
~ 6)r' t!e'Ni~ ·-----~-~· -

.. P.R0Gl1t~fv1P\i1ERS'

RlEFEr?fENCfE

. _:. f~~ANUAL

(DRAFT)
6·15·73

ENTREX, INC.
168 Middlesex Turnpike
Burlington, Mass. 01830 .
617-273-0480

I

J

I
I
I
I

' I

·t. ..
: .' ~-

~ .,

(

/

(

, I

I I
I :

This Programmers' Reference Manual constitutes a draft or preliminary

versio~. A final publication is scheduled for September 1, 1973. It is

requested that if the reader has any comments or corrections that they

be sent to:

Dale Lydigsen
Entrex, Inc.
168 Middlesex Turnpike
Burlington, Massachusetts 01803
(617):..273-0480 .

I
..

I
I
I
I
I
I
]

]

](

]

' 1·

I
I
I
I
I (
I
I

DEFINITIONS

RECORD EDIT
/

LIMITATIONS

BATCH .EDIT

~ABLE of CONTENTS

.SECTION. 1.
'INTRODUCTI·ON

. ·

.

. • ••.......•........

............ ~ ..•..................... •
OUTPUT REFORMATTING (....... -·
CODING

SECTION 2

ARGUMENTS

FIELD NUMBER.
NUMERIC·LITERAL .
ALPHAMERIC LITERAL .
VARIABLE

I

ARITHMETIC EXPRESSION ~ •

ADD

DECLARE.

DIVIDE

FLAq.

·GOTO

IF

MOVE

.· . .
.

. . .
SECTION 3
STATEMENTS

..... ·
.

.

. •
.

. ' .

.

iii

PAGE

1-2

1-2

1-3

1-4

1-6

1-8

2-1

2-2

2-2

2-4

3-2

3-3

3-4

3-5

3-6

3-7

..
.·

. (

MULTIPLY•..•....•................... 3-10

OUTPUT•.............. 3-11

PAUSE , • 3-17

PERFORM ~ ... · ·• 3-18

RELEASE•............... 3-19

SORT • •...•..... 3-20

.STOP · •. 3-21

SUBTRACT ... •·• • • • • • • • • • • • . • • • 3-2 2

·WHEN 3-23

(

SECTION 4

SENTENCES
. ·.

GRAMMAR . 4-1

CONDITIONAL EXECUTION ~ 4-1

SENTENCE LABLES 4-1

PUNCTUATION•................... 4-2
·,;

APPENDIX A COMPILER ERROR CODES A-1

APPENDIX B EFFICIENTLY USING THE EDITOR B-1

APPENDIX C TAPE OUTPUT CODES IN OCTAL NOTATION C-1

(

iv

; .

/

I
.

.
.

I
I

I
I
I
I
I
I
I
I

I
I
I
I

1.

I
I
I ' .

3

(

: I
I ,

SECTION 1 !

INTRODUCTION
' ,

The Entrex 8480 presents extended.editing and validating features in

th• form of a high level Cobol-like'la~~uage. This language allows a

user to perform hfs own input validation checks and Output Reformatting

~ith Arithmetic, Logical, Output and Program Control Statements. The
·following features are in addition to the character and field error

detecei~n described in "Formatting TeGhniques" (S-8):
' !

·Character Error Detection
/

• Field Type (Alpha,·Numeric, etc.)
• Field Boundary Check

: ..

Field Error Detection
• Range Checks
• Check Digit Verification
• Value Table Lookup
• Mandatory Entry/Complete
• Batch Balancing
• Ascendency ·Check ·.

The extended editing features provide record and batch error detection.

T~e following features ~llow for· • much greater degree of flexibility and

may be· performed dep~nding on specified conditions:

Record Errot Detection
.·

Complex Range Checks
• Contents Checks
• •iithmetic Crossfoot Checks

Batch Err~r Detection
• Complex Contents Checks
~ ~omplex Arithmetic Checks
• Batch Totals and Subtotals

. Output Formatting is accomplished by means of Editor Formats Programs

usi_ng_powerful output statements. This manual describes record edit,

batch edit, and Output Formats and gives examples of each.

This programmers' reference martual is concerned only with the syntactic

and. operati6nal description of these basic program building blocks. It,

therefore, is geared to that in~ividual responsible for the technical

.•

1-1

(

(

.·

design of the keypunch/unit-re~~rd shop, and a~sumes at least a minim~l

or cursory familiarity with programming terminology and. functions.

DEFINITIONS

A program is made up of one or more English langu~ge sentences. Each

sentence is made up of a function word or a function word with on~ o~·

more arguments. Two types of programs are used:

• Error Detection programs

. • Output Reformat programs

The ~ajor difference between the two is· that Error Detection Programs

check or validate data, whereas an Dutput Reformat Program m~y change

and generate data. For instance, an Error Detection Program may compu.te

A x B and compare the results with C, whereas an Output- Reformat Program

may compute A x B and store the resui€s in c~
I

RECORD EDIT

A record edit is perfol;'med ·at the end of each record in ~NTRY mode. In

VERIFY mode it is p erf or.med only if the record is ·changed (if CORRECT

key is depressed). · ..

Immediately after an operator releases .(manually or automaticall~) out of

a record, the inforaation just keyed is passed through the record .edit

format. All operations pertain only to the immediate record just.released.

Data cannot be carried over from record to-record.

/
A record edit is used t~ edit or check data that can be corrected by the

operator at the time. it is in~tiall~ keyed •. If the operator canriot correct

the data the edit should be performed either at batch edit time or through

a separate edit run. This procedure prevents interrupting the operato~'s

keying cadence.

1-2·

1 "*'l.#l I 6 Q f.,fi8 ...,..

~
(

• ~
• ~

l
l

J
I
I
I

The program will continue either until a RELEASE or STOP statement or

until the final program statement is executed. A RELEASE statement returns

the system to the ENTRY mode until the end of the next record when it will

again retain control. A STOP statement also ret~rns the system to the

ENTRY mode however, no further execution of the program will occur.
/

LIMITATIONS (To prevent system degradation)

1 •

2.

3.

. 4.

Data cannot be carried forward fro~ one record to another record.
(This can be done at batch edit time.)

Totalling of any kind, except wLthin a record, is not possible. A
record edit is performed within one record. The system will initialize
all variables within the program for each new record.

Three vari~bles are allowed per terminal ·cone variable may be use~ over
a~d o~er to perform many operations within a record) since variables
may not be used for cumalative operations.between records only a few
variables are needed •

. : .

Data cannot be cha~ged. A record edit is used to check data within a
re~ord only. Changing data can be don~ via an ~utput format at ou~~ut
time •

. S. The output statement is not ·valid.

Error Handling

A prQgram may hand1e data. input err~rs in one or two w~y~:

1. The program aay specify the insertion of' an error chara~teY into a
specified field using the FLAG statement.

2. The program may displar an error ~essage using the PAUSE statement.

Program Example

The following example performs content checking, range checking, cross

footing and extension checking.

. . .

1-3 .

.. ·.

Program Name
Application

PAGE

LINE#

1

2

3

4

5

6

7
8

.... 9
I • 10

.

PAGE

LINEI
1

2

3

4

5

6

7

8
' :

9

\
10

..... •17•

ENTRE~YSTEM 480
EDITOR \..OOING FORM

Program Example . Originator.-----------------
"Record End" Edit Date

P.R.o.o.u.c.T .•

3,5 •• o.R F.L.A,a,· ,(,2,) ••

41)- I I> '-· ,4,2 .. I I P.A. U,S.E

C1H1E1C1K1 ,E,R.R101R

(~ _L)_,+ I (,3 ,) I .T.O

(,6.),.

) I I: I I 011
IF .. P.R.0.D.U.C.T .. . I. ,1,0

P.A.U.S 8,,,9, ,A.N,D, ,1,0.' .•
!.N.E,X,T S.T.O •

I'
I
I
I
I
I
I
I
I.
](

l
]

I
(

I

• t ..

BATCH EDIT

A Batch Edit is an Error Detection Program executed to check or validate

4ata, and includes:

/ .Complex Range Checks
.Complex Content Checks
.Complex Arithmetic Crossfootin-g
.Complex Batch Totalling/Subtotalling

It is performed upon batch termination in either.ENTRY or VERIFY mode

or both. Immediately after an operator terminates~· batch(not inter~upts),

the program will perform all specified operations on that batch. Batch·

.·End variables are cumalative and therefore batch totalling, subtotalling

and record to record checks may be"performad. The variables are initial

iz~d.just once for the entire batch as oppos~d to once for each record.

Initializing a variable means assigning it a'value of zero so that the

programm~~ _need not initialize the accumulators. The number of variables

allowed is 100.

Execution ·of the program will continue ~~til a STOP statement is encountere~

It is also possible to p~rform ~n edit on a terminated batch us~ng ari edit

batch function.

Limitations

1. Batch edits are error-detection formats therefore data cannot be
' changed. Changing dgta only be accomplishe~ by an output .formatting

program.

Error Handling

ioth.of the methods described in Record Edit error·~an4ling above apply

in Batch Edit.

- ' .

..

(

(

Another error handling method available with batch edit formats is the

creation of an error log. The ezror log associated with the batch being

processed is created with the OUTPUT statement. The error log is capable

of accepting any information, formatted in any way. During edit program

execution OUTPUT statements generate a disk file which is associated with

the particular batch in process.

· Batch Edit Program Example

The following example performs content checks, range checks, arithmetic

crossfoot checks, batch totalling and sub~otalling. It creates an error

_log of those records with range check errors, subtotal errors and lists

entered and accumulated batch totals if they do uot match.

OUTPUT REFORMATTING

The output reformats reformats a batch and outputs it to any existing

output device. All statements are valid for output reformatting. This

allows for conditional output of records and data changes based on some

predetermined factors.

An Output Reformat Program is executed by a Supervisor request, and

follows the same rules that govern Batch Edit Programs.

Limitations

•:

The OUTPUT statement initiates output to a specified output device

rather than to a disk resident error log. It will not operate an error

log. An error log is generated by a Batch Edit Program only.

/
Output Reformat Edit Program example

The following example outputs one record for each input record. It also

outputs a trailer record including the system maintained date and block

count. A record count is kept to serialize output records. An extension

is calculated and then punctuated.

1-6

... . lli'll ... ~ ... llilriill ~ iMliiii ~ -· ii lilliiiiii . .. - - .. - -~

...
I

... , ,,, ..

~

ENTREX S • .iiTEM 480
.EDITOR CODING FORM

-""

Program Name· Program Example · .
Application · "Batch End" Edit

Originator ___________,. _ _... __ _

·PAGE 1

LINE'//

1

2

3

4

5

6

7

8

9
. 10

PAGE

LINEI
1

2

3

4

5

6

7

8

9

10

Date

2 •• I 1R1E c 1N10 , •.

,T.A.L .•

'P1G1M1 13

I.F (,2 I) · ·: 3 ,) I•

I1F) I I< ! 1R1A1N1G1E ••
R,A,N,G,E ••

A.D.D

!, T, T.O.T.A,L.2 ~I I (12 I) I I O.U.T.P.U.T A

T.E.D. ,T,0.T.A.L = t • I ,T,O, T,A,L,2" ' E.N.T.E.R.E.D T.O.T.A.L.'.,

(,2 ·,) I •

fb_l? _j_!:iJ ~1 A, ~J~ ~-J I I I I I I I I L..J _ l .• I. L .I .J. .. 1. l - I 1.- L I - L .-l .J. I • I ' I I I

!1R1A1N1G1E1 1E1N1T1E1R,,, ,o,gTiIJ9'11 1 '1R,A1N,G,E1 1EtRiR-P1R1 ,ItN1 ,R,E,c

I Ot ~ D I # I I I , I I...;.~ E1 q Nt Q • I I Ei :xi :u:r; I • I I I I I ! I ..L I I I I I I I I I . I I

1, s,T,a T,.AJ L , 1 .F', , <, 1,>, .1, ,T,o,T1A1L,1,,, ,o,u,T,P,u,T, ,• ,R,E,c,o,R,o,H
CORRE.CT .SUBTOTAL=' TOTAL!.

R,E,L.E,A,S.E.:.

..

:

(

(

CODING

The coding sheet used to code Edit, Sort, and·Output formats is Entiex

·o~der No. M-10.

The form outlines pages consisting of ten lines of forty characters each

as they appear in their respective libraries.

As many pages as needed to accomodate the coding can be used and will

represent one page (or screen) in the format librarLe~.

The statements are coded in a "~ree-for~" style. The language consists

of English sentences made up of statements.

Statements are separated by spaces (or a comma and a space). Sentences

are ended with a pe~io4.

I

,/

I
I
I
I

I

I
I
I
J

]

J

J

J
J
.I

] .

l

&A llii1illi lliili -- - . - - -
~

...
I ..
'°

M•tO S/7S_

~

ENTRE: VSTEM 480
EDITOR CODING FORM

Progr8m Name PROGRAM EXAMPLE
Application "OUTPUT REFORMAT" EDIT

Originator...-----------,.....------
Date

PAGE 1

LINE fl

1 ~E JC iL..~~~-~I Et IR._1E 1C IN ,cu:-:i_ P R 10 ID Ill IC I Ti. I I I I I 1

2
I
.A ·,D

3

4) (I 41) p .ll .o .DI u I c
5

6

7

8

9 u IT I I <tE iO 1F .>
·10

PAGE

LINE#

1.

2
3 ..

4 I J J _ I 1 L_ l _l _1

5

.6

7

8

9

10

L 1 __ 1_ _t_ _1 __ 1 • • • • • • • • .

[,- -.- I - i I . I I j I I I' I I I. I 1 I I I j 1 !' I I I I I I I I I I I I

·.

. -----

............... , 'stt·..jt +c'itiMiottCt·tu·+ *'' -., s,·•+•· · ·.:w:;~-d4d;a.·.;&J-,C&o~4#.1itY•tiTt-,:-.;e.a.t, ••.• · ro+'· aoue 110 ,., wo
,· '·

I

I
I
I
I
I
I
I
l

I

•
I

.·

(

/

; I

I 1

SECTION 2

ARGUMENTS

Within the EDITOR language, there are five legal argument types: field,

numeric literal, alphameric literal, variable ~nd arithmetic expression.

Within the context of a particular statement, some argument types may

be illegal.

FIELD NUMBER

A field number is defined as a number ·from 1 to 2047 and must· be

closed in parenthesis.

• J

Examples: (5)

(22)

(2013)

en-

Additionally, System/480 provides the facility.to handle sub-field

or sub-string specificat{ons. The specific•tion is in the form of

.Cn:p-q) where the 'n' represents the·fiel~ number, and·~· and 'q'

represent the relative positions within a field of the first and

last character of the sub-~tring. When only one character of the

' field is desir~d, the form (n:p} would suffice.

This sub-string.'feature allows the system to now manipulate data

down to the character instead. of field level. Througho~t this

document, 'field I' should be taken to mean any sub-field or sub

string within the field number.

Examples: (5:2-4}

(22:3)

(2013:4-12}

2-1

.. ·

..

NUMERIC LITERAL

A numeric literar is defined as an unsigned or. overpunched string

·of digits comprising an integer value. The m·axfmum legal size of

a numeric literal is 14 characters.

The overpunch

f_irst (due to

able name).

may appear in any position in the string excep~ ih~
.---~ ::o -- --- .- •

the possibility of confusing the string with a:vari-

Examples: 9824

9824
+

9824

ALPHAMERIC LITERAL

.·

t.

(An alphameric literal is defined as a string of up to 132 characters

enclosed iri single or double quotation marks. Single quotation ~aiks

may appear within a liter~l enclosed within double quotation ma~ks and·

vice versa. Any keyboard character is legal within an alphameric

literal.

(

Examples: 'MESSAGE'

" 'HELP ! ' "

.. :

Another form of an alphameric literal would be nnn'X'.whe~e nnu is

the number of times (1-132) the. sing.le character in quotes would be

repeated. In other wor~s '0000' may also be written 4'0'. Thi•
. .

form of an alphameric literal requires that only one character be
/

spe~ified within quotes. This feature facilitates the filling of

blanks or zeroes in an output rec~rd fo~ both the user and the

system. It also make more· explicit the definition of .the size of
. .

a variable when used in a MOVE ftatement.

2-2

J·

I
I'
I
I
I
I

I

l
J
J

d

•
I

ALPHAMERIC LITERAL Continued

Examples·:

VARIABLE

S'Z'

120'6'

A variable is defined as a name associated with a value. The name
/

may be 1-8 characters in length, the first charact~r being A-Z and

all following characters being A-Z or 0-9. The value may be either
. ' alphameric or numeric. A numeric variable may contain up to 14 digits

including a sign. An Alphameric variable may contain up to 20 char

acters. The type (alpha or numeric) and logical size of a variable

is generally defined with a MOVE statement as follows:

· ,MOVE field/sub-field to variable -

size • size of field/subfield

type • type of field/subfield

.MOVE numeric literal to variable

size • 14

type • numeric

.MOVE alpha literal to va~iable

size • size of alpha literal

type = alphameric

.MOVE variable to variable

' size = size of first variable

type • type of first variable

.MOVE arithmetic expression to variable

size = 14
type = numeric

Examples: X
Pl31
TOTAL
SUBTOTAL
DlA43BC

2-3 ..
..

(

..
• I

ARITHMETIC EXPR~~SION

An arithmetic expre~sion is defined as two or more of any of the

previously defined argument types connecied by any bf the follow

ing arithmetic operators: + (plus), - (minus), * (times), I (d·ivided

by). An arithmetic expression i~ interpreted and performed simply

from left to right (e.g., there is no hierarchy of operators), and
. ' .

it's result is always considered to be 14 numeric positions and right-

· justified.

Examples: (1) + (2). . ·

RATE * WEIGHT
(21)/~0 + TEMP (6)

2-4·

; · ..

/

I

I (

I
I
I
I
I
I
~

i (

I
I
I
I
1.
I .

le
I
3

SECTION 3

. STATEMENTS

/
With the EDITOR language there are basically two types of statements:

'Action' statements and 'Conditional' statements. Action statements are

used to perform arithmetic, editing, output, error signalling and pro

gram control functions. Conditional statements are used to perform

logical and special tests. The statements shown below are described on

the following pages:

ACTION Verbs

ADD.

DECLARE

DIVIDE

FLAG

GOTO

MQVE

MULTIPLY

OUTPUT

PAUSE

PERFORM

RELEASE

SORT

STOP

SUBTRACT

CONDITION

IF

WHEN

verbs

3-1

3-2

3-3

3-4

3-5

3-6

3-9

3-10

. 3-11

3-17

3-18

3-19
3-20'

3-21

3-22

3-7

3-23

..
. ·

. (

i.

ii.

(

iii.

Format:

ADD

Des c r i p t i o.n :

/

\
FIELD \
LITERAL \
VARIABLE;·
ARI TH. .

EXPR.

. .

. AD D

TO <('VARIABLE) ' .

'

·The data defined by the.sotirce argument is added to the current
contents of the destination argument and the sum replaces the

. current contents of the destination argum~nt. The contents of
the source ~rgument remain undisturbed.

If the logical ~ize of the ·destination argument is exceeded dur
ing this operation, the overflow indicator is turned on and can
be ~ensed and utilized by the program. However, if the physical

·size of the system accumulators (14 decimal ·digits) is .exceeded
at any time during this operation, results of this and future
arithmetic operations are ~npredictable.

Examples:

ADD (1) TO TOTAL~

ADD (2) + (3) TO CREDJ;TS.

ADD WEIGHT .TO RAT.E.

ADD 100 TO COUNT.

ADD (13:3-5) TO TEMP.

/

3-2

I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I

I
I
I
I

]

J

~
ii

• d

/ D E C L A R E

i. Format:

ii.

iii.

DECLARE <VARIAB·LE> , <VARIABLE> , <VARIABLE> ,,, • • • •

Des·cript ion:

The DECLARE statement is used. purely as an EDITOR program de
bugging tool. All variables must be declared within an EDITOR
program prior to being used. This minimizes the possibility of
an EDITOR programmer referencing invalid variables within his
or her program.

Example:

DECLARE TOTALl, TOTAL2, COUNT •••

3-3

•,

i.

ii.

(

iii.

(

------·

I

·' I· I

!·1
I

.... . . . •'
. . ~

D I v I D E

Format:

I
FIELD
LITERAL)

<(vARiABLE) DIVIDE VARIABLE INTO

\ ARITH.
EXPR. I

•

Descrip.tion:

.
·The data defined by the ~ource ~rgument is divided into the cut
rent contents of the destination argument and the quotient replaces
the current contents of the destination argument. The.contents
of the source ~rgument remain undisturbed.

If .the logic~! size of-~he destinatiriri argumerit i~ exc~ed~d during
·this operation, the overflow indicator is turned on and can be
sensed and utilized by the program. However, the physical size·- -
of the system accumulators (14 decimal ditits) is exceeded at any·
time during this operation, results of this and future arithmetic
operations are unpredi~table.

. . - ·~ ~. : ~ ~ · . .: : - : : : .: ... -:

Examples: . - - _ ~ 'i ::: - ~ ::: : ..:. .;.;

DIVIDE (1) INTO TOTAL.
. .

DIVIDE (2) + (3) IJTO CREDITS.

·DIVIDE WEIGHT INTO·RATE.

DIVIDE 100 INTO COUNT~

DIVIDE (13:3-5) INTO TEMP.

3-!t

.?

.. _....... . . -. · ...

- - ... - ·-: "":">

/

I
I
I
I
I
I
1
I
J

i.

:ti.

I (1.ii;·

I
I
I
I
I
I
I
I
I

(

/ F. LA G

Format:

FLAG FIELD.

Description:

The FLAG statement is one of two error· signalling statements~
·It is used to insert an S480 error chara~ter into the left
most position of a specified field, sub-field, or character.
This statement would most probably be used in conjunction with
a conditional statement • . ..

Examp.le:

FLAG (2).

FLAG (2: 3). . . .
FLAG (2:3-5).

'

. 3-S
.•

. (
. I

i.

ii.

iii·.

...

..

\

..

. '

G 0 T 0

For~at:

GOTO ! LAB.EL

Description: '
The GOTO statement is a program control statement which is used
to modify the sequential execution of EDITOR sentences by allow-
1ng a progra~ branching capab~lity. A branch m~y be executed ·
to anywhere within an EDITOR program with the exception of into
a subroutine or out of a subroutine.

Example:

·GOTO ! TEST ·
: .

/

3-6

r. •
I
I
I

I

I
I

I
I
I
I
I

I ·. , .

I
I
I
I
I
I
I
I

l
I

1.

I

I F

i. /Format:

ii.

A.

B •

Simple

IF <A> 1

Compound

IF-4>
1

OR IF <A>3 R <Al;.

Compound, implied first argument.

.. ·IF <A>l R.<A>
2

OR R <A>
3

(i.e.: IF <A>1 R <A>
2

OR IF <A.."">l R. <A~)

WHERE: _ARGUMENT = FIELD
LITERAL

\. VARIABLE
ARITH. EXPR

\ ..

)

' . . •.

,i.ELATIONSH I.P = '·~' or 'r/: ~ or '> ., or '< '

Description:

The IF statement i~ used for performing simple and compound log
ical comparisons. Comparisons are considered to be either alpha-.
meric or numeric. Alphametic comparisons are performed one
character at a time. from left to right. Numeric compari·sons a.re
performed on numeric values which is to say numeric arguments
which look differently btit have equal values are considered e~ual.
For instance, '-0021' is equal to '-21' and equal· to '2J' (least

·significant digit oversign). When comparing an aiphameric argu
ment, the comparison is a numeric one.

The r.eaul ts of the IF comparison. are used to ·determine the logical
. direction of an EDITOR program. If the comparison is true, the
ne~t statement is executed; if it is false ihe.next sentence is
executed.
Note: Although there is no "explicit 'AND' conn~cto~, the AND
function c~n be implied by utiliz~ng a series of conditional
IF statements.

. . . .

..

·. (

(

(

iii .. Example:

IF (1) =- (2) ·
. IF (4) -I ' XY i

IF TOTAL > 100

.·.

I F

IF (1) * (2)• X/3
IF (1} •·'AB' OR IF (2) ,= 'CD'
IF TEMP ~ 99 OR 762
IF DATE • T.ODAY, IF AMT<' 450~ '.· :

;!

3-8

I
I
I
I
I
I
I
I
I
1

'.

/

, ..

i.

I
I
I
I ii.

(

I
1-
I
I

iii.

I
I
I
1c
I
1

M 0 V E

Format:

<
FIELD \

,,

LITERAL '
MOVE VARIABLE

.)
TO <VARIABLE> •

ARITH. I EXPR.

Descriptic;>n: ·

The data defined by the source argument is duplicated in the des
tination argument, destroying the current contents of the destin
ation argument. The contents of the source argument remain undis
turbed.

One of the properties of a MOVE statement is that it is a way of
defining the logical size ~nd type (alpha or numeric) of a var
iable. · This is simply done by allowing the variable to take on
the attributes of the data being moved to it. ·

Examples:

MOVE (1) TO TOTAL.

MOVE (2) + (3) TO CREDITS.

MOVE WEIGHT TO RATE.

MOVE 100 TO COUNT.

MOVE (13:3-5) TO TEMP.

MOVE 'DEPT. NO.' TO HEADER.

3-9

i.

ii.

iii.

Format:

MULTIPLY I

Description:

FIELD
LITERAL
VARIABLE
ARITH.

EXPR.

\
)

,. ' .

M U L T I P L y,
I .

TIMES <VARIABLE> •

The data defined by the source argument is multiplied by. the
current contents of the destination argument and the product
replaces the current contents of the destinatidn argument.
The contents of the source argument remain undisturbed.

I
I
I
I
I
I
I
I
I

If the logical size of the destination argument is exceeded dur- I
ing this operation, the overflow indicator is turned on and can I
be sensed and utilized by the program. However, the physical
size of the system accumulators (14 decimal digits) is exceeded
at any time during this operation, results of this a~d future I
arithmetic operations are unpredictable •

. •
:

Examples:

MULTIPLY (1) TIMES TOTAL.

MULTIPLY (2) + (3) TIMES CREDITS.

MULTIPLY WEICHT TIMES RATE.

MULTIPLY 100 TIMES COUNT.

MULTIPLY (13:3-5) TIMES TEMP.

3-10

/

I
I
I
I
I
I
I
I

I
I

I.
l . -

1.
. '

I
J .

'

• •
I

·.

o·u T ~: u T
~

i. Format:

ii.

/.
QUTPU'.f < i~~i~AL)

VARIABLE
CONTROL . ' < ') <) FIELD · FIELD

LITERAL LITERAL
VARIABLE •••• VARIABLE
CONTROL · CONTROL

t .
.I

Description: . '
The OUTPUT statement in the EDITOR allows the creation of a new
.record consist~ng of parts of or the entire current record; alpha
or numeric literals; alpha or numeric variables; an'd control

. .. functions.

:A. Argument Modifiers - may be used to further define any field,
variable, or arithmetic expression to allow for character editing.
An argument modifier consists of a vertical 'Bar (l) .· followed
by an edit specification, and immediately' follows the argument

.which it modifies •

. Jhe foll6wing ~re legal ~dit specifications:

ILS - Truncate all leading spaces

ILZ Truncate all leading· zeroes

IRS - ~iuncate all ~railing spaces

IRZ Truncate all ·trailing zeroes

lPK - Paek~d decimal format

· 11MASK' - Where MASK is an alphameric literal whose largest
size' is 20 characters including all MASK characters .
If the argument is longer than the MASK, the argument
will be truncated and any floating or fixed dollar sign
will be lost.

Legal Characters for 'MASK'' .

An underscore in· the edit mask is replaced by the corres
_ponding digit from the specified variable.

3-11

. I

..._.._. ______ ..._...__~..,..._..---~~---:---~~-·-r-•-----·..,....___-
,,.. __ •WU #Zb

ii.

(

(

0 U T P U T

Description:

Legal Characters for 'MASK' continued
I

A zero is used to indicate zero suppress~on. It is placed
in the right most position where zero suppression is to
take place. It is replaced with the corresponding char
acter from the variable unless that character is a zero.

* An asterisk is used for asterisk protection and zero supp
ression. It is put in the right most position where aster
isk protection is to take place.

$ A dollar sign entered immediately t~ the left of the zero
suppression code or asterisk protection code causes the
insertion of a dollar sign in the position to the left of
the first significant digit.

A dollar sign in the left most position of the MASK is con
sidered fixed. A fixed dollar sign is placed in the same
location each time •

• ,¥ Decimal points, commas and blanks are placed in the output
field in the relative positions they were written in the
MASK unless they are to the left of significant digits.

CR - The characters CR or a minus sign in the last positions of
the edit MASK are undisturbed if the sign of the· variable
field is negative. If the sign is plus the CR or minus
sign is blanked out. · · - · · · ·

N.B., Zero and asterisk are mutually exclusive. If they
should both occur the one in the least significant position
will take precedence.

B. Control functions - may be used at any time within an OUTPUT
statement. They must be enclosed in angle brackets •. The follow
ing are legal control functions:

<ALL mm-nn>

The ALL function allows the outputting of multiple fields
with one control statement. /

..
if nn is not specified output is from. field 0 mm to the
end of the record.

if neither mm nor nn is.specified, the entire record
is output.

3-12

• •

I • '

I
I
I
I
I

I

' I
I
I
I
I
I
I

I·
I
I'
I
I
I
a

..
..

l./ .Description:

.Contr61 Functions Continued

<BATCH>
l

.
I

0 U T P U T

t .
When the control function is encount•red, it causes· the current
batchname to be inserted into the next ten character positions
of the output record.

<BL.K n>

The BLK function allows the EDITOR.to output the physical tape
~lock c~unt. 'n' specifies the size of the field in ~haracters
within which the count is output. If n is smaller than the ac~
tual count the count will be truncated. If n is zero there is
no o~tput regar4less of the count.

·Note: ~ < n ~ 5

<'COUNT· XXXX>

I
This control functio~, when encountered indicates that number of
characters contained in. the .curPent record are to be inserted in
t.o the output record. The count may be from 1.:.4 characters with
leading or trailing spaces but no imbedded spaces. The count may
be in b~nary or decimal digits, specified by placing a B or D in

·the correct positions. Examples of COUNT ·

J)DSS
BBSS
.DD~

·. SSBB

<DATE X>

Tw~ digit decimal count two trailing spaces
1wo digit binary·count two trailing spaces
Three digit decimal count
~·o ~igit binary count with two leading spaces.

·Th~ DATE function allow~ EDITOR access to the system Global date
·. ~hich consists of 6 characters in the format in which it was en

.tered by the user. The optional use of 'X' provides the follow
ing facilities:

-· Six-character formatless

X eight-character of format mmXddXyy where 'X' is any legal
character except u~derscore (_) whi~h is used to signify
blank.

3-13

..

..

(

(

0 U T P U T

ii. Description:

Control Functions Continued

<DEFER>

This control function which may appear anywhere within an OUTPUT
statement would be used to specify that the arguments within an
OUTPUT statement do not make up a complete out~ue recor~ but on
ly a partial one. This would facilitate building just one output
record from many input records. · ·

<EOF::;> •.

The EOF function allows for t6e closing on files. rf ~ pad cha~
acter has been specified it will pad out the current block, and
write an industry compatible tape mark. If no pad character is
specified it will.write a short- block followed by an.i~dustry
compatible tapemark. If no tape drive is available instruction
is ign.ored •. · 1

.,

<HEX XX>

The EBCDIC equivalent of 'XX' is generated.

<JOB>

This causes the name of the standard job used to enter the ~urr~nt
batch to be inserted into the next eight character positions of
the output record.

<LABEL>

This control function, which may app~ar anywhere within an OUTPUT
statement would be used to specify that the current record is a
label and not a data record. Th~ occurrence of su~h a reco~d would
cause the output buffer to be ha6dled as if an EOF were encountered,
with the exception of writing a tape mark, after which the label
would be output regardless of any specified blocking options.·

<LF>
./

The LF function causes a line feed and carriage return to be ex
ecuted by the printer.

<PGM>

This causes the number· 'of the input format under which the current
record was created to be inserted in the ~utput record.

3-14 I •

ro'

I
I
I
I
I
I
I

• •
I

l
~ •

(0 U T P U T

ii. Description:

Crintrol Funetiops·Continued

/<RWND>

The RWND function causes an unconditional rewind of the tape.
If no tape is mounted instruction is bypassed.

This function would when executed insert blanks into the output
record starting from the current character position up to and
including the character position as specified by nnnn.

<SKIP nnnn'.;>

This function would when executed insert blanks into the

output record starting from the current character position

up to ~nd including the character position as specified by

nnnn.

<TOP>

The TOP function allows for the positioning of forms to the first
· ~~vailable print line as jetermined by the carriage control tape:

-Ori devices where this fuhction would not be valid it will be ig
nored.

iii. Examples:

OUTPUT (1), (2), (3)·, '123', ABC

OUTPUT <ALL> ,<DATE> •

OUTPUT (1) r <LF>, (2), <LF>, (3), <TOP>•

OUTPUT <EOF> ,<RWND> •

OUTPUT FILENAM, <DATE>,< BLKl/5)•

OUTPUT <:SKIP 60 >, ''rOTAL', TOT I' __ $. _ 0CR'.

OUTPUT '!',<JOB> ,<BATCH>•

OUTPUT <P GM >,<ALL> •

. .
3-1°5

,,----. ----....._"

RESULT
MASK VARIABLE +DATA -DATA

o. .. ooooos .OS .ON -- - - -
- _$0. • ooooos $.OS $.ON - -

$)6)6)6.0S
.~.

'$ o. • ooooos " $JzSJzS)zS.ON - - .,.
,.

'$ * • ooooos $***.OS $***.ON • - - - -
• -· 13S60 13S.60 135.60--- - - -., - CR' 13S60 13S.60 135.60CR . - -- - -

___ ._~CR' 13560 135.60 13S.60)6CR

'$ O*. -· 149363 . .. $*1493.63 $*1493.63---- - -"" '$ *O. -· 149363 $)61493.63 $)61493.63~ I --- - - .
0\ • $0 -· 1763421 $1,763.421 $1,763.421-·- - _,_ ·- - - ... ····--- ,.._ "-·---·-

• $)60. CR' 17631 $17)66.31
.

$17)66. 31 CR · --- ---
0 • ooooos 005 OON - ----

....... ,

~

Examples of the 'MASK' Edit Specificatio~

'
a---'1---...i __________________ _

(

i.

I
I ii.

J
I
1J (

11
iii·.

J ..

•

..

Description:

.
; .

"

The PAUSE statement is the second of two error signalling state
merits. It is used to display ~ sp~cified error message of up to
forty char~cters on the error line of the data/scope terminal.
Execution of this statement also causes the error beeper to sound
off which remains on until the 'reset' key is struck. This state
ment would.most probably be used in conjunri~ion with a conditional
statem~nt. This itatement may also be used as a debugging tool
when testing new EDITOR p~ograms. This statement may be used· with
out specifying an alphameric literal for display. In this case,
'the system message 'PAUSE' is displayed.

Example:'

PAUSE. .
PAUSE 'TOTAL IN.FIELD 3 INCORRECT'
PAUSE 'ARITHMETIC OVERFLOW, ABORT!'

3.-17

(

i.

ii.

(

iii.

(

P E R F 0 R M

Format:

PERFORM !LABEL

Description:

The PERFORM statement is a program control statement which is used
to execute a specified group of ~entences from different points
within an EDITOR program by allowing a single-level s~broutine

·call capability.

An EDITOR subroutine is a closed subroutine with only one way in
and one way out. The entrance and exit (beginning and end) are
defined by the special words ENTER and EXIT. A program branch
(GOTO) to the entrance of or anywhere within a subroutine is -
illegal. Also illegal is a program branch out of a subroutine.-~

However, a program branch within a subroutine is legal. In.fact~
it .may be necessary to branch to the subroutine EXIT.. . - . : ; -·

Example:

PERFORM !TEST
• . . .
!TEST, ENTER ••• EXIT

•:.

. - - ~: ~ - -_ : -.. , : _:. :- . .:

- - ·. -.. .· ·.- -

-·

/

3-18 .

.I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
J
]

I
I
I
(

I

],(

l
I
I
I '

.

I
I

i.

ii.

ii:i..

Format:
/.

RELEASE (AT END, STATEMENT).

Description:
.I

T~e RELEAS~, AT END statement is a pr~gram control statement which
-is used to perform several functions. When executed, this state
_ment will cause pr~gram control to release the current record,
-'get the next record and branch to the very beginning of the EDITOR

program for further execution. If at the end of a batch (no next
rec.ord to get), program con tr.Pl willexecu~the sentence immedi
~tely following. If no RELEASE statement is encountered during
.~rogram ~xecution, the RELEASE function will be performed immedi
ately following execution of the last statement in the progrm •

.. If the AT END option is not employed after the RELEASE and END
~F.FILE i• reach~d, a STOP statement i~ implied.

·The first time a RELEASE STATEMENT is executed within an EDITOR
·program, the second record of the batch will be fetched. This
implies that the first record of a batch is automatically fetched
by the system and ready to be processed at the very start of
EDITOR program e~ecution. ·It is, important to remember this so
that the first record is .~ot inadvertantly ~gnored.

The RELEASE statement is an exception in regard to grammatical
rules pertaini~g to statements and sentences.

Example:
,•

RELEASE, AT END STOP~

RELEASE, AT :END GOTO !FINISH.

RELEASE.

' .

i.

ii.

(

iii.

(

Format:

SORT

\

FIELD ~ LITERAL
VARIABLE
CONTROL

Description:

,

S 0 RT.

(

FIELD. ~
LITERAL
VARIABLE
CONTROL

·•

... <
.). FIELD.

LITERAL
VARI~BLE
CONTROL :

The SORT verb is used to generate a sort key to be u~ed· during
any SORT/MERGE operations. It is identical in format to the
OUTPUT statement with the addition of the following two addiess
modifiers.

IAN - As~ending key

IDN - Decending key.

I .

I
I
I
I

I
I
I
I

In the absence of either of the above modifi~rs, ascending is as-
sumed. Note that ascending and descending may be intermixed with- I
in any SORT stateme~t.

Examples:

SORT (1:2-4) IDN

SORT <PGM>, (1)

SORT <DATE> ,<ALL

(5) , '1' •

IAN (6:3).

2-4>.

/

/

·3-20

I
I
I
I

I
I
I
I
I
I
I
I

I
II ..
J

" 4

~-.

S T O P

/.
i. Format:

ii.

iii.

STOP.

Description:

The STOP statement is a program.control ·statement which is used.
to halt execution of an EDITOR program. Should the. EDITOR pro
gram not contain at least one STOP statement, execution will be

· halted upon encountering the e.nd of file.

Example:

STOP •
. '

. 3~21 · ..
. . ·.

· .

(

(

(

I·.·

i. Format:

SUBTRACT

I

!·I ·-
. I
! !

S U B T R A C T

<
FIELD) LITERAL
VARIABLE
ARITH.

EXPR. ·

FROM < VARIABLE >.

ii. Description:

iii.

. The data defined by the source argument is subtracted fr~m the
current contents of the destination argument and the difference
replaces the current contents of the destination argument. The
contents of the gource argument remain undisturbed.

If the logical size of the destination argument is exceeded dur
ing this operation, the overflow indicator is turned on and can
be sensed and utilized by the program. However, the physical size
of the system accumulators (14 decimal digits) is exceed~d at any
time during this.operation, results of this and future arithmetic
operations are unpredictable.

. . ~

Examples:

SUBTRACT (1) FROM TOTAL.

SUBTRACT. (2) +(3) FROM CREDITS.

SUBTRACT WEIGHT FROM RATE.

SUBTRACT 100 FROM COUNT.

SUBTRACT (13;3-5) FROM TEMP.

'3-2~

/

I
I
I
I
I
I
I
1
I
I
I
I
J

1

.. I ..

I
(

I
I
I
I

I
I
I
I
I

(

ii.

·.

Format:

WHEN CONDITION

.I
Descr.ip ti on:

w:u EN

.
; .

t .

The WHEN stateme~t functions exactly as does the IF statement
except that it tests certain conditions or states within the
system as opposed t;,g logical relationships. The conditions tested
are:

· .a. .WHEN FLAG

The WHEN FLAG statement is used to test for the presence of the ER
R~R · chB:racter anywhere in the current re~ord. This should be used
sparingly as it.greatly decreases system efficiency due to the nec-
·essity of completely scanning the record upon encountering this
·statement.

b. WHEN OVERFLOW

The WHEN OVERFLOW statem~nt ~s used for c~ecking for logical
arithmetic overflow. It~refers to the last arithmetic opera
t~on that took place, and applies to arguments which are arith
metic ~~pressions as well as the ADD, SUBTRACT, MULTIPLY AND

.DIVIDE statements. It is important to note that arithmetic
ove~flow occurs in two different forms:

.•

. · Logical Overflow - is when a numher within a variable
exc~~ds the number of decimal positions specified by the user.
in a MOYE statement. That is, of course, when the logical
size is less than the physical size. In this case a trunc
ation is performed thereby retaining only the specitied amount
of .decimal digits. The overflow switch is turned on and it
is up to the user to test this switch with a 'WHEN OVERFLOW'
statement.

• ·Physical Overflow.- is when the system encounters a
number it ca~not handle (greater than 14 digits). In this
case a warning message is displayed on the error line and
.the user would have the option of aborting or proceeding.
Subsequent arithmetic operations are not predictable. This
overfl~w type cannot be tested by 'WHEN OVERFLOW'.

3-23·

.. . .
..

'{

W H B N

ii. Description:

c. WHEN NOT PGM n· (where ~ • 0-9)

The WHEN PG~ statement is used foi testing which input form~t
the current record was or was not entered under. Th~·.NOT is
~ptional.

d. WHEN RECORD nn . (where 0 >nn ~ 6!HHHI)

The WHEN RECORD statement is used for testing for the relative
number within the batch of the current record~ It also may be
used to check for the beginning bf a batch by specifying record
numb·er one.

iii. ·ExamJ>les:

WH~N FLAG, GOTO E.RROR. · · .

W~EN OVE~FLOW~ PAUSE 'E~CEEDED 999'.

WHEN PGM 4, GOTO !D04

WHEN NOT.PGM 4, ADD 1 TO COUNT.

·wHEN RECORD 1, PERFORM !HEADER.

··:.

3-24.

: .

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

/

I
I
I
I

I
I
I
I
I
I
I
I
J

..

(

J
I
1
I
I
I
3

' •
I

SECTION 4

/ SENTENCES

GRAMMAR

A program sentence may comprise one and only one action s~atement or
one and only one 'action' statement preceded by any number of condi

tional statements. An action statement may be considered an indepen

dent clause, therefore, one or more conditional statements alone do

not constitute a valid sentence.

Examples: IF .(1) • (2). (illegal - no action statement)

IF (1) • (2), ADD (5) TO TOTAL!.

WHEN PGM2, IF (1) - (2), ADD (5) TO TOTAL!.

Note: An exception to the above rules of grammar occurs in

the RELEASE statement.

CONDITIONAL EXECUTION

When executing a sentence with conditional statements the following

rule applies: When a conditional test proves to be false, program

control will branch to the next sentence by-passing all statements up

to that sentence, otherwise the very next statement will be· executed.

SENTENCE LABELS

Sentences may be preceded with a label so that they may be branched

to with a GOTO statement or called with a PERFORM statement. A

label must be immediately preceded by exclamation point and may be

up to 8 characters in length ·with the first character being A-Z and

all other characters A-Z or 0-9 •

4-1

-' ...; ~, ... _ i_.._,.._.._......__._ _________ .;.._ _________________ _..._ _

·.

(

(

.
Example: !START, ADD 1 TO COUNT,

J FINISK, STOP. .

PUNCTUATION

..

Period is used as a sentence delimiter just as in the 'Knglish

language. It is critical that the per~od ~e used correctly

so that sentences with conditional s~atements will be executed

properly.

Commas are most commonly used to separate statements. When

separating two conditional sta·tements, the comma implicit).y

defines a. logical 'AND'. Commas may also be .used to separate

sentence labels from sentences, RELEASE from AT END and just.

about.anywhere they make sense. Commas are primarily for

program legibility and are not really nece~sary:

·-

Example: !TEST, WHEN PGM2, IF (1) • X, ADD (2) TO TOTAL.·

equates to:

!TEST WHEN PGM2 IF (1) • X ADD (2) TO TOTAL.

Spaces are used to separate all verbs arguments, connectors·

and statemjnts that are not otherwise separated by pe~io~1 . I
comma, or arithmetic operator.

4-2

/

I
I
I
I
I
I
I
I
I
I
I
·I
I
I
I
I

I
I

