S-100 Expansion Unit Technical Manual

COPYRIGHT 1979 by EXIDY INCORPORATED

ALL RIGHTS RESERVED
390 Java Drive
Sunnyvale, California 94086

FIRST EDITION

April 1979

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system (e.g., in memory, disk, or core) or be transmitted by any means, electronic, mechanical, photocopy, recording, or otherwise, without prior written permission from the publisher.

CONTENTS

Foreword 3
Mechanical Layout 4
110V-220V Conversion 4
Sorcerer 50-Pin Connector 5
Attaching the Ribbon Cable 5
S-100 Bus Signals
Pinout Table 6
Timing Diagrams 8
Explanation 11B
Direct Memory Access 12B
Timing Diagrams (DMA) 12A, 13A
Theory of Operation 13B
Schematic 15A
Performance Tests 14B
Diagnostic Tests 14A
Diagnostic Program 1
Listing 16B
Error Messages 17A
Illustrative Examples 17A
Diagnostic Program 2 18B
Diagnostic Program 3 18B
Waveform Diagrams for the Diagnostic Programs 18A
Parts Lists 19

ILLUSTRATIONS

Figure 1 Interior of Expansion Unit 4
Figure 2 110V-220V Conversion 4
Figure 3 Sorcerer - S-100 Unit Connecting Cable 5
Figure 4 Timing Diagram, Clock Signals 8
Figure 5 Timing Diagram, Read 9
Figure 6 Timing Diagram, Write 10
Figure 7 Timing Diagram, Interrupt and Wait 11A
Figure 8 Timing Diagram, Bus Exchange 12A
Figure 9 Timing Diagram, DMA 13A
Figure 10 Address Line Waveforms 18A
Figure 11 Data-Out Line Waveforms 18A
Figure 12 Data-In Line Waveforms 19
TABLES
Table 1 Sorcerer 50-Pin Edge Connector Pinouts 5
Table 2 100-Pin Signals 6
Table 3 Input to 6331 PROM 13B
Table 4 Addresses Tested by Program 1 16B
Table 5 Data Sent to Each Address 16B

FOREWORD

The S-100 bus is a collection of 100 information lines which carry address, data, status, control and power signals between a microcomputer (such as the Sorcerer) and other computers or special devices (such as memory expansion cards, music synthesizers, input/output devices, etc.). The Exidy S-100 Expansion Unit lets your Sorcerer use this bus to communicate with as many as six different devices.

An industry standard for the S-100 bus has recently been proposed; previously, each manufacturer used his own version, although these versions are all generally compatible. Table 2 lists the pinouts for both the Exidy S-100 bus and the standard S-100 bus proposed by a committee of the Institute of Electrical and Electronics Engineers (IEEE). The timing diagrams starting on page 8 give the complete signal timing for the bus, for users who wish to design their own S-100 devices.

Use the performance tests on page 14B to determine whether your S-100 Expansion Unit is working properly. However, the diagnostic tests starting on page 14A are intended for experienced service technicians. We strongly recommend that owners not attempt to service their own units.

NOTE

All service should be done by an authorized Exidy dealer; unauthorized service will void our warranty.

We refer to an IC device by its location on the board. Thus, 1 A is the device in column 1 , row A of the board.
We refer to a pin of an IC device (and sometimes the signal at that pin) by a hyphenated number following the location. Thus, 1A-5 is pin 5 of device 1 A .

If an IC chip contains more than one device, we refer to each by one of its pins. Thus, $1 \mathrm{~A}-5$ also designates one of the devices on chip $1 \mathrm{~A}-$ the one containing pin 5 . Context will make clear whether a designation such as 1A-5 refers to a pin or to a device.

MECHANICAL LAYOUT

To open the S-100 Expansion Unit, unscrew the four screws that secure the cover (two on each side) and lift the cover off. To insert an S-100 card into an empty slot, fit the side edges of the card into the plastic guides, with the card's edge connector down, and its components facing toward the front of the S-100 unit. Then lower the card and push its edge connector firmly into the female edge connector on the mother board. Do not force. To remove an S-100 card, simply lift it out of the slot.

In time the contacts may loosen in a female connector. This causes no trouble when a card is in the connector, but when there is no card in place, the contacts on opposite sides of the connector may touch, shorting two bus lines together. If this happens, insert a strip of cardboard into the connector to keep the pins apart.

The 4.5 " round hole in the back of the chassis is for a fan. If you decide you need one, use a standard 4.7 " 110 V 60 Hz fan, ROTRON Whisper (WR2H1) or equivalent. The fan should move 65 to 75 cubic feet per minute - anything more powerful will also be noisier. Tie the fan into the $A C$ power line between the power switch and the line filter.

Next to the fan hole there are six D-shaped holes for mounting standard 25 -pin D-sockets. Such sockets can be tied to the input or output of S-100 cards, or can be tied directly into the S-100 bus.

Figure 1. Interior of Expansion Chassis

110V-220V CONVERSION

The S-100 Expansion Unit's power supply transformer has two primary windings. For 110 V use, these windings are connected in parallel; for 220 V use, the primary windings must be connected in series (see Figure 2).

Figure 2. 110V-220V
Transformer Conversion

TABLE 1
Sorcerer 50-Pin Edge Connector Pinout Table

ATTACHING THE RIBBON CABLE

The ribbon cable has a large female edge connector at one end, and a smaller female pin connector at the other. The smaller connector attaches to the S-100 mother board. There is a slot at the bottom front of the S-100 unit, next to the 50 -pin male connector on the mother board. Push the smaller cable connector up through the wide part of the slot, from the bottom of the $\mathrm{S}-100$ unit. Then slide the cable into the narrow part of the slot and plug the cable connector onto the mother board; do not force. Plug the large cable connector onto the Sorcerer's 50-pin edge connector.

CAUTION

When you connect the S-100 Expansion Unit to the Sorcerer, the connecting cable must lie flat. If it is twisted, the Sorcerer's 50 -pin edge connector will be cross-connected to the $\mathrm{S}-100$ unit's 50 -pin connector.

Figure 3. Sorcerer - S-100 Unit Connecting Cable

Correct
(Cable lies flat)

Wrong
(Cable is
twisted)

Fold out page 11 B

The following table gives the pinouts of the Exidy S-100 bus, together with the proposed IEEE standard for S-100. The 100 -pin connectors are not numbered in the usual way (odd numbers on one side and even on the other). Instead, the numbers run 1 to 50 on one side of the connector and 51 to 100 on the other, with 51 opposite 1 and 100 opposite 50 ; the pins are on .125 centers. Over-barred signals (such as SWO) are negative-active; all others (except the -16 V utility) are positive-active. For explanation of the signal types, see p. 11B.

TABLE 2

		Exidy S-100 Bus		Proposed IEEE Standard	
Pin \#	Type	Name	Function	Name	Function
1	B	$+8 \mathrm{~V}$	Unregulated input to +5 V regulators. Minimum available under full load.	$+8 \mathrm{~V}$	Instantaneous minimum greater than +7 V , instantaneous max less than +35 V , average max less than +11 V .
2	B	+16V	Unregulated input to +12 V regulators. Minimum available under full load.	$+16 \mathrm{~V}$	Instantaneous min greater than +14 V , instantaneous max less than +35 V , average max less than +20 V .
3	S	XRDY	Ready input to current bus master. The bus is ready when both XRDY and PRDY are true.	XRDY	Same
$\left.\begin{array}{c}4 \\ \text { to } \\ 11\end{array}\right\}$	S	Unused		$\left.\begin{array}{l} \text { VI0 } \\ \text { to } \\ \text { VI7 } \end{array}\right\}$	Vectored interrupt lines
12	S	$\overline{\mathrm{NMI}}$	Non-maskable interrupt		Unspecified
$\left.\begin{array}{l}13 \\ \text { to } \\ 17\end{array}\right\}$		Unused			Unspecified
18	M	Unused		$\overline{\text { STAT DSB }}$	Control signal to disable status signals
19	M	Unused		$\overline{\mathrm{C}} \mathrm{C}$ DSB	Control signal to disable command/control signals
20		Unused		UNPROT	Unspecified
21		Unused		SS	Unspecified
22	M	Unused		$\overline{\text { ADD DSB }}$	Control signal to disable address signals
23	M	Unused		$\overline{\mathrm{DO} \text { DSB }}$	Control signal to disable data-out signals
24	B	$\phi 2$	The master timing signal for the bus	$\phi 2$	Same
25		$\phi 1$	TTL clock		Unspecified
26	M	PHLDA	Used together with $\overline{\text { PHOLD }}$ to coordinate DMA	PHLDA	Same
27	M	PWAIT	Wait acknowledge	PWAIT	The acknowledge signal to either of the bus ready signals XRDY, PRDY, or to a HALT instruction.
28	M	PINTE	Interrupt enable	PINTE	Unspecified
29	M	A5		A5 $)$	
30	M	A4		A4	
31	M	A3	Address bits	A3	Same
32	M	A15	Address bits	A15	Same
33	M	A12		A12	
34	M	A9		A9	
35	M	DO1 $\}$	Data-out bits	DO1 $\}$	Same
36	M	DO0		DO0 $\}$	Same
37	M	A10	Address bit	A10	Same
38		DO4		DO4	
39	M	DO5 $\}$	Data-out bits	DO5	Same
40	M	D06		DO6	

TABLE 2 (continued)

		Exidy S-100 Bus		Proposed IEEE Standard	
Pin \#	Type	Name	Function	Name	Function
41	S	DI2		DI2	
42	S	D13 $\}$	Data-in bits	DI3	Same
43	S	Di7		D17	
44	M	SM1		SM1	
45	M	Sout		SOUT	
46	M	SINP	Status signals; indicate current status of bus	SINP $\}$	Same
47	M	SMEMR		SMEMR	
48	M	SHLTA		SHLTA	
49	B	CLOCK	2 MHz local clock	$\overline{\text { CLOCK }}$	Unspecified
50	B	GND	Signal and power ground	GND	Same
51	B	$+8 \mathrm{~V}$	Same as pin 1	$+8 \mathrm{~V}$	Same
52	B	-16V	Unregulated input to -12 V regulators. Max available under full load.	-16V	Instantaneous max less than -14 V , instantaneous min greater than -35 V , average min greater than -20 V .
53		Unused		$\overline{\text { SSWI }}$	Unspecified
54	M	$\overline{\text { RESET }}$	Reset from Sorcerer	$\overline{\text { EXT CLR }}$	Unspecified
$\begin{aligned} & 55 \\ & \text { to } \\ & 65 \end{aligned}$	\}	Unused			Unspecified
66	M	$\overline{\mathrm{RFSH}}$	Refresh signal from CPU		Unspecified
67		Unused		$\overline{\text { PHANTOM }}$	Unspecified
68	B	MWRITE	Memory write enable	MWRITE	The logical negation of $\overline{\text { PWR }}$ and $\overline{\text { SOUT }}$; must follow PWR by no more than 30ns.
69)			$\overline{\mathrm{PS}} \quad$)	
70		Unused		PROT $\}$	Unspecified
71)			RUN	
72	M	PRDY	See pin \#3	PRDY	See pin \#3
73	S	$\overline{\text { PINT }}$	Interrupt request	$\overline{\text { PINT }}$	Same
74	M	$\overline{\text { PHOLD }}$	See pin \#26	$\overline{\text { PHOLD }}$	See pin \#26
75	B	$\overline{\text { PRESET }}$	Clear CPU	$\overline{\text { PRESET }}$	Reset signal for bus masters; must stay low for at least three bus cycles
76	M	PSYNC	Indicates the beginning of each machine cycle	PSYNC	Indicates the beginning of each bus cycle
77	M	$\overline{\mathrm{PWR}}$	Write enable	$\overline{\mathrm{PWR}}$	Signifies valid data on DO bus
78	M	PDBIN	Data bus in	PDBIN	Requests data from current slave, on the DI bus
79	M	A0		A0	
80	M			A1	
81	M	A2		A2	
82	M	A6			
83	M	A7 $\}$	Address bits	A7	Same
84	M	A8		A8	
85	M	A13		A13	
86	M	A14		A14	
87	M	A11		A11	

TABLE 2 (continued)

		Exidy S-100 Bus		Proposed IEEE Standard	
Pin \#	Type	Name	Function	Name	Function
88		DO2		DO2	
89	M	DO3	Data-out bits	DO3 $\}$	Same
90	M	DO7		D07	
91	S	DI4		DI4	
92	S	DI5		DI5	
93	S	DI6 $\}$	Data-in bits	DI6	Same
94	S	Di1		Di1	
95	S	Dio		Di0	
96	M	SINTA	Interrupt acknowledge	SINTA	Identifies the instruction fetch following an accepted PINT interrupt
97	M	$\overline{\text { SWO }}$	Indicates data transfer bus cycle	$\overline{\text { SWO }}$	Same
98		Unused		SSTACK	Unspecified
99	B	$\overline{\mathrm{POC}}$	Power-on clear	$\overline{\mathrm{POC}}$	Same; must stay low for at least three bus states
100	B	GND	Same as pin \#50	GND	Same as pin \#50

NOTE

The proposed IEEE standard requires XRDY, $\overline{\text { STAT DSB }}, \overline{\mathrm{C} / \mathrm{C} \mathrm{DSB}}, \overline{\mathrm{ADD} \mathrm{DSB}}, \overline{\mathrm{DO}} \mathrm{DSB}$, PRDY, $\overline{\mathrm{PINT}}, \overline{\mathrm{PHOLD}}$, and PRESET, (pins \#3, 18, 19, 22, 23, 72, 73, 74, and 75) to be generated by open collector bus drivers capable of sinking at least 20 mA at no more than .5 V .

Figure 4. Timing Diagram, Clock Signals

Figure 5. Memory or I/O Read

Fold out page 11B

Figure 6. Memory or I/O Write

Signal Types

There are three types of signal on the S-100 bus:

- Bus master signals, designated M. Each bus master must generate all of these signals while controling the bus.
Bus slave signals, designated S. A bus slave generates only masters.
- Bus signals, designated B. This is the default type; any signal not of type M or S.

Device Types

By definition, a bus master is a device which generates at least all of the M signals, and a bus slave is a device which generate

Signal Subsets

- There are eight status signals (prefix S) (unspecified), SWO, and SINTA
- There are six command and control signals (prefix P). PHLDA, PSYNC, PDBIN, PINTE (unspecified), PWR, and PWAIT
- There are sixteen address signals A15 through A0, with A15 the most significant bit, and A0 the least.
- There are eight data-out signals DO7 through DOO, with DO7 the most significant bit and DO0 the least. These are the data transmitted by the current bus master.
- There are eight data-in signals, DI7 through DIO, with DI7 the Tost significant bit and DIO the least. These are the data re

Signal Characteristics

Bus drivers must sink at least 24 mA at no more than 5 V and except for open collector drivers) must source at least 2 mA at

Bus receivers must sink no more than $80 \mu \mathrm{a}$ at 2.4 V and source no more than .8 mA at .5 V . They must interpret any signal less no more than .8 mA at .5 V . They must interpret any signal les than . $\frac{8 V \text { as logic } 0, ~ a n d ~ a n y ~ s i g n a l ~ g r e a t e r ~ t h a n ~}{2 V}$ as logic 1. must load the input no more than 25 pF .

Bus States

A bus cycle is a sequence of three or more of the following states. The basic cycle is BS1, BS2, BS3; any number of BS states may be inserted between BS2 and BS3, and one, two, or three BSi states may follow BS 3 .

- BS1 - The first state of any bus cycle. The address lines are unstable; PSYNC goes high during the second half
- BS2 - The second state of any bus cycle. Address, data, status, and ready signals stabilize.
- BSw - may occur between BS2 and BS3 to synchronize bus masters and slaves.
- BS3 - the data transfer state.
- BSi - the bus-idle state.

Bus Exchange

DMA is the process a bus master (the DMA device) uses to take control of the bus from the CPU, and read or write in memory.
The cycle begins when the DMA device signals PHOLD. This The cycle begins when the DMA device signals PHOLD. This
signal must be given only when PHLDA is false. The CPU intersignal must be given only when PHLDA is
prets PHOLD as a bus request (BUSRQ).

The proposed IEEE standard assumes that the DMA device will disable the CPU's bus drivers with the signals ADD DSB, DO DSB, STAT DSB, and C/C DSB. The Sorcerer does not handle
DMA in this manner. Instead, the CPU disables its own drivers DMA in this manner. Instead, the CPU disables its own drivers responds to the bus request. The CPU acknowledges the bus request with a BUSAK signal, and the S-100 unit responds to the BUSAK by giving the bus to the DMA device.
To keep the bus signals stable, the CPU and the DMA device must both drive the bus at two periods during the DMA cycle: when the DMA device takes control of the bus, and when it returns control to the CPU. During these two periods, the CPU and DMA device must both drive the command and control
signals for at least 200ns and the command and control signals must have these values:

- PSYNC=0
- PWAIT = 0
- PHLDA $=1$
- $\begin{aligned} & \text { PDBIN }=0 \\ &=1\end{aligned}$

Proposed DMA Sequence

The following DMA sequence is part of the proposed IEFE stand ard for the $\mathrm{S}-100$ bus. To start the sequence, the DMA device must send the PHOLD signal; PHLDA will then go true during BS3 of the last CPU cycle ethe S-100 unit interprets the CPU's BUSAK signal as PHLDA). The exchange starts at the falling
edge of $\phi 2$ while PHLDA is true, and the entire cycle is controlled edge the edges of $\phi 2$.
$\phi 2$ edge 1: CPU address and data bus drivers disabled; DMA command and control drivers on. CPU and DMA \$2 edge 2: CPU status and DMA address, data-out, and status drivers on. PSYNC=1.
$\phi 2$ edge 3: No change.
22 edge 4: PSYNC $=0$; $\operatorname{PDBIN}=1$ if memory read or PWR $=0$ if memory write.
$\phi 2$ edge 5: No change
$\phi 2$ edge 6: $\mathrm{PDBIN}=0$ and $\overline{\mathrm{PWR}}=1$.
$\phi 2$ edge 7: CPU command and control drivers on; DMA ad$\phi 2$ edge 7: CPU command and control dri
$\phi 2$ edge 8: DMA device sends $\overline{\mathrm{PHOLD}}=1$. CPU address, data, and status drivers on; DMA status and command and control drivers off.

Theory of Operation

When the S-100 bus was created, bi-directional ICs were uncommon. Therefore, the address bus is assumed to function in one direction only, and there are two data buses - one for data out
of the CPU, and another for data into the CPU.

The circuitry on the $\mathrm{S}-100$ Expansion Unit mother board translates between the Sorcerer's bi-directional data signals and the uni-directional signals required by $\mathrm{S}-100$ devices. It will also drive the address bus in reverse during a direct memory access
(DMA). (DMA)
The bus controller enables and controls the direction of the data and control signal buffers. This is analogous to the function of the Screen Controller on the Sorcerer logic board. The 6331
PROM at 5B (Program \# S-100) controls the data-in and dataout buffers ($(4 \mathrm{~A}$ and 5 A) and the Sorcerer's bi-directional data buffer (the control signals pass through the $\mathrm{S}-100 \mathrm{CPU}$ contro buffer 1A, and the Sorcerer's CPU control buffer). The addres buffer (2A and 3A) is always enabled; it takes its direction signal
directly from the Sorcere's bus request acknowledge (BBUSAK, buffered through 1B).
Table 3 gives the input signals to 5B. A memory address is assumed to be in the $\mathrm{S}-100$ unit, if it is not on the Sorcerer (i.e.
not in the ROM PAC, intemal RAM, or the upper 8 K of memory). Similarly, any I/O port other than FCH, FDH, FEH, FFH is assumed to be in the S-100 unit. Any I/O device other than a cassette recorder, Centronics printer, or RS232 is assum
ed to be in the $\mathrm{S}-100$ unit. During an I/O request, the $/ / O$ por $e d$ to be in the $S-100$ unit. During an I / O request, the I / O port
number appears on the lower half of the address bus; it is not duplicated on the upper half of the bus.

Table 3
to 6331
Conditions for High and Low Input Signals

Pin $\#$	Low	LoGic ϕ
14	Hhen CPU is servicing a	Otherwise
13	bus request	
12	Addres a read or interupt	No read or interupt
11	During refresh	Address in Sorcerer
10	/O port in Sorcerer	Otherwise
		/O port in S-100

Besides controlling the buses, the $\mathrm{S}-100$ unit also provides three clocks. A local 2 MHz oscillator generates a clock signal for
$\mathrm{S}-100$ devices which cannot use the Sorcerer's 2.106 MHz clock.

The other clock signals are $\phi 1$ and $\phi 2$, generated by the Sorcerer
There are thirty-two possible combinations of signals to 5B's five inputs. We consider each of these combinations to be a five-bit binary number, pin $5 \mathrm{~B}-14$ is the most significant bit, and pins 13 , 12,11 , and 10 are the other bits, in decreasing significance. For example, 10011 signifies pins 14,11 , and 10 high, and pins 13
and 12 low. The $\mathrm{S}-100$ program in 5 B divides these thirty-two and 12 low. The $\mathrm{S}-100$ program in 5 B divides these thirty-two
possible inputs into five cases:
Case 1 - DMA read (inputs 00010, 00110, and 00111; output 101011) - 6

- The Sorcerer data buffer is enabled high.
- 4 A is enabled high
- 5 A is disabled.
- Data flows into the controlling device through the data-in
bus. bus.
Case 2 - DMA write (inputs 01010, 01110, and 01111; output 001100)
- The data buffer is enabled low.
- 4 A is disabled.
- 5 A is enabled low.
- Data flows from the controlling device through the dataout bus.

Case 3 - Normal read (input 10011; output 000011)

- The Sorcerer data buffer is enabled low.
- 4 A is enabled low.
- 5 A is disabled.
- Data flows into the CPU on the data-in bus.

Case 4 - Normal write (input 11011; output 101110)

- The Sorcerer data buffer is enabled high.
- 4A is disabled.
- 5A is enabled high.
- Data flows out of the CPU on the data-out bus.

Case 5 - Default (all other inputs; output 111111

- The Sorcerer data buffer, 4A, and 5A are all disabled.

Note that during DMA the $\overline{\text { BBUSAK }}$ signal to $5 \mathrm{~B}-14$ also
enables 2 B and reverses the direction of the address bus (2 A and 3A).

If your unit passes these tests, you have a good assurance that it If your unit passes these tests, you have a good assurance that it will indicate which part of the unit is malfunctioning.
You will need a known good Sorcerer and the following S-100 plug-in cards, also known good:

- A RAM card, DIP switch addressabl
- An I/O device and interfacing card
- A DMA device and interfacing card (optional).

1. RAM Test: This tests the address bus, both data buses, partis of the status and command buses, and the bus conA
a. Address the RAM card to an $\mathrm{S}-100$ area (that is, between the bottom of the ROM PAC area and the top of internal RAM). Run
b. Re-address the RAM card to all parts of the $\mathrm{S}-100$ area and repeat the bit test.
c. Address the RAM card so that part of it lies inside the
ROM PAC area and part of it lies outside Repeat the bit test with the ROM PAC inserted, and Repeat the bit test with the RO
removed.
d. All addresses should pass the bit test, except addresses in the ROM PAC area; those addresses should pass the
test when the ROM PAC is removed. II any address test when the ROM PAC is removed. If any address
fails this test, proceed to the diagnostic tests, giving special attention to the read/write tests.

NOTE

If only some of the $\mathrm{S}-100$ addresses fail the test, the data buses are probably not malfunctioning. The problem prob ably lies in the address bus or the bus controlle

I/O Test: This tests the bus controller, and portions of the status and command buses which are not tested by the RAM test.
a. Address the I/O device to any I/O port other than FCH,
-
b. Enter and run a short program which reads or writes data (whichever is appropriate) to your device. You can
do this in BASIC, using the INP function or the OUT command; you can also do it in Z 0 machine language.
c. The data sent or received by the I/O device should be your unit fails this test, proceed to the diagnostic tests, giving special attention to the bus controller test and the status and command bus test. If the unit has already passed the RAM test, you may skip the diagnostic read/write test.
3. DMA Test (optional): This tests the bus controller, and porfons of the status and command buses which are not tested by the RAM test or the I/O test.
a. If you have a DMA device, interface it to the Sorcerer structions for addressing, I/O port assignment, etc.
b. Initiate a DMA read or write (whichever is appropriate), and check whether data is being read or written correctly.
c. If your unit fails this test, go to the diagnostic tests, giving special attention to the bus controller test and the
status and command bus tests. If your unit has already status and command bus tests. If your unit has already

These tests will locate malfunctions in the $\mathrm{S}-100$ unit. You will need the following equipment

- A dual-trace externally triggered scope (Tektronix 465 or
equivalent).
- A known good Sorcerer.
- A known good RAM card, DIP switch addressable.
- Six double-ended clip-on test leads.

1. Power Supply and Clock test
a. Pull all S-100 cards out of the unit. Then test for these
voltages on the 100 -pin bus:

Pin \#	Voltage
1	$+11 \pm$ VDC
2	$+18 \pm 1$ VDC
51	Same as pin 1
52	-18 ± 1 VDC

b. Put the local clock (pin \#49) on the scope and check for 2 MHz frequency (500 ns cycle tim
c. Put the $\phi 1$ and $\phi 2$ clocks (pins \#25 and 24) on the scope, diagram (Figure 4); verify 2.106 MHz frequency for $\phi 2$ (450 ns cycle time).
2. Address and Data Bus Read/Write Test, Part I
a. Check the mother board visually for shorts or open lines in the buses.
b. Remove the ROM PAC from the Sorcerer, and remove all S-100 cards from the S. 100 Expansion Unit except the RAM card. Address the RAM card to 8000 H
c. Load program 1 (address and data line send and receive) into the Sorcerer at address 0000, and run it with the Monitor GO command. This program tests selected admaller than 16 K , you must re-address it and rerun the program to cover the entire area tested. See Table 4
Example: If you have a 4 K RAM card $(1000 \mathrm{H}$ addresses), you must run the program four times, with
assigned to these blocks of addresses:

8000 H to 8 FFFH
9000 H to 9 FFFH
A 000 H to AFFFH
C 000 H to C 909 H

1) Check for bad data in the block of addresses actually covered by the RAM card (for example, 8000 H to dresses.
2) Check all address failures, even those outside the area covered by the RAM card.
d. This program tests all the data lines, and all address lines 1) If the Sorcerer is an 8 K or 16 K model, you can also program 1. Check only for bad addresses.
3) If you have a 32 K Sorcerer, you must check A15 manually. Pull 2A-1 high and low with a clip lead, and check whether the signal passes to 2A-19. Also check
e. Use ESC or RUN/STOP to momentarily pause the program; use CTRL C to stop it. You can restart it with the Monitor command GO 0000.
3. Address and Data Bus Read/Write Test, Part II: (Do this part of the test only if your unit fails Part I)
a. Remove all $\mathrm{S}-100$ cards from the unit. Load program 2 (address and data-out bus exerciser) into the Sorcerer at adSess 0000 , and run it with the Monitor command GO 0000.
b. Set the scope sweep to, 2 ms /division. Put probe \# 1 on pin address lines (pins 12 through 19 on 2A and 3A)
c. On each address line you should see a group of eight On each address line you should see a group of eight
pulses (one pulse for each data line) lasting about $94 \mu \mathrm{~S}$
total.(See Figure 10.) Each address line is pulsed about total.(See Figure 10.) Each address line is pulsed ab $120 \mu \mathrm{~s}$ earlier than the next higher address line.
d. The pulses on the lower order address lines A0 to A6 (chip 3A) are superimposed on the refresh signal. You will pro-
bably not be able to read lines A0 to A5; check these lines with a logic pulser.
e. Reset the scope sweep to 10μ s/division but keep probe \#1 and the triggering as before. Test each data-out line with probe \#2 (all pins on 5 A). You should see a $1.5 \mu \mathrm{~s}$ pulse on
each line; each line is pulsed about $13 \mu \mathrm{~s}$ earlier than the each line, each ine is pulsed abo
next higher line (see Figure 11).
f. If the address and data-out lines pass the test, reset the Sorcerer and load program 3 (data-in bus exerciser) at address 0000 . Insert the RAM card, and address it to 8000 H ; Trigger the scope on 2A.12. put probe \#1 on 2A-19 and use probe \# $\#$ to test the data-in lines (pins 1 through 8 and 12 through 19 on 4 A). You should see a $1.5 \mu \mathrm{~s}$ pulse on each data-in line each line in pulsed about $11.5 \mu \mathrm{~s}$ before
the next higher line (see Figure 12).
4. Bus Controller Test
a. Using clip leads to pull the input signals high and low, test the gates lea
and $9 \mathrm{C}-6)$.
b. Simulate a normal read by using clip leads to put 10011 on the input of 5 B . Check whether the output is 000011 ; also check whether 4A and 5A are enabled and disabled as de-
scribed in Theory of Operation, Case 3.
Use the clip leads to simulate a normal write, a DMA read,
and a DMA write. Check that the outputs of 5 B and a DMA write. Check that the outputs of 5 B are as decase, check that 4 A and 5 A are enabled and disabled correctly. When 5B-14 is pulled low (Cases 1 and 2, DMA 3 A are driven low.
d. Using the clip leads, check that all other inputs to 5 B pro-
duce the output 111111 .
5. Status and Control Bus Test
a. Check that $1 \mathrm{~A}, 1 \mathrm{~B}$, and 3 B are enabled high
b. Using clip leads or a logic pulser, verify that $1 \mathrm{~A}, 1 \mathrm{~B}$, and output pin.
c. Using a clip lead, pull the $\overline{\text { BBUSAK signal low; check }}$ whether $6 C$ and $7 C$ are enabled high. Then pull BBU

table 4
Addresses Tested by Program 1
PROGRAM 1 (continued)
Address and Data Line Send and Receive

Hexadecimal	Binary			
	15141312	111098	7654	3210
8001	10000	00000	00000	000
8002	10000	00000	00000	00010
8004	10000	00000	00000	$\begin{array}{llll}0 & 1 & 0 & 0\end{array}$
8008	10000	00000	00000	$1 \begin{array}{llll}1 & 0 & 0 & 0\end{array}$
8010	10000	00000	000001	00000
8020	10000	00000	$0 \begin{array}{llll}0 & 0 & 1 & 0\end{array}$	00000
8040	$1 \begin{array}{llll}1 & 0 & 0 & 0\end{array}$	00000	$0 \begin{array}{llll}0 & 1 & 0 & 0\end{array}$	00000
8080	10000	00000	10000	00000
8100	10000	$\begin{array}{llll}0 & 0 & 0 & 1\end{array}$	00000	$0 \begin{array}{llll}0 & 0 & 0\end{array}$
8200	10000	00010	00000	00000
8400	10000	$0 \begin{array}{llll}0 & 1 & 0 & 0\end{array}$	00000	00000
8800	10000	10000	00000	0000
9000	$1 \begin{array}{llll}1 & 0 & 0 & 1\end{array}$	$\begin{array}{llll}0 & 0 & 0 & 0\end{array}$	00000	00000
A000	$1 \begin{array}{llll}1 & 0 & 1 & 0\end{array}$	00000	00000	00000
C000	11100	00000	0000	00000

TABLE 5

Test Data Sent to Each Test Address

Hexadecimal	Binary							
	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$				
0	0	0	0	0	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
0	0	0	1					
02	0	0	0	0	0	0	1	0
04	0	0	0	0	0	1	0	0
08	0	0	0	0	1	0	0	0
10	0	0	0	1	0	0	0	0
20	0	0	1	0	0	0	0	0
40	0	1	0	0	0	0	0	0
80	1	0	0	0	0	0	0	0

PROGRAM 1

Address and Data Line Send and Receive

Address	Obj Code	Label	Mnemonic	Comment	
		;MONITO	UBROUTINE EQ		
	E1E8	ADDOUT	EQU E1E8H		
	E205	CRLF:	EQU E205H		
	E21C	HEXSPC:	EQU E21CH		
	E015	QUIKCK:	EQU E015H		
	E01B	VIDEO:	EQU E01BH		
	E003	WARM: -MAIN PR	EQU E003H		
			ORG 0		
0000	210180	START:	LD HL, 800		
0003	18 OB	; SET UP HL TO POINT TO NEXT ADDRESS			
, Cont Con en on Page 16A					

Address	Obj Code	Label	Mnemonic	Comment			
0005	A7	z2:	AND A	;CLEAR CARRY ;SHIFT HL LEFT ;SET MOST SIGNIFICANT BIT			
0006	ED 6A		ADC HL,HL				
0008	${ }^{7} \mathrm{C}$		LD A,H				
0009	FE 80		CP 80 H				
000B	28 F3		JR Z,START	;SET MOST			
000D	F6 80		OR 80H				
000F	67		LD H,A				
0010	3E 01	Z3:	LD A, 01 H				
0012	1804		JR Z4	; SISNIFICANT BIT			
		;SEND AND RECEIVE, AND CHECK IF OTHER ;ADDRESSES DISTURBED					
0014	CB 27		${ }_{\text {Z, }}^{\text {A }}$				
0016	28 ED						
0018	4 F	$\begin{aligned} & \text { Z4: } \\ & \text { Z6: } \end{aligned}$	LD C,A				
0019	CD 15 E0		CALL QUIKCK	;CHECK			
001 C	FE 1B		CP 18H	FOR			
001 E 0020	28F9		$\begin{array}{ll}\text { JR } & \text { 2,26 } \\ \text { CP } & 03 \mathrm{H}\end{array}$; PAUSE OR ABORT			
0022	CA 03 E0		JP Z,WARM	; OR ABORT			
0025	110020		DE, 2000H				
0028	CD 4E 00		SDCAD				
0028	110040		SDCAD				
002 E	CD 4E 00						
0031 0034	110080 $C D$			${ }^{\text {DE, } 8000 \mathrm{H}}$			
0037	79		LD A,C	SDCAD			
0038	46		$\stackrel{\text { A, }}{\text { B, }}$ (HL)				
0039	B8		B ${ }^{\text {B, }}$				
003A	28 D8	;PRINT ADDRESS, DATA SENT, AND BAD DATA RECEIVED					
003 C	4 F						
003D	CD 6400		CALL PRHL	;PRINT ADDRESS			
0040	${ }^{79} 10$		A,C ${ }^{\text {Cex }}$;PRINT DATA SENT			
0041 0044	${ }_{78}{ }_{78} 1 \mathrm{C}$ E2		${ }_{\text {CD }}^{\text {CALL }}$ AEXSPC				
0045	CD 1C E2		CALL HEXSPC	;PRINT DATA RECEIVED			
0048	CD 05 E2		CALL CRLF				
004B	79		A, C				
004C	18 C 6		$\underset{\mathrm{JRS}}{\mathrm{ZE}}$				
		;SUBROUTINES	DATA AND CHEC	OR ADDRESSES DISTURBED			
004E	AF	SDCAD: XOR A		; CLEAR ADDRESS POINTED			
004 F	12		LD (DE),A	; TO BY DE REG.			
0050	71		LD (HL), ${ }^{\text {C }}$;SEND TEST DATA			
0051 0052	1A			;RETURN IF DIFFERENT			
0053	C0		RET NZ	; FROM DATA SENT			
0054	CD 6A 00		CALL SPACE				
0057 005 A	CD 6400		CALL PRHL	;PRINT HL (ADDRESS REQUESTED)			
005D	CDE8E1		CALL ADDOUT	;PRINT DE (ADDRESS DISTURBED)			
0060	CD 05 E 2		CALL CRLF				
0063	C9		RET				
0064	EB	;PRINT HL					
0065	CD E8 E1		CALL ADDOUT				
0068	EB		DE,HL				
0069	C9		RET				
	3E 20	;PRINT SPACE					
${ }^{0066} \mathrm{C}$	CD 1B E0		CALL Cl (IDEO				
006F	C9		$\begin{aligned} & \text { RET } \\ & \text { END } \end{aligned}$				

HOW TO INTERPRET THE

 ERROR MESSAGES1. The address/data line send and receive program only gives an error message when data sent to one address goes to a different address, or when the data received from an address differs from to that address.
2. If the data buses pass incorrect data, the program will print the If the data buses pass incorrect data, the program will print the
address of each malfunction, followed by the data sent, followed
by the data received, all in hexadecimal.

Example

80011000

This means that 10 H was sent to address 8001 H , but 00 was received

This will detect malfunctions in the data buses, but will not determine whether the malfunction is in the data-out or the data-in
3. To find which lines are malfunctioning, convert the data sent and data received to binary, and compare them.

Example
data sent: 10 H which is 00010000 binary
data received: 00 which is 00000000
The malfunction is in data bit 4 (recall that bit 0 is the least significant bit, and bit 7 is the most significant).
4. Bad or nonexistent RAM addresses will usually show as FFH received. This does not indicate a malunction unless the address 5. If the address bus malfunctions, the program will print the ad-
dress intended, followed by the address actually reached.

Example:

80208000

This means that data was sent to address 8020 H , but actually went to 8000 H
These error messages are indented one space, to make it easier to tell an address error from a data error.
6. To find which address lines are malfunctioning, convert the addresses to binary and compare them

Example:
address intended: 8020 H which is 1000000000100000 binary address reached: 8000 H which is 1000000000000000 binary The malfunction is in address bit A5.

ILLUSTRATIVE EXAMPLES

These examples show the results Program 1 will give for some typical address and data bus malfunctions. We assume a 4K RAM Example 1

Malfunction - A14 shorted to ground RAM card addressing -8000 H to 8 FFFH Program results:

Malfunction - A15 held high (you must use an 8 K or 16 K Sorcerer)
RAM card addressing -4000 H to 4 FFFH
Program results: No error indication (Program 1 doesn't send any data to addresses lower than 8000 H).

Example 2B
Malfunction - Same as 2 A
RAM card addressing - CO 00 H to CFFFH
Program results:

When the program tries to read address 4000 H , it actually gets C 000 H (since A 15 is held high). The data went to CO 00 H as intended. The result is that the program thinks the data intended
for C 000 H went to 4000 H .

xample 3A:

Malfunction - A15 held low
RAM card addressing - 4000 H to 4 FFFH
Program results:

C0004000

Example 3B:
Malfunction: Same as 3A
RAM card addressing - COOOH to CFFFH
Program results:

Example 4:

Malfunction - A14 shorted to DO7	
RAM card addressing - 8000 H to 8 8 FFFH	
Program results:	
A000 80 FFC000 8000 $\quad \begin{aligned} & \text { May be 7F instead of FF, if A14 } \\ & \text { is capable of pulling DO7 low }\end{aligned}$	
C000 01 FF	
C0008000	
C 00002 FF	
C000 04 FF	
C0008800	
C000 08 FF	
C000 10 FF	
C0008000	
C 00020 FF	
C000 8000	
C000 40 F	\{ No addressing error, since
C000 80 FF	DO7 is high here
8001800	
80028000	
80048000	
8008800	
801080	
8020800	
80408000	
8080800	
8100800	
8200800	
8400800	
880080	
900001 FF	

-8000 H to 8 FFFH

Example 5
Malfunction - DOX or DIO shorted to ground RAM card addressing -8000 H to 8 FFF
Program results:

$$
3001 \quad 01 \quad 00
$$

80020100
$\therefore 00$
900001 FE
900002 FE
-•• COOO $80 \dot{\mathrm{FE}}$

Example 6
Malfunction - D7X shorted to DOX or DO7 shorted to DO0 or DI7 shorted to DI0
RAM card addressing -8000 H to 8 FFFH
Program results:
80010100
80018000
80020100
$8800 \quad \dot{01} \quad \dot{0}$
88008000
900001 FF

Example
Malfunction - DO0 shorted to ground
RAM card addressing -8000 H to 8 FFFH
Program results:
80010100
80020100
$\therefore \quad \dot{0}$
900001 FF

RROGRAM

Address and Data-Out Bus Exerciser

Address	Obj Code	Label	Mnemonic	Comment	
0000	212000	START:	LD	HL,0020H	;START WITH ADDRESS LINE A5
0003	$3 E 01$	Z1:	LD	A,O1H	;START WITH DATA-OUT LINE DO0
0005	77	Z2:	LD	(HL),A	;SEND DATA TO ADDRESS
0006	CB 27		SLA	A	;SHIFT 1-BIT TO NEXT HIGHER DATA LINE
0008	20 FB		JR	NZ,Z2	;REPEAT UNTIL DATA $=0$
000A	A7		AND	A	;CLEAR CARRY
000B	ED 6A		ADC	HL,HL	;SHIFT 1-BIT TO NEXT HIGHER ADDRESS LINE
000D	$20 ~ F 4 ~$		JR	NZ,Z1	;REPEAT UNTIL ADDRESS =0
000F	18 EF		JR	START	

PROGRAM 3
Data-In Bus Exerciser

Address	Obj Code	Label	Mnemonic	Comment	
0000	2680	DIN:	LD	H,80H	;INITIALIZE ADDRESS
0002	2 E 01		LD	L,01H	;INTIALIZE DATA
0004	75	Z1:	LD	(HL),L	;SEND DATA TO ADDRESS
0005	CB 25		SLA	L	;INCREMENT DATA AND ADDRESS
0007	C2 0400		JP	NZ,Z1	;REPEAT FOR EACH DATA LINE
000A	2 E 01	Z2:	LD	L,01H	;RE-INITIALIZE
000 C	7 E	Z3:	LD	A,(HL)	;READ DATA
000 D	CB 25		SLA	L	;MOVE TO NEXT DATA LINE
000 F	C2 0C 00		JP	NZ,Z3	;REPEAT FOR EACH DATA-IN LINE
0012	3200 C0		LD	(COOOH),A	;SYNC POINT FOR SCOPE
0015	C3 OA 00		JP	Z2	;REPEAT DATA-IN READ

Figure 10. Address Line Waveforms (Program 2)

Figure 11. Data-Out Line Waveforms (Program 2)

Figure 12. Data-In Line Waveforms (Program 3)

PARTS LIST

	Mother Board				Mother Board		
Part	Qty/ Board	Locations	Exidy Part \#	Part	Qty/ Board	Locations	Exidy Part \#
Complete Assembly	1		SE77-3155	.$^{1} \mathrm{~F}$ ceramic cap.	14		SE23-4035
Bare PCB	1		SE77-3150	$6.8 \mu \text { F } 10 \mathrm{~V} \text { Dip }$	2		SE21-4016
Pre-programmed 6331 PROM (S-100)	1	5B	SE48-5005	tant. cap. $4000 \mu \mathrm{~F} 50 \mathrm{~V}$	2		SE20-4000
74LS00	1	9B	SE48-2300	axial elect. cap.	2		SE20-4000
74LS02	2	7B, 8A	SE48-2301	$28,000 \mu \mathrm{~F}$ 15 WVDC radial cap.	2		SE25-1008
7404	1	9A	SE48-2302	220 ohm 1W resistor	1		SE57-5004
74LS04	1	8B	SE48-2302	470 ohm $1 / 4 \mathrm{~W}$ resistor	2		SE59-5135
74LS08	2	7A, 8C	SE48-2312	510 ohm 1W resitor	2		SE57-5005
74LS10	1	9C	SE48-2306	$2.2 \mathrm{~K} 1 / 4 \mathrm{~W}$ resistor	8		SE59-5110
74LS32	1	6A	SE48-2315	2.2K $1 / 4 \mathrm{~W}$ resistor	8		SE59-5110
74LS74	1	6B	SE48-2305	connector	6		SE61-8015
74 S 241 (74LS241)	7	$\begin{aligned} & 1 \mathrm{~A}, 1 \mathrm{~B}, 2 \mathrm{~B}, \\ & 3 \mathrm{~B}, 5 \mathrm{C}, 6 \mathrm{C} \\ & 7 \mathrm{C} \end{aligned}$	SE48-2328	Male 50-pin wirewrap header AMP \# 2-87227-5	1		SE61-8005
8304	4	$\begin{aligned} & 2 \mathrm{~A}, 3 \mathrm{~A}, 4 \mathrm{~A} \\ & 5 \mathrm{~A} \end{aligned}$	SE48-2327	5-pin male Molex header	1		SE61-8073
LM323K	1	8D	SE48-2336	09-65-1051	1		SE61-8073
6051 diode	4	8J	SE46-3016				
2.0 MHz crystal	1	9A	SE45-3040	Heatsink, Thermaloy 6013	1		SE68-8000
$.01 \mu \mathrm{~F} 16 \mathrm{~V} \pm 10 \%$ mylar cap.	2		SE25-1013				

	Chassis			Chassis	
Part	Qty/ Unit	Exidy Part \#	Part	Qty/ Unit	Exidy Part \#
Plastic Cover Steel chassis assembly (box) Overlay set Transformer MDA 970-1 Bridge Rectifier or 60S1 2KI line filter Power switch Power cord 2 amp SB fuse 2 amp fuse holder $12^{\prime \prime}$ Ribbon cable assembly with connectors 5-pin female Molex connector 09-50-3051 \# 8 ring lug P18-8R-C Panduit (or equiv.) . 250 fast-on (insulated push-on connector) 18 ga insulated butt splice Fan finger guard Rubber feet		SE91-4004 SE68-1003 SE89-2008 SE63-4027 SE47-3004 or SE46-3016 SE90-3000 SE72-3052 SE71-2328 SE60-6004 SE60-6005 SE71-2022 SE61-8074 SE74-5153 SE61-8049 SE74-5154 SE74-5149 SE82-1009	Card guide, $21 / 2$ " SAE 1250F (or equiv.) Strain relief gromet $1 / 2$ " standoffs 6-32 thread aluminum $6-23 \times 3 / 4$ "phil pan head machine screws 6-32 kep nuts \# 6 flat washer $6-32 \times 1 / 4$ " phil pan head machine screws $6-32 \times 1 / 2{ }^{2}$ phil pan head machine screws $6-32 \times 11 / 4^{\prime \prime}$ phil pan head machine screws $8-32 \times 3 / 4$ " phil pan head machine screws $6-32 \times 1 / 4 "$ black iron oxide button head phil machine screws $6-32 \times 3 / 4$ " black iron oxide button head phil machine screws	12 1 15 15 5 25 6 32 10 6	SE75-4002

NOTICE

ALL EXIDY SOFTWARE IS DISTRIBUTED ON AN "AS IS" BASIS WITHOUT WARRANTY

Exidy shall have no liability or responsibility to customers or any other person or entity
with respect to any liability, loss or damage caused or alleged to be caused directly or
indirectly by computer equipment or software sold or distributed by EXIDY, including
but not limited to any interruption of services, loss of business or anticipatory profits or
consequential damages resulting from the use or operation of such computer or software.
$\$ 9.95$

Reorder No. DP5004

