DataF1lex

Version 2.0

Application Development Software System

Copyright .c) 1983, 1984 Data Access Corporation
DATA ACCESS CORPORATION

8525 SW 129 Terrace
Miami, Florida 33156
USA

Manual Revision Date: (7/18/84

COPYRIGHT NOTICE

DataFlex is copyrighted {(c) 1981, 1982, and 1983 by Data Access
Corporation. Al1 rights under this copyright are reserved worldwide.
DataFlex, including this manual, which is an integral part of
DataFlex, may not be reproduced, transmitted, stored in any manner in
a retrieval system in any form or through any means, electricals
mechanical, optical, manual or otherwise without the express written
permission of Data Access Corporation, 8525 SW 129 Terrace, Miami, FL
33156, USA.

DISCLAIMER

Data Access Corporation makes no representations or warranties,
express or implied, with respect to DataFlex, this manual, or any Data
Access Corporation product, including but not limited to warranties of
merchantability or fitness for a particular purpose.

Data Access Corporation reserves unto itself the right to make
periodic changes, enhancements; revisions and alteratfon of any kind
to DataFlex and/or its manual without obligation to notify any person,
institution or organization of such changes, enhancements, revisions
and alterations to the product.

TRADEMARKS
DataFlex and Flex-Keys are trademarks of Data Access Corporation.
The trademarks and registered trademarks of other companies are

referred to at various points throughout this manual, annotated with
an asterisk (*). The owners of the trademarks are listed below:

MBASIC Microsoft

CBASIC Digital Research

CP/M Digital Research

MP/M Digital Research

WordStar MicroPro International
MaiiMerge MicroPro International
Pascal/MT+ Digital Research

dBASE 11 Ashton-Tate, Inc.

PC-DOS International Business Machines
IBM International Business Machines

MS-DOS Microsoft

A COMPLETE, UPDATED MANUAL WILL BE YOURS . . .

If we use a correction or improvement to this manual which you submit
to us.

We're continually improving our manual to make the power of DataFlex
easier to get to for the new user. User feedback is the chief source
of corrections and improvements to the manual. The Disclaimer on the
preceding page says that we aren't obligated to provide you with
updates to DataFlex or its manual, but if we use a correction or
improvement you send us, we'll send you a copy of the edition of the
manual which contains your update(s), subject to the following: (a)
If we receive the same suggestion from several sources, only the first
person submitting the correction/improvement gets a new manual; and
(b) If we use two or more of your suggestions in one new edition of
our manual, you still only get one manual {(multiple suggestions still
increase your chances of being first on at least one of the sugges-
tions)., Data Access Corporation's decision in these matters is final.
A new manual does not include a new binder (the old one is re-usable).

Here's How:

Just fi11 out the form on the opposite side of this page indicating
what your suggestion is. If you have multiple suggestions, please
make copies of the form. Please make your name, address, and phone
clear so that we can get back to you if you win a new manual. Send
the suggestion(s) to:

DOCUMENTATION

Data Access Corporation
8525 SW 129 Terrace
Miami, Florida 33156

...and we'l1 get back to you if yours is a winner! Either way, thanks
for helping us help others to get more of the power of DataFlex.

SUGGESTION
For Improvement of the DataFlex Version 2.0 User's Manual

From: Submitted:

Name Date

Address Phone (A/C)____

Address

City State/Prov. Zip

Country Page Height:____in. x Width:___inches
Revision Date of Manual: Page Number(s):

TYPE OF SUGGESTION:

Correction of wrong information

Addition of missing information
Clarification/Improvement of existing example
Addition of new example

BEN

DETAILS:

I submit the above suggestion to Data Access Corporation with full
permission to make any use of it may wish to, with the understanding
that compensation to me for it, if any, will be completely at the
discretion of Data Access Corporation. I assume no liability for its
completeness or accuracy.

Signature DataFlex Serial Number

¥#% SECTION A: OPERATION AND ORIENTATION **¥

ORGANIZATION OF THIS MANUAL . . . « + ¢ « « ¢ v = & + s o« A-l
Sequence of Presentation. . . « + « « + ¢ ¢« ¢« < v« o .. Al
Notational Conventions. . .« « « & &« ¢ o « v o ¢ o ¢ o o« & A-2

OPERATIONAL ORIENTATION . . . + ¢ v ¢ ¢ ¢ « « o« o o+ o » o A5
Installation. « . . . ¢ ¢« v v 4 o ¢« ¢ v v o« v o o« s« A5
Runtime System. . . . e e e e e e e e e e e e e e e e A-6
Apptication Deve]opment s e e e e e e e e e e e e e e e A-7
System Diagram. . . D e 8
Facilities of DataF]ex D1agram. P S

OPERATOR'S GUIDE. . & + ¢ & v « 4 o s o o o « & o« o » « + .« A-15
Definition of Terms - Operator. . . . e e e 0 . .. A-16
How to Begin. « . . . « « « « o . v e e e e e A-17
Flex=Key Summary. . . . « ¢« o « o« « & W e e e s e . - s A-18
Keyboard Command Explanations e e e e e . . A-19

INSTALLING DATAFLEX . . + « - ¢« « & . . e e e e e e e e . A-25

OPERATING TUTORIAL. . « « v ¢ & « o ¢« & e e e e e 4 e .. A-33

@ . e .

QUERYING THE DATABASE e e e e e e e e e .. A-41
Program Start-Up. . . . « « « ¢« ¢ ¢« o o o o o . .« . A-41
Program Operation c e e e e .. A-43
Making Selections . . . « ¢« « ¢« ¢ o o o 0 o A-44

Choosing an Qutput Sequence e e e e .. A-44
Using QUERY to Generate a Report Configurat1on. e e s o« . A-45
¥x* SECTION B: STARTING WITH DATAFLEX **¥

e e e e e e e s e . B-1
e e e e e e e s . B=15

PROGRAMMING TUTORIAL.
FORMATTING WITH IMAGES.
Image "Pages" B e
Images in DataFlex Configuration Files. B-19
DESIGNING DATABASES e e e e e e e e e . B2
Organization of Data. e e e e e e e .. B2
Data Types. PR . B-22
Indexing in App11cat10ns. e A
AUTODEF Program e e e e e e e e 4 e e e . .. B=25
HOW TO WRITE A CONFIGURATION. C e e 4 e e e s e e e e ... B-29
Creating the Source File. « v v v v o v ¢« « v . . B=29
How to Compile a Configuration. B-31
How to Run a Configuration. + « + + « B-33
DATAFLEX UTILITIES. . « ¢ « ¢« v & ¢ ¢« ¢ « « « o o « « « o . B-35
Editor. & « v v o v 4 v 4+ 4 4 o e 4 4 e e 4 4 e+ . .. B-35
RETNOEX & & v v & o o o o o o o o s o« & o o s o« o o« « o B39
Free List (FREL). . . . « « + v v ¢ ¢ v v v« v o v« o « « . B-43
Read. . . e e e e e .. e e e e e . . B-44
How to Convert dBASE 11 F11es to DataFTex s s e s e s . . B-44
DataFlex 1.6X to 2.0 Conversion B-51
Menu Creation and Maintenance (MENUDEF) B-53

.
.
.
.

ni

Copyright (c) 1984 Data Access Corporat1on 05/16/ 84

i TABLE OF CONTENTS DataFlex 2.0 User's Manual

% SECTION C: PRE-PROGRAMMED FACILITIES *

ELEMENTS OF CONFIGURATIONS. . . v ¢ v o ¢« ¢ ¢ v o o « o &
String Constants. . . . « o o o ¢ o v ¢ o ¢ o o o o . .
String Variables. . . . « o ¢ ¢ ¢ s 0 0w e 0 e e e e
Numeric Constants . + « « ¢ o v o o o v o o o o o o o o »
Numeric Variables . . o v o o « v o o « o o o o o o o o
EXPressions « o« ¢ v v o ¢« ¢ 5 ¢ o s o o o s 4 0 s 4 e 4 s
Date Variables. . . v ¢ ¢ o o o o ¢ o o o o o o o o o o o
Date Constants.
Filenames
Indicators.

DECLARING DATA ELEMENTS .
STRING Command.,
NUMBER Command.
DATE Command. . « « 4 « o o o o 5 « s« « s o o o« o o« » o« « C-10
INTEGER Command . « v o « « o o s ¢ o« o = o s o s « « « o C-11
INDICATOR Command . e - S ¥4

MANIPULATING DATA ELEMENTS° t e e e e o e e e s e s e e s . C-13
MOVE Command. . + « « « = o o o o s s s o o o o« « « o « o C-13
INCREMENT Command . . + ¢ o « o s o « o o » s « o o« o « « C-14
CALCULATE Command « « « &« o o o o o o o s o« o « o « « » o C-1l4

DATA ENTRY. © &« & & o &« « s = o o s a o o o o o« o o« « + « - C-15
ENTER Command Macro « . o« & « o o o o s s« « o o « o « o o GC=15
Structure of an ENTER Configuration C-17
Images in ENTER . . . v ¢ v ¢ ¢ v o « « ¢ ¢ « ¢« o ¢ o o« (~18
ENTRY Command . & « « & o o 5 o o o s o s o o « = « « « o C-19
ENTRY Format Options. . . « v & o ¢ ¢« o o o o o ¢« « « o« (=19
ENTRY and AUTOPAGE. . . ¢ & ¢ 5 s o = « » s « o o « « » o 0=21
User-Defined Procedures of ENTER. - « « « « « + « ¢« « » « C-24
ENTDISPLAY Command. . « « v + o o « o« o s s o o o » « « » (=26
ENTER Sequence of Operation . . . ¢« . . « « & & « « « .« C-27
ENTSPERMISSIVE Indicator. « « o v ¢ « & ¢« ¢ o o o « « « o« (-28

REPORTING ANB QUTPUT. & & & « & o o ¢ o« « o « o o o o« o« o« » C-31
The REPORT Command Macro. « « « » o o « ¢ » o & « « « » o C-31
Sections of REPORT. . . + ¢ v o o s « o s « o« « ¢ s « » « C=-31
Subtotalling and Totalling. . . -« « ¢« « v« ¢« v « « « « . . C-34
Selective Reporting . . . o o & o « o « & o o o « « « . +« (=38
Page Control. e e e e v e e e . .. C-41
Things to Remember About the REPORT Macro C-45

s & o »
.
.
.
.
e

OOOOO(POOOOOO
WO EWWN RN

.
o
.
.
.

.
(@]
L}
—
o

Copyright (c) 1984 Data Access Corporatlon 05/16/84

DataFlex 2.0 User's Manual TABLE OF CONTENTS i1

SECTION C (continued)

FILE DEFINITION (FILEDEF) e e e e s . . C-47
Step One - Plan the Re]ationsh1ps Among the Files C-48
How to Create Related Fields.+« . C-50

Step Two - List the Fields.« C-53
Overlapping Fields. . . . « « ¢ v v «+ v v &« + v « « » . . (-54
Step Three - Determine the Key Fields C-55
Step Four - Use FILEDEF to Put It A1l Together. C-56
Creating/Editing Fields C-60
Creating/Editing Indexes. . + « « ¢« o + & « ¢« o « « + » . C(-63
Print File Definition + . . « + ¢« v v ¢« v ¢« « ¢« « o « « o+ C-65
Set File Parameters/Names « « « « « » +« . . » (-66
Erase Data File . +« v v ¢ ¢« ¢« v ¢ ¢ o o s o s o s « o+« (-66
Set File Inactive . . . « + + v ¢ v ¢« ¢« v ¢ « o o o+ . . C-66
Create File Definition from Screen Image. C-66
Create File Definition from .DEF File C-67
Save Definition/Exit FILEDEF.« . ¢« « « « « « . . C-67
Abort FILEDEF « . « & v 4 & o v o o o o o o s o s o+« o+ C-67
SAMPLE APPLICATIONS . . . & v ¢« v 4 v ¢ ¢« o« v o o s » o « « C-69

**%% SECTION D: PROGRAMMING DATAFLEX *x*%

DIRECT CONTROL OF DATA ENTRY. . .
PAGE Command. « o« « « o o o « &
ACCEPT Command. . + . + « « « &
DISPLAY Command « « 4w &+ & « o o o o o o & o o« o »
AUTOPAGE Command. . . e e e e e e e e e e e
CLEARFORM and BLANKFORM Commands. . .
OUTFILE Command . + « & o o « o o = s o o o o o = .
QUTCLOSE Command. « . v ¢ o« o o« « « s o o o » o o o o o =
QUTPUT Command. o« o & o o o o o o o o o o s o o s « o o o
NAME Command., . « « ¢ ¢ & « ¢ o o « o o o o ¢ s s o« o o =
FORMAT Command. « « « v & & o o o« o o o o o o o s o o « =
PRINT Command o & « & v o o o o o o o s o o o« o o 2 o o s
ENTERGROUP., . . . e e e e e e e e e e e e e e e e

MANIPULATING STRINGS. e e e e e e e e e e e e e h e e e
LEFT Command. . &+ o & v & o o o o ¢« o o o o o o o o ¢ o =
RIGHT Command . « &+ & « « o & o« o o o o o o o s s o o 4
MID Command . v o o & « & o o o o o o o o o o o s o o o o
ASCII Command . e e e e e e e e s e e e e e e e e e e
CHARACTER Command e e e e et e e e e s e e e e e e . D-14
POS Command . ¢ « « &+ + & o s o o a o « s s o « o« o« « « o D-14
LENGTH Commands « + « « « o s « o « o o o o« o o o« + o« o« o+ D-15
PAD Command . . « « « « « « o o« o o o« o o 2 = ¢ o « « » .« D-15
TRIMCommand. « v « « « « « o « « o« o « « o « o » o « « » D=~16
APPEND Command. + 4 o « « s « s o o s o o« o« o o « « « o« D-16
UPPERCASE Command . + « « « « o o « o o « o o s o« s « o« o D=17
CMDLINE Command . .« « « « « « o o o o « o o o » o « « « « D-17
String Operations « + « v« v « &« ¢ & v ¢ v o ¢« s o« o o . o D-18

CONDITIONAL EXECUTION e e e s e e e e s e e e e e e e . D-19
Setting Indicator Status. D 0 AU
Predefined Indicators . . « « ¢« ¢« ¢« + ¢ &« ¢« « ¢« « « « . o D-24
IFTeSt « v ¢ o ¢ ¢ ¢ o o o o o o s e s o o o s o o oo+ D-24

« o .

« e e

. .
. .

.

. .
.

“« & s s s s e

. .« s e
.

. .
[]

.
OOUUOO?UUDODU

[}
NHH®O-NON UM E & WWR) -

U?O
b

T
—
w w

1
11t

Copyright (c) 1984 Data Access Corporation 05/16/ 84

iv TABLE OF CONTENTS DataFlex 2.0 User's Manual

SECTION D (continued)

CONTROLLING EXECUTION SEQUENCE. « « + + + « « « . . D-29
GOTO Command, « o o « & « o ¢ « o o o s« o« & o » o & o o « D=-29
ON GOTO Command . « « « « o o o « o o ¢« o = « o« = » « « « D-30
GOSUB Command . + « « « o o & « a o s o « « o« » » « o « o D=30
ON GOSUB Command. . « « s o s o« o« o « o o s o o « o « « « D=31
RETURN Commande o v « o o o « s &+ s o o s o » s « o « o« » D-31
CHAIN Command « « v & « « o « o o o o o o =« o o« o« o+ o s o« D32
CMDLINE Command « « « « & o o o ¢ « s o = « o » = « o o o D=32
DEBUG Command . + « « « « s o« o o o « s = o « « o « « « « D=33
ERROR Command e e s e e e .« D-33

CLEARWARNING Command .« e a v e e e e e e e e . .. D-34
ABORT Command + « o + o s s « o o s « o o o o « « o o « » D-34
BLOCKS AND LOOPS. . . e e e e s e s s o w e e e s s D-35

BEGIN = END Command « « « o « » o « o o s s o o o o » » » D=35
REPEAT - UNTIL Command. « + - o o « o o s o« o s o o « » « D=35
REPEAT - LOOP Command . « ¢ « o « o « s =« o« s » « o « « » D=36
WHILE - END Command . « + o = = o s s « o o o o« « « « « » 0D=37
FOR - FROM - TO - LOOP Command. . « o « « o o o o o « o » D=37
DIRECT CONTROL OF THE CONSOLE . - ¢« o « o o « & « » o « « » D=39
SHOW Command. . « « « o o o « o s o o s +« o » « « « » « » D=39
SHOWLN Command. « . « ¢ o o &« = o « « o o o o s s o« » » D-40
INPUT Command o« o« v « « « « o o o o o o = o o & o o« « o » D-40
GOTOXY Command. « + & « + o o o o o s o » s o o « o + « « D-41
CLEARXY Command . s e e 4 e o o s s o s s s s e s s s . D-41
CLEARSCREEN Command C vt s et e s se e s s s s o s D-42
KEYCHECK Command, . « « « « « o o o o s s « « o o o « o o D-42
INKEY COMMand « o« « o « o « « « 5 o o s s o« o o s o s » » D-43
SCREENMODE Command. . « + & o « o o o o o « o o « « o+ o o D-43
MANIPULATING RECORDS. . + « « & « o o « s = s o « « s« « » » D-45
Database Commands and FILEDEF . . . » « « + ¢« ¢« « « « « » D-45
Record Buffers. . . v « v o « « o o s o o o o « o o o« o« & D-45
File Definition . . « « v v ¢ o ¢« o s o o o o o« o o o « » D-46
OPEN Command. « « « o « o o s o s « s o o s o s o « + « » D=47
FIND Command. - « o« « « o s o o « o o s o s o o« « o » o o D-48
SAVE Command. . « « « « o o ¢« o o o ¢ « ¢ ¢ o o« o« o o « « D51
SAVERECORD Command. o « + o « « < o « « o « o o « « « » + D=5l
CLEAR Command . +» « o « ¢ « « s s s« o s ¢ o o « o o « » o D=52
DELETE Command. + « o« « o « o o « s o o + s o« o« o« o o o« » D=52
RELATE Command. « « « « « « « o « « o s o « « o o o« o « o D=52
ATTACH Command. e « ¢ s s e « s+ s« o D-53
ZEROFILE Command. « + & » « o s + s s+ « » s s+ s » o« « s+ +» D-54
System Files. o s e o s e+ s o+« « D-54
MANIPULATING FILES. e e « s« e e s s o s . D=55
ERASEFILE Command . + = v ¢ & « o o o « « o 2 o o « o o o D=55
RENAME Commande « « « « ¢ o « = o « =+ o o o « o o « o « o« D=55
COPYFILE Command. « « + « + « « o o « « o o« « o « « o« » - D=56
DIRECTORY Command . « « =« &+ « = » o o a s o o o« o « o « » D=56
FILELIST Command. . +« « +« o o « « ¢ o o o o s o o « o« o o D-56
SYSTEM Command. « « « « « « s o « s » = s o » s « » o » o« D=57
RUNPROGRAM Command. e e e e s 4 e s s 4 e e s e s e s s D=-58
REGISTRATION Command e e s e o s o o s v s s e s s s s . D-58
SYSDATE Command . « & + « o = « o o s s o « s + « « o « » D=58

Copyr1ght (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual TABLE OF CONTENTS v

SECTION v (continued)

DIRECT INPUT AND QUTPUT . . « & v 4 4 & o ¢ s « o « o « « o« D-61
DIRECT_INPUT Command. « « 4 & « & o « « « o « o « o o « » D=61
DIRECT_QUTPUT Command . + « « & v o « « = o o « o o« « o « D-62

CLOSE_INPUT & CLOSE_OUTPUT Commands . . « « « « + « +» » « D-62
READ Command. + + 4 & « o « o o o s s o « o o« = o s« o « « D=62
READLN Command., . « « o« « o o o o & e e e e e e e s . D-64

SEQEOF and SEQEOL Predefined Indicators e « s e« s« s « . D=65
WRITE Command . . +. & + v v « o o o s s o« o o s « ¢« » « « D=66
WRITELN Command . . o + v ¢ 4 o « & o & o o « + o « « « » D=67
Reporting Without Report. D-67

%% SECTION E: ADVANCED CONFIGURATION #*¥*

USING FUNCTION KEYS e e e e e e e e e e e s
Using the Flex—Key Ind1cators e e e e e e e e e e e e
Using Key Procedures. . . ¢« « o ¢« ¢ ¢ « ¢ « ¢ o o « o «
ENTAGAIN Command. . « v & & ¢« ¢ s ¢ o o o o o s o o o o o
ENTERMODE Command . . v & ¢« & o ¢ o o o o o o« o s o s o
BACKFIELD Command . . . « + & ¢ & « « ¢ « &
HELP Command. . « & v o + v o « o « o o o

1 | U
CO VWO OOO~NUDE BAENN—

MULTI-USER FUNCTIONS.
Multi-User Operation Under the ENTER Macro
LOCK Command., C e e e e e e e e e e e e e e e
UNLOCK Command. + « « v o o v o o o a o o s o « s o s o
REREAD Command. + + + & « o « o s o s s s s s o o« o s o
IFCHANGE Command., + « « o « o o & .
SETCHANGE Command . + « & « « + &
DESPOOL Command

FIELDINDEX AND WINDOWINDEX. .. .

MODIFYING AND EXTENDING DATAFLEX. .
Replacement . . . v ¢ + ¢« ¢« v ¢« o o o o o « = o o « + o o E-14
Command Definition. . . + ¢« v v 4 ¢ ¢« « « ¢« « « ¢« « « » . E-14
Include FilesS ¢ v v ¢ & o « 4 o o o o o o s o o« o « « « « E-16
Compile Time Variables.
Conditionals. . + v « & &« v o & « & & .

CHECK Macro Command . . « « + & & « « s o o o o « o o« « « £E-18
Symbol1-Checking Characters.
Internal Typing of Symbols. E-20

.
mmmrnrnrnrpmmrnrnmm

*¥%% SECTION F: APPENDIX *x*#*

RESERVED WORDS OF DATAFLEX. « ¢« v « ¢« « v = o« o . F
FILES, ARGUMENTS AND COMMANDS +« ¢« ¢« v« ¢« . . F
Predefined Arguments. « v ¢« « v ¢« ¢« & ¢« o o o oo F

F

F

F

|1
W

Window Format and Entry Options« . .
Command Syntax List . v « v & ¢ v ¢« v ¢ v o v o o v e e
SPECIFICATIONS. & v & v v v 6 ¢ v v 6 o o o o s o o o o o &
COMPILER ERROR MESSAGES . . . + « + ¢« v v v v v v v o v o . F-1
RUNTIME ERRORS AND DIAGNOSIS. « « . ¢« . . F-1
GLOSSARY. . . . e
F-4

F-4

Wr~unyoWwououv &

TASLE OF ASCII CODES. et e e e e e e e e e e e e e e e e
THDEX o v v v e

Copyright (c) 1984 Data Access Corporation 06/08/84

vi TABLE OF CONTENTS DataFlex 2.0 User's Manual

LIST OF SAMPLE SCREENS

- Master Menu. . + v ¢« « « + « « o« o .« A-34
- Configurationmenu A-35
- Vendor Master Record A-36

Sample Screen 1
2
3
-4 - Demo Inventory System Menu A-42
5_
6
7

A
Sample Screen A-
Sample Screen A
Sample Screen A
Sample Screen A- File List~Demo Inventory System. A-42
B-6 - Personnel Record, Prompting in AUTODEF B-5
B-7 - Configuration Menu, Select to Run

Configuration. . . . e e e B-9
Sample Screen B-8 - "PERSON", Showing Samp]e Data ... B-17
Sample Screen B~9 - Menu Edit Selection. B-53
Sample Screen B-10 - Menu Configuration. . . . « + « . B-54
Sample Screen B-11 - Menu System Question Entry and Editing B-56
Sample Screen C-12 - File Definition Menu., C-59
Sample Screen C-13 - File Definition Field Edit Option Menu C-60
Sample Screen C-14 - Inventory Customer Master File. . . . C-70
Sample Screen C-15 - Inventory Item Master File. (-8l
Sample Screen C-16 - Inventory Invoice Entry C-86

Sample Screen D-17 - Report Configuration Not Us1ng REPORT
Macro . o « o« o D-68

Sample Screen
Sample Screen

LIST OF SAMPLE CONFIGURATIONS

- Personnel Record, Initial Entry . . B-2
- Personnel File, After AUTODEF . . . B-7
- Personnel File, After Customization B-13
- YPERSON™ Entry Screen . « o« « . . . B-15
P"PERSON™ Plus ™JOB" . . . « B-17
- System Date Display/Entry B-30
- Simple ENTER Configuration. C-23
- ENTER Configuration Using
User-Defined Procedures C=25
ENTER Configuration Using
) ENTDISPLAY. . « o « « & o « o o« o « (=26
Sample Configuration C-10 - Simpie Report Using REPORT Macro C-33
Sample Configuration C-11 - Complex Report Using REPORT Macro. c-37
Sample Configuration C-12 - REPORT With Operator Selections

and Page Control . . e e e e .. C-42
Sample Configuration C-13 - Screen Image for FILEDEF to

Work From. « .. C-53
Sample Configuration C-14 - Inventory Customer Master File .. C-74
Sample Configuration C-15 - Inventory Customer Report. C-77
Sample Configuration C-16 - Inventory Vendor Master File . . . C-80
Sample Configuration C-17 - Inventory Master File Data Entry . C-84
Sample Configuration D-18 - Personnel File, Using ENTERGROUP . D-9
Sample Configuration D~19 -~ Illustration of FIND Command . . . D-50
Sample Configuration E-20 - Update Routine in Multi-User

Enviromment. E-10
Sample Configuration E-21 - Use of WINDOWINDEX Predef1ned
vVariable E-12

Sample Configuration
Sample Configuration
Sample Configuration
Sample Configuration
Sample Configuration
Sample Configuration
Sampie Configuration
Sample Configuration

OOmUIJCDCDGJED
® ~NoOw s WwN e
1

(@]
1
Vel
]

Sampie Configuration

Copyright (c) 1984 Data Access Corporation 05/16/84

SEQUENCE OF PRESENTATION

The sequence in which material is presented in this manual is the
recommended sequence for the undertaking of tasks in learning DataFlex
and in using it. Your learning experience with DataFlex will rapidly
become a productive experience, in that within a couple of hours, you
will be able to create database structures and control them with
configurations. Configurations is the word used in this manual for a
data processing procedure, or program, written in DataFlex. Your
early exercises will yield simple, straightforward applications which
despite thelr simplicity will have more than enough power to
efficiently perform any number of common data processing tasks, such
as mailing Tists.

But you very likely acquired DataFlex because its power and
flexibility go far beyond mere 1ist management. As you continue
reading this manual, and testing the facilities described in each
section, possibilities for greater scope and sophistication will
multiply rapidly until you reach the point at which you have the means
of satisfying all of your data management needs. The simpler
facilities of DataFlex are so powerful that you may reach this point
well before you explore the more advanced features of DataFlex
described in later sections. If this happens, there is no need to
study further except to generally acquaint yourself with the
capabilities of the more advanced features.

Copyright (c) 1984 Data Access Corporation 05/16/84

A-2 ORGANIZATION OF THIS MANUAL DataFlex 2.0 User's Manual

NOTATIONAL CONVENTIONS IN THIS MANUAL

Certain notational conventions are used throughout this manual with
which you should become acquainted in order to understand the formats
and examples shown. DataFlex configurations are made up of screen
images (always at the beginning) and then command lines, the two
sections being separated by the distinctive "/*" character combination
by itself on one Tine. DataFlex commands are like sentences made up
of a verb (the command) and {(usually) one or more objects (referred to
as arguments), sometimes followed by one or more options, and
sometimes further followed by a comment. Commands may be preceded by
conditional terms called indicators. Lastly, some command lines begin
with "1abels", distinguished by a terminating colon (LABEL:), whose
purpose it is to "mark™ a spot in a configuration for purposes of
future references (such as a RETURN or GOTO command). Here is the
typical format of a command line:

[indicator] command argument {options} //comment

The brackets [] surrounding the indicator are required to identify
indicators. The braces {} surrounding the options are not to be typed
in most commands, except for format options for the ENTRY and FORMAT
commands, where they are required. The braces are used in format
i1lustrations, however, to signify an optional command element.

Again, they are not to be typed in the command except in the cases
noted. The "//" twin diagonals which precede the comment are, like
the indicator brackets, part of DataFlex's syntax, and tell DataFlex
not to compile the material following the diagonals, which Teaves them
free for any material you may wish to include in the source version of
your configuration for reading by persons (as distinguished from the
computer). Twin diagonals at the beginning of a 1ine will cause the
entire 1ine to be a comment. Here is a typical command line:

[FOUND] ENTRY mail.name {CAPSLOCK} // first try

This line starts with a (Dataflex-supplied) indicator, FOUND, which is
enclosed in the required brackets, followed by the command, ENTRY,
then the argument, which is a screen image window named (in the
configuration) MAIL.NAME, followed by a formatting option (this one
does require the braces), CAPSLOCK. It means, "If the desired record
is successfully FOUND in the database, put the cursor into the next
screen image window and accept for ENTRY into the database element
MAIL.NAME the characters keyed into the window, but as though the
CAPSLOCK key were on (Tower case characters converted to uppercase).”
The comment (first try) is not interpreted by DataFlex and hence has
no meaning for execution; 1t would have meaning only for a person
reading the configuration.

The example above illustrates the use of upper and lower case in

Copyright {c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual ORGANIZATION OF THIS MANUAL A-3

examples throughout this manual. FOUND, ENTRY, and CAPSLOCK are all
in capital letters, while mail.name is in lower case. This is
intended to signify that FOUND, ENTRY, and CAPSLOCK are literal
strings which match, respectively, an indicator, a command and an
option which are inherently part of DataFlex. Im any configuration
which you wrote using these elements, you would have to literally use
these strings then, also. Mail.name, on the other hand, is peculiar
to the example or configuration which is being discussed, and would
typically be some other string in any configuration written by you
(although you could use it if you chose to). You will find this use
of upper and lower case throughout the formats and examples in this
manual, except for the full sample configurations, which follow the
normal configuration convention of being written in solid capital
letters except for textual material in screen prompts and messages
which need upper and lower case.

Throughout DataFlex, in the system as well as in this manual, material
enclosed in either single (') or double (") quotation marks is 1iteral
material which passes through configurations as such and is displayed
or output, rather than executed.

DataFlex itself has many syntactical conventions in addition to the
ones described above, which are peculiar to presentations in this
manual. DataFlex's own syntactical conventions are described
separately at the appropriate places in this manual.

Copyright (c) 1984 Data Access Corporation 05/16/84

A-4 ORGANIZATION OF THIS MANUAL DataFlex 2.0 User's Manual

THIS PAGE INTENTIONALLY LEFT BLANK

Copyright (c) 1984 Data Access Corporation 05/16/84

This section describes the steps involved in developing an application
in DataFlex and the various files and programs that come into play
both in creating and in running it.

DataFlex offers a wide range of facilities for applications
development. Because of this, there is frequently more than one way
to achieve a particular goal. Since one or another of the alternative
methods is normally preferable under certain circumstances, care
should be taken to avoid thinking that the first way conceived or
implemented for doing a task is the only, or best, way. Any method
developed for doing a task should be reviewed against the possibility
that an alternative approach might be easier or more efficient.

This section is divided into two parts: Runtime System and Applica-
tion Development. The runtime system is the part of DataFlex required
to execute (run) the application. The person(s) who run the applica-
tion is(are) referred to as the "operator" (as distinguished from the
configurator, who is the person who develops the appiication). The
application development section describes the parts of DataFlex which
support development of applications. Although the configurator and
the operator may in some instances be the same person, the activities
of configuring on the one hand and operating on the other are differ-
ent, so that it is useful to distinguish between these functions.

INSTALLATION

The installation of DataFlex consists mainly of copying the necessary
files from your DataFlex master disks onto your working disks or hard
disk drive and then using the DataFlex SETSCREEn program to initialize
the system for your serial number and terminal type. The SETSCREEn
program reads the file TERMLIST.CFG and writes the terminal informa-
tion input by the user to the file FILELIST.CFG to be used by the
runtime system and the configuration system. See the installation
instructions and the section on Installing DataFlex for more informa-
tion on installation.

Copyright (c) 1984 Data Access Corporation 05/16/84

A-6 OPERATIONAL ORIENTATION DataFlex 2.0 User's Manual

RUNTIME SYSTEM

The basic operating nucleus of the DataFlex runtime system is the
program "FLEX.COM" (FLEX.CMD on CP/M-86 systems). FLEX.COM and its
overlay file "RUN.OVF" are functional all the time any DataFlex
configuration is running. The DataFlex configuration contains the
intelligence which enables DataFlex to make the computer do a
particular task, just as a BASIC program works through the BASIC
interpreter. Without a compiled configuration (.FLX) file, the
runtime system can do nothing.

Under control of a configuration, the DataFlex runtime system can
access and manipulate one or more databases, interact with the
operator, drive the printer, read and write standard ASCII files, and
otherwise activate just about every function found in microcomputer
systems, These activities are controlled by configurations (files
with the ".FLX" extension) created and compiled by the developer.
When FLEX 1s run from the operating system, the name of the
configuration which is to be run must be given with it.

When initialized, the DataFlex runtime system first reads a file
called FILELIST.CFG which contains information about what database
files are available, and information which enables DataFlex to
generate the control codes which will operate your particular
terminal,

Each data base file name appearing in FILELIST.CFG actually refers to
a "family" of related files on your disk, all having a common root-
name, but different extensions. The data files (".DAT" extension)
contain the raw data in the sequence in which it was entered, and the
basic information on the structure of the data file, The key files
(" . Kx" extension where x is the number of the index) contain index
data which provides access to the data by indexes estabiished by the
configurator during the process of defining the database. The tag
file (".TAG" extension) contains the names of the fields which make up
the database.

Thus the minimum file complement required to run DataFlex consists of:
FLEX.COM, RUN.OVF, FILELIST.CFG, at least one .FLX (configuration)
file previously created by the configurator, and all database files
(.DAT, .Kx and .TAG) for any database(s) declared in (used by) the
configuration(s). To use the QUERY facility the QUERY.COM and
QUERY.OVF program files must also be present.

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual OPERATIONAL ORIENTATION A-7

The DataFlex Menu System that greets the user when DataFflex is
initialized is itself a DataFlex configuration. The name of the menu
configuration is MENU.FLX. The menu facility keeps the menus in a
standard DataFlex data base file whose name is MENU.DAT. MENU.DAT is
installed as file 49 in the 1ist of active databases in FILELIST.CFG
as supplied. Thus to use the menu facility you must have MENU.FLX and
MENU.DAT on your system.

Other supplied programs may be required occasionally at run time.
REINDEX reads a data file and rebuilds the keys (.Kx files) in case
they are damaged by a power, media or system failure. Reindex 1s
also used to maintain BATCH indexes and create "ad hoc" indexes. The
FREL ((Fre)e (L)ist) program reads through a data file and verifies
(and rebuilds if necessary) the 1ist of deleted records in a data base
file, and also deletes or extracts any records that appear damaged
(typically as a consequence of a power, media or system failure).

Both of these programs may be kept off-line until needed.

APPLICATION DEVELOPMENT

The process of developing specific applications in DataFlex involves
creating configurations (files with the .FLX extension) and database
files to store and manipulate data in the desired fashion. These
files are created by use of a group of utility programs supplied with
DataFlex. The .FLX files are created by running the DataFlex COMPILER
program on "source" files. Source files can be created by any of
several different means, including the EDITOR.COM program supplied
with DataFlex, or any text editor or word processor which is capable
to producing plain ASCII text files you might happen to favor. The
source files contain all the various commands in DataFlex which cause
the system to carry out the desired processes.

You will probably produce your first configuration using the AUTODEF
utility. AUTODEF also creates the definition for a new database, and
the data and key files necessary for its data. 7To use it, the first
step is to "draw" an image of the input and query screen that you will
use on your new database (see the section on "Formatting With
Images"). The DataFiex EDITOR or your favorite text editor will serve
for this purpose. AUTODEF reads this file and produces both a file
definition (.FD) file and a configuration SOURCE code file (with a
.FRM extension), ready to be compiled. The configuration produced by
AUTODEF can perform full file maintenance on the database file it
creates.

Copyright (c) 1984 Data Access Corporation 05/16/84

A-8 OPERATIONAL ORIENTATION DataFlex 2.0 User's Manual

The function of the EDITOR program is to create, display and modiry
DataFlex configuration SOURCE and IMAGE files. The source files can
be created from scratch with the EDITOR, or can come from one of the
auto~definition utilities 1ike AUTODEF, QUERY or READ. The source
files produced with EDITOR are standard ASCII files, so most word
processors or editors can be used instead of the DataFlex EDITOR if
you are more comfortable with one of them.

The DataFlex QUERY program provides the user easy access to the
information stored in any database existing on the disk drive. The
QUERY facility can be used as an ad hoc report generator that requires
little training to use. QUERY is entirely prompt-driven, making it
quite practical for use by operators, but once a gquery has been
successfully performed, it permits storing the query criteria in a
file as source code for a report configuration. The source file can
then be compiled to become a permanent report. QUERY requires ail of
the standard runtime database files to be present.

The DataFlex READ configuration generates a source program to import
standard ASCII data files. READ is primarily intended for those who
are converting to DataFlex from other systems.

The CVTFRM and CVTRPT programs read DataFlex configurations written
under earlier versions of DataFlex (l.6x) and produce DatafFlex 2.00
source configurations. Configurations written in Versions 1.6x of
DataFlex are fully convertible to configurations which run under
Version 2.0x by use of these utilities. Naturally, configurations
produced in this fashion will not take advantage of features of
Version 2.0x which were not present in the version of DataFlex under
which the original configuration was produced, but the converted
source file can be edited to do so if desired.

The compiler (COMP.COM or COMP,(CMD, and--for 8-bit systems--COMP.OVF)
which produces .FLX files from source files requires three files to be
present on the logged-in disk drive in order to do its job: the
configuration source file, a file definition (.FD extension) file for
each database declared by (used in) the configuration, and FLEX.CFL,
the DataFlex command macro file., The .FD files and FLEX.CFL must both
reside on the logged-in (default} disk drive. A successful
compilation will produce a runnable DataFlex configuration with the
.FLX extension and the same rootname as the source file. As the
compiler runs, it will display on the screen the original source
commands together with 1ine numbers assigned to them by the compiler
and any error messages which arise during compile time. This output
can be directed to any of three devices: the console, the printer, or
a printabte (.PRN) file.

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual OPERATIONAL ORIENTATION A-9

A DataFlex configuration that does not use any database(s) would not
require any .FD files in order to be compiled, but the typical Data-
Flex configuration will access one or more databases. The .FD files
are used only at compile time; they are not required at run time. On
the other hand, the other runtime database files (.DAT, .Kx, .TAG) are
not required by compile. This difference in file requirements can be
taken advantage of when operating within restricted disk space.

The FILEDEF utility, 1ike AUTODEF, 1s used for creating database files
and configuration source files. FILEDEF is more versatile than
AUTODEF. Multi-file relationships can be created with FILEDEF.
FILEDEF requires more extensive knowledge of DataFlex, but gives more
control over the database. The FILEDEF program can also read and
write database definition (,DEF) files in standard ASCII. Definition
files are useful for reference, database documentation and transfer of
applications to other enviromments.

The PACK program is for use by users who want to create their own new
commands and add them to the DataFlex language. The PACK program
reads the file FMAC and creates the file FLEX.CFL which is used by the
compiler. New command macros are added to FMAC with a text editor or
word processor and then made usable by running PACK on the new version
of FMAC, creating a new version of FLEX.CFL (overwriting the old one).

CONFIGURATION | RUNTIME
(1™ '
|
|
! l !
|
|
[: HLED
. QuERY l READ lfp/mn FILEDEF | AUTO0EF | RUNTIE
1

1 1 4 WAGE l
|
i
LS
|
I

' A

COMPILED o

PROGRAM oy

REINDEX

7
DATABASE REL

DATAFLEX

SYSTEM DIAGRAM

S
SCREEN

oLl

DataFlex 2.0 User's Manual OPERATIONAL ORIENTATION A-11

After running SETSCREEn and "informing" DataFlex of the codes which
operate your terminal, there are three basic levels of using DataFlex
through which you should proceed in order for the easiest, most
thorough learning experience, The content of this manual is itself
presented in the order which will best facilitate this approach. They
are described below:

QUERYING AND REPORTING Your DataFlex system was supplied with more
than a dozen working configurations complete with sample data, all on
disk, compiled and ready to run. They are intended as learning aids
and are not documented in this manual. You will find most of them
listed in the "DataFlex demo files" submenu, which you may choose from
the master menu. From this submenu, you may actually run any of the
configurations, and/or query their databases, by electing the last
choice, "QUERY Data Files." You should tour these samples freely,
entering additional test data where you choose, and running reports to
the screen and/or your printer from them at will. The Operator's
Guide in this manual should provide all the guidance you will need in
this activity. Eventually, you may even wish to modify the
configurations themselves to make them run differently. (Some of the
configurations may happen to be already very close to something you
could actually use for your own purposes,) The source '"code" (which
is what must be modified and recompiled to change the configuration)
is supplied for every configuration on the C: disk.

PROMPTED DATABASE CREATION AND CONFIGURATION DataFlex provides
numerous "automated" methods for creating and maintaining databases
and for creating the configurations you will need for entering data
to, and reporting data from those databases. While the "shortcut®
methods are prompted, and typically more narrowly structured than the
"programming" methods of writing DataFlex configurations, they should
not be underestimated. In actuality, they are highly flexibie and
very powerful in their own right. Roughly two out of four DataFlex
users will have no regular occasion to use any DataFiex facility other
than EDITOR (for writing configurations), MENUDEF (for creating and
editing menus), AUTODEF (for creating databases and entry configura-
tions) and QUERY (for creating reports and doing interactive
inquiries). Of the remaining two out of four typical DataFlex users,
only one will have requirements which cannot be fulfilled by the
aforementioned facilities plus the ENTER macro and the REPORT macro.
The facilities mentioned above should be explored thoroughly. You
should proceed on to the next stage only in the event that you have
unusual requirements, or a driving curiosity as to the virtually
limitless possibiiities offered by the most extensive, flexible
applications development medium available in today's market.

Copyright (c) 1984 Data Access Corporation 05/16/84

A~12 OPERATIONAL ORIENTATION Datafiex 2.0 User's Manual

PROGRAMMING AND EXTENSION OF THE LANGUAGE In Tine-by-1line programming
of applications, DataFlex offers facilities for the creation of
applications not even yet imagined by its creators. The more
fundamental functions provided in function key commands, sequential
input/output, console input/output and multi-user functions allow the
construction of virtually any processing structure which could be
desired. Although whole configurations can be made up of such
commands, these commands are more likely to be used intermingled with
structures created by the pre-programmed facilities such as the REPORT
and ENTER macros. While exclusive use of these facilities for writing
configurations is 1ikely to be a less efficient way of creating
configurations, occasional use of them to alter the way standard
structures function 1s very much encouraged. 1In the Advanced section
of this manual, you will even find procedures for modifying DataFlex
commands themselves, as well as procedures for creating entirely new
commands for your individual use.

The schematic on the next page offers a graphic depiction of the
ranges of programming sophistication to which each of the facilities
of DataFlex primarily applies. The chart should not be interpreted
too literally. There is no reason whatsoever why, for example, the
“basic™ facility of QUERY should not be used in an otherwise
"advanced" application to create one or more reports if QUERY can
satisfy the application's requirements for that particular function.
Further, a common way of creating highly complex applications involves
the use of "basic"™ or "intermediate" facilities such as QUERY or
AUTODEF to create the "nucleus" of the application, and then
subsequent editing of the nucleus to jncorporate the more "advanced"”
features required by the application.

Copyright (c) 1984 Data Access Corporation 05/16/84

A-13

OPERATIONAL ORIENTATION

DataFlex 2.0 User's Manual

THE FACILITIES OF DATAFLEX

m—m—=——= EVELS OF CONFIGURATION SOPHISTICATION-—-—----

INTERMEDIATE ADVANCED

BASIC

OPERATOR

{ ICONFIGURATIONS i

{1 {SCREEN IMAGES

ICONTROL COMMANDS

imost commands

{11 1INDICATORS

i { IREPORT MACRO

It 1{ENTER MACRO

{ENTERGROUP MACRO

| IKEY PROCEDURES | !

{{VIFIELDINDEX ! 1

IMACRO OPERATIONS|

05/16/84

Copyright (c) 1984 Data Access Corporation

A-14 OPERATIONAL ORIENTATION DataFlex 2.0 Userf's Manual

THIS PAGE INTENTIONALLY LEFT BLANK

Copyright (c) 1984 Data Access Corporation 05/16/84

The objective of this section is to provide a clear, non-technicail
summary of use of the system for data entry. The first part of the
chapter will define the procedure to use DataFlex for data entry and
file maintenance. Secondly, the features and facilities that may be
used in any given application will be discussed.

DataFlex uses a set of command keys, called "Flex-Keys", to execute
many of the regularly used functions in an application software
system. Example Flex-Keys are FIND, used to locate a record in the
data base; SAVE, used to store a new record in the data base, etc.
Further, since DataFlex is used on such a wide variety of systems,
especially terminals, we will address functions of the program by
their Flex-Key name in the course of our discussion, rather than by
the particular key on your terminal which has been established, since
the location of that command key may vary from system to system.

The SETSCREEn Utility is used to assign the DataFlex Flex-Key commands
to a set of control or function keys on your keyboard. Part of its
operation is to print a 1ist of the commands and the keys to which
they are currently assigned on your terminal. If you do not have a
copy of that 1ist, go to the SETSCREEn Program now, and print one for
use with this chapter.

FUNCTIONAL OVERYIEW

A DataFlex application that involves data entry has the capacity to
accept data from the keyboard, check to make sure that it is the
proper type of data, and then store it on the computer's floppy or
hard disk storage device. Once data is stored, DataFlex can be made
to retrieve (FIND) the data and display it on the CRT, and allow the
operator to change or delete it.

A11 of the capabilities of DataFlex may or may not be used in every
application. For example, the option exists within a configuration to
lock an operator out of a particular data window on the screen or to
automatically make calculations that are routine in the process of
certain data entry situations. Our point is that although all of
DataFlex's capabilities will be discussed here, you may not see all of
them used in every application which you run on your computer.

Copyright (c) 1984 Data Access Corporation 05/ 16/ 84

A-16 OPERATOR'S Gl

UIDE DataFlex 2.0 User's Manual

DEFINITION OF TERMS

Control Key:

Data Entry:
File Maintenance:

F111 Character:

Function Key:

Index:

Key:

Key Field:
Key List:

Window:

A key board entry that is made while the "control"
key is held down. Variously represented as “A or
CTRL A to indicate that the control key is being
held while the "A"™ is also pressed. Flex—Key
functions can be assigned to control keys with
SETSCREEnN.

The process of putting new information into the
computer through the terminal keyboard.

The examination, changing, or deletion of infor-
mation that is already stored in the computer.

A character displayed in a "window" (see below)
which defines the length of the data field which
can be entered or displayed at that particular
position. Generally, the underline character

(} 1s used for this purpose.

A special key on the terminal keyboard that is
outside of the normal typing array. It generates a
coded signal that can be "trapped" by DataFlex to
execute one of the DataFlex Flex-Key functions
(e.g., FIND, DELETE, SAVE, etc.). Terminal
function keys generate characters that do not
display on the screen.

An organized list of keys which is linked to the
records in a file. The index {s maintained in
order automatically by DataFlex so that records can
be accessed sequentially even though the data is
entered and stored randomly in the data base.

An element of data in a record by which the record
can be accessed or "found" in the data base. E.g.,
the "ACCOUNT NUMBER" and/or "ACCOUNT NAME" could be
defined as keys for an accounts receivable record;
the "ITEM ID" and/or "DESCRIPTION" could be keys
for an inventory record.

The field(s) in a data record which contains a key.
Same as Index.
An area of the CRT display defined to accept or

display data. Windows can be defined to accept
only certain types of data... e.g. numbers only.

Copyright (c) 1984

Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual OPERATOR'S GUIDE A-17

HOW TO BEGIN

Data entry and file maintenance are begun by selecting the proper
option from the system menu. All that you need to do is select the
number of the menu item for the data entry configuration that you wish
to execute.

DataFlex screens are operated by the Flex-Key commands which you (or
the operator) issue(s) from the keyboard. The commands are assigned
to certain keys (e.g. TAB, LINE FEED, DELETE, RUB-OUT, etc.), function
keys (Fl, F2, etc.), and/or control sequences (°A, "B, etc.) for your
particular system. This assignment is done with the DataFlex config-
uration utility called SETSCREE. Once the assignment of the commands
is made to the various keys on your terminal, all DataFlex screens
will operate exactly the same regardless of the file(s) being pro-
cessed or the format of the screen.

This feature of DataFlex promotes operator efficiency and reduces the
opportunity for errors since there is a procedural continuity through-
out the system. The execution of the commands soon becomes second
nature so that when a new or altered module is added to the system, no
additional training or familiarization is required.

DataFlex screen displays are "active", which means they can execute
data entry or file maintenance functions at any time that a Flex-Key
command is issued.

For example, if a particular screen contains twenty display
windows, but only the first five elements of data are to be
entered initially, then a SAVE command can be issued after the
fifth data item is entered. This makes it unnecessary to
strike the RETURN key after each of the blank fields just to
exit the screen. This feature can improve data entry effi-
ciency by substantially reducing the number of keystrokes
required.

Copyright (c) 1984 Data Access Corporation 05/16/84

A-18 OPERATOR'S GUIDE

DataFlex 2.0 User's Manual

FLEX-KEY SUMMARY
COMMAND
ESCAPE
CLEAR

RETURN

BACK FIELD

FIND

SUPERFIND

SAVE

DELETE

PREVIOUS RECORD

NEXT RECORD

CALCULATE

HELP

Window Edit

Terminate the ENTER Program, return to menu.
Clear all screen windows

Terminate entry in the window where the cursor
is currently located and move cursor to the
first position of the next window.

Move the cursor from the current window back
to the previous display window on the screen.

Find & display the record which is associated
with the key in the window where the cursor is
currently positioned. If there is no data in
the window, find and display the record which
is first key in the index for the field asso-
ciated with the current window.

On a screen display which contains data from
multiple files, this command will find a
record by whichever key window the cursor is
currently positioned in. Then, the related
records to the keyed record will be found and
displayed to fi11 all data windows on the CRT.

Stores the displayed screen information to the
data base. If the screen contains data from
more than one file, data will be written to
whatever files are part of the configuration.

Removes the displayed record from the file and
its key from the key 1ist. A record must be

found before i1t can be deleted.

Finds the record whose key immediately
precedes the key in the window where the
cursor is currently positioned.

Find the record whose key immediately follows
the key in the window where the cursor is
currently positioned.

Performs the calculation indicated by the
expression entered. Calculations can be per-
formed in a data window, as well as on the
prompt Tine of the CRT.

Display HELP screen.

Move cursor or change data in an image window.

Copyright (¢} 1984 Data

Access Corporation 05/16/84

DataFlex 2.0 User's Manual OPERATOR'S GUIDE A-19

KEYBOARD COMMAND EXPLANATIONS
ESCAPE

When the ESCAPE command is issued from the keyboard, DataFlex immedi-
ately begins the process of "shutting down operations". A1l open data
files are closed, and the control is returned to the menu. It is
important to note that when the ESCAPE command is made, any data which
is currently displayed is not acted upon in any way unless the program
internally executes a set of commands. Specifically, if a new record
has been entered, but not SAVEd to disk(ette), ESCAPE will not execute
the SAVE command as part of its shut down. This also applies in the
case of a changed or edited record: if a record is found and edited
but not re-SAVEd, no change will be made in the data base.

CLEAR

The function of the CLEAR command is very simple... to erase any data
from the display windows (only) and place the fi11 character in all
data window positions. CLEAR has no effect on data stored in the data
base whatsoever; it is solely a screen operation. CLEAR can be used
as a "bailout" procedure during editing. If a record has been called
to the screen (found), and an edit made that is not correct, CLEAR
will erase the screen and preclude the bad edit from being written to
the data base.

RETURN

The RETURN command terminates data entry in one display window and
moves the cursor to the next window. This command is almost always
assigned to the RETURN or ENTER key of your terminal.

If you are entering data, and the RETURN command is issued at the end
of the last window on the screen, the displayed information will be
automatically SAVEd in the data base.

If, during data entry, you wish to skip over a window and not enter
any data, simply execute the RETURN command prior to entering any
data. If the window accepts alphanumeric data the field will be given
the value of a string of spaces that is the length of the window. If
the window accepts numeric data, the field will be set to zero.

DataFlex can be made to do an "auto-return" at the end of a data
field. This means that when entered data completely fills a window,
the RETURN command will be executed automatically. If "autc-return”
is MON", the cursor will jump from the end of the current window to
the beginning of the next window as soon as the current window is
filled with data. The use of this feature is up to the user and
configurator., It is turned "ON" with the SETSCREE Utitity program.

Copyright (c) 1984 Data Access Corporation 05/16/84

A-20 OPERATOR'S GUIDE DataFlex 2.0 User's Manual

FIND

A screen image will display a series of data windows where you can
enter new information or recall existing information for display.
Some of the dispiay windows are "key fields" (as defined above). That
is, they can be used to FIND records in the data base that are asso-
ciated with data entered in the windows of the display. Generally,
the first window in an image is defined as a key, however this is not
always the case,

To FIND a particular record, place the cursor in the window for the
key field (DESCRIPTION in the example below), enter the "value" of the
key for the record you wish to FIND, and execute a FIND command.
DataFlex will then retrieve the record with the value you entered in
its key field and display it on the screen. If a key with the value
which you entered does not exist, then DataFlex will FIND and display
the first record whose key sequentially follows the position which the
value you entered would occupy in the index.

To illustrate the way FIND operates, suppose we had a database with 5
records in it, each of which has two fields, DESCRIPTION (this is the
key field), and VENDOR (which could also be a key field, but in this
example, it will not be). This {is the data:

DESCRIPTION VENDOR

ARMATURE General Electric
DISKETTE 3M Corporation
ESCALATOR Otis Elevator
FRISBEE Wham-0

KEYBOARD Televideo

Here is what the following entries would find if they were entered
into the DESCRIPTION window, and the FIND command executed:

DataFlex would FIND

YOUR ENTRY DESCRIPTION VENDOR

A ARMATURE General Electric
ARMATURE ARMATURE General Electric
B DISKETTE 3M Corporation

C DISKETTE 3M Corporation
DISK DISKETTE 3M Corporation

E ESCALATOR Otis Elevator

F FRISBEE Wham-0

G KEYBOARD Televideo

H KEYBOARD Televideo

J KEYBOARD Televideo

K KEYBOARD Televideo

L -Error - Find Past End of File

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual OPERATOR'S GUIDE A-21

SUPERFIND

On a screen that displays data from only one file, SUPERFIND is func-
tionally identical to the use of the FIND command. However, on a
screen which displays data from multiple files, SUPERFIND is a power-
ful tool to find and display information from mulitiple, related data
base files.

The action of SUPERFIND is to use DataFlex's data base manager to
retrieve all related data on a given screen. To use SUPERFIND, place
the cursor in the window by which you wish to start the FIND. The
window must be a key field. Enter the key value to find and execute
the SUPERFIND command. If you want to start viewing the records from
the beginning of the file in which the cursor is located, just execute
SUPERFIND and DataFlex will automatically FIND the records related to
the first key in the key 1ist. Then, when the record is found, all
related windows from other files will also be found and displayed.
when SUPERFIND is used, the entire screen display is filled with data.

Once the screen display is complete, you can use the NEXT RECORD and
PREVIOUS RECORD commands to sequence through the related data.

Consider the following example:
We have an inventory order entry system... the files are:

PARTS Key = Part #
BUYERS Key = Buyer ID
TRANSACTIONS Key = Transaction #

Data entry configurations are used to enter all data into the
system. PARTS and BUYERS can be added and maintained and
jtems can be ordered through the creation of TRANSACTIONs.
TRANSACTIONs contain the Buyer ID, the Part #, the quantity of
the PART sold and a total sale amount.

The stage is set... if we now load the transaction screen,
place the cursor over the Buyer ID window, enter a Buyer ID
and press SUPERFIND, all fields will be filled. Starting with
the entered Buyer, we can now issue the NEXT RECORD command
and if the displayed buyer has more transactions, the next
transaction will be found and displayed on the CRT. In other
words we are now FINDing transactions by Buyer.

The fun has just begun... If we execute a CLEAR command, place
the cursor in the PART # window and enter a PART, SUPERFIND
will now FIND the PART and its related transactions. NEXT (or
PREVIOUS) RECORD will sequence up and down the transaction
list for that PART. When we hit the end of the transactions
for the requested PART, the next PART in the index will be
displayed with its transactions.

Copyright (c) 1984 Data Access Corporation 05/16/84

A~22 OPERATOR'S GUIDE DataFlex 2.0 User's Manual

The action of the SAVE command is to take the data displayed on the
screen and save it to the correct data files in the data base. This
cah occur whether there is one or more files associated with the dis-
play. SAVE is a simple yet powerful command. If a configuration is
not carefully conceived, SAVE can allow unwanted changes to the data
base from a display containing data from several files.

There is no "edit" command in DataFlex. £Editing is accomplished with
the use of the FIND and SAVE commands. First the record to be edited
is brought to the screen with the FIND command. Then the necessary
edits or changes are made on the screen. When the data is correct, a
SAVE command {s executed to place the altered record back in the data
base. As mentioned above, if the edit is incorrect or needs to be
aborted for any reason, the CLEAR command will remove the "found"
record from the screen without altering any data.

DELETE

The DELETE command removes a record from the data base. Procedurally,
DELETE can only operate following the execution of the FIND command
(i.e., you must enter the key of the record to be DELETEd, FIND it,
then execute the DELETE command). The record itself and its key(s)
will be removed from the files,

NEXT RECORD

This command allows you to sequence through a file, displaying records
in key order. When the cursor is placed in a key window, the NEXT
RECORD command will FIND the record whose key is next in the index for
that window's data and display it. If multiple keys are used on the
screen, the cursor can be located in any valid key window for the
operation of the NEXT RECORD command.

PREVIOUS RECORD

Same as the NEXT RECORD command except that it FINDs the record whose
key precedes that of the one currently displayed.

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFliex 2.0 User's Manual OPERATOR'S GUIDE A-23

CALCULATE

The CALCULATE command allows the operator interactive access to the
arithmetic capabflities of DataFlex. It can be used in two locations
on the screen: 1in a window, or on the command 1ine at the bottom of
the CRT. The format for the calculation is the same regardless of the
location where it takes place on the screen. Four symbols are used
for arithmetic operation:

+ = Addition
= Subtraction
= Multiplication
= Division

The arithmetic expression can simply be typed in, e.g., 2+2, 10-7.,
3%50, or 24/6. Parentheses are supported, so any of the following are
valid expressions for use by the CALCULATE Command:

(2+2)*(5/6) (2% (2%(2%(2)))) 100/34+12%(365/12)

If the cursor is located in a window which contains numeric data, an
arithmetic expression can be entered directly. When a RETURN command
is executed, the arithmetic will be performed according to the
expression that was entered. No command need be used in this case.

If the CALCULATE command is issued, the cursor will go to the bottom
1ine of the display, where the expression can be entered. When the
expression is complete, execute a RETURN command and the arithmetic
will be performed with the result displayed in the window where the
cursor was located when the CALCULATE command was issued. This
applies whether the cursor was originally located in a numeric or
alphanumeric window.

HELP

The HELP command will cause an application-dependent "help" screen to
be displayed. The screens are created as part of an application and
are covered in the section of this manual on "Formatting with Images".
Syntax for using the HELP command within an application to call the
HELP screen is described in the section on "Using Function Keys".

Copyright (c) 1984 Data Access Corporation 05/ 16/ 84

A-24 OPERATOR'S GUIDE DataFlex 2.0 User's Manual

USER-DEFINED

An additional key on your terminal may have been assigned some
additional function in your DataFlex application(s). If so, this was
done in your particular program, and your supervisor or programmer
will tell you which key it is, if any, and what it does, or you will
find 1t in the manual for the particular application(s) you are
running.

RIGHT & LEFT Arrow Window Editing Keys

These keys hon-destructively move the CRT cursor within a DataFlex
screen display window during data entry or editing.

BACKSPACE Window Editing Key

Moves the cursor one space to the left in a screen window, deleting

the character under the cursor, as well as any characters which may be
in the window to the right of the cursor.

CHARACTER INSERT Window Editing Key

Inserts a space at the current cursor position in a screen window.
Characters to the right of the cursor will be moved one space to the
right.

CHARACTER DELETE Window Editing Key
Deletes the character under the cursor in a DataFlex screen display

window. Characters to the right of the cursor will be moved one space
to the left.

Copyright (c) 1984 Data Access Corporation 05/16/84

The DataFlex SETSCREEn utility program allows you to configure Data-
Flex to run on your CRT terminal, and to specifically adapt certain
operations of the software to your specific requirements.

In this chapter of the User's Manual, we will use the word "terminal"
to refer generally to the keyboard and video display of a system,
whether the device is separate from the computer itseif or, as in
cases like the IBM Personal Computer, the keyboard and video display
are directly connected and integrated with the computer.

SETSCREEn can be entered directly from the operating system command
level by typing the first eight letters of the program name:)

A>SETSCREE <RETURN>

Upon entry to SETSCREEn, a list of pre-defined terminal and system
configurations will be displayed as in the example below. You have
the option of selecting a predefined terminal which is on the list,
adding the data for a terminal which is not on the list, or editing
the data for a terminal which is already on the list.

1 SUPERBRAIN 2 ADM 31

3 V.C. 404 4 TELEVIDEO (850/925)
5 HAZELTINE 15xx 6 ADM 3A

7 TRS-80 (P&T CP/M) 8 MICROTERM ACT 5

9 ADDS VIEWPOINT 10 HP 125

11 IBM PC W/ PCTERM (dos 1.1) 12 DEC VvT-52

13 XEROX 820 14 ZENITH 100
15 NEC A.P.C. 16 ANSI TERMINAL (DEC)
17 HEATH H19/ZENITH Z19 18 T. I. PEGASUS

19 IBM PC W/ ANSI.SYS
20 MY TERMINAL IS NOT ON THIS LIST

If your terminal appears on the list displayed, simply enter the
number by the name of your terminal. This will select the proper
screen codes and keys as preconfigured for your terminal and function
keys that DataFlex will act upon. The predefined Flex-Key assignments
provided for the terminals may be changed at any time by use of Option
Two in the function menu shown below. If you have selected a
displayed terminal, the following menu will be displayed:

Copyright (c) 1984 Data Access Corporation 05/ 16/ 84

A=26 INSTALLING DATAFLEX DataFlex 2.0 User's Manual

(1) SET SYSTEM OPTIONS

(2) ASSIGN FUNCTION KEYS

(3) SET TERMINAL CONTROL CODES

(4) DISPLAY PRESENT CONFIGURATION

(5) PRINT CONFIGURATION

(6) END / SAVE CHANGES

(7) ABORT SETSCREEN - DO NOT WRITE CHANGES

You may wish to use Option 4 to display the configuration to check it
over and/or print the configuration to paper for future off-line
reference. If it is necessary for any reason to edit terminal control
codes or function key assignments, these may be done by use of options
3 and 2 respectively. Option 6, (END / SAVE CHANGES) will write the
configuration to disk for future automatic use by DataFlex.

NOTE: There is a "standard" for terminals that is being used more and
more, called the ANSI terminal standard. If you cannot find terminal
information in your manual, it may be compatible with the ANSI
standard. Many of the new "integrated" systems use the ANSI standard.
Systems known to use the ANSI standard are: Televideo 970, DEC
Rainbow, Texas Instruments Professional, Wang PC, and IBM-PC with DOS
2.0, Choice number 16 above will provide the ANSI configuration.

If your terminal (or a terminal which your terminal emulates) is not
listed, it will be necessary for you to get out your terminal or
system manual and manuaily configure DataFlex using the "MY TERMINAL
IS NOT ON THIS LIST" option. If you need to end SETSCREEn at this
point, select any predefined terminal option number, and when the menu
shown above i1s displayed, enter an option 7 to abort and return to the
operating system.

If you have selected "MY TERMINAL IS NOT ON THIS LIST", and you have a
terminal manual ready, it is time to proceed. The next prompt will
ask for the name of your terminal. This will identify the entries
that you make for future reference from the 1ist of terminals
initially displayed when SETSCREEN is loaded,

ENTER YOUR TERMINAL NAME (UP TO 20 CHRS) :

From here, SETSCREEn will step through the first three options of the
menu shown above with the following series of questions:

PART ONE: SYSTEM OPTIONS
The first system option is:
DO YOU WANT AUTO RETURN ON FULL FIELD (Y OR N) N

This question is answered "Y" if, during data entry, you want DataFlex

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual INSTALLING DATAFLEX A-27

to move the cursor from one image "window™ to the next automatically
when the window has been completely filled with data. For example, if
a window is formatted for date entries (8 characters including the
slashes "_/__/_ "), and you put in 1/1/83, the cursor would remain in
the window until you pressed <RETURN>; however, if you entered
01/01/83, filling the window completely, the cursor would automati-
cally move to the next window in the screen image.

Answer "N" to this question if you want the cursor to remain in a
window until <RETURN> is pressed, at which time DataFlex will then
(and only then) move the cursor to the next window.

The next system option is:
IS THIS A MULTIUSER SYSTEM (Y OR N) N

If your DataFlex license is a multiyser version, you MUST respond with
"Y" to this question to use your system in multiuser mode. On singie
user systems always respond with "N",

If you responded "Y" to the multiuser question, the next system option
is (this question will not display for single-user systems):

MUST THE DISK DATA BE PRE-ALLOCATED? (Y OR N)

If you answer this question "Y%es, a file will be created each time
you establish a database (see Designing Databases) which is large
enough to contain all the data your database can hold with the full
number of records which you will later specify in establishing your
databases. This question should be answered "N"o unless: (1) your
operating system requires it (some multi-user systems do--if yours
does, the fact is noted on the installation notes for your network);
or (2) you require for some other reason for the maximum disk space
your database could occupy to be pre-reserved. Pre-allocation of disk
space can slightly improve performance in Targe databases with
multiple files and numerous complex indexes.

When these three questions have been answered, you will be prompted:
IS THIS DATA CORRECT (Y/N) Y

If you have made a mistake in an entry, a response of "N" will repeat
the questions. If the entries are correct enter "Y" to proceed.

05/ 16/ 84

A-28 INSTALLING DATAFLEX DataFlex 2.0 User's Manual

PART TWO: SET FUNCTION KEYS - FLEX-KEYS

In this section you will be asked to press certain keys on your key-
board which will be used throughout DataFlex to execute the Flex—Key
functions (FIND a record, SAVE a record, etc.). DataFlex will read
your entries from the keyboard as you make them and retain the
internal codes generated as the proper response for the particular
Flex~Key function.

The keys selected as Flex-Keys must not be ones that are used to gen-
erate characters during normal data entry (numbers, letters, periods,
commas, etc.). You can use tab, line feed, delete, arrows, here-is,
and any control character (formed by pressing the CONTROL key and a
letter at the same time), or any "function key" (usually an extra row -
of numbered keys on the top row or on the left side of your keyboard).

If you have function keys, they do not have to be used to execute the
Flex-Key commands; that is your option. SETSCREEn will figure out
what kind of function keys your terminal has by asking you to press
one (or two) of them., The function keys you press as Fiex-Keys must
all have the same "lead-in" code. Some terminals have "grouped"
function keys with different lead-in codes, in which case you can only
use one group. You will be prompted:

DOES YOUR TERMINAL HAVE FUNCTION KEYS? (Y OR N) N

If you have, and want to use, function keys, answer "Y". Otherwise
press <RETURN> to make a default entry of "N".

After you have established whether or not your system has function
keys, you will be asked to press a series of keys to assign keys to a

particular Flex-Key function.

PRESS KEY CORRESPONDING TO FUNCTION

...will lead off the following list:

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual INSTALLING DATAFLEX A-29

RETURN OR ENTER KEY RETURN (13)
ESC (EXIT PROGRAM) ESCAPE (27)
PREVIOUS FIELD (BACK FIELD) LINE FEED (10)
DATA WINDOW CHR (E.G. "_") "_" (95) (must be printabie char.)
FIND A RECORD TAB (9)

SUPERF IND CTRL F (6)
SAVE A RECORD CTRL S (19
DELETE A RECORD CTRL D (4)
PREVIOUS RECORD (SEQUENTIAL) CTRL P (16)
NEXT RECORD (SEQUENTIAL) CTRL N (14)
CALCULATE FUNCTION KEY CTRL C (3)
CLEAR DATA WINDOWS ON SCREEN CTRL A (1)
HELP KEY CTRL Q (17)
USER DEFINED FUNCTION CTRL U (21)
BACK SPACE(DESTRUCTIVE) DEL/RUBOUT (127)
LEFT ARROW(NON DESTRUCTIVE) CTRL H (8)
RIGHT ARROW CTRL L (12)

UP ARROW CTRL K (11)
DOWN ARROW CTRL V (22)
INSERT CHARACTER CTRL Z (26)
DELETE CHARACTER CTRL X (24)

IS THIS DATA CORRECT (Y/N) Y

This 1ist is the "standard" assignment of Flex-Keys that can be
implemented on any system since it uses exclusively universal keys for
each function. You may set up the Flex-Keys any way you want on your
system. Then all DataFlex programs running on your system will use
your assignments. Refer to the operator documentation for the meaning
of each of these Flex-Key functions.

NOTE: You may not have duplicate assignments for a Flex-Key. Some
terminals will generate the same code from two keys, typically back
space and back arrow., If this is the case with your computer, you may
NOT use both of these keys. The two forms of backspacing provided by
DataFlex are: destructive (deletes data) and non-destructive (moves
the cursor back without deleting data previously entered). They MUST
be assigned to keys that generate different internal codes.

Except for the data window character, all of the above must be ASCII
non-printable characters.

PART THREE: SET SPECIAL SCREEN FUNCTIONS

In this section you will configure DataFlex to clear the screen, set
hightighting, and other screen attributes. A1l data in this section
will be entered as decimal numbers with spaces separating entries that
require multipie values {e.g. ESC "“=" are two values that might be

Copyright (c) 1984 Data Access Corporation 05/16/84

A-30 INSTALLING DATAFLEX DataFlex 2.0 User's Manual

entered as 27 61). Up to four (4) values can be entered for each
function. It will be necessary for you to turn to the screen control
section of your terminal manual in order to complete this part of
SETSCREEN.

NOTE: IF A FUNCTION DOES NOT EXIST ON YOUR TERMINAL, ENTER A <RETURN>!

FUNCTION EXPLANATION & EXAMPLE

CLEAR SCREEN Enter the code(s) that clears the screen
(separated by spaces 1f more than one
number is to be entered).

EXAMPLE: 27 42
REQUIRED FUNCTION

CLEAR TO END OF SCREEN Enter the code that clears from the cursor
to the end of the screen.
EXAMPLE: 27 34 1
OPTIONAL FUNCTION

HIGHLIGHTED SCREEN If your terminal supports highlighting (or
another display attribute that you pre-
fer), enter the value that begins high-
lighted display. Then data in the windows
will appear in highlighted mode.

EXAMPLE: 27 40
OPTIONAL FUNCTION

NON-HIGHLIGHTED SCREEN Enter the code(s) to restore your terminal
to the normal (low intensity) mode.
EXAMPLE: 27 41
OPTIONAL FUNCTION

DESTRUCTIVE BACK SPACE This code will move the cursor one space
to the left, replacing the character with
a space.

EXAMPLE: 8 32 8
REQUIRED FUNCTION

TERMINAL INITIALIZATION This code is provided to set your terminal
to the proper mode (if required) when
DataFlex is loaded.

EXAMPLE: 27 40

HOW MANY CHARACTERS WIDE IS YOUR TERMINAL? (79 is standard)

HOW MANY LINES LONG IS YOUR TERMINAL? (24 is standard)
USE 7 OR 8 BIT ASCII CHARACTERS? (7 is standard)

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual INSTALLING DATAFLEX A-31

PART FOUR: CURSOR POSITIONING CODES

Part Four of SETSCREEn involves entering the codes that actually
position the cursor on the screen., They are entered in the same way
as the screen functions above, as decimal numbers separated by spaces.
The cursor positioning function will generate a string value that will
be sent to the terminal. The following questions will determine how
that string is constructed.

POSITION LINE BEFORE COLUMN (Y OR N) Y
CODES TO PRECEDE LINE COORDINATE: 27 64

If your terminal expects the line co-ordinate to precede the column,
then answer the question with "Y"; otherwise respond with "N". Next,
enter the character string (in decimal, separated by spaces) to
preceed the 1ine and column coordinates. If your terminal does not
require a character string before one of these coordinates, just enter
<RETURN>.

LINE POSITION CODE OFFSET (BIAS) 32 (1ine 0 is code 32)
CODES 7O PRECEDE COLUMN COORDINATE:

COLUMN POSITION CODE OFFSET (BIAS) 32 (column 0 1s code 32)
CURSOR POSITIONING TERMINATION CODE:

The offset codes will be ADDED to the actual cursor position starting
at zero.

Most terminals require the positioning codes as a one byte binary
number. For these, answer the question below with a "8"™. Some
terminals (mostly ANSI terminals) require the code as an ASCII number.
SEND CURSOR POSITIONING CODES IN BINARY OR ASCII (B/A): B
NUMBER OF NULLS TO SEND AFTER CLEAR SCREEN AND CURSOR POSITIONING: O

Some (mostly older) terminals require a delay after a screen opera-
tion. For these, enter the number of null fill characters that should
be sent.

IS THIS DATA CORRECT (Y/N) Y A "N"o response will allow you to verify
your entries or repeat this section in case of errors.

Copyright (c) 1984 Data Access Corporation 05/ 16/84

A-32 INSTALLING DATAFLEX DataFlex 2.0 User's Manual

THE SETSCREEN MENU

This ends the initial setup of DataFlex screen codes. If you enter an
incorrect code, or want to change a function key, you may re-select
any of the options from the menu below. If you re-enter the SETSCREEn
program, the initifal screen display will 1ist your manually-defined
“terminal on the pre-defined 1ist under the identifier you established
for it.

EDIT:
(1) SET SYSTEM OPTIONS
(2) ASSIGN FUNCTION KEYS
(3) SET TERMINAL CONTROL CODES
(4) DISPLAY PRESENT CONFIGURATION
(5) PRINT CONFIGURATION
(6) END / SAVE CHANGES
(7) ABORT SETSCREEN - DO NOT WRITE CHANGES

From this menu you may select the function which you want to change.

It will generally be useful to select option (5) to print a copy of
the configuration as a reference for the FLEXKEYs.

When your configuration is complete, use option (6) to save your
changes and return to the DataFlex Menu.

This tutorial is designed to familiarize you with DataFlex. Its
objective is to introduce you to several necessary concepts and func-
tions of the system without going into depth about how the processes
are carried out within DataFlex.

It is intended that you use this section of the user's manual in a
learning "session", or series of "sessions", actively exploring Data-
Flex on your system with the manual as your guide.

The Programming Tutorial in the next section of this manual will guide
you through the steps involved in creating your own database with
DataFlex

SYSTEM CHECKOUT...

Before proceeding with the tutorial, certain prerequisites must first
be confirmed to make sure that DataFlex is properly operational on
your system. We don't want an improper or incomplete installation to
interfere with your introduction to Dataflex.

First, you should have followed the installation instructions packaged
with your DataFlex Master diskettes for your particular version of the
product. Next, you should have executed the SETSCREEn Program to con-
figure DataFlex for your particular system's CRT control codes and
command key setup. Also, you should have printed out a 1list of your
system's command key set up using option 5 on the SETSCREEn Menu to
give you a guide to follow during the familiarization. If you have
not run SETSCREEn, or have not printed your Flex-Key configuration, do
those steps before proceeding further here.

With these items accomplished, you should turn on your system and:

FOR FLOPPY DISK BASED COMPUTERS, load a diskette containing a
copy of the operating system and the DataFlex programs into
drive "A:", and the sample data diskette into drive "B:"; OR

ON HARD DISK BASED COMPUTERS, "boot" the system and "log in"
to the drive or work area where DataFlex has been loaded from
the DataFlex master diskettes.

You should then be able to determine that specific DataFlex files are

available on your "logged in device" (see glossary) by having the
system display a directory.

Copyright (c) 1984 Data Access Corporation 05/ 16/84

A-34 OPERATING TUTORIAL DataFlex 2.0 User's Manual

If we assume that you are Togged in to the "A:" drive (and you may not
be -- particularly on a hard disk system), then you should be able to
enter the DIR command indicated below (shown in boldface) and have a
display containing the listed file names (quite possibly in a dif-
ferent order than displayed here) shown on your CRT screen along with
the names of other ".COM" files that may be on the same diskette or
hard drive partition (replace ".COM" with ".CMD" on CP/M-86 systems):

A>DIR *.COM <RETURN> (or DIR *.CMD on CP/M-86)
A:FLEX .COM COMP .COM QUERY .COM

If these file names are displayed, then you have the necessary compo-
nents in place to proceed with this section. If all of these are not
present in the displayed directory, try the command again. If the
above files are stil11 not shown, refer back to the installation in-
structions to make sure that they were completed.

0.K.» LET'S GET STARTED...

DataFlex can be run in a complietely menu-controlled environment. We
will use the sample menu that is delivered with DataFlex as our guide.
To get to that menu and begin, type the word FLEX at the command level
of your operating system and press <RETURN>.

A>FLEX <RETURN>

In a few seconds, the DataFlex Menu shouid display...

YOUR REGISTERED NAME Serial # :

{1 —m-- DataFlex Ver. 2.0 ————-
' MASTER MENU

- —— —m e

DataFlex demo files
DataFlex Configuration
System Utilities

Set System Date

Run DataFlex Configuration
Enter System Command

Exit To Operation System

L T p——
NOU AW~
- e e e e e e e

! Please select one of the above options or press H
i <RETURN> to go back one menu >>>>>>>>>>>>>>>> !

*%% DataFlex Menu System *%x

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual

OPERATING TUTORIAL

A-35

The Menu is a DataFlex configuration (named MENU.FLX) that stores the

menu option "data" in a data base file.

You will learn how to modify

the existing menus and put your own configurations on the screen later

on.
DataFlex.

SELECTING A MENU OPTION...

For now we will use the standard menu to begin our tour through

To select an option from the menu, just press the corresponding number

AND <RETURN>.

Let's start by selecting the DataFlex Demo Menu...

press a number one (1) on your keyboard, and another menu will

display:

YOUR REGISTERED NAME

Sertal # :

’ ———
——

DataFlex 2.00 !
Demo Data Files !

Enter Vendors
Enter Customers
Customer Report

Vendor Report
ON=LINE Invoice

—— e e e s
O~V WN

Enter Inventory Items

Inventory Movement Report

QUERY Data Files

i Please select one of the above options or press i
i <RETURN> to go back one menu >>>>>>>>>>>>>>>> _ !

* %%

DataFlex Menu System

*% %

This menu displays a l1ist of predefined options that you can use to

see how DataFlex applications work.

Enter a number one (1) to select.

the VENDOR File Maintenance option. DataFlex will now load and display
a screen "image" used for the entry, recall and editing of data in the

sample VENDOR data base file.

Copyright (c) 1984 Data Access Corporation

05/16/84

A-36 OPERATING TUTORIAL DataFlex 2.0 User's Manual

VENDOR NUMBER: <__ >

COMPANY: < >
ADDRESS ¢
CITY: ST: ___ ZIP:
PHONE: (___) ___-
TERMS (DAYS): ____ CREDIT LIMIT: § .
OUTSTANDING CREDIT: $.

REMAINING CREDIT: §$

TOTAL PURCHASES: $.

LAST PURCHASE: __/__/__

Windows in < > can be used to FIND vendors

FLEX-KEY OPERATION...

DataFlex uses "Flex-Keys" to accomplish various actions on a screen
display. These are in lieu of a menu which would Tist the options
available to a system operator at any given point in an application.
The Flex-Key concept works well because the same keys are used for the
same function throughout all DataFlex applications on a given system.
For example, the same key is used on all screens to FIND a record in
the data base, or to CLEAR displayed information from the screen
image. As noted above, Flex-Keys are specified in the DataFlex
SETSCREEn Program. Specific detailed information on the use of the
Flex-Keys is in this manual in the chapter on Operator Procedures.

"FINDING" A RECORD IN THE DATA BASE...

Your cursor will wait in the VENDOR NUMBER "window™" on the screen.
Enter a number one (1), and press the FIND Flex-Key on your keyboard
(as defined in the Flex-Key list printed with SETSCREEn). The screen
should display information for Data Access Corporation. You have just
executed your first DataFlex Command!

CLEARING INFORMATION FROM THE DISPLAY SCREEN...

To remove this information from the screen, press the CLEAR ALL Com-
mand Key. The screen should be restored to the same status as when it
was originally displayed from the menu.

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual OPERATING TUTORIAL A-37

"FINDING" A RECORD BY AN ALTERNATE “KEY"

This screen is configured to allow VENDORs to be found by either the
VENDOR NUMBER or the VENDOR NAME. Above, you found a record by VENDOR
NUMBER. Now, we can find the same record by VENDOR NAME. While the
cursor is positioned in the VENDOR NUMBER window, press <RETURN>, and
it should move to the VENDOR NAME window. (The zero which appears in
the VENDOR NUMBER window signifies null input, and may be ignored
whenever it appears.) With the cursor in the VENDOR NAME window, type
the word "DATAM (in capital letters), and press the FIND Flex~Key.
Again, the information for Data Access Corporation should be
displayed.

MOVING THE CURSOR AROUND THE SCREEN...

Pressing the <RETURN> command key will move the cursor sequentially
through the entry windows of the screen image. To move backwards on
the screen (for example from the VENDOR NAME window back to VENDOR
NUMBER), press the BACK WINDOW Flex-Key. Each strike of <RETURN> or
BACK WINDOW will move the cursor forward or backward one window. One
caution: a BACK WINDOW from the first window, or a <RETURN> from the
last window will cause all the windows to clear, and possibly a
"*record" to be saved which you didn't intend to. The safe way to
clear all the windows is to strike the CLEAR ALL Flex-Key, and to
leave the screen altogether, is to strike the ESCape Flex-Key.

"SCANNING" THE DATA BASE...

DataFlex provides a means for you to scan the records in the data base
by any pre-defined key index. You can enter the index at any point
and move forward or in reverse through the records in the data base
file. With a clear screen image (as described above) and the cursor
in the VENDOR NUMBER window, press the NEXT RECORD Flex-Key. Vendor
number "1" should be displayed. Now, press NEXT RECORD again...
vendor number "2" should be displayed. This same process can be used
on any indexed window on a DataFlex screen image. It will not
function on a window that has un-indexed data.

A scan of data base information can begin at any place in an index.
For example if you wanted to scan all records with a VENDOR NAME that
started with the letter "G", you would move the cursor to the VENDOR
NAME window and enter a "G", Then press the NEXT RECORD Fiex-Key and
the first record in the data base which has a VENDOR NAME alpha-
betically following the letter "G" will be displayed, possibly M"GARNER
SYSTEMS™ or "GENERAL ELECTRIC". To scan to the record following the
one displayed, press NEXT RECORD again, and again, etc. To move in
reverse, use the PREVIOUS RECORD Flex-Key.

Copyright (c) 1984 Data Access Corporation 05/16/84

A-38 OPERATING TUTORIAL DataFlex 2.0 User's Manual

ENTERING A NEW RECORD INTO THE DATA BASE...

So far everything that we have done has used data already stored in
the data base, It's time for some of your own information! Clear the
screen using the CLEAR ALL Flex-Key. Next, press the <RETURN> Key and
a zero (0) will be displayed on the screen temporarily; when your new
data is saved a VENDOR NUMBER will automatically be assigned to your
new entry.

The cursor should now be in the VENDOR NAME window. Type the name
"MICRO MANUFACTURING" and press <RETURN>. Then fill in a fictitious
address, city, state, ZIP, area code and phone number, terms and
credit 1imit. When the credit 1imit has been entered, your data for
MICRO MANUFACTURING w111l be saved in the data base automatically. The
remaining windows on the screen contain calculated data that is up-
dated by other parts of the system. No operator entry can be made to
those windows.

The new record is now stored in the data base. To FIND it, place the
cursor in the VENDOR NAME window, type MICRO MANUFACTURING and press
the FIND Flex-Key. MICRO MANUFACTURING's record should be displayed
on the screen. You can CLEAR the screen image, or use NEXT or
PREVIOQUS RECORD Flex-Keys to scan other records in the data base.

CHANGING INFORMATION IN THE DATA BASE...

One of the most important functions of any information system is to
provide for the on-going updates to stored data. This would include
such examples as address changes in a mailing 1ist, price changes in
an {nventory system, etc. The process of making these changes in
DataFlex is easy... you FIND the record to be changed or updated,
enter the necessary changes on the dispTayed screen image, and then
SAVE the record back to the data base. Let's try it...

FIND the data base record for MICRO MANUFACTURING. Move the cursor
down to the phone number windows and change the existing data to
something else (e.g. (414)354-6868 to (939)456-9876). Now press the
SAVE Flex-Key, and the record will be stored back in the data base
with the changed phone number. FIND MICRO MANUFACTURING again to
verify that your change has been recorded.

The SAVE Command can be executed at any time that a record is dis-
played on the screen image. The displayed information will be SAVEd
regardless of the position of the cursor in the image. This allows
you to save keystrokes by moving the cursor as far into an image as
necessary to change fnformation, and then execute the SAVE without
moving to the end of the screen.

HOW TO EXIT THE SCREEN & RETURN TO THE MENU...
To leave any DataFlex screen image and return control to the Menu,

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual OPERATING TUTORIAL A-39

simply press the ESCAPE Flex-Key. The screen image will clear and in
a moment the DataFlex Menu will re-display ready for another
selection.
CHECKPOINT...
SO FAR, we have explored:

-~ Loading DataFlex from the operating system

-- Making a selection from the DataFlex Menu

-~ Displaying a screen "image"

-- FINDing information in the data base

-- CLEARing a screen "image"

-- Moving the cursor around the screen image

-- Scanning data base information

-- SAVEing new information in the data base

-- Changing existing information in the data base

-- Exiting from a display screen to the menu.
If you are comfortable with the operation of the system at this point,
proceed to Phase II to build your own sample application file. If
there are areas of this section which are unclear, or if you just want
to develop more of a familiarity with the various operations, you can

review any of the preceding operations until you feel comfortable
enough to move on to the next phase.

Copyright (c) 1984 Data Access Corporation 05/16/84

A-40 OPERATING TUTORIAL DataFlex 2.0 User's Manual

THIS PAGE INTENTIONALLY LEFT BLANK

Copyright (¢) 1984 Data Access Corporation 05/16/84

OVERVIEW

The DataFlex QUERY Program enables any level of system user to quickly
and easily extract information from a DataFlex database. QUERY can
automatically format the file data for reports, screen displays, or
disk files. The information can be output by any index, and can be
selectively extracted according to specifications entered at run time.
The operation of QUERY is completely interactive and non-technical.

Additional features of the QUERY Program include optional totalling of
numeric fields, and a full range of logical selections (less than,
less than or equal to, etc.) can be used. Up to ten selections per
session are allowed.

Output from QUERY is device-independent, meaning that it can be
directed to the screen, printer or a disk file. If QUERY's output is
directed to a disk file, the data is stored in ASCII format so that it
can be edited or read by other programs. QUERY also offers the
option, once a successful QUERY has been completed, to save it to disk
as a report configuration source file which can be compiled and run as
a DataFlex program, repeating the QUERY as many times thereafter as
may be desired. Alternatively, the QUERY-produced file may be further
modified to become any other kind of report that may be desired.

Although QUERY can handle only one DataFlex database file at a time,
prompted multifile data base inquiries can be created as DataFlex
configurations by use of the REPORT command macro, described in
another section of this manual.

PROGRAM START-UP

QUERY is generally started from one of two levels of the system: a
menu selection or the operating system command mode.

If the DataFlex MENU system is installed and active on your system,
enter the number corresponding to QUERY on the Data Flex Demo File

Caoy, right (c) 1984 Data Access Corporation 05/16/84

A-42 QUERYING THE DATABASE

DataFlex 2.0 User's Manuatl

Menu or other menus on which it may be included on your system. For
example, choice number 8 in the Demo menu below:

1
U
v

If the menu system is not in

0~ U W~

DataFlex Demo Files

Enter Vendors

Enter Inventory Items
Enter Customers

Inventory Movement Report
Customer Report

Vendor Report

ON=-LINE Invoice

Query data files

operating system by simply typing the program name:

A>QUERY

use, QUERY may be invoked from the

If the file number assigned to the DataFlex data file is known, QUERY
can be given that number on the operating system command 1ine and the
step of displaying a list of files available for query will be

skipped. E.g.:

A>QUERY 21

If no file number accompanies the entry to QUERY, the program will
display a list of files available on the system, and prompt you for a
selection. Enter the number of the file to be queried.

File File

Number Name
21: VENDOR
22: INVENTORY FILE
25: CUSTOMER FILE
29: LINE ITEMS

ENTER FILE NUMBER, OR RETURN FOR MORE FILES:

21

Copyright (c) 1984 Data Access Corporation

05/16/84

DataFlex 2.0 User's Manual QUERYING THE DATABASE A-43

PROGRAM OPERATION

When a file has been selected, QUERY will display the names of all of
the fields in the selected data file. For example:

0: RECORD # 1: VENDOR 2: ADDRESS

3: CITY 4: STATE 5: ZIP

6: PHONE_AC 7: PHONE_EXCHG 8: PHONE_NUMBER
9: TERMS 10: CREDIT_LIMIT 11: CREDIT_USED
12: PURCHASES 13: LAST_PURCHASE

SELECT THE ITEMS THAT YOU WANT TO BE QUERIED FROM

DATA FILE #21<VENDOR>

WHEN YOUR FIELD SELECTIONS ARE COMPLETED, PRESS <RETURN>
TO CONTINUE ON TO THE NEXT SECTION OF QUERY.

TOTAL COLUMNS = 10 ENTER FIELD # TO PRINT: 2

ENTER FIELD # TO PRINT: 1s where you respond with the number of the
field from the displayed 1ist in the order you wish the information to
be displayed or output. Your entries should be: field #, <RETURN>,
field #, <RETURN>, etc. If you output your query in a report format,
the columns and the column headers in your display or printout will be
the field names which you select hers.

The COLUMNS ALLOCATED prompt will accumulate the number of horizontal
columns {(characters) used as you select fields for formatted output.
The number of columns are calculated by taking the larger of: the
size of the field you entered from the 1ist, or the size of the data
field name as it appeared on the list plus a space separator.

You may enter as many fields to be included in the QUERY as you want.
However, keep the following in mind: the standard video dispiay
screen and some printers can only accommodate 80 columns (some
actually accommodate only 79). If the COLUMNS ALLOCATED exceeds 80
(or 79), the screen will "wrap around" which may make the line of
unformatted data unreadable.

Many printers will accommodate 132 columns or more (e.g. printers

capable of printing at 12 characters per inch or more). QUERY can
create up to 255 characters of output per line.

Copyright (c) 1984 Data Access Corporation 05/ 16/84

A-44 QUERYING THE DATABASE DataFiex 2.0 User's Manual

As you respond to the prompt line, QUERY will mark your field selec-
tions by placing an asterisk in front of the field tag name. Should
you change your mind about a field that has been selected for output,
cancel the last selection by using the BACK WINDOW command key.

When all desired fields have been chosen, press the <RETURN> key to
move on to the next section. QUERY will ask if totals are wanted on
the numeric fields.

DO YOU WANT TOTALS PRINTED AT THE END OF THE QUERY? <N>
The next prompt will be:

ENTER ITEM TO SELECT BY OR PRESS <RETURN> TO CONTINUE:

MAKING SELECTIONS IN QUERY

These are the logical operators avatlable in QUERY (less than, less
than or equal to, etc.), that are used to define a subset of data from
a file.

<: LESS THAN {: LESS THAN OR EQUAL TO
>: GREATER THAN }: GREATER THAN OR EQUAL TO

if the field selected is numeric you will see:

NUMBER:
=: EQUAL TO X: NOT EQUAL TO

if the field selected is alphanumeric you will see:

STRING:
$: STRING COMPARE @: STRING INCLUDES

As you respond to the prompt line it will change by translating your
responses into the appropriate words. QUERY will also mark the field
names 1ist on the upper portion of the screen with the selected
symbol. If a greater than and a less than are specified for the same
field, a range of records between the two values will be selected.
The maximum number of selection criteria allowed is 10.

CHOOSING AN OUTPUT SEQUENCE FOR QUERY
QUERY will display the available indexes for the file, Select the
index that you want to determine the sequence or order of the QUERY

output. If you press <RETURN> and do not enter an index number, the
output will be ordered according to the record number of the data.

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual QUERYING THE DATABASE A-45

1 =--=> <VENDOR ID>
2 --=> <VENDOR NAME>

OUTPUT OF THIS QUERY SHOULD BE LISTED BY:

QUERY will then ask for the TITLE OF THE REPORT. This information
will appear at the top of each page of a report format QUERY.

ENTER THE REPORT HEADER:

Next, QUERY will prompt for the output destination. At this point you
also have the option of using QUERY to create a configuration file for
a DataFlex report. The default for this prompt is to output a report
formatted query to the screen.

AT THIS POINT YOU MAY SELECT WHERE THE OUTPUT OF THIS QUERY
SHOULD BE DIRECTED, YOU MAY ALSO SELECT THE FORMAT FOR
A REPORT IMAGE FILE.

OUTPUT QUERY TO:
(S)creen, (P)rinter, (F)ile, (R)eport image, or (A)bort:

An entry of "S" will cause the output to go to the CRT screen; "P"
will send the output to the printer; "F" will direct it to a disk file
(you will be prompted for a file name); or "R" will create a "Report
Image" (see next paragraph). A <RETURN>, or default, response will be
executed as though "S" were selected. Both the "F"™ (file) and "R"™
(report configuration) options will trigger the questions below.

USING QUERY TO GENERATE A REPORT CONFIGURATION

By making an "R" response to the output option prompt you will start
the creation of a report configuration file. The next prompt will ask
which of three formats, Report, Read, or Quoted, you want used for the
data output when the report is run:

SELECT THE OUTPUT FORMAT TO BE USED
1)Report, 2)Read, or 3)Quoted format:

1) REPORT FORMAT: A formatted columnar report consisting of a title
section, column headers, data elements arranged in columns under their
appropriate names, and totals (if selected) at the end.

2) READ FORMAT: A sequential ASCII format consisting of each data
element on a separate line terminated with a carriage return. This is
the format that the DataFlex utility READ uses to "Read" data into a
DataFlex data base file.

Copyright (c) 1984 Data Access Corporation 05/16/84

A-46 QUERYING THE DATABASE DataFlex 2.0 User's Manual

3) QUOTED FORMAT: A sequential ASCII file format compatible with many
versions of BASIC and the "merge'" files created and used by many word
processors, in which quotes and commas ("§,") are used to delimit
fields and each record is terminated by a carriage return. Leading
and traiiing blanks are trimmed from the fields of output from QUERY,
but not from output of the generated report configuration (unless you
subsequently edit it to do so).

Then you will be prompted:
ENTER THE REPORT IMAGE NAME (8 CHARACTERS MAX)?

Respond with the filename up to eight (8) characters in length that
you wish the report source configuration file to be stored under by
the operating system. QUERY w111l add an extension of .RPT to your
entry resulting in a final name of the file of filename.RPT.
Therefore, you must not specify your own extension to the filename.
If you do, QUERY will ignore it.

If a file already exists with that name (filename.RPT), QUERY will
issue a warning message to that effect and ask whether or not to
overwrite the file. The default response in this case is <N>.

Next you will see a message:

REPORT IMAGE CREATED!
PRESS <RETURN> TO CONTINUE......

QUERY will then again display the output option prompt shown above,
which {s intended to give you the opportunity to output the actual
data (as opposed to the report configuration file which you have just
created). If your only purpose for running QUERY at this point was to
create the REPORT configuration file, choice "AM™ to abort would be
your choice.

In order to use the report configuration file created by QUERY, you
must compile it into a .FLX file with the command:

A>COMP f{lename.RPT

where filename is the name you gave the file in answer to QUERY's
prompt above. Prior to compiling it, you may wish to modify it in one
way or another, in which case you may do so as you would with any
other DataFlex configuration source file (see the chapter on How to
Write a Configuration in this manual). The compiled configuration
would then be executed from the operating system with the command:

A>FLEX filename {output destination}

Copyright (c) 1984 Data Access Corporation 05716/ 84

CREATING A DATAFLEX APPLICATION OF YOUR OWN

In this section of the tutorial, you will experience how easy it is to
create an application using DataFlex without ever having to "program".
Then, once you have an application functioning, you will be introduced
to what can be done by putting just the siightest effort into
"customizing® your application requirements.

To achieve this, we have decided to appoint you as manager in a
company that has just bought their first microcomputer with word pro-
cessing and DataFlex. As the member of the group who "took a computer
course in college", you have been selected to be the one to become
familiar with the new system and to undertake the development (and
perfection!) of some new management information systems.

Being a creative and thoughtful group, you and your associates recog-
nize the value of properly planning the information system. The first
task defined is to develop a personnel information system for the
company .

DataFlex provides several methods to implement your application
requirements. The easiest and most efficient at this point is the
facility for you to create an "image" of a data base file on your CRT
screen using a word processor or the DataFlex Editor program.

An "image", in DataFlex terminology, is a format into which data can
be inserted for output. It can be displayed on a CRT screen, or on a
printed report. The image can include prompting or labelling for
information which is stored in the data base, and "windows" where the
stored data will be output. DataFlex images are created with a text
editor (one is included with DataFlex) or any word processor that can
create and edit a plain ASCII file. Creating an image with your
editor allows you to develop a visual approach to designing your
applications that combines how it Tooks with how it works.

When an "image" is complete, it may be processed by a utility program
supplied with DataFlex, called AUTODEF, into a data base file
definition and data entry screen. AUTODEF reads in the "image" file,
asks you some questions about how you want things to work, and then
outputs another file (called a "configuration source" file) onto your
disk that can be compiled and executed as is, or modified to meet a
particular set of requirements, and then compiled. The rest of this
section illustrates this process. There are other, more flexible ways
of accomplishing these functions (such as through FILEDEF) which are
described elsewhere in this manual.

Copyright (c) 1984 Data Access Corporation 05/16/84

B-2 PROGRAMMING TUTORIAL DataFlex 2.0 User's Manual

Getting Started...

To speed the familiarization process, we have made up an image file
and printed it below to help you get underway with the task defined
above. We will be using it as the basis of the rest of the tutorial.
You can also use it as is or modify it with your word processor or the
DataFliex Editor to suit your own tastes for actual use in your own
business.

Type it in with your word processor or the DataFlex text editor and
save it under the name PEOPLE, with no extension. It should look Tike
this:

/SCREEN

teevesansseasasssoasasvass PERSONNEL FILE .ovvrierirernieannencncnnsnanes

EMPLOYEE LAST NAME : . FIRST: MI: __
ADDRESS1 :

ADDRESS2 :
CITY : ST : ZIP :

SOC. SEC. # :
DATE HIRED : _/__/__
PAY RATE : § .

PAY TYPE : _ (H=Hourly or S=Salaried)
/*

Refer to the PEOPLE "image" file as we learn some basic DataFlex
terminology and concepts.

The "/SCREEN" on the first 1ine above is a PAGENAME by which we can
address the image with DataFlex commands. The “windows" (see below)
are assigned numbers in a left to right, top to bottom sequence. A
given window is addressed by the PAGENAME followed by the number of a
window, for example the EMPLOYEE LAST NAME window above is SCREEN.1.

The underline characters (___) that you see above (and in the PEOPLE
file on your disk) are called data "windows". They represent the area
on a CRT screen where information can be entered or displayed. The
number of underline characters in a window determines the length of
the data that is valid for entry or display. Ten underlines define a
window that will accept ten characters of data input or display.

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual PROGRAMMING TUTORIAL B-3

PEOPLE 11lustrates the three types of data that can be stored by
DataFlex. The three types are called ASCII, NUMERIC and DATE.

ASCII data is any character or group of characters that can be typed
from the keyboard: the letters A to Z and a to z; numbers 0...9;
punctuation such as comma (,), period (.), colon (:), etc.; and space.
That's right... a space character, generated when you press the space
bar on the terminal keyboard, is just as important to the computer as
any other character.

Examples of ASCII data are: the name of a city (MIAMI), a person's
name (Mike), or a singie character symbol ("N for new or "U" for
used). Numbers can be entered into ASCII windows, but they are
treated only as characters and have no numeric value or character-
istics. An example of numbers that could be carried as ASCII data
would be identification numbers, such as the registration number on
the side of an airplane (N88471]).

ASCII character data is represented in the image by underline charac-
ters () such as that following the employee name in PEOPLE.

By placing certain other characters among the data "window" underline
characters, you can specify either of two other types of data for the
window.

NUMERIC data windows are specified by the inclusion of one decimal
point (.) in place of one of the underline characters for a window.
They are appropriate for data which signifies quantities, such as
amounts of money, volumes of fuel, or quantities of parts in
inventory, particularly if calculations are to be done on the data.
NUMERIC data windows will accept entry only of numbers, the minus sign
(-), and the decimal point (.).

If the decimal point is at the rightmost position in a numeric data
window (.), the window will accept entry of whole numbers only (
9999 but not 9.99). If the decimal point is placed within the group
of underline characters that make up a numeric window (
then it formats the entered or displayed data according to the
position of the decimal point (the window would display 12.3
as 12.30).

L —)I

DATE windows are shown in the image by underline characters and
slashes (/) in the specific format "_/ _/__". The "Date Hired" in
the PEQPLE "image" is an example of a date window.

The placement of data windows, and any descriptive prompting or other
information is not of importance to DataFlex or the AUTODEF Utility.
Only the three different types of data windows are of interest to
DataFlex. Don't overlook the "/*" at the bottom of the image. It's
very important, as you will see.

Copyright (c) 1984 Data Access Corporation 07/18/84

B-4 PROGRAMMING TUTORIAL DataFlex 2.0 User's Manual

Using your word processor or the DataFlex Editor, you can inspect the
PEOPLE image file at your Tleisure... change it, lengthen one of the
ASCII windows (just add some underlines), translate the prompting to a
foreign language, etc. By doing this you can get a feel for how an
"image" can be manipulated to be just the way you want it.

Enough about how to do all of this, let's get it done! Load Dataflex
from the operating system by typing FLEX. The Master Menu will dis-

play. Select the DataFlex Configuration option from the Master Menu.
On that menu, select the option for AUTODEF.

The CRT screen will clear and prompt:

ENTER <RETURN> TO EXIT OR
"ROOT NAME" OF FILE DEFINITION TO CREATE:

If you want to return to the menu, press <RETURN>, otherwise type
PEOPLE to let AUTODEF know the name of the file that you want to work
on. If you are working on a system where the file PEOPLE is not
located on the "logged 1n drive", then you must type the drive desig-
nation where the file is stored, for example, "B:PEOPLE" would be a
typical entry for a floppy disk based system where the PEQPLE file is
stored on drive B:.

DataFlex will now display a list of the files created as a result of
AUTODEF's processing of the PEOPLE file:

FILENAME SUMMARY:
IMAGE NAME d:PEOPLE
FILE ROOTNAME d:PEOPLE
DATAFLEX FILE NAME d:PEOPLE
CONFIGURATION FILE d:PEOPLE.FRM

The "d:* in the above list will correspond to any drive designation
that you may include with PEOPLE (e.g. C:PEOPLE).

DataFlex will then prompt:
WHAT IS THE MAXIMUM NUMBER OF RECORDS "PEOPLE™ COULD HAVE?

For the purposes of our work here, a small number of records will be
sufficient... enter a value of 100.

Without further interaction, AUTODEF will read the PEOPLE image file
from the disk. When the image has been read, you will be prompted for
the names of the data windows on the image. Any name up to 15 charac-
ters which begins with a letter and contains no spaces can be used,
but for purposes of consistency as we go through this exercise, please
enter the following Tist of window names as they are requested.

Copyright (c) 1984 Data Access Corporation 07/18/84

DataFlex 2.0 User's Manual PROGRAMMING TUTORIAL B-5

LNAME for Last Name

FNAME for First Name

MI for Middle Initial

ADDR1 for the first 1ine of Address
ADDR2 for the second line of Address
CITY for City

ST for State

ZIP for ZIP Code

SSAN for Social Security Account Number
DATE for Date Hired

PAYRATE for the Pay Rate
PAYTYPE for the Pay Type

Each window will be highlighted by asterisks (*¥¥¥*¥) jp place of the
underline character () as you are being asked about it.

The example below indicates the appearance of the screen when it is
prompting for the Last Name:

tiesescoessascasnacnsese PERSONNEL FILE tocvunverninennnnanincnnanaas

EMPLOYEE LAST NAME : *®¥%X%exxxxx¥xx FIRST: MI: __
ADDRESS1 :
ADDRESS2 :
CITY : ST : ZIP :

SOC. SEC. # :
DATE HIRED :+ _/__/__
PAY RATE : § .

PAY TYPE : _ (H=Hourly or S=Salaried)

ENTER FIELD NAME FOR FIELD_1:

As you proceed, if you wish to back up and rename a window, the BACK
WINDOW Flex-Key will move the asterisk "cursor" back to the desired
window. After all windows have been named, you will have the opportu-
nity to redo the process if any mistakes have been inadvertently
entered. The prompt is:

Press "C" to continue, or "R" to re-do this page: _

If the above 1ist has been properly entered, press "C"; 1if not, press
"R¥ to re-enter the window names.

Copyright (c) 1984 Data Access Corporation 05/16/84

B~6 PROGRAMMING TUTORIAL DataFlex 2.0 User's Manual

When "C" is pressed, a 1ist of the window names will be displayed for
you to make a selection of the fields which are to be used to FIND the
data in the data base.

1. LNAME 2. FNAME 3. MI 4. ADDR1
5. ADDR2 6. CITY 7. ST 8. ZIP
9. SSAN 10. DATE 11. PAYRATE 12. PAYTYPE

ENTER FIELD NUMBER TO INDEX OR <RETURN> TO END: __

Since we will want to find personnel by Social Security Number, enter
"g" to select that window for indexing.

DataFlex can allow for duplicate entries in a data file, or it can
reject them. The choice is up to you. In the case of a name window,
you would probably want to allow for duplication, whereas in the case
of a social security number (which is unique for each person) a
duplicate entry (two identical social security numbers constitute an
erroneous entry) should be rejected.

The next prompt establishes whether or not duplication is allowed:
WILL THE DATA IN THIS INDEX BE UNIQUE? <N> _

If you want duplication allowed, press "N", if you want to reject
duplicate entries, press "Y",

Multiple data windows can be used to create a single index to FIND
information in the data base. The three fields containing data on an
employee's name are a good example of applying this feature. By
combining the LNAME, FNAME and MI windows, a single index will put
employees in proper alphabetical sequence. That is, they will be in
order by Last Name, then First Name, then Middle Initiatl.

To enter multiple data windows in one index, place the numbers of the
windows in a single index entry, separated by spaces. For the example
at hand, that entry would be:

ENTER FIELD NUMBER TO INDEX OR <RETURN> TO END: 1 2 3

Make the above entry to create the second index for the file being
created. Then, designate that the data in this index will NOT be
unique (allow duplicate names).

After you have entered the index information for PEOPLE, AUTODEF will
process the file definition and create the index and data files for
the operation of the application.

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual PROGRAMMING TUTORIAL B-7

A command file was created by AUTODEF called PEOPLE.FRM. It is
located on the same disk drive where the PEOPLE image file is located.
It contains the image that we have been working with, and DataFlex
Commands that make the image function with the data file that was
created by AUTODEF. PEOPLE.FRM looks like this:

/SCREEN
weeesevsvsescsarassasosess PERSONNEL FILE coveviarvincenroncacnennnes

EMPLOYEE LAST NAME : ____~~~~~ FIRST : MI @ __
ADDRESS1 :
ADDRESS2 :
cIr«y « o ST :_ ZIP :
SOC. SEC. # :

DATE HIRED : _/_/__

PAY RATE :$.

PAY TYPE : _ (H=Hourly or S=Salaried)

/*

OPEN PEOPLE

ENTER PEOPLE
ENTRY PEOPLE.LNAME
ENTRY PEOPLE.FNAME
ENTRY PEOPLE.MI
ENTRY PEOPLE.ADDR1
ENTRY PEOPLE.ADDR2
ENTRY PEOPLE.CITY
ENTRY PEOPLE.ST
ENTRY PEOPLE.ZIP
ENTRY PEOPLE.SSAN
ENTRY PEOPLE.DATE
ENTRY PEOPLE.PAYRATE
ENTRY PEOPLE.PAYTYPE

ENTEREND

ABORT

PEOPLE.FRM can be loaded with the DataFlex Editor or your word pro-
cessor and inspected.

Copyright (c) 1984 Data Access Corporation 05/ 16/84

B-8 PROGRAMMING TUTORIAL DataFlex 2.0 User's Manual

PEQPLE.FRM must now be "compiled" to be run under DataFlex. The Data-
Flex compiler reads PEOPLE.FRM in the form that we see it here, and
processes it into a highly compressed file that contains the internal
codes and instructions on which DataFlex operates. Should we wish to
change the way that the personnel application works (and we will),
PEOPLE.FRM can be modified with your editor and re-compiled. After
processing PEOPLE.FRM, the compiler will output a file called
PEOPLE.FLX.

COMPILING A DataFTex CONFIGURATION FILE

To compile PEOPLE.FRM into an executable DataFlex program, select the
DataFlex Configuration option from the Master Menu screen. On the
Configuration Menu, enter the number for the Compile a Configuration
option. When prompted there for the file name to compile, type
PEOPLE.FRM. Make sure to include the .FRM file extension or you will
be instructing the program to compile the file PEOPLE, which does not
contain the necessary command Tines to create an application.

Your disk drives will now become active, and some recognizable por-
tions of PEOPLE.FRM will be displayed on the CRT screen. Don't be
alarmed! You may think that what you see is some form of "program-
mer's revenge". In fact, it is a disptay of the command lines as
DataFlex is compiling them and serves some very useful functions to
advanced DataFlex users.

The file creation process, done with AUTODEF in the case of this
example, creates a support file required for the compiler. The file
has a name of filename.FD where "filename" is derived from the name of
the image file processed by AUTODEF. The image file name was PEOPLE.
Therefore, a file called PEOPLE.FD now exists on the disk.

When compilation is compiete, you will be returned to the DataFlex
Menu. You are now ready to test your first DataFlex application!

From the Configuration Menu or Master Menu, select the "Run a DataFlex
Configuration" Option. When the option is selected, you will be
prompted for the name of the appiication that you want to run. On a
floppy disk system, enter the drive letter of the diskette drive on
which PEOPLE is located followed by the word PEOPLE, e.g. B:PEOPLE.

On a hard disk system, no drive letter specification is necessary
unless the PEOPLE file group is located on other than the logged-in
device. See the menu sample on the next page. It shows the RUN
option selected from the menu, and an entry to RUN the file
B:PEOPLE(.FLX) has been made.

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual PROGRAMMING TUTORIAL B-9

YOUR REGISTERED NAME Serial # :

| DataFlex 2.00
! Configuration Utilities

4 ——

- a——.
- ———

File Definition

Menu Definition

System Editor

AUTODEF {(quick entry screen)
Compile A Configuration

Run a DataFlex Configuration
File recovery (frel)
Re-index a file

Generate ASCII file READ

———— m———
WO AW~

4 ——— —

! Please select one of the above options or press
i <RETURN> to go back one menu >>>>>>>>>>3>>>3>> 6

You have selected to run a DataFlex configuration

Please enter the name of the configuration.......... B:PEOPLE

*%% DataFlex Menu System *¥x

In a few seconds, your screen should look 1ike the PEOPLE image that
we have been dealing with. But now it is more than just an image; it
is an active data entry screen that Is waiting for you to enter data

into, and recall data from the data base.

ENTERING INFORMATION ON A DataFlex SCREEN IMAGE

Your cursor should be positioned in the leftmost position of the last
name window. To enter information into the system, you simply "fill
in the blanks" in the image. Enter a last name, first name, middle

initial, address, etc. until all of the windows contain data.

If

there is not any data to be entered into a window, press the RETURN

key and the cursor will jump to the next window.

wWhen data (and a <RETURN>) has been entered to the last window (Pay
Type in the case of the PEOPLE screen), the dispiayed information will
automatically be stored in the data base on the disk. It's that
simple. Now, enter another two or three people in the same fashion...
it will be useful to have a few records stored in the data base as we

proceed.

Copyright (c) 1984 Data Access Corporation

05/16/84

B~10 PROGRAMMING TUTORIAL DataFlex 2.0 User's Manual

RECALLING INFORMATION ON A DataFlex SCREEN IMAGE

Having saved a record in the data base, the screen image should be
clear and your cursor should be located in the leftmost position in
the last name window. Press the FIND Command Key. The personnel
record for one of the employees that you just entered on the screen
should appear. Which one is it?? If all is functioning properily at
this point, the displayed name should be the one alphabetically at the
beginning of those that you entered.

Leaving the cursor in the same place in the last name window, press
the NEXT RECORD Command Key. The record next in alphabetical sequence
should now fill the screen windows. This process can be repeated to
scan through the list of all personnel until the end of the file is
reached. Now try the PREVIOUS RECORD Command Key. Catching on??

You can directly FIND any name in the data base just by entering it in
the name window and pressing the FIND Command Key just as with the
VENDOR screen image covered in PHASE I of the tutorial. To locate
George Jones' record (assuming that one had been entered for him),
type "Jones" into the last name window and "George" into the first
name window. Then press the FIND Command Key. George Jones' record
will be found in the data base and displayed on the screen instantly.

If you were looking for a person named "Jones" but did not know his
first name, you could enter just the last name and press FIND. Data-
Flex would find the first Jones in the data base and display his
record. The "first Jones", if there were multiple "Joneses" would be
a person named Jones with the alphabetically lowest first name. After
finding the "first Jones", you could use the NEXT RECORD Command to
move further through the data base to find and display the record for
the Jones that you were seeking.

If you wanted to display the record for a person and could not remem-
ber the exact spelling of his name, enter something close, or the
first part of the name. For example, if you wanted to display the
record for McDougal, you could enter "McD". DataFlex will then find
the record closest to the data that you have entered and displtay it.
If the disptayed record is not the person that you were looking for,
(there might be a McDonald in the data base who would be found if you
entered "™cD") you can use the NEXT RECORD or PREVIOUS RECORD Command
Keys to scan up and/or down the data base until the correct personnel
record is found and displayed.

Impressed? You should be. You've done in a matter of minutes what it
could have taken an experienced programmer at least days to complete
with conventional software tools. Good jobll And we've only begun to
peek at the power of DataFlex!

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual PROGRAMMING TUTORIAL B-11

Remember that in AUTODEF you were asked which of the data base fields
were to be used to find records in the data base? You selected the
name fields and the social security fleld. To find a record by social
security number, press CLEAR ALL to remove the currently displayed
record, then press RETURN to move the cursor down to the social secur-
ity number window. If you should move the cursor too far, press the
BACK WINDOW Command Key to move the cursor backwards in the image.

With the cursor in the social security number window, you can enter a
known number and press FIND to display the record. Or, just press the
FIND Command Key to recall the record of the individual with the
lowest social security number. The NEXT and PREVIOUS RECORD Command
Keys will now cause a sequence of records to be displayed, in order,
by social security mumber.

CHECKPOINT...

So far, you have never left the displayed DataFlex data entry screen.
You stored records in the data base alphabetically by simply typing
data 1nto the windows on the screen, and then recalled and displayed
the information directly or in two different sequences (name and
social security number) with single key-stroke commands.

CUSTOMIZING YOUR DataFlex APPLICATION...

As good as this system for personnel information is (given the time
that you've spent on it), let's get picky... how could it be better?
Where could it be improved?

Let's start with appearance of the screen itself. Is the general lay-
out of the information easy to read? ...is the information in logical
order? We shall accept that it is.

However, you have designed and built it, and have a knowledge of its
inner workings. The new person in the office who will be doing most
of the data entry of the personnel information will not have the

knowledge that you do. What might that person need or want to know?

Some suggestions: How about a help message about finding stored
records? ...or a message explaining how to exit the screen and return
to the menu? Displaying information on the screen with the data will
make the operation of the system more "friendly", and reduce the num-
ber of questions that might have to be answered as different people
use the computer based personnel information files.

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual

Changes of this type refer only to the application, not to the struc-
ture of the information that is stored in the data base. Therefore,
we need only to modify the PEOPLE.FRM file since it controls the
function of the personnel application. Once our modifications are
made, PEOPLE.FRM can be recompiled and the application will have new
features as a result of the changes.

The modifications are made to PEOPLE.FRM with the text editor. To
help identify which windows can be used to FIND information in the
data base, you can place some kind of symbol around the name and
social security number windows in the screen image. Messages to the
operator about how the image works can be simply typed at the bottom
of the image for reference. These alterations of the image change the
way that the application LOOKS.

Other modifications can be made in PEOPLE.FRM to the commands them-
selves. New commands can be added, or existing commands can have
operatfonal characteristics added to them to change the way that the
application WORKS.

To proceed with these modifications, load the PEOPLE.FRM file with

your text editor or word processor and make the additions to it that
are shown in boldface in the file on the next page.

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual PROGRAMMING TUTORIAL B-13

/SCREEN
weesesescesevesnssasesssssss PERSONNEL FILE (ovvevevonnncanonnasnnans

Last First MI
EMPLOYEE NAME : < _>
ADDRESS1 :
ADDRESS2 :
CITY : ST « . ZIP :
SOC. SEC. # : <____ > (NO DASHES!)

DATE HIRED : __/_/__

PAY RATE : §

PAY TYPE : _ (H=Hourly or S=Salaried)

Enter a Name or Soc. Sec. # and press FIND to display record,
OR press <ESC> to exit and return to the DataFlex Menu...

/*

OPEN PEOPLE

ENTER PEOPLE

ENTRY PEOPLE.LNAME // double slashes allow
ENTRY PEOPLE.FNAME // you to put comments
ENTRY PEOPLE.MI // into the command area!

ENTRY PEOPLE.ADDR1
ENTRY PEOPLE.ADDR2
ENTRY PEOPLE.CITY
ENTRY PEOPLE.ST
ENTRY PEOPLE.ZIP
ENTRY PEOPLE.SSAN
ENTRY PEOPLE.DATE
ENTRY PEOPLE.PAYRATE
ENTRY PEOPLE.PAYTYPE {CAPSLOCK,CHECK=MHS"}//forces entry to
//uppercase and accepts
//only Tetter H or S
ENTEREND
ABORT

When you have made these changes to the PEOPLE.FRM file, save your
edited file to disk, recompile it, and execute again from the menu to
see the results of the changes.

Several other enhancements could be included here for PEOPLE. For
example, a range check could be applied to the Pay Rate entry to make
sure that it did not exceed a certain value, or State could be set to
accept only the state in which your business resides if you have no
out-of-state employees. The possibilities are almost endless, and
that's what DataFlex is all about--fulfilling the almost endless range
of application requirements that are encountered in information
processing. Good luck!

Copyright (c) 1984 Data Access Corporation 05/ 16/84

DataFlex 2.0 User's Manual

THIS PAGE INTENTIONALLY LEFT BLANK

Copyright (c) 1984 Data Access Corporation

05/16/84

OVERVIEW

Throughout DataFlex, formatting can be defined with "IMAGES". This
means that wherever possible, your data record, entry screen or report
format can look exactly like what you create on the CRT screen with
your word processor or text editor. As straightforward a concept as
this is, very few products employ it. Dataflex can use IMAGE
FORMATTING to create a file definition, create a configuration for
data entry and provide the basic format for reports.

The image format should look like a form. It should have a heading,
descriptive material for the data to be entered, procedural explan-
ations and prompting, and a place for the data to be entered. The
placing and content of the descriptive part of the screen image is
totally up to you. It should appear familiar to the operator, and
have a logical flow of the data entry fields. The places where the
data fields are to be entered into the form image are called DATA
WINDOWS. The placement, format and length of the data windows is very
important to how DATAFLEX interprets the image.

IMAGE "PAGES"

A single screen image is called a "PAGE". A configuration can have
multiple PAGEs, including tiered entry screens, help screens, and any
other display that may be desired. Each PAGE can be manipulated
individually by the configuration. Image PAGEs can be displayed on
the screen, used for data entry or output to a device (printer,
console or file). Each PAGE is identified by a page name. The page
name goes after a "/" in the first space on the first 1ine of the
image, and must begin with a letter and may not contain spaces. A
configuration which does not begin with a "/" as the first character
in the first space on the first line, followed by a pagename, will be
rejected by the compiler. A PAGE continues in an image until the
start of the next PAGE (another "“/pagename") or the end of the image
section (indicated by "/*" at the start of the last image line).
Image PAGEs used for screen input/output should not have more lines
than the height of your terminal as defined in SETSCREEn (often 24
lines). Pages used for print reports should not have more 1ines than
the paper (labels, cards, etc) that the report is printed on.

The image below defines the last PAGE of a configuration (note the
"/¥1" at the bottom). The pagename is "PERSON" (note the first line).

/PERSON
MY FIRST SCREEN IMAGE

FIRST NAME: __ LAST NAME:

AGE: __. WEIGHT: ___.
/%

DATE OF BIRTH: _/_/

Copyright (c) 1984 Data Access Corporation 07/10/84

B-16 FORMATTING WITH IMAGES DataFlex 2.0 User's Manual

The three DataFlex data types (ASCII, NUMERIC, DATE) each have a
specific format that can be used for IMAGE data windows.

1. ASCII windows are composed of underline characters (). The
length of the window (and the data which can be entered there) is
defined by the number of underiines. Any printable character can be
entered in an ASCII window, one for each underline in the image.

2. NUMERIC windows are defined by placing a decimal point in or at
the end of a window (__.__ or __.). If the decimal point is placed at
the end, that place will count as a numeric digit position for input
(i.e. DataFlex will convert it to an underline when the screen is
ready for input), otherwise, the decimal point will display as a
decimal position marker only, and NOT count toward the total length of
the number. Only numbers, "." and "-" can be entered into a numeric
window. Entries containing other characters will be rejected.

3. DATE windows are defined by the format: _/__/__. The date must
be entered in the standard MM/DD/YY format as covered previously under
"DATA TYPES", unless your system was supplied {n "Euro-date" format.
Internally, dates are stored as 3-byte numbers representing the number
of days from January 1, Year 0 to the date entered (referred to as
"Julian dates". For applications involving dates outside the range
1901-1999, dates can be formatted using a 4-digit year (_/_/).
If this format is specified, however, the entire application should
use this format consistently, since 12/24/44 generates a different
value from that generated by 12/24/1944. 2-digit year entries (which
the window will still accept as being in the first century A.D.)
should be trapped in the configuration. In 4-digit year mode,
DataFlex will handle dates from 1 A.D. through the year 2500. For
convenience, the operator may use periods "." or any other punctuation
mark in place of the diagonals "/" in entering dates. Internal
calculations on screen and report displays are not affected by use of
this option.

Data windows are referenced by number within a PAGE, with the window
numbers assigned sequentially, left to right, top to bottom. This
applies to all image formats: screens, reports, etc. In the above
example, the window names are PERSON.1l, PERSON.2, PERSON.3, PERSON.4
and PERSON.5. There is a DataFlex command "NAME™ which allows you to
assign other symbolic names to each window.

If the /PERSON page above were displayed with the "PAGE"™ command or
printed with the “OUTPUT" command, it would look just the way you see
it above except that the appropriate data would have been MOVED into
the data windows.

DataFlex will interpret PERSON as a page with 6 lines and 5 data
windows. The type and length of each data window are as follows:

PERSON.1 ~ 10-character ASCII

PERSON.2 ~ 20-character ASCII

PERSON.3 - 3-character integer (no decimal) number

PERSON.4 - A-character number, 1 place after the decimal point
PERSON.5 - Date

Copyright (c) 1984 Data Access Corporation 07/10/84

DataFlex 2.0 User's Manual FORMATTING WITH IMAGES B-17

When the data windows are filled in, PERSON might look like this:

MY FIRST SCREEN IMAGE
FIRST NAME: John LAST NAME: Doe

AGE: 25 WEIGHT: 156.5 DATE OF BIRTH: 12/12/1956

Note that the data is moved into the data windows by DataFlex
COMMANDS .

If a configuration required two pages to accommodate additional
information, the image format might look like this:

/PERSON
MY FIRST SCREEN IMAGE’
FIRST NAME: ____ LAST NAME:
AGE: __. WEIGHT: __._ DATE OF BIRTH: _/__/_____
/J0B
MY PERSON'S JOB
WORKS FOR:
ADDRESS :
CITY: ST: __ ZIP:
JOB TITLE:
/%

This image has TWO pages: PERSON and JOB. Each page can be mani-
pulated and addressed separately by name. . The default window names

for the second screen would be JOB.1, JOB.2 through JOB.6.

Copyright (c) 1984 Data Access Corporation 05/16/84

B=~18 FORMATTING WITH IMAGES DataFlex 2.0 User's Manual

The IMAGE pages in a configuration are more than just a convenient way
to format your input and output. They are actually part of the data

structures of the configuration. Each data window can be used as a
variable in which data is stored. You can read the data out of a data
window as well as write to it.

When images are used for data entry it is unnecessary to input your
data and MOVE it to a temporary variable. You may use the data window
itself as the variable after you have given the command to accept user
input to it.

For example, if you had previously ACCEPTed data into the window
PERSON.3 (age) you could then use PERSON.3 anywhere that a numeric
argument is acceptable.

EXAMPLE:
MOVE (PERSON.3+1) TO PERSON.3

In data entry, any data that exists in a data window will become the
default value for the record (existing or new) and can be edited or
cleared with the DataFlex field edit keys defined in SETSCREEn.

WINDOW FORMATTING CHARACTERS

There are other window formatting characters that do not affect the
data TYPE (ASCII, numeric, date) of the window but do affect the
FORMAT of the data in the window. These formatting characters are
used by placing them directly in the data window in the screen image.
For example, a "," in a window specifies that numbers 1,000 and over
should have commas inserted. These formatting characters only apply
to output using the PRINT command. (For example, commas in numbers
are not allowed in data entry.) The exception to this rule is
CAPSLOCK, which works in both data entry and 1n print. If placed at
the beginning of a window, these characters will not be interpreted;
they will simpiy be displayed as though part of a prompt. They same
is true if they are placed at the end of a window, with the exception
of the decimal point, which in that position signifies a number with
zero decimal places. The formatting characters must be embedded in
{surrounded by) the data window character in order to function
properly.

CHAR- FORMAT OUTPUT
ACTER DESCRIPTION EXAMPLE EXAMPLE

, Embed commas in numbers e 23456.99 = 23,456.99
C Upper case only (caps lock) C_ abc = ABC

0 Fill field to left with zero _0__ . 124 = 000000124

Z Display zero as blank Ze 0.00 = (spaces)

@ Trim leading & trailing blanks e_ ENTRYBBYY = ENTRY

$ Floating $ on Teft 5. 567.17 = $567.17

Calculations and string manipulations on data in formatted windows
should be avoided, since formatting can change the apparent "value" of

05/16/84

DataFlex 2.0 User's Manual FORMATTING WITH IMAGES B~-19

the contents for purposes of the calculation or manipulation. Calcu-
lations and manipulations should be done on the source data (database
element, literal string, in-memory variable, etc.) from which the
window was filled to begin with, with replacement of the results to
the window, if desired for output purposes.

IMAGES IN DATAFLEX CONFIGURATION FILES

DataFlex configuration source files can contain IMAGEs and configura-
tion commands. The configuration commands are action VERBS that
interact with the operator, the IMAGE, and the data base manager. The
data base manager handles the duties of storing, finding, and relating
data stored on the system.

The configuration file has two parts: the IMAGE format section, and
the commands section. The IMAGE section defines the interface to
DataFlex. The commands specify what action will be taken by the
configuration.

The first part of the configuration file i{s the IMAGE. The image
section MUST start with a "/" in the first column of the first 11ine.
If there are no images for the configuration the first line will
simply be "/*", which signals the end of the image section. If there
are image PAGES for the configuration, the name of the first page will
be on the first line and ALL of the images follow directly. The end
of the IMAGE section is indicated by a "/*" on the last line of the
image section.

The option "RESIDENT™ can be placed on the same line as the page name.
The RESIDENT option tells DataFlex to hold that page in memory at ail
times during execution of the configuration. This improves throughput
speed when a page is used repetitively for output. Since RESIDENT dees
use up memory it should be used sparingly. Where the RESIDENT option
is not used the image format will be called off of disk when it is
needed, It takes less than a second to read an image from disk.

The "HELP" option can also be included on the page name line, marking
the page as a help screen callable by pressing the HELP Fiex-Key. See
the section of "Using Function Keys" for further information on
providing and accessing HELP screens.

After the "/#*", the image section of the configuration ends and the
command section starts. The command section consists of the commands
and options listed in the command section of the manual. Commands
exist for Data Entry, reporting, data base manipulation, PAGE
manipulation, data movement, reading and writing sequential files,
conditional processing and almost any other function you may require.

Copyright (c) 1984 Data Access Corporation 05/16/84

B-20 FORMATTING WITH IMAGES DataFlex 2.0 User's Manual

THIS PAGE INTENTIONALLY LEFT BLANK

Copyright (c) 1984 Data Access Corporation 05/16/84

ORGANIZATION OF DATA

Information, or DATA, can be organized in two ways: structured and
unstructured. Unstructured data has no particular size or length or
position. Examples of this would be: letters, books and the '"pile of
papers" on top of your desk. In a computer, word processors are
usually used for processing unstructured data. When data is struc-
tured, groups of data are predefined and identified by what they
contain. Structuring data allows for more consistent and efficient
storage, retrieval and evaluation of the data. Business forms, such
as an employment form, are an example of structured data that you may
already use in a manual system. Accounting procedures are a method of
structuring the financial data of a business. DataFlex is a tool for
structuring ANY type of data in a computer system.

A1l of the data which makes up a particular information system is
referred to as the "data base'".

Groups of structured information about Tike things make up DATA FILES.
Data files are analogous to a file cabinet drawer full of a particular
business form. For example: a file cabinet drawer full of employee
applications could become a data file of employee applications on a
computer. DataFlex can have from one to 125 data files of structured
information. Each is immediately accessible or "ON LINE" to the
system, Each file is assigned a DataFlex FILE NAME and a FILE NUMBER
to identify it uniquely.

Data files are made up of individual RECORDS. Each record would be
analogous to ONE employee application in our example. A file is a
group of like records. DataFlex can have from one to 64,000 records
in each file. Each DataFlex record is automatically assigned a unique
RECORD NUMBER when it is created. This number can be utilized as a
system-assigned account number and is also useful when relating
records from different data files together (as we shall see later).

Each record is composed of data "FIELDS". A field is one discrete
piece of data that is of a defined type and size which is stored in a
record. There are usually many fields in each record. Each field in
DataFlex is given a name that is unique for that record. A record's
number (see preceding paragraph) is automatically assigned in each
DataFlex record. It can be used and displayed as if it were an
ordinary numeric field. You cannot, however, change the record number
or assign a record number yourself.

Data fields are sometimes referred to as ELEMENTS in the record.
Examples of data fields in our employee record would be: Last Name,
Date, Age, Job Sought, etc. DataFlex can have from one to 255 fields
in each record. Each field is identified by an ELEMENT NAME.

In summary, a group of FIELDS is contained in a RECORD and multiple
records of like kind make up a FILE.

Copyright (c) 1984 Data Access Corporation 05/16/84

B-22 DESIGNING DATABASES DataFlex 2.0 User's Manual

DATA TYPES

In DataFlex, each data field can be assigned as one of three types.
Each type uses the computer's storage differently. The basic storage
unit of a computer is called a BYTE. You should know how many BYTES
of storage your computer disk system has available. The three
DataFlex data types are:

ASCII - This refers to the full set of printable characters that
your computer can generate. It includes all letters, numbers and
special characters. Examples of fields which would be "typed" as
ASCII data include; names, descriptions, and notes. Each ASCII field
is assigned a maximum length (number of characters) that the data in
the field can occupy. Each ASCII character requires ONE byte of
storage. Numbers (0...9) entered in fields that are of the ASCII type
will be treated -only as characters without numeric properties.

NUMERIC - The only characters that can be put into a numeric field are
the numbers (0...9), a minus sign "-", and the decimal point ".",
Numeric fields are used to store numbers. Examples are: prices,
amounts, and quantities. Numeric fields can be used in calculations.
In DataFlex, each TWO numeric characters defined in a numeric data
field require ONE byte of storage, so numeric fields take up half the
amount of space as ASCII fields. Numeric fields must be assigned a
number of characters before and after the decimal point. This storage
CANNOT be split over the decimal point, thus 1.2 and 10.2 and 10.12
would all require TWQ bytes of storage.

DATE - Although dates can be represented as ASCII or NUMERIC fields it
is more convenient to have a special data type for them. In DataFlex,
a date can be entered in a date screen window in the following
formats: MMDDYY, MM/DD/YY, or using any punctuation mark as a
delimiter (e.g., MM.DD.YY or MM,DD,YY). Once the date data is entered
1t will be displayed formatted as MM/DD/YY. For applications involv~
ing dates outside the range 1901-1999, a four-digit year may be speci-
fied (MM/DD/YYYY) in the screen image. If this election is made, the
format must be used consistently for dates throughout the appiication,
and 2-digit year entries should be trapped out in the configuration,
as they generate different internal values (e.g., 12/24/44 has a
different internal value from 12/24/1944). In 4-digit mode, DataFlex
can handle dates from the year 1 A, B. to the year 2500. The date is
stored internally as a six-digit number representing the number of
days since day one of year zero (01/01/00). These are called Julian
dates. Julian dates can be used in calculations just 1ike numbers.
Thus you can add 31 to 12/05/81 and get 01/05/82. Date fields always
require three bytes of storage.

It is important that each data field is assigned the correct type and
is of sufficient Tength to hold the largest or longest possible value
that you would want to put into the field. It may be worthwhile to
abbreviate some long values to shorten the field length and take up
less space in your record, The total storage requirement for each
record, or the RECORD LENGTH, can be computed by adding up the length
in bytes for each field 1n the data record. Space consumption is
determined by a field's defined length, not the length of data
actually entered into it from one record to the next.

Copyright (c) 1984 Data Access Corporation 05/16/84

DatafFlex 2.0 User's Manual DESIGNING DATABASES B-23

Indexing in Applications

DataFlex has the capacity to store up to 64 thousand records in each
data file. Therefore, it is important to be able to locate records of
interest quickly and easily. For example, in a file drawer of
empioyee file folders, you would probably have each employee's file
filed in order by his name. That way you can "pull" the record from
the file quickly, so long as you have the name.

Placing the records themselves in alphabetical sequence in a file is
one way of organizing the data so that it can be found when needed.
The method works whether the file is stored in a cabinet or on a
computer system's disk. "Finding" something in an organized scheme is
easy and efficient,

Consider however, that you wanted to find an employee who was
interviewed a month ago (you know... what's-his-name). You know when
he was interviewed, but not his name. To go directly to his record,
you would have to previously have cross-indexed the file by date. Or,
you could search the whole file until the desired record was found.

A computer has exactly the same options to find information in its
files. It can search them, or maintain some kind of organized 1isting
(index) of one or more elements of each record separate from the data
file itself. For example, a file of employment appiications could be
indexed both by applicants' NAMEs, and by DATE RECEIVED. That way,
the desired element can be searched for efficiently even if its order
or sequence is different from that of the records themselves.

Even though a computer can scan its files MUCH faster than you could
look through a card file, that process takes far too long to be
practical each time that you want to review or change a record.

A telephone directory is a perfect example of how an indexing system
works. The phone book is an alphabetical 1isting (an index) of the
names of people with phones in a certain geographical area. Listed
with the name is a number which can be used to "find" a person. The
phone number in the telephone system compares functionaily with the
record number on a computer. To find a person, you "look him up" in
the 1ist. Then you "access" the person by his number.

DATAFLEX stores each new record at the end of the data file; figur-
atively, at the bottom of the existing 1ist. It has, by virtue of its
relative position in the file, a record number: first, second, third,
etc. But that does you no good! To provide for rapid access to the
records in a file, DATAFLEX keeps "indexes" of data that can be used
to find a particular record. Each index is an organized list made up
of like data elements from each record, and each record's number.

A computer index works the same as the phone book. It is an organized
listing of selected data from each record in a file which includes the
record number (like the phone number) of the record. Each record in a
Dataflex system can be accessed or "found" by up to four different

Copyright (c) 1984 Data Access Corporation 05/16/84

B~24 DESIGNING DATABASES DataFlex 2.0 User's Manual

{ndexes(in 8-bit computers--16-bit computers support nine indexes).
The designer of a DataFlex database can define which elements of each
record are to be used to create the index(es), and thereafter, find
the records.

DataFlex uses a B+ ISAM (ISAM stands for Indexed Sequential Access
Method). B+ ISAM is the best method for computer indexing management
available. DataFlex keeps index data files up to four ways simultane-
ausly on 8-bit computers (nine ways on 16-bit). That means our
employee file could be indexed by NAME and DATE and two other things
(perhaps job classification and social security number), all at once.
For speed, the DataFlex B+ ISAM keeps all indexes current after each
record entry, without a Tong "SORT" process every time you enter data
into a file. These features are referred to as MULTI-KEY, ON~LINE
ISAM.

The creation and automatic on~1ine maintenance of multiple indexes is
an important feature of DataFlex. This cross-indexing allows super-
flexible access to any record in your data base in minimum time.
Records can be Jocated by entire or partial key. The database can be
searched randomly or sequentially, by any index, without time-
consuming reorganization or other clumsy procedures.

In addition to the KEY FIELDS discussed above, records can aiso be
found by their RECORD NUMBERS just as rapidly as by an index. The
system automatically assigns the RECORD NUMBER to each record when it
is created. The record number of any record is always field number
zero in the file definition.

Each of the indexes for a file can be made up of as many as 4
SEGMENTS. Think of a file of purchase orders. Each drawer is
dedicated to one vendor, so VENDOR ID would be the primary indexing
field. Within each vendor (drawer), there would be file folders--one
for each part suppiied by the vendor. The folders would be arranged
in order by PART NUMBER. PART NUMBER would be the secondary indexing
field. Within the folder for each part would be the orders for the
part, filed by ORDER NUMBER, which would be the third (and fimal)
indexing field. These successive levels of detail serve to identify
each record (order) uniquely, and is an example of a three-segment
index, consuming one of the 4 indexes available for each file in 8-bit
environments, With the file drawers, the orders can be arranged only
the one way, but with DataFlex, there remain three additional
orderings {indexes) available (eight in 16-bit environments). An
additional index could be another multi-segment index, say PART
NUMBER/ VENDOR ID/ORDER, for those situatfons where you would want
vendors and orders grouped by part number. And there could be yet
further indexes, multi-segment or single.

DataFlex will NOT allow two records in the same file to have exactly
the same key value. However, it can appear to the operator that
duplicate values have been accepted. To allow for duplicate records.,
the record number (designated as field zero in the file definition) is
assigned as the last field segment in the index. Since record numbers
are NEVER the same, the full index entry can never be duplicated
(DOE,J/200 differs from DOE,J/75).

05/16/84

Copyright (c) 1984 Data Access Corporation

DataFlex 2.0 User's Manual DESIGNING DATABASES B-25

AUTODEF PROGRAM

The DataFlex utility program AUTODEF is the easy way to produce an
ENTRY configuration from, and for, a freshly-drawn entry screen image.
It is recommended for use even if your ultimate goal is beyond the
actual capabilities of AUTODEF (in which case, after running AUTODEF,
you would edit the resultant configuration source file with EDITOR or
your word processor, and also edit the file definition with FILEDEF if
necessary). It is also recommended for use in multi-entry-screen
configurations to produce ENTRY configurations which can be appended
together into the command section of the eventual ENTRY configuration,
with the related screen images also appended together in the same
order at the beginning of the same file.

AUTODEF's job is to read an image file (see Formatting With Images)
which you have previously created either with the DataFlex Editor, or
with any word processor of your choosing which is capable of producing
ASCII files (most can). The image represents the input "form" that
you intend the operator to see when entering to, or searching in, the
database. With it, AUTODEF creates the data, index, and definition
files, and the fields with their names and the type of data each field
will contain.

rootname.FD File definition for the macro processor
rootname.TAG File/field names

rootname .DAT The data file

rootname.Kn The index files, n=Index number
rootname.FRM The source file

To run AUTODEF, type AUTODEF at the command level and press the return
key. Or, you may select the AUTODEF option from the DataFlex
Configuration Menu. If AUTODEF is invoked with no argument (rootname
of the database you wish to define) it wiil prompt you for a

"ROOT NAME™ as follows:

ENTER <RETURN> TO EXIT OR
"ROOT NAME' OF FILE DEFINITION TO CREATE:

The ROOT NAME is the name and drive specification of the file to be
input to AUTODEF. For example, the following could be entered as ROOT
NAMES: B:MYIMAGE or C:CLIENT or, where the input file resides on the
Jogged drive, AN IMAGE. You may enter a command line of: AUTODEF
ROOTNAME at the operating system level, in which case AUTODEF will
skip the prompt for rootname.

After the rootname has been entered, (or if AUTODEF was invoked with
an argument), it will ask the following question:

ENTER THE MAXIMUM NUMBER OF RECORDS "rootname" COULD HAVE?

You should respond with your best reasonable estimate, realizing two
things:

a. If you elect too few records, it is always possible to go
back to FILEDEF and increase the number of records in this
database's capacity (after doing which, it will be necessary

Copyright (c) 1984 Data Access Corporation 05/16/84

B~-26 DESIGNING DATABASES DataFlex 2.0 User's Manual

to run REINDEX on the database).

b. If your system option in SETSCREEn was set YES for pre-
allocation of disk space required for databases, then AUTODEF
will next go to your disk drive and "fi1l up" all the files
necessary for this new database (indexes, data, and so on)
with spaces to pre-empt enough space to contain the database
when it is entirely full of data. Some multi-user systems
require this, and it is advisable under other conditions, but
you should ensure that you have sufficient free disk space
available before entering a large number in response to this
question when the system option is set to YES.

Naming the Fields

AUTODEF reads in your image and prompts for the assignment of a name
for each image window. These names are assigned to identify the
fields in the database file that has been created. When referring to
these named fields in configurations, the correct format to use is
filename.fieldname, where fieldname is the name you assign in this
process, and filename is the name of the database file. You will be
prompted for the names from top left to bottom right of the image. As
AUTODEF proceeds through the fields, the underscores for the field to
be named will be replaced with asterisks in the displayed image to
show you which window you are currently being asked to name. Type the
name you wish to assign to the field in the indicated window. You may
use the BACK WINDOW Flex-Key to change a name assignment.

The names created here will be used throughout DataFlex to identify
the elements of the database in the filename.fieldname format estab-

1ished above. The use of the element names MUST be consistent, and
conform to the symbol name conventions established for all DataFlex
data element references. They must start with a letter, contain only
letters, numbers, "_", or "#"., Fieldnames may not be longer than 15
characters.

NOTE: Your screen image must begin with the page name (up to ten
characters, of which the first must be a letter, no spaces or
punctuation, preceded by a diagonal (/). If this is omitted, AUTODEF
will abort, displaying the message "ERROR, SCREEN IMAGE MUST BE NAMED.
AUTODEF ABORTING!"

After all the fields are named, the bottom line prompt will ask:
Press "C" to continue or "R" to re-do this page _
At this point, you may re-do the page if you find that it has any

errors by responding with an "R®. Otherwise, answer with a "C" and
continue to the next step.

Copyright (c) 1984 Data Access Corporation 07/18/84

DataFlex 2.0 User's Manual DESIGNING DATABASES B-27

The screen will now display the field names you have declared in the
previous step, and prompt for which fields are to be used for

indexing.
ENTER FIELD NUMBER TO INDEX OR <RETURN> TO END:

You should enter the number of the field(s) by which you want to FIND
data in the file being created. Entering a field number, and then
pressing <RETURN> will create an index containing data from the field
whose number was entered. Multiple field numbers can be entered (up
to 4 on 8 bit systems, up to 6 on 16 bit systems) to create indexes
composed of multiple data fields. See the first part of this chapter
for further information on indexing.

As field numbers are selected for indexing, the bottom prompt line
will display:

WILL THE DATA IN THIS INDEX BE UNIQUE? <N>_

The default is N, which if selected will cause the record number to be
combined with the data in the field itself to establish the index.
This prompting will repeat until you have reached the maximum of 10
indexes for 16-bit systems, 4 indexes for 8-bit systems, or you key
<RETURN> to end. As you select each field to index, the display will
change to include an "¥" petween the number and the field name. If
you wish to revise an index after creating it, pressing the BACK
WINDOW Flex-Key will move execution back one field so you can re-
define the index. Press <RETURN> without a field number entry when
you have made all index designations you desire.

Upon the completion of assigning indexes, AUTODEF will create the
files required for the configuration. AUTODEF will display
momentarily on the screen several system messages and automatically
return to the menu. The configuration file output of AUTODEF is
called rootname.FRM. The rootname.FRM configuration source file may
be modified using the EDITOR or your own word processor prior to
compilation, or compiled “"as is" when output from AUTODEF.

Rootname.FRM must be compiled to produce an executable DataFlex
program. To execute a compile at the operating system command Tevel,
type COMP rootname.FRM. If you are operating from the DataFlex Menu,
select the Configuration Menu and enter the option for "Compile a
Configuration". See the chapter on the DataFlex Compiler for more
information.

Copyright (c) 1984 Data Access Corporation 06/08/84

B-28 DESIGNING DATABASES DataFlex 2.0 User's Manual

THIS PAGE INTENTIONALLY LEFT BLANK

Copyright (c) 1984 Data Access Corporation 05/16/84

HOW TO WRITE A CONFIGURATION

DataFlex configurations are semi-compiled. This means that the
“"source" file which you create must be translated by a separate step
into a form which the computer can execute. Execution of a (semi-)
compiled configuration then is actually faster than execution of an
uncompiled source 1ist would be. This section of the user's manual
refers only to the physical process of creating the appiication.
Other parts of the manual will instruct you on what commands and
functions can be used within the configurations.

A configuration file is a set of compiled DataFlex commands which are
ready to be used. A configuration is different from a program in two
respects:

1. It can only be executed by the DataFlex runtime system.

2. Information from other systems, such as file definitions
in the DBMS, affect the operation of the configuration.

The configuration determines the ACTION of your application in
relation to the DEFINED file definitions and forms IMAGE definitions.
Before a configuration can be used it must be:

1. Created in source form with the DataFlex EDITOR utility or
any other text editor that produces ASCII files.

2. Compiled from the "source" file form into a file that is
executable by the DataFlex runtime system (a .FLX file).

3. Run with the DataFlex runtime system in the presence of
the other files required for execution (FILELIST.CFG and
appropriate data and key files).

CREATING THE SOURCE FILE:

There are five ways to create the original source file for a configur-
ation, of which four are "automatic" and the fifth, which is "manual,"
may also be used for editing configurations created by any of the
other means. First, there are the AUTODEF and FILEDEF utilities with
the "read screen image" option to create both the file definition and
configuration source code for a data entry screen. Secondly, there is
the QUERY utility to generate a REPORT configuration source code file.
Finally, there is the READ utility, which creates configurations to
convert ASCII data files to DataFlex data files. Lastly, there is the
DataFlex EDITOR or any other text editor which is used to create the
file from scratch. Modifications to any source code have no effect,
of course, until the modified source code file is recompiled.

Copyright (c) 1984 Data Access Corporation 05/16/84

B-30 HOW TO WRITE A CONFIGURATION DataFlex 2.0 User's Manual

The configuration source files are standard ASCII files, so they can
be listed and modified by means customarily empioyed for such files.

The format of a configuration file is quite simple: the IMAGE page(s)
is (are) at the top of the configuration, each identified with a slash
"/" in the first column of the first 1ine followed by the name of the
IMAGE page. The image format itself starts on the next 1ine. An
image is terminated with the next occurrence of a "/" in the first
space of a 1ine. "/pagename" marks the next image page, or a "/*»
signals the end of the Tast image in the configuration. The first
1ine of the configuration file must contain either a "/pagename" or a
n/%n, the latter indicating that there is no image in the file.

After the "/*" in the source file, the configuration commands start.
These can be any of the commands 1isted in the command sections of
this manual, or any commands you may have created with the macro
system. Commands and filenames can be in upper or lower case--
DataFlex does not distinguish between the two except in screen images
and Titeral (quote-enclosed) material. Command 1ines can be up to 255
characters long. If a command 1ine reaches the end of a 1ine on your
terminal's screen, you can continue the command line on the next
terminal line either by typing a semi-colon (;) followed by a carriage
return, or merely let the line "wrap" on your screen,

The following is a sample of a simple configuration to display, and
then allow the operator to modify, the system date:

/DATEX

TODAY'S DATE 1S: __/__/__

Please enter today's date in MM/DD/YY format and press RETURN.
/%

OPEN SYSFILE // Open the system file
DISPLAY SYSFILE.DATE TO DATEX.1 // Show the date that is set
ACCEPT DATEX.1l TO SYSFILE.DATE // Accept the updated date
SAVE SYSFILE // Save the system file
ABORT // Stop and end configuration

Copyright (c¢) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual HOW TO WRITE A CONFIGURATION B-31

HOW TO COMPILE A CONFIGURATION:

Once a configuration source file has been created, there is one more
step which must be executed before it can be used. A compiled
configuration must be created which the DataFlex runtime system can
execute. This done by a program called "COMP.COM" (compile), or
COM.CMD in CP/M-86 versions. COMPile reads the source file you
previously created and produces a new, additional file with the
special extension ",FLX" after its filename. The ".FLX" file can be
executed directly by the DataFlex runtime system (see the section on
"Operational Orientation” for further information).

This process is started by typing the word "COMP"™ followed by the full
name of the source file to be compiled. A listing of the file as it
compiles will be shown on the screen.

EXAMPLE:
COMP datex.src

This will read and compile the source file DATEX.SRC and produce the
configuration file "DATEX.FLX". The ".FLX" file is ready to run.
This step must be done to produce a configuration that will run. The
", SRC" extension on the source file name is not required by the
compiler, nor by DataFlex, but is recommended practice where
extensions are not purposely being used for some other end.

On the screen listing of the configuration during compilation you will
note some numbers and a ">" before each line. This is the 1ine number
of the command 1ine actually output to the runtime system. If an
error occurs during runtime this number will be shown with the error
message to help .you find the error. A command line in the source file
can generate zero, one or several lines in compilation, so the line
numbers output by the compiler may seem to skip over some line numbers

" as they would be expected to appear based on the source version. This
lets you know how many lines a particular source command takes up.
Most commands generate one output line.

Following is a complete 1ist of the compiler (COMP.COM) command 11ine
options that can be used individually or in combination as below:

QOPTION FUNCTION

Stop/Pause on Error
Do not delete temporary files
Save output listing in file (.PRN)
Echo output listing on printer (LST:)
X Save .FLX file on Drive x:
Expand/contract memory for macro expansions

TOoOrmwum

Compile Option E: Stop/Pause on Error Use of this option will cause
compilation to stop if an error is encountered in compilation. The
screen display will freeze, displaying the code which triggered the
error, and some of the code above it, and the message to press any key
to continue compiling. Once a key has been pressed, the option to
abort the compilation (Yes or No) is offered.

Copyright (c) 1984 Data Access Corporation 05/16/84

B-32 HOW TO WRITE A CONFIGURATION DataFlex 2.0 User's Manual

Compile Option S: Do Not Delete Temporary Files Compilation produces
two files every time it is run, which are automatically deleted when

compilation finishes or is aborted. One file has the literal name of
FORMTAG.TMP, and contains the names of the windows used by the
configuration begin compiled, and the other has the variable name of
filename.IC, and contains the Intermediate Code of the configuration
(further explained in the section on "Modifying and Extending
DataFlex). These files are not of interest to the general user, but
if there is a reason why you wish them not to be deleted, this option
will retain them,

Compile Option F: Save Output Listing in File The compilation
process involves expansion of some commands into groups of sub-
commands, and generation of line numbers for each 1ime of this code.
The numbered lines with sub-commands can be output to a file of the
name filename,PRN by use of the F option. This option would be of use
primarily to a user who has created custom macros and wishes to see
their expansions in the context of the configuration they work it.

Compile Option L: Echo Output Listing on Printer The output
described above under Option F can alternatively be printed on the
printer during compilation. This is helpful for locating errors
reporting during compilation, and is recommended for compiling more
complex configurations.

Compile Option D: Place .FLX File on Drive x: If you wish the
compiled configuration to be saved to a logical drive other than the
one on which the compiler and source code are, the D Option, followed
by the letter of the desired drive will cause the file filename.FLX to
be written to the specified drive,

Compile Option M: Expand/Contract Memory for Macro Expansions When
compilation begins, 4 kilobytes of your computer's memory is allocated
for expansion of macro commands into subcommands for the compiled
configuration (6K on 16-bit systems), and the remainder is available
for the storage of symbols, which include pagenames, window names,
database elements, in-memory variables and labels. Some configura-
tions need more space for symbols than is available for them, produc-
ing the error message OUT OF MEMORY. When this happens, compilation
can be reattempted with the option M#, where # represents the number
of kilobytes of RAM to be made available for macro expansion from 1 to
9. In such cases, # less than 4 would be appropriate for 8-bit
systems, and less than 6 for 16-bit systems. Conversely, in those
cases where macro expansion space is inadequate (compiler error MACRO
BUFFER SIZE EXCEEDED), the M option can be used to expand the
available space as high as 9 kilobytes.

EXAMPLE:
COMP myfile.frm ;ESFDB

Pause on error, save temporary files, create a .PRN listing
file, and output MYFILE.FLX to drive B:

The semi-colon is part of the option syntax, and must be typed when
options are used.

DataFlex 2.0 User's Manual HOW TO WRITE A CONFIGURATION B-33

HOW TO RUN A CONFIGURATION:

Once the configuration has been created and compiled it is ready to
execute with any fnstalled DataFlex runtime system. At the operating
system command lTevel you simply type the word "FLEX" followed by a
space and the name of the configuration. If "FLEX" is entered without
a following configuration file name, the menu system (if present on
the disk drive) will execute. As such, "FLEX" is the usual opening
statement operators are taught to enter to initialize the system.

EXAMPLE :

FLEX DATEX
Executes the DATEX configuration shown above.

Once execution is under control of the DataFlex runtime, you never
have to come back to the operating system, since one configuration can
RUN another using the CHAIN command to completely automate your
application as is done in the MENU system.

Copyright (c) 1984 Data Access Corporation

B-34 HOW TO WRITE A CONFIGURATION

DataFlex 2.0 User's Manual

THIS PAGE INTENTIONALLY LEFT BLANK

Copyright (c) 1984 Data Access Corporation

05/16/84

== zz=z B-35

DATAFLEX UTILITIES

EDITOR

The DataFlex EDITOR program is a stand-alone text editor for the
creation and manipuiation of DataFiex configuration files and images.

It is invoked by keying:
EDITOR <filename.ext>

from the operating system, where <filename.ext> is the name of the
file which it is desired to edit or create. If the filename is
omitted, EDITOR will initialize with a default filename of WORK, which
may be changed upon saving to disk or, 1f it is expected to re-edit
the file many times in succession, it may be saved under this name and
re-edited by default each time EDITOR is invoked (with no filename).

While the primary purpose of EDITOR is to create the source files for
DataFlex, it is also useful for general sequential file maintenance
and limited word processing. EDITOR features full screen cursor
movement, vertical and horizontal (up to 158 columns) scroiling, and
insertion and deletion of characters and lines. There is also a
search feature to search for patterns in text. ASCII text files can
either be created or edited (changed) using EDITOR.

EDITOR uses the cursor to show where the editing process is taking
place. The cursor's movement is controlled by the "FLEX-KEYs"
assigned in the DataFlex SETSCREEN program. Some of the FLEX-KEYs
keys perform the same functions in EDITOR as they do in normal
DataFlex operation, while other FLEX-KEYS perform different functions
from the ones they perform in DataFlex. This is because there are
certain functions in EDITOR which are purely text-editing functions,
and which are not supported in DataFlex operations. Finally, a number
of the FLEX-KEYs are not used at all in EDITOR.

EDITOR FUNCTIONS ARE EXECUTED BY “FLEX-KEYS"

This section lists the functions of the DataFlex EDITOR followed by
the FLEX-KEY which executes the EDITOR command.

RETURN: (RETURN KEY)

The RETURN key will enter text on a line and advance the cursor to the
next 1ine of the display. If the cursor is on the last 1ine of the
display, hitting RETURN will cause the displayed text to scroll up one
line. If the cursor happens to be in column 1 (one) of the text, then
hitting the RETURN key will cause an insertion of a blank line at the
point where the cursor was.

11

Copyright (c) 1984 Data Access Corporation 05/16/84

B-36 DATAFLEX UTILITIES DataFlex 2.0 User's Manual

UP ARROW: (UP ARROW KEY)

The UP ARROW key will mave the cursor up cone line on the screen. If
the cursor is on the first Tine of the display then the text will
scroll up one line.

DOWN ARROW: (DOWN ARROW KEY)
The DOWN ARROW key will move the cursor down one line on the screen.
The screen will scroll down one line if necessary.

RIGHT ARROW: (RIGHT ARROW KEY)

The RIGHT ARROW key will move the cursor one character to the right
without erasing any existing characters.

If the cursor is at the right boundary of the screen the dispiay will
scroll horizontally to the right. The maximum length of a text Tine
is 158 characters. The cursor will not move into unwritten space.

LEFT ARROW: (LEFT ARROW KEY)

The LEFT ARROW key will move the cursor one space to the left without
erasing any existing characters. The cursor will not move past the
left boundary of the screen unless the screen has HORIZONTAL SCROLLED
to the right by a previous RIGHT ARROW command.

DELETE END OF LINE: (DESTRUCTIVE BACKSPACE KEY)

The DESTRUCTIVE BACKSPACE key will move the cursor one space to the
left, deleting all the text from the cursor to the end of the line.
INSERT CHARACTER: (INSERT CHARACTER KEY)

The INSERT CHARACTER key will move the text 1ine to the right by one
space opening up the text for the insertion of a character at the
cursor position. If the 1ine contains the maximum number of char-
acters (158) then the last character will be lost. The key must be
pressed one time for each character to be inserted.

DELETE CHARACTER: (DELETE CHARACTER KEY)

The DELETE CHARACTER key will delete the character under the cursor
and move all text to the right of the cursor one space to the left.

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2,0 User's Manual DATAFLEX UTILITIES B-37

INSERT LINE: (SAVE RECORD KEY)

The SAVE RECORD key will insert a 1ine above the line on which the
cursor appears. After this key {is pressed, the screen will scroll all
text below the cursor, and leave a blank 1ine to edit.

DELETE LINE: (DELETE RECORD KEY)

The DELETE RECORD key will delete the line on which the cursor
appears.

LOAD FILE: (BACK FIELD KEY)

The BACK FIELD key will clear the text puffer and ask for the filename
of the text file to load. If this key was pressed by mistake, press
ESC to abort and return to the text in the buffer without loading new
text.

SAVE FILE: (USER-DEFINED FUNCTION KEY)

The USER-DEFINED FUNCTION key will save the text file in the buffer to
the disk. If you change your mind after invoking this command, answer
its query by pressing the ESCape key. The prompt will offer the
opportunity to save the file under its original filename (WORK if
EDITOR was invoked with no filename specification) by merely pressing
the RETURN key. If a different filename is desired after an edit
session, a new filename (with drive specification if necessary) may be
entered in response to the prompt.

ESCAPE: (ESC KEY)

The ESCape key will exit the document editing portion of EDITOR and
allow the naming of the output file to the disk. The output file
should conform to your standard operating system file name conventions
(generally a two character drive specification, eight characters for
the file name plus a three character file type extension).

TAB: (FIND KEY)

The FIND key will tab eight spaces to the right or to the left
depending on the last direction that the cursor was moved.

BEGINNING OF LINE or HOME: (CALCULATE KEY)

The CALCULATE key will move the cursor to the beginning of the line
being edited. If the cursor is on the first character then the cursor
will be placed at the top of the text.

Copyright (c) 1984 Data Access Corporation 05/16/84

B~-38 DATAFLEX UTILITIES DataFlex 2.0 User's Manual

BACK PAGE: (PREVIOUS RECORD KEY)
The PREVIOUS RECORD key will page the cursor backward 24 lines.

FORWARD PAGE: (NEXT RECORD KEY)

The NEXT RECORD key will page the cursor forward 24 lines.

FIND TEXT: (SUPERFIND KEY)

The SUPERFIND key will display the prompt "Find string:" at the bottom
of the screen, to which the operator shouid respond by keying in the
string which it is desired to find in the file. Once the string has
been found, it may be edited, deleted., or whatever is desired. If the
SUPERFIND key is pressed again, the prompt will reappear. If the key
is pressed again, in response to the prompt, the string entered
previously will be searched for again in the file, and will be
searched for every time the SUPERFIND key is pressed twice, until a
different string is entered in response to the prompt.

“opyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual DATAFLEX UTILITIES B-39

REINDEX UTILITY

The DataFlex index files are maintained dynamically during normal
system operation. No reorganization is generally necessary. However,
due to changes made in the file structure after the entry of data,
adding new indexes or system failure, it may be necessary to rebuild
or create new index files. The REINDEX utility provides this
function. Each index is an independent file with a .Kx extension,
where x is a number which distinguishes the index from other indexes
of the database. REINDEX can rebuild all indexes, batch indexes only,
(see next paragraph) or just one particular one.

There are TWO types of index files in DataFlex; ON-LINE indexes which
are maintained dynamically during file creation and maintenance and
BATCH indexes which are usually used for infrequently-used report
sequencing. The batch indexes are NOT updated when a record is
created or deleted as the on-line indexes are.

There is a S5th index (on 8 bit systems--10th index on 16 bit systems)
that is reserved for "ad hoc" sorting of existing files. REINDEX can
redefine the specifications for this index and create a new index
interactively. Any other BATCH 1index can also be redefined from the
command line.

WHEN TO USE REINDEX:

The following are indications that your index files may be damaged and
you must run REINDEX: 1) A DataFlex error 20, 21, 22 or 26; 2)
Records seeming to be "out of order" when an attempt is made to 1ist
them in order; 3) Trying to FIND one record and getting another; 4)
Records "missing" out of the data file. For any of these indications
it is recommended that the FREL program be used on the suspect data
file before REINDEX in case the data file itself is damaged.

USING REINDEX:

REINDEX can be used in two ways: instructions can be given on the
command 1ine that calls REINDEX, or its operation can be controlled
interactively. First we will deal with the interactive mode.

When REINDEX is called with no arguments on the command line, you will
be greeted with a files menu. The active DataFlex files will be dis-
played with their file numbers. You should select the file you wish
to REINDEX. If you have more than 32 active files you may press
<RETURN> to get more files 1isted. At any time within REINDEX you may
hit <ESCAPE> to return to the menu. (Note: the file selection
process is the same as that in QUERY).

Conyright (c) 1984 Data Access Corporation 05/ 16/84

B-40 DATAFLEX UTILITIES DataFlex 2.0 User's Manual

Once you have selected a file, the following menu will be displayed.
You must select an operation according to your needs:

DATAFLEX
REINDEX UTILITY
<FILE NAME>
l..... RE-CREATE ALL INDEXES
2..... RE-CREATE ALL BATCH INDEXES
3..... RE-CREATE ONE INDEX
4..... DEFINE & CREATE "AD HOC'" INDEX

S5..... DELETE "AD HOC" INDEX

PLEASE ENTER OPTION REQUIRED:

OPTION ONE - RE-CREATE ALL INDEXES

Re-create all indexes will read the data file selected and rebuild all
defined indexes. This is generally used when a system or power

failure makes the validity of the index file questionable.

Note that if the validity of your data file is in question, the FREL
program should be used before the REINDEX program.

OPTION TWO - RE-CREATE ALL BATCH INDEXES

Re~create BATCH indexes will create all indexes marked as "batch" for
the selected data file. This is generally used before generating
reports that require the batch indexes, i.e., before end-of-month
reporting.

OPTION THREE - RE-CREATE ONE INDEX

Re-create one index, allows you to remake indexes, one at a time.
This may be required if you made a new index with the FILEDEF program
or you had a disk error on an existing index. Option three will 1ist
the available indexes and allow you to select the index you wish to
re-create.

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual DATAFLEX UTILITIES B-41

OPTION FOUR - DEFINE & CREATE "AD HOC" INDEX

Option four allows you to create an "AD HOC" batch index. This index
can then be used in any DataFlex output. This option will ALWAYS
create index 5 (or index 10 on 16 bit systems). When selected,
REINDEX will display a field 1ist. You may then select up to four (4}
fields to be included in the index (6 on 16 bit systems). If there
are more fields in the selected file than will fit on the screen, you
may use the <NEXT RECORD> key to get more fields or the <BACK-RECORD>
key to start at field one again. Once you have selected the fields to
index by field number, press <RETURN> and REINDEX will proceed to
create the new index. (Note: this field selection process is the same
as that used in QUERY).

OPTION FIVE - DELETE "AD HOC"™ INDEX

Delete ad hoc index, will remove an index file created in option four
from the disk and the file definition. This will reclaim the disk
space used by the index.

REINDEX - COMMAND LINE FORMAT

The use of REINDEX with the arguments on the command line is primarily
intended for use by configurators within "submit" procedures. If you
are happy with using REINDEX interactively you may skip this section.

A1l of the above options and more can be invoked in configurations
with command lines:

REINDEX <FILE-NUMBER>
will re-create all indexes for (FILE). This is equivalent to Option
One on the RE-INDEX Menu.

EXAMPLE :
REINDEX 22 - Recreate all indexes for file 22.

REINDEX <FILE-NUMBER> MENU
Will select the file number and proceed to the REINDEX menu for user

interaction.

EXAMPLE:
REINDEX 22 MENU ~ Select file 22 and display REINDEX menu.

REINDEX <FILE-NUMBER> BATCH
Will recreate all batch indexes for <FILE>, This is the same as
Option Two on the RE-INDEX Menu.

EXAMPLE :
REINDEX 22 BATCH
Recreate all batch indexes for file 22

Copyright (c) 1984 Data Access Corporation 05/ 16/84

B-42 DATAFLEX UTILITIES DataFlex 2.0 User's Manual

REINDEX <FILE-NUMBER> <INDEX-NUMBER>
Will re-create the specified index for the specified file.

EXAMPLE :
REINDEX 22 1
Recreate index one of file 22.

REINDEX <FILE-NUMBER> <INDEX-NUMBER> <FIELD1> ... <FIELD4>

will redefine <INDEX-MUMBER> to the field numbers that follow. This
is 1ike Option Four, but any index can be re-defined. The index will
be a BATCH type unless it was on-line before REINDEX was run.

EXAMPLE :
REINDEX 22 5 45 0
REINDEX file 22, index 5 by fields: 4, 5 and 0.

REINDEX <FILE-NUMBER> <INDEX~NUMBER> DELETE
Will delete the ad hoc index <INDEX-NUMBER>. This commmand works only
on ad hoc indexes.

REINDEX <other options> QUIET

QUIET put at the end of the command line will cause REINDEX to display
only a "*" on the screen for each record instead of the index data.
Shortening the display increases throughput speed.

REINDEX <other options> .BAD
Will create a file by the name rootname.BAD with a 1ist of any
duplicate records found during reindex.

REINDEX <other options> FLEX <config-name>

Will CHAIN back to the Flex configuration <config-name> after the
reindex is done. This gives you the capability to run a configuration
(1ike a report) after a reindex operation.

EXAMPLE :

REINDEX 22 BATCH FLEX MYREPORT

DUPLICATE RECORDS IN REINDEX:

If REINDEX encounters duplicate records in any non-ad hoc index, it
must delete one of the records to maintain the requirement that all
index entries be unique. You will be given the option to: 1) NOT

DELETE BAD RECORDS and leave the file in an {mproper state; or 2)

List the bad records to a file or printer. The file of bad records
will have the name rootname.BAD

Copyright (c) 1984 Data Access Corporation 05/16/84

DatafFlex 2.0 User's Manual DATAFLEX UTILITIES B-43

FREE LIST UTILITY

The 1ist of available (deleted) records in a file is referred to as
the "FREE LIST". It is dynamically maintained during normal system
operation (uniess "REUSE DELETED SPACE"™ is set "Y"es in SETSCREER).
But due to system failure (disk errors or power fail) it may be
necessary to rebuild the free 1ist. This is done with the FREL
utility. FREL will also check the file for type consistency (bad
data) and delete any bad records.

WHEN TO USE FREL:

Conditions that would indicate the need for FREL and REINDEX are:
Power failure with data files open. Disk errors, Errors 78, 81 or

1..6.
USING FREL:
FORMAT :

FREL
(to display a list of existing data files before executing
FREL, or

FREL <FILE NUMBER>
(to execute FREL on a file whose number is already known.)

EXAMPLE:

FREL 10
Check file 10 for consistency and rebuild its free list

If running FREL indicates any bad records, you should rebuild the
indexes for that file with REINDEX after running FREL.

FREL AND BAD RECORDS:

If any bad records are encountered during FREL, the record(s) will be
deleted and the data from them can be sent to a file or to the
printer. If the option ",BAD" is put on the command 1ine, the bad
records will always be listed to the file "rootname.BAD". When the
first bad record is encountered, you will be given the option to: 1)
Not delete the record and leave the file in an improper state; 2)
List the bad records to the printer; or 3) 1ist the bad records to
the .BAD file. NOTE: Although there are many ways "bad" records can
be created, a consistent attribute of bad records is the presence of
control (non-ASCII) characters in data fields. FREL lists as "badg"
any record having such characters in it.

Copyright (c) 1984 Data Access Corporation 05/ 16/84

B-44 DATAFLEX UTILITIES DataFlex 2.0 User's Manua

THE READ UTILITY

DataFlex's READ program has the function of automatically writing
configurations which "read" standard ASCII format data files and
produce DataFlex data files, complete with record numbers and any
indexes of the data which might be desired. It does this by gquerying
the user as to the characteristics of the source file, and certain
desired attributes of the DataFlex file to be created.

There are two main uses for READ-produced configurations: (a) to
"import" data from non-DataFlex software environments such as MBASIC¥,
VisiCalc* DIF, dBASEII* SDF, SuperCalc* SDI, MailMerge*, and the like;
and (b) to re-READ ASCII data from a predecessor DataFlex database
into a newly-created DataFlex database having more or fewer fields
than the original (or changes in their Tength or data type).

In order to provide a realistic context for the explanation of READ,
the following instructions cover how to convert a data file from
dBASEII* format to DataFlex. If your particular purposes do not
involve dBASEII, merely skip those sections whose headings indicate
that they pertain to dBASE, and substitute the appropriate
instructions for your source environment. The overall process
involves the use of DataFlex utilities other than READ. This
interaction between READ and AUTODEF (and possibly other utilities)
is, again, typical of most uses to which READ would Tikely be put in
actual use.

HOW TO CONVERT DBASE II FILES TO DATAFLEX

Since this procedure involves producing two complete copies of the
files to be transferred (the intermediate one may be erased after the
process is complete), the transfer of large files may require some
planning of disk space, and even of processing time for very large
files. For this reason, it is recommended that the preparatory work
be done with a subset of any large file which it is desired to
convert, and that the results of that work then be applied to the
entire file after its efficacy has been confirmed.

This procedure can be executed on small data files using a demo
version of DataFlex. If you should encounter the error "DEMO
LIMITATION EXCEEDED", it will be necessary to re~initialize DataFlex
before you can continue your work from the last disk access prior to
the occurrence of the error, Naturally, make sure your data file is
backed up before you proceed. From dBASE, print out the database's
structure for reference in the following steps.

MAKING THE MAIN ENTRY SCREEN

The first step {s defining your database in DataFlex, a process which
can be amazingly easy if you happened to develop the main entry screen
for your dBASE database under dBASE's ZIP screen and report formatter
(and retained at least your .ZIP files from the effort). What you
need is a plain ASCII file showing the fields of your data elements,
and their types.

nopyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual DATAFLEX UTILITIES B-45

If You Don't Have .ZIP Screen Files

If all you have is your original entry command file (.CMD) full of

"@ 1.c SAY caption GET variable"™ statements, then modify the .CMD file
by SETting FORMAT TO PRINT right before the first "@" and run the
program with your printer on. That will print out your screen, which
you will then have to "draw" on the screen in ASCII, for which purpose
your favorite word processor or DataFlex's EDITOR will do fins. Now
you can go on to the final screen preparation steps below which are
common to both manually and ZIP-created entry screens.

If You Kept .ZIP Files

ZIP in use puts out its own file with a .ZIP extension, a .CMD or .FMT
file for dBASE which you won't need anymore, and a .ZPR file intended
for use in printing out a copy of the screen. This .ZPR file is what
you can use to create the screen image for DataFlex. If you erased
your .ZPR file but saved the .ZIP file, you can recreate the .ZPR file
just by loading the .ZIP file into ZIP and resaving. (Caution: {f
you use a .CMD or .FMT file produced by ZIP and then edited under its
original name, resaving from ZIP will overwrite the file with its
earlier ZIP-generated version. You can avoid this by renaming your
output file when ZIP gives you the chance. But none of this really
matters, because you're working on a backed-up disk, right? Right!)
Load the .ZPR file into your favorite word processor, or the DataFlex
EDITOR, and erase the first line, which reads

nxx¥%% File filename ***x*¥n_ Then delete all embedded commands (those
in [brackets]) and all #variable GET commands and @variable SAY
commands, together with the variable names.

Final Preparation of the Screen

What you should now have, whether you got it from a .ZPR file or
"drew" it manually, is a screen with its title, if any, and a prompt
for each data item to be input in a Togical position on the screen
followed by enough space on the line for the data item to be entered
into. Now, with this file Toaded into either your word processor or
DataFlex's EDITOR, you should draw a blank with underscores after each
prompt in the same position as you used to have your GETs and SAYs.
Each blank should be as long as the field length defined in dBASE
(this is how DataFlex will figure out the field length). For numeric
fields, there is one further step. Replace one underscore with a
period wherever the decimal place should go in the field, remembering
that that decimal point will actually provide space for the 1l's
position in your number (first place left of the decimal point). The
blank for a five-digit integer (no decimals), for example, would Took
like: " .", without the quotes, of course. That's right: four
underscores and the decimal point. If any of the fields is a date,
make it look like this: "_/_/ ", remembering that DataFlex
actually supports dates as a separate format, unlike dBASE. Last,
open up a new 1ine at the top of the screen (don't worry if the bottom
line of your image scrolls off the bottom--this new line won't be part
of the displayed image). At the leftmost position, give the screen a
name for DataFlex to use, preceded by a diagonal (/ENTRY_SCREEN, for

“opyright (c) 1984 Data Access Corporation 05/ 16/84

B-46 DATAFLEX UTILITIES DataFlex 2.0 User's Manual

example). Save the file under a name which will be meaningful to you.
Now your screen is ready for DataFlex to read it and create your new
DataFlex database structure, all from the screen.

CREATING THE DATABASE STRUCTURE WITH AUTODEF

Now it's time to "feed" the screen image to AUTODEF. AUTODEF wili
define fields only if they're in the image. If you need fields that
aren't in the image, you'll either need to add them to the image (they
can be removed later), or edit them into the database using FILEDEF,
but that's another story.

From the operating system, or the DataFlex menu, run AUTQDEF (it's a
.COM file). Answer the first prompt with the filename of the screen
image file and tell it you're creating a new database, rather than
editing an old one. Then tell it how many records you're going to
need the database to hold (maximum 64,000). AUTODEF will then display
your screen image and walk you through each of the blanks you provided
(they're called "windows" in DataFlex), asking you what you want to
name the variables. You can use your old dBASE names if you 1ike, but
DataFlex allows 12 characters in fieldnames, so you may wish to expand
them somewhat to improve intelligibility.

Then AUTODEF will ask you which field(s) are indexed., Give it the
same fields you used in dBASE. Be sure to give it at least one, so
DataFlex will be able to find records, unless you are displaying the
record number, in which case you don't have to have any indexed
fields.

After this, AUTODEF will create a file (called a configuration file in
DataFlex) identified as "“filename.FRM" which will contain not only
your screen image and a means of displaying it, but also a complete
facility for searching the database by its indexes, editing, deleting,
and adding records, with no additional commands, embedded or
otherwise. Of course, if you do later wish to add bells and whistles
to your entry configuration, you can edit the .FRM file with your word
processor or the DataFiex EDITOR to provide them.

To use this configuration, you must compile it with the DataFlex
compiler, selectable from the menu or executable from the operating
system as "COMP filename.FRM". It will create the file
"filename.FLX", which can be executed either from the DataFlex menu or
from the operating system with the command, "FLEX filename". No point
in running it yet, though. We haven't brought the data over for it
yet. This is a good time to compile it, however, so from the
operating system, issue the command "COMP filename", and DataFlex will
do the rest over the next two minutes or so. Compilation is a step
which must be taken with every DataFlex configuration you create, by
whatever means, and a configuration must be re-compiled each time you
want to make a change i1n the way it runs. This step isn't present in
dBASE, so don't forget to do it in DataFlex when it's called for.

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual DATAFLEX UTILITIES B-47

BRINGING HOME THE DATA

The last step is bringing the data over, something you should do first
with a small test data file and then later with the whole file after
you've made sure everything works right.

The dBASE Part:

Start dBASE and bring your database into USE. Do not invoke any dBASE
jndexes if you want DataFlex to end up with the same record numbers as
dBASE was using (which wouldn't be of concern unless you use record
numbers as account numbers or some such scheme), If you have deleted
records in your database, you will have to manually re-delete them in
DataFlex, unless you PACK your database first to eliminate the
records. This, of course, will readjust your record numbers in dBASE.
If you're converting a large database with one or more indexes, the
conversion will run faster {f you do use the largest index maintained
in dBASE. This assumes that you will want the same index in your
DataFlex version, The largest index is the one whose index file
(.NDX) is larger than any of the other .NDX files. Your record
numbers will change, of course.

Now COPY the database to an ASCII delimited file with the command:
.COPY TO filename SDF DELIMITED

If some of your records have apostrophes (Jerry's Pool Hall) in them,
you will want to make the command look like this to use double
quotation marks instead of the apostrophes otherwise provided by
dBASE :

.COPY TO filename SDF DELIMITED WITH "

Make sure "filename" is the same filename as AUTODEF created from your
image file. dBASE won't write directly into the DataFlex file, but it
will create the file "filename.TXT", an intermediate version of your
data. Also make sure your disk has space on it for a copy of your
data file that is as big as the original. If your data file is large
(over 100K) this process will take some time--hours for really large
data files over a megabyte.

If you're running on a crowded hard disk or otherwise have less free
disk space than your data file, there are options you can use in the
COPY command which will enable you to COPY the file in pieces. Again,
if you're utilizing an index, COPY the file out in the index sequence.
For example, if your index is on last name, COPY can be run to first
output all last names beginning with A through C, then D through F,
and so on. This process can easily be put into dBASE and DataFlex
command files/configurations that call each other until all records
have been brought over, and run as a batch. After completion, check
the number of records in the DataFlex file to make certain that no
records were missed.

Copyright (c) 1984 Data Access Corporation 05/ 16784

B~48 DATAFLEX UTILITIES DataFlex 2.0 User's Manual

The DataFlex Part

The last step is done by DataFlex's READ utility, which is itself a
DataFlex configuration, and whose operation creates a configuration
which causes DataFlex to read your filename.TXT file and put data into
your filename.DAT (DataFlex) file, complete with all indexes as
specified in AUTODEF. Like any good DataFlex configuration, READ has
lots of help in it, accessed by pressing the HELP key, so use it
whenever questions come up. READ is invoked either from the DataFlex
menu or from the operating system with the command "FLEX READ".

READ starts up with a screen that lists the DataFlex files already on
your disk. You should see the one you created when running AUTODEF,
with a selection number to its Teft. Respond with that number. Then
a new screen will display the name of this target file, and ask you
the name of the file to read from. This, of course, will be the file
you created (filename.TXT) from dBASE's COPY command in the step
above. Enter this name. Then READ will ask you the name you want to
give to the configuration source file. What configuration source
file? READ will convert your source data file using a DataFiex
configuration which will actually be written by READ when you're done
telling it all it needs to know about the desired conversion. So give
it a name (I used DBASREAD), but do not give it the same name as you
gave your image file (and resultant data entry configuration) in
AUTODEF above, or your old file will be overwritten by the READ
configuration, and that wouldn't be good.

After you've given it the name for the configuration file, the screen
will clear, and READ will ask you whether your source file is Tine~ or
comma-delimited., If you did everything as recommended above, your
file is comma-delimited, and you can tell READ this by entering the
entire word "COMMAY in the window. The READ will ask you how many
fields are in each record of your source file. Refer to your dBASE
structure printout and count the fields for the answer to this
question,

Next comes the part that could be tricky if you have made any change
in the sequence of fields as they were in the dBASE structure on the
one hand, and in the DataFlex windows in the screen image on the other
hand. For each field of your source file, READ will ask you which
field number (sequentially) of the DataFlex database it goes to. If
your dBASE file structure and your DataFlex field sequence step along
together exactly the same, this step is easy. One goes into 1, two
into 2, three into 3, and so on, But if the first field of your dBASE
structure is LASTNAME, and the second is FIRSTNAME, while your
DataFlex screen image starts off with FIRSTNAME and has LASTNAME
second, you'll have to tell READ about the switching at this point.
Compare your printouts to make sure about any possible switches. If
there are fields in your source file that you don't want transferred
(or if there are fields in your DataFlex file that you don't want data
transferred into), you can do that here by skipping source file filelds
with the <RETURN> key or skipping target file fields merely by not
using their sequential numbers.

After this, READ knows all it needs to know, and will ask you if you
want to compile the configuration immediately. Since you have to

Copyright (c) 1984 Data Access Corporation 05/16/84

DATAFLEX UTILITIES B-49

DataFlex 2.0 User's Manuatl

compile the configuration before you can use 1t, the usual response
here would be "Y"es. The question is asked to give you the
opportunity to edit the conversion configuration before compiling 1t,
if you want to. Normally, you wouldn't want to.

READ will then write the conversion configuration and compile it. But
READ hasn't done your conversion yet--it's just put everything in
place for you to do it. Your final step is to to run your conversion
configuration from the "Run a Configuration" choice on the menu, or
give the command "FLEX filename", where filename is the name you gave
the conversion configuration in READ. If you first run the
configuration on a small test database and everything works all right,
running it on the large, real database is as simple as doing the dBASE
conversion steps on it, putting the resultant .TXT file in the right
place where your READ configuration can find it, and giving the "FLEX

filename" command again.

You must have the same filenames as you used

the first time, of course.

WHAT REALLY HAPPENED HERE?

In the foregoing, we did one conversion step in dBASE, creating one
processed copy of your original data file with a .TXT extension.
Either manually or from a .ZIP dBASE file, we created a screen image
for DataFlex with any extension, which you might have named FLEXFILE.
We then ran AUTODEF on that image file, producing a number of files,

some of them empty data and index files, as listed below.

Then we ran

READ, generating a DataFlex configuration specifically to read your
dBASE-generated file, convert its contents, and put them into the

files created under AUTODEF.

This 1s a 1ist of the files in the

sequence in which they would have been created:

FLEXFILE.DBF Your original dBASE data file
FLEXFILE.TXT COPYed version of the dBASE data file
FLEXFILE.ZIP File from ZIP for the dBASE entry screen
FLEXFILE.ZPR Printable version of the ZIP file
FLEXFILE. DataFlex screen image (possibly from .ZPR file)
FLEXFILE.FRM AUTODEF-created entry configuration source code

* FLEXFILE.FLX Compiled (executable) entry configuration

* FLEXFILE.DAT DataFlex data file created by AUTODEF

* FLEXFILE.K1 DataFlex index #1, if any, created by AUTODEF

* FLEXFILE.Kn Additional DataFlex indexes, if any

* FLEXFILE.TAG Names of DataFlex fields, created by AUTODEF

* FLEXFILE.FD Definition of DataFlex database
DBASREAD.FRM READ-created source code for conversion config.
DBASREAD.FLX Compiled (executable) conversion configuration

The *asterisk indicates the minimum files which you must retain in

order to use your new DataFlex database.
configuration files may, of course, be created.

Additional database and/or
A1l the others may be

retained for future reference or modification if desired (and space

allows).

Copyright (c) 1984 Data Access Corporation

05/16/84

B-50 DATAFLEX UTILITIES DataFlex 2.0 User's Manual

WHAT DO WE HAVE HERE?

The product of these efforts is much more than just a data file that
DataFlex can use. In addition, we have created complete indexes for
the file, to facilitate rapid finding of records in the database,
including any we may have had in the dBASE version. Further, in
AUTODEF, we have created a complete display and entry facility for the
database records, through which we can query, edit, or add to, the new
DataFlex database.

A11 further processing of the data and related configuration files to
take advantage of DataFlex's many capabilities not present in dBASE
(multiplie commmand files open simultaneocusly, true multi-user
operation, Julian date functions, and more), may be done on the
DataFlex file family entirely within DataFlex. You're on your way!

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual DATAFLEX UTILITIES B-51

DATAFLEX 1.6X TO 2.00 CONVERSION

The DataFlex conversion programs provide for the transfer of existing
DataFlex 1.6X applications to the new 2.00 syntactical representation.

The input to the conversion process is DataFlex 1.6X ENTER and REPORT
configuration files. The files must be working 1.6X DataFlex configu-
rations. The output of the conversion process is DataFlex 2.00 source
files. Before they can be run, the source files must be compiled into
executable configuration files using the DataFlex compiler.

The DataFlex 2.0 compiler requires the creation of a new support file
(FILENAME .FD) for each existing data (.DAT extension) file in your
1.6X application. This .FD file will be created by the 2.00 FILEDEF
utility when a file definition is saved. The DataFlex FILENAME which
is given to a data file will be used as the base name of the new file
that will be created, and an extension of ".FD" will be appended to
it. This file will be used by the conversion program and the compiler
to assign symbolic names to the individual fields in the data file.
These symbolic names will be composed of the DataFlex FILENAME and the
FIELD NAME that each field has been assigned. Valid characters that
can be used as part of a FIELD NAME are [A..Z, 0..9, #, &, _, $3. If
other characters are used in FIELD NAME they will be automatically
converted to an undertine character by FILEDEF.

To create the .FD file, run the 2.00 FILEDEF program and select the
data file that is to be converted. Once the file has been loaded, use
option three (3) in FILEDEF to inspect the data file's DataFlex FILE
NAME and all the FIELD NAMES in the file. If the DataFlex FILE NAME
has not been filled in, or the FIELD NAMES are not correct, you may
correct them at this time.

Once the modifications are complete, use option nine (9) in FILEDEF to
save the data file definition (.DAT files) to disk. The 2.0 version
of FILEDEF will at this point automatically create and write the
needed .FD file. This process must be performed on all data files
used by configurations which are to be converted to Dataflex 2.00.

The .FD files must be on the same logged device as the compiler when
the source configuration is compiled. Data files created under
Versions 1.6X are otherwise completely compatible with DataFlex
Version 2.0.

CVTFRM is used to convert the ENTER CONFIGURATIONS (.FRM) from
DataFlex 1.6X to DataFlex 2.00 and CVTRPT is used to convert the
REPORT CONFIGURATIONS (.RPT).

The conversion program requires only two file names to perform the
conversion: the name of the version 1.6X configuration file, and a
name for the Version 2.00 source file which is output by this process.
The VYersion 2.0 output file name must be different from the Version
1.6X configuration file name.

B-52 DATAFLEX UTILITIES DataFlex 2.0 User's Manual

EXAMPLE: A sample input filename is VENDOR.FRM, and the output
filename will be VEN.FRM, Once the conversion is complete, it is

necessary to compile the configuration into an executable file.

A>CVTFRM
ENTER SOURCE FILE NAME: VENDOR.FRM
QUTPUT FILE NAME: VEN.FRM
(conversion is done here)
CONVERSION DONE.
A>COMP VEN.FRM

ERRORS that may be encountered:

a) CANNOT FIND INPUT FILE
The conversion program can not locate the input file. Check the input
name for spelling on disk directory to be sure it is there.

b) INPUT AND OUTPUT FILENAMES MUST BE DIFFERENT

The conversion program requires that input and output name be
different, If an ouput file of the same name exists, it will be
overwritten.

c) CANNOT FIND .FD FILE
A data file has been declared by the configuration program which is
not found on the default drive.

d) FILE <<#>> IS NOT OPEN
A data file which has not been opened has been referenced by the
configuration,

e) FILE <<#>, FIELD <<#>> IS OUT OF RANGE
A field number has been referenced by the 1.6X def1n1t10n
configuration which does not appear in the data file.

f) WINDOW # <WNUMBER> OUT OF RANGE

g) UNSUPPORTED OPTION # ON LINE #

The original 1.6X configuration has an option number in it which is
invalid (under both versions). The message shows the line number on
which the invalid option number appears. The original configuration
must be corrected before conversion is re-attempted.

h) OVERLAPPING IMAGE SECTIONS ARE NOT ALLOWED

Under some circumstances, DataFlex Version 1.6X Report section line
declarations can include one or more line(s) in both of two adjacent
sections, This condition is impossible for the conversion program to
handle, and must be corrected in the 1.6X configuration by actual
duplication of the common 1ines, and changing of the section line
declarations so as not to include any of the same line numbers.

A1l of the errors above are fatal, and will abort the conversion
process.

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual DATAFLEX UTILITIES B-53

MENU CREATION AND MAINTENANCE

DataFlex is supplied with a powerful, versatile, and easy-to-use
system for creating and maintaining menus which supports the execution
of DataFlex configurations, other executable (.COM and .CMD) files,
and prompting for the entry of necessary operator input at run time.
The menu system can be made to execute upon cold boot, providing a
"shell™ which positively insulates the operator from the computer's
operating system at all times.

This utility is itself a DataFlex configuration (filename
MENUDEF.FLX)}, and it uses and creates data files for the menus under

the df_filename '"MENU", Like any good "Flex" application, MENUDEF is
fully prompted, and menus can easily and rapidly be created or
modified simply by following the prompts and answering them. MENUDEF
also has extensive HELP screens, which can be called at any time
during execution by pressing the HELP Flex-Key.

CREATING AND SELECTING MENUS

Upon selecting "™Menu Definition" from the DataFlex Configuration menu,
or invoking MENUDEF from the operating system vith the command FLEX
MENUDEF, a list of the numbers and headers of the menus currently on
the disk will appear as shown below. The "headers" are the legends
appearing at the top center above the menus, identifying what each one
is:

DATAFLEX MENU SYSTEM MENU SELECTION

NUMBER HEADER

ENTER NUMBER OF THE MENU YOU WISH TO EDIT: __

You may use the NEXT or PREVIOUS RECORD Command Key for more menus

or press <RETURN> to start a new menu. (HELP screen
available)

Copyright (c) 1984 Data Access Corporation 05/16/84

B-54 DATAFLEX UTILITIES DataFlex 2.0 User's Manual

This screen will display all menus now existing, in numerical order.
If there are more than five menus on the drive, pressing the NEXT
RECord Flex-Key will display the next five menus. Pressing the
PREVious RECord Flex-Key will dispiay the previous five. Each menu is
actually a record in the MENU database, and the menu number displayed
is the record number for the menu. Accordingly, the number of a given
menu may not be changed. If a new menu is desired, entering a RETURN
will begin creation of a new menu. To delete a menu, the menu should
be selected for editing and the DELete RECord function key pressed.
Entering the number of an existing menu will move execution to the
next screen, with data filled into the blanks for the menu you
selected.

EDITING EXISTING MENUS
This is the menu configuration screen:

DATAFLEX MENU SYSTEM MENU CONFIGURATION

=== === =============

MENU NUMBER: __. HEADER1:
HEADER2:

DEFAULT MENU: . (on return)

PROMPT ACTION PASSWORD

(N)ew Menu (H)eader (Q)uestions (P)rint (S)ave {HELP IS
(I)nsert (D)elete (C)hange (Append e(X)it _ AVAILABLE}

The first column of windows displays whatever prompts are in the
record for existing menu choices. The column displayed under the word
"PROMPTS" are the actual on-screen prompts displayed to the operator
describing what the menu choices are.

The second column displays the commands which are passed to the
operating system upon selection of the choice. As "ACTIONS" in the
second column above, the menu system will execute any of the system
cemmands described in the section of this manual on Manipulating Files
except RUNPROGRAM, It will also execute another menu by entry of the
word "MENU" followed by the number of the desired menu. Sub-menus are
executed by use of this command. Entry of the CHAIN command followed
by a rootname in this window will cause the menu system to execute any
existing DataFlex configuration having that name.

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFiex 2.0 User's Manual DATAFLEX UTILITIES B~55

The third column displays a password (if any) to protect the menu
choices from unauthorized access. Since passwords are displayed by
MENUDEF, MENUDEF must itself be password protected if passwords are
used. Whoever has access to MENUDEF has access to all the passwords
in the system.

The cursor initializes in the single~character blank at the lower
right corner of the screen. If "N" is entered, the screen will clear
and then redisplay the previous screen (list of menus) for selection
of an unused number under which to create a new menu.

The "I" choice will query as to the choice number before which you
would 1ike to insert a menu choice.

The "H"™ choice will place the cursor into the blanks at the top of the
screen, where the menu header may be modified. The header includes
definition of the "Default Menu", which is the number of the menu
which should be executed in the event that a null response (RETURN) is
given to the choice query. Typically, the default menu will be the
menu from which the menu being defined was called, but it need not
necessarily be, especially for the master menu, which typically
defaults to itself.

The "D" choice will ask which menu choice number you would like to
delete, and do so upon entry of the number.

The "Q" choice will exit the screen temporarily and display the
questions for the menu on another screen, which will be shown and
discussed below. Questions are operator prompts which elicit further
input from the operator relevant to the choice which was made, such as
"Press RETURN when the printer is turned on and loaded".

The "C" choice will query which line of the menu you would like to
change, and place the cursor in the blanks for that choice so that
changes may be made.

The "P" choice will permit printing of the menu definition, which is
very handy for occasional off-line reference to the structure of a
menu.,

The "A" choice places the cursor on the next blank choice 1ine for the
entry of an additional choice at the bottom of the menu.

The "S" choice causes an exit of the screen and writing of the edited
menu to disk (making the entered changes permanent).

The "X" choice causes the question to appear: "BEFORE YOU EXIT, SAVE
YOUR CHANGES? Y/N" to appear. Once this question is answered, the
Menu Definition system will be left, and the menu from which it was
called will appear.

OPERATOR QUESTIONS

Questions can be asked of the operator, and the responses included in
the action of the menu, by the inclusion of the characters $#, where

Copyright (c) 1984 Data Access Corporation 05/ 16/84

B~56 DATAFLEX UTILITIES DataFlex 2.0 User's Manual

the first character is explicitly the dollar sign, and the second,
represented by the # sign, is a digit 1 through 6, identifying the
question number matching the question defined for the menu on the

question screen shown below:

DATAFLEX MENU SYSTEM QUESTIONS

EXPLANATION :
QUESTION 1 :

EXPLANATION:
QUESTION 2 :

EXPLANATION :
QUESTION 3 :

EXPLANATION :
QUESTION 4 :

EXPLANATION :
QUESTION 5 :

EXPLANATION :
QUESTION 6 :

Enter the screen prompt for each question referenced in the ACTION
section of the other screen, or ESCAPE to return.

Each menu will support only six questions, but each defined question
may be asked as many times as desired throughout the menu. Each
defined question will display up to two 1ines to the operator, fif
needed, for an introductory explanation and the following actual
question. The cursor initializes in the single-character blank in the
Tower right of the screen. Entry of a number for which a question
already exists will place the cursor in the blanks for that question
for editing of the data in the blanks. Entry of a number for which
there is no question will place the cursor in the blanks for that
number for entry of new data. Data for a question may be deleted with
the field delete key, but there is no reason to delete such data until
the number is needed for another question. Actual deletion of a
question consists of removing references to its number from the action
windows of the Menu Configuration Menu.

Each menu supports only nine choices, so that selection may be made by
the entry of a single character, and to keep each screen display easy

for the operator to scan. Extensive menu systems may nonetheless be
constructed by thoughtful arrangement of sub-menus of related groups
of functions called from a main menu,

Copyright (c) 1984 Data Access Corporation 05/16/84

ELEMENTS OF CONFIGURATIONS

There are several types of arguments (see Definitions) which can be
acted upon by a DataFlex command. These serve the purpose of enabling
the manipulation of various types of information both literally and
symbolically. Arguments are established by DataFlex commands, file
structure definitions or various forms of delimiters, and are
identified by symbols.

The DataFlex commands which establish arguments are declarative in
nature, i.e. they provide no action other than establishing the
variable. These commands are treated separately in the chapter on
"Definition Commands". There is a Definition command for each of the
argument types, which are listed below:

ARGUMENT TYPES
STRING
NUMERIC
DATE
INTEGER
INDICATCR

Most arguments have both a type and one of the classes listed below:

ARGUMENT CLASSES
CONSTANT
VARIABLE
DATA BASE ELEMENT
WINDOW

CONSTANTS are explicit data values that do not change. For example, 3
is a numeric constant; 12/12/83 is a date constant.

VARIABLES represent data values that can change in the course of a
configuration's execution. It is maintained in the computer's memory,
and is of a fixed length. A variable is "typed" as listed above, and
can contain only information consistent with its type. If data is not
of the proper type for a variable, DataFlex will convert it to the
proper type when it is MOVEd. (see MOVE command) Varfables fn
DataFlex are global in a configuration.

DATABASE ELEMENTS are the smallest discrete addressable components of
the database. In DataFlex they are addressed with the syntax
"FILENAME ,FTELDNAME" where FILENAME is the DF_FILENAME established for
the data file in the DataFlex FILEDEF Utility, and FIELDNAME is the
TAG_NAME established for the data field in the DataFlex FILEDEF

Copyright (c) 1984 Data Access Corporation 05/16/84

-2 ELEMENTS OF CONFIGURATIONS DataFlex 2.0 User's Manual

utility. Any database element existing on any addressable disk drive
can be addressed from any configuration.

EXAMPLES :
DF_FILENAME.TAG_NAME
INVENTORY.QTY_IN_STOCK

WINDOWS are typed and formatted positions in DataFliex screen images.
They are addressed by reference to the name of the PAGE of which they
are a component, and their sequential position in that page. The
sequence is established by numbering the windows from left to right,
top to bottom in the PAGE; i.e. the top leftmost window is number 1.
The number is combined with the name of the PAGE in the following
format: PAGENAME.# where "#" is the sequential number of the window in
the page. Symboiic names can be created for windows with the NAME
command.,

STRING CONSTANTS

A text string constant is a literal representation of a group of
printable characters that is handled "as is" by the command processor.
The string is defined to the DataFlex command processor by enclosing
the group of characters in single ('string') or double ("string")
quotation marks as delimiters. The form of the quotation mark
selected to start the delineation of the text string must also be used
as the marker for the close of the string., This is done to allow the
use of either of the text string delimiters within a string.

EXAMPLES :

'text string' "computer" 'Press <ESC> to exit... !
"Tom's file" 'In case of fire, yell "HELP"!!

Care must be taken to use the correct combination of beginning and
ending quotation marks with strings that contain the alternate form.
For example, the string 'I can't gol' would be interpreted by DataFlex
as 'I can'. "I can't gol!", however, would be interpreted correctly.

STRING VARIABLES

A string variable 1s a name which you designate to represent a string
of characters which will have a consistent meaning (but with contents
that vary) throughout your application (for example, "CUSTOMER_NAME").
The variable name must be declared (using the STRING command), and its
Tength either specified in the command or not specified, in which case
it defaults to 80 characters. The string variable must be declared
before it is used. After declaration, the string variable can be
referenced or accessed by name throughout a configuration. Variable
names may be up to 80 characters in length, must begin with a letter,
and may not contain a space.

If you don't specify your variable's length, but the contents are only
four characters ("Bi11"), DataFlex will stil1 handle it as 80
characters long (with 76 spaces, in this casel). So for variables

Copyright (c) 1984 Data Access Corporation 07/18/84

DataFlex 2.0 User's Manual ELEMENTS OF CONFIGURATIONS Cc-3

with short contents, you can save a great deal of memory space by
defining your variables as short ones (see examples below). String
variables can have more than 80 characters in them, too, if they're
defined to. They may have up to 255 characters in them, if needed.
But remember, variables defined as large will always be large, even
when their contents are short. "Bi11" would be 255 characters if it
were the contents of a string variable defined as having length 255.

The command format for declaring a string variable is:
STRING variable_name {string length}
EXAMPLES :

STRING flag 1

STRING response

STRING an_input 10

STRING my_entry 100

The strings "FLAG", "RESPONSE", "AN INPUT" and "MY ENTRY" are
declared for a DataFlex configuration by the above commands.
"FLAG" is defined as having a length of one (1) character,
"RESPONSE" {s defined to eighty (80) characters by default,
since length isn't specified in its command, "AN INPUT" is
defined to a length of ten (10) characters, and "MY_ENTRY" is
defined to a length of one hundred (100) characters.

NUMERIC CONSTANTS

Numeric constants are single, specific numeric values that are used in
expressions or other forms of numeric arguments.

EXAMPLES :

1 234 100 100000 -50 10.52
(diameter*3.14) (FICA_WAGES*13.7)

On the first example line, the six numbers are simply that: numbers
that can be used wherever and however useful or necessary. On the
second example line, the values 3.14 and 13.7 are numeric constants
used in expressions.

NUMERIC VARIABLES

A numeric variable is a named symbolic representation of a number that
can be used as the subject of a DataFlex command's execution or
expression evaluation. The numeric variable must be declared before
it is used. After declaration, it can be referenced or accessed by
name throughout a configuration. Only numbers may be stored in a
numeric vartable.

Multiple numeric variable arguments can be defined on a single
definition line. The variable names must be separated by spaces.

Copyright (c) 1984 Data Access Corporation 07/18/84

c-4 ELEMENTS OF CONFIGURATIONS DataFlex 2.0 User's Manual

FORMAT :

NUMBER varfable_namel variable_name2 ... variable_namen
EXAMPLES ¢

NUMBER quantity
NUMBER amount_due credit

NUMBER area_code phone_exchange phone_number

The allowable range of values for numeric variables in DataFlex is:
+ or - 99,999,999,999,999.9999

EXPRESSIONS

Arithmetic expressions are numeric type arguments that are evaluated
as they are acted upon by DataFlex commands. Expressions do not have
to be evaluated first and then placed into a variable. They are
automatically evaluated by the DataFlex command processor when
encountered during the execution of a configuration. The result of
the expression is then processed by the command.

Any valid numeric representation may be a component of an expression
including: numeric constants, numeric variables, numeric elements in
the data base (addressed as filename.fieldname). date vartiables or
data input from the keyboard by an operator and stored in a data

window.

The following symbols are used to instruct the command processor how
to perform the expression evaluation:

ADDITION
SUBTRACTION
MULTIPLICATION
DIVISION

RETURN GREATER THAN
RETURN LESS THAN
PARENTHESES

~ AV N X+

ven)

The first four operators above are self-explanatory. However, the
last two expression operators require some explanation. Two numeric
arguments are supplied to these operators, and depending upon the
symbol selected, the greater or lesser of the arguments will be
returned. For example: in 3>5, S5 will be returned; in 3<5, 3 will be
returned. Mo modification is made to the data. These evaluations only
make selections.

Expressions are formatted by enclosing the numeric arguments which
make up the expression, with operators, in parentheses. The DataFlex

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual ELEMENTS OF CONFIGURATIONS C-5

command processor recognizes the parentheses and evaluates the
expression, making the result available for command processing just as

if a constant had been used in place of the expression.

EXAMPLES :

(argl + arg2) (balance + sale)
(argl - arg2) (balance - payment)
(argl * arg2) (quantity * value)
(argl / arg2) (principal / months)

Multiple levels of parentheses are supported to control the sequence
of the arithmetic evaluation of the expression. In an expression that
contains multiple parentheses, the portion of the expression contained
in the innermost pair of parentheses will be evaluated first.

EXAMPLE :

(unit_cost)*(reorder_qty ~ qty_on_hand))

In this example, UNIT_COST would be multiplied by the
difference between REORDER_QTY and QTY_ON_HAND because the
difference is enclosed in parentheses. Without the
parentheses, UNIT_COST would first be multiplied by
REORDER_QTY, and QTY_ON_HAND subtracted from the product, a
meaningless result.

Without parentheses in an expression, evaluation is left to right.

DATE VARIABLES

NOTE: DataFlex supports two date formats in different versions of the
product. The two supported formats are MM/DD/YY and DD/MM/YY.
We refer to the latter as the "Euro-date" format. For the.
purposes of this documentation we will refer to formatted dates
as MM/DD/YY, even though Euro-date versions of DataFlex accept
and return dates in the format of DD/MM/YY.

Dates are stored in DataFlex in Julian form as numbers. The displayed
and printed date format MM/DD/YY which appears in screens and reports
is a de-coded representation of the numeric storage format. A date
variable can be defined to manipulate date information within a
configuration by using the DATE definition command. Multiple date
variables can be defined on a single argument definition line.

The data stored in the date variable is a Julian numeric value.
Therefore, any operation requiring calculations on dates can be
executed directly by reference to the variable without the necessity
for type conversion. When dates are output to screens and reports,
internal DataFlex routines which are flagged by the data type of the
variable decode it automatically into the MM/DD/YY format.

Copyright (c) 1984 Data Access Corporation 07/18/84

C-6 ELEMENTS OF CONFIGURATIONS DataFlex 2.0 User's Manual

FORMAT :
DATE date_variablel ... date_variable9
EXAMPLES :
DATE due
DATE today tommorrow yesterday invoice_due
DATE CONSTANTS
Date constants (expressed as MM/DD/YY) can be used as the subject of
DataFlex commands, but they cannot be used within expressions. They

can be placed in date variables using the DataFlex "MOVE" command for
use in date variables.

EXAMPLES :
LEGAL -- DATE BIRTHDAY
MOVE 01/16/46 TO BIRTHDAY
LEGAL -- DATE BIRTHDAY

MOVE 01/16/46 TO BIRTHDAY
CALCULATE (BIRTHDAY + 365) TO NEXT_BIRTHDAY

ILLEGAL -- CALCULATE (01/01/83 + 10) TO INVOICE.DUE

LEGAL -- DATE DATE_SOLD
MOVE 01/01/83 TO DATE_SOLD
CALCULATE (DATE_SOLD + 10) TO INVOICE.DUE

FILENAMES

The "df_filenames" of DataFlex data base files can be used as command
arguments. Valid "df_filenames" that can be used as arguments must be
established with the DataFlex FILEDEF utility (see the section of this
manual on File Definition for a discussion of the df_filename
conventions).

FORMAT :
OPEN df_f1lename
"df_filename" in the format example is an argument for the
OPEN command.

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual ELEMENTS OF CONFIGURATIONS c-7

EXAMPLE:

OPEN inventory
CLOSE customer

The symbolic names of individual elements in a database can be used as
arguments for a variety of DataFlex commands. A specific, formatted
syntax is provided to represent these arguments, which are composed of
the filename and fieldname of the data base element:

FORMAT :
FILENAME . FIEL DNAME
EXAMPLES :
inventory.description
customer.current_balance
customer.credit_limit
INDICATORS

An indicator is established by 1ssuing an INDICATOR command with the
indicator name as the argument of the command. It takes on the
characteristics of a "flag" which is tested by the configuration to
determine whether a command 1ine or group is to be executed. The
INDICATOR command only establishes an indicator; it does not "set" it
to a status.
FORMAT :

INDICATOR indicator_argl ... indicator_arg9
EXAMPLES :

INDICATOR pass fafl new old change

See the chapter on INDICATORs for more information.

Copyright (c) 1984 Data Access Corporation 05/ 16/84

Cc-8 ELEMENTS OF CONFIGURATIONS DataFlex 2.0 User's Manual

THIS PAGE INTENTIONALLY LEFT BLANK

Copyright (c) 1984 Data Access Corporation 05/16/84

DECLARING DATA ELEMENTS

There are five DataFlex Definition Commands:

STRING
NUMBER
DATE
INTEGER
INDICATOR

They serve to provide the configurator with a means of identifying
typed variables to the DataFlex compiler. Once identified, the
variable argument can be used at will throughout the configuration.
The definition command which establishes a variable must precede the
first use of the variable in a given configuration.

FORMAT :

COMMAND variable_arg
EXAMPLE :

STRING keyboard_input
The first three definition commands support the three data types which
can be defined in a DataFlex file structure: ASCII strings, numbers
(stored as packed BCD), and dates (Julian - stored as packed BCD

numbers). In the case of the NUMERIC and DATE commands, up to nine
(9) variables can be defined on a single command line.

STRING Command

If the maximum string length is not specified, a default maximum
length of 80 characters is assigned by DataFlex. Use of defined
string space is not dynamically allocated in memory; therefore,
length specification can significantly conserve memory utilization.
Strings consume their defined length plus 2 bytes in memory. The
allowable range for string length specification is from 1 to 255
characters.

FORMAT :

STRING varfable_name {string length}

Copyright (c) 1984 Data Access Corporation 05/16/84

C~10 DECLARING DATA ELEMENTS DataFlex 2.0 User's Manual

EXAMPLES :

STRING flag 1

STRING response

STRING my_entry 100

The string variables FLAG. RESPONSE, and MY_ENTRY are declared
for a DataFiex configuration by the above commands. FLAG is
defined to one (1) character, RESPONSE is defined to eighty
(80) characters by default, and MY_ENTRY is defined to a
length of one hundred (100) characters.

If entry is subsequently made to a string variable which exceeds the
declared length of the variable, excess input will be discarded, such
as:

STRING code 3

MOVE "ABCDE"™ TO code

CODE will not contain ABCDE. It will contain only the first 3
characters, ABC. No error will be declared unless one is
provided for the condition in the configuration.

NUMBER Command

Multiple numeric variable arguments can be defined on a single
definition 1ine. The variable names must be separated by spaces.

FORMAT:
NUMBER variable_namel variable_name2 ... variable_namen
EXAMPLES :

NUMBER quantity
NUMBER amount_due credit
NUMBER area_code phone_exchange phone_number

A NUMBER variable consumes 10 bytes of memory, and has a value of zero
automatically when it is declared. If there is sufficient memory for
storing them, DataFlex can manage up to 32,767 active NUMBER variables
at one time. The range of numbers in DataFlex is:

+ or - 99,999,999,999,999.9999

DATE Command

Multiple date variable arguments can be defined on a single command
line.

FORMAT :
DATE date_argl ... date_argn
EXAMPLES :

DATE {nvoice_date
DATE due_date first_reminder second_reminder

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual DECLARING DATA ELEMENTS C-l11

INTEGER Command

The INTEGER command allows the creation of a memory variable to
contain an integer value. It differs from the NUMERIC variable in
that the INTEGER variable consumes less memory for storage, and, of
course, does not support fractional accuracy in calculations.

However, the greatest value of integers in configurations is when they
are used for counters, in FOR loops, and with the INCREMENT command.
Some pre~defined integers provide access to DataFlex system variables
(e.g. ERRLINE = the last error line).

The range available for integers is pius or minus 32,767. There is no
INTEGER storage type in the data base; all numbers are stored on disk
as binary coded decimals (BCD). In memory, however, a NUMBER data
element consumes 10 bytes, while an INTEGER data element occupies only
2 bytes.

FORMAT:
INTEGER argumentl ... argumentN
EXAMPLES :

INTEGER my_age
INTEGER qty_sold qty_returned qty_shipped

Integer variables are stored in an internal array in the order in
which they are declared. When the DataFiex CHAIN command is executed,
the integer array is not reinitialized. This provides the facility to
pass integer values from one configuration to another without writing
the values to a file.

The internal integer array is sequentially allocated as the variables
are declared. Therefore, if it is desired to pass integer values in
CHAINed configurations, we suggest that the same integer names be
declared at the beginning of each configuration to provide for a
consistency in variable referencing. When integer values are not
passed between configurations, they should be initialized before use.

EXAMPLE :

MOVE 0 TO sheep_counter // initialize sheep_counter

Copyright (c) 1984 Data Access Corporation 05/ 16/84

C-12 DECLARING DATA ELEMENTS DataFlex 2.0 User's Manual

The INDICATOR definition command defines a special type of DataFlex
argument which is used for conditional processing and program control.
The INDICATOR command creates an "indicator".

The named indicator established as the argument of the INDICATOR
command takes on the characteristics of a "flag" which 1s tested by
the configuration to determine whether a command line or group is to
be executed. Indicators are discussed fully in the section on
"Conditional Execution".

FORMAT :

INDICATOR indicator_arg

Copyright (c) 1984 Data Access Corporation 05/16/84

MOVE Command

MOVE provides the facility to "transport" data throughout a DataFlex
application without regard for the type or location of the source or
destination arguments. Data can be MOVEd from window to window,
window to data base "element", element to window, element to element,
expression to window or element, etc., etc. Where expressions are
part of the MOVE command, they will be automatically evaluated with
the result being MOVEd to the destination argument. Further, any
required type conversions will also be executed automatically.

FORMAT:
MOVE source_var TO destination_var

EXAMPLES :
MOVE "Dataflex" TO string arg
MOVE 06/01/83 TO date_arg
MOVE (invt.qty - qty_ordered) TO invt.qty
MOVE screen.date TO invoice_date // then...
MOVE (invoice_date + 30) TO invoice.due

The MOVE command decodes the type of the destination variable and
internally generates one of the following types of move commands for
the command processor:

MOVENUM for numbers
MOVEINT for integers
MOVESTR for strings

Neither variable may be a label or indicator. While the source may be
a literal string or number, the destination variable may not be. The
MOVE command will not update accumulators in the SUBTOTAL section of
the REPORT macro. See the PRINT command for this purpose.

Copyright (c) 1984 Data Access Corporation 05/16/84

C~14 MANIPULATING DATA ELEMENTS DataFlex 2.0 User's Manual

INCREMENT Command
The INCREMENT command operates on an integer variable, and is used as

a counter for loops and repetitive operations. Literals, labels, and

indicators may not be used in this command. It increments only by the
integer 1.

FORMAT:
INCREMENT integer_var

This command is equivalent to:
MOVE (integer_var + 1) TO integer_var

...but is faster in operation.

CALCULATE Command

The CALCULATE command is used to evaluate an expression and move the
result to a destination variabie of the numeric type. When using the
CALCULATE command you must determine if the destination argument is of
the numeric type. If you are not sure, use the MOVE command instead.
MOVE can also evaluate expressions.

An abbreviation of the CALCULATE command, "CALC" can be used inter-
changeably with the full command word.

FORMAT:
CALC{ULATE} expression_arg TO destination_var

EXAMPLES :
CALCULATE (12+6) TO g _total
CALC (date_ord+cust.terms) TO invoice.date_due
CALC (3.14%66.4) TO area

The destination variable may not be a label, indicator, constant, or
ASCII variable. It may be an integer, numeric, or date variable. The
CALCULATE command will not update accumulators in the SUBTOTAL section
of the REPORT macro. See the PRINT command for this purpose.

Copyright (c) 1984 Data Access Corporation 05/16/84

DATA ENTRY

Application requirements for data entry, file maintenance and file
inquiry, are efficiently met by the DataFlex ENTER command macro.
ENTER provides a compiete program skeleton for data entry using IMAGE
formats and Flex-Keys. The ENTER macro can handle multiple related
files, file update procedures, transaction creation and online
editing. There are user-defined procedures for specific operations so
the user can set up whatever auxiliary update procedures and error
trapping may be required.

Since command macros are stand-alone program skeletons, they can only
be used once in a configuration. Specific command statements are used
within and around the command macros to provide functions to
accommodate a variety of requirements.

The ENTER command invokes the ENTER macro, which is in fact an entire
group of processing routines that perform the following functions:

1. ENTER data via CRT screen images, with validation,
type checking, range checking and error trapping.

2. CREATE records in the data base with data entered through
the screen image, and in the process, update related data
base records, key indexes, etc., all without having to
create routines and procedures for such activities.

3. FIND data in the data base by key field and display it on
the formatted CRT "image". Single records or multipie
related records can be "found" with a single key stroke.
Data can then be inspected, scanned, edited, deleted.

4. EDIT existing records in the data base and in the process,
properly update related data base records, key indexes.,
etc. without custom routines and procedures.

5. DELETE records from the data base while processing all
required updates on-line.

6. CLEAR displayed data from the screen image.

Copyright (c) 1984 DataiAccess Corporation 05/ 16/84

C-16 DATA ENTRY DataFlex 2.0 User's Manual

The operation of the ENTER command macro assumes that the database
files dealt with have previously been defined with the DataFlex

FILEDEF or AUTODEF utilities.

Multiple records from different database files can be displayed with
ease and fiexibility by the ENTER macro. However, the structure of
the ENTER command does impose the limitation that only one record from
a given data file may be displayed on the screen at one time. It will
not, for example, support a multi-item format l1ike an invoice. Con-
figurations requiring multi-line formats should be "programmed" with-
out the use of the ENTER macro. The ENTERGROUP command is useful in
applications requiring multi-line formatting. See the INVOICE.FRM
demo file for an example of a programmed multi-line (non-ENTER)
configuration.

A specific command structure is used with the ENTER macro, and there
are a series of optional commands designed to control the formatting
and actions which occur within the data windows of the screen image.
Configuration examples at the end of this chapter can serve as a
useful guide during the discussion of these commands.

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual DATA ENTRY Cc-17

ENTER CONFIGURATION STRUCTURE:

/7 IMAGE SECTION === ====

/pagenamel // start image section
---- first page of image ---
/pagename2 // can have multiple images

---- following pages of image ---

/* // end of image section
/7 PRE- ENTER COMMAND SECTION
OPEN filel // open all files and
OPEN file2 // initialize any variables used and
// give window formatting commands
// m=======a==== INVOKE ENTER MACRO USING ENTER COMMAND ====s=====z==
ENTER filel file2 // start ENTER mini program

// declare related files in order:
// “senior" to "junior"

1 ENTRY SECTION

AUTOPAGE page // AUTOPAGE required only for
// second and following screens

ENTRY field {window} {options}

ENTRY ... ceee vesss //0ne ENTRY for each window

ENTRY field {window} {options}

RETURN // required at end of ENTRY section
// ====zzsss====== OPTIONAL USER-DEFINED PROCEDURES

ENTER.SAVE: // save procedure

--- commands -- // save procedure commands

RETURN // end of save procedure

ENTER.EXIT: // exit procedure

--= commands --- // exit procedure commands

RETURN // end of exit procedure
ENTEREND // End of ENTER mini program
// OPTIONAL POST-ENTRY PROCESSING

The above sections: Image Section, Pre-Enter Commands, Enter Command
Line, Entry Section, User-Defined Procedures and Post-Entry Processing
are discussed below. The section markers shown above are for instruc-
tive purposes oniy. They are not required in actual configurations.

Copyright (c) 1984 Data Access Corporation 05/16/8:

C~18 DATA ENTRY DataFlex 2.0 User's Manual

ENTER IMAGE SECTION:

The IMAGE SECTION in a configuration using ENTER should start with one
or more "fill in the blanks" forms for the operator. These images
will be a window into the database for the file(s) used in the
configuration. The same images can be used for all file maintenance
functions and will use the Flex-Keys. The image form should contain
prompting to inform the operator on the contents of the windows that
are displayed. Each page of the image must be preceded with a
pagename ("/" followed by the name of the page). Help screens may be
included in the image section (see the HELP command). The image
section of the configuration is terminated with a "/*",

ENTER PRE-ENTER SECTION:

In the PRE-ENTER section, all of the files that will be used by the
ENTER macro must be OPENed. The OPEN command is further described in
the section on "Manipulating Records". Any other DataFlex commands
required to ready the system for a data entry session should be
included here.

ENTER COMMAND LINE:

The ENTER COMMAND LINE must specify all of the database files that the
ENTER macro will access during execution. The files listed on this
line will be automatically SAVEd and CLEARed (when the operator
presses the SAVE Flex-Key or presses <RETURN> in the last window of an
image). Other files that are open may still be used within the ENTER
macro but if it is required to SAVE and CLEAR any such file, those
actions must be written into the configuration explicitly. FIND,
RELATE and DISPLAY operations on records from such non-ENTER files
will still be performed automatically.

The SEQUENCE in which the files on the ENTER command 1ine are declared
is significant. The "main" file, the one on which the primary file
maintenance is being done, MUST be the first file in the list in a
left to right sequence. Any file which is related TO by the main file
must be declared to the right of the main file, and any file TO which
that file relates should be listed next. This will put the files in
order with relationships pointing to the right and is required to
ensure that when a record is SAVEd it is properly attached to the
file(s) to which it relates. This also ensures that DELETIONS will
properly delete the relationships to the record{s) which are DELETEd.

The chapter on "File Definition" explains relationships among database
files. Following the example given in that chapter, an ENTER command
1ine for the Sales Transactions file would read "ENTER TRANSACTION
PARTS CUSTOMER™, and the PARTS and CUSTOMER database files would be
updated through entries made into the TRANSACTION main database file
(including new PARTs, new CUSTOMERs, and changes in both).

Copyright (c) 1984 Data Access Corporation 05/16/84

DATA ENTRY C-19

DataFlex 2.0 User's Manual

ENTER ENTRY SECTION:

The ENTRY SECTION is the primary interface with the data entry oper-
ator. The object of the entry section is to logically connect the
data base elements with the data windows in the image. This is done
with the ENTRY command. The ENTRY command handles the display of
data, finding records, moving data into the record buffer and clearing
the windows. When each of the above operations is executed, the
entire entry section is scanned for ENTRY commands. One or more
options can be placed on each ENTRY command line to provide formatting
for the data controlled by the command.

The ENTRY command differs from any other DataFlex command in that it
has several different functions and that they can be executed in any
sequence. EXAMPLE: If the FIND Flex-Key is used in a window
controlled by an ENTRY command, all of the ENTRY commands are scanned.
If the FIND is successful, EVERY data element in that file for which
there is an ENTRY command will display its contents in its data
window.

Other commands (INDICATORs, GOTOs, etc.) can be included in the ENTRY
section to control the sequence of operation or set conditional
entries. SAVE commands should be avoided in the ENTRY section. When
data is put into a data window with the ENTRY command, the data is
JUST in the data window; 1t isn't moved into the record buffer until
a SAVE is done. The CLEAR Flex-Key will clear windows controlled by
ENTRY commands, but not those controlled by DISPLAY commands (see
section on Direct Control of Data Entry for DISPLAY command).

The format of the ENTRY command is as follows:

ENTRY filename.fieldname window {options}
where "filename,fieldname" is any database element in an open
file or an expression (for calculated fields).

In this instance, the brackets {} are to be actually typed in the
configuration, contrary to the notation elsewhere in this manual where
brackets are used only to signify optional command elements to the
reader of the manual.

Format options for the ENTRY command are as follows:

FUNCTION SYNTAX

DECIMAL POINTS {POINTS=n} where "n" is the number of places to the
right of the decimal point in the window. This can
reformat a window or can be used to configure an
integer-only numeric field by setting a value of zero
(0) for "a".

Copyright (c) 1984 Data Access Corporation 05/16/84

C-2C¢ DATA ENTRY DataFlex 2.0 User's Manual

AUTOF IND* {AUTOFIND} Executes a FIND EQuals on the main index of
which the data element on the ENTRY command line is a
part. If the desired FIND is on a multi-segment
index, the AUTOFIND should be on the last entry
command for the segments that make up the index, so
that all data necessary for FINDing has been entered
prior to execution of the AUTOFIND. Record number may
not be part of the index of which the AUTOFINDing data
element is a part. Windows for data from related
files will also be filled, provided there are ENTRY
commands for those windows.

SKIP IF FOUND* {SKIPFOUND} Display data in the window if a record is
FOUND with key data matching the data in the window,
and move the cursor to the next window. If no such
record has been FOUND, leave cursor in window and
accept operator input.

FIND REQUIRED* {FINDREQ} Requires that an active record be in the
buffer before the operator can pass this window in the
image. The cursor will remain in this window until a
successful FIND is completed. The BACKFIELD Flex-Key
can move the cursor in reverse to execute the FIND on
another window. Pressing the CLEAR Flex-Key will
return the cursor to the first window on the image.

UPPER CASE {CAPSLOCK} Converts all lower case alpha characters
entered in the window to upper case.

REQUIRE ENTRY {REQUIRED} The cursor cannnot be moved to the next
data entry window until data has been entered into the
current window.

RANGE CHECK {RANGE = #1, #21 (RANGE = mm/dd/yy, mm/dd/yy} Provides
an automatic check of entered data and declares an
error and returns the cursor to the window if the date
or numeric value entered does not fall within the
specifications in the command. The first value is the
Tow end of the range, and the second is the high end.
The upper and lower values in the command are included
within the valid range. Literal numbers and dates can
be used, Variables may not be used.

VALIDITY CHECK {CHECK="entryll|entry2lentryn"}{CHECK=string var}
Provides an automatic check of entered data and
declares an error and returns the cursor to the window
if the entry does not match any substring in the CHECK
command., Where an eligible entry has fewer characters
than the window, the excess characters must be speci-
fied as spaces (shown below as B). The vertical bars
(!) shown below are recommended optional delimiters.
Delimiters, if used, should be characters unlikely to
be input erroneously by operators. The command may
alternatively reference a previously-defined in-memory
string variable (not a window or database element):
{CHECK=""YES |NOY | YS¥ INBE"}

DataFlex 2.0 User's Manual DATA ENTRY C-21

FORCE PUT {FORCEPUT} Puts data in the windows to the record
buffer regardless of whether any data has been changed
from that originally displayed. Normally, a put will
not occur unless some data has been changed.

DO NOT PUT DATA {NOPUT} Do not put data from the window into the
record buffer. This protects data from being changed
by the operator.

NO DATA ENTRY {NOENTER} Data from the found record is displayed, but
: the cursor skips the window, preventing entry.
NOENTER skips the window even if no record is found,
unlike SKIPFOUND (see above).

DISPLAY ONLY {DISPLAYONLY} Combination of NOPUT and NOENTER above.
Data is not moved from the window into the record
buffer, and the cursor skips the window.

RETAIN DISPLAY {RETAIN} Maintain the data in window even if a CLEAR

command is executed, but clear the window if two
successive CLEARs are keyed.

RETAIN ALWAYS {RETAINALL} Maintain data in window at all times;
never clear.

* The commands with asterisks are all FINDing commands, and may be
used only on windows relating to indexed database elements (see the
chapter on "Designing Databases" for more information on indexing).

The command options, and the formatting options above can all be used
cumulatively on an ENTRY command line:

ENTRY file.field page.5 {AUTOFIND,SKIPFOUND,CAPSLOCK}

The maximum length of any DataFlex command line is 255 characters.
Multiple options on an ENTRY command line are all enclosed within the
brace characters (braces}, separated by commas (,).
A special form of the ENTRY command is used where expressions are to
be displayed. The default mode of the window becomes display only
when this format is used.
FORMAT :

ENTRY (expression) window_arg
EXAMPLE :

ENTRY (date_today+30) screen.5
ENTRY AND AUTOPAGE
The ENTRY command can be used without specific reference to image
windows by using the-AUTOPAGE command. (AUTOPAGE functions automati-

cally in the ENTER macro for the first screen image, and needs to be
explicitly written only if there are two or more screens.) AUTOPAGE

Copyright (c) 1984 Data Access Corporation 05/16/84

C-22 DATA ENTRY DataFlex 2.0 User's Manual

sequentially (left to right, starting witht the top line and working
down) accesses the windows of the screen image named as the argument
of the command (see the section of this manual on Direct Control of
Data Entry), and permits the window references to be left off.

NOTE: The ENTRY command can ONLY by used within the ENTRY section of
the ENTER macro or within the ENTERGROUP command.

Since ENTER is internally composed of a set of subroutines, a RETURN
command is required to terminate the ENTRY section of the configura-
tion.
If you don't need any of the user-defined procedures or post-entry
processing, you may simply end the ENTER configuration with an
ENTEREND.
The next page illustrates a totally straightforward, unimaginative,
yet efficient ENTER configuration. It makes use of the AUTOPAGE
function, so page window references are not necessary. It has all of
the components of an ENTER configuration:

1. A Tabeled image

2. An OPEN command with filename argument

3. An ENTER command with filename argument

4. ENTRY commands with data element arguments

5. ENTRY commands terminated by a RETURN

6. An ENTEREND command to end the configuration

Copyright (c) 1984 Data Access Corporation 07/18/84

DataFlex 2.0 User's Manual DATA ENTR c-23

EXAMPLE FORMAT FOR ENTER

JLIST
My Mailin! List
Name:
Address:

City:

State: __ ZIP:
/*
// =~ pre~enter --

OPEN MAIL // open data file

ENTER MAIL - // start enter macro

// == begining of entry section --

AUTOPAGE LIST // sequentially assign windows
// not actually required in this
// single-screen configuration

ENTRY MAIL.NAME {AUTOFIND}

ENTRY MAIL.ADDRESS

ENTRY MAIL.CITY

ENTRY MAIL.STATE {CAPSLOCK}

ENTRY MAIL.ZIP

RETURN // end of entry section
// not actually required since next
// command is enterend

ENTEREND // end of enter macro

Copyright (c) 1984 Data Access Corporation 05/16/84

C-~24 DATA ENTRY DataFlex 2.0 User's Manual

THE USER-DEFINED PROCEDURES

Many ENTER configurations will need to perform updates in related
files, have error checking or delete protection built in, etc. These
operations are accommodated by five user-defined procedures which are
automatically executed when the corresponding DataFlex Flex-Key is
pressed during the execution of the ENTER configuration. The User-
Defined procedures are:

ENTER.SAVE: executed on a SAVE command

ENTER.DELETE: executed on a DELETE command

ENTER.EDIT: executed on an EDIT and on a DELETE command
ENTER.CLEAR: executed on a CLEAR command

ENTER.EXIT: executed on an EXIT command

These User-Defined procedures are automatically called by the ENTER
command macro, but they are functionally no different from any other
labeled DataFlex sub-routine called by your own GOSUB commands. The
inclusion of the colon ":" at the end of the procedure name is
required to identify them as Tabels; omitting the colon will cause an
error.

If an ERROR is declared within any of the procedures the associated
function will be disabled.

The ENTER.SAVE procedure is executed whenever a new record is created
or an existing record is edited.

The ENTER.DELETE procedure is executed whenever an existing record is
deleted.

The ENTER.EDIT procedure is executed whenever an existing record is
deleted OR an existing record is edited. This works well with the

save procedure to keep the consistency of counters and totals in a
related file.

The ENTER.CLEAR procedure is executed whenever the CLEAR Flex-Key is
pressed.

The ENTER.EXIT procedure is executed whenever the escape key is hit
and is primarily intended to allow conditional disabling of the escape
key by declaration of an error.

Each of the User-Defined procedures must be individually terminated
with the use of a RETURN command (see the example on the next page).

Copyright (c) 1984 Data Access Corporation ’ 05/16/84

DatafFlex 2.0 User's Manual DATA ENTRY c-25

The configuration below illustrates the use of the ENTER.SAVE and
ENTER.EDIT procedures, which are executed every time a record is saved
and edited/deleted, respectively. An application requirement for a
matling 1ist uses only one file for the 1ist information. However, it
is desired to maintain an on~1line counter of how many records are in
the file. To do this we will establish a field in the system file
(SYSFILE.COUNTER) that contains the number of records in this file.

To maintain the count correctly, the counter must be incremented when
a record is created; when a record is deleted, the counter must be
decremented, and when an edit is done, the counter must be left
unchanged.

/LIST

My Mailin' List

Name:
Address:
City:
ST: ZIP:

/®
// only those parts of this example that are changed have comments

OPEN MAIL
OPEN SYSFILE // open other file,

ENTER MAIL
AUTOPAGE LIST

ENTRY MAIL.NAME {AUTOFIND}
ENTRY MAIL.ADDRESS
ENTRY MAIL.CITY
ENTRY MAIL.ST {CAPSLOCK}
ENTRY MAIL.ZIP

RETURN

// The ENTER.SAVE procedure will execute whenever a record is saved.
// When a record is created, only this procedure is executed,
// incrementing the counter.
ENTER.SAVE: CALC (SYSFILE.COUNTER+1) TO SYSFILE.COUNTER
SAVE SYSFILE
RETURN // return from save procedure

// The ENTER.EDIT procedure is executed whenever a record is deleted
// or edited. For a deletion, it decrements the counter., It also

// decrements the counter in an edit, but true edits are followed by
// SAVEs, which execute ENTER.SAVE, offsetting the decrement to zero.

ENTER.EDIT: CALC (SYSFILE.COUNTER-1) TO SYSFILE.COUNTER
SAVE SYSFILE
RETURN // return from delete procedure

ENTEREND

Copyright (c) 1984 Data Access Corporation 05/ 16/84

C-26 DATA ENTRY DataFlex 2.0 User's Manual

ENTDISPLAY Command

The ENTDISPLAY command causes all ENTRY data elements for the data
file named in the argument to display on the screen, along with all
those in other related files. Its apparent effect is exactly as
though the SUPERFIND Flex-Key had been pressed by the operator. It
may be used in the ENTRY section of an ENTER or ENTERGROUP configura-
tion and/or in a KEYPROC (for the FIND key, for example).

FORMAT:
ENTDISPLAY <df_filename>
Where <df_filename> is the name of the data file from in which
the displayed record is to be found.

EXAMPLE :
FIND GE mail BY INDEX.1
ENTDISPLAY mail

ENTDISPLAY would be used, for example, in an alphabetic FIND such as
the one 1n the configuration above which is done with the AUTOFIND
option on the ENTRY MAIL.NAME line. If it is desired, however, to do
a FIND greater than or equal to (frequently desirable when the FIND
target's spelling is not exactly known), the AUTOFIND option will not
allow this, since it only does exact FIND equals. For that, the
following configuration would be appropriate (note the differences):

/LIST
My Mailin' List
Name:
Address:
City:
ST: __ ZIP:
/¥

// only those parts of this example that are changed have comments
// this configuration will always find a record

OPEN MAIL
ENTER MAIL
AUTOPAGE LIST
ENTRY MAIL.NAME // AUTOFIND removed here
FIND GE MAIL.NAME // FIND greater than or equal to added here
ENTDISPLAY MAIL // ENTDISPLAY command

ENTRY MAIL.ADDRESS
ENTRY MAIL.CITY
ENTRY MAIL.ST {CAPSLOCK}
ENTRY MAIL.ZIP
RETURN

ENTEREND
Another use of ENTDISPLAY is, in a multiuser environment, after a
REREAD command, to display the REREAD record for inspection.

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manpual DATA ENTRY c-27

POST-ENTRY PROCESSING:

After the end of the User-Defined procedures, the command ENTEREND
must be used to terminate the ENTER macro. When the escape key is
pressed, the ENTEREND command will close out the ENTER macro. At this
point you may ABORT configuration, CHAIN to another configuration, or
proceed with any other sequence of DataFlex commands.

ENTER -- SEQUENCE OF OPERATION:

An understanding of the order in which the ENTER macro executes
specific functions will aid in the development of more complex
configurations. Steps that involve specific multiuser operations are
identified. DataFlex systems in which single-user mode was selected
(see SETSCREEn procedures) will not perform these multi-user
functions.

CREATING A NEW RECORD:

a) Clear screen and clear record buffers.

b) Operator fills in the data windows.

c) Operator hits the SAVE key or exits the last image window.

d) Record is automatically locked and related records are re-
read from the database (multi-user systems only).

e) Data in data windows is moved to record buffer(s)
according to the ENTRY commands.

f) ENTER.SAVE procedure is executed (including any parts
defined by the user).

g) Records are ATTACHed and SAVEd to disk.

h) A1l records are unlocked (multi-user systems only).

i) Screen and record buffers are cleared for new entry.

EDITING AN EXISTING RECORD:

a) Clear screen and clear record buffers.

b) Operator FINDs a record in the main fiie by any available
key.

c) Related record(s), if any, are found and displayed.

d) Operator changes data in window(s).

@) Operator SAVEs record. |

f) Records are locked and all active records are re-read from
disk (multi-user systems only).

g) ENTER.EDIT procedure is executed (including any parts
defined by the user).

h) Data is moved from CHANGED data windows to record buffer.

i) ENTER.SAVE procedure 1s executed (incliuding any parts
defined by the user).

j) Records are ATTACHed and SAVEd to the data base.

k) A1l records are unlocked (multi-user systems only).

1) Screen and record buffers are CLEARed for new entry.

Copyright (c) 1984 Data Access Corporation 05/16/84

C-28 DATA ENTRY DataFlex 2.0 User's Manual

DELETING A RECORD:

a) Clear screen and clear record buffers.

b) Operator FINDs a record in the main file by any key.

¢) Related record(s), if any, are found and displayed.

d) Operator presses the DELete RECord key.

e) Records are locked and all RELATED records are re-read from
the data base (multi-user systems only).

f) ENTER.DELETE procedure is executed (including any parts
defined by the user).

g) ENTER.EDIT procedure is executed (including any parts
defined by the user).

h) Record in main file is deleted.

i} Related records are saved.

j) A1l records are unlocked (muiti-user systems only).

k) Screen and record buffers are cleared for new entry.

ENTSPERMISSIVE INDICATOR

The ENTER macro is designed to prevent errors of the sort which could
arise from operator sequences such as the following:

a. Operator finds a record and one or more related records by
use of SUPERFIND (the display of data from records in multiple
files related to each other is not necessarily apparent to the
operator);

b. Places cursor in a key field in a related-to record;

c. Presses FIND and FINDs another record in the related-to
file, bringing it into the record buffer with the earlier-
found relating record; and

d. SAVES this combination of possibly-unrelated records as
though they were related to each other.

What actually happens in this instance is that the ENTER.EDIT
procedure is executed on the NEW record instead of the OLD one. This
makes the totals and counters in both the old and new related-to files
incorrect.

This possibility {s eliminated by the internal resetting of the FIND
key to function as a SUPERFIND (i,e., it will find only combinations
of records actually related to each other) after a SUPERFIND has been
done, just as the NEXT RECord and PREVious RECord keys do. Similarly,
after a SUPERFIND, the AUTOFIND option is switched off on all but the
main file, so that those fields may be edited without interference
from undesired AUTOFINDing. If the option of editing the AUTOFINDing
fields is not desired, editing can be prevented by addition of the
NOPUT option to such fields.

The ENTSPERMISSIVE indicator will allow operational sequences 1ike the
one described above, which is normally an error, by not resetting the
functioning of the FIND key and the AUTOFIND option. For those
situations in which it {s a permissible sequence, the statement

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual DATA ENTRY c-29

"INDICATE ENTSPERMISSIVE TRUE™ should be given prior to the beginning
of the ENTER or ENTERGROUP macro. This option should not be used in
transaction-oriented applications in which counters are provided
and/or transaction totals are maintained.

Copyright (c) 1984 Data Access Corporation 05/16/84

C-30 DATA ENTRY DataFlex 2.0 User's Manual

THIS PAGE INTENTIONALLY LEFT BLANK

Copyright (c) 1984 Data Access Corporation 05/16/84

Two areas of activity consume a great portion of the development time
for application software: (a) data entry and file maintenance; and
(b) file output for reports, labels, preprinted forms and files. The
DataFlex ENTER command macro provides a predefined facility for
dealing with the requirements in the first area efficiently; the
REPORT command macro takes care of the second.

The REPORT command macro consists of an integrated set of selectable
predefined output routines that can be chosen as needed. You can use
the selected routines with DataFlex commands and arguments relating to
the requirement at hand to "fill in" an output "image" and then send
the image to the output device. The REPORT macro may be used only
once in a configuration. The REPORT macro is a convenience, usable
for most normal reporting needs. It is not a necessity. The chapter
on "Direct Reporting and Output" includes a simple report that does
not use the REPORT macro.

Likewise, the DataFlex utility QUERY generates REPORT configurations,
and one of the best ways to learn how REPORT works (if, indeed, there
is need for you to do so), is to "build™ your report in QUERY and then
study the source file generated by your work. Unless you need to
report from multiple related files, it is 1ikely QUERY can satisfy all
your reporting needs, and even if it can't, QUERY is an excellent way
to begin a REPORT configuration, by producing a source file which you
may then edit to contain all you need.

A REPORT configuration is divided into two major areas: image lines
and command lines. The image lines specify the headings, window
prompting, window formatting, etc. The command lines contain commands
that instruct the REPORT command macro how to "f{l1 in" data in the
image area(s) for output.

In this manual, we refer to a "report™ as a generalized formatted
output operation which may variously encompass formatted reports (in
fact), formatting for pre-printed forms, labels, file output, etc.

Sections of REPORT

The image and command areas of a REPORT configuration contain corres-
ponding labeled “"sections" which address different functional
requirements of a report. For example, one of the "sections" is the
Y"HEADER"., The HEADER section of the image defines how the top of each
page of the report is to look; perhaps your company's name, the name

Copyright (c) 1984 Data Access Corporation 05/16/84

C-32 REPORTING AND OUTPUT DataFlex 2.0 User's Manual

of the report, its date, page numbering, reporting sequence of the
data, and so on. Commands in the HEADER command section provide any
needed processing for data which is positioned and formatted in the
HEADER image section of the report. If there are data windows that
are filled in from variables in the configuration, such as for run
date or page number, the HEADER command iines "f{l11 in" the necessary
data in the windows. When data has been filled into a section, it is
QUTPUT.

The labeled "sections™ of a REPORT command macro are:

/HEADER
/SUBHEADER#
/BODY
/SUBTOTAL #
/TOTAL

The diagonal character (/) is part of the Tabel syntax. The "§" after
SUBHEADER and SUBTOTAL indicates a digit, 1 through 9, by means of
which levels (subtotal breakpoints) can be established. The use of
the sections and the names for both the image and command sections is
critical.

DO NOT attempt to use them in a different order or change the names.

Within the BODY section, note the PRINT commands. These commands have
two functions: (a) they move data elements from the database into
their respective positions in the section image(s) for subsequent
OUTPUTting; and (b) they update any subtotaliling or totalling
registers which may be assigned to the windows to which the data
elements are PRINTed. This command is the REPORT equivalent of MOVE
or DISPLAY, and should always be used in REPORT instead of the other
two commands, since MOVE and DISPLAY do not update subtotal and total
registers.

The following simple report sends five data fields to the default
output device (the printer) on a single Tine using only the HEADER and
BODY REPORT sections.

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual REPORTING AND OUTPUT C-33

/HEADER
CUSTOMER REPORT

CUSTOMER DISC PURCH/MO PURCH/YR PROFIT

/BODY RESIDENT

/¥
OUTFILE
OPEN CUST 1 // opens customer file, specifies index 1
REPORT CUST BY INDEX.l // invokes REPORT for "cust" file, INDEX 1
SECTION HEADER // defines HEADER section

OUTPUT HEADER // sends HEADER section to printer
SECTION BODY // defines BODY section

PRINT CUST.CUSTOMER // moves data to window
PRINT CUST.DISCOUNT // moves data to window
PRINT CUST.PUR MONTH // moves data to window
PRINT CUST.PUR YEAR // moves data to window
PRINT CUST.PROFIT // moves data to window

OUTPUT BODY // sends BODY section to printer
REPORTEND // ends REPORT macro
ABORT // ends configuration, return to op. system

Several necessary components of all REPORT configurations are shown
here:

1. A screen image (this one has 2 pages), followed by the
/%" marker. The BODY page has the RESIDENT option elected.

2. The OQUTFILE command, required to initialize the output
device (the default device in this case) for the configuration.

3. The OPEN command, which opens the main data file for
access by 1ts index 1. The definition for that file (CUST) created in
FILEDEF are now available to the configuration.

4, The REPORT command, which invokes the REPORT macro for the
execution of the commands that follow. The filename referenced on the
REPORT command line places the specified file under control of the
macro. The index referenced is the index that will be used to
determine the sequence of the output of the data.

5. SECTION HEADER and SECTION BODY label the appropriate
command sections., Since there is no variable or data base information
PRINTed into the HEADER section, only the OUTPUT command is required
to execute the HEADER. PRINT commands are used to move data into the
image in the BODY section, from which it is OUTPUT. Only the PRINT
command will properly update subtotal accumulators (MOVE will not).

6. REPORTEND is the required terminator for the REPORT
command; ABORT then terminates the configuration.

Copyright (c) 1984 Data Access Corporation 05/16/84

C-34 REPORTING AND OUTPUT DataFlex 2.0 User's Manual

DataFlex "invisibly" provides an AUTOPAGE command at the beginning of
each section, and a RETURN command at the end.

The BODY of the report is the main section for general purpose output.
For example, in that only the necessary "sections" of the REPORT
command macro are used in a configuration, a report comprised of one
line of data with no totaling or subtotaling might use only the
HEADING and BODY Sections. Any of the sections may have multiple
lines, including the BODY section, which would mean that each record
reported would be reported on several lines, often a very desirable
feature (as in the case of mailing addresses). The maximum Tine
length which can be reported is 255 characters, but in all 1ikelihood,
your practical 1imit will be the Tine Tength of your output device
(printer or screen).

Subtotalling and Totalling

The DataFlex REPORT command macro supports up to nine levels of
subtotaling. The SUBHEADER# and SUBTOTAL# are linked in the processing
of subtotal breaks. For exampie, SUBHEADER3 is the subheading column
headers and labels that would appear at the top of information
subtotaled in the third level of subtotalling. Totaliling and
subtotalling are discussed further later in this chapter.

The TOTALs section accumulates running cumulative totals for the
entire output and, if total printing is provided for in your
configuration, prints them at the bottom of the report.

It is not necessary to use all of the REPORT macro "sections" in a
configuration. Only those sections needed for the desired report reed
be used. Every image section used, however, must have a matching
command section, even if all that command section does is OUTPUT the
image itself (use the OUTPUT command).

SUBTOTAL BREAKPOINTS

Subtotals are defined by declaring subtotal BREAKPOINT fields on the
REPORT command line. The declared fields must be among those which
make up the index named on the command 1ine (which will determine the
sequence of the report). NOTE: If the INDEX does not include the
same fields as those on which the breakpoints are based, in the same
order, subtotal groupings will be incomplete, and breaks will occur
randomly in the report.

FORMAT
REPORT filename BY INDEX.# BREAK fi1.f1dl fi1.f1d2

"FIL.FLD#" is used in the format above to save space in signifying a
filename,fieldname element. The "FIL.FLD#" declarations following the
BREAK command set the breakpoints for the REPORT configuration. Each
"fil.f1d#" is assigned a number sequentially as it is declared. This
number then becomes the breakpoint number corresponding to the
SUBHEADER# and SUBTOTAL# command section labels in the configuration.
In this example fil.f1dl becomes breakpoint 1. The rightmost (higher

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual REPORTING AND OUTPUT C-35

numbered) breakpoints represent the subtotals that change the most.
Breakpoint 1 changes the least. The maximum number of breakpoints
allowed in subtotalling in the REPORT macro is 9.

When a change occurs in a field defined as a breakpoint, the
SUBHEADER# and SUBTOTAL# command groups corresponding to the number of
the breakpoint where the change occurred, and all higher-numbered
subheaders and subtotals will be executed. The subtotalling registers
(and thus the total register) are updated only with PRINT commands in
the BODY section of the report. The MOVE and CALC commands will not
accomplish this function.

EXAMPLE:

Suppose we had a data file, "SALES", containing sales transactions on
various dates with customers in different states. Field 1 is Date,
Field 2 is Customer Name, and Field 3 is State (there would probably
be other fields also). The correct command to yield a report of
transactions by date with subtotals by Customer, and subtotals by
State, would be:

REPORT sales BY INDEX.2 BREAK sales.3 sales.2

For this to work, INDEX.2 would have to be made up of State plus
Customer plus Date (3 segments). Date is in the index for output
sequence only--it is not a breakpoint. For more information on
indexing, review the section of this manual on "Designing Databases".

When REPORT selections and breakpoints are processed, only the record

from the file named in the command has been loaded into the buffer,

If selections or breakpoints are based on fields in files to which the
main file relates, a "RELATE file_name" command should be included in

the selection section (see below under "Selections") of the configura-
tion to bring the records from the related files into the buffer.

As a side effect to placing a RELATE command in the selection section,
the correct records in related files will no longer be available in
the subtotal sections. Thus, no file elements should be accessed or
saved in the SUBTOTAL command section when there is a RELATE in the
selection section. To overcome this situation, data can be PRINTed to
windows in the SUBTOTAL image section while in the SUBHEADER command
section, where the correct records will be active.

The example format below displays all of the possible sections of a
REPORT macro configuration. They can all be used, or only those
needed for a given requirement can be used. It should be kept in mind
that this sample format represents only a portion of a complete
configuration, and that portions of the configuration before and after
the REPORT macro may query the operator for input (such as the date,
or which report is to be run), and that other commands after the
REPORTEND may involve an ABORT, the selection of another report, or
anything else normally provided by a configuration (except another
REPORT macro within the same configuration).

Copyright (c) 1984 Data Access Corporation 05/16/84

C-36 REPORTING AND OUTPUT DataFlex 2.0 User's Manual

/HEADER
report title image
/SUBHEADER1
subheaderl image
/SUBHEADERZ2
subheader2 image
/BODY
body image
/SUBTOTAL2
subtotal2 image
/SUBTOTAL1
subtotall image
/TOTAL
total image
/%
OUTFILE

OPEN filenamel #
OPEN filename2
MOVE # TO PAGEEND
REPORT filenamel BY INDEX.# BREAK filenamel.field filename2.field
INDICATE SELECT AS file.field mode data element
SECTION HEADER
commands
SECTION SUBHEADER1
commands
SECTION SUBHEADERZ
commands
SECTION BODY
commands
SECTION SUBTOTALZ2
commands
SECTION SUBTOTALL
commands
SECTION TOTAL
commands
RETURN
RPT.KEYPRESS: subroutine commands
RETURN
REPORTEND

The next page contains a REPORT configuratton from a real application,
and is shown as an exampie of REPORT functions in actual use. It
demonstrates subtotals and 1 level of breakpoints.

Copyright (c) 1984 Data Access Corporation 07/18/84

DataFlex 2.0 User's Manual REPORTING AND OUTPUT C-37

/HEADER

INVENTORY MOVEMENT REPORT
/SUBHEADER1
VEN: _O0., ITEM: DES:

STORE 1ID: QTY: __. PRICE § o
QTY-SOLD INVOICE PRICE AMOUNT CoSsT PROFIT
/BODY RESIDENT

. e W v JREUUREY Y YNV Sy YUY DU, T
/SUBTOTALL
. TOTALS THIS PART ID [Y Y S
/TOTAL
AMOUNT COST PROFIT
GRAND TOTALS: _5 ’ . _$. e ’ .
/*
OPEN INVT
OPEN ITEMS 2
QUTFILE
REPORT ITEMS BY INDEX.2 BREAK ITEMS.PART_ID // This is REPORT line.
SECTION HEADER // No selections. This
OUTPUT HEADER // report is global.
SECTION SUBHEADER1
PRINT INVT.VENDOR // illustrates the use of
PRINT INVT.VENDOR PART_ID // default formatting.
PRINT INVT.DESCRIPTION
PRINT INVT.PART_ID
PRINT INVT.QUANTITY
PRINT INVT.LIST_PRICE
OUTPUT SUBHEADER1
SECTION BODY
PRINT ITEMS.QUANTITY TO BODY.1 // illustration of the
PRINT ITEMS.INVOICE TO BODY.2 // use of PRINT TO

PRINT ITEMS.PRICE TO BODY.3

PRINT ITEMS.AMOUNT TO BODY.4

PRINT ITEMS.COST TO BODY.5

PRINT (ITEMS.AMOUNT-ITEMS.COST) TO BODY.6

OUTPUT BODY

SECTION SUBTOTALL // The first line of this
SUBTOTAL BODY.1 // section in the image
SUBTOTAL BODY.4 // above is dashes to
SUBTOTAL BODY.S // print at the bottom of
SUBTOTAL BODY.6 // the columns, not under-
OUTPUT SUBTOTAL1 // scoring for windows.

SECTION TOTAL
SUBTOTAL SUBTOTALL.2
SUBTOTAL SUBTOTAL1.3
SUBTOTAL SUBTOTALL.4
OUTPUT TOTAL

REPORTEND

ABORT

Copyright (c) 1984 Data Access Corporation 057 16/84

C-38 REPORTING AND QUTPUT DataFlex 2.0 User's Manual

PRINTING TOTALS AND SUBTOTALS

Accumulators are maintained for every REPORT image NUMERIC window. A
cumulative (running) total can be printed for any window at any time

in a REPORT or, if a window is used for subtotaling, fts value can be
printed, after which it is automatically cleared for the next subtotal

sequence,

The running total is constantly available as a variable by appending a
per cent sign (%) to the end of any window_arg. For example, to put
the accumulated value of BODY.3 in a window:

PRINT BODY.3% // prints running total to next window
For subtotaling, the command SUBTOTAL is used with window_arg:
SUBTOTAL subheader.2

The action of SUBTOTAL is to print the total currently in the accumu-
lator, and then MOVE O into the accumulator to initjalize it.
Subtotal accumulators may not be addressed by use of the WINDOWINDEX
or FIELDINDEX commands.

Calculations and string manipuiations on data in formatted windows
should be avoided, since the formatting can change the apparent
"value" of the contents for purposes of the calculation or
manipulation. Calculations and manipulations should be done on the
source data (database element, literal string, in-memory variable,
etc,) from which the window was filled to begin with, with replacement
of the results to the window, if desired for output purposes. In
REPORT, however, if BODY.4, for example, happens to be a formatted
window, the running total accumulator BODY.4% need not be considered
formatted, as it is not updated through the window, but rather from
the same source as the window.

SELECTIONS

Selection is a report specification calling for a report of only a
subset of all the records in the database to be 1isted. For example,
in accounts receivable, you may wish statements to be printed only for
those accounts having balances over 30 days old.

The REPORT macro provides for selection of records to be printed
through the use of a pre-defined indicator, SELECT. Selections are
accomplished by INDICATE commands which set REPORT's predefined
indicator, SELECT, TRUE or FALSE according to the report's selection
criteria. The selection section is not mandatory if no selections are
desired (all records in the database are to be reported). Indicators
are more thoroughly explained in the manual section on "Conditional
Execution.®

The selection commands, if used, should be placed immediately after
the REPORT command line. Any DataFlex command(s) can be used within
the selection section, but the most common is one or more INDICATE
statements to set SELECT. If values in the current record set SELECT

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual REPORTING AND OUTPUT C-39

TRUE, the current record will be printed. If values set SELECT FALSE,
the current record will be bypassed.

It is frequently desirable to prompt input from the operator at run
time to establish some or all of the selection criteria. These
questions should be asked before the REPORT command. The responses to
these questions are then used in the selection section in the INDICATE
statements.

EXAMPLE:

/BODY
«==— body image --—--
/%
NUMBER VENDNUM
INPUT "ENTER VENDOR NUMBER: " VENDNUM
REPORT INVT BY INDEX.1
INDICATE SELECT AS INVT.VENDOR EQ VENDNUM
SECTION BODY
~—-- body commands =----
REPORTEND

This would do a report for the single vendor number entered by the
operator at the beginning of the report run.

You may use indexes to speed up a report by "jumping" into the report
when the value of the selecting fleld satisfies the selection criteria
and back out again when it no longer does. This can be done only if
the selection field is the primary segment of the index by which you
are reporting. To jump into the index at a specific point, MOVE the
LOWEST value of the selection into the record buffer BEFORE the
report. This will start the report at the next record in the sequence
of the index by which you are reporting.

To jump out of a report when you are past any records that could be
selected, place a "RETURN END.OF.REPORT" command in the selection
section. This will abort the report and print the totals. If totals
are not desired where the report is aborted, the proper command is
END$OF $REPORT .

EXAMPLE :

In the Inventory Movement Report above, the vendor number is the first
field segment of INDEX.l so we can jump into and out of the report
index. In the following example, the report would cover only the
vendor entered in response to the prompt, and would take much less
time to run than the selection routine illustrated above, since
instead of actually checking each record for a match with the desired
vendor number, the routine uses the index to FIND the right vendor

Copyright (c) 1984 Data Access Corporation 05/16/84

C-40 REPORTING AND OUTPUT DataFlex 2.0 User's Manual

record with that vendor number.

/BODY
---- body image ~---
/*
NUMBER VENDNUM
INPUT "ENTER VENDOR NUMBER: " VENDNUM
MOVE VENDNUM TO INVT.VENDOR //jump in here
REPORT INVT BY INDEX.1
INDICATE SELECT AS INVT.VENDOR EQ VENDNUM
[NOT SELECT] RETURN END.OF.REPORT //jump out here
SECTION BQODY
--—- body commands ----
REPORTEND

Since the selection section is executed for every record, it should be
kept as small and fast as possible. Any calculation or string
manipulation which can be accomplished outside the selection section
will improve speed. Expressions should be evaluated outside the
selection section, if possible, and the results represented in the
selection section as numeric variables. Numeric variables are faster
than numeric windows, and string manipulation commands in the
selection section have the greatest potential of all types of
operations to slow down execution. Calculations and string
manipulations can be done in the HEADER command section, any of the
SUBHEADER command sections, or entirely outside (prior to) the report
macro, as necessary.

It is possible to make compound selections in reports, with various
AND and OR relationships among the criteria. Refer to the section of
this manual on "Conditional Execution™ for the full range of possi-
bilities. The following AND example shows how all customers with
balances over $1,000 AND amounts over 90 days due would be selected
(NINETY_DAYS_AGO 1s a date variable calculated by subtracting ninety
from the run date before the selection section):

INDICATE SELECT AS INYOICE.DATE LT NINETY_DAYS_AGO
[SELECT] INDICATE SELECT AS CUST.BAL GT 1000

OR combinations can be established by inverting the SELECT indicator
with a NOT, as in the following example, which would report all
customers with EITHER balances over $1,000 OR balances over 90 days
old:

INDICATE SELECT AS INVOICE.DATE LT NINETY_DAYS_AGO
[NOT SELECT] INDICATE SELECT AS CUST.BAL GT 1000

The GROUP ANY/ALL AND/OR ANY/ALL facilities can also be utilized in
setting the SELECT indicator for your particular requirements, as
described in the section of this manual on indicators.

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual REPORTING AND OUTPUT C-41

PAGE CONTROL
Page control is handled with three predefined variables:

PAGEFEED offers three way control of how the page eject will be
determined: -1 = single sheet; 0 = hardware formfeed; or ## =
linecounter where ## is the total number of lines per page (physical
page height from perforation to perforation). The command with no
argument is interpreted as though its argument were 0 (FormFeed).

PAGEEND contains the number of printable lines per page. The default
is 55. A value of zero (0) in this variable will cause continuous
output with no page breaks. This is useful, for example, for output
to a data file from which it is not intended to print directly.

LINECOUNT contains the number of 1ines output as of any given moment.
There is not normally occasion to manipulate or reset the value of
this variable, since it is used by the two others listed above.

These variables are -global to DataFlex. They may be used with any
kind of outputting, not exclusively under the REPORT macro. Use MOVE
commands to put the desired values into these variables for page
control immediately before the REPORT command.

This example {i1lustrates operator-entered selections and page control:

Copyright (c) 1984 Data Access Corporétion 05/16/84

C-42 REPORTING AND QUTPUT DataFlex 2.0 User's Manual

List NAMES from which STATE:
/HEADER

NAMES FROM STATE OF: __
sveasesceses s NAME L oviiianins eeesoCITY. uuns

/BODY

/*

FORMAT PROMPT.l {CAPSLOCK}
STRING TEMP 1

ACCEPT PROMPT.1 // get operator input

CLEARSCREEN

QUTFILE 'CON:! // output to the screen

OPEN LIST 1

MOVE 22 TO PAGEEND // page length is # of Tines on screen
MOVE -1 TO PAGEFEED // stop at the bottom of each screen
REPORT LIST BY INDEX.1 // REPORT command

INDICATE SELECT AS LIST.STATE EQ PROMPT.1

SECTION HEADER
PRINT PROMPT.1 // print state selection to heading
OUTPUT HEADER
SECTION BODY
PRINT LIST.NAME // print data
PRINT LIST.CITY
OUTPUT BODY

REPORTEND

INPUT “PRESS RETURN TO CONTINUE™ TEMP
ABORT B

OUTPUT DESTINATION

Unless directed elsewhere, the default output device for the REPORT
macro is the system LST: device (printer). Output can be redirected
to any valid sequential system device or file by placing an argument
on the operating system command Tine when the configuration is
executed (FLEX report destination). This form of command can, of
course, be included in menus for operator selection, with or without
querying for filename or device input. Alternatively, the output
device or file can be "hard coded" in the configuration on the OUTFILE
command 1ine immediately above the REPORT command line., Used in this
way, literal destinations ("CON:", "MERGFILE", etc) must be embedded
in quotation marks. Arguments without quotes will be considered
string variables, which can be used to pass operator input in response
to query prompts at the beginning of the configuration. Legal
devices on most systems include CON: (CRT screen), PUN: (often used
for modems), LST: (the printer), and any legal filename.

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual REPORTING AND OUTPUT C-43

OPERATOR ABORT

The REPORT macro's default mode of operation causes a report to abort
if any key is hit by the operator while the report is executing. This
mode may be disabled entirely or modified to ask the operator a
confirming question when a key 1s thus hit. To do this, provide a
substitute for the predefined subroutine called "RPT.KEYPRESS",
optimally just before the REPORTEND command. The illustrative
subroutine below would give the prompt "PRESS <ESC> TO ABORT, ANY
OTHER KEY TO CONTINUE", and then, depending on which key was pressed,
either resume execution at the predefined procedure "RPT.LOOP" or
abort via the predefined procedure "END.OF.REPORT". (Pressing any key
other than ESCape actually would cause execution to resume.)

EXAMPLE :

RETURN // Must be added after end of section commands
RPT.KEYPRESS:

STRING PAUSEKEY 1
INPUT "PRESS <ESC> TO ABORT, ANY OTHER KEY TO CONTINUE"™ PAUSEKEY

[KEY.ESCAPE] RETURN END.OF.REPORT
RETURN RPT.LOOP

This procedure should be located before the REPORTEND command, and
immediately after the end of the last group of section commands., The
RETURN command shown above on the first 1line must be added explicitly
in the configuration in order to insert this procedure.

If the predefined procedure END$SOFSREPORT is used instead of

END.OF .REPORT, totalling and other terminating procedures would be
skipped. Use of this procedure would be appropriate to use in case of
printer misfeed, ribbon breakage, or a similar mishap.

PAGE BREAKS

The REPORT macro automatically maintains the number of 1ines remaining
on the current page in memory at all times while outputting. It will
handle things 1ike number of 1ines required by a SUBTOTAL or BODY
image automatically, and if allowed to operate in its default mode, it
will reprint headings and subheadings as required at the top of each
new page. If you are doing "fancy" paging that requires direct
control, however, you will have to provide commands within the
applicable section(s) (typically the BODY). The PAGECHECK command
checks whether the number of 1ines given in the command argument
remains on the current page. The FORMFEED command sends a "raw"
formfeed (that is, it does not print headings at the top of the new
page). The sequence [PAGEBREAK] GOSUB NEWPAGE utilizes the PAGEBREAK
predefined indicator and the NEWPAGE predefined procedure to print
headings at the top of the new page. The following command, for
example, would eject the current page and print headings at the top of

Copyright (c) 1984 Data Access Corporation 05716/ 84

C-44 REPORTING AND OUTPUT DataFlex 2.0 User's Manual

the next page if there were less than 6 lines left on the current
page:

PAGECHECK 6
[PAGEBREAK] GOSUB NEWPAGE

The following command would do the same thing unconditionally:

FORMFEED
GOSUB NEWPAGE

REPETITIVE REPORTS

A report can be put in a loop to execute multiple times for different
selection criteria. Put a label at the beginning of the report and
then, at the end of the report, CLEAR the report data file and GOTO
the label at the begining of the report. Remember to provide some
means for the operator to exit the loop.

MULTIPLE COPIES:

To make multiple copies of a report you must: (1) set your QUTFILE to
a disk file; and (2) print that file multiple times.

OUTFILE “TEMP.$$3" // Output to temporary file
REPORT X BY INDEX,1l // Do report
==== report -=--
REPORTEND

// The following Tines print the disk file multiple times
DIRECT_OUTPUT M"LST:" // Output to printer

INTEGER COUNT
STRING STRVAR 132 -
// You must have set up NUMBER OF_COPIES previously.
FOR COUNT FROM 1 TO NUMBER OF_COPIES
DIRECT_INPUT "TEMP.$$$"
[NOT SEQEOF] REPEAT
READLN STRVAR // Reads a line from TEMP.3$$
WRITELN STRVAR // Writes a line to the printer

[NOT SEQEOF] LooP // End of REPEAT loop
FORMFEED
LOOP // End of FOR loop
CLOSE_INPUT // Close before delete
ERASEFILE “TEMP,$$S" // File no longer needed

Copyright (c) 1984 Data Access Corporation 07/18/84

DataFlex 2.0 User's Manual REPORTING AND QUTPUT C-45

THINGS TO REMEMZER ABOUT THE REPORT MACRO
1. The REPORT macro may be used only once within a configuration.
2. The maximum line length which can be output is 255 characters.

3. Fields used as subtotal breakpoints must be indexed. They can be
in the main file or in any other RELATEd file.

4. Subtotal and total registers are updated only by PRINT commands;
MOVE, CALCULATE and DISPLAY do not update the registers.

5. Data should be processed only from database elements or in-memory
variables. The contents of formatted windows cannot reliably be used
for calculations or other processing.

6. An invisible AUTOPAGE command is executed at the beginning of each
command section, and an invisible RETURN command at the end.

7. The BODY section of the report is executed once for every record
which satisfies the selection criteria.

REPORTING WITHOUT REPORT

The usual way of configuring reports is by use of the Report macro,
often starting with the QUERY program to generate the configuration.
The Report macro, however, is by no means the oniy way of configuring
reports-—it is merely a pre-programmed convenience suitable to a wide
range of purposes. The following configuration outputs a data file
(called SAMPLE in this example) to the printer in record number
sequence, using a format image with a pagename of IMAGE. Note that it
lacks headings, totals and subtotals commonly found in reports
produced by the Report macro.

/ IMAGE
/¥ -
QUTFILE "LST:" //Direct output to the printer
OPEN SAMPLE //0pen the data file to output
CLEAR SAMPLE //Clear the record buffer
CLEARSCREEN //Clear the screen
REPEAT
FIND GT SAMPLE BY RECNUM //Find the next record by number
{FOUND] BEGIN
PRINT SAMPLE.NAME TO IMAGE.l //Must state TO
PRINT SAMPLE.CITY TO IMAGE.2 //Window.# since
PRINT SAMPLE.STATE TO IMAGE.3 //AUTOPAGE command
PRINT SAMPLE.ZIP TO IMAGE.4 //not used
OUTPUT IMAGE
END
[NOT SEQEOF]1 LOOP //Stop at end of file
ABORT

Copyright (c) 1984 Data Access Corporation 07/18/84

C-46 REPORTING AND OUTPUT DataFlex 2.0 User's Manual

THIS PAGE INTENTIONALLY LEFT BLANK

Copyright (c) 1984 Data Access Corporation 07/18/84

OVERVIEW

The FILEDEF utility enables you to create a complete file definition
for data base files used in a DataFlex application. The file defini-
tion, once created, contains information about the file name, indexed
fields, and field information. Each DataFlex file must have certain
information about the structure of the data, file name, indexes etc.,
established before it can be used. Once done, this information 1s
available, through the data base manager, to any DATAFLEX program.
During execution, the programs can adjust their operation to the type
and length of the files and fields in use. This gives DataFlex its
unique APPLICATION INDEPENDENCE.

APPLICATION INDEPENDENCE means that the same data file can be used in
multiple applications without the duplication of effort and storage
found 1n most conventional application programs.

EXAMPLE:

We may want to implement accounts receivable, accounts payable and a
mailing list. Instead of having three files with name and address
information, we could have one name/address file which is referenced
by all three applications. Only this one file need be defined, stored
and updated for names and addresses, thus saving both time and
storage... a real bargain!

Because these data base files potentially are so integrated with the
total application picture, thought and care should be put into the
contents and eventual relationships of the files. A well-designed
file structure will almost automatically mean an effective and
successful application.

Copyright (c) 1984 Data Access Corporation 05/16/84

C-48 FILE DEFINITION (FILEDEF) DataFlex 2.0 User's Manual

STEP ONE - PLAN THE RELATIONSHIPS AMONG THE DATA FILES

If your DataFlex applications uses only one independent file, there
are no inter-file relationships. To gain the benefits of the inter-
file relational DBMS structure, read the following section carefully
to see how to build a multi-file structure. A thorough understanding
of DataFlex configuration at the single file level will be extremely
helpful in rapidly gaining an understanding of the more complex,
multi-file structures. The following section treats data theory
generally, not just as it pertains to DataFlex (although it definitely
is irrelevant to less-capable software products}). There are a number
of good books availabie on this subject, and your mastery of this area
may be enhanced by referring to some of them.

WHAT FILE RELATIONSHIPS ARE FOR

File relationships are an advanced concept in database management, but
its benefits probably apply to most serious database applications.
Although some software products offer the capability, none provides it
with the ease and power of DataFlex. File relationships are typically’
invisible to an operator running a DataFlex application, which is the
best way for it to be. Most existing microcomputer applications are
designed to use only one data file, but many of those would benefit
greatly from a multi-file design approach. Compared with single-file
design approaches, file relationships offer the following advantages:

a., More efficient utilization of disk space.
b. Equal data support with a smaller number of records.

c. Greater consistency of data in groups of records having
data elements in common.

d. Improved efficiency in changing data applying to groups of
records having the data in common.

To illustrate the concept, let us use a simple mailing list of
indivuals at their business addresses. Each record in the 1ist would
have the individual's name, name of the company where they work,
address of the company, and a phone number. So far, this would seem
to be a typical single-file application. But suppose that groups of
fifteen or twenty of these people all worked at the same company. You
would still want an individual record on each person, but if one of
the companies moved, you would have to find each record for someone
who worked at that company and change the address in each one. If, on
the other hand, a relational approach were taken, company names and
addresses would be kept in a separate file, and each person's file
would have in it his company's name, but no address. The company name
(to support the relationship) and address would be in the company file
to which each person's file related. There would be many fewer
company files than person files, and each person's record would be
smaller (having no address or phone number in 1t). Moreover, when the
ABC company moved, the addresses of all 27 people on your 1ist who
work there would be changed (consistently in every record) by changing
only the company record for the ABC company. And there would be

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual FILE DEFINITION (FILEDEF) Cc-49

nothing apparently missing from each person's record, either.

DataFlex can be configured to show each person's full company name and
address as though it were part of the person's actual record. This
process is invisible to the operator, unless explicit provisions are
made to render it visible (which wouldn't normally be desirable). And
when John Doe moved from the ABC Company to the XYZ company, changing
his whole address would be as easy as changing his company's name from
ABC to XYZ (provided there was already a record for the XYZ Company in
your company file-~if there wasn't, you could create a new one, right
there "in" John Doe's record entry screen).

But 1t goes even further. DataFlex can relate ten files to each other
online simultaneously (in 16-bit computers--capacity in 8 bits is
five). If we were selling to these individuals, we could keep all our
sales in a file related to our persons file by the person's name.
Then, when looking at a sale, we could view the customer's complete
name and address (now looking through two files, all the way to the
related company record) with each sale, even though only the
customer's name (or account number) is part of the sale record.

These, then, are the hallmarks of the need for related files: groups
of records having data elements which must be the same at all times
(1ike customer for groups of sales transactions), or, looking in the
opposite direction, series of identically-structured data groups in a
record. DataFlex provides a hefrarchical, or one-to-many type of file
relationship which can improve the speed and efficiency of your
application greatly.

GENERAL LAYOUT OF FILES

Drawing a schematic of your file relationships as a "tree" structure
is the first step in configuring the application. This exercise gives
you a chance to establish not only the files involved in the applica-
tion but also gives the ability to see how data can be grouped
together effectively and specifically to each of the files.

EXAMPLE:

DATA FILE RELATIONSHIPS "TREE"

CUSTOMER VENDOR
FILE FILE
| !

! -————-> PARTS

! | FILE

! | -

| | |

| ! !

! ! |
SALES--——~ ' PURCHASE

TRANSACTIONS TRANSACTIONS

FILE FILE

Copyright (c) 1984 Data Access Corporation 05/16/84

C-50 FILE DEFINITION (FILEDEF) DataFlex 2.0 User's Manual

DataFlex utilizes "Data Relationships" to maintain the inter-file
relationships you have defined. The lines connecting the files show
the relationships among the files. In the actual file definition
these relationships are established through the use of related fields.
A representation like this one will make the RELATIONSHIPS among the
files readily apparent. The fields through which different files are
related must be of the same type (ASCII, numeric or date) and the same
Tength.

The relationships in this representation point UP the tree. There are
four file relationships in the illustrated structure:

1) SALES TRANSACTIONS IQ PARTS

2) PURCHASE TRANSACTIONS IO PARTS
3) SALES TRANSACTIONS JO CUSTOMER
4) PARTS IO VENDOR

When visualizing files as a tree structure, remember that the topmost
files or "leaves" of the tree are those that do not draw on other
files for information (e.g., the VENDOR file above has no PARTs fn it,
but every record in the PARTS file has a vendor in it). Lower down on
the tree there are files (1ike PARTS) which depend on the VENDOR file
for information. The bottom of the tree is the TRANSACTION files
where data from all of the other files contributes to existing and new
records (TRANSACTIONS).

In DataFlex, the lower files on the tree are RELATED TO higher files.
This means that an inventory PARTS record which is related to a VENDOR
record can automatically access (display or print) information in that
VENDOR record.

In relational multi-file structures, one element of data could have a
field entry in several levels of the tree (i.e., VENDOR ID could be
part of the VENDOR, the PARTS and the TRANSACTION files). Like fields
in different files are logically ¥"related" together by DataFlex. In
this manual, and in the prompting you will encounter in the
configuration utilities, the term "relates" or "relationship" will be
used frequently. It is used to refer to this logical linking of
fields in different files which is controlled by DataFlex's Data Base
Manager.

The relationships point UP the tree; the PART ID in the TRANSACTION
file relates TO the PART ID in the PARTS file and the VENDOR ID in the
PARTS file relates TO the VENDOR ID in the VENDOR file. Therefore,
transactions can automatically include not only PARTS data, but PARTS
AND VENDOR data. DataFlex can automatically find records up and down
the tree from these relatjonships.

HOW TO CREATE RELATED FIELDS

There are two criteria by which to choose the field(s) through which
to relate two files: (1) for the Data Base Manager to find a record
in one file from a record in another file (i.e., find the VENDOR
record from a PARTS record); and (2) to have the system automatically

Copyright (c) 1984 Data Access Corporation 05/16/8

DataFlex 2.0 User's Manual FILE DEFINITION (FILEDEF) Cc~51

carry the value in a field forward to another file for indexing or
report selection.

THE RELATED FIELDS IN DIFFERENT FILES MUST
BE OF THE SAME TYPE AND LENGTH!

When a field relationship is created for FINDING purposes, the field
being related TO must uniquely identify the record. If the relating
field isn't the higher record's record number, then there should be an
index made up of that field alone. (Record numbers are inherently
indexed, and inherently unique, which is why they are the prime choice
for relating fields.) The lowest-numbered relating field in the file
definition is the one which provides the primary relationship. This
is referred to as the PRIMARY relatfonship. (Again, the record number
i{s always the lowest-numbered field in any file definition.

When a record that has relationships to other records is FQUND, the
records it relates TO will be found automatically. This makes the
records related TO appear as though they were part of the original
record. The use of multiple files is typically invisible to the
operator) .

The related-to file's record number is normally the best choice of
field on which to base a primary relationship. Relating by record
number has three advantages: it is fast (since no index access is
required), the record number is ALWAYS unique, and it cannot be
changed.

A field in one file that relates to a record number in another should
be a numeric field of 1, 2 or 3 bytes' length. The length is
determined by the maximum potential number of records in the file
related TO. Remember, DataFlex stores two digits per byte of field
length, so a one byte numeric field will store related record numbers
up to 99, 2 bytes up to 9999, etc. Three bytes is always a safe
length. This field, and any other related field in a new record, will
be updated by the field 1t relates TO when the record is saved.

When you are using a record number as the primary relationship between
the records of different files, you may still wish to have other
relationships between the records for more convenient multi-file
FINDing. Remember that these secondary relationships must be based on
field numbers that are higher than the numbers of the fields on which
the primary relationship is based.

In the typical case, there would be many records in the file being
related FROM relating TO each record in the file related TO (each
VENDOR would supply many PARTS). Wihtout this relationship, the field
being related FROM would NOT uniquely identify a record (you can't
find an individual PART just by knowing the VENDOR). Therefore, the
PARTS file would be indexed by VENDOR for tasks 1ike listing all the
parts for a vendor AND something else, like part ID, to facilitate the
finding of an individual part irrespective of who its vendor might be.

Decide at this point which fields (Record Number, Name, Part Number,
etc.) will be used for RELATIONSHIPS in your application. Below are
four of the five files in the schematic shown two pages agoe. This

Copyright (c) 1984 Data Access Corporation 05/ 16/84

C-52 FILE DEFINITION (FILEDEF) DataFlex 2.0 User's Manual

rendition, however, displays the actual fields in each file, and the
arrows show which fields the relationships are based upon. Hint: one
of the relationships shown is a secondary relationship. Can you find
it?

EXAMPLE OF FILE STRUCTURES AND RELATIONSHIPS:

SALES

VENDOR FILE PARTS FILE TRANSACTIONS FILE
: 0 RECORD NUMBER 0 RECORD NUMBER
0 RECORD NUMBER <===—==-— 1 VENDOR RECORD # 1 DATE
1*¥ VENDOR ID <~==w-—m===- 2% VENDOR ID 2 QUANTITY
2 ADDRESS1 3% PART ID <m—=—=———- 3% PART ID
3 ADDRESS2 ’ 4 QTY IN STK

5 PRICE

6 DESCRIPTION

CUSTOMER FILE
0 RECORD NUMBER < * CUSTOMER RECORD #
1* CUSTOMER NAME 5 AMOUNT

2 ADDRESS1

3 ADDRESS2

4 CREDIT LIMIT

5 TOTAL SALES

H
0
H
N
H
0
H
o
:
N
:
.
H
a
4

The arrows (<---) represent a relationship and the "*" represents a
field which is indexed. Note that other relationships could exist
among these files, and/or to other files, and other fields might be
indexed for finding and reporting purposes.

VENDOR RECORD # in the PARTS file is used for the PRIMARY relationship
with the VENDOR file to speed up the RELATE process since no indexing

is needed with Field 0, the record number. The VENDOR ID 1s also
provided as a secondary relationship to allow reporting and FINDing by
VENDOR ID in the PARTS file.

The VENDOR ID field must be of the same length and type in both the
VENDOR and PARTS files.

The PART ID in the PARTS file and in the SALES TRANSACTIONS file must
be of the same type and length in both files. PART ID in the PARTS
file must be indexed as the only segment in an index since it is used
as the primary relates-to field from the SALES TRANSACTION file.

The PART ID in the SALES TRANSACTIONS file is listed as indexed, but
if we did not want part ID to be included in the SALES TRANSACTION
file, we could have made its Field 4 the smaller and faster PART
RECORD #, and based the relationship on that field instead.

Reports of transactions could be printed either by PART ID or CUSTOMER
record number, since both indexes are present in the SALES TRANSAC-
TIONS FILE.

Copyright (c) 1984 Data Access Corporat1on 05/16/84

DataFlex 2.0 User's Manual

FILE DEFINITION (FILEDEF) C-53

STEP TWO - LIST THE FIELDS

Determine the specifications of the data fields that will be required
in each file, including their type, length and, for numeric fields,

A convenient
way to do this is to create the screen IMAGE of the data entry form
for each file. (Refer to the section of this manual on "Formatting
With Images".) Then let FILEDEF's Option 7 read this IMAGE and create
a preliminary file definition automatically!
through the process, as described below in Step 4.
relate to other files, remember to be sure that the fields used for
the relationships have the same length and type in each of the related

the number of places to the right of the decimal point.

files.
EXAMPLE:

/VEND

Option 7 will prompt you
If this file will

R R N N I I R

: VENDOR ID:

COMPANY NAME:

VENDOR RECORD

ADDRESS :

CITY:

: CREDIT LIMIT: §

: ENTRY DATE: __/_/__

HE R R R R R R R T N I I R I R I A P O R I I I I Y

VA

ST: __

ZIP:

TOTAL CREDIT: §

s es on

o as oe

o5 ss es er s e as

This image could later be used directly by FILEDEF to create a

definition. Note that the image is terminated by a "/*" character
combination. This {s an "end of image'" marker and is necessary for
DataFlex to distinguish the image from the configuration commands.

After Option 7 has run, FILEDEF's Option 3 would produce a chart like

this:
FIELD FIELD FIELD FIELD
NMBR OFFSET LEN TYPE
1 1 8 ASCII
2 9 30 ASCII
3 39 30 ASCII
4 69 30 ASCII
5 99 2 ASCII
6 101 5 ASCII
7 1006 5 NUMERIC
8 111 5 NUMERIC
9 116 3 DATE

DEC
PTS

NN

MAIN

RELATES~-TO
INDEX FILE FIELD

[=NeReleloleNoNeNol

COO0OO0OO0OOO0OO0OO

COOCOCOODODOO

VENDOR ID
COMPANY_NAME
ADDRESS_LINE_1
CITY

STATE

ZIP CODE
CREDIT_LIMIT
TOTAL_CREDIT
ENTRY_DATE

Copyright (c) 1984 Data Access Corporation

05/16/84

C-54 FILE DEFINITION (FILEDEF) DataFlex 2.0 User'!s Manual

OVERLAPPING FIELDS (FOR EXPERTS ONLY)

There may be times when you need to have more than four fleld segments
in an index (four is the segment 1imit for an index in 8 bits; six is
the 1imit in 16 bits). See the section of this manual on "Designing
Databases" for a full discussion of single- and multi-segment indexes
and indexing. For these special cases, DataFlex has another field
type called the overlapping field. This field type enables the user
to address a group of fields as though they were one large field. The
overlap field spans other fields already existing in the file
definition. The fields spanned by the overlap must occur
consecutively in the file definition.

To use this feature, first append a field to the file of the type
OVERLAP. Then set the FIELD OFFSET of the overlapping field to the
field offset position of the first sub~field and the FIELD LENGTH of
the overlapping field to the total length of all of the sub-fields you
wish to include 1n the index. Then, of course, specify the index
number for the index based on the overlapping field (rather than on
the fields it is composed of).

This 1s what the chart on the preceding page would Took like if an
overlap field comprised on the first two fields were added:

FIELD FIELD FIELD FIELD DEC MAIN RELATES--TO

NMBR OFFSET LEN TYPE PTS INDEX FILE FIELD
1 1 8 ASCII 0 0 0 VENDOR_ID
2 9 30 ASCII 0 0 0 COMPANY_NAME
3 39 30 ASCII 0 0 0 ADDRESS_LINE_1
4 69 30 ASCII] 0 0 CITY
5 99 2 ASCII 0 0 0 STATE
6 101 5 ASCII 0 0 0 ZIP CODE
7 106 5 NUMERIC 2 0 0 0 CREDIT_LIMIT
8 111 L] NUMERIC 2 0 0 0 TOTAL_CREDIT
9 116 3 DATE 0 0 0 ENTRY_DATE
10 1 38 OVERLAP 0 0 0

i
it

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual FILE DEFINITION (FILEDEF) C-55

STEP THREE - DETERMINE THE KEY FIELDS

DataFlex's indexes allow you to FIND records by fields which are
defined as indexed. The fields you wish to index should be determined
at this point in the FILEDEF operation. Each DataFlex index can be
composed of up to 4 fields on 8 bit systems, 6 fields on 16 bit
systems. There can be up to 4 indexes for each file (9 on 16 bit
systems). Each index defined will be stored in an index file that has
the same rootname as the data file. It will be opened automatically
when the data file 1s opened.

Keep in mind that each index requires disk storage and a small amount
of update time when saving or deleting records. System size and
performance may become a consideration in the design of your key file
structure. A rule of thumb is that an index will take about 2 times
the amount of disk space as the number of bytes in the data field(s)
that it is indexing. For example, if an index is made up of 1000 ten
byte part numbers, the index file size will be about 20K. A1l indexes
for a database are kept up-to-date on-Tine automatically.

A field does NOT have to be indexed for 1t to be used to SELECT
records from the database during output operations. For example, if a
STATE field in a mailing 1ist record was not indexed, you could still
make a report of all records matching a particular STATE value. If
you did, DataFlex would have to evaluate the STATE field of every
record. For this reason, indexing often does speed up the selection
process.

If a field in one file is being related to by records in another, it
must be the only field in the index. This is required for the relate
process to uniquely identify a related record. Overlapping fields can
be used here to create a single-element index for relating to, which
is actually made up of data from several fields. If this is done, the
relating file must also have an overlapping field of the same length
to support its end of the relationship.

DUPLICATE RECORDS

If you wish to allow multiple records in a file to have the same key
value, include field zero (the record number) as the Tast segment of
the index. Since record numbers are always unique, their inclusion
with other index elements can make otherwise duplicate key values
unique. Note that a field CAN NOT be indexed with record number AND
be the target of a relationship.

The record number, which is addressed as field zero in DataFlex, can
also be considered INDEX ZERO. This creates an often useful access
method (e.g. transactions which need to be accessed by order of entry)
which has no disk storage overhead. There is actually no INDEX ZERO
(no file called FILENAME.KO); this is DataFlex's method of defining
that access is to be made by record number. You may always FIND or
report by record number. A file may exist with no other indexes. The
record number for the record currently in the buffer is maintained
under as filename.RECNUM.

05/16/84

C-56 FILE DEFINITION (FILEDEF) DataFlex 2.0 User's Manual

Where a field participates in more than one index (perfectly
acceptable), one of the indexes must be designated during the
definition as the MAIN index for the field for FINDing operations.
The MAIN index will be the one automatically used by DataFlex to FIND
records from the file when a given field 1s selected as the source of
a key value for record retrieval.

‘EXAMPLE:
In the example file structure above we might have three indexes:

1) VENDOR ID (unique).
2) COMPANY NAME plus RECORD NUMBER (duplicate company names OK).

3) CREDIT LIMIT plus VENDOR ID (duplicate credit limits OK).

Number 1, VENDOR ID, would generally be used to support relationships,
while the others would be useful for FINDing records for maintenance

and reporting.

Notice that VENDOR ID participates in two indexes. This is fine, but
one must be selected as the MAIN fndex for that field. In this case,
Index One, where VENDOR ID is the first segment, is designated.

To allow for duplicate company names in Index Two, Field Zero (the
record number) is included in the index to create unique combinations.

STEP FOUR - USE FILEDEF TO PUT IT ALL TOGETHER

This section takes a procedural step-by-step look at how DataFlex's
FILEDEF utility can be used to create and maintain the data files of
an application.

To execute the program, type "FILEDEF"™ at the operating system "A>"
prompt or select it from the CONFIGURATION MENU. The program will
sign on and present a serfes of prompts in order to obtain the data
needed to define the data file, Each of the prompts from FILEDEF is
presented here with the how to's on their use and their relationship
to the rest of the DataFlex system.

IF YOU MAKE AN INCORRECT ENTRY:

Some FILEDEF menu choices proceed through a series of prompts, which
must be answered in order to continue. If at any point, you are not
sure of the answer, or you key a wrong response, it is still necessary
to answer all of the questions, at least with something that satisfies
the program, in order to proceed and get back to the FILEDEF
operations menu. Once all the questions have been answered, however,
the menu (see below) gives you the opportunity to modify your earlier
answers or to abandon them altogether (choice 10), and leave your
original file (if any) unchanged.

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual FILE DEFINITION (FILEDEF) C-57

ENTER FILE NUMBER:

When run, the FILEDEF Program prompts the configurator with a 1ist of
currently defined files. You may modify one of these, enter an unused
file number to start a new file or reactivate one not currently on the
list.

As a shortcut, you may enter FILEDEF <FILENUMBER> at the operating
system command level to pass a file number directly to the program

without going through the files menu.

NEW FILE (Y/N)

If you have selected a file number that does not appear in the file
1ist then you must tell FILEDEF if this is a new file or an inactive
one.

If you are creating this file for the first time answer the question
with a "yv,

If a file definition for this file already exists, answer the question
with the "N" response (you can just press ENTER to default to the "N"
response), which will give you the chance to reactivate the file. The
system will then ask for the ROOT name, USER DISPLAY name, and Data-
Filex filename of the file.

DataFlex application configurations purchased separately which are
installed on an existing DataFlex system must have their file numbers
re~activated as described above.

If you are modifying or re-activating an existing file definition, the
FILEDEF menu will be displayed. Otherwise, for a new file, some
preliminary information will be required:

ROOTNAME

The ROOTNAME refers to the base name of any DataFlex data or config~
uration file created by FILEDEF. The ROOTNAME must conform to

operating system filename conventions of up to eight letters and
numbers. DataFlex will append the appropriate extension based on the

use of a particular physical file (see the appendix). Make up an 8
character or smaller rootname for your file WITHOUT AN EXTENSION!

If you wish to specify the drive on which DataFlex is to place the
data files, prefix the file name with the drive specification in the
standard format: drive letter (A..P) followed by ":" followed by
filename.

EXAMPLE ROOTNAME W/DRIVE SPEC.: B:MYFILE

This would be a file called "MYFILE" located on disk drive "B".

Copyright (c) 1984 Data Access Corporation 05/16/84

C-58 FILE DEFINITION (FILEDEF) DataFlex 2.0 User's Manual

USER DISPLAY NAME:

The User display name is the one which will be displayed in the FILE
SELECTION menus by DataFlex programs. Enter the name you would 1ike to
see displayed to the operator for this file. If the file name is
preceded with a "@" it will not display on the runtime file display
menus. The maximum length of the user display name is 30 characters.

DataFlex FILENAME

The DataFlex filename can be up to ten characters long and must start
with a letter. The DataFlex filename is used to reference a data file
from configurations. In that it does not contain drive specifications
it 1s a "soft" reference to a file that makes an application indepen~
dent of a particular hardware configuration. It is also used, along
with a field's Tagname, to define DATA BASE ELEMENT names within a
file.

RECORD LENGTH

This is the physical size (in bytes) of the record you will be
creating. DataFlex will automatically block small records inte 512
byte blocks. Larger records can be any multiple of 128 bytes. You
can assign the record Tength by selecting option 4 from the FILEDEF
operations menu. If there is a conflict between what you assign as
the record length and what the system needs to correctly block the
record, the necessary record length will be blocked automatically by
FILEDEF when you enter the record length.

If you know the record length at this point, you may enter it., If you
are creating a definition from an IMAGE and don't know the record
size, you may initialize it to zero. The READ SCREEN option will then
set the record length for you. DataFlex will block records in all
sizes from 1 to 26 bytes, 28 bytes, 30, 32, 35, 39, 42, 46, 51, 56,
64, 73, 85, 102, 128, 170, 256, and upward in multipies of 128 bytes,
to a maximum to 4 kilobytes.

MAX # OF RECORDS

The value entered here is the maximum number of records to be stored
in the database for this file. The figure entered here is non-
critical unless you elected the system option (see Installing
DataFlex) which provides for pre-allocation of disk space for the
maxium possible size of your database. Otherwise, you may feel free
to make some growing room available for the number of records in a
particular file.

The absolute maximum number of records in a DataFlex file is 64,000.
NOTE: If the need arises to expand the maximum number of records after
a file contains data, re-enter FILEDEF and enter a Targer value for
this field. Then, run the REINDEX utility to rebuild the index(s)
under the new parameter.

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual FILE DEFINITION (FILEDEF) C-59

REUSE DELETED SPACE (Y/N)

For most applications you will want DataFlex to reassign the disk
space released when a record is deleted from a file, however, in
applications where you want to use the record number as an audit trail
or as a transaction number, this would not be desirable. To allow the
re-use of deleted space, enter <Y>es; otherwise, enter <N>o.

MULTI-USER RE-READ (Y/N):

If you are running on a multi-user system (and you have a multi-user
version of DataFlex) and you wish for this file to utilize the feature
of allowing multiple users to write to the same record at the same
time then enter a 'Y', otherwise, enter 'N', NOTE: MULTIUSER option
of SETSCREEN must be set to (Y) to utilize RE-READ.

THE FILE DEFINITION MENU

After completing the entries just covered about ROOTNAME, etc., the
FILEDEF operations menu will be displayed. It looks 1ike this:

CREATE/EDIT FIELD SPECIFICATIONS
CREATE/EDIT INDEXES

DISPLAY/PRINT FILE DEFINITION

SET FILE PARAMETERS AND NAMES

ERASE DATA FILE

SET FILE INACTIVE

CREATE FILE DEFINITION FROM SCREEN IMAGE
CREATE FILE DEFINITION FROM .DEF IMAGE

SAVE DEFINITION AND EXIT FILEDEF

ABORT FILEDEF, DO NOT UPDATE DEFINITION FILE

o as 4

0 es we e

OOV OV WA~

Yy

—

You may enter one of the option numbers (1 - 10) to select your next
action. For new files you MUST either execute Options 1 and 2, or
Option 7. The results of using Option 1 or Option 7 are the same:
creation of a DataFlex file definition. The methods used to reach
that end are different: option one takes you field by field through
the record definition where you make the specification entries
manually. Option 7 functions just Tike the DataFlex AUTODEF Utility
and determines the record structure automatically from the screen
image.

Copyright (c) 1984 Data Access Corporation 05/16/84

C-60 FILE DEFINITION (FILEDEF) DataFlex 2.0 User's Manual

OPTION 1 -~ CREATE/EDIT FIELDS

This option allows you to create new field attributes or change
existing ones 1n a record definition.

If the file which is currently active in FILEDEF is not a new file,
then all entries under this option will contain a default to the
existing value for each field that is prompted (except for ‘any new
fields you may be adding).

The prompt will be displayed with the existing value in darts:
<DEFAULT>. If the value in the darts is to be maintained as the
current response, then hit <RETURN> to skip the question and maintain
the value; 1if the default is not correct then enter the new
information, followed by <RETURN>.

Each field in the record will be presented sequentially for modifica-
tion uniess you enter a field number to jump to or "E" (exit) on the

verification step (SEE BELOW).

When you select Option 1 for the FILEDEF operations menu, you will be
positioned at Field 1. The current field specification will display
with the field edit menu., The field edit menu looks 1ike this:

OPTIONS:

G - Go to field number
- Insert before this field
Delete this field
Append a field to end.
Change this field
- Reposition field offsets
- Display next field
- display previous field
- Exit to master menu

m 1 +20VO0>P>0
]

ENTER CHOICE:

FIELD EDIT OPTIONS:

G ~ Go to field number ~ Repositions you at the field number entered
and displays the current definition of that field. You will be

prompted for the field number to go to after entering the <G> option.

I - Insert before this fleld - Creates room for a new field by
incrementing all the higher field numbers by one. Then, the field
specifications for a new field may be entered under the newly-
available field number.

D - Delete this field - Deletes the current field and reduces all the
higher field numbers by one to adjust for the deletion.

A - Append a field to end ~ A new field will be created as the last
field in the File Definition. You must enter the new field's
specifications (see below).

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual FILE DEFINITION (FILEDEF) C-61

C - Change or edit this fleld - Allows you to re-enter the specifica-
tions for the current field.

R - Reposition fleld offsets - Required to reset field positions after
the file definition has been modified. The positions of the fields in
the record buffer (field offset) must be recalculated whenever any
field 1s added, deleted, or changed in length.

+ - Moves you forward one field.
- - Moves you back one field.
E - Exit to master menu - Returns you to the FILEDEF menu.

<RETURN> = Always moves editing to the next field. For exampie, if you
are on Field 2 and press <RETURN>, Field 3 will be displayed.

<RETURN> will create a new field if you are currently on the last
field in a file definition.

You will be asked the following questions for each field:

HERNER FIELD # Hdx
is the number of the field you are currently editing.

FIELD NAME: (tagname)

The tagname you enter here will be utilized by FILEDEF and QUERY for
prompting and documentation, and will be displayed in the file defini-
tion., It will be used, along with the DataFlex filename as part of
the Data Base Element name, in the DataFlex Command Language. The
tagnames are stored for each file in a separate ASCII file called
rootname.TAG. The maximum tagname length is 15 characters. Valid
characters in tagnames are:

['Ao-oz', '00..9" 'e" '_'I '#']

The first character must be alpha (A...Z}. Spaces and slashes are
invaiid, and will be replaced with an underscore (_).

FIELD TYPE: (A=ASCII, N=NUMERIC, D=DATE, O=OVERLAP)
This will set the field to either:
ASCII (numbers and letters)
NUMERIC - (numbers only)
DATE - Stored Julian; output format: MM/DD/YY
OVERLAP - A field which re-defines areas of the
record.

The next prompt depends on the field type entered above.
For ASCII fields:
NUMBER OF CHARACTERS

This is the maximum number of characters to be assigned for this
field.

Copyright (c) 1984 Data Access Corporation 05/16/84

C-62 FILE DEFINITION (FILEDEF) DataFlex 2.0 User's Manual

For NUMERIC fields:

NUMBER OF CHARACTERS TO THE LEFT OF THE DECIMAL POINT

Each number is broken into two parts: left and right of the decimal
point. Enter the number of characters to the left of the decimal
point. (Minimum of 1, maximum of 14.)

NUMBER OF CHARACTERS TO THE RIGHT OF THE DECIMAL POINT

Enter the number of characters to the right of the decimal point (0 to
4), The characters to the left and right of the decimal point are
added together by FILEDEF to compute the total field length. For DATE’
fields, no questions are asked. Dates are ALWAYS stored as three-byte
numbers.

For OVERLAP fields:

FIELD OFFSET: OFFSET OF FIELD IN RECORD
This number represents the relative number
of bytes from the beginning of the record
to where the current overlap field starts.
If there are no previous overlap fields in
the record, then this number will be the
number of bytes in the record up to the
first overlapped field. If there are
previous overlap fields, their combined
length must not be counted in developing
this number.

FIELD LENGTH: LENGTH OF FIELD IN BYTES
This is the number of bytes the overlap
field will span in the record. It should
be the total length of the overlapped
fields.

For ALL field types:

RELATIONSHIP TO FILE: FILE NUMBER OF RELATED FIELD

If this field relates TO a field in another
file, enter the number of that file here.

A printout of the file definition of the
related-to file would be helpful for
answering this and the next question, if
there is a relation. If there is no
relationship FROM this field, enter a zero.

RELATIONSHIP TO FIELD: (FIELD NUMBER OF RELATED FIELD)
If the question above was answered in the
affirmative (with a number), then enter the
number of the field which is being related
TO. Otherwise, enter a zero.

The creation or editing of the selected field is now complete. The
information for this field will be re~displayed for inspection
purposes. If you wish to make further changes, enter a 'C', If all
is correct, enter a "+" to move on to the next field, or enter an 'E'
to return to the activities menu.

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual FILE DEFINITION (FILEDEF) C-63

OPTION 2 ~ CREATE/EDIT INDEXES

Option 2 allows you to create or change the index(s) for a file. The
following "dialog" with FILEDEF allows you to easily define how you
want to your file indexed:

FILEDEF PROMPT YOUR RESPONSE

HOW MANY INDEXES FOR THIS FILE:
A NUMBER IN THE RANGE FROM 1 TO 4 (One

to nine in 16-bit computers) This will
correspond to the number of unique
indexes you wish to have automatically
maintained for this file.

-- THE FOLLOWING WILL REPEAT FOR EACH INDEX --

ERANEE INDEX # ¥EENNR —= NONE =~-
: The number of the index you are entering
will be displayed.

HOW MANY FIELD SEGMENTS IN INDEX:
OF FIELDS USED IN INDEX, RANGE: 1 - 4
(6 on 16 bit) Each index may have up to
six segments in 16-bit computers. For
example, you might want to find on a
field named LASTNAME, but also include
the FIRSTNAME and MIDLINIT fields in the
index (for a total of 3) in order to
have records with the same last names
(Smith, Robert; Smith, Samuel) properly
sequenced by first name and middle
initial within the 1ist of Smiths.
Enter the number of fields to be
included in this index.

ON LINE INDEX (Y OR N) If you answer Y(es), the index will be
maintained on line and updated every
time a change is made to the database.
If you answer N(o), the index will
function normally only passively as part
of the file definition, and will be
updated only when specifically processed
through REINDEX as an "ad hoc" index.
Reasons for answering N(o) include: (a)
your system's capacity for maintaining
on 1ine indexes is already consumed by
more important indexes; (b) this index
is needed only at infrequent intervals
for a periodic report, and not for
routine FINDing; (c) this index is
large and compiex, and on 1ine updating
in a large database would slow
processing time down more than is
Justified.

Copyright (c) 1984 Data Access Corporation 05/16/84

C-64 FILE DEFINITION (FILEDEF} DataFlex 2.0 User's Manual

-~ THE FOLLOWING WILL REPEAT FOR EACH SEGMENT -~

SEG X FIELD NUMBER: FIELD NUMBER OF INDEX SEGMENT.
Enter the field number you want for this
index Segment. The order in which you
enter each field number will determine
its indexing precedence.

=-- THE FOLLOWING APPEARS ONLY FOR FIELDS ALREADY IN ANOTHER INDEX --

WHICH INDEX, (X OR Y), SHOULD BE USED WHEN FINDING BY THIS FIELD?
If the field specified above is used in
another index already, either this (the
current--X) index or the earlier one
should be designated for FINDing from a
screen with the cursor in the window for
this field. Generally, the index {in
which this field is first, or nearest
the first, should be chosen. Your
choice will be designated the "main"
index for the current field in the File
Definition (see printout below).

INITIALIZE INDEX (Y OR N): If any of the above information was
changed from previous (default) data for
an existing index, then the index will
automatically be initialized. However
if no changes have been made, you will
have the option to initialize or not.

If an index is initialized and there is
data present in the data file a message
will appear telling you to "REINDEX" the
index. (See UTILITIES section,
REINDEX) .

DELETING AN INDEX

If at any time you wish to delete an index, select Option 2 from the
FILEDEF operations menu. Then enter the OLD number of indexes in
responding to the prompt for number of indexes and press <RETURN>. If
you want to delete Index 1, enter zero for its number of segments.
For a higher-numbered index, press <RETURN> repeatedly to default
through the questions until you have reached the prompt for the index
you wish to delete. Then enter a 0 for that index's number of
segments. The index numbers for indexes following the deleted one
will remain the same ... 1.e. 1f index 2 was deleted from a 3 index
file, indexes 1 and 3 would remain. When you delete an index, its
file will be deleted from the disk.

Copyright (c) 1984 Data Access Corporation 4 05/16/84

DataFlex 2.0 User's Manual FILE DEFINITION (FILEDEF) C-65

OPTION 3 - PRINT FILE DEFINITION

The third option on the menu, PRINT FILE DEFINITION, will allow you to
inspect the file that has been defined.

You have the choice of sending the output to either the screen
(default), the printer, or a file. If you send the output to the
printer make sure that it is turned on, and set ON LINE before
entering this command to avoid a lockup.

If you are sending the output to a file, the filename will be the
ROOTNAME that you have supplied for the file that you are editing, and
it will have an extension ".DEF" (or rootname.DEF). Sending the
output to a file can help you document the application. After sending
the output to the file, you can edit it with your text editor and/or
include it in other documentation. Refer to Option 8 below, "CREATE
FILE DEFINITION FROM .DEF FILE"™ for more information.

A completed file definition, when printed out, looks like this:

FILE DEFINITION LISTING FOR FILE #21
KNI H N NI IR IR R H RN
FILE ROOT NAME = VENDOR
USER DISPLAY NAME = VENDOR
DATAFLEX FILENAME = VENDOR
HHH KN NI NI NI MR HERNR
RECORD LENGTH = 128 (USED = 112)
MAX NUMBER OF RECORDS = 400 (USED = 5)
DELETED SPACE IS REUSED

MULTI-USER RE-READ INACTIVE
KN NI HH I I I IR R KRNI KK TN IR KKK KAKH

LI ¢

FIELD FIELD FIELD FIELD DEC MAIN RELATES--TO
NMBR OFFSET LEN TYPE PTS INDEX FILE FIELD
1 1 30 ASCII 1 0 0 VENDOR_NAME
2 31 30 ASCII 0 0 0 ADDRESS
3 61 14 ASCII 0 0 0 CITY
4 75 2 ASCII 0 0 0 STATE
5 77 9 ASCII 0 0 0 ZIP
6 86 3 ASCII 0 0 0 PHONE_AC
7 89 3 ASCII 0 0 0 PHONE_EXCHG
8 92 4 ASCII 0 0 0 PHONE_NUMBER
9 96 2 NUMERIC 0O 0 0 0 TERMS
10 98 4 NUMERIC 1 0 0 0 CREDIT_LIMIT
11 102 4 NUMERIC 1 0 0 0 CREDIT_USED
12 106 4 NUMERIC 1 0 0 0 PURCHASES
13 110 3 DATE 0 0 0 LAST_PURCHASE

INDEX 1: FIELD SEGMENTS: <1> <0>

C~66 FILE DEFINITION (FILEDEF) DataFlex 2.0 User's Manual

OPTION 4 - SET FILE PARAMETERS/NAMES

Option 4 on the menu, SET FILE PARAMETERS/NAMES, will allow you to
change the file names, record Tength, maximum number of records in a
data file, and the REUSE DELETED SPACE OPTION. Defaults are supported
here for ease of operation. Refer to the NEW FILE section for
information on these questions.

OPTION 5 - ERASE DATA FILE

This option is used when ALL data in a file is to be deleted. This
could come in handy when you want to delete sample data, and bring the
system up under actual conditions, or when an end of period zeroing of
a data file is necessary. This is a POWERFUL command. You will be
asked to confirm that you actually do want to zero the file before it
executes. This prompt will only respond to a capital "Y" (we want you
to be absolutely sure). After the data file has been erased, the
remaining file definition, without data, may be saved with Option 9.
If this is not done, the file definition will also be erased.

OPTION 6 - SET FILE INACTIVE

This option will allow you to delete a name from the 1ist of files
that appears at the start of FILEDEF without actually deleting the
file definition or data files from the disk. You will need to confirm
that you actually want to perform this action. (Again, with a capital
"y" only). NOTE, to reactivate a file, upon entry into FILEDEF,
select the file number of the file that you want to reactivate, and
respond to the question "NEW FILE™ with "N"., The procedure for
removing all trace of a file from the system is to first set the file
inactive through FILEDEF, then use the ERASE command in the MENU or
your operating system.

OPTION 7 - CREATE FILE DEFINITION FROM SCREEN IMAGE

This option reads in an IMAGE (created with a text editor) from a file
which you specify in response to its prompt, and all the window
information in the image file is used to create a basic file
definition and optionally an ENTER configuration. Refer to the
section on "Formatting With Images" for more on how to create IMAGEs.

You will be prompted for the file name of the screen IMAGE to read in.
If the file is located on a drive other than the default drive,
precede the file name with the proper drive specification. If you
want an ENTER configuration created for this file, answer "Y" to the
next question. The configuration created will have the ROOTNAME of
the IMAGE used, with an .FRM extension added, If you want only to
create the file definition and not a configuration file, respond with
"N®" to this prompt.

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual FILE DEFINITION (FILEDEF) C-67

The screen image will be evaluated from top to bottom, left to right,
to extract the types and lengths of the fields in the image. This
process will replace any field definition that may already exist under
the selected file name. If you require a more complex file definition
with related fields or overlapping fields, you may use this option to
create the basic field structure and add the needed relationships
using Option One.

After using Option 7, define the indexes with Option 2.

OPTION 8 - CREATE FILE DEFINITION FROM .DEF FILE

The ASCII file with filename extension .DEF which can be created with
Option 3 (see above) can be used to recreate the structure of the file
definition. This option has other uses. Say, for example, that you
had a file definition on an 8-bit computer that you wanted to move to
a 16-bit model. We will assume that DataFlex is installed on both
machines. You can use Option 3 to create an ASCII text file for the
file definition. This ASCII file can be transported to the 16-bit
machine by a data communications program. Once on the 16-bit machine,
this .DEF file can be read by FILEDEF Option 8 to recreate the file
definition there. A new file definition created in this manner will
be empty of data. Of course this process serves to transport file
definitions in the other direction also.

OPTION 9 - SAVE DEFINITION/EXIT FILEDEF

This option saves the file definition just created or edited to the
disk. After this option is executed, you will be asked if another
file definition is to be loaded for file definition. Respond "Y" if
you desire to edit more, or "N" to exit FILEDEF.

If you elected pre-allocation of required disk space for the maximum
possible size of database files in installing DataFlex (see Installing
DataFlex), the files will be created at this time (if you are
establishing a new database) in their maximum size when completely
full of data. You should make certain enough space is available for
the new files. Your screen will display a sequence of dots during the
time it is creating the new files, which may consume an hour or more
if the new files are sizable.

If another file is to be loaded, you may also respond to the prompt
with the next file number to load if it is known. This reduces the
time required to load the menu and begin editing on the next file.

OPTION 10 - ABORT FILEDEF

Option 10 will exit FILEDEF without making any changes to the file
definition. NOTE: If you used Option Five to erase data, and you

then abort with this option, the selected erasure will not occur. The
same is true if you deleted an index or took any other action.

Copyright (c) 1984 Data Access Corporation 05/16/84

C-68 FILE DEFINITION (FILEDEF) DataFlex 2.0 User's Manual

THIS PAGE INTENTIONALLY LEFT BLANK

Copyright (c) 1984 Data Access Corporation 05/16/84

SAMPLE APPLICATIONS

A sample multi-file configuration is provided with DataFlex. It is an
inventory / order entry system which you may find quite useful. How-
ever, that is not its purpose. The order entry sample is, rather,
intended as a teaching tool and as a starting place should you wish to
construct such a system.

The order entry configuration as suppiied is fully operational includ-
ing sample data files on your master disks. It is recommended that
you become thoroughly familiar with how and why it works BEFORE
attempting to create your own multi-file configurations.

The first step in understanding DataFlex is to run the demo configu-
ration. From the Master Menu, you may select "DATAFLEX DEMO" to run

the order entry system.

A SINGLE FILE SCREEN...

First we will deal with DataFlex using only ONE file at a time. To
demonstrate operation at this level we will use the CUSTOMER file.
Although the CUSTOMER file is related TO by other files, it relates to
no others, and thus can be used by itself.

Copyright (c) 1984 Data Access Corporation 05/16/84

C-70 SAMPLE APPLICATIONS DataFlex 2.0 User's Manual

THE CUSTOMER SCREEN:

There is only one screen used to access and update the CUSTOMER file.
Select "CUSTOMER FILE MAINTENANCE" from the menu. The screen should
lTook 1ike this:

DATA ACCESS CORPORATION CUSTOMER MASTER FILE

CUSTOMER NUMBER: ___ .

NAME :

ADDRESS :

cIryY: ___ ST: _ ZIP:

DISCOUNT: _.%

PURCHASES/MONTH $ «__ PURCHASES/YEAR $, —

AMOUNT DUE § —

This is a simple, single file screen configuration to do file
maintenance and look-up on the CUSTOMER file. Refer to the Operator's
Guide section of this manual on how to use the DataFlex Flex-Keys to
operate the screen.

This screen displays all of the data in the CUSTOMER file, The first
field <CUSTOMER NUMBER> is actually the record number assigned auto-
matically by DataFlex. MNote that the use of record number this way is
optional. User assigned CUSTOMER numbers or ID's could also be con-
figured with only a small modification to the system. If an existing
CUSTOMER number is entered into this field, the data from the CUSTOMER
file for that record will display when the <RETURN> key is pressed:

EXAMPLE :

Enter a <2> and <RETURN> in window cne, and the data for
CUSTOMER two will display.

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual SAMPLE APPLICATIONS c-71

The CUSTOMER file is also INDEXED by the COMPANY NAME data field.
This allows us to FIND customer records by placing the cursor either
over the COMPANY NAME window, entering all or part of a company name
and pressing FIND, or using the above procedure on the <CUSTOMER
NUMBER> window.

EXAMPLE:

1) Clear the data windows with the CLEAR Flex-Key

2) Hit <RETURN> to move the cursor to the COMPANY NAME window
3) Type in "DATA" and execute a <FIND> command

4) The CUSTOMER data for "DATA ACCESS" will display.

Up to four fields on this screen could be indexed in this way on 8 bit
systems (9 fields on 16 bit systems). Screens which have multiple
files displayed can have up to this many indexes per file.

To ENTER new customers into the CUSTOMER database with this screen:

1) Clear the screen.
2) Strike <RETURN> to bypass the CUSTOMER number window. The

number will be assigned automatically.

3) Type data into each window and press <RETURN>.

4) When all the required windows are filled, the record will
be saved in the database

After reading the OPERATOR'S GUIDE, experiment with this screen until
you feel comfortable with what the program does as ycu use the various
keyboard commands. You should be able to:

1) FIND ANY RECORD BY EITHER KEY.
2) CREATE NEW RECORDS.

3) EDIT EXISTING RECORDS.

4) DELETE RECORDS.

Copyright (c) 1984 Data Access Corporation 05/16/84

C-72 SAMPLE APPLICATION DataFlex 2.0 User's Manual

CUSTOMER FILE DESCRIPTION:

The specifications (size, content and indexing) of the CUSTOMER data
base file can be displayed or printed out with the FILEDEF program.
The display/printout looks 1ike this:

FILE DEFINITION LISTING FOR FILE #25
XN NI I ICN NI NN IO M NN HA R IAK NN HK

FILE ROOT NAME = CUSTOMER
USER DISPLAY NAME = CUSTOMER FILE
SHORT NAME = CUSTOMER

I I I IN I I I I I M I I I I NI KK IHIHH K
RECORD LENGTH = 128 (USED = 103)
MAX NUMBER OF RECORDS = 100 (USED = 4)
DELETED SPACE IS REUSED
MULTI-USER RE-READ INACTIVE

030 I I I IE I I I I HI I H I

FIELD FIELD FIELD FIELD DEC MAIN RELATES--TO

NMBR OFFSET LEN TYPE PTS INDEX FILE FIELD

1 1 30 ASCII 0 0 0 0 CUSTOMER
2 31 30 ASCII 0 0 0 0 ADDRESS
3 61 14 ASCII © 0 0 0 CITY

4 75 2 ASCII O 0 0 0 STATE

5 77 10 ASCII O 0 0 0 ZIP

6 87 1 NUMERIC 0 0 0 0 DISCOUNT
7 88 4 NUMERIC 2 0 0 0 PUR MONTH
8 92 4 NUMERIC 2 0 0 0 PUR YEAR
9 96 4 NUMERIC 2 0 0 0 PROFIT
10 100 4 NUMERIC 2 0 0 0 DUE

INDEX 1: FIELD SEGMENTS: <I1> <0>

This display tells us the following things about the CUSTOMER file:
The CUSTOMER file is DataFlex file number 25

The ROOT FILE NAME (the one that will show on a disk directory) is
"CUSTOMER"

When a file list is displayed to the operator it will show as
"CUSTOMER FILE"

Each CUSTOMER record will take up 128 bytes in the data file (record
length) and that of the 128, 103 bytes have been used.

The file can contain up to 100 customers (provided there is sufficient
disk storage) but that only four records currently exist.

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual SAMPLE APPL.ICATIONS C-73

If a customer is deleted, the next customer to be added will be
assigned the deleted customer's disk and record number automatically
by DataFlex (deleted space is REUSED).

The CUSTOMER file 1s not expected to be used in a multiuser environ-
ment. (Multi-user Re-read is set INACTIVE).

There are 10 data fields in each customer record. Their lengths, data
types, and names are also shown.

One index is active for the CUSTOMER file, composed of field <1> (the
customer name), and field <0> (the system record number).

Note that the 4-byte NUMERIC fields will each hold 8 digits, 2 after
the decimal point.

Notice that in this file the record number is used as a system assign-
ed account number. This provides for maximum operator and system
speed when finding a customer record (particularly since the operator
would remember frequently used customer numbers). Where this doesn't
work well, you could create an additional indexed field for user-
assigned account ID's or not use any codes at all by always using the
CUSTOMER NAME. The operator can easily FIND the record by CUSTOMER
NAME since that field is also indexed. Although access by record
number is fastest, the INDEXING in DataFlex is so fast that indexing
should not be avoided for reasons of performance.

The record number <0> is made part of the index with CUSTOMER NAME to
create unique index entries to allow two customers with same name.

THE <CUSTOMER> CONFIGURATION FILE

The file name of the CUSTOMER file configuration on your demo disk is
"CUSTOMER.FRM", The configuration file looks 1ike this:

Copyright (c) 1984 Data Access Corporation 05/16/84

Cc-74 SAMPLE APPLICATIONS DataFlex 2.0 User's Manua

éigiMACCESS CORPORATION CUSTOMER MASTER FILE
CUSTOMER NUMBER: <___.>
NAME: < >
ADDRESS :
CITY: ST: ___ ZIP:
DISCOUNT: _.%
PURCHASES/MONTH § .__ PURCHASES/YEAR $.
PROFIT/YEAR $.
w1ndows with < > can be used to FIND customers
/

// This is a simple ENTER configuration for customer file maintenance.
// Since the windows are processed sequentially, the AUTOPAGE function can
// be used and the windows do not have to be explicitly named.
OPEN CUSTOMER // A11 files must be opened
ENTER CUSTOMER
AUTOPAGE FORM
// Each ENTRY command is followed by the database element it references.

// The window is assigned by autopage. After the command the
// options surrounded by {}.
ENTRY CUSTOMER,RECNUM {AUTOFIND,NOPUT}

// Translation: Do data entry on the record number of the customer
// file. Automatically FIND by this field when data in input, but
// do not put data back into the record buffer since record number
// can't be changed.
ENTRY CUSTOMER.CUSTOMER
// Translation: Do data entry on the customer name of the customer file
ENTRY CUSTOMER.ADDRESS
ENTRY CUSTOMER.CITY
ENTRY CUSTOMER.STATE
ENTRY CUSTOMER.ZIP
ENTRY CUSTOMER.DISCOUNT
ENTRY CUSTOMER.PUR_MONTH {DISPLAYONLY}
// Translation: When the customer file is found, display purchases
// for the month in this window
ENTRY CUSTOMER.PUR_YEAR {DISPLAYONLY}
ENTRY CUSTOMER.PROFIT {DISPLAYONLY}
RETURN // return from entry section
ENTEREND // end of enter configuration
ABORT // abort after escape key.
KEYPROC KEY.USER// Define action of user defined key
OUTPUT FORM // Output the page
ENTAGAIN // Return to same window
RETURN // End definition of user defined key

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual SAMPLE APPLICATIONS C-75

The HELP screens in the actual configuration have been eliminated in
the above listing to save space, as have certain spacing lines in the
screen image.

The top of the configuration file is the IMAGE format of the screen.
DataFlex will display the form exactly as it appears in the first part
of the configuration. First the page is named with the "/FORM",
designating "FORM" as the name of the page. The DATA WINDOWS are
numbered from left to right, top to bottom. Notice that the last four
windows are numeric and that the last three contain exactly two places
to the right of the decimal point. There are ten windows in this
image format.

In this image, there 1s a one-to-one correspondence between the fields
in the data file and the display windows on the CRT screen. Images do
not need to display all fields from a file; a single data field from
a file might be all that was needed to be displayed.

The line following the end of the screen contains a "/*"., This mark
indicates the end of the image format. It is a required element of
the configuraton. It tells the DataFlex compiler where the end of the
image is, and where the command part of the configuration begins.

The first command line opens the CUSTOMER file. Al11 files that are to
be used in a configuration must be OPENed. OPENs should be at the
begining of the configuration.

The next line in the configuration “ENTER CUSTOMER" begins the ENTER
Command Group. The ENTER command is a DataFlex macro that is really
more like a complete program than just a command since it controls the
whole operation of this configuration.

The next line, "AUTOPAGE FORM", tells the DataFlex compiler that we
will be using the page named "FORM". By using AUTOPAGE, we don't have
to specify each window on the page. They are assigned automatically
in sequence by the command.

The next 10 lines are ENTRY commands. ENTRY commands work with the
ENTER command and specify each data element and window. The window

numbers can be omitted because of the use of the AUTOPAGE Command.

See the section of this manual on the ENTER Command Macro for a
complete discussion of the functions and uses of ENTRY.

The first ENTRY command 1ine uses two options:

AUTOFIND: Executes a FIND using data in the window when the
<RETURN> key is pressed.

NOPUT : Do not put data BACK INTO the record buffer since
the record number (the window data in this case) can
not be changed.

Copyright (c) 1984 Data Access Corporation 05/ 16/84

C-76 SAMPLE APPLICATIONS DataFlex 2.0 User's Manual

Refer to the ENTER Command Macro section for a full list of options.

At this time, review each of the command iines to see how the file and
field element names correspond to the windows in the screen image and
the data file definition. Note that in 1ine one, record number is
connected to window one (account number). This is typical in files
where the record number is used as a system-assigned account number.

The last 1ine of the ENTER configuration for CUSTOMER FILE is an
ABORT. When a file maintenance session is compiete, pressing the
ESCAPE key will cause the configuration to abort.

CUSTOMER FILE REPORT EXAMPLE:

You need a simple report to 1ist our customers, their discount and
total purchases. The following is the output of the REPORT program:

CUSTOMER FILE

CUSTOMER DISCOUNT PUR/YEAR
4 DATA ACCESS CORPORATION 15% 100.00
3 DYSAN CORPORATION 5% 49,713.50
2 MAXELL 20% 12,056.00
1 MT MICROSYSTEMS. INC. 30% 57,000.00
118,869.50

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual SAMPLE APPLICATIONS C-77
This report is produced with the following report configuration:
/HEADER
CUSTOMER FILE
CUSTOMER DISCOUNT PUR/YEAR
/BODY RESIDENT
. G .

/TOTAL

/%
OUTFILE
OPEN CUSTOMER INDEX.1

REPORT CUSTOMER BY INDEX.1
//Print the customers in customer

SECTION HEADER
OUTPUT HEADER

SECTION BODY
PRINT CUSTOMER.RECNUM
PRINT CUSTOMER.CUSTOMER
PRINT CUSTOMER.DISCOUNT
PRINT CUSTOMER.PUR_YEAR
OUTPUT BODY

SECTION TOTAL
SUBTOTAL BODY.4

OUTPUT TOTAL
REPORTEND
ABORT

//direct the output
//open the customer file

name order.

//simply output the page headings

//customer id number is system assigned
//customer name

//subtotal will take the accumulator
//for any numeric window and print
//1t in another window.

//print the total purchases for all
//customers in the database

Copyright (c) 1984 Data Access Cor

poration 05/16/84

C-78 SAMPLE APPLICATIONS DataFlex 2.0 User's Manual

THE VENDOR FILE:

The vendor file, 1ike the CUSTOMER file, is a single file configura-
tion. We will relate other files to it at a later time. The first
step is to run the VENDOR configuration from the DEMO menu. Then
examine the file definition for VENDOR and compare it with that of the
CUSTOMER file.

FILE DEFINITION LISTING FOR FILE #21
I NI I I IIONIN NI KK KR KKK KK

FILE ROOT NAME = VENDOR
USER DISPLAY NAME = VENDOR
SHORT NAME = VENDOR

FH R IR I I H I I 3 I NI KKK K
RECORD LENGTH = 128 (USED = 112)
MAX NUMBER OF RECORDS = 400 (USED = 15)
DELETED SPACE IS REUSED
MULTI-USER RE-READ INACTIVE

FH NIRRT I IR TTEI K I NI I H IR K X

FIELD FIELD FIELD FIELD DEC MAIN RELATES--TO

NMBR OFFSET LEN TYPE PTS INDEX FILE FIELD
1 1 30 ASCII 1 0 0 VENDOR
2 31 30 ASCII 0 0 0 ADDRESS
3 61 14 ASCII 0 0 Q CITY
4 75 2 ASCII 0 0 0 STATE
5 77 9 ASCII 0 0 0 ZIP
6 86 3 ASCII 0 0 0 PHONE-AC
7 89 3 ASCII 0 0 0 PHONE_EXCHG
8 92 4 ASCII 0 0 0 PHOME_NUMBER
9 96 2 NUMERIC 0 0 0 0 TERMS
10 98 4 NUMERIC 2 0 0 0 CREDIT_LIMIT
11 102 4 NUMERIC 2 0 0 0 CREDIT_USED
12 106 4 NUMERIC 2 0 0 0 PURCHASES
13 110 3 DATE 0 0 0 LAST_PURCHASE
INDEX 1: FIELD SEGMENTS: <I> <0>

Note that the use of record number as an account number is used here
as well. The indexing is also very much the same as in the CUSTOMER
data base file. The only real difference is the content of the

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manuatl SAMPLE APPLICATIONS Cc-79

fields. This is an important DataFlex concept: that the way infor-
mation is dealt with remains constant even though the application may
change.

The VENDOR file introduces us to the DATE data type and field format.
Dates in DataFlex are kept in JULIAN format, or, the number of days
since day zero. Since dates are kept as numbers we can use them in
arithmetic expressions (add or subtract them). This is quite useful
for ageing reports and due date calculations, etc. Even though dates
are stored as numbers, they are always displayed in a DATE format

window (__/__/__) automatically converted to the conventional MM/DD/YY
format.

File maintenance on the VENDOR file uses the following configuration:

Copyright (c) 1984 Data Access Corporation 05/16/84

C-80 SAMPLE APPLICATIONS DataFlex 2.0 User's Manual

/FORM

DATA ACCESS CORPORATION VENDOR MASTER FILE
VENDOR NUMBER: <__.>
COMPANY: < >
ADDRESS ¢
CITY: 8T . ZIP:
PHONE: (__) ___ -
TERMS (DAYS): __. CREDIT LIMIT: $ —
OQUTSTANDING CREDIT: $_ .
REMAINING CREDIT: $.
TOTAL PURCHASES: $.

LAST PURCHASE: __ /_/__
Data in < > can be used to FIND vendors

/%
OPEN VENDOR // all files must be opened.
ENTER VENDOR // initalize enter macro.
AUTOPAGE FORM // automatically assign windows
ENTRY VENDOR.RECNUM {NOPUT, AUTOFIND}

// Translation, Do data entry with the record number of the vendor file
// automatically find record, do not update the record buffer since
// record number can't be changed.
ENTRY YENDOR.VENDOR
// Translation, Do standard data entry on the vendor name of the vendor file.
ENTRY VENDOR.ADDRESS
ENTRY VENDOR.CITY
ENTRY VENDOR.STATE
ENTRY VENDOR.ZIP
ENTRY VENDOR.PHONE_AC
ENTRY VENDOR.PHONE_EXCHG
ENTRY VENDOR.PHONE_NUMBER
ENTRY VENDOR.TERMS
ENTRY VENDOR.CREDIT_LIMIT

ENTRY VENDOR.CREDIT_USED {DISPLAYONLY}
// Translation, When the vendor file is FOUND, display credit used in this
// window.

ENTRY (FORM.11-FORM.12) {DISPLAYONLY}

// Translation, When a record is found, display the result of the calculation
/7 of credit 1imit (FORM.1l) minus credit used (FORM.12) in this window.

ENTRY VENDOR.PURCHASES {DISPLAYONLY}
ENTRY VENDOR.LAST_PURCHASE {DISPLAYONLY}
RETURN // return from entry section
ENTEREND // end of enter command
ABORT // stop after escape key.
// note: the entry command can only be used inside an enter or entergroup
KEYPROC KEY.USER // Define action of user defined key
OUTPUT FORM // Output the page
ENTAGAIN // Return to same window
RETURN

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual SAMPLE APPLICATIONS C-81

Notice the similarity between this file and the one for CUSTOMERs.
Each ENTRY command 1ine links a data base field with a WINDOW.

Close to the bottom, we see something new: ENTRY (FORM.11-FORM.12).
This is a calculated field that translates to:

WHEN DISPLAYING FILE 21, SUBTRACT THE VALUE OF WINDOW 12
(FORM.12) FROM THE VALUE OF WINDOW 11 (FORM.11l) AND PUT THE
RESULT IN WINDOW 13.

There is not a report for the vendor file supplied with the sample
configurations; this one is up to you. Create a report format for
VENDOR and use the CUSTOMER report as a model. After making the
report, add it to the MENU using the MENUDEF program.

After making your report, try your hand at a simple file definition
and configuration using the AUTODEF Program. AUTODEF takes a screen
IMAGE format created with a text editor and makes both the file
definition and compilable configuration file from it. After making
these, look at the file definition with the FILEDEF program and type
out the configuration with the operating system TYPE command. Then
compile the configuration.

THE INVENTORY FILE:

With the inventory file we start to see the true power of DataFlex.
Each inventory part is supplied by a VENDOR, so the INVENTORY file is
said to RELATE to the VENDOR file. When an inventory part is found
(called into memory), the RELATED VENDOR record automatically comes
with it, This relationship is automatically maintained by DataFlex.

DATA ACCESS CORPORATION INVENTORY MASTER FILE

VENDOR NUMBER: __. NAME :

VENDOR PART 1ID:

YOUR PART 1D:

DESCRIPTION:
STOCK QUANTITY: ___ . MINIMUM QUANTITY: __.
REORDER QUANTITY: . QTY ON ORDER: ____.
SALES/MONTH: $. SALES/YEAR: $__ . _
PROFIT/YEAR: § _ __._ .
LIST PRICE: § _____. WHOLESALE PRICE: $.
AVERAGE COST: § _____ . STOCK VALUE: $______ .

Copyright (c) 1984 Data Access Corporation 05/16/84

C-82 SAMPLE APPLICATIONS DataFlex 2.0 User's Manual

When running the fnventory data entry screen, the first two fields are
actually ouf of the VENDOR file. You can find the vendor of interest
on this screen by either key, just like you could in the VENDOR
screen. You can then move the cursor down to VENDOR PART ID: to find
the first (or any) part for that vendor., The vendor number and then
vendor's part number make up a "two segment key", that 1s, you must
find the vendor, then, put in all or part of the vendors part number
to find a record by that index. To find the first part for any
vendor, enter the VENDOR NUMBER or NAME and hit the "SUPERFIND" key.

The INVENTORY file is also indexed {able to find records by) "YOUR
PART ID"™ and "DESCRIPTION", You can put the cursor in any of these

windows and find a particular partl

When you are creating a new part, find the vendor first, then fill in
the other windows like you did 1n the other screens. This configura-
tion will also allow you to create new vendors from this inventory
screen. Just enter a new vendor name with no vendor number, and when
you SAVE the part, a new vendor will be created. Later we will see
how to disable this feature 1f you want.

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual SAMPLE APPLICATIONS Cc-83

INVENTORY FILE DEFINITION:

FILE DEFINITION LISTING FOR FILE #22
063603636 06 969636 36 3636 303669606 3606 3 JE0 06 306 H 30 3 KK I I NN K

FILE ROOT NAME = INVT
USER DISPLAY NAME = INVENTORY FILE
SHORT NAME = INVT

036 36 3 26 3636 36 36 36 36 9696 36 36 36 36 3 3 3 3 I3 36 36 I 63 3 336 36 3 3693 296 3K 36 2 369 3¢ XXX

RECORD LENGTH = 128 (USED = 104)
MAX NUMBER OF RECORDS = 100 (USED = 33)
DELETED SPACE IS REUSED
MULTI-USER RE-READ ACTIVE
T T T e e T ey e e T e T e L

FIELD FIELD FIELD FIELD DEC MAIN RELATES--TO

NMBR OFFSET LEN TYPE PTS INDEX FILE FIELD
1 1 2 NUMERIC O 1 21 0 VENDOR
2 3 15 ASCII 1 0 0 VENDOR PART_ID
3 18 15 ASCII 2 0 0 PART_ID
4 33 35 ASCII 3 0 0 DESCRIPTION
5 68 3 NUMERIC 0 0 0 0 QUANTITY
6 71 2 NUMERIC 0 0 0 0 MINIMUM
7 73 3 NUMERIC 0 0 0 0 REORDER
8 76 3 NUMERIC 0 0 0 0 ON_ORDER
9 79 5 NUMERIC 2 0 0 0 SALES_MONTH
10 84 5 NUMERIC 2 0 0 0 SALES_YEAR
11 89 4 NUMERIC 2 0 0 0 PROFIT_YEAR
12 93 4 NUMERIC 2 0 0 0 LIST_PRICE
13 97 4 NUMERIC 2 0 0 0 WHOLESALE_PRICE
14 101 4 NUMERIC 2 0 0 0 AVG_COST
INDEX 1: FIELD SEGMENTS: <1> <2>
INDEX 2: FIELD SEGMENTS:. <3>
INDEX 3: FIELD SEGMENTS: <4> <0>

The first field "VENDOR NUMBER"™ RELATES to the record number (field
zero) of the vendor file (#21). This is all that's required to RELATE
the inventory file to the vendor file and i1t essentially makes the
vendor file a logical extension of the inventory file.

The INVENTORY file has THREE indexes. The first index is by vendor
number (field one) AND vendor part id (field two). This combining of
fields to make one index is called a multi-segment index. Since
record number is NOT appended to this index, two parts can't have the
same vendor AND part number, which would be a duplicate record.

Index TWO is on field 3, or YOUR PART ID, allowing the same part to be
known by two different part numbers, yours and the vendor's. Could
two parts have the same part number? If not, how could you allow that
if you wanted? Answer: No, two parts could not have the same
number, but if they could, the circumstance could still be dealt with
effectively by appending field ZERO (the record number) to the index,
rendering the composite index entry unique despite the duplication.

Index THREE allows access by DESCRIPTION. Notice the "MAIN INDEX'
column of the file definition. The main index is the number of the

Copyright (c) 1984 Data Access Corporation 05/16/84

C-84 SAMPLE APPLICATIONS DataFlex 2.0 User's Manual

index that will be used when you FIND by that field. In this file
there are no fields that are used in more than one index, but where

there are, the main index becomes important.

THE INVENTORY ENTER CONFIGURATION: (some lines are deleted from the
image area to conserve space)

éigﬁMACCESS CORPORATION INVENTORY MASTER FILE
VENDOR NUMBER:<__.> NAME : < >
VENDOR PART ID:< >
YOUR PART ID:< >
DESCRIPTION:< >
STOCK QUANTITY: __ . MINIMUM QUANTITY: _.
REORDER QUANTITY: . QTY ON ORDER: _____
SALES/MONTH: $. SALES/YEAR: § o—
PROFIT/YEAR: $§ ___ .
LIST PRICE: § ____ . _ WHOLESALE PRICE: § .
AVERAGE COST: § ____ . STOCK VALUE: § -

/%

// This enter configuration is a 1ittle more sophisticated since it deals
// with two files. The inventory file RELATES to the vendor file.
OPEN INVT // A11 files must be OPENED before use.
OPEN VENDOR // The order of opening the file is
// not important.

ENTER INVT VENDOR // ENTER will maintain both INVT and VENDOR.
// Since INVT relates TO VENDOR it MUST be
/7 first on the ENTER line.
// INVT is the main file.

AUTOPAGE FORM // Set up to automatically assign windows.
// These fields use the AUTOPAGE option-~-the windows are automatically
// assigned to the FORM page.

ENTRY VENDOR.RECNUM {AUTOFIND}

// Translation, do data entry on the record number of the vendor file.
// Automatically try to find the vendor by number.
// Note that the element of the related TO file is used here
// and automatically PUT to the VENDOR field of the INVT file.
// The related TO element should always be used in a case like this.

(This configuration is continued on the next page.)

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual SAMPLE APPLICATION C-85

ENTRY VENDOR.VENDOR {SKIPFOUND,FINDREQ}
// Translation, Do data entry on the vendor name of the vendor file
// Skip this entry if a record has already been found and REQUIRE
// that a vendor be found to continue.
ENTRY INVT.VENDOR_PART_ID {SKIPFOUND,RETAIN}

// Translation, Do data entry on the vendor part id of the inventory
// file. Skip this 1f a record has been found (preventing changes)
// and retain the entry after a clear window command.

ENTRY INVT.PART_ID {RETAINALL,REQUIRED}

ENTRY INVT.DESCRIPTION {CAPSLOCK}

ENTRY INVT.QUANTITY

ENTRY INVT.MINIMUM

ENTRY INVT.REORDER

ENTRY INVT.ON ORDER
// These fields do not use autopage--they name each window.
// Either form is acceptable.

ENTRY INVT.SALES MONTH FORM.10 {DISPLAYONLY}

ENTRY INVT.SALES YEAR FORM.11 {DISPLAYONLY}

ENTRY INVT.PROFIT_YEAR FORM.12

ENTRY INVT.LIST_PRICE FORM.13

ENTRY INVT.WHOLESALE_PRICE FORM.14

ENTRY INVT.AVG_COST FORM.15

ENTRY (INVT.QUANTITY*INVT.LIST_PRICE) FORM.16
// The 1ine above displays a calculated field.

RETURN // return is required at the end of the entry section.

ENTEREND // as is ENTEREND.

ABORT // After the ESCAPE key is hit, abort.
KEYPROC KEY.USER // Define action of user defined key

QUTPUT FORM // OQutput form to list

ENTAGAIN // Return to same window

RETURN

Notice that there are now two files OPENED on the first two lines of
the configuration section, INVT and VENDOR. This tells ENTER to use
both the VENDOR and INVENTORY files in this screen. The ORDER in
which these files are listed on the ENTER line is important. The
files which are RELATED TO by the others go to the right of the files
which relate TO them, The first file is called the MAIN file. The
MAIN file is the one that relates (directly or indirectly) to all the
others. INVT is the main file in this configuration. (there can b&
files that aren't related to at all).

The first two fields are from the VENDOR file while all the others are
from the inventory file. When the same (related) field is present in
both files, such as; RECORD NUMBER in the VENDOR file and VENDOR
NUMBER in the INVENTORY file, ALWAYS use the field that is related TO
by the other(s) in the ENTER configuration. That's why VENDOR.,RECNUM
is used in the first window instead of INVT.VENDOR. VENDOR NUMBER in
the INVENTORY file will be automatically updated when a record is
saved.

Copyright (c) 1984 Data Access Corporation 05/16/84

C-86 SAMPLE APPLICATIONS DataFlex 2.0 User's Manual

This ends the sample section of the demo for your initial familiari-
zation. The rest of the demo should be studied after you master basic

operations with some application work of your own.

APPLICATION STRUCTURE:

So far, we have been considering only one or two files at a time, but
to really understand what is happening in our order entry appiication.
Let's look at the whole picture:

Select "INVOICE ENTRY" from the demo menu. The invoice screen will
Took 1ike this:

DATA ACCESS CORPORATION INVOICE
INVOICE NUMBER: . CUSTOMER# __.
BILL TO:
DISC TERMS DATE VIA SLSMN CUSTOMER ORDER
— o St J—

D..ﬁAéf.ib'.‘....6ééééié%iéﬁ..'.'.ﬁ.............ﬁéiéé..éi§...Aﬁ66ﬁ+

1. e s —

2. . R —

3. e e

4. e e

5. — e .

6. . . —
TOTAL $ —

To create a new invoice, enter the invoice number. You may then ENTER
the CUSTOMER NUMBER in window two or the CUSTOMER NAME in window three
and do a FIND. Once you have found a customer, the CUSTOMER data will
display. This will become the default for the ship-to address; you
may change these fields if you wish. The cursor will then move to
invoice header area and take the default values (these are coming from
the CUSTOMER file). In the LINE ITEM section the object is to find an
inventory item by either of the two keys, and then ENTER the QTY sold.
A default for the unit price will come from the inventory file less
the discount in the CUSTOMER file. The other affected windows will be
updated and you can save the line item. You may use the arrow keys to
move up and down through the items. The delete record key deletes an
entered 11ne item. Press the ESCAPE key to print the invoice.

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual SAMPLE APPLICATIONS Cc-87

There are five files open in the invoice screen; Customer, Vendor,
Inventory, Invoice header, Line items (inventory transactions). The

structure of the files looks like this:

VENDOR CUSTOMER
|

:
! |
INVENTORY !
! !
' :

i
LINE ITEMS----- '

The configuration that produces a multi-1ine multi-file report 1ike
this is advanced "Flex~gramming". It is included on your disks as the
file "INVOICE.FRM", You should understand basic operations with ENTER
and REPORT before trying a configuration 1ike INVOICE, which uses
command described in the next section.

The files, screens and reports that make up the demo are:

FILE FILE REPORT ENTER

NUMBER NAME CONFIGURATION CONFIGURATION
I SYSFILE (SYSTEM FILE) NONE DATE.FRM

21 VENDOR VENRPT .RPT VENDOR.FRM

22 INVT (INVENTORY) INVT.RPT INVT.FRM

25 CUSTOMER CUSTRPT.RPT CUSTOMER.FRM
29 INTRAN (LINE ITEMS) MOVEMENT.RPT INVOICE.FRM

Copyright (c) 1984 Data Access Corporation 05/16/84

C-88 SAMPLE APPLICATIONS DataFlex 2.0 User's Manual

THIS PAGE INTENTIONALLY LEFT BLANK

Copyright (c) 1984 Data Access Corporation 05/16/84

The DataFlex Forms command group controls screen image PAGEs,
including display of the PAGE image, filling the windows with data,
moving the data from windows to the record buffer, formatting display
of data, and clearing both data and images from the screen,

PAGE Command

The action of the PAGE command is to display any labeled PAGE of a
configuration on the screen. PAGEs are labeled through the use of a
"pagename" as discussed in the chapter on "Elements of Configura~
tions". The prerequisite for the PAGE command is that at least one
defined and labeled image page be present as part of the configuration
being processed. See the section on "Formatting With Images" for
details of the page configuration.

FORMAT :
PAGE pagename
EXAMPLES :

PAGE firstscreen
PAGE secondscreen
PAGE pageheading
PAGE subheading
PAGE reportbody

Any MOVE or DISPLAY to a page will be immediately displayed in the
appropriate window when a PAGE command is executed for that page. It
is important to note that since windows are varfables and can be used
just 1ike any other defined and typed variable in DataFlex, data can
be MOVEd to or from a window without the necessity of displiaying the
PAGE image.

ACCEPT Command

ACCEPT places the cursor in an image "window" and waits for keyboard
input. Further, the only valid argument for the ACCEPT command is a
window, referenced either as the format PAGENAME.# where “#" is the
number of the window in the page, or as a named window with the window
name established by the NAME definition command.

On execution, ACCEPT displays the operator's keyboard input into a
window (as specified above). It can, optionally, pass the input data
to any legal argument in the DataFlex configuration using the optional
"TO argument" extension as part of the execution of the same command.
The DataFlex field edit keys are active during an ACCEPT command.

Copyright (c) 1984 Data Access Corporation 05/16/ 84

D-2 DIRECT CONTROL OF DATA ENTRY DataFlex 2.0 User's Manual

When using ACCEPT, remember that the window reference itself is a
valid variable that can be used throughout a configuration. Data does
not need to be moved to another vartable for processing in calcula-
tions, data base operations etc. Useful amounts of memory can be
conserved by using the window as a variable to contain data; 1if a
variable is defined only to hold the data input from a window, a dual
overhead is created to store the same information.

FORMAT:
ACCEPT window {TO argument}

EXAMPLES :
ACCEPT screen.3

ACCEPT screen.3 TO inventory.description

ACCEPT window7 TO inventory.qty (window7 previously
defined by NAME command

ACCEPT screen.3 Tp screen.1l0

Where the optional {TO argument} is omitted from the ACCEPT command
line, the data in "window" can be processed in any normal manner.
Where the {TO argument} is used, an automatic MOVE command is executed
when the input is received, placing the data from "window" into
"argument". The "ACCEPT window TO argument" election itself has no
effect on the contents of the window, which will hold the same data as
the argument after the command is executed. The window argument may
be Teft out of the ACCEPT command l1ine by using the AUTOPAGE command.
(see AUTOPAGE)

If data already exists in a window from a previous ACCEPT, MOVE or
DISPLAY, it will be the default entry for the next ACCEPT. If the
appropriate PAGE is not displayed at the time that an ACCEPT is
executed, the PAGE will be displayed by the ACCEPT.

DISPLAY Command

DISPLAY explicitly outputs data to a window in the same manner as
ACCEPT allows input. Accordingly, the oply valid output destination
for DISPLAY 1s a window in an image addressed either as PAGENAME.#
where "#" is the sequential number of the window in a page image, or
as a name established with the NAME command. DISPLAYed data will not
clear when the CLEAR ALL Flex-Key is pressed; only data displayed by
the ENTRY command will respond to the CLEAR ALL Flex-Key.

FORMAT:
DISPLAY argument TO window

EXAMPLES :
DISPLAY 1invt.description TO screen.3

DISPLAY member.name TO mem_name
Where "mem name" was previously created with the NAME command

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual DIRECT CONTROL OF DATA ENTRY D-3

The window reference may be left out of the DISPLAY command by using
AUTOPAGE. (see AUTOPAGE)

AUTOPAGE Command

AUTOPAGE performs an automatic sequential numbering of windows on a
PAGE for the ACCEPT, DISPLAY and PRINT commands. ACCEPT and DISPLAY
commands which follow an AUTOPAGE command will reference windows in
sequence from left to right, top to bottom. The argument for the
AUTOPAGE command is any pagename valid for the current configuration.
If AUTOPAGE is only to be used on a portfon of a PAGE, the number of
the starting window may optionally be added to the command. The (1}
braces shown below should not be typed--only the number of the
starting window. It is not necessary to process every window in the
PAGE after an AUTOPAGE command, but the 1ist of windows to process
must be contfnuous (no gaps) after each AUTOPAGE command.

AUTOPAGE aliows the use of the ACCEPT, DISPLAY and PRINT commands
without the necessity of specifying the window where the command
action is to take place.

FORMAT:
AUTOPAGE pagename {#}
EXAMPLES :
AUTOPAGE employee_record //Display the screen
DISPLAY emp.name //Display the lst window
DISPLAY emp.address //Display the 2nd
DISPLAY emp.city //Display the 3rd
DISPLAY emp.phone //Display the 4th
ACCEPT TO data.verified //Accept input to the 5th
AUTOPAGE employee_tax_status 8 //Display the screen
DISPLAY emp.marital //Display the 8th window
DISPLAY emp.exemptions //Display the 9th window

CLEARFORM and BLANKFORM Commands

These commands remove data from image windows. They can address an
entire image (by pagename), an individual window or a range of

windows.

For example, after data has been entered to a screen image and saved
to the disk, one of these commands can be executed to ciear the input
data from the windows and ready the image for the input of more data.

The commands differ as follows: CLEARFORM removes all data from the
image and displays the "fi11 character" in the window as defined in
the SETSCREE Utility; BLANKFORM removes all data in the image and
displays ASCII space characters in the windows. The two different
forms of operation are provided to allow as much flexibility as
possible in application design. Most configurations will probably use
CLEARFORM. The DataFlex READ configuration uses BLANKFORM when
displaying the field tag names for reference.

Copyright (c) 1984 Data Access Corporation 05/16/84

D-4 DIRECT CONTROL OF DATA ENTRY DataFlex 2.0 User's Manual

CLEARFORM pagename (clear entire page)
BLANKFORM pagename

CLEARFORM window (clear a window)
BLANKFORM window

CLEARFORM window.nl THRU window.n2

BLANKFORM window.nl THRU window.n2
(clear a range of windows
starting at window.nl and
stopping at window.n2)

OUTFILE Command

OUTFILE is used to identify the sequential device (printer, screen, a
disk file) which is to receive data controlled by the QUTPUT command.
The argument for the OUTFILE command is any valid file or device name
addressable by the operating system. If no OUTFILE command exists in
a configuration, and the OUTPUT command is used, output will be
directed to the printer port. If the OUTFILE command is provided, but
with no argument, this means that an argument provided with the
operating or menu command which runs the configuration will designate
the device (the operating system command FLEX DAILYREPORT CON: would
cause the configuration DAILYREPORT to be output to the screen), If
no argument is entered on the command line, output will again go to
LST: (the printer in most systems). Finally, the OUTFILE command may
itself have an argument in the configuration as shown below.
Quotation marks are required for literal arguments.

FORMAT :
OUTFILE {string_arg}
Where "string_arg" is a literal text string in quotation marks
or a string variable containing the name of a legal output
device or file.

EXAMPLES :
QUTFILE "LST:" (output to printer (list device))

OUTFILE "abc.dat" (output to file ABC.DAT)

OUTFILE destdev (output to device or file indicated by
the contents of string variable DESTDEV

OUTFILE (looks for argument from command line)
The OUTFILE command permits output in the same configuration with

other operations. For exampie, after data for an invoice has been
input, it can be sent to a printer for demand printing.

OUTCLOSE Command

After a file or device is established with OUTFILE, OUTCLOSE is used
to "close" the file/device when the configuration is being terminated.

Copyright (c) 1984 Data Access Corporation 06/08/84

DataFlex 2.0 User's Manual DIRECT CONTROL OF DATA ENTRY D-5

This command uses no argument, since it operates on any device or file
which is open.

FORMAT :
OUTCLOSE

OUTPUT Command

OUTPUT addresses a "pagename™ argument and transfers the entire page
referenced by "pagename™ to OUTFILE. A1l data in the page--format-
ting, prompts, and data, are sent to OUTFILE. See OUTFILE command.

FORMAT :
QUTPUT pagename_arg

EXAMPLE :
OUTPUT invoice

NAME Command

NAME is used to identify windows in a page with a specific identifier
rather than PAGENAME.#. There are two forms of the command. A window
can be explicitly NAMEd:

FORMAT :
NAME page_name.# window_name

Or a group of windows in a page can be NAMEd:
NAME page_name window_namel window_name2 ... window_name8

Using the second form of the command, multiple windows can be NAMEd on
a single command Tine; multiple NAME command lines can be used to
NAME all of the windows in a page, if the names of all the windows do
not fit conveniently on a single 1ine. Care should be taken to avoid
using any command or option word of DataFlex {such as NAME, PAGE,
date, number, etc.} as a window NAME. The names are applied to
windows in order from top left to right, and then down by line.

EXAMPLES :
NAME invt.6 quantity

NAME {avt part_id descr vndr cost price quantity
Use of an AUTOPAGE with a starting window # enables the NAMEing of a
group of windows starting with that window number. In this instance,
the pagename should not be repeated after the AUTOPAGE command. Again,
multiple NAME lines may be used if necessary to NAME all the windows.

EXAMPLE:

AUTOPAGE invt 7
NAME quantity stock profit total

g1
1R

Copyright (c) 1984 Data Access Corporation 05/16/84

D-6 DIRECT CONTROL OF DATA ENTRY DataFlex 2.0 User's Manual

FORMAT Command

Each DataFlex window may have one or more format and data verification
options. The options are applied by use of a FORMAT command
specifying the window, the desired options, and any applicable
parameters. NOTE: 1In this instance, the brackets {} used to delimit
the options are literal, and are to be typed. .

FORMAT :
FORMAT window_arg {optionl, option2 ... optionN}

"Window_arg™ can be in the form "pagename.#" or a named reference
established with the NAME Command. The following options are
available for window formatting:

EUNCTION _SYNTAX

DECIMAL FORMAT {POINTS=n} where "n" {s the number of places to the
right of the decimal point in the window. This can
reformat a window or can be used to configure an
integer-only numeric field by setting a value of zero
(0) for "n",

UPPER CASE {CAPSLOCK} This option accepts upper case entry and
converts lower case entry to upper case.

RANGE CHECK {RANGE = #1, #2} {RANGE = mm/dd/yy, mm/dd/yy} Provides
an automatic check of entered data and declares an
error and returns the cursor to the window if the date
or numeric value entered does not fall within the
values specified in the RANGE command, where the first
value is the low end of the range, and the second is
the high end. The upper and lower values in the
command are included within the valid range.

VALIDITY CHECK {CHECK="entryllentry2!entryn®}{CHECK=string var}
Provides an automatic check of entered data and
declares an error and returns the cursor to the window
if the entry does not match any substring in the CHECK
command. Where an eligible entry has fewer characters
than the window, the excess characters must be speci-
fied as spaces (shown below as B). The vertical bars
(!) shown below are recommended optional delimiters.
Delimiters, if used, should be characters unlikely to
be input erroneously by operators. The command may
alternatively reference a previously-defined in-memory
string variable (not a window or database element):
{CHECK="YES INOU | YBB INBB"}

{CHECK=password}

Calculations and string manipulations on data in formatted windows
should be avoided, since the formatting can change the apparent
"value" of the contents for purposes of the calculation or
manipulation. Calculations and manipulations should be done on the
source data (database element, literal string, in-memory variable,

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual DIRECT CONTROL OF DATA ENTRY D-7

etc.) from which the window was filled to begin with, with replacement
of the results to the window, 1f desired for output purposes.

The following additional options are valid for formatting output for
the DataFlex PRINT command only. Like the other format options, they
are set using the FORMAT command.

BLANK SUPPRESS {SUPPRESS}
Strips spaces from output (leading spaces in numeric

data and trailing spaces in alphanumeric).

CHARACTER FILL {FILL="x"}
Fills 1n spaces remaining after data is put in window
with the character specified in "x".

SIGN ON RIGHT {SIGNRT}
Places a minus sign on the right side of numeric
values less than 0.

FLOATING DOLLAR {FLOAT$}

Places a floating dollar sign (3) on the left of a
numeric value.

Multiple formatting options on a command line are enclosed within a
single palr of braces and separated by commas:
EXAMPLE :

{CAPSLOCK , CHECK="YES |NO "}.

The PRINT command moves data to a window and uses special formatting
options where they are included in the configuration. 1In particular,
the PRINT command is the only command which can update SUBTOTAL
accumulators in the REPORT macro.

FORMAT:
PRINT arg {TO window}

EXAMPLES :
PRINT 1invt.descr
PRINT invt.descr TO BODY.2
PRINT payroli_amt TO BODY.3

Note in the first example above that an AUTOPAGE command must be in
force, since the command contains no window reference.

Copyright (c) 1984 Data Access Corporation 05/16/84

D-8 DIRECT CONTROL OF DATA ENTRY DataFlex 2.0 User's Manual

ENTERGROUP

The ENTER macro provides a complete data entry environment. The
ENTERGROUP command is intended for inclusion in more custom-programmed
configurations in which, for one reason or another, it may have been
elected not to use the ENTER macro. The first use of ENTERGROUP will
load a set of predefined key procedures that define the operation of
the function keys: NEXT RECORD, PREVIOUS RECORD, BACK WINDOW, CLEAR,
and SAVE. SAVE, however, will not save the record under ENTERGROUP,
as it will under ENTER. Rather, it will simply go to the end of the
ENTERGROUP and resume execution from there. Likewise, CLEAR will
clear only the screen under ENTERGROUP, rather than clearing both the
screen and the record buffer, as it does under ENTER. SAVE and CLEAR
can, of course, be redefined to provide whatever action is appropriate
to the application, as can all the other Flex-Keys, using KEYPROC
procedures (see the section on "Using Function Keys".

Muitiple ENTERGROUPs can be included in the same configuration. Each
group must be ended with an ENDGROUP command. The use of multipie key
access to records is fully supported by ENTERGROUP.

FORMAT:
ENTERGROUP
ENTRY commands
ENDGROUP

Any changes in the ENTRY windows will be moved to the record buffer at
the end of the enter group uniess NOPUT was used on the windows.

EXAMPLE :
ENTERGROUP
ENTRY INVT.ID {AUTOFIND}
ENTRY INVT.DESCRIPTION {FINDREQ, SKIPFOUND}
ENTRY INVT.VENDOR {DISPLAYONLY}
ENTRY INVT.PRICE
ENDGROUP

This would allow FINDS in the INVT file by either ID or DESCRIPTION
and allow the PRICE to be changed. The record buffer would be edited
with PRICE but the record would NOT be saved.

A11 ENTRY formatting options are available in an ENTERGROUP, as is the
ENTDISPLAY command, described in the section on "Data Entry". The
SUPERFIND and DELETE Flex-Keys, however, are not defined, as they are
in ENTER, because the more flexible possible applications of
ENTERGROUP require application-specific programming of these
functions, as they do not in ENTER. These Flex-Keys can be programmed
with KEYPROC commands, as described in the section of this manual on
"Using Function Keys". If it is desired for some reason to alter the
pre-programming of other Flex-Keys as provided in ENTERGROUP for a
specific application, those other Flex-Keys also can be re-programmed
with KEYPROC commands.

Copyright (c) 1984 Data Access Corporation 07/10/84

DataFlex 2.0 User's Manual DIRECT CONTROL OF DATA ENTRY D-9

Below is a sample configuration using one ENTERGROUP. It is the same

ENTER configuration as is shown in the "Programming Tutorial® section

of this manual, except that that example used the ENTER macro, and the
one on the next page uses an ENTERGROUP. The differences between the

two versions of the configuration are instructive.

/SCREEN
weseesessascevssassacassssse PERSONNEL FILE sivvevensnnvenennsoannans

Last First MI
EMPLOYEE NAME : < >
ADDRESS1 :
ADDRESS2Z :
CITY : ST s __ ZIP :
SOC. SEC. # + <_____ >

DATE HIRED : _/__/__

PAY RATE : §

PAY TYPE : _ (H=Hourly or S=Salaried)

Enter a Name or Soc. Sec. # and press FIND to display record,
OR press <ESC> to exit and return to the Dataflex Menu...

/%

OPEN PEOPLE
START: //begin loop
ENTERGROUP //entergroup

AUTOPAGE SCREEN
ENTRY PEOPLE.LNAME
ENTRY PEQPLE.FNAME
ENTRY PEOPLE.MI
ENTRY PEOPLE.ADDR1
ENTRY PEOPLE.ADDR2
ENTRY PEOPLE.CITY
ENTRY PEOPLE.ST
ENTRY PEOPLE.ZIP
ENTRY PEOPLE.SSAN
ENTRY PEQPLE.DATE
ENTRY PEOPLE.PAYRATE
ENTRY PEOPLE.PAYTYPE {CAPSLOCK,CHECK="HS"}

ENDGROUP //endgroup

SAVE PEQPLE //save record

CLEAR PEOPLE //clear buffer

CLEARFORM //clear screen
GOTO START //begin loop
KEYPRQC KEY.ESCAPE //define esc key
ABORT //to abort

Copyright (c) 1984 Data Access Corporation 05/16/84

D-10 DIRECT CONTROL OF DATA ENTRY DataFlex 2.0 User's Manual

THIS PAGE INTENTIONALLY LEFT BLANK

Copyright (c) 1984 Data Access Corporation 05/716/84

The DataFlex String commands allow manipulation of various forms of
text string data. They can be used on literal string arguments,
windows, string variables, or data base elements. If a non-string
variable is used in the argument for a string command, it will be
converted to a string before the string operation. String variables
are declared using the STRING command, which is described in the
chapter on Elements of Configurations. That section should be
reviewed and understood prior to attempting the use of commands
described in this chapter.

In most cases, the string commands act upon an existing string,
specified by its variable name, or entered as a literal, and move the
result of the action to a destination variable. The word "TO" is the
designator preceding the destination variable which is to receive the
output of the command. Certain string commands return the results of
their processes back to the source variable name. These "replacing"
string commands should be used with due regard for the fact that the
original contents of the source string will not be available after
execution of the command.

The general format of DataFlex string commands is:

COMMAND src_string var TO dest_string var length position
Not all commands require the length and position specifiers, which are
integers. DataFlex string commands can use the same variable name as
both source and destination for the command action.
EXAMPLE:

LEFT a_string TO a_string 10

will take the leftmost ten characters of a_string and place
the result back into a_string.

LEFT Command

The LEFT command extracts a specified number of characters from a
string starting with the leftmost character and places the result of
the extraction into a variable.

Copyright (c) 1984 Data Access Corporation 05/16/84

D-12 MANIPULATING STRINGS DataF1ex 2.0 User's Manual

LEFT source_string TO dest_string ##

Where LEFT is the command, source_string is the string argu-
ment being acted upon, TO designates dest_string, and ## is an
integer number or variable which specifies the length of the
sub-string to be extracted starting from the beginning of
source_string. If ##<1, the command will output a null string
(no characters). If ## is greater than the length of the
source string, the command will output the entire source
string.

EXAMPLES :

Where "old_string” has a value of "ABCDEFGHI"
LEFT old_string TO new_string 5
would return a value of "ABCDE" in new_string

LEFT string TO first_char 1
would return the first character of "string" in the variable
"first_char"

RIGHT Command

The RIGHT command extracts a specified number of characters from a
string starting with the rightmost character and places the result of
the extraction into a variabie.

FORMAT :

RIGHT source_string TO dest_string ##

Where RIGHT is the command, source_string is the string
argument befng acted upon, TO designates dest_string, and ##
is an integer literal or variable which specifies the length
of the sub-string to be extracted starting from the right end
of source_string. If ##<1, the command will output a null
string (no characters). If ## is greater than the Tength of
the source string, the command will output the entire source
string.

EXAMPLES :
Where "old_string" has a value of "“ABCDEFGHI"

RIGHT old_string TO new_string 5
would return a value of "EFGHIM™ in new_string

RIGHT string TO last_char 1
would return the last character of "string” in the variable
"ast_char"

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual MANIPULATING STRINGS D-13

MID Command

The MID string command provides the same sub-string extraction
capability as found in the LEFT command, but MID's extraction takes
place from a specified point within the string, not just from the end.
MID adds a starting position argument to the syntax used for LEFT and
right.

FORMAT :

MID source_string TO destination_string ##1 ##2

Where MID is the command, source string is the string being
acted upon, TO designates the destination_string variable, ##1
is the length of the sub-string to extract and ##2 is the
starting position in source_string where the extraction is to
begin. Both ##1 and ##2 may be literal integers or variables.

EXAMPLE :

wWhere OLD_STRING has a value of “ABCDEFGHI"
MID old_string TO new_string 5 2
would return a value of "BCDEF" in NEW_STRING

If ##1 is less than 1, the command will output a null string (no
characters). If ##1 is greater than the length of the source string,
the command will output the entire source string to the right of, and
including, position ##2, provided ##2 is >0 and less than or equal to
the source string length. If ##2<1 while ##1 is greater than the
length of the source string, the entire source string will be output,
while if ##2 is greater than the length of the source string, the
rightmost character only of the source string will be output.

ASCII Command

The ASCII command takes the ASCII value of the first character of a
source string and places the result in a numeric variable.

FORMAT :

ASCII string TO numeric_variable
EXAMPLE:

Where INITIAL has a value of "Abernathy"

ASCII initial TO init_val
will return a value of 65 in “INIT_VAL".

Copyright (c) 1984 Data Access Corporation 05/16/84

D~14 MANIPULATING STRINGS DatafFlex 2.0 User’s Manual

CHARACTER Command

The CHARACTER command takes an integer (0 to 127) and converts it to
its equivalent ASCII character, then places the result into a string
variable, This is particularly useful for creating strings needed for
printer or other device control where the string values cannot be
conveniently created from the keyboard.

FORMAT ¢
CHARACTER integer TO string var
EXAMPLES :

Where LEAD_IN has been declared as a string variable
CHARACTER 27 TO lead_in
will place a value of 27 (the ESC character) in LEAD_IN

Where EIGHTLPI has been declared as a string variabie
CHARACTER 65 10 arg
will place an "A" (ASCII code 65) in EIGHTLPI

POS Command

The POSition command scans a source string for the occurrence of a
designated "target" substring, and returns an integer numeric result
which 1is the starting position of the target string within the source
string. In the event the target substring is not found within the
source string, the POS command stores a zero in the specified
variable.

FORMAT :

POS stringl IN string2 TO num_var

Where POS is the command, STRINGl is the string to be scanned
for, IN designates STRING2, STRINGZ is the string to be
scanned for an occurrence of STRINGL, TO designates the
destination numeric variable NUM_VAR which will contain the
result,

EXAMPLE :
Where STRINGL = "DEF", and STRINGZ = "ABCDEFGHI"

POS stringl IN string2 TO posit
will return a value of 4 in POSIT.

Copyright (c) 1984 Data Access Corporation 05/16/84

LENGTH Command

LENGTH returns the length of a designated string as an integer number
in a numeric variable., LENGTH counts the number of printable
characters and spaces in the argument. LENGTH will give a different
result for what may seem like the "same" data according to whether the
argument is a database element, a window, or a variable. See the
discussion at the end of this chapter on "String Operations”.

FORMAT:

LENGTH string TO num_var

Where LENGTH is the command, STRING is the string whose length
is to be determined, TO designates the numeric variable to
contain the result of the command's action.

EXAMPLE :

Where STRING="ABCY
LENGTH string TO how_long
wil) return a value of 3 to HOW_LONG

The PAD command is used to make strings of specified length. The
first argument identifies the variable which is the source of the data
to be PADded, and the second identifies the destination string in
which the PADded result is stored after processing. The third
argument is an integer value or variable designated as the length of
the string to result from the execution of the PAD command. If the
original string is shorter than length, spaces will be added to string
to extend 1t to length. If the string is longer than length,
characters in excess of length will be eliminated

FORMAT :

PAD source_string TO dest_string ##

Where PAD is the command, SOURCE_STRING contains the string to
be PADded, DEST_STRING contains the PADded result of the
command, and ## is the integer value or variable which
specifies the number of characters (including spaces, if
required) that will be contained in the resultant string.

EXAMPLE :

Where ALPHA_STRING = "ABC", and spaces are represented as "B"
PAD alpha_string TO beta_string 5
will store "ABCBE" in variable BETA_STRING

Where BEFORE = "ABCDEFG"
PAD before TO after 3
will store “ABCY in variable AFTER

Copyright (c) 1984 Data Access Corporation 05/16/ 84

D-16 MANIPULATING STRINGS DataFlex 2.0 User's Manual

TRIM Command

The TRIM command strips both leading and trailing blanks, if present,
from the contents of a string variable. Embedded blanks are not
affected.

FORMAT :

TRIM source_string TO dest_string

Where SOURCE_STRING contains the string to be operated on, and
DEST_STRING will contain the TRIMmed string. SOURCE_STRING
and DEST_STRING may be the same if repiacement is desired.

EXAMPLE:

Where spaces are represented as "B", and LONGSTRING =
"g2p1fBbybseabBhp"

TRIM longstring TO shortstring

will place "2¥ifbyBsea® in SHORTSTRING

APPEND Command

APPEND provides the facility to join two or more strings together.
The strings APPENDed together can be literals, vartables, and/or
strings created through the use of other DataFlex string commands
(such as CHARACTER). Stringl in the FORMAT below must aiways be a
variable. This variable will contain the APPENDED string after the
command has been executed. Strings cannot be APPENDed to a literal
string constant.

FORMAT:

APPEND stringl string2 ...stringN

Where APPEND is the command, STRINGl is a string variable
name, and STRINGZ through STRINGN are literals or variables
joined to STRING1. STRINGL remains after the command is
executed as the variable name of the expanded string.

EXAMPLE :

Where SIZE = "big"

Where COLOR = " blue"

APPEND size color " balloon"

will result in the value of "big biue balloon" in SIZE

NOTE: If you wish to "collect" strings into a new, empty variable, it
is necessary to clear that target variable with a MOVE "" to STRINGL
command (substitute your variable's name for STRING1). If this is not
dons, the APPEND command will attempt (and fail) to operate on the
string in its default initialized state, which is all spaces (to the
declared length of the string). String variables are initialized in
this way to reserve enough space in memory for the string's maximum
size, but it cannot be APPENDed to in this state, since it is "full"
of spaces.

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual MANIPULATING STRINGS D-17

UPPERCASE Command

The UPPERCASE command scans a designated string and converts all lower
case letters to uppercase.

FORMAT:

UPPERCASE string
Where UPPERCASE 1s the command acting on STRING.

EXAMPLE :

Where STRING="Smith"
UPPERCASE string
will return STRING as "SMITH"

CMDLINE Command

When executing a DataFlex configuration, command argumentis entered at
the operating system level as part of the initfal command entry line
can be stored to string variables for later repetitive use, with the
CMDLINE command. This permits certain run-time choices to be made by
the operator (or the menu system) and entered without separate
prompting from within the configuration.

EXAMPLE:

FLEX MYREPORT CON:

Executes the FLEX.COM file and runs the configuration called
"MYREPORT". The "CON:" is not executed until a later point in
the execution of the configuration when a CMDLINE command
retrieves that argument and stores it to a string variabie
which is subsequently read by the configuration (and used, in
this case, to direct the report's output to the screen).

CMDLINE will retrieve arguments with no limitation as to number from
the last prior-executed operating system command or the tast prior
CHAIN command, whichever was executed more recently. Arguments are
separated from each other by spaces (per the example above), and. once
retrieved by CMDLINE, are no longer avaiiable from the same source,
having been replaced by the next succeeding argument, if any.
FORMAT :

CMDLINE string arg
EXAMPLE:

CMDLINE output_device

Copyright (c) 1984 Data Access Corporation 05/16/84

D-18 MANIPULATING STRINGS DataFlex 2.0 User's Manual

STRING OPERATIONS

The class (in-memory variable, database element, or window contents)
of a string affects the way trailing blanks are handled. Basically,
the differences are as follows (B indicates a blank space):

Database Element: A1l characters plus additional blanks to fill the
declared Tength of the element (set in File Definition). Example:
"TheBHaguelb" (10 characters)

Window Contents: Only actual characters, including embedded blanks.
Example: “"ThepHague" (trailing blank dropped)

In-memory Yariable: Whatever was input to it. If a variable were
loaded from the database element illustrated above, it would contain
all 10 characters, including the trailing blank. If it were loaded
from the window illustrated above, it would contain only the 8 non-
blank characters plus the embedded blank.

Windows, then, TRIM strings just as does the TRIM command (see above),
which 1s a way to TRIM leading and trafling blanks without MOVEing to,
and back from, a window.

This is how to display "™Miami,BFlorida" from two l0-character
database elements, file.city and file.state:

STRING city 10

STRING state 10

TRIM file.city to city
TRIM file.state to state
SHOW city ",B" state

This is how to display the same thing from in-memory variables
var.city and var.state, each of which has length equal to their
contents (5 and 7 respectively for Miami and Florida). The comma and
space are handled differently only to illustrate an alternative; they
could be handled either way in either instance:

STRING comma 2
MOYE ",§" TO comma
SHOW var.city comma var.state

In general, it {s preferrable to use in-memory variables for
manipulation by the String commands.

05/16/84

DataFlex provides two means for obtaining conditional execution of
commands, INDICATORS and IF tests. Indicators will be discussed
first. They are a special type of argument (often referred to as
"flags") which conditionally controls command line execution. There
are two possible statuses for an indicator: TRUE and FALSE.

An indicator is created with the INDICATOR command. (See the chapter
on Declaring Data Elements.) Upon declaration, indicators remain in
their default status of FALSE until an INDICATE command or some other
event in the execution of the configuration resets it to the other
status of TRUE.

If an indicator is TRUE, the command which follows it on a command
1ine in a configuration will be processed. If an indicator is FALSE,
the command 1ine (or group) will be skipped, and execution will move
to the next line. A TRUE indicator will also cause the processing of
a WHILE - END, REPEAT - UNTIL or BEGIN - END structured command group
which follows the indicator on a command line.

Once defined, an indicator may be used by enciosing it in brackets
("[" and "1") to identify it to the DataFlex command processor. It
must be placed at the beginning of the command line(s) it is intended
to control. The command processor recognizes the brackets, and does
the appropriate conditional testing on the enclosed indicator.

FORMAT :
[indicator_arg]l command

EXAMPLES :
[sale] MOVE (invt.qty-amt_sold) TO invt.qty
[member] SHOW *Enter membership code: '
(credit_okl SHOW *Credit approved up to ' cust.limit

[single malel SHOW *Notice format for multiple indicators'
{singlellmale]l SHOW "This format works the same|"

Using this format, the command processor tests the INDICATOR for a
TJRUE status. If the INDICATOR is TRUE, COMMAND is processed. If
INDICATOR {s not TRUE (FALSE), then the command is skipped, and the
next command in the configuration is processed (or the next indicator
is tested, etc.).

When creating a configuration, it is sometimes useful to be able to
execute a command based on the FALSE status of an indicator rather
than its TRUE status. This is done using the word NOT in front of an
indicator on a command line to reverse the sense of the test applied
to its status.

Copyright {c¢) 1984 Data Access Corporation 05/16/84

D-20 CONDITIONAL EXECUTION DataFlex 2.0 User's Manual

[NOT indicator] command
EXAMPLES :

[a_test] MOVE argl TO screen.l
MOVES "argl" if A_TEST is TRUE.

[NOT a_test] MOVE arg2 TO screen.l
MOVES "arg2" if A_TEST is FALSE.

[NOT member] SHOW 'Who is this guy?!

[NOT credit_ok] SHOW *Confiscate the credit card!l!'
Up to three indicators, separated by spaces, can be used together
within the brackets to test whether a command 1ine should be pro-
cessed, or, if space allows, a set of brackets may be used for each
indicator to improve readability. Either format works, and both are
used in f1lustrations in this manual. A NOT can precede any indicator
to reverse the sense of the test on the indicator which follows it.
Concatenation of indicators in this manner interrelates them through
"ANDs" (that fs, all of them must be TRUE for a TRUE result--if any is
FALSE, then the combination is FALSE).
FORMAT :

[{NOT }indicatorl {NOT }indicator2 {NOT }indicator3] command

EXAMPLES :

[salellcredit] SHOW *Enter item ID: !

[credit salel SHOW 'Enter item ID: '
Same function as example above.

[sa1e]INOT credit]l SHOW 'Sorry, credit 1imit exceeded.'
Indicators can be used to conditionally set other indicators:

[member] INDICATE charge TRUE

SETTING INDICATOR STATUS

There are three distinct formats for using the INDICATE command to
establish an indicator's status.

First, and most simply, indicator arguments can be explicitly set or
reset using the following command format:

EXAMPLES :

INDICATE indicator TRUE
INDICATE indicator FALSE

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual CONDITIONAL EXECUTION D-21

Secondly, the TRUE or FALSE condition of an {ndicator can be estab-
1ished by the use of a comparison mode operator. There are eight (8)
comparison modes for an indicator:

LT less than

LE less than or equal to
EQ equal to

GE greater than or equal to
GT greater than

NE not equal

IN string inclusion

MATCH string matching

When using the INDICATE command with a comparison mode operator, a
status of TRUE or FALSE is given to the named indicator based on the
outcome of the comparison of two arguments and the selected mode of
comparison. That status is then tested each time that the indicator
is encountered to determine whether the command 1ine which follows the
indicator in a configuration should be processed or not.

For example the following comparisons are:

JRUE EALSE

5GT 3 3GTS

666 EQ 666 666 EQ 999
999 LT 1000 1000 LT 999
'BY IN 'ABC' YAt IN 'XYZ!
'ABC*! MATCH 'ABCDEF' YA' MATCH 'B'

YINY and "MATCH" have the following differences:

IN scans one string for the presence of another string; for
example "A" is IN "DAC". When one string is IN another, the
indicator is returned TRUE.

MATCH tests for one string equalling another. If the strings
are equal the indicator is returned TRUE. It varies from the
EQ comparison mode in that MATCH will perform the comparison
against only part of the string and if it is equal to the same
part of the other string the indicator will be returned TRUE.
The partial string to be tested is represented with the
asterisk convention used by most operating systems where "AB*"
means anything that starts with "AB" is considered TRUE with
whatever follows in the rest of the string not being evaluated
or considered for the test. The asterisk may be used only in
the first argument. The second argument must be a completely
explicit string.

Copyright (c) 1984 Data Access Corporation 05/16/84

D-22 CONDITIONAL EXECUTION DataFlex 2.0 User's Manual

The comparison mode operator will be represented as "MODE™ in examples
in this manual.

The format of the INDICATE command with a mode operator creates an
easy-to-read "sentence" which includes the INDICATE command, the
indicator argument, and two other arguments which are compared by a
comparison mode operator:

FORMAT
INDICATE indicator_arg AS argl mode arg2

All of the illustrated components are required for a correct INDICATE
command "sentence™. The command "INDICATE"™ instructs the DataFlex
command processor to set an indicator; the indicator_arg is the
indicator which will receive the TRUE or FALSE status that is the
result of the comparison; "AS" provides a syntax transition from the
establishment of the indicator to the comparison itself; argl and
argZ must be present to create a valid comparison; and finally the
comparison mode operator must establish what test is to be applied to
argl and arg2 to arrive at the TRUE or FALSE status result to be
apptlied to indicator_arg.

EXAMPLES :
INDICATE of_age AS age GT 21

INDICATE in_stock AS invt.qty GE order_amt

INDICATE credit_ok AS cust.bal LT cust.cr_limit

INDICATE eureka AS stringl IN string2

INDICATE gotcha AS 'ab*' MATCH string2
The third format for setting an indicator uses other previously
established indicators. To support this form of the INDICATE command,
the following syntax is provided:

GROUP, ANY, ALL, AND, OR and NOT
GROUP is used to define up to three other indicators which will be
tested together to establish TRUE or FALSE status of the indicator

defined by the INDICATE command. It replaces the transitional "AS" in
the INDICATOR command definition "sentence".

ANY creates a TRUE status for the indicator argument if any of the up
to three indicators included in GROUP is TRUE. ALL requires that all
of the indicators in the GROUP be TRUE to pass a TRUE status to the
indicator being set. The format for this form of INDICATE is:

Copyright (c) 1984 Data Access Corporation - 05/16/84

DataFlex 2.0 User's Manual CONDITIONAL EXECUTION D-23

FORMAT:

INDICATE 1nd GROUP ANY/ALL [ind ind {ind}] {AND/OR ANY/ALL [ind fndl}
The bracket characters, "[" and "]", used to enclose the
GROUPed indicators are a necessary part of the command syntax.
Each GROUP may contain up to 3 indicators, and up to 2 GROUPs
(conjoined by AND or OR) may be in one command. Each group
must be preceded by ANY or ALL. °

EXAMPLES :

INDICATE us_car GROUP ANY [gm ford chryslerl
would set the indicator US CAR TRUE when any of the three
indicators GM, FORD, or CHRYSLER was TRUE.

INDICATE conscript GROUP ALL [male citizen of_agel
would require that all three indicators MALE, CITIZEN, and

OF_AGE be TRUE for the indicator CONSCRIPT to be set TRUE.

The AND and OR conjoiners allow conditional testing to be compounded
to set an indicator. NOT enables the sense of an indicator to be
reversed for a particular test.

EXAMPLES :

INDICATE eligible GROUP ALL [male singl of_agel AND ANY [rich handsom]
would set the indicator ELIGIBLE TRUE only if indicators MALE,
SINGL, and OF_AGE and at least one of the indicators RICH and
HANDSOM were TRUE.

INDICATE hunt GROUP ANY [squirrel possuml OR ALL [bear in_seasonl
would set the indicator HUNT TRUE if either of the indicators
SQUIRREL or POSSUM were true, or if both BEAR and IN SEASON
were TRUE.

INDICATE spanfsh GROUP ALL [cent_amer] OR ALL [south_amer NOT brazill
would set indicator SPANISH TRUE if indicator CENT_AMER were
TRUE, or if indicator SOUTH AMER were TRUE and indicator
BRAZIL were FALSE.

The 1imitations on number of indicators in a group and number of
groups in a command (3 and 2 respectively) can easily be overcome by
use of successive INDICATE GROUP commands, and within a consecutive
series of such commands, the same indicator can be reset many times to
avoid consuming memory space for many different indicators.

Copyright (c) 1984 Data Access Corporation 05/16/84

D~24 CONDITIONAL EXECUTION DataFlex 2.0 User's Manual

PREDEFINED INDICATORS

Several predefined indicators are available as part of the DataFlex
syntax:

FINDERR TRUE if no record returned to buffer on FIND
FOUND TRUE if record returned to buffer on FIND
SEQEQOF TRUE if end of sequential file

SEQEOQL TRUE if end of line in sequential file

KEYPRESS TRUE if a key has been pressed (set by KEYCHECK)
PAGEBREAK TRUE if new page (set by PAGECHECK)

MULTIUSER TRUE if your DataFlex system is set multi-user

These indicators can be used at any point in a configuration to make
portions of the configuration dependent on the condition which sets
the status of the indicator. The status of the indicator can even be
reset using the INDICATE command, but this should be done with great
care, since other operations are 1ikely to depend on internal settings
of the status of these indicators.

IF TEST

The IF test is an alternate means of obtaining conditional execution.
Indicators provide a means of applying the results of a test to
numerous individual command lines throughout a configuration. The IF
test, on the other hand, allows a specific test to be created on a
command line that determines whether or not the single command
following the IF test on the same 1ine will be executed.

What is an IF test?

An IF test sets up a "comparison® sentence. In the sentence, a
statement is made regarding the relationship of two items., They are
compared using a comparison mode operator to see if they are equal,
one greater than the other, or any of several other relationships.

EXAMPLE:

A car is bigger than a breadbox.
This sentence compares a car and a breadbox. Its comparison
mode is "bigger". This sentence is TRUE.

The objective of the test is to arrive at a status result of TRUE or
FALSE. For the purposes of conditionally executing a command line, if
the command sentence correctly states the relationship between the
variables, the sentence is TRUE and the command following the IF
command will be executed. A FALSE sentence will pass by the command
on the IF line, and go on to the command on the 1ine following the IF
Tine.

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual CONDITIONAL EXECUTION D-25

There are eight comparison modes for IF tests:

LT less than

LE less than or equal to
EQ equal to

GE greater than or equal to
GT greater than

NE not equal

IN text string inclusion

MATCH text string matching

When using the IF test, a status of TRUE or FALSE is created based on
the outcome of the comparison of two arguments in the command line and
the selected mode of comparison.

The following are examples of comparisons which might be stated in IF
commands:

IRUE EALSE

5GT3 3GTS5

666 EQ 666 666 EQ 999
999 LT 1000 1000 LT 999
8¢ IN TABC! 'A' IN 'XYZ!
YABC*! MATCH 'ABCDEF® YA' MATCH 'B!

Now all of the pieces are in place for the full command sentence.
FORMAT :
IF argl mode arg2 command

A1l of the illustrated components are required for a correct IF
command "sentence". The command IF specifies the correct action to
the command processor; Margl" is a variable which will be compared to
"arg2" according to the mode; "argl" and "arg2" must be present
because you cannot compare one thing; and the comparison mode operator
must establish what test is to be applied; command will be executed
if the test is TRUE.

EXAMPLES :

IF numberl GT number2 DISPLAY "Hooray!" TO screen.5

In this example if numberl is greater than number2, then the
DISPLAY command will be executed, placing "Hooray!" in window
5 of pagename "screen" in the configuration. If numberl is
smaller than number2, then there will be no DISPLAY.

IF (balance + purchase) LE credit_limit GOSUB sale

In this case, if the result of the expression is less than the
credit_limit, then the configuration is sent to a subroutine
called "sale", If (balance + purchase) exceeds credit_limit,
the GOSUB will not be executed.

Copyright (c) 1984 Data Access Corporation 05/16/84

D-26 CONDITIONAL EXECUTION DataFlex 2.0 User's Manual

IF payment LT balance BEGIN
commands
END
Here, the IF statement is being used to control the execution
of a group of commands enclosed by BEGIN and END.

Most of the comparison mode operators are self-expianatory. However,
YIN" and "MATCH" warrant further explanation. IN scans one string for
the presence of another string; for example "A" is IN "DAC". When one
string is present IN another, the test is TRUE.

MATCH tests for one string equalling another. If the strings are
equal the IF test is TRUE. A special case exists for MATCH where only
part of the string needs to be tested for equality for the status to
be returned TRUE. This partial string match 1s represented by the
asterisk convention used by most operating systems where "AB*" means
to compare only the first two characters for anything that starts with
"AB" regardless of the rest of the string. If the first two
characters are "AB" the test is considered TRUE.

USING NOT

The "sense" of any IF test can be reversed by placing the word "NOT"
in front of the first argument of the IF command:

FORMAT :

IF NOT argl mode arg2 command

Point of interest...

When the DataFlex command processor encounters an IF command it
internally expands the statement as a macro using the pre-defined
indicator "LASTIF". A model/macro example is:
MODEL :

IF xx GT yy command

MACRO :

INDICATE LASTIF AS xx GT yy
[LASTIF] COMMAND

Copyright (c) 1984 Data Access Corporation 05/16/84

D-28 CONDITIONAL EXECUTION DataFlex 2.0 User's Manual

THIS PAGE INTENTIONALLY LEFT BLANK

Copyright (c) 1984 Data Access Corporation 05/716/84

DataFlex 2.0 User's Manual CONDITIONAL EXECUTION D-27

STATUS File Indicator

Two forms of the STATUS indicator are available to indicate whether a
record from a specified file is active in the buffer.

FORMATS :

INDICATE ind_arg STATUS filename_arg
The indicator IND_ARG is returned TRUE when the file is active
(record is found), and FALSE if the record is not found.

IF STATUS filename_arg command

The command on the line is executed if the file is active
(record is found), and not executed if the record is not
found.

The STATUS indicator is used in a manner similar to the FOUND
predefined indicator, but is useful in situations inolving successive
FINDs in a number of files, because unlike the FOUND indicator, which
is set according to the last FIND attempted, the STATUS indicator
returns a result which is specific to the file which is named in the
command.

Copyright (c) 1984 Data Access Corporation 05/16/84

The Control command group provides structured flow of control within a
configuration, error message handling, a debugging mode, and termina-
tion procedures.

Many of the control command group's actions alter DataFlex's default
(top to bottom) sequence of configuration's command lines execution.
Normally, commands are executed in the order in which they are
written. Control commands are used to provide other sequences, in
which, for example, often-used processes may be written once and
"called" for execution from any of several other points in a configu-
ratjon. The usual term for these called processes is "subroutines".
Control commands can also provide conditional skipping of commands and
groups of commands in a configuration. The "target" for these
commands that tells DataFlex where to go and continue execution is
called a "™LABEL", and is defined as any continuous string of
characters at the beginning of a line followed immediately by a colon
(:). Labels must begin with a letter, which may be followed by up to
79 numbers and letters (no spaces or punctuation). These are examples
of labels (they must be the first characters on their lines):

EXAMPLE :

LABEL: command
EXAMPLELABEL :
command

command

A label may optionally be followed by a command on the same line (as
in the first example above), or the following commands may be placed
on following 1ines for readability (as in the second example).

GOTO Command

GOTO transfers the execution of a configuration to a tabeled Jocation
in the configuration other than the next command 1ine. Execution of
command(s) following the "target" label will continue until the
configuration ends, or another control command again transfers
execution to another labelled location. As with all commands, the
GOTO may be preceded by indicators

FORMAT :
GOTO label_arg
EXAMPLES :

GOTO update
GOTO del_rec

Copyright (c) 1984 Data Access Corporation 05/16/84

ON GOTO Command

The ON GOTO command transfers execution to a label that is part of a
1ist of labels. The label is selected for execution based on the
value of the integer variable or expression specified in the command.
The value of the integer variable or expression will be used to count
into the label list to an ordinal position designated by the value of
the argument. NOTE: In the event the expression evaluates to less
than 1 or greater than the number of labels in the 1ist, the command
will be ignored and the following command will execute. If this is an
error condition in your application (should never happen), your confi-
guration should declare an error (see ERROR command) on the next line.

FORMAT :
ON integer_arg GOTO label_l label_2 label_n
EXAMPLES :

ON (items-144) GOTO apples, oranges, peaches, bananas

If ITEMS-144 equalis 1, go to the label APPLES and execute from
that point. If ITEMS-144 equals 2, go to ORANGES and execute
from there. If the expression equals 3, go to PEACHES, for 4,
to BANANAS, and otherwise go to the next Tine.

ON screen.3 GOTO exit saveit deleteit

ERROR 198

Go to labels EXIT, SAVEIT, DELETEIT according to the value in
the window SCREEN.3. If SCREEN.3 has a value other than 1, 2,
or 3, declare Error #198, where Error #198 has been defined
for the circumstance in FLEXERRS.DAT

GOSUB Command

GOSUB transfers command execution to a labelled procedure elsewhere in
the configuration with provision that when a RETURN command is
encountered in the labelled procedure, execution will return to the
command on the line immediately following the Tline on which the GOSUB
appears. The RETURN command, of course, is written at the end of the
called procedure. DataFlex supports nesting of up to 20 GOSUB
procedures at one time (that is, a GOSUB whieh itself calls a GOSUB,
and so on).

FORMAT :
GOSUB 1label_arg
EXAMPLES =

GOSUB my_routine
GOSUB check_for_credit

Copyright (c) 1984 Data Access Corporation 05/16/84

DatafFlex 2.0 User's Manual CONTROLLING EXECUTION SEQUENCE D-31

ON GOSUB Command

The ON GOSUB command transfers execution to a labelled procedure whose
Tabel is one of a list of labels given in the command, with provision
that when a RETURN command is encountered in the labelled procedure,
execution will return to the command on the 1ine immedfately following
the 1ine on which the GOSUB appears. The RETURN command, of course,
is written at the end of the called procedure. The label is selected
for execution based on the value of the integer variable or expression
specified in the command. The value of the integer variable or
expression will be used to count into the label Tist to an ordinal
position designated by the value of the argument. NOTE: In the event
the expression has a value during running less than 1 or greater than
the number of labels in the 1ist, the command will be ignored and the
following command will execute. If this is an error condition in your
application (should never happen), your configuration should declare
an error (see ERROR command) on the next 1ine. DataFlex supports
nesting of up to 20 GOSUB procedures at one time (that is, a GOSUB
which itself calls a GOSUB, and so on).

FORMAT:

ON {nteger_arg GOSUB label_1 label_2 label_n

RETURN Command

The RETURN command is used at the end of a Tabeled procedure called by
a GOSUB command to cause the execution to transfer back to the origin
of the control transfer. If RETURN has no argument, then execution
will transfer back to the command line following the GOSUB command
line which originally called the procedure.

RETURN can have an argument. Valid arguments for the RETURN command
are other labeled commands in the configuration. This allows the
chaining of labeled procedures within a configuration, or conditional
branching to labeled procedures at locations other than the line
following the calling GOSUB.

FORMAT :

RETURN // return to line after GOSUB
RETURN label_arg // return to a labeled command

EXAMPLE:

[rainy] RETURN different_place
RETURN

Copyright (c) 1984 Data Access Corporation 05/16/ 84

D-32 CONTROLLING EXECUTION SEQUENCE DataFlex 2.0 User's Manual

CHAIN Command

CHAIN terminates the execution of one configuration and begins the
execution of the configuration named in the command argument, as if an
operating system command were being executed. A1l data files (random
and sequential) used in the configuration containing the CHAIN command
are closed. A1l integer variables used by the terminating configura-
tion remain available, with their values, for use by the succeeding
configuration, after they have been redeclared in the succeeding one.

The argument of the CHAIN command may be either a literal string
enclosed entirely within a pair of quotation marks, or a string varia-
ble. The literal contents of the argument may contain as many
characters as your operating system will allow in a command (typically
up to 128 characters, counting spaces). The literal string and the
contents of the variable will be interpreted in the same manner: the
characters preceding the first space will be considered the rootname
of a DataFlex configuration, and DataFlex will append the .FLX
extension and execute it. The characters following the first space
and preceding the second will be retrieved by the first CMDLINE
command in the configuration (see explanation of CMDLINE in this
section). If there are characters following the second space, the
second CMDLINE command (if any) will retrieve those characters up to
the third space, and so on.

FORMATS :
CHAIN "config_name {string ... stringl"
CHAIN string var

EXAMPLES :
CHAIN "inventory" //Execute configuration INVENTORY.FLX
CHAIN next_config //Execute first substring in variable
//NEXT_CONFIG and pass following substrings
CHAIN "accts_rec LST: cust_name" //Execute configuration
//ACCTS REC.FLX and pass
//substrings LST: CUST NAME

CMDLINE Command

When executing a DataFlex configuration, command arguments entered at
the operating system level as part of the initial command entry line
can be stored to string variables for later repetitive use, with the
CMOLINE command. This permits certain run-time choices to be made by
the operator (or the menu system) and entered without separate
prompting from within the configuration.

EXAMPLE :
FLEX MYREPORT CON:
Executes the FLEX.COM file and runs the configuration called
YMYREPORT". The "CON:" is not executed until a later point in
the execution of the configuration when a CMDLINE command
retrieves that argument and stores it to a string variable
which is subsequently read by the configuration (and used, in
this caser, to direct the report's output to the screen).

Copyright (c) 1984 Data Access Corporation 07/18/84

DataFlex 2.0 User's Manual CONTROLLING EXECUTION SEQUENCE D-33

CMDLINE will retrieve arguments with no Timitation as to number from
the last prior-executed operating system command or the last prior
CHAIN command, whichever was executed more recently. Arguments are
separated from each other by spaces (per the example above), and, once
retrieved by CMDLINE, are no longer available from the same source.,
having been replaced by the next succeeding argument, if any.

FORMAT :

CMDLINE string arg
EXAMPLE :

CMDLINE output_device

DEBUG Command

DEBUG is a mode command which toggles on and off from its default
condition of “OFF™, When on, it will cause the line number in the
compiled .FLX configuration file being executed to display on the
screen as it is being executed whenever the configuration is run.
Constants and variables will also be displayed as they are declared if
the DEBUG command is the first command in the configuration. The
intermediate FCODE output of the DataFlex Macro Processor is also
displayed with the line number when a configuration containing a DEBUG
command is compiled. Naturally, this command would not normally be
left in a finished configuration ready for running by operators.

ERROR Command

Error reporting is done using the ERROR command, The trapping of the
error myst be done prior to the ERROR command execution. System
errors are trapped by DataFlex. The system errors (those under 100)
are listed in the appendix under "RUN TIME ERRORSY", and may also be
read directly from the DataFlex database file FLEXERRS.DAT. Errors
which occur during execution must be trapped by the configuration.

The argument of the ERROR command is the number of the error which is
to be declared, specified either literally in the command or by the
use of a(n INTEGER) variable. The errors are defined in the DataFlex
FLEXERRS.DAT file supplied with the system. Custom error messages may
be added to the file by use of the DataFlex configuration FLEXERRS,
using error numbers greater than 100. The added error message(s) will
then be displayed on the screen on the last line if the ERROR command
is ever executed with the number of the message (on an error

Copyright (c) 1984 Data Access Corporation 05/16/84

D-34 CONTROLLING EXECUTION SEQUENCE DataFlex 2.0 User's Manual

condition). Such error message(s) will then be "standard" to all
DataFlex configurations run with the FLEXERRS.DAT file.

FORMAT :

ERROR #
EXAMPLE:

ERROR 4

would display the message "SEEK TO UNWRITTEN EXTENT (CP/M
ERROR) ."

CLEARWARNING Command

Warnings and messages printed on the last 1ine of the CRT using the
ERROR command can be removed with CLEARWARNING. It prints spaces to
the 1ine and deletes whatever was displayed there, CLEARWARNING is
automatically executed after an ACCEPT command. It has no argument.

FORMAT ¢

CLEARWARNING

ABORT Command

ABORT returns control to the DataFlex Menu. Any open data files are
closed when ABORT is executed. However no "cosmetic" cleanup is done,
so at least a CLEARSCREEN would be in order in most cases when this
command is executed from a screen-oriented configuration. ABORT has
no argument.

FORMAT :

ABORT

Copyright (c) 1984 Data Access Corporation 05/16/84

The DataFlex Structured Control commands provide a means of executing
parts of a configuration conditionally and/or in loops. The parts of
a configuration under control of Structured Control commands are
called "blocks", and they are made up of a sequential series of
commands which are placed between the "beginning" command (e.g..
BEGIN, REPEAT, WHILE, FOR), and the "ending" command (END, UNTIL,
LOOP). Indicators and parameters of the commands control whether, and
how many times, the blocks are executed.

BEGIN - END Command

The simplest of the structured control commands is BEGIN - END. The
BEGIN defines the start of a group of commands that are executed until
an END command is encountered. Indicators and "IF's" can be used to
test both BEGIN and END commands. The BEGIN and END commands do not
support arguments. After execution of the 1ine containing the END
command, execution goes to the next line of the configuration.

FORMAT :

BEGIN
COMMAND GROUP
END

EXAMPLE:

[found] BEGIN
DISPLAY list.name TO screen.l
DISPLAY 1list.address TO screen.2
DISPLAY list.city_state TO screen.3
END
If [FOUND] is TRUE, the DISPLAY commands will all be executed.
If it is FALSE, they will be skipped.

REPEAT - UNTIL Command

The REPEAT - UNTIL construct executes a group of commands in a loop
UNTIL a specified condition is met or created, inclusive. If the
condition is already met at the time execution first encounters the
loop, the loop will still be executed at least once.

FORMAT :

REPEAT
commands
UNTIL arg mode arg

D-36 BLOCKS AND LOOPS DataFlex 2.0 User's Manual

EXAMPLE:

REPEAT
MOVE (count+l) TO count
SHOW count
UNTIL count EQ 5
The loop would REPEAT until COUNT equalled 5 (inclusive).

REPEAT - LOOP Command

The REPEAT - LOOP construct is a loop which requires that execution
continue until a conditional statement (indicator or IF command)
within the command group or on the LOOP command line terminates the
processing and causes an exit.

FORMAT :
REPEAT
commands
conditional or indicator-controlled exit command
commands
LOOP
EXAMPLES :
REPEAT
SHOW "xn
INPUT "Enter data: " some_data
[KEY.ESCAPE] ABORT

[KEY.RETURN] LOOP
Loop only if RETURN key 1is pressed. Abort if ESCAPE
key is pressed.

REPEAT
CALCULATE (count + 1) TO count
IF count GE 100 GOTO a_routine
LOOP

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual BLOCKS AND LOOPS D-37

WHILE - END Command

The WHILE command establishes a test 1ike an IF command whith is
executed until the test becomes FALSE. The END establishes the end of
the command group, after execution of which the process checks the
WHILE condition, and if it is TRUE, loops back to the beginning of the
group, and 1f it is FALSE, continues on with execution of commands
following the END statement. If upon first execution, the "IF"
condition is FALSE, the command group will be skipped (not executed at
all).

FORMAT :

WHILE arg_1 mode arg 2

commands
END
Where arg 1 is a variable, mode is an IF comparison mode (see
discussion of IF command), and arg 2 is a string, date or
numeric value, or a variable whose value is reset within the
loop.

EXAMPLE:

WHILE in_stock GT O

INPUT sale

CALC (in_stock - sale) TO in_stock
END

FOR - FROM - TO - LOOP Command

This is a loop construct that has a specified range for its operation.
It is based on execution for a certain number of repetitions defined
by starting (FROM) and ending (TO) integer limits. If execution first
encounters the loop while the value of the integer is outside the
limits in the command, the command group will still execute once
before exiting.

FORMAT :

FOR integer_var FROM argl TO arg2

commands
LOOP
Where integer_var is any previously-declared integer variable,
and arg_l and arg 2 is are numeric constants, expressions, or
variables.

EXAMPLES :
FOR timer FROM 1 to 500

MOVE timer TO an_integer
LooP

ni

Copyright (c) 1984 Data Access Corporation 05/16/84

4

A1l BEGIN, LOOP, and END commands in the Structured Control command
group can be used with indicators or IF commands for multi-level
conditional execution. Structured Control commands should not be used
in the ENTRY sections of the ENTER and ENTERGROUP macros, because the
BACKFIELD key is capable of defeating the initial command which
controls entry to the loop.

Copyright (¢) 1984 Data Access Corporation) 05/16/84

The Console Input/Output (I/0) command group provides a facility for
directly addressing the CRT device (terminal screen) and to perform a
range of CRT operations which are sometimes useful in the development
of more advanced applications. Before any of the console I/0 group of
commands is used, it should be considered whether it might be easier
or more direct to utilize DataFlex's powerful screen imaging facility
which is available at the beginning of any and every configuration.
The console I/0 command group is generally less efficient than screen
images for moderate to elaborate displays, and is intended for use
only in exceptional situations.

The actions of the Console I/0 command group are totally independent
of the particular codes and routines which activate screen functions
on any particular computer or terminal. DataFlex acquires and
maintains system-specific data about your CRT when the SETSCREEn
utility is run. The data from SETSCREEn is stored in the file
FILELIST.CFG. Data about your system is read from FILELIST.CFG each
time DataFlex is initialized to provide the necessary system-specific
data for the execution of the commands.

SHOW Command

The SHOW command provides the facility to output data to the CRT
device. It will not output to the printer even if output is directed
to the printer (see WRITE and WRITELN commands). The data output to
the CRT ‘may be of any type (constant, variable, numeric, string.
expression, etc.). The SHOW command acts on an argument which defines
the data that is to be "shown®" on the CRT. Literal arguments must be
embedded in single or double quotation marks, and produce a display of
the argument itself. Arguments without quotes are variables, and
produce a display of the contents of the variable. Multiple arguments
can be used. No carriage return is output at the end of execution of
a SHOW command., Two consecutive SHOW command lines will output data
to the same line, one after the other, left to right, on the screen.
Literal strings to be SHOWn cannot be longer than 80 characters.

FORMAT:
SHOW argument f{argument ... argument}

EXAMPLES :

SHOW name ", " address ", " city'

Display the value of the string variable NAME, followed by a
comma and a space, then the value of the variable ADDRESS,
followed by a comma and a space, followed by the value of the
varfable CITY on the screen at the cursor position.
(continued next page...)

i
ni

Copyright (c) 1984 Data Access Corporation 05/16/84

D-40 DIRECT CONTROL OF THE CONSOLE DataFlex 2.0 User's Manual

EXAMPLES (continued from preceding page)

SHOW "Hello, " pers_name
Display Hello, followed by the contents of the variable
PERS_NAME on the screen at the cursor position.

SHOW "Input today's date (MM/DD/YY): "
Display Input today's date (MM/DD/YY): on the screen at the
cursor position.

SHOW (12,.70+TOTAL)
Display the results of adding 12.70 to the value of the
variable named TOTAL on the screen at the cursor position.

SHOWLN Command

This command is the same as SHOW, except that SHOWLN outputs a
carriage return after displaying all of the arguments that it outputs
to the terminal, giving the cursor a new 1ine on which to display,
including succeeding SHOWLN commands. It is useful, among other
things, for displaying vertical columns of output on the screen, which
is usually done in a loop.

FORMAT :
SHOWLN argument {argument ... argument}
EXAMPLE:

WHILE area_code LT 500

SHOWLN "Area Code " area_code "processing completed"
LOooP
would display successive lines on the screen reading "Area
Code <number> processing completed" until the value of
AREA_CODE equalled or exceeded 500, where <number> represents
the value of the individual area code.

INPUT Command

The INPUT command accepts keyboard input and assigns the data received
to a variable, named in the command argument. Data can be INPUT onily
from the keyboard, and by no other means. Once the INPUT data is in
the variable, it can be acted upon or processed under the variable
name within the configuration. INPUT functions with all valid
variable types, and if the input data does not match the type of the
variable named in the argument, an error will be declared (e.g., if an
INTEGER type variable is named and alpha characters are input from the
keyboard, an error will occur). After entry of the data, any Flex-Key
will cause it to be loaded, although the RETURN key is the usual key
to use for the purpose.

FORMAT :

INPUT 'optional prompting string' var_arg

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual DIRECT CONTROL OF THE CONSOL D-41

EXAMPLES : .

INPUT "Enter the date (MM/DD/YY): " todays_date

Display Enter the date (MM/DD/YY): at the current cursor
position, pause execution, and store subsequently-keyed
response under the variable TODAYS DATE

INPUT quantity
Halt execution and store keyboard input under the

variable QUANTITY.

GOTOXY Command

GOTOXY sends the CRY cursor to a position on the screen specified in
the arguments to the command, providing control of the location of the
actions of other console 1/0 commands on the CRT device. GOTOXY
provides no other function except positioning; other commands must be
used to do something after the cursor has been moved to the desired
location.

FORMAT :
GOTOXY argl arg2
Where argl is the LINE and arg2 is the COLUMN where the cursor
is to be placed on the CRT.

EXAMPLES :

GOTOXY 0 0
Position the cursor at the extreme upper left (HOME) of the
screen (line 0, column 0).

GOTOXY 12 40
Position the cursor on line 12, column 40 (exact center of a
24-1ine, 80-column screen).

The valid range for values of the 1ine and column arguments is
determined by the system configuration as defined in SETSCREEN.

CLEARXY Command

The CLEARXY command clears from the coordinate screen position
specified in the command argument to the end of the screen. After
execution, the cursor is positioned at the argument coordinates. This
command must not be used within a named PAGE, as it will cause an exit
from whatever PAGE it is invoked in.

FORMAT :

CLEARXY argl arg2
Clear the screen from Line argl, column arg2.

Copyright (c) 1984 Data Access Corporation 05/16/84

D-42 DIRECT CONTROL OF THE CONSOLE DataFlex 2.0 User's Manual

EXAMPLES :

CLEARXY 0 0
Clear the entire screen (see CLEARSCREEN below).

CLEARXY 13 0
Clear from the beginning of line 13 to the bottom of the
screen (bottom half of a 24-1ine screen).

CLEARSCREEN Command

CLEARSCREEN clears all printable characters from the screen and sends
the cursor to the "HOMEM™ position. No argument is used with this
command.

FORMAT:

CLEARSCREEN

KEYCHECK Command

When a KEYCHECK command is executed, a predefined indicator, KEYPRESS,
is set TRUE if a key was pressed at any time since input was last
accepted to a window or an ACCEPT statement. (The character generated
by whatever key was pressed is discarded.) KEYCHECK is useful
primarily for interrupting Tong processing cycles and reports. In
such uses, it is recommended to display a prompt to the screen such as
"PRESS ANY KEY TO INTERRUPT". KEYCHECK may be followed on the same
line with another command which is executed if KEYPRESS is TRUE (a key
has been pressed), and skipped if KEYPRESS is FALSE (no key has been
pressed). The KEYPRESS indicator may be used at any time after
execution of a KEYCHECK command (to set fts state), so that
intervening commands may be executed unconditionally before the
command whose execution depends on the state of KEYPRESS. KEYCHECK
does not distinguish among keys; it responds the same to any key
which generates a character (it does not respond to CTRL, SHIFT, or
BREAK) .

FORMAT:
KEYCHECK {optional following command}

EXAMPLES :
KEYCHECK //Set KEYPRESS to TRUE or FALSE.
commands //to execute unconditionally
[KEYPRESS] command //executes depending on KEYPRESS

KEYCHECK GOSUB shutdown
If a key has been pressed, execute subroutine SHUTDOWN.

NOTE: KEYCHECK commands should not be used under the REPORT macro.
If it is desired to control branching by keypresses in the REPORT

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual DIRECT CONTROL OF THE CONSOLE D~-43

macro, the appropriate subroutine under the name RPT.KEYPRESS should
be defined in the configuration, ending with the special form of
RETURN command for the REPORT macro, RETURN RPT.LOOP.

INKEY Command

INKEY inputs one character from the keyboard into an argument. It
does not display the character on the screen. It does halt execution
of the configuration until a key 1is pressed, and is very useful for
this purpose. The command requires an argument; it cannot be used
without one.

FORMAT:

INKEY argument
EXAMPLES :

INKEY a_key

Store the first key input to the keyboard under the
varfable A_KEY.

SCREENMODE Command

The SCREENMODE command sets the high- and low-intensity screen
attributes as established in the DataFlex SETSCREEn utility. The
attribute will remain until another SCREENMODE command is executed, or
a PAGE is displayed, at which time the attribute will be set to low
intensity. SCREENMODE does not affect display of a PAGE. There are
no arguments for this command other than the two shown below:

FORMAT:
SCREENMODE 1 sets high intensity

SCREENMODE 2 sets Tow intensity

]
1]

Copyright (c) 1984 Data Access Corporation 05/16/84

D-44 DIRECT CONTROL OF THE CONSOLE DataFliex 2.0 User's Manual

THIS PAGE INTENTIONALLY LEFT BLANK

Copyright (c) 1984 Data Access Corporation 05/16/84

The DataFlex Database commands provide the facility to find, save and
delete records in the database, and to establish "relationships"
between and among records.

The power of these individual DataFlex commands far exceeds that
available in conventional high level languages, making "Flex"
configurations smaller, more consistent and easier to maintain than
alternative application development techniques.

Database Commands and FILEDEF

The DatafFlex Database commands are integrally linked to data
dictionary information established with the DataFlex FILEDEF and
AUTODEF utilities. These utilities create a dictionary of
specifications for a data structure and stores it on disk. The data
dictionary contains data on each file's number of fields, field length
and type, decimal formatting on numeric fields, name including drive
reference, multi-user status, key index structure, etc. All other
DataFlex operations can then "look up" the file specifications in the
data dictionary whenever needed. This precludes the necessity for
each program to maintain file-specific data and substantially reduces
application development time.

Understanding Record Buffers

The data in your DataFlex files resides on the disk drives. One
ACTIVE record from each file can reside in RAM memory. The place in
memory where this record resides is called the RECORD BUFFER. When a
record is read from the disk to the record buffer, data can be
extracted from and/or changed in the buffer. The record can then be
written back to disk (SAVED). The buffer {s where DataFlex does its
work on a given record.

An ACTIVE record buffer contains a record that has been previously
read from the database. That is, the record exists both on disk and
in main memory 1in exactly the same form. If changes have been made to
an active record buffer, that record is considered EDITED. An edited
record MUST be saved back to the database in order to retain the
changes which have been made. An edited record is still active.

An INACTIVE record buffer contains either no data or data that does
not (as yet) exist in the database (specifically, newly entered data
which has not been SAVEd to disk). A CLEAR record buffer is an
inactive record that has had no data PUT into it at all. In a CLEAR
buffer all numeric and date fields are zero, and all ASCII fields
contain spaces. When an inactive but not clear record buffer is
SAVED, a new record will be created.

Copyright (c) 1984 Data Access Corporation 05/16/84

D-46 MANIPULATING RECORDS DataFlex 2.0 User's Manual

FILE MANIPULATION

When using the highest level of the DataFlex commands, like ENTER and
REPORT, all of the details of the record buffers, FINDing, SAVEing and
CLEARiIng are taken care of for you. The way in which these operations
are done is completely transparent to the operator and the config-
urator. But when you have a requirement that necessitates manipuia-
ting the files manually, you must understand the basics of file
maniputation. When using the manual file commands, records are NOT
automatically related, saved, and cleared. You must ensure that these
operations are done, and done in the proper sequence.

There are four basic manual operations to perform on a database:
1) FINDING: Read records for reference only.

2) EDITING: Read records, modify them, and write them back to
the database.

3) CREATING: Create new records.

4) DELETING: Delete existing records.

The procedure for FINDING a record is:

a) CLEAR the record buffer.

b) Put the KEY data into the record buffer.
c) FIND the record by the KEY field.

d) Optionally, RELATE the found record.

After a FIND you may get data out of the record buffer. If the FIND
is unsuccessful, the KEY data will be in the buffer and the record
buffer will be INACTIVE.

The procedure for EDITING an existing record fis:

a) FIND the record (see above)} to edit.
b) Put new data into the record buffer fields to edit the record.

c) SAVE the record.

A SAVE must be done after a "put" to an active record buffer to move
the data to disk. Continuing processing after editing an active
record without SAVEing it will cause Error 82, and the file will have
to be REINDEXed.

The procedure for CREATING a record is:
a) CLEAR the record buffer,
b) Put the data into the record buffer fields.
c) SAVE the record.

The procedure for DELETING a record is:

a) FIND the record (see above) to delete.
b) DELETE the record.

(Kl

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual MANIPULATING RECORDS D-47

OPEN Command

An OPEN command makes all database files associated with a file
"df_filename" (data and key files) available for DataFlex operations.
(See the FILEDEF documentation for information on df_filename).
Specifically, when a file is OPENed, the referenced data file, and all
associated key index files are opened, buffer space is automatically
allocated in memory, and upon completion of the OPEN operation, al)
files are available for on-iine processing.

The OPEN command{(s) should be at the beginning of the configuration
and must be executed before the files associated with the df_f1ilename
can be addressed by other commands.

FORMAT:
OPEN file_name_arg {index.n}
Where OPEN is the command, "file_name_arg" is the "SHORT
NAME" (created in FILEDEF) of the file to be OPENed, and n
represents the number of an index that may optipnally be
loaded into a memory "buffer" to speed sequential access to
records in a file.

EXAMPLE :

OPEN 1inventory
OPEN personnel 1index.2

In the second example above, the "index.2" option after the
df_filename "personnel" elects to load the second index for that
database file into a memory buffer.

The optional Index buffering only provides a speed improvement when
the access to records is sequential, as in a report. Random
operations, such as transaction entry to non-sequential records, will
not benefit from buffering.

The usefulness of the index buffering option is, as with most other
options, subject to tradeoffs. The number of the index is established
in the index definitions as previously created in the FILEDEF func-
tion. If the option is selected, record locations required by FIND
and other accessing operations are read directly from the computer's
active memory (RAM) rather than via a separate (slower) disk access
and file-read operation,

The tradeoff when using record buffering is the sacrifice of a portion
of the computer's RAM that is consumed by this process. The overall
size of your configuration, number of files opened, RAM capacity of
your computer, and so on, determines how much RAM is available over
and above what is required to carry out the application's basic
functions, and will dictate whether the index-buffering option is
worthwhile, or even possible.

Copyright (c) 1984 Data Access Corporation 05/16/84

D-48 MANIPULATING RECORDS Dataflex 2.0 User's Manual

In a multi-user environment, the optional index buffering is allowed
and DataFlex will maintain indexes properly, even in those cases where
buf fered indexes are updated.

When DataFlex configuration source files are being compiled, a special
file needed by the compiler macro processor must be resident on the
logged device on which the compiler is located. The needed file is
referenced as DF_FILENAME.FD. "DF_FILENAME"™ is established in the
FILEDEF utility when the file is defined. Its name is maintained
separately so that the ".FD" file can be addressed without assuming
the drive specification attached to the data file.

FIND Command

The FIND command is used to get a desired specific record from a data
base on disk and place it into the record buffer. FIND uses data
placed in the record buffer (normally by prompted keyboard input) to
search a key index, "find" a match and get the record. For example,
in a file maintenance situation, the operator could be prompted for a
record ID or "key" of some kind, an account number, part code, etc.
Data entered in response to the prompt is placed into the buffer and a
search for a match (or other relationship--see MODES below) is
performed by the FIND command.

The FIND command must reference an existing index or record number.
A1l segments in the index will be used to locate the record with the
FIND operation, including record number, if inciuded in the index.

FIND must be given a parameter by which to execute. Do we want to
search for a record with an exact match to the '"key", or do we want
the record with a "key" greater than the value entered to the buffer?
This parameter is called the MODE of the FIND. Five MODEs are
available:

LT Less Than

LE Less than or Equal to
EQ Equal

GE Greater than or Equal to
GT Greater Than

Finally, we must define what index is to be used for the FIND
operation. This is specified by the number of the index to be used,
as defined in the database (see File Definition) as INDEX.n, where n
is the index number.

FORMAT :
FIND mode filename BY INDEX.n
where n is a number between 1 and 5 (for 8~bit computers) or
between 1 and 10 (for 16-~bit computers). INDEX.BATCH and
RECNUM may be used alternatively. The index must first have
been defined in the database definition.

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual MANIPULATING RECORDS D-49

EXAMPLES :
FIND EQ 1nvt BY INDEX.2
Find a record in the INVYT file by INDEX number 2 with a key
equal to the data in the buffer.

FIND GE member BY INDEX.3
Find a record in the MEMBER file by INDEX number 3 where
the value is equal to or greater than the data in the buffer.

NOTE: The filename in the command must previously have been OPENed
with the OPEN command.

The FIND GE 1s probably the most used command/MODE combination. It
will retrieve a record based on an exact match with data in the
buffer, or if no match is found, the next record following the value
of the buffer data.

The result of executing a FIND operation is shown by either of two
indicators: FINDERR and FOUND. FINDERR will be TRUE when the FIND
operation is not successful by the specified MODE. FOUND will be set
TRUE when a record is found according to the specified MODE. These
indicators.can be used to direct the action of the configuration based
on the outcome of the FIND command execution.

An alternate form of the FIND command can be used where the index
number is not known.

FORMAT:
FIND mode filename,fieldname

EXAMPLE :
FIND GT INVENTORY.DESCRIP

The filename.fieldname must, of course, be indexed. If it is not, an
error will occur at runtime when the command is executed.

The FIND command works only when it occurs within a definite sequence
of commands, specifically:

1. CLEAR the record buffer.

2. MOVE the finding data (data to be matched or related to).
3. Execute the FIND.

4. Execute conditionally on successful or unsuccessful FIND.

The following commands represent an example of this sequence:

INPUT "Enter the name you wish to find: " find_name
CLEAR people

MOVE find_name TO people.lname

FIND EQ people.lname

[FINDERR] GOTO no_match

Copyright (c) 1984 Data Access Corporation 05/ 16/84

D-50 MANIPULATING RECORDS DataFlex 2.0 User's Manual

CONFIGURATION EXAMPLE:

/¥ // starts configuration
STRING pause 1 // declare variable PAUSE
OPEN maillist // opens maillist file
START: CLEARSCREEN // clear the screen
CLEAR maillist // clear before FINDing

INPUT "Enter NAME to display: " maillist,name
// get keyboard input

FIND GE maillist BY INDEX.1 // search for match
[FOUND]J BEGIN // FOUND is set TRUE automatically by a
// successful FIND operation
// Commands from here to the next END are
// executed only if the FIND was successful
SHOWLN maillist.address
SHOWLN maillist.cty st_zip

END
// ¥%%% ERROR TRAP *¥*¥%%

// FINDERR is set TRUE automatically by an
// unsuccessful FIND operation

// The next command is executed only if the
// FIND attempt was unsuccessful (no match).

[FINDERR] SHOWLN "No names matching: " maillist.name
INPUT "PRESS RETURN TO FIND ANOTHER, <ESC> TO QUIT"™ PAUSE

[KEY.ESCAPE] ABORT

GOTO START

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual MANIPULATING RECORDS D-51

SAVE Command

The DataFlex SAVE command takes data in a record buffer and "saves" it
on disk. The command can have mulitiple arguments on the command
1ine. If multiple files are OPEN and relationships exist, all files
related to the file being saved will be automatically ATTACHed (see
below) and saved.

FORMAT :
SAVE filename_argl {filename_arg2 ... filename_argn}
EXAMPLES :

SAVE inventory
SAVE client transaction system

NOTE: The filename(s) in the command must previously have been OPENed
with the OPEN command.

The action of the SAVE command varies based on how data has been
placed in the buffer, and what has happened to it once it arrived
there.

An empty (or CLEAR ...see below) buffer that has data moved into it
from any source (window, another file), will simply move the data from
the buffer into a newly created record on disk.

If a record is FOUND (past tense of FIND), and the data in it is then
modified (e.g., by keyboard entry) then the buffer (containing the
altered data) will be SAVEd back to the same record in which it was
originally stored.

NOTE: It is important to remember that the process of editing in
DataFlex occurs when data is moved to the record buffer. Therefore,
no changes -are made to the database on disk until a SAVE command is
executed after the modification of the data in the buffer. It is an
error to edit a record and not SAVE it.

SAVERECORD Command

SAVERECORD saves a record from its buffer to the disk. No automatic
ATTACH is executed and no related files are saved; only the file that
is the argument of the command is saved.

FORMAT :

SAVERECORD filegname_arg
NOTE: The filename(s) in the command must previously have been OPENed
with the OPEN command.

Copyright (c) 1984 Data Access Corporation 05/16/84

D~52 MANIPULAYING RECORDS DataFlex 2.0 User's Manual

CLEAR Command

The CLEAR command acts upon the record buffer of the filename
referenced in the command argument(s). Any data in the buffer is
flushed by the execution of a CLEAR.

FORMAT :
CLEAR filename_argl {(filename_arg2 ... filename_argn}
EXAMPLES :

CLEAR myfile
CLEAR myfile yourfile ourfile

NOTE: The filename(s) in the command must previously have been OPENed
with the OPEN command.

The CLEAR command should be used at any time that an initialized
record buffer is required. For example, if keyboard entry has been
used to create data in the buffer for a FIND, and no record is found
(FINDERR is TRUE), then a CLEAR would purge any entries that had been
made to the buffer before making fresh entries in an attempt to
proceed and FIND other records. If, on the other hand, you wish to
de~active an active (FOUND) record and retain entered data in the
buffer, a MOVE 0 TO RECNUM command will accomplish that.

DELETE Command
The DELETE command removes an existing record from the data base. A
record must be FOUND before it can be DELETEd. When the DELETE
command is executed, all key indexes for the record being deleted are
updated on-1ine to remove key entries for the deleted record.
FORMAT:

DELETE filename_arg {filename_arg2 ... filename_argn}
EXAMPLES :

DELETE names notes reminders

NOTE: The filename(s) in the command must previously have been OPENed
with the OPEN command.

RELATE Command

The RELATE command works in conjunction with the FIND command, After
a record has been found with FIND, RELATE will find ail related
records in the database. For example, if a transaction record is
found and placed in the buffer, the execution of a RELATE command
could find a related master record(s) in the database and place it
(them) in the buffer additionally.

05/16/84

DataFlex 2.0 User's Manuatl MANIPULATING RECORDS D-53

FORMAT:

RELATE filename_arg
EXAMPLES :

FIND GE invt_trans.posting //executed first
RELATE invt_trans

NOTE: The filename(s) in the command must previously have been OPENed
with the OPEN command.

A FIND must be executed before RELATE. The record buffer for the
filename_arg must be "active" for RELATE to function. Files to be
used as the argument(s) of the RELATE command must be OPENed prior to
the command execution. Related files that are not OPENed are ignored
by the RELATE command. In the case of a “"chain" type relationship, an
attempt to RELATE a file that is not OPENed precludes access to other
files further up the chain.

The use of RELATE assumes that the proper relationships have been
established in FILEDEF between (among) the files.

ATTACH Command

When file relationships have been established in FILEDEF, the ATTACH
command provides the means of placing the data on which the
relationship is based into a new database record. If it is desired
only to SAVE related records, it is not necessary to ATTACH them,
since ATTACHment is done automatically in execution of the SAVE
command, Therefore, ATTACH should be used only where further
processing is required before the SAVE is done.

FORMAT :

ATTACH filename_arg
EXAMPLE :

ATTACH transactions

NOTE: The filename(s) in the command must previously have been OPENed
with the OPEN command.

Upon execution of the ATTACH command, DataFlex moves the record number
or field data that is defined as the basis for the relationship into
the new record. All related files that are open when the command is
executed will have a relationship created.

The ATTACH command only moves data into the new database record. That
data, and the entire new record, fs not a permanent part of the
database until a SAVE command is executed to put the information on
disk. ATTACH moves data from "higher" to "lower" data files only
within an application data structure. Briefly, a "higher" file is one
with records (such as "employer™) which are related to many other
records (such as "employee"), and a "lower" file is one which contains

Copyright (c) 1984 Data Access Corporation 05/ 16/ 84

D-54 MANIPULATING RECORDS Dataflex 2.0 User's Manual

those many records which relate to the "higher" one. These terms are
more fully discussed in the section of this manual on File Definition
- Step One - Plan the Relationships Among the Data Files.

Command

ZEROFILE

The ZEROFILE command is potentially very destructive of data, and
should be used only with great caution. Its effect is to permanently
erase all data from a database file. It may be useful to do this in
order to remove experimental or sample data from a set of database
files (without erasing the files themselves and having to redefine the
entire database), or to reinitialize a database for a new period.

FORMAT ;
ZEROFILE filename

NOTE: The filename(s) in the command must previously have been OPENed
with the OPEN command.

Again, improper use of this command on valid, needed data can be
disastrous. Great caution is advised in using this command.

SYSTEM FILES

It is frequently desirable to have a file with only one record to hold
today's date, your company's name and address, the last-used invoice
number, cumulative totals, and other_system-oriented information.

This type of file is referred to as a SYSTEM FILE.

A system file is defined, created and changed just like any other
DataFlex file, but system files can contain only one record.

To define a system file, set the "MAXIMUM NUMBER OF RECORDS" in the

"SET SYSTEM PARAMETERS" of FILEDEF to one (1) when the file 1s set

up. DataFlex recognizes this parameter, and automatically reads the
single record from this special type of file into a buffer without a
FIND opration. Any data in the system file is then available in the
buffer without a disk access.

System files should not have any indexes since there is only 1 record.

When used with the ENTER command, system files must be OPENed, but the
system file should not be included on the ENTER command line.

An example of a system file can be found in the DEMO files as SYSFILE.
Invoice uses the date from SYSFILE.

It is recommended that file one be used as the system file. Also,
that File 1, Field 1 be assigned as the company name and that File 1,
Field 2 be the date. Append other system file fields to the end of
these as needed. There may be multiple system files.

Copyright (c) 1984 Data Access Corporation 05/16/84

The System command group provides for the execution of operations that
would normally be done at the operating system command level. These
commands can be executed within a DataFlex configuration file as
required. In that these commands are very powerful, and can make
major alterations to a system, they should be used with respect and
care. Supportive operator prompting and verification prior to the
execution of these commands are recommended.

A sub-group of commands wihtin this group manipulates the operating
system directory. Filename arguments in the sub-group that are
1iterals must be enclosed in single or double quotation marks. Those
filenames that are referenced in data elements (string variables or
ASCII windows) do not require quotes.

ERASEFILE Command

Deletes the file named in the command argument from the operating
system directory.

FORMAT :

ERASEFILE filename_arg
EXAMPLES :

ERASEFILE "myfile.dat"

ERASEFILE file_to_kill

RENAME Command

Changes the name of a file in the operating system directory.
FORMAT :

RENAME f{lename_argl TO filename_arg2
EXAMPLES :

RENAME file_to_rename TO "TEMP.DATY

RENAME oldfile TO newfile

Copyright (c) 1984 Data Access Corporation 05/16/84

D-56 MANIPULATING FILES DataFlex 2.0 User's Manual

COPYFILE Command
Transfers data from one file to another, or transfers file(s) from one
device to another. "Wild card" or ambiguous file name entries are
supported for the purposes of this command so that groups of files can
be manipulated.
FORMAT :

COPYFILE sourcefile(s) TO destfiles(s)
EXAMPLES :

COPYFILE "a:current.dat" TO "b:history.dat"

COPYFILE Ma:¥*,fix" TO "b:"

COPYFILE screen.6 TO 'b:newstuf.txt!

DIRECTORY Command

Displays a directory of the disk files specified in filespec_arg.
FORMAT :

DIRECTORY filespec_arg
EXAMPLES :
DIRECTORY "c:¥*.dat"

DIRECTORY screen_window.20

FILELIST Command

The FILELIST command displays information from the 1ist of current
DataFlex data files. It can read the PATHNAME, DISPLAY NAME, DataFlex
file name and file number from FILELIST.CFG., The file number is
stored in a pre-defined integer variable called FILENUMBER. There are
three variations on the use of the command.

FORMAT 1:

FILELIST fi1lenum_arg TO stringl_arg {string2_ argl

Where filenum_arg is the number of the desired file,
stringl_arg is where the file's user display name is stored
and/or displayed, and string2_arg is where the file's DataFlex
file name is displayed or stored.

EXAMPLE 1:

FILELIST 22 TO screen.6 screen.7
Puts the file's user display name for File 22 into Window 6 on
page "screen", and its Dataflex filename into Window 7.

Copyright {(c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual MANIPULATING FILES D-57

The FILELIST NEXT command scans FILELIST.CFG and returns the next
ACTIVE file (the next larger number for an existing active file). The
file number 1s returned in FILENUMBER. The value of FILENUMBER is the
starting point for the execution of the command. To get a complete
FILELIST, initialize FILENUMBER to zero (0).

FORMAT 2:
FILELIST NEXT TO stringl_arg {string2 argl
EXAMPLE 2:
MOVE 0 TO FILENUMBER
REPEAT
FILELIST NEXT TO 1ist.2 11st.3
UNTIL FILENUMBER EQ O
Would sequentially output the entire 1ist of display names and
DataFlex file names for all active files to Window 2 and
Window 3 of Screen list.

The FILELIST PATHNAME command outputs the pathname and (optionally)
DataFlex filename of the file currently pointed to by FILENUM,

FORMAT 3:
FILELIST PATHNAME TO stringl_arg {string2_arg}
EXAMPLE 3:

FILELIST PATHNAME TQ screen.l5 screen.l6

SYSTEM Command

The SYSTEM command returns control of the computer to your operating
system. Al1 files opened in the configuration will be closed in the
process of the executing the command. No CRT screen "clean-up" is
performed by SYSTEM, so any cosmetic work must be done by other
commands. SYSTEM differs from the ABORT command in that ABORT will
return to the DataFlex Menu if it is on the disk drive, while SYSTEM
explicitly exits to the operating system.

FORMAT :

SYSTEM

CAUTION: If DataFlex is being run under control of a batch or submit
operating system file, SYSTEM will cause the next entry in the batch
file to begin executing, just as any other return to the operating
system would do. If the "RETURN TO OPERATING SYSTEM" prompt which
occurs upon use of the SYSTEM command is confusing to operators, an
explanatory prompt just before the SYSTEM command can help alleviate
such confusion.

Copyright (c) 1984 Data Access Corporation 05716/84

D-58 MANIPULATING FILES DataFlex 2.0 User's Manual

RUNPROGRAM Command

The RUNPROGRAM command runs an operating system level program (.COM or
.CMD FILE). It can have two arguments. Argument One 1s the program
name, Argument Two is the command 1ine to pass to the program. After
the program has executed, control is returned to the operating system.
FORMAT :

RUNPROGRAM prog_name.com_arg prog_arg
EXAMPLES :

RUNPROGRAM "PIP" MB:=A:¥ ¥4

RUNPROGRAM screen.2 screen.3

RUNPROGRAM "edit" prompt_input

REGISTRATION Command

The REGISTRATION command will retrieve the registered name and serial
number of a DataFlex license and place the data into variables that
can be used in a configuration.
FORMAT :

REGISTRATION string arg numeric_arg
EXAMPLE:

REGISTRATION 1icensee_name serial_number
Use of the REGISTRATION command to display the name of the application
author (company or individual) is effective in identifying the

software to the creator/owner, and is one of the main purposes for
which this command is provided.

SYSDATE Command

The SYSDATE command retrieves date and time information from the
operating system, provided the date and time have been properly set in
the operating system. The SYSDATE command stores the system date to
the first variable named after the command, the hour (in 24-hour
format) to the second (optional) argument, and the minutes to the
third, 1f a third argument is specified in the command. The date will
be returned in DATE format, and the second two will be returned as
two-digit numbers. The name DATE should not be used, since that is a

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 Usert's Manual MANIPULATING FILES D-59

DataFliex reserved word.

FORMAT :

SYSDATE <date_arg> {hour_arg} {minute_arg}
Where <date_arg> is a date variable, and {hour_argl} and

{minute_arg} are optional 2-digit numeric variables.
The command returns the year in two digits (as in 12/24/44). 1If a
four-digit format is desired (12/24/1944), it can be obtained by
adding the amount 693975 to the returned value.
EXAMPLE:

SYSDATE sdate hour minute
MOVE (sdatet+693975) TO sdate

A11 MS-DOS-based operating systems and operating systems which support
the MP/M (BDOS 105) DATE system call are supported. CP/M 2.2 and
CP/M-86 1.0 do not have time and date functions. Among operating
systems which are supported are: CP/M 3.0, Concurrent CP/M, MP/M-86
and MS-D0S, as well as TurboDOS, DPC/0S 3.0, MS-DOS, and NStar.

Copyright (c) 1984 Data Access Corporation 05/16/84

D-60 MANIPULATING FILES DataFlex 2.0 User's Manual

THIS PAGE INTENTIONALLY LEFT BLANK

Copyright (c) 1984 Data Access Corporation 05/16/84

The Sequential I/0 command group provides a means of reading data
from, and writing data to, physical input/output devices (such as
printers) and disk files produced by, or for further processing by,
programs other than DataFlex (WordStar, CBASIC, etc.). These commands
do not use "image" formatting. Data sent to files and devices from
this command group must be formatted (where necessary) in the
configuration to satisfy the requirements (delimiters, etc.) of the
destination device or non-DataFlex program.

NOTE: The first four commands of this group use an underline
character (_) within the command name. This character is integral
with the command name and cannot be omitted without causing a compile-
time error.

DIRECT_INPUT Command

DIRECT_INPUT specifies a disk file name or device from which sequen-
tial input is to be received for processing by a DataFlex configu-
ration. The argument for the command is the name of the file or
device, or the name of a variable or window which contains the desired
file name or device designator. If the argument is the literal name
of the file or device designator, it should be surrounded by quotation
marks. If the argument is a string variable, quotation marks should
not be used. Execution of the command automatically opens the
necessary buffers and makes the file or device fully ready for input
operations. If a specified file or device cannot be found in the
system, the end-of-file indicator is set TRUE. If there is need in
the application to declare an error in this case, an error message can
be established which is triggered by the state of the end-of-file
indicator.

FORMAT :

DIRECT_INPUT string_arg
Where string_arg contains the source file name or device
designator.

EXAMPLES :

DIRECT_INPUT "wsmerge.txt"
Open a file named WSMERGE.TXT for input

DIRECT_INPUT "RDR:™
Open the port designated RDR: in the operating system for
input

DIRECT_INPUT screen.l
Evaluate the contents of Window #1 on the screen and open the
file or device identified thereby

Copyright (c) 1984 Data Access Corporation 05/ 16/84

D-62 DIRECT INPUT AND OUTPUT DataFlex 2.0 User's Manual

DIRECT_QUTPUT identifies a disk file or physical device to which
sequential data is to be sent from a DataFlex configuration. The
argument for the command is the name of the file or device. Execution
of the command automatically opens the necessary buffers and makes the
file or device fully ready for output operations. If the argument to
the command is the 1iteral name of the file or device, it should be
embedded in quotes ("). If, on the other hand, the argument is the
name of a variable which contains the file name or device designation,
quotes should not be used. If a file or device is specified in the
command which does not exist in the system, a new disk file will be
created under the name specified in the command. CAUTION: If the
command names an existing file, that file will be erased by the
DIRECT_OUTPUT command, with no warning to the operator unless one is
explicitly written into the configuration.

FORMAT :
DIRECT_OUTPUT string arg
Opens the file or device specified by the contents of the
string variable named STRING_ARG.

EXAMPLES :

DIRECT_OUTPUT "myfile.txt"
Opens for output the file named MYFILE.TXT.

DIRECT_OUTPUT screen.4
Get name of device or file from Window 4 on Page SCREEN.

These two commands simply close the file or device opened by the
DIRECT_INPUT AND DIRECT_OUTPUT commands respectively. They operate on
any device or file which may be open, and require no argument,

FORMAT:
CLOSE_INPUT
CLOSE_OUTPUT
READ Command

The READ command reads sequential data from a file or device and
assigns data thus read to the variable name(s) given in the argument
of the READ command. READ recognizes the comma (,) as the delimiting
character between data elements, and ignores commas which are con-
tained within double or single quotation marks. If there are single
quotes (') in embedded material, double quotes (") should be used as
the embedding character. If there is need for double quotes, single
quotes may be used for embedding. It is not recommended to attempt to
embed any single data element containing both types of characters.

Copyright (c) 1984 Data Access Corporatio 05/16/84

DataFlex 2.0 User's Manual DIRECT INPUT AND OQUTPUT D-63

EXAMPLE:
Ring,Mahoney and Arner,Miami,Florida
would be interpreted as four data elements, specifically:

: Ring
: Mahoney and Arner
: Miami

: Florida

while:
"Ring, Mahoney and Arner",Miami,Florida
would be interpreted as three data elements, as follows:

1: Ring, Mahoney and Arner
2: Miami
3: Florida

The READ command will read as many data elements as there are argu-
ments given in the command, unless the CR/LF end-of-record character
is encountered in the source data before all arguments have been
assigned data elements.

FORMAT ¢
READ argumentl ... argumentN
EXAMPLES :

READ an_selement
Read one element from the current input line and store it
under variable name AN_ELEMENT,

READ name address city state zip

Read the first data element in the record and store it under
the variable name NAME, read the next element and assign it to
ADDRESS, the next to CITY, and so on.

If the number of data elements in a record exceeds the number of
arguments in a READ command, execution will stop short of the end of
the record, after reading the last data element for which there 1is an
argument to assign it to. Thus, if the second command example shown
above were run against this data:

Data Access,129th Terr.,Miami,FL,33156,(305)987-6543<CR>

only the first five elements (name, address, city, state, zip) would
be read into DataFlex. The phone number would not be read (although a
succeeding READ command could, and would, read it). If the number of
READS for a record exceeds the number of fields in the record, the
exceeding READS output null fields for the output record.

"o

Copyright (c) 1984 Data Access Corporation 05/16/84

D-64 DIRECT INPUT AND QUTPUT DataFlex 2.0 User's Manual

Thus, if the second command example above were run against this data:
Data Access,129th Terr,,Miami,FL<CR>
The resultant data in DataFlex would be:

NAME: Data Access
ADDRESS: 129th Terr.
CITY: Miami

STATE: FL

ZIP: {blank)

READLN Command

The READLN command is similar to the READ command (see above), except
that it reads all data from wherever the command is invoked to the end
of the record (defined by a carriage return (CR) character in the
source data). Like the READ command, argument(s) set the name(s) of
the variable(s) under which read data will be stored.

Where a READLN command is issued with one argument, all data from the
source file or device on a 1ine is stored under a single variable
having the command argument as its name. When multiple arguments are
used, data elements will be stored sequentially under the argument
names, provided that the source data is delimited by commas (as it
cystomarily is in sequential files created under MBASIC*, CBASIC*,
WordStar¥* MailMerge¥),

FORMAT:
READLN argumentl argument2 ,.. argumentN
EXAMPLE:

READLN input_string

Read a 1ine of data and store {t under the varifable name
INPUT_STRING (regardiess of delimiters which may be within the
tine}.

READLN name address city state zip a/c phone

Read a line of data and store the first data element under
variable name NAME, the second under ADDRESS, the third under
CITY, and so on.

The multi-argument command READLN A B C would execute in exactly the
same fashion as the following group of READ commands:

READ A

READ B

READLN C

Where the last command causes a READ from the third data
element to the next <CR>, inclusive,

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual DIRECT INPUT AND OUTPUT D-65

If the number of data elements on a source line happens to exceed the
number of arguments in a READLN command, the "exceeding" data elements
will be stored under a variable together with the last element for
which there was an argument. The variable name for this last (group
of) data element(s) will be the last argument in the READLN command.
In this situation, the (comma) delimiters between each pair of
"exceeding" data elements will also be stored in the resultant data
element.

Generally, multi-argument READLN commands will be used where a fixed
number of data elements constitutes one record, as where:

Name,Address,City,State,Z1p<CR/LF>

represents a record. The READLN command which would read this data in
under the appropriate variable names would be:

READLN Name Address City State Zip

It would be necessary in this instance that any empty data element be
represented by a delimiting comma, as in:

2nd National Bank,,Anytown,Anystate, 12345
Where the address element is blank or non applicable.

SEQEQOF and SEQEQOL Predefined Indicators

DataFlex provides two predefined indicators, SEQEOL (sequential end of
1ine) and SEQEOF (sequential end of file), which can be used to
control operation of READing and other configurations. Both
indicators are set FALSE upon execution of a READ or READLN command,
and are reset TRUE, respectively, upon the READing of an end-of-Tine
character (<carriage return>), and upon the READing of an end-of-file
character (°Z). NOTE: READLN will always read to, and including, the
next end-of-line character, but will not read an end-of-file character
WITH the last record if there is an EOL immediately ahead of it. It
will have to do one more READLN (creating an empty record) to detect
the EQF. Similarly, READ will not READ an EOL with the last field if
the EOL is immediately preceded by a comma; it will require an
additional READ (or READLN) to detect the EOL. These factors should
be kept in mind in the design of READing configurations, record
counters and the 1ike, as should the exact format of your source data.

Copyright (c) 1984 Data Access Corporation 05/16/84

D-66 DIRECT INPUT AND QUTPUT DataFlex 2.0 User's Manual

WRITE Command

The WRITE command sends data sequentially to the device or file name
given in a preceding DIRECT_OUTPUT command. Arguments to this command
identify the variable names under which the data is found for output.
Multiple arguments can be used with this command. No carriage returns
or delimiters are provided by use of this command, for which reason
they must be added to the data in the argument to the command as
literals (see examples below). If it is desired to include quotation
marks (", also called double quotes) in the literal, most non-DataFlex
programs permit the use of single quotes (') as the embedding char~
acter. This provision affords total flexibility in adding delimiting
characters to data being output.

FORMAT :

WRITE argument

Output one data element stored in the variable ARGUMENT.
WRITE argl arg2 ... argN

Write the first data element from variable ARGl, the second
from ARG2, and so on through ARGn.

EXAMPLES :

WRITE "datadata"
OQutput the literal string datadata

WRITE "Your balance is: " cust.bal_due " as of " due_date
Output the literal Your balance is: followed by the value of
the variable cust.bal_due followed by the literal as of
followed by the value of the variable due_date.

It is important to note that all formatting, spacing and punctuation
for the output information must be supplied by the WRITE Command.

EXAMPLES: Where FIRM.NAME = Dewey, Cheatum and Howe

WRITE firm.name
would output Dewey, Cheatum and Howe

WRITE '"' firm.name '"'
would output "Dewey, Cheatum and Howe"

WRITE *"* firm.name '",?
would output "Dewey, Cheatum and Howe",

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual DIRECT INPUT AND OUTPUT D-67

The WRITELN command sends data sequentially to the physical device or
file name specified in a preceding DIRECT_OUTPUT command, just as in
the WRITE command. Just like the WRITE command, WRITELN outputs data
under the variables and/or literals specified in the command argument.
The difference is that WRITELN outputs a carriage return (CR) after
data for the last argument on the command line has been sent. This
character signifies the end of a record in many non-DataFlex program-
ming languages and devices, such as WordStar* Mailmerge*, CBASIC* and
MBASIC*, WRITELN can have multiple arguments on the command line and,
just as with the WRITE command, it is necessary to include any needed
delimiting characters as literals in the command line.

FORMAT :

WRITELN argument
Output the contents of variable ARGUMENT, followed by a <CR>

WRITELN argl arg2 ... argN
Output the contents of ARGl, then ARG2, and so on through
ARGn, the last followed by a <CR> character.

EXAMPLES: where argl = apples, arg2 = peaches, and arg3 = pumpkin pie

WRITELN argl
Would output apples<CR>

WRITELN argl "," arg2 "," arg3
Would output apples,peaches,pumpkin pie<CR>

Copyright (c) 1984 Data Access Corporation 07/18/84

D-68 DIRECT INPUT AND OUTPUT DataFlex 2.0 User's Manual

THIS PAGE INTENTIONALLY LEFT BLANK

Copyright (c) 1984 Data Access Corporation 07/18/84

DataFlex provides a set of system-independent function keys to perform
numerous entry and search functions, as described in the section on
the SETSCREEn procedure. They are referred to as DataFlex Command
Keys, or simply "Flex-Keys". On terminals lacking function keys, the
Flex-Keys must be assigned to control key sequences. On terminals
having function keys, they can be assigned to the various function
keys available on the keyboard. In either case, the name and function
of the key 1is maintained over all systems and appltications.

It is very important to note that the Flex-Keys have NO intrinsic
functions. They derive their various functions from the DataFlex
configuration which 1s ruaning, elther from KEYPROC commands discussed
in this section, or from the use of the ENTER or ENTERGROUP command
macros discussed respectively in other sections of this manual.

The Flex-Keys are divided up into two main groups: input-terminating
Flex-Keys and field editing Flex~Keys. The field editing keys include
backspace, the arrow keys, insert character, and delete character, and
all have effects on the contents of a window or other means of
keyboard entry. The input-terminating keys, on the other hand,
control movement from field to field, and any of them functions in the
manner of the <RETURN> key to enter any characters which may have been
entered into the active window at the time the input-terminating Flex-
Key is pressed.

THE INPUT-TERMINATING FLEX-KEYS

INDICATOR ~ EUNCTION
KEY.RETURN RETURN OR ENTER

KEY .ESCAPE EXIT THE CURRENT FUNCTION
KEY.FIELD BACK UP ONE WINDOW OR FIELD
KEY.FIND FIND A RECORD '
KEY.SFIND SUPERFIND

KEY.SAVE SAVE A RECORD

KEY.DELETE DELETE A RECORD

KEY.CLEAR CLEAR THE FORM OR SCREEN
KEY .NEXT GO FORWARD ONE RECORD
KEY.PREVIOUS BACK UP ONE RECORD

KEY.UP UP ARROW

KEY .DOWN DOWN ARROW

KEY.USER FUNCTION DETERMINED BY CONFIGURATOR
KEY.HELP DISPLAY HELP SCREEN

Note that the field edit keys are not listed here since they function
normally under the ACCEPT command.

When the ENTER macro command is used, all the Flex~Keys are
automatically endowed by the macro with thelr customary functions (see
list of the Flex-Keys above). Where the ENTER macro is used, it is

05/ 16/84

DataFlex 2.0 User's Manual

sti11 sometimes desirable to aiter the default functions of the Flex-
Keys. Where the ENTER macro is not used, the Flex-Keys have no
effects at all, and they must be provided in the configuration by use
of either of the two methods described below. The effect(s) of using
the Flex-Keys can be altered or extended by two different means: (a)
use of the pre-defined indicators which are automatically controlled
by use of the Flex-Keys; and (b) use of KEYPROC subroutines.

THE USER-DEFINED FLEX-KEY

No function is assigned automatically to the User-Defined Flex-Key.
The key is provided so that the configurator may have the option of
providing any chosen function to be available with a single keystroke.
Such special function can be provided only through a Key Procedure
(see below) within one or more configurations.

USING THE FLEX KEY INDICATORS:

Each time one of the field-terminating Flex-Keys is used, the
predefined indicator relating to that key 1s set TRUE, and all the
other Flex-Key indicators are set FALSE. For example, when the
<RETURN> key is used to terminate entry to a window, the indicator
KEY.RETURN is set TRUE. These indicators, which are listed above, all
have the prefix "KEY." followed by a distinguishing term which refers
to the default function of the key. Subsequent actions or branching
may be controlled by use of the reset indicators.

EXAMPLE:

GETNAME : ACCEPT COMPANY .NAME
[KEY.ESCAPE] ABORT

ACCEPT COMPANY .ADDRESS
LKEY.ESCAPE] ABORT
[KEY.FIELD] GOTO GETNAME

This example opens the configuration for input to the variable

COMPANY .NAME, with the label GETNAME: at the beginning of the example.
The second line, beginning with the indicator reference [KEY.ESCAPE]
provides that, 1f the ESCAPE key is pressed, execution of the function
will cease (ABORT). If other than the ESCAPE key is pressed, the
input is accepted and execution goes on to open for input to the
variable COMPANY,ADDRESS. The following 1ine, again beginning with
[KEY.ESCAPE], provides the same ABORT result of use of the ESCAPE key.
The next 1ine (IKEY.FIELD]) provides that if the BACK FIELD key is
used during or after input, execution will return to the first step of
this example (GETNAME:). If neither key is pressed, execution goes on
to other commands following the example.

USING KEY PROCEDURES:

Using the key indicators can be practical in configurations involving
relatively littte input, but in configurations involving a large

05/16/84

I

DataFlex 2.0 User's Manual USING FUNCTION KEYS E-3

number of ACCEPT or INPUT statements, it will normally be preferable
to standardize the actions of the Flex-Keys. Key procedures (activa-
ted by use of the command KEYPROC) provide the means of programming
function key effects uniformly across an entire configuration for
whenever a particuiar key is used. Like general-purpose subroutines
(see GOSUB command in the chapter on Control Commands), KEYPROC
subroutines must be terminated with either a RETURN command to resume
execution of the configuration at the command following the ACCEPT or
INPUT statement which called the KEYPROC, or an ABORT command to
terminate execution of the configuration.

FORMAT :
KEYPROC flex_key

Where flex_key is one of the Flex-Key indicators listed above. When
the Flex-Key which relates to the indicator given in the command
argument 1s pressed, execution will automatically branch to the
KEYPROC subroutine.

EXAMPLES :

KEYPROC KEY.ESCAPE

CLEARSCREEN

ABORT

Causes use of the ESCAPE key to clear the screen and
terminate execution of the configuration.

KEYPROC KEY.CLEAR

CLEARFORM

RETURN

Causes use of the CLEAR ALL key to clear the form and return
to execution of the next command of the configuration.

If it is desired that a key procedure not be in effect under certain
conditions during execution of a configuration, indicator-driven
conditionals can be included within the KEYPROC subroutine to provide
the desired conditional effect.

EXAMPLE:

KEYPROC KEY.ESCAPE
[NOESCAPE] RETURN

ABORT
This example illustrates the provision that pressing the
ESCAPE key will cause execution to ABORT unless the indicator
NOESCAPE is set TRUE, in which case execution RETURNS to the
next command in the configuration (the ESCAPE key is prevented
from "working").

There are some other commands that can ONLY be used within key
procedures. These commands can alter the place the key procedure
returns to and allow key procedures to do things 1ike trap an error
and return to the original window:

Copyright (c) 1984 Data Access Corporation 05/16/84

E-4 USING FUNCTION KEYS Dataflex 2.0 User's Manual

ENTAGAIN Command

ENTAGAIN stands for enter again and will make the key procedure return
to the same window and ACCEPT command that called it. If a key
procedure determines that there was an error it can then go back to
the same place. ENTAGAIN does not use arguments.

FORMAT:
ENTAGAIN
EXAMPLE:
KEYPROC KEY.ESCAPE
[NOESCAPE] ENTAGAIN
[NOESCAPE] RETURN

ABORT
In this example, 1t is provided that the ESCAPE key trigger an
execution ABORT (first and last 1ines), unless the NOESCAPE
indicator is set TRUE by action of other parts of the config-
uration, in which case execution returns to the place at which
the ESCAPE key was pressed, and the cursor goes back to the
beginning of the window it came from,

ENTERMODE Command:

The ENTERMODE command establishes the begining of a series of data
entry commands and serves to set up the correct modes for the next few
commands. The ENTERMODE command should always be the first command in
a series of ACCEPT commands when the BACKFIELD (see next command) is
used:

BACKFIELD Command

The BACKFIELD command will cause the key procedure to return to the
ACCEPT command PREVIOUS to the one that was just executed. This makes
the cursor seem to back up one window. The BACKFIELD command will not
go back past an ENTERMODE command. A properly-placed ENTERMODE
command should be used since otherwise the BACKFIELD command will go
back as many command 1ines as is necessary to find an ACCEPT to
execute. The BACKFIELD command can be controlled by the status of
jndicators. This command should be used judiciously in configurations
containing loops, GOTQs, GOSUBs and the like, since the command in
effect executes a GOTO to the previous ACCEPT command, and this may
seriously upset processing if it occurs in a loop. The operator may
be prevented from making such an error by manipulation of an"inverse"
user-named indicator (NOBACK, for example) included within the KEYPROC
to disable the key at the appropriate points in execution. This
technique is 1llustrated above for the ESCAPE key.

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual USING FUNCTION KEYS E-5

EXAMPLE :

KEYPROC KEY.FIELD

BACKFIELD

RETURN

This example merely defines the function of the BACK WINDOW
(KEY.FIELD) key to back up one window.

HELP KEY:

The key is called KEY.HELP and is generally assigned to "Q on the
standard keyboard.

The HELP command can be used within a standard key procedure and is
implemented in ENTER and ENTERGROUP. The standard format for this key
procedure is:

KEYPROC KEY.HELP
HELP
ENTAGAIN
RETURN

HELP Command

The help command with no arguments will go to the next sequential page
after the currently displayed page and see if the word "HELP" is on
the pagename line ("/" line). If so, that page will be displayed as a
help screen. Pressing the help key again will display the next help
screen (if available). Pressing any other key will return to the
original page and window.

If the HELP command is used with an argument of a page name, that page
will begin the help screen sequence.

Copyright (c) 1984 Data Access Corporation 05/16/84

E-6 USING FUNCTION KEYS DataFlex 2.0 User's Manual

EXAMPLE:

/SCREEN1
INPUT SCREEN

NAME :

/SCREEN1HELP HELP
Please enter your name in the blank provided.

Press any key to continue
/SCREEN2

ADDRESS:

/SCREEN2HELP HELP
Now, please enter your home address.

Press any key to contfinue, or press HELP for more help
/SCREENZHELPZ HELP
If you don't know your home address, try getting out your driver's

license and éopying the address off of it.

Press any key to continue
/*

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex provides true multi-user operation. This means multiple
users with simultaneous write privilege to the same record at the same
time. This provides a transparent multi-user operation with data
protection to the field level. No other microcomputer product can
match DataFlex in the multi~user environment.

Problems inherent in the "traditional™ method of handling multi-user
operations (record lock on each read) are illustrated by the following
example:

A company has a large number of customers, say 20,000, but only sells
10 different items. Traditional locking on customer records would
seldom produce a visible lock, but if one of 10 inventory part records
was locked on READ, the system would become virtually unusable with
only two or three operators. DataFlex allows unlimited READ access to
the database and RE-READs the data when the operator SAVES a changed
record.

In DataFlex, the record or system is locked only for the time of the
SAVE. Updates are then done based on the fresh, safe, data. And only
those fields that have actually been changed are saved to the record,
thus preserving any other changes. This type of multi-user is
virtually undetectable to the operator, greatly in contrast to a read-
time lock.

Multi-user updates are of two basic types: transactional and
replacement. Transactional updates are generally numeric adds or
subtracts from totals in a master record. Since the update is based
on the re-read (safe) data, updates of totals will always be accurate.
Replacement updates, (changing an address or credit 1imit) do not
usually require multi-user interaction, but do require that the
application not arbitrarily rewrite fields that were not changed as
traditional methods provide, DataFlex keeps track of which fields
were changed in order not to rewrite an old value over changes made by
another user subsequent to the first user's READ.

Here is an example of how this works:

Three users have the inventory part "ABC" on their screens. The
quantity in stock (10) and the description (WIDGET) are shown on each
screen. User 1 is invoicing the sale of one widget, while User 2 is
invoicing a sale of two. User 3 is changing the description to
"WIDGET, GREEN". A1} three users read their (identical) screens, key
their input, and then press "SAVE" within the same second. Let's say
that the actual sequence of SAVES fell out as User 1 first, then User
2, and User 3 last.

User 1's SAVE will re-read the record and find it unchanged. His sale
of one widget will then be subtracted from the quantity in stock, and
the quantity in stock written back as 9.

1

Copyright (c) 1984 Data Access Corporation 05/16/84

E-8 MULTI-USER FUNCTIONS DataFlex 2.0 User's Manual

User 2's SAVE will then take control, reread the record (9 in stock),
subtract two, and write back the proper number (7).

User 3's SAVE will then get control, reread the record {(with 7 in
stock), ONLY update the description, and write it back correctly. All
this occurs with speed which typically is imperceptible to any user.

In such a system, replacement privilege to transactionally-updated
fields should be very carefully limited to responsible, thoroughly-
trained users. To make sure two users do not sell quantities in
excess of the quantity in stock, the application configuration should
be written to check for amount sold exceeding quantity in stock (and
declare an error while rejecting the sale).

The foregoing provisions reduce the time a system or record is locked
to the very brief interval actually required for the SAVEing of a
record instead of the reading and entry speed of the operators. Since
one field does not interfere with another and transactional updates
are optimally handled, the statement "DataFlex provides transparent
multi-user protection to the field level" is amply justified.

MULTI-USER OPERATION UNDER THE ENTER MACRO

Multi-user operation is provided automatically within the ENTER macro.
An ENTRY command will only update the database if data in one or more
windows has been changed (unless the FQRCEPUT option is in effect).
Also, the active records are reread from the disk BEFORE the save or
delete procedures. If it is desired to re-display the buffer data
after REREAD but before SAVE, the ENTDISPLAY command should be used
for the purpose. During the save and delete procedure, only one
terminal will have write privilege, and all other updates initiated
during the processing interval will be delayed until that update is
done. For these reasons, the following rules must be followed when
using ENTER in a multi-user enviromnment:

1) when in the ENTRY section, refer to the data windows
instead of the record buffer, since the record buffer is not
changed until the record is SAVEd.

2) When in a SAVE or DELETE procedure, refer to the record
buffer instead of the data windows, since data in the record
buffer could have changed during a re-read.

3) NEVER allow data entry of any kind within a SAVE or DELETE
procedure since other users will be locked out of SAVE
operations while the first operator is in the procedure.

MULTI-USER COMMANDS:
The following commands will only function in multi-user systems.

There 1s no harm in providing them in single-user systems for
compatibility, since they have no effect in single-user mode.

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual MULTI-USER FUNCTIONS E-9

LOCK Command

The LOCK command will prevent other users from LOCKing the database,
so that only one user at a time has database write privileges. Once
LOCK is invoked, no other user may update the database until the
invoking user's procedure is complete. The LOCKed condition should be
kept in force for only those succeeding commands for which it is truly
required.

UNLOCK Command

The UNLOCK command will restore the system to normal state after a
LOCK or REREAD. It is imperative that the system be UNLOCKed after a
LOCK or REREAD is issued.

FOR EVERY REREAD OR LOCK THERE MUST BE AN UNLOCK!

REREAD Command

The REREAD command first LOCKs the system and then re-reads all of the
ACTIVE records in the database. Since this is done in a LOCKed
condition, the resultant re-read records are "safe" for update. Use
of this command requires that all updates (edits) to an active record
buffer are done at one time, since the LOCKed condition should only be
kept in force for those few commands for which it is required.

In the locked condition resulting from a LOCK or a REREAD, data entry
statements such as INPUT, ACCEPT, ENTRY or INKEY should NEVER be used
in a configuration.

The REREAD command can optionally be followed by a 1ist of files to
REREAD. In this form of the command, only those files listed will be
REREAD from among the open data files. Without the option, all open
data files for which there is data active in the buffer will be re-
read.

IFCHANGE

Command

In a multi-user environment it may be desired to have certain commands
execute conditionally based on whether there has been a change in a
window. The command to do this is IFCHANGE. IFCHANGE is followed by
a window number and the command which is to be executed if the window
has changed.

EXAMPLE :

IFCHANGE form.1 MOVE form.l TO invt.id
If the operator has changed window one, MOVE it to INVT.ID

The IFCHANGE command can also respond to change in the record buffer.
If the argument is a file name, then the command after it will only
execute if the record buffer has been changed since the last FIND.

Copyright (c) 1984 Data Access Corporation 05/16/84

E~10 MULTI-USER FUNCTIONS DataFlex 2.0 User's Manual

SETOHANGE Command

The SETCHANGE command creates a "change" in the window without
altering any data. It satisfies the conditions required for execution
of the IFCHANGE command unconditionally.

FORMAT :

SETCHANGE window

DESPOOL Command

The DESPOOL command will cause the spooler to start printing if a
spooling function is provided in the operating system.

FORMAT:

DESPOOL

EXAMPLE OF UPDATE IN MULTI~USER ENVIRONMENT:

FIND INVT BY INDEX.1 // Get the record to update
DISPLAY INVT.ID TO FORM.1 // display default data
DISPLAY INVT,PRICE TO FORM.2

ACCEPT FORM.1 // accept changes to default data
ACCEPT FORM.2
REREAD // prepare for multi-user update

// update only changed fields
IFCHANGE FORM.1 MOVE FORM,1 TO INVT.ID
IFCHANGE FORM,2 MOVE FORM.2 TO INVT.PRICE
SAVE INVT // save the file
UNLOCK // and unlock

Copyright (c) 1984 Data Access Corporation 05/16/84

z=== == z==z zz== E-11

FIELDINDEX AND WINDOWINDEX

FIELDINDEX and WINDOWINDEX provide means of accessing and processing
ranges of fields in a data file or of windows on a screen, affording
greater efficiency in both the writing and execution of configurations
for sequentially accessing ranges of fields and windows.

WINDOWINDEX is a predefined variable which counts windows in screen
image PAGEs, and FIELDINDEX similarly counts fields in databases.
Where WINDOWINDEX and FIELDINDEX start counting is controlled by the
placement of an ampersand (&) character which is appended, in the case
of a window, to a window number, and in the case of FIELDINDEX, to a
field .number. For example, if the current value of WINDOWINDEX is 3,
SALES.1& means "the third window after window SALES.1," or the fourth
window in the PAGE named SALES. If the value of WINDOWINDEX is
changed to 4, SALES.1& would refer to the next, or fifth, window in
the PAGE. Likewise, if FIELDINDEX were equal to 1, EMPLOYEE.LNAME&
would refer to the first field after field EMPLOYEE.LNAME. The
ampersand cannot be used by itself as a field number or window number.
It must be appended to an actual window name or number, or to an
actual field name (as defined in FILEDEF) or number.

The following example would SHOW the contents of fields 0 through 20
of the record currently in the buffer:

FOR FIELDINDEX FROM 0 TO 20

SHOW EXAMPLE.RECNUM&
LOOP
The initial FOR statement increments FIELDINDEX from zero
through 20 with each repetition of the loop. The SHOW command
takes the whichever record from the EXAMPLE data file is
currently in the buffer and shows RECNUM (the record number--
always the first, or Oth, field in any record) and the 20
fields which follow it, on the screen, through the presence of
the & after the field name RECNUM. On the second pass,
RECNUM& evaluates as "the first field after the record
number", and so on through 20.

CAUTION: When using FIELDINDEX and WINDOWINDEX to MOVE data, make
certain that the data type of the destination fields or windows is the
same as that of the field (or window) name in the command line to
which the ampersand is appended (RECNUM in the example above).
FIELDINDEX and WINDOWINDEX check the type of this data element and
assume that the destination windows or fields will be of the same
type. If a mismatch exists between the data types, it will produce a
BAD FORMAT IN EXPRESSION error at run time. If source data types are
mixed (as when the field referred to is RECNUM, a NUMERIC type, and
those following are ASCII fields), use of one or more of the type-
changing forms of the MOVE command will overcome the probiem. The
commands (MOVENUM, MOVEINT, and MOVESTR) are described under Element
Processing Commands, and should be used according to the data

Copyright (c) 1984 Data Access Corporation 05/16/84

E-12 FIELDINDEX AND WINDOWINDEX DataFlex 2.0 User's Manual

type(s) of the destination fields or windows.
The steps for using WINDOWINDEX and FIELDINDEX, then, are:

1. Identify the field.# or window.# at which the range of
windows or fields you want to process begins. You can start and stop
where you 1ike, but you can't skip fields or windows;

2. Write the processing command(s) you want for either
field.#& or window.#&, and

3. Set up a Toop or other counter to drive FIELDINDEX or
WINDOWINDEX, whichever is appropriate, through the range you wish to
process.

In another example, we could have a page (display screen) called SALES
with the twelve calendar months on it as windows displaying totals by
month, and two entry windows at the bottom for the entry of additive
amounts and of the number of the month to which the entered amount is
to be added. The month numbers shown on the screen display below are
strictly to cue the operator--they are not used by the system. Like-
wise, the window numbers shown are merely for exptanatory purposes.
They would not normally be displayed on the screen:

/SALES
MONTH SALES

1 January $ e {window 1)
2 February $__ . (window 2)
3 March $ o (window 3)
4 April $. (window 4)
5 May $ o (window 5)
6 June $ e__ (window 6)
7 July $ e (window 7)
8 August $_ . (window 8)
9 September $. (window 9)
10 October $.. (window 10)
11 November S e {(window 11)
12 December $. (window 12)

MONTH #: __. {(window 13) AMOUNT TO ADD: $. (window 14)
/%

ACCEPT SALES.13

CALC (SALES.13-1) TO WINDOWINDEX
ACCEPT SALES.14

CALC (SALES.14+SALES.18&) TO SALES.1&

The first 1ine accepts the month number as shown on the screen through
Window 13 of Page SALES. The second 1ine reduces the entry (in the
range 1 - 12) by one (making the range 0 - 11). The third Tine
accepts the additive amount to Window 14, The last 1ine takes the
additive amount and adds it to the amount already in the window
specified by SALES.1&, or one plus WINDOWINDEX, which is the month
number entered in Window 13, and stores the new total back to the
window for the specified month.

Copyright (c) 1984 Data Access Corporation 05/16/84

NOTE: This section describes some unusual and powerful features of
DataFlex. The vast majority of users will not have the need
to make use of them. The information {s included here as a
matter of interest for the general user and to provide further
access to the power, flexibility and utility of DataFlex for
the advanced user with specfal requirements.

DataFlex offers the advanced configurator the unusual opportunity to
actually define new command words that become an integral part of the
software system--in effect, the ability to extend the command
tanguage. These operations create macros that may be used for special
types of functions to satisfy highly unusual requirements, or to
enable a configurator to distinctively impart his personal or company
"style" to the final application product.

The commands provided with DataFlex form the basic framework for the
extended "macros", and are themselves macros. Macros can be thought
of as compile-time subroutines. User-defined macro commands accept
arguments and textually substitute the arguments into the command
model. The resultant commands are then compiled and included with the
rest of the program. Using a command created through macro operations
is exactly like using any other DataFlex command: the basic syntax is
a command verb followed by one or more optional arguments.

Macros can be defined directly within one or more configurations, or
they can be added to FMAC, the standard macro file which DataFlex
refers to for the definition of all commands in a configuration at
compile time. Macros defined within a configuration will operate only
within that configuration when executing. The definition must appear
in the source code before the defined macro is first used. Defini-
tions added to FMAC on the other hand, will make the new macro
available to every configuration which is compiled under it.

If a macro is defined by adding it to FMAC, the modified version of
FMAC must be re-packed into the file "FLEX.CFL." FLEX.CFL is the file
to which the compiler actually refers for the definition of each
command it encounters in a configuration as the configuration is being
compiled. The PACK program, supplied with DataFlex, is used from the
operating system prompt to pack FMAC by the following command:

d:PACK d:FMAC

where D: in both places shown above represents the logical
drive on which PACK.COM and the (uncompiled) FMAC files are
found.

FLEX.CFL will be written to the default drive from which the above
command is {ssued.

Copyright (c) 1984 Data Access Corporation 05/16/84

MODIFYING AND EXTENDI

REPLACEMENT

The simplest form of macro operation is replacement. Any consistent
string occurring in a configuration can be replaced by another string.
For example, if while defining field names in FILEDEF, you establish a
Tong, descriptive field name such as
“TRANSACTION_FILE.LAST_PART_COST", you might find it tedious to type
that name into a configuration a number of times. By including the
following macro definition in your program, you can have the compiler
substitute the long name into the compiled configuration everywhere
you typed "LCOST" (or any other short string that seems descriptive to
you white writing the configuration):

FORMAT:
#REPLACE before_string after_string
EXAMPLE ¢
#REPLACE 1cost transaction_file.last_part_cost

Of course, the source (uncompiled) version of the configuration would
always have LCOST in it, but as long as either FMAC. had the replace-
ment in it, or the configuration had the repiacement command in it
before the first occurrence of LCOST , the compiled configuration
would have TRANSACTION FILE.LAST_PART_COST substituted for each occur-
rence of LCOST. Especially note the initial pound sign (#) on the
command line. That symbol, and certain others which will be illustra-
ted below, comprise the distinctive syntax of macro operations.

COMMAND DEFINITION

Command definition allows you to make up new commands using sequences
of existing DataFlex commands. When used in a configuration, your new
command will Took just 1ike any other command in DataFlex, but it will
in fact cause execution of a sequence of other DataFlex commands.
Again, if the command is defined in a configuration (instead of in
FMAC.), it must be defined before the command is first used in the
configuration.

FORMAT :

#COMMAND new_command_name {symbol 1ist}
(existing) command 1ine
addittonal existing command lines

#ENDCOMMAND

The command may optionally be followed by a list of symbols to check
whether arguments given to the command in the configuration are of the
correct type(s). Symbol checking is more thoroughly explained in and
after the explanation of the #CHE(K command, which uses the same
syntax. Do not type the {} braces; they only signify that the
command component 1s optional.

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual MODIFYING AND EXTENDING DATAFLEX E~15

EXAMPLE :

#COMMAND sign_on

CLEARSCREEN

SHOW

SHOW ! EXAMPLE PROGRAM'

SHOW * (C) 1983 DATA ACCESS CORP!

SHOW
#ENDCOMMAND
This macro defines a new command, SIGN ON. Whenever it is
used in a configuration, the five indented command 1ines above
will be executed in its place (it clears the screen and
displays the two-line banner in quotation marks, surrounded by
a couple of blank 1ines on the screen). This is useful to
save typing but doesn't "expand" the language. To do that we
have to be able to use arguments within our new command.

Suppose for example that we wish to be able to insert the name of the
program (instead of the hard-coded legend 'EXAMPLE PROGRAM' shown
above) to sign on as an argument to the SIGN ON command written into
the running configuration. The syntax for an argument is an
exclamation point with an integer between 1 and 9 after .it. The
command model will then textually substitute the first argument
written after the command into the command model wherever a !l appears
in it, the second argument (if any) wherever !2 appears, and so on).

EXAMPLE :

#COMMAND sign_on

CLEARSCREEN

SHOW

SHOW ¢ LER DS

SHOW ' (C) 1983 DATA ACCESS CORP.!

SHOW
#ENDCOMMAND
The "11" used above would be replaced by the first argument
following the use of SIGN ON. A use of this new command macro
could be:

sign_on YACCOUNTS PAYABLE PROGRAM!

"ACCOUNTS PAYABLE PROGRAM"™ would then be substituted at the !l
position when the command was executed. Nine arguments can be
replaced in this manner (i.e. !1 12 13....19). The symbol
10" is the total number of arguments that have beeh passed to
a macro command.

A WORD OF CAUTION: Macros are not subroutines. A macro used five
times in a source configuration will be expanded each time, so
frequent use of a large macro can result in excessive memory consumed
by the executable configuration. Generally, larger macros can be more

simply installed and used within less file space if written as
subroutines. The exception to this guideline is where the same macro

is required across a group of several configurations.

Copyright (c) 1984 Data Access Corporation 05/16/84

E-16 MODIFYING AND EXTENDING DATAFLEX DataFlex 2.0 User's Manuatl

The macro is a powerful tool. Replacements can be made anywhere
within the expansfon and a macro can even call other macros. The
substitution for arguments is 1ike the multiple search and replace
function found 1n some word processors. The following utilities

further enhance the utility of macros:
INCLUDE FILES

You can keep common macros and subroutines in an external file and
include these at compile time with the #INCLUDE command:

#INCLUDE filename

The entire file "filename" will be included in the compilation process
at the point(s) of the INCLUDE(s). One INCLUDEd file can INCLUDE yet
another file. INCLUDEd files should be source (ASCII) format, not
separately pre-compiled. The lines of the INCLUDEd file(s) will not
be displayed during compilation, except for any #REM Tlines which the
file may contain.

COMPILE TIME VARIABLES

Macros and configuration files can use and evaluate integer numbers
and expressions at COMPILE TIME which are generally used for assigning
sequential numbers to labels or varifables. There are 26 such integer
variables (A...Z). If an upper case letter is used, the value of the
variable is incremented before use; 1f a lower case letter is used,
the value will remain unchanged. The compile time variablies are
referenced with a preceding exclamation point "I". The value of the
variable in text form is substituted for the "ix" in the 1ine output.

The value of any integer variable can be set with the #SET command.
FORMAT :
#SET variable_letter$ expression

The variable can be any letter (A...Z) and should not be preceded by a
v, The "$" separates the variable Tetter from the expression argu-
ment. The expression can be any integer expression that can be eval-
uated at compile time, and it can itself contain integer varifables.
The expresston should tnclude parentheses.

EXAMPLE:

#SET F$ (Ir-1)
SET the integer variable "F'" to the value of the integer

variable "r" minus one. Since "r" {is lower case, 1t will not
be automatically incremented.

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual MODIFYING AND EXTENDING DATAFLEX E-17

CONDITIONALS:

Portions of your source 1ines may be selectively included or excluded
from the compiled configuration by use of #IF commands. These can be
used within a macro to modify its output depending on the number of
arguments or their type. The IF commands set the condition and an
"#ENDIF" terminates it. You may also have an "FELSE" to change the
sense of the last IF. There must be an "#ENDIF" for every "#IF", but
the "#ELSE"™ is optional.

FORMAT
#HF expression

command line to compile if expression TRUE
command 1ine to compile if expression TRUE

etc.

#ELSE
command 1ine to compile 1f expression FALSE
command 1ine to compile if expression FALSE
etc.

#ENDIF

If the expression has a value other than zero, the TRUE command 11ines
will be included in the compiled configuration. Otherwise, the FALSE
command lines will be included. For example:

#IF 10>0

SHOW 'THERE ARE 10 ARGUMENTS'
#ELSE

SHOW 'NO ARGUMENTS'
#ENDIF

This will generate only one compiled 1ine, the first SHOW, if
there are any arguments and the second SHOW if there are not.

If we wanted to have debugging statements in our configuration that
could be included or excluded based on a single statement, we could
use an integer variable "d" that would be true (1) for debug mode and
false (0) for runtime mode.

EXAMPLE:
#SET D$ TRUE
...{other command lines, generating value for testvar)
#1IF 1d
SHOW 'TEST VARIABLE=' testvar
#ENDIF

This example shows the debug flag initialized to TRUE, followed by

_configuration command 1ines which, among other things, generate a
value for the variable TESTVAR. Where the debug flag was set TRUE,
then, the value of TESTVAR will be displayed after the legend "TEST
VARIABLE =". When the configuration is debugged, the #SET 1ine can be
rewritten to set the debug flag FALSE, and when the file is compiled,
the 1ines triggering debugging statements will not be included.

Copyright (c) 1984 Data Access Corporation 05/16/84

E-18 MODIFYING AND EXTENDING DATAFLEX DataFlex 2.0 User's Manual

The other IF commands are:

#IFDEF symbol (TRUE if symbol has been defined.)
#IFTYPE symbol list (TRUE if the type and class of symbol is in
1ist)

#IFCLASS symbol list (TRUE 1f the class of symbol is in 1ist.)
#IFSAME symboll symbol2 (TRUE if symboll is the same as symbol2.)

You may check the type and class of an argument with the "#CHECK"
command. #CHECK will generate an error message if the type or class
of the symbol is not in 1ist.

FORMAT:
FCHECK symbol 1ist

The #CHECK command and an optional type check line on the #COMMAND
line are both intended for error checking. An error will be generated
if the type or class of symbol matches one of the type check
characters in list (see symbol-checking characters below). An error
will be generated if the argument i{s the same type or class as the
symbol~checking character in Tist.

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual MODIFYING AND EXTENDING DATAFLEX E-19

SYMBOL~CHECKING CHARACTERS

Character Meaning

Types:
STRING
NUMBER
DATE
INTEGER

EXPRESSION
INDICATOR

NOT AN INDICATOR
GROUP OPTIONS {}
GROUP INDICATORS ({1
LABEL

FODOX»xMHOZ W

Classes:
CONSTANT
FILE ELEMENT

WINDOW

IN MEMORY VARIABLE

GROUP ({options} or [indicatorsl)

MHM<ETNMNO

Literal Content:
"any""characters" An error will be generated if the contents of
"in quotes" the variable(s) named in the argument do NOT
match one of the strings in quotes entered in
the list.

Other:
ERROR IF TYPED (DEFINED)
ERROR IF UNTYPED
ARGUMENT REQUIRED
NO MORE ARGUMENTS
SPECIAL, changes constant number
to constant integer.
$ SPECIAL, changes all windows
to type string.

rCc -

In our SIGNON example, the following would be a reasonabie symbol-
checking 11ine:

EXAMPLE:
#COMMAND SIGNON GUR#L .
This would specify that SIGNON have one required argument that
CAN'T be a LABEL, group, undefined or be an indicator.
The order of the type check characters has no significance. If you
don't include type checking in your macros, the basic DataFlex
commands will probably pick up any type errors.

The best example of using macros is the FMAC file itself.

Copyright (c) 1984 Data Access Corporation 05/ 16/84

E-20 MODIFYING AND EXTENDING DATAFLEX DataFlex 2.0 User's Manual

INTERNAL TYPING OF SYMBOLS:

The following information {s intended for those interested in the
internal workings of the macro processor and is not required to use
DataFlex.

Each symbol, whether constant, window or file, is REPLACED from its
symbolic name to one which is meaningful to the DataFlex runtime
system. These symbols can be identified by a vertical bar "{" in the
first character of the replaced symbol, The next two characters
represent the CLASS and TYPE of the symbol and the value of the symbol
(if it is a constant) or its window, field and/or file numbers follows
those.

EXAMPLES @
ICNO means CONSTANT, NUMBER, ZERO,
1WS2 means WINDOW, STRING, WINDOW NUMBER TWO.
ICI1 means CONSTANT, INTEGER, ONE
ICS'USA'means CONSTANT, STRING, USA
1WN3 means WINDOW, NUMERIC, WINDOW NUMBER THREE
{FD2,1 means FIELD, DATE, FILE 2, FIELD 1

The following are the type and class characters used to identify
symbois:

CHARACTER INTERPRETATION

CLASSES:

CONSTANT
VARIABLE
WINDOW
FIELD
GROUP

OME<O

TYPES :

STRING

NUMBER

DATE

INTEGER

EXPRESSION

LABEL

GROUP OPTION

GROUP BOOLEAN (INDICATOR)

DOMmMrmMHOZWw

If you put the command "#NOISY 99" at the top of your configuration,
all of the conversion will display on the screen at compile time,
together with the final output of your command lines. The option
#NOISY 0 will cause only your original source code statements to
display, while #NOISY 1 will cause everything to display except the
intermedfate code and expansions.

There is a temporary file that is generated by the compiler with a
name made up of your configuration's rootname plus the extension
", ICY. This is the internal DataFlex configuration code. If you use

Copyright (c) 1984 Data Access Cofporat1on 05/16/84

DataFlex 2.0 User's Manual MODIFYING AND EXTENDING DATAFLEX E-21

#NOISY 99 or have an error, this file will not be deleted from your
disk and can be inspected. Otherwise, the file will be deleted
automatically upon completion of a successful compilation. The
general format of the ",IC" file is as follows.

FORMAT :

LINE_NUMBER IND1 IND2 IND3 COMMAND ARG1 ARG2
Where INDx stands for indicator x, ARGy stands for argument y,
and COMMAND is the internal command number.

Although the ",IC" file is not generally used at the configuration
level it can sometimes be of interest and help in debugging difficult
configurations. The 1ist of the internal command numbers is contained
on the Pascal source and library disk in the file called

"COMMAND .DEF ™.

Copyright (c) 1984 Data Access Corporation 05/16/84

—

E-22 MODIFYING AND EXTENDING DATAFLEX DataFlex 2.0 User's Man

i
i
i
i

THIS PAGE INTENTIONALLY LEFT BLANK

Copyright (c) 1984 Data Access Corporation 05/16/84

THE RESERVED WORDS OF DATAFLEX

The words on the next page are those used by, and built into,
DataFlex. DataFlex uses these words as commands, system variables,
system indicators, system procedures, options, and so on. You will
recognize most of them.

They are assembled into an alphabetical 1ist as a convenient reference
to words that must not be used in DataFlex configurations as
indicators, variable names, field names, window names. page names,
file names, or any other functional string. If they are used,
DataFlex is 1ikely to mistake them for their reserved meaning and
execute something 1n no way similar to what you intended. The words
may, of course, be used as data within databases, they may be included
in images as screen or report captions, and they may be used in
prompting strings or any other material enclosed in quotes (single or
double) within any DataFlex configuration. They may also be included
within comments (material preceded by the "//" comment character) in
configurations.

Unavoidably, many of the words reserved to DataFlex are words which
would be very useful as variable names or for other prohibited uses.
The deliberate use of small differences will effectively restore the
use of these words to you while at the same time avoiding use of the
actual word itself. For example, if your configuration prints the run
date at the top of a report, you may not bring the date into your
report by use of a variable named DATE. But it is entirely
permissible to use the word within a Jonger variable name, such as
RUN_DATE (note the use of underscore to simulate a space for
readability, but to maintain continuity of the variable name string).

You may wish to make a photocopy of the following page to keep where
it may be referred to readily while you are writing configurations.
Copying this manual is expressly prohibited under the terms of your
license agreement, except for the above-described use of the following

page.

Copyright (c) 1984 Data Access Corporation 05/16/84

DataFlex 2.0 User's Manual

ATTACH
AUTOFIND
AUTOPAGE
BACKFIELD
BEGIN
BLANKFORM
BREAK
BREAKINIT
BREAKPOINT
BY

CALC
CALCULATE
CAPSLOCK
CHAIN
CHARACTER
CHECK

CLEAR
CLEARFORM
CLEARSCREEN
CLEARWARNING
CLEARXY
CLOSE_INPUT
CLOSE_OQUTPUT
CMDLINE
COPYFILE
DATE

DEBUG

DELETE
DESPOOL
DIRECT_INPUT
DIRECT_QUTPUT
DIRECTORY
DISPLAY
DISPLAYONLY
END

END$OF SREPORT
END.OF .REPORT
ENDGROUP
ENTSPERMISSIVE
ENTAGAIN
ENTDISPLAY
ENTER
ENTER.CLEAR
ENTER.DELETE
ENTER.EDIT
ENTER.EXIT
ENTER.SAVE

THE RESERYED WORDS OF

ENTEREND
ENTERGROUP
ENTERMODE
ENTRY

EQ
ERASEFILE
ERR
ERRLINE
ERROR
FALSE
FIELDINDEX
FILELIST
FILENUMBER
FILL

FIND
FINDERR
FINDREQ
FLEXKEY
FLOATS

FOR
FORCEPUT
FORMAT
FORMFEED
FOUND

FROM

GE

GosuB

GOTO
GOTOXY
GROUP

GT

HEADER
HELP

IF
IFCHANGE
IFNOT

IN
INCREMENT
INDEX.BATCH
INDEX.1...10
INDICATE
INDICATOR
INKEY
INPUT
INTEGER
KEY.CLEAR
KEY.DELETE
KEY.DOWN
KEY.ESCAPE
KEY.FIELD
KEY.FIND
KEY.HELP
KEY .NEXT
KEY.PREVIOUS
KEY.RETURN

DATAFLEX
KEY.SAVE RANGE
KEY.SFIND READ
KEY.UP READLN
KEY.USER RECCOUNT
KEYCHECK RECNUM
KEYPRESS REGISTRATION
KEYPROC RELATE
LASTERR RENAME
LASTIF REPEAT
LE REPORT
LEFT REPORTEND
LENGTH REQUIRED
LINECOUNT REREAD
LOCK RETAIN
LoorP RETAINALL
LT RETURN
MATCH RIGHT
MEMAVAIL RPT.anything
MID RUNPROGRAM
MOVE SAVE
MOVEINT SAVERECORD
MOVENUM SCREENEND
MOVESTR SECTION
MULTIUSER SELECT
NAME SEQEOF
NE SEQEOL
NEWPAGE SETCHANGE
NEXT SHOW
NOENTER SHOWLN
NOISY SKIPFOUND
NOPUT STATUS
NOT STRING
NUMBER STRLEN
NUMPAGE STRMARK
NUMWINDOW SUBHEADER1...9
ON SUBTOTAL
OPEN SUBTOTALL...9
OR SUPPRESS
OUTCLOSE SYSDATE
OUTFILE SYSTEM
QUTPUT TERMCHAR
PAD THRU
PAGE T0
PAGE . LINES TOTAL
PAGEBREAK TRIM
PAGECHECK TRUE
PAGECOUNT UNLOCK
PAGEEND UNTIL
PAGEFEED UPPERCASE
PAGEL...255 WHILE
PATHNAME WINDOWINDEX
POINTS WRITE
POS WRITELN
PRINT ZEROFILE
QUIET

Copyright (c) 1984 Data Access Corporation

05/16/84

FILE NAME AND EXTENSION TYPES

Each DataFlex database is actually composed of a "family" of operating
system files which function with each other for the Dataflex user as a
single unified whole. The data file "rootname" (specified by the user
in the FILEDEF routine) is common to all the members of a family of
data files, while differing extensions denote various standard func-
tions for each of the different files.

The following are the standard extensions and file names used by Data-
Flex. The "*" indicates a file required for runtime. The "#" indi-
cates a file required only at compile time. SOLID CAPITAL letters
denote explicit content (usually extensions). Lower case letters are
descriptive of a filename which may be virtually any unique string of
characters recognized by the CP/M operating system as a file name
element.

FILE NAME TYPE DESCRIPTION

rootname.DAT *RAND DataFlex data file. Contains file definition
and data (one per database)

rootname.K?? *¥RAND DataFlex index file (one for each index)

rootname.DEF SEQ File definition listing

rootname. TAG #SEQ Field tag names file

FILELIST.CFG ¥RAND List of active file numbers and screen control
codes for configured terminal

TERMLIST.CFG RAND Available CRT configurations pre-coded

program.COM PROG Executable program (CP/M and MS-DOS systems)

program.CMD PROG Executable program (CP/M-86 systems)
module.ERL SEQ Unlinked Pascal MT+ library module
program.QVF PROG Program overlay file

config.FLX *FLEX Executable DataFlex configuration
config.fD #SEQ File definition info for compiler
config.IC SEQ Intermediate DataFlex code file.
config.RPT SEQ Source code for sample reports
config.FRM SEQ Source code for sample screens

SHOWDEMO SEQ Source code for COMDEX show demo
FLEX.CFL #RAND Packed macro command file

FMAC SEQ Unpacked macro command file

PACK . COM/CMD PROG Program to pack FMAC {(command=PACK FMAC)
ENTER SEQ List of the ENTER macro

REPORT SEQ List of the REPORT macro

FLEX,COM/CMD *PROG DataFlex runtime program

RUN.OVF *OVF DataFlex runtime overlay file

COMP .COM/CMD #PROG DataFlex compile program

COMP . QVF #OVF DataFlex compile overlay file

READ.FLX FLEX Program generator to read sequential files

NOTES: .OVF and .FD files must reside on the logged-in disk drive.
16-bit versions do not have, or use, COMP,OVF
In 16-bit versions, RUN.OVF is replace by RUN.001 thru .004

Copyright (c) 1984 Data Access Corporation 05/16/84

FILES, ARGUMENTS AND COMMANDS DataFlex 2.0 User's Manual

F-4

PREDEFINED ARGUMENTS

The folllowing are the predefined indicators and system variables
discussed in sections of the manual to which they pertain:

INDICATORS :
ENT$PERMISSIVE Disables resetting of FIND and AUTOFIND
ERR Error indicator
FINDERR Result of last FIND (opposite of FOUND)
FOUND Result of last FIND
KEY.CLEAR Clear screen Flex-Key
KEY.DELETE Delete record Flex-Key
KEY .DOWN Down arrow Flex~Key
KEY.ESCAPE Escape, end function Flex-Key
KEY.FIELD Back Field, window Flex-Key
KEY.FIND Find Flex-Key
KEY .HELP Help Key Flex-Key
KEY.NEXT Next record Flex-Key
KEY.PREVIOQUS Previous record Flex-Key
KEY .RETURN' Return/enter Flex-Key
KEY.SAVE Save record Flex-Key
KEY.SFIND Super Find Flex-Key
KEY.UP Up arrow Flex-Key
KEY.USER User-defined Flex-~Key
KEYPRESS Set by KEYCHECK, if key press
LASTIF Result of most recent IF test
MULTIUSER Set by MULTIUSER system option
PAGEBREAK If new page, set by PAGECHECK
SEQEOF Sequential end of file
SEQEOL Sequential end of line
SELECT Triggers selection in REPORT macro
STATUS Shows whether file named 1s ACTIVE
SUBTOTALL..9 Breakpoint indicators

SYSTEM VARIABLES:

ERRLINE Configuration 1ine number of last error
FILENUMBER Number of last DataFlex file for FILELIST
FIELDINDEX Indexed addressing for filelds

FLEXKEY Number of last Flex-Key used

LASTERR Number of most recent error triggered
LINECOUNT Output Tine counter

MEMAVAIL Amount of memory of available

NUMPAGE Number of pages

NUMWINDOW Number of windows

PAGECOUNT Output page counter (set by PAGECHECK)
PAGEEND Printable Tines per page

PAGEFEED Action to take on page feed

RECCOUNT Running total of records selected in REPORT
STRLEN String length

STRMARK String position marker

WINDOWINDEX Indexed addressing for windows

05/16/84

Dataflex 2.0 User's Manual

FILES, ARGUMENTS AND COMMANDS F-5

WINDOW FORMAT AND ENTRY OPTIONS

The brackets {} shown below are part of the command syntax, and should
be included with the desired option(s) when written into
configurations.

WINDOW FORMAT OPTIONS:

*

DECIMAL

FILL

FLOATS

RANGE

SIGN ON RIGHT
SUPPRESS

. UPPERCASE

VALIDITY

ENTRY OPTIONS

AUTOMATIC FIND
DECIMAL POINTS
DISPLAY ONLY
FIND REQUIRED
FORCE PUT

NO PUT

NO ENTER

RANGE CHECKING
REQUIRED
RETAIN

RETAIN ALWAYS
SKIP IF FOUND
UPPER CASE
VALIDITY

SYNTAX EFFECT

{POINTS=0} Numeric decimal points
{FILL="¥#"} Fi11 character

{FLOATS} Floating "$" sign
{RANGE=1,10} Numeric range checking
{SIGNRT} Minus sign on right
{SUPPRESS} Space suppression
{CAPSLOCK} Force upper case

{CHECK="Y |N"} Valid response checking
{AUTOFIND} FIND record automatically
{POINTS=0} Numeric decimal points
{DISPLAYONLY} Cursor always skip window
{FINDREQ} Successful FIND required
{FORCEPUT} Update buffer unconditionally
{NOPUT} Do NOT put to the database
{NOENTER} No data entry to window
{RANGE=1,10} Numeric range checking
{REQUIRED} Required entry.

{RETAIN} Retain window, clearable
(RETAINALL} Retain window, not clearable
{SKIPFOUND} Skip entry if record found
{CAPSLOCK} Force upper case
{CHECK="YN"} Valid response checking

*Option may be used by PRINT command only.

Ce.-.rigat (c) 1984 Data Access Corporation

05/16/84

F-6 FILES, ARGUMENTS AND COMMANDS DataFlex 2.0 User's Manual

COMMAND SYNTAX LIST

<Darts> indicate required substitutive elements (do not type darts).
{Brackets} indicate optional substitutive elements (do not type
brackets except where they are shown below in double {{ and }}).
{Braces] enclose GROUPed indicators, and are to be typed.

"Arg" signifies an argument which may be a database element, window,
or in-memory variable.

Three periods (...) indicate a non-specific quantity of the elements
which appear on either side of the periods.

CONSOLE 1/0 GROUP
CLEARSCREEN
CLEARXY <1ine> <column>
GOTOXY <line> <column>
INKEY <arg>
INPUT {'prompt'} <arg>
KEYCHECK {command}
SHOW <arg> {arg ... arg}
SHOWLN <arg> {arg ... arg}

CONTROL GROUP
ABORT
CLEARWARNING
CHAIN "<configuration> {string ... string}"
DEBUG
ERROR <number>
GOTO <1label>
GOSUB <label>
ON <integer_arg> GOSUB <label> {label ... label}
ON <integer_arg> GOTO <label> {label ... labell
RETURN {label}

DATABASE GROUP
ATTACH <filename>
CLEAR <filename> {filename ... filename}
DELETE <filename> {filename ... fillename}
FIND <mode> <element> MODES=LT,LE,EQ,GE,GT
OPEN <file name> {INDEX.n}
RELATE <filename>
SAVE <filename> {filename ... filename}
SAVERECORD <filename> {filename ... filename}
ZEROFILE <filename>

DEFINITION GROUP
DATE <date> {date ... date}
INDICATOR <indicator> {indicator ... indicator}
INTEGER <integer> {integer ... integer}
NUMBER <number> {number ... number}
STRING <string> {length}

Copyright (c) 1984 Data Access Corporation 07/18/84

DataFlex 2.0 User's Manual FILES, ARGUMENTS AND COMMANDS F-7

ELEMENT PROCESSING GROUP
CALC{ULATE} <expression> to <arg>
INCREMENT <integer>
MOVE <arg> TO <arg>
MOVEINT <arg> TO <integer>
MOVENUM <arg> TO <number>
MOVESTR <arg> TO <string>

ENTER MACRO GROUP
ENDGROUP
ENTDISPLAY
ENTER <filename> {filename ... filename}
ENTEREND
ENTERGROUP
ENTRY <file.field> {window {options}}

FORMS GROUP
ACCEPT <window> {TO <arg>}
AUTOPAGE <pagename>
BLANKFORM <pagename>
BLANKFORM <window> {THRU <window>}
CLEARFORM <pagename>
CLEARFORM <window> {THRU <window>}
DISPLAY <arg> {TO <window>}
FORMAT <window> {{options}}
NAME <pagename.#> <windowname> {windowname ... windowname}
QUTCLOSE
OUTFILE <device>
OUTPUT <pagename>
PAGE <pagename>
PRINT <arg> {TO <window>}

INDICATE GROUP

IF <arg> <mode> <arg> <command>

INDICATE {NOT} <indicator> AS <arg> <mode> <arg>
MODES: LT, LE, EQ, GE, GT, NE, IN, MATCH

INDICATE {NOT} <indicator> GROUP ANY/ALL [indicator indicator]
{AND/OR ANY/ALL [indicator indicator {indicator}l}

INDICATE {NOT} <indicator> STATUS <filename>

INDICATE <indicator> TRUE

INDICATE <indicator> FALSE

KEY GROUP
BACKFIELD
ENTAGAIN
ENTERMODE
KEYPROC <flexkey>

MULTI-USER GROUP (compile, but do not execute under single-user)
DESPOOL
IFCHANGE <arg> <command>
LOCK
REREAD {filename ... filename}
UNLOCK

Copyright (c) 1984 Data Access Corporation 07/18/84

F-8 FILESs; ARGUMENTS AND COMMANDS DataFlex 2.0 User's Manual

REPORT MACRO GROUP

FORMFEED

OUTPUT <section>
SECTIONS: HEADER, SUBHEADER#, BODY, SUBTOTAL, TOTAL

PAGECHECK <lines>

REPORT <file> {BY <index.n or RECNUM>} {BREAK file.field
file.field ... file.field}

REPORTEND

SECTION <section>

SEQUENTIAL I/0 GROUP
CLOSE INPUT
CLOSE_OQUTPUT
DIRECT_INPUT <device>
DIRECT_OUTPUT <device>
READ <arg> {arg ... arg}
READLN <arg> f{arg ... arg}
WRITE <arg> f{arg ... arg}
WRITELN <arg> {arg ... arg}

STRING GROUP
APPEND <destination string> <string> f{string ... string}
ASCII <string> TO <number>
CHARACTER <number> TO <string>
CMDLINE <string_variabie>
LEFT <string_variable> TO <string variable> <length>
LENGTH <string_variable> TO <number>
MID <string variable> TO <string variable> <length> <start>
PAD <string variable> TO <string _variabie> <length>
POS <string_variable> IN <string variable> TO <number>
RIGHT <string_variable> TO <string_variable> <length>
TRIM <string_variable> TO <string variable>
UPPERCASE <string variable>

STRUCTURED CONTROL GROUP
BEGIN - END
FOR <integer> FROM <arg> TO <arg> - LOOP
REPEAT - UNTIL <arg> <mode> <arg> - LOOP
WHILE <arg> <mode> <arg> - END
MODES: LT, LE, EQ, GE, GT

SYSTEM GROUP
COPYFILE <sourcefile(s)> T0O <destfile(s)>
DIRECTORY <specifications>
ERASEFILE <filename>
FILELIST <filenumber> TO <display name> {filename}
REGISTRATION
RENAME <filenamel> TO <filename2>
RUNPROGRAM <prog_name.com> {program_arg}
SYSDATE <date> <number> {number}
SYSTEM

Copyright (c) 1984 Data Access Corporation 07/18/84

Provided by DataFlex:
File Maintenance (on 1ine, interactive)

File Update (on line, interactive)
- Data Entry (on line, interactive)

Report Generation

Query (on line, interactive)

Command language

Data Base Management

Pascal Library (optional)
Program-independent menu system

Microprocessor Environment:
8080, Z-80, 8085 etc.

8086, 8088, 80186, 80286 etc.

Supported Operating Systems:
CP/M, CP/M-86, MP/M-86, MS-D0S, PC-DOS,
TurboD0Ss Novell Sharenet, PC-Net, 3COM,
DMS Hi-Net, Molecular N-Star, Televideo
MmmOST, Action DPC/0S, Omninet, Network,
IBM "PC" with Corvus

Requirements:
Transient Program Area: (8 bit): 52k
(16 bit): 100k
CRT with addressable cursor
600k of disk storage

Purpose:
Appliications Development

Structure:
Extended Relational DBMS With
Data Independent Utilities and
command 1language.

Host Language:
Pascal/MT+ (c) Digital Research) (Not
required for execution or configuration.)
NOTE: Many DataFlex utilities are

themselves actually DataFlex configurations.
Maximum DBMS Files: 125
Maximum data elements per file: 255
Maximum indexes per file: (8 bit): 4

(16 bit): 9
Plus one "ad hoc" index.

Copyright (c) 1984 Data Access Corporation 05/16/84

fF=10 SPECIFICATIONS

DataFtex 2.0 User's Manual

Maximum elements per index:

Maximum File size:
Maximum records per file:
Maximum record size:
Indexing:

Data File type

Numeric Type:
Numeric precision:
Numeric range:

Maximum data files open
simultaneousiy:

Maximum configuration lines:
Maximum line length:
Maximum argument size:

Maximum number of windows:

(8 bit): 4
(16 bit): 6

8 Megabytes

65,536

4,000 bytes to *MEML
B+ Multi-level ISAM

Packed,
fixed=-length random access

Packed BCD fixed point.

4 places after decimal point

+ or - 99,999,999,999,999.9999
(¥MEML) only

(8 bit): at least 5

(16 bit): at least 10

(plus associated index files)
32,000 (*MEML)

255 characters

80 characters

32,000 (*MEML)

Maximum pages per configuration:255 (disk or memory resident]

Maximum number of indicators:
Maximum number of variables:
Maximum INTEGER variables:
Integer range:

Flex-Keys:

89 (pius 38 pre-defined)
32,000 (*MEML)

40

+ or ~ 32,767

18, terminal-independent

Sub-category breakpoint levels: 9

Sequential files:

Command file characteristics:

Line- or comma-delimited
Device-independent.

Protected source, semi-compiled.

Copyright (c) 1984 Data Access Corporation

05/16/84

DataFlex 2.0 User's Manuatl SPECIFICATIONS F-11

Types of arguments: Text strings
Numeric (becd)

Integer
Date (extended Julian)

Types of commands: Data Movement & conversion
Indicators (conditionals)
Calculation
Control, unstructured
Control, Structured
IMAGE forms
Data Entry
Reporting
Data Base Manipulation
String
Sequential I/0
Console 1/0

(terminal-independent)
Macro pre-processor

Utilities: Data Base Definition
Data Base recovery
Terminal & system installation
Text editor
Program generation
Query
Configurabte MENU
Configuration compiler

¥MEML - Memory limited, affected primarily by the available memory
(TPA) in the computer system and the memory consumed by the rest of

the configuration.

Copyright (c) 1984 Data Access Corporation 05/16/84

F=12 SPECIFICATIONS DataFlex 2.0 Usert!s Manual

THIS PAGE INTENTIONALLY LEFT BLANK

Copyright {(c) 1984 Data Access Corporation 05/16/84

TYPES OF ERRORS

COMPILE time and RUN time: It is important to distinguish those
actions and errors which occur when a program is compiled from those
which occur when a program is run. The DataFlex compiler takes your
English command source code and transiates it into a "compiled" form
that is more efficient to execute. This compiled form is not machine
language, but an internal form unique to DataFlex.

When this translation (compilation) takes place, the compiler may run
into a command line which it doesn't know how to translate; this is
called a compile time error. Most errors in the use of commands, as
well as typographical errors, are caught at compile time, which
guarantees that your program is syntactically correct when it runs.
Other errors may be caused by the action of the operator, the data
which 1s acted upon by the program, or faulty logic by the programmer.
These errors are usually flagged when the compiled program is actually
run (runtime). For this reason, compile time errors and runtime
errors are separated into separate groups. Be sure to look at the
correct table when trying to diagnose an error!

CONFIGURATION SYNTAX ERRORS

If you misspell or misuse a DataFlex reserved word in a command 11ine,
you will get a syntax error when you compile the configuration. These
errors are the simplest to find and the easiest to correct. Simply
edit the configuration, make corrections on the Indicated 1ine(s), and
recompile. You may need to refer to the manual to determine the
required syntax for the command you are trying to use. Pay particular
attention to the arguments of the command and what type of argument is
reasonable and legal to put in a particular position (e.g., trying to
move a new value into a constant is both illegal and unreasonable).
Most syntax errors are caused by simple misspellings or typographical
errors. Very few syntax or usage errors will occur at runtime. Those
which do usually arise from use of window- and field-indexing, which
can change a variable's type at runtime.

Another type of compile time error is the use of duplicate symbols.
If you use the same name for two variables or labels, you will get an
error. Each label and symbol must be uniquel (DataFlex won't detect
duplicate use of a variable if both uses are syntactically consistent
with each other, so this is not a total failsafe.) You must also
avoid the use of DataFlex reserved words. These reserved words
(1isted in the section on "Reserved Words of DataFlex") canNOT be used
as symbol names. It IS legal to use symbol substitution for command
names. This will not generate an error, but great care must be
exercised and this practice is not recommended. If you use a command
name as a symbol, you will get an error when you then try to use that
command. In summary, when naming your files, pages, variables and
labels, make sure to use unique names which are not reserved words.

Copyright (c) 1984 Data Access Corporation 06/08/84

F-14 COMPILER ERROR MESSAGES DataFlex 2.0 User's Manual

The DataFlex compiler program (COMP.COM) completes four processes in
two passes through the source file. There is a class of errors for

each process:

1) Initialization -—==- B
2) Forms }me————=> PASS ONE
3) Macro = wmee- s
4) Compile > PASS TWO

INITIALIZATION ERRORS:

SOURCE FILE NOT FOUND
Check disk directory for correct file name.

FORMS ERRORS:

IMAGE NOT FOUND
Check that first line of file begins with "/". If no image

desired begin with "/*",

MACRO ERRORS:

MEMORY: famount_memory_available!
Warning updated every time a new symbol is encountered if
remaining memory is less than one kilobyte. Displays amount
of memory remaining avaiiable. If "Out of Memory" ervor is
declared, see compiler option "M"™ for possible fix.

150 MACRO BUFFER SIZE EXCEEDED
Macros as defined are too large to fit in avallable buffer
space. Usually the result of a syntax error. Otherwise,
compiler option "M" may permit compilation with larger macro
expansion buffer.

151 INCLUDE FILE NOT FOUND
Check device directory to ensure that the specified file
exists.

152 UNEQUAL PARENTHESES IN EXPRESSION
Open and-close parentheses not matched.

155 INDICATOR NOT RESOLVED: 'symbol_name'
Indicator used has not been defined. Often caused by
misspelling.

155 TOO MANY INDICATORS
Maximum of 3 indicators per line exceeded.

156 NO ACTIVE CONDITIONALS
A #ELSE appears in a macro without a #IF being open.

Copyright (c) 1984 Data Access Corporation 06/08/84

157 FORWARD REFERENCE: ‘symbol name' NOT RESOLVED
Label (GOTO or GOSUB) not found. Often caused by spelling
inconsistencies. If the error is not apparent in the source
file, check whether one of the commands may be using an
internal GOTO or GOSUB.

159 TOO MANY CONTROL BLOCKS
The maximum number of control blocks which may be open is 20.
This error is triggered when there are more than 20 open at
one time. Control blocks are created by IF statements and
structured control commands, among other things.

160 TERMINATED CONT'L BLOCK W/Q0 BEGIN
A control block terminator appears without a preceding block
initializer. Examples are END (requires BEGIN or WHILE),
UNTIL or LOOP (require REPEAT), etc.

162 TYPE CHECK ERROR IN ARGUMENT: ARGUMENT REQUIRED
The command was issued with fewer than the minimum required
number of arguments.

162 TYPE CHECK ERROR IN ARGUMENT: CONSTANT NOT ALLOWED

162 TYPE CHECK ERROR IN ARGUMENT: DATE NOT ALLOWED

162 TYPE CHECK ERROR IN ARGUMENT: EXPRESSION NOT ALLOWED

162 TYPE CHECK ERROR IN ARGUMENT: FILE ELEMENT NOT ALLOWED

162 TYPE CHECK ERROR IN ARGUMENT: GP INDICATOR "{1" NOT ALLOWED

162 TYPE CHECK ERROR IN ARGUMENT: GROUP NOT ALLOWED

162 TYPE CHECK ERROR IN ARGUMENT: INDICATOR NOT ALLOWED

162 TYPE CHECK ERROR IN ARGUMENT: INTEGER NOT ALLOWED

162 TYPE CHECK ERROR IN ARGUMENT: INVALID LITERAL

162 TYPE CHECK ERROR IN ARGUMENT: LABEL NOT ALLOWED

162 TYPE CHECK ERROR IN ARGUMENT: MUST BE AN INDICATOR

162 TYPE CHECK ERROR IN ARGUMENT: MUST BE DEFINED

162 TYPE CHECK ERROR IN ARGUMENT: NUMBER NOT ALLOWED

162 TYPE CHECK ERROR IN ARGUMENT: OPTION "{}" NOT ALLOWED

162 TYPE CHECK ERROR IN ARGUMENT: SHOULD NOT BE DEFINED

162 TYPE CHECK ERROR IN ARGUMENT: STRING NOT ALLOWED

A string, or string variable, was used in a command which
does not deal with strings (uses numerics, etc.).

Copyright (c) 1984 Data Access Corporation 06/08/84

F-16 COMPILER ERROR MESSAGES DataFiex 2.0 User's Manual

162 TYPE CHECK ERROR IN ARGUMENT: TOO MANY ARGUMENTS
Multiple arguments were used with a command which aljows only

one argument, or mulfiple arguments were used with a command
which can handle only a certain number (see explanations of
commands in other sections of this manual).

162 TYPE CHECK ERROR IN ARGUMENT: VARIABLE NOT ALLOWED
A variable name was used in a command which cannot deal with

variables.

162 TYPE CHECK ERROR IN ARGUMENT: WINDOW NOT ALLOWED
A window was used in a command which cannot deal with windows.

164 COMMAND NOT FOUND: 'symbol name'
A command in the source file is not present in FLEX.CFL
Misspellings frequently trigger this error. Not rePACKing
FMAC after modifying it for new macros can trigger this error,
as can use of a reserved word as a variable or other improper
use. This error occurs if FLEX.CFL is not on the default
drive.

170 CANNOT REPLACE TO ITSELF
Logic of replatement is not valid. Often caused by misuse of

reserved word(s) or syntax error(s).

COMPILE TIME ERRORS

ICODE FILE NOT FOUND
Intermediate code file from first pass of compilter not found.

Usually a failure of hardware or operating system. A disk
full condition is a frequent cause of this error.

101 NUMBER EXPECTED
A numeric expected but not found. ICODE error in the command

sequence.

102 LINE NUMBER OUT OF SEQUENCE
Internal code inconsistency. Error in a user-defined macro.

103 ILLEGAL VARIABLE TYPE
Compiler type check of the ICODE.

104 DUPLICATE VARIABLE DEFINED
Same variable defined twice as different types. Coding error.

105 TYPE/CLASS NOT FOUND .
Internal compiler conflict caused by a coding error.

106 ERROR IN WRITING .FLX FILE
Operating system error (Disk or Directory Full).

107 ERROR IN CLOSING .FLX FILE
Operating system error (Disk or Directory Full).

Copyright (c) 1984 Data Access Corporation 06/08/84

DatafFlex 2.0 User's Manual COMPILER ERROR MESSAGES F-17

108 OPEN PARENTHESIS EXPECTED
Start of an expression not found.

109 UNEQUAL PARENTHESES
End of an expression not found.

111 INVALID ARGUMENT
Internal compiler conflict. Unresolved symbol encountered.

112 INVALID ENTRY OR FORM COMMAND
Check options "{}" for validity and spelling.

122 LINE TOO LONG
The maximum 1ine length allowed is 255 characters. This error
is triggered by any line longer than that. Check for omission
of carriage return/line feeds from the source file.

Copyright (c) 1984 Data Access Corporation 06/08/84

F-18 COMPILER ERROR MESSAGES DataFlex 2.0 User's Manual

THIS PAGE INTENTIONALLY LEFT BLANK

Copyright (c) 1984 Data Access Corporation 06/08/84

TYPES OF ERRORS

Runtime errors are those which occur when you are actually running a
configuration (as opposed to compiling it). Compiler errors are
discussed in the preceding section of this manual. Runtime errors can
be the result of a fault in a file definition, the specifications made
in the installation of DataFlex, configuration of your operating
system, or operator actions, but most runtime errors result from a
condition which has to be corrected in the configuration. When this
is the case, corrective action usually includes the same steps
required to correct compiler errors: edit the configuration, make
corrections, and recompile the configuration. Other steps (discussed
further at several points below in this section) may be required in
addition to, or instead of, these steps.

RUNTIME ERROR CLASSIFICATIONS:

Runtime errors are discussed in this section in the following groups.
If you are dealing with a particular error, find it in the numerical

1ist below and review the discussions under the classification(s) to

which it is assigned. A given error may be discussed under more than
one classification where the error may be triggered by more than one

cause.

OP: OPERATOR ERRORS

MH: MEDIA AND HARDWARE ERRORS
L/D: LIMITATION, DISK

L/M: LIMITATION, MEMORY

L/C: LIMITATION, CONFIGURATION
CE: CONFIGURATION ERROR

SU: SET UP ERROR

MU: MULTIUSER ERROR

ERROR # DESCRIPTION CLASSIFICATION

OPERATING SYSTEM ERRORS:

READING UNWRITTEN DATA (SYSTEM) MH

OPERATING SYSTEM ERROR M

CANNOT CLOSE CURRENT EXTENT MH

SEEK TO UNWRITTEN EXTENT (SYSTEM) MH

DIRECTORY OVERFLOW (DISK FULL) L/D
SEEK PAST END OF DISK (DISK FULL) L/D

U AN

Copyright (c) 1984 Data Access Corporation 06/ 08/84

F-20

ERROR # DESCRIPTION CLASSIFICATION
DATAFLEX ERRORS:

10 +++ OUT OF MEMORY +++ L/M,CE

11 NUMBER TOO LARGE FOR FIELD ALLOCATION oP, CE

12 WINDOW NUMBER OUT OF RANGE CE

13 AN ENTRY IS REQUIRED ON THIS WINDOW oP

14 PLEASE ENTER A NUMBER oP

15 INVALID ENTRY FOR THIS WINDOW oP

16 PLEASE ENTER A VALID DATE (MM/DD/YY) oP

17 NUMERIC ENTRY IS OUT OF RANGE oP

18 CAN'T OPEN SYSTEM COMMUNICATIONS FILE CE

19 MULTIUSER TIME OUT (BUSY TOO LONG) CE

20 READ ERROR ON INDEX FILE, REINDEX FILE MH

21 WRITE ERROR ON INDEX FILE MH, L/D

22 INDEX FILE DAMAGED, REINDEX FILE MH

23 INDEX FILE FULL, EXCEEDS DEFINED SIZE L/C

25 RECORD NOT FOUND oP

26 CAN'T CLOSE INDEX FILE M, MU

28 DUPLICATE RECORDS NOT ALLOWED IN FILE oP, CE

30 CAN'T READ CONFIGURATION FILE CE, M

31 CONFIGURATION FILE NOT FOUND oP, CE

32 CAN'T OPEN OUTPUT FILE CE, M, L/D
41 FIND PAST BEGINNING OF FILE oP

42 FIND PAST END OF FILE OoP

43 CAN'T OPEN INDEX FILE Su, MU

49 DEMQ VERSION LIMITATION EXCEEDED L/D,BUY DATAFLEX
51 BAD FORMAT IN EXPRESSION (OPERAND) CE

52 BAD FORMAT OF EXPRESSION (OPERATOR) CE

71 NO RECORD IN MEMORY TO DELETE OP, CE

72 FILE NOT OPEN Su, MU

73 FIELD NUMBER QUT OF RANGE CE

74 CAN'T QPEN "FILELIST.CFG" Su, MU

75 CAN'T OPEN DATA FILE (.DAT) SU, MU

76 FIELD NUMBER OUT OF RANGE CE

77 FIELD NUMBER OUT OF RANGE CE

78 CAN'T UPDATE RECORD ZERO OF DATA FILE MH, MU

79 FIELD NOT INDEXED, CAN'T FIND BY THIS opP, CE

80 CAN'T CLOSE DATA FILE MH, MU

81 RECORD NUMBER OUT OF RANGE MH, MU

82 EDITED RECORD NOT SAVED CE

83 TYPE CHECK ERROR, ASCII USED AS NUMBER CE

85 ISAM NOT LINKED TO PROGRAM PS

86 RELATED FIELDS ARE NOT THE SAME LENGTH CE

87 NO SUPERFIND PATH TO THIS RECOQRD oP

88 INVALID FILE NAME oP

90 PLEASE ENTER A VALID RECORD ID oP

91 ATTEMPT 7O PUT INTO INTEGER CONSTANT MACRO COMMAND
92 CONFIGURATION FILE NOT FOUND OoP, SU, CE
96 CAN'T OPEN CONFIGURATION/PROGRAM FILE OP, SU, CE
97 MULTIPLE GOSUB'S WITHOUT RETURN CE

100 OPERATOR ERROR oP
Copyright (c) 1984 Data Access Corporation 06/08/84

DataFlex 2.0 User's Manual RUNTIME ERRORS AND DIAGNOSIS F-21

OP: OPERATOR ERRORS

The most common error is a simple mistake by the operator. DataFlex
handles many operator errors directly and gives you the capacity for
providing additional checks where required. Most of these errors,
unlike the other runtime errors, do not call for any corrections in
configurations or system setup. The most correction that is 1ikely to
be needed is operator instruction in those cases where the error
message itself is not sufficient for the purpose. The following are
errors that can be generated by an operator in a properly written
configuration.

ERROR 11: NUMBER TOO LARGE FOR FIELD ALLOCATION
Number is too large for a data field

ERROR 13: AN ENTRY IS REQUIRED ON THIS WINDOW
Operator attempted to return past a "REQUIRED™ window

ERROR 14: PLEASE ENTER A NUMBER
Entry of letters ("O", lower case "L", etc.) in a numeric-typed

window

ERROR 15: INVALID ENTRY FOR THIS WINDOW
Entry does not conform to CHECK or format specification made in
the configuration. Some means for determining what is acceptable
must be provided for the operator (Help screen, prompt, custom
error message)

ERROR 16: PLEASE ENTER A VALID DATE (MM/DD/YY)
Improper date format or value

ERROR 17: NUMERIC ENTRY IS QUT OF RANGE
Entry does not conform to "RANGE"™ in entry option made in the
configuration. Some means for determining what is acceptable must
be provided for the operator (Help screen, prompt, custom error

message)

ERROR 28: DUPLICATE RECORDS NOT ALLOWED IN FILE
An attempt was made to enter two records with the same key

ERROR 41: FIND PAST BEGINNING OF FILE
Previous record find attempted at beginning of file

ERROR 42: FIND PAST END OF FILE
Next record find attempted at end of file

ERROR 71: NO RECORD IN MEMORY TO DELETE
Delete key pressed with no record found

ERROR 87: NO SUPERFIND PATH T0 THIS RECORD
Can't superfind from this window; main file does not relate to
this field

ERROR 88: INVALID FILE NAME
A badly formatted or too long file name has been entered

Copyright (c) 1984 Data Access Corporation 06/08/84

F-22 RUNTIME ERRORS AND DIAGNOSIS DataFlex 2.0 User's Manual

ERROR 90: PLEASE ENTER A VALID RECORD ID
No record is found with a "FINDREQ"; press FIND

ERROR 92: CONFIGURATION FILE NOT FOUND
Operator entered a configuration file name that fs not found on
the indicated disk (also see Error 96).

MH: MEDIA AND HARDWARE ERRORS

If there is a problem with your equipment, disk media or operating
system, it will usually show up in the filing system. If a program
which was working properly suddenly stops working, 1t is usually (but
not absolutely always) some sort of hardware or media problem. A
problem which does not happen consistently under exactly the same
conditions is almost always a hardware problem. If you are having
this type of problem, you should run all of your system diagnostics
several times. You should also test other software which uses similar
resources. After any hardware malfunction, the data recovery utili-
ties REINDEX and FREL should be used (see the section on "Utilities").

Media and hardware errors refer to problems which result in physical
corruption of the data on your disk, not operator or program error.
There are two primary causes for these errors: disk media defects and
power failure. There 1s a good statistical probability that
eventually you will have a media failure. It is equally true that you
will have power failures. DataFlex keeps all of your data current on
disk in case of power failure, but different equipment and operating
systems have different capacities for coping with this probiem. Some
poorly designed equipment can destroy an entire disk if the power goes
out at the wrong time, while others handle it with almost no effect.
Probably the worst case s when a system makes small, almost
undetectable errors on the disk after a power failure. Some power
"f1ickers" or "spikes" can cause data errors which are unnoticed at
the time they occur. After a power failure, flicker or spike, or a
media error, you should use the data recovery utilities FREL and
REINDEX to ascertain the extent of data corruption and re-establish
data integrity. It is most important to MAINTAIN RECENT BACKUPs to
guard against these data killers. If you rely heavily on your system,
you should consider an uninterruptible power supply to prevent power
failure problems.

DATA RECOVERY TECHNIQUES: WHY WOULD YOU NEED TO RECOVER DATA?

Due to power problems, media failure and sometimes configuration
errors, it may become necessary to restore the integrity of your data.
This recovery may be necessary on several levels. If you have a
corrupted disk directory, you will need to recover all of the files on
a disk (primary data recovery). If only one file is corrupted, there
are specific methods for recovering one file (secondary data
recovery).

Before you start any kind of data recovery you should consider whether
it is worthwhile. Assuming you have made proper backups, it may be
simpler to restore your back ups and bring those files up to date by
manually re-inputting datal

Copyright (c) 1984 Data Access Corporation 06/08/84

DataFlex 2.0 User's Manual RUNTIME ERRORS AND DIAGNOSIS F-23

PRIMARY DATA RECOVERY: CORRUPTED DIRECTORY

If the directory on your disk is corrupted (see media and data
errors), you will need to restore the integrity of the disk before you
start on the individual data files. You should first make ANOTHER
backup of your entire disk drive and then reformat the disk according
to the operating system instructions. Next, verify the disk drive to
make sure there are no media errors. Finally, restore the fields from
your backup. You should examine all data files for correctness and
proceed with secondary file recovery on ALL files.

SECONDARY DATA RECOVERY: CORRUPTED FILE

If the integrity of any file is suspect, you should use both the FREL
and the REINDEX utilities on each file. The FREL utility will restore
the internal list of deleted records in the .DAT file and the REINDEX
utility will recreate the indexes. If there are any bad or duplicate
records in the file, they will be removed. After this procedure, it's
a good idea to use QUERY to look at the data in the files.

If the recovery programs cannot recover the badly damaged data, it is
usually better to restore the backup files than to try further
recovery. Let us emphasize the importance of good back ups!

Common errors associated with media and hardware failures are:

SYSTEM STOPS OR "LOCKS UP" at random times
Most probably a power flicker or spike! (Also check memory
available)

BDOS Error: Bad Sector; I/0 Error; Read/Write Error
These errors are returned directly from the operating system, not
from DataFlex. The exact wording may vary from system to system.
This type of error is caused by an unrecoverable hardware or media
error. The first thing to do is to reformat and restore your data
from backup. If this happens frequently, your hardware should be
examined. If you use floppy disks, you shouid consider another
brand.

ERRORS 1, 2, 3, 4
These errors generally indicate problems with the operating
system's directory structure of the disk drive. Power failure is
a common cause of directory corruption. If you have had other
media errors, they can show up later as directory problems.
Generally the disk should be reformatted and the data recovery
techniques used. (See also Disk Limitations)

ERRORS 20, 21, 22, 26
Errors 20, 22 and 26 are caused by a corrupted index file,
generally caused by the same types of errors as above. Error 21
can also be caused by a disk full condition. The data racovery
utilities should be sufficient. If this happens repeatedly, there
may be a subtle problem with the operating system or equipment.
If you are on a multiuser system, make sure that you follow the
multiuser checklist below.

Copyright (c) 1984 Data Access Corporation 06/08/84

ERROR 81: RECORD NUMBER OUT OF RANGE
If a record number out of range error ocurrs when saving a record,

it indicates a corrupted data file. You should use FREL and
REINDEX on the file.

ERROR 30: CAN'T READ CONFIGURATION FILE
Configuration file (.FRM) is not a compiled DataFlex configuration

or the file is damaged.

ERROR 32: CAN'T OPEN OUTPUT FILE
The disk is full or the file name is improper.

ERRORS 78, 80
Directory is damaged. (above)

L/D: DISK LIMITATIONS

Each file, program and configuration takes up disk space. In parti-
cular, if you are using a floppy-disk-based system, you will probably
run into disk full conditions. You may run into this at any time
whether creating, editing, or compiling any type of file. The error
code for a full disk depends on what type of file you are processing.
(The error when you are running DataFlex is different from the same
error when you are using the EDITOR.) In any case, you will either
have to reorganize the files on your disks or get more storage space.
Additionally, be aware that the last edit or addition you attempted
was probably not saved properly. Note that there are TWO ways to fill
up your disk: (1) the storage can be used up; or (2) the directory
(number of files) can be filled up. Both of these conditions are
treated in the same way; you must remove files from your disk.

The following runtime error codes are returned for disk full.

ERROR 5: DIRECTORY OVERFLOW (DISK FULL)
Directory (number of files) full.

ERROR 6: SEEK PAST END OF DISK (DISK FULL)
Disk space used up.

ERROR 21: WRITE ERROR ON DISK FILE
Disk full while trying to expand index file,

ERROR 32: CAN'T OPEN OQUTPUT FILE
Disk directory full while trying to open an output file.

NOTE: The compiler needs disk space on the logged-in drive to store
temporary files created during the compile process. Typically, the
space needed is approximately the size of the configuration source
file. If there is not enough space for the compiler to write its
temporary files, Errors 1 or 2 will occur during compilation.

Copyright (c) 1984 Data Access Corporation 06/08/84

Dataflex 2.0 User's Manual RUNTIME ERRORS AND DIAGNOSIS F=-25

L/M: MEMORY LIMITATIONS

With DataFlex's capacity to relate many data files and have many pages
of screens, it is possibie for a configuration to simply run out of
RAM (random-access memory). There are two factors at work here: the
amount of memory available to a program (TPA, for Transient Program
Area) and the size of the program or configuration. It is also
possible to run out of memory during the compile phase. Compile time
minimum memory is different from runtime minimum memory. Minimum
compile memory is 1000 bytes. You should find out how much memory
your system has available to the program AFTER the operating system is
loaded.

A typical computer with a 64-kilobyte Z80 processor can have from 42
to 58K of TPA. In B-bit systems, a minimum of 52K TPA is required to
run DataFlex. On a 16-bit system, you must have a minimum TPA of
100K. This means that 1f your computer has 128 kilobytes of hardware
RAM and your operating system consumes 34K, you do NOT have enough
memory to run DataFlex properly. Note that operating systems that
control hard disk drives take more memory than comparable floppy-based
systems. For example, a 16-bit system with 128K of hardware RAM that
runs DataFlex successfully with floppies may not be able to run
DataFlex if a hard disk drive is installed unless more RAM memory is
also added to handle the larger hard disk driver program. The more
memory you have, the larger the configuration you can handle, up to a
point. On a 16-bit system, DataFlex will take advantage of a maximum
of about 192K of TPA, so the maximum capabilities of DataFlex are
1ikely to be realized with 256K of hardware RAM. Further expansion of
RAM would probably yield no benefits to running DataFlex.

When DataFlex is running, it maintains an internal predefined variable
called MEMAVAIL, which will return the amount of unused memory
available dynamically (the value changes whenever memory usage
changes). This amount is what remains after DataFlex and your
configuration are loaded. If you run the following test program, it
will show you your system!s free memory as of the time you run it:

/%
SHOWLN MEMAVAIL
SYSTEM

The number displayed should NEVER be below 10,000, and if it is above
31,100, your available memory is greater than DataFlex's maximum
capability to utilize memory. A result below 10,000 indicates that
your computer and operating system as configured do not have
suyfficient TPA available to run DataFlex.

If you are working with a particularly large configuration that may be
close to exceeding available TPA, you should incorporate the procedure
shown above at certain points in the configuration so you can keep
track of remaining TPA availability. IMPORTANT NOTE: DataFlex
requires some memory to be available while running. The amount of
memory required at runtime is AT LEAST 2,000 and can be as high as
5,000 if you are using very large data files, so when MEMAVAIL is

Copyright (c) 1984 Data Access Corporation 06/08/84

F-26 RUNTIME ERRORS AND DIAGNOSIS Datafiex 2.0 User's Manual

below 5,000, the possibility of trouble at run time exists, and is a
virtual certainty when MEMAVAIL declines below 2,000.

HOW BIG MUST MEMAVAIL BE?

The amount of memory that must be avaiiable to run a particular
configuration is the greater of: (a) the largest index for the data
file(s) used by the configuration; or (b) the largest screen image in
the configuration.

A typical screen image is about 2,000 bytes, so the largest data file
index is usually the 1imiting factor. The minimum memory requirement
can be estimated with the following formula based on the information

returned when an index is created in FILEDEF or REINDEX:

(512+KEYSIZE)*(LEVELS+1)

Where KEYSIZE is the size in bytes of the key being indexed
and LEVELS is the number of ISAM levels required.

Mote that LEVELS can be computed by the ISAM module ONLY when the
index is created, so take careful note when these numbers are
displayed at the end of index creation in FILEDEF, AUTODEF, or
REINDEX. The number of levels is based on the key size and the
maximum number of records you define in FILEDEF or AUTODEF. So if you
define a file for 30,000 records and it only has 1,000 with data in
them, you may be wasting memory! This precaution guards against
running out of memory halfway through entering the data to a file,
since the maximum memory is used even when the actual data and index
files are still small.

WHAT USES MEMORY?

Most of the resources available in DataFlex (or any other language)
consume some memory, but there are two areas that typically consume
your work area: open data files and screen image windows. Generally
if you can do without opening a data file in an application, you will
save significant memory. The following table should help you
determine what uses memory and therefore where you should Took should
you have to conserve it. THE FOLLOWING FIGURES ARE IN BYTES.

8-Bit 16-8it
COMMANDS
Each command line 11 11
Indicators Free - included in commands
Each string variable Actual string length + 2
Each numeric variable 10 10
Each integer variable Free - pre-allocated
Each string constant Actual string length + 1
Each numeric constant 10 10
Each expression String length (compacted)

Copyright (c) 1984 Data Access Corporation 07/18/84

DataFlex 2.0 User's Manual RUNTIME ERRORS AND DIAGNOSIS F-27

8-Bit 16-Bit

SCREEN IMAGES (PER PAGE)

Overhead (unbuffered) 11 11

Overhead(buf fered) Actual page size

Each window Actual window size + 11

Each subtotal 10 10

Each range check 20 20

Each check string Actual string length + 1
DATA FILES (PER OPEN FILE)

Overhead 120 180

Each field 8 10

Each BATCH {index 128 170

Each ON-LINE index (Number of levels)¥*512

Record buffer (actual) Record length (per FILEDEF)

If a configuration runs out of memory, it can be divided up into two
or more configurations but still run as though one with the CHAIN
command (see the section on "Controlling Execution Sequence").

INDICATIONS OF OUT OF MEMORY

ERROR 10 (DataFlex out of memory)

Recursion stack overflow (PASCAL error)

OUT OF MEMORY {(compile time)

In some cases, systems may 'lock up' or drop to the operating
system

Final note: There are no "secrets" for getting more memory. If there
were, they wouldn't be secret; so please don't ask your dealer or
distributor for one.

L/C: CONFIGURATION LIMITATIONS

Designing a configuration necessarily involves specifying limits on
the application's capacities. Examples of these limits are:

Maximum number of records in a file
Field lengths
Window lengths

Frequently, configuration limitation errors are triggered by errors on
the part of the operator, such as entering a number that is too large
by mistake. In such cases, the resultant overflow error serves as an
automatic form of range verification. If the capacities are not
specified thoughtfully, however, they may hamper the purposes which
the configuration was designed to serve. If field sizes must be
changed (or new fields added, making the record larger) after there is
data in the file, the file definition may still be changed without the
requirement to rekey the data. First, the data should be written to a
new disk file in READ format using the DataFlex QUERY utility, then
the file definition changed, and then the data reread back into the
restructured file with a configuration built using the DataFlex READ
utility.

Copyright (c) 1984 Data Access Corporation 07/18/84

F-28 RUNTIME ERRORS AND DIAGNOSIS DataFlex 2.0 User's Manual

The following errors are those most frequently caused by configuration
limitations:

ERROR 11: NUMBER TOO LARGE FOR FIELD ALLOCATION
This is usually caused by the operator entering too large a number
in a data window. Otherwise, a numeric field is just not big
enough to hold the required value. You may have to change the
file definition to allow the field to hold a larger number.

ERROR 23: INDEX FILE FULL, EXCEEDS DEFINED SIZE
In FILEDEF and AUTODEF you are asked for the maximum number of
records that could be in a file. If this number is greatly
exceeded, you will get Error 23. To fix this, simply re-enter
FILEDEF and change the maximum number of records. You will then
have to rebuild all indexes for the file using REINDEX.

CE: CONFIGURATION ERRORS

In any program or configuration, it is possible to use commands which
are syntactically correct but which make no sense or cause errors when
the progam is run. These are generally cases where the operation of a
command is not fully understood or 1s applied improperly. It may be
necessary to put in special "debugging" statements to determine the
state of the program while it is running. Still, the most important
step is to read the manual carefully and review the sample configura-
tions and programs provided. Due to DataFlex's great flexibility,
configuration errors can appear to be other types of errors,

DATA CONSISTENCY

Data consistency errors are those caused by improper operation of the
application and its failure to do the checks necessary to guarantee
data consistency. An example of this would be the deletion of a
customer while there are still transactions for that customer in
another data file related to the customer file. In transactional
environments it is necessary to prevent the user from deleting such
records. One way to do this is to keep a counter of transactions
posted to a record and only allow deletion when that counter {s zero.

A related error is allowing the user to change the primary key of an
active record. It is best to use record number relationships as well
as data relationships if you want to allow the user to change key
data. Note that in some applications 1t is normal and acceptable to
have "null"™ relationships, so the application must check for this
condition. QUERY can be a valuable tool for inspecting files and
dfagnosing data problems. Once a problem is uncovered, a check should
be put into the application to prevent it from happening again.

Data consistency errors are usually at fssue when reports have
incorrect totals or data entry screens show the "wrong" records
related.

Copyright (c) 1984 Data Access Corporation 06/08/ 84

DataFlex 2.0 User's Manual RUNTIME ERRORS AND DIAGNOSIS F-29

The following errors typically arise from configuration errors:

ERROR 1Q: +++ OUT OF MEMORY +++
New installation on 16-bit, run SETSCREEn. Otherwise, out of
memory, see above.

ERROR 11: NUMBER TOO LARGE FOR FIELD ALLOCATION
Number does not fit into the allocated field; redefine field for a
larger value.

ERROR 12: WINDOW NUMBER OUT OF RANGE
Window number out of range. This is usually caused by improper
use of window indexing. Recount your windows and/or temporarily
print the index value to the screen while the program is running.

ERROR 18: CAN'T OPEN SYSTEM COMMUNICATIONS FILE
DataFlex cannot establish multiuser operating system communica-
tions. Check your installation notes for information relating to
your particular operating system,

ERROR 19: MULTIUSER TIME OUT (BUSY TOO LONG)
Multiuser time out. The system is in a LOCKED state for too Tong.
Check that none of your programs does a LOCK or REREAD without an
UNLOCK. On a very busy system it is possible to get this error
occasionally through no fault of the configuration.

ERRORS 25, 41, 42
FIND errors--FIND command was unsuccessful. To determine what the
problem is, temporarily print the value of the record buffer to
the screen directly before the FIND. Also with error 25, be
conscious of the record number, which must be part of the key if
included in the index for a FIND EQUAL.

ERROR 28: DUPLICATE RECORDS NOT ALLOWED IN FILE
A SAVE was done on a record having a unique key that matches a key
already in the database. If unexplainable, try reindexing the
file.

ERROR 31: CONFIGURATION FILE NOT FOUND
Configuration file not found. This is caused by an attempt to
load a configuration that does not exist. This can also be caused
by an improper menu configuration or an error in a "CHAIN"
statement.

ERROR 32: CAN'T OPEN OUTPUT FILE
If the OUTFILE or DIRECT_OUTPUT command cannot create the output
file, you will get an error 32. This can be caused by disk full
or a bad file name.

ERROR 51: BAD FORMAT IN EXPRESSION (OPERAND)
If the expression evaluator runs across an improper argument when
it is expecting an argument, you will get an error 51. Most
expression errors are not reported until runtime. Example:
(1+¥2). If unexplainable, you may have a data consistency error
(see above).

Copyright (c) 1984 Data Access Corporation 06/08/84

F-30 RUNTIME ERRORS AND DIAGNOSIS DataFlex 2.0 User's Manual

ERROR 52: BAD FORMAT OF EXPRESSION (OPERATOR)
If the expression evaluator runs across an improper function (+,

-, %, or /) when it is expecting a function, you will get error 52
at runtime. Example:; (1=2)

ERROR 71: NO RECORD IN MEMORY TO DELETE
If a DELETE command is issued against an INACTIVE record buffer,
the DBMS won't know what record to delete and will report error
71. DELETE must be used with a "FOUND" record.

ERRORS 73, 76, 77: FIELD NUMBER OUT OF RANGE
Field number out of range., This is generated by improper use of
field indexing. Carefully check the index values and make sure
they are fn range. This can also be caused by using an old
configuration with a modified file definition.

ERROR 79: FIELD NOT INDEXED, CAN'T FIND BY THIS
Field not indexed on FIND. A FIND command has been issued on an
inactive index or a non-indexed field.

ERROR 82: EDITED RECORD NOT SAVED
This error indicates misuse of the database. If an active record
is edited (MOVEd to) and not SAVEd, you will get an error 82 and
the record will be lost from the index, so this error should be
corrected not only in your application, but in your database as
well, After an error 82 has occurred, the file must be reindexed.
Never MOVE to an active record without a SAVE!

ERROR 83: TYPE CHECK ERROR, ASCII USED AS NUMBER
Type check error. This often arises from use of an old
configuration with a database whose file definition has been
modified. Update the configuration to take into account the
revised file structure.

ERROR 86: RELATED FIELDS ARE NOT THE SAME LENGTH
Related fields MUST be exactly the same length and type. Check
your file definitions for all fiies involved.

ERROR 96: CAN'T OPEN CONFIGURATION/PROGRAM FILE
Configuration/program file not found. This 1s usually triggered
by a CHAIN or RUNPROGRAM command whose target file cannot be
found. Review drive assignments of files concerned and make sure
they are correct in the command. This is often occurs in MENU
because of incomplete drive designation in action specifications.

ERROR 97: MULTIPLE GOSUB'S WITHOUT RETURN
For every GOSUB or use of a KEYPROC, there must be a RETURN. If
not, after 20 GOSUBs, you will get Error 97, Also if your KEYPROC
is called from within a subroutine, you must RETURN to within that
subroutine.

Copyright (c) 1984 Data Access Corporation 06/08/84

DataFlex 2.0 User's Manual RUNTIME ERRORS AND DIAGNOSIS F-31

SU: SET UP ERRORS

Set up errors refer to problems associated with installation of the
DataFlex system or the placement of the required files or the data
files on your system. There are some files that are required to be on
the default drive and other files that reside on the drive specified
by the configuration. Refer to the appendix "File Name and Extension
Types" for more information on the types and locations of files. The
following files are ABSOLUTELY required on the default (logged in)
drive:

AT ALL TIMES:
FILELIST.CFG (current terminal configuration and
location/names of active data files)

AT RUN TIME:
RUN.OQVF (8-bit runtime overlay file)

RUN.0O? (16-b1t runtime overlay files)
FLEXERRS.DAT (Error messages)

AT COMPILE TIME:

COMP . OVF (8~bit compile overlay file)
FLEX.CFL (Compiler command file)
* FD (File definition file~~one for each data file)

WHEN RUNNING SETSCREEN:
TERMLIST.CFG (List of terminal codes and your serial number)

DataFlex will not run if you have not activated FILELIST.CFG by
running SETSCREEn.

INSTALLATION ORDER

The DataFlex distribution disks contain muitipie copies of
FILELIST.CFG and MENU.DAT. These set up DataFlex properly to run on
floppy or hard disk systems depending on the sequence in which the
disks are copied. If you don't copy the disks down in the proper (A,
B, C) sequence, you will get set up errors,

The following errors commonly arise from improper set up:

ERROR 43: CAN'T OPEN INDEX FILE
The index information is kept in a separate file from the actual
data. The indexes have the "ROOT" file name with a ".K?"
extension, where "?" is the index number. These files must reside

on the same drive as the data file (see Error 75).

ERROR 72: FILE NOT OPEN
If a DBMS file is used before it has been OPENed, you will get
error 72. This can also be caused by a file not being on the
disk, in which case you should get an error 75 first.

ERROR 74: CAN'T OPEN "FILELIST.CFG"
FILELIST.CFG must be present on the logged in disk drive.

Copyright (c) 1984 Data Access Corporation 06/08/84

F-3Z RUNTIME ERRORS AND DIAGNOSIS DataFlex 2.0 User's Manual

ERROR 75: CAN'T OPEN DATA FILE (.DAT)
The data file name contained in FILELIST.CFG can't be found. The

"ROOT NAME" has ".DAT" appended to it for the OPEN. Make sure
that the root name in FILEDEF corresponds with the actual name and
drive of the data file as shown in your operating system's
directory.

ERRORS 92, 96
Configuration/program file not found. This is usually triggered
by a CHAIN or RUNPROGRAM command whose target file cannot be
found. Review drive assignments of files concerned and make sure
they are correct in the command. This can be caused by incorrect
installation order.

MU: MULTIUSER ERRORS

1f you are running DataFlex multiuser, you should scan this check 1ist
before you experience any data related problems.

1) Is multiuser set in SETSCREEn? Option 1 of SETSCREEn must be
set to Multiuser. For Option 2, "Pre-allocate data files",
refer to the installation instructions provided on loose sheets
for your particular computer or operating system.

2) Is the data file set to reread? For a data file to be updated
by multiple users, it must be set to re-read, true in FILEDEF.

3) Have you followed each step of the installation instructions?
Each multiuser version is a little different. These differ-
ences are taken into account in the installation instructions.

4) Is your DataFlex a multiuser version? When DataFlex signs on
after the system has been booted, it will show you the
multiuser operating system that your copy of DataFlex is to
operate on. Make sure this matches (or is compatible with)
your operating system. If it signs on "single user" or with an
incompatible operating system, you will need to order a
different version of DataFlex. Contact your dealer.

5) Is the operating system configured correctly? Most muitiuser
operating systems require you to set "sysgen" parameters
indicating compatibility and the disk volumes enabled to be
shared. Make sure you understand all of these options in your
operating system and have set them correctly.

The following are indications of improperly configured multiuser
systems:

1) Corrupted index files,

2) Operating system error: FILE/DRIVE IN USE or R/0 (read only)
3) Only one user can update a data file.

4) Errors 18, 19, 21, 22, 78, 80.

Copyright (c) 1984 Data Access Corporation 06/08/84

DataFlex 2.0 User's Manual RUNTIME ERRORS AND DIAGNOSIS F-33

THE DATAFLEX UTILITIES

A1l of the utility programs in DataFlex except QUERY (FILEDEF,
REINDEX, AUTODEF, QUERY, FREL) are intended for operation only in
single user mode. Make sure that all other users are logged off the
computer before using any utilities.

THE DATAFLEX FLEX-KEYS

The DataFlex function keys are active only in the DataFlex Editor and
in running configurations. These keys are not active in the DataFlex
utilities (FILEDEF, REINDEX, AUTODEF, QUERY, FREL) unless specified
otherwise.

CUSTOM ERROR MESSAGES

DataFlex provides the opportunity for the user to create new error
messages to be triggered by conditions defined by the configuration.
New error messages are defined using error numbers above 100, as
described in the explanation of the ERROR command in the manual
section on "Controlling Execution Sequence". The facility which
provides this capability (a DataFlex configuration and database having
the rootname "FLEXERRSM") also provides the capability to reword the
messages given in the standard errors discussed above. This
capability would permit the substitution of messages which might
better fit the context of the particular application which you are
running, but this caution must be observed in rewording the standard
DataFlex errors discussed above: the message substituted will be
shown every time that particular error is triggered in any
configuration being run on the same disk as the file FLEXERRS.DAT in
which the change(s) were made. This may cause an out-of-context error
message to appear in a configuration for which the message was not
intended.

Finally, the predefined system varfable LASTERR and the predefined
argument ERR can both be used to provide “chain" messages which will
offer helpful prompting and information (either automatic or operator-
selected) in the event one of the standard errors above is triggered.
ERR is TRUE when any error (standard or custom) is triggered, and it
remains TRUE until a CLEARWARNING command is executed. If an error at
a particular point in a configuration has a predictable origin, a help
message or execution branch can be provided based on the status of the
ERR indicator. If, on the other hand, the triggering of one or more
standard errors has consistent implications throughout a particular
configuration, IF commands based on the value of LASTERR (IF LASTERR
EQ some particular error number), can cause the appropriate prompting
or execution branching to assist in efficient recovery from the error.

Copyright (c) 1984 Data Access Corporation 06/08/84

F-34 RUNTIME ERRORS AND DIAGNOSIS DataFlex 2.0 User's Manual

THIS PAGE INTENTIONALLY LEFT BLANK

Copyright (c) 1984 Data Access Corporation 06/08/84

GLOSSARY

APPLICATION
A task, or set of tasks, to be performed by a computer,
typically through configurations (or programs) and a language,
such as DataFlex. Database management is not an application
in itself, but Accounts Receivable billing may properly be
described as one database management application.

AUTODEF . COM
The program in DataFlex for quick and easy file creation.
AUTODEF will set up the file definition as well as build a
data entry configuration file which can either be custom-
edited, or compiled as~is for execution.

B+ or B* TREE
A fast and efficient method of searching a data file for a key
value used by DataFlex.

BATCH UPDATING
The technique of updating files from a transaction file as

opposed to on-1ine or real-time updates at the time of
operator input.

BIT
The smallest unit of information used by a computer. A sub-
unit of a byte. Eight bits = 1 byte and four bits = 1 nibbie.

BUFFER, RECORD
An area of memory (RAM) that is devoted to the current record.

REMEMBER, data or information is: (first) in the file;
(second) in the buffer; then (last) on the screen or in the
window.

BYTE
Eight bits (usually representing a character). The smallest
unit of information which can be handled by a DBMS.

CHAIN or CHAINING
Moving from one program or program module to another without

operator intervention.

COMMAND ACTION
Those commands or controls used/invoked by the user or
operator during data entry. The soft keystroke commands set
with the program SETSCREE.COM.

COMMAND GROUP
The sections of an enter or report configuration which are

invoked when the operator performs a corresponding command
action. The operator key strokes are set with the SETSCREEN

program.

Copyright (c) 1984 Data Access Corporation 06/08/84

F-36 GLOSSARY DatafFlex 2.0 Userts Manual

COMMAND LINE
An expression string executable by the operating system (D0S),

typically from the CP/M prompt A>. Usually these are issued
by MENU in a completed DataFlex applicatton. In DataFlex 2.0
these can be executed from configuration command 1ines.

CON s
Customary designation of the output port of the computer which
communicates with the system's console, or screen.
CONFIGURATION
A logical asssembly of DataFlex commands and values which,
upon execution, cause DataFlex to perform a task (see
Application above). Configurations are to DataFlex what
programs are to traditional computer languages.
CONF IGURATOR
Person who writes DataFlex configurations.
DAC
Data Access Corporation, the publisher of DataFlex.
DATA

The real world information contained in the files of the
Database. Usually the smallest unit is a field of a record in
a file. Data is usually stored as one of two types, formatted
and unformatted. DBMS's deal in formatted data, whereas word
processors (for example) deal in unformatted data.

DATA DICTIONARY
A catalog of all data elements in a database giving their
definition, format, and source. In DataFlex, the File
Definitions collectively.

DATA STRUCTURE DIAGRAM (DSD)
The logical structure of the database design showing the

relationships of the files and their data.

DATA TYPES
In DataFlex, four data types are recognized. They are
alphanumeric, numeric, integer and date.

DATABASE
A computerized collection of stored operational data that can
serve the needs of muitiple users or applications. The
collective files that make up an application in DataFlex. In
this manual, the two forms are referred to with the same term.
Some authors mean other things and make a distinction between
them.

DBMS
Data Base Management System. Traditionally two classes: (1)
Stand alone; and (2) Higher level language sub-set.

Copyright (c) 1984 Data Access Corporation 06/08/84

DataFlex 2.0 User's Manual GLOSSARY F-37

EDITOR
A program which handles unformatted data which is typically a
document or source program. A text file handler. A word
processor incorporates a powerful EDITOR.

ELEMENT
The smallest discrete unit of data handled by a data
management system. In a mailing 1ist, for example, a data
element might be first name, or ZIP code. Also referred to as
"field".

ERGONOMICS
The study or science of human factors in the design of devices

for human use such as chairs and computer moni tors.

" EXTENSION

That part of the directory file name to the right of the dot
(up to 3 characters), often used to classify files by type or
function. See ROOTNAME and FILE below. In DataFiex.,
extensions are used for specific meanings:

.DAT = Data file .FRM = Source code for data entry
Kn Index file (n=#) .TAG = Database field names

.FD File definition file .CFG = System information file
JFLX = Compiled program .RPT = Source code for reports

nnonon

FIELD
A sub-unit of a database record. The information unit. Also

called "data element".

FILE
The basic unit of information stored on a disk drive which can
be found by a computer's operating system. Each file on a
disk drive has a unique name (see ROOTNAME and EXTENSION)
which is found both by the computer and by users in the
operating system's directory of files on a drive. The source
code for a configuration is typically contained in a FILE, as
jts compiled version 1s contained in another FILE. Database
data is contained in another FILE, and index data for that
FILE is contained in yet another FILE.

INDEX
A table containing ordered information on records or data
elements in a database and their locations.

INDEX FILE
In DataFlex, a B+ ISAM file containing information about a
data file in order by a key of selected data elements within
the data file.

ISAM
Indexed Sequential Access Method. An access method associated

with a sequential data file whose contents are ordered by
primary key values.

Copyright (c) 1984 Data Access Corporation 06/08/84

F=38 GLOSSARY DataFlex 2.0 User's Manual

JULIAN DATE
A numeric conversion of dates used internally by DataFlex to

facilitate rapid, accurate calculations of dates and calendar
time intervals. It is a form of the number that represents
the number of days from the year Zero to whatever date is
being processed. The original method was developed in the
16th Century by Joseph Scaliger, and contrary to popular
assumption, its name derives from Scaliger's father, Julius,
and not from Julius Caesar or another calendar named after,

and decreed by, him.

KEY
The field or portions of a record used to uniquely identify
that records in a database.

LOGGED-IN DEVICE
The default logical device that the operating system will load

programs and data from (typically A:).

LOGICAL DEVICE

A peripheral data input, output, or storage device addressed
by the convention of one or three letters and a colon. Common
examples:

B: The "B" floppy or hard disk drive

CON: The console, or screen

LST: The 1isting device, or printer

RDR: The punched tape or card reader

PUN: The paper tape or card punch

LST:
Customary designation of the output port of the computer which
communicates with the system's LiST drive, or printer.

MENU / MENUDEF.FLX
MENUDEF in DataFlex is an interactive program which creates
menus, issues query prompts to the operator, and issues
operating system and DataFlex commands. MENUDEF {s itself
entirely menu-driven.

0/S (OPERATING SYSTEM)
The disk operating system (DOS).

ONLINE UPDATE
Updating information in the files/database at the time of

operator input.

QUERY
The function of searching for and retrieving information from
a database according to operator-specified criteria based on
logical operators such as less than or equal to. In DataFlex,
a user friendly interactive program (QUERY.COM) which can be
used to generate reports and report configurations.

RECORD

A sub-unit of a data file, in turn divided into fields.

Copyright (c) 1984 Data Access Corporation 06/08/84

DataFlex 2.0 User's Manual GLOSSARY F-39

RELATE / RELATIONSHIPS
A logical the records of one data file to the records in
another by having one or more pairs of fields contain
IDENTICAL data in both files. In DataFlex relations are
defined using the FILEDEF program. Refer to the File
Definition section of this manual.

ROOTNAME
That part of the directory file name to the left of the dot
(up to 8 characters), typically entirely under the user's
discretion to use in identifying related "families" of files,
In DataFlex, a common rootname identifies the various data
files which together constitute a single database. See
EXTENSION and FILE above.

SELECTION :
The logical operators for selectively retrieving information
from a data base file. Used in combination, they can perform
the function of ranging, (i.e. greater than x & less than y).

SETSCREEN
An interactive installation procedure required when installing
DataFlex, by means of which DataFlex is provided with the
specific screen control codes for the computer or terminal on
which DataFlex i{s to be run.

TPA
Transient Program Area. That area of the computer's memory

which is avaflable to hold programs and data after the DOS or
disk operating system is loaded and running. On 8-bit CP/M

systems, DataFlex requires a minimum of 52K of TPA, and 100K
for 16-bit systems.

USER / OPERATOR
The final user or operator of a designed system. Typically
the data entry clerk. A non-technical computer user.

WINDOW

The position in which information (data) is displayed on the
screen during ENTER or in a report.

Copyright (c) 1984 Data Access Corporation 06/ 08/ 84

F-40 GLOSSARY

DataFlex 2.0 User's Manual

THIS PAGE INTENTIONALLY LEFT BLANK

Copyright (c) 1984 Data Access Corporation

06/08/84

TABLE OF ASCII CODES

CTRL CHR DECIMAL HEX ! CHR DECIMAL HEX i CHR DECIMAL HEX
i |
@ NuL 000 00 i+ 043 2B iV 086 56
A SOH 001 0l | ,» 044 2C I W 087 57
B STX 002 02 i - 045 20 i X o088 58
C ETX 003 03 H . 046 2E i Y 089 59
D EOT 004 04 1 /047 2F I Z 090 5A
E ENQ 005 05 i 0 048 30 H [o091 5B
F ACK 006 06 i 1 049 31 | \ 092 . 5C
G BEL 007 07 ! 2 050 32 H] 093 5D
H BS 008 08 i 3 051 33 ! - 094 SE
I HT 009 09 I 4 052 34 i _ 095 S5F
J LF 010 0A i 5 053 35 ! 096 60
K VvT 011 0B i 6 054 36 ioa 097 61
L FF 012 oc I 7 055 37 ! b 098 62
M CR 013 0D i 8 056 38 i ¢ 099 63
N SO 014 0t 9 057 39 i d 100 64
0 SI 015 OF ! 058 3A i e 101 65
P DLE 016 10 ! ;059 3B i f 102 66
Q 0Cl 017 11 { < Q60 3C { g 103 67
R DC2 018 12 = 061 30 i h 104 68
S§ DC3 019 13 H > 062 3E ! i 105 69
T DC4 020 14 i ? 063 3F R | 106 6A
U NAK 021 15 i@ 064 40 i k107 68
vy SYN 022 16 i A 065 41 N 108 6C
W ETB 023 17 i B 066 42 i m 109 6D
X CAN 024 18 i C o067 43 I n 110 6E
Y EM 025 19 ! D 068 44 I o 111 6F
Z SuB 026 1A i} B 069 45 oop 112 70
{ ESC 027 1B I F 070 46 g 113 71
\ FSs 028 1C i 6 071 47 H r 114 72
] @GS 029 1D i H 072 48 s 115 73
© RS 030 1E i I 073 49 It 116 74
- us o031 1F v J 074 4A boow 117 75
SP 032 20 i K 075 48 i v 118 76
! 033 21 i L 076 4C !oow 119 77
" 034 22 I M 077 4D ox 120 78
035 V&l i N 078 4E ooy 121 79
$ 036 24 i 0 079 4F Vooz 122 7A
% 037 25 i P 080 50 i { 123 7B
& 038 26 i a o8l 51 i 1 124 7C
' 039 27 i R 122 52 i P} 125 70
(040 28 IS 13 53 T 126 7E
) 041 29 i T 124 54 i DEL 127 F
* 042 2A iU 125 55

Copyright (c) 1984 Data Access Corporation 06/08/84

F-42 TABLE OF ASCII CODES DataFlex 2.0 User's Manual

THIS PAGE INTENTIONALLY LEFT BLANK

Copyright (c) 1984 Data Access Corporation 06/08/84

| Exclamation point, Macro argument marker, E-15
Pound sign, Macro command marker, E-14
$ Dollar sign
Compile time variable identifier, E-16
Menu system question actuator, B-55
Print format option, D-7
Window formatting character, B-18
% Percent sign, Window formatting character, C-38
& Ampersand
FIELDINDEX driver, E-11
WINDOWINDEX driver, E-11
Quotation mark
Data delimiter, D-62
() Parentheses, Expression evaluator, C-4
* Asterisk, Expression evaluator, C-4
+ Plus, Expression evaluator, C-4
- Dash, Expression evaluator, C-4
.BAD, Reindex option, B-42
. Decimal point, Data window character, B-16
/* Screen terminating character, B-2, B-15, B-30
/ Slash
Data window character, B-16
Expression evaluator, C-4
Pagename identifier, B-30
Report section delimiter, C-32
Zero, Window formatting character, B-18
Less than, Expression evaluator, C-4
Greater than, Expression evaluator, C-4

® VvV AN

Data file name suppressor, C-58
Window formatting character, B-18
{1 Brackets, Indicator, D-19
_ Underscore, Command name character, D-61
{} Braces
ENTRY Format option delimiting, C-19
Option delimiting, D-6
| Bar, Symbol replacement identifier, E-20

- A -

ABORT

Command, D-34

Report while running, C-43
ACCEPT, Command, B-18, D-1
Access control, System, B-54
Addition - Expression, C-4
ALL Indicator conjoiner, D=22
Ampersand

FIELDINDEX driver, E-11

WINDOWINDEX driver, E-11
AND Indicator conjoiner, D-22

Copyright (c) 1984 Data Access Corporation 07/10/84

F-44 INDEX DataFlex 2.0 User's Manual

ANY Indicator conjoiner, D-22
APPEND, Command, D-16
Application
Conversion from earlier DataFlex, 8-51
Creating, A-7, B-l
Customizing, B-11
Structure, C-87
Transporting, C-67
Argument
Classes, C-1
Filename, C-6
Indicator, C-7
Types, C-1
Arguments
Macro commands, E-15
Predefined, F-4
ASCII
Codes, F-41
Command, D-13
Data type, B-22
ASCII Data type, B-3, B-16
AS - Indicate comparison, D-22
ATTACH, Command, D-53
Auto-return, System options, A-19, A-26
AUTODEF, A-7, B-1, B-25
Errors, B-26
AUTOFIND, ENTRY Format options C-19
AUTOPAGE, Command, C-21, D-3

-B =

B+ ISAM, B-24

BACKFIELD, Command, E-4

BACK WINDOW, Flex-Key, A-37, B-1l, B-37
Bar, Symbol replacement {dentifier, E-20
BASIC, Data, D-61

Basic operations in DataFlex, A-5

Batch file, Executing DataFlex from, D-57
BEGIN - END, Command, D-35

BLANKFORM, Command, D-3

Blank suppress, Print format option, D-7
BLOCKS AND LOOPS, D-35

Body, RESIDENT Report option, C-33

Body section, REPORT Macro, C-32

Braces, ENTRY Format option delimiting, C-19
Braces - Option delimiting, D-6
Brackets, Indicator defining, D-19
Breakpoints, Subtotalling, C-34

BREAK Subtotal controller, C-34

Bright screen attribute, D-43

Buf fer, Record, D-45

Buffering, Index, D-47

Copyright (c) 1984 Data Access Corporation 07/10/84

DataFlex 2.0 User's Manual

-C -

C» Window formatting character, B-18
CALC, Command, C-14
CALCULATE

Cormmand, C-14

Flex-Key, A-23, B-37
Capacities

DataFliex, F-9

System, F-9
Capitalization in configurations, B-30
CAPSLOCK

ENTRY Format option, C-19

Format option, D=6
Caps lock, Window formatting option, B-18
Case, Upper and Tower, B-30
CHAIN, Command, B-33, D-32
Changing data, A-38
CHARACTER, Command, D-14
Characters, Window formatting, B-18
CHECK, Macro command, E-18
CHECK=

ENTRY Format option, C-19

Format option, D-6
CLEAR

Command, D-52

Flex-Key, C-19
CLEARFORM, Command, D-3
CLEARSCREEN, Command, D-42
CLEARWARNING, Command, D-34
CLEARXY, Command, D-41
CLEAR ALL, Flex-Key, A-19, A-36, B-11
Clear screen, A-29, A-36, D-3
CLEAR SPace BACK, Flex-Key, A-24, B-36
CLOSE_INPUT, Command, D-62
CLOSE_QUTPUT, Command, D-62
CMDLINE, Command, D-17, D-32
Codes

ASCII, F-41

Lead-in, A-28

Positioning, Cursor, A-31

Terminal control, A-29, A-33
COM/CMD files, A-34
Comma

Data delimiter, D-62

Window formatting character, B-18

Copyright (c) 1984 Data Access Corporation

06/ 08/ 84

DataFliex 2.0 User's Manual

Command

ABORT, D-34
ACCEPT, B-18, D-1
APPEND, D-16
ASCII, D-13
ATTACH, D-53
AUTOPAGE, C-21, D-3
BACKFIELD, E-4
BEGIN - END, D-35
BLANKFORM, D-3
CALC, C~14
CALCULATE, C-14
CHAIN, B-33, D-32
CHARACTER, D-14
CLEAR, D-52
CLEARFORM, D-3
CLEARSCREEN, D-42
CLEARWARNING, D-34
CLEARXY, D~41
CLOSE_INPUT, D-62
CLOSE_OQUTPUT, D-62
CMDLINE, D~17, D-32
COPYFILE, D-56
DATE, C-10
DEBUG, D-33
DELETE, D-52
Under multi-user, E-8
DESPOOL, E~10
DIRECTORY, D-56
DIRECT_INPUT, D-61
DIRECT_OUTPUT, D-62
DISPLAY, D-2
ENDGROUP, D-8
END (WHILE), D-37°
ENTAGAIN, E-4
ENTDISPLAY, C-26, D-8
ENTER, C-18
ENTEREND, C~22
ENTERGROUP, D-8
ENTERMODE, E-4
ENTRY, C-19, D-8
Under multi-user, E-8
ERASEFILE, D-55
ERROR, D-33
FILELIST, D-56
FILELIST NEXT, D-57
FILELIST PATHNAME, D-57
FIND, D-48
FORMAT, D-6
FORMFEED, C-43
FOR - FROM - TO LOOP, D-37
GosuB, D-30
GOTO, D-29

Copyright (c) 1984 Data Access Corporation

06/08/84

DataFlex 2.0 User's Manual INDEX F-47

Command (continued)
GOTOXY, D-41
HELP, E-5
IFCHANGE, E-9
INCREMENT, C-14
INDICATE, D=-22
INDICATOR, C-12, D-19
INKEY, D-43
INPUT, D-40
INTEGER, C-11
KEYCHECK, D-42
KEYPROC, E-2
LEFT, D-11
LENGTH, D-15
Line length, B-30
LOCK, E~9
LOOP (FOR - FROM - TO), D~-37
LOOP (REPEAT), D-36
Macro command, E-14
Maximum 1ine length, C-21
MID, D-13
MOVE, C-13
MOVEINT, C-13
MOVENUM, C-13
MOVESTR, C-13
NAME: 8‘16; D‘S
NUMBER, C-10
ON GOSuUB, D-31
ON GOTO, D-30
OPEN, D-47
OUTCLOSE, D-4
OUTFILE, D-4
ouTPUT, B-16, D-5
PAD, D-15
PAGE, B-16, D-1
PAGECHECK, C-43
POS, D-14
PRINT, B-18, C-38, D-7
READ, D-62
READLN, D-64
REGISTRATION, D-58
RELATE, D-52
RENAME, D=55
REPEAT - LOOP, D-36
REPEAT = UNTIL, D-35
REPORTEND, C-33
REREAD, E-9
RETURN, C-22, C-24, D-31
RIGHT, D-12
RUNPROGRAM, D-58
SAVE, D-51

Under multi-user, E-8

SAVERECORD, D-51

Copyright (c) 1984 Data Access Corporation 06/08/84

F-48 INDEX DataFlex 2.0 User's Manual

Command {(continued)
SCREENMODE, D-43
SETCHANGE, E-10
SHOW, D-39
SHOWLN, D-40
STRING, C-9
SUBTOTAL, C-38
SYSDATE, D-58
SYSTEM, D-57
TRIM, D-16
UNLOCK, E-9
UNTIL (REPEAT), D-35
UPPERCASE, D-17
WHILE - END, D-37
WRITE, D-66
WRITELN, D-67
ZEROFILE, D-54
Commands
Configuration, B-30
Console Input/Output, D-39
Controtl, D-29
Creating new, E-13
Database, D-45
DataFlex, B-19
Definition, C-9
Key, E-1
List by groups, F-6
Modifying, E~13
Multi-User, E=7
Operating system, A-34
FLEX, B-33
Sequential Input/Output, D-61
String manipulation, D-11
Structured Control, D-35
Syntax, F-6
System, D~55
Commas, Embedded, B-18
Comparison, Modes
IF, D-25
Indicator, D-21
Compatibility, DataFlex 2.0 to earlier versions, B-51
Compilation
Compile time options, B-31, D-33, E-20
Compile time variables, E-16
Conditionals in, E-17
Configuration, A-7, B-8, B-29, B-31
Error l1ist, F-14
Files, F-31
Intermedicate code, E-20
Replacements with, E-14
Compiler, A-8
COMPILER ERROR MESSAGES, F-13

Copyright (c) 1984 Data Access Corporation

06/08/84

DataFlex 2.0 User's Manual

INDEX F-49

Conditionals, Compile time, E-17
CONDITIONAL EXECUTION, D-19
Condition setting, Indicator, D-20
Configuration

Commands, B-30

Compilation, A-7, B-8, B-29, B-31

Creation, A-41, B-29

Errors, F-28

Flex-Keys, A-28

Function keys, A-28

Myltifile, C-69

READ, B8-44, B-46

Replacements in, E-14

Running, B-8, B-29, B-33

Samples, C-69

Source file, B-29

Terminal, A-25

Termination, D-34

Transporting, C-67
Configurations

Creation, B-35

Editing, B-35
Configuration 1imitation, Errors, F-27
Conjoiners, Indicator, D-22
Console Input/Output, Commands, D-39
Constant

Date, C-6

Numeric, C-3

String, C-2
Control

Commands, D-29

Screen, D-39
CONTROLLING EXECUTION SEQUENCE, D-29

Conversion, DataFlex earlier versions, A-8, B-51

COPYFILE, Command, D-56
Copying, Files, D-56
Corruption, Data, F-23
Creating record
ENTER Sequence, C-27
Procedure, D-46
Creation, Configurations, B-35
Cursor
Manipulation, A-37
Positioning, Codes, A-31
Customizing, Application, B-11

Copyright (c) 1984 Data Access Corporation

06/08/84

F-50 INDEX DataFlex 2.0 User's Manual

Dash, Window formatting character, B-18
Data
BASIC, D-61
Conversion from earlier DataFlex, B-51
Corruption, F-23
DBASEII, B-44
Elements, B-21
Exporting, D-61
Field, B-21
Importing, B-44, D-61
Indexing, B-23
MailMerge, A-46, D-61
Other 1anguages, B-44, D-61
Record, B-21
Recovery, F-22
Security, B-54
Space requirements, B-22, B-25, C-58
Structure, B-18
Types, B-3, B-22
Window, D-1
Window formatting, B~18, D-6
Database
Commands, D-45
FILES, B-25, D-56
File definition, C-47
File number, A-42
Database files, Maximum number of records, C-58
DATAFLEX UTILITIES, B-35
Data consistency, Errors, F-28
Data delimiter
! Quotation mark, D-62
Comma, D-62
Quotation mark, D-62
Data element, Name, B-26
DATA ENTRY, C-15
Data type
ASCII, B-22
DATE, B-22, C-79
NUMERIC, B-22
Data windows, Referencing, B-16
Data window character, B-2
. Decimal point, B-16
Decimal point, B-16
Diagonal, B-16
Stash, B-16
DATE
Command, C-10
Constant, C-6
Data type, B-3, B-16, B-22, C-79
Julian, C-79
Variable, C-5

Copyright (c) 1984 Data Access Corporation

07/18/84

DataFlex 2.0 User's Manual INDEX

F-51

Dates

Calculations, C-5

Euro-date, C-5

Julian, B-16, C-5

Other centuries, B-16, B-22
DBASEII, Data, B-44
DEBUG, Command, D-33
Debugging, With compile time conditionals, E-17
Decimal places

ENTRY Format option, C-19

Format option, D-6
Decimal point, Data window character, B-16
DECLARING DATA ELEMENTS, C-9
Definition, Commands, C-9
Definitions, Terms, F-35
Definition of terms - operator, A-16
DELETE

Command, D-52

Under multi-user, E-8

Index, C-64

Record, D-52
DELete CHARacter, Flex-Key, A-24, B-36
DELete RECord, Flex-Key, A-22, B-37
Deleting file, C-66, D-55
Deleting record, B-43

ENTER Sequence, C-28

Procedure, D-46
DESIGNING DATABASES, Chapter, B-21
DESPOOL, Command, E~10
Destructive backspace, A-29
Devices, Input/Qutput, D-61
Diagonal

Data window character, B-16

Pagename identifier, B-30

Report section delimiter, C-32
Diagram, System, A-10
Dim screen attribute, D-43°
DIRECTORY, Command, D-56
DIRECT_INPUT, Command, D-61
DIRECT_OUTPUT, Command, D-62
DIRECT CONTROL OF DATA ENTRY, D-1
DIRECT CONTROL OF THE CONSOLE, D-39
DIRECT INPUT AND OUTPUT, D-61
Disk drive, A-34
Disk 1imitation, Errors, F-24
DISPLAY, Command, D-2
DISPLAYONLY, ENTRY Format option, C-19
Division - Expression, C-4

Copyright (c) 1984 Data Access Corporation 07/18/84

DataFlex 2.0 User's Manuatl

Dollar sign
Compile time variable identifier, E-16

Floating, B-18
Menu system question actuator, B-55
Print format option, D-7
Window formatting character, B-18
Down Arrow, Flex-Key, B-36
Duplicate
Record, B-24, B-27, B-42, C-55
Records, C-83

-F -

Editing, A-38
Configurations, B-35
Database, A-38
Menu, B-54
Record, A-38
Editing record
ENTER Sequence, C-27
Procedure, D-46
EDITOR, A-7, B-1, B-35
Flex-Keys, B-35
Function keys, B-35
Element
Name, B-21
Data, B-21
ELEMENTS OF CONFIGURATIONS, Chapter, C-1
ELSE, Macro command, E-17
Embedded, Commas, B-18
ENDOFREPORT, Predefined procedure, C-43
END.OF.REPORT, Predefined procedure, C-43
ENDCOMMAND, Macro command, E-14
ENDGROUP, Command, D-8
ENDIF, Macro command, E-17
Ending session, A-38
END (WHILE), Command, D-37
ENTS$PERMISSIVE, Predefined indicator, C-28
ENTAGAIN, Command, E-4
ENTDISPLAY
Command, C-26, D-8
Under multi-user, E-8
ENTER
Command, C-18
Macro, C-15
Sequence of operation, C-27
Structure, C-17
Under multi-user, E~8
ENTER.CLEAR, User-Defined procedure, C-24
ENTER.DELETE
User-Defined procedure, C-24
Under muylti-user, E-8
ENTER.EDIT, User-Defined procedure, C-24
ENTER.EXIT, User-Defined procedure, C-2Z4

Copyright (c) 1984 Data Access Corporation

06/08/84

DataFlex 2.0 User's Manual INDEX F-53

ENTER.SAVE
User-Defined procedure, C-24
Under multi-user, E-8
ENTEREND, Command, C-22
ENTERGROUP
Command, D-8
Macro, D-8
Flex-Keys, D-8
ENTERMODE, Command, E-4
ENTRY
Command, C-19, D-8
Under multi-user, E-8
Format options, C-19
New record, A-38, B-9, C~70
Entry/Editing
Termination, A-38
Under multi-user, E-8
Entry screen, Image, A-20, B-1, B-15
ENTRY Section, ENTER Macro, C-19
EQ
Find mode, D-48
IF Comparison mode, D-25
Indicator comparison mode, D-21
ERASEFILE, Command, D-55
ERR, Predefined indicator, F-33
ERROR, Command, D-33
Errors
AUTODEF, B-26
Compile time, B-31
Configuration, F-28
Configuration limitation, F-27
Conversion, Earlier versions of Dataflex, B-52
Data consistency, F-28
Disk Timitation, F-24
Full disk, F=~24
Media and Hardware, F=-22
Memory limitation, F=25
Multiuser, F-32
Operator, F-21
Set up, F-31
Types, F-13
Error list
Compilation, F-14
Runtime, F-19
Error messages
Clearing, D-34
Custom, D-33, F-33
Types, F-19
ESCape, Flex-Key, A-19, A-38, B-37
Euro-date option, C-5
Exclamation point, Macro argument marker, E-15
Exiting to operating system, D-57
Exporting, Data, D-61
Expression, C~4
Expression evaluation, Operators, C-4

Copyright (c) 1984 Data Access Corporation 06/08/84

F-54 INDEX DataFlex 2.0 User's Manual

Facilities of DataFlex, Diagram, A-13
FALSE - IF Result, D-24
FALSE Indicator condition, D-19
Field

Data, B-21

Index, B=-27, C-55

Length, B-22

Name, A-43, B-26

Overlapping, C-54

Record number, C-55

Relationships among, C-50

Specifications, C-53

Subtotalling breakpoint, C-34
FIELDINDEX, Predefined variable, E-11
FIELDINDEX AND WINDOWINDEX, Chapter, E-11
Field name, RECNUM, E-11
FILEDEF, A-9, C-47, D-45

Abort, C-67

Converting data, DataFlex earlier versions, B-51

Create/Edit Fields, C~60

Create/Edit indexes, C-63

Create definition from ,DEF file, C-67

Create definition from screen image, C-66

Erase data file, C-66

Escaping from, C~56

Print file definition, C-65

Save definition/Exit, C-67

Set file inactive, C-66

Set file parameters/names, C-66
FILELIST, Command, D-56
FILELIST NEXT, Command, D-57
FILELIST PATHNAME, Command, D=57
Filename

Argument, C-6

Conventions, F-3

Database, C-58

Extensions, F-3

Rootname, C-57
FILENUMBER, Predefined variablie, D-57
Files

*,BAD, B-42, B-43

*_CMD, D-58

*,COM, D-58

*.DAT, A-6

*.DEF, C-67

* FD, A-8, B-51

*,FLX, A-6, B-31

* FRM, B-27, B-51

*,1C, E-20

* Kx, A-6, B-39

*.PRN, A-8

*.,RPT, B-51

*,TAG, A-6, C-61

Copyright (c) 1984 Data Access Corporation 06/08/84

DataFlex 2.0 User's Manual INDEX F-55

.COM/CMD, A-34

AUTODEF.COM, B-1, B-25

COMMAND ,DEF, E-21

COMP.COM, A-8, B-31

COMP.OVF, A-8

Compilation, F-31

Configuration, A-6

Copying, D-56

Created by READ, B-49

CUSTOMER.DAT, C-72

CUSTOMER.FRM, C-73

CVTFORM.COM, B-51

CVTFRM,COM, A-8

CVTRPT.COM, A-8, B-51

Data, Other languages, D-61

Database, B-25, D-56
Closing, D-62
Definition, C-47, C-72
Importing, B-44
Maximum number of records, A-27, C-58
Opening, D-61
Relationships among, C-48

DataFlex supplied, A-34, B-35
Names and types, F-3

Deleting, D-55

EDITOR.COM, A-7, B-1, B-35

FILEDEF.COM, A-9

FILELIST.CFG, A-5, D-39, D-56

FLEX.CFL, A-8, E-13

FLEX.COM, A-6

FLEXERRS.DAT, D-33, F-33

FLEXERRS.FLX, F-33

FMAC) A‘gp E‘13

FREL.COM, A-7, B-39

Intermediate code, E~20

INVOICE.FRM, C-87

INVT.DAT, C-83

Locking, E-7

Macro, PACKing, E-13

MENU.DAT, A-7

MENU.FLX, A-7

MENUDEF.FLX, B-53

PACK.COM’ A‘gp E"13

PEOPLE, B-2

Program, A-34

QUERY.COM, A-41

READ.FLX, B-44

RUN.OVF, A-6

Runtime, F-31

Sample, A-36

SETSCREE.COM, D-39

SYSFILE, D-54

System, D-54

TERMLIST.CFG, A-5

VENDOR.DAT, C-78

Vendor master, A-36

Copyright (c) 1984 Data Access Corporation 06/ 08/84

F-56 INDEX

DataFlex 2.0 User's Manual

FILES ARGUMENTS AND COMMANDS. Appendix, F-3
File definition
Changing, F-27
Database, C-47
FILE DEFINITION (FILEDEF), C-47
File manipulation, D-46, D-55
File number, Database, A-42Z
FILL=, Print format option, D-7
FIND
Command, D-48
Flex-Key, A-20, A-36, A-37, B-10, B-37
Mode, D-48
FINDERR, Predefined indicator, D-24, D-49
Finding, Index, D-48
Finding record, B-10, C-70
Procedure, D-46
Speed, C-55
FINDREQ, ENTRY Format option, C-19
FLEX, Reindex option, B-42
Flex-Key
Assignments printing, A-32
BACK WINDOW, A-37, B-11, B-37
CALCulate, A-23, B-37
CLEAR, C-19
CLEAR ALL, A-19, A-36, B-11
CLEAR SPace BACK, A-24, B-36
DELete CHARacter, A-24, B-36
DELete RECord, A-22, B-37
Down Arrow, B-36
ESCape, A-19, A-38, B-37
FIND, A-20, A-36, A-37, B-10, B-37
Function definition, E-1
HELP, A-23
INSert CHARacter, A-24, B-36
Left arrow, A-24, B-36
NEXT RECord, A-22, A-37, B-10, B-38
Predefined indicator, E-1
PREVious RECord, A-22, A-37, B-10, B-38
RETURN, A-19, A-37, B-35
Right arrow, A-24, B-36
SAVE RECord, A-22, A-38, B-37
SUPERFIND, A-21, B-38
Up Arrow, B-36
USER, B-37
User-defined, A-24
Flex-Keys
Assignments printing, A-33
Configuration, A-28
Description, A-36
EDITOR, B-35
ENTERGROUP Macro, D-8
Summary, A-18
When active, F-33

Copyright (c) 1984 Data Access Corporation

06/08/84

DataFlex 2.0 User's Manual

INDEX F-57

FLEXERRS.DAT, D-33, F-33
FLEXERRS.FLX, F-33
FLEX Operating system command, B-33
FLOAT$, Print format option, D-7
Floating, Dollar, B-18
FMAC, A-9
FORCEPUT, ENTRY Format option, C-19
FORMAT, Command, D-6
Formatting

Image, B-15

Window, B-18
FORMATTING WITH IMAGES, B-15
Format options

ENTRY, C-19, F=5

wWindow, B-18, F-5
FORMFEED, Command, C-43
Forms commands, D-1
FOR - FROM -~ TO - LOOP, Command, D-37
FOUND, Predefined indicator, D-24, D-49
FRee List program, B-39

Indications of need to use, B-43
FREe List utility, A-7
FREL.COM, A-7
Full disk, Errors, F-24
Function definition, Flex-Key, E-1
Function keys

Configuration, A-28

EDITOR, B-35

GE
Find mode, D-48
IF Comparison mode, D-25
Indicator comparison mode, D-21
Getting started, A-33
GLOSSARY, F-35
GOSUB, Command, D-30
GOTO, Command, D-29
GOTOXY, Command, D-41
Greater than, Expression, C-4
Groups, Command (list), F-6
GROUP Indicator conjoiner, D-22
GT
Find mode, D-48
IF Comparison mode, D-25
Indicator comparison mode, D-21

Copyright (c) 1984 Data Access Corporation

06/ 08/84

F-58 INDEX

DataFlex 2.0 User's Manual

- H -

Header section, REPORT Macro, C-32
Height, Terminal, A-29
HELP
Command, E-5
Flex-Key, A-23
Pagename, E-5
HELP Option, PAGE, B-19
High intensity, A-29, D-43
HOW TO WRITE A CONFIGURATION, Chapter, B-29

-] -

IF

Comparison, Modes, D-25

Macro command, E-17

Test, D-24
IFCHANGE, Command, E-9
IFCLASS, Macro command, E-18
IFDEF, Macro command, E-18
IFSAME, Macro command, E-18
IFTYPE, Macro command, E-18
IF Result

FALSE, D-24

TRUE, D-24
Image .

Entry screen, A-20, B-1, B-15, C-66

From dBASE II, B-45

Formatting, B-15

Pages, B-15, B-30

Report, B-1, B-15
Image section

ENTER Macro, C-18

REPORT Macro, C-32
Importing, Data, B-44, D-61
IN

IF Comparison mode, D-25

Indicator comparison mode, D-21
INCLUDE, Macro command, E-16
INCREMENT, Command, C-14
Index

Batch, B-39

Buf fering, D-47

Delete, B-42, C-64

Field, B-27, C-55

Finding, D-48

Main, C-56

Multi-segment, C-83

Number, D-48

On-line, B-39
Indexed Sequential Access Method, B-24

Copyright (c) 1984 Data Access Corporation

06/08/84

DataFlex 2.0 User's Manual

INDEX F-59

Indexes, Non-DataFlex data files, B-47
Indexing, B-39, C-71
Data, B-23
Key s A-37, B-24
REPORT Macro, C-39
Segments, B-24, C-54
Space requirements, C-55
INDICATE, Command, D-22
Ipdicator
Argument, C-7
Command, C-12, D-19
Comparison, Modes, D-21
Condition setting, D-20
Conjoiners, D=-22
Predefined
FINDERR, D-49
FOUND, D-49
SELECT, C-38
Indicators, D-19
Conditions, D-19
Predefined, D-24, D-26, F-4
INKEY, Command, D-43
INPUT, Command, D-40
Input/Output, Devices, D-61
INSert CHARacter, Flex-Key, A-24, B-36
Installation
DataFlex, F-31
Program, A-33
Terminal, A-5, A-25
INSTALLING DATAFLEX, A-25
INTEGER, Command, C-11
Intermedicate code, Compilation, E-20
In strings, D-18

-] -

Julian, Dates, B-16, C-5

Key

Commands, E-1

Indexing, A-37, B-24
KEY.keyname, Predefined indicator, E~l
KEYCHECK, Command, D-42
KEYPRESS Predefined indicator, D-24
KEYPROC, Command, E-2
Key procedures, E-2

Copyright (c) 1984 Data Access Corporation

06/ 08/ 84

F=60 INDEX DataFlex 2.0 User's Manual

- L -

Label, D-29
LASTERR, Predefined variable, F-33
LASTIF, Predefined indicator, D-26
LE
Find mode, D-48
IF Comparison mode, D-25
Indicator comparison mode, D-21
Lead-in Codes, A-28
LEFT, Command, D-11
Left arrow, Flex-Key, A-24, B-36
LENGTH
Command, D~15
Field, B-22
Record, B-22, C-58
Less than, Expression, C-4
Line Yength, Command, 8-30
LOCK, Command, E-9
Locking
Files, E-7
Record, E-7
Logged~in disk drive, A-34
Looping, Report, C-44
l.oops, D-35
LOOP (FOR - FROM - TO), Command, D-37
LOOP (REPEAT), Command, D-36
Low intensity, A-29, D-43
LT
Find mode, D-48
IF Comparison mode, D-25
Indicator comparison mode, D-21

- M-

Macro
ENTER, C-15
Sequence of operation, C-27
Structure, C-17
Under multi-user, E-8
ENTERGROUP, D-8
Operations, E-13
REPORT, C-31
Structure, C-31
Vs. subroutine, E-15
Macros
Adding, A-9
Changing, A-9

Copyright (c) 1984 Data Access Corporation 06/08/84

DataFlex 2.0 User's Manual INDEX

Macro command

CHECK, E-18

COMMAND, E-14

ELSE, E-17

ENDCOMMAND, E-14

ENDIF, E-17

IF, E-17

IFCLASS, E-18

IFDEF, E-18

IFSAME, E-18

IFTYPE, E-18

INCLUDE, E-16

REPLACE, E-14

SET, E-16
Macro command marker, # Pound sign, E-14
MaiiMerge, Data, A-46, D-61
MANIPULATING DATA ELEMENTS, Chapter, C-13
MANIPULATING FILES, Chapter, D-55
MANIPULATING RECORDS, Chapter, D-45
MANIPULATING STRINGS, Chapter, D-11
Manual, Organization of, A-1
MATCH

IF Comparison mode, D-25

Indicator comparison mode, D-21
Maximums, Specifications, F-9
Maximum 1ine length, Command, C-21
Maximum number of records, Database files, A-27, C-58
MEMAVAIL, Predefined variable, F-25
Memory, Available, Determining, F-25

Requirements, F-25
Memory limitation, Errors, F-25
Menu

Configuration, A-35

Default, B-56

Master, A-34

Sub-menu, B-56
MENU.FLX, A-35
Menu system, A-7, A-35, B-33

Menu creation and maintenance, B-53
MID, Command, D-13
Minus sign on right, Print format option, D-7
Mode, Find, D-48
Modes, Comparison

IF, D-25
Indicator, D-21

MODIFYING AND EXTENDING DATAFLEX, Chapter, E-13
MOVE, Command, C-13
MOVEINT, Command, C-13
MOVENUM, Command, C-13
MOVESTR, Command, C-13
Multi-segment, Index, C-83

Copyright (c) 1984 Data Access Corporation 06/ 08/84

F-62

DataFlex 2.0 User's Manual

INDEX

Multi-User

Commands, E-7

ENTER Macro under, E-8

Method of operation, E-~7

Reread, C-59

Write privilege, E-8
MULTI-USER FUNCTIONS, Chapter, E-7
Multi-User operation, E-7
Multi-User system option, A-27, E-7
Multiplication, Expression, C-4
Multiuser, Errors, F-32
MULTIUSER, Predefined indicator, D-24

- N -

NAME
Command, B-16, D-5
Data element, B-26
Element, B-21, C-7
Field, A-43, B-26, C-7
Windows, D-5
NE
IF Comparison mode, D-25
Indicator comparison mode, D-21
NEWPAGE, Predefined procedure, C-43

NEXT RECord, Flex-Key, A-22, A-37, B-10, B-38

NOENTER, ENTRY Format option, C-19
NOISY 0 compile time option, E-20
NOISY 1 compile time option, E-20
NOISY 99 compile time option, E-20
Non-DataFlex data files, Indexes, B-47
MOPUT, ENTRY Format option, C~19
NOT

IF Test reversing, D-26

Indicator reversing, D-19
Notational conventions, A-2
NOT Indicator conjoiner, D-22
NUMBER

Command, C-10

Index, D-48

Record, A-38, B-21, B-24
Numeric

Constant, C-3

Data type, B-22

Variable, C-3
NUMERIC Data type, B8-3, B-16

Copyright (c) 1984 Data Access Corporation

06/08/84

DataFlex 2.0 User's Manual INDEX

ON GOsSuB, Command, D-31
ON GOTO, Command, D-30
OPEN, Command, D-47
Operating system

Commands, A-34

Exit to, D=-57

Requirements, F-9
OPERATING TUTORIAL, Chapter, A-33
OPERATIONAL ORIENTATION, Chapter, A-5
OPERATOR'S GUIDE, Chapter, A-15
Operators, Expression evaluation, C-4
Operator abort, REPORT Macro, C-43
Options

Compile time, B-31

ENTRY Formatting, F-5

Window formatting, B-18, D-6, F-5
Organization of data, B-21
ORGANIZATION OF THIS MANUAL, Chapter, A-1
OR Indicator conjoiner, D-22
OUTCLOSE, Command, D-4
OUTFILE, Command, D-4
OUTPUT

Command, B-16, D-5

To devices, D-4
Output destination, REPORT Macro, C-42
Output options, QUERY, A-45
Overtapping fields, C-54

Packing macro files, E-13
PACK utility, A-9
PAD, Command, D-15
PAGE

Command, B-16, D-1

HELP Option, B-19

RESIDENT Option, B-19
PAGEBREAK, Predefined indicator, C-43, D-24
PAGECHECK, Command, C-43
PAGEEND, Predefined variable, C-41
PAGEFEED, Predefined variable, C-41
PAGENAME, B-2, B-15, B-30

HELP, E-5
Pagename identifier, Slash, B-30
Pages, Image, B-15, B-30
Page control, REPORT Macro, C-41
Parentheses, Expression, C-4
Passwords, B-54
PEOPLE,FRM Configuration file, B-7
PEOPLE Entry screen, B-2
Percent sign, Window formatting character, C-38

Copyright (c) 1984 Data Access Corporation 06/ 08/ 84

F-64 INDEX DataFlex 2.0 User's Manual

POINTS=
ENTRY Format option, C-19

Format option, D-6
POS, Command, D-14
Positioning, Cursor, Codes, A-31
Post-Entry section, ENTER Macro, C-27
Pound sign, Macro command marker, E-14
Pre-ENTER section, ENTER Macro, C-18
Predefined

Arguments, F-4

Indicators, D-24, D-26, F-4

Varfables, C-41, F-4
Predefined indicator

ENTS$PERMISSIVE, C-28

ERR, F-33

Fiex-Key, E-1

KEY.keyname, E-1

LASTIF, D-26

PAGEBREAK, C-43

SEQEOF, D-65

SEQEOL, D-63, D-65

STATUS, D-27
Predefined procedure

END$OF $REPORT, C-43

END.OF ,REPORT, C-43

NEWPAGE, C-43
Predefined variable

FIELDINDEX, E-11

FILENUMBER, D-57

LASTERR, F-33

MEMAVAIL, F-25

PAGEEND, C-41

PAGEFEED, C-41

RECNUM, C-55

WINDOWINDEX, E-11
PREVious RECord, Flex-Key, A-22, A-37, B-10, B~38
PRINT, Command, B-18, C-32, C-38, D-7
Program

QUERY, A-6

REINDEX, A-7
PROGRAMMING TUTORIAL, Chapter, B-1
Prompting, Operator, REPORT Run time, C-39

-Q-

QUERY, A-41
Program, A-6
Relation to REPORT Macro, C-31
QUERYING THE DATABASE, Chapter, A-41
QUERY Program, A-8
Questions, Operator runtime, Menu system, B-55
QUIET, Reindex option, B-42
Quotation mark, Data delimiter, D-62
QUOTED Report format, A-46

Copyright (c) 1984 Data Access Corporation

06/08/84

DataFlex 2.0 User's Manual

RANGE=
ENTRY Format option, C-19
Format option, D-6
Re-use of space, B-43
READ
Command, D-62
Files created by, B-49
READLN, Command, D-64
READ Program, B-44
READ Report format, A-45
READ Utility, A-8
RECNUM
Field name, E-11
Predefined variable, C-55
Record
Buffer, D-45
Data, B-21
Delete, D-52
Duplicate, B-24, B-27, C-55
Length, B-22, C-58
Locking, E-7 ,
Number, A-38, B-21, B-24, C-51
Selection, C=-55
Records
Duplicate, C-83
Record number
Fieid, C-55
Recovery, Data, F-22
REGISTRATION, Command, D-58
Reindex
Indications of need to, B-39
In submit procedure, B-41
Program, A-7, B-39
RELATE
Command, D-52
REPORT Subtotal section, C-35
Relationships among
Database files, C-48
Field, C-50
RENAME, Command, D-55
REPEAT - LOOP, Command, D-36
REPEAT - UNTIL, Command, D-35
REPLACE, Macro command, E-14
Replacements in, Configuration, E-14
Replacements with, Compilation, E-14

Copyright (c) 1984 Data Access Corporation

06/ 08/ 84

F-66 INDEX DataFlex 2.0 User's Manual

Repory

Image. B-1, B-15

Looping, C-44

Macro, C-31

Reporting without, C-45
Structure, C-31

Multiple copies, C-44

Query, A-43

Running total, C-38

Subtotalling, C-34

Totalling, C-34
REPORTEND, Command, C-33
REPORTING AND OUTPUT, Chapter, C-31
REPORT Macro

Indexing, C-39

Operator abort, C-43

Qutput destination, C-42

Page controtl, C-41

Relation to QUERY, C-31

Selection, C-38
REQUIRED, ENTRY Format option, C-19
Requirements

Memory, F-25

System, F-9

TPA, F-=25
REREAD

Command, E-9

Multi~-User, C-59
Reserved words, F-1
RESERVED WORDS OF DATAFLEX, Appendix, F-1
RESIDENT QOption

PAGE, B-19

Report, C-33
RETAIN, ENTRY Format option, C-19
RETAINALL, ENTRY Format option, C-19
RETURN

Command, C-22, C-24, 0-31

Flex-Key, A-19, A-37, B-35
RIGHT, Command, D-12
Right arrow, Flex-Key, A-24, B-36
Running, Configuration, B-8, B-33
Running total, REPORT, C-38
RUNPROGRAM, Command, D-58
Runtime

Error 1ist, F-19

Files, F-31
RUNTIME ERRORS AND DIAGNOSIS, Appendix, F-19
Runtime system, A-6, B-33

Copyright (c) 1984 Data Access Corporation

07/18/84

DataFiex 2.0 User‘'s Manual

INDEX F=67

SAMPLE APPLICATIONS, Chapter, C-69
Sample configurations and data, C-69
SAVE
Command, D-51
REPORT Subtotal section, C-35
Under multi-user, E-8
SAVERECORD, Command, D-51
Save record, A-38
Flex-Key, A-22, A-38, B-37
Speed, C-55
Scanning database, A-37
Screen, Control, D-39
SCREENMODE, Command, D-43
Security, Data, B-54
Segments. Indexing, B-24, C-54
SELECT, Predefined indicator, C-38
Selection
QUERY, A-44
Record, C-55
REPORT Macro, C-38
Speed, C-55
Semi-colon command 1ine concatenator, B-30
SEQFOF, Predefined indicator, D-24, D-65
SEQEOL, Predefined indicator, D-24, D-63, D-65
Sequential Input/Output, Commands, D-61
SET, Macro command, E-16
SETCHANGE, Command, E-10
SETSCREE.COM, A-25, A-33, D-39
SETSCREEn, A-25, A-33, A-36, D-39
Set up, Errors, F-31
SHOW, Command, D-39
SHOWLN, Command, D-40
SIGNRT, Print format option, D-7
Size, Database, Increasing, C-58
SKIPFOUND, ENTRY Format option, C-19
Slash
Data window character, B-16
Pagename identifier, B-30
Report section delimiter, C-32
Sort, QUERY, A-44
Source file
Creation, B-29
READ, B-44
Spaces in, D-18
Space requirements
Data, A-27, B-22, B-25, C-58
Deleted data, B-43
Indexing, C-55
Space suppression, Window formatting option, B-18

Copyright (c) 1984 Data Access Corporation

06/08/84

F-68 INDEX

DataFlex 2.0 User's Manual

SPECIFICATIONS, F-9
DataFlex, F-9

Field, C-53

Maximums, F-9
Speed

Finding record, C-55

Save record, C-55

Selection, C-55
STATUS, Predefined indicator, D-27
STRING

Command, C-9

Constant, C-2

Variable, C-2
Strings, D-18
String manipuiation, Commands, D-1l
Structure

Application, C-87

Data, B-18
Structured Control, Commands, D-35
Sub~-menus, B-56
Subheader section, REPORT Macro, C-32

SUBmit file, Executing DataFlex from, D-57

Subroutine, D-29
Vs. macro, E-15
SUBTOTAL, Command, C-38
Subtotalling
Breakpoints, C-34
Report, C-34
Subtotal section, REPORT Macro, C-32
Subtraction, Expression, C-4
SUPERFIND, Flex-Key, A-21, B-38
SUPPRESS, Print format option, D-7
Symbol-checking characters, E-19
Symbols
Classes, E~20
Types, E-20
Syntax, Commands, F~-6
SYSDATE, Command, D-58
SYSFILE, D-54
System
Access control, B-54
Capacities, F-9
Command, D-57
Commands, D-55
Files, D-54
Requirements, F-9
System checkout, A-33
System options
Auto-return, A-19, A-26
Multi-User, A-27, E-7

Copyright (c) 1984 Data Access Corporation

06/08/84

DataFlex 2.0 User's Manual

INDEX F-69

-T-

TABLE OF ASCII CODES, Appendix, F-41
Terminal
Configuration, A-25
Height, A-29
Installation, A-5, A-25
Width, A-29
Terminals, Predefined, A-25
Terminal control codes, A-29
Terminal initialization, A-29
Termination
Configuration, D-34
Entry/Editing, A-38
Terms, Definitions, F-35
Test, IF, D-24
Totalling, Report, C-34
Totals, QUERY, A-44
Total section, REPORT Macro, C-32
TPA, Requirements, F-25
Transporting
Application, C-67
Configuration, C-67
TRIM, Command, D-16
TRUE, IF Result, D-24
TRUE Indicator condition, D-19
Types
Data, B-3, B~22

-y -

Underscore, Command name character, D-61
UNLOCK, Command, E-9
UNTIL (REPEAT), Command, D-35
Updating database, A-38, C-19
UPPERCASE
Command, D=-17
ENTRY Format option, C-19
Format option, D-6
Up Arrow, Flex-Key, B-36
USER, Flex-Key, B=37
User-defined, Flex-Key, A-24
User-Defined procedure
ENTER.CLEAR, C-24
ENTER.DELETE, C-24
Under multi-user, E-8
ENTER.EDIT, C-24
ENTER.EXIT, C-24
ENTER.SAVE, C-24
Under multi-user, E-8
USING FUNCTION KEYS, Chapter, E-1
Utitities, B-35
DataFlex, F-33

Copyright (c) 1984 Data Access Corporation

06/ 08/84

F=70 INDEX DataFiex 2.0 User's Manual

Validation
ENTRY Format option, C-19
Format option, D-6
Variable
Date, C-5
Numeric, C-3
String, C-2
Variables, Predefined, C-41, F-4

- W -

WHILE - END, Command, D-37
Width, Terminal, A-29
Window
Data, D-1
Format options, B-18
WINDOWINDEX, Predefined variable, E-11
Windows, A-37, B-l1l, B-2, B~15
ASCII type, B-16
DATE type, B-16
Name, D-5
NUMERIC type, B-16
Window formatting
Characters, B-18
Data, B-18, D-6
Options, B~18, D-6
Window formatting character
% Percent sign, C-38
Percent sign, C-38
Words, Reserved, F-1
WRITE, Command, D-66
WRITELN, Command, D-67
Write priviiege, Multi-User, E-8

-7 -

Zero, Window formatting character, B-18
ZEROFILE, Command, D-54

Zero fi11, Window formatting option, B-18
Zero suppresss Window formatting option, B-18

Copyright (c) 1984 Data Access Corporation

06/08/84

DataFlex 2.0 User's Manual MANIPULATING RECORDS D-47

OPEN Command

An OPEN command makes all database files associated with a file
"df_filename" (data and key files) available for DataFlex operations.
(See the FILEDEF documentation for information on df _filename).
Specifically, when a file is OPENed, the referenced data file, and all
associated key index files are opened, buffer space is automatically
allocated in memory, and upon completion of the OPEN operation, aill
files are available for on-line processing.

The OPEN command(s) should be at the beginning of the configuration
and must be executed before the files associated with the df_filename
can be addressed by other commands.

FORMAT :
OPEN file_name_arg {index.n}
Where OPEN is the command, "file_name_arg" is the "SHORT
NAME" (created in FILEDEF) of the file to be OPENed, and n
represents the number of an index that may optionally be
loaded into a memory "buffer™ to speed sequential access to
records in a file.

EXAMPLE:

OPEN 1inventory
OPEN personnel index.2

In the second example above, the "index.2" option after the
df_filename "personnel" elects to load the second index for that
database file into a memory buffer.

The optional index buffering only provides a speed improvement when
the access to records is sequential, as in a report. Random
operations, such as transaction entry to non-sequential records, will
not benefit from buffering.

The usefulness of the index buffering option is, as with most other
options, subject to tradeoffs. The number of the index is established
in the index definitions as previously created in the FILEDEF func-
tion. If the option is selected, record locations required by FIND
and other accessing operations are read directly from the computer's
active memory (RAM) rather than via a separate (slower) disk access
and file-read operation.

The tradeoff when using record buffering is the sacrifice of a portion
of the computer's RAM that is consumed by this process. The overall
size of your configuration, number of files opened, RAM capacity of
your computer, and so on, determines how much RAM is available over
and above what is required to carry out the application's basic
functions, and will dictate whether the index-buffering option is
worthwhile, or even possible,

Copyright (c) 1984 Data Access Corporation 05/ 16/84

DataFlex Registration: What, Why and How

Registration is an easy, simple procedure which permanently marks your copy of
DataFlex as exclusively yours or your company’s. It also documents that you have rights
to use DataFlex. When you start the enclosed DataFlex software, it will display the
"TEMPORARY REGISTRATION" legend shown on the reverse side of this document.

After registration, the sign-on will display your chosen name. This is also illustrated on
the reverse side of this document.

First the attached "Limited Use Software License Agreement" must be signed and
returned to Data Access Corporation. We cannot register your license without this

Agreement. The Agreement describes what you may and may not do with your DataFlex
software and its documentation.

If the terms of the agreement are unacceptable to you, DO NOT BREAK THE SEAL on
the envelope containing the disks. Take the envelope, documentation, and these papers
back to your dealer and request a refund.

If, as we hope, all is agreeable, sign and date the Agreement. Turn it over and referring
to the instructions on the back of this page, carefully fill out the "Registration Request".
After you have done this, you may want to make and keep a copy of the Registration
Request and License Agreement for your records. When everything is complete, place
only the Registration Request/License Agreement in the provided return envelope and
mail it back to us. We will get back to you with your registration code.

If both the Registration Request and the License Agreement are not completely filled
out, they will be returned to you without processing your registration request.

With these papers, you will also find a sheet of keycap appliques. There is an applique
for each single-key command (Flex-Key) in DataFlex as well as some others. After you
have installed DataFlex, you will find these appliques handy for marking the keys you
have selected (with the SETSCREE program) for each of these functions.

Please turn this page over for registration instructions.

How to fill out the Registration Request

The Registration Request on the next page is the way you tell us in what name you want
your copy of DataFlex registered. The registered name should be the owner (a company
or individual) of the license to use DataFlex. Capitalization and punctuation of the
name are up to you. If these factors are important to you, be very careful. A registra-
tion can not be changed once it is done.

Please be careful to also enter the correct address. We have to mail your registration
code back to you. In addition, your registered address is used to mail product update
notices, technical bulletins and similar material to you.

After you have run SETSCREE to install DataFlex on your system, DataFlex will sign
on with a screen similar to the one shown below.

DEFAULT DRIVE=A:
0S: (name of your operating system)

This program licensed to: TEMPORARY REGISTRATION
Serial Number: #### (your serial number)

2.1/ DataFlex
Copyright (C) 1984, Data Access Corporation, Miami Florida
All rights reserved.

If your sign-on displays *DEMO VERSION* company name registration does not apply
and you may ignore the registration procedure. Your dealer will be happy to assist you
in acquiring a full-function DataFlex license.

When we receive your filled out Regisiration Request, we will use the exact name you
entered on the top line to generate a unique access code. This will enable you to replace
the DataFlex TEMPORARY REGISTRATION sign-on with the name from your Regis-
tration Request. You will receive complete instructions for installing your registration
name with your code number. If you had requested registration for "ACME Manufactur-
ing" and your operating system was CP/M and your serial number was 25897, after
installation your sign-on would look like the following.

DEFAULT DRIVE=A:
0OS: CP/M SINGLE USER

This program licensed to: ACME Manufacturing
Serial Number: 25897

2.1/ DataFlex
Copyright (C) 1984, Data Access Corporation, Miami Florida
All rights reserved.

DataFlex Registration Request

ENTER THE EXACT "REGISTRATION NAME" IN THE BOXES BELOW:

O T T T T T O O O O O

Place only one character (letter, space, comma, etc.) in each box. Any character that you
can type on your keyboard is allowed. Do not exceed the number of boxes provided
(leave excess boxes blank). Upper and lower case letters may be used, but each letter
must be distinctly one or the other. For clarity, please place an "X" beneath any letter
that is to be lower case.

The DataFlex serial number can be found on your DataFlex master diskettes. Your
license type is Full Development if you have both a Runtime and a Development disk.
It is Runtime if you have only the Runtime disk.

Please enter your DataFlex serial number here:

License Type: Full Development License Runtime License
NOTE: Demo licenses do not receive Access Codes - contact your dealer.

We will enter your access code here:

(leave blank)
Please complete the following information about your system:
Computer Manufacturer
Model Serial #

Operating System Rev. 8-Bit or 16-Bit

DataFlex Purchased From

Your Name

Your Company

Addresst

Address2

City State/Prov Zip/Postal Code
Country Phone Telex
My computer is: Single User Multi-user # Terminals

Floppy Disk Hard Disk
For what applications do you plan to use DataFlex?

Are you using DataFlex in your own business? (Y/N)
Developing applications for another business? (Y/N)
Do you use an outside consultant/programmer? (Y/N)

PLEASE RETURN THE COMPLETED FORM TO DATA ACCESS CORPORATION. A
COPY OF IT, WITH YOUR ACCESS CODE, WILL BE RETURNED TO YOU UPON
VERIFICATION OF YOUR LICENSE. PLEASE BE CERTAIN TO COMPLETE THE
AGREEMENT ON THE OTHER SIDE. REMEMBER, DEMO LICENSES DO NOT
RECEIVE AN ACCESS CODE.

Limited Use Software License Agreement

Data Access Corporation (DAC), a Florida, USA corporation, does hereby grant to
LICENSEE a personal, non-transferable, and non-exclusive license to use the following
computer software programs (singularly or collectively referred to as "software") under
the following terms and conditions.

Software: DataFlex 2.1 DataFlex Serial Number:

Solely for use on Computer , Serial #

(A separate Limited Use Software License Agreement and DataFlex Registration Request
must be executed for each software product licensed.)

1. The software is furnished to LICENSEE for use on the single computer specified
above and may be used only on that computer. LICENSEE and LICENSEE’s employees
and agents will protect the confidentiality of the Software and will not distribute or
otherwise make available the Software or documentation, or any portion thereof, in any
form to any third party. Title to and ownership of the Software and the documentation
shall at all times remain in DAC.

2. No warranties with respect to the Software are made by DAC. DAC DOES NOT
WARRANT THAT THE SOFTWARE WILL MEET SPECIFIC REQUIREMENTS OF LI-
CENSEE. DAC SPECIFICALLY DISCLAIMS ANY WARRANTIES OF MER-
CHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. DAC SPECIFI-
CALLY DENIES ANY LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL
DAMAGES RESULTING FROM THE USE OF THE SOFTWARE.

3. This agreement, the license granted hersunder, and the Software, may not be
assigned or transferred by the LICENSEE without the prior written consent of DAC
except that LICENSEE may change the installation location upon notice to DAC and
dealer. No right to reproduce or copy any documentation, in whole or in part, is granted
to LICENSEE.

4. LICENSEE acknowledges that it is receiving only a limited license to use the
Software and related documentation and that DAC retains title to all Software and
documentation. LICENSEE acknowledges that DAC has a valuable proprietary interest
in the Software and documentation and that unauthorized disclosure, transfer, or
copying of the Software is a violation of Federal law.

LICENSEE Name

Authorized Signature : Date

Signer’s typed or printed name

DataFlex Flex-Keys™ For The IBM PC

Function Pad Flex-Keys™

-
Super Find ﬂ§
_—
D) ——

Clear Window ‘a‘ ‘m‘ Save Record Insert
VT Character

DataFlex is a Registered Trademark, and Flex-Key is a Trademark of Data Access Corporation.

Back Window
Print Screen

——

Delete Record

.Back Space

Cursor Pad Flex-Keys™

Cursor Up

9
" Previous Record

—’ ‘ Cursor Right

3
Pg Dn Next Record

Delete
Character

