

REFERENCE MANUAL

CONCEPT - 100
 Reference Manual

Human Designed Systems, Inc.3700 Market StreetCorrections indicated by|.

The material in this manual is for informational purposes and is subject to change without notice.

Human Designed Systems, Inc. assumes no responsibility for any errors which may appear in this manual.

Printed in U.S.A.

WARRANTY

Human Designed Systems (HDS) warrants that each terminal will be free from defective materials and workmanship for ninety (90) days from date of shipment to the original customer.

HDS agrees to correct any of the above defects (parts and labor only) when the terminal is returned to the factory freight prepaid by customer. Return authorization must be obtained from HDS before returning the terminal to the factory. The repaired terminal will be returned to the customer freight collect.

Under this warranty HDS may at its option repair or replace the defective terminal or terminal components. Normally, HDS will not ship replacement equipment until the defective terminal or terminal component is received (freight prepaid by the customer) at the HDS factory or service depot - HDS at its option may ship replacement equipment prior to receipt of the defective equipment. In this case the customer will receive an invoice (for the full price of the equipment) upon shipment of the replacement and a cancellation of that invoice upon receipt of the defective terminal or terminal component at HDS' factory or service depot. The model number and serial number must be furnished by the customer at the time of request for warranty service.

This warranty shall be invalid if, in HDS' sole judgment, the terminal or component has been subjected to misuse, abuse, neglect, accident, improper installation or application, alteration or neglect in use, storage, transportation or handling, or if the serial number has been removed, defaced or altered.

EFFECTIVE JANUARY 1, 1979
Section I Overview and Features
I.l Display I-2
I.l.l General I-2
I.1.2 APL/ASCII I-2
I.l.3 Optional Character Sets I-3
I.l.4 Cursor I-3
I.l. 5 Windows I-3
I.l. 6 Data Highlighting I-3
I. 2 Keyboard I-4
I.2.1 General I-4
I.2.2 Main Pad I-4
I.2.3 Numeric Pad I-6
I.2.4 Function Pad I-6
I.2.5 Programmable Function Keys I-7
I.2.6 Editing and Transmission Keys I-8
I. 3 Communication Line (s) I-9
I. 4 Modes of Operation I-9
I. 5 Terminal Functions I-12
I. 6 Status Line I-13
Section II Installation and Operation II-2
II. 1 Installation II-2
II.l.l Unpacking II-2
II.l. 2 Connectors II-2
II.l. 3 Power II-2
II.l.4 Communication Settings II-4
II. 2 Operation II-4
Section III Programmer's Reference III-2
III.l System Overview III-2
III. 2 Data Flow III-2
III. 3 Windows, Screen, Cursors III-2
III. 4 Character Attributes III-3
III. 5 Device Independence III-5
III. 6 Functions and Function Routing III-5
III. 7 Programmable Function Keys III-6
III. 8 Programmable Message Characters III-8
III. 9 Editing Functions III-9
III. 10 Terminal Functions III-9
Appendix A: ASCII Character Set A-1
Appendix B: APL Character Set B-1
Appendix C: Graphics Character Set C-1
Appendix D: Terminal Default Conditions D-1
Appendix E: RS232 Pin Assignment E-1
Appendix F: Summary of Control Codes and Escape Sequences F-l
Appendix G: Timing Considerations G-1
Appendix $H:$ Reference Manual Addendum H-1
Set Insert Type H-2
Define Clear Characteristics H-3
Suspend Transmission H-5
Resume Transmission H-6
Appendix I: Getting Started With the Concept Terminal I-1
Appendix J: 20MA Current Loop Interface Option J-1
Appendix K: Split Speed Option K-1
Table I Control Keys I-5
Table II Function Pad Keys I-6
Table III Editing and Transmission Keys I-8
Table IV Modes of Operation I-10
Table VCommunication Switch SettingsII-3
Table VI Character Attributes III-4
Table VII Programmable Function Key Defaults III-7
Table VIII Function Key Pad - Transmission Defaults III-8
Table IX Programmable Message Characters III-9
Table X Terminal Function Summary III-ll
General. III-11
APL/ASCII. III-13
Mode Settings III-14
Cursor Controls III-18
Editing III-21
Display III-24
Transmission III-28
Multiple Devices. III-32
Screen Control III-36
Function Keys III-38

Section I

Overview and Features

The CONCEPT display system is composed of a CRT display, a detached keyboard, up to four communication lines, and a microprocessor controller. All terminal electronics, except the keyboard, are contained on a single circuit board, which, with the power supply module and monitor, is housed in the display case. All connectors and switches are located on the dack panel of the display case.

I. 1 DISPLAY

1.1.1 General

A high resolution $20.3 \mathrm{~cm}\left(8^{\prime \prime}\right) \times 26.7 \mathrm{~cm}$ (10.5) CRT screen provides display ot 1920 characters in a 24 line by 80 column tormat (one display page). Up to 8 display pages of data (optional) may oe stored, with 24 lines viewable. A nonglare screen and use of a 7×9 dot matrix in a $10 x 12$ dot array create sharp easy to read characterse data may be displayed as white characters in a olack background (normal videol or as black characters in a white background (reverse videol. Peaestal mounting of the display olaces the screen at an optimal viewing height. Tilt adjustment within a 20 degree range provides additional flexibility and viewing comtort. The display may be used without the pedestal where the application requires wall or shelt wounting. A brightness control on the underside front left of the display case allows convienient adjustnent to individual preterencea
1.1. 2 APL 1 ASCII

ASCII and APL character sets are selectable from the keyooard or communication line (s). Characters from doth character sets may be intermixed on the same screen. APL legenas appear on the top of the keys and ASCII legends, where they ditter, appear on the tront of the keys.

The ASCII character set, shown in Appendix A, includes the 90 upper-lower case characters with lower casedescenders and nondestructive underlining. The 32 control codes, displayed in transparent mode (see below), provide line drawing, continuous curve approximation, and special symbols.

The APL character set includes the 96 APL characters shown in Appendix B in a typewriter pairea coding structure with tull overstrike capapility. The 32 control codes have display representation in transparent mode as the subscrioted and superscripted digits "o" to "g", "i", "j", "k", "n", "=", and","-alsowith tull overstrike capacity
1.1.s optionad_character_sets

Up to a total of four character sets may be provided on the concept terminal tor extended graphics, foreign language, technical, or other requirements. A number of standard character sets are available as well as facilities for creation ot special user detined character sets. Characters trom difterent sets may be intermixed on the display and appear in adjacent locationse
1.1.4 cursor

The "Cursor" points to the location for the next character. It appears on the screen as a blinking underline or a blinking block, selectable by the operator or program. Both incremental cursor movement and absolute cursor addressing are provided as well as reading of the cursor addresse While one cursor is normally used to ooint to the next location for keyboard or program data, the program can select to use an invisible cursor to position its data without atfecting the location of keyboard data.
I.1.b wingows

A window is a rectangular area of display menory which is treated as the user s logical display. Any number of windows ot arbitrary size and location can be used, limited only oy the 80 columns and 24 lines (or more if multiple pages are installed) of physical display memory.

Use ot windows allow multiple independent operations simultaneously in different areas ot the screen. for example, a user might list his program in one window while he tests it in another. A ala entry/retrieval apolication might keep header information and field headings displayed at the top of the screen (one window) and scroll through individual data records in the botton of the display (a second window). Windows allow fuller use of the screen in disolay terminal applications. As with the cursorp the keydoard and communication line(s) can maintain and operate in separate independent windows. default operation, however, uses one window consisting of all display memory tor compatibility with CRT terminals without windowing capability.
I. 1.0 Data_Hightighting

Each character position may be assigned attributes to nightight the data or, protect it tron being overwritten. Attributes include underlining, reverse video, half intensity, blinking, secure (nondisplay), and protection. Any combination of attributes may be selected for a

```
character position. Such highlighting features combined
witn line arawing can be used to significantly enhance
display applications. In APL, overstruck operators can only
select the reverse video attribute.
I.2 KEYBOARD
I.c.1 General
The keyboara is composed of a main pad, a numeric pad, a
terminal tunction pad, and up to 19 orogrannable function
keys, with distinct shifted ana unshifted codes. The
keysoard is designed with positive touch, matte finished
keys in a layout tor efticient and comfortable operator use.
1.2.2 Main_Pad
The main pad nas the tamiliar typewriter layout. In adaition to the character keys there are several control keys which are generally tamiliar to terminal users. These include the following:
```


Control Keys

IRETURN	IReturns the cursor to the left margin of thel	
1	Icurrent line. \|	
ILINE feEd	\|Positions the cursor in the same column ofl	
1	Ithe next line. \|	
IBACK SPACE	\| Positions the cursor one space to the left,l	
1	Iwith wrap around to the end of the previousl	
1	Iline. \|	
\| TAB/bTAB	\|Positions the cursor at the next	
1	(unshifted)/previous (shitted) tab stop onl	
1	Ithe line. See Forms Mode for use in formsl	
1	lapplications. \|	
IESC	IGenerates the ESCAPE character (decimal 27)	
IRUBOUT	\|Generates the RUBOUT character (decimal 127)	
ICTRL	Ipressed in conjunction with any characterl	
1	Ikey produces the corresponding control codel	
I BREAK	ICauses a "Break" or high level on thel	
1	Icommunication line tor approximately 30 J	
1	Imilliseconds. I	
IREPT	IPressed in conjunction with any other keyl	
1	Irepeats that key at a rate of 15 times perl	
1	Isecond. \|	

I.く.S Nymeric_Pad

The numeric pad includes the decimal digits, minus sign, and decimal point in a calculator layout for fast and convenient numeric data entry. Five keys with yellow silkscreened tront legends used in conjunction with the Mult-Code key on the tunction pad (legend also in yellow) provide easy recogntition ot normally variable mode settings (see Tables IV and VII tor detai(s).
1.L.4 Function_Pag

The tunction pad provides one key execution of freauently usea terminal functions. This pad may also be set to transmit tunction sequences instead of executing the tunctions. See Tadle VIII tor details.

Taole II
Function Pad Keys

\| PRINT	IUnshifted: Prints all data from the "homel	
1	Iposition" up to (but not including) thel	
1	Icursor position. If the cursor is at thel	
1	Inome position the entire window is printed.l	
1	ISnifted: Prints all data from the beginningl	
1	lot line up to (but not including) the cursorl	
1	Iposition. If the cursor is at the beginningl	
1	lot line, the entire line is printed. \|	
1	IControl Unshitted: Attaches the printer forl	
1	Iterminal output so that any characterl	
1	Idisplayed on the screen is also printed. I	
1	\|Control Shifted: Detaches the printer.	
ITAPE	ISends the message starting from thel	
1	Ibeginning of line (unshifted)/start ofl	
1	Iprint/transmit(shittea) to the end of linel	
1	I (unshifted)/end of window (shifted) to linel	
1	13. \|	
I MULT CODE	lused in "MULT-CODE"/"ESCAPE" sequences tol	
1	linvoke terminal tunctions. See Terminall	
1	Ifunctions delow. \|	
ISTAT/RESET	IUnshifted, displays a status line on thel	
1	124 th line of the screen. See status below.l	
1	IShitted, resets the terminal to its initiall	
1	Iconaition. \|	

Eignt (19 ootional) programmable tunction keys with distinct shitted and unshitted versions provide one key stroke execution or transmission of a sequence of character codes. Programmable tunction keys in a transmit mode can be used to alert the application program of a particular operator request or for transmission of frequently used statements. In execute mode, these function keys can be used to perform a series ot terminal tunctions with one key.

Detaults tor tunction keys "INSRT" to "SEND" provide local editing and message transmission. The default settings for F1 to F3 (F14, it optional function keys installed) provide transmission of an alert character, a key ID, and a message terminating character. See Table VII for these default sequences.

The editing and transmission keys allow the user to create ana edit text easily, verity it, and then transmit it to the computer or peripheral device.

TABLE III
Editing and Transmission Keys

I. 3 COMMUNICATION LINE(S)

The concept terminal provides one connunication line as standara (ine 1) and up to three optional communication lines (lines 2-4). All lines are EIA RS232C compatible. ZUmA intertaces are available as an option. Pin assignments and use are descrioed in Appendix E. The standard communication line has a four foot cable from the back panel terminating with a 25 pin male connector for connection to communication or peripheral equipment via a user supplied cable with matching temale connectore

Detault baud rate, parity, stop bits, and full/half duplex settings are selected tor each line independently on the dip switches on the back panels. See table V below for settings. These settings can be overridden after initialization by tunctions trom the keyboard or communication line.

In addition to normal use of the primary line (line 1) for computer communication, arbitrary networking among the communication lines, the keydoard, and display may be selected trom the keyboard or under program control for more complex communication requirements or control of local peripherals, such as tape cassettes, printers, and floppy disks.

1.4 MODES OF OPERATION

Several modes of operation are provided to meet various application needs. Table IV below shows the various modes and detault selections (in capital letters).

Modes of Operation

ILocal/remote	IIn local mode, data entered at the keyboaral
1	Iis displayed or executed. No data isl
1	Ireceived or transmitted on the primaryl
I	Icommunication line. This setting does notl
1	lattect data transfers on the optionall
1	lauxiliary lines. In remote mode, data froml
1	Ithe keyooard is transmitted to the primaryl
1	\|communication line, and display or executionl
1	lot keyboard data is determined by the duplexl
1	Iselection. Data trom the orimary line isl
1	Idisplayed or executed.
IHalt/full	I CDefault selection is determined by dipl
Iouolex	Iswitch settings on the back panel.) In fulll
1	Iduplex, keyboara data is only transmitted.
1	IIn halt duplex, keyboard data is botnl
1	Itransmitted and displayed or executed.
\| 8 lock/	IIn Character mode, keyboard data isl
ICHARACTER	Itransmitted a character at a time as typed.l
1	Islock mode allows the operator to type inl
1	Idata and edit it on the screen withoutl
1	Itransmission. The data may then bel
1	Itransmitted by using the send key or underl
1	Iprogram control.
IUPPER-LOWER/	ITo provide compatioility with certainl
ICaps Lock	learlier terminal types, Caps Lock model
1	Iconverts all lower case characters to theirl
1	lupper case equivalents. Upper-Lower casel
1	Imode provides the tull character set. Whenl
1	Iselected by the keyboard or mainl
1	Icommunication line applies to both devices.l
IDevice	IFor dependent devices, control codes orl
IDEPENDENT/	lescape/mult-code sequences marked below withl
I Indepenaent	Ia (D) received from that device aooly to alll
1	lother dependent devices. For independentl
1	Idevices, these escape/mult-code sequencesl
1	Iapoly only to that device.

I. 5 TERMINAL FUNCTIONS

All terminal tunctions, such as cursor controls, carriage return, mode selections, and character attribute setting, are invoked by control codes or MULT-CODE/ESCAPE sequences and may be executed trom the keyooard or under program control trom the communication line. A MULT-CODE/ESCAPE sequence is invoked oy typing MULT-CODE key on the keyboard or transmitting the ESCAPE character from the communication line tollowed by tunction ID and paraneters as necessary. The "ESCAPE" character indicating a function trom the communication line is oy detault the ESC control code (27), Dut may be reset by the user it necessary for equipment compatioility.

As shown in tables I, II, and III, certain commonly used terminal tunctions (ooth control code and MULT-CODE/ESCAPE sequences) have individual keys for one key execution. These keys have the same eftect as typing the corresponding tunction sequence. For example, pressing the "HOME" key has the same ettect as typing MULT-CODE, "?" and pressing "RETURN" has the same eftect as depressing the "CTRL" key in conjunction with the "M".

Table x in section III lists all terminal functions and their invoking sequence as well as providing a detailed description of their operation.
I. 6 STATUS LINE

A status line, showing current mode and comunication line settings, may de displayed on the 24 th line of the screen. The status line has the following format:

SECTION II

Installation and Operation

II.1.1 Ungacking

Atter removing the terminal from the carton and removing the protective packing material, the terminal should de inspected tor any physical signs of damage during shipping. It there are any signs ot amage, the user should report them immediately to HDS, and not attemot to ooerate the terminal. The tilt ot the display can be adjusted to individual preterence oy the knob on the front of the pedestal. Stiding the knod to the left (right) lowers (raises) the screen. The knod should be released prior to use and retightened when the CRT is in the desired viewing position.

II.1.2 Connegtors

Atter unpacking the terminal, the keyboard cable connector should be connected to the matching female connector on the back panel and the screws tightened to insure oroper fit. It the terminal is to communicate with a computer andor local peripherals, the communication lines should be connected to the appropriate devices, and the connector screws tightened. For details on pin assignments and usage see Appendix E.

11.1.S Power

The CONCEPT terminai requires only a normal 110 volt - o cycte grounded outlet. For best operation the terminal should de on its own or lightly loaded power line. When turned on the display should show a blinking underline cursor in the home position on the screen. Brightness can be aajustea by use of the knob unaer the front left side of the terminal.

A European version of the terminal is available running on 240 volt - >U cycle power.
II.1.4 Communication_settings

The detault baud rate, parity, stoo bits, and duplex settings should be set on the dip switches on the back panel as required by the equipment with which the terminal will be communicating. A dip switch package is provided for each communication line on the system. The switch oackage for the main communication line is located above the keyboard cable connector and all other switches are located above their respective connectors. Table V below presents the switch settings. one setting from each category should be selected. Stop oits are normally set to one for baud rates ot suU and above and set to two for slower speeds.

Taole V

Dip Switch
Settings 1-8 ($x=0$, $0=0$ ft, B lank=unused)

II. 2 OPERATION

When the terminal is turned on (power switch located in the midale ot the rear dackplate) or the reset function executed, the terminal is initialized by setting the communication lines to their default selections, seting the detault modes ot operation shown in table iv, clearing the screen, and homing the cursor. To test the keyboard and display locally, the operator can place the terminal in local mode by typing the MULT-CODE key tollowed by a "(" (shitt y). Text is displayed on the screen as it is typed on the keyboard. Characters appear with the current keyooard attribute settings. Control codes, function keys, and MULT-CODE/ESCAPE sequences cause the appropriate actione It text is typed beyond the right margin, it wraps around to the lett margin of the following line. The terminal recognizes when data has just overflowed to orevent an immediately tollowing carriage return-line teed from causing an extra line in the text. overflowing the bottom line with data or a line teed causes all data to scroll up one line and the bot tom line is cleared and the first line of data is lost. Page and Form mode, as described above, nay be used to prevent scrolling ot data.

The underline character is treated differently than other characters to provide compatibility with hard copy underlining ot text. An underline character will underline the character at the cursor position rather than replacing it. Typing a blank over an underlined character in ASCII mode will remove the underline.

To out the terminal in communication (remote) mode, the user types MULT-CODE, "g". Data trom the keyboard (depending on the duplex setting) and the communication line(s) is displayed and executed as above. while the keyboard and communication line(s) normally use the same cursor, the keyooard ana each communication line can establish an independent cursor in its own window. The keyboard cursor is the only visible cursor. Independent communication line cursors serve as pointers and can be controlled as the keyboara cursor but have no visible representation.

It terminal power is turned oft or disconnected, the ooerator shoula wait 15 seconds defore restoring power. This time is required to provide adequate time for the CPU and terminal memory to reset.

SECTION III

Programmer"s Reference

1II. 1 System_overview

The CONCEPT display system may be regarded as a set of I/O devices including a keyboard-display unit and up to four communication lines. A microprocessor system controls all data tlow among these devices as well as the execution of control code and MULT-CODE/ESCAPE sequence functions. This design allows not only normal terminal data flow between the keyboard-display and the primary communication line, but also more complex networking for more soohisticated communication applications and local perioheral support.

III・く Data_Flow
Each I/O device has a network word which defines the output devices to which received data is sent. The network word has the tollowing tormat with 1 bit for each possible device tor output. It the bit is a "ף", the device is sent received data; if "U", it is not.

Local/Remote, Full/halt Duplex, and Block/Character settings attect the display and line 1 indicators of the keyboard and line 1 network word to cause the proper data flow as described in the mode settings. The network word may be read and written to create any desired data flow. Attaching the printer will select line 2 (assumed to be the printer) for output trom line 1 and the keyboard, if the display is receiving keyboard data. on power up or after a reset all odtional devices (lines 2-4) are networked to the display only (bit 4 of the network word is set to one, all others are set to zerol.
III. 3 Uingows2_screene_and_Cursors

A window is the rectangular area of the display memory in which a device operates. The window is defined by a Home position (the upper left corner) and the number of lines and columns. The position and size of the window is limited
only by the display memory width of 80 colums and length which depends on the number of optional pages installed $(24$ lines are standara with additional 24 lines per optional page). The device's cursor address and cursor movement are relative to the window, allowing applications to run in difterent windows invisible to the program as long as the window size is sufticient for the apolication. Cursor movement and consequently data display for the device is restricted to the current window. cursor right/left movement beyond the boundaries of the window wraps around to the next/previous line. Scrolling up or down is restricted to the window. All other data is unaffected.
wile a window is logically defined, the display sceen is a physical entity, always displaying 24 lines of 80 cnaracters. In the standard unit with, one page of memory, all 24 lines of display memory, possibly including several windows, are displayed on the screen by necessity. When multiple pages of memory are availablep portions of or entire windows may not be visible.

The keyboara's visiole cursor is the link between display memory and the screen. The keyboard cursor always remains visible on the screen. Thus, as the cursor moves above (delow) the display screen, the display screen moves up (down) one line of display memory to keep the keyboard cursor visible.
III. 4 Character_Attrioutes

Associated with each character in display menory is a word detining the attributes for that character. These attributes are described below in Table VI.

Table VI
Character Attributes

Ivideo Reversal	Iff on, the character is displayeal	
1	lin the reverse video combinationl	
1	\| (black on white - white on black)	
1	lot the display.	
1BLinking	IIt on, the character appearsl	
1	Iblinking at the rate of twice perl	
1	Isecond.	
l Undertine	IIf on, the character apoears withl	
1	Ian underline.	
\| Halt uright	IIt on, the character apoears withl	
I	Ihalf the normal video intensity.l	
I Secure (nondisplay)	IIt on, the character will not bel	
1	ldisplayed on the screen, but isl	
1	Istored in display memory.	
ICharacter set	IThis field indicates from which	
1	lcharacter set the character is tol	
1	loe displayed. up to fourl	
1	Icharacter sets may be used.	
IProtection	IIt on, the character may not bel	
1	loverwritten by data from a devicel	
1	I in user mode. Such an attempt tol	
1	loverwrite the character will causel	
1	Ithe bell to sound. I	

The attribute word has the following format:

Each device has a current attribute word. Functions allow setting and resetting of individual bits and setting and reading of the entire word. The device's current attribute word is put into the display menory for each character received and displayed by the device. Selected attributes can also de set or reset tor a block of display memory
without ettecting the data. See function descriptions below.

III.

Each I/O device, keyooard-display and commincation line (s), may nave its own window, cursor, mode settings, attribute settings, and character set selection. Thus the keyboard ooerator can be entering data in block and form mode while the program is scrolling reverse video messages in another area ot the screen. on power up or after a reset all devices are set "dependent" causing mode changes originating trom one device to atfect all other dependent devices (detault-all devices). Any device may be set "independent" so that mode changes originating from that device affect only that device. Similarly, on power up or after areset all devices share a common window and are tied to the keyboard window. Thus, changing one window will affect all device windows. Device windows can be "untied" allowing separate windows.

The current settings of half/tull duplex, local/remote, and block/cnaracter modes determine the capability of creating separate windows andfor devices for the keyboard and primary communication line. In full duplex/remote/character mode of operation characters typed on the keyboard are transmitted down the primary communication line and not echoed to the display. The host computer subsequently retransmits these characters down the primary communication line. Thus, an independent keyboard. window and/or device definition will not have the desired ettect. In half duplex, block or local mode ot operation keyooard characters are transmitted to the display allowing an independent keyboard window or device.

III. O Functions_ang_Eunction_Routing

All terminal functions are executed by a control code or a MULT-CODE (trom the keyboard)/ESCAPE (from a communication (ine) sequence. The function normally affects all devices. For example, it a computer progran sends out an escape sequence to select programmer mode, the selection affects the communication tine and the keyboard. In this case all devices are dependent. However, there is often a need for devices to have ditterent mode settings. To fill this requirement, individual devices can be set independent. When independent, terminal functions from a requesting device affect only that device. For, example, in a half duplex or block mode application, putting the communication line in programmer mode allows that device to create and overwrite protected data, but the keyboard user, if previousty in user mode, is still in user mode and unable to type in protected tields.
frequently, when devices are independent, one device needs
the ability to execute a function on another device. For example, a data entry retrieval program nay want to put the keydoard in block, user, and form mode. This can be done by Function Routing. A device executes a tunction routing command tollowed by the message length, the device number to De attected, and the message. The message is then treated as it it had come trom the specified device.

A tew tunctions by their nature or for user convenience, are exceptions to the dependent/independent device relationship. These include duplex, Local/Remote, Block/Character, and Reset Functions.

III. 7 Programmagte_fynction_Keys

The eight (optionally 19) tunction keys can de programmed to transmit or execute a separate user defined sequence of codes tor the shifted and unshifted version of the keys. In transmit mode the sequence will be transmitted even if the user is in block mode, allowing function key program alerting even in block mode applications. In execute mode, depressing the tunction key is equivalent to typing the code sequence on the keyboard.

The detault sequences tor the program function keys are show below in Table VII. The default execute sequences operate as it preceded by a MULT-CODE causing the corresponding tunction. The detault transmit sequences precede the message with the programmable tunction key identifier (FS, decimal 2δ, by default) and terminate it with a programmabe EOM (CR, decimal 13, dy detault).

Table VII
Programmade Function Key Defaults

The sequences associated with an unshifted or shifted tunction key can de set with a terminal function described below. The character sequence length is limited to a total length ot 34 character codes assignable to all function keys
(unless additional memory is purchased with the terminal). detault settings do not use any of these dositions.

The 12 keys in the function key pad (cursor control pad) normally execute immediately. While these key sequences are not modifiable, the entire pad may be set to transmit instead ot execute where the application requires the program to control all terminal operations. The coae sequence transmitted in this mode is the keyboards programmable escape character and a one character key ID. The key IDs are shown in Table VIII belowe

Taole VIII
Function Key Pad - Transmission Mode Defaults

III. \quad Programmable_message_characters

To provide the greatest flexibility and ease of use with a variety ot computer and communication systems, the CONCEPT terminals allow user selection of terminal message and alert codes through the "Message Character" function described in Table x. The moditiable codes and their detaults are shown in Table IX below. when changing message characters, null value (decimal 0) entered for any character indicates that code is not to be used.

Tadle IX
Message Characters

III.Y Egiting_Eunctions

The concept terminal system provides several functional capabilities allowing local or block mode editing and manipulation ot screen data. These capabilities include insert mode, delete character in linelwindow, insert/delete line and clear to end of line/window. The functions are the detault programming on the first tour programmable function keys and are, also, avaitable under program control. The terminal can determine character positions where data has not been typed. These characters, referred to below as 'olanks', are stored in display memory as spaces (decimal sc) with the nondisplay bit in the attribute word set. Functions such as insert mode and delete character terminate with 'blanks'. The distinction between typed and untyped areas ot the screen can be eliminated through use of the block attribute setting tunction (set nondisplay bit to disolay). These functions are discussed in detail below.
III. 10 Ierminal_Eunctions

All terminal tunctions are executable fron the keyboard and communication line(s) by control codes (${ }^{()}$or Escape/mult-code (MC) sequences. The following table describes all terminal tunctions, in todic order. A list in code order is contained in Appendix E. Shown below is the
tunction, tollowed by $a(P)$ it executable only in programmer mode and $a(D)$ if it is device dependent/independent type tunction. Column 2 indicates whether a special key exists (k), shitted (K), control (${ }^{(} k$), or control shitted (k). column s presents the multicode sequence it typed from the keyooard including the Mult-Code (MC), command identifier, character, and required parameters. Column 4 presents the decimal equivalent of the command identitier character (CI). Column s describes the command in detail.

Tade x
Terminal Functions

ISet device	MC 3	1	(51)/Sets that device dependent.	
Idependent I	1	1	l Commands listed below	
1	1	1.	Ireceived by that device applyl	
1 I	1	1	Ito all dependent devices:	
1	1	1	\|APL/ASCII, user/orogrammer	
11	1	1	Inode, text/form mode,	
1	1	1	Iscroll/oage mode, transparent\|	
1	1	1	Imode, auto linefeed, auto	
1	1	1	Itab, dink, reverse video,	
1 I	1	1	Ihalt bright, underline,	
1	1	,	Inondisolay, protection,	
1	1	1	Iselect character set, set	
11	1	1	lattribute of block. These	
1 I	1	1	lcommands are marked below	
1	1	1	Iwith a (D).	
ISet Device I	MC \#	1	(3) lfets device indeoendent. All	
Ifnaependent	1	1	Icommands (mult-code/escape	
1 I	1	1	Isequences) received trom that	
1	1	1	ldevice apply only to that	
1	1	,	ldevice.	
ICnange \|	MC O		111)lchr specifies the message	
IMessage I	chrow		Icharacter to be changed:	
\| Character (P)		1	,	$132=$ "ESC"(So)36="EOF"(\$)
1 I	1	1	$133=$ "ACK" (!)37="EOL" (\%)	
1	1	I	$134=$ "NAK" (")38="EOM"(8)	
1	1	1	$135=$ "S0M" (\%)39=function	
1	1	1	1 key leadin	
1	1	1	1 (${ }^{\prime}$)	
1	1	1	In specifies the new	
1	1	1	Icharacter. A separate escapel	
1	1	1	Icharacter (ESC) applies to	
1	1	1	leach device in the system	
1	1	1	l (keyboard, communication	
1	1	1	llines 1-4). All other	
1	1	1	Inessage characters apply to	
1	1	1	lall devices in the system.	
1	1	1	Ithe negative acknowledgement	
1	1	1	I(NAK) for requests from the	
1	1	1	lkeyboard is the bell code.	
1	1	,	I(${ }^{-6}$)	

Table x (continued)

Taole x (continued)

Ifull duplex	1	MC 8	1	(56) \|Selects full duplex mode. Ifl
1	1	1	1	Iin Remote mode, data typed onl
1	1	1	1	Ithe keyboard is transmitted
1	1	1	1	Ion the prinary communication
1	1	1	1	lline but not displayed. An
1	1	1	1	lindependent keyboard window
1	1	1	1	Idefinition will not apply in
1	1	1	1	lfull duolex untess the
1	1	1	1	Iterminal is in block moae.
Italt Duplex	1	MC	1	(42) ${ }^{\text {Selects }}$ half duplex mode. If
1	1	1	1	I in Remote mode, data typed onl
1	1	1	1	Ithe keyboard is transmitted
1	1	1	1	Ion the primary line and
1	1	1	1	l"echoed" to the display. An
1	1	1	1	lindependent keyboard window
1	1	1	1	ldetinition does apply in halfl
1	1	1	1	lduplex node.
Iremote	1	MC 9	1	(ST) lselects Remote mode. Data
1	1	1	1	Ityped on the keyboard is
1	1	1	1	Itransmitted on the primary
1	1	1	1	Icommunication line and if in
1	1	1	1	Inalt duplex "echoed" to the
1	1	1	1	ldisplay. Data from the
1	1	1	,	Iprimary communication line is
1	1	1	1	Isent to the display.
ILocal	1	MC (1	(40)lselects local mode. Data
1	1	1	1	Ityped on the keyboard is sent I
1	1	1	1	Ito the disolay. Data is
1	1	1	1	Ineither sent or received on
1	1	1	1	Ithe prinary communication
	1	1	1	lline.

Table x (continued)

Table x (continued)

Table x (continued)

Taole x (continuea)

Itransmit All	$\mathrm{MC}{ }^{-} \mathrm{V}$	1	(22) liransmits to the requesting	
ILine (P)	1	1	lline (or primary line if	
1 1	1	1	Irequested trom the keyboard)	
1 1	1	1	lall data tron the beginning	
1	1	1	lof line up to but not	
1	1	1	lincluding the cursor	
1×1	1	1	loosition. It the cursor is	
1	1	1	Ipositioned at the beginning	
1	1	1	lof the line, the entire line	
1	1	1	lis transmitted. Transmissionl	
1	1	1	lis terminated with the	
1 1	1	1	Iprogrammable EOM character.	
1	1	1	l Underlined data results in	
1	1	1	ldata, backspace, undertine.	
1	1	1	IThe cursor is returned to its	
1 1	1	1	loriginal position.	
Itransmit All	MC -F	1	(00) ltransmits to the requesting	
Iwindow (P)	1	1	lline cor primary line it	
1 I	1	1	Irequested from the keyboard)	
1 1	1	1	lall data from the "start of	
1	1	1	Iprint/transmit" (defautt -	
1	1	1	Inone position, see above) up	
1 I	1	1	Ito but not including the	
1 1	1	1	lcursor position. If the	
1	1	1	lcursor is at or before the	
	1	1	\|"start of orint/transmit" all	
1 1	1	1	ldata in the window is	
1×1	1	1	1 I	
1×1	1	1	Itransmitted. Tne	
1	1	1	Iprogranmable EOL terminates	
1 1	1	1	lall lines exceot for the lastl	
1	1	1	Iwhich is terminated by the	
1	1	1	Iorogrannable EOM character.	
1	1	1	lunderlined data results in	
1	1	1	ldata, backsoace, underline.	
1	1	1	Itrailing spaces in lines are	
1	1	1	Isuppressed. EOM and EOL	
1	1	1	Icnaracters are treated for	
1	1	1	lolank lines as above. The	
1×1	1	1	lcursor is returned to its	
	1	1	loriginal position.	

Table x (continued)

IfF Prior to	1 MC 2	1	
praint on	1	1	110 Rub outs to be,
1	1	1	Itransmitted to the printer
1	1	1	l (tine 2) prior to every printl
1	1	1	Ito EOW/EOL.
lff prior to	MC 2		122)lTurns oft the form feed priorl
print ott	1	1	Ito print.
fattacn tape	-kI MC a	1	(04) \|attaches the tape (tine 3) as
1	1	1	lan auxiliary device for 1/0
1	1	1	Ifrom the keyboard and primaryl
1	1	1	lline destined for the
1	1	1	ldisplay.
l Detacn tape	-K1 MC	1	(94) 1 detaches the tape (line 3) as
1	I	1	lan auxiliary device.
Inessage to	$k 1 \mathrm{MC}$	1	(90) itransmits to the tape cline
f Tape	,	1	(3) all data from the "start
1	1	1	lot print/transmit" up to but 1
1	1	1	Inot including the cursor I
1	1	1	Iposition. It the cursor is l
1	1	1	loositioned at or before the
1	1	1	Istart of print/transmit all l
1	1	1	ldata fron the cursor positionl
1	1	1	Ito the ena of window is l
1	1	1	Itransmitted. \|

Taole x (continued)

Table x (continued)

ASCII CHARACTER SET*

*Standard character set. Control codes (characters 0-31) are displayable in transparent mode. Decimal and octal character values are shown and preceeded by a " D " and an " O " respectively.
$\because \quad . . .$.
\square

\square \therefore …

APL CHARACTER SET*

*Standard character set. Control codes (characters $0-31$) are dis playable in transparent mode Decimal and octal character values are shown and preceeded by a " D " and an " O " respectively.

CONCEPT GRAPHICS CHARACTER SET*

Appendix D		
Terminal Default Conditions		
The following default conditions are applicable upon power up or after a terminal reset.		
	Function	Default Condition
General:	Baud Rate Parity Duplex Stop Bits Dependent Indicator Message Characters	Back panel dip switch Back panel dip switch Back panel dip switch Back panel dip switch Dependent Default, See page III-9
APL/ASCII:	Character Set Mode	ASCII Non-overstrike
Mode Setting:	User/Programmer Text/Form Scroll/Page Character/Block Upper-Lower Case/Caps Lock Remote/Local Transparent Mode Auto Linefeed Auto Tab	User Text Scroll Character Upper-Lower Case Remote Off Off Off
Editing:	Insert Mode	Off
Cursor Controls:	Cursor Address Cursor Type Tab Settings	Home $(0,0)$ Blinking, Underline 8, 16, $24 \ldots 80$
Display:	Blink Reverse Video Half Bright Underline Nondisplay Protection Screen Video Protected Fields Memory	0ff 0ff 0ff Off Off Off White characters on black background Normal brightness Nondisplayed spaces
Transmission:	Start of Print Transmit	Home (0,0)
Multiple Devices:	Output Network FF Prior to Print	```Half Duplex: video, line 1 on; lines 2-4 off Full Duplex: line 1 on; video, lines 2-4 off On```

Appendix D
Terminal Default Conditions (continued)

Function

Screen Control: Window

Function Keys: Programming
Cursor Control Pad

Default Condition
Entire display memory All windows and cursors tied to the keyboard window
Line Ø
Default, See page III-8
Execute Mode

Network Defaults

Local/Remote	Half/Full	Block/Character	Network	
Mode	Duplex	Mode	Video	Line
Local	Half	Block	On	Off
Local	Half	Char	On	Off
Local.	Full	Block	On	Off
Local	Full	Char	On	Off
Remote	Half	Block	On	Off
Remote	Half	Char	On	On
Remote	Ful1	Block	On	Off
Remote	Full	Char	Off	On

ADpendix E
Communications Intertaces

The terminal transmits ASCII coded data in asynchronous tormat. Each character is transnittea serially and is proceeded by a start oit and tollowed by one or two stod Dits. A tour foot cable tittea witn a male 25 oin RS-232-C type connector is provided for connection. signals are provided which contorm to EIA standards for intertacing to data communications equipment. The table below lists the pin contiguration, EIA circuit name, CCITT V. 24 circuit name ana signal aescription.

```
Primary Communications Intertace
                        Pin Assiynments
```


Circuit description

Protective Ground (AA, 101) This conductor is electrically Donded to the machine frame.

Transmitted Data (BA, 1U3) This conductor transnits data from the terminal to a modem or conputer intertace. The circuit is neld in a marking condition during intervals cetween characters, and at all times when no data is Deing transmitted. The terminal will not transmit data unless an on condition is present on the tollowing three circuits where implemented.

1. Circuit CA (Request to Send)
c. Circuit CB (clear to Sena)
s. Circuit CD (Data Terminal Ready)

Received Data ($3 \mathrm{~B}, 1 \mathrm{l} 4$) Signals on this circuit are received input trom the modem or computer.

Request to Send (CA, 1US) This signal, generated by the terminal, when $O N$ indicates the terminal is orepared to transmit data. The Request to Send line is maintained in an on condition at all times when the terminal is powerea up.

Clear to Send ($(8,10 S$) This signal generated oy the data communications equipment, when $O N$ indicates the data set is ready to transmit data. This circuit by default is jumpered internally to $C A$ (request to send). If the data communications equipment can control $C B$, the internal jumpering can be moditied to disconnect the constant clear to send.

Signal Grouna (AE, 1UZ) This conductor establishes the common ground reterence potential for all interchange circuits. This conductor is internally connected to protective ground (CA).

Data Terminal Ready (CD, 108) This signal provided by the terminal is used to control switching of the data communication equipment to the connunications channel. The Data Terminal Ready line is hela in the on condition at all times when the terminal is oowered up.

Auxilliary_communications_Intertace
The secona communications interface (assuned to de a printer port) reverses the pin contiguration of the transmit/receive lines ($B A, B y$) and the request to sendiclear to send lines ($C A, C B$). This intertace is titted with a temale 25 pin RS-zSZ-C type connector. The table below lists the pin contiguration, EIA circuit name, CCITT V. 24 circuit name and signal description.

Auxilliary Communications Interface (Printer Port) Pin Assignments

IPin	Numberleia		circuitl		CCITT V.241		descriotion	
1	1	1	A A	1	101	1	Protective	Ground
1	2	1	83	1	104	1	Received	Data
1	s	1	34	1	103	1	Transmitted	ed Data
1	4	1	C 3	1	100	1	Clear to	Sena
1	5	1	CA	1	105	1	Request to	o Sena
1	0	1	c C	1	107	1	Data Set	Ready
1	1	1	A 3	1	102	1	Signal Gr	round
1	\bigcirc	1	Co	1	108	1	Carrier	Detect

The signal descriptions are as above except for the tollowing. Clear to Sena ($C B$) and kequest to Send (CA) are NOT internally jumpered and, thus, must de provided or Jumpered in the peripheral equipment. Data Set Ready (CC) and Carrier detect ($C D$) are Jumpered together and hela in an ON condition at all times when the terminal is oowered up.

Adpendix F
Summary ot Control Codes and Escape Sequences

The tables delow summarize in numerical order the control code ana escape sequence tunctions. Also presented is a short description and the Section III, Table X category and page.

CONTROL CODES

ivalue		COD		DESCRIPTIOV	1	CATEGORY		Pagel
J	1	a	1		1		1	1
1	1	A	1		1		1	1
2	1	з	1		1		1	1
s	1	c	1		1		1	1
4	1	0	1		1		1	1
b	1	E	1		1		1	1
0	1	F	1		1		1	1
7	1	G	1	Bell	1		1	1
¢	1	H	1	jackspace	1	Cursor Controls	1	18
y	1	I	1	Tas	1	Cursor Controls	1	18 I
1 u	1	J	1	Line feed	1	Cursor Controls	1	181
11	1	k	1		1		1	1
12	1	L	1	Form feea	1	Editing	1	21
1 s	1	M	1	Carriage Return	1	Cursor Controls	1	18 I
14	1	N	1	APL Mode	1	APL/ASCII	1	13
15	1	0	1	ASCII Mode	1	APL/ASCII	1	13
10	1	P	1		1		1	1
17	1	Q	1		1		1	1
1 ¢	1	R	1		1		1	1
14	1	S	1		1		1	1
<U	1	1	1		1		1	1
21	1	u	1		1		1	1
く	1	v	1		1		1	1
Cs	1	w	1		1		1	1
24	1	x	1		1		1	1
25	1	Y	1		1		1	1
<0	1	2	1		1		1	1
21	1	[1		1		1	1
28	1	1	1		1		,	1
24	1	」	1		1		1	I
su	1	-	1		1		,	I
31	1	-	1		1		1	1

ESCAPE SEQUENCES

Escape Sequences (continued)

Escape Sequences (continued)


```
Appendix G
Timing Considerations
Generally, the concept terminal systen can process data at a rate
wnich does not require the insertion of fill characters.
However, tnere are a tew operations, which involve moving a
signiticant amount of data on the screen, where timing
considerations are important. In the table below, System
Overnead (SO) is a tactor depenjent on baud rate equal to :
                    SO = .45 + (.3 x Rate/9000)
It a delay is pertormed rather than transmission ot fill
cnaracters the Rate above is equal to zero and the overhead
reduces to .45. The tadle oelow details functions where timing
considerations have a signiticant impact.
```


CONCEPT
 Reference Manual
 - Addendum -

Enclosed are descriptions of additional functions available on multiple-page concept terminals. They include:

- Set Insert Type;
- Define Clear Characteristics;
- Suspend Transmission; and
. Resume Transmission.

```
Human Designed Systems, Inc.
3700 Market Street

\section*{FUNCTION:}

PROGRAMMER/USER MODE:
DEVICE DEPENDENT COMMAND:

SEQUENCE:

DECIMAL EQUIVALENT:

DESCRIPTION:

\section*{Set Insert Type}

\section*{Programmer}

No
\(M C \uparrow G, t\)
(7)

Defines the insert type to be used for the requesting device. Valid values for 't' are:
space (32) = window
! (33) = line

When the device is in insert mode, the insert type determines whether the character right - shifting will stop at the end of the current line (!) or wraparound all lines to the end of the window (space). The default type is "window".

FUNCTION:
PROGRAMMER/USER MODE:
DEVICE DEPENDENT COMMAND:
SEQUENCE:
DECIMAL EQUIVALENT:
DESCRIPTION:

Define Clear Characteristics
Programmer
No
MC \(\uparrow \mathrm{H}, \mathrm{m}, \mathrm{w}, \mathrm{chr}\)
(8)

Defines the clear character and attributes to be used by the following functions which clear/erase a portion of display memory:
. Form feed ( \(\uparrow\) L)
. Delete character in line/window
. Insert line
. Delete line
- Clear all to end of line/window
- Clear unprotected to end of line/window

The user may either use all or part of the requesting device's current attribute word as the clear attribute. Specific attributes can be superceded by a user-defined attribute as follows:
- The bits of 'm' specify which attributes are to be taken from the current attribute word and which are to be supplied by the user. A 'l' indicates that the attribute setting will be supplied by the user; a '0' indicates the current attribute setting is to be used. 'm' can be determined by summing the values corresponding to the supplied character attributes as follows:
\[
\begin{aligned}
1 & =\text { display/nondisplay } \\
2 & =\text { blink on/off } \\
4 & =\text { underlining } \\
8 & =\text { protection } \\
16 & =\text { brightness control } \\
32 & =\text { normal/reverse video }
\end{aligned}
\]

Attributes not specified in 'm' will retain their current attribute word values. Since bits 6-8 are not used the parameter can be offset by 64 to allow input of displayable characters.
- 'w' is the setting of the selected attributes as shown on page III-4 of the Reference Manual.
- The clear attribute to be used in the above functions is determined by taking the current attribute word and changing those bits specified as l's in 'm' to their corresponding values in 'w'.
. 'chr' is the actual character to be placed in the area of display memory being cleared.
- The default values for these parameters during power up/reset are:
```

 . 'm' - change nondisplay bit (65);
 . 'w' - set to nondisplayable (65); and
 . 'chr' - space (32).
    ```
    For example, to clear to displayed spaces, the user
would enter:
    MC \(\uparrow \mathrm{H}, \mathrm{A}, @, \not \subset\)
where:
\[
\begin{aligned}
& \text { "A" (65) }=\text { change nondisplay bit } \\
& \text { "@" (64) }=\text { set to displayable } \\
& \text { "ధઠ" (32) }=\text { space }
\end{aligned}
\]

Or, to clear to reverse-video, half-bright periods, enter: MC \(\boldsymbol{1} \mathrm{H}, \mathrm{p}, \mathrm{p},\).
where:
\[
\begin{aligned}
" p " ~(l l 2) ~=~ & \text { change brightness control bit and reverse video } \\
& \text { reverse video bit }
\end{aligned}
\]

The user should be sure to note that only the above named functions use these characteristics; other functions which search for blanks (nondisplayed spaces), such as insert mode, are not affected.

FUNCTION:
PROGRAMMER/USER MODE:
DEVICE DEPENDENT COMMAND:
SEQUENCE:
DECIMAL EQUIVALENT:

DESCRIPTION:

Suspend Transmission
User
No

\section*{\(\uparrow S\)}
(19)

When a control-S is received during any of the following "transmission" functions, transmission of data to the line issuing the control-s will be suspended until a control-Q is received. These functions are:
- Block Transmit;
- Print;
- Read Address;
- Read Attribute Word;
- Read Output Network; and
- Transmission of Programmable Function Keys.

A control-s received at a time other than during the execution of these functions will have no effect.

\section*{FUNCTION:}

PROGRAMMER/USER MODE:
User

DEVICE DEPENDENT COMMAND:

\section*{SEQUENCE :}

DECIMAL EQUIVALENT:

DESCRIPTION:
No
\(\uparrow\)
(1.7)

Resume Transmission

Resumes transmission of data which has been previously suspended by a control-S (See description). A control-Q received at a time other than during the execution of one of the "transmission" functions will have no effect.

GETTING STARTED WITH THE CONCEPT TERMINAL

As a new Concept terminal owner you're probably wondering how to make use of all of its extensive capabilities. The following pages describe very briefly how to use your new Concept terminal. They do not replace a complete reading of the Reference Manual, but after reading the next few pages, you should be able to interactively communicate with your host computer and enter simple terminal commands from the keyboard. If you have any problems please don't hesitate to call our Customer Service Department at 215-382-5000.

CONNECTING THE TERMINAL
After the Concept terminal is unpacked, follow the connection procedure listed below.
1. Attach the keyboard cable connector to the first connector (smallest - labeled 'KEYBOARD') on the extreme left of the back panel. Tighten the screws to insure contact.
2. If the terminal is to communicate with a computer and/or modem, connect the communication cable (labeled 'LINE l') to the connector on that device. Ti.ghten the screws.
3. If the terminal is to communicate with a printer, connect the printer's cable to the communications port marked 'LINE 2', and tighten the screws.
4. The terminal may be plugged into a normal 110 volt grounded outlet - preferably its own or a lightly loaded outlet.
5. Turn the terminal on via the back panel on-off switch. After 5-10 seconds, the display should show a blinking underline cursor in the home position (upper left corner of the screen). If the terminal is turned off, wait 15 seconds before turning on again to allow the display memory to reset itself.
6. Brightness can be adjusted by turning the knob under the front left side of the terminal. The long knob extending from the front of the pedestal adjusts the tilt of the screen. To use, first loosen the knob, grasp the terminal and raise/lower the screen to the desired position; then re-tighten the knob.

\section*{SETTING TERMINAL DEFAULTS}

Prior to turning on the terminal, the communication dip switches (the small white switches on the back panel) must be set. The setting of these switches will determine the status of the terminal when turned on or reset.

There is a set of dip switches for each communications line, located above their respective connectors on the back panel. On the right side of the back panel is a diagram showing how to set each switch for the desired communications setting. A solid circle means the appropriate switch should be set in the 'ON' position, and the open circle refers to the 'OFF' position.

Using the end of a pen or pencil, flip each switch to the appropriate setting. The uppermost four switches set the correct baud rate (those switches marked 5-8). For each different baud rate, these four switches have been assigned a pattern of 'ONs' and 'OFFs'. (Refer to Page II-3 of the Concept Manual). Also set the parity, duplex and stop bits. Normally, stop bits are set to one for all baud rates other than llo. If you're not sure on any of the above, check with your installation manager.

Once the default configuration has been selected, holding the shift key down and pressing the "Reset Stat" key will reset the terminal. Pressing the "Reset Stat" key (no shift) will display the status of the terminal on the 24 th line of the display and will allow you to verify your back panel entries. (See page I-l3 in the Reference Manual) To remove the status line, depress the "Reset Stat" key (no shift) once again.

\section*{SIMPLE TERMINAL COMMANDS}

Any portion of the terminal configuration, including three of the settings (baud rate, duplex, and parity) which you just finished setting on the back panel dip switches, may be changed by executing a command either from the keyboard or from a computer program. Keyboard commands are executed by depressing the key marked "MULT CODE" followed by typing a key indicating which command and potentially several more keys indicating parameters. NOTE: DO NOT ENTER A COMMA OR A SPACE BETWEEN THE TYPING OF EACH PARAMETER.

Begin testing the terminal by trying a few commands.
Programmer Mode: Type "MULT CODE" (abbreviated MC) key and
then type a shift \(u\).

Local Mode: Type MC key and then type a shift 9.
If the status line settings now read PROG and LOC, you have successfully executed the commands. All other terminal commands listed in the yellow Reference Card and also in the Reference Manual - are entered in the same manner:
- always preceded by the typing of MC key,
- never requiring the typing of a comma or a space between the characters in the command sequence.

Many or the terminal command sequences require that you be in Programmer mode in order to successfully execute them. This is indicated on the reference card by a \(P\) in the third column of each command description.

Other interesting commands to try include:
\begin{tabular}{llc} 
APL mode: & MC \(\varnothing\) & (Concept APL only) \\
ASCII mode: & MC shift \(\varnothing\) & \\
Transparent mode: & MC shift \(t \quad\) You must be in programmer \\
& mode for this command.
\end{tabular}

When the terminal is in transparent mode, 'control codes' are displayed rather than transmitted. Control codes represent the first 32 characters in each character set (see the back of the yellow Reference card). From the keyboard, control codes are generated by holding the CTRL key down and then pressing the desired key (e.g. to generate a Control A, hold the CTRL key down and press the A). The displayed ASCII control codes generate line drawing, forms, curve approximation and general math symbols. The displayed APL control codes generate subscripts and superscripts. The correct control code to type can be determined from the back of the yellow Reference card. For each character set, the generated character is four rows ( 64 characters) before the typed keys. Thus, a 'Control - L' corresponds to \(\Sigma\).

Transparent mode off: MC \(t\)
Position Cursor at MC a * \% You must be in programmer Line 10, Column 5: mode for this command.

Parameters are entered without additonal spaces or commas. In the above sequence, the first parameter indicates the line number while the second indicates the column number (line and column numbering begin at \(\varnothing\) ). Should you make a mistake during command entry, finish the command and then retype from the beginning. Parameters are entered as single characters and represent the corresponding displayable character on the back of the yellow Reference card (displayable characters start with a space - character number 32). Thus, a one corresponds to a !, a five corresponds to a \%, and a ten corresponds to a * (check the card). Try several cursor positions for yourself!

All terminal commands may be generated by the host computer by replacing the MULT CODE key with an 'ESCAPE' character (default is character 27). See your installation manager for details on generating this character.

Commands are summarized on the yellow Reference card and covered in detail in the Reference Manual.

Enjoy! Let us know how you do or if you have any questions.

When the Concept terminal is ordered with the 20 ma current loop option, it can be configured to operate in any of three modes 20ma active, 20 ma passive or RS-232 compatible. The mode selection is accomplished by setting two sets of DIP switches which are mounted on the main circuit board inside the terminal case. The DIP switches are located on the top right hand corner of the circuit board in locations Sl and S2 (Sl is on top). DIP switch Sl controls the "receive" line mode, while S2 controls the "transmit" line. The following tables specify the switch configurations for the three modes of operation.

DIP Switch Sl (Receive)
Switch Settings (l-ON,0-OFF, X-Don't Care)

RS-232
20ma Passive 20ma Active
\begin{tabular}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 1 & \(X\) \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & \(X\) \\
1 & 0 & 1 & 0 & 1 & 1 & 0 & \(X\)
\end{tabular}

DIP Switch S2 (Transmit)
Switch Settings (l-ON,0-OFF, X-Don't Care)

RS-232
20ma Passive
20ma Active
\begin{tabular}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline 0 & 0 & 0 & 0 & 0 & 1 & \(X\) & \(X\) \\
0 & 1 & 0 & 1 & 0 & 0 & \(X\) & \(X\) \\
1 & 0 & 1 & 0 & 1 & 0 & \(X\) & \(X\)
\end{tabular}

The communication interface connector on terminals equipped with the 20 ma current loop option is the standard 25 pin male connector. The current loop signals are on the following pins:

Terminal Transmit + Pin 18
Terminal Transmit - Pin 25
Terminal Receive + Pin 10
Terminal Receive - Pin 11

SPLIT SPEED OPTION ON CONCEPT TERMINALS

The split speed option on the CONCEPT terminal allows for the independent settings of Baud rates on the transmit and receive lines of the primary communication interface. The default values for the Baud rates are read from the DIP switches on the back panel of the CONCEPT terminal upon power up or upon execution of the terminal RESET function. DIP switch \#l sets the default Baud rate for the "receive" line; DIP switch \#2 sets the default Baud rate for the "transmit" line. The remaining default parameters on the DIP switches - parity, duplex setting and number of stop bits - are controllable only from DIP switch \#l.

In order to change the Baud rates following the reading of the DIP switches, a MULT-CODE (MC) sequence from the keyboard or an ESCAPE (ESC) sequence from the communication line must be performed. As an example, the "receive" Baud rate can be changed to 600 Baud by executing the following sequence from the keyboard - MC O \&. The FUNCTION ROUTE command must be used to change the Baud rate on the "transmit" line. As an example, the "transmit" Baud rate can be changed to 3600 Baud by executing the following sequence from the keyboard - MC Q " ESC O + 个w. Note that programmer mode is required for execution of the Baud rate change function.```

