
INTERACTIVE GRAPHIC SYSTEMS

t;DSn
teellllieDI Siteeifieatittil

'.

CONTENTS

Section Page Section Page

1 Introducing GDS II ... 1-1 4 Specifications .. 4-1

2 General Description .. 2-1 4.1 Database Features 4-1
4.2 Input/Editing .. 4-1

2.1 The Problems of VLSI 2-1 4.3 Display Control .. 4-3
2.2 The Solution - GDS II 2-1 4.4 Background Programs 4-4
2.3 Exploiting the Latest Technology , 2-2 4.5 Application Programming Tools 4-5

4.6 Hardware ... 4-6
3 System Operation .. 3-1

5 Software ... 5-1
3.1 Database Extensibility 3-1
3.2 Database Elements 3-1 5.1 Multiground RDOS 5-1
3.3 Database Construction 3-2 5.2 Database Management System 5-3
3.4 Menu Operations .. 3-2 5.3 GPL™ ... 5-7
3.5 Graphic Display ... 3-2 5.4 Background Job Management System 5-8
3.6 Character Display 3-3 5.5 Background Programs 5-10
3.7 Coordinate Interpretation 3-4
3.8 Data Entry and Edit ; 3-4 6 Hardware .. 6-1
3.9 Data Selection and Transform Operations 3-5
3.10 Text Entry and Edit (TED) 3-6 6.1 Central Processing Subsystem 6-1
3.11 Initiating Background Jobs 3-6 6.2 Design Stations .. 6-3
3.12 Program Development 3-7 6.3 On-Line Plotters " ., , 6-5
3.13 Command Primitives 3-8 6.4 Peripheral Options 6-5
3.14 GDS II Accounting 3-8

SECTION 1

INTRODUCING GDS II
In the intensely competitive semiconductor industry, rapid
implementation of new technology means success. This demands a
production design system that works swiftly and without interruption.
CALMA's GDS II meets these criteria.

GDS II is a turn-key interactive graphics system that has been developed
with the insight provided by years of experience with its predecessor,
GDS. It is a turn-key system, yet it also offers unprecedented support to
those users with the imagination to enhance its extensive capabilities.

Among the features and facilities described in the following pages are:

• 32-bit integer coordinate space to support VLSI

• Databases with information content extended beyond graphics

• User definable extensions to databases

• Design station featuring alphanumeric as well as graphic display

• Consistent, concise, and rich command language adaptable to
both novice and expert operators

• GPL WM Programming Language

• Comprehensive design rule checking programs

• Wide range of plotter support

• Exclusive All-Angle pattern generator support software

• State-of-the-art electron beam pattern generator support
software

• Multiground, multitask, real-time disk operating system
featuring:

•• Concurrent foreground and background activities
•• Concurrent production and program development
•• FORTRAN, ALGOL, DG/L, and assembly language user

programming

• High performance ECLIPSE computer featuring:

•• Comprehensive instruction set
•• Extensive multiuser support hardware
•• Memory mapping
•• High speed floating-point processor

• New, unique erasable graphic display with continuous pan and
zoom and instantaneous context switching

1-1

SECTION 2

GENERAL DESCRIPTION
2.1 The Problems of VLSI

GDS " is an advanced graphic system for the design of very large scale
integrated (VLSI) circuits. Like its predecessor, GDS, GDS " provides a
comprehensive turn-key solution to the problems of design,
documentation, and artwork generation. But GDS " represents the next
generation in interactivity, in efficiency, and in throughput.

VLSI presents several first order problems which cannot be solved by
today's IC design systems. First, the required precision exceeds the
capabilities of most existing systems. To resolve .1 micrometer features
within a circuit 10 millimeters on a edge requires a resolution of 1 part in
105 - more than 16-bit integers can deliver. So GDS " uses 32-bit integer
coordinates. Due to their uniform resolution, integer coordinate
representations are, of course, superior to floating-point representations
in applications requiring the generation of precision artwork.

Because of the complexity of VLSI, the sheer volume of data threatens to
overwhelm a mini-computer based system. The GDS " Database
Management System features unique mechanisms for data compression
and data classification, minimizing disk requirements, both capacity and
bandwidth.

The sheer volume of data poses a serious threat to background
throughput. Background processes such as spacing checks and artwork
generation involve sophisticated algorithmic processing and global
sorting. To complete these tasks in an efficient and timely manner
requires a powerful CPU and an efficient multiprogramming background
facility which can make effective use of (relatively) large core
configurations. The GDS II Background Processor provides significantly
more throughput than its predecessor.

The sheer volume of data threatens to reduce the level of interactivity of

the system. After all, it should take much longer to select and manipulate
data within a complex VLSI circuit. WRONG! The GDS " display
software, coupled with the VMD, CALMA's unique display terminal,
provides the ultimate in comfortable and productive man-machine
interaction.

2.2 The Solution - GDS II

Building on the latest in hardware technology and its long experience in
the integrated circuit design market, CALMA has developed a
comprehensive new system to solve the problems posed by the new
integrated circuit technology. The GDS II database provides the ultimate
in precision (32-bit integer representation). The Command Processor
provides the highest level of interaction ever offered on a minicomputer
based system. GPL /pM is available, along with a comprehensive
collection of background processes to drive Pen plotters, Photoplotters,
Optical Pattern Generators, E-Beam Pattern Generators, etc. Other
background processes include extensive Design Rules Checks. The
GDS " Background Processor provides for the efficient execution of
multiple background tasks. For many tasks, GDS " will reduce the run
time by large factors relative to GDS.

GDS " consists of a Central Processing Subsystem (including an
ECLIPSE S/230 computer, an 80 Megabyte removable disk pack
memory, a magnetic tape, and a system console) to which Design
Stations, Plotters, and other peripheral equipment are attached. As many
as six interactive, design stations may operate simultaneously, with
minimal degradation in average system response time. At the same time,
as many as three on-line plotters can be producing artwork at full rated
speed, and GDS " can be writing a tape to drive an off-line plotter or
pattern generator. These operations take place in full background mode,
without interrupting input or editing.

2-1

To suit varying customer requirements, CALMA provides several input
devices for GDS II work stations.

• CALMA 48-by-60 inch constrained-cursor digitizing table, with
backlighting.

• Drafting-table-size tablet with puck and/or stylus.

• Console with 12-by-12 inch Rand-type tablet.

All stations include a keyboard, and an alphanumeric CRT (for designer
communication). All are equipped with an interactive graphic display: An
11 inch storage tube, a 19-inch storage tube, or CALMA's unique VMD.

Station config~ration does not determine station function. Anything that
can be done from one GDS II station can be done from all others.

And GDS II can read-in GDS databases. Thus existing designs created
on GDS can be maintained on GDS II.

2.3 Exploiting The Latest Technology

Building on the experience gained over the past six years, during which
GDS has become the standard of the semiconductor industry, GDS II
incorporates the latest in hardware and software technology, beginning
with the ECLI PSE S/230 computer.

The Eclipse Computer:

The ECLIPSE's high performance starts with a fast microprogrammed
architecture. A random-access stack and versatile interrupt system
replace software routines. with high-speed hardware. A Floating Point
Processor performs single and double-precision arithmetic at speeds
matching those of large computers. Interleaving reduces memory cycle
time. Effective memory speeds range from 200 to 640 nanoseconds.

These ECLIPSE computer features mean performance that translates

2-2

into high throughput; throughput that lets GDS II handle the demanding
tasks of interactive design, sophisticated rules checking, plotting, and
user programming concurrently. Brielfy these features are:

• Comprehensive instruction set customized for operating
systems and high-level language compilers. The set includes
word, byte, and bit manipulation; extensive shift and logical
operations; signed and unsigned integer multiply/divide; and
block data movement.

• Extensive hardware stack mechanisms for fast subroutine
linkage and context switching in real-time, reentrant
environments.

• Memory Allocation and Protection with dynamic address
translation, expansion to 512K bytes main memory, and write and
address protection.

• High-speed Floating Point Processor featuring 32-bit and 64-bit
formats and parallel processing.

• . Memory interleaving and overlapping that significantly reduce
instruction execution times.

CALMA's Multiground RDOS:

GDS II is built upon an enhanced version of Data General's Real Time
Disk Operating System (RDOS). This more powerful operating system is
known as Multiground RDOS because it supports additional jobs beyond
the "foreground" and "background" provided by the standard Data
General RDOS. Up to sixteen (16) separate "grounds" or jobs may be run
concurrently with the system, providing complete isolation and
protection for each ground. This permits, for example, several different
interactive graphics systems to run at the same time (e.g., GDS II and
DDM) or interactive graphics concurrent with program development and
debugging.

RDOS permits "multitasking" within each ground; this means within the
same address space there may be more than one asynchronous process
(task) that competes for the CPU. The Scheduler for Multiground RDOS

is "interleaved" among grounds and tasks; that is a priority is computed
for each task in each ground and then the system makes a global decision
as to which task and ground with the priorities correctly interpreted.

Among the standard features of RODS are Program Swapping, which
allows up to five core images to be "pushed" to disk and them "popped"
back and restored to execution. This permits multipass algorithms to be
cleanly implemented in a manner that is transparent to the operator; also
special subroutines such as sorting may be implemented as swaps so the
entire core space of the ground is available for use.

The RODS file system provides a generalized means of accessing disk
files, at the same time supporting device-independent programming for
characteroriented devices such as the DECwriter, Line Printer, and
Station Keyboard. Filenames in RODS may be from one to ten (10)
characters in length and optionally may contain a one or two letter
filename extension at the end. The filenames are referenced through
directories which may be nested up to three deep.

Multiground RODS retains complete compatibility with Data General's
RODS and therefore allows all the software products developed by Data
General to be run without modification. Included are compilers for
FORTRAN, ALGOL, BASIC, and DG/L. Text editors and a Macro
Assembler are likewise available.

Multiground RODS includes custom I/O drivers for all of CALMA's
hardware. This permits a high level generalized interface forthe graphics
system eliminating the need to resort to bit level programming with
critical timing conditions.

The VMD:

In addition to these second generation tools, CALMA has developed a
new type of interactive graphics display which promises to provide a
quantum jump in the level of user interactivity as well as a substantial
improvement in overall system performance. Dubbed the Vector Memory
Display (VMD) this device makes use of a vector memory and a digital TV
imaging system. The result is a graphics display whose capabilities far
surpass those of existing refresh displays, which use only one type of
refresh memory (vector or raster).

Until now, CALMA has relied on a direct view storage tube display, which
stores the graphics image directly on the face of a specially constructed
cathode ray tube, so that the image does not have to be continuously
refreshed. This approach results in a high-resolution, flicker-free image.
In addition to the stored image, a graphics cursor is continuously
displayed in write-through mode, so that it will not become a part of the
stored image. Using a graphics tablet or digitizer as an input device, the
user can point the cursor at objects on the screen and issue editing
commands to the system to alter these objects or add new ones. On the
whole this type of display has proved more than adequate for numerous
applications in such diverse areas as integrated circuit and printed circuit
design, cartography, and three-dimensional drafting, designing, and
manufacturing.

However, the storage tube display does have one feature that limits its
effectiveness in applications requiring a rapidly changing graphic
presentation: the image cannot be selectively erased. Thus, viewing an
altered graphics image requires erasing the entire old image and
redrawing the entire new one. Although CALMA's storage tube display is
many times faster than competitive displays of this type, applications
exist for which the image cannot be repainted faster than the designer
can think of what to do next.

To overcome this limitation requires a graphics display whose image is
continuously being refreshed, so that when a graphic object is altered in
the memory from which the display is refreshed, its image on the screen
rapidly disappears and its altered image simultaneously appears, while
the remainder of the image remains unchanged.

A display which refreshes the image directly from a "vector memory"
meets this requirement. The display reads X-V coordinate and intensity
information from the memory and "strokes" the indicated line segments
onto the screen in connect-the-dots fashion.

This approach, however, introduces more problems that it solves. For
one thing, the complexity of the image which can be displayed without
perceptible flickering is fundamentally limited - by how far the display
tube's electronbeam has to travel, how rapidly the beam can be deflected
and modulated, and how rapidly the image disappears from the screen.

2-3

Various techniques could be used to sidestep these limitations, but not
without creating further problems. For example, the length of the path
traveled by the beam could be reduced by attempting to minimize the
total length of the invisible segments, but the computational overhead
would be substantial if not prohibitive. Likewise, the persistence of the
tube's phosphor could be increased, but this would cause "ghost"
images to remain on the tube for a longer time after they had been altered
in the vector memory, thus returning to some extent to the basic
limitation of the storage tube display. Moreover, as the deflection
circuitry is pushed to its limits, difficulties in maintaining accuracy and
repeatability are likely to manifest themselves, so straight lines appear
other than straight and rectangles fail to close on themselves. Finally,
since screen brightness and stroking speed are inversely related, any
attempt to improve one parameter will compromise the other.

A display which refreshes the image from a "raster memory", or dot
matrix, avoids the above problems. Flicker-free images can easily be
generated, regardless of complexity, because the electron beam always
travels the same path: a top-to-bottom sequence of closely spaced left
to-right lines, as in a commercial television set. The raster memory is
used only to modulate the intensity of the beam.

Because the image-painting path is constant and relatively short, a bright
image can be created; and because the path is so regular, the difficulties
of maintaining accuracy and repeatability are vastly reduced. In addition,
once the graphic vectors of the image have been "rasterized", i.e.,
converted to sequences of dots in the raster memory, the data is in the
optimal order for displaying. The raster memory approach even makes it
easy to create one image, erase a rectangular field within it, and then
write another inset image in the vacated space. This can, of course, be
done repeatedly if desired, creating a montage composite image
impossible to achieve with a vector stroking display.

Unfortunately, displays which rely solely on raster memory for refreshing
the image suffer from another basic limitation. Once a vector has been
rasterized, there is no good way to deal with the resulting dots. If it is
desired to remove only those dots corresponding to a given vector, one
could rasterize the vector again and use the resulting set of dots to erase

2-4

the raster memory selectively. But this would in general remove too many
dots. What is really desired is to remove only those dots which the given
vector was solely responsible for inserting and to leave alone those dots
which were also inserted by intersecting vectors. But this is impossible,
since in the raster memory all dots look alike. As a result, after the given
vector is removed in this way, all conceivable intersecting vectors should
be rewritten into the memory. In the worst case this amounts to
rerasterizing the entire vector image, which runs the risk of nullifying the
reason for going to a refresh display technology in the first place: the
ability to alter the image rapidly.

The ability to zoom in on a selected portion of the data is best achieved by
erasing the entire raster memory and rerasterizing the vector data at a
different scale factor. This procedure brings out file detail that is
unapparent at small magnification because different points must be
mapped into the same dot. The alternative method of zooming, mapping
each dot in a portion of the raster memory into a square array of dots on
the screen, is a poor substitute, because the resulting magnification does
not entail increased resolution.

What's more the raster-memory-only display offers no easy solution to
the problem of selecting graphical objects on the screen by pointing at
them. After all, a dot is just a dot. By contrast, a vector-memory-only
display, for all its faults, finds this task relatively easy. A light pen detects
it, causing it to be identified to the system.

CALMA's Vector Memory Display, by using both a vector memory and a
raster memory, is able to realize the benefits and avoid the disadvantages
of both. Its 21 inch, 1 024-line video monitor displays a bright, flicker-free
monitor (40 footlamberts - more than ten times brighter than typical
storage tubes) of high resolution and accuracy, made possible by raster
refresh technology. Yet, because of its vector memory, and the high
speed display processor which links it to the raster memory, the VMD can
pan across, zoom in on, and zoom out from a graphical image in a
continuous manner at frame rates as high as 40 per second. Furthermore,
the instant selection of graphical entities is easily handled.

The VMD's vector memory utilizes a special purpose memory board,
jointly developed by engineers at CALMA and Intel Corporation. This

board contains 65,536 16-bit words of solid state memory and can be
accessed at a rate of one word every 300 nanoseconds. Each polygon
entity stored within the memory requires two words for header
information, between zero and three words for attribute information, two
words for the initial X-V coordinate pair, depending upon the
representation mode. -Thus the number of words used per vector could
vary between one and nine, depending on the nature of the data; a
realistic average is probably closer to two than three. Up to four memory
boards can be configured in a VMD, fO'r a total of 130,000 words, or
roughly 50,000 vectors.

A command processor, which incorporates an 8085 microprocessor,
handles all communication with the host central processing unit (CPU)
and controls the operations of the various subfunctions of the pipelined
display processor. In the input mode, polygon entities generated in the
CPU are passed to the command processor through the memory update
system to the vector memory. In the redraw mode, entities are fetched
from vector memory, tested for overlap with the current display window,
clipped to fit within the window (if need be), scaled, and imaged onto a
portion of the raster memory. In the display mode, the screen is simply
refreshed from the raster memory and the display processor is otherwise
idle. In the identify mode, vector memory is searched at high speed and
the header and attribute information pertaining to the polygon having a
vertex closesUo the indicated XV point is returned to the CPU. The VMD
generates the images of up to four cursors and one display grid in
hardware, so that they need not occupy space in the vector memory;
similarly, three types of dashed lines can be generated in hardware, so
that the individual visible segments need not be stored separately.

Under normal circumstances, in redraw mode, data are processed at the
rate of one word (per vector memory board) every 300 nanoseconds, so
that an entire drawing may be redrawn about 40 times a second, fast
enough to give the impression of continuous movement on the screen.
However, if the display window spans a large fraction of the data, the
VMD redraw rate may be paced by the peak rasterizing rate, which is
about 35 nanoseconds/dot along the major axis. Likewise, in the unlikely
event that numerous diagonal vectors must be clip'ped to fit within the
window, this process could momentarily pace the system. Sufficient data
buffering is provided between system subfunctions to smooth out most

local deviations from average data rates, thus assuring optimal system
performance.

The raster memory used by the VMD features yet another unique
memory board. It too was developed jointly by CALMA and Intel. This
board contains an array of 512 x 512 bits of solid state memory. As the
video monitor, which has a grid of 1024 x 1024 addressable points, is
being refreshed, an interpolation algorithm, which operates in real time.
is used to fill in the dots not explicitly stored in the raster memory.

In summary, the CALMA Vector Memory Display, by exploiting the best
of two different refresh graphic memory systems, affords the designer an
unprededented level of performance in refresh graphics displays.
Features like unlimited inset capability, continuous pan and zoom,
instantaneous context switching, and hardware select give GDS " an
unequalled capability in its intended role as a VLSI design system.

The influence of the VMD on the overall design of GDS " is readily
apparent. Menus are displayed on the screen, if desired, so that the
designer never need load down at the tablet surface. All necessary
command prompting is provided the instant it is needed and just as
quickly erased when no longer required. Menus within menus can be
used to explicate the valid choices available to the designer at any given
time.

The designer can switch from viewing layer one of an integrated circuit
mask set to viewing layer two - instantly, with no more than a token
amount of assistance from the CPU. (By contrast, systems that use
storage tube displays must rely on the CPU to read the entire disk area
containing the drawing and extract the relevant information for
redrawing. Clearly, the VMD approach leaves much more time for the
CPU to service other graphics terminals and background tasks.)
Likewise, one could view all lines of a given type, or all gates, or all
contacts .. It's all a question of masking in the desired attributes.

One of the most useful features enables the viewing of a large portion of
an electronic circuit and simultaneously viewing in a graphic inset a
highly magnified view of the same circuit, centered around the cursor
position within the forementioned view. This arrangement proves

2-5

particularly useful in routing Signal traces, where one needs to be aware
both of the details of local obstacles and of the general direction in which
one is headed. Modifications to the viewing parameters can be made
independently from other commands and, in fact, within them. This
enables the designer to route a trace to a different layer and then view the
new layer of traces in solid lines and the old layer in dashed lines, all
without terminating the input command.

MPC (not available in initial release):

In addressing the problem of checkplotting within the context of a VLSI
design system, it became apparent that a high-resolution matrix plotter
such as the Versatec 8242 offers a highly desirable solution. Integrating a
device such as the 8242 into an interactive graphics system presents
immense problems. CALMA has presently under development an
intelligent Matrix Plotter Controller (MPC), built around the same
technology as the Vector Memory Display, that addresses and eliminates
these problems.

Consider the plight of a system architect attempting to integrate a matrix
plotter into an ineractive graphic system. A Versatec 8242 electrostatic
plotter is capable of producing a 40.96" x 40.96" plot at 200 spots/inch in
slightly less than 82 seconds - regardless of complexity. Such a plot is
8192 x 8192 spots which requires 4,194,304 16-bit words to be
represented in memory. This is exactly 128 times the capacity of a 32K
word minicomputer which might seem the logical choice to perform the
rastenzation of data. Thus a 32K word minicomputer would require at
least 128 passes of an unsorted drawing database to produce a plot
image! Therefore, dedicating a minicomputerto the scan conversion task
could at best be expected to produce a plot image in 128 times the view
time. Thus, an IC that views in 10 seconds could take no less than 21
minutes to convert to a raster image. Other algorithms involving sorting,
etc., introduce their own extensive resource requirements. A compute to
plotting time ratio of over the order of 20 to 1 strongly suggests that the
great speed potential of matrix plotters is an empty promise.

CALMA, however, seeking to realize the great performance and
convenience benefits of matrix plotters for their customers, recognized
that what these devices require is a special purpose controller to
generate raster data at a rate to match their speed.

2-6

The ability to rapidly scan a plot file is the most critical requirement. The
vector memory developed for CALMA's Vector Memory Display offers an
attractive solution to this requirement. The MPC's vector memory utilizes
a special purpose memory board, jOintly developed by engineers at
CALMA and Intel Corporation. This board contains 65,536 16-bit words
of solid state memory and can be accessed at a rate of one word every 300
nanoseconds. Each polygon entity stored within the memory requires
two words for header information, two words for the initial X-V
coordinate pair, and one or two words for each subsequent X-V
coordinate pair, depending upon the representation mode. Thus the
number of words used per vector could vary between one and five
depending on the nature of the data; a realistic average is between one
and two. Up to four memory boards can be configured in an MPC, for a
total of 262,144 words, or roughly 150,000 vectors.

Since the data in the vector memory can be processed in approximately
25 milliseconds, to drive the Versatec 8424 at 100% of rated speed
requires that only 3 lines of raster data be generated per vector memory
scan. To realize the goal of driving the device at rated speed, the MPC
attaches high-speed special purpose computational hardware to the
vector memory in a pipelined architecture.

Data leaving the vector memory is routed to a specially developed ALU
that performs the rasterization of vectors. The ALU design features a
microprogrammed a~proach, implemented in MECL, and utilizes 60-bit
microinstructions with a cycle time of 75 nanoseconds. The ALU
performs one arithmethic and one comparison operation during each
cycle. The ALU also features multiply and divide hardware that operates
independently to produce 16-bit integer results at a 40MHz rate.

The ALU executes a proprietary algorithm to perform the scan
conversion and provide numerous improtant features. Line segments
can be plotters at widths of 1 to 127 spots from center line data. Line
segments may also be plotted as dashed, dotted or solid. Three patterns
are also available to fiU closed polygons. Fill patterns are contained in
PROM's allowing them to be customized to user specifications. The area
fill feature, of course, greatly enhances the utility of the generated plots
by allowing areas to be readily distinguished.

Thus, the MPC makes the speed and attendent convenience of existing
matrix plotters a reality to the users of interactive graphics systems. For
the first time, a user can command a plot, wait a single view time to load
the vector memory, and have his area-filled plot delivered at full rated
matrix plotter speed.

2-7

SECTION 3

SYSTEM OPERATION
The operations of the GDS II system encompass a large variety of tasks in
addition to simple digitizing. The shift in emphasis towards total design
data bases, rather than simple graphics data bases, reflects the evolving
requirements of the production environment as well as the design
environment. The cabality to verify that final artwork conforms to design
specifications, for example, requires that the information content of the
data base be extended beyond strictly graphical data elements.

Since the GDS " System meets the users' requirements in doing a great
deal more than merely collecting coordinates, the operation of the
system must be discussed accordingly. The system provides a
framework for the data collection process which each customer or
installation may extend as desired. Before any digitizing may be done,
the user must decide what data is to be collected, how libraries are to be
organized, and so on. Only in this way can the most effective utilization of
the system be achieved. Accordingly, the discussion of system operation
begins with data base considerations.

3.1 Database Extensibility

CALMA provides turn-key systems in many areas of application. The
GDS II system can be applied to a number of 2D disciplines including
integrated circuit and printed circuit design. CALMA tailors the GDS II
system to a particular discipline by implementing specialized primitves,
implementing specialized GPL II programs, implementing specialized
background programs, providing standardized menus, and providing
standardized data bases. Each of these capabilities can be extended by
CALMA or the customer. Extensibility facilitates both evolutionary
system development and customization to meet application and user
specifications. Of particular importance is data base extensibility, i.e.,
the ability to add new kinds of data base design with at most only
externally defined (not understood by the system) conventions being
used to implement the storage of new information. The GDS II Database

Manager provides data base extensibility thus allowing the user to
specify his own aata base which incorporates elements and properties
unique to him and meaningful to the system.

3.2 Database Elements

In dealing with large quantities of data two kinds of distinct partitioning
are required. The first kind of partitioning is spatial. This kind of
partioning allows extreme flexibility in specifying combinations of
partitions for use in most editing operations. The second kind of
partitioning allows the graphical presentation of an object to be specified
independently of the spatial partitioning. Spatial partitioning is
implemented by the 64 layers of a drawing. Representational partitioning
is achieved through the 64 datatypes assignable to any element of the
data base.

The GDS II data base organizes data into classes of elements:

(1) Paths - unclosed polygons with width

(2) Circuits - closed polygons

(3) Srefs - structure references

(4) Arrays - structure references in a rectangular configuration

(5) Text - describe the graphical presentation of paragraphs of text

(6) Snap - specifies connect points

(7) User-Definable - which allows the userto define the elements of
the database, via convenient property lists

3-1

Graphic elements have layer and datatype associated with them.

The layer may be between 1 and 64.

The datatype may be between 1 and 64.

The path width may be any size.

3.3 Database Construction

A drawing in the GDS II System is defined as the contents of a library set.
A library set is composed of a master library and a working library.

Master libraries are defined by the user on a project or process
technology basis. The master library incorporates the data base schema
and therefore determines the kind of data elements that may be defined
in a working library. The master library may include exemplars which
specify default values for typical working library elements. While an
exemplar might be thought of as a skeleton or pattern for the data
element, the data in an exemplar is accessed by reference. This allows
the default values to be overridden on an instance-by-instance basis and
yet permits the default values to be easily edited. Nested references by
elements in the master library to structures defined with the master
library are allowed.

A working library is always associated with a master library. Except for
references to the master library, the working library is self contained. The
working library may define exemplars and data structures for reference
by name just like the master library. Any component unique to the
working library is presumable defined in the working library. In
particular, it is not necessary to define a component externally just to
reference the structure at multiple locations in the drawing.

Given that a master library has been created, the typical use of the system
is to create or edit a working library. While more than one master library
may exist with multiple users accessing different master libraries, the
master library may also be shared. While the master library would be
handled as a read-only file in such a circumstance, a working library is
generally allowed to be accessible by only one user at a time. In

3-2

particular, multiple users cannot request update access to a single
library.

3.4 Menu Operations

Menu Operations refer to the selection by the user of a string of
characters to be processed just as if the user had typed them individually.
Through this mechanism a unique "Ianguage" is implemented to
interface operators or designers to the powerful primitives of the system.
Because of GPL II programming these strings can be used to generate
powerful, conditional, context dependent processing functions,
complete with user prompts. At the other extreme each selection could
generate just a single keystroke thus simulating a keyboard.

The implementation of the menu capability involves hardware and
software selection mechanisms. Basically there are 512 different menu
selections with as many as 64 characters definable to each. A 32 function
button keyboard is provided, each key of which can select any of the 512
menu buttons. On a tablet or digitizing table a menu area is defined by a
rectangular area divided into rows and columns of rectangles so that up
to 512 of the menu buttons may be addressed by geometric position in
the menu area. Additionally, the menu area may be shown on the VMD
screen, so that when the cursor is in the area a selection may be made by
moving the cursor to a user defined graphical presentation of a menu
button and entering the selecting coordinate. By this method the user
may keep his attention focused on the graphic display during system
operation.

Creation and modification of menu buttons is easily achieved using the
GDS II Text Editor (TED). Menu definitions may be saved and restored in
RDOS files. Even though menus are easily produced, standard menus
are provided to facilitate training.

3.5 Graphic Display

The Vector Memory Display (VMD) is an intelligent graphics display
device which stores the display file in its own local memory. The display
file is generated from the drawing data within the user-defined data base
window of the drawing. All or part of the display file may be viewed on the

user-defined viewport(s) of the CRT screen. The viewport(s) may be
located within the CRT window. The user can pan and zoom the data in
the drawing file at any time, independent of digitizing or program
execution.

The VMD has multiple cursors. Cursors may be used to trace the position
of the digitizer (for coordinate entry) or the menu position for on-screen
VMD buttons. Line types for paths/circuits include solid, dashed, dash
dotted, dotted, or invisible. The VMD has clean selective erase, which
means that delete operations as they occur will be echoed properly. The
user may place construction lines, which are temporary and do not exist
in the data base, but which may be erased instantly at any time the user
desires.

The VDM data base window is the actual contents of the vector memory
of the VMD. A radical move over the big drawing necessitates reloading
of the VMD. Typically, the view window will only be a portion of the
database window.

Panning is either manual or automatic; the manual mode is invoked by
moving the viewport in any direction or centering it on a spot. Thesize of
the viewport is also user defined upon manual pan. In automatic mode,
the system moves the viewport with the cursor, so that the cursor is
visible at all times, for ease of digitizing without interruption.

Zooming in and out is done relative to the center of the viewport. Zoom
may be direct or continuous; for direct zoom; the user specifies the
absolute or relative magnification factor. The relative magnification
factor is used for saying "2X" or "0.3X". In the continuous zoom, the user
specifies the upper and lower absolute magnifications. To start the zoom
before assigned completion, the user presses either button.

The user will normally have two viewports, one depicting the global view
of the drawing, the other showing the local vicinity of the cursor while
digitizing. The local may be in automatic pan and zoom modes, and the
global view might be in manual pan and zoom. Moving the digitizer
sensor (puck) moves the cursors in both views. If the user moves the
cursor out of the local viewport, the automatic pan will continuously
move the local view around the cursor.

For lesser display devices, the VMD emulator directs output to process
GDS " manual viewing commands in as much as the device can act like
the VMD. The emulator requires an extra RODS ground and keeps the
display file for the device on disk. The emulator cannot (in the case of the
Tektronix CRT) partially erase, pan automatically, continuously zoom, or
display multiple cursors.

Line Types include solid, dashed, dotted, dash-dotted, and invisible on
the graphics display according to datatype specification. Four fill types
are also defined and are displayable according to datatype
specifications.

3.6 Character Display

The character display device supports the full ASCII character set,
including lower case. The area of the screen is divided into two sections,
a header in the first 3 lines and a scroll.

The header contains data which is updated continuously. The cursor
location is displayed in user units on the top of the screen. This display is
updated 10 times per second in parallel with the graphic cursor(s). The
current time and date are also displayed in the header. The last line in the
header is used for user-definable status information.

The remainder of the character display screen is used for a scroll with
new lines being entered at the bottom of the screen. The scroll is being
used to display input prompts, to log all commands executed, and to
display any error messages.

In digitizing, if expected results do not appear on the graphic display, the
user may redirect his attention to the alphanumeric display to find a
record of the most recent interaction with the system. As a visual cue, all
error messages will be output in bright characters.

A general capability featured in the GDS " system is the facility to "type
ahead". When a menu button is selected, forexample, upto 64 characters
including carriage returns are entered as a burst. All characters entered
are echoed, but the echo is performed when the characters are actually
used. It is conceivable that in some situations an advanced user will be

3-3

able to enter one or more complete commands while the system is still
executing the current command. By delaying the echoing of any pending
input, any output follows the command line which causes that output.
Error messages are also synchronized with the command line which
causes the error. If an error is detected, any input which is pending (and
has not been echoed yet) is discarded.

All coordinates are equivalent to character strings. If the cursor is in the
menu area, the display on the character CRT is the text associated with
the button as described above. If the cursor is in the drawing area,
however, the display on the character CRT is the current location of the
cursor. The values displayed are in user defined units and represent the
net effect of any scaling or working grid.

While the user will normally use the pen as the principal input device in a
digitizing situation, he does have recourse to the inputting or editing of
text data.

3.7 Coordinate Interpretation

It is important to separate the notion of physical units and the capability
to resolve those units for representational and manipulative purposes. A
given horizontal or vertical line can be measured in any units that the user
deems natural. The number of addressable coordinates along the line are
restricted to a finite number sufficient for all resolution deemed
necessary by the user. A change of natural unit usually doesn't require a
change in coordinate resolution. Sufficient resolution is mandatory.
Most coordinates fall on a regularly spaced pattern called a working grid.
Occasionally intermediate points are desired or necessary for specifying
such things as half grid width for centers of lines with width or circle
centers, more uniform representation of a circular boundary, or perhaps
even a good representation of a square of some grid width rotated 45
degrees (n *sqrt(2) is irrational, but an additional 45 degree rotation really
ought to be correct).

Because of such reasons as these and more importantly the need for
higher density designs in smaller physical units, the GDS II system
allows the user to specify any convenient natural unit and has a resolving
power of one his natural unit resulting in an immediate change in the
presentation of coordinates.

3-4

Because most coordinates fallon a regular grid patter, the system
provides a working grid capability with independent X and Y spacing and
origined at any coordinate of the data base. Each coordinate entered by
the user is forced to the nearest grid point. Grids can also be displayed on
the graphic CRT. Grids are readily changed on command.

For those using a scaled source document the axes of the document can
be independently specified at any angle to the table with as many as 11
reference points on each axis used to scale the document.

3.8 Data Entry and Edit

The GDS II Graphics Editor contains three modes for the purpose of
lightening the input task. The first is conventional straight-line edges.
The second is "orthogonal interpolation", which outputs the segment as
two pieces, the horizontal piece and the vertical piece. The user may
specify X-first or V-first. The final mode of input segment entry is
"octagonal". The segments output are always horizontal, vertical, or 45-
degree slant segments. Circles are additionally enterable as an
interpretation mode by defining 3 points on the circumference,
endpoints of a diameter, the center and the radius. Arcs are enterable as
an interpretation mode in an even greater variety of ways.

Selection of items to change (one at a time) is done through the Graphic
Editor via the get mode, which accepts one coordinate value.

Features possible for get mode:

1) get nearest sref

2) get nearest path

3) get nearest circuit

4) get nearest array

5) get nearest graphical element

6) get next identified element

7) get snap node definitions

One can choose the vertices to delete or add upon getting the polygon for
edit. All operations done are abortable without the loss of information.

Elements are created in "modes"(such as path mode, circuit mode, sref
mode, ...). This optimizes the amount of redundancy in user interaction.
The modes are arranged in an English-language form for easy
understandability, and ease of training.

Repetitious elements may be placed using copy.

Elements may be rotated, translated, magnified, or copied by the Graphic
Editor.

Attributes of an element may be changed upon user command. (Such as
layer, width, datatype, transformation ...)

Polygons:

Polygons are created by specifying path or circuit as the current input
mode, and entering its vertices in the same order that they occur in
connection, and terminated by a null input line.

Polygons may be unioned, intersected, logically not-ed, and xor-ed with
each other.

Any portion (or all) of a polygon may be repositioned with an arbitrary
transformation, such as stretch, rotate, or mirror. Closure is preserved.

Rectang les:

Rectangles are optimized for entry, as two-point forms.

Structure References:

Structures are referenced by digitizing orgins in sref mode. User
definable transformations are saved as part of the structure reference.

Snap Elements:

Snap elements are defined and edited as a set of points. Snap locations
are used to relate a structure to locations in its referencing environment.

Delete Features:

The user may delete points from the path/circuit in edit.

The user may delete srefs or arrays.

The user may delete the last thing he created: a general undo function.

The user may abort the current mode of entry.

The user may get a path/circuit and reopen it for edit, (then the user may
undo vertices, or designate an arbitrary vertex or set of vertices for rapid
deletion).

The GDS II Graphic Editor ignores trivial or redundant point cases to
facilitate straightforward editing.

Exemplars:

The user may define any exemplar (property list) for
part/circuit/sref/list/array binding.

Exemplar properties can be overriden by explicitly defined properties in
a given element.

Properties in an element (layer, datatype, width, exemplar, reference,
transform, etc.) can be changed by the user at any time.

3.9 Data Selection and Transformation

Editing multiple data base elements simultaneously involves selection
criteria and transform operations. Most selections are on the basis of
templets (selection masks), others are based on property selection,
geometric selection, or identified order selection. The identified group is
a set of elements accumulated through selection mechanisms. Once
selected this group may be processed by the various editing operations

3-5

and still retain their identified property. Of course the identified group
may be cleared at any time by the user.

"Templets" of layers are used to specify modifiable layers, addressable
layers, and visible layers. Templets of data types are used to specify
modifiable and addressable elements. Thus it is possible to restrict
operations to any of 4096 (64*64) classes of elements or numerous other
combinations. Templets are used to determine the four line types and
area fill types for a given graphical presentation on the VMD display.

The system makes use of many selection mechanisms by their
appropriateness and ease of use. Layer and data type templets are used
most often in restricting various operations. Three other major methods
of data selection are: property selection, geometric selection,and
identified g roup selection. All of these methods are supported by each of
the editing commands.

Property selection is determined by the specification of property
relational statement composed of property spec!fiers and literal values
combined with =, <, >,<=,>=,and,or,not. Such a statement, if true, selects
the associated data base element.

Geometric selection is specified by the closest vertex to a pOint, all
vertices/structure references inside/outside a given closed region, or all
circuits/paths which are wholly inside/partially inside/partially
outside/wholly outside a given closed area.

Identified group selection can be used to process all elements that
are/are not in the identified group.

Edits do not modify the identified group except for deletions. The
identified group may be cleared at any time. To add to/delete from the
identified group any of the above methods of selection may be used.

Those selection methods addressing individual vertices may be used for
stretching or deletion. More generally the addressing methods may be
used to replace properties or to modify elements by translation, rotation,
magnification, reflection, copying, deletion, changing layer, or changing
data type.

3-6

3.10 Text Entry and Edit (TED)

The GDS II text editor is intended for many types of editing. The main
types are:

1) Editing/Creating GPL II programs.

2) Editing/Assigning GDS II buttons for the menu.

3) Editing/Assigning text in a text element.

4) Editing/Creating Database Schemes.

Edit of a GPL II program is done by file name, edit of a button is done by
button number, and edit of a text element is done by the location of the
text element. Edit of a database schema is also done by name.

TED is a well-weathered Teco/style text editor, patterned after the one in
RDOS.

Insertion/deletion of lines or characters is possible, as well as the
powerful "change the next occurrence of this string to something else".

Searching for any string of characters, possibly containing a carriage
return, is possible.

3.11 Initiating Background Jobs

The GDS II Job Management System provides the facility for executing
background jobs. Any executable RDOS program ("save file") may be
invoked as a background job. Background jobs are non-interactive: once
started up, they execute independently of the initiating station.

Both CALMA-written and user-written programs may be executed as
background jobs. The CALMA-written programs include the following:
plotterdriving programs for on-line and off-line pen and photo plotters,
pattern generator output programs for optical and electron-beam pattern
generators, pattern generator read-in programs, dump and load
programs for transferring drawings to and from magnetic tape, GDS-to-

GDS II data conversion, and design rule checking programs. These are
descri bed in detai lin Section 5.5.

User-written programs can also be run as background jobs. These
programs can be written in Algol or Fortran and compiled using Data
General compilers. They may also be written in assembly language.
Access to the GDS " database (for reading, creating or changing data) is
available to Algol programs and Algolcompatible Fortran subroutines,
through the use of CALMA-written database access routines.

The user initiates and controls background jobs through a number of
GDS " commands. These commands allow the user to initiate a job,
terminate or suspend a job, change the priority of a job, and find out
information about all jobs in the system.

3.12 Program Development

The GDS " System supports a wide range of capability in the
development of user programs. The development of custom programs is
an option that allows the system to be tailored to the user's unique
requirements in either the data collection or data processing areas. While
no special programs are required to use GDS /I System, even in many
cases where the database definition has been extended, system
enhancements may frequently be good investments.

The highest level programming language provided by the GDS /I System
is the GPL I pM Programming Language. The GPL II Language is a general
purpose programming language designed for interactive use. It is
patterned after APL, a programming language which is widely available
commercially. A common characteristic of both of these languages is
definition of a complete set of array operators. With the GPL /I system,
such operations as translation or rotation of a matrix representing a
polygon is programmed as a single operation. Additional benefits
include interactive execution and a full set of debugging aids.

The GPL II programming language is a superset of the GDS II command
language. A set of commands can be transformed into a program with no
changes whatsoever. Typically, the computational power of the GPL "
Programming Language would be used to provide conditional execution
of commands based on feedback from the system. On the other hand the

computational power of the GPL II language can be used, for example, to
evaluate arithmetic expressions in the command language without
writing a program at all. A more significant use of the GPL "
programming language is to implement programs which access values
stored in user defined extensions to the data base.

The GDS " system supports several standard Data General
programming languages. The most important of these is DG/L which is a
derivative of ALGOL. Advanced users may choose to write DG/L
programs that become part of the GDS " foreground system and may be
referenced by the command language or the GPL /I programming
language. The user also has the option of writing a DG/L program which
interfaces with backgroung job supervisor if less demanding access to
the data base is sufficient.

The advantage in using DG/L is that the source language is compiled
directly into the ECLIPSE instruction set ratherthan being interpreted as
is the case for the GPL /I programming language. Therefore, DG/L is a
more suitable vehicle for programs with very extensive computational
requirements. The disadvantage in using DG/L, as compared to GPL /I, is
that interactive debugging at the level of the source language is not
possible. The physical limitations of the machine in respectto how much
memory can be addressed at a time are also much more in evidence using
DG/L.

The GDS II system also supports FORTRAN as defined by Data General.
An interface between FORTRAN and the GDS /I system can be
implemented.

The GDS II System also supports the macro assembly language available
from Data General.

Except for the GPL " Programming Language, all programming
language development and debugging must be performed as a separate
job. Provided that sufficient memory space is available, the user may
detach his station from the GDS " System and enter the RDOS
Command Line Interpreter. In this mode, all of the standard RDOS
compilers, loaders, and utilities are available. Even debugging is possible
except in those cases when the interrupt off debugger is required to
diagnose a problem. At the conclusion of this mode of operation, the user

3-7

may reattach his station to the GDS II foreground and resume normal
operations.

3.13 Command Primitives

Since the system is menu-driven, the actual command language format is
relatively unimportant to either the casual or production user. At least
during the get-aquainted period with the GDS II system, and perhaps for
some time thereafter, the users' experience with the command language
will be limited to the extent of defining new menu buttons to tailor the
system to meet his special requirements. It is anticipated that some
customers will see fit to create a programming staff to see to it that they
are making the most efficient use of the system.

Since most of the interaction with the system is at the menu level, it has
been possible in the design of the GDS II system to treat the command
structure as a language. That is, a consistent set of syntactical rules have
been defined that are simple to learn. The syntax of a command does not
depend on the particular command in question. This approach has been
possible only because we have not been forced to be overly concerned
about keystroke optimization at the command level.

In addition to a simple and consistent syntax, the basic philosophy of the
command language design is to separate the data collection, data
manipulation, data storage, and command iteration functions. This
design has advantages if the user does nothing but use the standard
system menu.

The data collection routine for defining a closed polygon shape is a
primitive function in the command language. The most important use of
this primitive, of course, is to digitize a polygon to be saved in the data
base. The same function may be used in defining a region for area editing
or group selection commands, however. Traditionally, there have been
several tools implemented for use as operator aids in digitizing complex
shapes. As editing procedures have become more powerful, the user is
left to define a complex window with no help at all. The GDS II polygon
data collection primitive can be used to support both data creation and
editing functions. Using the same primitive, of course, guarantees that
the specification of a complex shape is always handled in a consistent
method.

3-8

The data manipulation routines are implemented as another set of
primitives. These routines are special in that a context is generally
desired while digitizing. The variables in the context are important only to
the data creation primitive. In the original GDS system, for example,
changing the mask layer affects the operation of several commands, e.g.
SS, RT, CC, etc. In the GDS II system, such a change affects only one
primitive. The concept of mask layer is important only when the data is
saved, not in how the data is digitized.

Finally, command iteration is separated from the actual function.
Therefore, it is just as easy to define a menu button that iterates
collecting circles as it is to define a button that iterates collecting
rectangles.

3.14 GDS II Accounting

The accounting features included in GDS II facilitate the global
supervision of users/projects, with consideration to how much
foreground activity occurred for each user under whatever projects that
user worked in. The time aquired will be listed in both wall-clock time
(actual station time) and CPU time (computation time). Wall clock time
reflects the actual time spent typing and waiting (if any) and CPU time
reflects the time for GPL " programs run and GED primitives invoked.
Provision is also made to log those background jobs which were started
under the user/project, including the time for the run and a description of
the command to generate the process, and, if applicable, when the job
was aborted.

SECTION 4

SPECIFICATIONS
GDS II is a unique and complete graphics system featuring design and
production capabilities. The following specifications exhibit its VLSI
capabilities as well as more generally applicable features.

4.1 Database Features

Elements:

Elements are the basic entities with a GDS II Database.

Elements are assigned "element types" as they are created. The set of
element types may be extended by the user.

Elements are collections of properties or attribute-value pairs. The data
type, precision, transformation class, and shape of properties may be
defined. The set of properties may be extended by the user.

Exemplars:

Exemplars are elements that have a user assigned name.

Once associated with an element, an exemplar supplies default or
common properties thereby facilitating editing and also compressing
data.

Structures:

Structures are collections of elements.

A structure is composed of a "superstructure" and "infrastructure". The
superstructure contains only the data required to relate the structure to

its external environment. The infrastructure contains the remaining
information.

A structure may reference another structure in a hierarchial manner. Any
reasonable number of levels of nesting structure references may be
accomodated.

Libraries:

A library is a collection of structures, exemplars, schemas and tables for
use by the Database Manager.

The number of structures in a library is limited only by available space.

Each library is implemented as an RDOS file and may contain up to 33.5
million bytes of storage area.

A working library together with its associated master library comprise a
library set.

4.2 Input/Editing

Coordinates:

• Specified in user's natural units

• Natural and physical units changeable at any time

• Independently defined X and Yaxes

• Independently scaled X and Y axes with up to 11 scaling points
per axis

4-1

• Independently specified X and Y grid, scaled in user units, at any
X and Y origin, changeable at any time

• Grid display on graphic CRT

• Straight, orthogonal, and octagonal interpolation

• Coordinates specifiable by digitizing, snapping, literal
specification, and relative specification

• In elements, coordinates are connected by linear or circular
interpolation

• Resolution of 1 part in 4,294,967,296

Selection:

• 64 layers and 64 datatypes specify up to 4096 classes of elements

• Templets of layers and other data types used to specify
modifiable, addressable, and visible elements

• Selection by property of elements

• Selection by geometric relations

• Selection by membership in Identified Group

• Selection is used to add to Identified Group

Data Elements:

• Path - polygons with width

• Circuits - closed polygons

• Structu re references

• Arrays of structure references

• Text

• Snap coordinates

• User-defi nable

Graphic Editor:

• Any element may be selected or created

• Properties of selected elements are modifiable

• Points can be moved, added, or deleted

• Selected elements may be rotated, translated, reflected,
magnified, copied, or deleted

Data Transformation:

4-2

• All elements addressed may be rotated, translated, reflected,
magnified, copied, or delted

• If geometric selection is made individual vertices may be moved
or deleted

• Transforms affect elements, and, except for deletion do not
affect membership in the Identified Group

Text Editing:

• Editing operations are the same for all text strings in the system

• Editing source may be a GPL II program, a menu button, any text
property in an element, or a database schema definition

4.3 Display Control

Graphic Display - VMD:

The Vector Memory Display is used to display graphic data items, and, at
the user's option, the current menu page. Data presentation features
include:

• Line presentation may be solid, dashed, dash-dotted, or dotted

• Line presentation is a unique property--not necessarily related to
layer

• Selected lines may be made invisible or blinked independently of
presentation.

• Selected areas may be filled with pattern.

Alphanumeric CRT:

The alphanumeric CRT is used to display current status in real time and
record a log of all recent operator interactions. Status information
includes:

• Current cursor location, in user units, continuously displayed

• Current mode of interactive programs (if enabled)

Operator Interaction log includes:

• Commands executed

• Input prompts

• Error messages or results (if non-graphic)

Window:

The VMD is loaded with all data to be manipulated in an edit session. The

result of this process, which may exceed SDK vectors, is termed the
database window.

• Flexible data base window selector mechanisms:

•• Selection by property value--e.g. layer(s)
•• Selection by location

• Alternative handling of structure references:

•• Superstructure presentation--boundary and connection
nodes

•• Infrastructure presentation--internal detail and nested
reference

Viewports:

The VMD allows multiple, viewports into the data base window. Each
viewport may be controlled independently of any other command in the
system. Capabilities include:

• Increase magnification (and increase resolution)

• Decrease magnification

• Specify magnification factor

• Start/stop continuous zoom

• Move viewport in any direction

• Start/stop continuous pan

Update frequency:

• Viewport changes are handled instantaneously by the VMD

• All coordinates entered in the drawing area are marked
immediatly, at the user's option on the graphic CRT

4-3

• All characters input as part of the current input request are
echoed immediately

• All input typed ahead, prompts, error message, etc. are synchro
nized with the input commands

• Circuits are drawn as soon as each vertex is entered

• Paths are indicated by temporarily drawing the center line. The
widened path is redrawn on completion

• Rectangles are drawn on completion

• Deletions are performed on command

• Cursor location(s) on the VMD and x-v location displayed on the
alphanumeric CRT are updated 10 times a second

Display Speed:

The GDS 1/ Operating System is capable of drawing vectors while
loading the VMD at a rate of 3,000 - 4,000 vectors per second. Any change
to the display (pan, zoom, translate, modify) affecting a simple element
or a group of ele!llents is handled in 25 milliseconds. Assuming that the
VMD memory is full, yields an effective transfer rate on the order of
100,000 to 200,000 vectors per second.

4.4 Background Programs

Design Rule Checks:

• Internal spacing checks

• External spacing checks

• Layer-to-Iayer intrusion, extension, oversize and area of
intersecton (not available in initial release)

• AND, OR NOT combinations of layers (not available in initial
release).

4-4

• Area Merging (not available in initial release)

Pen Plotters (on and off-line):

• Calcomp 936,960

• Xynetics 1100, 1200

• Versatec 8242 (not available in initial release)

Pattern Generators (input as well as output):

• Mann 1600,2600,3000,3600

• Electromask 2000

• All-angle geometries may be processed

Photoplotters (not available in initial release):

• Precision plot 2030

• Gerber S40, 632, 1232, 2032

E-Beam Pattern Generators (not available in initial release):

• Etec MEBES

• Cambridge EBMF

Database Compatability (input and output):

• GDS

4.5 Application Programming Tools

Graphics Programming Language:

GPL IITM provides:

• Numeric and character data types and operations.

• Scalar, vector, matrix, and higher order array data structures.

• Non-reverse list data structures.

• A full set of array and list processing primitives.

• An ALGOL-like control structure to facilitate structured
programing.

• Full support of user programs--as operators or subroutines.

• Interactive execution--disk calculator mode.

• Interactive debugging at the source language level.

RDOS Programming Languages:

• FORTRAN
• ALGOL
• BASIC
• DG/L
• Macro Assembler

Utilities:

• Database Access Routines (FORTRAN, DG/L)
• Editors
• Loaders
• Debuggers

The combined facilities of GPL WM, FORTRAN, ALGOL, RDOS and the
Database Access Routi nes offer the abi I ity to tai I or G OS II to a variety of
graphic processing functions, including:

• Expansion of the command repertoire.

• Input/Output interface programming for special devices.

• Format conversion and manipulation of graphic data bases.

• Design rule checking.

• Simulation

• Test data generation

All programming and debugging is done on line, without jeopardizing
circuit design or production activity.

4-5

4.6 HARDWARE

Central Processi ng System:

Computer

Instruction Length

Hardware Accumulators

Index

Add ress Modes

Operator Control

Memory Cycle Time

Standard Memory Size

Memory Fully Expanded

Standard Arithmetic Element

Standard Disk System:

Transfer rate

Access time

Single drive capacity

Expansibility

Optional Large Disk Subsystem:

Transfer rate

Access time

Single drive capacity

Expansibility

ECLIPSE S/230

16-bit and 32-bit

4

2 hardware, 16 memory

Direct, Immediate, Indexed, Extended, and Multi-level Indirect Addressing.

Control panel with switch register

200-640 nanoseconds

128K, 16-bit words (4 stations)

256K, 16-bit words

High speed, single and double-precision floating point processor.

2.1 x 106 bits/sec

35 ms (average random move)

12.5 million words

One additional drive may be added

9.6 x 106 bits/sec

30 milliseconds (average)

50, 75, or 150 million words

Up to three additional drives of equivalent capacity may be added

4-6

4.6 HARDWARE (Continued)

Design Station:

Tablet:

Size

Resolution

Accuracy

Repeatability

Input Device

Graphic Display (VMD):

Vector Storage

Imaging System

Display Points

Display Size (diagonal)

Point Generation

Vector Generation

I mage Storage

Storage time per image

Erase time

Vector draw time

Controller

11" x 11"

100 lines/in. or 0.01 in.

AO.01

AO.01

Pen Stylus

128K 16-bit words of solid state memory store approximately 50K 16-bit
vectors.

Digital TV refreshed 30 times per second, regardless of information on display.

1024 x 1024

21" (53.34 cm)

Any addressable point intensified.

Hardware vector generation intensifies points between any two addressable
points.

256,000 bits of solid state memory store value of each addressable point*

Indefinite

1 ms

250 nanoseconds, plus 35 nanoseconds for each addressable point in major
axis

Intel 8085 microprocessor

4-7

4.6 HARDWARE (Continued)

Alphanumeric Display:

Full ASCII, 96-characters

Capacity

Features

Alphanumeric Keyboard:

Full ASCII, 96-characters

Repetition Rate

A-Z, a-z, 0-9, puncuation and graphic symbols

24 lines, 80 characters/line

Addressable Cursor
Reverse Video
Bright Characters

A-Z, a-z, 0-9, puncuation and graphic symbols

10 cps

*As the video monitor, which had a grid of 1024 x 1024 addressable
pOints, is being refreshed, an interpolation algorithm, which operates in
real time, is used to fill in the dots not explicitly stored in the raster
memory_

4-8

SECTION 5

SOFTWARE
5.1 Multiground ROOS

The GDS II is built upon an enhanced version of Data General's Real
Time Disk Operating System (RODS). This more powerful operating
system is known as Multiground RODS because it supports additional
jobs beyond the "foreground" and "background" provided by the
standard Data General RODS. Up to sixteen (16) separate "grounds" or
jobs may be run concurrently with the system, providing complete
isolation and protection for each ground. This permits for example,
several different interactive graphics to run at the same time (e.g., GDS II
and DDM), or a interactive graphics concurrent with program
development and debugging.

CALMA's Multiground RODS is arranged with a main-memory resident
executive and system overlays residing on the disk. The executive must
be resident in main memory storage before beginning continous and
coordinated processing. The resident portion of RODS can manage
overlays and buffers, process system calls, and service device interrupts.
The system overlay modules are dynamically brought into main memory
from disk storage as required. These perform operations such as
device/system initializations, file management functions like file
creation/deletion and accessing, code conversions, real-time clock and
time-of-day clock control and spooling control.

RODS interacts with the user via the Command Line Interpreter (CLI).
The CLI provides basic utility functions and file maintenance commands
as well as a powerful means for passing parameters to programs that are
invoked. Additionally, the CLI supports a nested macro facility that
allows complex sequences of commonly used primitive commands to be
parametrically generated in response to prompts from the user.

Memory Management and Protection:

A memory management and protection device has been developed for
ECLIPSE computers. This option is supported under CALMA's
Multiground RODS.

The option extends the maximum main memory configuration for a
single central processor from 32K to 256K words. Within the framework
of an executing program, two modes exist. The first mode is the absolute
mode. In this mode, only the lower 32K is directly addressable. RODS
resides in the low physical memory locations and executes in the
absolute mode.

The second mode is called the mapped or user mode. In this mode, up to
thirtytwo 102410 word pages of logical memory are mapped into real
memory. User programs execute in user mode. Thus, they need not be
aware of their actual memory locations and need not occupy contiguous
pages of memory.

I/O units can be selectively protected against unauthorized user control.
Areas of logical memory can be write-protected and validity-protected
on a page basis, allowing the supervisor to load a reentrant routine for
many users only once. Validity protection insures that only that portion
of the user's program being used need reside in storage.

Any program operating in user mode uses a complete logical address
space, which includes its private page zero and extends through its upper
memory bound. This is determined by the requirements of the individual
program prior to its execution. Managing the mapping device and
constructing the user program as a logical address space is also the
responsibility of RODS.

Among the standard features of RODS are Program Swapping, which

5-1

allows up to five core images to be "pushed" to disk and then "popped"
back and restored to execution. This permits multipass algorithms to be
cleanly implemented as swaps so the entire core space of the ground is
avai lable for use.

RODS also allows user direct I/O handling including data channel
support and user interrupt handling. Multiground RODS retains system
protection features even when a user interrupt level routine is in control.

Task Scheduling:

A task is a logically complete execution path through a program. This
path can be executed independently of another task within the same
program.

RODS permits "multitasking" within each ground; this means within the
same address space there may be more than one asynchronous process
(task) that competes for CPU. The Scheduler for Multiground RDOS is
"interleaved" among grounds and tasks; that is a priority is computed for
each task in each ground to give control to. This permits high and low
priority tasks to co~exist in the same ground with the priorities correctly
interpreted. The fast response of Multiground RODS is attributed to this
advanced scheduler that does not allow CPU-bound background
operations to degrade the basic interactive response of foreground
graphics. To fairly allocate the CPU among processes of equal priorities,
the Multiground RDOS scheduler keeps statistics on which processes
are using the most CPU time and correspondingly lowers their priority to
allow equal progress by all processes with the same priority.

Input/Output Operations:

Efficient handling of input/output operations is an important feature of
RODS. A device-independent mechanism is provided to access all
hardware file peripherals and disk program/data files.

Most data transfers to or from disk files and hardware devices are
buffered by the operating system. Each system device hand ler has a
small buffer associated with it, the size of the buffer depending on the
speed of the device. Disk transfers are buffered in the system buffer area,

5-2

which is organized into blocks of 256 words each. Data transferring from
a disk file is read into this buffer area before the data within the block
desired by the user is transferred to his buffer.

RDOS also provides a method fortransferring data directly to orfrom the
disk and buffer in the user memory area. Thisgives the user fast access to
data stored on the disk.

Spooling:

When messages are output on a slow device like a teletypewriter, and its
buffer fills up, the calling task is suspended until the buffer is emptied.
Spooling allows messages to be temporarily stored on disk. The
messages are later returned to main memory when space in the buffer is
available. The significance of spooling is that output messages or
information can be queued without putting excessive loads on the user
main memory for buffering. This also frees the user from having to
optimize his message requests, and thus permits more effective use of
the device.

File System:

. The RODS file system provides a generalized means of accessing files on
disk. Filenames in RODS may be from one to ten (10) characters in length
and optionally may contain a one or two letter filename extension at the
end. The filenames are referenced through directories. Directories may
be nested up to three deep in RDOS; the top level is equivalent to the
entire disk pack and is called the Primary Partition. Files may exist at the
primary partition level or may be associated with directories contained
therein. The first level below the primary partition is called the secondary
partition. It is characterized by a fixed amount of disk space. And it may
either have files directly accessed from it or have one additional level of
directory within called a subdirectory, which also may have files but no
additional directory structures. Files in the current directory may be
accessed by simply giving the filename; files in any other active directory
(1-10 characters) followed by a colon to the filename.

RDOS provides three disk file structures: Sequential, Random and

Contiguous. Information in sequentially organized files is stored in
groups of disk blocks. The last word of each 256 word block is used to
store a link to the next block in the file. This link is invisible to the user,
and is solely for the system use.

When building a sequential file, the system simply appropriates the next
available disk block when storage is needed. It then constructs the link to
the block. In a sequentially ordered file, after processing any given block,
the system may step either to the previous block or to the next block in
the series. Sequential files are very useful for indexes or small user files.

Random file organization provides the best combination of flexibility and
accessibility of data. In randomly organized files, a master index of all
physical block addresses is created. The master index blocks themselves
are sequential files.

Blocks of data storage in random files utilize all 256 words for information
storage. Each block is assigned a sequential positive integer by its
position within the master index, indicating the block's logical position
with the file. I n processing randomly organized files, two disk accesses at
most are required for the reading or writing of each block: one to access
the file index and one for the block of data itself. If the index is main
memory resident (having previously been read into a system buffer), only
one access is necessary.

Centiguous file organization has a rigid structure, but it provides the
quickest access to data. Contiguous files are composed of a fixed
number of disk blocks, which constitute an unbroken series of disk block
addresses. These files can neither be expanded nor reduced in size,
since, by definition, they occupy a fixed series of disk blocks. Contiguous
files may be considered as files whose blocks may be accessed
randomly, but without the need for a random file index.

All I/O operations which can be performed on randomly organized files
can be performed on contiguously organized files. Contiguous files have
the advantage of usually requiring less time for accessing blocks within
the file.

Programming Facilities:

Multiground RDOS retains complete compatibility with Data General's
RDOS and therefore allows all the software products developed by Data
General to be run without modification. Included are compilers for
FORTRAN, ALGOL, BASIC, and DG/L. To round out this collection of
system programs Data General provides a complete selection of support
programs such as editors, loaders and debuggers.

Programs may make calls to the GDS II Database Manager to access
GDS databases.

Multiground RDOS includes custom I/O drivers for all of CALMA's
hardware. This permits a high level generalized interface eliminating the
need to resort to bit level programming with critical timing conditions.

RDOS Remote Communication Support:

CALMA RDOS currently supports remote communications through both
asynchronous and synchronous data links. The asynchronous link
operates at speeds up to 9,600 band and allows a remote station to
function as an RDOS console through the QTY interface. Synchronous
communications are supported at speeds up to 48K band. Currently
software is available to provide both 2780 emulation and HASP
Multileaving Work Station support for IBM 360/370 hosts or other
machines using the same protocals.

5.2 Database Management System

Experience with GDS has demonstrated the need to shift from databases
that concentrate strictly on graphics toward design databases.
Objectives forthe GDS II System, such as the capability to verify that final
artwork conforms to design specifications, require that convenient
means exist to expand the information content of databases beyond
graphical data. Experience has also revealed the tendency for each
application area (and even installation) to possess its own requirements
that will evolve through time. Therefore, one of the primary design goals
for the GDS II Database Management System is to provide the means for
creation and maintenance of simple, flexible data structures that remain

5-3

extensible. Extensibility will facilitate both evolutionary system
development and customization to meet application and user
requirements.

To answer these needs, CALMA has developed the GDS II Database
Management System to perform all database management functions -
creation, modification, and retrieval - for the entire GDS II system. The
DBMS is comprised of a set of procedures that perform these functions
for both interactive and background processes. They are written in both
DG/L and assembly language.

The type of information that may be placed in a given GDS II database is
determined by a description file or "schema" that is referenced when the
database is initialized. Each database that resides within a system may
utilize a unique schema; thus, total flexibility is maintained. CALMA
supplies a basic schema that can be augmented by the user to extend a
database to contain the additional information required by a particular
application.

Program maintainability is, of course, another critical area of concern in
the design of the GDS II. System. The design of the Database
Management System greatly reduces and simplifies problems in this area
by providing (only) "data independent" access to databases. That is, the
DBM provides programs with access to logical data structures while
internally managing all aspects of access to the corresponding physical
data structures. Since programs will be written without dependence on
physical data structures, they will remain immune to variations in those
structures resulting from extended database definitions, etc.

Programs must, of course, always remain cognizant of the logical
structure of the databases on which they operate. Special facilities are,
however, included within the DBM that will allow programs to readily
deal with extended databases.

Elements:

The basic components of GDS II database are its "elements". An instance
of an element corresponds to an instance of a geometric entity such as a
closed polygon or a reference to an entire collection of elements.

5-4

Elements are partioned into classes as they are created by the
assignment of an "element type" that has been previously declared in the
database's schema. The assignment of element types allows programs
interfacing with the database to immediately determine the appropriate
manner to interpret a retrieved element. The DBMS may be generated to
accept up to 255 element types.

Elements are defined in terms of their "properties".A property is an
"attribute-value pair". An element, then is defined to be an arbitrary
collection of properties. The primary means of database extension will be
the user's ability to define new attribute-value functions to further
describe the basic elements. For examph~.. the DBMS provides the
capability to add a "signal name= as a character string property to the
elements representing interconnecting metalization. A program
checking interconnection may then use the values of the signal name
property in determining interconnection errors.

Property definition statements within a database's schema file determine
the set of properties valid for that database. Figure 1 details the four
characteristics of properties which are definable - data type, precision,
transformation class, and shape. This figure also indicates which
combinations are valid.

DATA PRECISION TRANSFORMATION
TYPE (bytes) CLASS SHAPE

INTEGER 1,2,4 ABSOLUTE Scalar
RELATIVE ARRAY (1 or 2
COORDINATE dimensional)

REAL 4, 8 ABSOLUTE Scalar
RELATIVE ARRAY (1 or 2

dimensional)

STRING 1 to 4095 Undefined Scalar

AGGREGATE (1 to 511) *2 Undefined Single group
ARRAY (1

dimensional)

ATTRIBUTES Undefined ARRAY (1
dimensional)

LIST 1 to 32K Undefined ARRAY (1
dimensional)

Note: A transformation class of COORDINATE is valid for ARRAY's of
shape 2 x n and precision of 4 only.

Figure 1. Property Descriptions

As shown in the figure, six data types are currently defined:

1. INTEGER - a signed, two's complement integer of 8,16, or 32
bits in length.

2. REAL - a single or double precision floating point number in
standard ECLI PSE format.

3. STRING - a variable length string of characters (bytes).

4. AGGREGATE - a fixed number of 16-bit words.

5. ATTRIBUTES - a list of attribute indices.

6. LIST - a list of variable length byte strings.

Any definable property may be added to an element. Within an element
scalar properties require 1 word (16 bits) overhead space plus their
precision rounded to words for their storage. Arrays require 3 words of
overhead per segment (segmentation of especially large arrays may be
required due to page boundaries) plus the space required for their values
at the stated precision. The DBMS processes and stores arrays as
variable length lists of subarrays or single data items using only the
amount of space required for actual data.

On retrieval coordinate data is automatically transformed by the DBMS
according to a full linear transformation and translation specified by the
calling program. Transformations are specified as a 64-bit floating-point
angle of rotation in degrees, a reflection switch, and a 64-bit floating
pOint magnification factor. Each of these specifications may be
designated as "relative" - i.e., to be composed when nested retieval
occurs - or absolute. Translations are also specified as 64-bit floating
point X and Y values. The DBMS automatically composes and nests
transformations as required.

Due to their high proportional population of the database, 32-bit
coordinate data is also compressed by several procedures when stored
within an element. 16-bit relative data is internally used when possible
and may be further abbreviated to alternating X and Y increments if
strictly axial vectors are being stored.

Thus the coordinates of an axial rectangle will occupy 8 words for data
plus 3 words for overhead information. A widened line of n vertices will
occupy from 4-(n#1) to 4n words plus overhead. The DBMS
automatically handles all aspects of decompression and transformation
of coordinate data that reside in the database.

INTEGER and REAL data representing linear dimensions are also
automatically scaled by the system. Any property with a transformation
class of "RELATIVE" is scaled by the maginification factor when
retrieved.

A Database Manager may be generated to handle up to 255 property
definitions. The standard system will accept 63 definitions.

5-5

Elements are stored as variable length record(s) within the pages (2048
byte blocks) of a library. Each element is assigned a unique "access key"
when it is created. This key is a 22-bit value composed of a page number
and a logical line number unique within that page. The DBMS provides
the capability to access elements directly by their access key. Each such
access requires a single page access within the database. The overhead
associated with each element instance or element extension is 4 or 6
words.

The DBMS contains procedures that allow creation, modification,
retrieval, and deletion of elements. As previously described, the
Database Manager automatically scales, transforms, translates,
compresses, decompresses, and adjusts the precision of values as
directed by the database's schema and each respective calling program.

Exemplars:

Within a circuit design, elements normally fall with specific categories.
All the elements representing interconnecting metalization are a good
example. All these metal runs have properties in common yet unique to
their own category. For this reason, the DBMS provides the means to
allow elements to be factored in common and nonrecurring properties.
This is accomplished through use of special elements called
"exemplars". An exemplar is similar to an element in that it is also defined
to be a collection of properties. It differs from a standard element in that
each exemplar is assigned a user specified name at its time of creation.
Exemplar names are from 1 to 32 alphanumeric characters.

The full definition of a standard element allows it to reference an
exemplar by name. Thus, any standard element may be considered to
consist of the union of its directly given properties and the properties of
the referenced exemplar. Since all directly specified properties take
precedence, the "standard specimen" which the exemplar represents
may be flexibly modified on an instance-to-instance basis.

Exemplars are a great convenience to users; for once a standard
specimen for a category is defined, all common properties are
established. Editing the Single exemplar will then effect the desired
changes in all associated elements.

5-6

Because it is inherently a device for data compression, use of the
exemplar has many positive side effects on the operational efficiency of
the total system.

As in the case of elements, DBMS procedures exist that allow creation,
modification, retrieval, and deletion of exemplars. A procedure also
exists for renaming an exemplar.

Structures:

The DBMS also provides the means for grouping arbitrary collections of
elements into "structures". A structure, then, is a collection of elements
that is assigned a name at its time of creation. Structure names are from 1
to 32 alphanumeric characters. The DBMS maintains the time of creation
and time of last modification for each structure.

Structures, of course, provide a convenient means for building
hierarchies of geometries into increasingly complex assemblies. A
structure is placed within another by creating an element that names the
referenced structure and specifies its origin(s).

With this type of organization, it often becomes desirable to describe
various properties of substructures parametrically. To provide this
feature. the DBM allows a program to designate that the value of an
attribute is to be determined by referencing a similar attribute at the next
higher level of context, i.e., within the element that references the
structure. The indirect reference may be made to a scalar property, an
array element, or a list element.

The elements of a structure are partitioned into two sets: a
"superstructure" and an "infrastructure". The elements comprising the
superstructure should represent only that information which is useful for
relating the structure to its external environment. For example, a dashed
polygon outlining the boundary of a circuit along with the circuit's
contacts would be a most useful representation of the component
whenever it is desired to place it within a larger circuit. Thus, this
abbreviated representation might naturally be chosen as the structure's
superstructure. The infrastructure is composed of the remaining
elements required for the full definition of the entity that the structure
represents.

The Database Manager provides programs with access to either the
superstructure, infrastructure, or both. Procedures exist forthe creation,
retrieval, deletion,and renaming of structures.

Libraries and Library Sets:

Collections of structures are organized by the DBMS into "libraries".The
only number of structures that may be accomodated within a library is
limited only by the available space. In addition to structures a library will
contain a schema, tables for the use of the Database Manager, and
possibly a collection of exemplars.

The structures within a given library may reference structures within a
second designated library. The hierarchial organization of structures
supported by the DBMS allows commonly used constructs to be placed
within a "master library" and referenced by structures within any number
of "working libraries". A working library together with its master library
comprise a "Iibrary set". Libraries may be concurrently accessed by
multiple processes in read-only mode. Thus, master libraries may
normally be concurrently shared among interactive and background
processes.

Each library is maintained as a single RDOS file with either random or
contiguous organization. A single library may contain up to 16K pages
(2048 bytes/page) or approximately 33.5 million bytes of storage area.

All file access is performed by procedures within the Virtual File Manager
on a page basis. The Virtual File Manager greatly accelerates file access
through sophisticated buffering techniques and also allows the sharing
of a single copy of data among interactive processes.

5.3 GPL IITM

The GPL WM Subsystem includes a compilar for a high level application
programming language, the required runtime support, and a growing
number of CALMA developed application programs. While the language
is based on APL, a commercially available programming language, the
syntax has been redefined to serve as a natural extension to the GDS II
Command Language.

Since a consistent syntax definition is used for both GDS II and GPL WM,
and GDS " command is a legal statement in the GPL WM Programming
Language. Moreover, a GDS " command may make direct use of a GPL
IITM function. For example, data collected by a GDS II system primitive
may be passed to a GPL WM function. And, data manipulated by a GPL II
function may be passed to a GDS II system primitive.

The GPL WM Language includes a large number of primitives designed
for interactive use. The primitives are defined at a high level for efficient
operator input and for efficient execution. One reason for writing GPL WM

programs is to further extend the number of primitives avialable for
interactive use. While GPL WM programs can generally be used in the
same way that the built-in primitives are used, the programs can be
tailored for more specific data processing requirements.

In addition to recieving data passed as parameters, GPL WM programs
and functions have direct access to global variables which define the
station context. Most operating system peripherals (the notable
exception is plotters) are fully supported for use by GPL WM programs.

GPL II's computational capabilities are equivalent to those provided in
APL/360 developed by IBM. Data may be organized as scalars, vectors,
matrices, or higher dimensional arrays. Data may be stored in real,
integer, logical, or character form. All storage allocation is performed
dynamically by the GPL WM Runtime Support. Automatic mode
conversions are also supplied as necessary.

The GPL WM Subsystem can be used at each station in a multi-station
system. Separate work areas provide the capablility for each user to
execute and debug programs independently of all other user. The
interacive nature of the language simplifies programming and facilitates
debugging. For example, one user has created a program that designs
bipolar transistors given two parameters. The operator inputs the desired
saturation resistance and emitter length. The program then informs the
operator if any design rules have been violated. (A complete tutorial on
how to use the program can be displayed on the CRT if desired.) The
program calculates the collector size and creates the transistor in the
database. The same program can also draw a graph on the CRT showing
saturation resistance versus collector width. This program was written,

5-7

debugged, and documented for release within three days. And on a
multistation system, concurrent production work could have proceeded
normally on the other stations.

5.4 Background Job Management System

Background Processing Under GDS II:

CALMA currently has the largest library of background functions for
integrated circuit applications in the interactive graphics industry. This
extensive library includes design rule checks, plotter and pattern
generator optimization programs and on-line plotter drivers. With the
introduction of GDS II, these programs will be extended and new
programs added.

The Job Management System supervises the execution of jobs, and
efficient utilization of the on-line plotters. Background jobs are run in
swappable grounds; this allows several background jobs to be
simultaneously active using the same amount of main memory that a
single job would require.

Features of the Background Job Management System include:

• INDIVIDUAL ADDRESS SPACES. Each backgound job has its
own program address space. Because a job is physically unable
to modify any memory locations other than its own, the integrity
of other jobs and of the operating system is ensured.

• JOB QUEUING. Jobs are withheld from execution until the
resources they need are available and until the current active job
load is small enough to give them a reasonable expectation of
access to the CPU.

• PRIORITY SCHEDULING. Jobs compete for CPU time on a
priority basis, so that a high-priority job can be started at any time
and not have to wait for other jobs that are already running.

5-8

• JOB BALANCING. The system scheduler dynamically accesses
the extent to which each running job is CPU-bound orllO bound,
and takes this information into account to enhance job
throughput.

• JOB SWAPPING. The Job Swapping Feature--uniqueto CALMA
Multiground RDOS--allows the combined address space of all
active jobs to be many times larger than the physical memory
assigned to background activity.

• PLOTTER SPOOLING. The plotter spooler is specially adapted
to plotter needs. The spool incorporates not only plotter data but
also operator communications necessary to allow changing of
paper and pens. This enables plotter spooling to be truly
independent of job execution.

• DYNAMIC PRIORITY ADJUSTMENT FOR PLOTTER JOBS. The
supervisor dynamically adjusts the priority of plotter jobs, so that
jobs which have little data spooled are favored over jobs which
have an ample amount of data spooled.

Nature of Job:

Any executable RDOS file ("save file") may be designated to be executed
as a background job. Because they run in swappable grounds,
background programs are prohibited from using certain system calls
which pertain to real-time or interactive operation.

In particular, user-written programs in assembly language or in Data
General compatible Fortran or Algol may be run as background jobs,
provided they do not perform console 1/0. Algol programs may access
the GDS II data base using CALMA-provided data base access routines.
(Data General DGIL permits the use of subroutines written in Fortran 5,
subjuct to certain compatability conditions. This makes the data base
access routines in effect available to Fortran programs also.)

User Interface:

The user communicates with the Job Management System through a set
of job commands in the GDS II command language. The following
commands are provided:

• ENTER JOB. This command allows the user to define a back
ground job and enter it into the job system to be executed. The
definition of the job includes the name of the save file to be
executed and a string of parameters to be passed to the job.
Alternatively, this command can invoke a foreground program
which interactively collects and validates the parameters,
prompting the operator for the required information. This
interactive mode of job definition is used for plots, rules checks,
and other jobs whose parameters are fairly complicated

• DISPLAY JOB INFORMATION. This command displays the
status and related information for all jobs known to the system.
The following information is displayed for each job:

Job Name (both user and system name)
Name of in itiati ng user
Status: waiting, active or complete; whether the job is sus
pended; whether it is an on-line plotter job
Priority Class
Time of Job Entry, Initiation and Termination
Elapsed CPU Ti me for Job

• CHANGE PRIORITY CLASS. This command allows the operator
to assign a different priority class to a job already entered.

• SUSPEND JOB. This command suspends the execution of an
active job, or prevents a waiting job from becoming active.

• RESTART JOB. This command reverses the effect of the
Suspend Job command and allows the job to be executed.

• KILL JOB. This command causes a job to be immediately ter
minated. An enqueued job is removed from the queue. All
spooled output generated by the job is purged.

Job Identification:

Every job has two names by which it may be identified. One of these is the
user defined job name, specified as part of the Enter Job command.
Since the user defined name is not necessarily unique, the system
assigns a unique system job name to each job at the time of entry. User
job names are required to be longer than two characters, so as to
distinguish them from the system job names, which consist of two
characters only.

Re-Running Jobs:

Job parameters are stored in a job descriptor file, which persists for up to
24 hours after job termination. One of the options to the Enter Job
command is to re-run a previously entered job. Thus, the job can be re
run without having to reenter all the parameters. Additionally, the user
can create a non-temporary version of the job descriptor file, called a
"job-save" file. This allows the job to be re-run at any future time.

Job Queuing:

When a job is entered, it is placed on a queue of waiting jobs. The
execution of the job begins when the resources it needs are available.
These resources include: magnetic tape units, on-line plotters, and also a
program ground in which to execute. Grounds are assigned to jobs by
the job scheduler in accord with the priority class of the job.

Job Priority Class:

When the user enters a job, he assigns it to a priority class. There are four
priority classes, designated A,B,C, and D. Jobs should be assigned to
classes according to their expected execution time, as follows:

Class

A
B
C
D

Expected Execution Time

Less than 3 minutes.
3 to 15 minutes.
15 to 30 minutes.
Longer than 30 minutes.

5-9

Each class has absolute priority over all lower classes. For example, if a
class A job is entered while a class B job is executing, the class A job will
pre-empt the class B job. The class B job regains control on completion
of the class A job.

The above time limits are only suggested guidelines. Each installation
may adopt its own policy regarding use of the priority classes.

On-Line Plotter Spooling:

Output to on-line plotters is spooled. That is, plotter data is generated in
advance of the immediate needs of the plotter and is temporarily stored
up in a disk file, called the plotter spool file, This enables the plotter to
keep busy even if the plotter job is swapped out of main memory for an
extended period of time. The spooled data is not limited to a single plot or
plot job: even while a given plot is being produced, subsequent plot and
messages to the operator are embedded in the spooled data as
appropriate, to allow changing of pens and paper.

Scheduling of On-Line Plotter Jobs:

On-line plotter jobs have special characteristics in terms of job
scheduling. Normally, allan-line plotter jobs are assigned to priority
class B. This means that they tend to share time equally with each other
and with any active class B job. However, their priority is subject to
dynamic adjustment as a function of how full their SpOOl files are. If a
plotter's spool is empty or nearly empty, it will preempt other class B jobs.
A plotter job whose spool becomes full is in effect suspended, thereby
allowing other jobs to execute.

If a particular plotter job is lagging and must be expedited, it can be
assigned to class A. It will then have absolute priority over all class B jobs,
including other plotters.

5.5 BACKGROUND PROGRAMS

CALMA currently has the largest library of background functions for
integrated circuit applications in the interactive graphics industry. This
extensive library includes design rule checks, plotter and pattern

5-10

generator optimization programs and on-line plotter drivers. With the
introduction of GDS II, these programs are being extended and new
programs added.

Pattern Generator Output:

The pattern generator output programs cause a magnetic tape for driving
a pattern generator to be automatically generated, containing data from
designated layers of a designated library drawing. Closed polygons,
which may contain edges of arbitrary orientation, are efficiently
fractured into rectangles. The entire set of rectangles for each layer is
sorted and optimized for the particular pattern generator.

The following pattern generators are supported: Mann 1600,2600,3000
and 3600, Electromask 2000. All pattern generators are supported to their
full resolution over the full range of stage travel.

The time to generate a tape (in the absence of other system activity) will
not exceed the limits given below, for typical integrated circuit layers,
whether of regular or random layout.

Number of Flashes

50,000
100,000
500,000
1,000,000

Time to Produce Tape

30 min.
1 hr.
5 hrs.
10 hrs.

For all these cases, the optimization will be such as to achieve an average
pattern generator flash rate of at least 2 flashes per second for the Mann
3000, and at least 6 flashes per second for the Electromask 2000.

Pattern Generator Read-I n:

The pattern generator read-in program reads any CALMA-generated
pattern generator tape into the data base for verification purposes. The
pattern generator models supported are the same as supported for
output.

Photoplotter Output (not available in initial release):

GDS II photoplotter software supports photoplotters using aperture
wheels, or a combination of aperture wheel and variable-aperture
exposure systems. Closed polygons are automatically filled according to
a variety of userspecifiable options. Filling of orthogonal figures can be
done either wholly with circular apertures or with rectangular apertures
to give sharper corners. Photoplotters connected directly to the system
may be driven on-line; magnetic tapes are generated to drive off-line
photoplotters.

The following photoplotters are supported: Precisionplot 2030, Gerber
S40, 632, 1232, and 2032.

E-Beam Output (not available in initial release):

Programs will be provided to drive electron beam pattern generators,
including the Etec MEBES, the Cambridge EBMF system, and others in
response to user needs.

Pen Plotters:

The pen plotter programs drive on-line and off-line pen plotters.
Currently supported on-line plotters are the Calcomp 960, 936, and
Xynetics 1100 and 1200. Additional plotters will be added in response to
user needs. Pen plotting features include:

• AUTOMATIC PEN SELECTION. At plot generation time, the
operator can select which layers are to appear on a particular plot
Normally, each layer is plotted with a different color. Single-pen
plotters can be paused for a pen change between layers.
Multiple-pen plotters can be made to automatically use separate
pens for each layer, then pause when all pens have been used, or
continue, reusing the same pens.

• SCALE. Plot scale is selected at plot generation time and is
independent of data grid scale or input scale. This allows the user
to plot at different scales, depending on the intended use of the
plot.

• PLOT AREA. A plot can be of an entire drawing or an operator
selected portion of the drawing. The area to be plotted is selected
by defining a rectangular window.

• WIDENED LINES. Wide lines digitized in centerline form can be
plotted showing either the center line or the outline of the
intended trace or metal run.

• CROSSHATCHING. A crosshatching option permits automatic
crosshatching of closed polygons.

GDS to GDS II Conversion:

This program reads a GDS-produced library or cell dump tape into the
GDS II data base. (Note: Node type data will not be handled in the initial
release.)

GDS II to GDS Conversion:

This program writes a designated library drawing onto a tape in GDS
dump format. (Note: Because of the greater resolution and greater
variety of data types found in the GDS II data base, an exact conversion of
all data is not possible.)

Library Dump and Load:

The dump program dumps a library drawing to magnetic tape in standard
GDS II dump format. The load program loads a drawing from such a tape.

Design Rules Checks:

GDS-EQUIVALENT RULES CHECKS.
The interior rules check tests closed polygon data for violations of
specified minimum internal spacing. Optionally, the program can at the
same time check for violations of a specified minimum notch width. All
closed polygons on a specified layer within a specifid window are tested.
In addition to a text summary of test parameters and results, errors are
recorded in the form of a library drawing for visual inspection. This
graphic error data may be displayed on the CRT or plotter either alone or
in combination with original data.

5-11

The exterior rules check provides the same rules checking capability
provided by the GDS Exterior Spacing Check. The check may be run
within a single layer, or between two layers. The check finds a" instances
of spacing viotations, which are defined as any pair of edges, belonging
to distinct Qolygons, whose minimum straight-line distance from each
other is less than a specified minimum. The violations are output in the
form of a library drawing.

If a connectivity computation has been done on the layer(s), the option is
available to report only violations between polygons which have distinct.
connectivity numbers.

ADVANCED RULES CHECKS (not available in initial release). The
specification of the advanced rules checks wi" be developed in the first
quarter of 1978. These checks wi" provide a variety of sophisticated
checking capabilities, including: minimum layer-to-Iayer oversize,
minimum layer-to-Iayer extension and intrusion, minimum layer-to-Iayer
area of intersection.

5-12

Connectivity Computation (not available in initial release):

This program wi" determine the connectivity relations among a" the
polygons in a layer or set of layers, by assigning to each polygon an
attribute, called "connectivity number", such that two polygons have the
same connectivity number if and only if they belong to the same
connected region.

Area Merging (not available in initial release):

This program will merge all figures comprising a connecting region into a
single polygon or complex, over an entire layer or set of layers.

Logical Operations Between Layers (not available in initial release):

This program wi" compute the geometrical intersection (AND), union
(OR), or difference of two designated layers. Both input and output
layers must be in fully expanded form (no structure references).

These complex shapes, shown in this enlargement of a test pattern plotted on an Electromask Pattern Generator,
demonstrate the highly sophisticated nature of CALMA's pattern generator software. The reticle was underdeveloped
to illustrate how each shape has been fractured into a set of rectangles acceptable to the pattern generator.

5-13

SECTION 6

HARDWARE
6.1 Central Processing Subsystem

The GDS II has a Central Processing Subsystem to which Design
Stations, Plotters, and other peripheral equipment are attached. The
Central Processing Subsystem consists of a computer, a disk memory, a
magnetic tape transport, and a system console. The Central Processing
Subsystem can accomodate up to six Design Stations with as many as
th ree Plotters.

Computer:

The GDS II computer is an ECLIPSE S/230 which accomodates up to
256K words of core memory. ECLIPSE computers have a
microprogrammed architecture that incorporates a comprehensive
instruction set. Instructions include:

• 16 bit and 32 bit instructions

• Direct, indirect, indexed, immediate and extended addressing

• Block, word, byte, and bit manipulation

• Fixed point signed and unsigned multiply/divide arithmetic

• Decimal arithmetic

• Extensive logical operations

• Single and double-word shifts, including hexadecimal shifts

• Single and double-precision floating point instructions

• Extended operation (XOP) for subroutines

Single instructions do work normally done by subroutines in operating
systems and high-level language compilers. For example, the ECLIPSE
computer DISPATCH ABSOLUTE instruction does most of the
processing typically done by a FORTRAN computed GO TO statement.
The LOCATE AND RESET LEAD BIT instruction lets ECLIPSE operating
system quickly identify and allocate an available disk block. A BLOCK
MOVE instruction moves data blocks between memory buffers. A
complete set of logical operations and bit manipulation instructions is
provided for data communications applications.

ECLIPSE computers use an extended last-in, first-out hardware stack
facility to do operations complicated software algorithms normally do,
but faster and more directly. An ECLI PSE stack is a series of variable
length temporary storage areas called frames, each easily assigned and
randomly addressed. A single SAVE instruction allocates the frame,
saves the entire machine state and sets a pointerto a frame area. A single
RETURN instruction reverses the entire procedure. This ECLIPSE
random access stack is far more efficient than traditional serial access
stacks. It results in fast subroutine linkages, rapid context switching, and
high system throughput in re-entrant high-level language and operating
system environments.

The ECLIPSE computer's fast interrupt facility handles even the most
timecritical events. Real-time operating system interrupt servicing is in
hardware, rather than slower software routines. The servicing can be
tailored to individual peripheral devices and applications with the
powerful VECTOR instruction.

For simple interrupt processing, VECTOR combines fast service with
minimum system overhead. The instruction identifies the interrupting
device, then directly transfers control to the device handler, all in about
2.7 microseconds (4way interleaved core). For the most complete

6-1

interrupt processing, VECTOR identifies the interrupting device,
switches from user stack to interrupt stack, saves the machine state,
establishes a new priority, re-enables interrupts, then transfers control to
the device handler. VECTOR typically performs even this most complex
function in only 18 microseconds (4-way interleaved core).

The ECLIPSE Memory Allocation and Protection (MAP) provides
program and data integrity in multi-user environments. It provides
hardware protection between user programs, and between a program
and the operating system.

MAP manages up to 512K bytes of main memory resource. It allocates
memory to each user in 2K byte blocks, up to 32 blocks at a time. The
blocks are small enough to make efficient memory use, yet large enough
to keep system overhead to a minimum. The same block of physical
memory can be allocated to more than one user, allowing procedure and
data sharing among users.

MAP simultaneously holds three dynamic address translation maps - two
user maps and a data channel map lets 1/0 activity of one user overlap
with another's program execution.

In addition to address translation, MAP provides several kinds of
protection. Blocks can be write-protected so users cannot alter them - an
important feature when physical memory is shared. Input/output devices
can be made accessible or inaccessible to a user. Each MAP protection
function is enabled separately and easily, letting the operating system
handle users with widely differing requirements.

The ECLIPSE Floating Point Processor performs extremely fast
singleprecision and double-precision floating pOint arithmetic. High
level languages like Data General's FORTRAN 5 make extensive use of
the Processor, producing high system throughput in computational
applications.

The Processor has four separate 64-bit floating pOint accumulators for
floating point arithmetic. Operands stored in these accumulators are
quickly available for floating point manipulation, especially in interactive
processes like sine and cosine calculations.

6-2

The Floating Point Processor operates in parallel with the computer's
central processor. High-speed floating point arithmetic can therefore be
performed simultaneously with other instruction processing.

There are 56 comprehensive floating pOint instructions that perform
single - or double - precision floating point arithmetic.

Instructions PUSH or POP the entire Floating Point Processor state on or
off the user stack, an extremely useful feature for rapid context
switching.

FIX and FLOAT instructions allow convenient double-precision integer
arithmetic with the Floating Point Processor.

The performance of ECLIPSE's Floating Point Processor is comparable
to large computers. For example, a double-precision floating point ADD
takes only 2.4 miroseconds, maximum with all but 1 microsecond
overlappable with other CPU operations.

ECLIPSE computers interleave and overlap memories to increase speed
and system throughput. Interleaving puts sequential memory locations
on different modules. Core memories can be interleaved two, four, and
eight ways. In four-way core interleaving, for example, each of four
consecutive memory locations is on a separate memory module.

Since successive locations are on separate memory modules, and since
ECLI PSE computer microinstructions are overlapped, ECLI PSE
accesses the next sequential location before it completely finishes
processing the previous location.

The effect on instruction execution time is dramatic. A four-way core
interleaved system reduces a 1400 nanosecond LOAD ACCUMULATOR
instruction to 800 nanoseconds. The more modules interleaved, the
faster the memory cycle time. Users get higher performance when they
need it most, in large memory configurations.

Disk Memory:

A removable-pack disk, with 12.5 million 16-bit words of memory for

database and program storage, provides an average access time of 35
milliseconds to the user's graphic database. The disk subsystem can be
expanded to 25 million words through the addition of a second drive.

Optionally, CALMA can provide 80,150, or 300 Mbyte Storage Modules.
These removable pack disk drives should be used when extremely large
files are to be created, or when there is a requirement for on-line storage
of many files. Like the standard drive, the Storage Module is a moveable
head, random-access disk drive. It uses a standard, eleven plotter,
removable disk pack as the storage media. Average access time is 30
milliseconds. The Storage Module subsystem can be expanded to 4
drives of equivalent capacity.

Magnetic Tape Transport:

The magnetic tape transport is used for archival storage of databases and
programs on 1/2-inch magnetic tape and to create tapes for off-line
plotting. The standard drive is a 9-track unit, which is operated at 45 ips
and 800 bpi. A 1600 bpi unit or combination 800/1600 bpi unit may be
supplied in lieu of or in addition to the standard unit.

System Console:

The GDS II console is a keyboard printer with an ASCII keyboard (96
char). The printer is a 30 cps matrix printer with tractor d rive and pin feed.
It prints 132 characters per line, 10 characters per inch, and 6 lines per
inch.

6.2 Design Stations

GDS II supports three types of Design Stations. The Constrained-Cursor
Digitizer Station is generally used to interactively update existing
designs or to interactively generate new designs. The Free-Cursor
Digitizer Station offers the advantages of a tablet with the size of the
Large Digitizer Table.

Constrained-Cursor Digitizer Station:

The Constrained-Cursor Digitizer Station comes equipped with a twin
stand, gantry-type digitizer with a seven-button cursor. The digitizer is
back-lit with a variable intensity control. The resolution is 0.001 in.; the
repeatability is ±O.001 in. The digitizing area is 46 x 60 in.

The station also includes an ASCII keyboard (96 char), XV-coordinate
displays, an 11-inch storage tube display (for graphics) and an erasable
alphanumeric display (for designer communications).

A 19-inch storage display may be specified in lieu of the smaller 11-inch
display. And a 32-button programmable function keyboard may be
added, if desired.

Tablet Station:

The Tablet Station comes equipped with a 12 x 12 inch rand-type tablet
and stylus. The station also includes an ASCII keyboard (96 char), XY
coordinate displays, a 11-inch storage tube dispray (for graphics l and an
erasable alphanumeric display (for designer communications).

A 19-inch storage display or CALMA's new VMD may be spedfied in lieu
of the smaller 11-inch display. And a 32-button programmable function
keyboard may be added, if desired.

6-3

VMD:

Vector Storage

Imaging System

Display Points

Display Size (diagonal)

Point Generation

Vector Generation

Image Storage

Storage time per image

Erase time

Vector draw time

Controller

128K 16-bit words of solid state memory stores approximately 50K 16-bit
vectors

Digital TV refreshed 30 times per second, regardless of information on
display

1024 x 1024

21" (53.34 cm)

Any addressable pOint intensified

Hardware vector generation intensifies pOints between any two
addressable points

256,000 bits of solid state memory store value of each addressable point*

Indefinite

1 ms

250 nanoseconds, plus 35 nanoseconds for each addressable point in
major axis

Intel 8085 microprocessor

*As the video monitor, which had a grid of 1024 x 1024 addressable
points, is being refreshed, an interpolation algorithm, which operates in
real time, is used to fill in the dots not explicitly stored in the raster
memory.

6-4

6.3 On-Line Pfotters

On-line plotters supplied with GDS " include:

Calcomp Model 936 Drum Plotter:

33-inch drum; choice of 0.002 inch or .05 mm incremental step size; axial
movement rate of 3.6 in./sec. in the pen down position and 5.0 in./sec.
with the pen up; 3-pen plotting.

Calcomp Model 960 Plotter:

33 x 60 in. belt; .0125 mm incremental step size; axial movement rate of 30
in./sec. in the pen down position (10 in./sec. with liquid ink) and 30
in./sec. with the pen up; 2-pen plotting. The 4g acceleration permits the
plotter to reach full drawing speed within a fraction of an inch. This
capability improves plot times significantly.

Calcomp Model 748 Flat-Bed Plotter:

Flatbed plotter with 4-pen plotting at (axial) speeds up to 30 in./sec. 48 x
82-in. drawing area, ±0.005 in. absolute positioning accuracy over total
drawing area, ±0.003 in. repeatability over total drawing area at 30
in./sec ..

Xynetics Model 1050 Drafti ng Table:

Flatbed plotter with 4-pen plotting at speeds up to 35 ips, 33 x 45 in.
drawing area, ±0.001 in./ft./axis absolute positioning accuracy over total
drawing area, ±0.005 in. repeatability over total drawing area at 35
in./sec.

Xynetics Model 1100 Drafting Table:

Flatbed plotter with 4-pen plotting at speeds up to 35 ips, 42 x 57-in.
drawing area, ±0.001 in./ft./axis absolute positioning accuracy over total
drawing area, ±0.005 in. repeatability over total drawing area at 35
in./sec.

Xynetics Model 1200 Drafting Table:

Flatbed plotter with 4-pen plotting speeds up to 35 ips, 57 x 89 inch
drawing area, ±0.001 in./ft./axis absolute positioning accuracy over total
drawing area, ±0.005 in. repeatability over total drawing area at 35
in./sec.

Versatec Model 8242 Matrix Plotter:

Uses 42 inch roll paper. Dual array writing head has 8192 writing nibs.
Plots with a resolution of 200 dots per inch at 0.50 inches per second
paper speed.

6.4 Peripheral Options

GDS " provides a complete selection of peripheral options to meet
varying user requirements. Included are a papertape reader, a papertape
punch, a punched card reader, a line printer, and a communication
interface.

Paper Tape Reader:

8 channels, 300 cps, supply and take-up reels, panel mounted.

Paper Tape Punch:

8 channels, 75 cps, supply reel, panel mounted.

Punched Card Reader:

80 columns, 285 cpm, table mountable.

Line Printer:

132 columns, 64 ASCII characters, 300 Ipm, free standing unit.

6-5

Keyboard Printer:

Full ASCII (96 char) keyboard 30 cps, 132-column matrix printer, free
standing console.

Keyboard Display:

Full ASCII (96 char) keyboard, 30-480 cps, 2000 character video display,
table mountable.

6-6

Synchronous Communication Interface:

To Bell 201 or equivalent. This synchronous interface enables Remote
Job Entry emulation. With the appropriate software GDS II can emulate
IBM's 2780 RJE Terminal, or IBM's HASP Terminal, or CDC's UT200
Terminal, or Univac's 1004 Terminal.

	000
	001
	1-01
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06

