

IONVEX FORTRAN
Dptimization Guide
~

Order No. DSW-Q34

Fourth Edition
November 1992

•

•
CONVEX Press
Richardson, Texas
United States of America

Description

Released with CONVEX FORTRAN software V6.0, March 1990.

Released with CONVEX FORTRAN software V5.1, May 1989.
Initial release of the manual.

Released with CONVEX FORTRAN software V7.0,
November 1991.

Released with CONVEX FORTRAN software V8.0, November
1992. Created new Chapter 9, "Unsafe optimizations," to cover
material covered in Appendix A of former editions. Created
Chapter 10, "Limits of optimization;" this information was
previously covered in Chapter 9. Created a new Appendix A,
"Optimization options." Added Appendix D, "Optimization
report," which expands on the optimization report information
formerly contained in Chapter 3, and updates it to explain the
new optimization report. Added DO_PRIVATE and
TASK_PRIVATE directives to and removed ASSIGN_ LOC~
FREE LOC~ BEGIN ORDER. END ORDER. BEGIN SECTION, and
END SECTION directives from APpendix B, "COmpiler directives:'

72()-()()()930-205

Document No.

72()-()()()930-200

72D-000930-201

72()-()()()930-203

ision Information for

I1>urth

First

ies and

ists of
TEnet.

'pUler

IYOF
Y.

NVEX FORTRAN
ptimization Guide

);;

(

WILL
RAL,
-JGANY
SEOR

lot, in w~~
:1, :
!form
Iter

8
8
9

10
10
11
12
12
14
14
15
15
15
16
17
18
18
21

7

. xv

. xv
xvi

xvii
xvii
xvii

xviii
xix
xix

• XV

Contents v

Optimization options
Scalar optimization .

Machine-dependent scalar optimization
Machine-independent scalar optimization.

Vector optimization .
Parallel optimization
Optimization tools

How to use this guide .
Purpose and audience .
Scope
Organization.
Notational conventions

Command syntax .
General conventions

Associated. documents
Ordering documentation
Technical assistance. . .

Contents

2 Scalar optimization
Optimizations performed at -no

Instruction scheduling . . .
Span~ependentinstructions

Register allocation
Tree-height reduction. . . .
Short-circuit evaluation of conditionals

Optimizations performed at -00 . . .
Instruction scheduling
Redundant-assignment elimination
Assignment substitution
Common-subexpression elimination
Redundant-use elimination
Constant propagation and folding .
Algebraic and trigonometric simplification

Optimizations performed at -01

•

Constant propagation and folding .
Redundant-assignment elimination
Dead-eode elimination

1 The basics

•

Hoisting and sinking scalar and array references
Copy propagation
Common subexpression elimination
Code motion .
Strength reduction

Explicit arithmetic reductions . .
Induction variables and constants

3 Vector optimization
Basic operation .
Transformations the compiler performs

Strip mining
Loop distribution .
Loop interchange .
Paired hoist and sink
IF-DO optimizations

Redundant-test elimination .
Loop boundary-value peeling .
Test promotion

Pattern matching.
Conditional induction variables
Inhibitors of vectorization . . .

Recurrence
Loop-carried dependency
Loop-independent dependency
Apparent recurrences

Reduction .

4 Parallel optimization .
Basic operation.
Inhibitors of parallelization

Loops with subroutine calls
Loop-carried dependency

Parallelizing code outside of loops

5 OptimiZing FORTRAN applications
Step 1. Compile the program
Step 2. Add scalar optimizations . .
Step 3. Add vectorization

Step 3a. Add vectorization in one step
Step 3b. Add selective vectorization .

Step 4. Enhance vector optimization . .
Step 5. Add parallelization

Step Sa. Add parallelization in one step.
Step Sb. Add selective parallelization .

vi CONVEX FORTRAN Optimization Guide

21
22
22
25
26
26
26

· 29
29
30
30
31
32
33
34
34
35
37
38
39
40
40
41
43
44
45

· 47
47
51

. 52
53
55

· 57
57
58
59
59
59
60
62
62
62

97
97
97
98

102
102
102
103
103
105
105
107
107

89
89
90
90
91
92

63
64

79
79
80
83
85

. 93
93
93
94

. 65
65
65
72
73
75
77

Contents vii

substitution

•

Step 6. Enhance parallel optimization
Step 7. Wrap up .

When to use inlining
How to use inlining .

Creating. iil files
Using the -is option

Limits of inline substitution

Potentially unsafe optimizations
Simple strength reduction
Code motion.
Conversion elimination

Manual optimization techniques .
Eliminate unnecessary strip mines
Do not vectorize loops with small trip counts
Promote an array
Remove a conditional from a loop

Efficient programming constructs
Data type in calculations
Writing efficient loops. . .
Optimizing memory accesses

Memory interleaving . .
Multidimensional arrays
Partial word accesses .

o Limits of optimization
Incorrect results

Erroneous code .
Hidden aliases
Invalid subscripts

Floating-point imprecision
Roundoff error
Vector reductions . . .

Misused directives and options
Compiler limitations

Reductions ...
Evaluation order
Iterating by zero .

Nondetenninism of parallel execution
Conditional vectorization.
Testreplacement .
Large trip counts at -02 and above

Slower code
Misused directives
Short vector length. . . .
Complicated conditionals .

A Optimization options .
Optimization level options.
Cross compilation options .
Loop replication options ..
IF-DO optimization options
Other optimization options

B Compiler directives
BEGIN_TASKS, NEXT_TASK, END_TASKS
DO PRIVATE •....
FORCE PARALLEL
FORCE PARALLEL EXT- -
FORCE VECTOR .
MAX TRIPS
NO PARALLEL • •
NO PEEL ..••
NO PROMOTE TEST

- -
NO RECURRENCE •
NO SIDE EFFECTS- -
NO VECTOR
PEEL ••••••
PEEL ALL .•••
PREFER PARALLEL
PREFER PARALLEL EXT- -
PREFER VECTOR • .
PROMOTE TEST. • •
PROMOTE TEST ALL.
PSTRIP •
ROW WISE
SCALAR •
SELECT .
SYNCH PARALLEL
TASK PRIVATE .
UNROLL
VSTRIP ...•

viii CONVEX FORTRAN Optimization Guide

108
109
109
110
111
111
111
112

113
113
114
115
115
117

119
122
123
124
125
125
126
126
126
127
127
128
129
129
129
129
129
130
130
130
130
131
132
133
134
135
135
136

•

C Vector operations. .
Vector hardware

Vector-accumulator register
Vector-length register. . .
Vector-stride register . . .
Vector-merge register. . .
How the CONVEX architecture works

Vector instruction set . . .
Vector load
Vector store
Binary vector operators .
Vector reductions .

Chaining .
Vector comparisons. . .
Vector operations under mask-C2 and C3
Vector-merge register operations .

Merge and mask .
Compress .
Expand .
Examples .

Examples of vector operations
Embedded IF statement
Indirect array addressing

o Optimization report . . .
Loop table ...
Analysis table .
Testtable ...
Variable name footnote table .
Array table .
Examples ..

Examplel.
Example2.

Bibliography

Glossary

Index

•

139
139
139
139
140
140
140
141
141
143
144
145
146
147
148
150
150
150
150
151
152
152
153

157
157
160
160
161
161
162
162
165

169

171

183

Contents ix

x CONVEX FORTRAN Optimization Guide

Figures

•

•

Figure 1 Unbalanced tree representation . 10
Figure 2 Balanced tree representation . . 11
Figure 3 Eight-way interleaved memory 73
Figure 4 Oncxiimensional array in

eight-way interleaved memory . 74
Figure 5 Bank conflict 75
Figure 6 Two-dimensional array stored in

eight-way interleaved memory . 76
Figure 7 Leading dimension odd: no bank conflict 77
Figure 8 Vector operations for

A(I) = A(I + 1) + A(I) 141
Figure 9 Optimization report for Example 1 163
Figure 10 Optimization report for Example 2 166

Figures xi

Tables

•

•

Table 1
Table 2
Table 3
Table 4
TableS
Table 6
Table 7

Table 8

Table 9

Optimization options 1
Restrictions on directive use 121
Maximum parallel strip-mine lengths at -03 131
Maximum vector strip-mine lengths at -03 . 136
Four-processor system strip lengths . . 137
Optimization report contents. 157
Reordering transformations reported in
optimization report 159
Optimizing/special transformations reported in
optimization report 160
Optimizations reported in array table 162

Tables xiii

How to use thi~ guide

Purpose and
audience

•
Scope.

•

This guide describes methods for optimizing FORTRAN
programs. Background information and concepts presented in
the first few chapters form a foundation for methods presented
later in the book. Examples show the use of command-line
options, compiler directives, and various tricks and tips to
control and enhance scalar, vector, and parallel optimization.

The CONVEX FORTRAN Optimization Guide is for experienced
FORTRAN programmers. Readers need not be familiar with the
CONVEX implementation of scalar, vector, and parallel
optimization. Although intended primarily for users of
CONVEX FORTRAN, the methods described in this book have
potential application to other FORmAN compilers.

This guide covers the optimization of CONVEX FORTRAN
Version 8.0, which runs under ConvexOS Version 10.0 or higher.
CONVEX FORTRAN Version 8.0 also requires the CONVEX
Assembler, Loader and Libraries (ALL) Version 2.0 or higher.
The CONVEX FORTRAN compiler runs on all CONVEX
hardware platforms, induing Cl, C2 and C3 Series architectures.

This guide is concerned with producing highly-efficient,
optimized programs. Producing an efficient program requires
efficient algorithms and efficient implementation. The
techniques of writing an efficient algorithm are beyond the
scope of this guide. The guide assumes you have chosen the best
possible algorithm for your problem and helps you obtain the
best possible performance from that algorithm.

How to use this guide xv

xvi CONVEX FORTRAN Optimization Guide

Organization This document consists of the following chapters:

• Chapter 1 introduces CONVEX's approach to program
optimization. Chapter 1 defines the terms and concepts
you need to understand how the CONVEX FORTRAN
compiler works with CONVEX C Series architectures.

• Chapter 2 presents the basics of scalar optimization and
explains how the compiler transforms programs
compiled for scalar optimization (command line
options -no, -00, and -01).

• Chapter 3 presents the basics of vector optimization
and explains how the compiler transforms programs
compiled for vector optimization <Command line option
-02).

• Chapter 4 presents the basics of parallel optimization
and explains how the compiler transforms programs
compiled for parallel optimization <Command line
option -03).

• Chapter 5 presents a strategy for developing your
programs to enhance optimization and provides you
with examples of using compiler options and directives
and their effects on optimization.

• Chapter 6 discusses programming constructs that can
aid or hinder optimization.

• Chapter 7 presents some tricks and tips for optimizing
your programs to run on CONVEX C Series
supercomputers.

• Chapter 8 discusses inline substitution and how to use
it to enhance optimization.

• Chapter 9 discusses potentially unsafe optimizations
and the benefits and risks associated with them.

• Chapter 10 discusses common optimization problems
you can encounter and presents some possible
solutions.

• Appendix A lists and describes compiler options that
relate to optimization.

• Appendix B explains how to use CONVEX FORTRAN
compiler directives.

• AppendiX C describes vector operations on the
assembly-language level and presents examples of
some assembly-language instructions.

• Appendix D explains the optimization report.

Notational
conventions

•

•

This section discusses notational conventions used in this book.

Command syntax
Consider this example:

COMMAND inputJile [...] {a I b} [outputJile]

1. COMMAND must be typed as it appears.

2. inputJile indicates a file name that must be supplied by
the user.

3. The horizontal ellipsis in brackets indicates that
additional input file names may be supplied.

4. Either a or b must be supplied.

5. [outputJilel indicates an optional file name.

General conventions
In general, the following conventions are used in this guide:

• Italic:

- Designates user-supplied variables in a
command-line example

- Introduces new and important terms

- Identifies variables in mathematical equations

- Indicates document titles

• Constant-width font designates input and output,
including:

- Command names and options

- System calls

- Data structures and types

- Directives, program statements, display examples,
printout examples, and error messages returned

• Horizontal ellipsis (...) shows repetition of the
preceding item(s).

• Vertical ellipsis shows that lines of code have been left
out of an example.

How to use this guide ruii

xviii CONVEX FORTRAN Optimization Guide

Note

ICaution

Associated
documents

References to the FORTRAN man pages appear in the form
adb(l), where the name of the man page is followed by its
section number enclosed in parentheses.

A Note highlights supplemental Information.

A Caution highlights procedures or Information necessary to
avoid damage to eqUipment, software, or data.

Using the CONVEX FORTRAN compiler successfully often
requires information not described in this document. CONVEX
Computer Corporation provides these documents to help you
use the compiler:

• For more information about the compiler, see the
CONVEX FORTRAN User's Guide (DSW-038), CONVEX
FOKfRAN Language Reference Manual (DSW-037), and
Release Notice, CONVEX FORTRAN Compiler VS.O.

• For more information about CXpa, see the CONVEX
Performance Analyzer (CXpa) User's Guide (DSW-25l) and
the CONVEX Performance Analyzer (CXpa) Reference
Manual (DSW-254).

• For more information on the CXdb debugger, see the
CONVEX CXdb Reference (DSW-472) or CONVEX CXdb
Concepts (DSW-471).

• For more information on csd, the source-level
debugger, see the CONVEX Consultant User's Guide
(DSW-025).

• For more information on parallel programming in
assembly language, see the CONVEX Compiler Utilities
User's Guide (DSW-Q96) and the CONVEX Architecture
Reference Manual (C Series) (DHW-300).

• For information on CONVEX's interprocedural
optimization compiler, see the CONVEX Application
Compiler User's Guide (DSW-40l).

~----------------------------

Ordering
documentation

Technical
assistance

•

•

To order this document or any other CONVEX document, send
requests to:

CONVEX Computer Corporation
Customer Service
P.O. Box 833851
Richardson, Texas 75083-3851 U.S.A.

Order documents by title, requesting the most recent edition. In
some situations, you may not want the current edition. To
receive a specific edition of a manual, contact the local CONVEX
office or call the Technical Assistance Center (TAC).

If you have questions that are not answered in this book, contact
the CONVEX Technical Assistance Center (TAC):

• Within the continental U.S., use (800)952-0379.

• Outside continental U.S., contact your local CONVEX
office.

How to use this guide xix

The basics

•
Optimization
options

Table 1
Optimization options

•

Optimization improves the performance of programs. To
optimize programs, the CONVEX FORTRAN compiler performs
these functions:

• Eliminates unnecessary operations

• Arranges operations in the most efficient order

• Replaces slow operations with faster equivalents

• Takes full advantage of CONVEX architectures

The CONVEX FORTRAN compiler offers five optimization
options, which are specified on the fc command line. The
compiler transforms code according to the optimization option
you specify. These transformations are cumulative: each
higher-level option retains the transformations of the previous
option. The optimization options are summarized in Table 1.

Option Description

-no Machine-dependent scalar optimization. This
option is the default.

-00 Basic block machine-independent scalar
optimization

-01 Basic block and program unit machine-
independent scalar optimization

-02 Vector optimization

-03 Parallel optimization

Chapter 1 The basics 1

2 CONVEX FORTRAN Optimization Guide

Scalar
optimization

A scalar value is a single value or entity. A scalar instruction
operates on one or a pair of scalar values. There are two types of
scalar optimization: machine-dependent and
machine-independent.

Machine-dependent scalar optimization
At the lowest option (-no), the compiler does machine
dependent scalar optimization, which fully exploits the
machine's scalar functional units and registers. Because
machine-dependent scalar optimization works at the machine
instruction level, you cannot disable it.

Machine-independent scalar optimization
While machine-dependent scalar optimization works at the
machine-instruction level, machine-independent scalar
optimization works at two levels:

• Local (basic-block) level

• Global (program-unit) level

A basic block is a sequence of statements ending with a
conditional or unconditional branch. Branches do not exist
within the body of a basic block. At level -00, optimization is
local to a basic block. The compiler does machine-independent
optimizations within the scope of a basic block.

A program unit is a subroutine, function, or main section. At
level -01, optimization is local to a program unit and is global
with respect to basic blocks. This means that the compiler does
machine-independent optimizations across multiple blocks in a
program unit at one time.

To improve performance, machine-independent optimizations:

• Reduce the number of times memory is accessed

• Simplify expressions

• Eliminate redundant operations

• Replace variables with constants

• Replace slow operations with faster equivalents

Vector
optimization

Parallel
optimization

•

•

Vector optimization, or vectorization, typically improves the
performance of programs that manipulate arrays. For example,
suppose you write a loop to add the corresponding elements of
two arrays. With vector optimization, the CPU can add up to 128
elements of each array with a single instruction.

The compiler also transforms many loops that it cannot
vectorize into loops that it can vectorize. This increases the
number of loops that the compiler can optimize, which
minimizes execution time dramatically.

The -02 option enables vector optimization. It also performs
scalar optimization on loops that it cannot vectorize and on
loops that are not profitable to vectorize.

Parallel optimization reduces time to solution by spreading
work across multiple CPUs.

The actual savings you can achieve with parallel optimization
depend on the application, the load on the system when the
application is run, and how well suited your algorithm is to
parallel optimization. At best, parallelization can improve time
to solution by a factor of N, where N is the number of CPUs on
your system. Limitations imposed by algorithms prevent some
programs from realizing all of this theoretical improvement.

Every program has at least one thread or sequence of instructions
that can execute on a single CPU. Parallel programs have more
than one thread. On CONVEX C2 and C3 Series computers,
threads can execute on multiple CPUs, which are allocated by
the Automatic Self-Allocating Processors (ASAP) mechanism. ASAP
is a way of getting the most work from multiple CPUs, which
gives you the benefits of multiprocessing and parallel
processing.

The compiler divides a job into tasks that the processors execute
as efficiently as possible, using ASAP technology. The compiler
does the first step, which is to look for regions of code it can
parallelize. The compiler then generates an instruction that
causes a request to be posted in a set of registers called
communication registers. During execution, idle CPUs check the
communication registers for requests. If a CPU finds a request, it
begins executing that thread of parallel code. At this point, two
or more CPUs are working on different threads of the same job.

Chapter 1 The basics 3

4 CONVEX FORTRAN Optimization Guide

Opt"imization tools

When you specify -03 on the fc command line, the compiler
performs parallel and vector optimization. It also performs
scalar optimization on loops that it cannot parallelize or
vectorize.

With the -03 option, the compiler automatically performs
parallel and vector optimization at the loop level. The compiler
divides loop iterations into separate threads and generates code
that is independent of the number of available CPUs.

To parallelize constructs other than loops, you can use tasking
directives. For more information about tasking directives, see
the section, ''Parallelizing code outside of loops," in Chapter 4,
and Appendix B, "Compiler directives."

CONVEX CXdb is an optional window-based debugger that
includes all the functionality of regular debuggers and is capable
of debugging optimized code. CXdb is an optional product; refer
to CONVEX CXdb Concepts for additional information.

Part of the CONVEX Consultant package, the csd source-level
debugger can set process breakpoints, examine machine
registers, and display traces of the stack. For more information
on using csd, refer to the CONVEX Consultant User's Guide.

The CONVEX Performance Analyzer, CXpa, is a tool for
examining your program's performance at routine, loop, and
basic-block level. You can use CXpa or one of the profilers in the
CONVEX Consultant to track the effects of optimizations. For
more information on how to use CXpa, refer to the CONVEX
Performance Analyzer User's Guide.

CONVEX CXrnetrics is an optional window-based tool that
provides analytical data about the relative complexity of C and
FORTRAN programs. These data, called software metrics, consist
of numerical quantities that measure particular characteristics of
a program. Using software metrics can help you reduce
complexity and improve quality in your programs. For more
information on CXrnetrics, refer to the CONVEX CXmetrics
User's Guide.

The CONVEX Application Compiler is an interprocedural
analyzer that tracks the flow of data and control between
procedures. The information generated by this analysis removes
scope restrictions on optimization, which allows the Application
Compiler to generate more efficient code by taking the entire
program, with all its dependencies, into account. The database
of program information that the interprocedural analyzer builds

•

•

up also allows the Application Compiler to perform better error
checking, leading to more robust and reliable programs. Many
of the optimizations discussed in this book are performed
automatically by the Aplication Compiler, with little or no user
intervention.

The CONVEX Application Compiler is an optional product. For
more information, refer to the CONVEX Application Compiler
User's Guide, or contact your CONVEX sales representative.

Chapter 1 The basics 5

6 CONVEX FORTRAN Optimization Guide

-

Scalar optimization

This chapter describes how the compiler transforms code
compiled for scalar optimization. The compiler optimizes scalar
code automatically, so there is no need to rewrite code to achieve
the gains described. here.

A scalar value is one value or entity. A scalar instruction operates
on one or a pair of scalar values, as in the following FORTRAN
statement:

SCALAR1 = SCALAR2 + SCALAR3

The CONVEX FORTRAN compiler perfonns two types of
optimizations on scalar instructions:

• Machine-dependent

• Machine-independent

At optimization level -no, the compiler perfonns machine
dependent scalar optimizations, which occur at the machine
instruction level. You cannot disable this optimization. At
optimization level -00, the compiler performs machine
dependent and machine-independent optimizations. The
compiler optimizes one basic block at a time at this level. At
level -01, the compiler optimizes multiple basic blocks within a
program unit.

Chapter 2 Scalar optimization 7

8 CONVEX FORTRAN Optimization Guide

Note

Optimizations
performed at -no

You can Identify basic blocks In the final, optimized assembly
code by looking for Jump statements and labels In the assembly
language listings produced by the complier's -s option. At
optimization level ""flO, there Is a one-to-one correspondence
between these basic blocks and the statements In the original
FORTRAN code. At higher optimization levels, this one-to-one
correspondence may not exist. If a basic block Is dead code,
such as an unreachable alternative In an IF statement, the
compiler can eliminate the basic block at higher optImization
levels. The number of basic blocks In the assembly-language
output (or output of block-level profllers l:pJ:Ofand eXpo)
typically decreases as the optimization level Is Increased.

At optimization level -no, the compiler performs machine
dependent optimizations only. These optimizations take place at
the machine-instruction level. They create object code that fully
uses the scalar features of the CONVEX architecture.

Instruction scheduling
Instruction scheduling rearranges machine instructions to use
the computer's functional units most effectively. Each CPU on a
CONVEX supercomputer has multiple functional units on
which operations execute simultaneously. On a CONVEX C
Series processor, operations such as add, multiply, and store
execute simultaneously on separate functional units.

At optimization level -no, the compiler rearranges instructions
derived from a single FORTRAN source statement to maximize
use of the functional units. Compare the equivalent assembly
pseudocodes for the typical FORTRAN source statement shown
below.

•

•

FORTRAN source: A = (B + C * D) / E * F

Original code Optimized code

Id.w D, sO Id.w D, sO

Id.w C, sl Id.w C, sl

mul.s sl, sO Id.w E, s2

Id.w B, sl mul.s sl, sO

add.s sl, sO Id.w F, sl

Id.w E, sl Id.w B, s3

Id.w F, s2 mul.s s2, sl

mul.s s2, sl add.s s3, sO

sub.s sl, sO sub.s sl, sO

st.w sO, A st .w sO, A

In the original code, many operations must wait until a previous
operation finishes. In the optimized code, the instructions are
arranged to that data is not demanded before it is ready. Loads
are moved ahead of arithmetic operations so that the data will
arrive before the arithmetic operation starts. Operations that use
different functional units, such as multiply and load, also
execute simultaneously.

Concurrent execution of machine instructions on multiple
functional units, within a single CPU, is distinct from parallel
processing, which occurs on multiple CPUs.

For more information on functional units, see the CONVEX
Architecture Reference Manual (C Series).

Span-dependent instructions

When possible, the compiler generates short-form instructions
for conditional and unconditional jumps and branches. Short
fonn instructions, which are two bytes long, are generated when
the span between the jump or branch instruction and its target is
within defined limits for these instructions. Short-form
instructions conserve memory and increase execution speed.

For more information on jump and branch instructions, see the
CONVEX Architecture Reference Manual (C Series) and CONVEX
Compiler Utilities User's Guide.

Chapter 2 Scalar optimization 9

Register allocation

CONVEX FORTRAN uses a technique for allocating registers
that fully exploits the CONVEX register set. This allows
grouping of register loads, concurrent execution of instructions
(pipelining), and reduces register conflicts.

Tree-height reduction
The compiler represents expressions internally as trees. These
trees are optimized by tree-height reduction or balancing. For
example, consider this real expression:

A+B+C+D+E+F+G+H

The expression can be evaluated as follows:

(A + (B + (C + (D + (E + (F + (G + H)))))))

(G+H) is evaluated first. No two additions can be carried out
simultaneously because each addition depends on the result of
the addition to the right. Figure 3 shows how the compiler
represents this order intemally.

Figurel
Unbalanced tree
representation

a b

10 CONVEX FORTRAN Optimization Guide

«(A + B) + (C + D» + «E + F) + (G + H»)

hf ge

+

db ca.

Another way to evaluate the expression is

In Figure I, the depth of the tree is seven; in Figure 2, the depth
of the tree is three. The machine instructions generated for the
tree in Figure 1 execute slower than the instructions generated
for the tree in Figure 2.

Chapter 2 Scalar optimization 11

Because none of the four additions in the innermost parentheses
requires the result of another addition, the additions can be
done simultaneously on several functional units.
((A+B) + (C+D» and «E+F) + (G+H)) are then evaluated. The
compiler represents this order internally as a balanced tree, as
shown in Figure 2.

The deeper the tree representing the expression, the more time is
required to evaluate the expression. The compiler chooses an
evaluation order that minimizes the depth of the expression and
maximizes instruction pipelining. Of course, the compiler
preserves all execution-order rules as specified in the ANSI
standard. Because the compiler chooses evaluation order to
ensure the most efficient execution, you can write expressions in
any order.

Short-circuit evaluation of conditionals
Short-circuiting the evaluation of conditionals increases the
efficiency of IF statements by skipping irrelevant tests when
logical operators are involved in the conditional. CONVEX

If your application depends on a specific order of evaluation,
you must use parentheses to specify that order.

Figure 2
Balanced tree representation

•

•

12 CONVEX FORTRAN Optimization Guide

Optimizations
performed at -00

.. _._-_._. _...- _._ .. _._..... __ ._-_..._----_._--------~-------~~~

FORTRAN short-circuits evaluation of IF statements that
contain .AND . and .OR. operators that have logical operands
and are used in a logical context. Take, for example, the
following IF statement:

IF «A .EQ. B) .OR. F(G)) THEN

If (A •EQ. B) evaluates to true, the evaluation of F (G) is
skipped, and the THEN portion of the statement is evaluated.

Similarly, given the code

IF «A .EQ. B) .AND. F(G)) THEN

if (A •EQ. B) evaluates to false, the evaluation of F (G) and the
THEN portion of the statement is skipped.

Short-circuit evaluation works with all types of IF statements
(arithmetic, logical, and block). Performing arithmetic (+, -,
*, /) on a logical expression disables short circuiting within
that expression. Logical-valued expressions used as arguments
to function calls within an IF statement's conditional expression
are not short circuited. Note that the binary operators .EQ.,
.NE _, .LT., .LE., .GT., and .GE. always produce a logical result.

The compiler short-circuits the evaluation of conditionals by
default. You can disable short-circuiting by specifying the -nose
flag on the compiler command line.

At optimization level -00, the compiler performs machine
independent scalar optimizations within a basic block. The
compiler continues to perform the machine-dependent
optimizations performed at -no.

Instruction scheduling
At optimization level -00 and above, instructions from multiple
statements, as well as those from single statements, are
scheduled as a group_ To see how this works, compare the
assembly code for the two FORTRAN statements shown in the
following example:

FORTRAN source: T=B+C*D
A= (B + C * D) I E - F

Original code Optimized code

Id.w D, sO Id.w D, sO

Id.w C, sl Id.w C, 81

Id.w B, s2 Id.w B, s2

mul.s sO, sl mul.s sO"sl

add.s sl, s2 Id.w E, sO

st.w s2, T Id.w F, s3

add.s sl,s2

Id.w D, sO st.W s2, T

Id.w C, sl div.s sO, s2

Id.w B, s2 sub.s s3, s2

mul.s sO, sl st.w s2, A

Id.w E, sO

Id.w P, s3

add.s sl, s2

div.s sO, s2

sub.s s3, s2

st.w s2, A

In the original code, which was generated at -no, instructions
from each statement are scheduled independently. Instructions
generated from the first statement execute first, followed by
instructions generated from the second statement.

In the optimized code, instructions from the two statements are
scheduled together, as if derived from a single statement.
Instructions are generated and scheduled in an order that
optimizes performance.

Chapter 2 Scalar optimization 13

Redundant-assignment elimination

14 CONVEX FOKfRAN Optimization Guide

Redundant-assignment elimination removes unnecessary
assignments to a variable. When a variable is not used between
two assignments, the first assignment is eliminated. The code in
the following example contains a redundant assignment, X=Y+C,
which the compiler removes.

X = 4.179

REG = REG * 4.4

T = REG * B + 12.4

! (statement eliminated)

x = 3.1416

Y = (X + 7) * 2.15

Optimized code

REG=Y+C

Optimized code

X = 4.179

! (X not used)

X = X * 4.4

x = 3.1416

T = X * B + 12.4

Y = (X + 7) * 2.15

Original code

X = Y + C

Original code

x = Y + C

After the machine instructions for the first statement execute,
the value of Y+C remains in a register. The compiler replaces
subsequent references to X with references to this register until
the value of X changes or until the end of the basic block is
reached. This optimization eliminates repeated loading and
storing of X into a register, which increases performance and

Assignment subs'titution
Assignment substitution eliminates redundant loads. The
compiler "remembers" the value assigned to a variable and
replaces subsequent references to that variable with the assigned
value. An example appears below.

•

provides opportunities for further optimization. In this example,
assignment substitution makes the first assignment to X
redundant, so the compiler eliminates the assignment.

Because the compiler substitutes assignments, you rarely need
to optimize a program by replacing a variable reference with a
constant in the source code.

Common-subexpression elimination
The compiler recognizes subexpressions that repeat within a
basic block. The compiler retains the value of the subexpression
in a register, which eliminates redundant computations and
register loads. For example, the compiler recognizes B+C as a
common subexpression of A+B+c+D and B+E+C, and calculates
the subexpression only once.

The compiler also eliminates redundant array address
calculations. As with assignment substitution, you do not need
to manually create a temporary variable in which to store the
value of a common subexpression. The compiler performs that
function automatically.

Redundant-use elimination
This optimization is a special case of common subexpression
elimination where the subexpression is a variable. The compiler
detects multiple references to a variable between assignments
and retains the value of the variable in a register. This action
helps eliminate redundant register loads.

Constant propagation and folding

After assigning a constant to a variable, the compiler replaces
subsequent references to the variable with the constant. For
example, if you write X=5, the compiler replaces X with 5 within
that basic block or until a new value is assigned to the variable.
This is known as constant propagation, which is a form of
assignment substitution.

An example of constant propagation and folding follows.

Chapter 2 Scalar optimimtion 15

16 CONVEX FOKI'RAN Optimization Guide

Algebraic and trigonometric simplification
The compiler simplifies algebraic and trigonometric expressions,
as shown the following example.

The compiler type-converts constants, if necessary, before
propagating and folding them. If a program contains the
expression X=1, where Xis REAL, the compiler converts 1 to 1.0
before propagating it.

! (assignment eliminated)

J = 2

K + K + 10

Optimized code

I = 5

J = J + 2

K = K + I * J

Original code

I = 5

J = 0

The compiler also replaces operations on constants with the
result of the operation. This is known as constant folding. For
example, it replaces Y=5+7 with Y=12. It then propagates the
constant value to replace future references to Y within the basic
block. The compiler also propagates and folds values assigned
to names in PARAMETER statements.

If an integer overflow occurs as a result of constant folding, the
compiler reports "Integer constant truncation." If a floating-point
overflow occurs, the compiler reports ''Real constant either too
large or too small." Floating-point under-flow always results in
zero. If any of these messages or conditions occur, eliminate the
offending operation or bring the value of the constant within
acceptable bounds.

The compiler folds the most frequently used intrinsics when
they are applied to constant arguments. For example,
SIN (0.0) becomes o. o. The compiler also folds exponentiation
involving constants. For example, 3**3 becomes 27.

Original expression Optimized expression

x + a x
x * 1 X

X * a a
K .AND. -1 K

K .AND. a a
K .OR. -1 -1

K .OR. a K

-1 * X -x
x - x a
x / -1 -x
(-1) ** K l-«K .AND. 1) * 2)

• X ** 0.5 SQRT(X)

x ** a 1

1 ** X 1

X / x 1

0 - X -x
0 / x a
SIN (X) * COS (X) 0.5 * SIN(2X)

SIN (X) / COS (X) TAN (X)

Optimizations
performed at -()1

The compiler performs obvious variations of these operations
for the commutative operators. For example, the compiler
converts X+ (O+Y) to X+Y.

Global optimization is done across a group of basic blocks but
within a single program unit or subroutine. The -01 option
performs global, basic-block, and machine-dependent
optimizations.

Chapter 2 Scalar optimization 17

An example of constant propagation and folding follows.

18 CONVEX FOKfRAN Optimization Guide

The compiler propagates and folds constants globally at
optimization level -01 and higher, which eliminates the need t<
propagate constants by hand in programs compiled at these
levels.

GaTO 20

END

READ *, I

A = 5

INTEGER A,B,C

C = 6 !A=6

B = 15

IF (I) 10,10,15

10 A = 6

15 C = 20 !A=5,B=15

GaTO 25

20 B = 12 !A=6,C=6

GOTO 30

30 PRINT *,A,B,C

25 B = 40 !A=5,B=15,C=2C

Optimized code

INTEGER A,B,C

B = 15

A = 5

READ *, I

IF (I) 10,10,15

10 A = 6

C=A

GaTO 20

15 C = A + B

GaTO 25

20 B = A + C

GOTO 30

25 B = A + B + C

30 PRINT *,A,B,C

END

Original code

Redundant-assignment elimination
At optimization level -01, the compiler eliminates assignmenh'
to variables that do not have subsequent references within the
program unit. The following example shows how the compiler
eliminates redundant assignments to the variable A.

Constant propagation and folding
Propagating and folding constants at the global level is
analogous to perfonning the same operations at the basic-block
level. The scope of the optimization is now a function,
subroutine, or program main section.

•

Original code

SUBROUTINE FOO

C A is local

x = y * Z

IF (A .GT. 0) THEN

A = X * Y + 3.1416
ELSE

X (X + 7) * Z + 3.1416
ENDIF

C A is not used later in this routine
END

As shown in the optimized code below, the compiler does not
eliminate ASSIGN statements and assignments to dummy
arguments, function names, and common variables.

Optimized code

SUBROUTINE FOO

x = y * Z

IF (A .GT. O)THEN

ELSE

x = (X + 7) * Z + 3.1416

Chapter 2 Scalar optimization 19

END

ENDIF

INTFUN(X)<NULL>

Optimized code

SUBROUTINE FOO

INTFUN(X)I

Comment: I not used

Original code

SUBROUTINE FOO

The form of this directive is

Existing procedure compilers cannot automatically determine
whether a side effect exists. The CONVEX FORTRAN compiler
eliminates function or subroutine calls only if you explicitly
request it with the NO_SIDE_EFFECTS directive.

where func_Iist is a list of function and subroutine names
separated by commas. The directive must precede the function
or subroutine call that does not contain side effects.

If a function or subroutine has no side effects, the compiler
eliminates the function or subroutine call, as well as the
assignment, saving much more time. Functions and subroutines
that do not modify the value of an argument or common
variable, perform input and output, or call another function or
subroutine have no side effects.

If the right side of a redundant assignment statement contains a
function or subroutine call, the compiler eliminates the
assignment and retains the call, as in the following example.

20 CONVEX FOKfRAN Optimization Guide

Icaution

•

Do not use the m SIIE E1!lil!Cl'S directive on a call to a function
or subroutine that: -

• Changes the value ot an argument

• Changes the value of a COMMON variable

• Performs Input or output

• Calls another tunctlon or subroutine that performs one ot
these operations

For more information about the NO_SIDE_EFFECTS directive, see
Appendix B, "Compiler directives."

The CONVEX Application Compiler is capable of recognizing
side effects in function and subroutine calls. Refer to the
CONVEX Application Compiler User's Guide for more information.

Dead-code elimination
If, as a result of constant propagation and folding, the compiler
can fold an arithmetic or logical expression in an IF statement to
•TRUE. or . FALSE ., the compiler eliminates the unreachable
code.

Hoisting and sinking scalar and array references
The compiler can hoist some scalar or array references out of a
loop. Hoisting moves an operation from within a loop to a basic
block preceding the loop. Sinking moves a store operation from a
loop to a basic block succeeding the loop. Hoisting and sinking
eliminate redundant loads and stores by moving a reference to a
location where it is executed only once instead of many times.
Hoisting can occur with or without Sinking, but sinking never
occurs without hoisting.

Hoisting occurs without sinking in the following cases:

• At optimization level -01, when the value of a scalar
variable or array reference is unchanged within the loop

• At optimization level -02, if the array is indexed only
by loop constants and the loop-control variable

Hoisting and sinking can be applied together:

• At optimization level -01, to a scalar variable that can
be kept in a scalar register dUring the loop's execution

Chapter 2 Scalar optimization 21

• At optimization level -02, to a section of an array that
can be kept in a vector register during the loop's
execution

Copy propagation
The compiler can replace a variable with another variable to
which it has been equated. This is called copy propagation. For
example, after evaluating the statement x=Y, the compiler
replaces later occurrences of Xwith Y.

In the following example, if the compiler determines that X and
Yare unchanged between the assignment and the reference, it
replaces X with Y.

X=Y

w = Z - X

becomes

w= Z - Y

Common subexpression elimination
The compiler eliminates common subexpressions at the global
level. The compiler retains the value of the common
subexpression in a register if one is available; otherwise, the
compiler assigns the value to a temporary variable. The
compiler then replaces subsequent occurrences of the common
subexpression with references to the registeror temporary
variable.

22 CONVEX FORTRAN Optimization Guide

•

•

The code in the following example contains a common
subexpression that can be eliminated.

Original code

SUBROUTINE GCSE1

A = B + C / (-J * B + SQRT(C»
IF (K .LT. 1) THEN

L = 5
ENDIF
F = E - C / (-(J * B) + SQRT(C»

END

The compiler recognizes that a common subexpression,
C/ (-J*B+SQRT (C)) I is used before and after the IF statement.
The compiler saves the value of the subexpression in the
temporary variable T1 before the IF statement and uses this
variable later to compute the value of F, as shown below.

Optimized code

SUBROUTINE GCSE1

T1 = C / (-J * B + SQRT(C»
A=B+Tl
IF (K .LT. 1) THEN

L = 5
ENDIF
F = E - Tl

END

Chapter 2 Scalar optimization 23

In the following example, the compiler determines that the
subexpression must be calculated whether the condition
associated with the IF statement evaluates to .TRUE. or . FALSE.

Original code

SUBROUTINE GCSE2

IF (K .LT. L) THEN
A= (C * 4) / -(J * B + SQRT (C))

ELSE
E = (E * 4) / -(J * B + SQRT (C))

ENDIF
F = (B * 4) / -(J * B + SQRT (C))

END

The compiler saves the value of the common subexpression in
the temporary variable Tl and uses the variable to compute the
value for assignment to A, E, and F, as follows.

Optimized code

SUBROUTINE GCSE2

Tl = -(J * B + SQRT(C))
IF (K .LT. L) THEN

A= (C * 4) / Tl
ELSE

E = (E * 4) / Tl
ENDIF

F = (B * 4) / Tl

END

24 CONVEX FORTRAN Optimization Guide

•

Code motion
Code motion is the movement of invariant expressions out of
loops. An invariant expression yields the same result on every
iteration of a loop.

In the following example, all variables used in the assignment to
A remain invariant within the loop. The compiler recognizes this
and moves the calculations and assignments out of the loop,
performing these costly calculations only once.

Original code

SUBROUTINE GQo1

REAL AR(lO)

DO I = 1, 10

A = C / (-(E * B) + SQRT(C)
AR(I) = A + B * C

ENDDO

END

At higher optimization levels, the compiler can vectorize the
loop.

Optimized code

SUBROUTINE GQo1

REAL AR(10)

A = C / (-(E * B) + SQRT(C»
Tl = A + B * C

DO I = 1, 10

AR(I) = Tl

ENDDO

END

Chapter 2 Scalar optimization 25

If an invariant expression does not lie on a path to all loop exits,
the compiler does not move the invariant expression unless you
use the ~uo (unsafe optimizations) compiler option. For more
information about using the -uo option, refer to Chapter 9,
''Potentially unsafe optimizations."

Strength reduction
In some cases, the compiler can replace an arithmetic operation
with an equivalent operation (possibly non-arithmetic) that
executes more quickly. Such replacements are called strength
reductions.

Explicit arithmetic reductions
The compiler can reduce the strength of various arithmetic
operations. On C Series machines, for example, the compiler
transforms integer multiplication on positive numbers by 2, 4, 8,
and 16 into integer shifts:

J * 2 becomes IISHFT (J, 1)

J * 4 becomes IISHFT (J, 2)

The strength of integer divisions is not reduced with integer
shifting because the CONVEX architecture provides a logical
shift instruction, bu t not an arithmetic shift instruction. (Logical
shifts do not sign-extend.)

A I 2 remains A I 2

Multiplication involving integer constants is reduced to addition:

x * 2 becomes X + X

When the -uo (unsafe optimizations) command line option is
specified, division by a constant is reduced to multiplication:

X I C becomes D * X where D = 1 I c

Because C is a constant, D also is a constant, which can be
computed at compile time.

Induction variables and constants
The compiler can reduce the strength of operations to optimize
loop induction variables and loop constants. Multiplications
within a loop that calculate the address of a subscripted variable
are often candidates for strength reduction.

26 CONVEX FORTRAN Optimization Guide

END

END

Optimized code

!induction var
!loop induction value

SUBROUTINE GSR
I = 1
X = I * C10

Chapter 2 Scalar optimization 27

SUBROUTINE GSR
1=1
T1 = C

T2 = 2 * C
10 X = T1

T1 = T1 + T2

I = I + 2
IF(I .LE. 100) GOTO 10

I = I + 2
IF(I .LE. 100) GOTO 10

As shown below, the compiler produces code that calculates 2*C
only once and increments Xby the value saved in T2 instead of
calculating I*C on every iteration.

Original code

The compiler does not reduce operations that only involve REAL
variables. Because floating-point arithmetic is imprecise,
reduced operations do not always yield equivalent results. If an
expression does not lie on a path to all loop exits, the compiler
does not reduce the expression unless you use the -uo option.

In the following example, the compiler recognizes that I is
incremented by 2 on each iteration and that X is incremented by
2*C, a loop constant.

•

28 CONVEX FORTRAN Optimization Guide

Vector optimization

•
Basic operation

•

Appropriate use of vector instructions is the key to high
performance on CONVEX C Series architectures. Vectorization
converts scalar operations in loops on array elements into
equivalent vector operations. The -02 compiler option instructs
the compiler to vectorize loops in a program. For loops that
cannot be vectorized, the compiler carries out the global
transformations performed at -01.

Vector operations use vector registers to perform operations on
up to 128 pairs of array elements with a single machine
instruction. For vector operations on arrays longer than 128
elements, the compiler partitions the operation into groups of no
more than 128 elements. This is called strip mining.

Loops typically perform repetitive operations on multiple
elements of arrays. The following loop involves at least 700
instruction executions: load an element of Band an element of C;
add them, and store the result in the corresponding element of A;
increment I and the addresses of A, B, and c; and repeat for each
of the next 99 elements.

Example

DO I = 1, 100
A(I) = B(I) + C(I)

ENDDO

At optimization level -02, the compiler generates vector code to
load 100 elements of Band 100 elements of C into vector
registers, add them simultaneously, and store the 100 resulting
elements in A

Chapter 3 Vector optimization 29

30 CONVEX FORTRAN Optimization Guide

Transformations
the compiler
performs

Think of the vector code as a pseudocode statement involving
only four instructions:

A(1:100) = B(1:100) + C(1:100)

where A(l :100) means A(l) through A(100).

The compiler reorders the statements and instructions of a
program to make the program easier to vectorize. The following
subsections explain the most important of these transformations

Strip mining
The vector registers hold up to 128 elements. When the
iterations of a vectorizable loop are unknown or exceed 128, the
compiler strip mines the loop before vectorizing it. Strip mining
replaces the original loop with two loops. The inner loop has an
iteration count that never exceeds 128. The outer loop controls
the number of times the inner loop is executed. The following
example shows a loop that can be strip mined.

Original loop

DO I = 1, N

A(1) = B(1) + C(1)
ENDDO

In the vectorized loop code shown below, lOUT is a variable that
the compiler uses to count the number of elements remaining to
be processed, and the vector operations are shown using the
section notation described above. I is the starting index for each
vector operation.

Vectorized loop

1 = 1
DO lOUT = N, 0, -128

K = 1 + MIN(127, lOUT - 1)
A(1:K:1) = B(1:K:1) + C(I:K:1)
I = I + 128

ENDDO

ICaution

•

•

If N equals 300, roUT is tested four times. For each comparison of
lOUT to zero, the table below shows values of I and roUT and
the elements of array A that are calculated.

:r Ia1r Elements processed

1 300 1. •. 128

129 172 129 ... 256

257 44 257 •.. 300

385 -84

The fourth test of lOUT fails, SO the loop is not executed and no
elements of A are processed.

Loops with runtime trip counts greater than 232 - 1 will yield
Incorrect results unless they are manually strip mined. Refer to
the "Large trip counts at -0'2 and above" section of Chapter 10 for
more Information.

Loop distribution
Vectorization is only done on simple loop nests. A simple loop
nest is one in which all calculations are done in the innermost
loop. Nested loops, however, can be vectorized by distributing
the outermost loop and vectorizing each of the resulting loops or
loop nests. Consider the loop in the following example.

Original loop

DO I = I, N

B(I, 1) = 0

DO J = 1, M

A(I) = A(I) + B(I, J) * C(I, J)

ENDDO

0(1) = E(I) + A(I)

ENDDO

Chapter 3 Vector optimization 31

Three copies of the I loop are created, separating the nested J
loop from the assignments to arrays B and D. In this way, all
three assignments become vector operations, as shown in the
following loop.

Vectorized loop

DO I = 1, N
B (I, 1) 0

ENDDO
DO I = 1, N

DO J = 1, M

A(I) = A(I) + B(I, J) * C(I, J)

ENDDO
ENDDO
DO I = 1, N

D(I) = E(I) + A(I)

ENDDO

Loop interchange

The compiler interchanges nested loops for the following
reasons:

• To make the loop that is the most profitable to vectorize
the innermost loop

• To make the loop that is the most profitable to
parallelize the outermost loop

• To make memory accesses to consecutive words in
memory

• To bring a loop with long vector length (iteration count)
inside a loop with short vector length

For vectorization, profitability is the improvement in execution
time.

Consider the matrix addition shown below.

Original loop

DO I = 1, N
DO J = 1, M

A(I, J) = B(I, J) + C(I, J)
ENDDO

ENDDO

32 CONVEX FORTRAN Optimization Guide

•

To vectorize the original loop, the compiler interchanges the I
and J loops so that contiguous elements of B and C are loaded
into vector registers. This optimization, shown in the following
example, substantially improves performance over the row-by
row approach of the source code.

Vectorized loop

DO J = 1, M
DO I = 1, N

A(I, J) = B(I, J) + C(I, J)
ENDDO

ENDDO

Paired hoist and sink

A vector register can sometimes be used as an accumulator,
making it possible for the compiler to move loads and stores of
the register outside the vector loop. As noted in Chapter 2,
hoisting is the movement of an operation (such as loading a
register) out of a loop to a basic block preceding the loop.
Sinking is the complement of hoisting. The compiler moves an
operation, such as a register store, out of a loop to a basic block
following the loop. The following example shows a loop nest
that is a candidate for hoisting and sinking.

Example

DO J = 1, N

DO I = 1, N
A(I) = A(I) * B (I, J)

ENDDO
ENDDO

When this program fragment is compiled at optimization level
-02, the I loop is vectorized. Additionally, the load of vector A is
hoisted above the loop and the store of vector A is sunk below
the loop. This optimization eliminates the need for repeated
vector loads and stores and makes the loop even faster.

Chapter 3 Vector optimization 33

The following code shows an example of vector hoisting and
sinking.

Example

I = 1

DO lOUT = N, 0, -128
K = I + MIN(127, lOUT - 1)
VO = A(l:K:1)

DO J = 1, N

VO = VO + B(l:K:1, J)
ENDDO

A(l:K:l) = VO

I = I + 128

ENDDO

Vector loads and stores are hoisted and sunk only under theSl
conditions:

• The array reference and array assignment have the
same subscripts.

• All subscripts of the array are the induction variable of
a vectorized loop or loop constants.

The compiler sometimes interchanges loops to make a subseT:
a loop constant so that sinking and hoisting is possible.

IF-IX)optimizations
IF-DO optimizations modify loops containing tests to improvt
vector performance. Tests can be promoted out of the loops OJ

eliminated completely. By minimizing the number of tests
within a loop, the compiler reduces the number of masked
vector instructions that must be executed, thereby improving
perfor:rnance.

There are three types of IF-DO optimizations: redundant test
elimination, loop peeling and test promotion. Each of these is
described in detail below.

Redundant-test elimination
Redundant-test elimination is the simplest of the IF-DO
optimizations. The compiler recognizes when a test against
some index variable is evaluated more than once and eliminat
that test as well as any accompanying redundant code.

34 CONVEX FOKfRAN Optimization Guide

•

•

This optimization is especially relevant when you are
optimizing FORTRAN 66 programs that contain DO loops
surrounded by IF tests, as shown in the following example.

Original loop

DO I = I, N
IF (1 .GT. 0) THEN

DO J = I, 1
A(I,J) = 0

ENDDO
ENDIF

ENDDO

Optimized loop

DO 1 = I, N
DO J = I, I

A(I,J) = 0
ENDDO

ENDDO

Here the explicit test IF (I • GT. 0) is redundant, since the test
is implicit in the DO loop. It is therefore removed during
redundant-test elimination.

Redundant-test elimination is always perfonned at optimization
levels -02 and above.

Loop boundary-value peeling
Loop boundary-value peeling involves removing the first
iteration, last iteration, or first and last iterations of a loop to
remove conditional tests from the loop. This is done when the
loop contains a test involving an explicit reference to the loop
index variable that always evaluates to . TRUE. or .FALSE. for
the first iteration, last iteration, or first and last iterations.

Chapter 3 Vector optimization 35

With the code shown below, the compiler automatically peels (
the first and last tests and rewrites the loop to cover the
remaining indexes.

Original loop

DO I = 1, 100
IF (I .EQ. 1) THEN

A(I) = B (I)

ELSE IF (I .EQ. 100) THEN
A(I) = C(I)

ELSE
A(I) = -A(I)

ENDIF
ENDDO

Peeled loop

A(l) = B (1)

DO I = 2, 99
A(I) = -A(I)

ENDDO
A (100) = C (100)

In some cases, boundary-value peeling requires replicating la
amounts of code and can greatly increase the size of the
executable file. By default, the compiler peels boundary valUE
and expands the code up to a predetermined conservative lin
you can increase this limit by using the -peel compiler optiOJ
or, if you wish to do so on a loop-by-loop basis, the PEEL
compiler directive.

You can allow the compiler to expand code without bound b)
using the -peelall compiler option or the PEEL_ALL directh
In codes containing large numbers of boundary-value
operations, allowing code expansion without bound can grea
lengthen compile time and can increase the size of the code
enough to exceed the limits of some of the compiler's interna
tables.

Boundary-value peeling can be disabled completely with the
-nopeel compiler option. Similarly, you can disable peeling
a loop-by-loop basis with the NO_PEEL compiler directives. ~
Appendix B, "Compiler directives," for more information.

36 CONVEX FORTRAN Optimization Guide

Original loop Interchanged loop

• DO I = I, 100 IF (G) THEN

IF (G) THEN DO I = 1, 100

A(I) = B (I) A(I) = B (I)

ELSE ENDDO

A(I) = C(I) ELSE

ENDIF DO I = 1

ENDDO A(I) = cn)
ENDDO

ENDIF

Note

•

Loop boundary-value peeling Is not performed on loops that
have no tests on boundary values. In other words, the complier
does not try to peel unpeelable loops.

Test promotion
Test promotion involves promoting a test out of the loop that
encloses itby replicating the containing loop(s} for each branch
of the test. The replicated loops contain fewer tests than the
originals or no tests at all, so the loops execute much faster.
Multiple tests can be promoted, and copies of the loop are made
for each test.

IF-DO interchange is an important special case of test promotion
that is performed on perfectly nested DO loops that contain IF
statements. In this case, the IF statements are interchanged out
of the DO loops, and the DO loops are replicated if necessary. An
example is shown below.

For loops containing large numbers of tests, loop replication can
greatly increase the size of the code.

You can control the amount of code replication and test
promotion with compiler options and directives. By default, the
compiler promotes tests and replicates code up to a
predetermined, conservative limit.

The -ptst compiler option increases this limit and can cause a
noticeable increase in compile time.

Chapter 3 Vector optimization 37

The -ptstall option promotes all tests regardless of code
replication. This can cause a large increase in compile time and
can increase the size of the code enough to exceed the limits of
some of the compiler's internal tables.

The -noptst option disables test promoti~n.

The PROMOTE_TEST, PROMOTE_TEST_ALL and
NO_PROMOTE_TEST compiler directives provide similar
functionality on a loop-by-loop basis. See Appendix B,
"Compiler directives," for more information about these
directives.

At optimization levels -02 and above, the CONVEX FOR'I'RA1\
compiler automatically performs IF-DO optimizations on DO an
hand-rolled loops that contain logical and arithmetic IF
statements, IF-THEN-ELSE statements, and computed GOTO
statements. Simple and nested loops, and loops with exits are
handled.

Pattern matching
Pattern matching allows the compiler to vectorize certain loops
that it cannot otherwise vectorize. At optimization levels -02
and above, the compiler will recognize a loop that uses an IF
test to determine a maximum (or minimum) value stored in an
array and replace it with a call to a vectorized subroutine that
performs the same task. The following example shows such a
loop.

Example

CM = 1

XM = A(l)

DO I = 2, N

IF (A(I) .GT. XM) THEN

CM = I
XM = A(I)

ENDIF

ENDDO

38 CONVEX FORTRAN Optimization Guide

aonditional
• duction
variables

•

Similarly, the compiler recognizes loops containing recurrences
that can be implemented with a sPeCial sequence of vector
instructions. The following code shows examples of patterns the
compiler matches.

Example

DO I = 1, N
X(I) = X(I - 1) + Y(J)

ENDDO
DO I = 1, N

IF (X(I) .GE. X(M» M = I
ENDDO
DO I = 1, N

IF (X(I) .EQ. Y(I» K = I
ENDDO

A loop induction variable is a variable whose value is
incremented by a constant amount on every iteration of a loop.
Loop induction variables that do not change on every iteration
are called conditional induction variables. The compiler
frequently recognizes these variables and generates vector code
for expressions involving them.

In the following example, K is a conditional induction variable,
not an upper limit on the vector.

Example

K = a
DO I = 1, 100

IF (COND (I) .EQ. . TRUE.) THEN

K = K + 1
A(I) = B(K)

C(K) = D(I)

ENDIF
ENDDO

The compiler generates machine instructions that do the
following:

• Save values of I for which COND (I) is . TRUE •

• Count the number of those values.

• Load the vector strip of B.

Chapter 3 Vector optimization 39

40 CONVEX FORTRAN Optimization Guide

Inhibitors of
vectorization

• Expand the vector strip of Bto the appropriate indexes
according to the saved truth values.

• Store the expanded vector in A (1: 100) .

• Load the vector D (1: 100).

• Compress the vector according to the saved truth
values.

• Store the vector in C.

Any of the following conditions can inhibit or prevent
vectorization:

• Computed or assigned GOTO statements

• Multiple loop entries or exits

• Function or subroutine calls

• I/O statements

• Equivalenced scalar or array variables

• Recurrences
Of these conditions, you may be unfamiliar with recurrence an
its variations. The following section defines recurrence and
describes its effect on vector optimization.

Recurrence
A value calculated in one iteration of a loop might be reference
in another iteration. When this happens, the value recurs and c
recurrence exists. (Recurrences are sometimes incorrectly
referred to as recursions. To avoid confusion, the term recursio
is not used in discussions about loops. Instead, the term
recursion is used only to mean subroutine or function-call
recursion.)

Recurrence is closely related to data dependency. A data
dependency is a relationship between two operations such tha
one operation depends on the results of the other. This implie~
definite chronology of operations: execution of one operation
must always precede execution of the other, and the execution
order cannot be changed without affecting the results.

Dependencies may be either loop-carried or loop-independen
There must be at least one loop-carried dependency (LCD) fOl
recurrence to exist. Any number of loop-independent

•

•

dependencies (LIDs) can occur in a loop, but a recurrence does
not exist unless that loop contains at least one loop-carried
dependency.

Some loops are written in such a way that the compiler cannot
detennine whether or not a recurrence exists. A possible
recurrence that does not actually exist is called an apparent
recurrence. The compiler does not automatically vectorize a loop
that contains a real or apparent recurrence.

loop-carried dependency
A loop-carried dependency (LCD) exists when one iteration of a
loop computes a value that is referenced on another iteration.
The loop below contains an LCD.

Example

DO I = 1, N

A(I + 1) = A(I) + 3.14
ENDDO

The dependency is carried by the loop from one iteration to the
next.

Dependencies can be backward or forward. A backward LCD
exists when one iteration references a variable whose value is
assigned on a previous iteration. The previous example shows a
backward LCD. The first iteration of the loop assigns a value to
A (2), the second iteration references that value and assigns a
new value to A (3) , and so on. The iterations of the loop are
serial, and the loop cannot be vectorized.

A forward LCD exists when one iteration references a variable
whose value is assigned on a later iteration. The loop below
contains a forward loop-earried dependency.

Example

DO I = I, N

A(I) = A(I + 1) + 3.14
ENDDO

In this example, the first iteration assigns a value to A (1) and
references A (2) . The second iteration assigns a value to A (2)
and references A (3) . The reference to A (I) depends on the fact
that the HUh iteration, which assigns a new value to A(I), has
not yet executed. A forward dependency, therefore, does not
prevent vectorization of a loop.

Chapter 3 Vector optimization 41

Example

Example

42 CONVEX FORTRAN Optimization Guide

TA(1) = A(1)

= •.. TA(l)

X = TA(10)

ENDDO

DO I = 1, 10

Vectorized loop

x = A(1)

••• X

ENDDO

DO I = 1, 10

Original loop

DO I = 1, N - 1
A(1) = B(1) + C(1)
B(1 + 1) = D(1) * 3.14

ENDDO

DO I = 1, N - 1
B(1 + 1) = D(1) * 3.14
A(1) = B(1) + C(I)

ENDDO

In this example, the temporary vector TA replaces all references
to the scalar variable Xin the loop. When the loop ends, the
value of A(10) is assigned to X.

When a scalar variable causes an LCD, the compiler eliminates
the recurrence with a transformation called scalar spreading.
Within the body of the loop, the compiler replaces all
occurrences of a scalar variable that cause a recurrence with a
temporary vector variable. The correct value is assigned to the
scalar variable when the loop ends. In the following example,
there is an LCD on the variable x.

The compiler can vectorize some loops containing backward
LCOs. The following loop contains an LCD that points
backward from B(I+l) to B(I).

In this loop, the assignmenttoA(2)on the second iteration
depends on the value assigned to B(2) on the first iteration. Th.
compiler interchanges the statements within the loop so that thl
assignment to Boccurs before the assignment to A, as shown
below.

Original loop

Vectorized loop

DO I = 1, N
A(I) = A(I - 1) + B(I) * C(I)

ENDDO

Chapter 3 Vector optimization 43

Statement 1
Statement 2
State-ment 3

DO I = 1, N

A(I) = B(I) + D(I)

B(I) = 0.0
D(I) = D(I) + 1.0

ENDDO

Example

DO I = 1, N Scalar
A(I) = A(I - 1) + T(I)

ENDDO

A backward LCD that cannot be eliminated might not stop
vectorization completely. Using temporary vectors, the compiler
can sometimes vectorize part of a loop that contains an LCD.
The code below shows an example.

DO I = 1, N

T(I) = B(I) * C(I)

ENDDO

The assignment to A (I) depends on the value of A (I-1) , which
is computed on the previous iteration.The vectorized loop below
shows that the compiler isolates the dependency by distributing
the loop and vectorizes the first distributed part. The second
distributed part is executed with scalar instructions. This
transformation is called partial vectorization because it
distributes a loop into vector and scalar parts.

Loop-independent dependency
A loop-independent dependency (LID) exists when two
operations in a single iteration must be executed in a Specific
order to produce correct results.The loop below produces two
LIDs.

•

•

44 CONVEX FORTRAN Optimization Guide

Example

An LID can stop veetorization by preventing the compiler from
eliminating an LCD. In the following example, the loop cannot
be vectorized.

Statement 1
Statement 2

DO I = 1, N - 1

A(I) = 8(1) - elI)
8(1 + 1) = A(I) + D(I)

ENDDO

Example

Apparent recurrences
An apparent recurrence exists when the compiler lacks sufficient
information to prove that an actual recurrence does not exist.
Apparent recurrences usually result from using a loop constant
of unknown sign or an array reference in an array subscript. The
following loop cannot be veetorized because the sign of K is
unknown.

DO I = M, N

A(I + K) = 2.0
A(I) = 0.0

ENDDO

If K is positive or zero, the final value of each element of A (M:N)
is 0.0. The compiler cannot interchange the statements because
the assignment to A (I) must follow the assignment to A (I+K) • If

Interchanging the statements would remove the backward LCD
that exists between the assignment to 8 (I+1) in statement 2 and
the reference to B (I) in statement 1. The LID between the
assignment to A (I) in statement 1 and the reference to A (I) in
statement 2 prevents this interchange.

Here, the proper evaluation of statement 1, which assigns a
value to A, prevents statements 2 and 3, which assign new
values to 8 and D, from being evaluated first. Statement 1 is anti
dependent on statements 2 and 3. A forward LID exists between
statements 1 and 2; another exists between statements 1 and 3.

liDs do not normally prevent loop vectorlzation. LCDs, which
cause recurrences, can prevent vectorizatlon. Vectorlzatlon Is
Inhibited when an LCD between an assignment and a reference
to an array prevents the complier from generating correct vector
code.

ICaution

•

•

K equals -1, the final value of A (M-l :N-l) is 2.0; only A (N) is 0.0.
The compiler must interchange the statements so the assignment
to A (I+K) follows the assignment to A (I) • Because these
conditions are contradictory, neither operation can be performed.

The loop below cannot be vectorized because the compiler
cannot determine whether a recurrence exists.

Example

DO I = 1, N
A(J(I)) = A(K(I)) + 1

ENDDO

The value assigned to A(J (I)) in one iteration might be used in
a subsequent iteration, so the compiler assumes that the
references to A (K (I)) form a recurrence.

Reduction

The compiler vectorizes a special recurrence known as
reduction. In general, a reduction has the form:

x = X operator Y

where X is a variable not assigned or used elsewhere in the loop,
Yis a loop constant expression not involving X, and operator is +,
-, *, .AND ., .OR., .EQV., or .NEQV.

The compiler also recognizes reductions of the form:

X = function<x, y)

where X is a variable not assigned or referenced elsewhere in the
loop, y is a loop constant expression not involving X, and
function is the intrinsic MAX function or instrinsic MIN function.

Chapter 3 Vector optimization 45

The following loop computes the sum of the elements of A (1: N:
and notes the value of the greatest element. The compiler
veetorizes both reductions.

In the optimized code, VSUM and VMAX are single vector machine
instructions that return the sum and the greatest value,
respectively, of up to 128 elements.

Original loop

SUM = 0.0

X = A(l)

DO I = 1, 100,

SUM = SUM + A(I)

X = MAX(X, A(I»

ENDDO

46 CONVEX FORTRAN Optimization Guide

Vectorized loop

SUM = VSUM(A(1:100»

X = VMAX(A(1:100»

Parallel optimization

•8 ~. f.aSlc opera Ion

•

At optimization level -03, the CONVEX FORTRAN compiler
performs vector and parallel optimization to enhance program
performance. Unlike vector optimization, parallel optimization
does not reduce CPU time. Instead, processing of a single
program is spread across multiple CPUs, reducing the
program's time to solution.

Parallel optimization divides a program into threads. A thread is
a sequence of instructions that must execute on a single CPU.

The CONVEX FORTRAN compiler finds parallelism at the loop
level. The compiler vectorizes inner loops and parallelizes outer
loops. Often, the outer loops are the strip-mine loops that the
compiler creates when it vectorizes an inner loop.

As with vector optimization, the compiler distributes and
interchanges loops to produce the most efficient parallel code.
The compiler can parallelize most scalar reductions and
assignments with the addition of synchronization code.

4 Parallel optimization 47

As an example of the transformations the compiler performs at
optimization level -03, consider the matrix multiplication
shown below.

Example

DO I = 1, N
DO J = 1, N

C(I,J) = 0.0
DO K = 1, N

C(I,J) = C(I,J) + A(I,K) * B(K,J)
ENDDO

ENDDO

ENDDO

The compiler processes this loop nest by distributing the loop
nest containing the I and J loops, as shown in the following
example.

Example

DO I = 1, N
DO J = 1, N

C(I,J) = 0.0
ENDDO

ENDDO

DO I = 1, N
DO J = 1, N

DO K = 1, N
C(I,J) = C(I,J) + A(I,K) * B(K,J)

ENDDO

ENDDO

ENDDO

48 CONVEX FORTRAN Optimization Guide

•

•

The compiler moves the I loop to the innermost position in each
nest, as shown belmv, so that it can retrieve contiguous elements
on successive iterations.

Example

DO J = 1, N

DO I = 1, N
C(I,J) = 0.0

ENDDO
ENDDO
DO J = 1, N

DO K = 1, N

DO I = 1, N
C(I,J) = C(I,J) + A(I,K) * B(K,J)

ENDDO
ENDDO

ENDDO

The compiler strip mines both I loops to the optimal vector
length, a function of the loop upper bound (N). In the following
examples, MVSL represents that function, and Vo and V1
represent vector registers that can contain up to 128 64-bit
elements.

Example

M = MVSL(N)
DO J = 1, N

DO IOUTER = 1, N, M
C(IOUTER:MIN(N,IOUTER + M - 1), J) 0.0

ENDDO
ENDDO
DO J = 1, N

DO K = 1, N

DO IOUTER = 1, N, M
VO = C(IOUTER:MIN(N,IOUTER + M - 1), J)
V1 = A(IOUTER:MIN(N,IOUTER + M - 1), K)
va = VO + V1 * B(K, J)
C(IOUTER:MIN(N,IOUTER + M - 1), J) = va

ENDDO
ENDDO

ENDDO

4 Parallel optimiZiltion 49

In the second nest, the compiler interchanges the lOUTER strip
mine loop outside of the K loop.

Example

M = MVSL(N)
DO J = 1, N

DO lOUTER = 1, N, M
C(lOUTER:MlN(N,lOUTER + M - 1), J) 0.0

ENDDO
ENDDO
DO J = 1, N

DO lOUTER = 1, N, M
DO K = 1, N

VO = C(IOUTER:MlN (N, IOUTER + M - 1), J)

V1 = A(IOUTER:MlN(N, IOUTER + M - 1), K)

VO = VO + V1 * B(K, J)
C(lOUTER:MlN(N,lOUTER + M - 1), J) = VO

ENDDO
ENDDO

ENDDO

In the following example, PARALLEL DO represents a loop that
can be processed by multiple crus.

Example

M = MVSL(N)
PARALLEL DO J = 1, N

DO lOUTER = 1, N, M
C(lOUTER:MlN(N,lOUTER + M - 1), J) 0.0

ENDDO
ENDDO
PARALLEL DO J = 1, N

DO lOUTER = 1, N, M
DO K = 1, N

VO = C(lOUTER:MlN(N,lOUTER + M - 1), J)
V1 = A(lOUTER:MlN(N,lOUTER + M - 1), K)
VO = VO +V1 * B(K, J)
C(lOUTER:MlN(N,lOUTER + M - 1), J) = VO

ENDDO
ENDDO

ENDDO

50 CONVEX FOKrRAN Optimization Guide

>

•
Inhibitors of
parallelizat'ion

•

As shown below, the compiler hoists a vector load and sinks a
vector store out of the K loop. The remaining reference to vector
VI chains with the vector addition and vector multiplication in
the next statement, resulting in even faster execution.

Example

M = MVSL(N)
PARALLEL DO J = 1, N

DO IOUTER = 1, N, M
C(IOUTER:MIN(N,rOUTER + M - 1), J)= 0.0

ENDDO
ENDDO
PARALLEL DO J = 1, N

DO IOUTER = 1, N, M
VO = C(IOUTER:MIN(N,IOUTER + M - 1), J)
DO K = 1, N

VI = A(IOUTER:MIN(N,IOUTER + M - 1), K)
va = va + VI * B(K, J)

ENDDO
C(IOUTER:MIN(N,IOUTER + M - 1), J) = VO

ENDDO
ENDDO

The combination of these optimizations results in generated
code that performs at a level similar to that of hand-tuned
assembly code.

Parallelization and vectorization are so closely related that most
things that prevent vectorization can prevent parallelization.
The following specific factors can inhibit or prevent automatic
parallel optimization:

• Multiple entries or exits

• Function or subroutine calls

• I/O statements

• Equivalenced scalar or array variables

• Nondeterminism of parallel execution

• Loop-carried dependencies (LeDs)

4 Parallel optimization 51

Loops with subroutine calls
The compiler does not automatically parallelize a loop
containing a subroutine call. You can force it to parallelize such a
loop by inserting the FORCE_PARALLEL directive before the loop.
This directive allows parallelization regardless of potential
dependencies that the compiler detects. Certain actual
dependencies, such as from one scalar to another, cause the
compiler to ignore the directive.

If you use FORCE_PARALLEL, you must recompile the called
subroutine (or any routines called indirectly) for r~ntrancy
with the -re option. Each invocation of a subroutine compiled
with -re maintains a thread-private copy of its local data and a
thread-private stack to store compiler-generated temporary
variables. For more information about compiler directives, see
AppendixB.

The call to SUB in the following example prevents the compiler
from automatically parallelizing the loop. FORCE_PARALLEL
overrides the compiler's decision, and the compiler generates
parallel code for the loop.

Example

C$DIR FORCE_PARALLEL

DO I = 1, N

CALL SUB(A, B, I, N)

ENDDO

END

OPTIONS -re ! compile for reentrancy
SUBROUTINE SUB (A, B, I, N)

REAL A (N), B (N)

A(I) = B(I) * 3.14

RETURN

END

The way the code is written guarantees that SUB does not
contain any operations violating data independence, so the code
can execute safely in parallel.

52 CONVEX FORTRAN Optimization Guide

ICaufion

•

•
,
;

.l..

If a subroutine is called only from within a parallelized loop,
compile the subroutine at a level lower than -03. Only one loop
at a time can be run in parallel. Code that can be parallelized
within the subroutine cannot execute in parallel. Additional
code generated to parallelize the called routine is useless
overhead.

If you use FCIlC2 PAtW:D:Lto parallellze a loop containing an
actual recurrence, the behavior of the loop may change from
one execution to the next. Errors may result at runtime, but no
amount of testing can guarantee that an error will be revealed.
Analyze your data and algorithms to ensure that your code can
be safely parallellzed before using this directive. A good test Is to
run the loop with Iterations In reverse order, for example, DO
I=N,1,-1.

For more infonnation about compiler directives, see Appendix B.

Another way to allow loops containing subroutine calls to
parallelize (or vectorize) is to inline the subroutine. See Chapter
8, "lnline substitution," for more information.

Loop-carried dependency
Chapter 3 discusses how recurrence and dependency affect
vectorization. While only backward dependencies interfere with
vectorization, forward and backward dependencies affect
parallelization.

The loop in the following example has no dependencies. The
compiler can strip mine and vectorize the inner loop and
paraIlelize the strip-mine loop.

Example

DO I = 1, N

A(I) = A(I) + 3.14
ENDDO

The compiler transforms the outer strip-mine loop so that it runs
in parallel on a multiprocessor machine. The result is a parallel
vector loop.

4 Parallel optimization 53

The loop below has a backward looJXarried dependency (LCt
caused by the assignment to A(I+1). The loop cannot be
vectorized or parallelized by the compiler. The loop remains in
scalar form.

Example

00 I = 1, N - 1
A(I + 1) = A(I) + 3.14

ENDDO

The following loop has a forward LCD. Because forward LCDs
do not interfere with vectorization, the compiler strip mines an,
vectorizes the loop. It is not safe to parallelize a loop that has ar
LCD, however. The result is a strip-mine vector instead of a
parallel vector loop.

Example

DO I = 1, N - 1
A(I) = A(I + 1) + 3.14

ENDDO

If a loop has dependencies that prevent the compiler from
automatically parallelizing it, you can instruct the compiler to
insert synchronizatwn code to honor the dependencies. The
compiler can then parallelize the loop. Synchronization code
causes execution of a thread to halt momentarily, if necessary,
until an operation in another thread, on which the halting threal
depends, has been performed. The SYNCH_PARALLEL directive
instructs the compiler to generate synchronization code. More
information about CONVEX FORTRAN directives appears in
AppendixB.

The overhead of synchronization code often outweighs
performance gains from parallelization. Synchronized parallel
loops are advantageous only if the amount of code that contains
dependencies is small compared to the amount of code that doe:
not contain dependencies.

54 CONVEX FOKfRAN Optirnizatwn Guide

Parallelizing code
outside of loops

•

•

The compiler can handle most scalar assignments and
reductions within parallel loops. For example, the compiler can
generate parallel code for the following loop.

Example

DO I = 1, N
IF (A(I) .LE. 0.0) THEN

S = S + B(I) * C(I)

X = B(I)

ENDIF
ENDDO

The compiler does not automatically parallelize code outside a
loop. You can use tasking directives to instruct the compiler to
parallelize such code. The BEGIN_TASKS directive tells the
compiler to begin parallelizing a series of tasks. The NEXT_TASK
directive marks the end of a task and the start of the next task.
The END_TASKS directive marks the end of a series of tasks to be
parallelized. For more information about tasking directives, see
AppendixB.

The following example shows how to insert tasking directives
into a section of code containing three tasks that can be run in
parallel.

Example

C$DIR BEGIN_TASKS

statement 1
C$DIR NEXT_TASK

statement 2
C$DIR NEXT TASK

statement 3
C$DIR END_TASKS

4 Parallel optimization 55

56 CONVEX FORTRAN Optimization Guide

Note

The compiler transforms the above code into a parallel loop and
creates machine code equivalent to that shown below.

C$DIR FORCE_PARALLEL

DO I = 1,3
GOTO (10,20,30)1

10 statement 1
GOTO 40

20 statement 2
GOTO 40

30 statement 3
GOTO 40

ENDDO
40 CONTINUE

If the task contains a subroutine call and variable passed to the
subroutine Is referenced within the task, the complier will Issue a
warning and fall to para/lellze the task. If possible, moving the
variable reference to before the BI!IiIN TASIG directive will allow
parallellzatlon.

Optimizing FORTRAN
applications

•
Note

•

This chapter describes a strategy for optimizing FORmAN
programs. The same principles apply to developing new
applications, but the examples address the more common need
to optimize existing code.

For programs that manipulate arrays, vectorization usually
provides the greatest performance gains of any possible
optimization. Focus your efforts first on vectorizing the loops in
subprograms that account for the major part of your program's
execution time. When you obtain the best vector perfonnance,
you can frequently achieve additional gains through
parallelization.

When you are optimizing code, It Is easy to produce a tast
program that no longer gives correct results. The goal ot
optimization Is to make a program run tast without adversely
affecting results. Test your code at each stage ot the optimization
process to make sure the optimized program still gives correct
results.

Step 1. Compile the program
1. Compile the program with minimal optimizations (-no).

2. Run the resulting program and check the output. If you
are porting a program from another machine, compare
the new output with output from the old machine. If
you are compiling a new application, compare the
output with expected values. If the output does not
match the expected results, allowing for roundoff error,
use a debugger, such as csdor CXdb to pinpoint and
fix the logic error that is causing the problem. See
Chapter 9, "Limits of optimization," for possible causes
of such errors.

Chapter 5 Optimizing FOKI'RAN applications 57

If you are certain there is no logic error, check for violations of
ANSI standards (see Chapter 9). If the code does not violate
ANSI standards, use the contact utility to report a possible
compiler bug.

Do not skip this first step. Optimizations perfonned at higher
levels make debugging much more difficult. Be sure your
program produces correct results before you start to add
optimizations.

Step 2. Add scalar optimizations

1. Compile the program with scalar optimization (-01).
Use the -pa option to include instrumentation for
profiling with CXpa. Ifyou use one of the profilers
contained in the CONVEX Consultant instead of the
CONVEX Performance Analyzer (CXpa), you can still
perfonn most of the steps in this chapter. You cannot
analyze the perfonnance of individual loops, however.
See the CONVEX Consultant User's Guide to determine
the appropriate options and commands for using the
Consultant profilers.

Code rarely slows down at -01. Ifyou do not obtain the
expected results at higher optimization levels, you may
need to recompile part of your program at -00. This
problem is the only reason to compile a program at -00.

2. Compare the output of your program with the output
produced in Step 1. Because scalar optimization rarely
affects the output, the results, allowing for differences
in floating-point roundoff, should be the same.

If the output is significantly changed, use a binary search to
isolate the subprogram responsible for the change. Compile half
the subprograms at -no and the other half at -01. Run the
program and check the output to detennine which half contains
the offending routine. Then, split the suspect group of
subprograms in half. Compile half of the suspect routines at -no
and the other half at -01. Continue this process until you isolate
the routine containing the error.

When you have isolated the erroneous routine, check its source
code and fix any errors that you find. If you do not find logic
errors, recompile that SUbprogram at -no and continue
optimizing the rest of the program.

58 CONVEX FORTRAN Optimization Guide

•

3. Run the program under the same profiler you used in
Step 1. Note the program's total execution time and
which routines consume the most time. Concentrate
your optimization efforts on these routines.

Step 3. Add vectorization
You can approach vectorization in one of two ways.

Step 30. Add vectorization in one step
The more common approach is to compile the entire program at
-02. Nothing is wrong with this approach, except that it may not
be safe or desirable in all cases. If a program has hidden
dependencies, misuses directives, encroaches on the limits of
floating-point precision, or violates certain restrictions of the
ANSI standard, the code may no longer produce the same
output after it has been vectorized. It is also possible, although
rare, that code will slow down due to vectorization. The reasons
for these phenomena are discussed in Chapter 9, "Limits of
optimization."

Step 3b. Add selective vectorization

This step represents an alternative approach. Its advantage is
that, if unexpected results occur, it allows you to isolate the
cause of the problem more quickly. Although safer, this
approach can take more time. If you have compiled complete
programs at -02 in the past and achieved good results, there is
no reason not to continue with that approach. If your code slows
down or gives incorrect answers at -02, then backtrack and
carry out the steps outlined below. Otherwise, go on to Step 4. If
you have had problems with vectorization in the past, however,
you might want to begin with the procedures outlined below.

Do not try to vectorize a program unit that produces incorrect
results at -01. The compiler continues to perform scalar
optimizations at -02, so any problems that you encounter at -01
are sure to recur when you add vectorization.

1. Look at the CXpa output from Step 2 to determine
which routines consume the most CPU time. Compile
the most time-consuming routines for vectorization. To
do this, place the OPTIONS -02 statement above the
subprogram in the source code or use the -02 option on
the fc command line. Compile the rest of the program
for program-unit optimization and CXpa profiling.

Chapter 5 Optimizing FORfRAN applications 59

2. Compare the output of your program with the output
produced in Step 2. The results, allowing for
floating-point roundoff, should be unchanged.

If the output is significantly changed, use the binary
search procedure described in Step 2 to isolate the
offending routine. Check the source code and fix any
errors that you find. Ifyou do not find any logic errors,
recompile the affected SUbprogram at -01 and continue
optimizing the rest of the program.

3. Run the program under CXpa. Take note of the
program's total execution time and the most
time-eonsuming routines. Compare this CXpa output
with the CXpa output from Step 2 and determine the
effect of vectorization on your program's performance.

4. Repeat Step 3a, vectorizing routines that consume a
significant amount of CPU time in the new CXpa
outpu t and have not been veetorized. Continue until
you have vectorized all time-consuming routines that
can be properly vectorized; proceed to Step 4.

Step 4. Enhance vector op'timiza'tion

1. Run the vectorized program under CXpa to produce a
loop-level profile of the most time-eonsuming routines.

2. Study the CXpa profile and the optimization report.
Look for loops that are not vectorized and consume
significant amounts of CPU time. Note which of these
loops are inner loops, which are candidates for
vectorization.

The goal is to increase the number of vectorized loops. Look for
apparent recurrences that prevent the compiler from vectorizing
time-eonsuming loops. If you find loops with apparent
recurrences that do not contain actual recurrences, use the
NO_RECURRENCE directive to tell the compiler it is acceptable to
vectorize the loop.

Complicated conditional structures can prevent the compiler
from vectorizing a loop. If a loop containing a conditional does
not vectorize, try to rewrite the code to remove the conditional
from the loop.

60 CONVEX FORTRAN Optimization Guide

•

3. When you are satisfied that no more loops can be
vectorized or the loops that can be vectorized do not
consume a significant amount of time, you may still be
able to improve the efficiency of your code. Try the
following techniques:

- Simplify conditionals. Even if a loop is vectorized, an
embedded conditional can slow it down.

- Simplify array subscripts. Array subscripts that
require many operations to evaluate can slow down
the execution of a loop.

- Look for loops with short vector lengths (small trip
counts). If the trip count is small, the loop probably
runs faster in scalar form than it does in vector form.
On the CI, 0, and C3200 Series machines, this
slowdown occurs when the trip count is around five.
Use the SCALAR directive to stop the compiler from
vectorizing such a loop.

- Look for unnecessary strip mines and inefficient
strip-mine lengths. Use CXpa to determine whether
a vector loop is strip mined. Use the MAX_TRIPS
directive to stop the compiler from creating
unnecessary strip mines around a vector loop.

- Consider inlining any short routines that are called
frequently or consume a large amount of CPU time.
See Chapter 8 for information about inlining.

- Consider using CONVEX VECLIB routines where
possible. CONVEX VECUB is an optional library of
highly-optimized mathematical routines. Refer to the
CONVEX VECUB User's Guide for more information.

For more examples of how to tune your code for better
vector performance, refer to Chapter 7, "Manual
optimization techniques."

4. When you finish modifying your code, recompile it and
run the program under CXpa. Check your program's
output to make sure the output has not changed. If it
has changed, locate the directive that is causing the
problem and remove it.

When your program's output is correct, compare the CXpa
profile with the profile obtained in part I of Step 4. Note the
effect of the changes you made on each routine's CPU time.
Some changes may cause your code to slow down. Remove
those changes.

Chapter 5 Optimizing FORTRAN applications 61

62 CONVEX FORTRAN Optimization Guide

ICaution Automatic vectorlzatlon typically reduces CPU time by up to
90"10. If your machine has two or more CPUs and the program Is
the only compute-Intensive application running on It at a given
time, consider optimizing the program for parallel processing. If
not, go to step 7, ·Wrapplng up."

Step 5. Add parallelizat'ion
You can approach parallelization in two ways. The comments
made about vectorization in Step 3 apply to parallelization.
Performance gains from parallelization are usually smaller than
those from vectorization, and your chances of running into
problems can be greater.

Step 50. Add parallelization in one step
Based on your own experience, you can begin by compiling
your entire program at -03, or you can follow the step-by-step
approach outlined in Step Sb. Parallelization requires additional
effort to ensure that results remain correct. The best approach is
to add parallelism selectively. Ifyou choose the "all at once"
approach and run into trouble, backtrack and begin down the
other path.

Step 5b. Add selective parollelizotion
Unlike vectorization, parallelization does not reduce a
program's CPU time. In fact, CPU time may increase slightly
when a program is parallelized. By spreading work across
multiple CPUs, however, parallelization can reduce a program's
time to solution. Ifyour program is going to run on a machine
with multiple CPUs, and tum-around time is more important
than CPU time, consider parallelizing your program. Otherwise,
go to Step 7.

To achieve the best performance gains from parallelization, your
program must run on a lightly or moderately loaded machine,
where CPUs are available for parallel execution. Ifyour program
is to run in a heavily loaded environment, it may not benefit
from parallel optimization. If this is the case, go to Step 7.

At best, parallelization can reduce a program's turnaround time
by a factor of N, where N is the number of CPUs on your
machine. The improvement depends on your program's
algorithm. Follow the procedures in this section to obtain the
best parallel performance out of your program's algorithm.

1. Look at the CXpa output from Step 4. Determine which
routines consume the most CPU time and compile
them for parallelization. To do this, place the OPTIONS

•

•

-03 statement above the sUbprogram in the source code
or use the -03 option on the fc command line. Compile
the rest of the program for vectorization and CXpa
profiling.

2. Compare the output of your program with the output
produced in 4) of Step 4. The results, allowing for
floating- point roundoff, should be unchanged.

If the output is significantly changed, use the binary
search procedure described in 2) of Step 2 to isolate the
offending routine. Check the source code and fix any
errors that you find. If you do not find logic errors,
recompile the affected subprogram at -02 and continue
optimizing the rest of the program.

3. Run the program under CXpa. Note the process virtual
times in each routine. See the CONVEX Performance
Analyzer (CXpa) User's Guide for procedures to
calculate the parallel efficiency of your code. If most of
the regions in a routine have an efficiency less than or
equal to one, parallelization of the routine is probably
counter-productive and should be removed. See the
CONVEX Performance Analyzer CXpa User's Guide
for information on interpreting process virtual time.

4. Repeat Step Sa, parallelizing those routines that
consume a significant amount of process virtual time in
the new CXpa output and have not been parallelized.
Continue until you have parallelized all routines that
can be safely and productively parallelized; then
proceed to Step 6.

Step 6. Enhance parallel optimization

1. Run the parallelized program under CXpa to produce a
loop- level profile of the most time-consuming routines.

2. Study the CXpa profile and the optimization report.
Look for loops that failed to parallelize. A scalar loop
that consumes significant CPU time is a candidate for
parallelization. Inner loops are less likely candidates.

3. Look for apparent dependencies that stop the compiler
from parallelizing a scalar or vector loop. Remove an
apparent dependency by inlining the subprogram call
or by applying the NO_RECURRENCE or

Chapter 5 Optimizing FOKfRAN applications

..---------------------------------

FORCE_PARALLEL directive. Ifyou find a real
dependency, consider replacing the routine with a call
to a VECLlB subprogram that performs the same
function in parallel. For more information about
VECUB, refer to the CONVEX VECUB User's Guide.

4. When you finish modifying your code, recompile it and
run the program under CXpa. Check your program's
output to make sure it has not changed. If it has
changed, locate the directive causing the problem and
remove it.

When your program produces correct output, compare the
CXpa profile with the profile obtained in 3) of Step 5. Note the
effect of the changes you have made on the process virtual time
of each region. Some changes may cause your code to slow
down. Remove those changes.

Step 7. Wrap up
The -pa option causes the compiler to insert special code and
data, called instrumentation, into your program. When your
program is completely optimized, recompile it without the -pa
option to remove the instrumentation overhead.

64 CONVEX FOKI'RAN Optimization Guide

Efficient programming
constructs

FORTRAN has long been the language of choice for advanced
scientific and engineering applications. It provides a set of
simple and effective programming constructs that are readily
optimized by advanced compilers such as the CONVEX
FORTRAN compiler. By carefully choosing programming
constructs, you can easily create programs that make best use of
the CONVEX system.

Chapter 6 Efficient programming constructs 65

In CONVEX FORTRAN, floating-point variables and constants
can be declared to be REAL (REAL*4), DOUBLE PRECISION
(REAL*8), or REAL*16. Using lower precision reduces your
program's memory requirements and usually increases
performance. However, if your code requires conversion of
operands from one precision to another when evaluating an
expression, the performance benefit may be lost because of the
extra time required to do the conversion.

When you are writing loops, the most important performance
consideration is whether the loop will vectorize. The compiler
vectorizes only loops that are counted. A counted loop is one
whose iteration value can be determined at runtime before the
loop is executed. The iteration value, or iteration count, is
required to determine the number and length of the vector
strips.

Integer operations are usually faster than floating-point
operations. For vector operations, the difference can be quite
small. When integer and floating-point operations are combined
in the same expression, the overhead caused by type
conversions usually outweighs any performance benefit that can
be gained by using integers. Avoid writing mixed-mode
expressions, especially within vectorized loops.

Writing efficient
loops

•

.~---------------Data type in
calculations

- --- --~---------~~~----~-~~~~~~~-

A counted loop has at least one induction variable and a fixed
stop value. An induction variable is one whose value is
incremented or decremented by a fixed amount on every
iteration. If the incrementing or decrementing may take place
only if some condition is true, then the induction variable is
conditional.

Counted loops can be DO loops or DO WHILE loops, or loops
written with IF and GOTO statements. The following example
shows four typical counted loops.

Example

DO 10 I = 1, 1000
A(I) = A(I) * B(I)

10 CONTINUE

DO I = 1000, 1, -1
A(I) = B(I) / 4.16

ENDDO

I = 1

DO WHILE (I .LT. 1000)
A(I) = A(I) * B(I)

I = I + 4
ENDDO

I = 1
5 A(I) = B(I) + C(I)

I = I + 1
IF (I .LT. 10) GOTO 5

I is the induction variable for each of these loops. I is assigned a
value at the beginning of each loop and is incremented or
decremented by a constant integer value on every iteration. Eacl
loop terminates when I reaches a predetermined stop value. ThE
compiler determines the iteration count for each loop and sets
up the vector registers and functional unit for vectorization.

66 CONVEX FORTRAN Optimization Guide

A(1) = B(1) * C(1)
A(2) = B(2) * C(2)
A(4) = B(4) * C(4)

A(8) = B(8) * C(8)

A(16) = B(16) * C(16)
A(32) = B(32) * C(32)
A(64) = B(64) * C (64)
A(128) = B(128) * C(128)
A(256) = B(256) * C(256)
A(512) = B(512) * C(512)

Example

Example

Chapter 6 Efficient programming constructs 67

1=1
DO WHILE (I .LT. 1000)

A(I) = B(I) * C(I)
I = I * 2

ENDDO

The loop can be unrolled manually, as shown below. Because the
loop overhead is eliminated, the unrolled code runs faster than
the original loop.

When this loop executes, it increments the value of I by one on
the first iteration, two on the second iteration, four on the third
iteration, and so on. Because I is not incremented by a constant
value, the loop has no induction variable, and the compiler
cannot vectorize it; nor could the compiler unroll the loop in the
presence of the UNROLL directive or the -ur flag.

If a loop uses an iteration variable that is not incremented or
decremented by a constant nonzero integer value, the loop has
no induction variable and the compiler cannot vectorize it. The
following example shows a loop that has no induction variable.

•

•

68 CONVEX FORTRAN Optimization Guide

ICaution

If the iteration variable of a loop is incremented by a non-integer
constant, the loop has no induction variable, and the compiler
cannot vectorize it. The loop in the following example
increments I by a REAL value, which prevents vectorization of
the loop.

Example

Z = 4.0
1=1
DO WHILE (I .LT. 1000)

A(I) = A(I) * Z
I = I + Z

ENDDO

If the start. stop, or iteration value of a loop falls outside the range
of~*4(31 bits), the complier may truncate the value to 31
bits when It vectorlzes the loop. Avoid using start, stop, or
iteration values that exceed the range of~*4.

For a DO WHILE loop to vectorize, the WHILE test must compare
the induction variable to a fixed stop value. The test can use any
ofthe following comparison operators: .GT ., •LT., •CE., .LE.,
and .NE.

More complicated iteration tests, such as the one shown in the
following example, often prevent the compiler from vectorizing
a loop.

Example

1=1
J = 0
00 WHILE «I .LT. N) .AND. (J .LT. N»

A(I) = A(I + J)

I = I + 1
J=J+M

ENDDO

The complexity of the WHILE test prevents the compiler from
generating code to determine the loop's iteration count at
runtime. As a result, the compiler cannot vectorize the loop.

1

---J

A stop value can be a variable or a constant, but its value must
be determined at runtime prior to the execution of the loop and
cannot change within the loop. The example below shows a loop
whose stop value changes within the loop.

DO WHILE (I .LT. N)
A(I) = B(I)
IF (A(I + 1) .GT. 0) N = A(I + 1)
I = I + 1

ENDDO

If the array Acontains a positive value within the range of 0 to N,
the value of N is altered. The compiler cannot predict what the
contents of A might be; therefore, it cannot predict how the value
of the stop variable, N, might change within the loop. This makes
it impossible to determine the number of iterations the loop will
make. The loop is uncounted and cannot be vectorized.

If a loop has more than one exit, the compiler cannot predict
which sections of code within the loop will be executed at
runtime. This prevents the compiler from generating equivalent
vector instructions. Loops that have alternate exits, such as the
loop below, do not vectorize.

Example

DO I = 1, N
A(I) = C(I) + 0(1)
IF (A(I) .LT. 0.0) THEN

GaTO 30
ENDIF
A(I) = A(I) / 2.0

ENDDO

30 CONTINUE

The compiler can vectorize most loops that contain IF tests.
Embedded conditionals, however, reduce the efficiency of vector
loops. Remove conditionals from loops when possible. Check
boundary conditions before or after, rather than within, the loop.

The following example shows a series of conditionals embedded
within a DO loop. The conditionals do not prevent vectorization
of the loop, but they do slow it down.

Chapter 6 Efficient programming constructs 69

-------_._----------------------------------

Example

DO I = 1, 10000
IF (I .LT. 2000) THEN

C(I) = A(I) * 2000.0 + COS(A(I»
8(I) = 8(I) * C(I) ** 4 / A(I)

ENDIF
IF «I .GE. 2000) .AND. (I .LT. 4000» THEN

C(I) = A(I) + COS(A(I»
8(I) = 8(I) + C(I)

ENDIF
IF «I .GE. 4000) .AND. (I .LT. 6000» THEN

C(I) = A(I) + 2000.0
8(I) = 8(I) ** 3

ENDIF
IF (I .GE. 6000) THEN

C(I) = A(I)
8(I) = 1.0

ENDIF
ENDDO

Remove the conditional by splitting the single DO loop into four
separate loops, as shown below. This change to the source code
improves performance dramatically.

Example

DO I = 1, 1999
C(I) = A(I) * 2000.0 + COS(A(I»
8(I) = 8(I) * C(I)**4 / A(I)

ENDDO
DO I = 2000, 3999

C(I) = A(I) + COS(A(I»
8(I) = 8(I) + C(I)

ENDDO
DO I = 4000, 5999

C(I)= A(I) + 2000.0
8(I) = 8(I)**3

ENDDO
DO I = 6000, 10000

C (I) = A(I)
8(I) = 1.0

ENDDO

70 CONVEX FORTRAN Optimization Guide

Example

Chapter 6 Efficient programming constructs 71

When boundary values are set outside the loop, this code
fragment runs several times faster:

I)
I)
1)

1000)

DO I = 1, 1000
DO J = 1, 1000

IF «I .EQ. 1) .OR. (I .EQ. 1000» THEN
IF «J .EQ. 1) .OR. (J .EQ. 1000» THEN

A(I, J) = 0.0
ELSE

A(I, J) = B(I, J)
ENDIF

ELSE
A(I, J) = B(I, J)

ENDIF
ENDDO

ENDDO

DO I = 2, 999
DO J = 2, 999

A(I, J) = B(I, J)
ENDDO

ENDDO
A(1, 1) 0.0
A(1, 1000) 0.0
A(1000, 1) 0.0
A(1000, 1000) 0.0
DO I = 2, 999

A(1, I) = B(1,
A(1000, I) = B(1000,
A(I, 1) = B(I,
A(I, 1000) = B(I,

ENDDO

The following example shows boundary tests that can be
removed from a loop.

Example

Most loops that are hand coded usingGOTO statements do not
vectorize. A hand-eoded loop usually lacks a fixed stop value
and a recognizable induction variable. If a hand-eoded loop has
these characteristics, however, it can be vectorized.•

•

...

72 .CONVEX FOKfRAN Optimization Guide

Optimizing
memory accesses

In FORTRAN, arrays are stored in column-major order. As a
result, using innermost loops that vary the leading, or leftmost,
dimension is faster than using innermost loops that vary the
trailing, or rightmost, dimension. Write inner loops so that most
of the accesses are to the leading dimension. If this is not
possible, use the ROW_WISE directive to store arrays in row
major order.

CONVEX FORTRAN automatically interchanges many loops to
optimize the efficiency of array accesses. Vector stride and
memory interleaving also affect a loop's efficiency. These issues
are discussed later in this chapter.

The following example shows three loops in order of increasing
efficiency.

Example

DO J = 1, N ! least efficient
A(l, 1, J) = 4.0

ENDDO
DO J = 1, N

A(l, J, 1) = 4.0
ENDDO
DO J = 1, N ! most efficient

A(J, 1, 1) = 4.0
ENDDO

In this example, the compiler interchanges the J and I loops:

Original code Optimized code

DO I = 1, N DO J = 1, N

DO J = 1, N DO I = 1, N

A(I,J,l) 4.0 A(I,J,l) 4.0

ENDDO ENDDO

ENDDO ENDDO

If the trip count of an outer loop is much smaller than that of the
inner loop, the compiler may not interchange the loops even
though it could achieve more efficient memory accesses by
doing so. The compiler realizes that a few slow memory accesses
can be faster than many fast accesses. If the compiler cannot
determine the trip count, the compiler might interchange two
loops to achieve fast memory accesses even though this results

r.

•

in a much larger average trip count on the outer loop. If you
write most loops to access the leading dimension of an array,
you can minimize the number of compromises the compiler
must make.

Memory interleaving
The CONVEX C200, C3200 and C3400 Series supercomputers
require eight clock cycles between main memory bank accesses;
C3800 Series supercomputers, which have a faster clock, require
up to 12 clock cycles. To speed up memory accesses, the CPU
posts requests for data before the data is needed.

On 000, C3200, and C3400 Series supercomputers, main
memory comprises at least 8 banks of dynamic RAM; on C3800
Series supercomputers, main memory comprises at least 16
banks. The memory system stores data so that contiguous words
are in separate memory banks. This is called memory interleaving.
One memory bank is accessed on each clock cycle. As a result,
sequential requests to ascending banks proceed at full speed.

Figure 3 shows the configuration of an eight-bank design such
as that used on the C3200 Series. Bank numbers are indicated
above the banks, and byte addresses are expressed in decimal
notation within the banks.

Figure 3
Eight-way interleaved Memory banks
memory

1 2 3 4 5 6 7 8

0 4 8 12 16 20 24 28

32 36 40 44 48 52 56 60

64 68 72 76 80 84 88 92

96 100 104 108 112 116 120 124

On a C3200, eight memory banks are needed to return data at
the rate of one word per clock cycle. A load instruction, for
example, takes eight cycles to return data. If a program makes
eight load requests, at a rate of one request per clock cycle, each
to a separate bank, data returns at a rate of one per clock cycle,
beginning eight clock cycles after the first request. Memory

Chapter 6 Efficient programming constructs 73

interleaving directly affects efficient array accesses. Figure 4
shows a one-dimensional array in eight-way interleaved
memory.

Figure 4
One-dimensional array in
eight-way interleaved Memory banks
memory 1 2 7 8

80(1) 80(2) ... 80(7) 80(8)

80(9) 80(10) 80(16) 80(16)

a(17) 80(18) ... a(23) 80(24)

80(26) 80(26) ... 80(31) 80(32)

The loop below processes an array sequentially. After an initial
wait, the CPU receives one word of data per clock cycle.

Example

DO 10 I = 1, 32
AU) = A(I) + 1

10 CONTINUE

The following loop, however, causes memory bank conflicts,
since the stride through A is 2. The CPU must wait for memory
requests to be filled.

Example

DO 10 I = 1, 32, 2
A(I) = A(I) + 1

10 CONTINUE

74 CONVEX FOKfRAN Optimization Guide

Chapter 6 Efficient programming constructs 75

Figure 5 shows the timing relationships that cause these bank
conflicts.

Figure 6 shows how a two-dimensional, eight-by-four column
major array is stored in memory with eight-way interleave.

a(13)

a(16)

80(11)

a(9)

I I I I I

80(6)

a(7)

a(3)

a(1)

.4 I 6 8 10 Ii 14'
CPU cycles

0 ' 2

1

~ 2 -
os 3..c
~ 4 -
o 5
~ 6

:::E 7.-
8

Load requests occur each clock cycle. The first request, for A (1) ,

keeps bank 1 occupied for eight clock cycles. The CPU cannot
access the data in A (9) until this first access is satisfied. This
results in a delay of four clock cycles.

Memory bank conflicts occur when an array's stride does not
efficiently use the memory of the computer. An array's stride is
the difference in the index value between two successive
iterations.

Multidimensional arrays
FORTRAN arrays are stored in column-major order: A (1, 1) ,

A (2,1), A(3, 1), and A (4,1) are stored in contiguous memory
locations. In other languages, for example C and Ada, arrays i.}re
stored in row-major order: A (1,1), A (1, 2), A(l, 3), and
A (1, 4) are stored contiguously.

Arrays with a stride of two use only half the memory banks.
Arrays with a stride of four use one bank in four. Whenever
possible, avoid writing loops with a stride that is a multiple of a
power of two. Odd strides give better performance than even
strides.

Figure 5
Bank conflict

•

•

-

Figure 6
Two-dimensional array
stored in eight-way Memory banks
interleaved memory

aCl.l) aCl.2) ••• aCl,7) aCl.8)

aC2.1) aC2.2) ••• aC2.7) aC2.8)

aC3,l) aC3,2) ••• aC3,7) aC3,8)

aC4.1) aC4,2) ••• aC4.7) aC4,8)

The loop in the following example processes a two-dimensional
array.

Example

REAL A(8, 4)

00 20 I = 1,8
DO 10 J = 1, 4

A(I, J) = A(I, J) + 1
10 CONTINUE
20 CONTINUE

When the inner loop is vectorized, the vector register load and
vector store have a stride of eight. Only one memory bank is
used in the inner loop, as shown in Figure 8, and eight clock
cycles are required to load each element into the vector register.

To avoid bank conflicts, declare the leading index of A to be an
odd number, as shown in the following loop.

Example

REAL A(9, 4)

DO 20 I = 1, 8
DO 10 J = 1, 4

A(I, J) = A(I, J) + 1
10 CONTINUE
20 CONTINUE

76 CONVEX FOKfRAN Optimization Guide

•

•

Figure 7 shows how this array is accessed and arranged in
memory. The elements of the ninth row are never used, but they
force each column to start in a different memory bank, which
resolves bank conflicts.

Figure 7
Leading dimension odd: no Memory banks
bank conflict

a(l.l) a(I.2) _. a(l.7) a(l.8)

a(l.9) a(2.1) a(2.6) a(2.7)

a(2,8) a(2.9) a(3.6) a(3,6)

a(3,7) a(3.8) _. a(4,4) a(4.6)

a(4.6) a(4,7)

Partial word accesses
A partial word access requires less than a full word of data.
Reading or writing data types such INTEGER*2, which occupies
a half word, and CHARACTER, which occupies a single byte,
causes partial memory accesses.

Partial word accesses are inefficient because extra time is
required to access the individual bytes of a word. If an array is
accessed sequentially, bank conflicts also occur. An INTEGER*2
array incurs bank conflicts on every other memory access. A
CHARACTER array incurs bank conflicts on three out of every four
memory accesses. Avoid using CHARACTER data types in a loop
whenever possible.

Chapter 6 Efficient programming constructs 77

78 CONVEX FORTRAN Optimization Guide

Manual optimization
techniques

•
Eliminate
unnecessary strip
mines

•

No matter how sophisticated the compiler is, optimization
remains more an art than a science. This chapter presents
optimization tricks that FORTRAN programmers have
accumulated for optimizing programs to run on the CONVEX
C Series supercomputers. The chapter explains underlying
principles and offers tips on how to apply these principles to
your FORTRAN programs.

H the compiler determines that the iteration or trip count of a
loop is less than or equal to 128, the loop can be executed with a
single set of vector operations. In this case, the compiler does
not strip mine the loop. Loops are often written with variable
trip counts. Unless the compiler can determine the value of the
trip-count variable (through constant propagation, for example),
the compiler must strip mine the loop to allow for a possible trip
count greater than 128. The following example shows a loop
with a trip count that varies between 1 and 50.

Example

N = GETVAL (N) !returns a value from 1 to 50
DO I = 1, N

A(I) = B(I) * C(I)
ENDDO

In this case, strip mining produces unnecessary overhead. Ifyou
know that GETVAL never returns a value greater than SO, you can
use the MAX_TRIPS directive to prevent strip mining the loop,
as shown below.

Chapter 7 Manual optimization techniques 79

80 CONVEX FORTRAN Optimization Guide

Example

DO I = 1, N

A(I) = B(I) * C(I)
ENDDO

returns a value of 1, 2, 4,
8, 16, or 32

N = GETVAL (N)

C$DIR SCALAR
DO I = 1, 4

A(I) = B(I) * C(I)
ENDDO

N = GETVAL (N)

C$DIR MAX_TRIPS (50)
DO I = 1, N

A(I) = B(I) * C(I)
ENDDO

Look for loops with small trip counts. In the C-Series machines,
a loop with a trip count less than five is usually not worth
vectorizing. The compiler vectorizes loops with trip counts
greater than two. For loops with variable trip counts or trip
counts between three and five, you can use the SCALARdirective
to prevent vectorization or the UNROLL directive to unroll the
loop. The following example shows such a loop.

Example

A value of MAX_TRIPS up to 128 stops the compiler from strip
mining a loop. Because you know the trip count cannot exceed
50, use that value. This value permits the compiler to generate a
more efficient loop.

You can use the MAX_TRIPS directive to prevent the compiler
from strip mining the loop, but half the time this loop has a trip
count so small that it should not be vectorized. You can
distribute this loop by hand and use the SCALAR directive to
eliminate the overhead of a vectorized loop when the trip count
is less than or equal to five, as shown in the following example.

The compiler usually vectorizes and strip mines loops with
variable trip counts. The compiler strip mines the loop in the
following example because it cannot determine the trip count.

Do not vectorize
loops with small
trip counts

•,

Example

N = GETVAL (N)

IF CN .GT. 4) THEN
C$DIR MAX_TRIPS(32)

DO I = 1, N

ACI) = BCI) * CCI)
ENDDO

ELSE
C$DIR SCALAR

DO I = 1, N

ACI) = BCI) * CCI)
ENDDO

ENDlF

Instead of distributing the loop by hand and using the scalar
directive, you can use the SELECT directive, which telIs the
compiler to create multiple versions of the loop. The following
example shows the use of the SELECT directive.

Example

N = GETVAL CN)
C$DIR SELECTC4, *, *)

DO I = 1, N

ACl) = B(l) * eCl)
ENDDO

SELECT tells the compiler to create multiple versions of the loop,
one of which the generated code selects at runtime. The first
argument selects the vectorized version if the trip count is
greater than or equal to four. The asterisks tell the compiler not
to create parallel and vector-parallel versions of the loop.

Because the SELECT directive does not require rewriting code,
this approach is usually safer and easier. In this case, however,
you lose the benefit of the MAX_TRIPS directive:

Chapter 7 Manual optimization techniques 81

Scalar loops with small constant trip counts can be more efficienl
if the loops are unrolled. Unrolling replaces a loop with a linear
sequence of statements. The example below shows such a loop
and how it is unrolled.

Original loop Unrolled loop

C$DIR UNROLL A(l) = A(l) + 1

DO I = 1, 4 A(2) = A(2) + 1

A(I) = A(I) + 1 A(3) = A(3) + 1

ENDDO A(4) = A(4) + 1

The UNROLL directive, which must be used at optimization level
-02 or higher, completely unrolls loops only if the compiler can
determine that the trip count is less than five. For constant trip
counts of five or more, UNROLL can partially unroll the loop if an
attempted vectorization fails. If a loop has a variable trip count,
you can partially unroll it by hand. Refer to Chapter 6, "Efficient
programming constructs," for more information on manual loop
unrolling. Refer to Appendix B, "Optimization options," for
more information on the UNROLL directive.

82 CONVEX FOKI'RAN Optimization Guide

Promote an array

•

•

Sometimes it is necessary to promote an array to a higher
dimension to vectorize a loop. In the following example, only
the J loop vectorizes. The compiler is unable to vectorize the I
loop because the assignment to Q(J) in the J loop depends on
the assignments to B (1), B (2), B (3), and B (4) in the I loop.
Those values of array B exist only until the next iteration of the I
loop; therefore they must be used by the J loop before they are
overwritten in the next iteration of the I loop. The compiler
cannot distribute the I loop because doing so would prevent Q
from accumulating all values of B.

Example

DOUBLE PRECISION GLS(62510)
INTEGER I, J

DOUBLE PRECISION B(4), P(4), Q(4)

DO I = 1, 62500 SCALAR
B (1) = GLS (H 1) * P (1) + GLS(H 5) * P(2)

> + GLS (H 8) * P (3) + GLS (HiD) * P(4)
B(2) = GLS (H 5) * P (1) + GLS(H 2) * P(2)

> + GLS(H 6) * P (3) + GLS (H 9) * P(4)
B (3) = GLS (H 8) * P (1) + GLS (H 6) * P(2)

> + GLS(H 3) * P (3) + GLS(I+ 7) * P(4)
B(4) = GLS (HiD) * P (1) + GLS(I + 9) * P(2)

> + GLS (H 7) * P (3) + GLS(I+ 4) * P(4)

DO J = 1, 4 ! VECTOR
Q(J) = Q(J) + B(J)

ENDOO
ENDDO

Chapter 7 Manual optimization techniques 83

To eliminate the dependency, promote B to a two-dimensional
array, as shown below.

DOUBLE PRECISION GLS (62510)
INTEGER I, J
DOUBLE PRECISION B(4, 62510), P(4), Q(4)

DO I = 1, 62500
B(l,I) = GLS(I+ 1) * P(l) + GLS(I+ 5) *

> P(2) + GLS(I+ 8) * P(3) +
> GLS(I+10) * P(4)

B(2,I) = GLS(I+ 5) * P(l) + GLS(I+ 2) *
> P(2) + GLS(I+ 6) * P(3) +
> GLS(I+ 9) * P(4)

B(3,I) = GLS(I+ 8) * P(l) + GLS(I+ 6) *
> P(2) + GLS(I+ 3) * P(3) +
> GLS(I+ 7) * P(4)

B(4,I) = GLS(I+10) * P(l) + GLS(I+ 9) *
> P(2) + GLS(I+ 7) * P(3) +
> GLS(I+ 4) * P(4)

DO J = 1, 4
Q(J) = Q(J) + B(J, I)

ENDDO
ENDDO

This insures that every value assigned to the array B is stored
and available to the array Q later. With the dependency between
B and Q eliminated, the compiler can distribute the I loop as
shown in the following example.

84 CONVEX FOKTRAN Optimization Guide

Chapter 7 Manual optimization techniques 85

A loop with an embedded conditional usually runs slower than
a loop without a conditional, even if both loops are vectorized.
Some types of conditionals can prevent the compiler from
vectorizing a loop. Remove conditional tests from loops
whenever possible.

The compiler vectorizes both distributed parts of the I loop.
The second distributed part is interchanged with the J loop,
which allows the compiler to hoist the load of Q(J) and sink the
corresponding store. These optimizations dramatically reduce
the time required for each call to this routine.

Sunken register store

Interchanged - SCALAR
Hoisted register load
Interchanged VECTOR
reduction

so = SO + B(J, I)
ENDDO
Q(J) = VO

ENDDO

DO J = 1, 4
SO = Q(J)
DO I = 1, 62500

DO I = 1, 62500 ! VECTOR
B(l,I) = GLS(I+ 1) * P(l) +GLS(I+5) *

> P(2) + GLS(I+ 8) * P(3) +
> GLS(I+10) * P (4)

B(2, I) = GLS(I+ 5) * P (1) + GLS(I+ 2) *
> P (2) + GLS (I+ 6) * P(3) +
> GLS (I+ 9) * P (4)

B(3, I) = GLS(I+ 8) * P (1) + GLS(I+ 6) *
> P(2) + GLS(I+ 3) * P(3) +
> GLS(I+ 7) * P (4)

B(4,I) = GLS(I+10) * P (1) + GLS(I+ 9) *
> P(2) + GLS(I+ 7) * P(3) +
> GLS(I+ 4) * P (4)

ENDDO

Example

Remove a
conditional from
a loop

•

:.

The compiler vectorizes the I loop in the following example.
The loop has a series of embedded IF tests that slow it down.

Example

DO I = 1, 10000
IF (I .LE. 2000) THEN

Cl(I) = Al(I) * 2000.0 + COS(Al(I»
Bl(I) - Bl(I) * Cl(I) * Cl(I) * Cl(I) *

> Cl(I) I Al(I)
ENDIF
IF «I .GT. 2000) .AND. (I .LE. 4000» THEN

Cl(I) = Al(I) + COS(Al(I»
Bl(I) = Bl(I) + Cl(I)

ENDIF
IF «I .GT. 4000) .AND. (I .LE. 6000» THEN

Cl(I) = Al(I) + 2000.0
Bl(I) = B1(I) * B1(I) * B1(I) * Bl(I)

ENDIF
IF (I .GT. 6000) THEN

Cl (1) = Al (I)

Bl (I) = 1.0
ENDIF

ENDDO

86 CONVEX FORTRAN Optimization Guide

Chapter 7 Manual optimization techniques 87

The compiler vectorizes each distributed part. The resulting
code runs dramatically faster than the original loop.

To improve execution speed, remove the conditional by
distributing the loop. This produces four distributed parts,
shown below.

* B1 (I)

* 2000.0 + COS(Al(I»
* C1(I) * C1(I) * C1(I) *
/ A1 (I)

DO I = 1, 2000
C1 (I) = A1 (I)
B1(I) = B1(I)

C1 (I)>
ENDDO
DO I = 2001, 4000

C1(I) = A1(I) + COS(A1(I»
B1(I) = B1(I) + C1(I)

ENDDO
DO I = 4001, 6000

C1(I) = A1(I) + 2000.0
B1(I) = B1(I) * B1(I) * B1(I)

ENDDO
DO I = 6001, 10000

C1(I) = A1(I)
B1(1) = 1.0

ENDDO

Example

•

•

88 CONVEX FOKrRAN Optimization Guide

Inline substitution

•

When to use
inlining

•

Inline substitution, or inlining, is the replacement of a
subprogram (subroutine or function> call with a copy of the
subprogram. Inlining replaces dummy arguments with actual
arguments and gives local identifiers unique names.

Inlining can improve performance by eliminating the overhead
of a subprogram call and allowing additional optimization.
When a subprogram is inlined, the scope of global optimization
expands to include both the calling subprogram and the inlined
subprogram. The vectorization of loops containing subprogram
calls is enhanced, and dead code is eliminated from inlined
subprograms.

You can nest inlined subprograms. An inlined subprogram can
have another subprogram inlined within it, and this nesting can
be carried to any depth. Recursion is not permitted. An inlined
function cannot call itself, either directly or indirectly.

It is seldom advantageous to inline every subroutine in your
program. Run your program using CXpa or another profiler.
Look for subprograms that are short and frequently called.
Inline these subprograms and profile your program again to
observe results. Because subprograms within loops inhibit
vectorization, inlining them will often allow the loop to
vectorize.

Inlining increases a program's compilation time and memory
requirements. Avoid inlining large subprograms, no matter how
frequently they are called. Inlining large subprograms may
prevent the compiler from carrying out other optimizations,
negating the advantage of inlining.

Chapter 8 Inline substitution 89

90 CONVEX FOKfRAN Optimization Guide

How to use
inlining

Inlining is done in two steps:

1. Create an intennediate language (. fil) file for each
subprogram to be inlined.

2. Compile the main program using the -is option to tell
the compiler where to find the .fil files.

Creating . fil files

To create .fil files, follow these steps:

• Place the subprograms to be inlined in individual
source files separate from the program MAIN section
and other subprograms. You can use the fsplit
function to do this; see the fsplit(lF) man page for
details.

• Use the -il option when you compile the files
containing subprograms to be inUned.

You can use the -11. option to create. fil files for more than one
source file. The compiler generates a separate . fil file for each
subprogram in the specified source files. You cannot generate
. fil. files for a source file containing the main program.

The compiler assigns a name to each . fil file. This name is the
name of the subprogram, plus a •fil extension. If a file contains
the subprograms SUBl, FUNC2, and SUB3, compiling it with the
-il option creates files sOO1. fil, func2. fH, and sOO3. file
The compiler cannot generate a . fil file for a subprogram that
has any of the following characteristics:

• Is also compiled with the -cs (check subscript) option

• Has a CHARACTER dummy argument

• Uses an adjustable array

• Contains a DATA, SAVE, or NAMELIST statement

• Contains a type statement with initial values

• Contains alternate entry points

• Contains Cray POINTER declarations

• Returns a CHARACTER value

• Contains a statement function

, ,

•

If the compiler cannot generate a •fil file, it issues an error
message explaining the reason. The -il option cannot be used
with the -c, -cs, or -8 options. Optimization flags are ignored.

Using the -is option
The -is option on the fc command line tells the compiler to
inline subprograms for which .fil files exist. The fonnat of this
option is

-is dir [-is dir ••.]

where dir is the name of a directory containing •fil files. Use
the -is option in front of each directory name. Directories are
searched in the order specified, and you can specify any number
of directories.

The compiler attempts to inline every •fil file found in the
specified directories. Hyou do not want to inline specific •fil
files, delete them or move them to a different directory.

If the compiler cannot inline a . fil file, compilation continues.
The compiler issues a message explaining why it cannot in1ine
the file and retains the original subprogram call in the finished
code.

The compiler cannot inline a subprogram in the following cases:

• A name in a COMMON block conflicts with a name in the
calling program.

• Data types and sizes in COMMON do not match.

• The actual arguments passed to the subprogram do not
agree in number or type with the corresponding
dummy arguments.

• An array passed to the subprogram does not agree in
dimension, lower bound, or upper bound with the
corresponding dummy argument.

• A dummy argument is used as a subroutine, but the
corresponding actual argument is not a subroutine
name.

• A dummy argument is used as a function, but the
corresponding actual argument is not a function name.

• A function passed to the subprogram does not agree in
type with the dummy argument.

Chapter 8 Inline substitution 91

92 CONVEX FORTRAN Optimization Guide

Limits of inline
substitution

• An intrinsic function passed to the subprogram
requires arguments inconsistent with the arguments
used in a reference to the corresponding dummy
function.

When using the CONVEX FORTRAN compiler, remember that
local variables are static by default. They retain their values
between calls. Ifyou compile for re-entrancy, using the -re
command line option, local variables do not retain their values
between calls. In this case, local variables are allocated on the
stack. The SUbprogram gets a fresh copy of the variables on each
call, but you can use SAVE statements to override this effect for
specific variables.

SAVE statements prevent inlining. To inline a subprogram that
contains SAVE statements, put the saved variables into a COMMON
block and remove the SAVE statements.

In CONVEX FORTRAN, variables of inlined SUbprograms are
global only to subprograms in the same source code compilation
unit. To make these variables global, place them in a COMMON
block or place the subprograms that contain them in a single
compilation unit.

Ifyou use language-compatibility options when compiling a
subprogram for inline substitution, you must use the same
options when compiling the program unit that calls it. Ifyou use
options that affect data size and layout, you must use the same
options when compiling the program unit that calls it.

The source-level debugger,csd, and the CONVEX performance
analyzer, CXpa, do not reflect inlined code in their output. With
csd, you cannot set breakpoints in inlined code, nor can you
access the local symbols of inlined subprograms. You can still
run your program under CXpa to observe the effects of inline

.substitution on overall performance.

Potentially unsafe
optimizations

•
Simple strength
reduction

Code motion

•

By default, the CONVEX FORTRAN compiler avoids
performing optimizations that can potentially generate incorrect
results. These optimizations can be enabled through use of the
-uooption.

The -uo option enables the compiler to perform these
optimizations:

• Simple strength reductions

• Code motion

• Elimination of type conversions

Chapter 2, "Scalar optimization," describes how the compiler
replaces slow operations with faster ones on the assumption that
arithmetically equivalent expressions always yield the same
results. However, reducing an expression such as X/C to
(l/e) *x can be unsafe because it can increase roundoff error.

When you use the -uo option, the compiler replaces division
operations with multiplication. If a possibility of overflow exists,
however, the compiler does not perform this optimization.

The compiler normally moves an invariant expression out of a
loop only if the expression is located on a path to all loop exits.
When you use -uo, the compiler can move an invariant
expression out of a loop if the expression does not lie on a path
to all loop exits.

Chapter 9 Potentially unsafe optimimtions 93

94 CONVEX FORTRAN Optimization Guide

Conversion
elimination

In the following example, the invariant expression A=B/X is
relocated only when the program is compiled with the -uo
option.

Example

DO I = 1, 100
IF eX .NE. 0) THEN

A= B/X

AR(I) = A*C

ELSE

AR(I) = D*C

ENDIF
ENDDO

Type conversions are costly in terms of machine cycles, and they
can inhibit vectorization. When you use the -uo option, the
compiler eliminates costly type conversions by creating :REAL
induction variables that it then increments concurrently with the
loop's INTEGER induction variables. Consider the loop below.

Original program

REAL A(100000)

DO I = 1, 100000
A(I) = I

ENDDO

Here, in absence of the -uo option, I must be converted to type
REAL on every iteration of the loop. With the -uo option the
compiler avoids this costly operation by copying I into a REAL
induction variable before entering the loop, then incrementing
this REAL variable by 1.0 on every iteration of the loop. At
optimization level -02, the compiler can then vectorize the
following optimized DO loop.

•

•

Optimized loop

REAL I = 1.0
1=1

10 A(I) = REAL_I
REAL I = REAL I + 1.0
I = I + 1

IF (I .LE. 100000) GOTO 10

This optimization is considered potentially unsafe because the
internal representation of real numbers is inexact, and this can
lead to a significant accumulated error when REAL_I is
incremented over the course of the loop.

Chapter 9 Potentially unsafe optimiZJltions 95

96 CONVEX FORTRAN Optimization Guide

Limits of optimization

•
Note

Incorrect results

•

Optimization can remove instructions, replace them, and change
the order in which they execute. In some cases, however,
improper optimizations can be performed that produce these
effects:

• Different, unexpected, or incorrect results (results that
differ from those produced at lower optimization levels
or by the original code)

• Code that slows down at higher optimization

Ifyou encounter either of these problems, use this chapter as a
guide for troubleshooting.

The complier performs optimizations assuming that the complied
program Is valid FORTRAN source. Optimizations done on source
that violates certain ANSI standard rules can cause the complier
to generate Incorrect code.

When a program produces different answers at higher
optimization levels, look for the following possible causes:

• Erroneous (nonstandard) code

• Floating-point imprecision (roundoff error)

• Misused directives and options

• Compiler limitations

Erroneous code
The most common causes of answers that change with
optimization are hidden aliases and invalid subscripts.

Chapter 10 Limits ofoptimization 97

.-------- -- _ .. --,-.

Hidden aliases
Optimizing FORTRAN compilers must assume that subroutine
arguments are independent. Page 15-20 of the American National
Standard Programming Language FORTRAN says,

If a subroutine reference causes a dummy argument in the
referenced SUbprogram to become associated with another
dummy argument, neither dummy argument may become
defined during the execution of that subprogram.

If a subroutine reference causes a dummy argument to
become associated with an entity in a common block in the
referenced subprogram or in a subprogram referenced by
the referenced subprogram, neither the dummy argument
nor the entity in the common block may become defined
within the subprogram or within a subprogram referenced
by the referenced subprogram.

For example, if a subroutine contains the statements:

SUBROUTINE XYZ (A)

COMMON C

and is referenced by a program unit that contains the
statements:

COMMON B
CALL XYZ (B)

then the dummy argument A becomes associated with the
actual argument B, which is associated with C, which is in a
common block. Neither A nor Cmay become defined during
execution of the subroutine XYZ or by any procedures
referenced by XYZ.

To interpret the American National Standard Programming
Language FOKIRAN quote properly, it is helpful to understand
what the Standard means by the phrase, "may become defined:'
From pages 17-3 and 17-4 of the standard:

98 CONVEX FORTRAN Optimization Guide

•

•

Variables, array elements, and substrings become defined as
follows:

1. Execution of an arithmetic, logical, or character
assignment statement causes the entity that
precedes the equals to become defined.

2. As execution of an input statement proceeds, each
entity that is assigned a value of its corresponding
type from the input medium becomes defined at
the time of such assignment.

3. Execution of a DO statement causes the DO variable
to become defined.

4. Beginning of execution of action specified by an
implied-Do list in an input/output statement causes
the implied-Do-variable to become defined.

5. A DATA statement causes entities to become initially
defined at the beginning of execution of an
executable program.

6. Execution of an ASSIGN statement causes the
variable in the statement to become defined with a
statement label value.

7. When an entity of a given typ~becomes defined, all
totally associated entities of the same type become
defined except that entities totally associated with
the variable in an ASSIGN statement become
undefined when the ASSIGN statement is executed.

8. A reference to a SUbprogram causes a dummy
argument to become defined if the corresponding
actual argument is defined with a value that is not a
statement label value. Note that there must be
agreement between the actual argument and the
dummy argument.

9. Execution of an input-output statement containing
an input/output status specifier causes the
specified integer variable or array element to
become defined.

Chapter 10 Limits ofoptimization 99

Example

13. When all characters of a character entity become
defined, the character entity becomes defined.

11. When a complex entity becomes defined, all
partially associated real entities become defined.

N1
" N2

10. Execution of an INQUIRE statement causes any
entity that is assigned a value during the execution
of the statement to become defined if no error
condition exists.

12. When both parts of a complex entity become
defined as a result of partially associated real or
complex entities becoming defined, the complex
entity becomes defined.

SUBROUTINE CALC(N)
INTEGER K, N
COMMON /DATA/ K
K = N + 1
RETURN

END

SUBROUTINE CONFUSED (N1)
DO I = 1, 2

N2 = 3 * (N1 + 1)
CALL CALC (N2)
WRITE(*,*)'Iteration:', I, " n1
WRITE(*,*)'Iteration:', I, " n2

ENDDO
RETURN

END

PROGRAM ALIAS
INTEGER I
COMMON /DATA/I
I = 666
CALL CONFUSED(I)
END

The program below contains hidden aliases that are harder to
find than those in the ANSI Standard example.

100 CONVEX FORTRAN Optimization Guide

'.

•

In the subroutine CONFUSED, the compiler assumes that N1 is
invariant. The right side of the assignment to N2 appears to be
invariant, so the compiler moves the assignment to N2 out of the
loop. When compiled at -01 or above, the program produces
incorrect answers.

The results of this program compiled and run at optimization
levels -00 and -01 are shown below. Note that the answers are
changed at optimization level-ol.

Example

-\ fc -00 alias. f -0 00.cut:
-\ 00.cut:
Iteration: 1, n1 = 2002
Iteration: 1, n2 = 2001
Iteration: 2, n1 = 6010
Iteration: 2, n2 = 6009
, fc -01 aJ.ias. f -0 01.cut:
-\ 01.CA.lt
Iteration: 1, n1 = 2002
Iteration: 1, n2 = 2001
Iteration: 2, n1 2002
Iteration: 2, n2 = 2001

The following code shows another example of the hidden alias
problem.

Example

PROGRAM ALIAS
PARAMETER (N = 500)

REAL A (N), B (N)

CALL CONFUSED (A, B, A, N)

END

SUBROUTINE CONFUSED (X, Y, Z, N)

INTEGER N

REAL X(N), Y(N), Z (N)

DO I = 2, N
Z(I) = Y(I - 1) + X(I - 1)

ENDDO

RETURN

END

Chapter 10 Limits ofoptimization 101

In subroutine CONFUSED, the compiler assumes that x and Z are
independent. In fact, they are not, and if this erroneous progran
is compiled at -02, the compiler improperly vectorizes the DO
loop, producing a faulty executable.

Invalid subscripts
An array reference in which any subscript falls outside declared
bounds for that dimension is called an invalid subscript. Page
5-5 of the American National Standard programming language
FOKTRAN says,

Within a program unit, the value of each subscript
expression must be greater than or equal to the
corresponding lower dimension bound in the array
declarator for the array. The value of each subscript
expression must not exceed the corresponding upper
dimension bound declared for the array in the program unit
If the upper dimension is an asterisk, the value of the
corresponding subscript expression must be such that the
subscript value does not exceed the size of the dummy
array.

Invalid subscripts are a common cause of wrong answers at
higher optimization levels. Invalid subscripts can cause a
program to abort.

Floating-point imprecision
When floating-point numbers are rounded off for internal
representation or used in vector reductions, incorrect answers
may result.

Roundoff error
The compiler applies normal arithmetic rules to real numbers. It
assumes that two arithmetically equivalent expressions produce
the same numerical result. Page 6-17 of the American National
Standard Programming Language FORTRAN says,

Two arithmetic expressions are mathematically equivalent if,
for all possible values of their primaries, their mathematical
values are equal. However, mathematically equivalent
expressions may produce different computational results.

102 CONVEX FORTRAN OptimiZiltion Guide

•

•

Most real numbers cannot be represented exactly in digital
computers. Instead, these numbers are rounded to a floating
point value that can be represented. When optimization changes
the evaluation order of a floating-point expression, the results
can change. Possible consequences of floating-point roundoff
include program aborts, division by zero, address errors, and
incorrect results.

Problems with floating-point precision can occur when a
program tests the value of a variable without allowing enough
tolerance for roundoff errors. To solve the problem, adjust the
tolerances to allow for greater roundoff errors or declare the
variables to be DOUBLE PRECISION instead of REAL.

Vector reductions
Reductions change the order in which an operator is applied to'
values in a vector. Reductions can change results, particularly if
the values in the vector have greatly different magnitudes. If this
causes a problem, run the reduction loop as a SCALAR loop. Or,
try modifying your algorithm.

Misused directives and options
Misused directives are a common cause of wrong answers.
Parallelizing a loop that contains a call is safe only if the called
routine contains no dependencies that could cause a recurrence.

Do not assume that it is always safe to parallelize a loop that is
safe to vectorize. You can safely vectorize any loop that does not
contain a backward loop-carried dependency (LCD). You cannot
safely parallelize a loop that contains backward or forward
LCOs. For more information about LCOs and DDs, see the
"Recurrence" section in Chapter 3.

The MAIN section of the program below initializes A, calls CAJ.J::-,
and displays the new array values. In subroutine CAJ.J::-, the
apparent recurrence on A (I +Nl prevents the compiler from
vectorizing the I loop.

Example

PROGRAM MAIN

REAL A(1025l, B(1025l
COMMON /DATA/ A, B
00 J = 1, 1025

A(J) = J

ENDDO

Chapter 10 Limits ofoptimization 103

CALL CALC(l)
DO J == 1, 1025

WRITE(*,*) J, A(J)
ENDDO
END

OPTIONS -02

SUBROUTINE CALC(N)
REAL A(1025), 8(1025)

COMMON /DATA/ A, B
DO I = 1, 1024

A(I) = A(I + N) + B(I)
ENDDO
RETURN

END

Because you know the value of Nis I, you can use the
NO RECURRENCE directive, as shown below. This directive tells
thecompiler to ignore the apparent recurrence and vectorize the
I loop.

Example

OPTIONS -02
SUBROUTINE CALC (N)
REAL A(1025), 8(1025)

COMMON /DATA/ A, B
C$DIR NO_RECURRENCE

DO I = 1, 1024
A(I) = A(I + N) + 8(1)

ENDDO

RETURN

END

Obtaining correct results with vectorization does not imply that
correct results will be obtained with paraIlelization. Using the
FORCE_PARALLEL directive on this loop, as shown in the
following example, is inappropriate. The compiler warns you of
the dependency but parallelizes the loop. Because of the forward
dependency, the parallel code can produce incorrect results.

104 CONVEX FORTRAN Optimization Guide

•

•

Example

OPTIONS -03
SUBROUTINE CALC(N)
REAL A(1025), B(1025)

COMMON /DATA/ A, B
C$DIR FORCE PARALLEL

DO I = 1, 1024

A(I) = A(I + N) + B(I)
ENDDO

RETURN
END

Routines called by a parallel loop must be compiled for re
entrancy with the -re option. Do not assume that variables in a
routine compiled with -re have been initialized. Local variables
in a re-entrant routine must be set to their initial values during
each execution of that routine.

Compiler limitations

Compiler limitations can produce faulty optimized code when
the source code contains:

• Reductions

• Different possible evaluation orderings

• Iterations by zero

• Nondeterminism of parallel execution

• Conditional vectorization

• Replaceable loop test variables

• Trip counts greater than 231
- 1 at optimization levels

-02 and-03

Reductions

Reductions, which are discussed more fully in Chapter 3, are a
special class of recurrence that the compiler knows how to
vectorize. An apparent recurrence can prevent the compiler
from vectorizing a loop containing a reduction. The loop in the
following example is not vectorized because of an apparent
dependency between the reference to A (I) on line 4 and the
assignment to A (JA (J)) on line 5.

Chapter 10 Limits of optimization 105

..... _-- ._-_._---------

Example

106 CONVEX FORTRAN Optimization Guide

DO J = 1, 5
A(JA(J)) = B(J) + C(J)

ENDDO

!line 4

!line 5

DATA JA /6, 7, 8, 9, 10/
DO I = 1, 5

DO J = I, 5

A(I) = A(I) + B(J) * C(J)
A(JA(J)) = B(J) + C(J)

ENDDO
ENDDO

Example

DATA JA /6, 7, 8, 9, 10/
DO I = 1, 5

DO J = I, 5

A(I) = A(I) + B(J) * C(J)
ENDDO

ENDDO

To solve this problem, distribute the J loop, isolating the
reduction from the other statements, as shownin the
following example.

A NO_RECURRENCE directive placed before the J loop tells the
compiler that the indirect subscript does not cause a true
recurrence. This directive also tells the compiler to ignore
the reduction on A (I) . The compiler generates normal
vector load, add, and store instructions for the first
statement. The resulting code runs fast but produces
incorrect answers.

•

•

The apparent recurrence is removed, and both. loops vectorize.
This problem occurs only if the reduction and the apparent
recurrence involve the same variable. If the reduction and the
apparent recurrence involve different variables, as in the
following example, both reduction and recurrence are handled
correctly without your intervention.

Example

DATA JD /6, 7, 8, 9, 10/
DO I = 1, 5

C$DIR NO_RECURRENCE
DO J = I, 5

A(I) = A(I) + B(J) * C(J)
D(JD(J» = D(I) + B(J) + C(J)

ENDDO
ENDDO

Evaluation order

Assumptions the compiler makes about reordering code can
sometimes cause answers to change at higher optimization
levels. If this happens, use parentheses to force a specific order
of evaluation.

Iterating by zero
If the compiler vectorizes a loop that iterates a variable by zero
on each trip, the loop can produce incorrect answers or cause the
program to abort. This error can occur when a variable used as
an iteration value is accidentally set to zero. If the compiler
detects that the variable has been set to zero, the compiler does
not vectorize the loop. If the compiler cannot detect the
assignment, however, the previously described symptoms occur.
The following example shows three loops that iterate by zero.

Chapter 10 Limits of optimization 107

CALL SUB1 (0)

Example

108 CONVEX FORTRAN Optimization Guide

ITERATION VALUE OF 0 IS
NON-STANDARD

DO I = 1, N, IZR

A(I) = B(I)

ENDDO

DO I = 1, N
J = J + IZR
B(I) = A(J)

A(J) = C(I)

ENDDO

J = 1
DO I = 1, N

B (I) = A(J)

A(J) = C(I)

J = J + IZR
ENDDO

SUBROUTINE SUB1 (IZR)

DIMENSION A(100), B(100), C(100)

Because the results depend on the order in which statements
execute, the errors are nondeterministic. Unless you are sure
that no loop carried dependency exists, it is safer to let the
compiler choose which loops to parallelize.

Because IZR is an argument passed to 5001, the compiler does
not detect that IZR has been set to zero. All three loops vectorize
at -02, but because of the zero increments, their runtime
behavior cannot be reliably predicted. All three loops compile at
-01, but the second loop, which specifies the step as part of the
DO statement, will cause a runtime error. Runtime behavior of
the other two loops cannot be predicted at -Ol.

Nondeterminism of parallel execution
In a parallel program, threads do not execute in a predictable or
determined order. If you force the compiler to parallelize a loop
when a dependency exists, the results are unpredictable and can
vary from one execution to the next.

•

•
--

Conditional vectorization
A vectorized loop may fail if the indexes for a conditionally
referenced array fall outside the array's bounds. The following
code shows an example.

Example

DIMENSION A(10000), B(10000), C(10)
DATA A/10*-S, 9990*0/
DO 10 I = 1, 10000

IF (A(I) .LT. 0) B (I) = A(I) + C (I)
10 CONTINUE

Test replacement
When optimizing loops, the compiler often disregards the
original induction variable, using instead a variable or value
that is referenced more often within the loop. This reduces the
execution time of the loop by reducing the number of variables
the compiler must track.

The subroutine below contains an example of a loop in which
the induction variable is replaced.

SUBROUTINE LOOP(N)
NGD = 0
IZERO = 0

DO 8 IRES = 1, N

5 IF(l.GT.NGD) GOTO 8
IPACK = ((IRES*1024)*64)*64 !LlNE 6
IF((IPACK-IZERO) .GE.O) GOTO 5 !LlNE 7

8 CONTINUE

END

The IF condition at line 5 in this loop always evaluates to true,
but because the test involves a variable (NGD), the compiler
assumes that lines 6 and 7 can execute. These lines use the
variable IPACK, so the compiler replaces references to IRES, the
original induction variable, with suitably equivalent references
to IPACK, because it is referenced more often in the loop. The
value by which IPACK increases (1024*64*64=222

) on each
iteration is then said to be the loop's stride. The number of times
the loop executes is called the trip count (N in the example), and
the initial value of the induction variable is the start value.

Chapter 10 Limits ofoptimization

~--~-------------------

Test replacement, a standard optimization at levels -01 and
above, normally does not cause problems. However, when the
loop stride is very large, as in the example above, a large trip
count can cause the loop limit value (stride"'trip+start) to
overflow.

In the example above, the induction variable is a default (4-byte)
integer, which occupies 32 bits in memory. That means if
stride"'trip+start (222"N+1) is greater than 231_1, the value
overflows into the sign bit and the computer treats it as a
negative number. (If the stride value is negative, the absolute
value of stride"'trip+start must be not exceed 231

.) When a loop
has a positive stride and the trip count overflows its memory
location, the loop executes only once because the limit is now
negative (assuming a positive stride) and the termination test
fails.

When the trip count is a constant, the compiler can check
stride*trip+start for overflow at compile time and catch this error.
However, if the trip count is a variable, no compile-time
checking is done, and SO large trip and stride combinations can
cause the loop to terminate prematurely.

Because the largest allowable value for stride*trip+start is 231
-
1

,

the start value is 1, and the stride is 222
, the maximum trip count

for the loop can be found.

The stride, trip, and start values for a loop must satisfy the
following inequality:

(stride * trip + start) < 231

The start value is 1, so trip can be solved for as follows:

stride * trip + start < 231

2 22 * trip + 1 < 2
31

trip < 29
- 2-21

trip < 512

Ifyou have problems with test replacement and still want to
optimize at -01 or above, restructure the loop to force the
compiler to chose a different induction variable.

Large trip counts at -()2 and above
When a loop is vectorized or parallelized, its trip count must fit
in a signed 32-bit vector register. The largest positive value that
can fit in a such a register is 231

- 1 (2,147,483,647). If the compiler

110 CONVEX FORTRAN Optimization Guide

Slower code

•

•

can determine that the trip count is larger than this at compile
time, it will issue a warning. Loops with trip counts that cannot
be determined at compile time but that exceed 232

- 1 at runtime
will yield wrong answers.

This limitation only applies at optimization levels -02 and -03.

Loops with trip counts that overflow 32 bits can be made to
vectorize or parallelize by manually strip mining the loop.

When your program slows down at a higher optimization levels,
look for the following causes:

• Misused compiler directives

• Short vector length (small trip count)

• Complicated conditionals in a loop nest

Misused directives
The SYNCH_PARALLEL directive tells the compiler to parallelize a
loop and insert synchronization code to ensure that
dependencies are honored. Synchronization code results in some
loss of efficiency. Consequently, using SYNCH_PARALLEL is not
always profitable. Usually, the compiler can generate more
efficient code automatically than with SYNCH_PARALLEL.
Synchronized code is profitable only if the independent
(parallel) part of the code is much larger than the dependent
(sequential or synchronized) part.

At -03, the compiler calculates the optimum strip lengths based
on the number of CPUs detected on the compiling machine or
the number of CPUs specified by the -ep option. The VSTRIP
and PSTRIP directives override the compiler's choice of strip
lengths. If you select the wrong strip length, your code may
slowdown.

Short vector length
When possible, the compiler vectorizes a loop that has more
than two iterations. The compiler also vectorizes loops whose
iteration count cannot be determined at compile time. A loop
that iterates only a few times (three or four, on the CONVEX C
Series machines) usually runs faster if the loop is not vectorized.
The SCALAR directive can prevent the compiler from vectorizing
such loops. The SELECT directive tells the compiler to generate
multiple versions of a loop and code to allow dynamic (runtime)

Chapter 10 Limits ofoptimization 111

112 CONVEX FORTRAN Optimization Guide

Note

selection of the best version. Using the SELECT directive, you a:
specify optimum cutoff points for scalar, vector, and parallel
processing.

Complicated conditionals
Loops containing elaborate conditionals can slow down when·
they are vectorized.

When the compiler vectorizes a loop containing an IF-ELSE
construct, the compiler creates a vector loop which executes
both clauses on every vector iteration, rather than branching
over instructions. On Cl Series machines, the scalar iterations
that should not be executed in each clause will be executed in
vector mode by explicitly inserting identity elements as
operands so that no values are changed, but the operation is sti:
performed. On C2 and C3 Series machines, the scalar iterations
that should not be executed in each clause are usually executed
by vector masked instructions, where the hardware performs n
operation for the scalar iterations that should not be executed.
On all machines, significant overhead can result if one clause
contains substantially more code than the other and is seldom
executed. Balancing the amount of work in each clause and the
percentage of time each clause executes will improve
performance.

Floating point exceptions can occur when arithmetic Is
performed on unlnltlallzed variables. Since arithmetic (using
Identity elements) can be performed even In the false clause of
an IF-EISEconstruct, variables and arrays used therein should
always be Initialized.

A short vector length (small trip count) makes a loop containin~

complicated conditionals less efficient. Simplify conditionals,
remove them from the loop, or use the SCALAR directive to
prevent vectorization.

Optimization options

Optimization
• level options

This appendix provides a list of the optimization options
available in CONVEX FORmAN and a brief description of each.

The options listed in this section specify the level of
optimization allowed.

-no

Specifies that the compiler is to perform only
machine-dependent scalar optimization. This option is the
default if one of the -On options is not specified. Refer to
Chapter 2, "Scalar optimization."

-00

Basic block machine-independent scalar optimization and
machine-dependent scalar optimization. Refer to Chapter 2,
"Scalar optimization."

-01

-00 optimizations plus program unit machine-independent
scalar optimization. Refer to Chapter 2, "Scalar
optimization."

-02

-01 plus vectorization. Refer to Chapter 3, 'Vector
optimization."

-03

-02 plus parallelization. Refer to Chapter 4, "Parallel
optimization."

Appendix A Optimization options 113

114 CONVEX FORTRAN OptimizJltion Guide

Cross
compilation
options

The options listed in this section allow a program to be
optimized for a machine other than the machine the program is
being compiled on.

-ep n

Specifies the expected number of processors (n) on which
the program is going to run. Must be used with the -03
option. The value of n should be an integer from 1 to 4 for
C2 and C3200 Series machines, and from 1 to 8 for C3400
and C3800 Series machines. You can find out how many
processors are installed on a machine by running the
sysinfo command on that machine.

The compiler parallelizes a loop whenever doing so appears
to decrease the turnaround time, assuming the given
number of processors. Use this option with caution because
it may lead to inefficient use of processors.

-mi n

Specifies the expected memory interleave on the target
machine. n is an integer representing the expected memory
interleave, which you can obtain for your machine with the
getsysinfo command. When this option does not appear,
the interleave of the machine the compiler is running on is
used.

-tm target

Specifies the target machine architecture for which
compilation is to be perfonned. target can take the value cl,
c2, c32, c34 or c38. Use cl when compiling for a Cl Series
machine; use c2 when compiling for a C2 Series machine
that is not equiped with an Enhanced Scalar Processor; use
c32 when compiling for a C3200 Series machine or a C2
Series machine that is equiped with an Enhanced Scalar
Processor; use c34 when compiling for a C3400 Series
machine; use c38 when compiling for a C3800 Series
machine. The sysinfo command will tell you the type of
machine you are running on and whether or not is has an
Enhanced Scalar Processor (denoted as scalar ace in the
sysinfo output). Ifyou specify a target machine, its
instruction set is used regardless of the machine on which
the compiler is running. If you do not specify a target
machine, the compiler generates instructions for the class of
machine on which it is running.

Note

Loop replication
options

•

IF-IX)
optimization
options

•

The :f:i..Je utility may Indicate that an executable generated with
-tmspecifylng some C2 or C3 series machine Is a Cl
executable. This Is because :f:i..Je only checks for Instruction set
differences between the two machines. An executable
generated with the -bnoptlon specifying a C2 or C3 series
machine will contain Instruction scheduling differences from a
file generated for a Cl that file will not detect.

The options listed in this section control loop replication
optimizations.

-00

Causes the compiler to automatically select loops to
replicate and to compile several versions of such loops. The
compiler then dynamically selects the version of each loop
to be executed. This option is available only at optimization
level -02 or -03. Refer to the CONVEX FORTRAN User's
Guide, Chapter 1, "Compiling programs."

-rl

Causes the compiler to automatically select loops and
replicate them by unrolling or dynamic selection. -rl is
equivalent to specifying -00 and -ur. This option is
available only at optimization level -02 or -03. Refer to the
CONVEX FORTRAN User's Guide, Chapter 1, "Compiling
programs."

-ur

Causes the compiler to automatically find unrollable loops
and unroll them. Loops with trip counts less than 5 are
unrolled completely. Those with trip counts of 5 or more are
partially unrolled. Only innermost loops can be unrolled.
This option is available only at optimization levels -02 or
-03. Refer to the CONVEX FORTRAN User's Guide,
Chapter 1, "Compiling programs."

The options listed in this section control the degree of loop
peeling and test promotion allowed.

Appendix A Optimization options 115

-nopeel

Disallows loop boundary value peeling, which is enabled by
default at optimization levels -02 and -03. Refer to the
-peel and -peelall options described in this section. Refer
also to Chapter 3, 'Vector optimization."

-noptst

Disallows test promotion, which is enabled by default at
optimization levels -02 and -03. Refer to -ptst and
-ptstall below. Refer also to Chapter 3, 'Vector
optimization."

-peel

Removes the first and/or last iterations of a loop when
doing so removes conditional tests from the loop. This is
done when the loop contains a test involving an explicit
reference to the loop index variable that always evaluates to
•TRUE. or .FALSE. for the first and/orlastiteration. By
default, the compiler peels boundary values and expands
code up to a predetermined conservative limit. With the
-peel option, this limit is increased and code expansion
may become significant. -peel must be used with the -02
or -03 optimization options. Refer to Chapter 3, 'Vector
optimization."

-peelall

Same as -peel, but allows code expansion without bound.
For code containing large numbers of boundary value
operations, this can greatly lengthen compiler time and can
increase the size of the code enough to exceed the limits of
some of the compiler's internal tables. -peelall must be
used with the -02 or -03 optimization options. Refer to
Chapter 3, 'Vector optimization."

-ptst

Causes a test to be promoted out of the loop that encloses it
by replicating the containing loop for each branch of the test.
By default, the compiler replicates code up to a
predetermined conservative limit. The -ptst option
increases this limit and can cause a noticeable increase in
compile time. -ptst must be used with the -02 or -03
optimization options. Refer to Chapter 3, 'Vector
optimization."

116 CONVEX FOKrRAN Optimization Guide

-il

This section lists optimization options that cannot be otherwise
catagorized.

-ptstall

Same as -ptst, but allows code replication without bound.
For loops containing large numbers of tests, this can cause a
large increase in compile time and can increase the size of
the code enough to exceed the limits of some of the
compiler's internal tables. -ptstall must be used with the
-02 or -03 optimization options. Refer to Chapter 3, 'Vector
optimization."

Controls generation of the optimization report.

Appendix A Optimization options 117

Performs potentially unsafe optimizations, for example,
moving the evaluation of common subexpressions or
invariant code from within conditionally executed code.
This moved code may be executed unconditionally. Refer to
Chapter 9, "Potentially unsafe optimizations."

Instructs the compiler to prepare an intermediate language
(. til) file for a subprogram that is to be used for inline
substitution. The -il option cannot be used with the -c,
-cs, or -8 options. Optimization levels are ignored. Refer to
the CONVEX FOKI'RAN User's Guide, Chapter 1, "Compiling
programs."

directory
Instructs the compiler to attempt inline substitution of each
subprogram for which there exists a . fil
(intermediate-language file) file in the specified directory.
This option must be repeated for each directory containing
. til files to be used for inline substitution. Refer to the
CONVEX FOKI'RAN User's Guide, Chapter 1, "Compiling
programs."

-is

-uo

-or

Other
optimization
options

'.

118 CONVEX FORTRAN Optimization Guide

Compiler directives

•

•
!
;

This appendix briefly describes the directives that are available
in CONVEX FORTRAN.

Some directives provide information to the compiler that it
cannot determine on its own. Other directives instruct the
compiler to override certain default conditions that control
optimization, vectorization, or parallelization. A directive line
has the following format:

C$DIR directive [, directive

A directive line begins in column one with the characters C$DIR
followed by one or more of the directives described in this
appendix. If two or more directives are specified, they are
separated by commas. A directive must fit on one line; it cannot
be continued. A directive can be surrounded by any number of
comment lines.

The following directives are supported:

• BEGIN_TASKS, NEXT_TASK, END_TASKS

• DO PRIVATE

• FORCE PARALLEL EXT- -
• FORCE PARALLEL

• FORCE VECTOR

• MAX TRIPS

• NO PARALLEL

• NO PEEL

• NO PROMOTE TEST

• NO RECURRENCE

Appendix B Compiler directives 119

• NO SIDE EFFECTS

• NO VECTOR

• PEEL

• PEEL ALL

• PREFER PARALLEL EXT

• PREFER PARALLEL

• PREFER VECTOR

• PSTRIP

• PROMOTE TEST

• PROMOTE TEST ALL

• ROW WISE

• SCALAR

• SELECT

• SYNCH PARALLEL

• TASK PRIVATE

• UNROLL

• VSTRIP

The following directives, which were supported in previous
versions of CONVEX FORTRAN, are no longer supported:

• ASSIGN_LOCK, FREE_LOCK

• BEGIN_ORDER,. END_ORDER

• BEGIN_SECTION, END_SECTION

The compiler issues an advisory when it encounters any of these
directives.

Certain combinations of directives are invalid when used within
the same program unit or loop and cause the program unit or
loop to be rejected by the compiler. Table 2 lists invalid
combinations.

120 CONVEXFOKfRAN Optimization Guide

I
I
1
I

I
I

I
!
I
i

i

•

•

Table 2
Restrictions on directive use +l ~

>: Q)
Q)

...... .--l
.--l .--l Q) Q) .--l
Q) Q)--l H Q)

.--l .--l H

~ ca 0 .--l
.--l .--l 0 .--l 13 .--l
III III 13 Q) H 19aa .--l H a III Q)

~ ca 0 0- :> a
H 13 H H H 0- H 13 .--l 0-

(Il (Il (Il a Q) Q) Q) Q)t III .c: .--lt
:> <>4 '+-l '+-l H

~
Q) 0 8 H

H H H Q) Q) e: +l .--l c:; +l
0 0 0 0 0 H H Ol Q) >. c:; Ol

'+-l '+-l '+-l c:; c:; 0- 0- 0- 0- til til til ::J :>

force parallel X X X X X X X X X X X

force parallel ext X X X X X X X X X X

force vector X X X X X X X X X X

no parallel X X x x x X X X x

no vector X x X x X

prefer parallel X X X X X X X X X X X

prefer parallel ext X X X X X X X X X X

prefer vector X X X X X X X X X X

pstrip X X X X X X X X X

scalar X X X X X X X X X X X X

select x X X X X X X X X X

svnch parallel X X X X X X X X X X x

unroll X X X X X X X X X X

~strip X X X X X X X X

A directive associated with a loop affects the loop that
immediately follows the directive and does not affect loops
nested within that loop.

The remaining sections in this appendix describe the directives.
A directive's format is shown when it has associated arguments.

When using directives on loops, remember that loops can be
executed in the following ways:

• Serial

• Vector but not parallel

• Parallel but not vector

• Parallel outer strip and vector inner strip

Appendix B Compiler directives 121

122 CONVEX FORTRAN Optimization Guide

The BEGIN_TASKS directive identifies a sequence of tasks for
independent, parallel execution. A sequence of tasks begins with
a BEGIN TASKS directive and ends with an END TASKS directive.
A NEXT"yASK directive precedes each individual task. A task is
defined as a sequence of nonloop code that can be executed in
parallel.

The following code illustrates the use of the tasking directives:

C$DIR BEGIN_TASKS

statement

C$DIR NEXT_TASK

statement

C$DIR NEXT_TASK

statement

The preceding example is equivalent to the following loop:

C$DIR FORCEyARALLEL
DO 100 I = 1,3

GOTO (10,20,30),1

10 statement-l
GOTO 100

20 statement-2
GOTO 100

30 statement-3
100 CONTINUE

Up to 255 tasks can be SPecified between a BEGIN_TASKS and an
END TASKS directive.

Note

DO PRIVA'1E

•

It the task contains a subroutine call and variable passed to the
subroutine Is reterenced within the task, the complier will Issue a
warning and fall to parallellze the task. If possible, moving the
variable reterence to before the BEGIN TASI<S directive will allow
parallellzaflon. -

The DO_PRIVATE directive declares a list of variables and/or
arrays private to the immediately following DO loop. The
compiler assumes that variables declared DO_PRIVATE have no
loop-carried dependencies. No starting or ending values can be
assumed for these variables.

The DO PRIVATE directive has the form

C$DIR DO_PRIVATE (varlist>

where

varlist
is a list of scalar variables or arrays, separated by commas,
that are to be private to the immediately following loop.

Only scalar variables and statically-sized arrays can be
declared private. Dynamic, allocatable, and automatic arrays
are not allowed. Structures are not allowed. Including
induction variables (i.e. DO loop indices> in varlist will yield
wrong answers.

If a variable that appears in varlist is referenced in an iteration of
the loop, it must have been assigned a value previously on that
iteration of the loop. Values assigned outside the loop or in
previous iterations will not be available.

If the variable is referenced after the loop, it must have been
assigned a value after the loop. Values assigned inside the loop
or before the loop are not available.

Appendix B Compiler directives 123

a

124 CONVEXFOKfRAN Optimization Guide

The following example demonstrates use of the DO_PRIVATE
directive.

PREFER PARALLEL

DO_PRIVATE(S)

DO I=l,N

IF (I .GT. ILIM) THEN
S = 3.0

ELSE IF (I .LE. I LIM) THEN

S = 2.0
ENDIF

A(I) = S

ENDDO

C$DIR

C$DIR

Example

FORCE_PARALLEL does not allow interchange or distribution of
outer loops for vectorization. To enable those optimizations, use
FORCE PARALLEL EXT.- -

The FORCE_PARALLEL directive tells the compiler to parallelize
the loop that follows, regardless of apparent dependencies
between iterations. Certain actual dependencies, such as from
one scalar to another, can cause the compiler to ignore this
directive. You can use this directive on a loop whether or not the
loop contains calls, but it may not be safe to do so.

This directive causes the compiler to Ignore any apparent
dependencies between Iterations. When you use this directive
on a loop, you may not get correct results. Check answers
generated by the parallellzed code.

In this example, S must have a value for the assignment to A (I)

at the end of the loop. Without the DO_PRIVATE directive, the
compiler cannot tell that S is always assigned. It therefore
assumes that the value of S from a previous iteration might be
needed, and fails to parallelize the loop. The presence of
DO_PRIVATE (S) tells the compiler to ignore the possible
dependency on S, so that the PREFE~PARALLELdirective can be
honored and the loop can be parallelized.

This directive is effective only if the -03 compiler option is
specified.

ICaution

E'ORCE PARALIEL EXT

'.
ICaution

•

If you use this directive with the SCALAR or NO_RECURRENCE
directive, a warning is issued. In addition, an error occurs when
you use FORCE_PARALLEL and another parallelizing directive in
the same loop nest.

Example

C$DIR FORCE_PARALLEL

DO I = 1, N
ENDDO

The FORCE_ PARALLE~EXT directive forces the compiler to
parallelize the loop that follows, regardless of apparent
dependencies between iterations. Loops can be parallelized with.,
FORCE_PARALLE~EXT whether or not they contain calls.

This directive is effective only if the -03 compiler option is
specified. If FORCE_PARALLEL_ EXT and the FORCE_VECTOR
directive are specified for the same loop, the compiler first
vectorizes the loop and then parallelizes the resulting strip-mine
loop.

FORCE_PARALLEL_EXT allows interchange of outer loops for
vectorization.

This dIrective causes the complier to Ignore any apparent
dependencies between Iterations. When you use this directive
on a loop, you may not get correct results. Check answers
generated by the parallellzed code.

If you attempt to use this directive with the SCALAR or
NO_RECURRENCE directive, an error occurs. In addition, an error
occurs when you try to use FORCE_PARALLEL_EXT and another
parallelizing directive in the same loop nest.

The FORCE_VECTOR directive forces the compiler to vectorize the
loop that follows, regardless of apparent recurrences. It is
possible to use a FORCE_VECTOR directive with a loop that would
be fully vectorized without the directive and get incorrect
answers because the directive causes the compiler to ignore
dependencies.

Appendix B Compiler directives 125

126 CONVEX FORTRAN Optimization Guide

ICaution

MAX '!RIPS

ro PARALlEL

ro PEEL

This directive should be used with fully vectorizable loops. If
FORCE_VECTOR and FORCE_PARALLEL_ EXT are specified for the
same loop, the compiler first vectorizes the loop and then
parallelizes the resulting strip-mine loop.

This directive causes the complier to Ignore any apparent
dependencies between Ueratlons. When you use this directive
on a loop, you may not get correct results. Check answers
generated by the vectorized code.

A warning is issued if this directive is used with the SCALAR

directive or with the NO_RECURRENCE directive. In addition, an
error occurs when you attempt to use FORCE_VECTOR and
another vectorizing directive in the same loop nest.

The MAX_TRIPS directive instructs the compiler that the
following loop is never executed more than the specified
number of times. The format of this directive is

MAX_TRIPS (n)

where the value of n is less than or equal to the vector register
length of 128. This directive can be used to prevent strip mining,
when it might otherwise be performed. The elimination of strip
mining results in more efficient code generation.

The NO_PARALLEL directive tells the compiler not to parallelize
the loop that immediately follows; vectorization is not
prevented.

If the NO_PARALLEL and NO_VECTOR directives both precede a
loop, the result is the same as if the SCALAR directive were used.

The NO_PEEL directive prevents the compiler from applying
loop boundary value peeling to the loop that immediately
follows. This directive overrides boundary level peeling at all
levels-default, -peel, and -peelall. Refer to Chapter 3,
"Vector optimization," for more information.

•

ICaution

•

The NO_PROMOTE_TEST directive prevents the compiler from
applying test promotion to the loop that immediately follows.
This directive overrides test promotion at alllevels-defauIt,
-ptst, and -ptstall. Refer to Chapter 3, 'Vector optimization,"
for more infonnation.

The NO_RECURRENCE directive instructs the compiler to
disregard an apparent recurrence in a loop. If there is no other
impediment to vectorization, the loop is vectorized.

You must place this directive immediately before a DO statement
or a labeled statement that begins a loop. Comment lines can
appear between the directive and the start of the loop.

The NO RECURRENCE directive does not affect recurrences caused
by a nested DO loop. The directive can, however, be used on each
loop in a nest to give the vectorizer maximum opportunity for
improving the performance of the nest.

When the NO_RECURRENCE directive is used, the compiler breaks
the recurrence by arbitrarily removing one or more
dependencies of the cycle.

Example:

C$DIR NO_RECURRENCE

DO 10 I + 1,N

10 A(I) = A(I+J)

In this example, if J is positive, there is no recurrence.

The compiler always processes a NO_RECURRENCE directive
when the apparent recurrence involves an array element. The
compiler always ignores a NO_RECURRENCE directive when the
apparent recurrence involves a scalar. In the latter case, the
compiler knows that a recurrence exists.

Incorrect results can occur if you mistake a real recurrence for
an apparent one. Always test vector results against scalar results
to determine whether a recurrence is real or apparent.

For more information on the NO RECURRENCE directive, refer to
Chapter 10, "Limits of optimization."

Appendix B Compiler directives 127

128 CONVEX FORTRAN Optimization Guide

The NO_SIDE_EFFECTS directive instructs the compiler that the
specified functions do not modify the value of a parameter or
common variable, perform a read or write, or call another
routine. The format of this directive is:

The argument func specifies one or more user-defined functions.

This directive allows scalar optimization to remove a function
call if it occurs in an expression assigned to a scalar variable that
is never used. The function call can be removed because the
function has no side effects-it does not matter whether or not
the call is made. Such optimization opportunities usually arise
after other optimizations are performed and rarely occur in the
original source text.

Although the directive can appear anywhere in a program unit,
to be effective it must be used before the named function is
called. Use the directive if the compiler gives the advisory
message More optimization is possible if this
function call has no side effects. If there are no
arguments, the directive applies to all functions referenced
(textually) after the directive.

Example

x=y* F1 (5, Z) -W ! IF THE X= DOES NOT REACH

!A USE OF X, THE ASSIGNMENT

! STMT CAN BE REMOVED

A function call with no side effects is invariant with respect to a
loop under these conditions:

• The function call's arguments do not vary within the
loop and the function call can be moved out of the loop.

• The function call does not modify a common variable.

• The function call does not perform II O.

•

This directive does not prevent interchange of outer loops for
vectorization. Ifyou also choose to vectorize this loop, use the
PREFER_VECTOR directive. An error occurs when you try to use
PREFER_PARALLEL_ EXT and another parallelizing directive in
the same loop nest.

Appendix B Compiler directives 129

The PEEL_ALL directive allows the compiler to peel the loop
immediately following the directive, expanding the code
without bound. Refer to Chapter 3, ''Vector optimization," for
more infonnation.

The NO_VECTOR directive tells the compiler not to vectorize the
loop that immediately follows; parallelization is not prevented.

The PREFER_PARALLEL directive tells the compiler to parallelize
the loop immediately following the directive if it is safe to do so.
The compiler checks first for actualloop-carried dependencies; if
none is found, the loop is parallelized.

The PEEL directive allows the compiler to peel the loop
immediately following the directive, expanding the code beyond
the default conservative limit, but not without bound. Refer to
Chapter 3, ''Vector optimization," for more information.

This directive prevents interchange and distribution of outer
loops for vectorization. An error occurs when you try to use
PREFER_PARALLEL and another parallelizing directive in the
same loop nest.

If the NO_PARALLEL and NO_VECTOR directives both precede a
loop, the result is the same as if the SCALAR directive is used.

PREliER PARALIEL EXT The PREFER_PARALLEL_EXT directive tells the compiler to
parallelize the loop immediately following the directive only if it
appears safe to do so. The compiler checks first for actual
loop-carried dependencies; if none are found, the loop is
parallelized.

PEEL ALL

130 CONVEX FORTRAN Optimization Guide

PREt!:ER VECl'OR

PRCM)TE TEST ALL

PSIRlP

-_..._._------------,

The PREFER_VECTOR directive tells the compiler to vectorize the
loop immediately following the directive if it is safe to do so.
The compiler checks first for actual recurrences. If no
recurrences are found, the compiler tries to interchange the loop
to be the innennost loop and vectorize it.

An error occurs when you try to use PREFER_VECTOR and
another vectorizing directive in the same loop nest.

The PROMOTE_TEST directive allows the compiler to promote
tests out of the loop immediately following the directive,
replicating code beyond the default conservative limit, but not
without bound. Refer to Chapter 3, ''Vector optimization," for
more infonnation.

The PROMOTE_ TEST_ALL directive allows the compiler to
promote tests out of the loop immediately following the
directive, replicating code without bound. Refer to Chapter 3,
''Vector optimization," for more information.

The PSTRIP directive tells the compiler that the parallel loop
immediately following the directive is to be strip mined using
the specified length. The format of this directive is

PSTRIP <integer_constant)

where integer_constant is an integer constant that specifies the
strip-mine length.

Parallel strip mining groups the loop iterations into blocks of
n/(2ep), where n is the actual loop trip count and ep is the
expected number of processors, which is obtained from the -ep
option or, in absence of -ep, the number of processors in the
machine on which the program is running. Each block is
executed entirely by a single thread. Parallel strip mining occurs
only at -03.

If you do not specify PSTRIP directives, the compiler selects a
default value appropriate for the architecture of the machine for
which you are compiling. The default number of loop iterations
to group, or when -epis I,is 1. At -03 when -epis 2 or more,
the compiler will use longer strips to reduce the inter-processor
overhead.

Table 3
Maximum parallel
strip-mine lengths at -03

•

•

The PSTRIP directive overrides the compiler default and
specifies the number of iterations per block to perform. PSTRIP
cannot be used with vector loops.

Table 3 shows the maximum strip-mine lengths used with the
-03 and -ep options.

Processors (-EP) Default compiler PS'1RIP(k) length
length

1 1 1
More than 1 max(n/(2ev) 1) k

FORTRAN stores arrays in column-major order. Reversing the
order of subscripts so that the array is accessed through
contiguous rather than noncontiguous memory can improve the
efficiency of memory accesses. The ROW_WISE directive tells the
compiler that the designated arrays have their dimensions
reversed. Thus, array elements are stored in a manner consistent
with programming languages such as C and Ada. The format of
this directive is:

The following cautions apply to the use of the ROW WISE
directive: -

• Implicit array I/O, such as READ (5, *) A, is not allowed
for arrays that appear in a ROW_WISE directive.

• The array appears reversed when viewed in the
debugger.

• If the ROW_WISE directive is applied to a dummy
argument, the actual argument must also appear in a
ROW_WISE directive within the caller. The compiler
cannot detect this situation.

Appendix B Compiler directives 131

The following example illustrates a situation in which use of thE
ROW_WISE directive can improve performance of a program.

DIMENSION A(4,1000)
DO I = 1,4

DO J = 1,1000
A(I,J) = 0

ENDDO
ENDDO

Although the preceding example vectorizes, performance is
slowed because the array is being accessed with noncontiguous
memory (FORlRAN stores arrays in column-major order). If,
however, the code segment in the preceding example is
preceded by the directive C$DIR ROW_WISE (A), it is
interpreted by the compiler as follows:

C$DIR ROW_WISE (A)

DIMENSION A(1000,4)
DO I = 1,4

DO J = 1,1000
A(J,I) = 0

ENDDO
ENDDO

The array is now being accessed from contiguous memory, thus
increasing the execution speed.

The SCALAR directive prevents the DO loop that follows from
being vectorized or parallelized. The body of the loop can still bE
vectorized or parallelized if an outer loop is interchanged with
the scalar loop.

The SCALAR directive is useful when the iteration count of the
loop is too low for the overhead involved in setting up
vectorization, or when the numerical results must be the same aE
for a scalar loop. This directive can also be used to prevent loop
interchange, which may not choose the best loop to interchange
when the compiler cannot determine the iteration counts of the
loops involved.

The results of a vectorized loop can differ from its scalar
equivalent. For example, floating-point sum-and-product
reduction operators can give different answers because the
underlying hardware does not process the operands in
sequential order.

132 CONVEX FORTRAN Optimization Guide

Example 2

SELECT (vtrip, ptrip, pvtrip)

! (where N = 2)

! (where M = 1000)
+ C(I,J)

SCALAR
DO 10 I = 1,N
DO 10 J = 1,M

A(I,J) = B(I,J)10

C$DIR

Examplel

Appendix B Compiler directives 133

C$DIR SCALAR
DO 10 I 1,N (where N = 2)

C$DIR SCALAR
DO 10 J = 1,M (where M = 2)

10 A(I,J) = B(I,J) + C(I,J)

In this example, the compiler normally interchanges the I loop
with the J loop so that elements of A, B, and C are accessed
contiguously. The SCALAR directive ensures that the loop of
greater iteration count is retained as the innermost loop.

The SELECT directive causes the compiler to generate mUltiple
versions of a loop and to select, at runtime, which version to
execute based on specified trip counts. The compiler generates
up to four versions of a loop: scalar, vector, parallel, and
parallel-vector. The format of this directive is:

In this example, neither iteration count is sufficient to warrant
vectorizing the loops.

The arguments vtrip, ptrip, and pvtrip specify the trip (iteration)
count at which the compiler is to select vector, parallel, or
parallel-vector execution, respectively, for the loop.
Parallel-vector execution implies that the loop is vectorized and
the strip-mine loop is parallelized.

If you omit a trip count by using two adjacent commas, the
compiler selects a default value. If you use an asterisk (*) in
place of a trip count, the compiler does not generate code for the
corresponding mode. If a specified mode is not available for the
loop, the compiler selects a default mode.

•

•

If the actual trip count is less that the smallest trip count
specified in the directive, the loop runs scalar. If the actual trip
count is greater than the largest trip count specified in the
directive, the loop runs in the mode of the largest trip count.

Examples

C$DIR SELECT(10,4,20)
C Run scalar if actual trip count = 1-4.
C Run parallel if trip count = 5-10.
C Run vector if trip count = 11-20.
C Run parallel-vector if trip count> 20.

C$DIR SELECT (0,*,*)
C Run scalar if loop has no vectorizable code.

C$DIR SELECT (*,*,*)
C Equivalent to C$DIR SCALAR.

The SYNCH_PARALLEL directive tells the compiler that the
following loop is to be executed in parallel; however, instead of
ignoring dependencies, the compiler inserts synchronization
code that causes the dependencies to be honored at runtime.
This directive is effective only if the -03 compiler option is
specified.

Without specific directives, the compiler vectorizes any
dependency-free part of the loop; this normally produces
superior results. However, if a loop contains much code that is
conditionally executed, it may be preferable to parallelize the
loop with the SYNCH_PARALLEL directive, particularly if all the
dependencies are in seldom-executed branches.

Example

C$DIR SYNCH_PARALLEL
DO I = 1,32

IF (A(I) .LT.O) THEN
A(I) = A(I-1) + B(I)
D(I) = E(I)*F(I)

ENDIF
ENDDO

This loop might run faster in a machine with four processors
than if it were partially vectorized and the recurrence placed in a
scalar, nonparallel loop.

134 CONVEX FORTRAN Optimization Guide

TASK PRIVA'lE

•

t.1NPDLL

•

The TASK_PRIVATE directive declares a list of variables and/or
arrays private to the immediately following task. A task is a
sequence of linear code that can be executed in parallel with
other tasks. In CONVEX FORTRAN, tasks are defined using the
BEGIN_TASKS, NEXT_TASK, and END_TASKS directives. The
TASK_PRIVATE directive must immediately precede or appear
on the same line as the BEGIN_TASKS directive. The compiler
assumes that variables declared TASK PRIVATE have no
dependencies between the following tasks; therefore no starting
or ending value can be assumed for the task-private variable
within a task.

The TASK PRIVATE directive has the form

C$DIR TASK_PRIVATE (varlist)

where

varlist
is a list of variables or arrays, separated by commas, that are
to be private to each following task. The following tasks are
defined by a BEGIN_TASKS directive and one or more
NEXT_TASK directives. The scope of the task-private
variables is terminated along with the task list when an
END TASKS directive is encounteredo

Only variables and statically-sized arrays can be declared
private. Dynamic, allocatable, and automatic arrays are not
allowed. Structures are not allowed. Including induction
variables (i.e. DO loop indices) in varlist will yield wrong
answers.

If a variable that appears in varlist is referenced within a task, it
must have been assigned a value previously within that task.
Values assigned outside the task list or in other tasks will not be
available.

If the variable is referenced after the task list, it must have been
assigned a value after the task list. Values assigned inside or
before the task list are not available.

The UNROLL directive reduces loop overhead by replicating the
body of the loop that follows. Unrolling is performed only on
scalar loops. This directive is effective only if the -02 compiler
option is specified.

Appendix B Compiler directives 135

136 CONVEX FOKTRAN Optimization Guide

VSTRIP

Table 4
Maximum vector strip-mine
lengths at -03

To be eligible for unrolling, a loop must contain no internal
branching and must have an iteration count that the compiler
detennines. The compiler unrolls a loop completely only if its
iteration count is less than five; otherwise, partial unrolling is
performed. Complete unrolling occurs before vectorization, and
partial unrolling after vectorization.

The VSTRIP directive tells the compiler that the vector loop
immediately following the directive is to be strip mined using
the specified length. It is especially useful for automatically
parallelized vector loops, for example, loops that are vectorized
and run with the outer strip parallel. The directive has the
following fonnat:

VSTRIP <integerJonstant)

where integerJonstant is an integer constant that specifies the
strip-mine length, which must be less than or equal to 128.

Vector strip mining executes the loop in strips of 128 elements
by default, and the parallel outer loop runs iterations of the
vector loop in parallel.

If you do not specify VSTRIP directives and the compiler doesn't
know the number of iterations (or knows that it is larger than
128*ep, where epis the estimated number of processors), the
compiler selects a default value of 128 for the strip-mine length.
Also, loops are executed in 128-element strips at optimization
level -02 or if the value of the -ep flag is 1. At optimization level
-03 when -ep is 2 or more, the compiler uses more and shorter
strips if doing so reduces the length of the longest strip.

The VSTRIP directive overrides the compiler default and
specifies a shorter strip-mine length. The shorter strip creates
more iterations of the strip-mine loop so that it can be effectively
parallelized.

Table 4 shows the maximum strip-mine lengths used with the
-03 and -ep options.

Processors Default compiler length VS'IRIP(k)
(-ep) length

1 1 128

More than 1 max(min«n+ep-l)/ ep,128) 8) k

Table 5
Four-processor system strip
lengths

•

•

The actual strip length per iteration is the smaller of the number
of iterations remaining to be processed or the maximum length
of a strip from the table (either the default or from the directive).

Examples:

Table 5 shows the maximum and actual vector strip lengths
when the system includes four processors (-ep=4).

Trip count Maximum strip Actual strip length(s)
length

2 8 2

514 128 128,128,128,128,2
(for the 5 iterations)

Appendix B Compiler directives 137

138 CONVEX FORTRAN Optimization Guide

Appendix C Vector operations 139

Vector operations

Vector-length register
The CONVEX C Series machines have one vector-length register.
The value in a VL register is the number of elements used in
subsequent vector operations.

Four types of registers are used in vector operations:

• Vector-accumulator 0/) register

• Vector-length (VL) register

• Vector-stride 0/S) register

• Vector-merge (VM) register

This appendix describes the vector instruction set on CONVEX
computers. These descriptions can help you create efficient code.
You do not need to know assembly language to read and
understand this chapter. For more detailed information about
vector operations and hardware, see the CONVEX C Series
Architecture Reference Manual.

Vector-accumulator register
A vector register can hold up to 128 64-bit elements. These
elements can be integer or floating-point data. Data must be of
uniform size and precision. The vector register is used to store
arrays of operands. CONVEX C Series machines have eight
vector registers.

...._------------
Vector hardware

Vector-stride register

The 32-bit vector-stride register is used by the load and store
instructions. The value in the VS register is the number of bytes
from one element of an array in memory to the next sequential
element. Strides can be either positive or negative.

vector-merge register

The vector-merge (VM) register holds a 128-bit mask used for
compress, expand, operate-under-mask, and merge instructions.
The VM register also stores the results of a vector comparison. If
the comparison of corresponding elements in two vector
registers is true, the corresponding bit in the VM register is set.
Otherwise, the corresponding bit is cleared.

The VM register is often used for these operations:

• Population count (number of successful compares)

• Sparse vector manipulation

• Array compression, expansion, and merging

• Vector clipping

How the CONVEX architecture works
To see how the vector hardware works, consider the vector
operation in the following example.

Example

INTEGER A(14), I
00 I = 1, 14, 3

A(I) = A(I + 1) + A(I)
ENDDO

The code increments every third element of the array and uses
the VS, VL, and V registers. Figure 8 shows the vector
operations on array A.

140 CONVEX FOKTRAN Optimization Guide

14

cB

Appendix C Vector operations 141

In A, the CPU sets the vector-stride register (VS) to 12 (the
number of bytes between elements of the array). In B, the CPU
has set the vector-length register (VL) controlling the operation
to 5. The VL register controls the loading of elements from array
A into vector registers va and V1.

The vector load instruction loads the contents of an array stored
in memory into a vector register. The data types are byte, half
word, word, and long-word. The VS register contains the byte

Vector load

This section describes some of the assembly-language
instructions used in vector operations. Assembly-language
listings are provided to show how certain FOR1RAN statements
are vectorized in assembly language. For a complete list of the
vector instruction set, see the CONVEX Architecture Reference
Manual (C Series).

The CPU adds the contents of vector registers va and VI and
stores the result in V2.

In C, the CPU stores elements of V2 back into array A.

13

I I ~
11 10 11 10 21

8 7 8 + 7 15

5 4 5 4 9

2 1 Z 1 3 3

va + vI - va

1 &(1)..
VS=12 ..

Vll-12
VUoS VUoS VUoS

A

•

Figure 8
Vector operations for A (I) = A(I + 1) + A(I)

Vector instruction
set

The following example shows another example of vector load.

142 CONVEX FORTRAN Optimization Guide

The assembly-language code required to load A into a vector
register appears on the right.

ld.w t25,VL

ld.w t4,VS

ld.w A,vO

ld.w ts,VL

ld.w U60,VS

ld.l B,vO

Assembly language

Assembly language

DO I = 1, 25

A(I) = A(I) + 4

ENDDO

INTEGER*4 A(25)

FORTRAN

REAL*8 B(100)

FORTRAN

DO I = 1, 100, 20

B(I) = B(I) + 8.0

ENDDO

For example, suppose the FOR1RAN code on the left in the
following example is vectorized.

separation of each element that is loaded into the vector regist
and the VL register contains the number of array elements to 1
loaded.

The first statement loads the length of array A, which is 25, intc
VL. The second statement loads 4 into VS because each element
in the array requires four bytes for storage and the loop's stridl
is one. The last statement loads the contents of array A into
vector register VO.

The FOR1RAN code on the left generates the vectorized
assembly-language code on the right.

VL contains 5 because only five elements of array Bare modifie.
It is unnecessary to load all the elements of Binto the vector.
Similarly, vs contains 160, because each element requires eight
bytes of storage and the loop's stride is 20. The last statement
loads five elements of array B into vector register Vo.

Following is an example of vector store.

Vector store

Appendix C Vector operations 143

ste.w sO,C

Assembly language

Id.w 15,50

Id.w noo,VL
1d.w 14,VS

st.w vO,e

Assembly language

Id.w noo,VL

Id.w #4, VS

Id.w B,vO

INTEGER*4 C (100)

INTEGER*4 B(100),C(100)

ENDDO

ENDDO

DO I = 1, 100

C(I) = 5

FORTRAN

FORTRAN

DO I = 1, 100

C(I) = B(I)

The vector store instruction stores the contents of a vector
register into an array in memory. The VS register contains the
byte separation of each element stored, and the VL register
contains the number of array elements in the vector register.

The result is a repeated store of a scalar register. The assembly
language instruction for store scalar extended is ste. This
instruction uses the VS and VL registers in the same way the
vector load instruction does: VL specifies the length of the array,
and vs specifies the number of bytes between each array
element that is accessed.

Some operations that appear to require a load statement use
other instructions instead, as shown in the example below.

The VL register contains 100 because 100 elements are loaded
and stored. The VS register contains 4 because each element
requires four bytes for storage and the loop's stride is one. In the
example, the vector store and vector load operations use the
same VL and vs values.•

•

i-,- ---- ----

The following example shows another vector store.

FORTRAN Assembly language

The following example shows the use of the vector add operator.

st.w vO,C+4

Id.w f8,VS

Id.w B,vO

st.w v2,C

add.w vO,vl,v2

Id.w C,vO

Id.w B,vlC(1) = C(1) + B(1)

ENDDO

DO I = 1, 50

DO I = 1, 50

C(1 * 2) = B(1)

ENDDO

1NTEGER*4 B(100), C(100) Id.w f50,VL

Id.w f4,VS

FORTRAN Assembly language

1NTEGER*4 B(100), C(100) Id.w f50,VL

Id.w f4,VS

Four binary operators used in vector arithmetic are addition,
division, multiplication, and subtraction. Additional binary
operators used for logical operations are and,. or, and xor. Both
operands of these operators can be vectors, or one can be a
scalar and the other a vector. All operators use the VL register to
detennine the number of vector elements to use in computations.

Arrays Band Care loaded into vector registers, which are added
together. The result is stored in a third vector register. The fourth
and fifth or fifth and sixth statements can be chained together
because they map to different functional units.

In this example, the vs register is increased to 8 because only
every- other element of array Cis modified. The loop's stride is 2,
and each element of array C requires four bytes for storage.
Because the destination of the vector store operation starts at the
second element of array C, its base address is increased by one
element, or four bytes.

Binary vector operators

144 CONVEX FORTRAN Optimization Guide

Vector reductions

The example below generates a sum reduction.

Appendix C Vector operations 145

mul. w va, sO, vI

st.w v1,e

Id.w e,vo

Assembly language

Id.w noo,VL

Id.w #8,50

Id.w H,vS

INTEGER*4 e(lOO)

FORTRAN

DO I = 1, 100

e (I) = e (I) * 8

ENDDO

FORTRAN Assembly language

INTEGER*4 e (100) Id.w #o,sO

Id.w noo,VL

ISUM = a Id.w H,vS

DO I = 1, 100 Id.w e,vo

ISUM = ISUM + e (I) sum.W vO

ENDDO st.w sO, I SUM

The FORTRAN code in the following example computes the
product of a vector and a scalar.

Arraye is loaded into va, and va is multiplied by the scalar
register sa. The result is stored in vI and then returned to
arraye.

Reduction operations reduce a vector to a scalar. A reduction
operation requires two inputs: a scalar register and a vector
register. A scalar input is provided so that reduction operators
can be perfonned for vectors greater than 128 elements.

Mathematically, reduction operations are the sum reduction
(sum) and multiply or product reduction (prod). Additional
reduction operations are provided to implement the FORTRAN
MAX and MIN intrinsics, as well as reduction using logical
operators such as . AND., . OR., and .NEQV•

•

.--------------------------------_ ..

146 CONVEX FORTRAN Optimization Guide

SUffi.W va

SUffi.W sa

st. w sO, <::MAX

Id.w C(l),sO

Id.w #lOO,VL

Id.w #4,vS

Id.w c,vo

Assembly language

Q1AX = C(l)

INTEGER*4 C(100),CMAX

ENDDO

DO I = 1, 100

FOR'rRAN

<::MAX = JMAXO(<::MAX,C(I» max.w va

Both statements produce the same results.

The FORTRAN code in the following example computes a
vector's maximum.

can be replaced with

During a vector reduction, a vector register is paired with a
scalar register (Vi is paired with Si). In this example, sa is the
scalar register that corresponds to ISUM,. and va is the vector that
is reduced. This statement

By chaining vector operations, the CPU can use the output of
one vector instruction as input for the next. Addition and
multiplication can be chained so that an addition begins while
the products of two vectors are being computed. These
concurrent, or pipelined, events greatly improve performance.

This code performs the way the code in the sum reduction
shown above does, except the vector's maximum is returned.

Chaining

ld.w #O,sO

ld.w UOO,VL

ld.w #4,VS

• ld.w A,vl

ld.w N,v2

rnul.w v2,vl,vO

st.w vO,D

SUIn.W vO

st.w sO, SUM

•

In the following example, a dot-product operation requires the
sum of a series of products.

Example

INTEGER D(lOO), N(lOO), A(lOO), I, SUM
SUM = 0
DO I = N(I) * A(I)

SUM = SUM + D(I)
ENDDO

The assembly language for the dot-product operation is shown
below.

In this example, the summation is chained with the
multiplication. Pipelining uses multiple functional units of the
CPU to perform a specific set of operations, and the functional
units allow the multiplication and addition operations to
overlap.

Vector comparisons

The three vector comparison instructions are less-than, less
than-or-equal, and equal. All other logical operators are
obtained by taking the complement of these three instructions.
For example, greater-than is the complement of less-than-or
equal.

The result of a vector comparison is stored in the vector-merge
register. This register has 128 bits, each one corresponding to an
element in a vector register. If the comparison of two elements is
true, the corresponding bit in the VM register is set; otherwise the

Appendix C Vector operations 147

Consider the vector comparison in the following example.

The arrays are loaded into vectors, and the vectors are compared.

bit is cleared. The VM register controls other vector operations as
described below in the section, "VM operations under mask-e2
andC3."

ld.w A,vO

ld.w B,v1

le.w vO,v1

vO,v1,v2add.w

IF(A(I) .LE.B(I»J = I

ENDDO

DO I = 1, 100

FORTRAN Assembly language

INTEGER*4 A(lOO), B(100) ld.w #100,VL

ld.w #4,VS

Vector operations under mask-C2 and C3
The CONVEX C2 and C3 Series computers can perform vector
operations under mask. The CONVEX Cl Series computers can
perform vector operations and mask operations, but multiple
vector instructions must replace an individual vector operation
under mask on the CONVEX C2 and C3 Series computers.

There are two forms of vector operations under mask:

• True-Elements with VM bit equal to one are included.
Instructions of this type have a •t suffix, such as
add.w. t .

• False-Elements with VM bit equal to zero are included.
Instructions of this type have a . fsuffix, such as
div.b. f.

The following statement

Most vector operations can operate under mask. A vector-merge
register bit is associated with each vector register element. When
an operation is performed under mask, eachelernent is either
included or excluded from the operation based on the state of its
corresponding VM bit.

In this mode, the bit of the VM register corresponding to each
vector element is examined to either enable or disable that
vector element from the operation.

148 CONVEX FOKTRAN Optimization Guide

add. w• f va, vI , v2

add.w.t vO,vl,v2

The following statement:

VL 6
VM=011001

Appendix C Vector aperations 149

v2 = 6 5 5 12 6 5

add.w.f vO,vl,v2

add.w. t va, vI, v2

v2 = 5 8 10 5 5 8

va = 0 1 2 3 4 5
vI 6 7 8 9 2 3
v2 5 5 5 5 5 5

produces:

For the remaining examples of operations under mask, assume
these values before instructions are executed:

produces:

The following statement:

The following statement.

This version operates only on vector elements whose
corresponding VM bi ts are O.

adds only elements whose corresponding VM bits are one.
Elements of v2 whose corresponding VM bits are zero remain
unmodified.

The complementofVMbits is used for. f, as in the statement:

adds all elements (restricted by vector length) of vO and vI,
placing the results in v2.

•

•

150 CONVEX FORTRAN Optimization Guide

Ignoring the length and stride setup, the code on the left can be
vectorized with the assembly-language code shown on the right.

The following FORTRAN code is an example of using
operations under mask.

st.w.t vO,e

Id.w A,vO

Id.w B,v1

eq.w va,v1

Id.w D,vO

Assembly language

IF(A(I) .EQ.B(I»THEN

e(I) = D(I)

ENDIF

ENDDO

DO I = 1, 100

FORTRAN

Vector-merge register operations
The merge, mask, compress, and expand operations use the
vector-merge register to control the selection of elements in the
vector operands.

Compress
The compress instruction uses the VM register to extract elements
selectively from one vector register and place the elements in
another vector register. Either zeros or ones of VM can be used by
specifying the instruction's . f (false) or . t (true) version,
respectively. Only elements with the corresponding VM bit set
(clear for . f) are moved from the source vector to the
destination vector. This creates a destination vector with a
number of elements equal to the number of bits set (or cleared)
in VM.

Expand
The expand instruction is only available on the CONVEX C2
and C3 Series computers. This instruction uses the VM register to
extract elements from one vector register and selectively place

Merge and mask
The merge and mask instructions take two operands and
produce a vector as the result. The two operands can be two
vectors or a vector and a scalar. The merge and mask
instructions differ only in the way the indexes of the operands
are used to create the result vector. For merge, the indexes of the
operands are incremented only if that particular register is
selected by VM. For mask, element n of the result vector is
element n of either the left or the right operand.

•

•

the elements in another vector register. Either zeros or ones of VM
can be used by specifying the instruction's. f or . t (false or
true) version, respectively. Only elements with the
corresponding VMbit set (clear for. f) are loaded into the
destination vector. Other elements in the destination vector
corresponding to clear VMbits (set for. f) are skipped over. The
expand instruction creates a destination vector with VL
elements, including a number of elements of the source vector
equal to the number of bits set (or clear) in the VM register.

Examples
The examples below show how these instructions work.

The vector mask, merge, compress, and expand instructions
have either a single true version, or both . t and . f (true and
false) versions. You can use either the ones or the zeros (. t or
. f) of VM. If you use . t, when the appropriate bit of VM is one,
the second operand is selected.

Assume these values before the instructions of each example are
executed:

VO = 1 2 3 456 V5 7 7 7 7 7 7 VL = 6

VI abc d e f VM 0 1 1 0 0 1 SI = 8

Compressing vo produces:

cprs.t VO,V5 = 2 3 6 7 7 7
cprs.f VO,VS = 1 4 5 7 7 7

Expanding Vo produces:

xpnd.t VO,V5 = 7 1 277 3

xpnd. f YO, V5 = 1 7 723 7

Masking VO and VI produces:

mask.t VO,vl,vS = 1 b c 4 5 f

mask.t Vl,VO,V5 = a 2 3 d e 6
mask.t VO,SI,VS =1 8 8 4 5 8

Merging Vo and VI produces:

VL = 12 VM = 0 1 1 0 0 1 0 0 0 1 1 1
merg.t VO,Vl,VS = 1 a b 2 3 c 4 5 6 d e f

AppendiX C Vector operations 151

152 CONVEX FORTRAN Optimization Guide

Examples of
vector operations

Merging vo and Sl with the previous VL and VM produces:

merg.t VO,Sl,V5 : 1 8 8 2 3 8 4 5 6 8 8 8
merg.f VO,Sl,V5 : 8 1 2 8 8 3 8 8 8 4 5 6

This section shows examples of common vector operations. You
do not need to understand assembly language to read the
examples. To obtain the assembly-language listings of the
examples, compile the source code with the -02, -tm Cl, and -8
options. The -tmoption is specified because the CONVEX C
Series computers may produce differing assembly listings.

In the examples, if a is an array, then Va is the vector in which a
is stored; Vb (5) is the fifth element of vector Vb; and VM<6> is
the sixth bit of the VM register.

Embedded IF statement
The vector operations used in this example are conditional test
and masking.

Vector operations often use conditional tests. The logical tests
are and, equal, less-than-or-equal, less-than,
greater-than-or-equal, greater-than, or, and exclusive-or. The
CPU places the results of a vector comparison in the VM register,
with the corresponding bit set if the result is true. If the
comparison is equal and Vo (5) is the same as V1 (5) , then VM<5>
equals 1.

The vector mask operation restricts the elements altered by a
vector aSSignment operation to those specified by bits set in the
VM register. In the vector mask sum V1:V2+V3, for example,
V1 (5) is assigned a value only if VM<5> is set.

The results of the conditional in the loop in the following
example cannot be determined until the program is executed.

Example

SUBROUTINE EMBED (A, B, C)
INTEGER A(100), B(100), C(100), D(100), I

DO I : 1, 100
D(I) : I ! initialize array

ENDDO

Example

SUBROUTINE GATHER (A, lA, B, IB)
INTEGER I, A(100), IA(100), B(100), IB(100)

The gather and scatter vector operations are used when the
elements of an array are indirectly addressed. The code in the
following example uses indirect addressing.

Appendix C Vector operations 153

1, 100)

1, 100)

PRINT *, (D (I), I

END

PRINT *, (A(I), I
RETURN

END

DO I = 1, 100
A(IA(I» = B(IB(I» + 1

ENDDO

DO I = 1, 100
IF(A(I) .EQ. B(I» D(I) = elI)

ENDDO

Array A is loaded into Va, and array B is loaded into Vb. The two
vectors are compared, and the result is stored in VM. The VM
register controls the assignment operation. VC (i) is assigned to
Vd (i) . Finally, when VM<i> is one, Vd is stored in D.

Indirect array addressing
The vector operations used in this example are gather and
scatter.

Gather loads values from an array into a vector register. The
operands come from various locations in the array. For example,
if random gather moves elements from A to Va, A (5) may be
placed in Va (10) while A (10) is copied into Va (2). Scatter
copies elements from a vector register into various locations in
an array.

•

•

U,s3
#-4,a3

The assembly language that performs this function is shown in
the following example.

ld.w

ld.w

L3:
st.w s3,LU+404

st.w 53,-536 (fp)

st.w a3,-524 (fp)
mov ap,aS
Idea LC+4,ap

calls @12 (a5)
ld.w 12(fp),ap

ld.w -524(fp),a3

mov a3,a5

add.w fp,aS
add.w #4,a3

st.w sO,-S08(aS)
Id.w -S36(fp),sO

add.w U,sO
le.w i396,a3
mov.w 50,53
jbra.f L3
ld.w UOO,VL
ld.w #4,50

Id.w 8(ap),aS

ld.w 4(ap),al

add.w #-4,aS
ld.w 0(ap),a2
ld.w #1,51
add.w #-4,a2
ld.w #4,vS

ld.w -Sl2(fp),vO

mul.w vO,sO,v1
ldvi.w v1,v2

ld.w o(al), vO

mul.w vO,sO,vl

add.w v2,sl, v3

mov a2,aS
stvi.w v3,VL

154 CONVEX FORTRAN Optimization Guide

•

•

There are three steps to this operation:

1. Load the indirectly addressed elements of array Binto a
vector.

2. Increment each element by one.

3. Store the values into the indirectly addressed elements
of array A.

The compiler accomplishes step 1 by loading the contents of
array IB into a vector register (for example, Vib), incrementing
each address by B's base address, and storing the address in a
vector register. For example, if IB (5) is 10, Vib (5) is the value
of B(10) . The compiler then increases each element of Vib by
one.

The compiler then loads the contents of array IAinto vector
register Via, increments each element by the base address of
array A, and scatters the contents of vib using the addresses in
Via. For example, if IA(5} is 17 and IB (S) is 10, B (10) +1 is
stored in A(17} •

Appendix C Vector operations 155

Optimization report

b.zation.report
contents

Loop table

•

When you compile a program with the -02 or -03 option, the
compiler generates an optimization report for each program
unit. The -or option determines the report's contents, as shown
in Table 6.

-oroption Report contents

all Loop table and array table

loop Loop table only (default)

array Array table only

none No report

The loop table lists the optimizations that were perfonned on
each loop and, if appropriate, the reasons why a possible
optimization was not perfonned. Loop nests are reported in the
order in which they are encountered, and separated by a blank
line. A description of each colunm of the loop table follows.

Line Num.

Specifies the source line of the beginning of the loop. If the
line number has two parts separated by a hyphen, the
second part is the distributend number (due to loop
distribution).

Appendix D Optimization report 157

----------------------~~-~~- ~------~~~---~

Id Num.

Specifies a unique ill number for every loop. This ID
number can then be referenced by other parts of the report.
Both loops appearing in the original program source and
loops created by the compiler are given loop ID numbers;
loops created by the compiler are also enumerated in the
New Loops column as described further on. No distinction
between compiler-generated loops and loops that existed in
the original source is made in the Id Num column; loops are
assigned unique, sequential numbers as they are
encountered.

Iter. Var.

Specifies the name of the iteration variable controlling the
loop. If the variable is compiler-generated, its name is listed
as *VAR*; if there is no iteration variable, it is listed as
NONE. If the iteration variable has two parts separated by a
colon, the second part is the inline substitution instance of
that variable. If it consists of a truncated variable name
followed by a colon and a number, the number is a reference
to the variable name footnote table which appears after the
loop table, analysis table, and test table in the report.

Reordering Transformation

Indicates which reordering transformations were
performed. Reordering transformations are performed on
loops and loop nests, and typically involve reordering
and/or duplicating sections of code to facilitate more
efficient execution. This column has one of the values shown
in Table 7.

158 CONVEX FORTRAN Optimization Guide

Table 7
Reordering transformations
reported in optimization report

•

Value Explanation
Scalar No reordering transformation was

performed.

n% VECTOR The loop was partially vectorized, with the
percentage (n) specified being executed in
vector mode.

FULL VECTOR The loop was fully vectorized, with all
operations being executed in vector mode.

PARALLEL The loop runs in parallel mode.
PARA/VECTOR The loop was vectorized, and the strip mine

loop runs in parallel mode.
Inter Loop interchange was performed. Typically

appears with vectorization indicator.
Dist Loop distribution was performed.
Dynsel Dynamic selection was performed.
Peel Loop peeling was performed.
Promote Test promotion was performed.

* Appears at left of loop-producing
transformation optimizations (distribution,
dynamic selection, peeling, promotion).

New Loops

Specifies the loop ID number(s) for loops created by the
compiler. These ID numbers are listed in the Id Num.
column and can be referenced in other parts of the report;
however, the loops they represent were not present in the
original source code.

Optimizing/Special Transformation

Indicates which, if any, optimizing transformations were
performed. An optimizing transformation reduces the
number of operations executed, or replaces operations with
simpler operations. A special transformation allows the
compiler to vectorize or parallelize code under special
circumstances. When appropriate, this column has one of
the values shown in Table 8.

Appendix D Optimization report 159

160 CONVEX FORTRAN Optimization Guide

Table 8
Optimizing/special
transformations reported in
optimization report

Analysis table

Test table

Value Explanation

Unroll The loop was completely or partially
unrolled.

Reduction The compiler recognized a reduction and
vectorized the loop.

Pattern The compiler recognized a special pattern
and vectorized the loop.

Synch The compiler inserted synchronization
code to ensure correct execution of a
parallel loop.

Removed. The compiler removed the loop.

No Strip The loop did not need to be strip mined.

If necessary, an analysis table is included in the optimization
report to further elaborate on optimizations reported in the loop
table. A description of each column of the analysis table follows.

Line Num.

Specifies the source line of the beginning of the loop.

Id Num.

References the ill number assigned to the loop in the loop
table.

Iter. var.

Specifies the name of the iteration variable controlling the
loop, *VAR*, or *NONE*, as described in the "Loop table"
section of this appendix.

Analysis

Indicates why a transformation or optimization was not
performed, or additional information on what was done.

If any test promotion or removal optimizations were performed,
a test table is included in the optimization report. A description
of each column in the test table follows.

•
Val'iable name
footnote table

Array table

Line Num.

Specifies the source line number of the beginning of the IF
test.

Col. Num.

Specifies the source column number of the beginning of the
IF test.

Test Transformation

Specifies the transfonnation performed: either TEST
PROMOTED or TEST REMOVED.

Analysis

Presents a further explanation of the transfonnation
performed, including the source line number of the original
loop from which the test was transformed, and (if
applicable), in parentheses, the loop ill number of the
compiler-generated loop from which the test was
transformed.

Variable names that are too long to fit in the Iter. Var.
columns of the loop and array table sections are truncated and
followed by a colon and a footnote number. These footnotes are
explained in the variable name footnote table. The headings in
the variable name footnote table are explained below.

Footnoted Iter. Var.

Specifies the truncated variable name and its footnote
number.

User Variable Name

Specifies the actual name of the variable as given by the user
in the source code.

The array table lists array references that prevented
optimization or array references on which special optimizations
were performed. The array table contains the following
information.

Line Nom.

Specifies the source line on which the reference occurs.

AppendiX D Optimization report 161

&

Value Explanation

Hoist The vector load was found to be loop invariant
and was moved outside the loop.

Sink The vector store was found to be loop invariant
and was moved outside the loop.

Example 1
Consider the matrix multiplication algorithm belo~ (Line
numbers are provided as a reference.)

1 PROGRAM EXAMPLE1

2 REAL A(200,200), B(200,200), C(200,200)
3
4 DO LOOPINDEX = 1, 200
5 DO J = 1, 200
6 C (LOOPINDEX, J) = 0
7 DO K = 1, 200
8 C(LOOPINDEX,J) = C(LOOPINDEX,J) +

A(LOOPINDEX, K) * B(K, J)
9 ENDDO
10 ENDDO
11 ENDDO

The following examples enumerate the contents of the
optimization report. In discussing the examples, loops are
referred to by their ID numbers.

Dependencies

If an array or memory recurrence prevented optimization,
this column shows the names of variables in the recurrence,
in the form name@linenumber. If the reference could be to any
memory location, it is in the form *MEM*@linenumber. If the
reference is to a subprogram call, it is in the form
CALL@linenumber.

Optimization

If an optimization was performed on the array in question,
this column contains one of the values shown in Table 9.

Var. Name

Specifies the name of the array being referenced.

162 CONVEX FORTRAN Optimization Guide

Table 9
Optimizations reported in array
table

Examples

At line 8, individual elements C (LOOPINDEX, J) are summed
directly rather than stored in a temporary scalar variable.
Introducing a temporary scalar later assigned to
C(LOOPINDEX, J) would inhibit vectorization. Figure 9 shows
the optimization report generated by compiling the program
EXAMPLE1 at optimization level -02.

4 1 ILOOPI:1 *Dist (2-3) No Strip
4-1 2 ILOOPI:1 FULL VECTOR Inter
5-1 4 J Scalar

4-2 3 ILOOPI:l FULL VECTOR Inter
5-2 5 J scalar
7-2 6 K Scalar

Line Id Iter. Analysis
Nurn. Num. Var.

%fc -02 -or all exanple1.f
Optimization for Procedure EXAMPLE1

Optimizing / Special
Transformation

New
Loops

Dependencies

Reordering
Transformation

Iter.
Var.

Optimi
zation

lLOOPINDEX

Array References for Procedure EXAMPLE1

User Variable
Name

Id
Num.

Appendix D Optimization report 163

Var.
Name.

4-1 2 lLOOPI:1Interchanged to innermost
4-2 3 lLOOPI:1Interchanged to innermost

8 C Sunk
8 C Hoist

12
13 END

ILOOPI:1

Line
Num.

Line
Num.

Footnoted
Iter. Var.

Figure 9
Optimization report for Example 1

•

Loop number 1 is the loop that appears on line 4 of the source. It
iterates over the variable LOOPINDEX. It was distributed and two
new loops, numbers 2 and 3, were created. The optimizaiton
report indicates that loop 1 was not strip mined.

The line number for loop number 2 tells us that it came from the
loop at line 4 of the source (loop number 1), and it is in the first
distributed part of that distribution. Loop 2 is interchanged with
the innermost loop in its nest (see analysis table), loop number 4,
which immediately follows it in the report. Number 4 iterates
over J and runs scalar.

Loop number 3, which was created from the loop at source line 4
(loop number 1), is in the second distributed part of that loop's
distribution. It is interchanged with the innermost loop in the
nest, which is number 6. Note that a blank line preceeds loop 3,
indicating the beginning of a new nest.

Loop number 5 appeared at line 5 in the source and is in the
second distributed part of loop 1. It iterates over Jand runs
scalar.

Loop number 6 appeared at line 7 in the source code and is in
the second distributed part of loop number 1. It also runs scalar.

The analysis table elaborates on the interchanges performed on
loops 2 and 3, both of which were interchanged with the
innermost loops in their respective nests to facilitate
vectorization.

The array table shows that the load of array C, which appears at
line 8, was hoisted from the loop, and that the store of Cwas
sunk.

164 CONVEX FORTRAN Optimization Guide

•

Example 2
Following is an example of other transformations the compiler
performs. (Une numbers are provided as a reference.)

1 SUBROUTINE EXAMPLE2(A,N,ZERO,NEGATE,SUM)

2 REAL A(N), SUM

3 LOGICAL ZERO, NEGATE

4
5 SUM = 0.0
6 00 I = 1, N
7 SUM = SUM + A(I)

8 IF (ZERO) THEN

9 A(I) = 0
10 ELSE IF (NEGATE) THEN
11 A(I) = -A(I)

12 ENDIF

13 IF (I .EQ. 1 .OR. I .EQ. N) THEN

14 A(I) = -1

15 ENDIF

16 ENDOO

17 END

Figure 10 shows the optimization report generated by
compiling the subroutine EXAMPLE2 above for vectorization. The
-c option suppresses loading because no main program is
included. -<is is included to demonstrate how dynamic selection
is denoted in the optimization report.

Appendix D Optimization report 165

166 CONVEXFORTRAN Optimization Guide

Figure 10
Optimization report for Example 2

%£0 -a2 -c -ds exaaple2. f
Optimization for Procedure EXAMPLE2

Reduction

Reduction

Optimizing / Special
Transfonnation

Reduction

(2-3)
(4-5)

(6)

(7-8)

New
Loops

(9)

(10-11)

(12)
(13-14)

Test promoted out of loop on 6 (7)
Test promoted out of loop on 6 (7)
Peeled first iteration of loop on 6 (13)

Reordering
Transfonnation

There is only one loop in this example, and it appears at line 6.
Loops 2 and 3, which are noted under New Loops on loop 1's
line, are the result of promoting tests from the original loop;
loops 4 and 5 are the result of promoting tests from loop 2. Loop
6 is created when loop 4 is peeled. Two loops, 7 and 8, are then
created to facilitate dynamic selection of loop 6. Loop 7 is the

Iter.
Var.

TEST PROMOTED
TEST PROMOTED
TEST REMOVED

Id
Nurn.

14
19
16

8
10
13

Line
Nurn.

6 1 I *Promote
6 2 I *Promote
6 4 I *Peel
6 6 I *DynSel
6 7 I FULL VECTOR

6 8 I Scalar

6 5 I *Peel
6 9 I *DynSel
6 10 I FULL VECTOR

6 11 I Scalar

6 3 I *Peel
6 12 I *Dynsel
6 13 I FULL VECTOR

6 14 I Scalar

Line Col. Test Analysis
Nurn. Nurn. Transfonnation

vector version of loop 6, and loop 8 is the scalar; parallel and
parallel/vector versions were omitted because this example was
compiled at -02.

Loops 3 and 5 were both peeled and the resulting loops were
replicated into scalar and vector versions by dynamic selection.

After all the transformations are completed, six loops (10
numbers 7, 8, 10, 11, 13, and 14) remain in the program. These
remaining loops can be easily spotted under the Reordering
Transfonnation column, as they are the loops that are not
marked with the "*" transformation indicator. Loops marked
with this symbol no longer exist because they are replaced by
the new loops indicated in the New Loops column.

The test table of thisreport gives details of the test promotions
and peelings that are mentioned in the loop table. For brevity,
several of the peeling explanations that appeared at the end of
the report were omitted from Figure 10.

Appendix D Optimization report 167

Bibliography

Aho, Alfred v., Ravi Sethi, and Jeffrey D. Ullman. Compilers:
Principles, Techniques, and Tools. Reading, MA: Addison-Wesley,
1987.

American National Standards Institute. American National
Standard Programming Language FORTRAN. New York, New
York: American National Standards Institute, 1978.

Bentley, Jon Louis. Writing Efficient Programs. Englewood Oiffs,
NJ: Prentice Hall, 1982.

Fischer, Charles N. and Richard J. LeBlanc Jr. Crafting a Compiler.
Menlo Park, CA: Benjamin/Cummings, 1988.

Levesque, John M. and Joel W. Williamson. A Guidebook to
FORTRAN on Supercomputers. San Diego: Academic Press, Inc.,
1989.

Padua, David A, and Michael J. Wolfe, "Advanced Compiler
Optimizations for Supercomputers." Communications of the ACM
(December 1986).

Press, William H., Brian P. Flannery, Saul A. Teukolsky, and
William T. Vetterling. Numerical Recipes: The Art of Scientific
Computing. Cambridge, MA: Cambridge University Press, 1986.

Schofield, C. F. Optimising FORTRAN Programs. England: Ellis
Horwood Limited, 1989.

Sedgewick, Robert. Algorithms in C. Reading, MA: Addison
Wesley, 1990.

Stone, Harold S. High-PerformJ1nce Computer Architecture.
Reading, MA: Addison-Wesley, 1987.

Bibliography 169

Wolfe, Michael Joseph. Optimizing Supercompilers fOT
Supercomputers. Cambridge, MA: The MIT Press, 1989.

170 CONVEX FOKI'RAN Optimization Guide

Glossary

A

•
aliases

Multiple names for a single memory location. A typical alias
arises in a subroutine to which an element in COMMON has been
passed, if that memory location is also referred to within the
subroutine as an element of COMMON. In the following example, Z
is an alias for Y in this invocation of subroutine SUB:

COMMON /DATA/X

CALL SUB(X)

END

SUBROUTINE SUB (Y)

COMMON /DATA/Z

RETUFN

END

Another kind of alias occurs across subroutine calls. In the
following example, B is an alias for C in this invocation of
subroutine SUB:

Glossary 171

172 CONVEX FORTRAN Optimization Guide

B

CALL SUB (A, A)

END

SUBROUTINE SUB(B,C)

EQUIVALENCE statements create explicit aliases. Aliases
complicate dependency analysis and can inhibit program
optimization.

ASAP

Automatic Self-Allocating Processors, a unique architecture
designed by CONVEX. A cornerstone of ASAP is the
communication register, which allows CPUs to seek out and
execute the next piece of work as soon as possible.

bank conflict

An attempt to load two elements concurrently from the same
memory bank. On CONVEX C2OO, C32oo, and C3400 Series
machines, the basic unit of memory banking is a pair of boards
known as an MCM pair and consists of eight 64-bit (or,
equivalently, sixteen 32-bit) memory banks. On CONVEX C3800
Series machines, the basic unit is a single board known as an
NMB (Neptune Memory Board) and consists of sixteen 64-bit
(or, equivalently, thirty-two 32-bit) memory banks. Arrays are
stored in main memory across all available banks.

Loading an array element from a bank renders the bank
unaccessable for a period known as the refresh time. On C3200
and C3400 Series machines this refresh time is 8 clock cycles; on
C3800 Series machines it is less than or equal to 12 clock cycles.

•
c

•

basic block

A linear sequence of statements that ends with a conditional or
unconditional branch. A basic block is the optimization unit
considered at optimization level -00. A subprogram contains at
least one basic block and typically contains many. The following
subroutine is divided into basic blocks:

SUBROUTINE SUB (A, B, N)
REAL A, B (N), TMP

Comment: Begin basic block 1
TMI? = A

IF (A .GE. 0) GOTO 10
Comment: Begin basic block 2

A = -A

10 RETURN
END

balancing

See tree-height reduction.

chaining

See vector chaining.

chime

A chained vector time. The time required to perfonn the
simultaneous instructions of one vector chain. For basic
operations such as add and multiply on the CONVEX C Series
machines, this is equal to the vector length plus a small amount
of overhead.

column-major order

Memory representation of an array such that the columns of an
array are stored contiguously. For example, given a two
dimensional array A (3, 4) I A (3, 1) immediately precedes
A(l,Z) in memory. This is the default storage method for arrays
in FORTRAN.

communication register

A high-speed register used for communication among the
threads of a process. Threads communicate by sending and
receiving data through the communication registers. A

Glossary 173

hardware-maintained lock bit is associated with each
communication register. The lock bit guarantees mutually
exclusive acceSS to the register.

compress

A vector operation that uses the vector-merge register to filter
values in a vector. The operation copies elements from one
vector into another vector only if the bit in the vector-merge
register that corresponds with the index of the vector's element
is set to the same truth suffix value as that of the instruction.

concurrent

In parallel processing, threads that can execute at the same time
are called concurrent threads.

conditional induction variable

Loop induction variables that are not incremented on every
iteration.

constant folding

Replacement of an operation on a constant with the result of the
operation.

constant propagation

Replacement of a variable with a constant. For example, if you
assign X=5, the compiler can replace X with 5 within that basic
block or until a new value is assigned to the variable.

copy propagation

Replacement of a variable with another variable to which it has
been equated. For example, if you assign X=Y, the compiler can
replace later occurrences of X with y if doing so eliminates a load
from memory.

CPU

Central processing unit.

CPU time

The amount of time the CPU requires to execute a program.
Because programs share access to a CPU, the wall-dock time of
a program may not be the same as its CPU time. If a program
can use multiple processors, the CPU time may be greater than
the wall-dock time. (See wall-clock time.)

174 CONVEX FORTRAN Optimization Guide

o

E

•F
G

H

•

critical region

A segment of code that must be executed by only one CPU at a
time.

data dependency

A relationship between two statements, such that one statement
must precede the other to produce the intended result. (See also
loop-carried dependency and loop-independent dependency.)

distributed part

A loop generated by the compiler in the process of loop
distribution.

execution stream

A series of instructions executed by a Cpu.

functional unit

A part of the CPU that performs a set of operations on quantities
stored in registers.

gather

A vector operation that loads values from an array into a vector
register. The operands of this operation come from various
locations in an array.

hoist

An optimization process that moves a load from within a loop to
the basic block preceding the loop.

interleaved memory

Memory that is divided into multiple banks to permit
concurrent memory accesses.

Glossary 175

loop-carried dependency (LCD)

A dependency between two operations executed on different
iterations of a given loop and on the same iteration of all
enclosing loops. A loop carries a dependency from an indexed
assignment to an indexed use if, for some iteration of the loop,
the assignment stores a value that is referred to on a later
iteration of the loop. For example, an LCD from A(I+1) to A(1)
exists in the following loop:

00 I = 1, 100
A(1 + 1) = A(1) + B(1)

ENDOO

An LCD from B (I+1) to B (I) exists in the following loop:

DO I = 1, 100
A(1) = B(1) + C(1)
B(1 + 1) = D(1) * 3.14

ENDOO

loop constant

A constant or expression whose value does not change within
the loop.

loop distribution

The restructuring of a loop nest to create additional innermost
loops and to enhance opportunities for loop interchange. Loop
distribution creates two or more loops, called distributed parts,
isolating code that must run serially from parallelizable or
vectorizable code.

loop-independent dependency (LID)

A dependency between two operations executed on the same
iteration of all enclosing loops such that one operation must
precede the other to produce correct results. For example, an
LID from the use of B (I) to the assignment to B (I) exists in the
following loop:

00 I = 1, 100
A(1) = B(1) + C(1)

B(1) = 0.0
ENDDO

176 CONVEX FORTRAN OptimiZl1tion Guide

•

M

•

An LID from B (100) to B (I) exists in the following loop,
though only on the hundredth iteration:

DO I = 1, 100

A(1) = B(100) + C(1)
B(1) = 0.0

ENDDO

loop induction variable

A variable that changes linearly within the loop, that is, whose
value is incremented by a constant amount. For example, in the
following loop, J and Kare induction variables, but Lis not.

DO I = 1, N

J = J + 2
K=K+N
L = L + I

ENDDO

loop interchange

The reordering of nested loops to increase the granularity of the
parallelizable outer loop, to increase the iteration count of the
vectorizable inner loop, or to achieve the most efficient vector
stride in the inner loop.

loop invariant

See loop constant.

loop invariant computation

An operation that yields the same result on every iteration of a
loop.

mask

See vector mask.

memory bank conflict

See bank conflict.

merge, vector

See.vector merge.

Glossary 177

178 CONVEX FORTRAN Optimization Guide

o

p

R

mutual exclusion

A protocol that prevents access to a given resource by more than
one thread at a time.

oversubscript

An array reference that falls outside declared bounds.

parallel vector loop

A nested loop structure such that the innermost loop is
vectorized and the outer strip-mine loop can run in parallel if a
CPU is available.

parallelization

The act of creating code that enables sections of code to run
simultaneously on multiple CPUs. At optimization level -03, the
CONVEX FORTRAN compiler automatically parallelizes your
program and recognizes compiler directives with which you can
specify parallelization.

pipelining

Grouping register loads together for concurrent execution.

population count

A vector operation that counts the number of bits that are set, or
not set, in the vector-merge register.

process

A collection of one or more execution streams within a single
logical address space; an executable program. A process is made
up of one or more threads.

program unit

A subroutine, function, or main section.

recurrence

A cycle of dependencies among the operations within a loop.
(See also data dependency.)

5

•

•••

re-entrancy

The ability of a program unit to have multiple versions in
existence that may execute in parallel. Each version maintains a
thread-private copy of its local data and a thread-private stack to
store compiler-generated temporary variables.

row-m~)ororder

Memory representation of an array such that the rows of an
array are stored contiguously. For example, given a two
dimensional array A (3,4), A (1,4) immediately precedes
A(2,1) inmemory.

scalar spreading

The substitution of a temporary vector for a scalar.

scatter

A vector operation that stores values from a vector into an array
in memory. The destinations of this operation are various
locations in the array.

sinking

An optimization process that moves a store from within a loop
to the basic block following the loop.

span

The distance between a jump or branch instruction and its target.

stack

Storage automatically allocated on entry to a block of code by
instructions that the compiler generates.

strip length, parallel

The amount by which the induction variable of the inner loop is
advanced on each iteration of the outer loop.

strip length, vector

The number of array elements processed in a given vector
operation.

Glossary 179

180 CONVEX FORTRAN Optimization Guide

T

strip mining

The transformation of a single loop into two nested loops.
CONVEX compilers perform parallel and vector strip-mine
optimizations.

In a parallel strip-mine optimization, the outer loop (the parallel
strip-mine loop) advances the initial value of the inner loop's
induction variable by the parallel strip length. When more than
one processor is detected (or specified with the -ep option), the
parallel strip length is based on the trip count of the loop and
the amount of code in the loop body.

In a vector strip-mine optimization, the inner loop is vectorized,
and the outer loop iterates over blocks of arrays in steps equal to
the vector length of the target machine. When more than one
processor is detected (or specified with the -ep option), the
vector strip length is based on the trip count of the loop and the
amount of code in the loop body.

synchronization

A way to keep two threads from accessing the same critical
region simultaneously. You can synchronize programs using
compiler directives or assembly-language instructions. You do
so, however, at the cost of additional overhead; synchronization
may cause at least one CPU to wait for another.

thread

An independent execution stream that is fetched and executed
by a CPU. One or more threads, each of which can execute on a
different CPU, make up each process. Memory, files, signals, and
other process attributes are generally shared among threads in a
given process, enabling the threads to cooperate in solving the
common problem. Threads are created and terminated by
instructions that can be automatically generated by CONVEX
compilers, inserted by adding compiler directives to source
code, or coded explicitly in assembly-language programs.

thread-private or thread-specific

Data that is accessible by a single thread only (not shared among
the threads constituting a process). Thread-specific data allows
the same virtual address to refer to different physical memory
locations.

v

•

•

tree-height reduction

Expressions are represented internally as trees whose height
corresponds to the depth of the expression. These trees are
optimized by tree-height reduction or balancing. For example,
the height of A+B+C+D+E+F+G+H could be seven:
(((((((A+B) +C) +D) +E) +F) +G) +H). However, the compiler

orders this expression so that more than one addition can occur
at the same time: (((A+B) + (C+D)) + ((E+F) + (G+H))). The
height of this tree is three. Shorter heights mean faster execution.
Tree height reduction occurs only for floating-point expressions.

trip count

The number of times a loop executes.

vector accumulator register M

A vector register that can contain up to 128 64-bit operands
called elements. It is used in high-speed calculations.

vector chaining

The overlapping of vector operations in the CPU. For instance,
in the case of a vector load followed by a vector add, the add
may be started as soon as the first operands are available.

vector mask

A vector operation that restricts the assignments that are
computed in a vector assignment. The assignments are
determined by the bits in the vector-merge register.

vector merge

A vector operation that merges either two vectors or a vector
and a scalar into one vector. The assignments are determined by
the vector-merge register.

vector merge register (~

A vector register that holds the status of element-by-element
array comparisons and controls certain vector operations.

vector spill

A situation in which more vectors are used in a calculation than
can be stored in vector registers. The overflow must be stored
and retrieved, as needed.

Glossary 181

182 CONVEX FORTRAN Optimization Guide

w

vector stride (vs)

The distance in bytes between adjacent array elements. This
figure is used with arrays to load them into vector accumulators
or transfer them to memory from a vector accumulator.

wall-clock time

The time an application requires to complete its processing. Han
application starts running at 1:00 p.m. and finishes at 5:00 a.m.,
its wall-clock time is sixteen hours. See CPU time.

Index

Sy·mbols
% VECIDR entry

in optimization report 159
• (asterisk) entry

in optimization report 159

A
aborts

program 102, 107
accesses

memory 73
accessing arrays 72
actual arguments 91
adjustable arrays 90

•
gebraiC simplification 16

algorithms
parallelism of 3, 62

aliases
defined 171
hidden 98, 101

allocation
of registers 10

alternate entry
routine 90

alterna te exits
loop 69·

American National Standard Programming LAnguage
FORTRAN 102
analysis column

in optimization report 160
in test table 161

analysis table 160
ANSI FORTRAN 77 Standard 11,98, 102
APC (Application Compiler) 4
apparent dependency 52, 63, 105
apparent recurrence 41,104 to 105, 107
Application Compiler 4
arguments

actual 91
a-IARACTER 90
dummy 90 to 91

array storage
oolumn-major 75
row-major 75

array stride
even 75a odd 75

_ array table 161
dependencies 162
line number column 161

optimization column 162
variable name oolumn 162

arrays
accessing 72
adjustable 90
oompression 140
expansion 140
in EQUIVALENCE 51
reversing storage order 131
storage of 72

ASAP (Automatic Self-Allocating Processors) 3
defined 172

ASSIGN statement 19
assigned GOTO statements 40
assignment substitution 14
assignments

elimination of redundant 14, 18
assistance

technical xix
associated documents xviii
asterisk (.) entry

in optimization report 159
Automatic Self-Allocating Processors (ASAP)

defined 172

B
backward loop-carried dependency 41,43 to 44, 53 to 54
balanced tree 11
balancing

defined 173
trees 10

bank conflicts 74 to 77
defined 172

banks
memory 73

basic block 15
defined 173
optimizations 17

basic-block optimization 2
BEGIN_TASKS directive 55, 122
binary search procedure 58
binary vector operators 144
boundary value tests 71
breakpoints

in inlined code 92

Index 183

C
-c option 91, 165
calls

subprogram 51
caution

explained xviii
on NO SIDE EFFECTS 21
start, Sk>P, and iteration values 68
strip mining 31

chained vector time 173
chaining

defined 173
vector 51, 146

CHARACTER data type
accessing 77
arguments 90

chime
defined 173

code
nonstandard 97

code motion 25, 93
column number column

in test table 161
column-major order 72, 75

defined 173
column-major storage of arrays

reversing 131
COMMON block 91, 98
common subexpressions

elimination of 15,22
communication registers 3

defined 173
comparison operators 68
comparisons

vector 147
compilation time 89
compiler directives

BEGlN_TASKS 55, 122
combining 120
IX>_PRIVATE 123
END_TASKS 55,122
FORCE_PARALLEL 52 to 53, 64, 104, 124
FORCE]ARALLEL_EXT 125
FORCE_VECTOR 125
format 119
list 119
MAX_TRIPS 61, 79 to 81, 126
misused 97, 103, 111
NEXT_TASK 55, 122
NO]ARALLEL 126
NO_PEEL 36, 126
NO]ROMOTE_TEST 38,127
NO_RECURRENCE 60,63,104,106,127
NO_SIDE_EFFEClS 20,128
NO_VECTOR 129
PEEL 36,129
PEEL_ALL 129
PREFER]ARALLEL 129
PREFER_PARALLEL_EXT 129

184 CONVEX FOKTRAN Optimization Guide

PREFER_VECTOR 130
PROMOTE35T 38,130
PROMOTE_TrsT_ALL 38,130
PSTRIP 111, 130
ROW_WISE 72, 131
SCALAR 61, SO, 111 to 112, 132
SELECT 81,111 to 112, 133
SYNCH_PARALLEL 54, 111, 134
TASK_PRIVATE 135
tasking 4, 55, 122
UNROLL 50, 82, 135
unsupported 120
VSTRlP 111, 136

compiler limitations 105
compiler options

-c 91,165
cross-mmpUation 114
-cs 90 to 91
-<Is 115
-ep 114
-il 90,117
-is 90 to 91,117
language-compatability 92
loop replication 115
-mi 114
misused 97,103
-no 1 to 2, 7 to 8, 12, 58, 113
-nopeel 36
-noptst 38
-nose 12
-00 1 to 2. 7, 12, 58, 113
-01 1 to 2. 7, 17,29,113
-C2 1,3,29,35, 113
-03 1, 4, 62, 113
optimization 1
optimization level 113
-or 117,157
-pa 58,64
-peel 36,116
-peelall 116
-ptst 37, 116
-ptstall 38, 117
-re 52, 92, 105
-rl 115
-S 8,91
-bn 114
-uo 26 to 27, 93, 117
-ur 115

compiling a new application 57
complicated conditionals 111
complicated iteration tests 68
complicated subscripts 61
compress

defined 174
computed statements 40
concurrent

defined 174
concurrent execution 9
conditional induction variables 39

defined 174

conditional test operation 152
conditional vectorization 109
conditionals 112

complicated 111
embedded 61,69
removing 85
short-circuit evaluation 11 to 12

conflicts
bank 75
bank, defined 172

constant folding 15
defined 174

constant propagation 15, 18, 79
defined 174

constant trip count no
constants

hoating-point 65
strength reduction of 26

contact utility 58
conversion elimination 94
CONVEX Application Compiler 4
CONVEX Consultant 4
CONVEX CXmetrics 4
CONVEX Performance Analyzer 4, 58 to 61, 92e py propagation 22

defined 174
count

trip 32, 61, 72,79, 110
counted loop

defined 65
CPU

defined 174
CPU time 47, 59 to 63

defined 174
Cray POINTER declarations 90
critical region

defined 175
cross-compilation options 114
-cs option 90 to 91
csd debugger 4,57,92
customer support xix
CXdb debugger 57
CXpa performance analyzer 4,8,58 to 61, 63 to 64, 89,92

o
data

thread-private 52
data dependency

defined 40, 175
DATA statement 90
dead code

eliminating 8, 21, 89
debuggers

•

00 57
CXdb 57

. source-level 4
symbolic 4, 57, 92

dependency 40, 103

apparent 52
defined 175
forward 41
hidden 59
loop-carried 41,51,53 to 54
loop-independent 40,43 to 44
parallelizing loops with 134

determined order of execution 108
directives

See compiler directives
Dist entry

in optimization report 159
distnbuted parts 85, 87

defined 175
distribution

loop 31,48, 80, 85, 87
DOloops 66
DO WHILE loops

vectorizing 68
DO]RIVATE directive 123
documentation

ordering xviii
dot product 147
DOUBLE PRECISION data type

effect of 65, 103
-ds option 115
dummy arguments 89 to 91, 98
dynamic random access memory 73
dynamic selection 111,133

in optimization report 165
using -ds 115

DynSel entry
in optimization report 159

E
elimination

of common sUbexpressions 15, 22
of dead code 21
of function assignments 20
of redundant uses 15
of type conversions 94

embedded conditionals 61, 69, 85, 87
END_TASKS directive 55,122
entries

multiple routine 40, 51, 90
-ep option 114
EQUIVALENCE statement 40,51
equivalent expressions 102
erroneous code 97
error message

overflow 16
evaluation order 107
even array stride 75
execution stream

defined 175
exits

multiple loop 69
multiple routine 40, 51

Index 185

expected number of processors
specifying 114

expressions
equivalent 93, 102

F
.fil file 90 to 91, 117

creating 117
floating-point

imprecision 27,59,97,102 to 103
operations 65
roundoff 58, 63
variables and constants 65

folding
constant 18, 174
of constants 15, 174

footnotes
in optimization report 161

FORCE]ARALLEL directive 52 to 53, 64, 104, 124
FORCE]ARALLEL_EXT directive 125
FORCE_VECTOR directive 125
FORTRAN Standard

ANSI 102
forward dependency 41,53 to 54, 104
FULL VECIDR entry

in optimization report 159
function calls 51
functional units 8,147

defined 175
functions

in trinsic 45, 92

G
gather 153

defined 175
global optimization 2

scope 89

H
half-word data

accessing 77
hand-coded loops 71
hardware

vector 139
hidden aliases 98,100 to 101
hidden dependency 59
Hoist entry

in optimization report 162
hoisting 21, 34, 51

defined 21,175

186 CONVEX FORTRAN Optimization Guide

IF tests
embedded 86
short circuiting 12
vectorizing 69

IF-OO interchange 37 to 38
IF-OO optimization options 115
IF-DO optimizations 34
IF-ElSE construct 112
-il option 90, 117
imprecision

floating-point 59, 102
indirect array addressing 153
induction variables 26,39,66,71,94,109 to 110

conditional 39
replacement 109

inline substitution 89, 117
and nesting 89
recursion issues 89

inlining
using -il 117

instruction span
defined 179

instructions
scheduling 8,12
span-dependent 9

INTEGER data type
operations 65

INTEGER"2 data type
accessing 77

Inter entry
in optimization report 159

interation count 72
interchange

IF-OO 37 to 38
loop 32,34, 47, SO,72, 85

interleaved memory 74
intermediate language (.fil) file 90
interprocedural optimization 4
intrinsic functions 45, 92
invalid subscripts 102
invariant expressions 93
-is option 90 to 91, 117
iterating by zero 107
iteration count 61,65,72, 79 to 80,111
itera tion tests

complicated 68
iteration value 65, 68, IJ7
iteration variables 67, 107

in optimization report 158,160

J
jumps

span-dependent 9

L
language-compatibilityoptions 92
LCD (loop-carried dependency)

defined 176
leading index

odd 76
LID (loop-independent dependency)

defined 176
limitations

of compiler 105
limits of optimization 97
line number column

in test table 161
line numbers

in optimization report 157
load operation

hoisting 21, 33, 51
loading

system 62
logic errors 57 to 58, 60, 63
loop constants

defined 176
loop distribution 31,48,80,87

Ja:!efined 176
Win optimization report 164

loop exits
multiple 69

loop ID number
in optimization report 158 to 160

loop induction variable
defined 177

loop interchange 32 to 33, 47, SO, 72, 85
defined 177
in optimization report 164

loop invariant
defined 177

loop invariant computation
defined 177

loop limit value 110
loop peeling 35, 129

disabling 116
enabling 116
in optimization report 166
preventing 126

loop replication 117
using -rl 115

loop start value 109
loop stride 109 to 110
loop table 157
loop termination test 110
loop unrolling

using -ur 115
loop-carried dependency (LCD) 40 lo 41, 43 to 44, 51, 53
to 54,103

backward 41,43,53
"forward 41,54
W>op-independent dependency (LID) 40, 43 to 44

loop-replication options 115

loops
00 66
OOWHILE 66
hand-coded 71

M
machine-dependent optimizations 8, 12

scalar 2,7
machine-independent scalar optimizations 2, 7
MAIN program 90
manual optimization 79
manually unrolling 67
masks

vector operations under 148
matching patterns 38
mathematical equivalence 102
matrix multiplication 32,48,162
MAX_TRIPS directive 61,79,81, 126

example 80
maximum

strip mine lengths 136
maximum trip count 110

equation 110
MCM memory 172
memory access 72

partial 77
memory banks 73

conflict 77, 172
memory interleave

defined 73, 175
specifying 114

memory refresh time 172
memory requirements 89
message

overflow error 16
-mi option 114
misused directives 59, 97, 103, 111
mixed-mode expressions 65
moving code 25, 93
multiple routine entries 40, 51
multiple routine exits 51
multiprocessing 3
mutual exclusion

defined 178

N
NAMELIST statement 90
nesting of inlined subprograms 89
new loops

in loop table 159
NEXT_TASK directive 55,122
NMB memory 172
-no option 1 lo 2, 7 to 8, 12,58,113
NO_PARALLEL directive 126
NO_PEELdirective 36,126

Index 187

NO_PROMOTE_ALL directive 127
NO]ROMOTE_TEST directive 38
NO_RECURRENCE directive 60,63,104,106,127
NO_SIDE_EFFECIS directive 20, 128
NO_VEClOR directive 129
nondeterminism

parallel 51, 108
nonstandard code 97
-nopeel option 36, 116
-noptst option 38, 116
-nose option 12
notational conventions xvii
note

explained xviii

o
-00 option 1 to 2, 7, 12, 58, 113
-01option 1 to 2, 7,17,29,113

and invariant code 101
-02 option 1,3,29,35, 113
-03 option 1, 4, 62, 113

and strip mining 111
odd array stride 75
odd leading index 76
operations

floating point 65
INTEGER 65

optimization
at-01 17
basic-block 17
basics of 1, 3, 5
global 2, 17
IF-OO 34, 115
level options 113
limitsof 97
local level 2
machine-dependent 2, 7, 12, 17
machine-independent 2,7,12
manual 79
-no option 2
options 1
parallel 3
potentially unsafe 117
scalar 7,9,11,13,15,17,19,21,23,25,27
strategy 57
unsafe 26 to 27
vector 3

optimization report 157, 165
% VEClOR entry 159
• entry 159
analysis oolumn 160
analysis table 160
array table 161
oontents 157
Dist entry 159
DynSel entry 159
examples 162
FULL VECIOR entry 159

188 CONVEX FORTRAN Optimization Guide

Hoist entry 162
IDnumbercolumn 158,160
Inter entry 159
iteration variable column 158, 160
line number column 157
loop table 157
new loops column 159
No Strip entry 160
optimizing/special transformations column 159
PARA/VEcroR entry 159
PARALLELentry 159
Pattern entry 160
Peel entry 159
Promote entry 159
Reduction entry 160
Removed entry 160
reordering transformation oolumn 158
Scalar entry 159
Sink entry 162
Synch entry 160
test table 160
Unroll entry 160
variable name footnotes 161

optimizing!special transformations
in optimization report 159

OPTIONS statement 59, 62
-or option 117,157
order of evaluation 107
ordering documentation xviii
organization

of this book xvi
overflow 93

error message 16
overhead

strip-mine 79
oversubsaipting 102

defined. 178

p
-pa option 58, 64
paired hoist and sink 33
PARA/VEClOR entry

in optimization report 159
parallel calls 105
PARALLEL entry

in optimization report 159
parallel optimization 3
parallel processing 3
parallel strip length

defined. 179
paral1el strIp-mine

defined 180
parallel vector loop 53

defined. 178
parallelization

defined 178
forcing in loops 124
Inhibitors 51

preventing 132
preventing mloops 126
strip mining 130
synchronizing 134

parentheses
useof 107

partial memory access 77
pattern matching 38
PEEL directive 36, 129
Peclentry

In optimization report 159
-peel option 36, 116
PEEL_ALL directive 36, 129
-peelall option 116
peeling

loop 35, 126, 129
performance analyzer 4, 59 to 61

CXpa 58 to 61, 63 to 64, 89
pipelining 10, 147

defined 178
population count 140

defined 178
porting an application 57
potentially unsafe optimizations 117

~ _ precision
.. conversion of 65

PREFER_PARALLEL directive 129
PREFER]ARALLEL_EXT directive 129
PREFER_VEClOR directive 130
premature loop termination 110
private variables

DO]RIVATE 123
TASK_PRIVATE 135

process
defined 178
virtual time 63

processor functional units 8,147
processors

specifying expected number 114
profiler 8, 60, 63

in CONVEX Consultant 58
program unit

defined 2, 178
optimization 2

programming constructs 65
programs

multithreaded 3
Promote entry

in optimization report 159
PROMOTE_TEST directive 38, 130
PROMOTE_TEST_ALLdirective 38,130
promoting arrays 83
promotion

test 37
propagating constants 15, 18

•

propagating copies 22
PSTRIPdlrective 111,130
-ptst option 37, 116
-ptstall option 38, 117

R
random-access memory (RAM) 73
-re option 52,92.105
re-entrancy 52, 92, 105

defined 179
read requests 75
REAL data type

effect of 65, 103
REAL variables

eHectof 27
REAL·16 data type

eHectof 65
recurrence 40 to 42, 44, 53, 103, 108

apparent 41,44,107
defined 40,178
disregarding 127

recursion 40
with inlining 89

reduction
strength 26, 93
tree height 10 to 11
vector 45, 103, 105, 145

redundant loads
elimination of 14

redundant-assignment elimination 14, 18
redundant-test elimination 34 to 35
redundant-use elimination 15
refresh time 1n
register allocation 10
registers

communication 3
reordering transformation

in loop table 158
replication

ofloops 115, 117
requests

data 73
read 75

-rl option 115
roundoff

floating-point 58, 63
roundoff error 93, 97, 103
row-major order 75

defined 179
row-major storage of arrays

forcing 131
ROW_WISEdirective 72,131

cautions 131
runtime selection 111

S
-S option 8
SAVE statement 90, 92
SCALAR directive 61, 111 to 112, 132

example 80
Scalar entry

in optimization report 159

Index 189

scalar instruction
defined 2,7

scalar loop execution
forcing 132

scalar optimization 7,9,11,13,15,17,19,21,23,25,27
basics of 2
machine-dependent 2
machine-independent 2

scalar registers
S 145

scalar spreading 42
defined 179

scalar value
defined 2,7

scatter 153
defined 179

scheduling
instructions 8, 12

scope
of this book xv

SELECf directive 111 to 112, 133
example 81

selection
dynamic 112

short-circuit evaluation of conditionals 11 to 12
short-form instructions 9

at -no level 9
simplification

algebraic 16
trigonometric 16

Sink entry
in optimization report 162

sinking 21,51
defined 21,33, 179

software metrics 4
span

defined 179
span-dependent instructions 9
sparse vector manipulation 140
stack

and re-entrancy 92
defined 179

start value 68
loop 109

statement function 90
statements

ASSIGN 19
DATA 90
EQUIVALENCE 40,51
NAMELIST 90
OPTIONS 62
SAVE 90,92

stop value 66, 68, 71
store operation

sinking 21, 33, 51
strategy

optimization 57
strength reduction 93

arithmetic 26
at-01 26

190 CONVEX FORTRAN Optimization Guide

of induction variables 26
sbide

array 75
even 75
loop 109 to 110

strip length
defined 179
determining 65

strip mines
defined 180
unnecessary 61,79

strip mining 30,47,49,53 to 54
and vectorization 136
defined 29, 180
maximum strip mine lengths 136
parallel 130 to 131
vector 136

subexpressions
elimination of 15,22

subscripts
invalid 102

substitution
inline 89
of assignments 14

support
technical xix

sychronizing parallel loop execution 134
symbolic debugger 57
SYNOI]ARALLEL directive 54,111,134
synchronization

defined 180
synchronization code 47

defined 54

T
table

array 161
target machine option 114
TASK_PRIVATE directive 135
tasking directives 4, 55, 122
technical assistance xix
test elimination

redundant 34
test promotion 37,130

disabling 116
enabling 116 to 117
in optimization report 167
preventing 127

test replacement 109 to 110
test table 160

analysis column 161
column number column 161
line number column 161
test transformation column 161

test transformation column
In test table 161

thread
defined 3,47,180

•

•

in parallel programs 3
thread-private

defined 180
thread-private data 52
thread-specific

defined 180
time to solution 47
-tID option 114
transformations 30
tree

balanced 11
balancing 10

tree-height reduction 10 to 11
defined 181

trip count 61,72,80, 109 to 111, 181
constant 110
variable 110

trip-count variable 79
type conversions 65

eliminating 93 to 94
of constants 16

type statement 90
typographic conventions xvii

U
unbalanced tree 10
UNROLL directive SO, 115, 135

example 82
unrolling

loop 82,115
manually 67

unsafe optimizations 26
potential 27

-uo option 26 to 27, 93, 117
example 94

-ur option 115

v
V register 139
value

iteration 107
start 68

variables
in EQUIVALENCE 40, 51
induction 26, 39, 94
of inlined subprograms 92
private 123, 135
static 92
trip-count 79

VECUB 64
vector

accumulator (V) register 181
chained time 173

vector addition operator 144
vector chaining 51, 146 .

defined 181
vector clipping 140
vector comparisons 147
vector compress 174
vector division operator 144
% VECIOR entry

in optimization report 159
vector hardware 139
vector length 32, 61, 111

optimal 49
vector load instruction 141
vector mask

defined 181
operations 150,152

vector merge
defined 181

vector merge operation 150
compress 150
expand 150

vector multiplication operator 144
vector operations

examples 152
under mask 148

vector operators
binary 144

vector reductions 103, 145
vector registers 139

as accumulators 33
vector accumulator (V) 139 to 141, 143, 146
vector length (VL) 139,141 to 144, 152
vector merge (VM) 140,147, 150,152,181
vector stride (VS) 140 to 141, 143, 182

vector spill
defined 181

vector store 143
vector strip length

defined 179
vector strip-mine 136

defined 180
vector subtraction operator 144
vector-merge (VM) register 148
vectorization 3

conditional 109
forcing in loops 125
inhibitors 40
preventing 132
preventing in loops 129
strip mining 136

VL register 139
VM register 140
VS register 140
VSTRlPdirective 111,136

Index 191

W
wall-clock time

defined 182
WHILE test

romplicated 68

Z
zero stride 107

192 CONVEX FOKIRAN OptimiZiltion Guide

