CONTROL QATA
CONTROL DATA’
CYBER 70 MODEL 72
COMPUTER SYSTEM

‘_/

M

SYSTEM DESCRIPTION AND
PROGRAMMING INFORMATION
REFERENCE MANUAL VOLUME 1

REVISION RECORD

REVISION DESCRIPTION
A Manual released,
(2-22-71)
B Manual revised; includes Engineering Change Order 27510, publications change only.
(3-6-71) Addition of Interlock Register information and various technical changes.
C Manual revised; includes Engineering Change Order 27834, publications change only.
(7-7-71) Addition of timing information minor technical changes. This edition obsoletes all
previous editions.
D Manual revised; Engineering Change Order 29919, publication change only. Pages 1-v, 1-10, 2-9,
(11-16-71) 2-21,2-24,2-29, 2-37, and Comment Sheet revised,
E Manual revised; Engineering Change Order 31589. Pages 1-v,1-3,2-7,2-8,2-12.2-18,2-19,
(4-27-72) 2-20 are revised. Pages 2- 9.0 and 2- 9.1 are added,

Publication No,

60347000

1971, 1972

by Zlentrol Data Corporation

PREFACE

The CONTROL DATA® {'YBER 70 series reference manuals are published in a series of

volurr es. This manual is volume 1 of the series.

This volume contains the Systems Description and general programming information.
Volume 2, publication number 60347300, contains detailed descriptions of the central pro-

cessor and the peripheral processor instructions.

Infor-nation about the BCS (Extended Tlnra Storage) i

number 60347100,

¢ in volume 3 of the series, pukdicaticn

The publications listed are available through the nearest Control Data Corporation sales

office.

60347000 C 1-1iii

CONTENTS

S S A I T T W M S ST

I, = /STEM DESCRIPTION Reference Address 2-
PNV o
Intros iction 1-1 Exit Mode <
Syster Characteristics 1-3 Floating Point Arithmetic 2-190
‘ e - Fixed Point Arithmefic 2-310
Contral Processor
Craracteristices 1-3 Compare/Move Arithmetic 2-i1
Poripheral Processor Peripheral Processor Programming 222
Cimreoteristics 1-3 Instruction Formats P
¢ roat Memory Characteristics 1-3 Ve T -
Address Modes ¢-z
Funzt onul Descriptions t-4 Access to Central Memory 4¢3
(entrn SOCeSs - .
Central Processor -4 Input and Qutput 2~25
“rinneral Processors 1-8 Interlock Register 955
Central Memory -9 Manual Control 2-31
Dead Start Panel 2-31
2. PACLRAMMING INFORMATION . o o
Console 2-33
Central Processor Programming 2-1 System Interrupt Z-34
Instruaction Formats 2-1 Hardware Provisions for
Operating Registers 2~ Tnterrupt 234
Program Address Register 2-4 liming Information 2-35
. o - e ame T 3 DL
Iixchange Jump -5 Central Processor Timing 2-3¢
PPeripheral Processor Timing 2-346
Move, Compare Arithmetic Timing 2-44
1-1 MODEL 72-YZ Mainframe 1-2 2-3 Exchange Jump Package 2-5
1-2 Memory Map 1-11 2-4 Detecting and Handling Central
2y el ~ o -
2-2 Central Processor Operating Processor Stops 2-11
Registers 2-3
2-1 Exit Mode: Address Out of 2~-3 Indefinite Forms 2-14
Range 2-9 2-4 Overflow and Underflow
2-1.1Program Mode: Address Out Conditions 2-117
of Range 2-9.085_5 Central Processor Instruction
2-1.2 Monitor Mode: Address Out Execution Times 2-36
of Range 2-9.1 2-6 Peripheral Processor Instruc-
2-2 Range of Permissible Exponents 2-12 tion Exé&tution Times 2-38
1-v

60347000 E

SYSTEM DESCRIPTION %

h

INTRODUCTION

The CONTROL DATA® CYBER 70 MODEL 72-YZ Computer Systems consist of a mainframe
and a flexible assortment of peripheral and control equipment, A system usually will have
a control console and input/output devices such as stations, card readers, magnetic tape
drives, mass storage units and printers. Extended Core Storage (ECS) offered in a variety
of sizes may be used to augment the system,

The mainframe contains 10, 14, 17, or 20 peripheral processors (PPU's) and the data
channels necessary to communicate with the peripheral equipment. A central memory (CY),
a central processor unit (CPU), with 24 operating registers per arithmetic unit, (one or two)
and the attendant control logic are the major components on the mainframe. Optional couplers
or controllers may be in the mainframe on some systems. TFigure 1-1 shows the mainframe

and some of the optional equipment.

The contents of this manual are concerned with the basic system without attempting to
describe or give programming information for the peripheral equipment, The peripheral

equipment and their controllers are covered in separate manuals.

The system model numbers are assigned as follows:

MODEL72-Y2Z

—
System Model Code for number of Code for the size
Central Processors of the Central
in the system. (either Memory*
1 or 2)

*CENTRAL MEMORY CODES

‘ SIZE
CODE (60- Bit Words)
2 32K
3 49K
4 65K
6 98K
8 131K

60347000 C 1-1

—

dweJyule]N ZXA-gL TAAOW "1-1 9andig
- ————— o e e —_—— . ———— = —— — ———————
|
|
INVYYI NIVYN |
(WNOLLIO) (TWNOLLJO |
uwn 43151939 I
) L 30 LIW 14vH3d0| |
a314INn vz 2907 | W3LYIANOD
) had na VINNYHD
I ndd 3IAOW/ HOV3 “ viva
I4VIWOD e 39VHOLS Wb _ -
¥O
»
- %86 %G9 a3sn 03sn
2 HO 12 Y3LUIANOD
LIND < X6b ‘%2E 1 INNVHO
SH3LSIO 0zyo2l ‘g1t viva
IILINHLY ¥3ls|
03141 AHOWIW pitol STINNVHO
4 ONILVH3HO VHINTS o/1
0 nNdd v2 ¥314N09 SHOSS3IO0Hd ‘
0 ndd IVHIHGIId 1
§93 “ 3705N02
- —— == 3
1
0002 |
I ¢)
b {000rs00s "
I [ooszwsa Y31 10HLNOD Hivd '
]
| SHNYE $93 viva _
| $23 nLnaisio)
[(
} 1
[J

(AYNGIL1d0) WILSAS 39VHOLS 340D Q3GN3ILX3

60347000 C

SYSTEM CHARACTERISTICS

CENTRAL PROCESSOR CHARACTERISTICS

60-bit worda length

Computation in floating point and fixed point, single and double precision
24 operating registers per central processor

Memory transfer rate of up to one word each 100 nsec

Dual Central Processor configuration option

PERIPHERAL PROCESSOR CHARACTERISTICS

12-bit word length
Computation in fixed point
Time-shared access to central memory

Internal memory of 4, 096 12-bit words
10, 14, 17, 20processor configurations available

Inter-processor communication with an Interlock Register

CENTRAL MEMORY CHARACTERISTICS

Capacity of 32, 768 to 131,072 60-bit words

Independent bank construction, to allow separate access to each 4K bank of memory

(called phasing)

Transfer rate up to 1 word each 100 nsec in phased operation

60347000 E 1-3

FUNCTIONAL DESCRIPTIONS

CENTRAL PROCESSOR

I'he central processor is an arithmetic processor which communicates only with central

It is isolated from the peripheral processors and is thus free to carry on
It consists (functionally) of an

memory.
computation unencumbered by input/output requirements,
arithmetic unit and a control unit. The arithmetic unit contains all logic necessary to

execute the arithmetic, manipulative and logical operations. 'The control unit directs the
arithmetic operations and provides the interface between the arithmetic unit and central
memory. The control unit also performs instruction retrieving, address preparation,

memory protection, and data retrieving and storing,

PROGRAM/HARDWARE RELATIONSHIPS

Programs for the central processor are held in central memory. A program is started
with an Exchange Jump instruction from a peripheral processor. The Exchange Jump
instruction specifies the location in central memory of the central processor program,

specifies the mode of exit (normal or error) for the program, and sets initial quantities in

the operating registers.
OPERATING REGISTERS

Twenty-four operating registers are provided to reduce the need for memory references:

¢ 8 address registers, 18 bits in length
e 8 increment registers, 18 bits in length

e 8 operand registers, 60 bits in length
PROGRAM ITANDLING

Programs are written for the central processor in a conventional manner, specifying a
sequence of arithmetic and control operations. Each instruction in a program is brought

up in its turn from one of the instruction registers. These registers are filled from

central memory,

60347000 C

1-4

THE CENTRAL EXCHANGE JUMP

The exchange jump can be performed unconditionally (regardless of the state of the monitor
flag) by the central processor. If the monitor flag is clear the jump is to the Monitc r Address
in the Exchange Jump Package, or if the flag is set, the starting address is formed oy

adding Bj to K,

The Central Exchange Jump causes the contents of the operating and control registers to be
moved into storage. The vacated registers are then loaded with the exchange jump infor-
mation from central memory. This permits a new program to be started by the cen:iral
processor and it maintains the information needed to resume the program which was in the

operating and control registers.

60347000 C 1-5

PERIPHERAL PROCESSORS

The peripheral processors are identical. They operate independently and simultaneously
as stored-program computers, Many programs thus may be running at one time or a
combination of processors can be involved in one problem which may require a variety of

input/output tasks as well as use of the central memory and the central processor(s).

The peripheral processors act as system control computers and input/output processors.
This permits the central processor to continue computation while the peripheral processors

do the slower input/output and supervisory operations.

Fach processor has a 12-bit, 4096 word random-access memory (independent of central

memory) with a cycle time of 1000 ns. Execution time of processor instructions is dependent

on memory cycle time,

PPUT/OUTPUT

All processors communicate with external equipment and each other via the independent,
Lidirectional 1/O channels. The number of channels depends on the number of peripheral
processors in the system. All channels are 12-bit (plus control) and each may be connected
to one or more external devices, Only one external equipment can utilize a channel at one
tirne, but all channels can be simultaneously active, Data is transferred into or out of the
system in 12-bit words; each channel has a single register which holds the data word being
srunsferred in or out. Each channel operates at a maximum rate of one word per micro-

second,

i1aia flows between a peripheral processor memory and the external device in blocks of
words (a block may be as small as one word). A single word may be transferred between

an external device and the A register of peripheral processor,

Tie I/0) instructions direct all activity with external equipment. These instructions
determine the status of, and select an external device on any channel and transfer data to
or from the selected device, Two channel conditions are made available to all processors
ssoan aild to orderly use of channels,
I'ach channel has an active/inactive flag to signal that it has been selected for use
and is busy with an external device.

¢ Ffach channel has a full/empty flag to signal that a word (function or data) is

available in the register associated with the channel.

60347000 C

Eit, er state of both flags can be sensed. In general, an I/O operation involves the follow-

ing steps:
1) Determine channel inactive
2) Determine equipment ready
3) Select equipment
4) Activate channel
5) Input/Output data

6) Disconnect channel

One peripheral processor may communicate with any another over any channel which has
beer selected for output by one and for input by the other. A common channel can be
reserved for interprocessor communication and for preservation of order by keeping track

of equipment and channel status.

REALTIME CLOCK

A rezl-time clock reading is available on channel 148 which is not counted as a regular
channel. The clock period is 4096 major cycles. The clock starts with power on and runs
continuously. It cannot be preset or altered. The clock may be used to determine program

running time or other functions such as time-of-day, as required.

CENTRAL MEMORY COMMUNICATIONS

Each processor exchanges data with central memory in blocks of words. Five successive
12-bit processor words are assembled into a 60-bit word and sent to central memory for a
Write operation. A 80-bit central memory word is disassembled into five 12-bit words and
sent to successive locations in a processor memory for a Read operation. A set of assembly
(write) and disassembly (read) paths to central memory are shared by up to 10 peripheral
processors. Up to four processors may be writing in central memory while another four are
simultaneously reading from central memory. Systems with more than 10 peripheral pro-

cessors, utilize an additional set of read and write paths.

PERIPHERAL PROCESSOR SYSTEM RELATIONSHIPS

The peripheral processors generally are not used to solve complex arithmetic and logical
problems. Usually they are used to perform I/0 operations for running central processor
brograms and for organizing data (operands, addresses, constants, program length, relative

starting address, exit mode), to store in central memory,

60347000 C 1-7

THE EXCHANGE JUMP

An Exchange Jump instruction starts (or interrupts) the central processor and provides the
central processor with the starting address of a problem stored in central memory. The
central processor, at the next convenient breakpoint, then exchanges the contents of its A,
B, and X registers, its program address, relative starting address, length of program,
Exit mode and Extended Core Storage parameters with the stored information for the new
program. A later Exchange Jump would be needed to call for a return to the incomplete

interrupted program,

There are three types of peripheral processor initiated exchange jumps. The unconditional
jump (260 code) transmits an absolute address from the initiating peripheral processor A
register to the central memory. The Monitor Exchange Jump (261) code causes a jump

only if the monitor flag is clear. The starting address is transmitted from the peripheral
processor A register. The third type of peripheral processor jump is the Monitor Exchange
Jump to MA (262 code). This code causes a jump to the Monitor Address if the monitor

flag is clear.

1-8 60347000 C

INTERLOCK REGISTER AND ACCESS CHANNEL

This is a 64~ or 128-bit register with one or two special access channels. Each access
channel accommodates up to 10 peripheral processors so if the system has more than 1(, a
second access channel is utilized. The interlock register provides a means for the peripheral
precessors to communicate with each other without the necessity for making central memory
reterences. The peripheral processors can perform set, clear, test, and read operaticns

on the interlock register.

The access channel has a 12-bit input register and a 12-bit output register. The channel
assumes a Full status whenever one peripheral processor does an output (to prevent any
oth2r peripheral processor from interrupting). The Full status is cleared only by the cen-
cerned peripheral processor doing an input. The access channel is designated as channel 15

and is not counted as a regular channel,

CENTRAL MEMORY

Central memory is a core memory with a capacity of 32K, 49K, 65K, 98K, or 131K 60-bit
words in 8, 12, 16, 24 or 32 banks of 4096 words each. The banks are logically independent
and may be phased into operation at 100 nsec intervals. (32K and 49K memories pause 200
nsec after every eight words.) The central memory address and data control merchanisms
permit a word to move to or from central memory every 100 nsec. Addresses written or
compiled in conventional manner, reference consecutive banks and thus make efficient use

of the bank phasing technique.
ADDRESS FORMAT

The location of each word in central memory is identified by an assigned address, which
consists of 18 bits. Address formats are shown below for 8-bank (32K), 12-bank (49K),
16-bank (65K), 24-bank (98K), and 32-bank (131K) systems. Within the address format, the
bank portion specifies one of 8, 12, 16, 24 or 32 banks; the 12-bit address defines one of

the 4096 separate locations within the specified bank.

60347000 C . 1-9

% ADDRESS 1”"51 8-Bank (32K) Format

17 1514 32 0
*%1 l ADDRESS lw?] 12-Bank (49K) Format
7716 151413 32 0
2 ADDRESS [eank] 16-Bank (65K) Format
71618 FES
*ﬁ i] ADDRESS I BANKJ 24-Bank (98K) Format
17 161514 %3 0
% ADDRESS] BANK | 32-Bank (131K) Format
716 a4 0

ACCESS

References to central memory from all areas of the system (central processor and peripheral
processors) and extended core storage go to a common memory control and are issued to
central memory. The control accepts addresses from the various sources under a priority

system and at a maximum rate of one address every minor cycle.

An address is sent to all memory banks. The correct bank, if free accepts (the bank ignores
the address if busy processing a previous address), the address and indicates this to the l
memory control, The associated data word is then sent to or stored from a central data

distributor., The memory control issues addresses at a maximum rate of one every 100 nsec.

The memory control saves, in a hopper mechanism, each address that it sends to central
memory and then reissues it (and again saves it) under priority control in the event that it

is not accepted because of bank conflict. The address issue-save process repeats until the
address is accepted, at which time the address is dropped from the hopper and the read or
store data word is distributed. A fixed time lapse from address-issue to the memory-accept

synchronizes the action taken.

The previously unaccepted address has highest priority among addresses to central memory.
The central processor and peripheral processors (all share a common path to the memory

control) follow in priority.

A data distributor, which is common to all processors, handles all data words to and from
central memory (up to 10 peripheral processors share each read path and write path to the

distributor).

*One bit of the bank portion is supplied by address bit 215 or 214 (49K) or 21

depending on the Section/Chassis configuration.

6, 215 (ggK),

1-10 60347000 D

Each zroup of four banks communicates with the distributor on separate 60-bit read and
write paths, but only one word moves on the data paths at one time. However, words can
move at 100 nsec intervals between the distributor and central memory or distributor and

address-sender,

Data words and addresses are correlated by control information tags entered in the memo.y
control with the address. The tags identify the address sender, origin/destination of data,
and whether the address is a Read Next Instruction, Write, Exchange Jump address, Central

Processor identification, peripheral processor identification, or CMU identification,

MEMORY PROTECTION

All central processor references to central memory for new instructions, or for read and
store data, are made relative to the Reference Address. The Reference Address defines
the lower limit of a central memory program. Changes to the Reference Address permit

easy relocation of programs in central memory,
Durirg an Exchange Jump, an 18-bit Reference Address and an 18-bit Field Length (parts
of the Exchange Jump package) are loaded into their respective registers to define the

central memory limits of the program initiated by the Exchange Jump.

The relationship between absolute memory address, relative memory address, Reference

Address (RA), and Field Length (FL) is indicated in Figure 1-2,

MEMORY MaAP

000 000
FIRST LOCATION
IN PROGRAM AREA
ABSOLUTE RELATIVE
MEMORY MEMORY RA
ADDRESS ADDRESS
RA P=0 SN ‘—*—
RA+ P P<FL FL PROGRAM AREA
RA +FL PaFL AR li
SOME ARBITRARY
M.\M\AJ LOCATION IN
PROGRAM AREA
377 777

LAST LOCATION +1
IN PROGRAM AREA

Figure 1-2. Memory Map

60347000 C 1-11

The following relationships must be true if the program is to operate within its bounds:

RA < (RA + P) < (RA + FL) (Absolute Memory Addresses), or
0 < P<FL (Relative Memory Addresses)

NOTE

1) FL is the number of 60-bit words in the program,
It is not an address,

2) To avoid possible "artifical'’ range faults, instruc-
tions should not be stored near the upper limit
address of the Field Length. For example, using
absolute address [(RA + FL) - 1] for an instruction
produces a range fault when the (look-ahead) Read
Next Instruction occurs to (RA + FL). Data should
always be stored in addresses near or approaching
absolute location (RA + F1.), rather than instructions.

An optional exit condition (EM in the Exchange Jump package) allows the central processor

to stop on a memory reference outside the limits expressed above.

1-12 60347000 C

e

PROGRAMMING INFORMATION

“

CENTRAL PROCESSOR PROGRAMMING

Central processor program instructions are stored in central memory. Each 60-bit mernory
location may hold four 15-bit instructions, two 30-bit instructions or a combination of 15

and 30-bit instructions.

In dual central processor systems, the two processors are programmed identically but

seperately. The two processors share central memory and the compare/move logic,

Each instruction is sent in turn to a series of instruction registers for interpretation and
testing and is then issued to the arithmetic unit for execution. The arithmetic unit obtains

the instruction operands from, and stores results in, the 24 operating registers.

INSTRUCTION FORMATS

Groups of bits in an instruction are identified by the letters f, m, i, Jj, k, and K as shown
in Figure 2-1. All letters represent octal digits except K, which represents an 18-bit
constant. The f and m digits are the operation code and identify the type of instruction,

In a few instructions the i designator becomes a part of the operation code.

In most 15-bit instructions, the i, J, and k digits each specify one of the eight operating
registers where operands are found and where the results of the operation are to be stored,

In other 15-bit instructions, the j and k digits provide a 6-bit shift count.
In 30-bit instructions, the i and Jj digits each specify one of the eight operating registers

where one operand is found and where the result is to be stored, and K is taken directly as

am 18-bit second operand,

60347000 C 2-1

NOTE

Any 30-bit instruction with its fmij portion packed
in the lower-order 15 bits of an instruction word
will be executed as a STOP instruction or an Error
Exit and jump to MA.

INSTAUCTION FORMATS

INSTRUCTION COMBINATIONS
IN CENTRAL MEMORY

(= [[5 [® Jeoers el
39 [« REG.
% [®[®] wor &
) st OPERAND
"] % %] ree hor s
2nd OPERAND
REG L1 OF 8)
(s =] %
S0 T % 3 i ;
EBENENE I8 |30 mrs
b2 D ——) [
OPERATION
CODE
RESULT 2 nd OPERAND
REG.
(1 OF 8}
1 st OPERAND
REG (1 0F 8)

Figure 2-1. Central Processor Instruction Formats

~—
OPERATING REGISTERS
An Exchange Jump instruction from a peripheral processor enters initial values in the
operating registers to start central processor operation. Subsequent address modification
instructions provide the addresses required to retrieve and store data. Note that each
central processor has its own operating registers as well as arithmetic units,
In order to provide a compact symbolic language, the 24 operating registers are identified
by letters and numbers:
A = address register (A0, Al ... A7)
B = increment register (B0, B1 ... BT)
X = operand register (X0, X1 ... X7)
~—

2-2 60347000 C

X FEGISTERS

The operénd registers hold operands and results. Five registers (X1 - X5) hold read
operands from central memory, and two registers (X6 - X7) hold results to be sent to

central memory (Figure 2-2). Operands and results transfer between memory and thes~

registers as a result of placing a quantity into a corresponding address register (Al - A7),

Pli.cing a quantity into an address register Al - A5 produces an immediate memory refer-
ence to that address and reads the operand into the corresponding operand register X1 - X5,
Similarly, placing a quantity into address register A6 or A7 stores the word in the corres-

ponding X6 or X7 operand register in the new address,

X OPERAMD
(60 BIT)

X2
OPERANDS X3

RESULTS x6
X7
L4

ARITHME TIC
A2 SECTION

CENTRAL
MEMORY

ADDRESSES

A
as

]
RESULT AS
ADORESSES A7

B INCREMENT

®
@
5

|

INSTRUCTION
WORD REGISTER,

EEEEE]

INSTRUCTIONS T

Figure 2-2, Central Processor Operating Registers

60347000 C 2-3

A REGISTERS

An increment instruction places a result in address register Ai (where "i" = 0-7) in any one .
of three ways:

e By adding an 18-bit signed constant K to the contents of any A, B, or X register.
e By adding the contents of any B register to any A, B, or X register.

e By subtracting the contents of any B register from any A register or any other

B register.

The A0 and X0 registers are independent and have no connection with central memory. They
may be used for scratch pad or intermediate results. Note the special use of A0 and X0

when executing extended core storage communication instructions.

B REGISTERS

The B registers have no connection with central memory. The B0 register is fixed to
provide a constant zero (18-bit) which is useful for various tests against zero, providing
an unconditional jump modifier, etc. In general, the B registers offer means for program
indexing. For example, B4 may store the number of times a program loop has been

traversed, thereby providing a terminating condition for a program exit.

PROGRAM ADDRESS REGISTER

An 18-bit P register serves as a program address counter and holds the address for each
program step. P is advanced to the next program step in the following ways:

1) P is advanced by one when all instructions in a 60-bit word have been extracted

and sent to the instruction registers.

2) P is set to the address specified by a Go To ... (branch) instruction. If the
instruction is a Return Jump, (P) + 1 is stored before the branch to allow a return
to the sequence after the branch. Branch instructions to a new program start the

program with the instruction located in the highest order position of the 60-bit word.

3) P is set to the address specified in the Exchange Jump package.

2-4 60247000 C

EXCHANGE JUMP

An Exchange Jump instruction starts or interrupts the central processor and provides
central memory with the first address of a 16-word package in central memory. The
Exchange Jump package (Figure 2-3) provides the following information on a program

to be executed:
1) Program address (P)
2) Reference Address for Central Memory (RACM)
3) Field length of program for Central Memory (FLCM)
4) Reference Address for Extended Core Storage (RAECS)
5) Field length of program for Extended Core Storage (FLECS)
5} Program exit mode (EM)
7) Initial contents of the eight A registers
8) [Initial contents of the eight X registers

9) Initial contents of B registers Bl - B7 (B0 is fixed at 0)

10) Monitor Address (MA)

CENTRAL MEMORY

PERIPHERAL PROCESSOR ™
6 8 8 18
F—
A REGISTER Loc. n P A0 -
]
CENTRAL u:uonv,/ Loc. n +! RAcm Al 8
Ltoc. n Loc. n 42 Flew a2 B2
7 ° Loc. n +3 EM A3 B3
53 3 BT B
RAE‘:S 00 A4 B4
FLgcs oo 43 B3
MA AS 86
a7 87
X0
XI
*The Central Processor x2
can also initiate a jump. x3
F)
x3
X
Loc. n+is X7
) o
MA: MONITOR ADDRESS
P: PROGRAM ADDRESS As ADDRESS REGISTERS
RA: REFERENCE ADDRESS 82 INCREMENT REGISTERS
FL= FIELD LENGTH X: OPERAND REGISTERS
EM: EXIT MODE = [000000 DISABLE EXIT MODE
010000 ADDRESS OUT OF RANGE
020000 OPERAND OUT OF RANGE
OCTAL 030000 ADDRESS OR OPERAND
OUT OF RANGE
CONTENTS OF
040000 INDEFINITE OPERAND
TS 3833, .|050000 INDEFINITE OPERAND OR ADDRESS
LOCATION'n +3 OUT OF RANGE
060000 INDEFINITE OPERAND OR OPERAND
OUT OF RANGE
070000 INDEFINITE GPERAND OR ADDRESS
OUT OF RANGE OR OPERAND OUT
OF RANGE

Figure 2-3, Exchange Jump Package

60347000 C

The central processor enters the information about a new program into the appropriate

registers and stores the corresponding and current information from the interrupted pro-

gram at the same 16 locations in central memory. Hence, the controlling information for

two programs is exchanged. A later Exchange Jump may return an interrupted program to

the central processor for completion. The normal operation of the A and X registers is

not active during the Exchange Jump so that the new entries in A are not reflected changes

in X,

NOTE

When an Exchange Jump interrupts the central processor,
several steps occur to insure leaving the interrupted

1)

2)

3)
4)

program in a usable state for re-entry:

Instruction retrieval stops after all instructions
from the current instruction word have been read.

The Program Address register, P, is set to the
address of the next instruction word.

The instructions are executed.

The parameters for the two programs are exchanged.

A subsequent Exchange Jump can then re-enter the inter-
rupted program at the point at which it was interrupted,
with no loss of program continuity.

60347000 C

RETERENCE ADDRESS

All central processor references to central memory, whether for new instructions, or to

fetch and store data, aie inade relative to the Reference Address. This allows easy reloca-

tion: of a program in centrail merory. The Reference Address or beginning address and

vaesend Lenglh defing the contcal meiory Iimits of the program. An Exit Selection allows

the entral processor to stop on a memory reference outside these limits,

The Program Address register, P, defines the location of a program step within the lim.ts
prescribed. Each reference to memory to fetch instructions is made to the address speci-
fied by P+ RA, The program relocation is thus conveniently handied through a single

charpe to RA, A P = 0 condition specifies add; zero and hence RA. This address is

reserved fop recording prograr exiv (erroe) ¢ caditions and should not be used to store d: ia

S S SIGNS O 8 PIOYrain.

EXIT MODE

The Exit mode feature allows the programmer to select Exit or Stop conditions for the

censinl processor, Tyl o foaded wmito bits 36~53 of memory location "'n+ 3" o

the 5 2ihange Jump package iiigure 2-3;. When the Exchange Jump to that package occurs,
the exit selections are stered in *he central processor and the exit occurs as soon as the

selecteq condition is sensed,
NOTE

The CEJ/MEJ panel switch permits selection of a
non-stop mode at its ENABLE position. In this
mode, any stop condition is trested as an instruc-
tion to jurnp to ihs or address in the Exchange
Jump package if the monitor fiag is clear.

The Exit conditions, as stored in bits 36-53 of address "n+3" in the Exchange Jump package

are shown below in octal format:

EM

n

000000 Disable Exit mode -~ no Exit selections made,

010000 Address out of range -

a) an attempt to reference either central memory or

extended core storage outside established limits, or
b) the word count, [(Bj) + K], of an extended core storage

Communication instructior is negative,

(For details on action when an address is out of range, refer
to the Increment and extended core storage instruction descrip-

tions,)

60347000 E 2-7

2

= 020000 Operand out of range - floating point using an infinite operand

(see Range Definitions under Floating Point Arithmetic).,
= 030000 Address or operand out of range

= 040000 Indefinite operand - floating point arithmetic sequence attempted

to use an indefinite operand (see Range Definitions).

= 050000 Indefinite operand or address out of range
= 060000 Indefinite operand or operand out of range (infinite operand)
= 070000 Indefinite operand or operand or address out of range

RESULTS OF EXIT

Typically, the Reference Address (RA) for any program is left cleared to all zeros. When
an error exit is taken, the central processor records at RA the exit condition (upper 2
octal digits only) and the Program Address at exit time (refer to the format below).

NOTE

The Exit condition(s) recorded at RA are all the Exit
conditions detected since the last Exchange Jump,
regardless of whether or not they were selected.
Thus, combinations of error Exit conditions (03, 05,
06 or 07) can appear at RA:

a) When at least one Exit condition was selected
and the selected condition plus another
condition occurred since the last Exchange
Jump, or

b) When more than one Exit condition was selected
and each occurred in the same minor cycle,

The Run FF is cleared, and the central processor stops or if the CEJ/MEJ switch is at
ENABLE, the processor does not stop, but jumps to the monitor address. A peripheral

processor reading P will read the exit location +1.

89 54 53 48 47 30 29

0—0 | 0—x l X x | o—————}}——ooj

I e —

STOP EXIT P ZEROS

P=(P) +1, AT TIME OF ERROR EXIT.

2-8 60347000 E

AL'DRESS OUT OF RANGE

On an Address Out of Range, hardware action differs from that previously outlined. In some
cases, a stop occurs when an address is out of range even though an Exit mode stop is not
sotected for this condition, Table 2-1 summarizes hardware action for operations whic s

rrerence addresses tnat are out of range. Floating point arithmetic is discussed separately,

TABLE 2-1. EXIT MODE: ADDRESS OUT OF RANGE

HARDWARE ACTIONS
i OPERATION EXIT MODE SELECTED EXIT MODE NOT SELECTED
NI to an ad-~ 1. Detect error condition 1. Detect error conditior
dress that is
out-of-range 2. {lear ¥ 2. 5top by reading (AAZ)
(occurs when [Absolute Address Zero]
an instr. is
P lacated in . Ciom by com s P 9 Wt o PN
| absclute ad- 3. biop by reading (RA) 3. Nothing stored in RA
:‘ ﬂteﬂ? (l}){A + 4. Wrile EM and (PY + 1 ipto DA 4. {P) = out of range P
| NOTE: If FL = 0 the first RNI will be
| out of range and the CPU will
hang up
S —
Zranch to an 1. Detect error condition 1. Detect error condition
aJddress that
i3 out-of- 2. Clear P 2. Stop by reading (AAZ)
range,
3. Stop by reading (RA) 3. Nothing stored in RA
! 4. Write BM and hwnp acdress in RA 4. (P} = out of range P
Read 1. Detect error condition 1. Detect error condition
Operand
2. Clear P, (Ai) = Increment Result 2. Read (AAZ) into Xi'
Increment Result
3. Stop by reading (RA) 3. Continue program
4. Write EM and (P) + 1 into RA
5. (Xi) = (AAZ)
Write 1. Detect error condition 1. Detect error condition
Operand
2. Clear P 2. Read (AAZ), but (Xi not
(Ai) = Incremeoent Result stored; (Xi) unchanged
and (Ai) = Increment Result
3. Stop by reading (RA) 3. Continue program
4. Write EM and (P) + 1 into RA

60347000 D 2-9

TABLE 2-1.1 PROGRAM MODE: ADDRESS OUT OF RANGE

HARDWARE ACTION

OPERATION EXIT MODE SELECTED EXIT MODE NOT SELECTED
RNI to an address | 1. Store EM of AOR and P 1. Store EM of AOR and P+1
out of range at RA. at RA.

2. Exchange Jump to (MA) 2. Exchange Jump to (MA) and
and execute program, execute program.
3. Set Monitor Flag. 3. Set Monitor Flag,
Jump to an 1. Store EM of AOR and 1. Store EM of AOR and jump
address out jump address at RA, .address +1 at RA,
of range 2. Exchange Jump to (MA) 2. Exchange Jump to (MA) and
and execute program, execute program.,
3. Set Monitor Flag. 3. Set Monitor Flag.
Read operand 1. Store EM of AOR and 1. Nothing stored at RA.
from an address P+1 at RA. 2. (Ai) = Increment Result
out of range 2. (Ai) = Increment Result. 3. Read (AAZ) into Xi.
(Xi) = (AAZ) (Absolete 4. Continue program,
Address Zero).
4. Exchange Jump to (MA)
and execute program.
5. Set Monitor Flag.
Write operand 1. Store EM of AOR and 1. Nothing stored at RA.
at an address P+1 at RA, 2. (Ai) = Increment Resuilt.
out of range 2. (Ai) = Increment Result. . Read (AAZ), (Xi) not
3. (Xi) = Zero (cleared). stored, (Xi) unchanged,
4, Exchange Jump to (MA) 4., Continue program.
and execute program.
5. Set Monitor Flag.

60347000

TABLE 2-1.2 MONITOR MODE: ADDRESS OUT OF RANGE

HARDWARE ACTION

OFERATION ©XIT MODE SELECTED EXIT MODE NOT SELECTED
RNI tc an 1. Store EM of AOR and P 1. Store EM of AOR and P+1
address out at RA. at RA,
of range 2. Clear P, Stop CPU. 2, Clear P, stop CPU.

Jump ‘o an 1. Store EM of AOR and 1. Store EM of AOR and
raddrers out jump address at RA, jump address +1 at RA. i
| of range 2. Clear P, siop CPU, 2, Clear P, stop CPU.
Read cperand 1. Store EM of AOR and 1. Store EM of AOR and P+1 j
from &n address P+1 at RA. at RA,
cut of range . {Ai} = Jucrement Result, . {(Ai) = Increment Result. |
Read (AAZ) (Absolute Read (AAZ) into Xi. !
Address Zero) into Xi, . Clear P, stop CPU.
4. Clear P, stop CPU. ;
j
Write operand 1. Store EM of AOR and 1. Store EM of AOR and P+1 ;
at an address P+1 at RA, at RA., l
out of range (Ai) = Increment Result. (Ai) = Increment Result, 5
Read (AAZ), {Xi} not 3., Read (AAZ), (i) not
stored, (Xi) unchanged. stored, (Xi) unchanged.
4., Clear P, stop CPU, 4, Clear P, stop CPU.

60347000 E

.1

ACTION AFTER EXIT MODE OR NORMAL STOP

Typically, a peripheral processor periodically searches for an unchanging central processor
Program Address register (any value) to determine if the central processor has stopped.
Once it has been determined that the central processor has stopped, the examining peripheral
processor can transfer control to an error routine to determine the nature of the condition
causing the Stop. Figure 2-4 illustrates sample steps for processing central processor

stops (either Exit mode or normal).

FLOATING POINT ARITHMETIC

FLOATING POINT ARITHMETIC THEORY

Floating point arithmetic takes advantage of the ability to express a number with the general

. n
expression kB, where:

k

B = base number

fl

coefficient
n = exponent, or power to which the base number is raised

The base number is constant (2) for binary-coded quantities and is not included in the gen-
eral format. The 60-bit floating-point format is shown below. The binary point is considered
to be to the right of the coefficient, thereby providing a 48-bit integer coefficient, the
equivalent of about 14 decimal digits. The sign of the coefficient is carried in the highest

order bit of the packed word. Negative numbers are represented in one's complement

notation.

COEFFICIENT BIASED INTEGER
SIGN EXPONENT COEFFICIENT
O w3 |
59 58 48 47 0
BINARY
POINT

The 11-bit exponent carries a bias of 210 (2000g) when packed in the floating point word
(biased exponent sometimes referred to as: ''characteristic'), The bias is removed when
the word is unpacked for computation and restored when a word is packed into floating
format. Table 2-2 lists (in decimal and octal notation) the complete range of permissible

exponents and the octal form of the corresponding positive and negative floating point words.

2-10 60347000 C

| 1.

- - -
Via P & CP, read May be other
CP Program ! steps in this !
Address Register | routine i
L - _ -
Are (P) \
unchanged from No
last test? /
Yes
Stop is due to either:
1) Normal (instr,}
Are (P) = 02 \L No stop, or
/ 2) Stop because of
Yes RNI or Branch to an
= out-of-bounds address

(with Exit mode un-
Stop is due to an error selected).

and the error stop
was gelected,

Branch to routine to
determine nature of

stop.
Examine (RA) to
determine approxi-
mate location of error-
producing instruction. Ves Is stop due to an
out-of-bounds error?
No
Yy
Branch to Error Take appropriate
Routine to Recover action for a stop
From Error. condition.

Figure 2-4. Detecting and Handling Central Processor Stops

60347000 C

Thus, a number with an exponent of 342 would appear as 23428; a number with an exponent

of -160 would appear as 16178. Exponent arithmetic is done in ones' complement notation.

Floating point numbers can be compared for equality and threshold.

TABLE 2-2. RANGE OF PERMISSIBLE EXPONENTS

EXPONENT (n) REPRESENTATION OF kxB™ (OCTAL)
POSITIVE NEGATIVE
DECIMAL OCTAL COEFFICIENT COEFFICIENT
+1023 +1777 (infinite operand) 37T X ,... X 4000X.,... X
+1022 +1776 3776 X X 4001 X ..,. X
+1 +1 2001 X.... X 5776 X X
+0 +0 2000X.... X 5777 X X
-0 -0 (indefinite operand) 1777 X X 6000 X X
-1 -1 1776 X ... X 6001 X ,... X
-1023 -17717 0000 X X TMMTX.... X
NORMALIZING

Normalizing a floating point quantity shifts the coefficient left until the most significant bit

is in bit 47,

Each shift decreases the exponent by one,

Sign bits are entered in the low-order bits of the coefficient as it is normalized.

The normalized condition is not recognized in

the integer multiply operation, so two normalized input operands can not be used during a

integer multiply operation.

60347000 E

ROUNDING

A round bit is added (optionally) to the coefficient during an arithmetic process and has the
effect of increasing the absolute value of the operand or result by one-half the value of the
leest significant bit. Normalizing and rounding are not automatic during pack or unpack

operations so that operands and results may not be normalized.

SINGLE AND DOUBLE PRECISION

The floating point arithmetic instructions generate double- precision results, Use of un-
rounded operations allows separate recovery of upper and lower half results with proper

exsonents; only upper half results can be obtained with rounded operations,

Double precision results appear as follows:

L MOST SIGNIFICANT BITS , LEAST SIGNIFICANT BITS]
95 48047
. — I —V o/
UPPER HALF LOWER HALF
RESULT RESULT
BINARY
POINT

RANGE DEFINITIONS

A result with an exponent so large that it exceeds the upper limit of octal 3777 (overflow
case) is treated as an infinite quantity. A coefficient of all zeros and an exponent of octal
3777 or 4000 is packed for this case. An optional exit is provided when an attempt is made
to use an infinite operand in floating arithmetic sequences since its use may propagate an
indefinite result as shown in Table 2-3, No error exit occurs when an infinite or indefinite

result is generated in a sequence.

60347000 C 2-13

TABLE 2-3. INDEFINITE FORMS

® — ® = INDEFINITE ®+ N:=®
© + ® = INDEFINITE ® 4+ N:=o
® e O = INDEFINITE ® —~ N3 ®
0+0 = INDEFINITE N+0:=-m
INDEFINITE +,~,~, o (X) = INDEFINITE O+m=0
© + ® = Oe 0=0
) : © 0O+ N=0
@® + 0 :® N+®=z=0
WHERE: @ = INFINITY , N = INTEGER,
X = ©o,N OR O.

A resulting exponent which is less than the lower limit of octal 0000 (underflow case) is
treated as a zero quantity. This quantity is packed with a zero exponent and zero coefficient.
No exit is provided for underflow. A result with an exponent of octal 0000 and a coefficient
which is not zero is a non-zero quantity and is packed with a zero exponent and the non-zero

coefficient,

Use of either infinity or zero as operands may produce an indefinite result. An exponent of
octal 1777 and a zero coefficient are packed in this case, and an optional exit provided, In
the special case of integer multiply, both operands have zero coefficients and no packing
and no exit take place. Note that zero, infinite, and indefinite results are generated or
regenerated in floating arithmetic operations only. The branch instructions test for infinite

or indefinite quantities.

In all floating arithmetic operations, an attempt to normalize an indefinite quantity returns
the original quantity, e, g., if the number 17770237 ... were to be normalized, the result
would be the same as the original number. Exit mode can be made to occur on detecting an
indefinite quantity.

Exit mode tests for infinite and indefinite operands are made only in the floating add, multiply,
and divide sequences, The 12 most significant bits of each operand are tested for these
special forms,.

In the multiply and divide sequences (but not in a floating add) there is a special test for

zero operands as determined by the 12 most significant bits,

2-14 60347000 C

Thus the special operand forms (in octal) are:

3777X...X (+)
4000X. .. X (-o) infinite operands
177X, .. X (+IND)] o
6000%. . . X (- IND) indefinite operands
0000X...X (+0) zero operands for Multiply and Divide
(If both operands have +0 or -0 exponents, integer
X, . X (-0) multiply results)

Whenever infinite, indefinite, or zero results are generated in accordance with the rules

given in Table 2-3 and only the following octal words can occur as results:

37770...0 =+ (result)
40000...0 = - (result)
17770...0 = +IND (result)
00000...0 =40 (result)

Note that in these cases the 48 least significant bits of the result are zeros. Indefinite and
zero results generated in accordance with Table 2-3 are always positive, but the sign of

infinite results is determined by the usual algebraic sign convention. For example:

+0) / (-0) = +IND = 17770...0
(+N) * (-0) = +0 = 00000...0
(-o) / (-0) = +0 = 37770...0
(+w) / (-0) = - = 40000...0

There is no special treatment of zero operands in floating add operations. Zero coefficients
and the forms 0000X...X and 7777X... X are not specially detected, and unstandardized zero

results can be produced. (See description of 30 instruction).

OVERFLOW AND UNDERFLOW

Exponents lying outside the range -17778 to +1 7778 cannot be generated during execution of
a floating point arithmetic instruction or during execution of a Normalize instruction. An
attempt to generate an exponent greater than +17778 yields an infinite result (overflow case),
An attempt to generate an exponent less than - 17778 yields a zero result (underflow case).

All cases of overflow and underflow are listed in Table 2-4.

60347000 C 2-15

CONVERTING INTEGERS TO FLOATING FORMAT

Conversion of integers to floating point format makes use of the shift sequence and the zero
constant in increment register B0, The BO quantity provides for generation of exponent

bias in this case. For example, the instructions:

e Sum of Bj and Bk to Xi (wherei =2, j=3, k = 4)
e Pack Xi from Xk and Bj (where i =2, j=0, k = 2)

form an 18-bit signed integer in operand register X2 as a result of the addition of the contents
of increment registers B3 and B4. The integer coefficient with its sign, plus the octal
2000 exponent is then packed into the floating format shown earlier. The coefficient is not

normalized; normalizing may be accomplished with a Normalize instruction,

2-16 60347000 C

TABLE 2-4. OVERFLOW AND UNDERFLOW CONDITIONS

OVERFLOW
INSTRUCTIONS OVERFLOW CONDITION RESULT
Normalize (24, 25) None -~
Urper Sum (30, 31, 34, 35) None (see Note 1) -——
Lower Sum (32, 33) None ---
! Upper Product (40, 41) *ny + ng + 60g > 20008 X; =37770. .., 0g or
i 40000....0
8
Lower Product (42) ny +ny > 20008 (True Sign)
Quotient (44, 45) n, -n, -~ 57, >2000
1 2 [6 8
- —_—]
UNDERFLOW _
INSTRUCTIONS UNDERFLOW CONDITION RESULT
— T T NP ON
Normalize (24 only) Initial coefficient = 40 Xi = 0000 o0.... 08’ (13) =
608
Normalize (24, 25) Final Exponent < —20008 Xi = 0000 0. ... 08’ (Bj)are
. correct. (See Note 2.)
Upper Sum (30, 31, 34, 35) None -—
Lower Sum (32, 33) Final Exponent < -20008 Xi = 0000 O, ... O8
Upper Product (40, 41) Ny +ng + 575 < -20004
Lower Product (42) n, + ng - 1< —20008 Xi = 00000, , ., O8
Quotient (44, 45) n1 - n2 - 6()8 < -20008

*Nl and n, are the initial exponents.

Note 1. Overflow of Upper Sum: Overflow cannot occur unless one operand is
infinite. In this case the result is as indicated, If a one-place Right Shift
occurs when the larger operand exponent is equal to +17768, a correct
result with exponent +17778 is generated,

Note 2. Underflow of Exponent During Normalization: The final (Bj) are the same

as if underflow had not occurred. In particular, if the initial coefficient is
zero, {(Bj) are equal tc 608.

60347000 C 2-17

FLOATING POINT ARITHMETIC TABLES

I'he following is a tabulation of operations (Add, Subtract, Multiply, Divide) using various

combinations of operands to supplement Table 2-3.

is as follows:

The key to operands and results used

IND

KEY:
OPERANDS RESULTS
+0 = 0000 X,..X 0 = 0000 0...0
-0 = 7777 X, .. X IND = 1777 0...0
+ o = 37T X, .. X + = 3777 0...0
- = 4000 X...X - = 40000...0
+IND = 1777 X, .. X \Y/ = Any result except 0,
w = Any word except +@, +IND IND, or+ @
N = Any word except + ¢, +IND, or +0
ADD (INSTRUCTIONS 30, 32, 34)
Xi=Xj+Xk
Xk
Xj W + - © +IND
W - + - IND
+ + @ IND IND
- IND -® IND
+IND IND
SUBTRACT (INSTRUCTIONS 31, 33, 35)
Xi=Xj-Xk
Xk
Xj W + - @ +IND
w - - + @ IND
+ @ + 0 IND + IND
- - - IND IND
+IND IND IND IND

60347000 E

MUL I'IPLY (INSTRUCTIONS 40, 41, 42)

Xi=Xj*Xk
Xk

Xj +tN =N 40 -0 +m - +IND

+N \% \% 0 + - IND

-N \% 0 - + IND

+0 INTEGER IND IND IND

-0 MULTIPLY IND IND IND

+© + - IND

-m + Q0 IND

+ IND IND

DIVIDE (INSTRUCTIONS 44, 45)
Xi=Xj/ Xk
Xk

Xj +N -N +0 -0 + @ - +IND

+N - - + @ - 0 0 IND

-N - - - + 0 0 IND

+0 0 0 IND IND 0 0 IND

-0 0 0] IND IND 0 0 IND

+ @ + - +® - ® IND IND IND

-0 - + - +m IND IND IND

+IND IND IND IND IND IND IND IND

SHORT WORD INTEGER MULTIPLICATION TABLES KEY:

OPERANDS RESULTS
+0 0000 0...0 +0 = 0000 0...0
-0 77T T...7 -0 = TN, 7
+INT 0000 X..,X +INT = 0000 X..,.X
-INT 7777 X...X -INT : 777 X.. . X

60347000 E

INTEGER MULTIPLY (INSTRUCTION 42)

Xi=Xj*Xk
Xk
Xj +INT -INT +0 -0
+INT +INT -INT +0 -0
~INT -INT +INT -0 +0
+0 +0 -0 +0 -0
-0 -0 +0 -0 +0

FIXED POINT ARITHMETIC

Fixed point addition and subtraction of 60-bit numbers is handled in the large arithmetic
section., Negative numbers are represented in one's complement notation, and overflows
are ignored. The sign bit is in the high-order bit position (bit 59) and the binary point is

at the right of the low-order bit position (bit 0),

The small arithmetic section provides an 18-bit fixed point add and subtract facility. Negative
numbers are represented in one's complement notation and overflows are ignored. The
sign bit is in the high-order bit position (bit 17), and the binary point is at the right of the

low-order bit position (bit 0).

Integer multiplication is handled as a subset operation of the Floating Multiply (42) instruc-
tion. The integer multiply requires that both of the 47-bit integer operands have zero
exponents. The result is 48 bits with sign extension, Hardware provisions are made to
insure that results are not sensed as under-flow conditions. If the results exceed 48 bits

overflow will not be detected. (See 40 instruction description for overflow detection.)

An integer divide takes several steps. For example, an integer quotient X1 = X2/X3 is

produced by the following steps:

Instructions Remarks
1) Pack X2 from X2 and BO Pack X2
2) Pack X3 from X3 and BO Pack X3
3) Normalize X3 in X0 and BO Normalize X3 (divisor)
4) Floating quotient of X2 and X0 to X1 Divide
5) TUnpack X1 to X1 and B7 Unpack quotient
6) Shift X1 nominally left B7 places Shift to integer position

60347000

The d'vide requires that:

1) both integer ‘,\247 maximum) operands be in floating format

and 2) the divisor be shifted 48 places left
or 3) The quotient be shifted 48 places right
or 4) any combination of n left -shifts of the divisor and 48-n right shifts of the

quotient be accomplished.

The Normalize X3 instruction shifts the divisor n places left (n > 0), providing divisor
exponent of -n. The quotient exponent then is: 0 - (-n) - 48 = n - 48 < 0,

After unpacking and shifting nominally left, the negative (or zero) value in B7 shifts the
quotient 48 - n places right, producing an integer quotient in X1. A remainder may be
obtained by an integer multiply of X1 and X3 and subtracting the result from X2.

COMPARE/MOVE ARITHMETIC

The compare/move arithmetic provides for multiple-bit character manipulation. The
characters are 6-bits in length. Characters can be moved from one central memory loca-
tion to another and fields of characters can be compared either directly or through a colla-

tion table with the four instructions provided,

The move direct instruction moves a field of up to 127 characters from one location to
another location as described in the instruction descriptions. The move indirect instructions
performs the same kind of move, but a memory reference is used to obtain the parameters,

The field of characters can be up to 8181 characters in length for an indirect move.

The compare collated instruction compares two fields of up to 127 characters. When two
characters are found to be unequal, the characters are looked up in a collation table and
the values found there are compared. If those values are unequal, the field with the larger
character is indicated. The compare uncollated instruction compares two fields of up to
127 characters and indicates the larger of the first character pair which is found to be

unequal,

60347000 D 2-21

PERIPHERAL PROCESSOR PROGRAMMING

INSTRUCTION FORMATS

Peripheral processor instructions are either in a 12-bit or a 24-bit format. The 12-bit for-
mat has a 6-bit operation code designated f and a 6-bit operand or operand address designated

d. The formats are made up as follows:

OPERATION OPERAND OR
CODE OPERAND ADDRESS
f d
[« [«]
1 6 5 [}

The 24-bit format uses the 12-bit quantity m, the contents of the next program address

(P + 1), with d to form an 18-bit operand or operand address.

OPERATION OPERAND OR OPERAND ADDRESS
CODE / A \
f d m
6 l 6 [12]
" o Il)
J\ /J ~
A '
(P) (P+1)

The instruction codes are described in detail in Volume 2 of this reference manual.

ADDRESS MODES

Program indexing can be accomplished and operands can be manipulated in several modes.
The two instruction formats provide for 6-bit or 18-bit operands and for 6-bit, 12-bit or

18-bit addresses.

NO ADDRESS

In this mode d or dm is taken directly as an operand. This mode eliminates the need for
storing a large number of constants. The d quantity is considered as a 12-bit number, the
upper six bits of which are zero. The dm quantity has d as the upper six bits and m as the

lower 12 bits.

2-22 60347000 C

DIRE .T ADDRESS

In this mode, d or m + {d) is used as the address of the operand. The d quantity specifies
one of the first 64 addresses in memory (0000—00778). The m + (d) guantity generates a
12-bit address for referencing all possible peripheral processor memory locations

(UOUU-77778). If d # 0, the content of address d is added to m to produce an operand address

(indexed addressing). Ifd = 0, m is taken as the operand address.

EXAMPLE: Address Modes

Given: d = 25
m = 100
contents of location 25 = 0150
contents of location 150 = 7776
contents of location 250 = 1234

t

Then:
MODE INSTRUCTION (A) REGISTER
No Address 14 d 000025
20 dm 250100
Direct Address 30 (d) 000150
50 (m + (d)) 001234
Indirect Address 40 ((d)) 007776

INDIRECT ADDRESS

In this mode, d specifies an address which holds the address of the desired operand. Thus,
d specifies the operand address indirectly. Indirect addressing and indexed addressing

requires one more memory reference than does direct addressing,

ACCESS TO CENTRAL MEMORY

The peripheral processors have access to all central memory storage locations. One word
or a block of words can be transferred from a peripheral processor memory to central
memory or vice versa. Data from external devices is read into a peripheral processor
memory and, with additional instructions, transferred from there to central memory.
Conversely, data is transferred from central memory to a peripheral processor memory
and then transferred, by additional instructions, to external devices. All addresses sent to
central memory from peripheral processors are absolute addresses, rather than relative

addresses.

0o

60347000 C -23

CENTRAL MEMORY READ

The 60 instruction is used to read one word and a 61 instruction is used to read a block of
60-bit central memory words. The central memory words are delivered to a five stage read

"pyramid' where they are disassembled into five 12-bit words.

One 12-bit word is transferred to a peripheral processor every microsecond. Because the
central memory word is 60 bits long, five microseconds are required for the transfer of
each central memory word. It is possible to have four peripheral processors time-sharing
the "pyramid’ so that the transfer rate can be increased to four central memory words each

five microseconds.

1f more than four peripheral processors are simultaneously requesting central memory Read
operations, the instructions are maintained and are accepted in the order in which they appear
when the "pyramid’can accept another peripheral processor, unless one of the peripheral i

processors has priority (see access priority).

The central memory starting address must be entered in the A register before a Read instruc-

tion can be executed., A Load dm (20) instruction may be used for this.

ONE WORD READ

For a one word transfer, the d portion of the Read (60) instruction specifies the following:

d = peripheral processor memory address (0000—00778) for the first 12-bit word. The

remaining words go to locations d + 1, d + 2, etc.

BLOCK READ

For a block transfer, d and m of the read (61) instruction specify the following:

(d) = the number of central memory words to be transferred. It will be reduced by one

for each word transferr:ad.

m = the peripheral processor memory first word address. It will be increased by one for
each successive word. (A) is increased by one with the transfer of each word to locate

consecutive central memory words.

2-24 60347000 D

CEN’ RAL MEMORY WRITE

The 62 instruction is used for one word and the 83 instruction is used for a block transfer.
They assemble 12-bit words into 60-bit words and write them in central memory. Assembly
1s performed in a write "pyramid'’ and then transferred to ceniral memory. As is the rea |
"pyvramid' it can be time-shared by up to four peripheral processors. Write "pyramid"

timing is similar to Read "pyramid" timing.

The starting address in central memory is entered in the A register before the Write instruc-

tion is executed.

ONE WORD WRITE

For a one word transfer, the d portion of the Write (62) instruction specifies the following:

d - the peripheral processnor memory address (0000—00778) of the {irst 12-bit word.

The remaining words are taken from d + 1, d+ 2, etc.

BLOCK WRITE

For a vlock transfer, d and m of the Write (63) instruction specify the following:

(d) = the number of central memory words to be transferred. It is reduced by one for

each word transferred.

m = the peripheral processor memory starting address. [tis increased by one with the
ransfer of each word for locating each successive word. (A) is increased by one with

the transfer of each word to provide consecutive central memory locations.

ACCESS PRIORITY

One or more peripheral processors may be assigned a priority status by setting bit 217 of its
A register. This enables the selected peripheral processors to have preference over other
peripheral processors in gaining access to central memory. It also makes it possible for a
peripheral processor to interrupt an ECS transfer, which is not otherwise possible. Priority
should be assigned to no more than three peripheral processors for operations when ECS is
inactive because the value of priorities would thereby be defeated. For operations when ECS
is active, priority usage should be limited, because even one interruption of an ECS transfer

degrades the transfer rate significan:ly.

60347000 C 2-25

INPUT AND OUTPUT

The peripheral equipment connected to the data channels can be accessed by each of the
peripheral processors. Input/output instructions select a data channel to contact a unit of
peripheral equipment and to initiate transfer of data to or from that equipment. Tle instruc-
tions can determine whether or not a channel {and the peripheral equipment) is available and
ready Lo transfer data.

Ilach type ot peripheral equipment {including a control console) has a set of external function

codes which must be

sed by the peripheral processors for communication with the equipment.
These function codes are explained in the applicable reference manual for each type of equip-

ment.

DATA CHANNELS

The nurnber of data channels is dependent on the namber of peripheral processors in the
system., FEach channel has a 12-bit bi-directional data register and two control flags which

allow the peripheral processors to monitor the status of the data channels.

CHANNEL ACTIVE/INACTIVE FLAG

When a Function instruction specifies a of operation, it places a function word in the
channel data register and activales the channel., When the peripheral equipment accepts the
function word from the data vegister, its response clears the data register and the channel

aotive flag,

f an scetivate channel instruction i= used with other data iransier instructions, a disconnect

rhannel instruction is required to clear the channel active [lag.

RECGISTER FULL/EMPTY FLAG

Ay .

sannel data register is full when it contains 2 fuoclhion or dats word for an external equip-

i

rment or contains a word received from an external equipment. The register is empty when

it is cleared. The flags are set or clear ss the register charges state.

ta output, the peripheral processor places a word in the channel register and sets the

Apice aocenis the word, it clears the register. and clears the

g g 60347000 C

On dita input, the external device places a word in the channel data register and sets the full
flag. When the peripheral processor stores the word, it clears the register, and clears the
full flag.

DATA INPUT

Several instructions are necessary to transfer data from external equipment into a peripheral
processor. The instructions prepare the channel and equipment for the transfer and then
start the transfer. Some external equipment, once started, sends a series of words (record)
spaced at equal time intervals and then stops between records; Magnetic tape equipment fcr
example. The peripheral processor can read all o a part of the record and then disconne~t
the channel to end the operation and to make the chaamel inactive., Uther equipment, such u3
the display console, can send one word (or character) and then stop. The input instructions

allow the input transfer to vary from cne word to the capacity of the peripheral processor.

An in»out transfer may be accomplished in the following way:

1. Determine if the channel is inactive. A Jump to m on channel d Inactive (65)
instruction does this. Here, m can be a function instruction to select Read mode

or determine the status of the equipment.

2. Determine if the equipment is ready. A Function m on Channel d (77) instruction
followed by an Active channel d (74) followed by an Input to A from Channel d (70)
instruction loads A with the status response of the desired equipment. Here, m is
a status request code, and the status response in A can be tested to determine the

course of action.
3. Disconnect Channel ¢ (75); this avoids hanging up the processor.

4. Select Read mode in the equipment. A Function m on Channel d (77) instruction or
Function (A) on Channel d (76) instruction will send a code word to the desired device

to prepare it for data transfer.

3. Enter the number of words to be transferred in A, A Load d (14) or Load (d) (30)

instruction will accomplish this.

6. Activate the channel. An Activate Channel d (74) instruction sets the channel active

flag and prepares for the impending data transfer.

7. Start input data transfer. An Input (A) Words to m on Channel d (71) instruction or
an Input to A from Channel 4 (70) instruction starts data transfer. The 71 instruction
transfers one word or up to the capacity of the processor memory. The 70 instruc-

tion transfers one word only.

60347000 C 2-21

8.

Disconnect the channel. A Disconnect Channel d (75) instruction makes the channel

inactive and stops the flow of input information.

The design of some external equipment requires timing considerations in issuing function,

activate, and input instructions. The timing consideration may be based on motion in the

equipment, i.e., the equipment must attain a given speed before sending data (e.g., mag-

netic tape). In general, timing considerations can be ignored by issuing the necessary

instructions without an intervening time gap. The external equipment reference manuals list

timing considerations which must be taken into account.

DATA OUTPUT

The data output operation is similar to data input in that the channel and equipment must be

ready before the data transfer is started by an output instruction.

An output transfer may be accomplished in the following way:

o)

1.

-28

Determine if the channel is inactive. A Jump to m on Channel d Inactive (65)
instruction does this. Here, m can be a function instruction to select Write mode

or determine the status of the equipment.

Determine if the equipment is ready. A Function m on Channel d (77) followed by
an Activate channel d (74) followed by an Input to A from Channel d (70) instruction
loads A with the status response of the desired equipment. Here, m is a status
request code, and the status response in A can be tested to determine the course of
action.

Disconnect Channel d (75); this avoids hanging up the processor.

Select Write mode in the equipment. A Function m on Channel d (77) instruction or

Function (A) on Channel d (76) instruction will send a code word to the desired device

to prepare it for data transfer.

Enter the number of words to be transferred in A. A Loadd (14) or Load d (30)

instruction will accomplish this.

Activate the channel. An Activate Channel d (74) instruction signals an active

channel and prepares for the impending data transfer.

Start data transfer. An Output (A) Words from m on Channel d (73) instruction or.
an Output from A on Channel d (72) instruction starts data transfer. The 73 instruc-
tion can transfer one or more words while the 72 instruction transfers only one

word,

60347000 C

3. Test for channel empty. A Jump to m if Channel d Full (66) instruction where m =
current address, provides this test. The instruction exits to itself until the channel
is empty. When the channel is empty, the processor goes on to the next instruction

which generally disconnects the channel. The instruction acts to idle the prograin

briefly to ensure successful transfer of the last output word to the recording devi.e.

1. Disconnect the channel. A Disconnect Channel d (75) instruction makes the chanriel
inactive. Data flow in this case terminates automatically when the correct numbor

of words is sent out.

Instruction timing considerations, as in a data input operation, are a function of the external
device. Refer to the applicable reference manual for the peripheral egquipment timing infor-

Mation.

INTERLOCK REGISTER

The interlock register may be accessed by each of the peripheral processors through a

corimon internal channel (15).

PROGRAMMING SEQUENCE

e’
To operate on the interlock register, the peripheral processor must first issue a load dm
(20) instruction and follow it with a 12 bit descriptor word., The next step must call for an
output on channel 15 (7215) and then call for an input on channel 15 (7015). The channel is
always active so it need not be activated and can not be deactivated,
DESCRIPTOR WORD
The descriptor word used in the programming sequence is made up as follows:
INSTRUCTION CODE ojo WORD OR BIT
DESIGNATOR
1 98 76 0
T The instruction codes used in the descriptor word are as follows:
0XXX - Read the designated word in the interlock register. There are six words in a
64-bit register and 11 words in a 128-bit register. The words in a 64-bit
S’

60347000 D 2-29

register are as follows:

WORD

WORD

WORD

WORD

WORD

WORD

€3

6059

48 47

36 35

The words in a 128~bit register are as follows:

24 23

121

WORD
10

WORD
9

WORD
8

WORD

7

WORD
6

WORD
5

WORD

4

WORD

3

WORD

2

WORD

WORD

0

127 120119 108107 9695 8483 727

6059 4847 363 2423

12N

(o}

1XXX - Test the designated bit in the interlock register. The status is returned as
bit 0 of a 12-bit word. A "1" indicates that the tested bit is set and a Q"
indicates that the tested bit is clear.
2XXX - Clear the designated bit in the interlock register. A "0" is reported to the
peripheral processor,
3XXX - Test the designated bit and leave it in the clear condition.
4XXX - Set the designated bit. A '"0" is reported to the peripheral processor.
OXXX - Test the designated bit and leave it in the set condition.
6XXX - Clear all bits in the interlock register. A "0" is reported to the peripheral
processor.
TXXX - Test all bits in the interlock register. The status is returned as a ''1" if one
or more bits of the interlock register is set,
EXAMPIE: to read word 3;
2000 load dm
0003 read word 3
7215 Output on channel 15
7015 Input on channel 15
60347000 C

MANUAL CONTROL

Manual control of system operation is provided through the console or other keyboard. For
starting a down system, the Dead Start panel must be used to enter a 12-word prograr
(10ormally a load rou.ine) to start up operaticn. The consocle or other keyboard provid-s for

the entry of data or instructions under program control.

DEAD START PANEL

The three modes of operation, load, sweep, and dump are selectable via the dead star:

ranel; they are described below.

LOAD MODE

To load programs and data into the computer system, the MODE switch must be placed in
the LOAD position. The matrix of toggle switches must then be set to a 12-word (or less)

program (switch up = "1", switch down - "0'). The program set in the switch matrix should
be a load routine to load a larger program from an input device such as a disk file or rmagnetic

tape unit.

Turn the DEAD START switch ON momentarily, then OFF, That initiates the following

operations:
1. Assigns all peripheral processors to corresponding data chamnnels,

2. Sends a Master Clear to all 1/O channels. A Master Clear removes all equipment
selections except the dead start panel, and sets all channels to the Active and Empty

condition (ready for input).
3. Sets all peripheral processors to the Input (71) instruction.
4. Clears the P register and sets the A register to 100008 in all processors.,

5. Transmits a zero word followed by the 12 words from the toggle switches into
memory locations 0000 - 00148 of peripheral processor 0, and then disconnects
data channel 0 causing word 00158 of peripheral processor 0 to be zeroed and

causing peripheral processor 0 to start execution with the instruction at location 0001,

After the switch matrix program is read from the dead start parel, the panel is automatically
disconnected. Processor 0 reads location 0000, adds one to its content, and begins executing
the program at address 0001, The other processors are still set to the Input (71) instruction

and may receive data from processor 0 via their assigned channels.

60347000 C 2-31

SWEEP MODE

Placing the MODE switch in the SWEEP position and momentarily turning on the DEAD START

switch results in the following:
1. Sets all processors to instruction 50X.

2. Clears all processor P registers to zero.

The translation of the 50X instruction in each processor causes each processor to sweep
through its memory, reading and restoring the contents of each location, without executing

instructions. Sweep mode is a maintenance tool useful in checking the operation of memory

logic.

DUMP MODE

Placing the MODE switch in the DUMP position and momentarily turning on the DEAD START

switch initiates the following operations:
1. Assigns all peripheral processors to corresponding data channels.
2. Sends a Master Clear to all I/O channels except channel 0.
3. Holds channel 0 to Active and Empty.
4. Sets all processors to the Output (73) instruction.

5. Clears the P register and sets the A register to 100008 in all processors.

Each of the processors senses the Active and Empty condition of its assigned channel and
outputs the content of its memory address zero. Each of the I/O channels is then set to Full
(except channel 0), and the processors wait for an Empty signal. Each processor advances
its P register by one and reduces the content of its A register by one (to 77768). At this

point, the processors waiting for an Empty signal are hung up and cannot proceed.

Channel 0 (assigned to processor 0) is held to Empty by the DUMP position. Processor 0,
therefore, proceeds through the 73 instruction until the contents of A are reduced to one.
Processor 0 has now dumped its entire memory content on channel 0 (although no 1/O device
was selected to receive it). Execution then starts with the instruction at the location specified
by the contents of location 0000 plus one; it is now free to execute a dump program which
rmust have been previously stored in its memory (location 0000 must have been previously

set to the starting address minus one).

2-32 60347000 C

—

CONSOLE

The display console consists of two cathode ray tube displays and a keyboard for manual

entry of data. It is used for operational conirol and system operation status display.

KEYBOARD INPUT

The console may be selected for input to allow manual entry of data or instructions to the
computer. The first part of an operating system program may select keyboard input to allow
.he programmer to manually select a routine from the operating system. Data entered via
the keyboard may be displayed on one of the display tubes if desired. Assembly and cisplay

of keyboard entries is done by a routine in the operating system.,

DISPLAY

The console may be selected to display in either the Character or Dot mode. In the character

mode, two alphanumeric characters may be displayed for each 12-bit word sent from a

processor. Character sizes are:

Small - 64 characters/line
Medium - 32 characters/line

Large - 16 characters/line

in Dot mode, a pattern of dots (graph, figures, etc.) may be displayed. Each dot is located

by two 12-bit words: a vertical coordinate and a horizontal coordinate.

A display program must repeat a display periodically in order to maintain persistence on the

display tube,

60347000 C 2-33

SYSTEM INTERRUPT

Detecting and handling interruptible conditions involves both hardware and software. This
section describes hardware provisions for detecting and handling interrupt. The features of
an operating system used for implementing interrupts are described in the operating system

reference manuals.

HARDWARE PROVISIONS FOR INTERRUPT

EXCHANGE JUMP

Within a peripheral processor, execution of an Exchange Jump instruction initiates hardware
action in the central processor to interrupt the current central processor program and sub-
stitute another program, the parameters of which are defined in the Exchange Jump package.

The Exchange Jump is also used to start the central processor from a Stop condition.

CHANNEL AND EQUIPMENT STATUS

Within the peripheral processors, hardware flags indicate the state of various conditions in
the data channels, e.g., Full/Empty, and Active/Inactive. External equipment devices are
capable of detecting certain errors (e.g., parity error) and holding status information
reflecting their operating conditions (e.g., Ready, End of File, etc.) Channel and equipment
status information may be examined by instructions in the peripheral processors. The Input/
Output section describes these instructions. For detailed status information on external
devices such as magnetic tape units and card readers, refer to the applicable reference

manual for each device or its controller.

EXIT MODE

Central processor hardware provides for three types of error halt conditions (Exit mode):
@ Address out of range (i.e., out of bounds)
° Operand out of range (i.e., exponent overflow)

PY Indefinite result

Bietecting the occurrence of one or more of these conditions is accomplished by the hardware

and causes an error exit. Note that halting on any of these conditions is selectable.

2~ 34 60347000 C

TIMING INFORMATION

Instruction execution times are explained in this section. The basic times are listed in
tables, however there are certain conditions which must be taken into account to perm:t

calculation of program execution timing.

ENTRAL PROCESSOR TIMING

The instructions and their execution times are shown in Table 2-5. The times listed include

readying of the next instruction. Considerations which affect program timing are:

1. Addtwo (2) cycles for each word in a program to account for RNI (Read Next
Instruction) initiation time. The RNI takes a minimum of ten (10) cycles but all
except two (2) concerned with initiation run concurrently with the remaining in-
structions in the instruction word. This consideration can be ignored for Return
Jump and Jump instructions because the times listed in the table account for RNI
timing.

2. Even if the execution of instructions during an RNI should happen to require fewer

than eight (8) cycles, a minimum of 8 cycles must be allowed for.

3. The second instruction in an instruction word takes three (3) cycles longer then
shown in the table if it causes a reference to the memory bank in which (P) + 1 is

stored.

4. A Store instruction used as the first instruction in an instruction word requires

three (3) cycles longer if a memory conflict with (P) + 1 occurs.

NOTE

Jump instructions should be the first instruction
in an instruction word to eliminate the time re-
quired for an RNI instruction and the possibility
of a memory conflict. Load and Store instruc-
tions should be in the second or third place in the
instruction word to eliminate the possibility of a
memory conflict.

60347000 C 2-35

TABLE 2-5,

CENTRAL PROCESSOR INSTRUCTION EXECUTION TIMES

CPU-0 CPU-1 NOTES
00000 Error exit to MA or Program Stop - - 4
0100K Return jump to K 24 24 7
011jK Read extended core storage - - 2
012jK Write extended core storage - - 2
013K Central exchange jump 49 49
0210k Jump to (Bi) + K 16 16 3,6
030jK Jump to K if (Xj) = 0 16 16 3,6
031jK Jump to K if (Xj) # 0 16 16 3,6
032jK Jump to K if (Xj) positive 16 16 3,6
033K Jump to K if (Xj) negative 16 16 3,6
034K Jump to K if (Xj) in range 16 16 3,6
035jK Jump to K if (Xj) out of range 16 16 3,6
036K Jump to K if (Xj) definite 16 16 3,6
037jK Jump to K if (Xj) indefinite 16 16 3,6
041K Jump to K if (Bi) = (Bj) 16 16 3,6
05ijK Jump to K if (Bi) # (Bj) 16 16 3,6
06iiK Jump to K if (Bi) > (Bj) 16 16 3,6
07iiK Jump to K if (Bi) < (Bj) 16 16 3,6
10ij0 Transmit (Xj) to Xi 8 8
1113k Iogical product of (Xj) and (Xk) to Xi 8 8
1213k l.ogical sum of (Xj) and (Xk) to Xi 8 8
13ijk Logical difference of (Xj) and (Xk) to Xi 8 8
1410k Transmit complement of (Xk) to Xi 8 8
151ik l.ogical product of (Xj) and comp (Xk) to Xi 8 8
161jk lLogical sum (Xj) and comp (Xk) to Xi 8 8
17ijk l.ogical difference of (Xj) and comp (Xk) to Xi 8 8
2013k Left shift (Xi) by jk 9 9
21ijk Right shift (Xj) by jk 9 9
22ijk J.eft shift (Xk) nominally (Bj) places to Xi 9 9
23ijk Right shift (Xk) nominally (Bj) places to Xi 9 9
24ijk Normalize (Xk) to Xi and Bj 10 10
25ijk Round and normalize (Xk) to Xi and Bj 10 10
26ijk Unpack (Xk) to Xi and Bj 10 10
271k Pack Xi from (Xk) and Bj) 10 10
30ijk Floating sum of (Xj) and (Xk) to Xi 14 14
31iik Floating difference of (Xj) and (Xk) to Xi 14 14
32iik Floating DP sum of (Xj) and (Xk) to Xi 14 14
il%."iijk Floating DP difference of (Xj) and (Xk) to Xi 14 14
34ijk Round floating sum of (Xj) and (Xk) to Xi 14 14
35ijk Round floating difference of (Xj) and (Xk) to Xi 14 14
36ijk Integer sum of (Xj) and (Xk) to Xi 9 9
3714k Integer difference of (Xj) and (Xk}) to Xi 9 9
2-36 80347000 C

TABLE 2-5, CENTRAL PROCESSOR INSTRUCTION EXECUTION TIMES (Cont'd)

CPU-0 CPU-1 NOTES

40ijk Floating product of (Xj) and (Xk) to Xi 60 60
41ijk Round floating product of (Xj) and (Xk) to Xi 60 60
42ijk Floating DP product of (Xj) and (Xk) to Xi 60 60
4313k Form mask in Xi, jk bits 9 9
44ijk Floating divide (Xj) by (Xk) to Xi 60 60
45ijk Round floating divide (Xj) by (Xk) to Xi 60 60
46000 No operation (pass) 6 6
464jk0 Move indirect - - 9
4853k0 Move direct - - 9
466jk0 Compare collated - - 9
467jk0 Compare uncollated - - 9
47i0k Count the numbers or "1's" in (Xk) to Xi 71 71
50ijE Set Aito (Aj) + K - - 5,8
51ijK Set Ai to (Bj) + K - - 5,8
52ijK Set Ai to (Xj) + K - - 58
53ijk Set Ai to (Xj) + (Bk) - - 5,8
54ijk Set Ai to (Aj) + (Bk) - - 5 8
55ijk Set Al to (Aj) - (Bk) - - 5,8
56ijk Set Ai to (Bj) + (Bk) - - 58
57ijk Set Ai to (Bj) - (Bk) - - 5,8
60ijK Set Bito (Aj) + K 8 8
61ijK Set Bi to (Bj) + K 8 8
621jK Set Bi to (Xj) + K 8 8
63ijk Set Bi to (Xj) + (Bk)] 8
64ijk Set Bi to (Aj) + (Bk) 8 8
65ijk Set Bi to (Aj) - (Bk) 8 8
661jk Set Bi to (Bj) + (Bk) 8 8
67ijk Set Bi to (Bj) - (Bk) 8 3
70ijK Set Xito (Aj) + K 9 9
71ijK Set Xi to (Bj) + K 9 9
72ijK Set Xi to (Xj) + K 9 9
73ijk Set Xi to (Xj) + (Bk) 9 9
74ijk Set Xi to (Aj) + (Bk) 9 9
75ijk Set Xi to (Aj) - (Bk) 9 9
76ijk Set Xi to (Bj) + (Bk) 9 9
TTijk Set Xi to (Bj) - (Bk) 9 9
Notes:

1. All times are in minor cycles of 100 nsec length

2. Refer to the ECS description, volume 3, publication number 60347100.

3. If the jump conditions are not present, require only 8 cycles.

4, If Error Exit to MA is switch selected, 8.3 cycles are required.

5. Ifi=0, 6 cycles

1-5, 12 cycles
6 or 7, 10 cycles

i
i

noon

If used as the second insiruction in the instruction word, add 1 cycle.
If used as the second instruction in the instruction word, add 2 cycles.

If used as the second instruction in the instruction word, add i # 0, add 2 cycles.

Kol ool R e]

See the text for timing information.

60347000 D 2-37

PERIPHERAL PROCESSOR TIMING

The instructions are listed in Table 2-6. Certain considerations which might affect the

times shown in the table are:

1. Instructions with the 24-bit format require 10 extra cycles (1 major cycle) to read

m. These are the indirect and indexed addressing instructions.

2. Instructions for input/output and for memory references can transfer a word every
10 cycles although the peripheral equipment seldom permit this rate for input/output

operations.

3. Conflicts with the central processor for central memory references cause indeter-

minate delays.

4. Following an Exchange Jump instruction, the central processor must complete the
exchange jump before further memory references or Exchange Jump instructions

can be executed.

5. In systems with 14, 17, or 20 peripheral processors, certain delays occur because
the data channels are mounted in an external cabinet. A delay of four minor cycles
occurs in recognizing a changed channel status. A peripheral processor cannot
recognize a change in status of a data channel made by any of the four processors
preceding itinthe "barrel". For example; after a channel goes inactive, the next
four processors in succession do not recognize the change, so the fifth peripheral

processor is the first one that can recognize and take advantage of the change.

TABLE 2-6. PERIPHERAL PROCESSOR INSTRUCTION EXECUTION TIMES

CYCLES NOTES

00 Pass 10

01 Long jump to m + (d) - 1

02 Return jump to m + (d) - 2
03 Unconditional jump d 10
04 Zero jump d 10
05 Nonzero jump d 10
06 Plus jump d 10
07 Minus jump d 10
10 Shift d . 10
1 Logical difference d 10
i 12 Logical product d 10
| 13 Selective clear d 10
| 14 load d 10
| 15 [.oad complement d 10
E 16 Add d 10
i 17 Subtract d 10

2-38 60347000 C

TABLE 2-6. PERIPHERAL PROCESSOR INSTRUCTION EXECUTION TIMES (Cont'd)

CYCLES NOTES
20 Load dm 20
21 Add dm 20
22 Logical product dm 20
23 Logical difference dm 20
24 Pass 10
25 Pass 10
260 Exchange jump - 3
261 Monitor exchange jump 3
262X Monitor exchange jump to MA 3
27 Read program address 10
30 Load {(d) 20
31 Add (d) 20
32 Subtract (d) 20
33 Logical difference (d) 20
34 Store d 20
35 Replace add (d) 30
36 Replace add one (d) 30
37 Replace subtract one (d) 30
49 Load ({d)) 30
41 Add ((d)) 30
42 Subtract ((d)) 30
43 Logical difference ((d)) 30
44 Store ((d)) 30
45 Replace add ((d)) 40
46 Replace add one ((d)) 40
47 Replace subtract one ((d)) 40
50 Load {(m + (d)) - 2
51 Add (m + (d)) - 2
52 Subtract (m + (d)) - 2
53 Logical difference (m + (d)) - 2
54 Store (m + (d)) - 2
55 Replace add (m + (d)) - 4
56 Replace add one (m + (d)) - 4
57 Replace subtract one (m + (d)) - 4
60 Central read from (A) to d - 5
61 Central read (d) words to {(A) from m - 6
62 Central write to (A) from d - 5
63 Central write (d) words to (A) from m - 6
64 Jump to m if channel d active 20
65 Jump to m if channel d inactive 20
66 Jump to m if channel d full 20
67 Jump to m if channel d empty 20
70 Input to A from channel d 20
71 Input (A) words to m from channel d - 7
72 Output from A on channel d 20
73 Output (A) words from m on channel d - 7
74 Activate channel d 20

60347000 C

2~39

TABLE 2-6. PERIPHERAL PROCESSOR INSTRUCTION EXECUTION TIMES (Cont'd)

CYCLES NOTES
75 Disconnect channel d 20
76 Function (A) on channel d 20
77 Function m on channel d 20

NOTES:

I

1. 30 cycles unless d = 0, then 20 cycles

t

2. 40 cycles unless d = 0, then 30 cycles

w

26 cycles because of central memory access limitations if executed;
10 cycles if not executed

5

50 cycles unless d = 0, then 40 cycles
Minimum of 60 cycles

50 cycles plus 50 cycles per word

40 cycles plus 10 cycles per word

L =3 O O

All times are in minor cycles (100 nsec)

MOVE, COMPARE ARITHMETIC TIMING

The following formulas give only an approximate idea of the execution times for the four
move and compare instructions. The formulas do not take into consideration the conflicting
demands for the use of central memory by the peripheral processors, second central pro-
cessor, or IBCS. All of these plus memory bank conflicts (see NOTE below) make the for-

" caleulation tool.

mulas useful only as a 'best case'
Direct Move Instruction - The time in major cycles equals the number of words to be

moved multiplied by 0.3 plus 4.2 cycles.

Indirect Move Instruction - The time in major cycles equals the number of words to be

moved multiplied by 0.3 plus 5.4 cycles.

Compare Collated Instruction - The time in major cycles equals the number of pairs of
words to be compared multiplied by 0.6 plus 5.5 cycles.
This rate is based on all characters except the last pair

being equal.

Corapare Instruction - The time in major cycles equals the number of pairs of
words to be compared multiplied by 0.6 plus 4.2 cycles.

This rate is based on all pairs being equal.

2-40 60347000 C

<_//

60347000 C

NOTE

Memory bank conflicts can severely degrade the
operating rates. The first word address of the
source field and the result field should be stored
at least five banks apart to minimize delays for
move instructions and at least three banks apart
for the compare instructions.

2-41

