checked. A value of zero is not valid, and an error message and
code are returned.

158

The disk is then sensed to make sure it is attached and ready, and to see if it is a 2311
(sense byte of x'C8"), or a 2314 (sense byte x'40'). Anything else results in the return
of a suitable error message and code.

At this point FORMAT continues, depending upon which of the several options was speci-
fied, as described in the following sections.

Real Format

If the disk is really to be formatted (none of the special options C, R, or L was specified),
the procedure used is as follows. The general description will be that of the procedure
followed for the P-Disk; formatting of the A-Disk, B-Disk, or C-Disk is identical in
"operation. Where there are differences for the T-Disk, they are noted and also sum-
marized in a later section.

1. To guard against accidental or incorrect call of FORMAT, which wipes out all files
on disk, a message is typed on the user's terminal before any tables are cleared or
anything is written on disk. This message (with disk-mode and device-address
filled in to their correct values) is as follows:

*MFORMAT P" WILL ERASE ALL YOUR P-DISK (0191) FILES**
**DO YOU WISH TO CONTINUE? ENTER "YES" or "NO':

The user must type in YES or “YES for formatting to be undertaken. Any other
input at all from the terminal (such as "NO'") will result in an error-code 11 being
returned, nothing at all in the NUCON or Active Disk Table being affected, and the
following message:

"FORMAT" WILL NOT BE EXECUTED

For the T-Disk, if the (NOTYPE) option was given, this entire step is omitted;
formatting proceeds with no message to the terminal or further input from the user.

2. If FORMAT P ALL was specified, the user is now prompted to enter a label which
is-to be written on record 3 of the disk. (See '""CMS Disk Label" later in this
section.) A message is typed on the terminal as follows:

ENTER 6-BYTE LABEL (IF WANTED), OR NULL LINE (IF NOT).
WAITRD is then called to obtain the label typed in by the user.

If a null line (plain carriage return) was entered, some time information from loca-
tion x'98' in lower core is used in place of the label. Otherwise, the typed-in label
(blank=filled if less than six bytes, truncated if more) is written on the first ten
bytes of record 3 when the formatting is done. (For example, if the user typed in
MYDISK, the label would be: CMS=MYDISK)

6.

160

For the T-Disk, FORMAT T is treated as FORMAT T ALL; no message on the
terminal is given, nor user reply, and a label of CMS=T-DISK is always used.

If ALL was not specified, for the P-Disk or equivalent, the first three records of
cylinder 0, head 0 are read instead of being written. (If the disk has never been
formatted before, this will normally cause an error, and FORMAT P ALL should
then be used instead.)

At this point, RELUFD is called to release and clear all appropriate old core~
resident tables for this disk, and the R/O and R/W flag-bits in the ADTFLGI flag-
byte in the Active Disk Table are cleared.

Just before formatting starts, a message is typed, of the following form:
FORMATTING P-DISK (2314) . . .

This message confirms to the user that the format program is formatting the
desired disk, and indicates the disk type. If the (NOTYPE) option was specified,
the message is omitted.

Formatting of the disk then commences. A 2311 is formatted by writing four
829-byte records per head, ten heads per cylinder. A 2314 is formatted with
fifteen 829-byte records per two heads, for ten pairs of heads per cylinder. The
data written (except for the label) consists of binary zeroes. A read-after-write
check is included in the CCW chain for the P-Disk or equivalent, where the data
written on disk is immediately read (in non-transmit mode) to check that the
formatting was successful. For purposes of speed, the read-after-write check

is not performed on the T-Disk, as the T-Disk may be formatted once for each
terminal session, while the P-Disk is usually formatted only once in a great while.

The CCW chain writes no less than 8 bytes for any single CCW command and always
writes from a double-word boundary. This is the correct procedure to preclude
data-chaining errors, particularly when running on a 360 model slower than a 65.

If errors do occur, repeated efforts to recover are made; if a permanent error
occurs, a message is typed indicating the trouble, and formatting of the disk is
truncated at the end of the last cylinder successfully written.

Formatting of the disk concludes when the end of disk is reached (determined by a
unit check coupled with a sense byte of x'81'), or if a specified limit by the user is
reached (for example, 50 cylinders for FORMAT P 50), or if a permanent error
occurs, whichever happens first.

If the number of cylinders formatted is zero, then FORMAT exits with an error
message, and no further action is taken.

7. If at least one cylinder was successfully formatted, then FORMAT concludes as
follows:

a. Stores the number of cylinders ADTCYL in the active disk table.

b. Types a message indicating how many cylinders were formatted, unless the
(NOTYPE) parameter was given, in which case it is omitted.

c¢. Stores the unit-type-byte of x'01' or x'08' in the appropriate slot in the NUCON
table.

d. Obtains a 816-byte block from free storage, if necessary, for the first FST
hyperblock, clears it, and places its address in the active disk table.

e. Obtains a 200-byte block from free storage, if necessary, for the QQMSK
table, clears it, and places its address in the ADT table.

f. Obtains free storage for the QMSK bit-mask table, the size depending on the
number of cylinders, sets the first word to its default value of x'F0000000',
clears the remainder of the table, and places its address in the ADT tabie.

g. Initializes all other counts in the ADT table as needed (ADTNUM, etc.), and
flags the disk as logged in and read-write.

h. Calls UPDISK to write the finished file directory on disk.

8. Finally, FORMAT returns to the caller with the appropriate error-code (= 0 if all
was successful) in R15.

FORMAT P C Call

If a FORMAT P C (or FORMAT T C, etc.) call is issued, FORMAT takes the following
action:

1. ADTLKP is called (in the initialization process, as usual) to ensure that the disk
mode is valid, and the active disk table is checked to make sure that the disk is
logged in and in read-write form (error message and return if not).

2. Successive seeks are executed to determine how many cylinders are actually avail-
able on the 2311 or 2314 disk.

3. The number of records on disk ADTNUM is computed, depending on the number of
cylinders, and compared with the old ADTNUM. Whichever is less is taken as the
correct value of ADTNUM. The actual bits in the QMSK bit-mask are then counted
to compute the value of ADTUSED (number of records in use), ADTLEFT (number
teff), and ADTLAST. ADTIST is cleared, and the number of cylinders ADTCYL
(from step 2) is storea.

161

4, UPDISK is then called to ensure that the recomputed counts are stored on disk.
5. TFinally, STAT P (or STAT T, etc.) is called to display the disk counts to the user.

FORMAT P C can be called by the user if desired to ascertain the actual number of
cylinders on a disk, and to verify that the other disk counts are correct, If it is
desired to revise the number of cylinders and disk counts, FORMAT P R should be
called.

FORMAT P R Call

FORMAT P R (or FORMAT T R, etc.) has several uses, particularly when its options
FORMAT P R nn (nn being a cylinder count) or FORMAT P R SYS are used.

FORMAT P R (with no options) is used to ascertain the number of cylinders and recom-
pute the disk counts as in FORMAT P C, but also has the capability of revising the disk
counts upward if ADTNUM is greater than it was previously.

FORMAT P R nn (where nn is a decimal number of cylinders desired) works like
FORMAT P R with no options, except that the number of cylinders is limited to the 'nn'
given by the user.

FORMAT P R SYS is a special option used for a 54-cylinder 2314 or 203-cylinder 2311
to recompute the counts to leavé room for the CMS nucleus as written on disk by the
IPLDISK program, precluding the possible loss of data.

The action taken for FORMAT P R (with or without options) is as follows:

1. ADTILKP is called and the disk checked to make sure it is logged in and in read-
write form, as in FORMAT P C.

2. Successive seeks to the disk are performed as in FORMAT P C to determine the
actual number of cylinders on the 2311 or 2314 disk.

3. The number of records on disk ADTNUM is computed from the actual number of
cylinders, if no options were given. If "nn" was specified, the '"nn" count or the
actual number of cylinders is used, whichever is less. The revised disk counts are
then computed as in FORMAT P C. If the new "ADTLAST" (plus a safety factor for
the ADTRES reserve count) is less than the old ADTLAST, a loss of data would re~
sult; in this case, a warning message is given to the user, the old disk counts are
left intact, and error 13 is returned to the caller. If the new ADTNUM is the same
as the old, FORMAT P R finishes up the same as FORMAT P C, with a call to
UPDISK and STAT.

4. If the total number of records on disk ADTNUM is not the same as previously (and
no data-loss will occur), FORMAT P R obtains a new QMSK bit-mask corresponding
to the new disk counts, moves the old QMSK bit-mask thereto, truncating or zero-
filling as appropriate, and gives back the old bit-mask to free storage. Then all
new counts are stored in the active disk table (including the revised ADTCYL
cylinder count), UPDISK is called, and STAT, as in FORMAT P C.

5. FORMAT P R SYS is similar to FORMAT P R nn, but has the following features:

a. Uses an ADTNUM of 7976 (the largest multiple of 8 records within the block-
number of 7980 used by IPLDISK).

b. If truncation of the disk counts at 7976 would cause loss of data, gives an error-
message and error-return similar to the logic for FORMAT P Rnn. The old
disk counts are retained as is.

c. A check is also made to ensure that the disk is big enough for the new ADTNUM
of 7976 records. If not, an error message is given, error 14 is returned, and
the old disk counts are retained.

d. If the disk is large enough, and no data-loss would result, then FORMAT P R
SYS recomputes them on the basis of ADTNUM=7976, with the correct other
disk counts, obtains a new QMSK if necessary as in FORMAT P R, stores all
corrected counts, calls UPDISK, and finally STAT, as above.

These three options (FORMAT P R, FORMAT P R nn, and FORMAT P R SYS) make it
possible to revise disks whenever feasible, to larger or smaller sizes, without the
necessity of dumping files out on tape, formatting the disk, and loading them back in
again. The only requirement, other than those discussed above, is that when a disk is
enlarged via FORMAT P R it was previously formatted at some time to its full size.

CMS Disk Label

Record 3 (Cylinder 0, Head 0, Record 3) of a CMS Disk now includes a ten-byte label,
consisting of the following:

1. Four bytes: CMS=

2. Six bytes: desired label

(blank-filled if less than 6 bytes;
truncated if more than 6 bytes)

3. Remaining 819 bytes of record = 00 (binary zeroes)

Option to Write a Label on Disk

As mentioned earlier, the option to format all of a CMS Disk causes the disk to be for-
matted including a label on record 3. (See "CMS Disk Label" for details.)

A label can also be entered on a disk that has been formatted previously (either to change

an existing label or to place a new label on a CMS Disk that does not have a 10-byte label
as now used), without affecting any other information on disk.

163

This is done by issuing the command FORMAT P L (or FORMAT T L — the T-Disk is
quite acceptable for this option). The logic performed by FORMAT P L (or equivalent)
is as follows:

1. ADTLKP is called to make sure a disk exists for the mode-letter given, and does
not = the S-Disk. (This is accomplished as part of the general initializing process.)
The disk must, of course, be attached, ready, and be a read-write disk, for the
command to succeed.

2. RDTK is called to read the old label from disk into an 829-byte I/0 buffer. (If
RDTK should fail, a descriptive error message is given, and the error-code from
RDTK is returned to the caller of FORMAT P L.)

3. A message is typed on the user terminal as follows:

ENTER 6-BYTE LABEL:
4, WAITRD is called to obtain the label typed in by the user.

5. CMS= (four bytes) and the first six bytes of the entered label (blank-filled, if less
than 6 were inputted) are moved to the first ten bytes of the 829-byte 1/0 buffer

6. WRTK is then called to write the new label back on the disk. (If WRTK should fail,
a descriptive error message is given, and the error-code from WRTK is returned
to the caller of FORMAT P L. If the failure is because the disk is read-only, the
error-code = 6).

Summary of Differences in Formatting a T-Disk

As mentioned above, there are several differences in the way a T-Disk is formatted
from the procedure used for a P-Disk or other read-write disk. These are summarized
as follows:

1. FORMAT T is equivalent to FORMAT T ALL. (All records on the disk are
formatted.)

2. ' A label of CMS=T-DISK is automatically written on record 3. (See note below.)

3. The read-after-write check in the CCW chain to format the disk is omitted, in the
interests of making the formatting of a temporary disk as fast as possible.

4. The requirement for the user to type in YES or "YES before formatting begins is
waived if the (NOTYPE) parameter was given.

5. The "NO T-DISK AVAILABLE" error message (if appropriate) is omitted (as well
as the normal formatting messages) if the (NOTYPE) parameter was given.

Note: If desired to change the label on a T-Disk after it has been formatted, the com-
mand FORMAT T L can be issued, and the replacement label entered on disk.

164

GENDIRT

FUNCTION: To complete auxiliary system status tables.

| ATTRIBUTES: Disk resident, transient
CALLING SEQUENCE:
module other directory
GENDIRT
name phases name

OPERATION: GENDIRT will be used primarily by the system programmer whose
responsibility it will be to maintain language processor modules on the system disk.

All TEXT decks for the language compiler, the CMS interface and other routines, and
the auxiliary directory should be placed onto the read-write system disk. A series of
LOAD, REUSE, GENMOD, and LOADMOD commands can now be used to create a
modular overlay structure that will be in effect during compilation. After the last
module is created, the CMS interface routine, other needed routines, and finally the
auxiliary directory are againloaded. The GENDIRT command is issued with the inter-
face name as the first argument, and the auxiliary directory as the last argument.

GENDIRT will operate on the auxiliary directory in the same manner as SYSGEN, when
the latter routine completes the nucleus directory, SSTAT. That is, each FST entry
will be STATE'd and the address of file's First Chain Link will be placed into the FST
slot. Then a GENMOD will be issued to create an interface module.

Subsequently, whenever the language processor is invoked, part of the interface module
will be the completed auxiliary directory that is used as an extension to the system disk
directory, SSTAT.

To satisfy a reference to a processor module, SSTAT will be searched to locate its FST
entry and then its first chain link address. I the entry is not found, the SSTATEXT
pointer is used to access the address of any extension directories {if zero, no directories
exist). Scanning of the auxiliary directory commences until the FST entry for the
desired module is found and the loading of the routine may be executed.

Auxiliary directories are used so that the core-resident nucleus routine, SSTAT, would
not be eluttered with specific 40-byte FST entries that are referenced by occasional
calls to language processors.

For an example of the usage of GENDIRT, see the CP-67/CMS Installation Guide,
| GH20-0857,

165

MAPPRT

FUNCTION: To create, and optionally print, a file containing a map of entry points in
the CMS nucleus.

ATTRIBUTES: Disk resident

CALLING SEQUENCE:
LA 1, PLIST

SVC X'CA'
PLIST DC CL8'MAPPRT!

A

DC CL8' N'!
C
ON

DC CL8' OFF!'
NO

OPERATION: MAPPRT examines the parameter list and sets switches according to the
type of file to be created and the location of the printout, if a printout was requested. If
the parameter A was specified, the file CMS-NUC ALPHABET P1 is erased; the names
of the entry points in the nucleus are then sorted into alphabetical order and written into
the file CMS-NUC ALPHABET P1l. If the parameter N was specified, the file CMS-
NUC NUMERIC P1 is erased; the core locations of the entry points are then sorted into
numeric order and written into the file CMS-NUC NUMERIC P1,

If neither A nor N were specified, MAPPRT assumes C, proceeds as for A, above, and
then proceeds as for N, above. The file CMS-NUC ALPHANUM P1 is erased, and the
contents of the ALPHABET file and the NUMERIC file are combined into the file CMS-
NUC ALPHANUM P1.

MAPPRT then determines if the previously created file is to be printed or typed. If NO
was specified, MAPPRT returns to the caller. If ON was specified, MAPPRT calls the
PRINTF command to type out the file on the console and returns to the caller. If OFF
was specified, it calls the OFFLINE PRINT command to print the file and returns to the
caller.

Note: MAPPRT should only be called when IPL'ing 190 to obtain its CMS nucleus and

after the LOGIN command. MAPPRT will expect the nucleus loader map to be at core
positions 1E800 and continue downward to 1D000.

166

MODMAP

FUNCTION: To type at the console typewriter the load map associated with the module
specified by the MODMAP command.

ATTRIBUTES: Disk resident, transient

CALLING SEQUENCE:
LA 1, PLIST
SVC X'CA!
DC AlA4 (error return)

PLIST DC CL8'modmap’
DC CLs8! ! module filename

OPERATION: MODMAP first calls the STATE function to determine whether the file
exists. If the file does not exist, MODMAP returns the error message 'FILE NOT
FOUND' and branches back to the user. With confirmation that the file is there, MOD-
MAP checks the number of logical records in the file to determine if a load map does
exist with the module specified. (The load map is the last record of the module - norm-
ally the third record). If the module has less than three records, it was a transient or
was created with the NOMAP option. If there is not a map, MODMAP types the message
'LOAD MAP UNAVAILABLE', and branches back through Register 14 to the user. If
the third record is present, MODMAP sets up the module name specified in a PLIST

and SVC's to LOADMOD the module into core. MODMAP next loads the address of
NUCON to establish certain CMS parameters and addresses, reads and unpacks the
third record, which is the load map. MODMAP then sets up the map information in a
buffer and places the address of the buffer in a PLIST with the command call in the
PLIST to TYPLIN. MODMAP then, via the TYPLIN function, prints the map onto the
console typewriter and branches back to the user via Register 14. MODMAP is a
transient routine.

OSTAPE

FUNCTION: To enable users to read a tape consisting of 80 byte, unblocked records
and create a CMS file from it. The PDS option is designed to read a tape produced by
the OS utility ITEBPTPCH and create a set of CMS files from it.

ATTRIBUTES: Disk-resident utility.

CALLING SEQUENCE:
LA R1, PLIST
SVC 202
DC Al4 (ERROR)

u—y
=23
=1

PLIST DC CL8'OSTAPE'

DC CLs',gzgge,

DC cml?%fa%%:
DC cLs8'(

DC CLs',I;l;———g,S'

DC CL o

DC CLs:',i::—;z(:

DC CLs:F%P'

DC cml%f}"

Note: The underlined alternate indicates default option.

OPERATION: OSTAPE sets flag bits either to the default setting or to the requested
option setting. If a user filename, filetype, or tape umit is requested, these are saved
in locations NAM2, NAM1, and TAPID. Tape records are read; the end-of-file flag is
cleared after each read. If OS labels are on the tape, they are typed on the terminal
and the next record is read.

If columns 2 - 8 contain "MEMBER!', the option bits are checked for the partitioned
data set request. If there is a PDS request and the file is open, FINIS and LOGDISK
are called to close it, the user is notified, and the program continues. Otherwise,
STATE is called for the file - if it exists, ERASE is called. The open file bit is set on,
and the records are brought in. I there is no PDS request, the field is ignored, the
file opened, and WRBUTF is called to write the record on disk. Succeeding records go
directly to WRBUF until an END or MEND card is encountered.

The file is then closed by calls to CMS FINIS and CMS LOGDISK, the user is informed
and the MAXTEN counter is updated and checked. If MAXTEN is requested and the
limit is reached, the user is informed and the program is terminated. If the MAXTEN
is not requested, the tape scans for the next file.

An encounter of two tape marks in a row will also terminate the program.

168

SORT

FUNCTION: To sort records from one disk file to a second disk file in ascending order

according to specified sort fields.

ATTRIBUTES: Disk-resident.
CALLING SEQUENCE:

LA 1, PLIST
SsVC 202

n

PLIST DC CLS8'SORT!
DC CL8'filenamel’
DC CL8'filetypel'
DC CL8'filename2'
DC CL8'filetype2'

OPERATIONS: SORT saves the filenames and filetypes and, after the field definitions are
entered, calls STRINIT to set up storage and calculate the amount it has, After issuing
the GETMAIN, it analyzes the SORT field parameter and then checks to see if the re-
quested output file already exists. If it does, the user has the option of either erasing
the old file, appending the new output, quitting, or entering a new filename and filetype.

If core is exceeded during SORT, the messages:

*CORE OVERFLOW DURING SORT, LAST ITEM PROCESSED: XXX'
*SIMULATING END-OF-INPUT!

are sent to the user and the command is terminated,

STAT

FUNCTION: To type on the terminal pertinent disk statistics for a given disk, for all
read-write disks, or for all disks.

ATTRIBUTES: Disk resident, transient

CALLING SEQUENCE:
LA R1, PLIST R1 must point to P-List as usual
SVC X'CA!
DC Al4 (ERROR)

ENTRY REQUIREMENTS:

R1 must point to STAT parameter-list:

DS OF
PLIST DC CLS8'STAT'
[Dc cLs '] Disk-mode, ™', '?', or omitted

[DC cL8'? '] 2 =Optional Parameter
EXIT CONDITIONS:

Normal Return

R16=0

Error Returns (R15 values, with messages as shown):

R15=1 : INCORRECT "STAT'"' PARAMETER-LIST _

R15=2 : **Z-DISK (CUU) NOT CURRENTLY LOGGED IN**
R15=3 : **NO READ-WRITE DISK(S) CURRENTLY LOGGED IN**

CALLS to OTHER ROUTINES:

ADTLKP, ADTNXT
CALLED BY: User

MACROS USED:

ADT, FVS

OPERATION: K a specific disk-mode letter is given to STAT (for example, STAT P,
STAT T, STAT S, etc.), the disk statistics for that disk are typed on the terminal, if
the disk is currently logged in. If there is no disk corresponding to the disk-mode
given, error 1 is returned. If the disk is not currently logged in, error 2 (with the
message filled in to include the disk-address and mode-letter) is returned.

If the disk mode-letter is omitted entirely (that is, the command is just "STAT"), then
statistics are given on all currently logged-in read-write disks. (If none is currently
logged in, error 3 is returned.)

If the disk mode-letter is an asterisk ('STAT *"), then the disk statistics for all
currently logged-in disks, both read-write and read-only, are given.

The message typed on the terminal now includes the number of files currently represent-
ed in the in-core file directory. For a read-write disk, this also equals the number of
files on the disk. For a read-only disk, however, there maybe many more files on disk;
the count is just that of the files currently available through the directory currently in
core, (For example, STAT S would give the number of files in the SSTAT table,
equivalent to the P2 files of the S-Disk.)

170

If a '?' is entered as the only parameter, a brief status of all currently logged-in disks
is typed. This brief status gives disk labels, disk address, disk mode, and R/O
if the disk is read-only.

If an additional parameter of '?' is given, added information is typed, specifically
whether the disk is 2311 or 2314, and whether it is read-only or read-write.

If a user has been logging in several disks and wants to be sure which ones he has log-
ged in at the moment, a call to 'STAT ?' will provide the clue needed as to which disks
are indeed logged in. (This would also show the order of search.)

The STAT command is transient-disk-resident. The name of the text deck is
'STATDSK'; thus a procedure for generating a new module of 'STAT' would be as
follows (or equivalent):

LOAD STATDSK (TRANS TYPE
GENMOD STAT

The logic of STAT is simple. ADTLKP or ADTNXT is called to find the appropriate
Active Disk Table block; if the flag bits indicate the disk is logged in the pertinent disk,
statistics are simply converted to printable form and typed. Leading zeros are elim-
inated by shifting the typeout left for any leading zeros found, and adding a blank at the
end, with the subsequent caiil to TYPLIN deieting the trailing bianks.

TAPE

FUNCTION: To dump disk files to tape, to restore files that were dumped to tape back
onto disk, to rewind a tape, to write an end~of-file mark on a tape, or to skip to the
next end-of-file mark on a tape.

ATTRIBUTES: Disk resident
CALLING SEQUENCE:

LA 1, PLIST
SVC X'CA'

et
-3
pt

RE WIND:

PLIST DC
DC
DC

WRITEOF:

PLIST DC
DC
DC
DC

SKIP;

PLIST DC

DC

DUMP:
PLIST DC
DC

DC
DC

LOAD:

PLIST DC

DC
SCAN:
PLIST DC

DC

DC
DC

172

CL8'TAPE!'
CLS'REWIND'
CLS8'TAPn'

CLS'TAPE!
CLS8'WRITEOF!
CL8'n'
CLS'TAPn'

CLS'TAPE'
CLS'SKIP!
CL8™'m'
CLS8'TAPn'

CLS8'TAPE'
CL3'DUMP!

CMS device name (optional)

Write 'n' EOF marks (optional)
CMS device name (optional)

number of EOF marks (optional)
CMS device name (optional)

CLS8'filename' or CL8'*'
CLS8'filetype' of CL8'*

CLs8'filemode’
CLS8'TAPn'

CLS8'TAPE!
CLS8'LOAD'
CL8n'

CLS8'TAPn'

CLS'TAPE'
CL8'SCAN'
CLs8™n!

CLS8'TAPn!

default of 'P1' if omitted
CMS device name (optional)

stop after 'n' EOF marks (optional)
CMS device name (optional)

stop after 'n' EOF marks (optional)
CMS device name (optional)

SLOAD:

PLIST DC CLS'TAPE'
DC CLS8'SLOAD!
DC CL8'filename' or CL8'*
DC CL8'filetype' or CL8'*!
DC CLS8'n' stop after 'n' EOF marks (opticnal)
DC CL8'TAPn’! CMS device name (optional)

Note: The default value for '"TAPn' is TAP2' and the default value for ' is'1'.

OPERATION: The operation of the TAPE command program depends on whether the
calling program specifies REWIND, WRITEOF, SKIP, DUMP, LOAD, SCAN, or
SLOAD.

REWIND: TAPE calls the TAPEIO function program to rewind the tape. It then returns
(via SVCINT) to the calling program, which is usually INIT.

WRITEOF: TAPE calls the TAPEIO function program to write an end-of-file marker.
It then returns to the calling program.

SKIP: TAPE repeatedly calls the TAPEIO function program to read successive records
from the tape until an end~of-file marker is encountered. It then returns to the calling
program.

DUMP: TAPE calls the FSTLKP function program to locate the file status table (FST)
block for the file. TAPE then temporarily alters the FST block characteristics to 800-
byte fixed-length records. TAPE then calls the RDBUF function program to read the
first 800-byte block in the file into a buffer and the TAPEIO function program to write
the data block from the buffer onto tape. TAPE repeats this procedure of calling
RDBUF and TAPEIO for each data block in the file. When an end-of-file is reached,
TAPE calls TAPEIO and writes a trailer record on the tape. The trailer record
identifies the file and contains an N in the fifth byte, the last 20 bytes of the file, status
table for the file in bytes 6 - 25, and the file designation in bytes 70 -87, Finally, TAPE
restores the FST block and calls the FINIS command program to close the file, It then
returns to the calling program,

Note: Each data block is written, as a single tape record. The tape record is 805 bytes
long. The first four bytes contain a code indicating that the record was produced by the
TAPE command program. The next byte is zero, except for the trailer record. The
remaining 800 bytes contain the data block.

LOAD: TAPE calls the ERASE command program to erase the file (if any) designated
as (DISK) (TFILE) P3. Next it calls the TAPEIO function program to read the first
record on the tape. (If the record was produced by the dump portion of TAPE, it will
be 805 bytes in length and contain a code in the first four bytes and a data block in the
last 800 bytes). TAPE then checks the code in the record. If invalid, TAPE issues

a message to the effect that the tape is not in tape load format,and returns to the calling

173

program. If the code is valid, TAPE determines if it is a trailer record (that is, one
with N in the fifth byte). If not a trailer record, TAPE calls the WRBUF function
program to write the data block contained in the record into a file designated as (DISK)
(TFILE) P3. Then TAPE calls the TAPEIO function program to read the next record
from the tape, which it processes in the same manner.

If the tape record read is a trailer record, TAPE calls the FINIS command program to
close the disk file ((DISK) (TFILE) P3) created from the first tape file. It then calls
the ERASE command program _.to erase the file (if any) that has the same designation as
the tape file just converted to a disk file. Next, TAPE calls the FSTLKP function pro-
gram to locate the file status table for the disk file just created. (This is again (DISK)
(TFILE) P3.) Subsequently, TAPE overlays the last 20 bytes of the file status table,
(except for the first chain link address) with the corresponding data from the trailer
record and moves the filename, filetype, and date last updated for the tape file from
the trailer record into the corresponding locations in the FST block. The directory is
then updated with a call to UPDISK. This completes the conversion of the first file on
the tape to a disk file, and TAPE calls the TYPLIN function program to type a message
at the terminal to the effect that the file has been loaded. TAPE processes the next file
on the tape in a similar manner. When the 'n'th end-of-file on the tape is encountered,
TAPE returns to the calling program. If 'n' was not specified, TAPE returns to the
calling program when the first end-of-file is reached.

SCAN: TAPE sets SCANSWT to disable disk operation and to enable end-of-file printout
and then branches into the code for TAPE LOAD. The effect of this command is to list
the contents of a tape (including end-of-file marks) at the terminal until the 'n'th end-
of-file mark is encountered. The default value of 'n' is one.

SLOAD: TAPE searches for the file whose filename and filetype were specified in the
parameter list. When the matching file is found, SLDSWT is set, and TAPE branches
into the TAPE LOAD code to copy the file from tape to disk. SLDSWT enables control

to return to the SLOAD coding after the file is copied. If neither the filename nor filetype
was '¥' TAPE returns control to the calling program, otherwise the above search and
load procedure is continued until the 'n'th end-of-file mark is encountered. Control is
returned to the user when the 'n'th end-of-file mark is encountered even if no files were
copied from tape to disk. The default value of 'n' is one.

TAPEIO

FUNCTION: To (1) read or write tape records, (2) rewind the tape, and (3) write an end-
of-file marker on tape.

ATTRIBUTES: Disk resident, transient

Note: For a detailed explanation on TAPEIO, see the write-up on the TAPEIO function,

174

TAPRINT

FUNCTION: To print the contents of a tape containing assembler or FORTRAN LISTING
files.

ATTRIBUTES: Disk resident

CALLING SEQUENCE:
LA 1, PLIST
SVC X'CA!

PLIST DC CLS'"TAPRINT"
[pc cLs'] symbolic tape name

OPERATION: TAPRINT receives the symbolic name of the tape to be printed from the
parameter list and inserts it into the calling sequence to the TAPEIO function program.
It then calls the TAPEIO function program to read the first record from the tape. This
record contains 10 blocked print line images. Next, TAPRINT repeatediy cails the
PRINTR function program to print each of the 10 print line images on the printer.
TAPRINT repeats this process of reading a record from tape and printing the 10 print
line images contained therein until it encounters an end-of-file on the tape. At this
time, it calls the TYPLIN function program to type a message at the terminal signaling
the end-of-file. It then prints the next file on the tape in a similar manner. When two
consecutive end-of-files are encountered, meaning that the end of the tape has been
reached, TAPRINT calls the TYPLIN function program to indicate this. It then calls
the TAPEIO function program to rewind the tape, calls the CLOSIO command program
to close printer operations, and returns to the calling program.

Note: If the calling program does not provide a symbolic tape name, TAP2 is assumed.

TPCOPY

FUNCTION: To copy tape files.

ATTRIBUTES: Disk resident.

175

CALLING SEQUENCE:

LA 1, PLIST
SVC 202

PLIST DC CL8'TPCOPY'

CLS'TAPi!

be {CLS'*‘ -TAP1
CLS8'TAPO'

Dbe {CLS'*‘ ~TAP2
C18'n'

DC {CLS'*' -1
CL8'yes'

pc {Grem

OPERATION: TPCOPY calls SVCFREE to get free storage and then analyzes the param-
eter list looking for defaults and errors such as the same unit for both input and out-
put, and a file number less than 1 and greater than 9.

It uses TAPEIO to read tape input records, and calculates the actual length and number
of records. This information is given to the user if the file summary option has been
selected.

Error messages on read and write tape errors will be passed to the user by TPCOPY.

WRTAPE

FUNCTION: To write a disk file onto tape.
ATTRIBUTES: Disk resident

CALLING SEQUENCE:
LA 1, PLIST
SVC X'CA!

PLIST DC CL8'WRTAPE'

DC C18' ! filename

DC CL8' ! filetype

DC CL2' filemode — defaults to P

DC CLS8' ! blocking factor — defaults to 10
DC CL3'EQOF! defaults to no-eof

176

EXIT CONDITIONS:
Normal return: R15=0
Error returns:

TAPE ERROR

PARAMETER ERROR

BLOCK SIZE TOO LARGE (Byte Count)
FILE NOT FOUND

. FATAL ERROR FROM STATE

U'er?DNH

CALLS TO OTHER ROUTINES:

STAFF, RDBUF, FINIS, TAPEIO
CALLED BY:

User.

OPERATION: WRTAPE checks the parameter list to determine if the mode has been
specified, If not, a P mode is assumed. Checking is then done to determine if a
blocking factor was specified. If not, a default blocking factor of 10 is used. If the
End-Of-File parameter has been entered, an appropriate fiag is turned on.

WRTAPE then calls STATE to locate the file. Once located, an output PLIST is set
up from the STATEFST. If the file is a listing file all ASA carriage control characters
are converted to machine code.

WRTAPE repeatedly calls RDBUF to read the file and block the records according
to the desired blocking factor and calls the TAPEIO function program to write the
blocked records to tape, until an end-of-file is encountered. At this time, WRTAPE
checks the EOF flag to determine if an END-OF-FILE was requested. If EOF was
requested, WRTAPE calls '"TAPEIO' to write an END-OF-FILE.

Note: WRTAPE writes to tape device TAP2,
CONTROL COMMANDS
The commands CPFUNCTN, IPL, KE, KO, KT, KX, LOGIN, LOGOUT, RELEASE,

RT, SYN, and VSET control the user's virtual machine environment, These are
described in detail on the following pages.

177

BLIP

FUNCTION: To enable the user to specify the terminal two-second time count
character.

Note: For information on BLIP, see the VSET writeup.

CHARDEF

FUNCTION: To enable the user to change the default characters for character delete,
line delete, EDIT backspace and logical tab, and to specify the hexadecimal representa-
tion of characters.

Note: For information on CHARDEF, see the VSET writeup.

CPFUNCTN

FUNCTION: Transmits console function commands to CP-67 without leaving the CMS
virtual machine environment. Permits incorporation of CP console functions in EXEC
files and programs.

ATTRIBUTES: Disk resident, transient

CALLING SEQUENCE:
LA 1,PLIST
SVC X'CA'

PLIST DC CL8'CPFUNCTN!
DC CL8'NOMSG! optional
DC C' 'command string'

where 'string' is a CP-67 console function

OPERATION: CPFUNCTN calls CONWAIT to drain any stacked terminal output, It then
moves 'command string' into a buffer, places the address of the buffer in register 1 and

the byte count for the string in register 2, A DIAGNOSE instruction X'83120008"' is then
executed, transmitting to CP-67 the desired console function. CP-67 returns to CMS
the following error codes:

0 Command accepted

4 INVALID CP REQUEST
8 BAD ARGUMENT

For codes 4 and 8 the indicated messages are typed by CMS. Any other nonzero error
code is dependent upon the particular function. At this time, only LINK returns addi-
tional codes.

The NOMSG option inhibits typing of the messages for codes 4 and 8, It is intended pri-

marily for use by calls from other programs. Other CP messages will be typed by CP
directly.

FUNCTION: To initial program load the CMS nucleus into core.
| ATTRIBUTES: Disk resident, transient

CALLING SEQUENCE:

LA 1, PLIST
SVC X'CA!
PLIST DC CL8'IPL’
[DC CL8'xxx"'] IPL-Device (optional)

OPERATION: If the IPL-Device was specified, and the user is running in a virtual
machine, the parameters are passed to CP (via a diagnose instruction), and GP performs
the IPL,

If the IPL-Device was specified but CMS is running on a real machine, the device num-
ber given is used for the disk to be used for the IPL sequence, as described later.

If the IPL-Device is omitted from the parameter list, a halfword "IPLDEV" in NUCON
is examined. If this = 0, that is an indication that CMS is being run on a virtual ma-
chine via IPLCMS — thatis, IPL by name; for this case, CP is invoked by the diagnose
instruction to execute IPL CMS,

[y
-3
w

If CP is not called upon to do the IPL sequence, then CMS uses the given IPL-Device (if
present) or the contents of IPLDEV for the disk from which the IPL is to be performed,
and then IPL's from that disk as follows:

The IPL sequence from cylinder 0, track 0, records 1 and 2 of the disk is read in. The
IPL sequence then reads in the IPLDISK function program from the system disk,
IPLDISK then reads in the CMS nucleus.

FUNCTION: To increase or decrease the length of lines being typed to the terminal.

ATTRIBUTES: Nucleus resident
Imbedded in CONSI

CALLING SEQUENCE:

This routine is not called. CONSI tests each input line from an ATTN interrupt for the
presence of KE, KT, RT, KX, and KO.

OPERATIONS: Hit the ATTN key twice to open the console, and enter KE. When CONSI
receives control from IOINT, it picks up the KE from the input line, and checks to see
if a number has been entered for a specific line length to be typed. If 2 number was
specified, the column limit is set, the KE flag is set, and the ATTN buffer is released.
If no number was specified, a default column limit of 72 is assumed. CONSI then
returns to IOINT.

FUNCTION: To kill overrides.

ATTRIBUTES: Nucleus resident.
Imbedded in '"CONSI'

CALLING SEQUENCE:

This routine, along with KT and RT, is not formally called. CONSI tests each input line
from an ATTN interrupt for the presence of KT, KO, RT, and KX.

OPERATION: Hit ATTN key twice to open console and enter KO, When CONSI receives

control from IOINT, it picks up the KO from the input line and sets the KLOVER flag,
releases the ATTN buffer by a call to FRET, and returns to IOINT.

180

FUNCTION: To kill typing at the user terminal.

ATTRIBUTES: Nucleus resident.
Imbedded in CONSI.

CALLING SEQUENCE:

This routine, along with KO and RT, is not called. CONSI tests each input line from an
ATTN interrupt for the presence of KE, KT, RT, KX, and KO.

OPERATION: Hit the ATTN key twice to open console, and enter KT. When CONSI

receives control from IOINT, it picks up the KT from the input line, sets the KT flag,
releases the ATTN buffer by a call to FRET, and returns to IOINT,

KX

FUNCTION: To kill execution during a running program.

ATTRIBUTES: Nucleus resident.
Entry point - Killex in LOG

CALLING SEQUENCE:
Extrn KILLEX
or

DC V(KILLEX)

OPERATION: Comes here (via CONSI) if user hits ATTN twice and types KX, (Also,
could come here on purpose from DEBUG) Does the following:

1. Calls DESBUF to clear out any stacked-up console 1/0.

2, Clears KT and KE flags to ensure typing of console messages.
3. Sets kill~overrides flag to finish up in case overrides set.

4. Calls FINIS*** to close out any open files,

5. Calls CONWAIT to wait for console I/0.

6. Calls CLOSIO to finish reader, printer, and punch,

7. Calls IPL to load a fresh copy of CMS.

181

LINEND

FUNCTION: To enable the user to define his own logical linend character in place of
the default character of #.

Note: For information on LINEND see the VSET writeup.

LOGIN

FUNCTION: To bring into core the User File Directory for a given disk (e.g., 191,
192), setting up the necessary information in the Active Disk Table for the given disk
mode (e.g., P, T).
ATTRIBUTES: Transient, reentrant
CALLING SEQUENCE:

LA R1, PLIST R1 must point to P-list as usual

SVC X'CA!'

DC AL4(ERROR)
ENTRY REQUIREMENTS:

R1 must point to LOGIN parameter list:

DS OF
PLIST DC CLS8'LOGIN'
DC CL8' ' Additional parameters as needed
. (See examples of valid plists)
DC CLS8!' !
DC X'FFFFFFFF' Signifies end of P-List

EXIT CONDITIONS:
Normal Return
R15=C
Error Returns

R15 nonzero (See "ERROR RETURNS")

182

CALLS TO OTHER ROUTINES:

ADT1KP, ADTNXT, FREE, FRET, READFST, READMFD, RELUFD
CALLED BY (where known):

INIT, or User (from terminal or EXEC file)
MACROS USED:

ADT, FVS
EXAMPLES OF VALID LOGIN PARAMETER LISTS:

Note: In the following examples, ''ccu' stands for a hexadecimal disk-address (e.g.,
192, ete.) and "m' or '"n" stands for the given Disk-Mode (for example, P).

1. Valid Parameter Lists to LOGIN an entire Disk:

LOGIN

LOGIN (NOTYPE

LOGIN (NOPROF NOTYPE

LOGIN (NOPROF NO TYPE
LOGIN ccu

LOGIN ccu (NOPROF NOTYPE
LOGIN ccu m

LOGIN ccu m (NOTYPE NOPROF

Example: LOGIN 196 (NOPROF
2. Valid Parameter Lists to LOGIN NO-UFD from a DISK:

LOGIN (NO_UFD
LOGIN (NO-UFD
LOGIN ccu (NO_UFD
LOGIN ccu (NO-UFD
LOGIN ccum (NO_UFD
LOGIN ccum (NO-UFD

Example: LOGIN 192 T (NO-UFD

3. Valid Parameter Lists to LOGIN selected files from a disk ""m' known to be
read-only:

LOGIN ccu m filename (options
LOGIN ccu m filename filetype (options
LOGIN ccu m filename filetype filemode (options

Example: LOGIN 194 C * TEXT P1

183

4. Valid Parameter Lists to LOGIN from a disk ""m' as a read-only extension of
another disk ""x'' (accessing either all or selected files):

LOGIN
LOGIN
LOGIN
LOGIN
LOGIN

ccu
ccu
ccu
ccu
ccu

m,
m,
m,
m,
m,

X
X
X
X
X

(options

filename (options

filename filetype (options
filename filetype filemode (options

Example: LOGIN 193 A,P CON*UPDG* (NOTYPE

ERROR RETURNS (R15 value at exit, with message as shown):

Note: In the following messages, "m" or 'n ' stands for a disk-mode (e.g., Por T
or A etc.) and ccu stands for a disk~address (e.g., 191 or 192 etc.).

Error
No.

*%k

*x

Kk

Kk

Kk

m

m

m

m

(ccu)

(ccu)

(ccu)

(ccu)

(ccu)

Message Comments
DEVICE ERROR ** File Directory is Unreadable

NOT ATTACHED **
DEVICE ERROR ** ccu not recognizable device-type
R/0 — CANNOT LOGIN NO-UFD**

DEVICE ERROR ** ccu is in old 2311 format no longer
supported.

LOG006: PARAMETER ERROR Error in LOGIN P-List

** m (ccu) ACCESSEDAS n-DISK (R/W)**

** m (ccu) NOT ACCESSED — 0 FILES **

OTHER RESPONSES (given with normal return if appropriate but omitted if the
NOTYPE option was given):

ccu REPLACES m (ccu)
m (ccu) R/O

ccu ALSO = n-DISK

ccu m RELEASED
ccu m,x RELEASED

OPERATION: LOGIN is the command which is used to bring into core the User File
Directory (UFD) for the user's P-Disk or any other disk (except the S-DISK, which is
logged in earlier by INITSYS & READFST).

184

In the CMS initialization process, if the user's first command is anything other than
LOGIN or FORMAT P ALL, the LOGIN command is invoked automatically to log in a
user's files from his P-Disk. Then, if a PROFILE EXEC exists in the user's
directory, this is executed, followed by the first command typed in. If the user
wishes to bypass the automatic call of his PROFILE EXEC, his first command must be
LOGIN (NOPROF. This logs in his files as usual, but bypasses the call to PROFILE

EXEC.

If a LOGIN is issued at any later time, for any disk, no such automatic call to
PROFILE EXEC is made — it is effective only on the first command, as described
above.

If desired, the PROFILE EXEC on a user's P-Disk can contain EXEC commands to

login other disks.

As shown under Valid Parameter Lists above, LOGIN can be called in several ways to
bring in the file directory for a given disk. However, these break down to two major
cases:

Case 1 LOGIN without the NO-UFD option brings in the directory of existing files for
the given disk. If the disk is read-write, the directory of all existing files is
brought into core (regardless of any remaining operands in the LOGIN
parameter list). If the disk is read-only, the directory of only those files
specified as operands in the LOGIN P-List is brought into core; if no
specific filenames, filetypes, or filemodes were specified, then the directory
of all files (except PO files) is brought in.

Case 2 "LOGIN (NO-UFD" (or equivalent) brings in the necessary file directory
information from the disk-resident file directory, but omits the FST entries
of pre-existing files. All necessary tables and disk counters are cleared,
giving the user a clean directory for the given disk as if he had called
FORMAT or had erased all files, LOGIN (NO-UFD or equivalent is valid only
for a read-write disk. Error 4 is returned if it is attempted on a read-only
disk.

LOGIN checks the parameter-list for the existence of a ccu disk-address and a possible
mode-letter.

If the ccu is provided, the value of the hexadecimal number is computed; leading zeroes
are permissible, but the computed value must be nonzero and less than X'6FF', If
provided and legitimate, its value is used in place of the default disk-address (i.e.,
191) in the NUCON table..

If a disk mode is given, ADTLKP is called to find the matching Active Disk Table for
the given letter, (If the diskmode is omitted, the P-Disk is used as a default.) If a
read-only extension is also given (e.g., LOGIN 193 A, P or such) ADTLKP is again
called, to ensure that an active disk table exists for the disk given by the extension-
mode-letter.

185

A check is made to ensure that the disk to be logged in is not already logged in as
another read-write disk. If so, error 7 is returned, with an error message to the user.

If a disk to be logged in will replace another disk which is currently logged in, then a
message indicating that this will occur is typed unless the NOTYPE option has been
specified. If, e.g., a disk addressed as 196 is about to replace a currently logged in
191 P-Disk, the message would be:

196 REPLACES P (191)

After the parameter list has been checked for errors and special options, LOGIN then
proceeds as follows, for Case 1 or 2 as described earlier.

Case 1 — LOGIN existing files:

1. RELUFD is called to clear all pertinent information in the old active disk table.

2. If the disk to be logged in will be a read-only extension of another (or of itself), the
read-only flag-bit in ADTFLGI1 is then set to force the disk to be read-only.

3. READFST is then called to bring in the entire or partial directory of the disk.

4. If this disk was read-only (either from setting the flag-bit from above or from
obtaining an error 4 from READFST), a check is made to see if any files at all
were accessed; if not, an error 8 is returned, RELUFD is called to clear the
Active Disk Table (ADT) entry, and the disk is not logged in. If read-only and
at least one file is accessible, then the read-only response is given (unless the
NOTYPE option was specified by the caller).

5. If the disk is to be a read-only extension of another, the extension-mode-letter is
stored in the ADTMX slot in the ADT block for the disk just logged in. Also,
another bit (ADTROX) is set in the ADTFLG1 flagbyte of the ADT for the other
disk, to indicate that it has at least one read-only extension.

6. A check is made to see if the disk just logged in is also logged in as any other
disk(s). If yes, and the newly logged in disk is read-write, the other disk(s)
are released via RELUFD and a message is typed (unless NOTYPE was spec;ified)
to indicate the release of the ccu as the other disk(s). If yes, and the newly logged
in disk is read-only, a message is typed (unless NOTYPE was specified) indicating
that ccu is also logged in as the other mode letter.

LOGIN for case 1 is finished. The disk is logged in, an extension-mode-letter

stored if appropriate, informative messages (if any) have been typed, and the disk is
ready to use.

186

Case 2 — LOGIN (NO-UFD:

1.

2,

6.

RELUFD is called to clear all pertinent information in the old active disk table,

Then READMPFD is called to bring in all pertinent information on the disk except
the FST hyperblocks containing the FST entries (which would have been brought in
if READFST had been called).

If an error is returned by READMFD it is returned to the caller of LOGIN, with
the error message as shown above. Note that if the disk is read-only, this is
treated as an error condition.

Upon successful return from READMFD, LOGIN obtains an 816-byte block from
free storage for the first FST hyperblock, clears it, and initializes the ADTRES
reserve-count and all other necessary pointers and counters in the ADT.

The QMSK brought in by READMFD is now cleared, and the appropriate disk
counts recomputed and stored to reflect a clean disk,

The QQMSK brought in by READMFD is also cleared.

CAUTION: "LOGIN (NO-UFD'" (or equivalent) should only be used when all old files
on a disk (if any) are to be discarded. It is equivalent, in effect, fo FORMAT'ing

the disk, or erasing all files thereon, but is much faster and more efficient. Note,
however, that if a user issues "LOGIN (NO-UFD" by mistake, the file directory on
the given disk has purposely not been updated by LOGIN (no call to UPDISK is made);
and therefore the user can recover his files by immediately issuing a LOGIN command
for the disk without the NO-UFD option.

Notes:

1.

If any disk is logged in as a read-only disk, for whatever reason, only files having

a mode-number of 1-6 are accessed. For a read-write disk, all files are accessible,
from mode numbers 0-6. Therefore, PO files on any disk can be considered
'"Private'’ to the user who has read-write access to the disk, and no one having
read-only access to the disk can reference them.

If the first user command is 'LOGIN', then INIT & LOGIN (which work together
on the first command issued at the terminal) accept that first command as is, and
do not issue any implied automatic login of the user's normal P-Disk (191).
Therefore, if the user wishes to login his P-Disk and then immediately login
another disk in addition, he should issue a specific login command for his P-Disk
first (e.g. LOGIN 191), and then the other LOGIN command (perhaps LOGIN

193 A, P or whatever). This could of course be conveniently done utilizing the
CMS linend character, e.g.:

LOGIN 191#LOGIN 193 A, P

187

3. I the user wishes to login a disk in a read-only status which is normally read-
write, this can be accomplished by making the disk a read-only extension of itself,

€. g.:

LOGIN 191 P, P
LOGIN 193 A, A

etc.

4, If the user does not wish to login any user disks at all with his first command, this
can be accomplished by issuing the command:

LOGIN NODISK

This is effectively handled as a no-operation by LOGIN when called by INIT

to handle the first user command,

LOGOUT

FUNCTION: To log a user out of the system.

ATTRIBUTES: Nucleus resident

CALLING SEQUENCE:

LA 1, PLIST
SvVC X'CA!

PLIST DC CL8'LOGOUT'
DC CLs8! !
DC X'FF'

Note: An additional command can be added
to the LOGOUT command here, if desired.
For example, LISTF or STAT would be
permissible.

(Must follow LOGOUT or 'added-on'
command,)

OPERATION: The CMS LOGOUT command calls LOGDISK CHANGE to close any files
that may be open and ensure that all file directories are updated. CLOSIO is called to
ensure that reader, printer, and punch operations are finished. At this point, any added-
on command (such as LISTF or STAT) is called, ignoring any possible error-return,
Then the PRNFINAL entry in the CMS timer program is called to compute and print the
cumulative CPU time used during the terminal session, Finally, LOGOUT loads a PSW,

188

causing the system to enter the WAIT state with no interrupts enabled. When running
under CP/67, the Control Program is reached by this loading of the PSW, and CP/67
indicates its readiness for a new command by typing "CP ENTERED, REQUEST,
PLEASE",

The CMS LOGOUT command can conveniently be stacked as the last command in a string
of CMS commands to be executed. Furthermore, if an appended command CP LOGOUT

is added, forming the command LOGOUT CP LOGOUT, the user will then log out of CP
after he has done all his work and logged out of CMS,

ELEASE

i A

FUNCTION: To release all core-resident tables pertaining to a given disk when it is no
longer needed; and to detach the disk, as an option.

ATTRIBUTES: Disk resident, transient
CALLING SEQUENCE:

LA R1, PLIST

svc X!'CA!

DC AL4(ERROR)
ENTRY REQUIREMENTS:

R1 must point to the Parameter List as usual:

DS OF
PLIST DC CL8'RELEASE!
DC CLS8! ' Disk-address (for example, 192)
DC CL8! ! Disk mode (for example, T)
[DC CL8'(DETACH)Y Optional if disk to be detached

EXIT CONDITIONS:

Normal Return
R15=0

Error Returns

R15=1 : Invalid RELEASE Parameter List (Disk address not hex num-
ber up to 6FF, disk mode not letter from A to Z, ete.)

189

R15=2 : No Active-Disk-Table found for given mode (ADTLKP did not
find disk corresponding to disk mode letter given)

R15=3 : Disk-Number does not match Device-Table
CALLS TO OTHER ROUTINES:
RELUFD, CPFUNCTN
CALLED BY:
User
MACROS USED:
ADT, FVS

OPERATION: The parameter list is checked for errors, The disk-address must be a
hex number (digits from 0 to 9 and letters from A to F, with a value no more than
X'6FF'). The disk mode must be alphabetic. It is not legal to RELEASE the S-Disk,
Error 1 is returned if any errors are detected, ADTLKP is called to find the Active Disk
Table (ADT) block, If an error occurs from ADTLKP, error 2 is returned. If ADTLKP
found the ADT block, the given disk~address is checked against the disk number in the
NUCON table that is pointed to by the ADT block. If it does not match, error 3 is re-
turned. If all checks so far are correct, RELUFD is called for this disk, and the
ADTFRO and ADTFRW read-only and read-write flag bits in the ADTFLGI flag byte in
the ADT block are also cleared, to signal that the disk referenced by the ADT block is
not logged in, (It is not an error condition if nothing was logged in when RELEASE was
called.)

If the parameter list specified at least ""(DET", signifying the " (DETACH)" option is de-
sired, CPFUNCTN is called upon (with a suitable parameter list) to detach the disk, and
the error-code from CPFUNCTN is passed back to the caller.

Installation Note: RELEASE is a transient disk resident command, GENMOD'ed with a
copy of CPFUNCTN (CMSCONF),

Other Notes: RELEASE is normally called when a disk that has been used for a while is
no longer needed, so that its tables will no longer take room in core and so that its file
directory cannot be confused with others., When it is desired to log in a read-write disk
which is already logged in as another, however, RELEASE must be called first, since it
is not practical to have a read-write disk logged in as two separate disks.

190

FUNCTION: To resume typing at the terminal,

ATTRIBUTES: Nucleus resident.
Imbedded in CONSI

CALLING SEQUENCE:

This routine, along with KT and KO, is not formally called. CONSI tests each input line
from an Attn interrupt for the presence of KT, KO, RT, and KX.

OPERATION: Hit ATTN key twice to open keyboard and enter RT. When CONSI receives
control from IOINT, it picks up the RT from the input line and clears the KT flag, re-
leases the ATTN buffer by a call to FRET, and returns to IOINT.

FUNCTION: The SYN command allows the user to specify his own command names to
be used with or in place of the standard system command names,

ATTRIBUTES: Disk resident, transient

CALLING SEQUENCE:
SYN [FILENAME FILETYPE FILEMODE (OPTION1 . . ., OPTION-N)]
If filemode is omitted, mode of '*' is agssumed (P, T, S-Disk)
If filetype is omitted, filetype of 'SYN' is assumed.

If filename is omitted, no user synonyms are set up. (Only the options are
processed,)

Options (if any) must be preceded by left-paren, and are as follows:

p prints the standard system abbreviations and user synonyms currently
defined.

PUSER prints only the user synonyms currently defined.

STD specifies standard system abbreviations are to be used. This is the
default value.

NOSTD specifies standard system abbreviations are not to be used.

MIN use minimum number of characters specified to identify commands.
- The default value.

[y
(o]
oy

EXACT use exact number of characters specified to identify commands.
CLEAR clears any previously defined synonym table set up by SYN.

OPERATION: The SYN command permits user-defined names to be used either alone or
in conjunction with the standard CMS system abbreviations — that is, it permits the user
to modify the command names acceptable to his own environment,

User-defined synonyms are located in a file identified as ''filename filetype filemode' in
the format shown in Note 2, If filetype is omitted, a filetype of SYN is assumed; if file-
mode is omitted, a mode of * is assumed, meaning the P, T, or S-Disk. If no file is
specified, no user-defined synonyms are set up, and the system abbreviations are used
in the manner defined by the specified options.

All options (if any) are specified between a pair of parentheses. (The right paren, how-
ever, may be omitted.) The default options are STD — use standard abbreviations, and
MIN — allow a minimum number of characters to represent a command. NOSTD will
flag the standard system abbreviations as unusable; MIN accepts abbreviations as long
as the minimum number of characters specified in the abbreviation table are present;
EXACT accepts only the entry as specified.

SYN can also be used to print out the list of synonyms and abbreviations currently
acceptable,

Notes:

1. SYN with no additional parameter is the same as SYN (P); that is, it types a listing
of system and user abbreviations currently in effect.

2. The user synonym file "filename filetype filemode" consists of 80~-byte fixed-length
records in freeform format with columns 73 to 80 ignored. The format for each
record is:

system-command user-synonym count

where count is the number of characters necessary for the synonym to be accepted.
If omitted, the entire synonym must be entered, SYN builds a table from the contents
of this file to use for command synonyms.

EXAMPLES:

SYN

SYN (CLEAR P)

SYN MYOWN (PUSER)

SYN MY ABBS (NOSTD PUSER)
SYN OUR ABBS SY (NOSTD

ERROR CODES (With Messages)

1

2

3

4

5

INCORRECT 'SYN' PARAMETER LIST

NO ABBREVIATIONS AT ALL {"ABBREV" NOT IN NUCLEUS)
GIVEN USER SYNONYM FILE NOT FOUND

USER SYNONYM FILE BAD (MUST BE 80-BYTE FIXED RECORDS)

FAULTY DATA IN USER SYNONYM FILE

*** DISK ERROR READING USER SYNONYM FILE

***Note — Error-code from RDBUF returned to caller.

OTHER RESPONSES:

a.

SYSTEM ABBREVIATIONS FLAGGED "NOT IN USE"

A request has been made to print the system abbreviations while a previous

NOSTD is in effect,

NO USER SYNONYM TABLE CURRENTLY IN USE

A request has been made to print the user-defined synonym table while no such

table has been defined by SYN command.

193

VSET

FUNCTION: VSET allows the user to control different aspects of his environment at
his console. VSET BLIP controls the character designated to notify the user of every
two CPU seconds of execution time; VSET CHARDEF controls the definitions for
logical symbols, such as line delete, character delete, backspace, and tab characters,
and the hexadecimal representation of defined characters; VSET IMPEX controls the
order of search for commands: VSET LDRTELS controls the number of pages of core
used for loader tables: VSET LINEND controls the definition for the logical line-end
character: VSET RDYMSG controls the length of the error and ready messages typed
by CMS: VSET REDTYPE controls the color of the CMS error messages: and VSET
RELPAG controls the releasing of pages of core upon command completion,

ATTRIBUTES: Disk resident, transient Module<CMSCARE
ENTRY REQUIREMENTS:

R1 must point to parameter list. The calling sequences are shown with the
different VSET functions.

EXIT CONDITIONS:

R15 = return-code

All other registers restored.
CALLED BY:

User.

VSET BLIP

FUNCTION: To enable the user to specify the terminal two-second time count
character.

CALLING SEQUENCE:
DS OF
PLIST DC CL8'VSET'
DC CL8'BLIP'
DC CL8'char' BLIP character(s) or (OFF)
DC CLS8'nn' number of characters in char

CALLS TO OTHER ROUTINES:

None

184

OPERATION: VSET BLIP first determines if the machine is running in Batch mode. If
it is, an exit back to the caller is taken. If not, it checks for a BLIP OFF request, If
no blip is desired, it sets the timer to a larger positive number (effectively turning off
the blip) and exits to the caller. If a blip is desired and it is not the nonprinting default,
the desired character is stored in TIMCHAR and the count is moved to the timer CCW
string,

VSET CHARDEF

FUNCTION: To enable the user to change the default characters for logical symbols
and to specify the hexadecimal representation of characters.

CALLING SEQUENCE:
For logical symbols:

DS OF
PLIST DC CI8'VSET'
DC CL8'CHARDEF!
DC CLS8'type' B,C,L, or T
DC CL38'character'

For character representation:

DS OF
PLIST DC CL8'VSET'
DC CL8'CHARDEF'
DC CLS8'type’ IN,OU, or IO
DC CLS8'character’
DC CL8'hexcode'

CALLS TO OTHER RGUTINES:
FREE, FRET

OPERATION: If the request is for delete character, DELSYM indexes the delete table
by a 4 in R4 to insert the new character. If the request is for delete line, the index is
8 for the same operation. For EDIT backspace, it places the address of SVCSECT in
R4 and inserts the character at displacement 290. For EDIT logical tab, it uses the
same operation with a displacement of 291. In all cases, the return to the caller is
through R14. The revised table is kept in free storage, and its address is placed in a
filled-in word in the CONGEN section of the NUCON table.

Prior to exit from CHARDEF a check is made to see if the free storage table (as re-~

vised) is identical to the standard table. If yes, the free storage table is returned via
FRET and its address in CONGEN is cleared.

195

""CHARDEF IN T XX causes a table to be set up for use by WAITRD in preference to
the usual upper-case translation table, with the desired 'XX' equivalent used as an
argument byte corresponding to 'T".

""CHARDEF OU U XX causes a table to be set up for use by TYPLIN or TYPE which
is used for output translation,

"CHARDEF IO V XX'' causes both of the above to be set up.

"CHARDEF IN, OU, or IO'" with no additional parameters causes the tables to be
returned to free storage via FRET and their use discontinued.

VSET IMPEX
CALLING SEQUENCE:
DS OF
PLIST DC CL8'VSET!'
DC CLS'IMPEX'
DC CLS8' ! ON or OFF
CALLS TO OTHER ROUTINES:
None
OPERATION: VSET IMPEX OFF causes a bit to be set in the NUCON table which
inhibits the implied exec procedure, when examined by INIT for commands entered

from the terminal.

VSET IMPEX ON resets this bit, causing the implied exec procedure to be in effect.

VSET IDRTBLS

CALLING SEQUENCE:

DS OF
PLIST DC CL8'VSET'

DC CL8'LDRTBLS'

DC CL8'nn' optional number of pages desired
CALLS TO OTHER ROUTINES:

None

196

OPERATION: VSET LDRTBLS checks to see if any free storage is in use by CMS; if
so, the loader tables cannot be revised. If not, a check is made to see if the loader
tables can be revised to the number of pages desired. If yes, the revised number of
pages of loader tables is stored in the NUCON table.

If no operand is specified, the number of pages of loader tables is obtained from
NUCON, and typed.

VSET LINEND

FUNCTION: To enable the user to define his own logical linend character in place of
the default characier of

CALLING SEQUENCE:

DS OF
PLIST DC CL8'VSET!

DC CLS8'LINEND'

DC C18'char'’ optional character for line-end
CALLS TO OTHER ROUTINES:

FREE, FRET

OPERATION: BREAK stores the new linend character in BRKCHR, and returns to the
caller through register 14.

VSET RDYMSG

CALLING SEQUENCE:

DS OF
PLIST DC CL8'VSET!

DC CL8'RDYMSG'

DC CLs' ' ON or OFF
CALLS TO OTHER ROUTINES:

None

OPERATION: VSET RDYMSG OFF causes a bit to be set in the NUCON table, which,
when examined by INIT, causes the abbreviated ready and error messages to be typed.

VSET RDYMSG ON clears this bit, causing the full-length ready and error messages
to be typed.

197

VSET REDTYPE

CALLING SEQUENCE:
DS oF
PLIST DC CL8'VSET'
DC CL8'REDTYPE'
DC CL8' ! ON or OFF
CALLS TO OTHER ROUTINES:
None
OPERATION: VSET REDTYPE ON sets a bit to the CONGEN part of the NUCON table
which causes typeouts to be typed in red if CONWRITE or TYPE is called with an 'R’

color code, as for error messages.

VSET REDTYPE OFF clears this bit, so that all messages will be in black.

VSET RELPAG

CALLING SEQUENCE:

DS OF
PLIST DC CL8'VSET!
DC CLS8'RELPAG'
DC CL8' ! ON or OFF

CALLS TO OTHER ROUTINES:

None

OPERATION: VSET RELPAG OFF causes a bit to be reset in the NUCON table, which
Operation: when examined by INIT, causes the release-pages feature to be bypassed.

VSET RELPAG ON sets this bit, enabling the release-pages feature,

198

LIBRARIES
CMS provides two types of libraries — macro and text (subroutine)., Macro libraries are
searched for missing macros during assemblies, Text libraries are searched for miss-

ing subroutines or undefined filenames during the LOAD, USE; or REUSE commands,

To generate, add to, delete, or replace in macro or text libraries, the MACLIB and
TXTLIB commands are used, These are described in detail in the following section.

MACLIB

FUNCTION: To generate a macro library, to add macros to an existing library, and
to list the dictionary of an existing macro library.

ATTRIBUTES: Disk resident

CALLING SEQUENCE:

LA 1,PLIST
SVC X'CA!
DS 0D
PLIST DC CL8'MACLIB'
rCOMP 3
GEN
ADD
DC CLS'J LIST > '
PRINT
REP
~DEL
DC CL8' ' macro library name
DC CLs8! ' filename 1
DC CLsg' ' filename N

OPERATION: The operation of the MACLIB command program depends on whether the
calling program specifies GEN, ADD, LIST, COMP, PRINT, REP, or DEL,

GEN: MACLIB calls the ERASE command program to erase the file (if any) that is
identically designated as the macro library to be created, MACLIB then calls the
WRBUF function program to write a dummy, 80-byte record as the first record in the
macro library, This dummy record will later be replaced by a macro directory
descriptor record. Next, MACLIB initializes the index, which corresponds to the item
number, to one, Then it calls the STATE function program to locate the file status table

for the first macro file — filetype must be ASP360 or COPY. MACLIB next calls the
RDBUF function program to read the first record in the first macro file, calls the
WRBUF function program to write it into the macro library being created, and incre-
ments the index. After writing the first (or any) record, the action taken by MACLIB
depends on the nature of the record,

If the record is a macro header record (that is, it contains the characters''MACRO"
starting in column 10), MACLIB saves the current index value for subsequent use in
calculating the size (that is, the number of items) of the macro, Then, it stores the
index value in the appropriate entry in the macro dictionary (refer to "TABLE/

RECORD FORMATS'" later in this section), reads the next record, which is the prototype
record, obtains the macro name from that record, moves the name to the appropriate
entry in the macro dictionary, writes the prototype record into the macro library,
increments the index, and reads and processes the next record.

If the record read is either a comment or an element 6f the body of the macro, MACLIB
merely reads and processes the next record.

If the record is a macro trailer record (that is, it contains the characters ' MEND"
starting in column 10), MACLIB calculates the size of the macro, places the size in the
appropriate entry in the macro dictionary, increments a pointer to point to the next entry
in the macro dictionary, and returns to read and processes the next entry.

MACLIB repeats this process for all records in the first macro file, When an end-of-file
is encountered, it calls the FINIS command program to close that file, and processes
the next macro file similarly,

When 4ll macro files are processed, MACLIB writes the macro dictionary out at the end

of the macro library, overlays the dummy record at the start of the macro library with a
dictionary header record (refers to "TABLE/RECORD FORMATS"), closes the newly created
macro library, and returns (via SVCINT) to the calling program, which is usually INIT.

Note: Throughout its processing, MACLIB checks to ensure that the records in each
macro definition are in correct sequence, If they are not, it signals the error by means
of a terminal message (error-code 4), and returns to the calling program,

ADD: MACLIB calls the STATE function program to determine if the macro library to
which the macros are to be added exists, If it does not, it signals the error and returns
to the calling program, If the macro library exists, MACLIB calls the RDBUF function
program to read the dictionary header record into main storage so that it can get the
starting location of the macro dictionary, It then sets the read pointer in the file status
table to point to the start of the macro dictionary and repeatedly calls the RDBUF func~
tion program to read the macro dictionary into main storage. MACLIB next calls the
FINIS command program to close the macro library., Having closed the library, MACLIB
calls the POINT function program to set the write pointer to the start of the old macro
dictionary., Next, MACLIB sets a pointer to the next available location in the macro
dictionary and then proceeds to add the macros in the same manner as it does if GEN

is specified,

200

DEL: The specified macro name is deleted from the macro library dictionary.

REP: The macro filename (with a filetype of ASP360 or COPY) is used as the name of
the macro to be replaced. If the replacing macro has more items than already exist in
the library, the macro is DELeted from the library and then ADDed to the end of the
MACLIB. Otherwise, if the replacing macro is not larger than the existing macro, it
will occupy exactly the same position within the library as the replaced macro,

LIST: MACLIB reads the macro dictionary into main storage as it does for ADD, It then
calls the TYPLIN function program to print a heading for the list. Next, MACLIB obtains
the first entry in the dictionary, moves the name, index, and size to a buffer, and calls
TYPLIN to print the contents of the buffer at the terminal. MACLIB repeats this for
each entry in the dictionary. When all entries are processed, MACLIB returns to the
calling program,

PRINT: The same function as LIST is performed with the following results: a file
identified as '"libname" MAP P1 will be written onto the user-disk area and automatically
printed onto the OFFLINE PRINTer,

TABLE/RECORD FORMATS: The formats of the macro dictionary and the dictionary
header record are described below,

MACRO DICTIONARY: In the macro dictionary (see Figure 30) each entry is 12 bytes in
length and contains three fields, The name field (8 bytes) contains the name of the
macro, The index field (2 bytes) indicates where, within the macro library, the first
record (item) in the macro is located, The index field (2 bytes) is expressed as an item
number. The size field (8 bytes) contains the size of the macro. It is expressed in
terms of the number of items in the macro.

DICTIONARY HEADER RECORD: The dictionary header record (see Figure. 31) defines
the location and size of the macro dictionary. It is an 80-byte record and contains three
meaningful fields. The first field (bytes 1-6) contains the characters 'MACLIB'. The
second field (bytes 7 and 8) is a pointer to the start of the macro dictionary. It is ex-
pressed as an item number, The third field (bytes 11 and 12) contains the size of the

macro dictionary (in bytes).

Name of first macro Index Size

Name of second macro Index Size

b)

1 £
b)Y
W

Name of nth macro

Figure 30. Macro Dictionary Format

201

Bytes Contents
16 MACLIB
78 Pointer to start of macro
dictionary
9-10 Size of macro dictionary
11-80 Not used

Figure 31, Dictionary Header Record Format

TXTLIB

FUNCTION: To create a text library, to add text files to an existing text library, to
create a disk file that lists the control section and entry point names in a text library,
or to type at the terminal the control section and entry point names in a text library.

ATTRIBUTES: Disk resident

CALLING SEQUENCE:
LA 1,PLIST

SVC X'CA!
DS 0D
PLIST DC CL8'"TXTLIB'
GENERATE
ADD
DC CL8'¢ PRINT '
LIST
DELETE
DC CLS8' ! library name
DC CL8' ' filenamel/csectnamel
DC CL8' ' filenameN/csectnameN

OPERATION: The operation of TXTLIB depends on whether the calling program
specifies GENERATE, ADD, PRINT, or LIST,

GENERATE: TXTLIB calls the SVCFREE function program to obtain a block of free

storage for use as a work area, It then calls the ERASE command program to erase the
existing text library (if any) with the same name as the one tc be created, Next,

202

TXTLIB initializes the index and saves it for subsequent use to calculate the size of the
first control section. Then TXTLIB calls the STATE function program to determine if
the first input text file specified exists, If it does not, TXTLIB signals an error by
means of a terminal message and processes the next input text file,

If the text file exists, TXTLIB calls the RDBUF function program to read the first record
in the file, increments the index, and calls the WRBUF function program to write the
record into the text library. Subsequent processing of this record (or of any record read
from an input file) depends upon its nature,

If the record is not an ESD, LDT, or END record, TXTLIB merely reads and processes
the next record in the input file,

If the record is a ESD record, TXTLIB obtains the first ESD data item in the record.

If this data item is for a section definition (SD) or label definition (LD), TXTLIB puts

the associated name into the next available entry in the text library dictionary. Next,

it places the saved index value, which indicates the relative location within the library

in terms of items (that is, 80-byte records) of the start of the control section, into the
dictionary entry. It then obtains and similarly processes the next ESD data item in the
record. If the obtained data item is neither for a section definition nor for a label
definition, TXTLIB skips it and obtains the next data item., When all the data items in
the ESD record are processed, TXTLIB reads and processes the next record in the input
file. (During the processing of the ESD record, the name and index fields of one or more
entries in the dictionary may be filled in, The size field of these entries, which indicates
the size of the corresponding control section in terms of number of items (that is, 80~
byte records), will be filled in when the next LDT record is encountered. Also, the
index fields in the dictionary entries for the section definition and all label definitions

of a control section will contain the same value.)

If the record read is an LDT record, TXTLIB computes the size of the control section
in terms of number of items, stores the size in the successive entries in the dictionary
that were partially filled when the preceding ESD record(s) was processed, saves the
current index value for use in computing the size of the next control section, and reads
and processes the next record in the input iext fiie.

If the record read is an END record, TXTLIB generates an LDT record from the
information on the END record, writes the LDT record into the text library, and
processes the LDT record as previously described.

When an end-of-file on the input text file is encountered, TXTLIB calls the FINIS com-
mand program to close that file, obtains the next file, and adds its contents to the
text library in a similar fashion,

When the last input file has been processed, TXTLIB successively calls the WRBUF
function program to write the dictionary (80 bytes at a time) at the end of the text
library, constructs a dictionary header record, and writes the header record at the
beginning of the text library. (TXTLIB has left room at the beginning of the library

for the header record.) Finally, TXTLIB calls the FINIS command program to close
the text library, calls the SVCFRET function program to release the free storage used
as a work area, and returns (via SVCINT) to the calling program, which is usually INIT,

203

OVERFLOW: The maximum number of entries allowed in the dictionary is 1000. Each
time an ESD card is encountered the total is checked. If the number exceeds 1000, the
pointer to the end of the file is set back to the end of the last complete CSECT, the
dictionary is written out, and the program completes in the normal way often issuing a
message to indicate which CSECT caused an overflow.

ADD: TXTLIB calls the STATE function program to determine whether the text library
to be added to exists. If it does not, TXTLIB types a message at the terminal to that
effect and returns to the calling program. If the library exists, TXTLIB calls the
RDBUF function program to read the header record into main storage. From the header
record, TXTLIB obtains the location and size of the dictionary. It again calls RDBUF
to read the entire dictionary into main storage. Then, TXTLIB sets the write pointer to
the location of the dictionary in the text library. This is done so that the dictionary will
be written over when the new text files are added to the library. Next, TXTLIB calls the
FINIS command program to close the library. It then adds the new text files to the end
of the library by following a procedure identical to that for GENERATE.

PRINT: TXTLIB calls the STATE function program to determine whether the text
library whose control section and entry point names are to be placed into a disk file
exists. If it does not, TXTLIB types a message at the terminal to that effect and
returns to the calling program. If the library exists, TXTLIB reads the header record
into main storage and then reads the dictionary into main storage. Next, it calls the
FINIS command program to close the library. TXTILIB then calls the ERASE command
program to erase the previously created disk file (that is, the MAP file), if one exists.
Next, TXTLIB calls the WRBUF function program to write a heading into the new

MAP file being created. Subsequently, TXTLIB repeatedly calls the WRBUF function
program to write a record into the new MAP file for each entry in the dictionary. If
the dictionary entry represents the start of a control section, the corresponding record
consists of the name of the control section, the location of the control section within the
text library in terms of an index value, and the size of the control section in terms of
number of items (that is, 80-byte records). If the dictionary entry is for an entry
point (that is, a label definition), the corresponding record consists only of the entry
point name. When all dictionary entries are processed, TXTLIB writes a record
containing a count of the number of entries in the dictionary into the MAP file. It then
calls the FINIS command program to close the MAP file, releases the free storage
previously obtained, and returns to the calling program.

LIST: The processing performed by TXTLIB if LIST is specified is essentially the
same as that for PRINT. However, in this case, TXTLIB calls the TYPLIN function
program, rather than WRBUF, to type the records produced for the entries in the
dictionary at the terminal.

DELETE: TXTLIB takes a filename of filetype TXTLIB and a list of CSECT names in the
TXTLIB file to be deleted. TXTLIB scans the dictionary and copies everything not found
in the list of CSECT names to be deleted into a new dummy file (. DUMMY TXTLIB). A
new dictionary is created for this new TXTLIB file. When the operation is complete,

the original TXTLIB file is erased and the file .DUMMY TXTLIB has its name altered to
that of the original file.

204

Note: If a CSECT name occurs twice within the TXTLIB file, only the first occurrence
is deleted. A CSECT name may be entered into the argument list two or more times to
delete two or more CSECT's with the same CSECT name.

TABLE/RECORD FORMATS: The formats of the text library dictionary and the
dictionary header record are described below.

TEXT LIBRARY DICTIONARY: This dictionary has room for 1000 entries. Each entry
is associated with either a control section name (section definition ESD item) or an
entry point name (label definition ESD item). An entry is 12 bytes in length and contains
three fields. The name field (8 bytes) contains either the control section or entry point
name. The index field (2 bytes) contains the location of the corresponding control
section from the start of the text library. This field is expressed as an item number,
The size field (2 bytes) contains the size of the control section in terms of number of
items (i.e., 80-byte records). The text library dictionary is illustrated in Figure 32.

DICTIONARY HEADER RECORD: The dictionary header record defines the location and
size of the text library dictionary. It is an 80-byte record and contains four meaningful
fields. The first field (bytes 65-68) is a pointer to the start of the text library dictionary.
It is expressed as an item number. The second field (bytes 69-72) contains the size of
the macro dictionary (in bytes). The third field (bytes 73-76) contains the number of
items in use and the fourth (bytes 77-80) the number of items not in use. The dictionary
header record is illustrated in Figure 33.

1 9-10 1112
- 12 bytes -
N
Name; Index; Size;
Name, Indexy Size,
Maximum of
i 1000 Entries
nF ~~
Name, Index, Size, J
Figure 32. Text Library Dictionary Format
Bytes Contents
1-64 Not used
65-68 Pointer to start of
dictionary
69-72 Size of dictionary - 12
in bytes
73.7€ Fof items
77-80 #free

Figure 33. Text Library Dictionary Header Record Format

205

FORTRAN Subroutines

In addition to the standard program library, the following subroutines found in the
FORTRAN library SYSLIB TXTLIB are provided to aid the terminal user in more
effectively utilizing CP/CMS:

Filename of

Entry Point Source Deck
CPNMON/CPNMOF IXCFREM
NLSTON/NLSTOF IXCFREM
DEFINE IXCDEF
DSDSET IXCDSD
ERASE IXCRENM
GETPAR IXCGETP
LOGDSK IXCRENM
RENAME IXCRENM
REREAD IXCRERD
TRAP IXCBPTRP
BLIP/TRAP IXCBPTRP

CPNMON/CPNMOF (alias NLSTON/NLSTOF)
Purpose: This routine provides the ability to enter namelist data from the terminal in a
free format mode.
Usage:
Before issuing any free format reads you must issue:

Call CPNMON, or
Call NLSTON

To return to standard namelist format, issue:

Call CPNMOF, or
Call NLISTOF

Regular namelist data is entered in the following manner:
B&listlpa=1, b=2, c=3, 4, 5h&end
Free format data for the same variables would be entered:

1,2,3,4,5

206

Data must be entered in sequential order, unlike regular namelist mode in which the
order is of no consequence, as the variables appear in the specific namelist referenced.
In addition, the namelist must be exhausted before attempting to read another namelist,
since if a second read to a second namelist is attempted before the first namelist has
been exhausted, the data intended for the second namelist will be placed in the first read
iocations.

The call to CPNMON or NLSTON results in a dynamic overlay of FORTRAN IHCNAMEL
calls to THCFIOCS, with a transfer to IHCFREM, the free format routine. At execution
of the namelist read, control is passed to the IHCFREM at this point. THCFREM then
goes to THCFIOCS and picks up the record. It then constructs a standard namelist
record, which it passes back to IHCNAMEL at the point where processing normally
continues.

Exiernai References:

THCNAMEL
THCFIOCS

Entry Points:
CPNMON
NLSTON

CPNMOF
NLSTOF

DEFINE

Purpose: 1) To permit the use of sequential access disk files as direct access files.
2) To tie a CMS filename~-type to a FORTRAN DSRN.

Usage:
CALL DEFINE (DSRN, NAME, type, recno, recsiz)
where DSRN = FORTRAN file number
NAME = filename
TYPE = (filetype
RECNO= integer or integer variable containing location of the
record number to be read or written
RECSIZ= maximum record size
then issue a normal sequential read or write, not a direct access read.
Constraints: 1) Must be fixed-length records

2) Must be a disk file
3) If a data set referencenumber is assigned to a new filename and
filetype, the record number for the old filename filetype is lost.

207

External References:

1) Rereadv
2) FIOCS

3) Deftblv
4) IBCOM

DSDSET

Purpose: To enable users to alter the data set default specifications for all the defined
units in the csect 'THCVATBL' with the exception of DSRN's 5,6 & 7.

Usage:
Call DSDSET (DSRN, BLKSIZE, TYPE, LKECL)
where
DSRN = the data set reference number of the data set that is to be
modified
BLKSIZE = is the new blocksize to be used as default on the data set
TYPE = code number from 1 - 5 to change the default RECFM
1 - fixed

2 = fixed/blocked
3 - variable
4 - variable/blocked
5 - undefined

LRECL = is the logical record length to be used as a default on
the data set. It is optional in the parameter list, but
must exist in correct relationship to the BLKSIZE if
the RECFM is defined as fixed/blocked.

External References:

IHCUATBL
THCF COMH

ERASE

Purpose: To erase a file from within a FORTRAN program.
Usage: Call ERASE (FNAME, FTYPE, <FMODE>)
FNAME is filename
FTYPE is filetype
FMODE is filemode

Note: This subroutine uses the CMS function ERASE to erase the file named in the call.

208

GETPAR

Purpose: To enable the user to obtain parameters entered from the terminal at

program

Usage:

load time.

CALL GETPAR (name , item-no , 'RITE' , TLAST)
where name is the variable (real *8) that is to be set to the values of the
parameter number 'I'TEM-NO'.

ITEM-NO is the location (integer *4) in the initial parameter list of the

Notes:

LOGDSK

Purpose:

parameter desired; it may be any non-negative value, with 0 indicating the
parameter pointed to by GR1 on initial entry (that is the program namej;

if item number exceeds the number of parameters in the string, no parameter
is passed and control will pass to statement 'lost' if &LAST was specified.
'RITE is an optional literal which causes the current parameter to be
right-justified in its double word field, with leading blanks supplied; this is
useful in reading numeric parameters; and, finally, &LAST is an optional
statement label to which control is passed if item number exceeds the number
of variables.

The program load parameter is accessed by indirect addressing:
L R3, = V(CMSFORTR) gets original FORTRAN area

L R3, 4(0, R3) gets original CMS save area
L R3, 24(0, R3) gets Reg 1

To close all open files and write the user file directory on P-disk.

Usage: CALL LOGDSK

Notes: This subroutine uses the CMS function LOGDSK to close all open files and write
the user file directory on disk.

RENAME

Purpose:

To change file identifiers within a FORTRAN program.

209

Usage: Call RENAME (OLDFN, OLDFT, NEWFN, NEWFT)
OLDFN is old file name
OLDFT is old file type
NEWFN is new file name
NEWFT is new file type

Notes: This subroutine uses the CMS function ALTER to make the desired changes.

REREAD

Purpose: To enable the user to reread a record which has already been read into core.
Usage: Call REREAD (DSRN, BLKSIZE)

DSRN may be any number between 0 and 4 or 8 and 99.
Default value is 99.

BLKSIZE may be any integer greater than zero.
Default value is 140 bytes.

The reread unit is a block of core which is obtained when the call "REREAD" is issued.
The user then can use the reread unit any time he chooses by first writing data into the

block, rewinding the unit and then reading it under what ever format control he chooses.
Failure to rewind the unit will result in an end-of-file condition because the pointer will -
be positioned at the end of the buffer.

Possible uses include testing a code on input and branching to different reread routines
based on the codes.

Ex. Call reread (25, 80)
Read (1, 10) list
If col80 eq. x go to 40
If col80 eq. y go to 50
40 write (25, 10) list

rewind 25
read (25, 20) list

50 write (25, 10) list

rewind 25
read (25, 30) list

2190

External References: VF10CS
F10Cs#
IBCOM#
DEFTBLV
Illegal usage: DSRN 5, 6, 7
negative DSRN

Floating point blocksize
unformatted records

TRAP

Purpose: To enable the user to specify a program interrupt location.
Usage: Call TRAP (statement number).

Note: The TRAP flag is set so that on a program interrupt you will go to your routine
and not into DEBUG.

BLIP/TRAP

Purpose: Provides the ability to use the CMS functions BLIP and TRAP from within a
FORTRAN program. For a discussion of TRAP, see TRAP.

Usage:

1. Call BLIP (character string, count)

2. Call BLIP (0)

3. Call BLIP (character)

The first way enables a user to specify a printing blip character or character string ~
up to 8 characters - with a count of how many there are in the string.

The second way gives just a character with a count of one.
The third way resets the blip character to the non-printing CMS character.
Note: Since the blip character types on the terminal every 2 seconds of CPU time, this

can be used to roughly measure time spent in various parts of a complex program by
calling different blip characters for each part to be measured.

212

SECTION 5: SERVICE PROGRAM DESCRIPTIONS

This section describes the programs that provide the monitor and command programs
with the services provided. These include the function, loader, and processing pro-

grams, The following text contains detailed descriptions of the various CMS function
programs.

STORAGE MANAGEMENT FUNCTION PROGRAMS

The following text describes the operation of the routines which manage free storage;
they include FREE, FRET, SVCFREE, and SVCFRET.

FREE

FUNCTION: To allocate free storage

CALLING SEQUENCE:
LA 0, NDBLWDS number of double words wanted in register 0
L 15, =A(FREE)
BALR 14, 15

OPERATION: Refer to '"Main Storage Management'' in Section 2.

COMMENTS: FREE returns the address of the allocated storage in register 1. Registers
0 and 2 thru 15 are preserved.

FRET

FUNCTION: To release storage that is no longer needed by a program to free storage.

CALLING SEQUENCE:

LA 0, NDBLWDS number of double words to be released in
register 0.
LA 1, BLOCK starting address of storage to be released

in register 1.
L 15, = A(FRET)

BALR 14, 15

213

OPERATION: Refer to "Main Storage Management' in Section 2.

COMMENTS: All 16 registers are preserved.

SVCFREE

FUNCTION: To allocate free storage

CALLING SEQUENCE:

LA 1, PLIST
svC X'ca
PLIST DC CL8'SVCFREE'
DC o number of double words wanted
DC A address of allocated storage returned to

caller here
OPERATION: SVCFREE calls the FREE function program that will allocate the re-
quested storage and return its starting address to SVCFREE. SVCFREE then loads the

starting address into the last entry in the parameter list and returns (via SVCINT) to
the caller.

SVCFRET

FUNCTION: To return storage that is no longer needed by a program to free storage.

CALLING SEQUENCE:

LA 1, PLIST
sveC X'CA!
PLIST DC CL8'SVCFRET'
DC F' ! number of double words to be returned
DC A() address of first double word

OPERATION: SVCFRET calls the FRET function program to return the storage to free
storage. It then returns (via SVCINT) to the calling program.

214

FILE MANAGEMENT MACROS
Several macros are used for convenience by the various file management and related
function programs and routines. Appendix B shows which programs and routines use

each particular macro.

These I/O macros are as follows:

Macro Description or Use
ADT Shows one Active Disk Table entry (See Figure 34.)
AFT Shows one Active File Table entry (See Figure 35.)

DIOSCT Macro corresponding to DIOSECT (used by RDTK-
WRTK-DSKERR) (See Figure 36.)

FSTB Shows one FST Entry (See Figure 37.)
FVS Macro corresponding to most of FVS C-Sect

(heavily used to reference 1/0 tables and
routines) (See Figure 38.)

215

*

* ACTIVE

*
ADTSECT
*

*

*

ADTID
ADTFLG3
ADTFTYP
ADTPTR
ADTDTA
ADTFDA
ADTMFDN
ADTMEDA
ADTHBCT
ADTFSTC
ADTCHBA
ADTCFST
ADT1ST
ADTNUM
ADTUSED
ADTLEFT
ADTLAST
ADTCYL
ADTM
ADTHMX
ADTFLG1
ADTFLG2
*
ADT2ND
*

%*

*
ADTMSK
ADTQQM
ADTPQM1
ADTPOM2
ADTPQM3
ADTLHBA
ADTLFST
ADTNACH
ADTRES
*
ADTLBM
ANTLD!!
*

ADTLB
ADTLD

CMS "ANT" MACRO

(showing form of an Active Disk Table Block)

MACRO
ADT

DISK TABLE BLOCK

DSECT

NEEDED FOR READ-ONLY DISKS AND READ~WRITE DISKS

DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS

MEEDED

Fou
EQu

EQU
EQu

CL6
X
1X

DISK—IDENTIFIER (LABEL)

—RESERVED FOR FUTURE USE-

FILETYPE FLAG-BYTE

POINTER TO NEXT ADT BLQCK IN CHAIN
DEVICE TABLE ADDRESS IN NUCON

FILE NIRECTORY (PSTAT) ADDPRESS

MUMBER DBL-VORDNS IN MFD

MASTER FILFE DIRECTORY ADDRESS

FST HYPERBLOCK COUNT

NUMBER OF FST L4O-BYTE EMTRIES (FILES)
POINTER TO CURREMT FST HYPERBLOCK
DISPLACEMENT OF CURRENT FST ENTRY
DISP, OF 1ST WORD IN BIT-MASK WITH "HOLE'
NUMBER OF RECORDS (NUMTRKS)

NUMBER OF RECORDS IM USE (OTUSEDP)
NUMBER OF RECORDS LEFT (OTLEFTP)

DISP., OF LAST NONZEROD BYTE IN BIT-MASK
NUMBER OF CYLINDERS ON DISK (NUMCYLP)
MODE LETTER (P,T,S,A,B,C, ETC.)
EXTENSION-OF-MODE LETTER (P,T,S, ETC.)
FIRST FLAG-BYTE

SECOND FLAG BYTE

JUST FOR READ-WRITE DISKS

800-BYTE (PnMSK) BIT-MASK ADDRESS
200-BYTE (PCOMSK) BIT-MASK ADDRESS
POMSIZ NC. BYTES IN PCMSK > 215
POMNUM MO, 800 BYTE-REC FOR POMSK
RONUM = NO, DBL-WORDS IN POMSK

POINTER TO LAST FST HYPEPR-BLOCK

PISP, OF LAST FST IM LAST HYPER-BLNCK
HUMBER OF ACTIVE WRITE FILES - HALFWORD
RESERVE-COUNT (RESRVCNT) - HALFWORD

ADT2ND-ADTSECT LENGTH OF MINIMUM ADT BLOCK (BYTES)

ARTLBIM/ R

*~ADTSECT
(ADTLB+7)/8

Figure 34. CMS ADT macro (sheet 1 of 2)

216

LEMGTH OF FIMIMIMY ADT BLOCK IMN DBL=WORDPS

LENGTH OF FULL ADT BLCCKX (BYTES)
LEMGTH OF FULL ADT BLOCK IM DBL-WORDS

*
*

ADTFSF
ADTFRO
ADTFRW
ADTFESTF
ADTFESTV
ADTFQOF
ADTROX
ADTFMIN
*

*

*
ADTFMFD
ADTFALNM
ADTFALTY
ADTEMDRO
ADTFALMD
ADTFALUF
ADTWMSG
*

*

*

ADTRL
ADTML

*
*

*
DTAD
DTADT
DTAS

cHS "ARTY MACRO
(continued)

FIRST FLAG-BYTE (ADTFLG1) DEFINITIONS

ENU x'go' ADT BLCCK IN FREE STORAGE

EQU X's0! READ-ONLY DISK (ATTACHED & READY)

EQU X'20' READ-WRITE DISK (ATTACHED & READY)
EQU X'10' 1ST FST HYPERBLOCK IS IN FREE STORAGE
EQU x'08' FST HYPERBLOCKS ARE OF VARYING LENGTH
EQU X'oy' 200-BYTE 0OMSK IS IN FREE STORAGE

EQU X' 02 THIS DISK HAS READ—ONLY EXTENSION (S)

EQU x'o1! ADT BLOCK 1S MINIMUM SIZE

SECOND FLAG-BYTE (ADTFLG2) DEFINITIONS

EQU X'so' MFD IS IN CORE

EQu X'40' ALL FILENAMES ARE IN CORE
EQU X'20' ALL FILETYPES ARE IN CORE
EQu X0 MODES 1-6 ARE IN CORE

EQU ADTFMDRO+X’ 08’ ALL MODES (0-6) ARE IN CORE

EQU ADTFMFD+ADTFALNM+ADTFALTY+ADTFAIMD ALL UFD IS IN CORE
EQU X'ou' READ-ONLY WARNING MESSAGE HAS BEEN GIVEM BY WRBUF
OTHER PARAMETERS

EQU 800 LOGICAL RECORD LENGTH
EQU 5 MAXIMUM BIT MASK LENGTH - IN RECORDS

NUCCN DEVICE TABLE OFFSETS

EQU 0 DEVICE NUMBER

EQU 3 DEVICE TYPE BYTE

EQU L SYMBOLIC DEVICE NAME
MEND

Figure 34. CMS ADT macro (sheet 2 of 2)

211

MACRO
AFT
*
* ACTIVE FILE TABLE BLOCK

*

AFTSECT DSECT

AFTCLD DS H DISK ADDPRESS OF CUPRENT CHAIMN LIMK - 0
AFTCLHN DS H HMUMDRER OF CUPRENT CHAIN LIMK - 2

AFTCLA DS F CDRE ADDRESS OF CHAIM LIMK BUFFFP - 4
AFTDBD DS H DISK ADDRESS OF CURRENT DATA BLOCK - 2
AFTDBN DS H NUMBER OF CURREMT DATA BLCCK - 10
AFTDNBA DS F CORE ADPDRESS OF CUPRPENT NATA PIOCY - 12
AFTCLB ns XL80 CHATM LIMK BI'FFEP FROM 1ST CHAIM LIMK - 1F
AFTFLG DS X FLAG BYTE - 96

AFTPFST DS 3X POIMTER TO (STATIC) FST-EMTRY - 97
AFTIN DS H CUPRENT ITEM MI'MBER - 100

AFTID DS H DISPLACEMENT OF CUPRENT ITEM IN PATA ELK - 102
*

* FLAG BYTE (AFTFLG) DEFINMITIOMNS

*

AFTUSED EQuU x'80' ACTIVE FILE TABLE BLCCK INM USE

kkx EQu X's0' (NOT USED = SPARE)

AFTICF £QU X'20' FIRST CHAIM LINK 1M CORE FLAG

AFTFBA ENU x'10! FULL RBUFFER ASSIGNED

AFTDBF EQU x'osg' DATA BLOCK IN CORE FLAG

AFTURT EQu X'ou' ACTIVE WRITE

AFTRD EQu X'n2! ACTIVE READ

AFTFULD EQU X'o1! FULL-DISK SPECIAL CASE

*

* COPY OF FST BLOCK IMBEDDED IMN AFT BLOCK

*

AFTFST DS 0D - 104
AFTN DS D FILE NAME
AFTT DS D FILE TYPE
AFTD DS F DATE/TIME LAST WRITTEN
AFTWP DS H WRITE PCINTER (ITEM NO,)
AFTRP DS H READ POINTER (ITEM MNOC.)
AFTM DS H FILE MODE
AFTIC DS H ITEM COUNT
AFTFCL DS H FIPST CHAIN LMK
AFTFV DS € FIXED(F)/VARIARLE(V) FLAG
AFTFB DS X FST FLAG BYT
AFTIL DS F (MAXIMAUM) ITEN LENCTH
AFTPBC DS H 800-BYTE DATA BLOCK COUNT
AFTYR DS H YFAR
*
AFTADT DS F POINTER TO ACTIVE DISK TABLE - 1hy
AFTPTR DS F POINTER TO MEXT AFT BLOCK IN CHAIN - 1u°
*
AFTFSF EQU X'40" BIT It AFTPTP INDICATES IN FREF STORAGE
*
DS oD END OF DSECT
AFTLB EQU *-AFTSECT LENGTH OF AFT BLOCX IN BYTES
AFTLD EPU AFTLB/S LENGTH OF AFT BLOCK IN DOUBLE WORDS
*
MEND

Figure 35. CMS AFT macro

218

1oeLn
CSH

*

*

*

PWAIT

*
QODSK1
QQDSK2
*

*

*

oWl
cew2
CCW3
RWCCY!
CCKNOP

*

SEEKADR

*

10COMM

*

SENCCW
*

cc
Sitl

*

*
*
LASTCYL
LASTHED

*
DEVTYP
FLAG

*

SENSB
*

*
*

DOUBLE

*
*
XRSAVE

ERRCODE

*

*
FREERO
DIOFREE

*

R1SAVE

MACRO

DI0SCT
DC ip'o! 10-0LN=-PSW (FRCM IMTERRUPT RCOUTIME)
bC ip'o! CS¥W (FROM INTERRUPT ROUTINE)

WAIT CALLING SEOUENCE

DS OF

bcC CL8'WAIT'

DC C'DSK-"' FILLED IN TO CORRECT SY#BOLIC DISK NO,

DC F'o!

DC F'o!'

DC F'o! 1ST TWO BYTES ALYWAYS = 0

EQU QQDSK1+2 HALFWORD COPY OF 16TH TRACK DISK-ADDRESS
CCW CHAIN

CCw X'07',SEEKADR,CC,6 SEEK

Ccw X'31',SEEKADR+2,CC,5 SEARCH

TIC BACK TC SEARCH
READ OR WRITE DATA
NO-0OP FOR CE & DE TOGETHER

CCwW X'08',+-8,0,1
CCW X'00',%*=%,CC+SILI, *=-*
CCw x'e3',o0,S1Ll,1

DC XL7'00' SEEK/SEARCH INFO (1ST 3 BYTES ARE 0)
DC X'o0"' SET TO READ (06) OR WRITE (05)
CCW X'ou',SENSB,SILI,6 = SENSE COMMAND (USED 1F ERRQR)
EQU X'yo' COMMAND~CHAIN
EQU X'20' cee
1/0 INFO
bC F'o' BECOMES 'LAST CYLINDER-NUMBER USED'
DC F'o! BECOMES 'LAST HEAD-NUMBER USED'
DC Xx'oo' UMIT-TYPE = 01 (2311), 08 (2314)
DC X'oo' FLAG BYTE
DC XL6'00' SENSE-INFORMATION

MISCELLANEOUS STORAGE...

DC ip'o! (FOR 'cvD' USE)

KEEP THE FOLLOWING THREE IN ORDER,..

DS 15F REGISTERS 0-14 SAVED HERE FOR PRTK-WRTK
DC AL3(0) FIRST 3 BYTES OF R15 EPROR-CONE

DC AL1(%x-*) ERRCR-CODE (It R15 AT EXIT)

KEEP THE FOLLOWING TWO IN ORDER,.

DC F'o!' MO, DBL-WORDS QOF FREE STORACE (IF AMNY)
DC F'o! ADD, OF FREE STORAGE FCR BUFFER OR CCu'S
nDe F'o! ACTIVE-DISK-TABLE POINTER SAVED HFPE

Figure 36. CMS DIOSCT macro (sheet 1 of 2)

219

* 1/0 ERROR MESSARES

*

DIOMSG1 DC C'**x ERROR ' 'SIC" OR "xxx!

MSGIA DC C'--=--ING ' 'READ' OR '"WRIT'

MSG18B DC c'z-nisk (' 'p' OR 'T' OR 'S' ETC.

MSG1C pDe C'XXx), cyr'! DEVICE MUMBER (HEX) E,.G. 191
MSG1D DC C'000 HEAD ' CYL, NO, (DRECIIAL)Y 000 TO 202
MSG1E bce c'no REC ' HEAD NO, (DECIMAL) 00 T 19
MSC1F ne c'oo (231 RECCRD MO, (DECIMAL) 01 TO 15
MSG1G ne c'-)! '1' FOR 2311, '4' FOR 2314

LEMSG1 EQU *-N10OMSA1

*

DIOMSG2 DC c'csw = !

MSG2A DC C'OOXXXXXX XXXXXXXX' BYTES 1-3 AND 4-7 OF CSW

MSG2B be c', ccw =" (PUT COMMA BACK IN AFTER UMPK)
MSG2C ne CTXXXXXXXX XXXXXXXX' LAST €CW GOES IN HERE
MSG2D De C', SENSE-INFO = ' (PUT COMMA BACK 1IN AFTER UMPK)
MSG2E DC c'ooo0000000000" SENSE-1NFCRMATION
LEMSG2 EQU *-DIOMSG2

bC c''! (EXTRA BYTE FOR UMNPK SPILLOVER)

MEND

Figure 36. CMS DIOSCT macro (sheet 2 of 2)
cMs "FSTBY MACRO

(showing form of a 4O-byte FST-entry)

MACRO
FSTB

*

* FILE STATUS TABLE (FILE DIRECTORY) BLOCK

*

FSTSECT DSECT

FSTN DS 10 FILE NAME - 0

FSTT DS 1D FILE TYPF - 8

FSTD DS 1F DATE/TIME LAST WRITTEN - 16
FSTWP DS 1H WRITE POINTER (ITEM NOC.) - 20
FSTRP DS 1H READ POINTER (ITEM NO,) - 22
FSTM DS 1H FILE MODE - 24

FSTIC DS 1H ITEM COUNT - 26

FSTFCL DS 1H FIRST CHAIN LIMK - 28

FSTFV DS 1C FIXED(F)/VARIABLE(V) FLAG - 30
FSTFB DS 1C FLAG BYTE (IF USED) - 31

FSTIL DS 1F (MAXTMUM) ITEM LENGTH - 32
FSTDBC DS 1H 800-BYTE DATA BLOCK COUNMNT - 36
FSTYR DS 1H YEAR - 38

FSTL EQU *-FSTSECT

*

*

* FST HYPER-BLOCK PARAMETERS

*

FSTFWDP ENU 200 FORWARD POINTER (TOQ MEXT HYPERBLOCK 1M CORE)

FSTBKWD EQU 804 BACKWARD POINTER (T2 PREVIOUS HYPERBLOCK [N CORE)

*
HEND
Figure 37. CMS FSTB macro

220

FVSECT
DISK$SEG
RPEGSAV3
RUFSTRG
*

ADTFVS

*

*

*
REGSAVO

nnArnnNN
[SR 39 AQ VAV PRV

m

RKLSAVE

Xk ok R — %

EGSAV1

ERRCOD1
*
AACTLKP
AACTNXT
AACTFREE
AACTFRET
AADTLKP
AADTNXT
AFSTLKP
AFSTLKUW
ARDTK
AVWRTK
ATRKLKP
ATRKLKPX
AQQTRK
ANOTRKX
AREADFST
AREADMFD
ARELUFD
AUPDISK
AKILLEX
ATFINIS
ARDBUF
AURBUF
AFINIS
ASTATE
ASTATEV
APOINT
F65535

*

FL

Ll

MACRO
FVsS
DSECT
DS

DS

ns

DC

CHS "FVS'" MACRD

15F (1) FOR FSTLKP, FSTLKW, ACTLKP, TRKLKP, 0OOTRK

15F (2) REGISTERS SAVED BY RDBUF, WRRUF, FIMIS, STATE
18F (3) REMAIMING STORAGE FOP RDRUF, WRRUF, FINMIS
2F'0! ADTLKP

SAVE-AREA FOR LOWEST-LEVEL ROUTINES:

E.G.
ns
bC

nr
[PAV)

EQU

READMFD, RELUFD, UPDISK, ETC.

i15F -- (1) SAVED RO-R15
AL3(00) -- (2) FIRST 3 BYTES CF PETURN-CODE

AL1{#-#) -- (3) ERROR-CODE GOES HERE
REGSAVO FOR TRKLKP/X ONLY WHEN CALLED BY NOTRK/X

SAVE-AREA FOR NEXT-TO-LOWEST LEVEL ROUTINES:
E.G. READFST, LOGDISK, UPUFD, ERASE, ETC.

DS
DC
DC

DC
DC
DC
e
DC

bC
Eou

15F -- (1)
AL3(00) -- (2)
AL1{*-%) -- (3)

V(ACTLKP)
V(ACTNXT)
V(ACTFREE)
V(ACTFRET)
V(ADTLKP)
V(ADTNXT)
V(FSTLKP)
V(FSTLKW)
V(RDTK)
V(WRTK)
V(TRKLKP)
V(TRKLKPX)
V(QQTRK)
V(QOTRKX)
V(READFST)
V(READMFD)
V(RELUFD)
V(UPDISK)
V(KILLEX)
V(TFINIS)
V(RDBUF)
V(WRBUF)
V(FINIS)
V(STATE)
V(STATEY)
V(POIMNT)
F'65535"' = X'O00O0OFFFF'

Flul
Fli+2

Figure 38. CMS FVS macro (sheet 1 of 2)

221

CMS M"FVS" MACRO (continued)

AFREE DC V(FREE) =-- (1)
F100 DC Ff100' -- (2)
*
AFRET DC V(FRET) (IMNTO R15)
JSRO DC F'o! RO AND ...
JSR1 DC F'o! R1 SAVED MERE FOR FRET CALLS.
*
* PARAMETER=-LIST T0O READ/WRITE MFD,..
RWMFD DC A(*-+) -- CORFE-ADDRESS
F800 DC F'800' -- 800 BYTES
DC A(HL)
FVYSDSKA DC A(x-x) -- ADD, OF ACTIVE-DISK-TABLE
*
DSKLST DS 0OF ALl -PURPOSE RDTK/VWRTK P-LIST...
DSKLOC DC A(%x=%) CORE LOC. OF ITEM
RWCNT DC A(%=x) BYTE-COUMNT (USUALLY 800)
DSKADR DC A(x~-x) DISX ADDRESS OF ITE!
ADTADD DC A(x==) ADDRESS CF CORRECT ACTIVE=-DISK-TABLE
*
FINISLST DC CL8'FINIS! P-LIST 70O CL0~" ALL FILES
DC cL8"*!
DC cL8'*!
DC CL2"+!
*
DS oH HALFYORD TONSTANTS ...
FFF DC X'FFFF! MEANS NO SIGNIFICANT DATA PAST 215TH BYTE
FFE DC X'FFFE! 1968-ERA MFD STILL SUPPORTED ON INPUT OQNLY
FFD DC X'FFFD! NEWEST SIGNAL FOR FULL 2714 HANDLING
*
* 'SIGNAL' = SCRATCH HALFWORD USED BY READMFD PR FRASE...
SIGNAL DC H'0o! = 0000, X'FFFF', X'FFFE', OR X'FFFD'
SWTCH EQU SIGNAL+1 00, FF, FE, CR FD
*
UFDBUSY DC x'oo! MONZERO MEANS '"UFD IS BUSY BEING UPNDATED!
KXFLAG DC X'ono' NONZERND MEANS 'KX' DESIRED ASAP,
EXTFLAG DC X'oo! MONZERO MEANS EXTERMAL INTERRUPT WANTED,
FLGSAVE ©DC x'oo0' FOR USE AS MNEEDED (AS BY 'FiMIS")
*
* FLAG BITS FOR 'UFDBUSY' FLAG...
WRBIT EQU Xx'80! WRBUF
UPBIT el X'yo! IIPNISK - READMFD
FNBIT EQU x'20! FINIS
ERBIT EQU x'10! ERASE - ALTER - READFST
DIOBIT EQU x'os' RDTK/WRTK
*
FVSFLAG DC X'oo! (FOR GENEPAL USE - AS MEEDED)
*
* MISCELLANEQUS STORAGE USED BY ERASE (OR ALTER)
ERSFLAG DC X'o0!' FLAG FOR USE BY ERASE OR ALTER
*
FVSERASO DC F'o! (1) - RD TO/FROM FSTLKYW (FOR ERASE)
FVSERAS1 DC F'o! (2) - R1 TO ACTLKP OR FSTLKY (FOR FRASF)
FVSERAS2 DC F'o! (3) ADDRESS OF FREE STORAGE USED BY ERASE
DS 0D
STATEFST DC 10F'0" 4LO-BYTE COPY OF FST-ENTRY
STATERGQ DC F'o! RO AND R1 FROM FSTLKP ON MOST RECENMT
STATER1 DC F'o! SUCCESSFUL STATE APE SAVED HERE,
*
MEND

Figure 38, CMS FVS macro (sheet 2 of 2)

222

FILE MANAGEMENT FUNCTION PROGRAMS

The file management function programs are used to create and read CMS files, to locate
specified files, and to enable specified items in a file to be directly accessed. The file
management function programs, which are generally called via SVC X'CA’, inciude
RDBUF, WRBUF, FINIS, STATE, STATEW, and POINT.

RDBUF

CALLING SEQUENCE:

LA R1, PLIST R1 must point to P-List as usual
then either

sveC X'CA' Call RDBUF via SVC

DC Al4 (RDERROR) Error-return (for example, if end-of-file)
or

L R15, ARDBUF Where ARDBUF = V(RDBUF)

BALR Ri4, Ri5 Call RDBUTF via BALR (within nucleus)

BNZ RDERROR Transfer if error(for example, end-of-file)

ENTRY REQUIREMENTS:

R1 must point to RDBUF parameter list:

DS OF
PLIST DC CL8'RDBUF' (note — immaterial if called by BALR)
DC CL8' ! filename
DC CLs’ ! filetype
DC CL2' ! filemode
DC H' ! item number of first (or only) item to be read
DC A() address of buffer into which item(s) read are
to be placed (that is, address of input buffer)
DC F' ' size of input buffer.
DC cL2' ' F/V Flag (in leftmost byte)
DC H' ! number of items to be read
DC A(*-%) number of bytes read returned here
EXIT CONDITIONS:
Normal Return
R15=0 (and condition-code = 0)
Error Returns
R15 nonzero (and condition-code = 2)

223

CALLS TO OTHER ROUTINES:
ACTFREE, ACTLKP, FREE, FRET, FSTLKP, RDTK
CALLED BY (where known):

LOADMOD (in particular — called by BALR), and by all programs (usually
by SVC) which read CMS files.

MACROS USED:
AFT, FSTB, FVS
ERROR RETURNS (R15 value at Exit):
1. Given file not found.
2. User Memory Area not within memory limits.
3. Permanent disk error from RDTK.
5. Number of items = 0.
7. TFixed/variable flag in FST entry = "R'" (Should be "F'" or '"V').

8. Given memory area was smaller than actual size of item read (Note: nonfatal;
number of bytes corresponding to size of buffer have been read).

9. File open for writing — must be closed before it can be read.
11. Number of items greater than 1, for variable-length file.
12. End of File (Item number specified exceeds number of items in file)

13. Variable file has invalid displacement in active file table (indicates coding error —
should not occur).

Note: All errors except error 8 cause the function call to be aborted. Error 8 is legiti-
mate if reading the first portion of a large record into a little buffer.

OPERATION: After performing some error checks, RDBUF calls ACTLKP to determine
if the given file is in the active file table. If it is found but is an active write, an error
9 is given. If an active read, then processing proceeds as described under "'File
Active'. If the file is active but neither a read nor a write, then it must have been
placed in the active table by a POINT function call; processing continues as described
below at the point after the entry is placed in the active file table by ACTFREE.

FILE NOT ACTIVE: If the file is not found by ACTLKP in the active file table, RDBUF
checks to see if the file referenced at STATEFST (left by the most recent call to
STATE) matches the caller's parameter list. (As many commands STATE a file to find
its existence and characteristics and then immediately RDBUF the first record, there
is a good chance this will occur — thus saving a needless search of the FST tables). If
found at STATEFST, the addresses of the active disk table and the FST entry itself are
obtained from the eight bytes immediately following the STATEFST copy, and FSTLKP
is not called. If the file is not found in STATEFST, then FSTLKP is called to find the
given file. (If not found by FSTLKP, an error 1 occurs). If found by FSTLKP, or
found in STATEFST as above, then ACTFREE is called to find or create an entry in the

Active File Table and insert the 40-byte FST entry therein.

When the file has been placed in the Active File Table (or was already there from a
POINT function as mentioned above), RDBUTF marks the file as being active. Next,
RDBUF obtains buffer space into which to read the data blocks and into which to read

the first chain link. It then calls the RDTK function program to read the first chain link
into main storage. RDBUF next moves the first 80 bytes of the first chain link into the
chain link directory in the active file table entry. Then RDBUF determines if the item(s)
to be read is/are of fixed or variable length. If of variable length, processing proceeds
as described under '"Variable-Length Item' in this section. If of fixed length, proc-
essing proceeds as described below.

Fixed-Length Item: RDBUF calculates the number of bytes to be read. This is equal to
the item length multiplied by the number of items to be read. It then calculates (from
the item number supplied in the parameter list) the data block from which the item(s)
is/are to be read. This calculation also yields the displacement from the start of the
data block of the first byte to be read. Next, RDBUF determines whether the affected
data block is in main storage. If it is not, RDBUF determines whether the chain link
required to access the needed data block is in main storage. If the required chain link
is not in main storage, RDBUF calls the RDTK function program to read it into main
storage. After the required chain link has been read into main storage, or if it is
already in main storage, RDBUF determines whether the affected data block exists. (It
will if its corresponding entry in the chain link that is in main storage contains a valid
disk address.) If the affected data block does not exist, RDBUF fills the input buffer
with zeroes and returns to the calling program. If it does exist, RDBUF reads it into
the data block buffer.

If the affected data block is in main storage when RDBUTF is called, or if it is not, after
it has been read into main storage (if necessary), RDBUF determines whether it con-
tains all of the bytes to be read. (It will if the result of 800 minus the previously calcu-
lated displacement is greater than or equal to the number of bytes to be read.) If the
data block contains all of the bytes to be read, RDBUF moves them from the data block
buffer (where the data block resides) to the input buffer and returns to the calling pro-
gram. If the data block does not contain all of the bytes to be read, RDBUF moves the
pertinent bytes from the data block buffer to the input buffer. It then reads the next
data block into main storage, obtains the remaining bytes to be read from it, moves
them to the input buffer, and returns to the calling program. (If the 800 bytes in the
next data block are not sufficient to satisfy the read, RDBUF moves the entire 800 bytes
to the input buffer and reads the next data block to get the remaining bytes. RDBUF

225

repeats this procedure until the number of bytes in the input buffer equals the number
of bytes to be read. It then returns to the calling program.)

Variable-Length Records: RDBUF reads successive data blocks (starting with the first)
until it locates the one that contains the start of the variable-length item to be read. It
then moves the item length to the start of the input buffer. If the first data block contains
the entire item, RDBUF returns to the calling program. If the first data block does not
contain the entire item, RDBUF reads the next data block into the data block buffer,
moves the remainder of the item to the input buffer, and returns to the calling program.
If the remainder of the variable-length item is not completely contained with the 800
bytes of the second data block, RDBUF reads the next data block to get the remaining
bytes. RDBUF repeats this procedure until the entire variable-length item has been
placed in the input buffer. It then returns to the calling program.

FILE ACTIVE: If the file is active, RDBUF determines whether the item to be read is

of fixed or variable length. If of fixed length, it proceeds as described for fixed-length
items under "File Not Active'. If of variable length and the item to be read immediately
follows the one just read, RDBUF moves the variable-length item into the input buffer in
the previously described manner. If the variable-length item to be read precedes the one
just read, RDBUF proceeds as described for variable-length records under ''File Not
Active'. If the variable-length item to be read follows, but not immediately, the one
just read, RDBUF reads forward from the current location in the file until it locates the
data block containing the start of the desired item. It then moves that item to the input
buffer as previously described.

Notes:

1. If feasible, RDBUF reads any physical blocks of 800 bytes or more directly into the
caller's buffer, rather than into a free storage buffer and then moving the data. For
example, if a caller (say PRINTF) calls for forty 80-byte records, totaling 3200
bytes, RDBUF (when it has the data-block disk addresses available from the appro-
priate chain link) calls RDTK to read the 3200 bytes directly into the caller's buffer.
This procedure saves considerable processing, SIO's to the disk, data moving, etc.

2. RDBUF, in addition to various other error checking, checks the core-address given
by the caller. This core address must be no lower than the beginning of free storage
(FREAR), with the single exception of the storage area BLK1, which is legal for
certain applications. If the core-address is not above FREAR or within BLK1, an
error code 2 is given, and no reading occurs. This safeguards the CMS nucleus
from being clobbered by an invalid RDBUF parameter list in any program.

226

WRBUF

FUNCTION: To write one or more successive items into a specified disk file.

CALLING SEQUENCE:

LA

SVC
DC

L
BALR
BNZ

R1, PLIST
then either
X'CA'
AIA(ERROR)
or

R15, AWRBUF

R14,R15
ERROR

ENTRY REQUIREMENTS:

DS
PLIST DC
DC
DC
DC
DC
DC

DC

DC
DC

OF
CL8'WRBUF'
CLS']
CL8' '
cL2'

Hi 1

A()

Fl !

CL2' !
H '

EXIT CONDITIONS:

Normal Return

R15=0

Error Returns

CALLS TO OTHER ROUTINES:

R15 nonzero

R1 must point to P-List as usual

Call WRBUF via SVC
Error-return (for example, if read-only disk)

Where AWRBUF = V(WRBUF)
Call WRBUF via BALR (within nucleus)
Transfer if error (for example, read-only disk)

R1 must point to WRBUF parameter list:

(Note - immaterial if called by BALR)

filename

filetype

filemode

item number of first (or only) item to be written
address of buffer containing item(s) to be written
(that is, address of output buffer)

size of output buffer (number of bytes to be
written)

F/V Flag (in leftmost byte)

Number of items to be written

(and condition-code = 0)

(and condition-code = 2)

ACTFREE, ACTFRET, ACTLKP, ADTLKP, DISKDIE, FREE, FRET,
FSTLKW, KILLEXF, QQTRK, QQTRKX, RDTK, TRKLKP, TRKLKPX,

WRTK

CALLED BY (where known):

GENMOD (in particular — called by BALR), and by all programs (usually
by SVC) which write CMS disk files

227

MACROS USED:
ADT, AFT, FSTB, FVS
ERROR RETURNS TO CALLER (R15 value at Exit):
1. Filename or filetype not specified or illegal
2. User memory address =0
4. First character mode illegal
5. Second character mode illegal
6. Item number + number of items too large - will not fit in a halfword
7. Attempt to skip over unwritten variable-length item
8. Number of bytes not specified
9. File already active for reading
10. Maximum number of CMS files (3500) reached
11. F-V flagnot For V
12. Mode SY (SYSTEM) or other read-only disk
14. Attempt to write on T-Disk which is not yet formatted
15. Length this item not same as previous
16. Characteristic (F-V Flag) not same as previous
17. Variable-length item greater than 65K bytes
18. Number of items greater than 1 for variable-length file
19. Maximum number of data blocks per file (16060) reached
OTHER ERROR RETURNS:

Transfers to DISKDIE (within FINIS) on a permanent I/O Error.
Transfers to KILLEXF (within LOGOUT) if disk is full.

OPERATION: WRBUT first performs a series of tests to ensure that the parameter list
is legal. If it is not, WRBUTF signals the error and returns to the calling program. If
the parameter is legal, WRBUF calls the ACTLKP routine to see if the file exists and is
active; if yes, processing proceeds as described under "File Active.' If not, WRBUF
calls the FSTLKW function program to determine whether the specified file exists. If

228

yes, processing proceeds as described under ''File Exists, Not Active. " If not,
processing proceeds as described under '"File Does Not Exist. "

FILE DOES NOT EXIST: If the file does not exist, WRBUF calls ADTLKP to determine
the active disk table pertaining to the given mode, and checks to ensure that the disk is
availabie and in read-write status (error return if notj. The ACTFREE is called to
obtain an available slot in the Active File Table for the file about to be created. Then
WRBUF initializes the AFT entry with necessary information including the name, type,
and mode of the file. WRBUF then calls the QQTRK routine to obtain an available
sixteenth of a track of disk space for use as the first chain link and stores the disk
address returned by QQTRK in the file status table. Next, WRBUF calculates (from

the item number supplied in the parameter list) the data block into which the item(s) is/
are to be written. This calculation alseo yields the location within the data block at which
the item(s) will reside. (The calculation is ((N-1) *1)/800. N is the item number, L

is the item length, and 800 is the length of a data block. The guotient produced by this
calculation is the number of the affected data block and the remainder is the displace-
ment into the data block at which the item(s) will reside.) Next, WRBUF calculates the
number of bytes to be written. This is equal to the item length multiplied by the number
of items to be written. Both values are obtained from the parameter list. WRBUF then
marks the file active, obtains buffer space for the data block, and determines if the
item to be written is of fixed or variable length. If of variable length, processing
proceeds as described under '"Variable-Length Item'. If of fixed length, processing
proceeds as described below.

Fixed-Length Item: WRBUTF determines the chain link that should contain the address of
the affected data block. (Ordinarily, at this point, this will be the first chain link and it
will exist in main storage.) If this chain link does not exist (that is, its corresponding
entry in the first chain link is not a valid disk address), WRBUF calls the TRKLKP func-
tion program to obtain a quarter of a track for the new chain link, inserts the disk
address returned by TRKLKP into the chain link directory of the active file table entry,
and obtains storage for use in constructing the new chain link. If the chain link exists,
WRBUF calls the RDTK function program to read it into main storage. WRBUF then
determines if the affected data block exists. (It will if the corresponding entry in the
chain link that is in main storage contains a valid disk address.) If it does not exist,
WRBUF calls the TRKLKP function program to obtain a quarter of a track for the new
data block, inserts the disk address returned by TRKLKP into the appropriate entry in
the chain link that is in main storage, and clears the data block buffer for use in
constructing the data block. If the data block exists, WRBUF calls the RDTK function
program to read it into the data block buffer. WRBUF then calculates the number of
bytes in the data block buffer that are available for use. (The number of bytes available
is'equal to 800 minus the previously calculated displacement.) Next, WRBUF determines
whether the number of bytes to be written is greater than the number of bytes available
in the data block buffer. If the number of bytes to be written is not greater than the num-
ber available, WRBUF moves the bytes to be written from the input buffer to the data
block buffer and returns to the calling program. (In this case, the data block is not
written onto disk because it is not full.) If the number of bytes to be written exceeds the
number of bytes available, WRBUF moves sufficient bytes into the data block buffer to
fill it, and writes the completed data block onto disk. WRBUF then determines if the
chain link that should contain the address of the data block that is to receive the over-
flow from the previous data block is in main storage. If it is not, WRBUF writes the

229

current chain link (that is, the one in main storage) onto disk and retrieves the chain
link containing the address of the data block that is to receive the overflow. This chain
link may or may not exist. If the chain link does not exist, WRBUF allocates disk
space for the new chain link in the previously described manner and determines if the
data block that is to receive the overflow exists as previously described. If the chain
link exists, WRBUF reads it into main storage and determines if the data block that is
to receive the overflow exists. When the data block that is to receive the overflow is

in main storage (that is, in the data block buffer), WRBUF calculates the number of
bytes remaining to be written. If this is not greater than the number of bytes available
in the data block buffer (on overflow, all 800 bytes of the data block buffer are available),
WRBUF moves the remaining bytes from the input buffer to the data block buffer and
returns to the caller. If the number of bytes remaining to be written is greater than the
number of bytes available in the data block buffer, WRBUF moves sufficient bytes into
the data block buffer to fill it, writes the data block onto disk, and moves the overflow
into the next data block as described.

Variable-Length Item: WRBUF reads successive data blocks (starting with the first)
into the data block buffer until it locates the one that contains the item immediately
preceding the one that corresponds to the item number specified in the parameter list.

It then locates the end of that item. (This may entail reading additional data blocks,
depending on the length of the item.) When it locates the end of the item, WRBUF moves
the length of the item to be written from the input buffer to the location in the data block
buffer immediately after the end of the previous item. It then moves the item to be
written from the input buffer to the data block buffer in the same manner as for fixed-
length items. (If overflow occurs, it is handled in the same manner as for fixed-

length items.)

FILE EXISTS, NOT ACTIVE: If the file exists but is not active, WRBUF calculates the
data block into which the item(s) is to be written. This calculation also yields the
location within the data block at which the item(s) will reside. ACTFREE is called

to obtain an available slot in the Active File Table and to store the FST entry therein.
Next, WRBUF marks the file as active, reads the first chain link into main storage,
and moves the first 80 bytes of the first chain link into the chain link directory of the
active file table entry. WRBUF then determines if the item(s) to be written are of
fixed or variable length. For both of these item types, WRBUF proceeds as described
under the corresponding heading in "FILE DOES NOT EXIST" in this section.

FILE ACTIVE: I the file is active, WRBUF calculates the data block into which the
item(s) is/are to be written. This calculation also yields the displacement into the
data block at which the item(s) will reside. Next, WRBUF determines the nature of the
item(s) to be written. If of variable length, WRBUF proceeds as described under
'"Variable-Length Item'. If of fixed length, it proceeds as described below.

Fixed-Length Item: WRBUF determines whether the affected data block is in main
storage. If it is, WRBUF proceeds as described under "File Does Not Exist", starting
at the point where the number of bytes available in the data block buffer is calculated.
If the affected data block is not in main storage, WRBUF proceeds in essentially the
the same manner as described under ""File Does Not Exist', starting at the point where
the data block'is written onto disk. (In this case, an overflow condition is not being
processed; however, the logic used to obtain the affected chain link and data block is

230

essentially the same. Also, because this is not an overflow condition, when the affected
data block is resident in the data block buffer, the number of bytes available in that
buffer is equal to 800 minus the calculated displacement.)

Variable- Length Item: If the variable-length item to be written immediately foliows the
one that was just processed, WRBUF moves the item length from the input buffer into
the data block buffer immediately after the end of the previous item. It then moves the
item to be written from the input buffer into the data block buffer immediately after

the length. This is done in the usual manner. (If overflow occurs, it is handled in

the usual manner.) If the item to be written does not immediately follow the one that
was just processed, WRBUF proceeds in the same manner as described under the
variable-length item portion of "FILE DOES NOT EXIST".

Notes:

1. WRBUF can only write a certain number of logical records or items, regardless of
how much disk space may be available, because the "number of items" is kept in
a halfword in the 40-byte FST entry for that file, and is limited by the size of a
number which will fit in a (16-bit) halfword. To avoid running into this limitation
before it is too late to close the file successfully, WRBUF checks that the item-
number (when a WRBUTF call has been completed) will not exceed a given limit. If
it does, an error code 6 is returned, and no more data is written. The file may,
however, at this point be successfully closed (via FINIS), and can later be read by
RDBUF. At present this limiting number of records happens to be 65533. (65535
would have been the absolute limiting factor.)

2. In calls to QQTRK for obtaining the first chain link for a new file, and to TRKLKP
for obtaining either a new Nth chain link or a data block, error codes are checked
from these function programs for the full disk condition. If any of these situations
occur, WRBUTF carefully sets or resets any flags or conditions as needed, and calls
upon the KILLEXF code to close all files, compact the directory, update the user
file directory, and re-IPL. The file which was being WRBUF'ed (unless null) is
then available and complete insofar as the data being written could fit in the space
available.

3. Because of the design of the first chain link in the CMS file system, there is a
limitation of 16060 800-byte data blocks for any given file. If a file being WRBUF'ed
reaches this limit, an error 19 is returned, and no more data is written. The file
may be closed, and can then be successfully read (or erased), but it cannot be
made any larger. (A file of this size would fill more than half of a full-size 2314
disk).

4. There is also a limit of 3500 files that can be represented for any given disk, as
limited by the layout of the MFD block. If a disk already has reached this maximum
and an attempt to WRBUF a new file is made, WRBUF returns an error code 10,
and the new file is not opened.

FINIS

FUNCTION: To close one or more input or output disk file(s).

CALLING SEQUENCE:

LA R1, PLIST R1 must point to P-List as usual
then either

SYC X'CA! Call FINIS via SVC

DC AIA(ERROR) Error-return (for example, if file not open)
or

L R15, AFINIS Where AFINIS = V(FINIS)

BALR Ri14, R15 Call FINIS via BALR (within nucleus)

BNZ ERROR Transfer if error (for example, file not open)

ENTRY REQUIREMENTS:

R1 must point to FINIS parameter list:

DS OF
PLIST DC CLS'FINIS' (Note - immaterial if called by BALR)
DC CLS8' ' filename
DC CLS8' ' filetype
DC CL2' ! ' filemode

EXIT CONDITIONS:

Normal Return

R15=0 (and condition-code = 0)
File Not Open
R15=6 {and condition-code = 2)

CALLS TO OTHER ROUTINES:

ACTFRET, ACTLKP, DISKDIE, ERASE, FREE, FRET, FSTLKW, RDTK,
UPDISK, WRTK

CALLED BY (where known):

GENMOD & LOADMOD (called by BALR), UPUFD, LOGDISK, and by all
commands which use RDBUF & WRBUF.

MACROS USED:
ADT, AFT, FSTB, FVS
OPERATION: FINIS checks the caller's parameter list for '*' in the filename or

filetype, or a nonalphabetic character for the mode; if any of these conditions are met,
a flag is set to check for additional entries in the Active File Table.

232

After this preliminary check, FINIS calls ACTLKP to find an AFT block that matches
the caller's parameter list. If none is found, an error 6 is given as shown in the exit
conditions.

If a match is found, a check is made to determine whether the file is an active write, an
active read, or neither. If neither, it was placed there by POINT, but was not read or
written subsequently. Action is taken in these three cases as described in the following
paragraphs.

Active Read File

If the file found by ACTLKP is an active read file, FINIS takes the following steps to
close the file:

1. Release to free storage the 800-byte buffer used for the data block (via a call to
FRET).

2. Also release either the 200- or 800-byte buffer currently in use for the chain link.

3. If the file has a mode number of 3 or 4 (for example, P3, T4, ete.), it is now
erased. This is done by calling FREE to obtain free storage for a suitable call
to ERASE, then calling ERASE to eliminate the file, and then giving back the free
storage via FRET. Care is taken to preserve information to avoid re-enterability
problems between FINIS and ERASE.

4. Next, ACTFRET is called to release this slot in the Active File Table.

5. Finally, if either the filename, filetype, or filemode indicated that additional files
should be checked, FINIS returns to the portion of code which calls ACTLKP, to
check for any more AFT blocks that may match the caller's P-List.

6. Finally, when all appropriate file(s) have been closed, FINIS gives a normal return
as indicated under exit conditions.

File Active from a Point Call

For this case (active but neither a read nor a write), ACTFRET is called, etc., as
shown above in steps 4, 5, and 6 for the "Active Read File" case.

Active Write File

If the file found by ACTLKP is an active write file, FINIS takes the following steps to
close the file:

1. Checks the pointer (AFTPFST) in the AFT block to the FST entry (if any) in the
FST hyperblocks. In nonzero, proceed to step 2. If zero (as is the case for a
new file never before closed), the special FSTLKW entry to obtain an empty
40-byte FST entry is called, and the AFTPFST pointer is set to the address
provided by FSTLKW.,

233

Moves the 40-byte entry from the AFTFST slot in the AFT block to its location
within the FST hyperblocks, sets the mode-letter therein to P, and clears the
flag-byte.

3. Unless the first five letters of the filetype = SYSUT, the time of day and year are
computed in the same manner as GETCLK, and the date-time stored in FSTD in
the FST entry, and the year in FSTYR. (If the filetype indicates a utility file is
being FINIS'ed, this step is unnecessary and is therefore omitted.)

4. Next the current data block pointed to by AFTDBA is written on disk.

5. .Then the free storage block that was used for the data block is returned to free
storage via FRET.

6. If the first chain link is not in core, the current chain link (unless null) is written
on disk, and the first chain link brought into core.

7. The linkage portion of the first chain link (AFTCLB) is moved from the AFT block
to the first chain link, and the first chain link written on disk.

8. Then the free storage block used for the chain link (either 200 or 800 bytes in length)
is returned to free storage via FRET.

9. The write pointer is computed as the number of items plus one and stored in the
FST entry.

10. The number of active write files for this active disk table (ADTNACW) is
decremented by one.

11. If the number of active write files (ADTNACW) is now = 0, then UPDISK is called
to update the file directory for this active disk table.

12. ACTFRET is then called to release this slot in the Active File Table.

13. Then if either the filename, filetype, or filemode indicated that additional files
should be checked, FINIS returns to the portion of code that calls ACTLKP, to
check for any more AFT blocks that may match the caller's P-List.

14. Finally, when all appropriate file(s) have been closed, FINIS gives a normal return
as indicated under exit conditions.

Notes:

1. A special entry to the FINIS program called "TFINIS" (called only by BALR) is
provided for some special logic necessary for use by ERASE and ALTER. This
logic uses some, but not all, of the above steps in closing an input or output
file. See the description of "TFINIS" under File Management Routines for details.

2. If a permanent disk error occurs in closing an output file, FINIS types a warning

234

message on the user's terminal, and loads a PSW with a disabled wait state, rather

than trying to continue. This procedure is purposely followed to preserve the
user's old file directory, as part of CMS's double directory scheme. This code
is also enterable from without the FINIS program, as the DISKDIE entry point,
and is also invoked from WRBUF, ERASE, and UPDISK in the event of a

permanent I/0 error, again to preserve the old directory. The warning message

(self-explanatory) is as follows:

DISK HARDWARE ERROR; NOTIFY OPERATOR; RE-IPL WHEN CORRECTED

STATE

FUNCTION: To locate the file status table entry for a given file, and if found to provide

the caller with a copy thereof.

CALLING SEQUENCE:
LA R1, PLIST R1 must point to P-List as usual
then either
svc X'CA’ Call STATE via SVC
DC ATA(NOTFOUND} Error-return (if not found)
or
L R15, ASTATE Where ASTATE = V(STATE)
BALR RI14,R15 Call STATE via BALR (within nucleus)
BNZ NOTFOUND Transfer if error (not found)

ENTRY REQUIREMENTS:

R1 must point to STATE parameter list:

DS OF
PLIST DC CL8'STATE' (Note - immaterial if calied by BALR)
DC CLs8! ! filename
DC CL8' ' filetype
DC cL2' ! filemode
DC CL2 ! not used
ADCONDC A(*-%) Address of copy of FST entry returned here if

file was found
EXIT CONDITIONS:

File Found
R15=0 (and condition-code = 0)
also, ADCON in P-List filled in to V(STATEFST)
File Not Found
R15=1 (and condition-code = 2)

235

CALLS TO OTHER ROUTINES:
ACTLKP, FSTLKP
CALLED BY (where known):

LOADMOD (in particular - called by BALR), and by all programs (usually
by SVC) that check a file's existence and characteristics before reading it.

MACROS USED:
ADT, AFT, FSTB, FVS

OPERATION: STATE calls ACTLKP to see if the given file is in the Active File Table.
If found, the active 40-byte FST entry is moved from AFTFST in the AFT block to the
copy at STATEFST to be provided to the caller, and the STATERO and STATER1 words
following STATEFST are set to the addresses of the ADT block and the FST entry
respectively; then V(STATEFST) is stored in the caller's P-List (if necessary) as
described below.

If the file was not found by ACTLKP, STATE then calls FSTLKP to find the given file.
If not found by FSTLKP, the error-code from FSTLKP (= 1 for file not found) is re-
turned to the caller as shown in the exit conditions.

If the file was found by FSTLKP, then the 40-byte entry is moved to STATEFST, and
the RO and R1 values obtained from FSTLKP are stored at the STATERO and STATER1
words following STATEFST. (These words are used by RDBUF to avoid an extra
search of the FST tables under the circumstances given in the RDBUF description).
Where the file was found by FSTLKP, the mode letter is stored in the STATEFST copy
using the same algorithm as ACTFREE, being carefully chosen from that of the caller's
parameter list, or the ADTM or ADTMX mode given by the Active Disk Table.

The result of the choice of mode-letter facilitates the feature of a read-only extension
of a given disk. For example, if an A-Disk is a read-only extension of a P-Disk, if the
caller's parameter list specified the A-mode, the mode stored in STATEFST will be A;
but if the caller specified P or '*', the mode stored in STATEFST will be P.

After setting up STATEFST and the two words that follow, as described above, STATE

stores the address of STATEFST in the caller's P-List (unless it is already there),
and returns to the caller as shown in the exit conditions.

236

STATEW

FUNCTION: To locate the file status table entry for a given file on a read-write disk,
and if found fo provide the caller with a copy thereof.

CALLING SEQUENCE:

LA R1, PLIST R1 must point to P-List as usual
then either
svC X'CA!' Call STATEW via SVC
DC AIA{(NCTFOUND) Error-return (if not found)
or
L Ri5, ASTATEW Where ASTATEW = V(STATEW)
BALR Ril4, R15 Call STATEW via BALR (within nucleus)
BNZ NOTFOUND Transfer if error (not found)

ENTRY REQUIREMENTS:

R1 must point to STATEW parameter list:

DS OF
PLIST DC CL8'STATEW' (Note - immaterial if called by BALR)
DC CcLS8' ! filename
DC CL8' ! filetype
DC cL2' ' filemode
DC cL2' ! not used
ADCONDC A(*-% Address of copy of FST entry returned here

if file was found
EXIT CONDITIONS:
File Found
R15=0 (and condition-code = 0)
also, ADCON in P-List filled in to V(STATEFST)
File Not Found
Ri5=1 (and condition-code = 2
CALLS TO OTHER ROUTINES:
ACTLKP, FSTLKW
CALLED BY (where known):
OFFLINE
MACROS USED:

ADT, AFT, FSTB, FVS

237

OPERATION: STATEW is identical to STATE in operation, except that FSTLKW is
called to find the given file on a read-write disk, instéad of FSTLKP as called by
STATE.

STATEW is included in the STATE function program.

POINT

FUNCTION: To place a file status table entry in the Active File Table (if necessary),
and to set the read pointer and/or write pointer for that file to a given item number.

CALLING SEQUENCE:

LA R1, PLIST R1 must point to P-List as usual

then either
sve X'CA' Call POINT via SVC
DC ATIA4(ERROR) Error-return
or
L R15, APOINT Where APOINT = V(POINT)

BALR RI14, R15
BNZ ERROR

Call POINT via BALR (within nucleus)
Transfer if error

ENTRY REQUIREMENTS:

R1 must point to POINT parameter list:

DS OF
PLIST DC CLS8'POINT' {Note - immaterial if called by BALR)
DC CLs8' ! filename
DC CLS8' ! filetype
DC cL2' ' filemode
DC H' ! write pointer
DC H' ! read pointer

EXIT CONDITIONS:

Normal Return:

R15=0

File Not Found:

Parameter List Error:

R15=1

CALLS TO OTHER ROUTINES:

R15=2

(and condition-code = 0)
(and condition-code = 2)

(and condition-code = 2)

ACTFREE, ACTLKP, FSTLKP

238

CALLED BY (where known):
Disk resident routines
MACROS USED:
AFT, FVS

OPERATION: POINT checks for possible parameter list errors (for example if
called from a terminal), and exits with error 2 if parameter list is faulty.

If not, POINT calls ACTLKP to determine if the FST entry for the given file is already
in the Active File Table. If yes, the read and/or write pointers are set as described
below.

If not found by ACTLKP, then POINT calls FSTLKP to find the file. If it is not found,
error 1 is returned to the caller. If found, then ACTFREE is called to place the given
file in the active file table.

POINT then checks the read pointer provided by the caller; if it is zero, no action is
taken. But if nonzero, then its value is stored in the read pointer (AFTRP) in the
active file table.

Next, POINT checks the write pointer provided by the calier; if it is zero, no action is
taken. If the write pointer is a halfword of all ones (that is, = 65535), then the write
pointer AFTWP is set to the number of items (AFTIC) plus one. If the write pointer
is neither 0 nor 65535, then its value is stored in the write pointer (AFTWP) in the
active file table.

When through, POINT returns to the caller as shown in the exit conditions above.

239

FILE MANAGEMENT ROUTINES

The file management routines are used to locate specified files, to read file management
tables from disk into main storage, to write file management tables from main storage
onto disk, to delete old copies of file management tables, and to enable specified items
in a file to be directly accessed. The file management routines, which are called via
BALR R14,R15 from the CMS initialization process, various commands, and the file
management function programs, include TFINIS, RELUFD, READFST, READMFD,

FSTLKP, FSTLKW, UPDISK, UPUFD, and SYSGEN. The LLOGDISK command is also
included in this section.

TFINIS

FUNCTION:; To temporarily close a given file or active disk table, for the purpose of
updating the file directory.

CALLING SEQUENCE;:

L R15, ATFINIS where ATFINIS = V(TFINIS)
BALR R14,R15

ENTRY REQUIREMENTS:

1. EFINIS Entry - to close a particular file without updating the directory or removing
from Active File Table

RO = Pointer to Active Disk Table
R1 = Pointer to Active File Table

2, TFINIS Entry - to temporarily close all output files for a given Active Disk Table

RO = Pointer to Active Disk Table
R1=0

EXIT CONDITIONS:

Normal Return

R15=0 (and condition-~code = 0)
File Not Open
R15=6 (and condition-code = 2)

CALLS TO OTHER ROUTINES:

ACTLKP, DISKDIE, FRET, FSTLKW, RDTK, WRTK

240

CALLED BY (where known) :

EFINIS Entry called by ERASE
TFINIS Entry called by ALTER and ERASE

TN

FAMNTIMNQ T ™,
VILALULRIUD UDL LS

ADT, AFT, FSTB, FVS

OPERATION: The TFINIS Routine is part of the FINIS function program,. It is called,
however, only by BALR, as from ALTER or ERASE (not via SVC).

The EFINIS entry is differentiated from the TFINIS entry from R1 being zero (for
TFINIS), or nonzero (for EFINIS),

~ See the FINIS description for information on the FINIS steps, some of which are followed
by EFINIS and TFINIS, as described below,

1.

The EFINIS logic is as follows:

Active Read File
Gives back the free storage buffers as done in steps 1 and 2 of the " Active Read
File" in the FINIS description. (Note that ACTFRET is not called - this is
done later by ERASE.)

Active File From Point

No action taken. (ERASE calls ACTFRET later.)

Active Write File
Performs selected steps of those followed by the '"Active Write File'" logic as
given in the FINIS description, namely steps 4 through 10 (omitting steps 1-3
and 11-14).

The TFINIS logic, for temporarily closing all output files for a given disk (called
by ERASE and ALTER) is as follows:

Search through Active File Table for entries (if any) whose active disk table matches
that provided to TFINIS. For each one found (if any), action is as follows:

Active Read File
No action taken.

Active File From Point
No action taken.

Active Write File
Performs selected steps of those followed by the '"'Active Write File" logic as
given in the FINIS description, namely steps 1, 2, 3, 4, 6, 7, 9, 13, and 14
(omitting steps 5, 8, and 10 through 12),

241

Note: One additional step is performed if needed; if it was necessary to bring the first
chain link into core in step 6, the Nth chain link is brought back into core after step 7.

See the ERASE and ALTER commands for further insight into the reasons for the EFINIS
and TFINIS logic as outlined above.

RELUFD

FUNCTION: For a given disk, to release all tables kept in free storage and to clear

appropriate information in the active disk table,

CALLING SEQUENCE:

L R15, ARELUFD where ARELUFD = V(RELUFD)
BALR RI14,R15

ENTRY REQUIREMENTS:
RO must point to Active Disk Table

EXIT CONDITIONS:
R15=0 (and condition-code = 0)
CALLS TO OTHER ROUTINES:
FRET
CALLED BY (where known):
LOGIN, and RELEASE, plus disk resident routines
MACROS USED:
ADT, FVS

OPERATION: For the given Active Disk Table, the following tables are returned to free
storage via FRET, if they are currently in core:

All FST hyperblock extensions (if any)

The first FST hyperblock if it was in free storage
Master File Directory

QMSK bit-mask

QQMSK table if it was in free storage

O s W D)
. o

In clearing any of the above, the appropriate flag-bits are also cleared, and any pointers
pointing to the old tables.

242

For certain tables, RELUFD clears them if they exist but are not in free storage, namely:

1. First FST hyperblock if not in free storage (for example, PSTAT)
2. QQMSK if not in free storage (for example, PQQMSK)

RELUFD also clears all information in the Active Disk Table from ADTMFDN through
ADTCYL, and sets the ADTMX extension-mode-letter to a blank. Also, unless the ADT
table is minimum size (ADTFMIN flag-bit set in ADTLFG1), RELUFD clears all infor-
mation in the active disk table from ADTPQM]1 to ADTRES, and also clears the ADTFLG2
flag-byte.

RELUFD is called by RELEASE for releasing an active disk, and by LOGIN and FORMAT
to clear all information before reading in or creating a new user file directory for the

oiven digk
given .

(8 50 %

RELUFD replaces the old RELPSTA routine.

READFST

FUNCTION: For a read-write disk, to read all of the User File Directory into core; for
a read-only disk, to read in all or part of the User File Directory, at the caller's option.
CALLING SEQUENCE:

L R15,AREADFST where AREADFST = V(READFST)
BALR R14,R15

ENTRY REQUIREMENTS:

RO must point to Active Disk Table
R1 must point to Parameter-List as usual:

DS OF
PLIST DC cLg' ' Immaterial
DC CLs' ' FILENAME (or '*")
DC CLs' ' FILETYPE (or '*")
DC cr2' ! MODE (e.g. P, "', or P2)

EXIT CONDITIONS:

Normal Return
R15=0 (and condition-code = 0)
Error Returns (condition-code = 2)
R15=4 Disk is read-only (nonfatal)

R15 =1,2,3, or 5: Same error conditions as READMFD
(error from READMFD passed along as is)

CALLS TO OTHER ROUTINES:

FREE, FRET, RDTK, READMFD

CALLED BY (where known):
SYSGEN, INIT, LOGIN
MACROS USED:
ADT, FVS

OPERATION: READFST, together with READMFD, brings into core all or part of the
user file directory for the given disk. If the disk is read-write, all of the UFD is
brought into core; if read-only, the QMSK and QQMSK tables are not brought in by
READMFD, and READFST can bring in selected portions of the FST entries, if specified.

READFST does the following:

First READMFD is called to read in its part of the UFD. If an error other than 4 is re-
turned by READMFD, READFST passes back this error code to the caller and exits
immediately. If READMFD was successful, or returned an error-4 indicating the disk
was read-only, READFST continues., An 816-byte buffer for the first FST hyperblock is
obtained from free storage if needed, and an 800-byte work area is obtained.

The FST hyperblocks on disk are now read into the work area, one at a time. All null
FST entries are ignored; other entries are moved from the work area to the core-resident
FST hyperblocks if the disk is read-write, thus resulting in compacted directory in core
of all files, If the disk is read-only, each FST entry in the work area is checked against
the parameter list provided to READFST. (If any field in the parameter list is "*' or
X'FF', the filename, filetype, or mode number is accepted without checking.) Thus, for
a read-only disk READFST can read in all files, or all 'P2' files, (as it does for the
S-Disk when called by SYSGEN) or any conditions that satisfy the parameter list,

READFST gets more hyperblocks from free storage when needed and refills the work
buffer from disk when needed, until all FST entries have been checked and moved into
the FST hyperblocks if acceptable.

All appropriate counts in the Active Disk Table (number of files, pointer to last FST
entry, etc.) are initialized as needed.

When through, READFST returns the core resident MFD to free storage if the disk was
read-only, as it is not needed any more. For a read-write disk, however, the MFD is
purposely left in core for use by the UPDISK routine the next time the UFD is updated.

The work-buffer is returned to free storage, and READFST returns to the caller, re-
turning an error-code 0 or 4 (if the disk was found to be read-only by READMFD).

244

READMFD

FUNCTION: To read the Master File Directory (MFD) and other information into core

from disk.

CALLING SEQUENCE:

L R15,AREADMFD where AREADMFD = V(READMFD)
BALR R14,R15

ENTRY REQUIREMENTS:
RO must point to Active Disk Table

EXIT CONDITIONS

Normal Return
R15=0 (and condition-code = 0)
Error Returns
Ri5=1: Disk error reading MFD, or first word of MFD = 0
R15=2: Disk not attached
R15=3: Unrecognizable DASD device (neit